

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Theoretische und praktische
Smart Contracts - Realisierung

eines Investmentfonds

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Jakob Felix Schneider
Matrikelnummer 01528502

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Univ.Prof. Dr. Matteo Maffei
Mitwirkung: Univ.Ass. Clara Schneidewind BSc, Projektass. Ilya Grishchenko MSc

Wien, 25.07.2018

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit
Jakob Felix Schneider
Reznicekgasse 10/9
1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe
der Quelle als Entlehnung kenntlich gemacht habe.

Wien, der 25.07.18 _______________________

Abstract. In the last years, the blockchain technology has been adopted by many
traditional fields (such as the financial sector) for reinventing existing applications
and giving rise to new use cases. However, during this period of rapid progress
the spotlight remained on fast product development, which has led to many se-
curity issues throughout the last years resulting in hundreds of millions of USD
stolen or lost. Nearly all current public blockchains offer no formal semantics
or formal frameworks for verifying smart contract code. This thesis presents a
novel semantics for smart contract interactions and a state-of-the-art implemen-
tation of a smart-contract-based investment fund for the Ethereum blockchain.
The focus lies on connecting a formal semantics for smart contracts to the actual
business use case of an investment fund. Specifically, the semantics introduced
provides a novel approach by targeting smart contract interactions rather than
single smart contract executions. The blockchain is represented by a global state
on which complex transaction can be modelled using a big-step semantics. The
fully-fledged investment fund ERCFund implemented in the course of this thesis
makes it possible to invest in an actively managed portfolio of ERC20-Tokens
and Ether by introducing an on-demand minted and burned token as the medium
for shares in the fund. Moreover, the software supports many advanced features,
such as cold-wallet support and multi-signature protection with off-chain sign-
ing. We show that the novel semantics introduced is applicable in a real business
setting by adapting and proving an integral security feature for a building block
of our investment fund.

Abstract. Innerhalb der letzten Jahre wurden Blockchain-Technologien in vie-
len traditionellen Sektoren (z.B. im Finanzbereich) adaptiert. Dadurch wurden
existierende Systeme neu überdacht und ganzheitlich neuartige Systeme erfun-
den. Allerdings blieb während dieser Zeit des raschen Fortschritts der Fokus
stets auf der schnellen Produktentwicklung, was zu vielen Sicherheitsproblemen
geführt hat durch die mehrere hundert Millionen von USD gestohlen oder ver-
loren wurden. Nahezu alle derzeitig öffentlichen Blockchains bieten keine for-
male Semantik oder formales Framework zur Verifizierung von Smart-Contract-
Code. Diese Arbeit präsentiert eine neuartige Semantik für Smart-Contract-
Interaktionen und eine state-of-the-art Implementierung eines smart-contract-
basierenden Investmentfonds für die Ethereum Blockchain. Der Fokus liegt da-
rauf, eine formale Semantik für Smart Contracts mit dem tatsächlichen,
wirtschaftlichen Anwendungsfall eines Investmentfonds zu verbinden. Genauer
gesagt, die eingeführte Semantik bietet einen neuartigen Denkansatz dadurch,
dass sie Smart Contract Interaktionen und nicht einzelne Smart-Contract-
Ausführungen in den Mittelpunkt stellt. Die Blockchain wird durch einen Global
State repräsentiert, auf welchem komplexe Transaktionen durch eine Big-Step-
Semantik modelliert werden können. Der im Laufe dieser Arbeit entwickelte
Investmentfonds ERCFund macht es möglich, in ein aktiv verwaltetes Portfo-
lio von ERC20-Tokens und Ether zu investieren. Dies wird realisiert durch To-
kens, welche als Anteil des Investmentfonds genutzt werden und je nach Be-
darf gemünzt und vernichtet werden können. Außerdem unterstützt die Software
mehrere fortgeschrittene Funktionen, wie z.B. Cold-Wallet-Support und Multi-
Signature-Schutz durch Off-Chain-Signaturen. Wir zeigen, dass die eingeführte
Semantik in einer realen, geschäftlichen Situation anwendbar ist, indem wir eine
wesentliche Sicherheitsfunktion des Investmentfonds adaptieren und formal be-
weisen.

Table of Contents

1 Introduction . 3
1.1 Related scientific work . 4
1.2 Related products on the market . 5

2 Blockchain technology . 7
2.1 Fundamentals . 7
2.2 Smart contract application blockchains . 12
2.3 Blockchain related attack vectors . 13

3 Designing an investment fund for the blockchain . 18
3.1 Funding . 18
3.2 Tokens as shares . 19
3.3 Managing multiple currencies . 22
3.4 Possible fee structures . 23
3.5 Security features . 24

4 Blockchain semantics . 26
4.1 Design choices . 26
4.2 Preliminaries . 28
4.3 Semantics . 30

5 Modelling smart contracts . 41
6 Investment fund implementation . 50

6.1 Architecture . 51
6.2 Implementation . 54

7 Conclusion . 65

1 Introduction

Since Bitcoin’s inception eight years ago, hundreds of other cryptocurrencies were cre-
ated and are being publicly traded. Within these eight years, the cryptocurrency sector
has grown to a market cap of around USD 835 B [7]. Furthermore in the six months be-
fore that, the market cap has grown more than eightfold. This unprecedented growth has
spawned questions about cryptocurrency as an investment and has attracted many tra-
ditional investors via traditional investment funds (e.g., Grayscale Bitcoin Trust [13]).
Cryptocurrencies are often seen as an investment vehicle like no other, on one hand
they can be used as global currency for e.g., payment purposes on the other hand they
can also act as a share-holding mechanism for companies and replace current technolo-
gies such as the stock market. The many different use cases of cryptocurrencies and
the technical entry barrier of understanding their inherent technological value create a
whole new investment sector which is still being explored.
Existing cryptocurrency funds, like aforementioned Grayscale, have implemented sim-
ple funds. An interested party can purchase shares which represent a set of assets. Se-
curity and warranty are defined by the strict legal framework on which traditional funds
are built upon.
However the blockchain allows for arguably stricter security and warranty with its
immutability. Calls for a modern and technologically more fitting implementation of
cryptocurrency funds have been expressed by companies such as Crypto20 [61] and
TaaS.fund [41] who currently manage cryptocurrency assets worth tens of millions of
USD. While companies have used blockchain based technologies to implement parts
of an investment fund, for example profit payout, no fully-fledged fund structure on the
blockchain has been published to our knowledge.

Besides Bitcoin, arguably more advanced blockchains have been developed and
adopted. The second biggest player, judging by market capitalization, is Ethereum [40]
which describes itself as a ”next-generation smart contract and decentralized applica-
tion platform”. Smart contracts are an advanced blockchain feature and enable programs
and applications to run directly on the blockchain. These applications are then visible
and callable for everyone and provide full transparency about their functionality and
past executions.

However one of the biggest problems blockchain ecosystems with smart contracts
like Ethereum are facing right now is smart contract security. While the Ethereum
blockchain itself did not have a significant software bug yet, many user-created smart
contracts had serious bugs. One of the earliest was the theDAO bug [67], which resulted
in around USD 60M stolen and ultimately triggered a controversial hard fork to restore
the funds.
Smart contract bugs are not the exception and are not a sign of inexperience: The com-
pany Parity Technologies has run into two successive, serious bugs related to one of
their products, a smart-contract-based wallet. The code of the wallet was at least par-
tially written and audited by the co-founder and mastermind of Ethereum itself, Gavin
Wood. All in all at least 150,000 and 500,000 Ether respectively were lost (around USD
180M at the time the bugs occurred). It is clear that formal verification is direly needed

in the blockchain world, where a small piece of code can handle millions of USD on a
regular basis.
By developing a fund structure and formally verifying the integrity of all parts, it would
be possible to revolutionize fund security and integrity for and via cryptocurrency.

1.1 Related scientific work

The Ethereum Virtual Machine (EVM), which runs smart contracts translated into the
EVM bytecode, currently has no official semantics. An initiative was started by Hilde-
brandt et al. [50] to define an EVM semantics in the K framework [64]. They utilize the
framework to create a fully executable semantics and test it against the Ethereum test
suite. However, the semantics currently requires a large amount of user input, such as
specifying loop invariants manually which is infeasible in some cases.
Grishchenko et al. [48] introduce a complete small-step semantics of the EVM byte-
code which they validate against the Ethereum test suite. Furthermore they introduce
several security properties for smart contracts and uncover flaws in existing semantics
and verification tools.
While we do not introduce a semantics for the EVM bytecode in this thesis, it is a
critical part of smart contract executions and could potentially introduce unavoidable
security issues.

The call for safe smart contracts is widely spread, Luu et al.[55] discuss security
flaws found in many smart contracts on the Ethereum blockchain. They developed
Oyente which is an automated tool for discovering vulnerabilities in smart contracts. It
flagged around half of all existing, deployed smart contracts as potentially vulnerable.
Additionally they discuss an operational semantics of Ethereum describing its transac-
tions and offer a new semantics to address security flaws they discovered.
Delmolino et al.[43] describe their lessons learned from writing smart contracts, how to
avoid common pitfalls and implement best practices for smart contracts.
First steps into the direction of formally verified smart contracts are being made: Bhar-
gavan et al.[34] have defined a limited subset of the smart contract programming lan-
guage Solidity. They translate this subset into F* and formally verify smart contracts
with F*’s proof assistant. However, the tool only works with a fraction of available con-
tracts and they do not provide a sufficient semantic framework.
Grossman et al. [49] wrote an extensive paper regarding callbacks in smart contracts.
They analyze a common smart contract vulnerability often termed as reentrancy which
is responsible for the most famous smart contract hack, theDAO hack. In the paper
the notion of an Effectively Callback Free Object is introduced which does restrict the
functionality of callbacks but certifies that any state reached with callbacks can also be
reached without using callbacks. Additionally, Grossman et al. analyzed more than a
100 million smart contract executions for potential reentrancy vulnerabilities.
In [52] a framework for analyzing safety properties of smart contracts is presented by
Kalra et al. They leverage abstract interpretation, symbolic model checking and the
power of constrained Horn clauses to provide a tool for quickly verifying Ethereum
smart contracts for safety. With it, they have evaluated around 22,000 smart contracts
containing 0.5 billion USD and have found out that around 95% of them are vulnerable.

Scilla is a smart contract language designed for formally verifying smart contracts [63].
Specifically, Scilla acts as an intermediate translation target for a high-level language
like Solidity. Uniquely, the communication and programming part of a smart contract
are completely separated as opposed to in other common languages. Similarly to the
semantics in this thesis, the smart contracts are limited to using tail-calls to call further
smart contracts. Scilla has been ported to the proof assistant Coq to verify properties
such as liveness and safety.
So far most of the research towards formalizing blockchain semantics focuses either
on the EVM byte-code level or on the analysis of isolated contracts. By introducing
an abstracted semantics focusing on smart contract interaction we make it possible to
describe transactions spanning over several smart contracts.

Currently there are little to no blockchains which utilize formal verification. How-
ever, an initiative worth mentioning is Cardano which is currently developed by a team
of academics consisting of university professors and postdoctoral researchers. They
are working on Ouroboros [53] which is a provably secure proof-of-stake blockchain
consensus protocol. Proof-of-stake is an alternative to the currently wide-spread proof-
of-work which requires high computing power in order to confirm a transaction on the
blockchain. Proof-of-stake on the other hand uses a stake of currency as a collateral for
confirming transactions. Furthermore Ouroboros is planned to be implemented for their
cryptocurrency called Ada which is currently one of the ten biggest cryptocurriences in
market capitalization with multiple billion USD [7].

1.2 Related products on the market

Nowadays many different blockchain technologies exist which are capable of run-
ning quasi-turing-complete programs, e.g., Ethereum [40], NEO [17]. Many traditional
structures are reimagined and implemented decentralized, investment funds are not an
exception.
Currently a wide variety of investment funds, which at least partially operate on the
blockchain, is available. For example the Crypto20 fund [61] is a tokenized cryptocur-
rency index fund: It acts as an index fund in the way that it always invests in the 20
cryptocurrencies with the highest market capitalization. It uses smart contracts to man-
age some of its parts. Shares are implemented via smart contracts (Ethereum ERC20-
Tokens), in addition it uses a smart contract which enables payout by trading shares
based on the current net asset value (NAV). This ensures that the price of a share cannot
drop under the NAV.
Another example is the TaaS.fund[41] which is one of the first cryptocurrency funds
actively managing funds with a team of traders. It uses a smart contract to payout prof-
its of the fund quarterly to all wallets holding shares of the fund.
The Melon protocol is an autonomous blockchain protocol, designed to allow for the
purposes of cryptocurrency asset management [66]. It uses multiple existing technolo-
gies such as IPFS and Ethereum smart contracts to enable users to create their own
investment funds directly on the blockchain. Melon is unique because to our knowl-
edge it is the only fund management system which is truly completely decentralized

and purely built on the blockchain.
Because of its popularity we still want to include ICONOMI which is a digital asset
management platform [70]. However, ICONOMI does not fall into the same class as
the other funds mentioned above because it is not directly built using blockchain tech-
nology but rather is similar to traditional investment platforms. ICONOMI offers a va-
riety of cryptocurrency funds for their customers which are managed by a few selected
partners. Interestingly, it is one of the few companies which has a token representing
equity in the company, as it provides owners with a portion of the firm’s profit.

2 Blockchain technology

2.1 Fundamentals

The term Blockchain describes the idea of a continuously chained list of information
bundled in the form of blocks. This kind of structure is actually not a novelty of cryp-
tocurrencies but was first coined by Ralph Merkle [57] and is known as a Merkle Tree
or Hash Tree. Every block in a blockchain is linked to the one before it by using a cryp-
tographic hash for identification, except for the root/initial block. For cryptocurrencies
these blocks contain information about transactions which were confirmed by publish-
ing the block, but can also contain other information depending on the implementation.
By design the blockchain consequently acts as a cryptographic ledger for a cryptocur-
rency.

The blockchain as we know it today was invented by Satoshi Nakamoto who cre-
ated the first, fully-fledged, decentralized cryptocurrency Bitcoin [58] in 2008. Bitcoin
allows for participants of the blockchain, who are identified by a quasi-unique hash,
to transfer currency (Bitcoins) to other participants. By offering a public, decentralized
ledger where every new entry has to be confirmed by a large number of miners (partic-
ipants who confirm transactions) representing at least 51% of the network, it creates a
secure, transparent payment system which has a high fault tolerance.
In this section we give an introduction to blockchain technology mainly based on
Ethereum. Many newer blockchains have some different features, but taking a look
at the most popular cryptocurrency which supports smart contracts gives a good foun-
dation.

Decentralized public ledger We just mentioned the decentralized public ledger is a
chain of blocks. This chain includes every past, legitimate transaction from the launch
of a cryptocurrency. But we did not yet cover how exactly this decentralized public
ledger is used to ensure consensus and safety around the globe.
The blockchain is available for anyone to see via a network of public nodes. This net-
work is a peer-to-peer network where new nodes typically first discover a node and then
add all trusted nodes from the discovered node. If we speak of nodes we typically mean
full nodes which means they save a complete copy of the blockchain locally. New nodes
can download their copy, simultaneously verify it, and use it to verify future transactions
or to just act as a relay point. Many networks nowadays introduce node types which do
not require the whole blockchain to be saved, commonly called light nodes. This is
enabled through saving only relevant parts of the blockchain by consulting full nodes
about the current consensus. Light nodes cannot offer full verification of the blockchain
but are in many cases sufficient and enable devices with low storage capacity to act as
nodes. At the time of writing running a full Ethereum node using geth [21] uses up-
wards of 50 Gigabytes of storage.

In Figure 1 we can see a simplified blockchain. The green blocks signalize the main
chain which was agreed on with a consensus algorithm. This unique valid chain of
blocks contains all past transactions of the blockchain and can be used to derive the

Fig. 1: Simplified visualization of a part of a blockchain.

current state of the blockchain (e.g. balances of addresses). The main chain is also the
longest chain of valid blocks.
After a new block is successfully mined, the node which mined the block will publish it
across the network. Other nodes then verify the correctness of the block and if the block
turns out to be valid, they will accept it as part of the main chain and start working on
the next one, because only new blocks offer monetary rewards.
Possible attack vectors to the public ledger are discussed in Subsection 2.3, but up to
now the Bitcoin and Ethereum public ledger did not suffer any successful large scale
attack to our knowledge.

The cryptographic ledger keeps track of all past transactions and therefore all rel-
evant information of the global state. In its simplest form this means the balance of
all participants. Participants on blockchains are accounts identified by a unique address
(a long hex string) which can only be accessed by their owners (see Section 2.1). The
blockchain is a list of past transactions and by observing these transactions a definitive
balance of any given address can be determined. So if for example an address would try
to send more currency than it currently possesses, it can be determined that the transac-
tion is invalid. It is crucial to understand that no value is directly held by any address or
wallet. The balance of an address is derived by its past transactions.
In newer blockchains, such as Ethereum, addresses are not exclusively controlled by
external parties, but can also be associated to self-executing programs (smart contracts;
covered in Subsection 2.2). The public ledger keeps track if a smart contract is de-
ployed at an address. If so, all functions of the smart contract can be accessed/executed
via transactions. We expand on this in Subsection 2.2.

Accounts Participants of the blockchain, commonly called accounts, are the owner-
s/holders of an address. We talked about how addresses can hold value and send trans-
actions and how they are publicly visible. This opens the question how it is possible to
ensure authenticity of the owner of an account.

The address is a 40 byte value derived from the public key and consequently the pri-
vate key. The procedure is illustrated in Figure 2. A private key is a randomly chosen 64
bytes hexadecimal value which is transformed with the Elliptic Curve Digital Signature
Algorithm (ECDSA) [51] using the secp256k1-curve [62] to a 128 bytes hexadecimal

Fig. 2: Derivation from private key to public key to address. Example adapted from [42].

value. This value is the public key, which is misleading in this case as it is not publicly
visible. rather it is hashed with the standard SHA3 (Keccak) [46]. From the resulting
hash the last 40 bytes are taken and used as the address of the account.
The private key is used to authorize transactions from the address by signing the trans-
action details. This signature is needed to successfully publish a transaction (otherwise
it will be rejected by honest nodes) which provides a secure layer and makes it impos-
sible for anyone who does not know the private key to publish a transaction from the
address (as long as the ECDSA remains unbroken).

Transactions In the previous section we described how the public ledger is a collec-
tion of transactions which when subsequently executed provides the current global state
of the blockchain. In a sense, the blockchain is a transaction based state machine,
with transactions changing the state and the global decentralized ledger keeping track
of changes. A transaction gives instructions on how to apply changes to the global state
when executed. For example, if you would send currency to someone else, you would
do so via a transaction.

Fig. 3: Input parameters for an Ethereum transaction.

In Figure 3 the input parameters for an Ethereum transaction are highlighted. Ad-
ditionally, the input parameters of a transaction have to be signed by the private key of

the address to authenticate the sender. This happens with the ECDSA which produces
the according signature which is simply added to the transaction payload.

Blocks Transactions are saved on the blockchain in the form of blocks, a block is noth-
ing more than a certain amount of transactions grouped up. Blocks are used to order the
execution of transactions. The order of transactions within one block is mostly arbitrary
and is decided by miners, but all transactions of the next block are strictly afterwards in
the timeline. The fact that miners can decide the ordering and the exact publishing time
of a block can introduce vulnerabilities if code depends on the order of transactions or
can be frontrun. More on this in Subsection 2.3.
Block size and block time (how often new blocks are mined) vary greatly from blockchain
to blockchain. For example Bitcoin has an average blocktime of 10 minutes and a block
size of around 1 Megabyte which fits one to two thousand transactions [1]. Ethereum
only has an average blocktime of 15 seconds with a block size of around 20 Kilobytes
which usually fits between 70 and 200 transactions depending on the cost of these trans-
actions [11].

