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Kurzfassung

Traditionelle Datenbankmanagementsysteme (DBMS) stehen neuen Herausforderungen
in den Bereichen Flexibilität und Skalierbarkeit gegenüber. Heutige Cloud-Computing
Umgebungen bieten unglaubliche Möglichkeiten und traditionelle DBMS können diese
Ressourcen nicht ausreichend nutzen. NoSQL und NewSQL Systeme bieten erfrischende
neue Ansätze für aktuelle Herausforderungen in diesem Bereich. Die enorme Anzahl der
derzeit verfügbaren Systeme stellt Entwickler vor eine große Herausforderung, wenn sie
einen passendes Datenbanksystem wählen. NoSQL und NewSQL Systeme bieten neue
Funktionen und Ansätze. Diese Arbeit analysiert die Methoden und Algorithmen von
NoSQL und NewSQL Systemen. Ausgewählte Systeme werden in mehreren Dimensio-
nen verglichen, um Unterschiede in ihren Ansätzen und Technologien aufzuzeigen. Der
resultierende Vergleich dient als Anleitung für Anwendungsentwickler, die nach einer
passenden Datenbanksystem suchen.
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Abstract

Traditional database management systems (DBMSs) face new challenges concerning
flexibility and scalability. Today’s cloud-computing environments offer incredible resources
and traditional DBMSs struggle utilizing these resources. NoSQL and NewSQL systems
offer refreshing new approaches to current challenges in this domain. The enormous
number of currently available systems present a major challenge to developers choosing
a fitting data store. NoSQL and NewSQL data stores provide powerful new features
and approaches. This thesis analyzes the methods and algorithms used by NoSQL and
NewSQL systems. Selected data stores are compared in multiple dimensions to show
differences in their approaches and technologies. The resulting comparison provides
guidance for application developers searching for a fitting data store.
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CHAPTER 1
Introduction

The first database management system (DBMS) appeared in the 1960s. One of such
DBMSs was built by IBM, known as IMS, it was developed to manage inventory and
supplies. Certainly, traditional DBMSs were developed with the mindset and requirements
of that time. In the next years, the computing performance started to increase and
many database systems were developed. All these systems were designed to operate on a
single machine because there was no need to distribute the system across multiple nodes.
Therefore, database systems were only capable of supporting a relatively small number
of concurrent users compared to today’s requirements.

Traditional database management systems (DBMSs) in combination with a single machine
could not handle that huge number of concurrent requests in a satisfying way. Scaling the
system vertically by increasing computing resources of the used machine only improves the
performance to some extent. However, this countermeasure is limited to the computing
power of a single machine. Additionally, the migration of a DBMS between two machines,
in order to upgrade to a machine with more computing power, is a complex and costly
process. The migration process also comes along with significant downtime. Considering
the requirements of modern web applications downtime cannot be tolerated in such
systems.

One common requirement of traditional DBMSs is the need for consistency and valid
data at any time. More specifically this requirement is fulfilled by supporting the ACID
concept. ACID stands for Atomicity, Consistency, Isolation and Durability. Furthermore,
this concept is used to guarantee reliable transactions in DBMSs.

[Asl11, PA16]
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1. Introduction

1.1 New challenges

With the beginning of the 2000s, web applications became popular. This kind of
applications had more demanding resource requirements than applications of previous
years, above all the need to serve large numbers of users at the same time.

With the emergence of cloud computing and BigData, the requirements for DBMSs or in
general data stores started to change. Traditional DBMS-technology does not provide
the needed scalability to handle the growing resource requirements. The inflexible nature
along with other limitations poses new challenges to the traditional systems. Today’s
applications are growing remarkably fast. Consequently, high performance and scalability
have become a major requirement, with regard to the amount of data, which has to be
stored and accessed. To achieve this, modern applications have to be built on top of
heterogeneous commodity servers.

A commodity server, in this context, is a server that is not built for a specific purpose.
The hardware is inexpensive and in addition easily exchangeable. A single commodity
server is not capable of carrying out a high-performance task. The benefit of using this
type of server is being independent of certain manufacturers and it is easily exchangeable
if a server breaks down. This kind of machines is heavily used by cloud-computing
providers. To utilize these resources and reach a high degree of scalability heterogeneous
commodity servers along with their weaknesses have to be supported. [GHTC13]

Web applications tend to show fluctuation in their access patterns. To cope with the
fluctuation elasticity has to be provided by the application. Another requirement in this
context is fault tolerance. Fault tolerance becomes more important because distributed
systems as the name suggests are composed of a huge number of individual machines and
each machine poses a source of error. Therefore, the probability of failure is increased by
the number of used machines, which results in a significant failure rate.

Also, long periods of downtime cannot be accepted for crucial systems. Hence availability
is also a key requirement for modern web applications.

All these new requirements and challenges of present-day applications influenced the
evolution of DBMSs. Traditional DBMSs are not able to fulfil these new requirements in
a satisfying way. Out of the need to deal with these challenges new types of data stores
emerged, so called NoSQL data stores. [PA16, RFG+18]

1.2 New Technologies

1.2.1 NoSQL

The term NoSQL [Eva09], short for ’Not Only SQL’, refers to a family of non-relational
DBMSs. The name indicates that the key objective is not focused on SQL-based systems.
An enormous number of new data stores fits in this classification. A large portion of
these systems is tailored for a specific field of application. NoSQL data stores, other
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1.2. New Technologies

than relational DBMSs, are not primarily based on tables. Furthermore, they share the
following characteristics:

• Generally, NoSQL data stores do not support the ACID properties. They use a
more relaxed concept, which is known as BASE (Basically Available, Soft state,
Eventual consistency).

• NoSQL data stores make use of modern cloud environments, in terms of utilizing
heterogeneous commodity hardware. Hence, NoSQL data stores are able to scale
horizontally and allow huge numbers of concurrent requests.

• Due to the use of multiple servers and redundancy NoSQL data stores provide high
availability and can handle failures of server instances.

• In contrast to relational DBMSs most NoSQL data stores support flexible data
structures and schemas. A wide range of structured, semi-structured and schema-
less systems is covered.

NoSQL data stores are built on top of different data structures and data models. They
can be divided into four categories based on the underlying data model:

• Key-value stores: Items in this data store are simple key-value pairs. These
pairs are stored in a hash map or dictionary. The key is a unique identifier within
the data store, which is associated with the value. The associated value can be of
an arbitrary form (e.g. string, list, object, . . . ). Therefore, queries can usually only
be performed against keys and not against the stored values.

• Column stores: Datasets in column-oriented data stores are organized by column
rather than by row. Values of a single column are stored adjacently to optimize
queries referring to particular attributes. Therefore, these systems are often used
for statistical and analytical purposes.

• Document stores: Similar to Key-value stores document stores also organize
data as key-value pairs. However, the value is a semi-structured document. Most
document stores support encodings like JSON and XML. The semi-structured data
allows for limited querying capabilities.

• Graph databases: The underlining data structure, as the name suggests, is a
graph. A graph consists of nodes and edges. In this context, nodes represent data
objects and edges are the relations between data objects. Nodes and edges can
store information in key-value pairs. This specific data model is well suited to
manage deeply interconnected data sets.

3



1. Introduction

These diverse data models provide a wide range of systems. A lot of systems are tailored
to fit a few use cases, other than traditional relational DBMSs, which provide support
for a broad range of use cases. [Pok13, MH13]

1.2.2 NewSQL

NewSQL is a class of modern relational DBMSs. They are closing the gap between
traditional DBMSs and NoSQL systems and were designed to combine the benefits of these
two worlds. One of the core features of NewSQL is the support of ACID transactions, in
contrast to NoSQL data stores. Furthermore, they use a relational data model, although
some systems may use a different data model for internal representation. The support of
a relational data model enables the systems to offer SQL as the main interface language.
Additionally, NewSQL data stores seek to provide the same horizontal scalability and
read-write performance as NoSQL data stores. Hence, NewSQL data stores are able to
process huge amounts of concurrent requests, while still maintaining consistency and
integrity of the database.

In contrast to NoSQL, there are not that many systems which fit in the class of NewSQL.
Also, the categorization of NewSQL systems is not that transparent as the categorization
of NoSQL systems, which are categorized based on the underlying data model. Andrew
Pavlo and Matthew Aslett [PA16, MBT16] distinguish these three categories of NewSQL
systems:

• New Architectures - These systems are built from scratch and aim to fulfil all
modern requirements of distributed relational DBMSs. Other than traditional
DBMSs these systems are designed for distributed applications and use cases.

• Transparent Sharding Middleware - NewSQL systems in this category make
use of already established DBMSs. A transparent sharding middleware manages the
access to underlying systems. The middleware is responsible for data distribution,
queries and transactions.

• Database-as-a-Service - The whole database stack is managed by the provider of
the service. The customers of these services do not have to manage their own server
hardware or infrastructure, they only have to select a fitting product depending on
their needs.

1.3 Problem definition

The current landscape of modern database systems provides an enormous set of distinct
solutions. Each solution is tailored for a specific set of requirements and provides different
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features. All these systems have in common that they are confronted with a challenging
set of requirements. The requirement to handle huge numbers of concurrent requests and
the large amount of data over a distributed environment represents a key challenge to
database systems. To cope with these requirements a database system has to address
several key aspects such as concurrency control, sharding and distributed querying.

Depending on the underlying architecture and design of NoSQL or NewSQL systems,
various approaches and implementations are currently available. The majority of the
available systems use different algorithms and technologies for the same problems. The
immense number and the diversity of the current systems poses a difficult problem to
select a suitable solution for a given task.

1.4 Research questions
In order to reach the expected results following research questions are answered in the
course of the thesis:

• What are the key criteria to compare NoSQL and NewSQL systems?

• In what manner do particular NoSQL and NewSQL systems compare according to
these criteria?

• Which different methods and algorithms are used by NoSQL and NewSQL systems
to cope with these key criteria?

1.5 Expected results
The first part of the expected results is a detailed list of key criteria of NoSQL and NewSQL
data stores. Based on these criteria the main objective is to provide a comprehensive
comparison of selected NoSQL and NewSQL data stores. This includes a detailed
description of the criteria and of the used methods and algorithms. In addition, the
resulting information is presented in a way to assist the reader in the selection of a
suitable system.

1.6 Methodology
The following steps are taken in order to answer the research questions and arrive at the
expected results:

1. Comprehensive literature research on NoSQL and NewSQL and the used technolo-
gies

2. Determination of the key criteria to compare NoSQL and NewSQL data stores
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1. Introduction

3. Systematic selection of NoSQL and NewSQL data stores based on available rankings

4. Further research on the particular NoSQL and NewSQL data stores

5. A detailed comparison of selected data stores for each criterion

The data stores are selected based on prior research and data store rankings from
DB-Engines [dbe18]. The selected data stores will be used in Chapter 3 for a detailed
comparison. DB-Engines ranking is based on the current popularity of the system
including the following parameters:

• Number of mentions of the system on websites

• General interest in the system. (Google Trends)

• Frequency of technical discussions (Stack Overflow and DBA Stack Exchange)

• Number of job offers, in which the system is mentioned

• Number of profiles in professional networks, in which the system is mentioned
(LinkedIn and Upwork)

• Relevance in social networks

1.7 Relation to Business Informatics
It is rarely the case that a state of the art web application is built without an underlying
data store. In the age of Big Data and Internet of Things (IoT) scalable and flexible data,
stores are essential parts of modern applications. The immense volume of data which
these applications are confronted with is in many cases handled by a NoSQL or NewSQL
data store. Design, development and usage of these applications are core competences of
business informatics.

A wide range of fields in business informatics is highly related to database technologies
to mention only a few of them: Software engineering, distributed systems, data analysis
and business intelligence.
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CHAPTER 2
Background

2.1 NoSQL
The term NoSQL [Eva09], short for ’Not Only SQL’, refers to a family of non-relational
DBMSs. The name indicates that the key objective is not focused on SQL-based systems.
A lot of new data stores fit in this classification and most of them are tailored for a
specific field of application.

A major part of today’s applications is confronted with a huge amount of data. Traditional
DBMSs are no longer a viable choice to handle this situation because they are only capable
of scaling to some degree. This is achieved by vertical scaling (also called scale-up), which
means increasing the resources of the machine the DBMS operates on. Unfortunately, at
some point, an upgrade is no longer possible or the costs do not justify the additional
benefit.

NoSQL data stores overcome this lack of horizontal scalability. They are designed to
operate in a distributed environment with many nodes. Therefore, they are capable of
handling extremely large sets of data by design. NoSQL data stores make use of modern
cloud environments, in terms of utilizing heterogeneous commodity hardware. Hence,
NoSQL data stores are able to scale horizontally and allow huge numbers of concurrent
requests.

It is not only the volume of data relational DBMS struggle with, also the variety of data
sets is an issue. NoSQL, in general, provides a rich set on different data stores, each
data store tailored for specific needs. In contrast to relational DBMSs, most NoSQL
data stores support flexible data structures and schemas. A wide range of structured,
semi-structured and schema-less systems are covered. Hence, NoSQL data stores provide
more flexibility than traditional DBMS.

NoSQL data stores, other than relational DBMSs, are not primarily based on tables.
Furthermore, the majority of NoSQL systems do not support SQL as a query language

7



2. Background

and often only provide limited querying capabilities. Nevertheless, NoSQL data stores
are very efficient when querying data records by key.

BASE Generally, NoSQL data stores do not support the ACID properties. They use
a more relaxed concept, which is known as BASE. This acronym stands for basically
available, soft state and eventual consistency. (Compared and discussed in Section
2.3.) Due to the use of multiple servers and redundancy NoSQL data stores provide high
availability and can handle failures of server instances. Basically available means that
the system is available at any time whenever it is accessed, even if parts of the system
are unavailable. Soft state indicates that the state of the system may change over time,
although no further inputs are made. This concept highly correlates with the last BASE
property eventual consistency. Traditional DBMSs use a strong consistency model like in
ACID. NoSQL data stores follow a looser approach of consistency: eventual consistency.
Changes in a NoSQL data store propagate through the distributed system visible to all
users. During this time span, the corresponding records are not locked for other users
and may cause an inconsistent state of the data store.

[PA16, MH13, Pok13]

2.1.1 Data model

A traditional database stores information using a relational data model, which consists
of tables and relations between them. These tables are composed of rows (tuples).
In the NoSQL domain, a row is a limited data structure, because it cannot contain
other rows or complex structures. Nesting rows or lists of rows in other rows are in a
relational database not possible or would violate normalization constraints. However,
object-relational DBMSs systems such as Oracle [ora18] or PostgreSQL [pos18] also offer
the possibility of mapping more complex data structures.

NoSQL data stores take a different approach, due to the need for flexibility in the data
model. In practice, it is often more useful to operate on a more complex data structure
than a row. This complex data structure should be able to contain multiple properties,
lists and other nested data structures and is called aggregation. This notation of
aggregation is not directly correlated to notation in used traditional data modelling.
Aggregations are often used as a unit for data manipulation in the majority of NoSQL data
stores. It also emphasizes a more structural approach for developers when manipulating
these complex data structures in scope.

The following example (Figure 2.1) shows a simple entity-relationship model with the
following entities: Company, Employee and Address. This model will be used to create
a relational data model and a NoSQL data model to compare the different approaches.

The tables illustrated in Figure 2.2 represent a data model for a relational data store.

The NoSQL data model is represented in JSON (JavaScript Object Notation). JSON
is a lightweight data format, which is human-readable and often used in NoSQL data

8



2.1. NoSQL

Company Employee

Address

state
city
street

name given name
surname

1

1
*

*

store address

private address

Figure 2.1: Example: ER-diagram

stores. The composition syntax (black diamond) used in the entity-relationship model
represents the aggregation structure used in the NoSQL model.

In this example, a Company has multiple store addresses and an Employee has a private
address. The aggregation structure of these relations leads to nested data records as
shown in Listing 2.1. The relation between the entities Company and Employee is just
a simple relation and does not lead to an aggregated data structure.

Like in a relational data model records can be referenced by keys (identifiers). In
the relational model (Figure 2.2) an Employee contains an attribute CompanyId to
reference the Company the employee works in. In the NoSQL data model it is vice
versa, the Company contains a list of Employees which work in this Company. But in
general, there is no strict rule which entity has to contain the references. The NoSQL
data model would still be valid, if it were the other way round or if both records contained
the references to each other.

Another difference is that in the NoSQL data model the same logical address appears
multiple times. The Addresses are treated as simple value structures and are not
referenced by an identifier. In a relational data store, the addresses would be referenced
by an identifier to avoid multiple instances. In an aggregated data structure records can
be copied in place if it fits the problem domain, but not all relations have to be modelled
as an aggregated data structure. The relation between Company and Employee is a
relation between aggregates, these records are not nested within each other.

9



2. Background

Company	
Id	 Name	
1	 Big	company	

	

StoreAddress	
CompanyId	 AddressId	
1	 50	
1	 51	

	

	

Employee	
Id	 First	name	 Last	name	 CompanyId	 PrivateAddressId	
101	 Jane	 Doe	 1	 55	
102	 John	 Doe	 1	 55	
	

Address	
Id	 State	 City	 Street	
50	 Austria	 Vienna	 Favoritenstraße	
51	 United	States	 New	York	 Broadway	
	

	

	

	

	
	
	

Figure 2.2: Example: Relational data model

The boundaries of aggregated data structures can be chosen freely to fit the application’s
needs. For example, the relation between Company and Employee could also be
modelled as an aggregated data structure. There is no single way to design the data
model, the aggregate boundaries can be set according to the application and their use
cases.

In general, there is no universal answer how to design such a data model, many factors
are included in the design process. A major factor is the way the application is accessing
and manipulating the data. If Companies are accessed with all it’s Employees, then
a single aggregated data structure per Company would be preferred. On the other hand,
if the application is focused on accessing and manipulating a single Employee a more
separated data model should be considered.

In a traditional relational data model, there is no semantics to express whether a relation
is an aggregation or not. This information, which relation can be interpreted as an
aggregation, is from the perspective of the distributed system of high importance because
it can be used by the system to distribute or combine certain junks of data over multiple
nodes. For example, if Companies and Employees are distributed over two nodes in a
distributed environment, a query over a company containing its employees would involve
both nodes. If the system has the information, that the relation between Company and

10
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Listing 2.1: Example: NoSQL data model using JSON
1 {
2 "companies": [
3 {
4 "id": 1,
5 "name": "Big company",
6 "storeAddresses": [
7 {
8 "state": "Austria",
9 "city": "Vienna",

10 "street": "Karlsplatz"
11 },
12 {
13 "state": "United States",
14 "city": "New York",
15 "street": "Broadway"
16 }
17 ],
18 "employees": [101, 102]
19 }
20 ],
21 "employees": [
22 {
23 "id": 101,
24 "first name": "Jane",
25 "last name": "Doe",
26 "privateAddress": {
27 "state": "Austria",
28 "city": "Vienna",
29 "street": "Karlsplatz"
30 }
31 },
32 {
33 "id": 102,
34 "first name": "John",
35 "last name": "Doe",
36 "privateAddress": {
37 "state": "Austria",
38 "city": "Vienna",
39 "street": "Karlsplatz"
40 }
41 }
42 ]
43 }
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2. Background

Employee is an aggregation, it would not split the data over multiple nodes. In this
scenario the entities would reside on a single node and the system would only have to
access this node for the query.

