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Short description

Standard crystallographic approaches to structure solution rely on periodicity
and in consequence infinite extension. If a material is structurally so strongly
uncorrelated that the standard crystallographic methods fail, the nano structure
problem arises. This is true for "nano-structured" materials such as crystalline
nano-particles and amorphous structures. Up to now, despite intense research,
no single agreed-on approach to solve the nano structure problem has been
brought forward. The approaches range from atomistic simulations over various
techniques of microscopy to the investigation of the atom pair distribution
function (PDF) - which recently is experiencing an ever increasing publicity -
and a combination of those approaches. A PDF is obtained by sine-Fourier
transformation from corrected total scattering data of powders and contains
information on all atom-to-atom distances in a material.

A big part of this work is dedicated to the critical assessment of experimental
practices for gaining PDFs from total scattering data, i.e. data handling, data
correction or detector image integration procedures. Furthermore, an examina-
tion of the capabilities of PDF analysis on materials with use in sustainable
energy applications was performed. The first material is amorphous SiO2 doped
with TiO2. Its intended application is technical catalysis of organic reactions.
Simulations show a restructuring of the SiO2 matrix around embedded TiO2

particles. The other material is Si nano particles for anode materials in lithium
ion batteries. A comparison of real and reciprocal space Rietveld refinements
was performed and a procedure for the quantification of amorphous contents is
provided.
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Kurzbeschreibung

Die Standardmethoden der Kristallographie beruhen auf der Annahme einer Pe-
riodizität des atomaren Aufbaus des Materials und damit einhergehend dessen
unendlicher Ausdehnung. In nano-strukturierten Materialien, wie Nanoteilchen
oder amorphen Festkörpern, sind diese Voraussetzungen nicht erfüllt, weswegen
das Nanostrukturproblem auftritt. In der Fachliteratur existiert kein einheitlicher
Ansatz zur Lösung dieses Nanostrukturproblems. Von Stuktursimulationen über
Mikroskopie bis zur Analyse der (Atom)paarverteilungsfunktion (PDF, engl.: pair
distribution function), welcher in jüngerer Zeit eine zunehmende Bekanntheit
zuteil wird. Es scheint unerlässlich zu sein, eine Kombination all dieser ver-
fügbaren Verfahren zur Strukturfindung einzusetzen. - Eine PDF wird mittels
Sinus-Fourier-Transformation aus Gesamtröntgenstreuungsdaten (total X-ray
scattering data) gewonnen. Eine ideale PDF enthält Informationen über alle
Atom-Atom-Abstände in einem Material.

Ein Teil dieser Dissertation ist der kritischen Untersuchung experimenteller
Praktiken, die zum Erhalt einer PDF führen, gewidmet. Einen großen Anteil an
der Arbeit ist eine Untersuchung der experimentellen Praktiken die zur PDF
führen: Datenverarbeitung, Datenkorrektur und Integration von Detektorbildern.
Zudem wurde eine Studie zur Praktikabilität der PDF-Analyse anhand von
Besipielen von Materialien für nachhaltige Energieanwendungen angestellt: Ein
Material ist amorphes SiO2, das mit TiO2 versetzt wurde, für den Einsatz in
der technischen Katalyse von organischen Reaktionen. Simulationen zeigen
eine Restrukturierung der SiO2-Matrix um eingebettete TiO2-Teilchen. Zum an-
deren wurden Si-Nanoteilchen für Anodenmaterialien in Lithiumionenbatterien
untersucht. Im Rahmen der Analysen dieses Materials wurde ein Vergleich von
Rietveldverfeinerungen im Realraum und im reziproken Raum angestellt. Außer-
dem wird eine Prozedur zur Bestimmung von amorphen Anteilen beschrieben.
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Nomenclature

〈 〉 symbol to indicate averaging
∗ convolution operator

f(Q) atomic form factor of atom i; it is dimension-
less

F (Q) The crystallographic structure factor. It is a
complex quantity and its modulus is called
the structure or scattering amplitude and the
expression |F (Q)|2 gives the intensity I(Q)

F (Q) The reduced an normailsed structure function
which is transformed into G(R) by sine-FT.
Unfortunately it has he same notation as the
crystallographic structure factor, F (Q)

FT Abbreviation for: Fourier transformation
F Symbol for FT
F−1 Symbol for inverse FT
FS Symbol for sine FT

G(r) [Å-2] PDF, pair distribution function; reduced ra-
dial distribution function. G(r) can be seen
as a derivative of R(r)

I(Q) intensity of the scattered radiation at Q or Q
ki [Å-1] the wave vector which describes the direction

and properties of the incident photons
ko [Å-1] the wave vector which describes the direction

and properties of the scattered photons
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P (r) or P (r) [Å-1] density-density or auto-correlation function;
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they are shifted to the origin of the Patterson
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p(x) [Å-1] total distribution of atoms throughout the
sample

Qbroad [r−1] parameter asserted to account for the influ-
ences of the limited experimental resolution
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ences of the limited experimental resolution
on the PDF
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Qmin [Å-1] lower limit of the FT of the diffractogram to
G(r)

Q [Å-1] Scattering vector; defined by the relation
Q = 2π(Ko − Ki)

Q or |Q| [Å-1] Modulus of the scattering vector Q
ρ0 [distances.Å-3] averaged auto-correlation; in literature tis

quantity is also denoted be the term atom
number density which defines the mean num-
ber of atoms per unit volume at large values
of R

ρ(r) [distances.Å-3] density-density correlation function C(R) from
which the self reference of each atom is sub-
tracted

rij or rij [Å] distance between two atoms xj − xi; it is
also the Patterson vector; its magnitude is
interpreted as a radius r
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S(Q) [au] reduced total scattering structure function (in
some literature given in terms of the classical
scattering of one electron)

S(r) [au] Patterson self-correlation
θ [rad] scattering angle; the theoretically possible

range is from 0 to 180; due to the experimen-
tal setup this can never be reached

Ti(Q) Debye-Waller factor of atom i (see section
1.2.1)

W (r) rectangle function the PDF is multiplied with
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xi [Å] position vector of atom i
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Introduction

“But finally, of course, small devices are more delicate! (And if they are
not small, why bother?) Why do we want smaller devices? So that we
can make many more of them, within a given system. That means it
won’t be enough to have the smaller devices as reliable as the larger
ones. They have to be more reliable. [...]
Pessimism is, unfortunately, unpopular. But excessive optimism can
only cause a premature and excessive counter-reaction when the
optimistic promises are not speedily fulfilled.”

— Rolf Landauer (1989), ‘Nanostructure physics: fashion or depth’

The initial aim of this thesis was to characterise nano-particles for application in
batteries by means of analysis of the pair distribution function (PDF) obtained
from X-ray diffraction data. This task was part of a project whose aim was to
develop a battery with all its components, the LixSi-project. The LixSi-project
was a joint project between TU Wien, PLUS (Paris-Lodron-University Salzburg),
CEST (Competence center for Electrochemical Surface Technology) and AIT
(Austrian Institute of Technology). The main motivation for this project was that
the amount of consumed (electrical) energy is increasing. This is due to the
fact of an ever increasing number of electrical devices in use. One important
facet of those devices are devices in connection with individual mobility. The
importance of electricity driven devices for mobility is amplified by the required
exchange of conventional combustion machines by alternatives. - While there is
a general necessity of reducing the overall energy-consumption and building
much more efficient devices, another point is to store unused energy as often
energy that is produced is not immediately used. One logical consequence is
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the development of cheap and green materials with long-time cycle stabilities,
high energy storage capacities and little energy losses.

A big part of the project was dedicated to the development of a new anode
material for use in rechargeable batteries made from Silicon and its structural
characterization. Silicon was chosen because it forms an alloy with a theoretical
mass storage capacity of lithium that is six times higher than that of graphite
which is used nowadays in many battery-applications (Li44Si10 vs LiC6; Tarascon
and Armand (2001)). During formation of the LixSi-compound, a volume expan-
sion of multiple times the initial volume can occur (Mukhopadhyay and Sheldon
2014). This renders batteries that apply this material mechanically unstable
and thereby unusable. Going to "nano-structured" materials may present the
following opportunities: They can be embedded in a compressible matrix that is
able to buffer the volume expansion. Possibly they are amorphous or differently
structured or small enough in order not to form thermodynamic stable or stoi-
chiometric compounds (Bourderau et al. 1999). This allows charging/discharging
without destruction of the battery. Owing to a too early end of the project and
other obstacles, some results of this thesis are still connected to batteries indeed
but its focus lies on instrumental and methodological aspects of X-ray methods
connected with the analysis of "nano-materials" rather than on the process of
finding a good material.

The method of PDF-analysis was chosen as it is marketed as a very promising
method for investigation of amorphous materials and small particles. In a nutshell,
an ideal pair-distribution-function (PDF) gives the 1D-projection of the total
information of all bond distances occurring in a given sample under given physical
conditions such as temperature, pressure, magnetic field, etc. It is a weighted
distribution of all bond distances occurring in a material. Each distance is
weighted with the number of electrons of the contributing atoms. The PDF
is obtained by a (real-valued) sine Fourier transformation of corrected one-
dimensional scattering data. This means a shift in domain from reciprocal space
to real space. The pair-distribution-function can be compared with a model in
order to find out which atomic arrangements suit the PDF best.

The thesis is written from the point of view that everything is an empirical
finding. - Traditional approaches might state that it is only a careful preparation
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of the sample that ensure high data quality, but calibration procedures, evaluation
of instrumental parameters, data reduction and physical corrections are by no
means less experimental than arriving at a "well prepared" sample. Some even
might go as far as to say that even analysis and simulation are part of the
experiment as they depend on a theoretician’s expertise concerning the choice of
parameters (Collins 1994; Godin and Gingras 2002; Kennefick 2000). - General
aspects and peculiarities of the PDF-method are discussed in the chapters one
and two. Theoretical and observed limitations give motivation for approaching a
profound analysis of current practices, strengths and obstacles in data-handling
in chapters three, four and five. A discussion of important aspects concerning
the experimental procedures relevant to this work is given there, accompanied
by remarks on data quality as well as data collection. As many materials are
polyphasic like composites and contain amorphous contents to provide a proper
matrix, the analysis of ’nano-structured’ mixtures is given by a model system
in chapter six. The thesis ends with an investigation of the capabilities of
PDF-analysis of particles.

Vienna, August 2018
Philipp Hans
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Chapter 1

The pair distribution function (PDF)
and its relation to matter

1.1 Some important facts

In the last years, the abbreviation PDF could be established in the crystallo-
graphic community and beyond, next to other meanings, as the pair distribution
function for the real-space-analysis of structures. The (1D-)PDF, which this
work focusses on, is a one-dimensional function and is extracted from X-ray
total scattering data from powders. The PDF is a variation of the so called
density-density-correlation function or autocorrelation function of a material
(Chung and Thorpe 1997). It gives information on the totality of electron-electron
distances in a probed specimen. Because in a one-dimensional description each
distance-vector becomes a scalar, the distance distribution is referred to by a
radius r. The PDF is often referred to as G(r) (Neder and Proffen 2008, p. 43).