Mining or transaction confirmations Mining was mentioned several times in the last
section already as a mechanism to confirm transactions and group them into a block.
Verifying transactions is a delicate part of the blockchain because it needs to be bound
to some kind of resource or identity. By simply allowing confirmations from anyone
it would be easily possible to flood the blockchain with malicious confirmations by or-
ganizations with high internet throughput, similarly to a Denial of Service (DoS) attack.

Proof of Work The early blockchains, such as Bitcoin, solved this problem by creating
a concept called Proof of Work (PoW). It describes the act of proving that a real ma-
chine is behind the confirmation by requiring miners to solve a difficult mathematical
problem which requires a lot of processing power. With Bitcoin, all miners try to solve
a mathematical problem for a block they want to verify and publish, whoever finds the
correct answer to this problem gets to publish their block and receive a mining reward.
Specifically, they need to find a random nonce which combined with the block hash
equals to a given hash.
This is a working concept, as anyone who would want to publish a (lasting) malicious
transaction would need 51% of the network’s computing power. However it is possible
for a malicious or faulty block to be mined by sheer coincidence (even if the attacker
only has 0.1% computer power). It is unlikely for the same attacker to be able to mine
a second or even third block afterwards, because consequently other miners and nodes
will identify the block as faulty and will not continue to mine on it and will not broad-
cast it across the network.

There are several commonly voiced issues with PoW mining:

– Energy consumption: PoW consumes an enormous amount of energy by solving
practically useless problems with the only purpose of ensuring energy is actually
consumed. Currently Bitcoin alone uses an estimated amount of 63 TWh yearly

which is around the amount the whole country of Switzerland consumes yearly [2].
Wasting this amount of energy is argued by many to be environmentally irrespon-
sible.

– ASICs: ASIC stands for Application-Specific Integrated Circuit and is a circuit
that is built specifically for one use-case. Bitcoin mining is dominated by ASIC
machines built specifically to solve aforementioned hash problems efficiently. They
can achieve a much higher efficiency with lower energy consumptions which makes
it hardly profitable to mine Bitcoin for anyone owning a normal computer. It is
argued that ASICs are centralizing Bitcoin by introducing a high entry barrier for
miners.

– Mining pools: For widely adopted PoW cryptocurrencies it is the norm to mine not
independently but as part of a mining pool. The reason for this is that only one
miner per block receives the whole reward and it is completely random who this
miner is. Consequently you could mine for months alone and not receive any reward
for it. Mining pools bundle up many miners and if one miner wins the lottery the
reward is split based on mining power. This is going against one of the core values
of cryptocurrency: Decentralization. Mining pools have reached dangerous levels
of centralization, to the point where for Bitcoin if the three biggest mining pools
would group up they could take over the blockchain by controlling more than 51%
of the mining power [3]. It is also important to note that this problem is not inherent
to PoW but rather a consequence of the design of block rewards.

Proof of Stake Proof of Stake (PoS) is a newer concept which uses a different resource
to prove commitment to the blockchain: Cryptocurrency itself. Instead of proving pro-
cessing power miners have to stake a certain amount of currency to confirm transactions
on network nodes. Staking currency usually makes it unusable for a certain amount and
acts like a bond. Miners get a reward for confirming honest blocks by simply owning
cryptocurrency, a concept that seems familiar: Gaining interest by staking your money
at a bank. Confirming a malicious block and therefore being dishonest has a direct
penalty associated to it. This penalty is essential because otherwise there would be no
discouragement for it, while in PoW you get indirectly punished by burning energy.
PoS is already used by many blockchains such as NEO [18] and is planned to be imple-
mented by Ethereum as part of the Casper protocol update [71].
PoS solves many issues of PoW, like the energy consumption, but might not be the end
to all problems. For most blockchains it is not possible to stake small amounts which
creates an entry barrier (although smaller than ASIC’s). For reference Ethereum’s PoS
protocol will initially have a minimum stake of 1,000 Ether [36] which is around USD
600,000 at the time of writing and aims to reach a minimum stake of 32 Ether (USD
20,000) with sharding technology [37]. A common misconception of PoS is that it gives
more power to the rich compared to PoW. It currently only takes estimated USD 5
billion dollars to buy enough computing power to start a 51% attack on the Bitcoin
blockchain [5], although it has a market cap of USD 150 billion dollars. If Bitcoin
would use PoS it would likely cost significantly more to gain 51%.

2.2 Smart contract application blockchains

Bitcoin allows for transactions to transfer value and enhances them with a simple script-
ing language for some advanced features such as multi-signature transactions. Partic-
ipants of these kind of blockchains are always external accounts and transactions are
directly initiated by them. Smart contract application blockchains introduce another
type of participant to the blockchain: Contracts. These are computer programs directly
published and saved on the blockchain by an external account. Anyone can see and in-
teract with smart contracts by sending transactions to their corresponding address.
Many modern blockchains, such as Ethereum, implement a quasi-turing-complete lan-
guage which is only limited by external transaction costs. Smart contracts make it possi-
ble to run any program decentralized on the blockchain and consequently enable a new
form of computing. Smart contracts enable many use cases e.g., share-holding [60],
advanced money exchanges [69], identity management [32], and off-chain transactions
[31]. For example, it is possible to implement a decentralized cryptocurrency exchange
[69] with an absolute medium of trust: The code. Anyone can look at exactly what kind
of program they are using and nothing is left uncertain. All past executions of smart
contracts are part of the blockchain.

1 contract SimpleSavingsWallet {
2
3 function SimpleSavingsWallet() public {}
4
5 // Wallet can receive funds.
6 function () public payable {}
7
8 // Wallet can send funds.
9 function sendTo(address payee, uint256 amount) public {

10 require(payee != 0 && payee != address(this));
11 require(amount > 0);
12 payee.transfer(amount);
13 }
14 }

Fig. 4: Small example of a wallet smart contract. Adapted from [59].

In Figure 4 a simple example of a smart contract in the programming language So-
lidity [28] for the Ethereum blockchain is given. Solidity is the currently most used
programming language for smart contracts on the Ethereum blockchain, additionally
the investment fund presented in Section 6 is purely written in Solidity. We can observe
that smart contracts programming languages use known concepts out of object-oriented
programming to define their functionality, such as constructors and class functions. This
example depicts a smart contract which can receive and send Ether and is by default us-
able by any party on the blockchain. In line 6 the contract specifies that its default
function is payable, which means that the contract can receive standard payments. In

line 9 a transfer function is defined, which first checks if the payee is a valid address
and if the amount is positive. Afterwards the amount is sent to the payee.

Smart contract application platforms extend the global state of a simpler blockchain,
such as Bitcoin, with additional storage capacities in order to support deployment and
persistence of smart contracts. While cryptocurrencies like Bitcoin save not much more
than balances and past transactions, in Ethereum every address can additionally save the
bytecode of a contract. In the case one is deployed there, and has a dedicated storage for
a contract. This storage is used to ensure that contracts are able to be stateful. From a
traditional software engineering standpoint this means contracts can have class variables
which persist on the blockchain and can be altered.

Tokens Tokens can be described as a representation of an asset or a utility and are
commonly also classified as a cryptocurrency. The endless possibilities of a smart con-
tract application platform allows it to implement virtually any financial structure on it.
Tokens are a separate currency which solely exists on the smart contract platform that
it is programmed on. Technically speaking, a token is a deployed smart contract which
keeps a register of balances for all addresses in its storage. With this register it keeps
track of who owns how many tokens. The big advantage of this is the possibility to
create your own cryptocurrency without a separate blockchain. All functions of tokens
are run on the native blockchain of their platform which means they are also mined/-
confirmed on the said blockchain.
The purposes of tokens are manifold: They can also differ significantly in their proper-
ties e.g., some have a limited supply while others are continuously minted. Most com-
monly tokens are used as a utility for a platform with blockchain functionality. However
tokens can also be used to represent a security. For example, Maker developed a token
which is pegged to the US Dollar’s value via smart contracts [56].
Most tokens on the Ethereum network nowadays follow the ERC20-pattern [68] which
is a token-standard. The standard describes necessary base functionalities of a token,
e.g., transfer functions. Because most tokens follow this pattern, many products, like
wallets or investment funds, only need to implement support for a single interface to be
able to support the majority of all tokens.
In Subsection 3.2 we discuss how to use a token to represent a share in an investment
fund and in Section 6.2 we cover the implementation used in the investment fund.

2.3 Blockchain related attack vectors

All cryptocurrencies combined handle transactions worth billions of USD every day
[29]. This is a huge enticement for malicious parties to find a vulnerability in any of the
blockchain’s protocols or in smart contracts. Furthermore because of the anonymity of
the blockchain it is possible to steal large sums without facing legal repercussions.
It is important to differentiate between vulnerabilities in the blockchain’s implementa-
tion itself and vulnerabilities in smart contracts. Most famous bugs, such as theDAO
attack [67], which lead to a direct loss of currency are actually bugs within the code of
smart contracts and are not bugs of the blockchain. However, blockchains have some
inherent, unavoidable security risks which we will also discuss.

Blockchain vulnerabilities Nearly all major cryptocurrencies rely on decentraliza-
tion to ensure that no party is able to execute malicious transactions. A simple way to
make use of publishing a malicious block is by double spending which describes the
action of including transactions in a block spending more money than actually avail-
able. This is usually done by including two or more separate transactions spending all
money available on an address. Afterwards, by confirming both of them, new currency
is created (under the assumption that the block keeps being accepted). The attack can
be sub-classified into other attacks such as the race attack or finney attack [8]. Double
spending is hard to execute in reality, because it needs a significant voting/mining power
of the blockchain. It is absolutely possible to publish a malicious block every now and
then even with little mining power through the lottery system. For this very reason it
is advised for anyone accepting cryptocurrency payments to wait for a safe amount of
block confirmations. A block confirmation is any new block published after the block
containing the transaction. If an attacker possesses 10% of all voting power the odds of
getting three confirmations on their block is only 0.1%. It is up to the individual user
to decide the amount of confirmations until accepting a transaction, for small amounts
numbers around 6 for Bitcoin and 12 for Ethereum are commonly used. Exchanges of-
ten use a higher amount of confirmations because of handling large sums. The number
of needed confirmations is also explored in the Bitcoin whitepaper [58].
By controlling significant voting power it is possible to conduct the commonly known
51% attack which describes controlling the majority of the blockchains voting power
and consequently taking control of the longest chain. Many people argue that the 51%
attack is not a serious threat to any mature blockchain because by taking over the
blockchain any value on it is simultaneously destroyed. If the trust system of a ledger
is broken by centralizing it, it is easily detectable and would lead to parties stopping to
accept the currency because of its unreliability.
Besides this well-known vulnerability, blockchains have to be resistant to many other at-
tacks, such as the Sybil Attack [45] and the Denial of Service Attack [54]. Blockchains
use different mitigation tactics for these problems. An extensive list of Ethereum’s in-
herent problems can be found here [10].

Apart from these mostly unavoidable risks, the implementation of a blockchain is
prone to bugs, just like any other software based product. For example Bitcoin intro-
duced a large scale bug in 2013 [33] which caused nodes of newer versions to confirm
blocks which where incompatible with older nodes. Consequently a split in chains was
inevitable. This had brought damages to miners and enabled at least one large double
spending attack. A split or fork in the area of cryptocurrency is a phenomenon where
the main chain is split into two separate chains, either intentionally or by accident.
The Ethereum network suffered an arguably more severe bug in 2016; the Geth Con-
sensus bug [39]. Similarly, by introducing a faulty update to the Go implementation of
Ethereum a network fork was caused. A fork with 165 block containing thousands of
transactions had to be abandoned and the valid chain was manually repaired. A hard
fork is stronger than a split because it enforces a new rule set for blocks which makes
the previously used one invalid. A soft fork introduces a new rule set which is backward

compatible. Bugs like these carry huge indirect financial damage to the blockchain, as
they are a sign for instability and uncertainty.

Smart contract vulnerabilities and solutions Smart contracts behave similarly to any
other program and as such are vulnerable to too many already commonly known risks.
For example, one of these is the risk of an integer overflow and underflow, consequently
many modern and secure smart contracts (especially tokens) use an integer extension
which throws on an overflow or underflow [24].
Besides these there are vulnerabilities unique to smart contracts, in this section we will
give examples of common, still active risks for Ethereum-based smart contracts.

Race conditions and Reentrancy Race conditions in smart contracts can occur when a
function gives over control to another, often unknown, smart contract. At first it might
not seem like this is something that can happen accidentally, but in Ethereum whenever
a simple value transfer is executed, the default function of a smart contract is called.
Basically any smart contract sending value to another unknown smart contract can po-
tentially be vulnerable to race conditions. The default function can, when executed, call
the original smart contract again which can lead to unexpected behavior.

1 // Vulnerable to reentrancy. Do NOT reuse.
2 mapping (address => uint256) public balances;
3
4 function closeAccount() public {
5 uint256 remainingBalance = balances[msg.sender];
6 require(msg.sender.call.value(remainingBalance)());
7 balances[msg.sender] = 0;
8 }

Fig. 5: Example of a smart contract vulnerable to reentrancy.

In Figure 5 an example for code allowing reentrancy is given. In line 6 the smart
contract transfers the remaining balance to the requestor and consequently loses control
of the program flow. The caller can reenter the closeAccount method and withdraw
his balance multiple times. This is possible because the balance of the caller only gets
reduced to zero after the external call is complete. So for every reentrance the balance
is still in its initial state and allows for withdrawal.
Known solutions to any race conditions in traditional concurrent programming are locks
or mutexes which can prohibit reentrancy. However race conditions are not limited to
only reentrancy of the same function, but can also appear if the two functions use the
same contract variable. It can be risky to use mutexes if the smart contract functions
exhibit complex dependencies. The most commonly used solution is to avoid any state
changes after external calls and restrict the gas usage of subcalls as much as possible.
In our example above the reentrancy risk is solved if we switch line 6 and 7. It would

also be fixed if we would restrict the gas available to sub-call so that not enough gas for
any other transactions is available. If it is not possible to do all state changes before an
external call, a common pattern is to split functions into multiple others. This is known
as the Withdraw-pattern or Pull-over-Push-pattern [27].

Front running Front running describes the attack of first observing a transaction of
someone and then quickly starting a transaction and pushing it to execute before the ob-
served transaction. Because transactions only get executed as part of a block in certain
intervals, a few seconds or even minutes might pass before a transaction is included in
the ledger. However after publishing the transaction it is visible to other nodes which
can potentially extract information from it. Miners typically execute transactions which
offer a higher reward first, therefore one can front run a transaction by starting a transac-
tion with a higher reward. An attack like this is highly relevant to any market structures
on the blockchain. For example, it is possible to observe someone planning to buy a lot
of tokens from a decentralized exchange. With this knowledge someone could front run
the transaction to buy tokens first which are then guaranteed to increase in value.
There is no easy fix for an attack like this, because it uses the inherent characteristics of
blockchains. Market systems on the blockchain need to be designed in a way to not be
affected by the order of transactions within a block. One possible design proposal for
this would be to treat all transactions in one block equally regardless of their ordering
(similarly to batch processing) by e.g., only making price updates take effect the block
after they were mined.

Past smart contract attacks Attacks on smart contracts on the Ethereum blockchain
have caused a direct damage of millions of USD to a large amount of blockchain users.
This counts only the value of Ether and tokens directly lost through attacks. It is im-
portant not to overlook the indirect damages of any big vulnerability. When big compa-
nies fail to produce safe smart contract code it discourages blockchain investors to put
money in blockchain technology by creating the fear of uncertainty.
One of the earliest accidents was the theDAO (decentralized autonomous organization)
bug [67], which resulted in around USD 60M stolen. It was a well-orchestrated attack
using multiple code security flaws with the main vulnerability being reentrancy. The at-
tack was able to drain funds of theDAO’s contract into a child DAO by executing code
fragments hundreds of times more often than planned via a reentrancy vulnerability.
Back in 2016 theDAO was the biggest project created on the Ethereum blockchain and
held around 11 million Ether of around 80 million Ether total which means more than
10% of all Ether was in their smart contracts. Because of this large amount of funds
theDAO was too big to fail and ultimately triggered a controversial hard fork to restore
the funds lost in the attack [38].
Smart contract bugs are not a sign of inexperience: The company Parity Technologies
has run into two successive, serious bugs related to one of their products, a smart-
contract-based wallet. The company is led by the co-founder of Ethereum, Gavin Wood,
and it is rumored that a large part of the multi-signature wallet code was written by him.
The nature of the first bug is described well as a metaphor by BlockCAT: ”Imagine if
you could walk into a bank and request that they transfer ownership of a stranger’s

account into your name. The bank happily does so, and you withdraw all of the ac-
count’s money” [22]. The bug was really as simple as it sounds: Parity forgot to mark
the initWallet function, which sets ownership, as internal (equivalent to pri-
vate functions in other programming languages), see Figure 6. This bug lost around
150,000 Ether (around USD 30M at the time of occurrence), but all together around
0.5M worth of Ether were affected. The rest a group of white hat hackers retrieved and
returned after a bug fix.

1 function initWallet(address[] _owners, uint _required, uint
_daylimit) {

2 initDaylimit(_daylimit);
3 initMultiowned(_owners, _required);
4 }

Fig. 6: Vulnerable code in an earlier version of Parity’s multi-sig wallet [16].

The second bug was again related to their multi-signature wallet (it even affected
the same method: In a later version their wallet code relied on an external library which
helps to reduce the creation costs of new wallets. Libraries usually do not fulfill any
purpose by themselves but provide code functionality to other contracts which imple-
ment them. Nevertheless, libraries are still technically smart contracts, specifically, this
library implemented all functions of the multi-signature wallet, including the initWal-
let function. Nobody had called this function on the library before until unknown user
devops199 took ownership and then called the kill function. They commented on
Parity’s Github page about their deletion with ”anyone can kill your contract. I acciden-
tally killed it.” [44]. By taking ownership it was not possible to steal any funds, because
the library itself does not handle them, however by deleting the library all wallets using
it, lost all their functionality. This means all funds of these wallets are effectively frozen
forever and irretrievable as their function to transfer currency does not exist anymore.
With this bug around 0.5M Ether (around USD 150M at the time of occurrence) were
lost, mainly effecting the funding of some large token startups.
Bugs like these make it clear that formal verification is direly needed in the blockchain
world, where a small mistake can lose millions of USD.

3 Designing an investment fund for the blockchain

In this thesis we use the term investment fund rather broadly; the term has a long history
and has shifted in meaning throughout the last century. An investment fund pools capi-
tal from a range of different investors, which can be wealthy individuals or professional
investors. This capital can be used for many different means of investment, however this
implementation is mainly focused on the assumption that the capital is actively man-
aged to potentially offer more returns and reduce risk.
Classical investment funds are often refined into other types of funds such as a mutual
fund, an exchange-traded fund (ETF) or a hedge fund. In the sector of cryptocurrency
these more detailed descriptions can only be applied in a limited sense, because they are
bound to legal differences and traditional investment goods. For example a cryptocur-
rency fund could arguably be characterized as all three types, because it is investing in
currency only (mutual fund), it is publicly tradable (ETF) and it can aggressively invest
and try to hedge risks (hedge fund).

The blockchain offers the technology to provide all functionalities that a fund typ-
ically uses. People can send currency to a smart contract which then pools the invest-
ment and can use it from a central point. This smart contract can hold all different
ERC20-compatible tokens by design without needing special adaptations (introduced
in Section 2.2). Parts of the managed funds can be easily accessible for active trading
while others can be stored inaccessible in a cold wallet (introduced in Section 3.5). An
investment fund can have shares by creating its own token via a smart contract support-
ing price management. These shares/tokens can be actively traded between participants
and, if enough money is managed, can hit a public exchange. New shares can be dy-
namically created and burned depending on market need and based on the current price
of the assets under management (AUM). It is possible to collect all kinds of fees, such
as investment, withdrawal and management fees.
Besides all these functionalities an investment fund based on the blockchain also offers
new features; for example, it is not needed to trade shares via a traditional authority
- they can be traded peer to peer. It is possible to provide safety for the assets under
management without the need of a governing body as well as provide full transparency
of all assets.