The information about aggregation between entities is not a property which can be
inferred from the data model. It has to be provided by the developer and in most cases,
this information depends on how applications will process the data. Furthermore, if the
data is being used by many applications and for different scenarios, it is very problematic
and difficult to set up aggregation structures which satisfy all parties. Already if a data
store is used for operational and analytical purposes the aggregation structures for these
use cases can be conflicting.

Data stores can be split into aggregation ignorant data stores and data stores which
support aggregation. Most NoSQL data stores support the concept of aggregation except
for graph data stores. Aggregation ignorant data stores have the ability to provide data in
a generic and universal way because they are not constrained to aggregations. This way
the data stores can serve a broad array of applications. This concept fits the traditional
database because it is often used as a general-purpose data store.

Data stores which support the concept of aggregation, like most NoSQL data stores,
benefit in multiple ways by using this data model. One key aspect of NoSQL data stores
is a flexible data model, this suits the concept of aggregation very well because the
aggregated data structure can be adapted to fit the needs of the data store. As mentioned
above aggregation facilitates the usage of distributed systems, because aggregation enables
the system to decide which records belong together and which can be easily distributed
across different nodes, this also fits the characteristics of NoSQL systems. Furthermore,
NoSQL data stores are in most cases used and built for a very specific use case, so
they are not used as a general-purpose data store. This fact offsets the disadvantage of
aggregation for NoSQL data stores.

[SF12, SH18]

2.1.2 Classification of NoSQL data stores

NoSQL data stores are built on top of different data structures and data models. They
can be divided into the following four categories based on the underlying data model:
Key-value stores, column stores, document stores, graph databases.

Key-value stores

Key-value stores have the simplest data model compared to other NoSQL systems. As
the name suggests, a key-value store holds a collection of key-value pairs. Generally, a
key-value store is able to store any binary data, but the key is in most cases limited to
a certain size. The key is unique in the collection and in most cases the only way to
retrieve data from the store. Some key-value stores offer additional options to query data
by value. The querying possibilities are very restricted because of the lake of information
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2.1. NoSQL

of the stored binary data. In addition to the binary format, most key-value stores also
provide support for other data types.

The simple nature of a key-value data store allows the system to scale rather easily and
distribute data across multiple servers. The underlying flexibility of the system also
comes with drawbacks. Key-value stores mostly provide basic operations to access and
modify the stored data. Because of the high abstraction, the system has less information
about the stored data than for example a RDBMS, which uses a schema and defines data
types for each field. This flexibility shifts more tasks and responsibility to the application
developers using the key-value store. If a value is associated with a data type the system
can provide higher level support for the developer e.g. conflict resolution and secondary
indices.

In most cases, key-value stores are not able to handle complex applications, because they
do not support relations. Nevertheless, they are used in many scenarios. Frequently they
are used for simple tasks, which require fast response times such as caching or session
management. Key-value stores are used to cache whole websites or JSON-documents. This
is where key-value stores shine. They are designed for high availability and performance.
Also, many modern database systems use a key-value data store as a foundation and
build their system on top of it. For example, CockroachDB [coc18a] a NewSQL database
uses RocksDB [roc18] as an embedded key-value store at its core to persist data to disk.

Many key-value stores are based on Amazon’s Dynamo [DHJ+07]. After the release
of the paper, many systems implemented this architectural approach and more or less
started the era of NoSQL. Many systems like Riak [ria18] and LinkedIn’s Voldemort
[vol18a] are nearly exact implementations of Dynamo’s architecture. DynamoDB [dyn18]
is still very popular today. Various other systems adopted only parts of Dynamo’s design
or followed a completely different approach like Redis [red18a].

Column stores

Before NoSQL data stores became popular some database systems already used column-
orientated data models. In comparison to today’s NoSQL column stores, these database
systems are more related to traditional RDBMSs. They use a relational data model and
support the standard SQL interface. Most important, these column databases store the
values not row-wise but column-wise. Both groups of systems are often called column
stores or column-oriented data stores. The naming convention is often the reason for
confusion and misplaced expectations.

The relational column-oriented databases originate in the data warehouse and analytics
domain. Data warehouses are rarely interested in processing values of individual rows.
They are built to aggregate values of a single column across all rows because this way
statistical conclusions about the data set can be drawn. Conventional RDBMS store data
row by row, so the access of a single column across all rows requires an iteration over all
corresponding rows, which results in a high workload for the system. Column-oriented
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databases solve this issue by storing column values physically next to each other. This
increases the read performance for this specific use case.

From now on, we will use the term column store in the context of NoSQL. This kind
of NoSQL data stores can also be referred to as column family databases, wide column
stores or columnar database. Once again the naming in this domain is often the reason
for misunderstandings and confusion.

row key: Jane

address column family

State
Austria

City
Vienna

Street
Favoritenstraße

row key: John
State

United States
City

New York

company column family

Company
Big compnay

Figure 2.3: Column family example

Column stores use the concept of a keyspace. A keyspace is the coarsest element in the
data model. It contains a set of column families. Column families contain multiple rows
and can be compared to tables in a relational data model. Unlike relational rows, each
row in a column family can consist of a different number of columns and has a unique
identifier called row key. Also, the columns do not have to be identical to other rows in
terms of column names or data types. So each column is only associated with its row
and does not span over all rows in its column family. Furthermore, a row can be linked
to multiple column families as shown in Figure 2.3. This Figure also shows the grouping
of columns to column families.

A column is commonly a triple consisting of a name, a value, and a timestamp. (The
timestamp was neglected in these examples.) Column stores use the timestamp to resolve
write conflicts and store multiple versions of a value in the system. Columns are dynamic
elements in a column store, they are not defined within a schema, so new columns can be
created with every insertion of a new value. Also, a big advantage compared to relational
columns is, that empty columns do not take up space. The data model of NoSQL column
stores can be seen as a multi-dimensional map. Essentially, data is in most cases not
stored by column, like in traditional column stores mentioned before, but by row. A
column family is stored in a row-based fashion.

Besides, column-families can be used as so-called wide column families. This approach
uses the name of a column as a place to store additional information. This means that
the columns can be seen as a collection of key-value pairs within a row. Figure 2.4 shows
an example of a wide column family. The columns in the co-worker’s column family are
key-value pairs of the name and the department the person works in. This example also
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row key: Jane

co-workers column family

James
Finance

Bob
QA

row key: John
Rita

Finance
Paul

Development

Paul
Development

Alice
Sales

Figure 2.4: Wide column family example

shows that empty columns do not take up disk space. Essentially, a row can be seen as a
collection of key-value pairs.

Most column stores are inspired by Google’s BigTable [CDG+08]. BigTable is a high-
performance storage system and pioneer in its domain. Today’s most popular column
stores are Cassandra [cas18b] and HBase [hba18].

Document stores

As the name suggests, a document store stores its data in structured documents. The
format of the document varies between data stores. The most commonly used document
formats are JSON and XML. The definition of document stores does only include the
storage model. It makes no statement about other characteristics like scalability or
ACID compliance. Document databases are one of the most prominent representatives of
NoSQL databases. A reason for their success is the impedance mismatch. The impedance
mismatch refers to the differences in structure between a relational database schema and
an object-orientated model. Documents map very closely, and in some cases directly,
to objects. This makes it easier for the developer to integrate a document store in an
object-oriented application. Another reason why document stores are so popular is the
good interaction with current web technologies. Especially JSON document stores like
MongoDB work well with JavaScript-based web applications.

Before JSON document stores became popular, document stores used the XML format
as their basis. XML document stores or databases are today not as significant as
JSON document stores, but many companies still use it, because they acquired a lot
of XML documents over the years. XML is also used for many web protocols, most
importantly Simple Object Access Protocol (SOAP). XML also offers a huge environment
of tools and standards for querying (XQuery, XPath), transformation (XSLT) and schema
definition (XML schema). XML document stores implement these standards to provide
the developers with known technologies. As of today, many popular DBMSs implement
the XML SQL extension and displace XML document stores.
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In the age of Big Data, XML documents became unpopular. The amount of data made
XML documents impractical. They use a lot of disk space compared to the contained
information and are resource expensive to parse. JSON is a better fit for the current
challenges regarding web technologies. It is lightweight, flexible and well integrated into
modern development frameworks. All these factors made JSON document stores so
popular today.

There is no definition or specification stating what requirements a JSON document store
has to fulfil. They only have to store JSON documents, but in most cases, they have a
similar architecture. The basic unit is typically a document, which can be compared to a
row in a relational database. The second primary data structure is a collection. It can
contain multiple documents and corresponds roughly to table in a relational database.
Documents in the same collection can be of different shapes. The concept of aggregation,
as described before in Section 2.1.1, is deeply rooted in document stores. This is also
why collections are not used in the same way as relational tables. They are used less
frequently because document stores typically use embedded documents instead of separate
collections.

Document stores represent an important part of the current NoSQL systems. Compared
to plain key-value stores, document stores offer a richer data model and more complex
features. The light-weight and flexible JSON format and its integration into current web
technologies are the main reasons for their success.

The most popular representatives of document stores are MongoDB [mon18a], Couchbase
[cou18a] and CouchDB [cou18b].

Graph data stores

RDBMSs and most NoSQL systems are mainly built to store elements or values. They
are also capable of handling relations, but the focus lies on the stored elements. The
focus of graph data stores is not on the elements but on the relationships between the
elements. Many domains face the challenge of this kind of data structures. The most
prominent example is a social network with a multitude of relations between each person.
Other NoSQL systems and RDBMSs are also able to model this kind of data structures,
but these systems usually have performance issues when working with this degree of
relations. Especially other NoSQL systems cannot deal with this kind of data, because
they do not have a suitable query language. Graph data stores are optimized for this
kind of problems. Especially, they provide a rich query language which supports the
developer in graph related queries.

Graph data stores are based on a strong theoretical foundation, the graph theory. The
Graph theory is not a novel problem, many sciences outside of computer science like
sociology, economics, and mathematics, also use graph theory. These are also the domains
in which many problems scenarios are well fitted for graph data stores.

A graph contains the following elements:
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• Nodes (or vertices): The node is the fundamental unit in a graph. In a social
network, a node would represent a person. As a person can have multiple properties,
like name and address, a node can also have multiple properties. These properties
allow the system to associate additional information with a node.

• Relationships (or edges): A relationship is a connection between two nodes. Rela-
tionships are as well able to store properties to associate further information.

As mentioned before, a graph could also be modelled in a RDBMS [UO18]. The problems
RDBMSs face when working with graph data are performance issues. Particularly,
the graph traversal, which is needed for many graph related problems, degrades in
performance as the depth of the graph increases. Graph data stores use an approach
called index-free adjacency. This means that each node knows the physical address of all
adjacent nodes. This approach allows graph data stores to efficiently traverse massive
graphs. But this approach comes with a drawback regarding the distribution of the graph
data set across multiple servers. If an adjacent node is located on a different server, the
time-consuming traversal across the network eliminates the benefit of the graph model.

Besides pure graph data stores, graph compute engines offer many features of a graph
data store without the need to use a native graph model. These systems can be used on
top of RDBMSs and NoSQL data stores to provide graph processing algorithms. Graph
compute engines do not perform as efficient as pure graph data stores, but they offer a
rich set of graph algorithms without the limitations considering the distribution of graph
data stores. Examples for graph compute engines are Apache Giraph [gir18] and GraphX
[gra18].

Graph data stores use a very special data model for specific use cases and are probably
the most unique class of NoSQL systems. The goal of graph data stores is not to replace
all database systems on the market, they are not general purpose database systems, but
they are optimized for their needs. The most popular graph data store is Neo4j [neo18a].

2.2 NewSQL
With the publication of "The end of an architectural era:(it’s time for a complete rewrite)."
[SMA+07] Stonebraker and his research team started questioning the architecture of
traditional DBMS. In particular, the paper gets to the bottom of the design decisions
and assumptions, which were made during the development of these systems. They
performed various tests with traditional DBMSs and modern database workloads. It
has been shown, that the underlying design decisions and assumptions, based on former
hardware, are outdated considering the current workload and needs. The proposals made
by Stonebraker influenced the design of many new database systems.

NewSQL describes a class of modern DBMSs. In contrast to NoSQL, there are not
as many systems, which fit in the class of NewSQL. The main focus of this systems
is to cope with the current challenges of scalable and distributed systems. The term
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NewSQL was first used by Matthew Aslett in "How will the database incumbents respond
to NoSQL and NewSQL?" [Asl11]. NewSQL systems seek to provide the same horizontal
scalability as NoSQL systems without sacrificing the ACID properties of a traditional
DBMS. Furthermore, a key characteristic of NewSQL systems is the support of the
standard SQL interface. Compared to the NoSQL domain, which comprises various data
models, all NewSQL systems use a relational data model like traditional DBMS. This
allows developers to query, access and modify the database using the language and tools
they are used to.

There is no universal definition for the class of NewSQL systems, but they share the
following characteristics:

• Horizontal scalability - NewSQL data stores seek to provide the same horizontal
scalability and read-write performance as NoSQL data stores.

• Standard SQL interface – NewSQL systems support the standard SQL instead
of a proprietary interface, already existing tools can be used.

• Relational model – As traditional DBMS, NewSQL systems also use the long-
established relational model.

• Support of ACID properties – NewSQL systems still maintain ACID guarantees,
while providing horizontal scalability.

• Shared-nothing architecture – A shared-nothing architecture refers to a distributed-
computing architecture, which consists of independent nodes with no single point
of failure. The nodes do not share particular resources like disk space or memory.

• Lock-free concurrency control mechanism – A lock-free concurrency control
mechanism enables the system to perform concurrent read operations without write
operations blocking them.

NewSQL systems cannot be classified by the data model like NoSQL, because all of them
use the relational data model. Nevertheless, the landscape of NewSQL systems can be
grouped into three categories:

• New Architectures

• Transparent Sharding Middleware

• Database-as-a-Service

The category of New Architectures contains the most promising and interesting
NewSQL systems. These systems are built from scratch and aim to fulfil all modern
requirements of distributed relational DBMSs. Rather than building on top of an existing
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DBMS or extending an already established DBMS, these systems are built from ground
up without a legacy codebase. Other than traditional DBMSs these systems are designed
for distributed applications and use cases. They operate in a shared-nothing environment.
This includes replication, sharding, distributed querying, concurrency control and fault
tolerance. These database systems were designed and implemented with these aspects in
mind, therefore all components of the systems are optimized for the distributed use case.

Most of the systems implement their own communication protocol to efficiently share
information between nodes. The communication between nodes is especially important
when considering distributed queries and query optimization. Queries have to be re-
written to send subqueries to the data rather than the data to the query. Due to new
and different design approaches, the individual systems can differ greatly from each other
in their architecture. Examples for these NewSQL systems are: CockroachDB [coc18a],
VoltDB [vol18b], NuoDB [nuo18a], Clustrix [clu18] and Google Spanner [goo18].

NewSQL systems in the category of Transparent Sharding Middleware make use of
already established DBMSs. Each node of the system runs one instance of a traditional
DBMS and manages a part of the whole database. These standalone instances are not
meant to be accessed directly by a top-level application. Instead, a transparent sharding
middleware manages the access to these instances. The middleware is responsible for
data distribution, queries, transactions and all other relevant features.

For example, if an application executes a query, then the middleware transparently
rewrites the query to multiple subqueries and forwards them to the particular DBMSs
underneath the middleware. Each DBMS executes its subquery and reports the results
back to the middleware. After all results have been returned the middleware can combine
the individual results to one, which corresponds to the original query and reports this
result back to the application. The middleware is also responsible for transaction
coordination, data placement, sharding and replication across all nodes. The advantage
of this approach is that the middleware can be installed on an existing DBMS with little
effort and in most cases, there is no need to adapt the applications using the database.
Examples of a transparent sharding middleware are: AgilData Scalable Cluster [agi18],
MariaDB MaxScale [mar18] and ScaleArc [sca18].

The third category of NewSQL systems are Database-as-a-Service (DBaaS) systems.
The whole database stack is managed by the provider of the service. The customers of
these services do not have to manage their own server hardware or infrastructure, they
only have to select a fitting web service depending on their needs. Therefore, the provider
of the service is responsible for physical configuration, replication and fault tolerance.
The customer is usually provided with a dashboard or API to configure and manage
the system. Cloud computing companies like Amazon, Google and Microsoft offer this
kind of services. Examples for DBaaS systems are: Amazon Aurora [aur18] and ClearDB
[cle18].

Transaction model Traditional DBMS implement the well-established transaction
model to satisfy the high requirements of data consistency and integrity. NewSQL
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systems also follow this approach in contrast to NoSQL systems. This is also a key
advantage over NoSQL systems because in many cases developers using a NoSQL data
store re-implemented those features on the application side.

A transaction represents a sequence of reading and writing operations. The execution of
a transaction preserves the consistency and integrity of the database if it runs in isolation
from other transactions. A transaction in this context has the following properties:

• Atomicity – This property requires that the entire transaction or nothing is exe-
cuted on the DBMS. If one fragment of the transaction fails, the whole transaction
fails and the state of the database is unchanged. This guarantee has to hold under
all circumstances. For instance, network errors, power failures or crashes of the
whole system have to be handled.

• Consistency – DBMSs contain a set of rules and constraints regarding the stored
data. If all rules are fulfilled the system is in a valid state. Consistency ensures that
the system is at any point in time in a valid state. If a transaction modifies the data
in a way so that the resulting data violates a rule or constraint, the system would end
up in an invalid state and therefore has to undo all changes of the faulty transaction.

• Isolation – The Isolation property handles the execution of concurrent transactions.
It ensures that each transaction does not see changes made by other concurrent
transactions. This guarantees that all transactions are isolated from each other.
Depending on the isolation level or concurrency control method the serialization of
concurrent transitions varies.

• Durability – After a transaction has been successfully completed, the changes are
persisted and the stored data is available. So Durability ensures that written data
is permanently stored even in the case of a system failure or power outage.

2.2.1 Multi-version concurrency control (MVCC)

Multi-version concurrency control [BG83] is a popular approach for NewSQL systems to
handle concurrency control and maintain consistency in a distributed environment. This
approach is non-standardized and each DBMS implements it slightly differently. MVCC is
an alternative to the traditional read/write lock approach. The read/write lock approach
has a fundamental problem. Writing transactions block reading transactions and reading
transactions block writing transactions. This is, in fact, a well-known property of this
approach, but it can lead to critical performance issues, because of the additional latency
while waiting to acquire a lock.
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MVCC solves this problem by eliminating this single resource that has to be locked. As
the name suggests, each record in a DBMS which implements MVCC consist of multiple
simultaneous copies or versions. In order to differentiate these versions, each version is
associated with a timestamp. Updates on a record create a new version with a timestamp
representing the creation time. This approach allows the DBMS to decide which version
a transaction should read. The problem that the read/write lock approach faces does
not apply to MVCC. Reading transactions do not block writing transactions, because
writing transactions just add new versions and the reading transactions can still access
all prior versions. Also, writing transactions do not block reading transactions, because
the DBMS can decide which version should be read by the reading transactions. This
can be used to implement snapshots of the database. For example, a transaction could
only read values, which were visible at the time the transaction started. All updates
from other transactions would be logically after that particular transaction and would
not affect it. Transactions writing to a record contest over adding the newest version on
top of the stack. This means that only if two or more transactions write to the same
record, then the system has to resolve a conflict.