What should be mentioned at this point is that there are various definitions
and correspondingly notations of radial distribution functions such as the PDF.
They have their origin in different communities, such as people working with
neutrons, x-rays or dealing with particular classes of structures, and one should
know what is dealt with where, how to relate the functions and when which
is useful (for details see Keen (2001)). This is a reason why the mathematical
formalisms in this chapter are stated in a rather general way. In all cases, not
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Chapter 1 The pair distribution function (PDF) and its relation to matter

only in strongly dynamic systems like gases or liquids we deal with a time
averaged quantity (see e.g. Van Hove 1958).

As this work is about analyses of PDFs gained from X-ray (total) scattering
data, a definition of scattering and relevant terminology is given straight ahead.
Scattering is the phenomenon of radiation (X-ray light, neutrons, electrons..)
getting redistributed by an irradiated specimen (arrangement of atoms). The
angular dependence of the scattered light is measured and the angle between
the wave vectors of incident and scattered radiation, k0 and k respectively, is
denominated 2θ. Equation 1.1 defines the scattering vector and parameter Q
and Q. They are given in [Å-1] and give the scattering angle normalised on λ

to make scattering experiments, which were performed with different radiation,
relatable. The choice of the parameter definition is dependent on the field of
application and also community based. The parameter Q is widely used in the
PDF-literature.

Q = |Q| = 2π|k− k0| = 2π

(
2 sin(θ)

1

λ

)
(1.1)

Due to the atomic composition of matter it is legitimate to group locally
dense arrangements of electrons into specific atoms ai centered at positions
xi. In consideration of the atomicity of matter, it is clear that (in addition to
the internal structure of the atoms) some structural features must remain even
in the most unordered or distorted arrangements of matter (i.e. gases). The
distribution of atoms throughout the sample can be given in terms of the atom
distribution function p(x), which is defined in terms of an arbitrary origin. In our
case, p(x) is defined as a sum of Dirac-delta distributions convoluted with the
electron densities of the individual atoms:

p(x) =
∑

xi

δ(x− xi) ∗ ai (1.2)

δ(x) is defined such that
∫
V
δ(x)dx = 1 if o ∈ V and δ(x) = 0 for whenever

x 6= o. The density-density correlation or auto correlation of p(x) at the point r,

2



Some important facts 1.1

P (r), also known as Patterson function, is defined in equation 1.3. rij = xj − xi
and 〈 〉 denotes a thermal and temporal average.

P (r) =

〈∫
p(x)p(r + x)dx

〉
=
∑

ri

∑
rj

〈wij(r)δ(r− rij)〉 (1.3)

P (r) can be considered to be a vector map of all the pairwise interactions rij
between the atoms in p(x). The lengths and directions of the rij are preserved
but they are translated to a mutual origin, P (0). The weights of the vectors are
proportional by to the product of the electron-densities wij(r) = ZiZj at the tips
of the vectors in p(x) (Bricogne 2010; Chung and Thorpe 1997; Patterson 1935;
Tong et al. 2010). The part of equation 1.3 containing the double sum should be
interpreted only in qualitative terms because atoms have a spatial extension. In
the case of other radiation applied the weighting scheme is analogous.

P (r) can be split into two functions R(r) and S(r). R(r) accounts for the
interatomic vectors r corresponding to the vectors rij and S(r) for the intraatomic
vectors "within" the atoms, corresponding to all distances in the vicinity of rii:

P (r) = R(r) + S(r) (1.4)

If the sample is orientationally averaged, the quantity P (r) becomes a one-
dimensional quantity P (r). A sample is orientationally averaged if it is isotropic,
e.g. a powder of crystals or nano-particles, or amorphous. Then there is a
crystallite (structural element) with every orientation with equal probability.
Because of this, the information of the vectors’ orientations is not evaluable. In
this case, also the vectors r and Q become scalars r and Q respectively. The
same is true for the resulting measurable intensity I(Q) which in turn becomes
I(Q).

Doing so, also R(r) becomes a one-dimensional function: R(r). In this
representation r = |r| can be interpreted as a radius from the origin of the
Patterson map. R(r) can be interpreted then in terms of a radially averaged
correlation function or radial distribution function (RDF). In principle, the notation
for calculation of R(r) being an orientational average (Neder and Proffen 2008) up
to a maximum distance is given by equation 1.5. To eliminate the Q-dependence
of the atomic form factors f(Q) in the experimental data, the f(Q) are divided by
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Chapter 1 The pair distribution function (PDF) and its relation to matter

an average atomic form factor 〈f(Q)〉. In the best case, the numbers of electrons
Z per atom are resembled approximately then. This procedure will be discussed
in more detail in section 2.1.4. In a modeling approach, this approximation should
be accounted for.

R(r) =
1

N

i 6=j∑
i

∑
j

[ZiZjδ(r − rij)] ≈
1

N

i 6=j∑
i

∑
j

[
fi(Q)fj(Q)

〈f(Q)〉2
δ(r − rij)

]
(1.5)

This notation equals the total R(r) being the sum of N partial RDFs Ri(r),
N being the number of atoms in the system. In other words is the total RDF the
average of the partial RDFs over each atom taken at the origin (see e.g. Chung
and Thorpe 1997; Farrow and Billinge 2009). To keep a rigorous treatment, note
that R(r) in equation 1.5 is linked with its definition in equation 1.4 by N as a
scaling factor:

R(r) =
1

N

N∑
i

Ri(r) (1.6)

For a system composed of only one sort of atom, R(r) is defined such that for
an arbitrary atom i at the origin,

∫
Ri(r)dr gives the number of atoms or atom

pairs in a shell of thickness dr at a distance r from that atom. Literature is not
uniform what such an integration gives.

At this point a quantity ρ(r), which is called the real-space pair density (see
e.g. Chung and Thorpe 1997; Farrow and Billinge 2009), is introduced, so that

R(r) = 4πr2ρ(r) (1.7)

and that the integral over this pair density:
∫
drdφdθr2sin(θ)ρ(r) =

∫
R(r)dr.

- In other interpretations, ρ(r) is the number of atoms per unit volume at a
distance r from the reference atom in Å-3 (see Klug and Alexander 1974, p. 794).
This usage of the RDF or ρ(r) is not helpful in systems composed of several types
of atoms. This is due to the weighing of each distance with wij . An integration
will never give a number of atoms contained in a shell, not even a number of
pairs. It appears not necessary to introduce ρ(r) as a new quantity since it is
never really used alone.
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The limits of classical crystallographic approaches and the nano-structure problem 1.2

It appears further to be the case that identification of features is better
possible when the R(r) is modified and reduced to a function that oscillates
around zero. With increasing r the RDF tends to obscure the correlations
between atoms due to its rapid growth (Chung and Thorpe 1997). The better
suited function is the reduced radial distribution function G(r) or PDF.

G(r) = 4πr[ρ(r)− ρ0] =
1

r
[R(r)− 4πr2ρ0] (1.8)

ρ0 is handled as an average or atomic number density of the material. Since
ρ(r) is a pair distribution, it is debatable if ρ0 should be measured in terms of an
average number of atoms per unit volume. Anyway, since the average density is
subtracted, G(r) oscillates around zero and shows the correlations more clearly
than the RDF does. Usually, it is this function to which the experimental data
are transformed through the relation (Chung and Thorpe 1997).

Equation 1.9 gives the connection between a PDF G(r) and the measured
intensity distribution function I(Q) by means of a sine-Fourier-transformation
(sine FT, FS) in a very general way. I(Q) must be corrected in several ways
to S(Q), the reduced structure function. S(Q) gives the unmodified scattering
(Zachariasen 1935) that ideally describes only the unpolarised, elastic and
coherent contribution to total scattering from a sample, corrected for self scat-
tering (stemming from interference of signals from the same origin). Detailed
derivations are given in chapter 2.1.

G(r) ∝
∫ Qmax

Qmin

Q[S(Q)− 1] sin(Qr)dQ = FS{CorrScal[I(Q)]} (1.9)

1.2 The limits of classical crystallographic approaches
and the nano-structure problem

1.2.1 A general expression for the scattering of X-rays in the
elastic regime

There are a handful of theories that describe the process of scattering at different
levels of sophistication, enabling us to calculate the angle-dependent resulting
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Chapter 1 The pair distribution function (PDF) and its relation to matter

and measurable intensities. Examples for those are the kinematic (Durbin 1995;
Feil 1977) and the dynamic theory of scattering (Ekstein 1942; Ewald 1969) or
the quantum integral (Compton 1923).

Due to its experimental convenience and mathematical simplicity, the kine-
matic theory or first Born approximation of scattering is used in many cases. It
enables us to calculate via a plane-wave-approach the observed intensities I(Q)

at distances from the sample that are large compared to interatomic distances. It
states that each measured photon stems from an elastic and coherent scattering
process (a part of the total scattering (Waller and Hartree 1929)). For every devi-
ation from this rules corrections are necessary (absorption, polarization, multiple
scattering). Already Born (1926) speaks critical about the basic assumptions of
this approximations1. - And already here, we should take into account that the
alleged contributions of different scattering processes to the measurable total
intensities have to be distinguished by special means.

The first Born approximation states that the coherent elastic component
of the scattering, in units of the scattering of a free electron, is given by
equation 1.10. It equals the square of the Fourier transformation of the electron
distribution map over the specimen (Coppens 2010). The integration is done
over the coordinates of all electrons. Due to the generality of the treatment at
this point, all quantities are described in terms of vectors which are denoted
as bold letters. The intensity is a real observable and the only quantity that is
directly measurable in a scattering experiment. The intensity is proportional to
the square of the structure amplitude. The structure amplitude is the modulus
of the structure factor: |F (Q)|.

Icoherent,elastic(Q) = |F (Q)|2 =

∣∣∣∣∫ ρ(x) exp(iQ · x)dx
∣∣∣∣2 (1.10)

Equation 1.10 results from equation 1.11 which is more general. Ψ is the
n-electron space-wavefunction which is expressed in the 3n coordinates of the

1"Die Schwierigkeiten, die man bisher bei der Einführung des ,Gespensterfeldes’ in die Optik
gefunden hat, scheinen mir zum Tell auf der stillschweigend gemachten Annahme zu beruhen,
daß Wellenzentrum und emittierendes Partikel an demselben Ort sein müssen. Aber dies ist ]a
schon beim Comptoneffekt sicher nicht der Fall und wird wohl im allgemeinen niemals zutreffen"
- Born 1926, p. 827
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The limits of classical crystallographic approaches and the nano-structure problem 1.2

electrons and a complex quantity. The positions of the electrons are given by
the vectors rj . The integration must be performed over all coordinates but those
of the jth electron and the summation over all electrons.