This section aims to cover all basic functions of an investment fund, seen from a
technological perspective based on the Ethereum blockchain. It will first cover the ex-
pected behavior and offer approaches on how to implement aforementioned behaviors.
By going into detail on the approaches, we aim to highlight the features but also lim-
its of this kind of cryptocurrency fund. We will discuss possible additions to the basic
structure which are not seen in a traditional investment fund. Furthermore we briefly de-
scribe possible implementations to lay a basis for the blockchain semantics introduced
in Section 4.

3.1 Funding

Funding on the blockchain is a well-explored topic since the inception of Ethereum and
the start of token launches. As we discussed in Section 2.2 tokens currencies based on

another smart contract application blockchain, like Ethereum. New tokens try to offer a
novel application or promise financial gain to token holders. Similar to traditional busi-
ness they often try to secure funding to create their product.
Nowadays it is the quasi-norm for new token-based businesses to gather funds with
crowdfunding. Specifically, crowdfunding for the creation of a new token is usually
held as an initial coin offering (ICO) where companies sell (future) tokens over a smart
contract to use for their advertised purpose. ICOs are not exclusively used for tokens but
can also be utilized when creating a new blockchain. Tokens usually do not represent a
share in the company, but are simply to be used later on. However tokens can increase
in value if the usage of tokens increases or the company appears to make significant
progress in their development. ICOs are well known for raising exorbitant amounts of
money which are completely incomparable to traditional investment sums. For example
at least 50 ICOs in the past have raised more than USD 25M [4], several have raised
more than USD 100M [15] [14] and messaging app giant Telegram has raised USD
1.7B in two private presales [19] [20] for their future cryptocurrency Telegram Open
Network.
The fund conceptualized in this paper will use tokens as a medium for shares, which
makes an ICO a possible initial funding method. Often newly created tokens have a
fixed token supply which will not change in the future. By offering a fixed supply in an
ICO for an investment fund it would classify the fund as a closed-end fund, meaning it
cannot take any further investments.
Another funding option is the continuous sale of new tokens. This can be achieved by
augmenting a traditional token smart contract with minting features. The term minting
is taken from traditional currency and simply describes the creation of new tokens. With
a mintable token it is possible to create an open-ended investment fund, which means
the fund can take on new investments at any time and is not limited to the fixed amount
raised with crowdfunding.
Specifically for an investment fund we found the funding method of continuously sell-
ing new tokens more versatile and it is a novel approach which is not yet used by many
companies. Additionally it would not prove difficult to transform an open-ended fund
into a closed-end fund, while the other way around would need technical adaptions.

3.2 Tokens as shares
Tokens are a highly customizable currency and it is possible to adapt them to represent
shares in companies or investment pools. For tokens to represent shares in a fund they
should fulfill several purposes:

1. Tokens need to be directly bound to the investment fund.
2. Tokens represent a fraction of the assets of an investment fund which binds them to

the net asset value.
3. Tokens need to be tradable between holders and potentially exchanges.
4. Tokens should be able to be created if new investors want to join the fund.
5. Tokens should be able to be liquidated to a commonly used currency at any time.

The above mentioned requirements will be addressed in this section and can help
to give an idea on how the architecture of an investment fund based on smart contracts
can be designed.

1. Token connection In order to satisfy point 1 it is clear that the tokens need to be
directly connected to the investment fund contract. It is state-of-the-art to implement
tokens as a smart contract which extends from commonly used patterns, in order to
fulfill the ERC20 pattern [68] introduced in Section 2.2. Tokens fulfilling the ERC20
standard can be used by wallets, which offer support for the ERC20 pattern, without any
special adaptions needed. This would leave the choice of implementing fund structures
directly on a token or to statically bind it in an additional fund smart contract. The first
option has the upside of reducing the overall amount of code needed and potentially
reduces attack vectors related to the final product. The second approach falls in line
with the commonly known separation of concerns software pattern and would reduce
code complexity while increasing extendibility through modularity.

2. Token value Tokens serving as a part of the net asset value (NAV) of an investment
fund are a tricky problem for multiple reasons. The token value needs to be represented
as a single currency while the net assets consist of different currencies of which the
exchange rate constantly fluctuates. If new shares should be mintable and old shares
should be liquidatable the total assets can change at any given point. Furthermore for
fund managers to manage assets they need to use external exchanges or smart contracts.
While assets remain on exchanges and leave the fund’s smart contract, they can be im-
possible to track.
These requirements make it clear that the price of a token cannot accurately be stored
in a smart contract because it would need to be updated in an interval of seconds. An
option to always retrieve the correct price would be to contact a traditional web-service
through an oracle service such as Oraclize [25] on every purchase or liquidation. Con-
tacting external resources brings many security risks because both the web-service and
the oracle service could potentially turn malicious. Because cryptocurrencies are not
observable if they are transferred to a centralized exchange, it would restrict the usage
of these exchanges and require managers to only trade assets over suitable decentralized
exchanges or atomic swaps [30] and create an enormous overhead of correctly tracking
funds during an exchange.
All in all, price discovery on the blockchain is an immensely complex problem which
would arguably be more time-consuming and difficult to implement than all other parts
of an investment fund combined. For this reason we decided that we assume that an
external, trusted party supplies a correct price to the fund’s smart contract because price
discovery would by far exceed the scope of this work.

3. Token trading In Section 2.2 the ERC20 pattern was mentioned as a standardized
interface which makes tokens easy to be used by any existing product such as wallets.
For the token used in the fund it is not necessary to alter the way it can be transferred
between different participants of the blockchain. It suffices to simply use one of the
default implementations used by hundreds of existing tokens [23]. A standard ERC20
implementation provides holders of tokens with an already well-established functional-
ity of trading.

4. Dynamic token creation If a token does not have a fixed supply and the creation
of new tokens is not bound to mining, the token is commonly called mintable token.

Usually mintable tokens are a rare sight because there is no need for creating new tokens
for most use cases (tokens can be split into tiny fractions if necessary). In the case of an
investment fund a mintable token is useful to take on new investments without affecting
the underlying NAV of a share. For a mintable token to be trustworthy the minting
process has to be bound to a specific function in a smart contract. If this would not
be the case the owner of the token could create as much tokens for themselves as they
please.
In our case this would mean that new tokens can only be generated with a smart contract
function which is only executable when an external investor wants to purchase shares
of the fund. Based on the amount the investor sends to fund and the current price of a
token new tokens are minted so that the total supply increases while the price of a single
token stays unaffected.

5. Token liquidation In order to liquidate a token into a commonly used currency like
Ether the burning of tokens is required. Burning describes the process of destroying to-
kens so that they can never be recovered. There are two ways to achieve this; by either
sending tokens to the zero address (which cannot be accessed by design) or by imple-
menting a burning function within the token’s smart contract. Both of these methods
achieve the same result and there is no benefit or disadvantage for either method. Burn-
ing tokens is a special case for the investment fund because the burning happens from a
centralized smart contract (the fund). A holder of tokens can request the liquidation of
their shares. For the burning process the fund’s smart contract has to hold enough Ether
to match the price of the shares to be sold. This can prove to be an issue in times of
volatility because not all assets are available in Ether, consequently it is not guaranteed
for a payout to be successful. If the payout can be made, the fund has to burn the right
amount of tokens from the requestor and transfer the according sum in Ether.

Liquidity of shares - Prevention of a premium Closed-end investment funds can
face several problems during management. Several closed-end investment funds have
found success in the past, with the TaaS.fund [41] being one of the first ones. Taking
the TaaS.fund as an example, it does not only allow for new investments but also offers
no direct way of liquidation. In order for a share-holder to sell their shares they have
to find a buyer themselves. This brings a disadvantage for any investor because it takes
away part of the motivation for fund managers to perform well as they do not have
to worry about investors withdrawing their money. The TaaS.fund only offers a profit-
payout quarterly for any token holders and raised money cannot leave the investment
fund.
Another danger of closed-end investment funds, even if they allow liquidation, is the
emergence of a premium. A premium describes the difference between the market price
of a share of an investment fund and the underlying NAV of a share. Particularly if a
fund is in high demand a premium is a common sight. Most cryptocurrency funds have
had a high premium in 2017, sometimes as high as 80%-100%, because the supply was
far lower than the demand. Even today still, some funds sell at a high premium such
as Grayscales’s Bitcoin Investment Trust which has a premium of around 50% [13].
A premium does not negatively affect a share-holder as long as the demand does not

decrease, however if the demand for shares decreases it can fall all the way down to the
NAV of a share which can create heavy losses and poses a huge risk for any investors.
Open-end funds solve the problem of a premium by creating new shares if the demand
is high. Nevertheless open-end funds consequently face a different problem: Creating
and liquidating fund shares decreases the liquidity of fund shares themselves. If it is
always possible to create and liquidate shares at the perfect price there is no need for
share-holders to trade shares with potential new investors instead of liquidating them. It
is disadvantageous for the investment fund if investors directly cash out for the obvious
reason that it decreases their total assets and additionally it requires higher amounts
of cash directly available for anyone to liquidate their shares. Directly available cash
(Ether in this case) cannot be actively managed and might provide less profit. For these
reasons it can make sense to make the price of creating a new share slightly higher than
the NAV of a share and decreasing the price for liquidation.

1 function transfer(address _to, uint256 _value) public {
2 require(_value <= balances[msg.sender]);
3
4 balances[msg.sender] = balances[msg.sender].sub(_value);
5 balances[_to] = balances[_to].add(_value);
6 emit Transfer(msg.sender, _to, _value);
7 }

Fig. 7: Simple version of a transfer() function of an ERC20 token.

3.3 Managing multiple currencies

An investment fund would hardly deserve its name if it was only limited to a single
cryptocurrency. In this work we focus specifically on an investment fund built entirely
on the Ethereum blockchain in the form of smart contracts. This brings some limitations
to the currencies which are directly manageable. Many large cryptocurrencies run on
their own blockchain and cannot be directly held on another blockchain (e.g., Bitcoin,
Ripple, Litecoin). Holding these currencies would require an investment fund to man-
age wallets on a variety of different blockchains which can potentially not interact with
each other.
In this work we focus on an investment fund which can hold Ether and all ERC20
tokens based on the Ethereum blockchain. This poses some limitations but neverthe-
less covers a large amount of cryptocurrencies, for reference, currently 44 out of the
100 most capitalized (by market cap) cryptocurrencies are based on Ethereum [12] [7].
ERC20 tokens, as mentioned in Section 2.2 offer a standardized interface, which makes
it possible to implement functions in the investment fund suitable for all tokens at once.
With that it is relatively easy to manage multiple different currencies in a single wallet
because all ERC20 tokens implement e.g., a transfer function which should look similar
to the one in Figure 7. The function first checks if the sender has enough tokens on their

balance in line 2, only if this condition is upheld the execution will continue. In line 4
and the next one the amount is first subtracted from the sender and then added to the
receiver. Lastly, in line 6, the function emits an event which covers all the details of this
transfer. Events on the Ethereum blockchain are publicly sent out and any listeners to
this contract can record the transfer (similar to a standard observer pattern).

3.4 Possible fee structures

For an investment fund to actively manage cryptocurrencies and try to achieve profit,
it needs a method of earning money by doing so. Nowadays we are used to a number
of different fee structures from traditional investment and hedge funds. A few fee pos-
sibilities are introduced and we discuss how they can be implemented on the blockchain.

A simple and commonly used fee is a fee paid upfront upon investment. Especially
to our knowledge all token-based, closed-end investment funds currently on the market
have made use of an upfront fee during their ICO. Because of the scarcity of cryptocur-
rency funds these fees are significantly higher than in traditional sectors. For reference
one of the biggest closed-end funds Crypto20 currently manages around USD 75 mil-
lion worth of assets [6] and is providing an index fund1 of the 20 biggest cryptocurren-
cies. During its ICO it collected a fee upon investment of around 14.75% [61], similarly
the Taas.fund collected a fee of 15% [41]. Both funds had big success in their funding
round which proves even a high fee can work in a niche market. A fee like this can be
easily implemented in an open-end fund by simply collecting it upon new investments
by minting less tokens. Unlike closed-end funds an open-end fund also offers a liquida-
tion option which would make it theoretically possible to collect fees if share-holders
want to liquidate their shares. Fees collected upon the selling of shares are sometimes
argued to be shady because funds should incentivize their share-holders to hold shares
based on the fund’s performance and no other factors. Utilizing it should be done with
caution.

Besides one-time fees it can be beneficial to collect on-going fees supporting the
costs of daily operations. A universally used fee is the management fee which gets de-
ducted from all investments at regular intervals. Traditionally a management fee is col-
lected per annum and ranges from 0.5% to 4% of the assets under management (AUM)
depending on the management structure (actively versus passively managed funds). Im-
plementing a fee that is deducted yearly is tricky in a smart contract because that would
mean that the date of investment would have to be tracked if the management fee is
deducted for the first time one year after investment. Furthermore doing so would make
trading tokens difficult as tokens which are close to their fee collection date would
be worth less than others. Generally speaking, creating unequal tokens is unheard of,
creates many technical challenges and is confusing for anyone trading these tokens.
Therefore it is important to find another solution on how to collect management fees
which treats all tokens equally but does not lead to a mass-selling on the day before
fees are collected. A solution to this would be that the management fee is collected in

1 An index fund keeps a fixed ratio of shares of all its tracked components.

tiny intervals, as small as daily, by simply removing a certain fraction of a percentage
from the AUM. For example to convert a yearly management fee of 2% you could col-
lect a 0.0055% fee every day. This treats all tokens equally and does not create any
dates were selling or buying shares would be particularly profitable.

Lastly, hedge funds often use a performance fee which is a fee collected based on
the profit the investment fund made during a time period. Performance fees are usually
much higher than management fees because they only take a part of the profits, not the
total AUM. Hedge funds often collect a management fee of 2% and a performance fee of
20%, in fact this structure is so common that it got the name Two and Twenty [47]. Again
it is difficult to implement a performance fee if tokens can be created and liquidated at
any time, additionally it is not possible to split a performance fee into small intervals
because it can increase the amount of the fee drastically. A possible solution could be to
track on-going profit for the current period and deduct the profit fee partly if the shares
are liquidated before the performance fee collection date. Currently the investment fund
presented later in this paper does not implement a function for collecting performance
fees, but it is an option worth exploring in the future.

3.5 Security features

Investment funds built and managed entirely on the blockchain have a more difficult
playing field regarding trust and transparency issues. Traditional funds face strict laws
regarding operation and distribution of shares. An investor does not have to worry about
their money getting stolen or used for illicit activities. Crowdfunding and investing in
new tokens or cryptocurrencies is often not monitored by governments and transactions
in cryptocurrencies are practically impossible to track down if done correctly. For ref-
erence, just recently a Vietnamese company launched an ICO for the Pincoin which
raised approximately USD 660 million. The team behind the ICO then went missing
and the funds raised along with them [35]. Countless of other scams have happened
in the cryptocurrency world and there is little to nothing anyone can do to recover the
stolen money until a legal framework is established.
Many people who are experienced in the cryptocurrency investment field have a healthy
suspicion towards any new ICO on the market, therefore the investment fund will intro-
duce features aimed at increasing transparency and reducing the fear over an investment.

Multi-signature protection An investment fund can potentially manage large amounts
of currency. In this case it is risky to have a single address/account control the whole
fund. It is prevalent to protect smart contracts which hold large sums with a multi-
signature contract. This means that the smart contract has a defined set of owners and
a defined number of required approvals for every function it offers. For example, a
multi-signature wallet can have ten owners and require at least five approvals for every
transaction. Approvals are usually provided by sending a transaction to the smart con-
tract from one of the owner’s addresses (most known implementation of such a wallet is
the Gnosis MultiSigWallet [9]). Alternatively it is also possible to sign the transaction
offline and provide all signatures in a single transaction.

Cold-wallet support A cold wallet describes an account or smart contract which stores
currency and is only accessible by an account of which the private key was never in
contact with any device with network functionality. For example, this could mean the
private key is stored on an old laptop or on a piece of paper. The idea behind a cold-
wallet is that it provides the ultimate security, if the private key never comes in contact
with the internet it is not vulnerable to any digital attacks. Most cryptocurrency ex-
changes make use of cold wallets to protect any funds which are not needed to be in
constant circulation. For reference, one of the biggest cryptocurrency exchanges Coin-
base claims to keep 98% of customer funds offline [26].

Circle of trust If an investment fund is actively managed by fund managers it is nec-
essary to move and trade currency at any time in order to react to the market. How-
ever most daily transactions should be between the same partner wallets: Moving funds
from cold wallets into circulation and vice-versa and sending funds to cryptocurrency
exchanges. Because most used destinations are known in advance the investment fund
provides the feature to include addresses into a circle of trust. For all trusted addresses
it is possible to require fewer approvals from the multi-signature contract to take an ac-
tion. For untrusted addresses the fund can add so called trust-party owners which need
to give their approval in addition to the internal management accounts. Trust-party ac-
counts could be given to large investors in the fund, to exchanges or to other trusted
persons. The reasoning behind untrusted wallets is that it is impossible for the fund
managers and fund owners to quickly steal all currency by moving it to an unknown
wallet.

4 Blockchain semantics

In this section we introduce a blockchain semantics with the goal of being able to de-
scribe smart contract calls and smart contract interactions. The semantics will be ab-
stracted to a level representing what smart contract programmers can observe as op-
posed to what happens in detail during the execution of transactions on the Ethereum
Virtual Machine.
The blockchain can be modelled as an automaton where the current state represents
the balance, storage, etc. of all participants. Then transactions are used as state transi-
tions to change the global state. We define transactions slightly different than how they
are defined in Bitcoin’s and Ethereum’s white papers. Specifically, we treat external
transactions and internal transactions (which are started by smart contract executions)
equally. This will be covered in detail in Section 4.3, were we also introduce a big-step
semantics which is capable of modelling complex smart contract executions possibly
containing multiple internal calls.
The semantics in this section was created with a practical intention: It is possible to
specify the functionalities of the investment fund presented in Section 6. In order to
show the link to practice we define one concept used in the investment fund, the multi-
signature wallets, and prove that their feature of trust circles, described in Section 3.5,
is upheld.

4.1 Design choices

We introduce an abstract blockchain structure which represents the features of the
Ethereum smart contract platform. We define three different concepts, namely contracts,
the global state and transactions. Contracts are immutable entities of the blockchain and
can be compared to the stored code of a deployed smart contract. The global state acts
as a snapshot of the blockchain and saves all mutable information, such as account
balances and contract variable values. Finally transactions are used in a big-step mech-
anism to step from one global state to another which closely resembles a real-world
transaction.
Part of the definitions in this section were introduced first by Grishchenko et al. [48]
who defined a semantic framework for the security analysis of Ethereum smart con-
tracts. Their semantics represents the inner workings of Ethereum smart contract exe-
cutions on a byte-code level. In this work we try to abstract common features, such as
the storage of an account, and instead present contract state variables. Simply said, this
work’s semantic framework tries to resemble the structure of a user-centric program-
ming language, such as Solidity, instead of tying itself too closely to the EVM bytecode,
while still respecting the overall structure of the underlying computational model.