MVCC can be used to implement various isolation levels like in traditional DBMSs.
Generally, isolation levels are used to control the level of consistency. More loose
consistency levels usually provide better performance and vice versa. Most NewSQL
systems using MVCC do not implement the same isolation levels as traditional DBMS, but
the majority implements the semantics of the highest consistency level Serializable. Due
to the use of time-stamped versions, the system can easily decide which version should
be visible for which transaction. For example, at a low transaction level comparable to
Read Uncommitted the system could allow the transaction to read uncommitted records,
which could result in dirty reads if uncommitted records would be rolled back. On the
other hand, the stricter consistency level Serializable can be achieved by restricting the
visibility of the transaction to the versions, which already have been committed at the
start of the transaction. This means that a transaction reads a snapshot of the database
at the begin of the transaction.

As mentioned before, there is only one situation in which the system has to resolve a
conflict and this is when a transaction wants to update a record, which is being updated
by another transaction. At this point there are two options a system can choose from.
Firstly, the system can cancel and usually restart the transaction. Secondly, the system
can make the updating transaction wait until the other transaction completes and make
a decision based on the outcome of the transaction. The waiting transaction would only
succeed in its update if the preceding transaction rolled back. Alternatively, the waiting
transaction gets cancelled.

The following examples will explain how concurrent read and write transactions are
handled using MVCC. They will illustrate a single table with three records (R10, R11,
R12), multiple versions of these records and how concurrent transactions affect the data.

The first example (Figure 2.5) contains two concurrent transactions (T1 and T2). T1
reads each record of the table once and concurrently T2 updates the record R12 before
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commit T1

Update R12 to 'Bob'

commit T2

Figure 2.5: MVCC: Example 1

T1 reads the value of R12. In a lock-based system, T1 would have to lock each record or
the whole table to consistently read the data from the table and T2 has to wait until T1
is finished in order to update the table. Considering a system using MVCC the writing
transaction T2 would not be blocked by the reading transaction T1. Also, T1 would read
the record R12 from version V1, because V2 was not committed at the time T1 started
(considering a snapshot isolation level).
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Figure 2.6: MVCC: Example 2

The second example (Figure 2.6) covers two transactions (T1 and T2) which write to
distinct records. The transactions start at the same time. T1 updates R10 and T2
updates R12. Both transactions can write to the record and add a new version because
the particular record is currently not updated by another transaction. No transaction is
blocked and both transactions can continue. In a lock-based system the result would be
the same.

In the third example, two concurrent transactions (T1 and T2) try to write to the same
record, which results in an update conflict. Both T1 and T2 attempt to update record
R12, but only one transaction will update the record first. Assuming that T2 updates
the record first, which will add a new version to R10. While T2 is uncommitted the
newly created version is also in an uncommitted state. After T2 added a new version, T1
also tries to update R10, but T1 detects that a transaction is currently updating this
record indicated by the uncommitted state of the newest version.
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Update R12 to 'Bob'
→ add V2

Figure 2.7: MVCC: Example 3 - Immediate cancel

The further behaviour depends on the particular system and the configuration of the
isolation level. Generally, there are two options. The system can immediately cancel T1
after it detects that T1 attempts to update a record with an uncommitted version as
illustrated in Figure 2.7.
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has uncommitted version

Update R12 to 'Bob'
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Bob

Alice

V2

V2

T2 fails
→ rollback R12 V2

T1 unblocked
→ add 'Alice' to V4 to R12

Figure 2.8: MVCC: Example 3 - Waiting - T2 fails

The second option would be to interrupt and pause T1 until T2 finishes. This option
speculates that T2 will be cancelled and rolled back. Then the uncommitted version
of T2 would become obsolete and T1 could update R12 (Figure 2.8). In the case T2
does not fail and commits successfully, T1 would fail anyway and would have waited
unnecessarily (Figure 2.9). Both of the described options are valid approaches and most
systems offer a configuration option, so the developer can choose an option depending on
the requirements of the application.

2.3 CAP theorem

A common strategy used by many data stores is to distribute data sets across multiple
server nodes to achieve parallel data processing. Additionally, replications of these nodes
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Figure 2.9: MVCC: Example 3 - Waiting - T2 succeeds

are created in order to maintain high availability in case of server failures. Nevertheless,
these systems underlie restrictions, stated in the CAP Theorem [Bro09]. The CAP
Theorem says that in a distributed system a maximum of two of the following three
properties can be guaranteed at the same time:

• Consistency The system is consistent in the sense of the CAP theorem if all nodes
of the distributed system read the same data at all times. As opposed to eventual
consistency, the consistency term used here is also called immediate consistency or
strong consistency. This property can be interpreted as equal to running the data
store just on a single node.

• Availability The system is available if it responds to all requests, but without the
guarantee that the response contains the most recent write. This means that every
non-failing node responds to all read and write requests in a reasonable time. This
requirement applies to all nodes, regardless of whether there is network partitioning
or not.

• Partition tolerance Sets of nodes in a distributed system are partitioned if the
communication between these sets is interrupted (all messages are lost). The system
is partition tolerant if it still remains functional in the event of an interruption in
communication between nodes in the network.

Note that the definition of the term consistency is different from the definition used in
ACID. The consistency model in ACID relates to data integrity constraints. The DBMS
ensures that all constraints are fulfilled. On the other hand, the consistency model in
CAP promises that every replica in the distributed system corresponding to the same
logical value has the same value at all times.

A system, which should fulfil all three characteristics, would therefore have to keep the
disconnected nodes available, i.e. responding to requests and responding consistently if
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the connection between nodes is interrupted. Now, if data changes on one node, obviously
not all the remaining nodes can maintain consistency since some nodes are no longer
reachable from the other nodes. The system can now either be in an inconsistent state
or not respond, so it would have to give up either consistency or availability.

Depending on which of the properties are guaranteed, these three types of systems can be
distinguished: CP (consistency and partition tolerance), AP (availability and partition
tolerance) and CA (consistency and availability). Shown in Figure 2.10.

• CP systems respond to network partitioning by sacrificing full availability. The
part of the network that can be kept consistent remains available, the rest not.
Consistency and partition tolerance remain fulfilled and availability is not fulfilled.
Once the connections between the nodes have been restored, the previously unavail-
able nodes are first restored to a consistent state before responding to requests.

• AP systems respond to network partitioning by sacrificing full consistency. All
parts of the network respond to requests, but the answers are not necessarily con-
sistent. After the network recovered from the partitioning, consistency is restored.
Many AP systems including most NoSQL data stores systems go one step further
and give up consistency during normal operation (without network partitioning) to
increase their performance.

• CA systems try to ensure consistency and availability alike, but of course, they
cannot prevent network partitioning from happening in a distributed system. Hence,
they are forced to choose between consistency and availability in this case as well.
Systems can only classify themselves as CA systems if network partitioning can be
avoided, which is only possible in a non-distributed environment.

This classification is an idealized representation. In practice, particular systems do in
most cases not fit in just a single category, it is of course also possible to create diverse
forms between CP and AP systems. Also, many systems leave this decision to the
administrator in form of a configuration option, so the system can be adjusted to certain
needs.

The notion of network partitioning also has practical issues. First of all, there is no
guarantee that all nodes of the system will react in the same way in case of a network
partitioning. Some nodes may not be even aware of a connection issue. In addition,
a connection failure is usually detected by exceeding timeouts, but not all nodes are
necessarily affected equally.

Nevertheless, the CAP theorem describes an important issue, especially the need to
balance these different requirements, most notably between consistency and availability.
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Consistency
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Figure 2.10: CAP diagram

As mentioned many systems are configurable in this respect and allow for a tailored
solution for a given application.

[GHTC13, MBT16, MH13]

ACID and BASE The CAP theorem emphasis the fundamental decision between
consistency and availability. This is also an elemental difference between NewSQL
systems, which prefer consistency over availability, and NoSQL systems, which prefer
availability over consistency. Consistency in NewSQL refers to the ACID properties of
the transactional model. On the other hand, availability in NoSQL refers to the BASE
concept. But in practice, this separation of characteristics is not as black and white as it
seems. Many systems leave the database administrator the flexibility to mix different
levels of availability and consistency. These combinations of consistency and availability
usually result in a superior configuration. Table 2.1 summaries the differences between
ACID and BASE. [Bre00]
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ACID BASE

NewSQL NoSQL

Strong consistency High availability

Prioritizes consistency Weak consistency

Pessimistic Optimistic

Planning and analysis Best effort

Table 2.1: ACID vs. BASE
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CHAPTER 3
Comparison

This chapter contains the comparison of the NoSQL and NewSQL databases. For NoSQL
one representative of each NoSQL class was selected:

• Redis (Key-value store)

• Cassandra (Column store)

• MongoDB (Document store)

• Neo4j (Graph data store)

The selected NewSQL database systems:

• VoltDB

• CockroachDB

• NuoDB

These NewSQL databases are all three classified as New Architectures. The category of
New Architectures contains the most promising and interesting NewSQL systems. These
systems are built from scratch and aim to fulfil all modern requirements of distributed
relational DBMSs.

The selected data stores are compared by the following key characteristics:

• Architecture and general principles

• Sharding
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• Replication

• Querying

• Concurrency control

3.1 Architecture and general principles
Each data store follows certain design principles and characteristics. The combination of
these principles gives each system an individual touch and influences the architectural
decisions. The following section highlights these fundamentals to provide an overview of
the systems. The subsequent sections will then elaborate the chosen implementations
and techniques in detail.

3.1.1 Redis

Redis [red18a] is one of the most popular key-value stores. It is a open source, in-memory
database and stores a mapping of keys to values. Also, Redis supports replication and
sharding, this enables the system to scale read performance.

Redis does not satisfy ACID requirements instead Redis architecture uses the BASE
approach, typical for NoSQL systems. In the context of the CAP Theorem, Redis is
categorized in AP (availability and partition tolerance). This means if a Redis cluster
recognizes a network partitioning, the focus lies on availability and not consistency. In
this scenario, Redis takes the risk of serving inconsistent data, instead of not responding.

The in-memory design is one reason for Redis high-performance [MPS17], but it also
offers disk-persistence. The in-memory data can automatically be saved to disk. Redis
offers two modes of persistence for storing in-memory data on disk. The first mode
persists data on disk on a timely basis when certain conditions are met. The other mode
uses a log file, which writes all commands that modify the data to disk. This file can be
used to restore the data in the event of a power failure.

Data stored in Redis does not follow a schema, so Redis data model is schema-less. A
schema-less approach allows for flexibility, but also shifts more responsibility to the
developers, designing and maintaining the data store.

Data in Redis can be stored using five data structures (strings, lists, hashes, sets and
sorted sets) shown in Figure 3.1. Many key-value stores only support a simple string
value. These features enable Redis to be used as a primary database or as a secondary
database to support other data stores.

The String data type in Redis is comparable to String data types in other systems.
String values can be stored, fetched and deleted given a key. Moreover, Redis provides
a few commands to operate only on a part of the String.
Lists in Redis are implemented as a linked-list of Strings and support a large variety
of data manipulation and retrieval commands, e.g. push/pop on the left or right side of
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the list, insert and delete for a given index and trim to a certain size.
The Hash data type contains a mapping of keys to values. This data type can be seen
as scaled-down key-value store itself, which can store Strings as values.
The simple Set data type is implemented as a hash table with no associated values,
therefore the values of the Set are unordered and unique. Redis offers common set
operations known from set theory including intersection, union and difference. In
addition, Redis offers a Zset data type which represents an ordered set. As the simple
Set the Zset is also implemented as a hash table, but the associated values are floating
point numbers. These floating point numbers are used to determine the order of the
elements in the set.

Key

"Simple string value"

Key 1 Value 1

Key 2 Value 2

X W Z W Y

X W Z Y

W 23

X 24

Y 25

Z 26

String

Hash

Linked list

Set

Sorted set

Figure 3.1: Redis: data model

Key-value stores are one of the best data stores regarding performance, because of their
rather simple design and in-memory architecture. To even increase read-performance and
guarantee availability in case of a server failure Redis supports master-slave replication.
Slave servers connect to a designated master server and initially replicate the data stored
on the master server. The master server then propagates every operation to the connected
slave servers. Clients performing read operations on the data can now be distributed
over the master server and associated slave servers to increase read performance.

Despite Redis is an in-memory data store it supports two methods to persist data on
disk. First Redis is capable of dumping data to disk when certain conditions are met,
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e.g. after a defined number of writes were executed. This database dump can also be
executed by using a command. An append-only file is used by the second method. This
file logs operations executed by Redis, it can be configured to log in different granularity
from never, once a second or after execution of each operation.

[Car13]

3.1.2 Cassandra

Cassandra [cas18b] is one of the most successful NoSQL data stores. Cassandra is
designed as a scalable, fault-tolerant, distributed system able to handle a huge amount
of data and it is open source. Due to its architectural features, Cassandra is often used
in Big Data projects, but can also be used for complex web applications in cooperation
with an application server. Cassandra is a distributed database management system
designed to manage very large volumes of semi-structured data and is optimized for high
scalability and reliability in distributed systems.

Cassandra was developed by engineers at Facebook to overcome the inbox search problem.
Facebook’s social network contains millions of users distributed over thousands of servers
worldwide. The inbox search feature of Facebook enables to user to search through their
Facebook inbox. The problem which arises is that the system has to handle billions of
writes per day and scale even further.

One of the core principles in Cassandra is distribution, which means that Cassandra is
able to run on multiple servers while appearing as a single system. It is also possible to
run Cassandra on a single server, but a single server setup would not utilize Cassandra’s
strengths. Unlike Cassandra, many systems have a designated master node, which handles
the communication between Cassandra and the accessing clients and the organize the
other nodes, called slaves. Cassandra is not only distributed, it is also decentralized,
which means that all nodes in a Cassandra cluster are equal and there is no single point
of failure. The nodes use a peer-to-peer protocol to communicate and organize the cluster
decentralized.

The distributed and decentralized architecture enables Cassandra to scale horizontally.
Cassandra also automates the process of adding and removing nodes. Cassandra calls
this feature elastic scalability. There is no need to restart the process, rebalance the
data or change the application queries. This is done automatically and transparent to
the users. In distributed systems, the CAP theorem plays always an important role.
Similar to other NoSQL data stores Cassandra is placed as AP (availability and partition
tolerance).

In the default configuration, Cassandra trades consistency for availability, but Cassandra
provides a feature called tunable consistency. It allows the administrator to configure
a weak, causal or strict consistency model. All of these modes have different trade-offs
between consistency and availability. Depending on the situation and requirements a
more optimistic configuration provides high availability but weak consistency and if a
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high level of consistency is necessary Cassandra can trade availability for consistency.
[LCG18]

Cassandra’s data structure contains at the utmost level a so-called cluster. Cassandra
performs at its best utilizing multiple nodes combined in a cluster. If a particular system
is designed to run Cassandra only on a single machine, the choice of the data store should
be reconsidered. A cluster is also called a ring because the nodes within a cluster are
arranged to form a ring structure. Clusters also take care of node replication. They can
be configured to use a certain number of nodes as replicas if a machine goes down a
replica can step in until the machine is back up.

The next level in Cassandra’s data structure is a keyspace. A cluster can contain
multiple keyspaces. Compared to a relational DBMS a keyspace is analogous to a
relational database. As a relational database contains tables, a keyspace contains column
families.

A column family contains an ordered collection of rows and each row contains an
ordered collection of columns (Figure 3.2). A row has a unique key (so-called row key),
which uniquely identifies a row like a primary key. These are the only similarities to a
relational database, a column family is not a relational table.

The definition of a column family contains only two properties. The first is the name of
the column family and the second is a comparator, which defines the order of columns
when they are returned. Depending on the application’s needs columns can be added
to any column family at any time. So the data model of Cassandra can be seen as
multidimensional hash tables (keyspace - column family - row - column).

Row key 2

Row key 1

Column 1

Value 1

Column 2

Value 2

Column 3

Value 3

Column 1

Value 1

Column 3

Value 3

Figure 3.2: Cassandra: column family

A column family is also the unit of persistence. Each column family is stored in a separate
file on disk, so related columns should be assigned to the same column family to optimize
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storage operations. Beside column families, Cassandra offers super column families which
allow column families to be nested in each other.

The actual data is stored in a column. A column is a triple containing a name, a value
and a timestamp. Columns in Cassandra are not comparable to columns in relational
tables. Columns are not defined in a schema, only column families are defined upfront.
The data triple, which a column consists of, can be freely chosen for every column. The
data types for the name and value are byte arrays.
In a relational table attributes with no value would be left blank and would wast memory.
But in column family data stores like Cassandra blank values do not waste space, because
a row contains only those columns which are needed.

[Hew10]

3.1.3 MongoDB

MongoDB [mon18a] is an open source database that uses a document-oriented data
model. MongoDB is built with scalability and distribution in mind, so data stored in
MongoDB can be distributed across multiple geographically distributed data centers. It
also supports elastic scaling with no downtime and without the need to restart the system
if a node joins or leaves the cluster. The system was designed to scale horizontally, so
tasks, like rebalancing documents between nodes and routing queries to particular nodes,
are done automatically.

MongoDB stores data in JSON-like documents without defining a schema. This means
that stored documents do not have to conform to a fixed schema. Each document could
have a different structure, but it is recommended to maintain a certain structure in the
data model. A flexible data model allows for rapid prototyping and fast development.

In the context of the CAP theorem, MongoDB is placed as CP (consistency and partition
tolerance), because the architectural design is focused more on consistency then availability.
MongoDB uses a master-slave (primary-secondary) setup, where the clients can only
execute read and write request on the primary. This indicates that MongoDB gives more
importance to consistency than to availability and it is also a reason why MongoDB is
considered as CP and not as AP in terms of the CAP theorem.

In-memory storage is one of the reasons why MongoDB provides high-performance, but
in-memory storage also comes with the risk of losing data in case of a power failure.
When MongoDB is set up as a cluster, MongoDB can utilize the benefits of in-memory
and on-disk storage. So the primary uses in-memory storage, to efficiently process data
and secondaries are configured to use on-disk storage to keep the data replicated on disk.
[HEM18]

Unlike relational databases that use tables and rows, MongoDB relies on an architecture
of collections and documents. On the top level of MongoDB’s data structure stands
a database similar to a database in relational DBMS. A database is a group of
collections, like a relational table, is a group of rows. MongoDB is capable of
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operating multiple databases at once. A database encapsulates data which usually
belongs to one application. Like a relational DBMS, a MongoDB database manages its
own permissions and its own files.

A collection in MongoDB is a group of documents. It can be compared to a table in
a relational DBMS, but a collection does not have a fixed schema like a relational table.
MongoDB offers the concept of dynamic schemas. This means that a collection can hold
any kind of document, there is no restriction on the content of the document. It would
be possible that each document in a collection has a different structure. And yet it is not
recommended to store all different kinds of documents in the same collection.

First of all, to query one kind of a document from a collection with mixed documents,
each document would have to be type checked to return the query result. If collections
only contain one kind of document, it is much easier for developers to query the needed
data and also increases the performance of such a query dramatically. The design of the
data model offers a lot of flexibility like in most NoSQL data stores but misused it can
quickly lead to complications.

Additionally, MongoDB offers the concept of sub-collections. Sub-collections
are used for an organizational grouping of collections. For example the collection
of employees named company.employees and the collection of departments named
company.departments are sub-collections within the same namespace. This grouping
does not indicate any relationship between the members, it only simplifies the admin-
istration of collections. Nevertheless, this concept is used by several tools provided by
MongoDB to structure the data model. In order to uniquely identify a sub-collection
named company.employees and a database named organization, these two strings
can be joined using a . character.