Icoherent,elastic(Q) =

∣∣∣∣∣
∫

Ψ∗0

∣∣∣∣∣∑
j

exp(iQ · xj)
∣∣∣∣∣Ψ0dx

∣∣∣∣∣
2

(1.11)

There are discrepancies in what different authors mean when they apply the
terms elastic and inelastic as well as coherent and incoherent scattering (Frey
et al. 2010). In a strict sense there is no incoherent scattering at all, since all
scattering processes are correlated in space and time. Moreover, ‘elastic’ and
‘inelastic’ scattering are approximations in some sort. Pure inelastic scattering
would take place if the momentum and the energy of a photon were transferred
to a single scatterer. An elastic scattering process would demand a uniform
exchange of momentum and energy with the whole crystal (Frey et al. 2010; see
also Compton 1923).

Inelastic scattering is due to dynamical fluctuations or ionization processes
and may become observable as a ‘diffuse’ contribution in a diffraction pattern
(Frey et al. 2010). Thermal diffuse scattering (TDS) is one process in which
the radiation is scattered inelastically, so that the incident X-ray photon (or
neutron) exchanges one or more quanta of vibrational energy with the crystal.
The vibrational quantum is known as a phonon, and the TDS can be distinguished
as one-phonon (first-order), two-phonon (second-order), etc scattering according
to the number of phonons exchanged (Alexandropoulos et al. 2006). Considering
this, thermal diffuse scattering is intertwined with scattering processes that
involve atomic motion. Most work on phonons has been done for the case of
single-crystals (e.g. Xu and Chiang 2005).

Inelastic scattering can be detected with appropriate equipment (Alexan-
dropoulos et al. 2006; Schülke 1989). Information on inelastic scattering can
contribute much e.g. to our knowledge of structural transitions (Sinn et al. 1997).
In order to distinguish and evaluate the coherent and incoherent contributions of
the elastic and inelastic parts, comparative measurements have to be performed
as the distinction is not possible in a conventional single experiment. Anyway,
while "a separation of elastic from inelastic diffuse scattering is generally pos-
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Chapter 1 The pair distribution function (PDF) and its relation to matter

sible, [but] difficulties may result from small energy exchanges that cannot be
resolved for experimental reasons. The latter is true for scattering of X-rays
by phonons, which have energies of the order of 10-2-10-3 eV, values which are
considerably smaller than 10 keV, a typical value for X-ray quanta. Another
equivalent explanation, frequently forwarded in the literature, is the high speed
of X-ray photons, such that the rather slow motion of atoms cannot be ‘observed’
by them during diffraction. Hence, all movements appear as static displacement
waves of atoms, and temperature diffuse scattering is pseudo-elastic for X-rays.
This is not true in the case of thermal neutrons, which have energies comparable
to those of phonons." (Frey et al. 2010) - To emphasize: for measuring phonons
(correlated motion of atoms with their surrounding) we are interested in inelasti-
cally but coherently scattered photons (Willis 1969). For X-rays the differences
are very small and are handled as neglectable.

As indicated in equation 1.10, I(Q) is |F (Q)|2, the square of the structure
amplitude. The convolution theorem (equation 1.12) states that the FT of a
convolution is the product of the single Fourier-transforms. |F (Q)|2 clearly
equals to |F (Q)||F (Q)| or F (Q)F (Q), where the overline indicates the complex
conjugate and ∗ is the convolution operator.

I(Q) = |F (Q)||F (Q)| = F [p(x)]F [p(x)] = F [p(x) ∗ p(−x)] (1.12)

F [p(x) ∗ p(−x)] =

∫ ∫
p(x)p(r + x)dx exp(iQr)dr (1.13)

What follows from the convolution theorem is that the inverse FT of I(Q)

yields the autocorrelation P (r), which is the convolution of the electron density
with the electron density that has been inverted at the origin, but not the
electron density p(x). P (r) is also called the Patterson function (Bricogne 2010;
Tong et al. 2010). For this reason and also because the PDF is some sort of
Patterson function, in what follows will be focused only onto data which is
derived from the measured intensities.

F−1[I(Q)] = F−1[F [p(x) ∗ p(x)]] = P (r) (1.14)

As a good approximation, the electron distribution can be represented by
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The limits of classical crystallographic approaches and the nano-structure problem 1.2

atoms (isolated atom approximation), i.e. a (spherical) electron-distribution
around a nucleus. The scattering behavior of a so defined atom can be expressed
by an atom-specific, diffraction angle dependent scattering function f(|Q|) (also
called: atomic form factor). Operating in terms of atoms, equation 1.15 then gives
a general formulation for the intensity distribution resulting from an arbitrary
arrangement of atoms.

I(Q) =
∑
j

fj(Q)
∑
k

fk(Q)[exp (iQ · (xj − xk))Tj(Q)Tk(Q)] (1.15)

The quantities Tj(Q) are called Debye-Waller factors (DWF): to take into
account variations in the scattering intensities due to displacement of atoms from
a mean position (static or dynamic) a correctional term can be introduced. The
atom distribution is convoluted with a displacement function, thus the diffraction
pattern can be multiplied with the FT of the displacement function which is the
Debye-Waller factor Tj(Q) of the jth atom (Trueblood et al. 1996). The DWF
describe the reduction of Bragg intensities only but do not take into account that
diffuse scattering appears which increases in intensity with increasing Q. The
DWF can be isotropic or anisotropic and is resembled by a Gaussian function
such as given in equation 1.16. u is an displacement vector of the atom from its
center position and U is the related mean-square displacement (which resembles
the case of isotropic displacement) given in [Å2] (Trueblood et al. 1996). U is
linked with the isotropic thermal coefficient B by B = 8π2U . It is possible to
give much more complicated descriptions for atomic motion or displacement in
general than is done by the isotropic Tj(Q):

Tj(Q) = exp
[
−2πQ2〈|u|2〉

]
= exp

[
−2πQ2Uj

]
(1.16)

In this most general case of equation 1.15, the T (Q) will account only for
thermal motion because all atom positions are considered by the equation and
therefore static displacement is already considered. In other formalisms, Tj(Q)

is applied to also describe static disorder.
In a diffraction experiment on a crystalline powder or nanoparticles it is

assumed that the individual particles are randomly oriented. Under ideal sample
preparation conditions this assumption will be reasonable well realized and the
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sample can be treated as an isotropic sample. Amorphous materials like glasses
or liquids are isotropic as well. Here the lack of long range periodicity usually
implies isotropic behaviour. The magnitude of the scattering is dependent only
on the diffraction angle then. The vector Q(hkl) becomes a scalar quantity
|Q| = Q. The same is valid for the vectors r in the auto-correlation function.
P (r) becomes P (r).

1.2.2 Classical assumptions for quasi-periodic arrangements

Classical crystallography relies on the main assumption of periodicity, which
leads to infinite extendedness of an atomic ensemble. A periodic structure can
be described in multiples of a smallest unit, a unit-cell, then. In such cases,
we can reduce the number of parameters needed for describing a structure
drastically. The basis vectors a, b, c span a real lattice. A triple of coordinates
(xi, yi, zi) defines the positions of each atom in the unit cell in terms of the basis
vectors so that xi = (xa + yb + zc). — Having this condition of periodicity
fulfilled, diffraction of X-rays can be described as if light was being reflected by
planes. Reflection can only occur when the diffraction or reflection condition
nλ = 2dsin(θ), i.e. Bragg’s law, is fulfilled.

The corresponding measured intensities are concentrated to reflexes I(Q[hkl])

("Bragg-peaks") which are attributed to points in reciprocal space. These points
are located on a reciprocal lattice spanned by the vectors a*, b* and c*. The
triples (h, k, l) define points of the reciprocal lattice where Q(hkl) = 2π(ha* +

kb* + lc*); h, k and l are integers (equation 1.17).

I(Q) =
∑
j

∑
k

fj(Q)fk(Q) exp (iQ(hkl) · [xj(xjyjzj)− xk(xkykzk)]) (1.17)

1.2.3 Deviations from classical conditions

Any real crystal will contain defects such as missing or wrong atoms on an atomic
site, interstitials, clusters, domains, stacking faults etc. Defects are deviations
from the periodic ensemble which is characterizable by a direct lattice. Although
many arrangements of atoms are in a good approximation indeed periodic
(sufficiently large and sufficiently regular), this is nevertheless an approximation.
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The limits of classical crystallographic approaches and the nano-structure problem 1.2

With increasing amount of defects, the unit-cell approach discussed in the
previous section becomes increasingly insufficient and we therefore need a more
refined treatment for the description of disordered structures.

Two limiting cases of disorder are:
.) Substances which are disordered. - The extreme cases of randomness are

glasses and liquids ("X-ray amorphous") which are highly disordered. Amorphous
substances may be built up of millions or more of atoms and do posses short-
range-order (SRO)2 only.

.) Small particles (e.g. nano-clusters which consist only of a few atoms). In
principle, those can be seen as aperiodicities as well.

.) A combination of the two preceding points.
All defects lead to elastic scattering apart from the Bragg-peaks. This type

of scattering has been named diffuse scattering. The complete experimentally
observed scattering will consist of Bragg reflections and diffuse scattering and
this combined signal is referred to as total scattering. The Bragg reflections
by themselves then no longer contain the full information on the sample. -
Dependent on the suspected complexity of disorder, two general modeling
methods are proposed to build structure model to calculate the resulting total
scattering from: small-box and big-box modeling (Keen and Goodwin 2015 -
"‘The crystallography of correlated disorder’"):

In small-box modeling, disorder is introduced into a unit-cell like construct,
maybe also something which is a few unit cells in extension. Here, the introduc-
tion of an isotropic or anisotropic Debye-Waller factor Tj(Q) which incorporates
ADPs (anisotropic displacement parameters) can suffice to describe the in-
evitable thermal motion as well as static disorder (Trueblood et al. 1996). An
occupancy-parameter for the accounting of occupancy (or substitution defects)
can be introduced, if a crystallographic site happens to show this sort of struc-
tural defects. In molecular compounds, different molecular orientations and
displacements can be considered. The diffraction patterns of layered structures

2Short-range-order is defined here as the atomic surrounding of each point up to a selectable
distance. No periodic order as in crystalline materials (that goes along with the surrounding of
each point being similar) must be found.

11



Chapter 1 The pair distribution function (PDF) and its relation to matter

might be described by the statistical combination of the diffraction patterns of a
few layers (Treacy et al. 1991).

In big-box modeling, a big supercell is built on the computer and atomic
environments are locally altered. Up to now, this is a considerable effort in many
cases and structures must be approximated via fragments often. (For details on
strategies towards model building and refinement as well as further references
like Monte-Carlo (MC) or Reverse-Monte-Carlo (RMC) simulations see Neder
and Proffen (2008)). The transition line from the small box to the big box might
be a fluid one.

As a last complication, there might be several structures which describe a
diffractogram equally well (homometry; Klug and Alexander 1974, p. 837; Ravy
2013). In powders, we get an additional loss of information owing to projection of
the scattering vector Q from a three-dimensional onto a one-dimensional space.
The measured scattering at a given diffraction angle is the summed scattering of
all crystallites in the sample that fulfill the reflection condition. When dealing
with diffuse scattering, things become even more intricate in one but also in
three dimensions. This heap of complex questions concerning structure solution
has been titled nano-structure-problem recently. (See e.g. Cliffe et al. 2010
or Billinge 2010). For a nice example of attempting this "new" nano-structure
problem on nano-particles see Petkov et al. (2014).