Tail Calls By introducing a big-step semantics that allows for an execution of a succes-
sion of transaction, we chose to make an important limitation for how smart contracts
can start other transactions. Normally it is possible to start an arbitrary number of new
transactions within a single smart contract function. However our semantics only allows
for tail-calls. This means that we assume a transaction can only start another transaction

as its very last action.
This design choice was made because it drastically reduces the complexity of the big-
step semantics. Additionally for all functionalities of an investment fund tail-calls will
be sufficient and many other smart contract functions can be modelled to only have
tail-calls by moving subsequent code to the next function. In practice smart contract
functions often execute calls as a last action in order to eliminate the risk for reentrancy
(covered in Subsection 2.3).

Nested Errors If a function is normally called on the Ethereum network it provides
information about the successful execution and returns a boolean value representing
the success of the call. The creator of a smart contract can choose to act based on this
information. However there are only rare use cases where it makes sense to ignore
the execution status of a call. For all our functionalities of the investment fund we
will require successful execution to ensure the expected outcomes. In Solidity this is
simple to achieve by surrounding outgoing calls with require{. . .}. We will define that
if a transaction is followed by another transaction which results in the error state, the
original transaction will result in the error state as well.

Error-proneness We purposely leave out one of Ethereum’s core properties: Gas costs.
Normally every transaction on the blockchain has a gas limit specified by the initiator
of the transaction. Gas is used to pay to miners who execute the transaction. Every op-
eration in a smart contract has a gas cost and consequently if one runs out of gas, the
transaction woill fail and all gas will be consumed. Because of this characteristic of the
blockchain it is important to take into account that every transaction (and also every
nested transaction/call) can fail if not enough gas is given to it. It is crucial that this is
reflected in our abstraction in order to ensure that it is never possible to guarantee that a
transaction will succeed. In order to model this behavior in our semantics without delv-
ing into introducing gas directly, we abstract this behavior by specifying every function
can always potentially fail. Including gas cost in our semantics would be infeasible as
we do not characterize functions in an operational but rather in a declarative fashion due
to the high abstraction level. Even though the resulting semantics is non-deterministic,
while real smart contracts are deterministic, we believe that this is no restriction for
reasoning about contracts.

Public contract states Every deployed contract on the Ethereum blockchain has a con-
tract state or storage associated with it. Utilizing the state, the contract can keep a persis-
tent memory throughout multiple transactions. Normally variables saved in the contract
state are not accessible directly by other contracts, unless a getter-method is included
in the contract code. In Solidity contract variables can be annotated with public in
order to automatically create a getter-method on deployment. Even though the contract
state can be made private and inaccessible for other contracts, it is by no means private
for observers of the blockchain. Every change to any contract state can be observed in
the transaction included in the blockchain.
Our semantics assumes that all contract variables saved in the contract state are pub-
licly accessible for other smart contracts. Additionally, there will be no sub-transaction

to specify the action of reading another contracts state. The transaction is simply able to
access the information without any action. Even though this behavior is not in line with
the actual behavior of the blockchain, we believe it does not restrict any functionalities
or makes infeasible assumptions as it is rare to see private contract variables in con-
tracts nowadays. It would be possible to introduce private variables by accessing every
contract’s state via getter methods. This would make the semantics significantly more
verbose which is the main reason for this abstraction.

Fallback functions Solidity allows for the use of fallback functions which get executed
if a smart contract is called with a function signature that is not defined in the contract
code or if no function signature is given (simple value transfer). Fallback functions
were used for a large number of past smart contract related attacks (some of which are
covered in Subsection 2.3) because it is possible to execute any code in the fallback
function. In our semantics we do not explicitly support fallback functions, instead we
define a receive function which is used to receive value from a value transfer and
which does not have the functionality to execute any other code. There are trade-offs
for omitting fallback functions, such as that no behavior can be modelled when value is
received. However at the same time it reduces the complexity of the semantics and does
not reduce expressiveness as long as interactions only happen between known smart
contracts. If this semantics would be used to model interactions with unknown parties,
it is necessary to add fallback functions to verify the outcome of a transaction.

External accounts and contract creation/destruction The semantics introduced in
this chapter is solely focused on providing the tools to model smart contracts and their
behavior. It currently does not include an explicit definition of external owned accounts
which are basic accounts capable of holding Ether and initiating transactions but have
no associated code. Nevertheless, on the Ethereum network only external accounts can
be used to call a smart contract function (while this function can call other smart con-
tract functions). For this reason we simply make the assumption that smart contract
transactions are started, but do not specify how exactly this happens. This abstraction
allows us to restrict the scope and cover exclusively the semantics for smart contracts.
Furthermore we do not cover smart contract creation/deployment and smart contract
destruction which means that we assume that all smart contracts already exist and never
cease to exist. Introducing smart contracts as a permanent structure does not signifi-
cantly restrict the functionality of the semantics in our opinion. It is a common design
pattern for smart contracts on the Ethereum blockchain to not implement a self-destruct
function. Instead the contract is simply deprecated and left to exist while a new one is
deployed at a different address. Moreover, self-destruction would also be easy to incor-
porate into the semantics if needed.

4.2 Preliminaries

Let B be the set of bits {0, 1} and let Bk with k ∈ N denote the set of bitstrings of the
size k. For bit- and byte-like types we make use of standard concatenation which we

write as x_y where x, y ∈ B∗, in addition we assume implicit conversion to the little-
endian representation from N to B∗. In this work we define arrays with the notation [X]
and in order to more easily access elements of tuples and arrays we use a special access
annotation: P.p1 accesses the element p1 of P and P [1] accesses the first element of the
array. Additionally we use the element notation ∈ to state that an element is in an array.
In order to update functions and tuples as part of inference rules, we make use two
distinct update notations and abbreviations for sums and subtractions. To update an ele-
ment of a function we write f = f

〈
x→ y

〉
which means that the function f is changed

so that the element x now maps to the element y. To update an element of a tuple we
write T = T [x = x+ y], which means that the value of element x is overwritten by the
sum of x + y. An update like this can be abbreviated with T = T [x += y], subtrac-
tions can be abbreviated analogously. The aforementioned update notations can also be
chained, like so f

〈
x→ y

〉〈
a→ b

〉
, in order to update multiple elements at one.

For inference rules we make use of the conditional operator ? in a standard way.

Types For our theoretical implementation of the Ethereum blockchain we define a set
of static types. In Section 4.3 we will introduce the global state of the blockchain for
smart contracts. Every smart contract has an array of contract variables which is im-
mutable in length and furthermore each element is immutable in its type.
Theoretically values of every type which is currently usable by Solidity can be rep-
resented by a bitstring of a certain length. Keeping in mind usability and clarity we
define natural numbers in addition to bitstrings as primitive types. We also define the
commonly used structures of arrays and mappings, these definitions are recursive with
the exception that a mapping must use a primitive type as a key (matches the current
Solidity implementation).
Solidity also allows for dynamic structures called structs which are also common among
other programming languages and make it possible to define new types out of a list of
other types. For all use cases we present in this paper we do not require structs and
therefore leave them out from the type definitions.
Formally we represent all needed types as follows:

x ∈ N : TPrims 3 tprim := bitstringx | natural
Types 3 type := Array(type) | tprim 7→ type | tprim

(1)

We write natural to reference the type of natural numbers N and bitstringx to
reference the type of bitstrings Bx. These two types make up the primitives set. In addi-
tion we then define the dynamic structures as Array(type) and tprim 7→ type which
correspond to array and map structures. Furthermore, let typeof be a helper function
which can take any value as an input and returns the type of the value.
For values we assume that the annotation determines their type, i.e. nnatural ∈ N,
bbitstring160 ∈ B160. For complex types we assume that all elements contained within
them also follow these rules. For example, if we write AArray(natural) it represents an
array of natural numbers, so that all elements within this array are natural numbers.

Next we formally define the above described properties mutually recursive:

typeof : vals→ Types

∀t,∀s ∈ St : typeof(s) = t
(2)

St := {v ∈ vals | typeof(v) = t} (3)

vals := nnatural | bbitstringx | AArray(t) |Mtk 7→tv

with n, x ∈ N, b ∈ Bx, t, tv ∈ Types, tk ∈ TPrims, A ∈ [St], M ∈ Stk → Stv

(4)

Now that we specified the details elements of a certain type need to fulfill we can
construct our total set of values needed. Let V be the set of all values vals representable
in the global state of the blockchain.
Additionally we define separate annotations for arrays and mappings. We call At :=
SArray(t) the set of all arrays of type t and call Mtk 7→tv := SStk

7→Stv
the set of all

mappings mapping from tk to tv .

4.3 Semantics

In this subject we introduce all parts of the semantics formally and describe the big-step
semantics. Because most parts depend on each other or are related we give a summary
of them in Table 1 which can also act as a quick reference point.

Global state σ
The current state of the blockchain is represented by the global state.
It acts as a snapshot of all information (balances, contract states and
contracts) at a certain moment and maps addresses to contract states.

Contract C

Contracts reflect the immutable parts of the blockchain and correspond
to the contract code of a contract deployed on a blockchain.
They contain information about the address, contract variables (storage)
and contract functions.

Contract state S

The contract state gives information about the current state of an address
in the global state. It contains all mutable parts, namely the balance and
the assignment of contract variables (storage) and
links to the contract which is immutable.

Transaction T

Transactions contain information about the initiator and actor (receiver)
of a transaction, the function executed by the transaction and
its parameters as well as the value sent with the transaction.
Transactions are used in the context of a transaction environment Γ
to step from one global state to another Γ � σ → σ′.

Table 1: Summary of the basic components of the semantics introduced in this section.

Contracts In order to reflect the immutable parts of the blockchain we define a contract
C as a tuple (a, SV , SF , F) where a ∈ B160 refers to the address of the contract,
SV ∈ Names × Types is a set of tuples consisting of variable signatures which are
pairs of the variable name and the variable type where Names is the set of all contract
variable names. SF ⊆ F is the set of signatures of supported functions by the contract.
Lastly F is the functionality of the contract which maps function-signatures f to all
possible outcomes when the function f is executed in a transaction. A function signature
is a unique identifier for a function of a smart contract and we call the set of all function
signatures F . Furthermore we assume that all signatures can be implicitly be converted
to bitstrings and can therefore also be saved in the state and passed as arguments.
Formally we denote

F ⊆ F → P(Tenv ×Σ × AV × (Tenv ∪ {ε} ∪ {ERR}))

where Tenv is the set of all transaction environments, Σ the set of all global states, ε
represents the end state and ERR represents an error during execution of the transac-
tion.
This means that the functionality maps function signatures to their behaviors which can
be seen as an input-output relation. The input of a functionality can be seen as the first
two elements out of the sets Tenv, Σ. The first element is the transaction environment
Γ which contains all necessary information about the transaction being executed and
additionally meta information about the current block. The global state σ chosen of the
set of global states Σ is the initial state on which a transaction is executed on, so we are
observing how the global state changes under the influence of a transaction environment
Γ ∈ Tenv .
The latter two arguments AV , (Tenv∪{ε}∪{ERR}) represent the outcome of the afore-
mentioned transaction environment being executed on the global state σ. The array set
AV ∈ AV contains the new contract state variable assignment of the address of the
functionality, because as part of the transaction relation introduced in Section 4.3 this
array replaces the variable values as part of the execution and therefore represents the
state change. The second output argument states whether another transaction is started
by the functionality. The end state ε signalizes that the transaction ends. If another trans-
action environment is given the functionality has a sub-transaction and if the function
error ERR is given it signalizes that the function would end in an error. How exactly
transactions and sub-transactions work is covered in Section 4.3.

Example Let us see how the contract tuple can be used to represent a real-life smart
contract. We will continue to extend this example as we go on and introduce more fea-
tures to our semantics.
Here we present a simple wallet smart contract: It should be able to store, send and re-
ceive Ether. Additionally we want the wallet to have an owner, so that it can only be used
by one address. The contract consists of the tuple (a, SV , SF , F), a is an arbitrary but
unique address e.g., 0x111a11e7... The variable signatures in our case only con-
tain the owner which is a variable of the type address SV = {(OWNER, bitstring160)},
where the first element represents the name and the second the type. The supported
functions are as we mentioned a receive and transfer function (the receive function can

also be seen as a payable default function in the Solidity sense)
SF = {RECEIVE, OTRANSFER}. Finally the functionality F set contains all possible
outcomes for every execution of a function (an immensely large set). We will see how
the functionality can be inferred as we continue this example throughout this section.

Transaction environment The transaction environment represents the details of a
transaction such as the sender, the value and block information. While we do not make
use of block headers in this work, by defining them in the transaction environment we
make sure that the semantic framework is easily extendable to other applications. We
say a transaction environment Γ ∈ Tenv = B160 × T × H is a tuple of the form
(o, T,H) where o ∈ B160 is the origin address of the transaction, T ∈ T is the trans-
action being executed and H ∈ H is a tuple of all relevant block information. Note
that the origin address of the transaction is not always equivalent to the init address
of the transaction. Say if a transaction initiates a chain of other transaction in course
of its execution, the origin address will stay constant throughout this chain, while the
initiator changes based on the transaction. We do not define elements of H here, but it
commonly contains information such as the block number and the block timestamp.

Global state The current state of the blockchain is represented by the global state
σ : B160 → S. Where S is the set of all contract states, a contract state S ∈ S is a tuple
of the form (b, V)C with b ∈ N representing the balance in wei, the minimal fraction
of the native currency Ether. V ∈ Names × V represents the set of contract variable
assignments which are tuples consisting of the variable signature and the value of the
variable. C is the contract of the contract state, which is written as an annotation to
signalize that it should be immutable.
The global state contains information about all participants of the blockchain. It can be
imagined as a register which updates all balances and states after each transaction. Be-
sides balances, the global state also contains the value of contract variables, the smart
contracts’ persistent memory. The contract variables can contain crucial information
such as all balances for any token created on the blockchain. Balances and contract
variables are subject to change if a transaction interacts with the global state, while
contracts themselves and address associations are immutable.

Example cont. We continue with our wallet contract introduced in the example
above. Because the contract only represents the actual immutable code of a smart con-
tract the global state includes the balance of this wallet as well as the current owner
address of the wallet. The current state is mapped to address σ(0x111a11e7...) =
(100, V)C , as an example we state here that the contract is holding a balance of 100
wei2. The second argument of the tuple is the current assignment of contract variables
which only includes the owner V = {(OWNER,0xdebb1e...)}

2 wei is the smallest fraction of Ether with 1 Ether = 1,000,000,000,000,000,000 wei

Transactions as a big-step relation We call T = B160 × B160 × F × AV × N a
transaction which is the tuple (init, actor, f, par, val) where init is the address initi-
ating the transaction. The actor is the address performing the execution and contains
the smart contract code which will be executed. With f we refer to the signature of the
functionality being executed by actor. The list of parameters par is supplied to f which
can be used as input during the smart contract execution. The number val is the value
of wei sent with the transaction and will affect both the balance of the initiator and actor.

In our semantics transactions are used to step from one global state to another.
Broadly speaking these transactions resemble transactions on the Ethereum blockchain
with the exception that a transaction can both be an external or internal transaction.
Moreover we make a clear differentiation between transactions defined in this work
and transactions on the Ethereum blockchain.
Ethereum allows for the execution of external transactions, these newly started transac-
tions each have a separate entry on the blockchain and can call smart contract functions.
A smart contract cannot initiate an external transaction, only an external account can.
We do not specifically define external accounts in this work but simply assume that they
exist and can start transactions (see Subsection 4.1).
However a smart contract deployed on the Ethereum blockchain can execute code of
another smart contract by explicitly calling it with an internal transaction. These inter-
nal transaction do not have a separate entry on the blockchain (however some modern
block explorers like etherscan.io [11] list them separately) but nevertheless can still
transfer Ether. This means theoretically a hundred value transfers between a hundred
different addresses could happen with there being only a single transaction logged on
the blockchain. In Solidity an external transaction can be initiated with functions such
as call() and transfer().
As we could observe, both external and internal transactions can have a significant im-
pact on the blockchain while only one type is explicitly logged. Because of this reason
we made the design choice of defining both types of execution as transactions as it al-
lows for easier analysis of the effects of executing a certain function in a smart contract.
By doing so we do not limit the mightiness of the original blockchain, because we can
still represent a complicated external transaction with many internal transactions as a
single transaction which consists of several others.

Example cont. For our owned wallet contract introduced in our example so far a
possible transaction would be

T = (0X57A27..., 0X111A11E7..., OTRANSFER, [0X700000..., 100], 0).

This transaction states that it is initiated by the 0X57A27... address and calls the
OTRANSFER of our wallet contract. Moreover, it passes two arguments 0X700000...
and amount with the function and does not send value (last element is 0). We will see
how this transaction is executed in the next example.

Big-step transaction semantics A transaction T can be used for a big-step execution
on a global state σ which will execute a function f in the contract of the actor and

can change states of the initiator and actor. In addition the function can optionally start
another transaction or exit with an error. To describe the execution of a transaction we
write Γ � σ → σ′. In the following we define possible outcomes of a transaction, first
we define a transaction after which no other transaction follows:

BASESTEP
C = (a, SV , SF , F) (Γ, σ, V ′, ε) ∈ F (f)

Γ.T = (init, actor, f, par, val) σ(actor) = (b, V)C σ(init).b ≥ val
f ∈ SF σ′ = σ

〈
init→ σ(init)[b −= val]

〉〈
actor → (b+ val, V ′)C

〉
Γ � σ → σ′

The rule above describes how a transaction T of the transaction environment Γ
influences the global state σ. We can observe that the balance specified by init is trans-
ferred to actor and that the transaction can only be successful if enough balance is on
the contract of init and if the contract has an implementation of the function f to ex-
ecute (f ∈ SF). The functionality F specifies a new assignment for the contract state
variables V ′ by supplying signature f like so F (f). These new contract state variables
replace the current ones of the contract actor in the new state σ′. The ε signalizes that
no other transaction follows after this one.
In short, the balance is transferred from initiator to actor and the values of the contract
variables of the actor can change based on the functionality of the contract.

Next we will show the effect of a transaction which throws an error. We define ⊥ as
the error state of the global state. It signalizes that the global state cannot be changed
further by other transactions. While the Ethereum blockchain does not enter an error
state by itself, it is possible for transactions to result in an error. Therefore we can
compare the result of the global state stepping into an error state as a simple REVERT
action, which means if we transition into an error state nothing happens to the global
state.

FUNCTION ERROR
(Γ, σ, V ′,ERR) ∈ F (f)

Γ � σ → ⊥

As we can observe above, if a transaction throws an error the global state enters the
error state. That means neither the value of the transaction is transferred nor the state of
the actor is changed. This behavior matches the one of the Ethereum blockchain, with
the exception that we do not consider gas. Normally gas is also burned on errors to pay
for the execution of a functionality till the error occurs. In Section 4.1 we discuss the
abstraction of excluding gas from our semantics.

In addition to entering the error state because of running out of gas, the error state
could also be entered if the initiator has insufficient funds to send the specified value as
the next rule shows.

INSUFFICIENT BALANCE
Γ.T = (init, actor, f, par, val) σ(init).b < val

Γ � σ → ⊥

Next we define how a transaction behaves when the functionality starts another
transaction. This chained transaction is the equivalent of an internal transaction on the
Ethereum blockchain and can potentially start even more internal transactions itself.

RECURSIVE STEP
C = (a, SV , SF , F) (Γ, σ, V ′, T ′) ∈ F (f)

Γ.T = (init, actor, f, par, val) σ(actor) = (b, V)C σ(init).b ≥ val
f ∈ SF σ′′ = σ

〈
init→ σ(init)[b −= val]

〉〈
actor → (b+ val, V ′)C

〉
Γ ′ = Γ [T → T ′] Γ ′ � σ′′ → σ′

Γ � σ → σ′

This inference rule gives us a definition of function calls on the Ethereum network.
It is similar to a transaction without a sub-transaction call (signalized by ε), in the sense
that it has the same effect on the global state by changing the state of the actor and
the balance of the initiator and actor. However in addition there can be arbitrary many
sub-transactions which are created as an effect of T and possibly T ′. These transactions
can also have an effect on the balance and state of their initiators and actors. By stating
Γ ′ � σ′′ → σ′ and defining the value of σ′′ we allow freedom to how the next transac-
tion influences the global state.