{
_id: 1,
firstName: "John",
lastName: "Doe",
address: {

state: "Austria", 
city: "Vienna", 
street: "Karlsplatz"

}
}

Embedded
document

Figure 3.3: MongoDB: embedded document

The core data structure of MongoDB is the document. A document is an ordered set of
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key-value pairs and can be represented as JSON. Every document must have an id key,
like a primary key. For document storage and data exchange, the data store uses the
so-called BSON (Binary JSON) format, which provides a binary representation of JSON
documents. The values of a document are not just unstructured data fields. The BSON
specification offers multiple data types including arrays for the values. In addition, the
value of a document can be an entire document, so-called embedded document shown
in Figure 3.3. This enables documents to hold more rich and complex structures than
simple key-value pairs.

[mon17, Cho13]

3.1.4 Neo4j

The Neo4j graph data store [neo18a] is a Java-based, scalable open source data store
that supports ACID (for a single instance) and provides highly available clustering. It
is an open source project with an enterprise version. Neo4j is a native graph database
system. The database engine refers to data by linking data points to related data points,
allowing for faster processing than relational joins or writing custom joins in a NoSQL
database. The relationships between nodes are stored and processed as they actually
occur. This results in a more responsive and agile system.

The high-availability (HA) cluster of Neo4j implements a master-slave architecture. Unlike
other NoSQL systems, Neo4j allows reads and writes to master and slave nodes, but
a write operation on a slave is not directly executed on the node. First, the operation
is forwarded to the master and only if the transaction is successful, the operation is
executed on the slave. In the context of the CAP theorem, Neo4j can be classified as an
AP system, because the ACID properties cannot be satisfied in a distributed environment.

Furthermore, Neo4j keeps a full copy of the data on each node of the cluster. True data
sharding is not available, but Neo4j implements a feature called cache sharding. Cache
sharding manages data routing to nodes in the cluster. Requests are redirected to nodes,
which have certain parts of the data cached in memory so that disk operations are kept
at a minimum.

Neo4j runs on the property graph model invented by Neo4j developers. A property graph
model differs from a simple graph model in that the nodes and edges consist of objects
with embedded properties. Nodes and relations can be seen as objects with certain
properties or as hash maps (key-value pairs).

To query graph data Neo4j provides a declarative graph query language called Cypher.
It is designed to visually represent graph patterns using an ASCII-Art syntax. Based on
these patterns Neo4j queries or manipulates matching graph data. Cypher can also be
used for graph specific concepts e.g. shortest path between two nodes.

Like other NoSQL systems, Neo4j is also a schema-less data store. There is no need to
define nodes or relations up front. Additionally, Neo4j does not restrict which node can
be in a relationship with another node, so any node can be in relation with any other
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node.
This flexibility enables application developers to easily expand or change the implicit
data model. Just because Neo4j allows you to have no scheme does not mean that you
should not use a data model in the background. The advantage of flexibility also brings
more responsibility to data maintenance itself, as the system allows almost any kind of
changes to the data.

CompanyEmployee
works_at

Figure 3.4: Neo4j: data model

Figure 3.4 shows a simple example to illustrate a Neo4j data model. The model contains
the nodes Employee and Company, which would correspond to tables in a relational data
model. The relation belongs_to between these two nodes would also be represented
as a table in a relational data model. A node or relation could additionally contain
properties.

Big company

John Doe
works_at

Jane Doe

Small company

Hannah Smith

works_at

works_at

works_at

Figure 3.5: Neo4j: data model instance

An instance of the data model from Figure 3.4 could look like Figure 3.5. In a graph data
model, all individual instances like employees and companies are represented as a single
node connected by their relations. This representation is especially useful to discover
which relations between which nodes are possible when designing a more complex graph
data model from scratch.

[PVW15]
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3.1.5 VoltDB

VoltDB [vol18b] is a scalable NewSQL data store, which aims to run entirely in-memory.
VoltDB offers an open source community edition and an enterprise edition. It was designed
for critical high-performance applications. To avoid disk access and increase performance,
VoltDB utilizes the in-memory storage. In contrast to traditional systems, VoltDB
serializes all data access. This enables additional performance increases because resource
expensive techniques e.g. locking and transaction logs can be avoided. VoltDB was built
to scale, so clustering, replication and sharding are core concepts of its architecture.

VoltDB is a relational database. Standard SQL can be used to define schemas, manipulate
and access data. VoltDB fully supports ACID-compliant transactions and uses the ANSI
standard SQL. Additionally, to the default SQL functionality VoltDB adds support for
JSON columns inside the relational model. By using SQL extensions queries and indices
can be used within JSON documents.

However, VoltDB is not intended to be a general purpose database. It focuses on the
business-domain including fast and reliable applications e.g. industry applications, social
media applications and financial applications. VoltDB is not optimized for all types of
applications. Specifically, business intelligence and data warehouse applications are not
recommended to be implemented with VoltDB, because they operate on a large set of
historical data that has to be queried across multiple tables.

VoltDB’s cluster implementation provides parallelism on two levels. First, data can be
distributed across the cluster on table bases, but a single table can either be partitioned
or replicated. Large and frequently manipulated tables should be partitioned and small
frequently read tables should be replicated to increase performance. Second, processing of
a task can also be distributed among all nodes in the cluster to achieve high parallelism.
Due to VoltDB’s consistency and cluster characteristics, it is classified as a CP (consistency
and partition tolerance) system in the context of the CAP theorem.

The architecture of VoltDB is based on in-memory storage. Each node in the cluster
runs a single-threaded execution engine which processes and stores its associated data
in memory. The in-memory architecture minimizes time-consuming disk access, but for
recovery and backup proposes disk access cannot be avoided. VoltDB uses data snapshots
and command logs to persist and backup data.

Traditional DBMSs implement complex latching and locking mechanisms to handle the
execution of multiple parallel transactions. VoltDB can avoid these complex multi-
threaded mechanisms because each VoltDB execution engine is single-threaded and
manages a transaction queue, so transaction requests are executed sequentially. VoltDB
distinguishes transactions which operate on a single partition and transaction which
operate on multiple partitions. If a transaction involves only a single partition, the engine
operates autonomously. But if a transaction operates on multiple partitions one engine
manages and coordinates the other engines.
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3.1.6 CockroachDB

CockroachDB [coc18a] is a scalable consistent open-source NewSQL data store built to
survive. Although the system is considered as a relational database, it is built on top of
a key-value store. CockroachDB consists of multiple layers and each layer communicates
and interacts with those directly above and below it. Each layer is responsible for a core
concept in CockroachDB:

• SQL layer: The SQL layer is the first layer of the hierarchy and exposes an
SQL API to the clients. CockroachDB supports a major part of the ANSI SQL
standard. Additionally, CockroachDB developed a Distributed SQL optimization
tool (DistSQL). It is used to increase the performance of distributed queries which
target multiple nodes in the cluster. The layer is responsible for parsing, planning
and executing the incoming requests. The SQL statements are then converted to
key-value operations that are passed to the transaction layer.

• Transaction layer: The transaction layer implements support for ACID transactions
by coordinating concurrent operations. CockroachDB treats consistency as the most
important feature of a database. All SQL statements are handled as transactions,
also single statements. The transaction layer implements a two-phase commit
process to support transactions across the whole cluster including cross-table
transactions. In terms of concurrency control, CockroachDB supports the strongest
isolation level (serializable). All other isolation levels are automatically upgraded to
serializable. This layer also controls the key-value operations sent to the distribution
layer.

• Distribution layer: CockroachDB uses a so-called monolithic sorted map structure
to manage distribution. This structure describes the data stored in the cluster and
where it is located. It is cached by each node to perform quick lookups to locate
a certain record in the cluster. Data is automatically split into contiguous data
chunks and distributed across all nodes. It also manages the rebalancing of the
cluster when a new node joins the cluster or when a node is removed from the
cluster. The distribution layer uses gRPC [grp18] for communication between the
nodes.

• Replication layer: The replication layer is responsible for copying data between
nodes and establishes consistency between these replicas by using the Raft consensus
protocol [raf18]. It is responsible for the distribution of the data when new nodes
join the cluster or certain nodes become unavailable. Replicas are used to increases
availability and data safety in the case of a node failure. CockroachDB offers a
very fine granular feature to manage the location and number of replicas for a
specific data set. This feature is called replications zones and also applies to the
rebalancing of the cluster.

• Storage layer: Data in CockroachDB is stored in an embedded key-value store called
RocksDB [roc18, OAG17] . It is treated as a black box to persist key-value pairs.
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RocksDB is also used to store meta data of the system e.g. log files. CockroachDB
uses multi-version concurrency control (MVCC) to process concurrent requests and
guarantee consistency. MVCC is implemented in the storage layer, but it is also
used in the transaction layer to enforce consistency. MVCC enables CockroachDB
to implement time-travel queries according to the SQL standard.

CockroachDB implements a special multi-master replication strategy, called Multi-Active
Availability. It is a consensus-based strategy which allows CockroachDB to accept read
and write operations on all nodes in the cluster, which are responsible for the data.

Consistency is one of the core concepts in CockroachDB. The term consistency applies
to two concepts: ACID transactions and CAP theorem. CockroachDB implements
support for ACID transactions. This functionality is implemented by the transaction
layer. Furthermore, consistency is also satisfied considering the CAP theorem. Like other
NewSQL systems, CockroachDB can be characterized as a CP system in the context of
the CAP theorem.

To guarantee consistency across the distributed system the individual components have to
agree on one current state. Therefore, consensus is another core concept of CockroachDB.
This is achieved by satisfying a quorum, so a majority of nodes which are responsible for
a certain data set have to agree on the current state of the data, to safely persist the
data. Without a consensus, no change can be persisted to prevent an inconsistent state
of the data store.

CockroachDB implements synchronous replication to keep consistent copies of data.
Synchronous replication requires all replicas to agree on the data set and before it can
be committed. The commit is only acknowledged if the replicas successfully persist the
commit. Without these regulations, data could become temporarily inconsistent and
would lead to eventual consistency.

3.1.7 NuoDB

NuoDB [nuo18a] is an elastic NewSQL system designed to scale horizontally and run on
distributed data centers. It provides ACID-compliant transactions and uses SQL as its
querying language. NuoDB is closed source and offers multiple editions including a free
community edition. NuoDB focuses on consistency in a distributed environment by using
its own two-tier architecture. NuoDB splits its architecture between a transactional tier
and a storage tier. In addition to these two tiers NuoDB contains an administration
component, which has access to both tiers and offers an interface for the system admin-
istrator. By separating transactional and storage management NuoDB is able to scale
its relational model. Traditional DBMSs implement a tight coupling of processing and
storage management. NuoDB eliminates this barrier to scale out and distribute its data.
The separation also allows NuoDB to manage failures independently.

The transactional tier is responsible for three of the four ACID properties: atomicity,
consistency and isolation. All data in this layer is kept in-memory to keep performance
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high. Durability is managed by the storage tier which is responsible for data access and
committing data to disk. These two tiers operate on multiple nodes in a cluster. Each
node can be configured as one of these two roles: Transaction Engine or Storage Manager.
So either a node is a Transaction Engine or a Storage Manager. The transaction and
storage tiers are represented by the corresponding nodes. There is no central coordinator,
hence there is no single point of failure. The nodes communicate using an encrypted
peer-to-peer protocol.

In the case of a network portioning NuoDB sacrifices availability to keep data consistent.
So NuoDB will not allow separated groups of nodes to operate concurrently. This could
lead to diverging states of the database. NuoDB will remove one of the groups from
the cluster to prevent inconsistent data. Therefore, NuoDB can be classified as a CP
(consistency and partition tolerance) system in the context of the CAP Theorem.

The Transaction Engines accept incoming SQL requests from clients. The requests are
parsed and queries are executed against cached data in the Transaction Engine. If it
cannot answer the query by using its local cache, it can ask any of the other nodes. Either
it can ask a Transaction Engine, that has the data in memory, or a Storage Manager,
which performs a lookup against the durable storage.

If a request arrives at a Transaction Engine, the transaction is propagated to all corre-
sponding Transaction Engines that are associated with the corresponding data. NuoDB
supports a tunable commit protocol. It can be configured to forward the transaction
asynchronously or synchronously to the other Transaction Engines. The asynchronous
configuration is the fastest approach but can cause inconsistency. The synchronous
approach allows the developer to configure a number of Transaction Engines which have
to acknowledge the transaction before the commit can be considered successful.

The smallest configuration of NuoDB consists of one node that runs one Transaction
Engine and one Storage Manager. Transaction Engines or Storage Managers can be
added or removed at any time. They will automatically synchronize with the running
instances before starting operations. The number of Transaction Engines and Storage
Managers does not necessarily have to be the same. If the transaction throughput has to
be increased, additional Transaction Managers and can be added to the system. This
also applies to Storage Managers. Additional Storage Managers can be added to the
cluster in order to increase the number of durable copies of the database.

Beneath the SQL layer data is stored in so-called Atoms. All data is stored and managed
through Atoms. Atoms are self-coordinating objects and all information in the system,
like user data or metadata, is represented by Atoms. The Transaction Engines are
responsible for mapping SQL data to Atoms. The ACID principles atomicity, consistency
and isolation are applied to Atoms by the Transaction Engines. The size of Atoms is not
fixed. It can be adapted by the system to maximize efficiency depending on the current
state of the database. Atoms have unique identifiers and are stored as key-value pairs.
NuoDB provides a lookup service, also based on Atoms, to resolve other Atoms across
the system. On disk, Atoms are persisted in an archive and additionally, all changes are
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stored in a journal. The journal is a simple append-only file that is used to efficiently
replay changes.

3.1.8 Summary

NoSQL and NewSQL systems follow different design strategies. What makes NoSQL
architectures so special is the choice of the data model. The underlying data model
influences many factors of the system, starting with the way how data is physically
stored, up to data presentation. Besides, NoSQL data stores follow the same architectural
principles. They are built to scale and perform at a high level. This decision also involves
stepping down in terms of consistency. NoSQL data stores prefer to implement an
eventual or weak consistency model. In general NoSQL data stores follow a more relaxed
approach. This also holds true for the data models and schemas.

The compared NewSQL data stores implement new architectures by separating operational
and storage management in order to scale horizontally. They have in common that they
implement a major part of the ANSI SQL standard to provide the user with a known
interface. Underneath that each data store maps the SQL statement to a custom internal
data structure. This abstraction helps the systems to perform tasks like data sharding
and distribution. Consistency has the highest priority for all compared NewSQL data
stores. Unlike NoSQL data stores NewSQL data stores offer configurations, which allow
the developer to tune the system’s consistency settings. So the developer can decide
what degree of consistency should be used. Overall each data store offers an individual
design tailored for its specific uses cases.
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3.2 Sharding

Sharding is a technique for distributing data across multiple nodes and it is an essential
tool regarding the scalability of NoSQL or NewSQL data stores. This is achieved by
splitting the data into parts, called shards or partitions. There exist various methods
to perform this split. Generally, data can be split up horizontally or vertically. This
distinction has its origin in the tabular view of a database. A vertical split separates a
table in multiple tables that contain fewer columns, but the same number of rows. A
horizontal split divides the table by row, which reduces the number of rows per shard
but keeps the number of columns the same. Sharding refers to a horizontal split of the
data. Due to the distribution of the data, the workload and resources consumption of
the system is also distributed, which can greatly improve the overall performance of the
system.

Based on the data store and the underlying data model, different approaches and
techniques of sharding are possible. A common approach is, to use the key of a particular
row as a decision criterion, to evaluate where the row should be stored. The assignment
of rows to shards is usually not fixed, because modifications of the data set, like inserts,
updates and deletes, influence the distribution of the data. Balancing and redistribution
of the data is an important problem, which data stores have to address to keep the data
evenly distributed across all shards.

In general, sharding increases the complexity of the database system. Since the data set is
distributed across multiple machines, the system has to handle the internal communication
between the machines and the communication with the clients accessing the database.
The following sections describe, how the selected data stores address these challenges.

3.2.1 Redis

Redis supports the concept of sharding on two levels. First, Redis is able to use its data
types to shard data across multiple Redis instances. Second, Redis supports clustering of
server instances by assigning each instance a set of data.

Redis Hashes, Sets and Zsets can be used to shard data. If these data types are used for
sharding they are limited in their functionality, because not all functions can be applied
to distributed data sets. Redis uses Lua scripting [lua18] to introduce sharded data
types. Lua is a lightweight scripting language, which is used to create scripted extensions
in Redis. Especially Hashes and Sets are optimized for a distributed use case because
almost all operations of these data types support sharding.

To shard a Hash data type, the keys of the hash are used to distribute the data structure.
Typically, a hash function is used to partition the keys, but it is up to the developer to
decide how the keys are distributed across the shards. Various hash functions can be
used. Also, the calculation of the hash depends on the data type of the particular key.
Depending on how many keys a shard should hold and how many keys in total should be
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stored, the number of shards can be calculated. With these obtained values the shard ID
for a specific key can be determined.

The sharding of Sets in Redis works similar to Hashes. Instead of using the hash key to
determine the shard ID the values of the set are used. Again, it must be paid attention
to, which type the elements of the list have, to calculate a suitable hash value.

The second level of sharding which Redis supports is Redis Cluster. Redis Cluster uses
the concept of hash slots. Each key is assigned to a specific hash slot. A Redis Cluster
has 16384 hash slots. To assign a key to a hash slot, a hash value is calculated for each
key using the CRC16 (16-bit cyclic redundancy check) function and the resulting value is
taken modulo the number of hash slots (16384). This ensures that each key is assigned
to one of the hash slots.

A Redis Cluster is a composition of nodes. Each node in the cluster is responsible for a
subset of hash slots.

For example, a Redis Cluster could be setup with three nodes A, B and C.

• Node A is responsible for slot 0 to 6000.

• Node B is responsible for slot 6001 to 1200.

• Node C is responsible for slot 1201 to 16383.

The association of hash slots to a node does not cause an interruption of the node’s
operation. Therefore, the addition and removal of nodes in a cluster can be done anytime.
If we want to remove a node, e.g. node A, from the cluster, its associated hash slots can
be distributed evenly among the remaining nodes B and C. After the node has distributed
all its hash slots to the remaining nodes in the cluster, it can be removed from the cluster.
Also if a node D joins the cluster, the nodes A, B and C would hand over hash slots to
node D.

[Car13]

3.2.2 Cassandra

Cassandra is designed as a distributed system that spreads its data among a group of
nodes. Data in Cassandra is stored by column families, which contain rows. Each row
has a partition key which the row is identified by.

A cluster in Cassandra uses the concept of consistent hashing to partition or shard data
across all nodes. A consistent hash function is a hash function that minimizes the number
of reassignments. Reassignments occur whenever nodes are added or removed. Cassandra
uses a partitioner to distribute the data sets for each cluster. A partitioner is responsible
for generating hash values from the partition keys of the rows. The generated hash values
are used to determine to which node a row will be assigned.
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Each cluster has a global configuration for the partitioner. Cassandra provides three
partitioners:

• RandomPartitioner: The RandomPartitioner is used to distribute data across
the system using an MD5 hash. It was the default partitioner prior to Cassandra
1.2. Partition range: 0 to 2127 − 1.

• Murmur3Partitioner: The Murmur3Partitioner is faster than its predecessor
the RandomPartitioner and is now the default partitioner in Cassandra. It uses
the MurmurHash function, which is a non-cryptographic hashing function [App08].
It is also recommended to use this partitioner for all new clusters. Partition range:
−263 to +263 − 1.

• ByteOrderedPartitioner: The ByteOrderedPartitioner is used for ordered parti-
tioning. It uses the hexadecimal representation of the keys to order them lexically.
This means the partitioned values can be scanned like a sorted list of values. Other
partitioners do no support this kind of functionality, but it can also be achieved by
using a table index.