1.3 A case for the PDF?

Crystallographically challenging materials have of course been known for a
long time and interpretation of diffuse scattering in single-crystals was done by
analysis of the diffuse scattering (Neder et al. 1990, Welberry 2010; Welberry
and Butler 1994; Keen and Goodwin 2015; Temleitner and Pusztai 2013). - The
idea of analysing the distributions of interatomic distances is old nevertheless.
The framework of pair distribution function analysis was worked out by Zernike
and Prins (1927). The first usage of PDF-like-function analysis is ascribed to
Debye and Menke (1931). Countless studies dealing with radial distributio
-function (RDF) analysis have been performed since then. Back then it was
used to analyse amorphous materials (also known as glasses; see for example

12



A case for the PDF? 1.3

Wright 1988; Wright 1990; Wright 1994; Wright 2000a; Wright 2000b; Wright
et al. 1991) or liquids and gasses (for examples see: Gingrich 1943; Gingrich
and Heaton 1961). - With the advent of what was so prominently named
the nano structure problem, speaking of the pair distribution function became
more popular. Nowadays, not only amorphous and other strongly disordered
substances exhibiting bulk properties, but also small systems such as small
particles and clusters available as powders or dispersions (e.g. Zobel et al. 2015)
are investigated in terms of "real-space-studies".

Traditionally, working with real-space-data and thus PDF-analysis was
considered as a method of last resort and to be used only if all other means
of crystallographic analysis would fail. This impression arose due to broad
peaks in the PDFs of such strongly disordered materials which are due to
broad bond-distance distributions. This phenomenon was falsely interpreted
as impreciseness ot the method itself. Further, a lack of well-suited correction
procedures of raw data and experimental procedures in former times led to
artefacts and spurious trends in the PDF-data (see Toby and Egami 1992).

The analysis of interatomic distances in a material, as is given through
the PDF, appears to be well-suited in the cases mentioned above. When a
strong lack of periodicity hinders the application of the standard concepts,
Fourier-transformation of data can be helpful because it leads to a change of
the information’s representation. In doing so, it changes the weighting-scheme
which is applied in the optimization of a structural model. To distinguish and
characterize structures, comparisons or refinements of models against pronounced
features (like bond distances) are preferred over broad and shallow diffraction
curves from amorphous compounds. Careful considerations about structural units
and their assembly may be done in the case of strongly disordered structures
and could lead to a useful result.

13





Chapter 2

Technical details

As mentioned, there are many variations of radial distribution functions (Keen
2001). The form of the PDF chosen here is the reduced radial distribution
function G(r). Gcalc(r) (equation 2.1) is the PDF that can be derived from a
structure model (Neder and Proffen 1997). Gexp(r) (equation 2.2) is the PDF that
can be obtained by real-valued sine Fourier transformation (see Kammler 2008,
p 63, also: Rahman 2011, p. 11) of the reduced and normalised total (unmodified)
scattering structure function Q[S(Q)− 1]. Mathematical derivations, suitability
considerations and discussion of computational aspects of the applied procedures
will be given in this chapter.

Gcalc(r) =
1

r

i 6=j∑
i

∑
j

[
fi(Q)fj(Q)

〈f(Q)〉2
δ(r − rij)

]
− 4πrρ0 (2.1)

Gexp(r) = 4πr[ρ(r)− ρ0] =
2

π

∫ Qmax

Qmin

Q(S(Q)− 1) sin(Qr)dQ (2.2)

2.1 Total scattering, the Debye-function, and the PDF

2.1.1 Conceptual aspects of PDF-analysis

The PDF we get is intrinsically tied to the theory we decide to use for the
description of the scattering process. Before we resume with the common
derivation of the PDF for some cases, we must shortly discuss when it is valid.
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Chapter 2 Technical details

An equation that permits the calculation of the total scattering of a configu-
ration of scatterers with averaged distribution in space is the Debye-Scattering-
Equation (equation 2.3; Debye 1930; Debye 1915). At the moment it is the
equation which is used to derive the PDF from total scattering data after correc-
tions and by mathematical transformations. As the name suggests, this formula
goes back to Peter Debye who tried to give an explanation of diffraction phe-
nomena and thereby models of the electronic structure1 in atoms in 1915 (Debye
1915). Under the assumption of randomly and uniformly distributed building
units one can obtain it via radial integration over all orientations (over solid
angle) from the common equation for kinematic diffraction, equation 1.15. The
Debye-formula is derived for an ensemble of isolated atoms (that is in principle:
a gas - Grigson 1967) and the electron distribution between atoms (chemical
bonding) is neglected (what is un-important if a sample consists of heavy atoms).
Also it does not account for small angle scattering (SAS) effects (at least not
very well due to computational issues and because SAS also emerges from
interactions between particles [Gelisio and Scardi 2016]).

I(Q) =
∑
i

∑
j

fifj
sin(Qrij)

Qrij
=
∑
j

f 2
j +

i 6=j∑
i

∑
j

fifj
sin(Qrij)

Qrij
(2.3)

fi are functions f(Q) and called atomic scattering factors (or atomic form
factors in classical X-ray crystallography). They show a decay with increasing Q.
The single sum in the right part of the equation is also defined as self-scattering,
because it involves only the same atom. - A tempting and plausible derivation
of the "Debye-Formula" equation 2.3 from equation 1.15 is given by Gingrich
(1943).

It is important to stress that we are entitled to use the theory based on
the Debye-Scattering-Equation only straightforwardly if we are dealing with
ensembles where structural elements are ideally averaged. An ideal powder
is an ensemble of crystallites or particles that has a distribution of sizes and
shapes that are statistically equally distributed and this is the theoretical
presupposition, the equation has been derived for. We have to take care during

1Back then, before the advent of quantum mechanics he proposed a circular arrangements of
electrons in the atom.
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Total scattering, the Debye-function, and the PDF 2.1

preparation that we arrive at that state (and unfortunately we cannot guarantee
for that).

All things and effects not accounted for by this formalisation have to be ac-
counted for by corrections afterwards or an adequate experimental setup making
corrections unnecessary. The equation is valid for unpolarised, monochromatic,
coherent radiation and each photon is scattered elastically (without remaining
energy transfer). X-ray scattering is regarded as pseudo-elastic in principle.
Photons are scattered only once by the specimen. Corrections are necessary
for deviations from those assumptions like multiple scattering, absorption and
polarization effects, inelastic scattering as Compton-scattering as well as for
instrumental effects. By the fact that corrections for geometry dependent ab-
sorption or multiple scattering have to be applied one can already see that the
theory of kinematic diffraction is an approximation, even if it is a good one.

It is an open question which information about the specimen is needed in
which case in order to do corrections or mathematical transformation to the PDF
in the correct manner. That implies that a user actually had to be acquainted
with many physical effects and theoretical details. It might be the case that
empirical absorption corrections work well in single-crystal-research and are
an easy and efficient way to handle a problem. Actual developments in PDF-
methodology, promising also very inexperienced users automated data handling
(e.g. Juhás et al. 2013) obfuscate this need. Problems concerning empirical
data-correction to the PDF which were found while working for this thesis are
discussed in the next chapter.

2.1.2 Derivation of a PDF-equation for an extended (amorphous)
ensemble with only one atom-species

In case of a compound consisting of N atoms of only one kind, equation 2.3 can
be reduced to equation 2.4. The aim of the transformations is the separation of
the atomic scattering factors from the atomic coordinates. (For space reasons
the f(Q)-terms will be written simply as f in most of the occurrences.)

I(Q) =
∑
N

f 2(Q) + f 2(Q)

i 6=j∑
i

∑
j

sin(Qrij)

Qrij
(2.4)
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Under the assumption that there are many atoms, the second sum can be
replaced by an integral over the volume of the sample. Assuming that the
atom distribution is spherically homogeneous in average, we can introduce an
averaged radial-pair-distribution function R(r) as defined in equation 2.5 and
rewrite equation 2.4 as 2.6. Since the integral is taken, the parameter rij is
expressed as r.

R(r) =
1

N

N∑
i

Ri(r) = 4πr2ρ(r) (2.5)

I(Q) = Nf 2 + f 2

i 6=j∑
i

∫ Rmax

0

R(r)
sin(Qr)

Qr
dr (2.6)

The formalism in equation 2.5 states that R(r) is the totality of atomic pairs
on the surface of a sphere that is defined by r. In the alternative formulation of
R(r) = 4πrρ(r), R(r) is built up in terms of a reduced radial distance-distribution
ρ(r) wich is also called pair density. Through integration of

∫
4πρ(r)dr, all

distances in a spherical volume can be obtained. If we further suppose that the
material’s extension is orders of magnitude larger then the radial integration
limit, surface effects can be neglected. The author wants to emphasize that the
averaged quantity R(r) is compiled by individual quantities Ri(r) in modeling
as well as in the physical reality.

I(Q) = Nf 2 +Nf 2

∫ Rmax

0

4πr2ρ(r)
sin(Qr)

Qr
dr (2.7)

I(Q) = Nf 2

(
1 + 4π

∫ Rmax

0

r2ρ(r)
sin(Qr)

Qr
dr

)
(2.8)

Through rearrangement, equation 2.9 can be obtained, which defines the
reduced and normalised total scattering structure function F (Q).

Q

(
I(Q)

Nf 2
− 1

)
= Q[S(Q)− 1] = F (Q) = 4π

∫ Rmax

0

rρ(r) sin(Qr)dr (2.9)

18



Total scattering, the Debye-function, and the PDF 2.1

Since the right-hand side of equation 2.9 is a sine-Fourier transformation,
we can arrive at the reduced radial distribution function G(r) in equation 2.10
by an inverse sine-Fourier transformation of F (Q).

G(r) = 4πrρ(r) =

∫ Qmax

Qmin

Q

(
I(Q)

Nf(Q)2
− 1

)
sin(Qr)dQ (2.10)

Figure 2.1 shows the transformation steps from the experimental intensity
distribution of a Si standard 640d from NIST I(Q) by data correction to S(Q)

and F (Q). Figure 2.2 shows the corresponding PDF.

2.1.3 Introduction and subtraction of a mean pair density to
account for the small angle scattering (SAS) signal

The Debye-Scattering-Equation does not fully account for the SAS signal
because interactions between domains are not included (Grigson 1967). Modeling
such an ensemble will be extremely difficult. Using conventional setups, the
SAS signal will not be experimentally measurable, because the SAS-signal will
be located under a value of Qmin, e.g. in the primary beam. The coherence
length of the probing radiation is another aspect which determines the amount
of signal from particle-particle interactions.

Theoretically, the intensity can be split up into two parts: one Fsas that occurs
only under and one (the rest) Fwas above a minimal Q-value Qmin. Under the
assumption that the SAS intensity from a large crystal or amorphous ensemble
is identical to that from a solid with uniform (scalar) density ρ0, it is suitable to
account for the SAS signal in the following way: a) subtraction of ρ0 from ρ(r)

that is described by the Debye-Scattering-Equation. b) Addition of a term that
contains ρ0 and which is integrated separately (equation 2.12).