Example cont. In our example up to now we have introduced the contract of an
owned wallet, an example contract state and a transaction. Furthermore we have spec-
ified that the wallet has two functions, a receive and a transfer function, but have not
described these. Here we continue with the transaction introduced in the last example
and state how its outcome can be inferred.

OTRANSFER
to ∈ B160 amount ∈ N

Γ.T = (init, actor, OTRANSFER, [to, amount], 0) σ(actor) = (b, V)C
(OWNER, vOWNER) ∈ V init = vOWNER T ′ = (actor, to, RECEIVE, [], amount)

(Γ, σ, V, T ′) ∈ F (OTRANSFER)

As we can see by the definition of the OTRANSFER function, it transfers Ether to the
to address by calling their RECEIVE function with the specified amount. The wallet ad-
ditionally has a single owner which we specified in the contract variables before. With
the statement init = vOWNER we restrict the function so that only the owner can be the
initiator of successful transfer. This inference rule makes use of the RECURSIVE STEP
by calling the receive function of the recipient of the transfer. It is also important to
recognize that the initial transfer transaction does not carry any value, because it is only
used to initiate the transfer from the smart contract.

Next we have to introduce an inference rule to define how recursive function calls
behave if an error happens at any point during execution. If any of the sub-transaction
of a recursive call end in the error state, it is impossible to fulfill the inference rule
of RECURSIVE STEP. Nevertheless from a practical standpoint it makes sense that the
parent transaction also results in an error state in that case.

ERROR PROPAGATION
C = (a, SV , SF , F) (Γ, σ, V ′, T ′) ∈ F (f)

Γ.T = (init, actor, f, par, val) σ(actor) = (b, V)C σ(init).b ≥ val
f ∈ SF σ′′ = σ

〈
init→ σ(init)[b −= val]

〉〈
actor → (b+ val, V ′)C

〉
Γ ′ = Γ [T → T ′] Γ ′ � σ′′ → ⊥

Γ � σ → ⊥

Well-formedness of contract states and global states We define properties here to
establish commonly shared patterns of blockchains. Informally we say that a deployed
contract will always stay at the address it was initially deployed at and that the contract
variables have a fixed type and new values assigned to them must be of that type which
ensures that account states are in accordance with their associated contracts.
We defined SV in context of a contract so that once a contract exists, the amount, name
and type of class variables cannot be altered. We define this formally as follows.

Definition 1 (Well-formedness of contract states). Let S = (b, V)C be a contract
state and let C = (a, SV , SF , F) be its contract. We call S well-formed if it fulfills
these criteria.

|V | = |SV | (5)

∀n, v : (n, v) ∈ V ⇒ (n, typeof(v)) ∈ SV (6)

Next we define well-formedness on contracts so that the functionality upholds the
well-formedness of the contract state if executed by a transaction. Also we add another
property to the well-formedness regarding the initiator address of sub-transactions.
Functions have the ability to execute another transaction after their execution, for this
action it is important that we impose the restriction that this new transaction has to be
initiated by the current actor. Basically if a function is executed by a certain contract
and another transaction is started, this transaction cannot be initiated by any other party.
This is an intuitive feature and is present on all major blockchains to our knowledge.
Lastly, we also define that contract variables must have a unique name within the con-
tract. Below we define this formally.

Definition 2 (Well-formedness of contracts). Let C = (a, SV , SF , F) be a contract,
we call C well-formed if the following conditions hold:

∀Γ, σ, V ′, f, n, v,∀T ′ ∈ T ∪ {ε} : (Γ, σ, V ′, T ′) = F (f)⇒
(|V ′| = |σ(Γ.T.actor).C.SV |

∧ (n, v) ∈ V ′ ⇒ (n, typeof(v)) ∈ σ(Γ.T.actor).C.SV)

(7)

∀Γ, σ, V ′, f,∀T ′ ∈ T : (Γ, σ, V ′, T ′) = F (f)⇒ Γ.T .actor = T ′.init (8)

∀S1, S2 ∈ SV , S1 = (n1, t1), S2 = (n2, t2) : S1.n1 = S2.n2 ⇒ S1 = S2 (9)

We define a simple property to uphold the integrity of the relation between global
states and contracts. Here we state that the address linking to a contract must match the
address found within this contract. Additionally the contract deployed at an address is
immutable and therefore cannot be changed through any transaction. This slightly re-
stricts the real-world behavior where it is possible to selfdestruct smart contracts
if needed which we discuss in Subsection 4.1.

Definition 3 (Well-formedness of the global state). We call a global state σ ∈ Σ
well-formed if every contract state S ∈ Ran(σ) is well-formed and if all contracts
C ∈ S of all contracts states S ∈ Ran(σ) are well-formed. Additionally the global
state needs to fulfill:

∀a : σ(a).C = (a′, SV , SF , F)⇒ a = a′ (10)

∀Γ : Γ � σ → ⊥ ∨ (Γ � σ → σ′ ⇒ σ(a).C = σ′(a).C) (11)

Fallibility property for all functions As we mentioned in Section 4.1 we do not con-
sider gas explicitly in our transaction environment, however it plays an important role
in the behavior of a transaction execution. Meaning if not enough gas is provided a nor-
mally successful function can fail. For this reason we chose to model this property of
fallibility as an abstraction by defining a step which allows every transaction to fail.

Definition 4 (Fallibility of contract functionalities). Let C = (a, SV , SF , F) be a
contract, we call the contract fallible if it fulfills the following property.

∀f, Γ, σ, V : (Γ, σ, V,ERR) ∈ F (f) (12)

In addition we call a global state σ ∈ Σ fallible if all its contracts {S.C | ∃a ∈
B160 : S = σ(a)} are fallible.

Determinism of functionality effects In our definitions about transactions above we
have defined the effects of transactions based on the state change of the initiator and
actor and the fact whether they end in the end state ε, in another transaction T or in
the error state ERR. We are not interested in the state changes of a transaction which
throws an error as it will anyways end in the error state.
However for successful transactions it is important to define that if the same transaction
is executed on the same global state twice, it will have the same effect both times.
This property allows us to verify the outcome of the execution of a function in a smart
contract. Especially for financial structures like an investment fund it can prove crucial
to formally verify the outcome of certain transactions.

Definition 5 (Determinism of functionality effects). Let C = (a, SV , SF , F) be a
contract, we call it deterministic if the following statements holds true:

∀Γ, σ, V, V ′,∀T ′, T ′′ ∈ (T ∪ {ε}) :
((Γ, σ, V, T ′) ∈ F (f) ∧ (Γ, σ, V ′, T ′′) ∈ F (f))⇒ (V = V ′ ∧ T ′ = T ′′)

(13)

In addition we call a global state σ ∈ Σ deterministic if all its contracts {S.C | ∃a ∈
B160 : S = σ(a)} are deterministic.

Property preservation of transactions We have defined several properties of con-
tracts, contract states and global states. All these properties combined ensure that the
system we have created so far closely matches the behavior of the real Ethereum blockchain.
The steps between global states are defined in a way so that these properties are pre-
served on success. In all succeeding sections if we talk about global states, we assume
that these states are well-formed, fallible and deterministic.

Lemma 1 (Well-formedness preservation of transactions). Let σ ∈ Σ be a well-
formed global state, let Γ ∈ Tenv be a transaction environment and let τ ∈ Σ ∪ {⊥}.
If Γ � σ → τ , then τ = ⊥ or τ is a well-formed global state.

Proof. We prove by induction over the derivation of Γ � σ → τ . There are two dif-
ferent cases to consider, either the transaction ends in another valid well-formed global
state or the transaction end in the error state.

– Error cases (FUNCTION ERROR, INSUFFICIENT BALANCE and ERROR PROPAGA-
TION):
If we look at the requirements for the well-formedness in Definition 3 under the
assumption that the initial state was already well-formed

Γ � σ → ⊥ ∨ (Γ � σ → σ′ ⇒ σ(a).C = σ′(a).C)

we observe that if the transaction results in the error state ⊥ the condition holds
trivially.

– BASE STEP:
We take a look at the relevant changes to the global state in the base step:

σ′ = σ
〈
init→ σ(init)[b −= val]

〉〈
actor → (b+ val, V ′)C

〉
From the first glance we recognize that only the contract states at the addresses init
and actor change and that no contracts are modified. The only property which is
not exclusively bound to the contract is the well-formedness of the contract state,
see Definition 1. However we know that the original contract state is well-formed
by Lemma 1 and that by Definition 2 of the well-formedness of contracts, the well-
formedness of contract states is upheld for any transaction execution.

– RECURSIVE STEP:
We assume that well-formedness is preserved in the step Γ ′ � σ′′ → σ′, which is
our induction hypothesis.
Induction step: Here we take a look at the relevant part of the recursive step which
is where the value for the new global state is set:

σ′′ = σ
〈
init→ σ(init)[b −= val]

〉〈
actor → (b+ val, V ′)C

〉
This update statement is identical to the one in the base step and therefore also
preserves well-formedness from σ′′ to σ. Consequently, by the induction hypothe-
sis we know that the transaction Γ ′ � σ′′ → σ′ also fulfills the well-formedness.
Therefore the recursive transaction Γ ′ � σ → σ′ fulfills the wellformedness be-
cause σ′ upholds the well-formedness.

Lemma 2 (Property preservation of transactions). Let σ ∈ Σ be a well-formed,
fallible, deterministic global state, let Γ ∈ Tenv be a transaction environment and let
τ ∈ Σ ∪ {⊥}. If Γ � σ → τ , then τ = ⊥ or τ is a well-formed, fallible, deterministic
global state.

We call the set of all well-formed, fallible, deterministic global states Σ∗.

Proof. Because the fallibility in Definition 4 and determinism in Definition 5 of global
states are properties which are defined based on the underlying contracts of the global
state the proof is trivial as contracts stay unchanged during execution per Definition 3.
In the proof for Lemma 1 for well-formedness preservation we already covered that the
contract cannot change during a transaction, because of this the fallibility and determin-
ism is upheld.

Besides the well-formedness of contract states, contract variables can fulfill another
property: Immutability. Immutable contract variables cannot be changed by any trans-
action, which means that they are constant since the deployment of the contract. A
contract variable is immutable if no function in the smart contract can set the value of
the variable. This property is commonly used in smart contracts in the real-world: A
common use case is an immutable owner variable. Later on we make use of immutable
contract variables to define a simple multi-signature wallet with fixed owners.

Definition 6 (Immutability of contract variables). Let C = (a, SV , SF , F) be a con-
tract, we call a contract variable (sn, st) ∈ SV at address a immutable if the following
statement holds true:

∀Γ, v, v′∀σ, σ′ ∈ Σ∗ :
(sn, v) ∈ σ(a).V ∧ (sn, v

′) ∈ σ′(a).V ∧ Γ � σ → σ′ ⇒ v = v′
(14)

Signatures Every address in the global state is able to sign a message (byte sequence)
which produces a unique signature. We do not explicitly define how signatures are pro-
duced but simply assume that signatures share common features from modern hash
algorithms like SHA-3 [46]. A signature is of type B256, therefore we also can pass

signatures as function parameters by definition of the contract variables possible values
V . Even though hashes and signatures technically allow for a collision, the chance for
this negligible. We assume the hash of two randomly sampled messages x, y fulfills
P (SHA(x) = SHA(y)) ≤ negl where SHA is a hash function and negl is a negligi-
ble function.
It is additionally possible to recover the signee address a from a signature if we know the
original message with the recover function denoted as recover : AB8 × B256 → B160

with

∀sig ∃!msg : recover(msg, sig) = a ∧ ∀msg ∃!sig : recover(msg, sig) = a

The purpose of the signatures is to sign important transaction details for verification.
Later on we will use the recover function to verify that a message was indeed signed by
the appropriate address during execution of a transaction.

Further functionality definitions Now that we have defined the basic interaction of
transactions, we can argue about the behavior of contracts by only focusing on the func-
tionality F of a contract. The functionality defines the effect it will have on the global
state, while all other parts of a transaction will stay the same for all functionalities.

5 Modelling smart contracts

Now that we have defined the smart contract semantics and provided an infrastructure to
model smart contracts on, this section introduces basic, commonly used smart contract
designs. The purpose is to firstly showcase how the semantics can be used to create
smart contracts for structures which are already widely used, such as wallets and to-
kens. Secondly, these entities are used in a more advanced form in our investment fund
implementation and can be used in future works as first step towards creating a fully
verified financial structure.
We demonstrate this towards the end of the section by modelling one smart contract
of the investment fund, a multi-signature wallet with off-chain signing to represent the
wallet system used in our investment fund. This smart contract is then used to prove, in
Definition 8, that the circle of trust feature, covered in Section 3.5, is indeed functional
and it is impossible to send funds to untrusted wallets without permission. While we
already partly introduced an owned wallet as an example in the last section, we still
formally define an unowned wallet here.

Wallet LetC = (a, SV , SF , FW) be a contract, we call it a wallet if it has the supported
functions SF = {TRANSFER, RECEIVE} and if FW is the smallest relation closed under
the following rules, without ignoring the fallibility property introduced in Definition 4:

RECEIVE
Γ.T = (init, actor, RECEIVE, [], val) σ(actor) = (b, V)C

(Γ, σ, V, ε) ∈ FW (RECEIVE)

With the rule above we can observe that the RECEIVE function is a simple function
which only ensures that Ether can be transferred to it. It fails only if the initiator does
not have sufficient balance to transfer the value. In Solidity this function can represent
an empty, payable, default function. A function in Solidity is called payable if it allows
to receive Ether as part of the execution.

The TRANSFER function makes use of the RECEIVE function to initiate a transfer of
Ether.

TRANSFER
to ∈ B160 amount ∈ N Γ.T = (init, actor, TRANSFER, [to, amount], 0)

σ(actor) = (b, V)C T ′ = (actor, to, RECEIVE, [], amount)

(Γ, σ, V, T ′) ∈ FW (TRANSFER)

This theoretical smart contract of wallet models the bare minimum for a smart con-
tract to manage the native currency Ether, at least in the high-level setting that we have
defined our semantics in. This setting closely resembles how smart contracts are pro-
grammed (in e.g., Solidity), but has some differences compared to the final EVM byte-
code. It is important to note that this contract has no implementation of ownership which
means anyone could send currency from this wallet.

Token Let C = (a, SV , SF , Ftok) be a contract. We call C a token if it has at least
two class variables (TBAL, bitstring160 7→ natural), (TSUPPLY, natural) ∈ SV

(short for token balance and token supply), exactly one supported function SF =
{TRANSFERT} (short for transfer tokens) and the Ftok is the smallest relation closed
on the rule introduced below, without ignoring the fallibility property introduced in
Definition 4. We call the set of all tokens T.

The TRANSFERT function abides rules when executed by a transaction, we present
the effect here. It should be noted that this definition is compatible with the transfer
function interface of the ERC20-Token Standard, introduced in Section 2.2.

TRANSFERT
to ∈ B160 amount ∈ N Γ.T = (init, actor, TRANSFERT, [to, amount], 0)

σ(actor) = (b, V)C (TBAL, vTBAL) ∈ V vTBAL(init) ≥ amount
v′TBAL = vTBAL

〈
init→ vTBAL(init)− amount

〉〈
to→ vTBAL(to) + amount

〉
V ′ = V [(TBAL, vTBAL)→ (TBAL, v′TBAL)]

(Γ, σ, V ′, ε) ∈ Ftok(TRANSFERT)

Here we specify the most basic components of a token, introduced in Section 2.2,
built on top of an existing network. A token has a registry of all balances TBAL of which
the values can be altered by transferring tokens to other addresses. The TSUPPLY vari-
able is a counter for the total balances across all address balances of TBAL. The total
supply is often an immutable variable and is fixed from the token launch if the token
has a fixed supply. However some tokens, such as the token used in our investment fund
changes the total supply by minting and burning new tokens on demand.
Holders of tokens can call the TRANSFERT function to transfer some of their token
holdings to a different address. This transfer is similar to the basic value transfer in the
wallet construct with the only difference being that the token balance instead of the na-
tive balance is used.
A token as specified here is not a fully-fledged ERC20-Token by definition, but is com-
patible with ERC20. Besides a transfer function and a total supply variable, a fully-
fledged ERC20-Token also has extra functionality to provide token holders with the
possibility to authorize other addresses to send tokens on their behalf. We do not define
this explicitly here because these functions are only indirectly relevant for the invest-
ment fund.

Token-compatible Wallet LetC = (a, SV , SF , FTW) be a contract. We call it a token-
compatible wallet if it has the supported functions
SF = {TRANSFER, RECEIVE, REQTTRANS} and implementsFTW ⊇ FW . That means
compared to the normal wallet it has one additional function called REQTTRANS (short
for request token transfer). This function is used to transfer tokens to a different wallet.
Technically the tokens are not held by the wallet, but rather the wallets balance of a
certain token is stored in the TBAL variable of the token contract state. For this reason
the function is prefixed with request, in order to signalize that the token contract will
execute the transfer and not the wallet itself.

REQTTRANS
tok ∈ T

to ∈ B160 amount ∈ N Γ.T = (init, actor, REQTTRANS, [tok.a, to, amount], 0)
σ(actor) = (b, V)C T ′ = (actor, tok.a, TRANSFERT, [to, amount], 0)

(Γ, σ, V, T ′) ∈ FTW (REQTTRANS)

Contract Ownership The difference between an owned contract and a normal contract
is that not every participant on the blockchain can execute all functions of the contract,
but rather only an owner or a set of owners. An owned contract is a commonly used
concept on the blockchain and can represent the idea of what most people imagine by
the concept of a wallet, in a sense that only owners can use the balance of a wallet.
Here we only offer a template on how ownership could be uniformly specified across
contracts while not going into detail about security properties. Later in Section 5 we
will formally define and prove ownership of a specific wallet contract.
In order to get to the concept of an owned contract, we first have to define necessary
characteristics of a contract to offer ownership features. Let C = (a, SV , SF , F) be a
contract, which has at least four class variables

(OWNERS, Array(bitstring160)), (THRESHOLD, natural),

(NONCE, natural) ∈ SV .
(15)

Furthermore let OWNERS and THRESHOLD be immutable. The OWNERS array saves the
addresses which share ownership of the contract. The THRESHOLD value states how
many owners need to allow a function call by signing it. If the THRESHOLD value is
bigger than 1, we also call an owned contract a multi-signature contract instead, which
is a common term in the blockchain sector and simply states that multiple signatures are
needed to operate the contract. Lastly the NONCE is used as a standard cryptographic
nonce in order to guarantee unique signatures for every call the contract will make.
All of the above mentioned class variables are used to restrict access to the contract.
This protection must happen in the definition of how the functionality F of a contract
can arrive at a successful result (without a runtime error ERR). For this purpose we
now present a set of rules which can be inserted into a contract’s functionality to protect
functions with ownership.