However, the usage of an ordered partitioner brings more disadvantages than advantages
and is therefore not recommended. Especially, because the order of the keys leads to an
uneven distribution of the data. This means that data has to be rearranged by calculating
partition ranges based on their estimates of the partition key distribution, which results
in a high administrative workload.

Furthermore, ordered hash values can easily lead to sequential read and write operations.
Sequential reads and writes of rows are in most cases executed on a single node and are
not distributed over multiple nodes. This leads to a high workload of a single machine
and does not utilize the capacities of the cluster.

[cas18a]

3.2.3 MongoDB

MongoDB supports sharding through MongoDB sharded clusters. A sharded cluster
consists of three types of components, illustrated in Figure 3.6:

• Shard: A shard is the main component involved in sharding. It contains a subset
of the sharded data and is the unit of replication. All shards together hold the
whole data set. A MongoDB cluster consists of two or more shards.

• Mongos: Mongos act as interface and router between the client applications and
the shards. They manage the communication, query execution and write operations.
Shards are generally not directly accessed by the client applications. A MongoDB
cluster consists of one or more mongos.
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• Config servers: Config servers support the cluster by hosting configuration settings
and metadata for the cluster. This data includes information about how the data
is distributed across the shards.

Figure 3.6: MongoDB sharded cluster
[mon18e]

MongoDB organizes data in collections of documents. Data sharding in MongoDB
takes place on collection level. In order to enable sharding for a particular collection
of documents, each document has to contain a shard key. A shard key consists of one
or more immutable fields, but a collection can only have one shard key. The shard key
cannot be changed after the sharding and a sharded collection cannot be unsharded.

MongoDB supports sharded and unsharded collections of documents in the same cluster.
A cluster always has a designated shard which stores all unsharded collections called the
primary shard.

As in other systems, it is crucial to select a suitable shard key because the choice of the
shard key influences many aspects of the cluster like scalability, performance and how
the data is distributed.

The data parts, which are distributed across shards in a MongoDB cluster, are called
chunks. Each chunk has a lower and upper range based on the shard key. A sharded
cluster balancer is responsible for distributing the chunks across the shards. It keeps the
number of shards at a specific threshold, to evenly distribute data by migrating chunks
between shards.

MongoDB offers two sharding strategies to distribute data across a cluster:
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• Hashed sharding: Based on a hash function MongoDB computes a hash value
from the shard key’s value. This value is used to assign a document to a chunk
and each chunk has a range of values, which it is responsible for. The ranges are
calculated based on the possible hash values of the shard key. Figure 3.7 illustrates
the distribution of documents using a hash function.
The hash function leads to equally distributed documents across the cluster, even
if the values of the shard key are similar. The favourable distribution of the data
leads to a disadvantage when considering query performance because a range-based
query is very likely to include multiple shards, which increase the response time
and workload of the cluster. When performing queries MongoDB automatically
computes the hash values to access the desired shards and chunks.

Figure 3.7: MongoDB hashed sharding
[mon18e]

• Ranged sharding: Similar to hashed sharding ranged sharding assigns each chunk
a range based on the shard key’s values. Ranged sharding uses the plain values of
the shard key, instead of the hashed values. Figure 3.8 illustrates the split of the
keyspace in contiguous chunks. Each chunk has an assigned range, that is used to
distribute the documents.
In contrast to hashed sharding, documents with shard keys which are close to each
other will generally be stored in the same chunk. This sharding strategy depends
even more on a good sharding key because a bad choice can cancel out the benefits
of data sharding.

[mon18e]

3.2.4 Neo4j

Neo4j does not support the common sharding technique, where each node in the cluster
stores a different set of data, like other NoSQL data stores, do. Each node in a Neo4j
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Figure 3.8: MongoDB ranged sharding
[mon18e]

cluster stores the whole data graph. This means that if the data set gets too big, a node
cannot hold the whole graph in memory, but only a part of it. In order to keep this part
in memory as long as possible and not having to constantly load new data from the hard
disk, Neo4j uses a technique known as cache sharding.

Cache sharding is not a physical data partitioning technique. It manages the data access
for all nodes in the cluster. By using a load-balancing mechanism Neo4j makes sure that
certain requests are routed to the same nodes in the cluster.

For example, a Neo4j cluster contains two Nodes A and B and the data graph contains
information about employees. The load balancer routes all requests regarding employees
with name A to O to node A and from P to Z to node B. Therefore, the nodes are able
to hold their data longer in memory and do not have to load a different data set from
disk and replace it with the current one. This increases the performance of the cluster
because hard disk operations can be kept at a minimum.

To enable cache sharding a load balancer has to be set up. Neo4j recommends using
HAProxy [hap17] as a load balancer. Depending on the data domain different routing
strategies can be implemented:

• Sticky sessions: The load balancer ensures that the client always connects to the
same server, regardless of the query or action.

• Characteristic-based routing: The destination server is selected based on the request,
so the load balancer has to know which server is responsible for which query or
action.

• Geography-based routing: This strategy takes the geographical origin into account
and routes requests or actions from the same area to the same server.
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The problem of optimally sharding a graph across multiple nodes in a cluster is NP-
complete [KR04]. In general solutions of this kind of problems are derived using heuristics
and approximations.

The main benefit of Neo4j and graph data stores, in general, is the power of local graph
queries. By partitioning graph data across multiple nodes, most queries would traverse a
large part of the nodes in the cluster. That in turn, would result in very high response
times.

[PVW15, RF18]

3.2.5 VoltDB

The sharding feature of VoltDB is a core feature of the data store. This feature separates
the database tables into independent parts. The sharding is done automatically by the
system based on a partitioning column which can be specified by the developer. Figure 3.9
illustrates three tables A, B and C are distributed over three partitions X, Y and Z. Each
partition holds a distinct set of rows e.g. Partition X holds A’, B’, C’.

There is no need to manually manage the shards. The sharded tables can be distributed
across multiple servers or on a single server. Furthermore, VoltDB also uses this sharding
to split up the processing regarding distributed queries and other operations which
accesses the data. The sharding by itself, without distributing the shards across multiple
machines, can result in a performance increase in certain scenarios. This increase is
particularly clear when a large amount of data is loaded at once, due to the parallelization
of the reading process.

Figure 3.9: VoltDB sharded tables
[vol18c]
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VoltDB provides a partition statement to specify a partition column, which can be used
within the schema definition of the table. Every time a new record is inserted in a
partitioned table the system decides on which partition the new data entry should be
stored based on the new value of the partition key.

The choice of the partition key affects not only the distribution of the data but also the
processing. Hence, both factors should be considered when choosing a partition key.

The name property of an employee would be a decent choice for the partition key regarding
data distribution. But if the employee table is often used to compare departments which
employees work in, then the employees of one department would be very likely distributed
across all shards. The query which aggregates the employees of that department would
need to access all these data shards. If the name of the department is the partition key
and not the name of employee itself, then the system would probably only need to access
one shard, because all employees of the same department would also reside on the same
shard.

[vol18c]

3.2.6 CockroachDB

CockroachDB supports automatic data sharding based on the underlying key-value data
structure. Data is sharded into so-called ranges. Ranges split the whole key space
into contiguous data chunks. A range is the unit of distribution and replication in
CockroachDB, so ranges are distributed across multiple nodes in the cluster. Each node
stores a set of ranges.

Under the hood, CockroachDB uses a so-called monolithic sorted map structure to
manage ranges in the cluster. This map is used for two essential tasks:

• First, the map stores meta ranges which represent the location of the actual data
in the cluster and other information about the cluster. CockroachDB stores meta
ranges in a two-level index. The meta ranges are replicated and accessed like every
other element in the key-value data structure. These special ranges are for example
used by queries to locate the responsible node for a certain key.

• Second, the map holds the actual data of the cluster. As mentioned before, the
data is divided into contiguous chunks. The default maximum size of a range is 64
MB. CockroachDB claims that 64 MB is the optimal size, small enough to migrate
the data range between nodes and large enough to store a relevant set of data.

If a range exceeds the threshold of 64 MB, the range is split up into two ranges. Con-
sequently, each range covers a contiguous part of the key space. There is also a lower
threshold for the size of a range, if ranges fall below this threshold they are merged
back together. The aim of CockroachDB is to keep the ranges relatively small to easily
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distribute the data chunks across multiple nodes in the cluster. It also automatically
manages the rebalancing of ranges between nodes in the cluster. The nodes communicate
using a peer-to-peer gossip protocol to exchange information about the stored ranges,
capacity and other meta information.

The meta ranges are stored and cached by each node to keep up with the current state
of the cluster. If a node receives a request, it is able to look up the responsible node by
comparing the keys in the request with the keys in the meta ranges and send the request
to the node. If the requested data moved to a different location, the node replies with
the new location.

[coc18a]

3.2.7 NuoDB

Since version 2.6 NuoDB fully supports the SQL standard for partitioned tables. These
partitions are used to distribute data across multiple servers. NuoDB uses two mappings
to represent its sharded data structure. The first mapping is between a table partition and
a storage group (SG) and the second mapping is between a storage group and a storage
manager (SM). On top of that resides an in-memory layer, which contains transaction
engines (TE). In Figure 3.10 three storage groups are distributed and replicated over
three storage managers. This represents the mapping

The logical unit of storage in NuoDB is a storage group. A storage group contains one or
more table partitions and each table partition is assigned to exactly one storage group.
These storage groups can be assigned to multiple storage managers. A storage manager
represents a physical storage location. Typically, one storage manager runs on each node
in the cluster. This means that the assignment of a storage group to a storage manager
determines the physical location of the data set.

NuoDB offers two policies to horizontally split a table into multiple partitions:

• Partition by range: This partitioning policy allows the developer to specify value
ranges for a given column of a table. This is implemented using the VALUES
LESS THAN clause. This clause evaluates to true if the input value is less than
the specified value. Each row is assigned to a partition based on the evaluation
of these clauses. The clauses are sorted from lowest to highest and the keyword
MAXVALUE is used to assign rows to a partition which do not match prior clauses.
Each row must be assigned to a partition otherwise the system throws an error.

PARTITION BY RANGE (employee_id)
(

PARTITION employee_1 VALUES LESS THAN (1000),
PARTITION employee_2 VALUES LESS THAN (2000),
PARTITION employee_3 VALUES LESS THAN (3000),
PARTITION employee_4 VALUES LESS THAN (MAXVALUE)
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Figure 3.10: NuoDB sharded architecture
[nuo18c]

);

• Partition by list: The list partitioning policy works similar to the range partitioning
policy, but instead of the VALUES LESS THAN clause it uses the VALUES IN
clause. This clause evaluates to true if the input value is contained in a specified
list. Each row of the table is assigned to partition based on these statements. There
is also the DEFAULT keyword which assigns rows to a default partition if no other
clause matches. As with range partitioning, the system throws an error if a row
cannot be mapped to a partition.
PARTITION BY LIST (department_name)
(

PARTITION employee_1 VALUES IN (’Sales’, ’Marketing’, ’HR’),
PARTITION employee_2 VALUES IN (’Research’, ’Development’),
PARTITION employee_3 VALUES IN (’Accounting’, ’Finance’),
PARTITION employee_4 VALUES IN (DEFAULT)

);

[nuo18c]

3.2.8 Summary

The individual databases pursue very different approaches due to their diverse data
structures. What they all have in common is that every record is assigned to a shard
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based on some shard key, the hash-based sharding approach is very popular, mostly
because it evenly distributes data across the nodes.

The sharding implementation of the NoSQL data stores greatly depends on the underlying
data structure of the system. Especially Redis provides for each data structure a sharding
implementation. Also, the sharding implementations of the NewSQL data stores are not
as similar as one would aspect. For example, the implementation of CockroachDB is
based on the underlying key-value store and on the other hand NuoDB uses the SQL
standard for partitioned tables to shard and distribute the records.

The data stores are torn between flexibility and automation in terms of sharding. For
example, CockroachDB handles the sharding process, including the rebalancing of nodes,
automatically without the need to interfere manually. On the other hand, Cassandra
offers different sharding strategies, which can lead to performance increases, depending
on the data set. This kind of flexibility requires a profound understanding of the data set
itself, without this knowledge the sharding can result in an uneven distribution, which
would cancel out benefits of sharding.

Neo4j is the only data store that does not support the common sharding approach of
physically splitting the data across multiple machines. It uses cache sharding. Each node
in Neo4j holds the whole data set and only a part (shard) of the data is held in memory.
The remaining data is stored on disk and only accessed if necessary.

In most cases, sharding is closely coupled with replication because the data shards are
used as the base for replicating data. For example, NuoDB uses the data shards (storage
groups) to distribute parts of the data to multiple servers and it uses the same storage
groups to replicate the data by assigning the same storage group to multiple servers.
VoltDB has a more restricted relation to replication because tables in VoltDB can either
be sharded or replicated.

In conclusion, all reviewed data stores provide on the first sight very similar sharding
techniques, but the approaches vary greatly based on the underlying data structure of
the system.
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3.3 Replication
Replication refers to a technique of keeping multiple copies of the same data on different
nodes in the cluster. This approach has multiple benefits: The most prominent benefit is
the fact that the data is backed up on multiple even physically separated machines, to
prevent data loss in a disaster scenario. But in general, replication cannot completely
replace traditional backup methods, because it only replicates the current state of the
data. Replication does not keep a history of old data records.

The main reason why modern systems deploy replication is horizontal scalability. Horizon-
tal scalability can be divided into the read-scalability and write- scalability. Scaling reads
enables the system to serve many concurrent users data from the data store and scaling
writes enables the data store to perform many concurrent writes. Read-scalability can be
achieved if multiple replicas are allowed to accept and answer read requests from clients
and this applies analogously to write requests. Which form of scalability is available
depends on the data store.

Another aspect that needs to be differentiated is the way in which updates are propagated
and acknowledged by replicas. When using synchronous replication updates are only
acknowledged to the client, if the replicas also acknowledge the update. Synchronous
replication is used by NewSQL stores to ensure strong consistency within the system. If
an update fails on one replica, the other nodes have to roll the update back, to keep the
data consistent.
Asynchronous replication is used by most NoSQL data stores because it provides higher
performance. If a node receives an update and it is successful, without knowing the result
of the other replicas, the receiving node acknowledges the update. This asynchronous
fashion of update propagation goes hand in hand with the eventual consistency model
used by NoSQL data stores, because it cannot be guaranteed that all datasets of the
replicas are identical. This means that a read request, that is sent to two replicas at the
same time, can return two different results.

To decide which replicas are allowed to answer which type of queries and how to
propagate updates to other replicas, the data stores implement different master-slave and
multi-master architectures. The following sections describe these different replication
approaches:

3.3.1 Redis

Redis uses a master-slave setup for replication. One node is the designated master and
multiple slave nodes are connected to it. The goal of a slave is always to represent an
exact copy of the master server. This replication approach does not only provide data
safety in case of emergency (e.g. hard disk failure), it also allows the system to scale
read operations because slaves are able to answer queries as well. Write requests are
only accepted by the master. In case of a connection loss or timeout, the slaves will
automatically try to reconnect to the master. This is achieved by covering these three
scenarios:
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• If the connection between the master and the slave is stable, the master sends a
stream of commands to its assigned slaves. The slaves execute these commands in
order to replicate the master’s data set.

• In the case of connection loss or timeout between the master and a slave, the
slave tries to reconnect to the master. If the reconnection is successful, a partial
resynchronization is initiated. A partial resynchronization attempts to retrieve the
lost commands and execute them to restore the state of the data set.

• If a partial resynchronization fails or is not possible, the slave initiates a full
resynchronization. A full resynchronization does not obtain the missing commands,
but it retrieves a full snapshot of the data set. This snapshot is created by the
master and applied by the slave. After this process, the master continuous sending
the command stream.

If a user manipulates the data set of the master the command is forwarded to its slaves to
replicate the change. The master does not wait for the slaves to acknowledge the execution
of the command back to the user. Additionally, the slaves periodically acknowledge the
amount of data received from the master. This means that Redis uses asynchronous
replication by default. However synchronous replication can be achieved using the WAIT
command, but the WAIT command can only ensure that there is a certain number of
acknowledged copies on the other nodes.

The asynchronous replication concept is also reflected in a way that the replication tasks
are non-blocking for the master. This means that the master continues to answer queries
and requests during synchronization tasks like initial synchronization and partial/full
resynchronization. The asynchronous nature of Redis reflects the relaxed approach of
NoSQL data stores regarding consistency.

Also, the replication tasks on the slaves are considered non-blocking. During synchro-
nization tasks, the slave is able to answer queries, but the slave can only access the
old dataset to answer these requests. However, the slave nodes can be configured to
respond to requests during these time slots with an error, in order to avoid the delivery
of outdated data.

Furthermore, Redis supports a replication structure where slaves are able to connect with
other slaves and create a tree structure. The sub-slaves will receive the same command
stream as the directly connected slaves.

[red18b]

3.3.2 Cassandra

Cassandra distributes replicas over several nodes in the cluster based on the replication
factor. The unit of replication in Cassandra is a row and the replication factor determines
the number of replicas in the system. A replications factor of 1 means that there is no
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additional copy of the row in the system, only the original row itself. A replications factor
of n would indicate that there are n copies of the row in the system and each copy is
stored on a different node. This means that the replication factor should not exceed the
number of nodes in the cluster. The replication concept of Cassandra does not identify
one replica as a primary or master replica, all replicas are equally important so they are
replicas of each other.

The placement of replicas can be configured using a replication strategy. Cassandra
provides an interface, which can be used to implement a custom replication strategy.
Furthermore, two replication strategies are already implemented and fit the majority of
use cases.

The choice of the right replication strategy is crucial because the strategy influences
which node is responsible for which key range. This, in turn, affects which nodes receive
the write operations, which can greatly affect the efficiency of the system. If your system
includes two geographically dispersed data centers and replicas spread across those data
centers, the write operations would also be distributed, which in turn would lead to
performance loss. The flexibility to choose a replication strategy or implement a custom
strategy allows the system to tackle this problem and place the replicas based on the
underlying network topology of the cluster.

Cassandra offers the following two strategies:

• Simple Strategy: This strategy should only be used if Cassandra operates on a
single data center and one rack because this strategy is unaware of the network
topology of the cluster. The nodes in a Cassandra cluster are organized in a ring
and replicas are just placed clockwise in the ring. This means that the next node
in the ring could be in a different data center.

• Network Topology Strategy: This replication strategy is tailored for a dis-
tributed scenario in which the data set is spread across multiple data centers and
racks. First, the number of replicas in each data center has to be specified. An
asymmetrical replication between the data centers is also possible. For example,
the data center, which is used for production, can have three replicas and another
data center, which is used for development, can have only one replica. To choose a
destination node for a replica, the nodes in the ring are iterated clockwise until
reaching the first node in another rack, but still in the same data center. Replicas
in the same data center should be placed in different racks because there is a high
probability that they share the same properties like brand and date of purchase, so
machines in the same rack often fail at the same time.

[Hew10, cas18e]
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3.3.3 MongoDB

Replication in MongoDB is handled by a so-called replica set which consists of multiple
mongod processes. A mongod process is the primary daemon process of MongoDB.
MongoDB uses replica sets to provide high availability and redundancy, in case of failure
and supports multiple replicas on different nodes.