F (Q) = Fwas + Fsas (2.11)

F (Q)

4π
=

∫ Rmax

0

r[ρ(r)− ρ0] sin(Qr)dr + ρ0

∫ Rmax

0

r sin(Qr)dr (2.12)
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Chapter 2 Technical details

Figure 2.1: Data reduction steps exemplified by means of a Si-NIST 640d
standard measured with Ag-radiation: I(Q) (top) is the

container-signal-corrected raw intensity-distribution. S(Q) (middle is obtained
by subtraction of "self-scattering" (see equation 2.3) from I(Q). The resulting
curve oscillates around 1. The data-correction was accomplished by means of
an ad-hoc polynomial. (This method is discussed later, e.g. in sections 2.2.5

and 4.) F (Q) = Q[S(Q)− 1] (bottom) oscillates around 0.
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Integration of the second part gives equation 2.13.

F (Q)

4π
=

∫ Rmax

0

r[ρ(r)− ρ0] sin(Qr)dr + ρ0
sin(Qr)− rQ cos(Qr)

Q2

∣∣∣Rmax

0
(2.13)

so that after integration F (Q) and Fsas are

F (Q) = 4π

∫ Rmax

0

r[ρ(r)− ρ0] sin(Qr)dr + Fsas (2.14)

Fsas = 4πρ0
sin(QRmax)−RmaxQ cos(QRmax)

Q2
− 0 (2.15)

For r = 0 the last term of Fsas is zero. For large Rmax the function only
gets big at very small Q and decays fast. As the model-assumption is based
on an ensemble with large extension and therefore large values for Rmax, the
scattering stemming from the last term is rendered into a region not observable,
namely into the region of the primary beam. In other cases, we actually had to
correct or to account for the SAS-signal as it is not easy to take into account
the SAS signal of ensembles by modeling via the Debye-Scattering-Equation.
— This is the case for small objects (such as nanoparticles) which should be
treated differently (Farrow and Billinge 2009). — By setting the Fsas to zero and
proper rearrangement, equation 2.13 is transformed into the initial definition of
G(r) in equation 2.2.

Gexp(r) = 4πr[ρ(r)− ρ0] =
2

π

∫ Qmax

Qmin

F (Q) sin(Qr)dQ (2.2)

By introducing ρ0 it seems that the PDF becomes a measure for the deviation
of a structure from an averaged structure and not an absolute structural function.
In the PDF-literature, ρ0 is identified with the slope of the baseline of G(r) (at
least in region of low r; figure 2.2). G(r) oscillates in this representation around
zero for large distances. It turns out that this definition of a radial distribution
function G(r), is advantageous for the work with crystalline materials because
it shows correlations more clearly (Chung and Thorpe 1997). Because the SAS-
signal is not measured in many cases, it is often G(r) which is obtained from
the experimental scattering data.
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Figure 2.2: Theoretical G(r) of Si obtained by sine-Fourier transformation of a
calculated F (Q) showing the progression of the baseline along −4πrρ0

2.1.4 Derivation for an extended (amorphous) ensemble with
multiple atom-species

With equation 2.16, one can calculate the intensity of elastic scattered radiation
from an ensemble of different atoms. As in section 2.1.2, the intensity is expressed
in terms of a pair density ρ(r), but in the case of multiple atom sorts, partial
atom-distances-distribution functions ρij(r) have to be introduced, so that ρ(r) =∑
ρij(r). (With these partial distribution functions, it is possible to define

theoretical partial structure factors Sij(Q) in reciprocal space - Enderby et al.
1966.) ρj(r) denotes the radial distribution of distances to atoms j from an atom
of type i.

Iexp(Q) =
N∑
i

f 2
i (Q) +

∑
i,j

fi(Q)fj(Q)

∫ Rmax

0

4πr2ρij(r)
sin(Qr)

Qr
dr (2.16)

Because of their Q-dependence, we cannot remove the atomic form factors
from the sum and therefore cannot disentangle them from the ρij(r)-terms to
obtain the radial distribution functions. Here lies the origin why the PDF
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is weighted with the product of the single atoms’ weights. In the case of
different but similar atoms, the general mathematical procedure that is applied
for data-transformation (e.g. in Juhás et al. (2013) and which is of course an
approximation) is sketched. It goes without saying that the approximation
is used independently of the sort of atoms that contribute to the diffraction
pattern. — The approximation is often referred to as Warren-Krutter-Morningstar
approximation (Warren et al. 1936). To get rid of the individual Q-dependences of
the atomic scattering factors, it is approached to substitute the atomic scattering
factors by the product of a scattering factor per electron and a corresponding
multiplier Km (equation 2.17).

To do so, a sum of all atomic scattering factors that correspond to stoi-
chiometry is taken and divided by the number of electron corresponding to this
stoichiometry (a sum of the atomic ordering numbers Zi). Each atomic scattering
factor is substituted then by the product of this "scattering factor per electron"
fe and an effective number of electrons per atom Ki. Note here that the Kis do
not necessarily resemble the Zis but could be other quantities. In the optimal
case of course, Ki = Zi and the original scattering curve fi is resembled well,
but it might also result in something that looks different, so the division of fi/fe
might give another number for Ki than Zi. The quality of this approximation
is dependent on the similarity of atomic scattering factors of the elements the
sample contains. [On the other hand, the results of this approximation can be
interpreted as a sharpening of the peaks in the Patterson function (Patterson
1935; Tong et al. 2010). The approximation can be refunctioned then to an
empirical problem of finding the function that gives the sharpest PDF peaks.]

(a) fe(Q) =

(
N∑
i

fi(Q)

)
/

N∑
i

Zi; (b) Kife(Q) = fi(Q) (2.17)

Approximation 2.17 (b) is introduced into equation 2.16, giving equation 2.18
which gives equation 2.19.

Iexp(Q) =
∑
i

f 2
i (Q) +

1

f 2
e (Q)

∑
i,j

fi(Q)fj(Q)

∫ Rmax

0

4πr2ρij(r)
sin(Qr)

Qr
dr (2.18)

23



Chapter 2 Technical details

Iexp(Q) =
N∑
i

f 2
i + 4π

∑
i,j

KiKj

∫ Rmax

0

rρij(r)
sin(Qr)

Q
dr (2.19)

With the term i(Q) defined as a reduced scattering function in equation 2.20,
equation 2.19 is rearranged to equation 2.21.

i(Q) = Iexp(Q)−
∑
i

f 2
i = Iexp(Q)−

∑
i

K2
i f

2
e =

Iexp(Q)∑
iK

2
i f

2
e

− 1 (2.20)

Qi(Q) = 4π
∑
i,j

KiKj

∫ Rmax

0

rρij(r) sin(Qr)dr (2.21)

What we get in the case of a structure which is constituted of different kinds
of atoms is the sum of approximated, species dependent (weighted) partial PDFs
(i.e. the sum of different atomic environments or in other words the sum of the
partial PDFs where the atoms of species "A" are in the center, atoms of species
"B" are in the center...).

G(r) = 4πr
∑
i,j

KiKjρij(r) =
2

π

∫ Qmax

Qmin

Qi(Q) sin(Qr)dQ (2.22)

The further procedure of introducing the ρ0-term is done as discussed above.
The terms ρij(r) are regularly substituted by the expression [ρij(r) − ρ0e] for
this purpose, where ρ0e is an average pair density suitable for the one-electron-
scattering-approximation.

However there are different formalisms, some dividing everything by the
mean electron-scattering approximation, some dividing through a mean atomic
form factor. Knowledge about the reduction and simulation procedures is
highly advised. Besides artefacts due to the approximation, this will result in
differences that call for scaling factors which must be applied to the calculated
or experimental PDFs. - Further details on even more refined methods can be
found in Warren (1990), which nevertheless are also approximations. Possible
choices of parameters and approximating functions are discussed in Korsunskiy
and Neder (2005). Klug and Alexander (1974, p. 824) mention Finbak et al.
(1949a) and Finbak et al. (1949b), who elucidated an electronic distribution
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function which apparently is much less prone to artefacts in then the functions
discussed above.

2.1.5 Influences of the integration limits in the FT

G(r) is obtained via an integral formula from experimental intensities. In this
section, it is shown that it is crucial to apply suitable integration limits.

The experimental G(r) is the "real" (calculated) G(r) superimposed with
termination ripples (Toby and Egami 1992). The broadness and amplitude of
those ripples depend on the choice of Qmin and Qmax, the lower and upper
integration limits of the FT. If a low value is chosen fo Qmin, low frequency
oscillations are superimposed on the diffractogram. In the literature, they are
considered to be negligible. Breaking at Qmax causes high frequency ripples
which are bothersome artefacts and could be confused with bond-distances.
- Moreover, the experimental PDF shows peak broadening compared to an
idealistic G(r) that is dependent on the measurement range. The real PDF
is convoluted with W (r) (equation 2.23) which is the Fourier transform of a
rectangular function W (r) which describes the measurement range. This leads
to an r-dependent broadening of the PDF-peaks (Neder and Proffen 2008).

W (r) =
sin(Qmaxr)

r
(2.23)

Both effects have to be considered when calculating a PDF from a structural
model (see also section 2.3.1). — Figures 2.3 to 2.6 give comparisons af the
PDFs for a model of crystalline Si (Fd3m, U = 0.016 Å2), all calculated for
different values of Qmax. The models have been calculated with the software
pdfgui (Farrow et al. 2007). As no value for Qmin could be defined, it was
assumed that this one is set to 0 by the program. The comparison shows that it
is essential to carry out measurements with radiation of high energy and collect
data up to high Q-values (at least 17 Å-1 [Lab-Mo], better 22 Å-1 [Lab-Ag] or
30 Å-1 [synchrotron]). The improvements by application of radiation of energies
approaching 40 Å-1 is marginal compared to Ag and seems to be not necessary
for the achievement of highly resolved PDFs (figure 2.6). It should be mentioned
that significant differences are to be expected for larger U-values.
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Figure 2.3: Comparison of three PDFs of crystalline Si modeled for different
Qmax-values which are experimentally attainable with Cu, Mo- and

Ag-radiation. Two regions, which will be analysed in magnification in the
following figures, are marked by red squares. It can be seen that peaks are

ever better defined when radiation with smaller wavelengths is applied. A Qmax
from at least Mo-radiation should be chosen for measurements and as upper

FT-limit, what is also discussed in the text.
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Figure 2.4: Zoom of the comparison in figure 2.3 shows a comparison of
termination ripples and peak-widths from scattering data collected with various

radiations.