OWNERSHIPTEMPLATE
sigs ∈ AAS

data ∈ V Γ.T = (init, actor, f, [sigs, data], val) σ(actor) = (b, V)C
(THRESHOLD, vTHRESHOLD), (OWNERS, vOWNERS), (NONCE, vNONCE) ∈ V

msg = actor_f_data_vNONCE

∀sig ∈ sigs,∃owner ∈ vOWNERS : owner = recover(msg, sig)
|sigs| > 1⇒ (∀i, j ∈ N, i < j < |sigs| : sigs[i] 6= sigs[j]) |sigs| ≥ vTHRESHOLD

ownershipTemplate(V, Γ)

The construct above describes the concept of a multi-signature contract. We can
observe that msg uniquely identifies the transaction via the wallet address actor, func-
tion execution details f, data and nonce vNONCE. Owners of the multi-signature wallet

are required to sign the message off-chain which can reduce the possibility of a smart
contract vulnerability (see Subsection 2.3) and is usually not done manually but with
client programs. The set of signatures can then be sent from any address to the wallet,
however the transaction will only be successful if the signatures match the purpose (ad-
dress, function, parameters and nonce) of the transaction. We check that every signature
must be created by an owner and we verify that each signature is unique and therefore
from a unique owner. This way it also does not matter if the OWNERS array of the wallet
has duplicate entries, because we verify that the signatures are unique. Lastly we also
ensure that enough signatures have been provided to match the threshold of the wallet.

One thing which is not possible to encode in the rule above is the needed increment
of the nonce. The nonce is a vital part of the unique identification of a transaction in
case a transaction with exactly the same parameters is executed twice. The nonce has to
be incremented after every successful execution of a function and has to be saved in the
global state. This incrementation of the nonce has to be done explicitly by a contract’s
functionality if it implements this type of ownership and will be modelled faithfully for
concrete contracts.
This implementation of ownership uses off-chain signatures because the signatures are
passed as function parameters and are created off-chain. A more common approach to
ownership is on-chain signing. In order to confirm a transaction which needs e.g., three
signatures using on-chain signatures, three owners would send three separate transac-
tions from their addresses which act as signatures. The upside of this is that it is easier
to use (no need for a software to sign off-chain) and it decreases code complexity, how-
ever the transaction cost is much higher especially if the owner count is high, because a
separate transaction is needed for every signature.
For the definition of a multi-signature wallet above we define the parameters of our
transaction as an array of signatures and data, which are the rest of the parameters
stored in a byte-array. The message is defined as all relevant data of the transaction,
consisting of the actor, the function, the data and the nonce. This structure of messages
and signing transactions follows an Ethereum standard under EIP191 [65].

Internal and external owners Internal and external owners are used to reflect a fea-
ture of the investment fund which we mentioned as circles of trust in Section 3.5. This
classification of owners can be used to protect certain functions of a smart contract
with additional security by requiring external owners (e.g., stake-holders) to approve
the execution. A use case for this would be to allow internal owners to transfer currency
between trusted wallets, but prevent them from moving currency to unknown, poten-
tially malicious, wallets. Naturally this feature reminds of a simplified version of an
owner hierarchy and could be extended to not only include two levels of owners, but an
arbitrary amount.

The addresses of OWNERS of an owned wallet can be split into internal addresses
AI and external universally trusted addresses AE , so that AI ∩ AE = ∅. We will use
these definitions below by introducing different levels of owners and different levels of
permissions. Furthermore we want to differentiate between transactions which are only

signed by internal addresses and those which also include external addresses as signees.

Definition 7 (Internal signature). Let C = (a, SV , SF , F) be an owned contract, let
AI be its internal addresses and let sig ∈ S be a signature. We call sig internal to C
if it fulfills:

∃aI ∈ AI ∃msg : recover(msg, sig) = aI

Consequently we call an array of signatures sigs with sigs ∈ AS internal to a
contract if all its signatures are internal to the contract.

In the following we introduce a specific multi-signature wallet contract, which is
modelled after the wallet system used by the investment fund covered in Section 6.
Furthermore we introduce security properties on it and prove them in Definition 8.

Restricted Wallet Let C = (a, SV , SF , FR) be a contract which has at least four class
variables

(OWNERS, Array(bitstring160)), (THRESHOLD, natural),

(REQSIG, bitstring160 7→ natural), (NONCE, natural) ∈ SV .
(16)

Additionally let OWNERS, THRESHOLD and REQSIG be immutable. The OWNERS,
THRESHOLD and NONCE variables fulfill the same purpose as in the owned contract.
The variable named REQSIG stands for the required signatures needed to execute a
transfer to a certain address. This new variable is used to introduce a different threshold
for different addresses.
Let the set of supported functions be SF = {RTRANSFER,RREQTTRANS, RECEIVE},
without ignoring the fallibility property introduced in Definition 4, and let FR be the
smallest relation closed under these rules. The RTRANSFER function (short for re-
stricted transfer) is an adaption from the TRANSFER function combined with a similar
property as ownershipTemplate with a variable threshold. RREQTTRANS (short for
restricted request for token transfer) is also a stricter version of REQTTRANS.

RTRANSFER
sigs ∈ AS to ∈ B160 amount ∈ N

Γ.T = (init, actor,RTRANSFER, [sigs, to, amount], 0) σ(actor) = (b, V)C
(THRESHOLD, vTHRESHOLD), (OWNERS, vOWNERS), (REQSIG, vREQSIG), (NONCE, vNONCE) ∈ V

msg = actor_f_to_amount_vNONCE

∀sig ∈ sigs,∃owner ∈ vOWNERS : owner = recover(msg, sig)
|sigs| > 1⇒ (∀i, j ∈ N, i < j < |sigs| : sigs[i] 6= sigs[j])
|sigs| ≥ ((vREQSIG(to) = 0) ? THRESHOLD : vREQSIG(to))

T ′ = (actor, to, RECEIVE, [], amount)
V ′ = V [(NONCE, vNONCE)→ (NONCE, vNONCE + 1)]

(Γ, σ, V ′, T ′) ∈ FR(RTRANSFER)

RREQTTRANS

sigs ∈ AS tok ∈ T to ∈ B160

amount ∈ N Γ.T = (init, actor,RREQTTRANS, [sigs, tok.a, to, amount], 0)
σ(actor) = (b, V)C msg = actor_f_atok

_to_amount_vNONCE

(THRESHOLD, vTHRESHOLD), (OWNERS, vOWNERS), (REQSIG, vREQSIG), (NONCE, vNONCE) ∈ V
∀sig ∈ sigs,∃owner ∈ vOWNERS : owner = recover(msg, sig)
|sigs| > 1⇒ (∀i, j ∈ N, i < j < |sigs| : sigs[i] 6= sigs[j])
|sigs| ≥ ((vREQSIG(to) = 0) ? THRESHOLD : vREQSIG(to))
T ′ = (actor, tok.a, TRANSFERT, [to, amount], 0)
V ′ = V [(NONCE, vNONCE)→ (NONCE, vNONCE + 1)]

(Γ, σ, V ′, T ′) ∈ FR(RREQTTRANS)

We call a contract with the above stated properties a restricted wallet. Moreover,
we call an address aTr a trusted address if REQSIG(aTr) ≤ |AI | which means it can
be signed by exclusively internal owners. Otherwise we call it untrusted. The set of
trusted addresses of a restricted, owned wallet is referred to by ATr.

If we observe the definition above, we can see that it is not all too different from a
standard multi-signature wallet. It still shares all its contract variables, namely OWNERS,
THRESHOLD, and NONCE. However by defining a dynamic threshold as REQSIG re-
stricted wallets offer the implementation of trust circles. With this it is possible to define
the set of trusted wallets for an investment fund. It is intended to include all addresses
to the set of trusted wallets which are needed to operate on a normal basis. This can
include internal wallets, partner wallets and exchange wallets. Sending Ether or tokens
to an unknown wallet requires extra permissions from a different set of owners. This is
not only useful to provide increased trust for shareholders, but also prevents accidental
or malicious calling of an untrusted address.

This implementation of a wallet fulfills the property of circles of trust which was
described in Section 3.5. In the following we provide a fitting property and prove that
it holds on restricted wallets. The intuition behind this property is that if a restricted
wallet is called by only internal owners, then it is impossible to transfer Ether or tokens
to unknown/untrusted wallets. This is expressed by stating that should the wallet receive
any transaction with a set of exclusively internal signatures, then the Ether or tokens
transferred will be transferred to a trusted wallet and therefore stay in its circle of trust.

Definition 8 (Balance preservation in circles of trust). Let C = (a, SV , SF , FR) be
a restricted wallet with its trusted addresses ATr. Let Γ be a transaction environment
where Γ.T is a signed transaction with an array of internal signatures sigs. We say C
preserves its balances within its circles of trust if it fulfills the following criteria.

∀σ, σ′ ∈ Σ∗ ∀Γ ∀tok ∈ T, Γ.T = (init, a, f, [sigs, data], T ′) :

Γ � σ → σ′ ∧ (TBAL, v) ∈ σ(tok.a) ∧ (TBAL, v′) ∈ σ′(tok.a)⇒

v(a) +
∑

aTr∈ATr

v(aTr) = v′(a) +
∑

aTr∈ATr

v′(aTr)

∧ σ(a).b+
∑

aTr∈ATr

σ(aTr).b = σ′(a).b+
∑

aTr∈ATr

σ′(aTr).b

(17)

Intuitively described the definition above formulates that a contract which upholds
the balance preservation within its circles of trust cannot transfer any money outside
the trust circle without external signatures. The criteria specify that after any successful
transaction execution the sum of balances of trusted addresses (both Ether and token
balances) is guaranteed to be equal to the sum of balances before the transaction. This
property is later on used in the investment fund to provide safety for stakeholders.

Theorem 1. Every restricted wallet preserves its balances within circles of trust.

Proof. By Definition 8 we have the premise that the definition only applies for every
successful transaction between two well-formed, fallible and deterministic global states
Γ � σ → σ′. Another restriction is that the actor of the transaction Γ.T has to be the
restricted wallet itself. By the definition of the restricted wallet we know that there are
only two possible functions which can have a successful execution: RTRANSFER and
RREQTTRANS, see Equation 5.

– Case RTRANSFER: By the immediate definition of RTRANSFER we observe that
no value is transferred to the restricted wallet by looking at its transaction and the
responding step:

Γ.T = (init, actor,RTRANSFER, [sigs, to, amount], 0)

This transaction is only executable by the RECURSIVE STEP (see Section 4.3), be-
cause it executes a sub-transaction RECEIVE afterwards and does not result in the
error state. By Section 4.3 the above mentioned value of 0 is transferred and the
contract state is changed according to the functionality. That means no value is
transferred and the current transaction already fulfills a part of the balance preser-
vation because ∀a : σ(a).b = σ′(a).b. The only contract variables relevant to the
balance preservation property of the restricted wallets are the states of tokens, as we
do not interact with any tokens this first recursive call does not violate the property.
The RECURSIVE STEP arrives at its intermediary state σ′′ and executes the sub-
transaction of RTRANSFER with Γ ′ � σ′′ → σ′

The sub-transaction is specified in the definition of RTRANSFER as

T ′ = (actor, to, RECEIVE, [], amount)

If we look at the RECEIVE function in Section 5 we can see that it is only success-
fully executable by the BASE STEP because it has no sub-transaction. Furthermore

the function does not change the contract variables of any contracts as per definition
it returns the same set of contract variables V the receiver to had assigned before
the transaction. By the definition of the BASE STEP the remaining changes are that
amount is transferred from the actor address (the restricted wallet) to the address
to. This is the only possible value transfer and could only potentially violate the
balance preservation clause

σ(a).b+
∑

aTr∈ATr

σ(aTr).b = σ′(a).b+
∑

aTr∈ATr

σ′(aTr).b

if to is not a trusted address (by Definition 8).

Now we can make a trivial proof by contradiction to show that to has to be a trusted
address. We know by Equation 5 of RTRANSFER that an untrusted wallet has a
higher signature requirement than internal owners exist REQSIG(auntrusted) >
|AI |. By the definition of balance preservation the property only applies to signed
transactions with an internal array of signatures which means it is impossible to
fulfill the clause

|sigs| ≥ ((vREQSIG(to) = 0) ? THRESHOLD : vREQSIG(to))

because any untrusted wallet needs a greater number of signatures than there are
internal addresses.
The other clause of balance preservation

v(a) +
∑

aTr∈ATr

v(aTr) = v′(a) +
∑

aTr∈ATr

v′(aTr)

only refers to the balances of tokens, as we do not interact with tokens it continues
to hold.
This means the balance preservation holds on RTRANSFER because it is only possi-
ble to transfer value and no tokens, and this value can only be transferred to trusted
wallets.

– Case RREQTTRANS:
This case is mostly similar to the previous one. We can see that RREQTTRANS,
defined in Equation 5, and its sub-transaction both have a value of 0. That means
the second part of the balance preservation property holds as all balances stay un-
changed. The subtransaction of RREQTTRANS is

T ′ = (actor, tok.a, TRANSFERT, [to, amount], 0)

If we look at the definition of TRANSFERT in Section 5 we see that the token at
address tok.a moves amount tokens from the initiator of the transaction to the
address to. This has the following effect on the token’s global state:

V ′ = V [(TBAL, vTBAL)→ (TBAL, v′TBAL)]

Where v′TBAL contains the new balances of the sender and recipient and overwrites
the old balances. That means we fulfill the balance preservation if to is a trusted
wallet. We can argue analogous to as we did for RTRANSFER that to can only be
trusted by Definition 8.

Further work The structures we have introduced and defined in this section should
serve as a demonstration on how to formalize common blockchain smart contracts and
how to describe interactions between them. The provided specifications can easily be
extended to provide more functions to structures like the wallet or token. While we have
only used manual proofs to verify some properties, it should be possible to transform
this semantics so that it would fit in a proof assistant which is potential further work.
Furthermore with the restricted wallet and its proof regarding balance preservation we
provide a link to the practical implementation of the investment fund which uses the
same feature for its wallets. Even though the semantics cannot offer a clear link between
itself and Solidity (because Solidity itself does not offer semantics) it can be seen as the
first step towards working on high level semantics which can be applied to programming
languages.

6 Investment fund implementation

In the course of this thesis we have developed a fully-fledged investment fund software
ERCFund [60] built purely on the Ethereum blockchain for managing ERC20 tokens.
ERCFund makes it possible to invest into an actively managed portfolio of ERC20 to-
kens and Ether by introducing an on-demand minted and burned token as the medium
for shares in the fund. Compared to some other closed-end funds (e.g., TaaS.fund, The
Token Fund) you can buy shares/tokens at any time by simply sending Ether to the
fund. These shares/tokens can also be sold at any time by calling the withdraw func-
tion of the fund which sends the corresponding value of Ether back to a specified wallet.

Fig. 8: Illustration of the architecture and functionality of the ERCFund software.

Fund managers can freely trade with all currencies and make profit. Based on the
assets under management the price for one token should be continuously updated. ER-
CFund comes with a multi-signature implementation for a fund operator contract. This
implementation is especially designed for the purpose of managing a fund. It offers
cold-wallet support and a defined set of trusted wallets for different trust levels. Addi-
tionally the multi-signature operator has a significantly lower gas cost than traditional
multi-signature wallets by moving signing transactions off-chain. In Figure 8 the basic
architecture and functions of the investment fund are illustrated to give quick, intuitive
overview.

For smart contracts it is essential to make sure that the code is bug-free if large
amounts of money are handled by them. To achieve a high code quality and security
we reused as much community-reviewed code as possible, such as token contracts from
OpenZeppelin [23], which are already tested and in use by a large number of people.
All the code written by us is rigorously tested: While the total lines of code are less
than a thousand, we provide 127 tests covering all functionalities and achieve a code
coverage of 100% and a branch coverage of 96%.
In order to use the suite of smart contracts for investment funds we imagined that they
would be used with a client side program fitting the needs of the fund managers. While
it is absolutely possible to use all features of the fund without it, it would be difficult
and time consuming to sign transactions manually. Additionally some features, like
price updates, need to happen in small regular intervals. Which is why it is infeasible to
provide price updates manually.
In this section we describe the architecture and implementation in detail and provide
code examples for interesting and essential parts of the investment fund.

6.1 Architecture

The software is split into four different layers where each of them fulfills a distinct func-
tion and part of the investment fund. Every layer is represented by separate smart con-
tracts deployed on the blockchain which interact with each other. Many of the features
implemented in the software are conceptually described in Subsection 4.1. Moreover
the section also reasons which features are needed to match functions of a traditional
investment fund and how these features can be implemented in smart contract form.

Wallet - Layer The wallet layer represents the lowest layer of the software and is used
to store the currency of the investment fund. The layer does not necessarily consist of
only one wallet but can be a set of arbitrary many wallets. What might seem counter-
intuitive at first is that the fund contract itself is also a fund wallet. The fund contract
needs to hold Ether in order to liquidate shares on demand, for this reason the functions
in the wallet contract are adapted to work with the fund contract as well.
The wallet contract is not vastly different from what is commonly used for wallets. It
implements ownership so that it can only be accessed by the fund contract which is
achieved with a function modifier. Function modifiers are pieces of code which can be
inserted in the beginning of a function by including their signature in the function sig-
nature. An example is given in Figure 9, here the owner of the contract is specified in
the constructor and checked whenever the modifier is called.

In order to send and receive Ether and send tokens, the wallet contract contains a
payable fallback function. A fallback function is called when no or a non-existent func-
tion signature is called. Payable in this context means that the function is accepting a
value transfer (in the form of Ether) during its execution. Besides emitting an event, the
fallback function is empty and is only used to receive Ether. The function sendEther
is used to move Ether from the wallet to another address and is only executable by the
fund contract, its owner. Lastly the sendTokens function takes a token address as an

1 modifier onlyOwnerOrInternal() {
2 require(msg.sender == owner || msg.sender == address(this));
3 _;
4 }

Fig. 9: Ownership modifier in the Fund Wallet contract.

input and moves the specified amount of tokens to another address. The implementation
of these functions is basic but will be partly covered in Subsection 6.2.

Token - Layer As we already discussed before, tokens are used to represent shares
of the investment fund. The token is directly bound to the fund contract, this contract
is both issuing new tokens and liquidating existing tokens. We will not go into depth
about the standard ERC20 functions the token implements here or in the implementation
section. But besides these functions the token is extended with a minting and burning
feature. This means that the total supply of tokens is not fixed but can fluctuate during
the contract’s lifetime. Similarly to the wallet contract, the token contract is also owned
by the fund contract and only allows the fund contract to create new tokens and burn
existing ones.

Fund - Layer The fund layer acts as the connection between all other layers and im-
plements most of the crucial features. The smart contract itself extends from the wallet
- layer and a common implementation of the pausable pattern.
Pausable means that functions of the contracts can be restricted if the fund is paused.
This is a common design pattern in smart contracts as it can help maintain the smart
contract. For example, in an investment fund one strategy to change the buying and
selling price of a share could be to pause all purchases and sales, change the price
and reactivate the features again. This makes it impossible for shareholders to frontrun
any prices change. If e.g., the price of a share is changed from 1 Ether to 0.9 Ether,
shareholders could detect this price change before it actually happens because for a few
seconds the transaction will be in a pending status until a miner processes it. By run-
ning a node themselves, they scan pending transactions and in case a price change is
detected a transaction is started with a very high gas price to sell shares. Because miners
will generally try to maximize their profits, they will process transactions with a high
gas price first as they are more lucrative. Consequently shareholders could buy or sell
right before a price change and profit while taking no risk.

The fund features include most functions potential customers can interact with.
Namely these are the withdrawTo and buyTo functions. The withdrawTo function
enables shareholders to liquidate their shares/tokens. The amount of Ether received in
exchange for tokens is calculated based on the current price and withdraw fee. In the
case of a successful withdrawal the tokens received are burned.
The buyTo function takes the role of creating new shares/tokens if the demand is higher

than the amount of already existing tokens. Similarly the caller can send Ether and new
tokens are minted based on the current price and fees and attributed to the receiver.