A replica set can contain multiple nodes, which can have one of these three roles: primary,
secondary or arbiter. There is one primary node, multiple secondary nodes and one
optional arbiter node. Illustrated in Figure 3.11

Figure 3.11: MongoDB replication architecture
[mon18d]

• Primary: A replica set has exactly one primary node. The primary is the only
node which receives write operations from the clients. These write operations are
applied to the primary’s data set and stored in an operation log. This log is used
for replication. All nodes including the primary are able to accept read operations,
but the read operations are by default forwarded to the primary node. In the case
that the primary node fails or becomes unavailable, an election process is started
to decide which secondary node becomes the new primary node.

• Secondary: A replica set can contain one or more secondary nodes. The primary’s
operation log, in which all write operations are stored, is replicated to all secondary
nodes. The secondary nodes apply the operations from the log to replicate the data
set of the primary in an asynchronous process. Nodes in a replica set ping each
other every two seconds to check the availability of the other nodes, this is called
heartbeat. If a node does not reply in a certain time, the node will be marked as
inaccessible. This information is used in the election process.

• Arbiter: This node is optional in a replica set. It does not hold a replica of the
data and cannot become a primary node, but it has a vote in the election process.
The main purpose of an arbiter node is to manage a quorum. This allows MongoDB
to have an uneven number of voting nodes without the overhead of a secondary
node.
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The replication approach in MongoDB provides an automatic failover in case a primary
node does not respond to a member of the replica set. The first secondary node which
notices this starts an election, see Figure 3.12. The election can be influenced by the
priority of the secondary nodes.

Figure 3.12: MongoDB election
[mon18d]

In the case of a network partitioning the nodes keep track of the number of nodes which
are still reachable in their partition. If the primary detects that it is located in a minority
partition it automatically steps down and becomes a secondary node. On the other side,
if a node is able to reach a majority of the replica set, it starts an election and becomes
the new primary. During an election there is no primary and MongoDB does not accept
any write operations, but read operations are still accepted.

The asynchronous nature of MongoDB’s replication concept implies that there is a time
window in which a read operation on a secondary node returns outdated data, which
does not reflect the data set of the primary node. This is why MongoDB forwards by
default all read requests to the primary node. This behaviour can be changed in the
settings.

[mon18d]

3.3.4 Neo4j

Neo4j’s high availability (HA) cluster implements a master-slave architecture. A Neo4j
cluster contains one master and zero or more slave nodes. Each node in the cluster
contains a full copy of the original data set. Neo4j provides a special slave node which
is called arbiter. It does communicate with other nodes in the cluster, but it does not
hold a replica of the data set. The master is the primary instance which handles write
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transactions from the clients. Surprisingly, Neo4j not only allows read operations but
also write transactions to slave nodes.

Neo4j instance 1

Cluster
management

Transaction
propagation

Database

Neo4j instance 2

Cluster
management

Transaction
propagation

Database

Neo4j instance 3

Cluster
management

Transaction
propagation

Database

Current master

Figure 3.13: Neo4j master-slave cluster
[neo18b]

Figure 3.13 illustrates a master-slave setup with one master node and two slave nodes.
The green arrows represent the communication between all nodes of the cluster regarding
election management and the actual communication about data replication is represented
by the blue arrows.

If a write transaction is executed directly on the master, it will execute the transaction
and manipulate its data set. If the transaction succeeds it is forwarded to the assigned
slave nodes. After the transactions were successfully executed on the master, without
knowing if it will be successfully executed on the slaves, the client is notified that the
transaction was successful. This means that Neo4j uses an asynchronous replication
approach. This optimistic approach is very common for NoSQL data stores.

When a transaction is executed on a slave instead of the master, each write operation will
be synchronized with the master. This process includes the usage of locks on the master
and slave. First, the transaction is forwarded to the master and only if the transaction is
successfully executed, it is executed on the slave. Although Neo4j allows writing access
to slaves, the increased communication overhead and the additional use of locks increase
the workload on the cluster.

When nodes in the cluster observe that a node is unavailable it will be marked as tem-
porarily failed. After the node becomes available again, it will automatically synchronize
to recover the current state of the master. If the master becomes unavailable a new
master will be elected by the remaining slaves.
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In order to elect a new master, a cluster must have a quorum. Neo4j defines a quorum
as follows: more than 50% of active cluster members. This means that if a cluster should
be able to handle n node failures a minimum of 2n + 1 nodes is necessary to satisfy the
quorum. To handle a single node failure, a cluster would consist of three nodes to satisfy
the quorum and elect a new master. After the election was successful the new master
broadcasts its new role to the cluster until this time all write operations from clients are
rejected.

3.3.5 VoltDB

VoltDB supports two levels of replication. The first level is based on database tables and
the second level affects the whole database. VoltDB uses an ACID compliant approach,
which means that a transaction is not completed until all replicas have successfully
applied the changes. A SQL statement has to be either visible to all replicas or to none.

Replicated tables in VoltDB are distributed to all nodes in the cluster. In VoltDB tables
can either be partitioned or replicated across the cluster, VoltDB offers no possibility
to do both. Figure 3.14 illustrates a database schema consisting of multiple partitioned
tables (Table A, B and C) and a replicated table (Table D). Partitioning and replication
of tables always target all nodes in the cluster. Additionally, you have to decide for each
table if it will be partitioned or replicated. If a partition column is set, the table will
be partitioned, otherwise, the table will be replicated. VoltDB recommends replicating
small and read-only tables, which are often used for joins. This allows the system to
execute certain queries only on one node, without the overhead of communicating with
other nodes.

Figure 3.14: VoltDB replication
[vol18d]
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In addition to table replication, VoltDB also offers the option of replicating the entire
database cluster. VoltDB offers two options for database replication:

• Passive replication (One-way): The passive replication approach implements a
master-slave replication model on a data center level. One way means that replica-
tion only happens from the master to the slaves. The master data center is the
only data center which accepts write operations from the clients and the slave data
centers are read-only. To create a copy of the master data center, all changes are
forwarded to the slave data centers. The slaves only allow transactions from the
master to modify their database.

• Cross data center replication (Two-way): The cross data center replication (XDCR)
can also be called active replication or two-way replication because all data centers
are allowed to accept write operations from the clients and the changes from each
data center are broadcasted to the other participating data centers. When a client
modifies a record in one data center the changes are committed locally first, then
forwarded to the other data centers. This can result in a conflict if two or more
data centers modify the same record.

3.3.6 CockroachDB

CockroachDB implements a special multi-master replication strategy, called Multi-Active
Availability. It is a consensus-based strategy which allows CockroachDB to accept read
and write operations on all nodes in the cluster, but only for a specific range. This is the
difference to a regular multi-master replication where all nodes can receive all read and
write requests.

The consensus algorithm CockroachDB uses requires a quorum to accept the incoming
changes for a specific range. More than half of the responsible nodes must agree to
achieve a majority before those changes are committed. Hence, the smallest cluster which
is able to achieve a quorum must have three nodes. The replication factor x determines
the number of replications for a data set, so a cluster can handle (x − 1)/2 node failures.

When a new node joins the cluster CockroachDB rebalances the replicas in the cluster
to utilize the new resources. In the event of a node failure, the system automatically
realizes that a certain node is unavailable and redistributes replicas to maximize data
survivability.

One of the core components is the consensus protocol Raft. It is responsible for the
distribution of the data when new nodes join the cluster or certain nodes become
unavailable. But most importantly, Raft ensures that the nodes in the cluster agree on
the current state of the data. This is done by dividing the nodes into so-called Raft
groups. One node in the group is the leader and the others are followers. The leader
is responsible for the Raft log, which contains the operations the nodes have agreed
on. This log can be used to replay the last operations if a node becomes temporally
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unavailable and has to catch up to the current state of the database. When a follower
receives a write operation it is proposed to the group leader. If the operation is accepted
by the quorum it is appended to the log and the changes are replicated on the other
nodes of the group.

If a new node joins the cluster, it would take too much time and resources to replay
the whole Raft log and get the new node up to date. Therefore, each node can create a
snapshot of its data, which can be sent to a new node. After the new node has loaded
the snapshot, any remaining changes are applied using the Raft log.

CockroachDB offers a very fine granular feature to manage the location and number of
replicas for a specific data set. This feature is called replication zones and also applies to
the rebalancing of the cluster. The developer can create detailed replication zones on
multiple levels and CockroachDB also offers pre-configured replication zones.

Replication zones can be configured on four levels:

• Cluster

• Database

• Table

• Row

When a certain data set is replicated, the system uses the most specific zone available.
So if a certain row is modified the system uses the replication zone for this row if it is
specified, otherwise, it uses the replication zone for its table, then CockroachDB looks
for a database and cluster replication zone.

[coc18c]

3.3.7 NuoDB

NuoDB implements an active-active (multi-master) replication strategy, which allows
the clients to perform read and write operations on all nodes in the cluster. By default,
each storage manager on a node keeps a complete copy of the database. New storage
managers will automatically synchronize with another storage manager in the cluster.

The storage groups, which result when tables are sharded, can also be used for replication.
A storage group can be assigned to multiple storage managers to replicate the data across
multiple nodes in the cluster.

The distributed architecture of NuoDB allows the system to operate one database across
multiple data centers. Figure 3.15 shows that the storage manager (SM) keep the replicas
in different data centers to provide durability in the event of a data center outage. If the
connection between the data centers fails, then the components in one data center will
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Figure 3.15: NuoDB data center replication
[nuo18c]

be automatically shut down to prevent inconsistency. This feature can also be disabled,
but NuoDB cannot automatically fix the potential inconsistencies.

By default, NuoDB uses synchronous replication, but the system can also be configured
to support different strategies. This strategy can be adapted using different commit
database options:

• Safe: This is the default option. When a transaction is executed the transaction
manager sends a pre-commit message to the storage manager hosting a replica of
the corresponding data. The actual acknowledgement will not be sent to the client
until all storage managers acknowledge their pre-commit message.

• Local: The transaction manager sends a commit message to all involved storage
managers, so they can replicate the changes, but does not wait for their acknowl-
edgements. This means that the transaction manager only waits for the transaction
to complete locally, before sending the acknowledgement to the client.

• Remote: This commit option takes a parameter n which represents the number of
storage managers which have to acknowledge the commit. Hence, the transaction
manager waits until n storage managers confirm the commit, before acknowledging
the transaction to the client.

• Region: This commit option works similar to the commit option remote, but instead
of waiting for n storage managers the transaction manager waits for n regions,
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before acknowledging the transaction to the client. A region represents a geographic
location of a database.

[nuo17, nuo18b]

3.3.8 Summary

The research confirms that NoSQL databases rely more on performance and less on
consistency. This is also confirmed by the choice of the architectures of the individual sys-
tems. The replication architectures are mainly focused on asynchronous communication,
which in turn highlights again the eventual consistency model.

Most NoSQL data stores implement master-slave architectures, where writes are only
allowed on the master and reads are allowed on all replicas, rather than a multi-master
architecture. This emphasizes the performance goal of NoSQL systems because a multi-
master architecture would imply a higher communication effort, which would decrease
the overall performance.

The NewSQL data stores, on the other hand, implement multi-master architectures. This
architectural approach allows the clients to perform read and write operations on all
nodes in the cluster. Writes to multiple nodes can lead to conflicts in the system, to
resolve these issues most NewSQL data stores implement a consensus mechanism to
agree on a solution. In order to support the ACID properties, the NewSQL data stores
use synchronous replication, which implies a higher communication overhead, but they
accept this overhead to achieve consistency.

But the line between replication strategies is not always that strict. Most data stores offer
the possibility to configure the degree of synchronous and asynchronous replication. For
example, the commit options of NuoDB allow for a very granular configuration between
synchronous and asynchronous replication. In general, it is easier to step down from
synchronous replication to asynchronous replication as the other way round.

In conclusion, there is always a trade-off between consistency and performance. NoSQL
data stores prefer performance over consistency and NewSQL data stores prefer con-
sistency over performance. This does not mean that there is no consistency in NoSQL
systems or that NewSQL systems are slow, but it is necessary to know the requirements
and goals, which an application should achieve, before choosing a data store.
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3.4 Querying

Generally, querying is a key task for all kinds of data stores. NoSQL and NewSQL data
stores implement very contrasting techniques to retrieve their stored data.

As NoSQL data stores were designed, querying was not the priority, they are optimized for
flexibility, scalability and performance, with exception of graph data stores. Essentially,
most NoSQL data stores lack querying mechanisms compared to traditional DBMSs.

The most influencing factor, how querying mechanisms work in NoSQL data stores, is
the data model. The data model is closely tied to the query method. This means that
there is no standard, like SQL, connecting NoSQL data stores. Almost all NoSQL data
stores provided a proprietary API to access the stored data according to their data model.
The NoSQL evaluations of this section will focus on how the querying mechanisms work
according to the specific data models.

On the other side, NewSQL data stores prioritize querying more than NoSQL data stores.
NewSQL systems by definition support SQL as their main interface for data retrieval
and manipulation. They are not as diverse as NoSQL data stores in terms of querying,
because all of them support SQL, but not every NewSQL data store supports SQL to the
same extent. The NewSQL part of this section will focus on the limitations considering
the degree of SQL compliance, rather than listing all supported standard SQL statements.

3.4.1 Redis

The querying options in Redis are very limited. A value can only be queried by its key
depending on the data type:

• String: A string can be retrieved from the key-value store using its key.

• Hash: The whole hash can be accessed by its key. Additionally, all values or keys
of a hash can also be queried and the values of the hash itself can be accessed
separately using the key of the hash and the key of the particular value.

• List: A list or a defined range of elements in the list can be retrieved by the key.

• Set: The set can also be accessed by its key. The set datatype offers additional
methods to query the intersect, difference or union of multiple sets.

• Sorted set: Sorted sets can be queried like normal sets in Redis. Furthermore, each
element of a sorted set has a score as a sorting criterion, this score can be used to
query a range of elements.

It is possible to query all keys matching a pattern, but this command should not be used
in production environments. The time complexity of this command is O(N) with N
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being the number of keys in the data store because Redis iterates all keys and tries to
match the pattern.

To extend the rather limited querying capabilities, Redis’ data structure can be used to
create secondary indices. In most cases, the sorted set data type is a very useful data
structure to create a secondary index. For example, the following Redis hash represents
employees of a company. The HMSET command allows us to set multiple key-value pairs
on a hash given a key.

HMSET emp:1 id 1 givenname John surname Doe department 45
HMSET emp:2 id 2 givenname Jane surname Doe department 45
HMSET emp:3 id 3 givenname Sam surname Smith department 12

The ZADD command is used to add an item with a score to a sorted set. This data
structure represents the secondary index. This index has to be manually created and
maintained, so the developer has to update the index if the employee data changes. The
following commands create a sorted set with the employee identifiers as values and the
department identifiers as scores. The sorted set can now be used to query all employee
identifiers given a range of department identifiers (score).

ZADD emp.department.index 45 1
ZADD emp.department.index 45 2
ZADD emp.department.index 12 3

The sorted set data type has another useful feature regarding indices. The score of a
sorted set is a floating point number, so it can only be used to index numbers. If items
in the set have the same score, the items are sorted lexicographically and Redis offers
a command to query ranges in a lexicographical way. This feature is very similar to a
b-tree, which is used in a variety of data stores to implement indices and can be used to
create complex indices in Redis.

[red18c]

3.4.2 Cassandra

Cassandra provides a query language similar to SQL called CQL (Cassandra Query
Language). It is the primary language used in Cassandra to access and manipulate
resources in the data store. Prior to CQL, the main interface for data management was
Thrift [thr18]. SQL and CQL share in most cases the same syntax and functionality,
but CQL does not offer the same set of query functionality like SQL. Most of these
restrictions are due to the fact that CQL operates on a distributed NoSQL data store and
complex queries would greatly reduce the performance of the cluster. The strength of
Cassandra and CQL is the query performance but not the expressiveness of the queries.

Additionally, CQL provides support for JSON. CQL can be used to return tables formatted
in JSON. This feature not only applies to the SELECT statement, but also to the INSERT
statement, so data can be inserted and accessed using JSON.
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The main restrictions compared to SQL are:

• CQL does not support joins.

• CQL does not support subqueries.

• A WHERE condition can only be applied to a column, if a secondary index exists
for this column, so all attributes used in a WHERE clause must have an associated
secondary index, besides the primary key.

• CQL provides no OR or NOT operators, only the AND operator is available in the
WHERE clause.

After defining a table, a secondary index can be created for a column. As mentioned
before, secondary indices are essential to query tables using a column, which would not be
queryable otherwise. An index can also be created on a collection column. A collection
is an embedded data structure with a limited size. CQL contains the set, list and map
collection data types.

Secondary indices can have a great impact on the performance of the cluster. Cassandra
stores the index table on each node in the cluster and it is recommended to create indices
only on specific columns. Especially, indices should not be created on columns with a
high-cardinality. The cardinality of a column is high if it contains many distinct values. So
a column which contains mostly unique values, should not be used to create a secondary
index. A bad example would be the address of an employee because this column contains
many distinct values and a good example would be the name of the department the
employee works in. Furthermore, indices should not be created on columns that are
frequently updated or deleted.

[cas18d, cas18c]

3.4.3 MongoDB

MongoDB provides a rich set of possibilities regarding data retrieval, starting with the
find operator. The find operator is the primary tool to query documents from a single
collection. It is based on the query-by-example concept, as the name suggests, the
find operator queries all documents of a collection which match the provided example
document.

db.employees.find({ "surname" : "Doe", "givenname" : "John" })

This example would return a subset of the employees collection, where the surname field
is equal to Doe and the givenname field is equal to John. This is a rather simple query
that illustrates the query-by-example concept, but the find operator allows for more
complexity. MongoDB provides many operators to go beyond the exact matching of
documents:
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• Logical operators: $or (OR), $not (NOT). The logical AND is implicitly provided
by the query-by-example concept.

• Comparison operators: $lt (<), $lte (<=), $gt (>), $gte (>=), $ne (not equal)

• Include operators: $in (in), $nin (not in)

MongoDB provides many more operators. These are the primary operators, which can be
compared to SQL statements. A detailed list of operators can be found in the MongoDB
documentation [mon18c].

Aggregation pipeline Besides the find operator, which queries only a single collection,
MongoDB offers the lookup operator to combine documents from two collections. The
lookup operator performs a left outer join, so the input documents are extended by an
array of matching documents from the joined collection if the specified fields match. For
example, a data store could have two collections: a collection that contains departments of
a company and a collection with employees. Each department contains a list of identifiers
of employees, who work in this department. The lookup operator can be used to join the
referenced employees to the corresponding department so that the department contains a
list of employee documents.

The lookup operator can be used together with a set of other operators to perform a
complex chain of operations. This concept in MongoDB is called aggregation pipeline
and it can also operate on a sharded collection. The chaining of operators illustrated in
Figure 3.16 corresponds to a SQL statement (WHERE, SELECT, JOIN and GROUP
BY)

Figure 3.16 contains following operators:

• Match: Filters documents

• Project: Adds, removes, renames or computes fields

• Lookup: Left-outer join

• Group: Combines documents

Furthermore, MongoDB also provides a map-reduce function. The map-reduce function
has two main phases, the map and the reduce phase. First, the map part is executed for
each document in the collection and emits one or more objects. Then the reduce phase
combines the result of the map phase. Both phases use a custom JavaScript function to
perform the map-reduce operation. A map-reduce function can also operate on a sharded
collection like an aggregation pipeline. The JavaScript function provides great flexibility
for the developer, but due to the use of JavaScript, the performance of the map-reduce
function is not as efficient as the aggregation pipeline.
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Figure 3.16: MongoDB: Aggregation pipeline
[mon18b]

[mon18b]

Indices in MongoDB are used to increase the performance of queries. If a query accesses
a non-indexed field of a document, MongoDB has to perform a full collection scan. The
collection scan iterates over all documents in the collection, to check if that document
matches the query. The index reduces the number of documents, which have to be
scanned, hence the query performance increases.