Figure 2.5: Zoom of the comparison in figure 2.3 shows that PDFs created from
scattering data exhibiting Qmax from Cu-radiation are not capable of resolving

peaks and therefore structural features.
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Figure 2.6: Comparison of G(r)s calculated for Qmax of Ag at 22 Å-1 and 40 Å-1.
The differences in termination ripples appear negligible. Of course, analysis

largely depends on the features of the specimen, anyway, already by applying
Ag-radiation the first PDF-peak is only little affected by termination ripples so

that a source of error is excluded.
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2.2 Developments of PDF-methodology according to
literature

2.2.1 Quality criteria for PDF-creation and refinements

As structural investigation by PDF-analysis is increasingly applied, correspond-
ing literature on its advances is published: "‘Advances in total scattering analysis’"
(Proffen and Kim 2009) or "‘Advances in Pair Distribution Profile Fitting in Alloys
in Local Structure from Diffraction’" (Thorpe 1998). Going along with this, first
tips on PDF-refinement strategies came to be published (‘Structural analysis of
complex materials using the atomic pair distribution function—A practical guide’
- Proffen et al. 2003), which already exist for the analysis of scattering data
from crystalline powders e.g. in the form of the "‘Rietveld refinement guidelines’"
(McCusker et al. 1999). Toby and Billinge (2004) performed some work on the
"‘Determination of standard uncertainties in fits to pair distribution functions’"
and Peterson et al. (2003) also "‘Improved measures of quality for the atomic
pair distribution function’".

2.2.2 PDF for unique structure identification

The possibility of identifying or distinguishing different (amorphous) compounds
has already been mentioned in Klug and Alexander (1974, p. 847) with a short
discussion of general drawbacks of this method. The tenor in some actual
literature is that the PDF is suitable for fingerprinting (Billinge et al. 2010;
Davis 2011; Dykhne et al. 2011). As fingerprints are in principle unique, those
statements are interpreted that identification is possible in every case. Following
this interpretation, it becomes unclear if these authors took into account the
phenomenon of homometry (Ravy 2013). Further, Klug and Alexander (1974,
p. 851) documented cases where substances could not be distinguished by means
of the PDF but via the reduced scattering function S(Q). They report that this
apparently anomalous phenomenon appears to result from the fact that small
structural modifications tend to produce differences localized in one part of the
intensity curve, which make them more obvious..
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2.2.3 Intermolecular interactions

Going further, Prill et al. (2015), Rademacher et al. (2012) and Thorpe et al.
(2002) published on analyses of molecular compounds and about describing
intermolecular interactions. Besides that some reciprocal space approaches for
elucidation of intermolecular interactions are proposed (Mou et al. 2015).

2.2.4 Nanoparticles and amorphous structures - estimating the
baseline of the PDF

For usual PDF-simulations of an infinitely extended (very large) material the
assumption of a homogeneous density, where features are averaged out at
large distances from the summation-center, works to obtain an appropriate
PDF-baseline. A (nano-)particle does not satisfy this condition. There are no
large interatomic distances. That means that incorporating a term similar to
−4πrρ0 is not useful.

Great work has been done by Harrington et al. 2012; Korsunskiy and Neder
2005; Korsunskiy et al. 2003; Korsunskiy et al. 2007; Neder and Korsunskiy 2005
which applied a seemingly robust approach for baseline approximation (shown
in figure 2.7). A polynomial is fitted into the coarse slope of the experimental
PDF. This polynomial is subtracted from the calculated PDF to approximate the
correct baseline (see some discussion of that also in Farrow and Billinge 2009).
Another approach is to multiply bulk-PDFs with a shape function (see e.g. Page
et al. 2011).

A further difficult task connected with PDF-simulation are conglomerates of
objects with little extension. Farrow and Billinge (2009) tried to get estimates
from the small angle scattering signal.

2.2.5 Recent approaches to data correction for inelastic scat-
tering

"In many diffraction studies, it is necessary to correct the intensities of the Bragg
peaks for a variety of inelastic scattering processes. Compton scattering is
only one of the incoherent processes although the term is often used loosely
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Figure 2.7: Example for the estimation of the baseline of a material with weak
long-range correlation (here: amorphous organic solid). A polynomial fit (green

line) through the experimental PDF is performed. The polynomial is inverted
(dotted line) and subtracted from the calculated PDF to obtain the modeled

PDF. The red line at the bottom is the difference curve between the final PDF
and the measured one.
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to include plasmon, Raman, and resonant Raman scattering all of which may
occur in addition to the more familiar fluorescence radiation and thermal diffuse
scattering [...] the dominance of each interaction is characterized by the energy
and momentum transfer and the relevant binding energy." (Alexandropoulos et al.
2006)

In a very recent software for data correction all necessary data correction
steps are handled by an user-defined ad-hoc polynomial (Billinge and Farrow
2013; Juhás et al. 2013. This possibility was already outlined by Klug and
Alexander (1974)). It is declared to be a robust procedure giving stable results.
This is justified by showing the good agreement of the data obtained with
older procedures. It is an interesting question if showing similarities can
be a proof. The program is written in order of easy operation for laymen
and other novice users. — Using an ad-hoc polynomial itself is justified by
claiming the slow and continuous change of non-sample related signals in the
raw-intensities. It should be considered that "With the exception of thermal
diffuse scattering, which is known to peak at the reciprocal-lattice points, the
incoherent background varies smoothly through reciprocal space. It can be
removed with a linear interpolation under the sharp Bragg peaks and without
any energy analysis. On the other hand, in non-crystalline material, the
elastic scattering is also diffused throughout reciprocal space; the point-by-
point correction is consequently larger and without energy analysis it cannot
be made empirically; it must be calculated. These calculations are [mostly]
imprecise [...]" (Alexandropoulos et al. 2006)

Therefore, things would ease if energy dispersive detectors could be used
as inelastic scattering must be subtracted and how is not necessarily known.
In addition, collecting purely elastic scattering apparently is only possible in
very unusual experiments and a sharp collection of only elastically scattered
photons is difficult (Toby and Egami 1992).

2.2.6 Influences of the instrumental setup on the PDF

There have been some investigations on the effects of peak shapes and similar
on the PDF (see e.g. Qiu et al. 2004 or Jeong et al. 2005). As instrumental effects
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are not taken into account by corrections in most cases, some parameters have
to be introduced to account for those effects. Toby and Egami (1992) state that
because of the limited angular resolution, the experimental PDF is multiplied
with a Gaussian damping exp[−1

2
r2σ2

Q]. Secondly, an r-dependent broadening of
the PDF-peaks, also stemming from limited instrumental Q-resolution, should
be accounted for with the expression α2r2ij (Neder and Proffen 2008). Farrow
et al. (2007) state that this broadening stems from increased noise at high Q.
Sometimes the variables σQ and α are also referred to as Qdamp and Qbroad. In
section 2.3.1 the incorporation of those parameters into the calculated PDF will
be discussed.

Some postulate that instrumental effects are not influencing the PDF or that
influences are at least not crucial to it (Egami and Billinge 2003, p. 173). Others
simply propose using an instrument which shows a minimal amount of such
effects in the measured data (Bordet 2015, p. 9).

2.3 Modeling and refinement

To extract structural details, a model has to be generated and refined. In this
section, aspects concerning PDF-generation and structure solution are discussed.
— The approach common to all modeling procedures is to calculate the PDF
for an ensemble of atoms. In order to do so, all interatomic distances must be
computed which results in a distribution. Each interatomic distance is weighted
by the fi(Q) for each atom as discussed in the derivaton of the PDF further above.
There are two options then to proceed from this distribution - PDF-creation by
altering this distribution with parameters or calculating a diffractogram from it
and yielding the PDF via FT from it - which will be discussed below.

The parametrization (e.g. the choice of displacement parameters) can be
dependent on the choice of the model’s size (big box modeling where displaced
atoms are modified by a parameter for thermal motion or not at all if the box is
very big vs. small box modeling where such a displacement parameter might
describe also static disorder).
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2.3.1 Traditional approach to PDF-modeling: altering the pair
distribution

- incorporating thermal motion and correlation

To incorporate the broadening effects of PDF-peaks due to thermal motion,
mostly one of the following approaches is applied: a) creation of a model with
a large number of atoms where each atom is given random displacements to
account for (static displacement and) thermal motion (big box). b) the PDF from
a relatively small model is convoluted with a Gaussian broadening function after
computation of the distribution.

Method b for the PDF-modeling (of crystalline materials) is a computational
less demanding simulation method. Further, it eases analysis because local
distortions are not masked by random displacements that should simulate thermal
displacements.

The choice of the best method to model thermal motion appears to be an
empirical. For the convolution approach, the delta function in equation 2.1 is
replaced by a Gaussian Tij(r) so that equation 2.24 is obtained. This is discussed
in more depth in Neder and Proffen (2008, p. 45) or Thorpe et al. (2002).

Gcalc(r) =
1

r

i 6=j∑
i

∑
j

[
fi(Q)fj(Q)

〈f(Q)〉2
Tij(r)

]
− 4πrρ0 (2.24)

Tij(r) =
1√

2πσij(r)
exp

[
−(r − rij)2

2σ2
ij(r)

]
(2.25)

The width of the function Tij(r) is given by the atomic displacement parame-
ters, U , of atoms i and j. In the formalism, the expression σij(r) =

√
σ

′2
ij − δ

r2ij
− γ

rij

also accounts for correlated motion of atoms (which is r-dependent) via the pa-
rameters γ and δ. It is possible, that the first neighbour-peaks sharpen if they
are vibrating in phase. It is not fully clear from literature when to apply γ or
δ or both, it is mostly advised to take the parameter that gives the best fit.
Sometimes, the choice of γ or δ is related to the Debye-temperature of the
material, so that δ is used if the measurement happened at a temperature below
and γ if it happened above the Debye temperature (Jeong et al. (2003) and
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Jeong et al. (1999) try to elaborate on this). It is possible to sophisticate those
expressions at will and some expression are given in Jeong et al. (2003), Neder
and Proffen (2008) and Thorpe et al. (2002).

- instrumental effects

In terms of a PDF, Toby and Egami (1992) write that firstly, because of the
limited angular resolution, the experimental PDF experiences a damping which
is resembled by the expression exp[−1

2
r2σ2

Q]. Secondly, a broadening of the
PDF-peaks stemming from limited instrumental resolution in Q-space is said to
be accounted for within the expression for thermal motion σij(r) =

√
σ

′2
ij + α2r2ij

(Neder and Proffen 2008).

- measurement range

The calculated PDF is convoluted with W (r), the sine-transformed of the step
function for consideration of the integration limits. Further, termination ripples
have to be accounted for. (See section 2.1.5 for both.)

- baseline of the PDF

A discussion on the factors influencing the baseline of the PDF can be found in
section 2.2.4.

2.3.2 PDF-creation by FT of a calculated diffractogram

Direct calculation of the PDF has often been the method of choice, since it is a
relatively fast process. In the second variant, Calculating a diffraction pattern is
a computational expensive task and also FT takes time.

But since, of course, the PDF is determined by the scattering curve, using a
diffractogram has some benefits, because some features need not to be accounted
for. Further, recent approaches (see e.g. Cervellino et al. (2006)) give an example
of optimising data handling and faster calculation of diffraction patterns according
to the Debye formula. Also calculations on GPUs are an option (Gelisio et al.
2010). (See also Leonardi and Bish (2016)).
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- benefits of this method of PDF-creation

A benefit of FTing reciprocal space data is the automatic incorporation of
termination ripples and broadening due to the extension of the measurement
range.