Price updates are conducted via a price update method which can only be called by
the owner/operator contract. Pricing is currently implemented in a simple way: Only
one current price contract variable exists which is both used for buying and selling
shares. Because of the nature of the blockchain and constant price fluctuations it is im-
possible to save a current, completely accurate value of a share. With there being only
a single price variable, it is clear that small price inaccuracies can be abused by either
selling or buying shares. In its current form arbitrage (selling and buying of the same
asset in different markets for a profit) is hard to deal with, but is reduced in effectiveness
by implementing a withdraw- and purchase-fee. Depending on how high these fees are
set arbitrage possibilities could be reduced.
A different approach to combatting arbitrage would be to implement a purchase and
withdraw price separately with them being able to contain a variable buffer as a coun-
teraction. While the approaches seem similar, the latter could potentially offer greater
flexibility and can more easily be adapted based on the volatility of the market. In any
case, it is necessary to update the prices in regular, short intervals depending on the
volatility.

Internal management of Ether and tokens also happens directly through the fund,
however the functions to move assets can only be accessed through the fund operator in
which a more complicated procedure is used based on senders and recipients.

1 contract Pausable is Ownable {
2
3 bool public paused = false;
4
5 modifier notPaused() {
6 require(!paused);
7 _;
8 }
9

10 function pause() onlyOwner public {
11 paused = true;
12 }
13
14 function unpause() onlyOwner public {
15 paused = false;
16 }
17 }

Fig. 10: Implementation of a pausable smart contract to be inherited by other smart
contracts.

Operator - Layer The operator layer is a multi-signature contract on top of the fund
class in order to introduce a layer of security. It is different from other multi-signature
wallets (like the Gnosis MultiSigWallet [9]) by signing transactions off-chain. Every
function of the contract requires a set of signatures passed with it, besides the normal
parameters. Before the action is performed, it is checked if each signature contains all
information about the transaction. Signing on-chain has pros and cons, the main pro
is that it is simpler to use because you do not need a special application to sign your
transactions off-chain. The cons are that transactions are more expensive, because you
need to send a transaction from every owner. An actively managed fund might need to
make hundreds of transactions every day, signing off-chain decreases transaction cost
significantly.

As by the nature of multi-signature contracts the operator saves a set of owners at its
creation. These owners are split into two different groups: The fund managers and the
trust party. The different sets of owners enable us to create two different layers of trust,
see Section 3.5. As already mentioned, members of the trust party group could be e.g.,
an external audit firm, a group of significant investors or generally trusted personalities.
Depending on the actions called in the operator contract either only signatures of the
fund managers are needed or signatures of both groups are needed. The motivation be-
hind the feature for different circles of trust is to increase the transparency and offer an
easy tool to enable lesser known investment managers to increase trust from the general
public by adding another layer of security. However it is clear that this feature is not
integral for the functionalities of an investment fund and might not be interesting to
certain groups. For this reason the trust party/circle of trust feature is implemented in a
way which makes it completely optional.

The operator contract adds wrapper functions for all functions of the fund contract
which should not be accessible by the general public. Additionally it implements a
set of trusted wallets. New addresses can be added to the trusted list by signing the
transaction with the trust party. All internal wallets are automatically added as a trusted
wallet, which makes transfers between them require less permissions.
Furthermore the operator class implements the addition of cold wallets to the fund,
which are especially safe wallets which were never connected to the internet. Cold
wallets can be added because the operator class runs with off-chain signatures which
means the cold key can sign transactions without being connected to the blockchain or
internet.

6.2 Implementation

We have summarized the key features and the overall architecture of the investment
fund in Subsection 6.1. As opposed to viewing code again on the levels of different
layers, the approach used here will be feature-driven. Instead of analyzing important
code of the fund contract we will cover a full execution throughout multiple contracts.
It is not possible to cover the complete implementation in this section but it is publicly
available on Github [60].

Share/Token purchase and withdrawal Arguably the central part of our investment
fund is the token system which represents shares within the fund. This system is unique
to our knowledge in a way that it creates new shares and liquidates shares on demand.
The fund contract implements two functions, see Figure 11, to support this feature
which can be called by share-holders or potential customers.
In order to purchase shares an interested party would send the amount of Ether with

which it wants to buy shares to the fund contracts buyTo function (line 3) or the de-
fault function (which simply redirects to the former function). By observing the function
signature (line 3) we see that it takes a single argument, the to address to which the
shares will be attributed to. In case the default function is called, this address defaults to
the message sender. Furthermore both the withdraw and purchase function signatures
have a number of modifiers(e.g., line 3) appended to them, we recall that modifiers are
functions which get executed before the actual function body. They are mostly one-
liners to check that the input and the fund contract are in a valid state. The modifiers
external and public respectively state that the function can either only be called
by external addresses or by external addresses and internal functions. The three func-
tions hasToken, priceSet and whenNotPaused check the fund contract’s state.
For a successful purchase the fund has to be correctly initialized with a token and has
to have a set price per token, additionally the fund cannot be paused (covered in Sec-
tion 6.1). Finally notNull makes sure that the address specified to receive the shares
is not the zero address. This is a common design pattern because if a function is acci-
dentally called without adding arguments, it can happen that the function parameters
are filled with zeros which would result in the shares being lost.

In line 5 the value sent with the execution is converted based on the current price of a
share and subsequently in line 6 the purchase fee is subtracted. The current price is split
into numerator and denominator as Solidity does not support floating point numbers.
Once the amount of tokens to create is calculated the fund contract calls the mint
function of the token contract in line 7 and specifies the address to which the newly
minted tokens belong to. If this is successful an event is fired in the following line to
notify any contract listeners.
The withdraw function works similarly, however the message sender can only withdraw
shares/tokens attributed to their address. Instead of sending the value directly with the
transaction, which is not possible for tokens, the sender specifies the amount of tokens
they want to withdraw. After checking if the requestor has the amount of tokens they
want to exchange in line 13, the value is converted to Ether the same way as in the buyTo
function. Lastly, the contract burns the amount of tokens (line 18) and transfers the
appropriate amount of Ether to the receiver in line 19. It can happen that this transaction
fails because the fund contract needs to have sufficient Ether available to liquidate the
shares. In times of high volatility or when a large stakeholder wants to cash out, the
contract might not be able to fulfill the transfer. In this case an event is emitted to
signal the failure in line 22. For fund managers to combat withdrawal failure it can
be necessary to keep direct contact with large stakeholders and make them announce
a large withdrawal. For the case of many small withdrawals an off-chain program can
observe the remaining balance and automatically counteract withdrawals to a certain

1 contract Fund is FundWallet, Pausable {
2 ...
3 function buyTo(address _to) public payable hasToken

whenNotPaused priceSet notNull(_to) {
4 require(msg.value != 0);
5 uint256 convertedValue = msg.value.mul(currentPrice.

numerator).div(currentPrice.denominator);
6 uint256 purchaseValue = convertedValue.mul(PURCHASE_FEE)

.div(100);
7 token.mint(_to, purchaseValue);
8 emit Purchase(msg.sender, _to, purchaseValue, msg.value)

;
9 }

10
11 function withdrawTo(address _to, uint256 _value) external

hasToken whenNotPaused priceSet notNull(_to) {
12 require(_value != 0);
13 require(token.balanceOf(msg.sender) >= _value);
14 address requestor = msg.sender;
15 uint256 convertedValue = currentPrice.denominator.mul(

_value).div(currentPrice.numerator);
16 uint256 withdrawValue = convertedValue.mul(WITHDRAW_FEE)

.div(100);
17 if (address(this).balance >= withdrawValue) {
18 token.burn(requestor, _value);
19 _to.transfer(withdrawValue);
20 emit Withdrawal(requestor, _to, _value,

withdrawValue);
21 } else {
22 emit FailedWithdrawal(requestor, _to, _value,

withdrawValue);
23 }
24 }
25 ...
26 }

Fig. 11: Withdrawal and purchase functions of the investment fund.

extend by automatically sending Ether from other internal wallets if the balance gets
too low.

Token creation and burning While the customers only interact with the fund contract,
the minting and liquidating of shares/tokens happens in the token contract. We already
discussed the basics of tokens in Section 2.2. A mintable token has no fixed total supply
by design and should have defined methods on how new tokens can enter circulation.
In the case of this investment fund, the mint function of the token in Figure 12 is only
callable by its owner, the fund contract, which is only calling the mint function in the
purchase function.
In line 3 the minting process takes as an input the amount of tokens to mint and the
address to which the tokens will be minted to. Next, in lines 4 and 5, the total supply
and the balance of the receiver is increased accordingly. Lastly two events are fired in
lines 6 and 7 which both signalize the same minting process, because there is no clear
standard as to which event should be used.

1 contract MintableToken is StandardToken, Ownable {
2 ...
3 function mint(address _to, uint256 _amount) onlyOwner

canMint public {
4 totalSupply_ = totalSupply_.add(_amount);
5 balances[_to] = balances[_to].add(_amount);
6 Mint(_to, _amount);
7 Transfer(address(0), _to, _amount);
8 }
9 ...

10 }

Fig. 12: Example of a simple mint function of a mintable ERC20 token.

The burn function in Figure 13 is not standard for ERC20 tokens because it allows
the owner to burn tokens from any account. This can pose a security issue if the owner
of the tokens is not a clearly defined and well tested smart contract. The burning of
tokens works similarly to the minting of new tokens. After checking that the account
the tokens should be burned from has enough of them in line 6, the total supply and the
balance of the corresponding account are reduced in lines 8 and 7. Again two events
are emitted in lines 9 and 10 to make sure that the action gets picked up by all token
listeners.

Multi-signature operations As we discuss in Section 6.1, the operator contract is used
as a multi-signature contract for the fund contract. It uses an array of different owners,
split between internal owners and trust parties, to sign any transaction for the invest-
ment fund. Depending on the action a different amount of signatures might be needed.

1 contract FundToken is MintableToken {
2 ...
3 function burn(address _holder, uint256 _value) external

onlyOwner
4 {
5 require(_holder != address(0));
6 require(_value <= balances[_holder]);
7 balances[_holder] = balances[_holder].sub(_value);
8 totalSupply_ = totalSupply_.sub(_value);
9 emit Burn(_holder, _value);

10 emit Transfer(_holder, address(0), _value);
11 }
12 ...
13 }

Fig. 13: Burn function adapted for the ERCFund.

These signatures are created off-chain and are all sent within a single transaction which
reduces transaction cost.

The function verifyHotAction in Figure 14 is used to check signatures for
methods which only require signatures from internal owners. Within the code such an
action is often referred to as a hot action as it can be performed on the fly. This function
is called at the very beginning of functions which require the signatures of internal
owners only, for example a price update. As an input in line 3 the three signature values
v, r and s from the Elliptic Curve Digital Signature Algorithm (ECDSA) [51] are given
which is the standard signature algorithm for the Ethereum blockchain and many others.
Additionally a prehash value is given: This value is created in the caller function and is
a hash of all relevant details of the execution of the function. We will see an example of
this later on, but all prehashes follow the same format:

fund contract address+ action identifier + function parameters+ nonce

The fund contract address is simply the address where the fund contract is deployed at
and is necessary to uniquely define the recipient of the signature. Every function exe-
cutable via the operator class has a defined action identifier which is used to attribute the
signature to a certain action. The function parameters include all necessary information
needed for the execution, such as the new price of a share.
Lastly an important addition is a unique cryptographic nonce. Normally a nonce is a
pseudo-random number created by a program or protocol to avoid external parties from
guessing or calculating it and reducing possible attack vectors. In a deployed smart
contract on the blockchain this is not possible because all variables of the contract are
publicly visible, including the cryptographic nonce. Even though the nonce is publicly
available it still serves an important purpose: It prevents the execution of replay attacks.
A replay attack describes the attack of a third party maliciously executing a function
with previous parameters repeatedly. This attack is highly relevant for any smart con-

1 contract FundOperator {
2 ...
3 function _verifyHotAction(uint8[] _sigV, bytes32[] _sigR,

bytes32[] _sigS, bytes32 _preHash) view internal {
4 require(_sigV.length >= hotThreshold);
5 require(_sigR.length == _sigS.length && _sigR.length ==

_sigV.length);
6 bytes memory prefix = "\x19Ethereum Signed Message:\n32"

;
7 bytes32 txHash = keccak256(prefix, _preHash);
8
9 address lastAdd = 0;

10 for (uint256 i = 0; i < hotThreshold; i++) {
11 address recovered = ecrecover(txHash, _sigV[i],

_sigR[i], _sigS[i]);
12 require(recovered > lastAdd);
13 require(isHotAccount[recovered]);
14 lastAdd = recovered;
15 }
16 }
17 ...
18 }

Fig. 14: Signature checking function of the Fund Operator class for a hot action.

tract using off-chain signatures, because once the transaction is published all signatures
are visible to all participants of the blockchain. Without the addition of a nonce which
increases after every successful transaction an attacker could reuse the signatures to
disrupt the management of the investment fund.

Let us jump back to the code of the verifyHotAction function. Firstly, the input
parameters are checked if they contain the appropriate amount of signatures in lines 4
and 5. The hotThreshold variable is set at contract creation and decides how many
signatures are needed for a hot action. Secondly the prehash is transformed in line 7
to fit the Ethereum signature standard [65], for this a static prefix is prepended and the
resulting string is hashed once more.
As the last step, starting with line 10, the function iterates over all given signatures and
checks their correctness. The built-in ecrecover function takes as an input a message
and a signature and recovers which address has signed the message to produce the given
signature. Afterwards it is checked if this signature is actually an internal owner (also
called hot account) of the operator contract. All signatures are checked in a loop which
restricts the addresses to be strictly increasing. This is simply an efficient way to make
sure that the signatures do not contain any duplicates (as every signer has to be unique).

Moving funds As an actively managed fund, one of the core features is the trading
and moving of currency. We have already discussed that the investment fund can man-
age an arbitrary number of wallets which we call the wallet-layer. However most of the
logic for handling many different wallets and different types of wallets happens in the
operator-layer.
The operator smart contract saves a list of three different types of wallets: Hot wallets,
trusted wallets and cold wallets. Hot wallets are internal wallets which are readily ac-
cessible and can be used at any time. It is possible to create transactions from them in
a matter of seconds. Trusted wallets are external wallets which represent components
with which the investment fund regularly interacts with and trusts. Most importantly ex-
changes fall in this category, but it can also include wallets to collect fees for example.
Cold wallets require a special private key to unlock which is stored on a device which
is not connected to the internet. How this works is covered in Section 6.2.

Two separate functions are included in the fund operator contract, the
requestEtherTransfer and the requestTokenTransfer which are used to
initiate either an Ether transfer or token transfer respectively. Their implementations are
similar, here we take a look at how a token transfer is executed in Figure 15.
First of all, like in all methods, the signatures are checked for validity in line 5. For
transfers a special method is used to implement the circle of trust feature covered in
Section 6.2. The signature of this method has to include the type of token, the sender
and the recipient in addition to the standard parameters. After verifying the signatures,
the fund contract in Figure 16 is called to execute the transfer and emit an event. The
token transfer method in the fund contract only acts as a middle-layer and directly
relays the transfer to the wallet from which the tokens are supposed to be transferred
from. Then in the wallet codein Figure 17, the token transfer is finally forwarded to

1 contract FundOperator {
2 ...
3 function requestTokenTransfer(uint8[] _sigV, bytes32[] _sigR

, bytes32[] _sigS, ERC20 _token, FundWallet _from,
address _to, uint256 _value) external hasFund {

4 bytes32 preHash = keccak256(this, int256(Action.
TokenTransfer), _token, _from, _to, _value, nonce);

5 _verifyTransfer(_sigV, _sigR, _sigS, preHash, _from, _to
, _value);

6
7 fund.moveTokens(_token, _from, _to, _value);
8 emit TokenTransferAuthorized(address(_token), _from, _to

, _value);
9 }

10 ...
11 }

Fig. 15: Token transfer function of the fund operator contract.

1 contract Fund is FundWallet, Pausable {
2 ...
3 function moveTokens(ERC20 _token, FundWallet _from, address

_to, uint256 _value)
4 public
5 onlyOwner
6 {
7 _from.sendTokens(_token, _to, _value);
8 emit TokensMoved(address(_token), _from, _to, _value);
9 }

10 ...
11 }

Fig. 16: Token transfer function of the fund contract.

1 contract FundWallet is Ownable {
2 ...
3 function sendTokens(ERC20 _token, address _to, uint256

_value)
4 public
5 onlyOwnerOrInternal
6 notNull(_to)
7 {
8 require(_value > 0);
9 require(_token.transfer(_to, _value));

10 emit TokensSent(_token, _to, _value);
11 }
12 ...
13 }

Fig. 17: Send tokens function of the wallet contract.

the token contract itself. It is checked if the token transfer is successful and then the
execution completes.

Cold-wallet support Cold-wallet is a term for a wallet which is exclusively accessible
by an address of which the private key was never stored on a device with internet con-
nectivity. By keeping the private key completely separated from the internet, it makes it
impossible for malicious hackers to steal it digitally. Most big exchanges keep a large
percentage of their crypto-holdings on cold-wallets as a measure of security.
The implementation of cold-wallets happens strictly on the operator-layer. Cold-wallets
are saved as a separate contract variable which maps the address of a cold wallet to the
address which can unlock the wallet. This implementation is slightly different from
other cold-wallets because the cold-wallet is a deployed smart contract. More com-
monly cold-wallets are simple accounts which means that the funds are stored by the
address of which the private key is inaccessible. However, in order to unlock the smart
contract a separate account is needed. This account is technically the one which is cold
(never connected to the internet) while the smart contract holding the address is de-
ployed live. We do not cover the code for cold-wallet support explicitly here as it is
similar to the verifyTransfer function covered later in Figure 18, however all code is
available on Github [60].
The difference between accessing cold-wallets and hot-wallets (private keys for these
wallets are not separated from the internet) in the operator contract is rather small be-
cause the above described implementation for off-chain signatures makes it simple to
use cold-keys. In addition to the usual signatures, a signature from the appropriate cold-
key locking the cold-wallet is appended (which can be created on the isolated device).
If this key matches the cold-wallet, the transaction is allowed to happen.

Circles of trust In Section 6.2 we have already partly discussed how to access internal
wallets and how to send Ether or tokens from them. The circle of trust feature describes

the separation of possible recipients of transfers and is covered in Section 3.5. Namely
its purpose is to introduce a safe and trusted ecosystem with which the investment fund
can interact at any time without having to worry about accidental transactions. Addi-
tionally it provides fund managers with the possibility to offer a layer of security for
stakeholders because it can prevent the theft of funds.

This is possible because for certain actions in the fund, signatures from a list of third
parties have to be provided. As mentioned before these can be e.g., large stakeholders.
At first, all usual business partners and external wallets have to be explicitly added with
the trust parties’ consent. Only after these wallets are added as trusted can they be used
in the day to day business of fund management. To understand why this is the case we
have to take a look into the verifyTransfer method in Figure 18 which is called
to verify every transfer of the investment fund.
In line 4 it is checked if the from wallet is a valid, internal wallet. For this it has to be
either a hot or cold wallet. After checking that some value should be sent in line 5, the in
Section 6.2 discussed verifyHotAction function is called. This function will run at some
point during every possible action in the operator class. If the sender is a cold wallet,
a separate segment starting in line 7 is entered where the last entry of the signatures is
verified against the address of the cold wallet using a mapping securing all cold wallets
with a dedicated cold key.
Lastly, it is checked in line 12 whether the recipient of the transaction is a trusted wal-
let, if this is not the case, trust party signatures are checked in addition to the usual
signatures. The verifyTrustPartyAction method has the the same functionality
as the verifyHotAction function, the signatures are simply matched against a different
mapping. Also as with all other executions, the nonce is increased in line 15 to prohibit
replayability.