The _id field of a MongoDB collection is always associated with an index and it ensures
that the identifier of a document in a collection is unique. This special index cannot
be deleted. Besides this simple index, MongoDB provides many different indices and
most of them are built for special use cases or data types. These are some examples of
available indices in MongoDB: Single Field Indices, Multikey Indices, Text Indices, 2d
Indices, geoHaystack Indices and Hashed Indices.

3.4.4 Neo4j

Neo4j, like other graph data stores, use well-established concepts from graph theory to
efficiently query data. One of the key concepts is graph traversal. Graph traversal refers
to the process of visiting nodes in the graph by moving from one node to another node
using relationships connecting these nodes. This technique is unique to graph data stores
and is fundamental to data retrieval. The main difference between traditional querying,
like SQL, and graph traversal is, that querying data with graph traversal only takes
data that is required for the query. In contrast to SQL operations, like joins, mostly
perform expensive data grouping and selection on the whole data set. Generally, the
query performance for SQL-based DBMSs degrades with the depth of the query. In
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contrast, Neo4j knows which nodes have already been visited and can efficiently traverse
the graph. Neo4j will simply traverse and collect nodes until there are no more nodes to
visit.

To perform these special queries, Neo4j provides its own query language called Cypher.
Cypher is a declarative query language for graph data. It uses a matching mecha-
nism to express patterns, which are used to select data from the graph. It is de-
signed to visually represent graph patterns using an ASCII-Art syntax in the form
(node_a) -[:RELATIONSHIP]-> (node_b). (node_a) and (node_b) represent
nodes in the graph and node_a and node_b are variable names, which can be used
to ref to them later. The arrow -[:RELATIONSHIP]-> between them represents the
relationship connecting these two nodes. Both nodes and relationships can be further
refined to match a more specific structure in the graph. Additionally, Cypher supports a
SQL-like WHERE clause to filter relevant elements.

These expressions are building blocks for more complex patterns. A query can consist of
multiple patterns, the resulting nodes have to match all containing patterns. It is possible
to create chains of multiple nodes and relationships to describe expressive structures. For
example:

(employee)-[:WORKS_WITH]-(co_worker)-[:WORKS_ON]-(projects)

This example matches the projects of the co-workers of an employee. It is also possible
to query a node by ID. This node can be used as a starting point for a pattern. In
the previous example, the employee could be queried by id to match the project of the
co-worker for a specific employee. Generally, querying in Neo4j follows this approach,
first find one or multiple starting nodes and after that perform a graph traversal.

Cypher is inspired by many query languages, like SQL and SPARQL [spa18]. Most of the
keywords especially WHERE and ORDER BY are from SQL. Cypher queries are built
using clauses. Clauses produce intermediate result sets, which can be chained together.
The main clauses are:

• MATCH - The MATCH clause uses graph patterns to select a subset of the graph.

• WHERE - The WHERE clause is a part of the MATCH clause and filters the result
and adds constraints to a pattern.

• RETURN - This clause defines, which parts of the patterns should be returned.
Nodes, relationships and properties can be used.

Patterns can also be used to update the graph. Following clauses can be used:

• CREATE / DELETE - These clauses can be used to create/delete nodes and
relationships.
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• SET - Sets and adds properties on nodes.

• REMOVE - Removes properties from nodes.

• MERGE - Match existing nodes or create new nodes and patterns.

Neo4j provides multiple methods to find a starting node. First, as mentioned, a node
can be looked up directly by ID. In the same way, multiple nodes can be retrieved from
the graph by providing a list of IDs. But it is also possible to find nodes by using the
properties of a node. The recommended way to lookup nodes is by using Lucene indices.
Lucene is the default implementation of Neo4j’s index management. An index in Neo4j is
a redundant copy of information that is used to retrieve data in an efficient way. Indices
are created at the cost of additional space and slower write. The choice of what to index
is very important because if they are used in a wrong way, it can lead to performance
issues. In Neo4j indices can be created for a property of a node or a relationship. The
index contains all references to nodes or relationships containing this property. An index
is identified by unique string value and can be accessed using a designated index manager.
After an index is created it is managed by the system, this includes automatic updates if
the graph changes.

3.4.5 VoltDB

Generally, VoltDB uses SQL as its main query and data manipulation interface, but
as most database systems VoltDB does not fully support the SQL standard. The
following section lists the main limitations of VoltDB’s implementation according to their
documentation:

• Partitioned tables can only be joined using the partitioning column. Joining
two partitioned tables on non-partitioned columns or on a range of values is not
supported. This restriction does not apply to replicated tables.

• Subqueries in the ORDER BY, GROUP BY or HAVING clauses are not supported.
Statements of the data manipulation language (INSERT, UPDATE, DELETE and
UPSERT) also do not support subqueries.

• If subqueries are used in selection or boolean expressions, then partitioned tables
are not supported in these subqueries. In the FROM clause of a select statement
both, replicated and partitioned tables can be used.

• The logical OR operator is supported syntactically, but it is not optimized and can
lead to performance issues.

• Triggers are not supported.
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• CREATE INDEX: The uniqueness constraint is enforced separately within each
partition. This means that only indices on partitioned tables containing the
partitioning column or replicated tables can ensure global uniqueness.

• CREATE TABLE: CHECK and FOREIGN KEY constraints are not supported,
also VoltDB does not support AUTO INCREMENT.

• Partitioning columns must not contain NULL values. A partitioning column without
a NOT NULL constraint will result in an error.

In addition to SQL VoltDB supports following interfaces and APIs: C#, C++, Erlang, Go,
Java (packaged with VoltDB), JDBC (packaged with VoltDB), JSON HTTP (packaged
with VoltDB), Node.js, PHP and Python.

3.4.6 CockroachDB

CockroachDB supports a large portion of the ANSI SQL standard. The following list
contains the main limitations of CockroachDB’s SQL implementation. CockroachDB
also provides a full list of supported SQL features [coc18b].

• Multiple indices for a single query to filter the table’s values is not supported.

• Full-text indices are not supported.

• Prefix/Expression and geospatial indices are not supported.

• A column using a SET or ENUM can only contain defined values.

• Correlated subqueries are not supported, but non-correlated subqueries are sup-
ported.

• The current version of CockroachDB (Version 2.0) is undergoing major changes to
improve the performance of queries using joins and subqueries.

• Inner joins are generally processed more efficiently than outer joins.

• Joins where no index can be used to satisfy a join, loads all rows in memory. This
can cause performance issues.

• Scalar subqueries disable the distributed execution of a query.

• The results of scalar subqueries are loaded entirely during the execution of the
surrounding query. This can lead to memory issues if the subqueries return a large
result.

Additionally, CockroachDB supports the PostgreSQL wire protocol. Many drivers
such as PostgreSQL ORMs, GORM (Go) and Hibernate (Java) support this protocol.
Furthermore, CockroachDB supports the following client languages: Go, Python, Ruby,
Java, Node.js, C, C++, C# (.NET), Clojure, PHP and Rust.
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DistSQL CockroachDB developed an optimization tool called DistSQL [dis18] used
for distributed queries. In a non-distributed environment, the node receiving a query
has all the information it needs to return the corresponding result. DistSQL performs
certain operations on each node to reduce network traffic. The coordinating node, which
receives the query, delegates the workload to the nodes, which contain parts of the data.
Each node does computations on the rows it contains and instead of returning the entire
rows only the computed results are returned. The coordinating node then collects and
aggregates the results and sends the response to the client.

3.4.7 NuoDB

NuoDB is ANSI SQL92 compliant with SQL99 extensions and works with many popular
ORM tools such as Hibernate, PDO, Active Record and supports a set of JDBC/ODBC
drivers. With Release 2.0, NuoDB also supports SQL and Java-based Stored Procedures.

In contrast to the other NewSQL database, NuoDB has no considerable limitations
regarding the SQL standard!

NuoDB supports many client languages including JDBC, Python, PHP PDO and NuoDB’s
C++ API and C API. In addition, NuoDB provides a Hibernate dialect and a Java class
to do the mapping, which sits on top of NuoDB’s JDBC driver.

3.4.8 Summary

The querying capabilities and techniques of the inspected data stores, especially the
NoSQL data stores, are as diverse as their data models. The first evaluated data store
was Redis. Redis uses a rather simple data model compared to the other NoSQL data
stores. Mostly all operations revolve around accessing data by key. It offers a simple but
very efficient API. In contrast to Redis, Cassandra implements its own query language,
called CQL. It is inspired by SQL but not as powerful as SQL. A drawback of most
NoSQL data stores, including Cassandra, is the lack of a join operator to create complex
queries. MongoDB surprises with very rich querying capabilities for a NoSQL data store.
On the one side, MongoDB supports queries on non-key fields, which go beyond exact
matching of values. More important, MongoDB’s aggregation pipeline offers powerful
querying possibilities similar to SQL. Like Cassandra, Neo4j also provides its own querying
language, called Cypher. Cypher is built to query graph data using a pattern-based
approach. In conclusion, each NoSQL data store offers very unique querying capabilities
tailored to their individual data model.

The NewSQL data stores don’t differ in their querying capabilities like the NoSQL
data stores. All of them support SQL as their main querying interface, but they do
not support SQL to the same degree. Although, all of them support the main SQL
statements (SELECT, INSERT, UPDATE and DELETE). VoltDB has the most limited
SQL implementation compared to CockroachDB and NuoDB. Most of these limitations
revolve around partitioned tables and subqueries. CockroachDB has just some minor
SQL limitations and performance issues in some edge cases. Most noticeable, NuoDB
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has no considerable limitations regarding the SQL standard. Both CockroachDB and
NuoDB provide a detailed list of all supported SQL features.
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3.5 Concurrency control
Concurrency control in NoSQL and NewSQL data stores addresses conflicts caused by
simultaneous access and manipulation of data. They implement mechanisms to coordinate
multiple concurrent transactions or users accessing the same resources and try to maintain
consistency and integrity of the data store.

Generally, NoSQL data stores follow a weaker approach to consistency compared to
NewSQL systems. Therefore, NoSQL data stores implement in most cases looser concur-
rency control mechanisms. Weaker concurrency control mechanisms allow NoSQL data
stores to focus on performance and availability because concurrency control typically
implies higher latency due to the coordination of multiple transactions. A widespread
approach for NoSQL systems is read/write locking.

NewSQL systems are ACID compatible and follow a stronger approach to consistency.
This means that NewSQL systems also implement strong concurrency control mechanisms
to avoid inconsistency. In comparison to NoSQL data stores, most NewSQL systems
provide multiple isolation levels to offer a more granular control to the isolation of
concurrent transactions. A popular approach for NewSQL systems is MVCC.

3.5.1 Redis

As most NoSQL data stores, Redis supports elementary features regarding concurrency
control. A transaction in Redis allows for an execution of multiple commands in a single
operation. Transactions in Redis have the following properties:

• Commands in a transaction are executed sequentially. It is not possible that a
command from another client is executed in the middle of a transaction. This
means that the commands of a transaction are serialized and executed as a single
isolated operation.

• Transactions are atomic, either all commands of a transaction are executed or none
of them.

• Redis does not support rollbacks. If an error occurs during a transaction, Redis
will still execute the rest of the transaction.

Redis concurrency control features are based on the following commands. MULTI, EXEC,
DISCARD and WATCH. MULTI and EXEC are used to declare the scope of a transaction.
MULTI marks the start of a transaction and the following commands are queued for
later execution. The EXEC command closes the scope of a transaction and executes all
queued commands. The DISCARD command can be used to clear the queued commands
and abort the execution of the transaction.

As mentioned before, rollbacks are not supported by Redis. Commands that fail during
a transaction do not cancel the following commands or rollback the transaction. If a
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transaction is started, all commands are executed, even if commands fail. Redis argues
that this is not as severe as it seems, because commands can only fail if called with a
wrong syntax or if called with a wrong data type. These kinds of errors can be easily
detected and fixed during development. Not supporting rollbacks enables Redis to use a
simplified transaction engine, which results in a better overall performance.

Along with version 2.2, Redis introduced optimistic locking using a check-and-set mecha-
nism. This feature is implemented by the WATCH command. The WATCH command
is used to monitor particular keys. If at least one watched key is modified by another
client, the following transaction will be cancelled, so the WATCH command makes the
execution of a transaction conditional.

For example, an increment of an integer value can be done in three steps, read the value,
increment the value and write the incremented value back. An unfortunate scheduling
of commands issued by multiple clients can lead to a race condition and an unintended
result. By using the check-and-set mechanism, illustrated in Listing 3.1, the value can be
incremented without the risk of other clients interfering in between the operations.

WATCH key
value = GET key
value = value + 1
MULTI
SET key $value
EXEC

Listing 3.1: Example: Redis check-and-set

3.5.2 Cassandra

Similar to Redis, Cassandra’s concurrency control mechanisms are very limited compared
to traditional RDBMSs. As a NoSQL data store, Cassandra follows the approach of
eventual consistency. Within this paradigm, Cassandra implements atomic, isolated and
durable transactions.

A write operation in Cassandra is atomic, but only on the partition level. Insertions,
updates and deletions of multiple rows in the same partition are executed as one write
operation. If a data item is replicated over multiple nodes, the write operations are
forwarded to the replicas. If a write operation on one of the replicas fails, the other
successful write operations are not rolled back automatically. This leads to inconsistent
values among the replicas.

If multiple clients update the same column, client-side timestamps are used to determine
the most recent update. For concurrent writes to the same value, the write operation
with the latest timestamp wins.

Write and delete operations in Cassandra are isolated on row-level, but this only applies
to a row within a single partition on a single node. This means that a write operation
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in this scope is only visible to the client performing the operation until it is completed.
Cassandra also provides batch operations. Batch operations within the same partition
also have these properties, but if a batch operation includes more than one partition it is
not isolated.

Furthermore, write operations in Cassandra are durable. Before a replica acknowledges
a write operation it is stored in memory and in a commit log on disk. The in-memory
data is periodically persisted on disk. If a system failure occurs before the data could be
persisted to disk, the commit log is used to replay the lost write operations to recover
lost data.

To counteract eventual consistency, Cassandra runs repair operations to minimize incon-
sistent data in the distributed system. Because Cassandra implements a looser consistency
model, it is able to provide higher availability and performance. Furthermore, Cassandra
offers the possibility to configure this trade-off between consistency and availability to
some extent. Therefore, two consistency types are supported:

• Tuneable consistency - The tuneable consistency model offers multiple read
and write consistency levels. The consistency levels can be configured globally or
separately for each operation. For reading operations, the read consistency level
determines the number of replicas, which have to respond and acknowledge the
read operations before the result can be returned successfully. If a read operation
exposes inconsistent datasets between replicas, Cassandra initiates a repair job to
adjust the issue. The write consistency level determines the number of replicas,
which have to respond to the request, in order to consider the operation successful.
These consistency levels enable the developer to choose a proper consistency level
depending on the requirements of the application. The higher the consistency level,
the more replicas have to respond to the request. This means higher consistency
results in higher latency. This trade-off between availability and consistency has
its origin in the CAP theorem. Independent of the consistency level, Cassandra
forwards write operations to all replicas responsible for the particular partition.
However, Cassandra is an AP system in the context of the CAP theorem and it
cannot be tuned to a CA System.

• Linearizable consistency - Compared to RDBMSs, Cassandra does not use
traditional techniques like locking to control concurrent operations. Cassandra
employs a mechanism, called lightweight transactions. Lightweight transactions are
used to execute a sequence of operations. It is not possible that another client’s
operation is executed in-between operations of this sequence. Cassandra achieves
lightweight transactions using the Paxos consensus protocol [GL06]. Paxos is used
to establish consensus in a distributed network, which uses an unreliable communi-
cation medium, so Cassandra uses Paxos to agree on one result among a group of
replicas. A series of four phases is implemented to achieve this: Prepare/Promise,
Read/Results, Propose/Accept, Commit/Acknowledge. These four phases require
four round trips between a node proposing a transaction and a group of replicas.
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During this communication between the proposing node and the replicas Cassandra
tries to establish a consensus. If all conditions are met, the transaction can be
committed and acknowledged.

3.5.3 MongoDB

MongoDB puts a higher focus on consistency than availability compared most NoSQL
systems. MongoDB uses locking as its main concurrency control mechanism. It ensures
that an operation on a single document is atomic. Atomicity for a single document is in
most cases sufficient because a document can contain embedded documents and arrays
to describe relationships between records in a single document. But MongoDB also offers
the possibility to perform transactions on multiple documents against replica sets. Multi-
document transactions can also be used over multiple collections and databases. MongoDB
also guarantees that all operations in multi-document transactions are executed or none
of them are. If an operation in the transaction fails, the transaction is cancelled and all
changes are rolled back, without any pre-committed data being visible to other clients.
In addition, no changes are visible to other clients until the transaction is committed
successfully. Furthermore, it is to mention that multi-document transactions have a
greater impact on performance than single document writes. MongoDB recommends
avoiding multi-document transaction. Multi-document transactions should not be a
replacement for a suitable schema design.

MongoDB uses read and write locks to allow multiple clients concurrent read access and
exclusive write access to a resource. In summary, MongoDB offers four types of lock
modes:

• Shared lock

• Exclusive lock

• Intent shared lock

• Intent exclusive lock

The shared lock is used to grant shared read access and the exclusive lock is used for
write operations. In addition to these two lock modes, MongoDB provides the intent
shared and the intent exclusive lock mode. These modes indicate an intent to read or
write a resource with a finer granularity. If a resource is locked using a shared or exclusive
lock all higher level resources are automatically locked with the corresponding intent lock.
For example, if a collection is locked exclusively the containing database and the global
level are locked in intent exclusive mode. Resources can be simultaneously locked in
intent shared and intent exclusive mode, an intent shared lock can coexist with a shared
lock, but an exclusive lock cannot coexist with any other locks.

MongoDB also handles concurrent operations on distributed collections. As mentioned
before, an operation on a single document is atomic. This means that such an operation
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concerns only a single shard, so sharding improves concurrency because multiple mongod
instances can perform operations in parallel. Locks are applied to each individual shard
and not to the whole system. Operations on one instance do not block the operations on
any other instance, because mongod instances are independent of each other and each
instance uses its own locks.

In combination with replica sets a write operation to a collection on a primary also
triggers a new log entry. This log is a special collection in the local database. For that
reason, MongoDB locks both the database of the collection and the local database at
the same time to keep the data consistent. The log in the local database is used to keep
the secondaries up-to-date. During the update phase, secondaries do not allow read
operations to prevent inconsistent data from being read.

MongoDB provides so-called read concern levels to control the consistency and isolation
level of data read from shards and replica sets. For write operations, MongoDB provides
multiple write concern levels which control the level of acknowledgement. Both, read and
write concern levels are especially relevant if MongoDB uses replica sets or a sharded
cluster. Generally, these concern levels adjust the trade-off between availability and
consistency, stronger consistency requirements imply higher latency and therefore lower
availability.

The lowest read concern level returns data without the guarantee that the data has been
written to a majority of the replica set. Without this guarantee, data may be rolled
back after it has been read. Higher read concern levels increase the consistency level by
using data that has been approved by a majority of the replica set, so the read data is
considered durable even in the event of failure.