As data are often interpolated from an equidistant 2θ-grid to an equidistant
Q-grid, effects from this procedure could be incorporated into a PDF. The practice
of interpolation of the Q-axis to get an evenly spaced interval which is needed
for certain mathematical treatments such as FFT (fast Fourier transformation)
is discussed in section 5.1.1. Also, effects stemming from data corrections and
modifications as well as noise might be incorporated easier by the "FT-approach"
than directly adding them to the PDF. If the small angle signal is correctly
incorporated, no algorithm for baseline-estimation is necessary.

Eventually, instrumental effects can be considered easily. Zuev (2006) and Ida
and Toraya (2002) give procedures for calculating and convolving or deconvoluting
instrumental profiles from powder-scattering data.

As the PDF is obtained by FT from a diffractogram, effects stemming from
temperature or "disorder" have to be accounted before the diffractogram is
calculated.

- incorporation of thermal motion into diffractograms

Thermal diffuse scattering (TDS) in X-ray powder-diffraction patterns produces a
non-uniform background, as in the single-crystal case. To great amount, it peaks
sharply at the positions of the Bragg reflections (one-phonon scattering by the
acoustic modes) and because of this concentration around the Bragg-peaks a
large part of the TDS cannot be corrected easily for. TDS often contributes 10%
or more, also less, depending on the chosen instrumental setup (big contribution
by selection of the primary radiation) and sample at hand (Alexandropoulos et al.
2006; Beyerlein et al. 2012) to the overall intensity.

A rough approach for accounting TDS from thermal motion of atoms is adding
a term (1 - DWF) (see e.g. Lipkin (2004)) given by equation 2.26. It should
be noted that static disorder is not intended to be modeled in this case as
static disorder should already be sufficiently well described by the model. As,
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especially in case of disorder, the thermal motion can be an directional quantity
for each atom, this DWF description (which usually accounts for static and
dynamic effects) is an approximation which might be strongly imperfect.

TDS(Q) = 1− exp−Q
2〈|u|2〉 = 1− exp−Q

2U = 1−DWF(Q) (2.26)

S(Q) =
I(Q)

f 2
0 (Q)

∑
(DWF(Q)Q)∑(

I(Q)

f20 (Q)
Q
) + TDS(Q) (2.27)

u is a displacement vector and U is an isotropic mean-square displacement
given in [Å2] (Trueblood et al. 1996). U is linked with the isotropic thermal
coefficient B by B = 8π2U . The term TDS in equation 2.26 describes the broadly
distributed part of thermal diffuse scattering. This equation does not describe
the peaked phonon scattering. Thus it is no surprise that there are no sharp
peaks in F (Q) (figure 2.8)! Thus, also the PDFs in figure 2.8 show little effects
of the TDS. This approximation is a very basic one and should be applied only
if the influences of the TDS are very mild. This conforms to the findings of
Beyerlein et al. (2012), who analysed the suitability of the DWF-approximation
in nano-materials.

2.3.3 Structure refinement by aid of the PDF (PDF-refinement)

In many cases it is necessary to achieve a model via a refinement routine. There
are numerous programs to do so. In principle, all approaches which alter coordi-
nates of atoms in a structural model can be applied in PDF-refinements. The
difficulty is to find a suitable modeling approach and to apply the refinement
algorithm in a proper way to get models with physical meaning. - The optimiza-
tion process in PDF-refinements is driven by comparison and minimization of
the differences between calculated and experimental properties (Gcalc(r) against
Gexp(r)). It is possible to refine different quantities with one model in addition,
such as the XAFS (X-ray absorption fine structure), electronic DOS (density of
states) or vibrational spectroscopy spectra.

Some example of modeling approaches are: something that has been named
real-space-Rietveld refinement, which optimizes structural parameters in a
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Figure 2.8: Comparison of thermal diffuse scattering in F (Q) and G(r) by the
DWF approximation: In the lower figure the pair of curves on top gives a
comparison of G(r) calculated with and without TDS with B = 1.95, where
B = 8π2U . The corresponding difference curve is drawn below. The effects

introduced by this approximation are so mild that they could be confused with
termination ripples caused by Qmin.
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least-squares algorithm. Differential-evolutionary algorithms as implemented in
DIFFEV in the DISCUS_SUITE are used for systematic alteration of structural
models on a larger scope and potential parameter space. Also empirical-potential-
based refinements, molecular dynamics (MD), Monte Carlo (MC) reverse Monte
Carlo (RMC), density-functional-theory (DFT) can be used for structural evolution
in the model. (See e.g. Young and Goodwin 2011, Neder and Proffen 1997, Juhás
et al. 2006; Juhás et al. 2008; Juhas et al. 2010, Cliffe and Goodwin 2013). As one
can imagine, not all methods are applicable for each question at hand. Some,
e.g. MD, DFT or empirical potentials for structural relaxation, might be used
as separate techniques or applied locally to correct structural properties in a
specified step of a refinement cycle.

2.4 Critical remarks related to PDF-methodology

Unfortunately, only few articles are concerned with the general limits of extraction
of structure information via the PDF-method. - What has been done up to now
to "prove" the suitability of the "PDF-method" and the corrections applied, is
comparisons of RDF-data of simple substances, like fcc-Ni, which has one kind
of atom and is strictly ordered (eg Juhás et al. 2013).

From what is presented and communicated, the impression emerges that
the PDF is a robust tool for probing and getting exact information on local
environments (Billinge 2013; Billinge and Kwei 1996; Billinge et al. 2000a;
Billinge et al. 2000b; Proffen and Billinge 2002). But the PDF can at most give
the information that the total-raw-scattering data themselves can give, which is
average information from the probed volume. - Modulo artefacts from Fourier
transformation and alterations caused by data corrections and a baseline of the
F(Q)-curve that does not converge to 0. - Also we do not know if we measure a
sample with a representative distribution of building units. (As a tool for really
probing local environment, one could use a HRTEM (high-resolution transmission
electron microscopy) or related, as done in Yang et al. (2002).)
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2.4.1 General assertions about PDF-analysis in literature

More and more authors claim to be able not only to extract qualitative infor-
mation (which is a difficult task by itself) such as analysis of thin films without
geometrical corrections (Jensen et al. 2015) but also quantitative (e.g. Abeykoon
et al. 2012; Davis et al. 2013; Farrow et al. 2010; Masadeh et al. 2007; Paglia
et al. 2006) by analysis of total-scattering data and their RDF-derivatives. Also
polyphasic materials such as a zeolite with CdSe inclusions in Abeykoon et al.
(2008) are treated. Also, the PDF has been presented as the means of choice
for investigating nano-particles of all sorts (Billinge 2013 - "‘Materials science:
Nanoparticle structures served up on a tray’").

Sometimes, difficulties in distinguishing the origin of certain signal are
mentioned while nevertheless stating that the method is capable of solving
all issues. See for example Proffen et al. (2005) who state that "One problem,
however, especially in more complex systems is to answer the question if certain
features observed in the PDF indeed point to an amorphous contribution or [if
they are] in fact related to disorder in the crystalline phase". They continues
that "[...]Finally [they] like to draw the readers attention to the fact that total
scattering or the PDF technique provide a method to unravel the atomic structure
of materials ranging from liquids, over glasses to disordered crystalline materials
as well as mixtures.

Despite continued research on diverse topics concerning the quality and
reliability of the PDF-method as was discussed in section 2.2, some authors
assert that "G(r) is barely influenced by diffraction optics and experimental factors
since these are accounted for in the step of extracting the coherent intensities
from the raw diffraction data. This renders the PDF a structure-dependent
quantity only."(Saravanan and Rani (2011)).

2.4.2 Assertions about phonons in (1D-)PDF-literature

Even though this section focuses on the one-dimensional PDF, some of the
arguments also apply to classical (three-dimensional diffraction pattern) crystal-
lography.
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In important PDF-literature (Egami and Billinge 2003, p. 32) it is stated that
"this term [rem: 1 - DWF] approximately "describes the diffuse inelastic scattering
intensity due to phonons. They write further that a significant proportion of
the total integrated intensity [...] and is too often disregarded. Further "[t]he
Debye-Waller factor reduces the intensities of the Bragg scattering but where
does the lost intensity go? It appears in between the Bragg peaks and becomes
what is called diffuse scattering." This last, very general statement might be
true, anyway, Beyerlein et al. (2012) state that it is difficult to account for the
TDS which often shows directional dependence in reciprocal space. This implies
that a DWF does not suffice.

It is not mentioned that it is only elastic and quasi-elastic scattering we
should use for creating a diffractogram which is normalised to a Q-grid. TDS
is "pseudo-elastic" only in the X-ray case and this practice is prohibited e.g.
for conventional neutron scattering. Additionally, we have no guarantee if the
treatment for the separation of the Q-dependent atomic form factors to obtain
ρ(r) is valid for the scattering from phonons.

In another publication it is asserted that corrections for thermal effects have
not been performed, because: it contains valuable information (Thorpe (1998,
p. 162)). In addition, it should be noted, they are also not corrected for, because
to correct for them would mean to know how the contributions look like and then
much of the phonons is already known. - And in the single crystal case it is even
possible to evaluate a correction factor for the TDS. But to calculate properly
the phonons’ contributions, we require a knowledge of the lattice dynamics
of the crystal and not just its elastic properties and this we don’t get from
powder data. This is one reason why relatively little progress has been made
in calculating the X-ray correction factor for (and information on phonons from)
powders (Alexandropoulos et al. 2006, p. 657).

2.4.3 Issues concerning the extraction of information

As due to instrumental restrictions low-Q-data are often missing, concepts for
estimating those are discussed in literature (Olds et al. 2015). Leadbetter and
Wright (1972), Pusztai et al. (2008), Wright et al. (2001) and Wright (1993)
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evaluated obstacles to structure extraction from scattering and PDF data. Soper
(2007) and Soper (2013) investigated "‘On the uniqueness of structure extracted
from diffraction experiments on liquids and glasses’" and "‘The radial distribution
functions of water as derived from radiation total scattering experiments: is there
anything we can say for sure?’". Hamad and Mansoori (1989) and Mansoori
(1993) about radial distribution function methodology related to mixtures of
liquids.

Problems concerning the accuracy of the methods discussed are occurring
already in simulation of simple liquids and some discussion on where those
could emerge from is gven in Van Houteghem et al. (2014) (‘Critical analysis of
the accuracy of models predicting or extracting liquid structure information’).
They "tried to highlight the origin of errors by a detailed comparison of the
experimental data with accurate ab initio MD." Their "conclusion is that the
experimentally derived properties are prone to large artifacts" and that in order
"to improve the reliability of the experimentally derived properties, we need
an unbiased model-independent intermolecular total SF without the help of
interatomic potentials. The lack of such a bias free quantity hinders a fully
reliable comparison with theory."

Beyerlein (2013) "[...]demonstrated that the technique of Debye function
analysis [rem: and therefore PDF-analysis?] is best suited for systems with only
a few possible atomic arrangements." Further important aspects are discussed
for example in Gibson (2007) - "‘Understanding the limits of pair-distribution
functions for nanoscale correlation function measurement’".