1 contract FundOperator {
2 ...
3 function _verifyTransfer(uint8[] _sigV, bytes32[] _sigR,

bytes32[] _sigS, bytes32 _preHash, FundWallet _from,
address _to, uint256 _value) internal {

4 require(isHotWallet[_from] coldStorage[_from] != 0);
5 require(_value > 0);
6 _verifyHotAction(_sigV, _sigR, _sigS, _preHash);
7 if (coldStorage[_from] != 0) {
8 require(_sigR.length == _sigS.length && _sigR.length

== _sigV.length);
9 uint256 coldKeyPos = _sigV.length - 1;

10 _verifyColdStorageAccess(_sigV[coldKeyPos], _sigR[
coldKeyPos], _sigS[coldKeyPos], _preHash, _from)
;

11 }
12 if (!isTrustedWallet[_to]) {
13 _verifyTrustPartyAction(_sigV, _sigR, _sigS,

_preHash);
14 }
15 nonce = nonce.add(1);
16 }
17 ...
18 }

Fig. 18: Function of the operator contract used to verify token and Ether transfers.

7 Conclusion

Blockchain technology has enabled many traditional fields to utilize it for new, unique
use cases, the investment field is no exception to this. The last two years have brought
a lot of attention to the possibility of investing in cryptocurrency, but brought only few
services which help non-technical customers invest easily. In this paper we present a
novel semantics based on the Ethereum network with a strong focus on smart contract
interactions. Furthermore we developed a fully-fledged investment fund software built
entirely on the Ethereum blockchain using smart contracts and provide motivation on
how our semantics could ensure security properties thereof.
The semantics is based on a paper by Grishchenko et al. [48] and represents the blockchain
in terms of global state information. However, changes in the global state are repre-
sented using a big-step semantics which corresponds to the high-level execution of a
transaction and does not consider execution on an EVM bytecode level. Smart con-
tracts are defined by clearly separating immutable and mutable information. They con-
sist of fixed behavior for all functions, a set of contract variables (persistent storage) and
their balance. Additionally the semantics allows for the execution of a smart contract
function to execute another transaction (i.e., an internal transaction) which makes the
semantics suitable for representing complex executions ranging over multiple different
smart contracts. We use the semantics to model common smart contract designs, such as
multi-signature wallets and tokens, and demonstrate how their functions can be trans-
lated into the semantics. Finally, the multi-signature wallet is used to formally verify a
desired property of the investment fund which can prevent currency from being stolen.
In the second part of the thesis the implementation of the investment fund ERCFund
[60] is covered. ERCFund makes it possible to invest into an actively managed portfo-
lio of ERC20-Tokens and Ether by introducing an on-demand minted and burned token
as the medium for shares in the fund. Moreover, customers can buy shares/tokens at
any time, the fund offers cold-wallet support and has a significantly lower gas cost than
traditional multi-signature wallets by utilizing off-chain signatures. Design choices are
discussed in detail and justified based on issues like blockchain related attack vectors
and current market trends. The paper offers an in-depth coverage of the most crucial
parts of the smart contracts and gives insight into state-of-the-art smart contract design.
While the blockchain sector is still young, we believe it is essential to make first steps
to allow traditional financial institutions to adapt to this new environment and conse-
quently accelerate growth. Currently a big deterrent is the volatility and lacking security
features of blockchains and smart contracts [67], [39] which marks blockchain itself
still as a venturesome investment field. This paper works towards solving these issues
by providing a user-centric semantics for smart contract verification and a state-of-the-
art, easily usable and secure investment fund software.

References

1. Bitcoin block explorer - blockchain. https://blockchain.info/. Accessed: 2018-
04-25.

2. Bitcoin energy consumption index. https://digiconomist.net/
bitcoin-energy-consumption. Accessed: 2018-04-25.

3. Bitcoin hashrate distribution. https://blockchain.info/pools. Accessed: 2018-
04-26.

4. Coinist 50 biggest icos. https://www.coinist.io/biggest-icos-chart/. Ac-
cessed: 2018-05-04.

5. Cost of a 51% attack. https://gobitcoin.io/tools/cost-51-attack/. Accessed: 2018-04-26.
6. Crypto20: The first tokenized cryptocurrency index fund - fund value. https://

crypto20.com/en/. Accessed: 2018-05-07.
7. Cryptocurrency market capitalizations — coinmarketcap. https://coinmarketcap.

com/. Accessed: 2018-05-07.
8. Double-spending types of attacks. https://en.bitcoinwiki.org/wiki/

Double-spending#Types_of_attacks. Accessed: 2018-05-01.
9. Ethereum multisignature wallet. https://github.com/gnosis/

MultiSigWallet. Accessed: 2018-05-10.
10. Ethereum problems. https://github.com/ethereum/wiki/wiki/Problems.

Accessed: 2018-05-01.
11. Etherscan: The ethereum block explorer. etherscan.io. Accessed: 2018-03-26.
12. Etherscan token tracker. https://etherscan.io/tokens. Accessed: 2018-05-07.
13. Gbtc - bitcoin investment trust - invest in bitcoin with grayscale. https://grayscale.

co/bitcoin-investment-trust/#market-performance. Accessed: 2018-05-
05.

14. Ico drops - ended ico - bancor. https://icodrops.com/bancor/. Accessed: 2018-
05-04.

15. Ico drops - ended ico - filecoin. https://icodrops.com/filecoin/. Accessed:
2018-05-04.

16. Multi-sig wallet contract code. Ethereum contract at ad-
dress 0x0af5f9a338870073707939b39A0ea3eBC0bAD00b. Source
code visible at https://etherscan.io/address/
0x0af5f9a338870073707939b39a0ea3ebc0bad00b#code. Code of early
version of Parity’s multisig-wallet including major bug. Accessed: 2018-05-03.

17. Neo white paper. http://docs.neo.org/en-us/. Accessed: 2018-01-14.
18. Neo white paper. https://github.com/neo-project/docs/blob/master/en-us/index.md. Ac-

cessed: 2018-04-26.
19. Notice of exempt offering of securities, issuer: Ton issuer inc. https://www.sec.gov/

Archives/edgar/data/1729650/000095017218000030/xslFormDX01/
primary_doc.xml. First Notice of TON Investment, Accessed: 2018-04-05.

20. Notice of exempt offering of securities, issuer: Ton issuer inc. https://www.sec.gov/
Archives/edgar/data/1729650/000095017218000060/xslFormDX01/
primary_doc.xml. Second Notice of TON Investment, Accessed: 2018-04-05.

21. Official go implementation of the ethereum protocol. https://github.com/
ethereum/go-ethereum. Accessed: 2018-04-19.

22. On the parity multi-sig wallet attack. https://medium.com/blockcat/on-the-parity-multi-sig-
wallet-attack-83fb5e7f4b8c. Accessed: 2018-05-03.

23. Openzeppelin - standard erc20 token. https://github.com/OpenZeppelin/
openzeppelin-solidity/blob/master/contracts/token/ERC20/
StandardToken.sol. Accessed: 2018-05-05.

http://docs.neo.org/en-us/
https://grayscale.co/bitcoin-investment-trust/#market-performance
https://www.coinist.io/biggest-icos-chart/
https://github.com/gnosis/MultiSigWallet
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/gnosis/MultiSigWallet
https://digiconomist.net/bitcoin-energy-consumption
https://etherscan.io/tokens
https://blockchain.info/pools
https://en.bitcoinwiki.org/wiki/Double-spending#Types_of_attacks
https://blockchain.info/
https://en.bitcoinwiki.org/wiki/Double-spending#Types_of_attacks
https://www.sec.gov/Archives/edgar/data/1729650/000095017218000030/xslFormDX01/primary_doc.xml
https://www.sec.gov/Archives/edgar/data/1729650/000095017218000060/xslFormDX01/primary_doc.xml
https://digiconomist.net/bitcoin-energy-consumption
etherscan.io
https://etherscan.io/address/0x0af5f9a338870073707939b39a0ea3ebc0bad00b#code
https://icodrops.com/bancor/
https://www.sec.gov/Archives/edgar/data/1729650/000095017218000060/xslFormDX01/primary_doc.xml
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol
https://crypto20.com/en/
https://github.com/ethereum/wiki/wiki/Problems
https://www.sec.gov/Archives/edgar/data/1729650/000095017218000030/xslFormDX01/primary_doc.xml
https://coinmarketcap.com/
https://etherscan.io/address/0x0af5f9a338870073707939b39a0ea3ebc0bad00b#code
https://icodrops.com/filecoin/
https://www.sec.gov/Archives/edgar/data/1729650/000095017218000030/xslFormDX01/primary_doc.xml
https://coinmarketcap.com/
https://www.sec.gov/Archives/edgar/data/1729650/000095017218000060/xslFormDX01/primary_doc.xml
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol
https://grayscale.co/bitcoin-investment-trust/#market-performance
https://crypto20.com/en/
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol

24. Openzeppelin safemath. https://github.com/OpenZeppelin/
openzeppelin-solidity/blob/master/contracts/math/SafeMath.
sol. Accessed: 2018-05-02.

25. Oraclize - blockchain oracle service, enabling data-rich smart contracts. http://www.
oraclize.it/. Accessed: 2018-05-05.

26. Secure bitcoin storage - coinbase. https://www.coinbase.com/security?
locale=en. Accessed: 2018-05-10.

27. Soldity v0.4.11 common patterns withdrawal from contracts. https://
solidity.readthedocs.io/en/v0.4.11/common-patterns.html#
withdrawal-from-contracts. Accessed: 2018-05-02.

28. Solidity version 0.4.23. https://solidity.readthedocs.io/en/v0.4.23/.
Accessed: 2018-04-29.

29. Total market capizalization. https://coinmarketcap.com/charts/. Accessed:
2018-04-29.

30. What are atomic swaps? https://www.cryptocompare.com/coins/guides/
what-are-atomic-swaps/. Accessed: 2018-05-05.

31. What is the raiden network? https://raiden.network/101.html. Accessed:
2018-07-24.

32. civic whitepaper. https://tokensale.civic.com/
CivicTokenSaleWhitePaper.pdf, 2017. Accessed: 2018-07-24.

33. Gavin Andresen. Bitcoin improvement proposal: 50. https://github.com/
bitcoin/bips/blob/master/bip-0050.mediawiki, 2013. Accessed: 2018-05-
01.

34. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi,
Georges Gonthier, Nadim Kobeissi, A Rastogi, T Sibut-Pinote, N Swamy, and S Zanella-
Beguelin. Formal verification of smart contracts. In Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security-PLAS16, pages 91–96, 2016.

35. John Biggs. Exit scammers run off with $ 660 million in
ico earnings. https://techcrunch.com/2018/04/13/
exit-scammers-run-off-with-660-million-in-ico-earnings/. Ac-
cessed: 2018-05-08.

36. Vitalik Buterin. Comment on intial minimum stake for proof of stake pro-
tocol. https://www.reddit.com/r/ethereum/comments/6tj5d0/any_
updates_on_ethereums_pos/dllfyd1/. Accessed: 2018-04-26.

37. Vitalik Buterin. Ethereum 2.0 mauve paper. https://docs.google.com/
document/d/1maFT3cpHvwn29gLvtY4WcQiI6kRbN_nbCf3JlgR3m_8/edit.
Accessed: 2018-04-26.

38. Vitalik Buterin. Hard fork completed. https://blog.ethereum.org/2016/07/
20/hard-fork-completed/. Accessed: 2018-05-03.

39. Vitalik Buterin. Security alert [11/24/2016]: Consensus bug in geth
v1.4.19 and v1.5.2. https://blog.ethereum.org/2016/11/25/
security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/,
2016. Accessed: 2018-05-01.

40. Vitalik Buterin et al. A next-generation smart contract and decentralized application plat-
form. white paper, 2014.

41. Dimitri Chupryna, Maksym Muratov, Konstantin Pysarenko, and Ruslan Gavrylyuk.
Taas: Token-as-a-service. https://bravenewcoin.com/assets/Whitepapers/
TaaS-whitepaper.pdf, 2017. Accessed: 2017-10-18.

42. CodeTract. Inside an ethereum transaction. https://medium.com/@codetractio/
inside-an-ethereum-transaction-fa94ffca912f, 2017. Accessed: 2018-
04-25.

http://www.oraclize.it/
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://tokensale.civic.com/CivicTokenSaleWhitePaper.pdf
https://medium.com/@codetractio/inside-an-ethereum-transaction-fa94ffca912f
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://solidity.readthedocs.io/en/v0.4.23/
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https://www.coinbase.com/security?locale=en
https://bravenewcoin.com/assets/Whitepapers/TaaS-whitepaper.pdf
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://www.cryptocompare.com/coins/guides/what-are-atomic-swaps/
https://techcrunch.com/2018/04/13/exit-scammers-run-off-with-660-million-in-ico-earnings/
https://solidity.readthedocs.io/en/v0.4.11/common-patterns.html#withdrawal-from-contracts
https://solidity.readthedocs.io/en/v0.4.11/common-patterns.html#withdrawal-from-contracts
https://medium.com/@codetractio/inside-an-ethereum-transaction-fa94ffca912f
https://coinmarketcap.com/charts/
https://bravenewcoin.com/assets/Whitepapers/TaaS-whitepaper.pdf
https://www.reddit.com/r/ethereum/comments/6tj5d0/any_updates_on_ethereums_pos/dllfyd1/
https://www.coinbase.com/security?locale=en
https://techcrunch.com/2018/04/13/exit-scammers-run-off-with-660-million-in-ico-earnings/
https://www.reddit.com/r/ethereum/comments/6tj5d0/any_updates_on_ethereums_pos/dllfyd1/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://tokensale.civic.com/CivicTokenSaleWhitePaper.pdf
https://docs.google.com/document/d/1maFT3cpHvwn29gLvtY4WcQiI6kRbN_nbCf3JlgR3m_8/edit
https://solidity.readthedocs.io/en/v0.4.11/common-patterns.html#withdrawal-from-contracts
http://www.oraclize.it/
https://docs.google.com/document/d/1maFT3cpHvwn29gLvtY4WcQiI6kRbN_nbCf3JlgR3m_8/edit
https://raiden.network/101.html
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https://www.cryptocompare.com/coins/guides/what-are-atomic-swaps/
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol

43. Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi. Step by
step towards creating a safe smart contract: Lessons and insights from a cryptocurrency lab.
In International Conference on Financial Cryptography and Data Security, pages 79–94.
Springer, 2016.

44. ”devops199”. anyone can kill your contract. https://github.com/paritytech/
parity/issues/6995. Accessed: 2018-05-03.

45. John R Douceur. The sybil attack. In International workshop on peer-to-peer systems, pages
251–260. Springer, 2002.

46. Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-output functions.
Technical report, 2015.

47. Victor Fleischer. Two and twenty: Taxing partnership profits in private equity funds. NYUL
Rev., 83:1, 2008.

48. Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic framework for the
security analysis of ethereum smart contracts. arXiv preprint arXiv:1802.08660, 2018.

49. Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky,
Mooly Sagiv, and Yoni Zohar. Online detection of effectively callback free objects with
applications to smart contracts. Proceedings of the ACM on Programming Languages,
2(POPL):48, 2017.

50. Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian,
Dwight Guth, and Grigore Rosu. Kevm: A complete semantics of the ethereum virtual ma-
chine. Technical report, 2017.

51. Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature algo-
rithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

52. Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: Analyzing safety of
smart contracts. NDSS, 2018.

53. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. https://eprint.iacr.org/
2016/889.pdf, 2017. Accessed: 2018-03-29.

54. Felix Lau, Stuart H Rubin, Michael H Smith, and Ljiljana Trajkovic. Distributed denial of
service attacks. In Systems, Man, and Cybernetics, 2000 IEEE International Conference on,
volume 3, pages 2275–2280. IEEE, 2000.

55. Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 254–269. ACM, 2016.

56. Maker. The dai stablecoin system. https://makerdao.com/whitepaper/. Ac-
cessed: 2018-04-29.

57. Ralph C Merkle. A certified digital signature. In Conference on the Theory and Application
of Cryptology, pages 218–238. Springer, 1989.

58. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
59. OpenZeppelin. Simple savings wallet. https://github.com/OpenZeppelin/

openzeppelin-solidity/blob/master/contracts/examples/
SimpleSavingsWallet.sol. Accessed: 2018-04-29.

60. Jakob Schneider. Ercfund an open-ended investment fund implementation on the ethereum
blockchain for managing erc20 tokens. https://github.com/ScJa/ercfund. Ac-
cessed: 2018-05-24.

61. Daniel Schwartzkopff, Schwartzkopff Luke, Raymond Botha, Matthew Finlayson, and Frans
Cronje. Crypto20: The first tokenized cryptocurrency index fund. https://static.
crypto20.com/pdf/c20-whitepaper.pdf, 2017. Accessed: 2018-01-14.

62. SECG SEC. 2: Recommended elliptic curve domain parameters. Standards for Efficient
Cryptography Group, Certicom Corp, 2000.

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/examples/SimpleSavingsWallet.sol
https://makerdao.com/whitepaper/
https://static.crypto20.com/pdf/c20-whitepaper.pdf
https://eprint.iacr.org/2016/889.pdf
https://eprint.iacr.org/2016/889.pdf
https://github.com/paritytech/parity/issues/6995
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/examples/SimpleSavingsWallet.sol
https://github.com/ScJa/ercfund
https://github.com/paritytech/parity/issues/6995
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/examples/SimpleSavingsWallet.sol
https://static.crypto20.com/pdf/c20-whitepaper.pdf

63. Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract intermediate-level
language. arXiv preprint arXiv:1801.00687, 2018.

64. Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. Semantics-
based program verifiers for all languages. In ACM SIGPLAN Notices, volume 51, pages
74–91. ACM, 2016.

65. Martin Holst (@holiman) Swende. Erc: Signed data standard. https://github.com/
ethereum/EIPs/issues/191, 2016. Accessed: 2018-04-12.

66. Reto Trinkler and Mona El Isa. Melon protocol: A blockchain protocol for digital asset
management. https://github.com/melonproject/paper/blob/master/
melonprotocol.pdf. Accessed: 2018-07-07.

67. Peter Vessenes. Deconstructing theDAO attack: A brief code tour. http://vessenes.
com/deconstructing-thedao-attack-a-brief-code-tour/, 2016. Ac-
cessed: 2018-01-14.

68. Fabian Vogelsteller and Vitalik Buterin. Erc-20 token standard. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-20.md. Accessed: 2018-05-05.

69. Will Warren and Amir Bandeali. 0x: An open protocol for decentralized exchange on the
ethereum blockchain. https://github.com/0xProject/whitepaper/blob/
master/0x_white_paper.pdf, 2017. Accessed: 2018-04-26.

70. Tim M. Zagar, Jani Valjavec, Zenel Batagelj, Ervin U. Kovac, and Ales Lekse.
Iconomi - open fund management plagform to disrup the investment industry.
https://coss.io/documents/white-papers/iconomi.pdf. Accessed:2018-07-07.

71. Vlad Zamfir. Introducing casper ‘the friendly ghost’. Ethereum
Blog URL: https://blog.ethereum.org/2015/08/01/
introducing-casper-friendly-ghost, 2015.

https://github.com/melonproject/paper/blob/master/melonprotocol.pdf
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost
http://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
http://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
https://github.com/0xProject/whitepaper/blob/master/0x_white_paper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/0xProject/whitepaper/blob/master/0x_white_paper.pdf
https://github.com/ethereum/EIPs/issues/191
https://github.com/ethereum/EIPs/issues/191
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/melonproject/paper/blob/master/melonprotocol.pdf

	Introduction
	Related scientific work
	Related products on the market

	Blockchain technology
	Fundamentals
	Smart contract application blockchains
	Blockchain related attack vectors

	Designing an investment fund for the blockchain
	Funding
	Tokens as shares
	Managing multiple currencies
	Possible fee structures
	Security features

	Blockchain semantics
	Design choices
	Preliminaries
	Semantics

	Modelling smart contracts
	Investment fund implementation
	Architecture
	Implementation

	Conclusion