For the write concern level, a specific number of instances can be specified, which have
to acknowledge the write operation, before it can be considered successful. A write
operation can be acknowledged after applying the write in memory or after writing to
the on-disk log. Additionally, MongoDB provides an option to use the majority of the
replica set.

Combing all these options, MongoDB provides extensive configuration possibilities re-
garding concurrency control. Compared to other NoSQL systems MongoDB’s default
configuration is more aimed to consistency than to availability.

3.5.4 Neo4j

Neo4j is one of the few NoSQL data stores which is ACID compliant if operated on
a single instance. Therefore, if Neo4j is configured without a cluster, it provides the
same guarantees as a traditional DBMS. If operated on a single instance Neo4j offers
transactions, to manipulate multiple graph entities like nodes and relationships at once.
New transactions in Neo4j are executed on the current thread. Therefore, it is crucial to
properly finish each transaction. Alternatively, transactions executed on the same thread
may affect each other and cause inconsistent data. If a transaction in Neo4j completes
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successfully, the changes can be considered durable, meaning that the changes are written
to disk. Not every transaction is immediately persisted on disk, but a transaction log
records all mutating operations to replay them in an event of failure.

In Neo4j all database operations which access the data graph, schema or indices must
be performed in a transaction. Transactions can also be nested in so-called nested
transactions. Each nested transaction is added to the scope of the top level transaction.
A failure in a nested transaction can lead to a rollback in the top level transaction if
configured.

As many other data stores, Neo4j uses locks to manage concurrent access to the same
resource. Read locks are used to lock a resource, without any other client being able to
modify the resource. They can be acquired on every resource if there is no write lock
currently active. Furthermore, read locks are not mutually exclusive, multiple read locks
can be concurrently active on the same resource. Write locks cannot be combined with
other locks and a write lock can only be acquired on a resource if there is no active
lock. By default, transactions do not use read locks automatically. This means that
transactions see the latest committed state of a resource. On the other hand, write locks
are acquired automatically and they are held until the transaction finishes. Compared to
the isolation levels traditional DBMSs use, this behaviour is similar to the read committed
isolation level. In order to achieve a higher level of consistency, locks have to be managed
manually by the developer.

Locks can also be managed by the developer, not only by the system, this allows for a
flexible lock configuration. Depending on the requirements locks can be used to trade
off consistency for availability and vice versa. The careless use of locks can result in
deadlocks. To counteract this problem, Neo4j provides a built-in detection mechanism for
deadlocks. If the mechanism detects a deadlock, an exception in the particular transaction
is thrown. This exception cancels and rolls back the transaction.

As mentioned before, these concurrency control mechanisms are only valid for a setup
with a single Neo4j instance. If Neo4j is configured to operate as a cluster, the consistency
model weakens and becomes eventual consistency. In a distributed environment Neo4j is
not ACID compliant.

3.5.5 VoltDB

VoltDB uses a unique approach to concurrency control. Operations in VoltDB are
serialized on a single thread. More specific, each instance in a distributed setup can act
independently, is single threaded and contains a queue of transaction requests. This
means that there is no need for concurrency control and VoltDB avoids time-consuming
concurrency control mechanism like locking. All requests are buffered in a queue and
executed sequentially and exclusively against the data, so there are no concurrent
transactions.

A transaction that only accesses a single partition, enables each VoltDB engine in a cluster
to act autonomously. Transactions that access multiple partitions are more complex.
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One particular VoltDB engine distributes and manages the assigned transaction for the
other engines.

Transactions and stored procedures are one and the same thing in VoltDB. For each
stored procedure VoltDB automatically provides ACID guarantees. Therefore, stored
procedures either succeed or automatically roll back in an event of failure. When data is
manipulated using a stored procedure, it is guaranteed to stay consistent, because all
stored procedures modify the database isolated from each other. If a transaction succeeds
it is guaranteed that the changes are durable and visible for the next transaction.

Stored procedures in VoltDB are written in Java. To execute a stored procedure, the
Java class containing the stored procedure has to be compiled and the resulting jar file
has to be loaded into the database. In order to maintain consistency and durability,
a stored procedure has to be deterministic. Given specific input parameters, a stored
procedure has to return a consistent and predictable output. This property is crucial for
VoltDB because this determinism makes it possible to run multiple redundant copies of a
partition without sacrificing performance. This also applies to SQL queries used in stored
procedures. For example, SQL queries without an ORDER BY clause are not guaranteed
to be in a specific order. Hence, SQL queries used in a stored procedure should always
use an ORDER BY clause, to avoid a non-deterministic behaviour. Transactions rely on
a rollback mechanism if an exception arises. As stored procedures are implemented in
Java, VoltDB uses Java’s exception handling to perform rollbacks.

VoltDB avoids time-consuming concurrency control mechanisms by using this single-
threaded approach. This unique concept takes its toll on usability. There are restrictions
for many aspects in VoltDB, such as schema design, sharding and querying to provide
consistency across the whole cluster.

3.5.6 CockroachDB

CockroachDB attaches great importance to consistency and concurrency control. To
support this features CockroachDB implements full support for the ACID properties.
CockroachDB’s architecture contains a designated layer, the transaction layer, to manage
concurrent transactions and consistency.

CockroachDB implements an isolation level called Serializable Snapshot. It is an optimistic
concurrency control system which is based on MVCC. It guarantees that the execution of
the concurrent transactions is equivalent to a serial execution. Furthermore, the system
is recoverable, which means that a set of aborted transactions has no effect on the state
of the database and a two-phase commit system makes sure that individual transactions
are recoverable. Additionally, the CockroachDB is able to recover any combination of
transactions. This is achieved without the use of locks. Furthermore, CockroachDB‘s
concurrency control is organized without a central coordinator and no single point of
failure.

All these features regarding concurrency control are based on MVCC in combination
with HLC (hybrid logical clock) [KDM+14] timestamps. Hybrid logical clocks were
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introduced to order events in an asynchronous distributed system. They captured the
causality relationship like logical clocks and enable identification of consistent snapshots
in distributed systems. This is possible by combining physical and logical clocks. Every
transaction in CockroachDB is assigned with a HLC timestamp when it passes the gateway
node. This HLC timestamp is used to track versions of records for MVCC. To guarantee
consistency in a cluster, CockroachDB needs a certain level of clock synchronization
to keep data consistent. If a node detects that its clock is out of sync given a certain
threshold, it crashes immediately. This precaution is necessary to avoid the risk of
inconsistent data.

All operations in CockroachDB are executed as transactions, also single statements.
In order to support cluster wide transactions, CockroachDB uses a two-phase commit
process.

The first phase covers read and write operations. A write transaction is not immediately
persisted on disk. Instead, two temporary objects are created to manage the distributed
execution of the transaction: A transaction record and a write intent. First, a transaction
record is created on the shard where the first write operation occurs. It represents the
transactions current state. When a transaction has started, it is in the state pending
and after it is finished, it is either in the state committed or aborted. A write intent is
essentially the same as an MVCC record, but additionally has a pointer to the transaction
record. When a write intent is created, CockroachDB restarts the transaction if newer
committed values exist. After the write operations are successfully processed, read
operations are executed. Both read and write operations can encounter conflictual data.
If this is the case CockroachDB initiates a conflict resolution process.

The second phase is essentially a check if any of the running transaction has been aborted.
If a transaction is in the state aborted, it is restarted. If it is not in the state aborted,
then the state is set to committed and the client is notified that the transaction completed
successfully. The write intents of committed transactions are then converted to MVCC
values. After that, the two-phase commit process is completed and CockroachDB initiates
a third asynchronous phase which cleans up the temporary objects.

Compared to the ANSI isolation levels (Read Uncommitted, Read Committed, Repeatable
Read and Serializable) CockroachDB only supports the highest isolation level Serializable
and lower isolation levels are automatically upgraded to Serializable. CockroachDB does
not support weaker isolation levels to prevent concurrency-based attacks. Warszawski and
Bailis demonstrate in [WB17] that weaker isolation levels are vulnerable to concurrency-
based attacks.

The isolation level Serializable Snapshot is the default isolation level in CockroachDB, it
is the correspondent to the ANSI isolation level Serializable. It enforces the client to retry
transactions if serializability constraints are at risk. Additionally, CockroachDB provides
a weaker isolation level called Snapshot. This isolation level aims to reduce retries of
transactions. Data is read using the initial transaction timestamp, but at this isolation
level, CockroachDB allows the transaction to push the commit timestamp forward in the
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event of a transaction conflict.

3.5.7 NuoDB

NuoDB provides ACID-compliant transactions and focuses on consistency in a distributed
environment by using its own two-tier architecture. The transactional layer of its two-tier
architecture manages atomicity, consistency and isolation. It is a pure in-memory layer
and it has no effect on durability. The storage layer is responsible for data durability.
NuoDB uses MVCC to provide ACID-compliant transactions and manage conflicts
between concurrent transactions. All update and delete operations add a new version
to a database record. The transaction engines hold these multi-versioned records in a
cache until they are persisted by the storage layer. Generally, the transaction engines
do not provide durability and operate only as a cache. Until a transaction is completed
successfully new versions of a record are pending. This information is used to detect
conflicts of concurrent transactions.

Transactions in NuoDB implement the default behaviour. If a transaction fails it is
automatically rolled back. In NuoDB each statement starts its own transaction. By
default, all statements in NuoDB are executed as transactions. This transaction mode is
called implicit. It is not necessary to explicitly start and commit a transaction. NuoDB
also implements an explicit transaction mode for more flexibility.

Based on MVCC NuoDB implements three isolation levels to provide a consistent view
of the stored data. Because NuoDB uses MVCC instead of a locking technique, reading
transactions do not block writing transactions and writing transactions do not block
reading transactions. The weakest consistency level is Read Committed. This isolation
level provides no isolation guarantees. A transaction using the Read Committed isolation
level always reads the most recently committed version of a record. The system takes a
snapshot of the database at the beginning of each statement in the transaction. This
means that transactions using this isolation level can read changes committed by other
transactions because a new snapshot is read before each execution of a new statement.

The strongest consistency level is Consistent Read. Compared to the Read Committed
isolation level a transaction configured with Consistent Read does not read a snapshot
before each statement, but once at the start of the transaction. This means that the
transactions see a snapshot of the database independently of other transactions. If a
transaction encounters a record which has been recently updated by another transaction
and the version is still pending, then the transaction waits until the other transaction
completes. Only if the transaction, which updated the record first, fails then the pending
version of the record becomes obsolete and the waiting transaction can succeed in its
update. Alternatively, the pending version becomes commit and the waiting transaction
gets an error.

NuoDB also provides a third isolation level, between Read Committed and Consistent
Read, called Write Committed. This isolation level provides the same behaviour as
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Consistent Read for reading operations and the same behaviour as Read Committed for
write operations. The release of NuoDB 3.2 deprecated this isolation level.

The different isolation levels provide a clear visibility model for NuoDB. The isolation
level Consistent Read offers a consistent view of the database captured at the moment
the transaction started. Multiple transactions see overlapping snapshots of the database
depending on the time the transaction started. In a distributed environment without
a central coordinator, this approach provides clear visibility and isolation between
concurrent transactions.

3.5.8 Summary

To conclude, the inspected NoSQL data stores provide various concurrency control
techniques: Redis provides only basic mechanisms to manage concurrent requests, as
the atomic execution of multiple commands and optimistic locking. Transactions in
Redis guarantee atomicity and the sequential execution of commands, but Redis does
not support rollbacks. If a command fails, the subsequent transactions are still executed.
Cassandra provides a flexible approach to concurrency control. Write operations in
Cassandra are atomic, but only on the partition level. So if a transaction targets multiple
partitions, then atomicity is not guaranteed, which can lead to temporary inconsistent
data. This applies generally to NoSQL data stores. They provide stronger concurrency
control mechanisms for transactions which operate only on one instance. Casandra also
offers a tuneable consistency model with multiple read and write consistency levels. They
can be used to control the trade-off between consistency and availability. MongoDB
uses a flexible locking mechanism to manage concurrent operations with four different
lock types. Also, MongoDB offers a possibility to control the level of consistency by
configuring the read and write concern levels. MongoDB’s default configuration is more
focused on consistency than on availability. Neo4j claims to be fully ACID compliant,
but this only holds true if Neo4j is operated on a single instance. If Neo4j is configured
as a cluster, the consistency model becomes eventual consistency. In this setup, Neo4j is
not ACID compliant.

NoSQL data stores are not only about availability, all of the inspected data stores
provide some kind of concurrency control mechanism. Also, the concept of a transaction
is widely used by NoSQL data stores, but in most cases, it can not be compared to
traditional DBMSs or NewSQL systems, because frequently they redefine the concept of
a transaction.

The compared NewSQL database systems are not as different as the NoSQL systems.
All of them provide ACID compliant transactions in a distributed environment. Both
CockroachDB and NuoDB use MVCC to handle concurrent transactions. Additionally,
CockroachDB uses hybrid logical locks to order events in a distributed system. Compared
to NuoDB, CockroachDB implements only one isolation level, but this isolation level
is equal to the strongest ANSI isolation level Serializable. NuoDB implements three
isolation levels, Read Committed, Write Committed and Consistent Read. Consistent
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Read is the strongest consistency level and equal to the ANSI isolation level Serializable.
VoltDB uses a unique approach to concurrency control. It avoids concurrency control
mechanisms by using a single threaded approach. This means that all transactions are
serialized on one thread and there is no need for concurrency control. But the approach
of VoltDB has negative side effects in terms of schema design, sharding and querying.
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CHAPTER 4
Conclusions

NoSQL and NewSQL data stores provide powerful new features and approaches. This
thesis analyzed the methods and algorithms used by NoSQL and NewSQL systems. The
resulting comparison provides guidance for application developers searching for a fitting
data store.

At the beginning of the thesis, new challenges of traditional DBMSs have been discussed.
Modern applications have high requirements for performance, scalability and consistency.
Traditional DBMSs cannot keep up with these requirements. Today’s database landscape
offers great diversity and many systems are tailored for specific requirements. NoSQL
and NewSQL systems face these challenges and using various approaches and design
principles.

The NoSQL domain comprises a huge number of distinct systems. They focus on
scalability, flexibility, performance and new data models. Generally, they follow the
BASE principles: basically available, soft state and eventual consistency. These properties
emphasise the focus on availability and less on consistency. They are built to operate
in a distributed environment and utilize multiple server instances. Most of them follow
novel approaches based on specific data models. They do not use fixed schemas like
relational DBMSs. This enables NoSQL data stores to operate with semi-structured
and schema-less data. They are categorised into four NoSQL families: Key-value stores,
column stores, document stores and graph data stores.

The class of NewSQL systems questions the design decisions and assumptions of traditional
DBMSs. While NoSQL systems do not use SQL, NewSQL systems use SQL as their
main querying language. Furthermore, NewSQL systems use a relational data model and
support the ACID (Atomicity, Consistency, Isolation and Durability) properties. They
support a similar feature set as traditional DBMSs. The big difference is that NewSQL
databases are built to scale like NoSQL systems while maintaining consistency and data
integrity. The NewSQL domain does not offer as many distinct systems as the NoSQL
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domain. NewSQL systems can be grouped into three categories: New Architectures,
Transparent Sharding Middleware, Database-as-a-Service. New architectures represent
the most innovative category of NewSQL systems.

Four NoSQL (Redis, Cassandra, MongoDB and Neo4j) and three NewSQL (VoltDB,
CockroachDB and NuoDB) data stores were selected for the comparison. The following
five key criteria were used, to compare the selected NoSQL and NewSQL data stores:
Architecture and general principles, Sharding, Replication, Querying, and Concurrency
control. These key criteria refer to the first research question: What are the key criteria
to compare NoSQL and NewSQL systems? The second and third research questions (In
what manner do particular NoSQL and NewSQL systems compare according to these
criteria?, Which different methods and algorithms are used by NoSQL and NewSQL
systems to cope with these key criteria?) were answered in Chapter 3.

The chapter started with a comparison of the architectures and general principles used by
the data selected data stores. The architecture of a NoSQL system is greatly influenced
by the underlying data model. The data models promote flexibility and influence many
other design aspects. NewSQL data stores implement multiple abstraction levels to
separate different aspects like SQL, sharding and concurrency control. The consistency
requirements of NewSQL systems are deeply rooted in their architectures.
The sharding approaches used by the selected systems are as different as their data
models. The possibilities to shard data across multiple nodes heavily rely on how data
is modelled and stored. Most NoSQL data stores implement master-slave replication
strategies, where read operations are allowed on masters and slaves. This emphasizes
the performance goal of NoSQL systems. NewSQL systems use in the most cases a
multi-master replication approach and synchronous replication to keep data consistent.
Generally, almost all NoSQL and NewSQL systems offer configuration options to influence
consistency and availability.
In terms of querying capabilities, NoSQL systems do not provide as rich possibilities as
NewSQL systems. Many systems use a proprietary query language to access the data
store. On the other hand, NewSQL systems use SQL as their main querying interface.
They support the majority of available SQL statements. VoltDB has the most limited
SQL implementation compared to CockroachDB and NuoDB.
NoSQL systems implement relative basic concurrency control mechanisms compared to
NewSQL systems. However, NoSQL systems provide configuration options to increase
consistency in the exchange for availability. Most NoSQL concurrency control approaches
are based on read/write locks. NewSQL systems use lock-free concurrency control
mechanisms. VoltDB uses a unique single-threaded approach to avoid concurrency
control. The other NewSQL systems use multi-version concurrency control (MVCC).

Table 4.1 provides an overview of all compared data stores and key criteria.

NoSQL and NewSQL data stores provide powerful features and there are many systems
to choose from. This rich set of options presents a huge challenge to developers choosing
a fitting data store. Knowing the requirements of a system is essential because there is
no general-purpose DBMS, which fits all needs. This thesis presented multiple NoSQL
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and NewSQL data stores providing a comprehensive comparison in multiple dimensions.
The sheer number of data stores and comparison possibilities leaves enough room for
further research in this area. Especially, NewSQL systems are constantly developing and
new systems will be released. Especially, performance evaluations [KS17] under different
workloads would add more information to ease the challenge of choosing a fitting data
store.
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onclusions

Architecture Sharding Replication Querying Concurrency
control

NoSQL

Redis Key-value store,
in-memory

Per data type
sharding (Hash,
Set and Zset)

Master-slave setup Key-based
querying

Atomic
transactions,
optimistic locking

Cassandra Column store,
wide-columns

Consistent hashing
based on
partitioner

Replication-factor,
replication
strategies

CQL (Cassandra
Query Language)

Time-stamp based

MongoDB Document store,
JSON-based
documents

Hashed sharding,
ranged sharding

Replica set
(Primary,
Secondar,
Arbieter)

Query by key or
value, Aggregation
pipeline

Read/write locks

Neo4j Graph store,
property graph
model

Cache sharding
(no physical data
distribution)

Master-slave setup Cypher
(pattern-based
query language)

Read/write locks

NewSQL

VoltDB SQL based,
single-threaded

Table partitioning
by key

Replicated tables,
database
replication

SQL (join and
subquery
restrictions)

Single-threaded
(no concurrency
control)

CockroachDB SQL based,
layered-
architecture

Automatic
sharding of ranges
(data chunks)

Multi-master
setup

SQL, DistSQL
(optimization tool
for distributed
queries)

MVCC

NuoDB SQL based,
two-tier
architecture

Table partitioning
by range or by list

Multi-master
setup

ANSI SQL92
compliant with
SQL99 extension

MVCC

Table 4.1: Overview of all data stores and key criteria
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