2.4.4 PDF for multiphasic materials?

Proffen et al. (2005), for example, did some analysis of an amorphous phase
within an engineering material which had different composition. As experienced
researchers, they may be aware when the PDF method can be applied. - In
general, the PDF method is not valid for the analysis of polyphasic materials.
An exception might be made for polymorphic phases that exhibit the same
composition, although here the question arises how the baseline-estimation
should be performed.
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In general, in phase-mixtures intensities from the phases are additive in
reciprocal space but stem from independent domains. Any reduction procedure
must transform the intensities. As it is impossible to separate intensities without
prior knowledge of their origin, no correct treatment can be performed before
information of the sample’s structure has been elucidated. The potential error
that emerges from wrong treatment of intensities cannot be estimated. Currently,
verificative calculations concerning the amounts of error in treating polyphasic
materials are attempted.

2.5 Conclusions

What we can recognise up to now is that data transformation and maybe
also correction can be quite tricky and prone to errors. For example, strong
approximations are made in data treatment, if atoms with (strongly) differing
scattering behavior are contained in a sample. - An important result might be
the remark that we could get rid of potential artefacts that are introduced in PDF
creation from raw data if we use a different approach of modeling: calculated
scattering which that are reduced in the same way as the raw data and then
sine-Fourier transformed to a PDF. This would assure having the same artefacts
in the experimentally derived and calculated curves. What is then left is to
correctly interpret structural features.

To end this chapter, it remains to say that up to now, it is an important
question which status the interpretation of PDFs should be assigned to. Is
it quantitative information one gets or is one stuck with purely qualitative
information about changes and occurrence of interatomic distances in a given
specimen? — If we are dealing with ensembles of particles, a bundle of interesting
questions arises, for example: How to account for all this objects. What if different
objects express a different density and what if different objects exhibit different
absorption behavior. Many propositions in the PDF-literature appear like mere
statements of opinions. It is to be seen if that is the beginning of a trend
of overestimation of the capabilities of a method and if critical voices will be
considered.
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If it turns out in the end that the PDF really can be a suitable crystallographic
tool, it might be better to use the following formula for G(r). It is G(r), defined as
the reduced and normalised radial distribution function which is yielded by sine-
Fourier transformation of a scattering function i(Q), as introduced by equations
2.20 and 2.21. It is no necessary to artificially create a function S(Q)− 1 for the
sake of satisfying the equation for the one-atom case. If calculated, i(Q) is a
diffraction pattern which describes the full intensity in the measurement range
(maybe even including the SAS-signal) and is reduced and sine-transformed to
the PDF in the same was as the experimental data are. -

G(r) = 4πrρ(r)direct =
2

π

∫ Qmax

Qmin

Qi(Q) sin(Qr)dQ (2.28)

By such a method, no need for introducing a density ρ0 remains and also
mathematical artefacts will be directly included. Further, no need for evaluating
a suitable baseline emerges because the shape of the baseline will readily be
defined by the FT. In parallel, we then also should consider a different scheme
of correcting data.
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Investigation of non sample related
information

What follows is an overview of theoretical and practical aspects concerning
creation and evaluation of PDFs. Although ample literature on direct-space-
approaches has been published, calculating PDFs from scattering data seems to
be highly subjective. It is not only corrections for well-understood effects (such as
Compton-scattering, angle dependent polarisation, absorption and geometrical
corrections) that have to be considered. Other influences, such as scattering by
phonons, sample misalignment, and influences of the intensity-value at Qmax are
not easily determinable or not determinable at all such as noise, stray radiation,
complex absorption effects that cannot be accounted for by a (simple) algorithm.

- details on exemplary calculations in this chapter

For the theoretical investigations, PDFs were created by FT of a calculated
diffraction pattern. A Si-supercell consisting of 10x10x10 unit-cells of crystalline
silicon was chosen as a model system (using the formalism in section 2.3.2).
Integration limits have been taken from 1.5 to 21.0 Å-1. 21 Å-1 were chosen
as the upper limit because it is a high value experimentally achievable with
Ag-radiation and a routinge measurement up to 2θ = 150◦. 1.5 Å-1 was chosen
as the lower limit because the Debye scattering equation is not well suited for
the calculation of small angle scattering signal of a realistic system as it leaves
out interaction between particles and because this is the lower experimental
limit in many cases.
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3.1 Influences owing to the experimental setup

Literature usually gives the impression that effects owing to the instrumental
setup can be neglected or accounted via some damping or broadening terms
in PDF analysis, e.g. Qdamp or Qbroad. Only few authors talk about them
at all (Bordet 2015; Egami and Billinge 2003; Toby and Egami 1992 ) or
made investigations (Jeong et al. 2005). General discussions of those effects in
scattering data is given by Cervellino et al. (2005) or Ida and Toraya (2002).

Figure 3.1 shows a refinement of the diffractogram of a silicon sample with
GSAS-II (Toby and Von Dreele 2013). It was measured with a PANalytical
Empyrean laboratory diffractometer located using Ag-radiation. The radiation
was filtered with a Rh-foil to remove a large amount of Kβ radiation. A long tail
of Bremsstrahlung that could not be removed by the filter is located around every
peak and the profile-parameters could not be evaluated satisfactorily. The crucial
point here is not to "satisfactorily" evaluate the Caglioti UVW-parameters. What
it shows is that the calculated diffractogram differs from the experimental and
that the theory applied is not sufficient for a full description. We must account
e.g. for peaktails and parameters influencing peak-shapes. The current practice
is to evaluate a Qdamp and Qbroad that damp and broaden the experimental PDF
(see section 2.2.6). Up to now, we have no convincing reason to believe that
the influence of instrumental effects on extractable structural information from
PDF will behave differently, i.e. less complex, than from scattering data since
the PDF is derived from the scattering data. Therefore, we have to investigate
models and where the effects in real space are precisely found.

Firstly, comparisons concerning influences of the instrumental profile and
disorder were performed to determine if they can be differentiated. To intro-
duce disorder into a 10x10x10-Si-supercell, all atoms were given small random
displacements from their initial position, which were in the limit of the atoms’
U-values. An instrumental profile was superimposed by invoking the following
commands in the powder-menu of the DISCUS software: set profile, pseudo
(setting the peak profile as pseudo-Voigt); set profile, eta, 0.634 (setting the
ratio of Gaussian and Lorentzian contribution for each peak); set profile, uvw,
0, 0, 0.015 (defining Cagliotti UVW parameters); set profile, asym, 0.015, 0.001,
0.0055, 0.0 (defining an asymmetric peak shape)

46



Influences owing to the experimental setup 3.1

Figure 3.1: Rietveld-refinement to obtain the UVW-parameters for a laboratory
device from a Si-sample with the GSASII-software. The profile is not fit well in

reciprocal space with the parameters U, V, W and it is expected that 2
parameters (Qbroad and Qdamp) for a refinement in real-space will be also

insufficient.

Figure 3.2 shows the diffractograms for an undistorted and a distorded Si-
supercells, where each diffractogram was modified by an instrumental function
in addition, thus resulting in four diffractograms. Figure 3.3 gives pairwise
comparisons of the PDFs obtained from these the diffractograms. It suggests
that the effects of the instrumental function are more than just a broadening and
dampening, as visible e.g. in the first comparison in the region from 5 to 6.5 Å.
There the curve with an instrumental effect added (red) has a bigger amplitude
tan the unmodified PDF (blue). In a refinement this might lead e.g. to an ordered
material being mistaken as disordered. The correct evaluation of the impact of
the instrumental setup on the shape of the PDF remains a question to be solved.
This finding opposes Qiu et al. (2004), who note that the Q dependence of the
instrument resolution is expected to result in an r-dependent broadening in the
PDF peaks as well as a loss of intensity at high r (Leoni M., Hans P. (2018) in
preparation).
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Figure 3.2: Comparison of four diffractograms for 10x10x10 Si-supercells. a)
undistorted, b) distorted, c) undistorted with and altered by an instrumental

profile function, d) distorted with and altered by an instrumental profile function.
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Figure 3.3: G(R)-curves resulting from figure 3.2.

49



Chapter 3 Investigation of non sample related information

3.2 Effects of non-monochromaticity

Secondly, the influences of deviations from monochromatic radiation on G(R)

were investigated. In many laboratory diffractometers we do not have pure Kα1-
radiation. Filtered radiation still contains Kα2 radiation, often Bremsstrahlung,
maybe Kβ .

An experimental diffractogram versus 2θ collected with polychromatic radia-
tion ( Kα1 ≈ 55.5%, Kα2 ≈ 27.7%, Kβ ≈ 16.6%) was simulated. Figure 3.4 shows
the corresponding S(Q) curves where the 2θ-scale has been transformed to
the Q-scale by using Kα1 and a comparison with an S(Q) from monochromatic
radiation.

Figure 3.5 shows the corresponding PDFs obtained from scattering data
with a monochromatic radiation and strongly polychromatic. Deviations from
monochromaticity apparently shift peak maxima, further they introduce artefacts
into the PDF in form of altered peak shapes and possible additional peaks.
Soper and Barney (2011) studied the extraction of PDF-data from scattering
data obtained with white-beam-radiation.
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Figure 3.4: A comparison of the modeled F(Q)-curves for monochromatic and
polychromatic raw-intensities obtained from scattering of Ag-radiation by Si.

F(Q) mono was calculated with pure Kα1. For the non-monochromatic radiation
a model composition of Kα1 ≈ 55.5%, Kα2 ≈ 27.7%, Kβ ≈ 16.6% was chosen.

Figure 3.5: Comparison of FTs of monochromatic and non-monochromatic
F (Q)s. Obviously, non-monochromaticity of the radiation has effects that

should be considered in analysis
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3.3 Influence of noise

Thirdly, a study on the influence of noise (electronic and thermal fluctuations)
was done by means of theoretical data. For taking into account noise we can
start from ideal, monochromatic scattering data that do not contain noise.

Raw intensities have positive contributions only and also noise can lead
only to a positive detector response. Going along with the angle-dependent
decay of scattering, noise in the diffractogram increases. The noise is related
to detector counting statistics. It should be a Poisson noise but the Gaussian
models it pretty well for sufficiently high counts. The noise level in this example
was chosen to be 0.05 % of the maximum intensity of I(Q).

For the study, a function ζn was created by taking the absolute of a Gaussian
noise multiplied with the reciprocal of the mean atomic scattering factor so
that ζn = |noise| ∗ 1/f 2

0_Si. To account for the alteration of the baseline due
to the additional contribution of the noise, a second function ζs = 0.5 ∗ 1/f 2

0_Si

was defined. The noise-functions ζn and ζs were added to the raw intensities
I(Q) to obtain functions In(Q) and Is(Q). If ζs is subtracted from the noisy
diffractogram In(Q), the resulting diffractogram Ins(Q) oscillates around zero at
high scattering angles. From the modified raw intensites, the respective F (Q)s
were calculated.

Figure 3.6 shows the modeled functions F (Q), Fn(Q) and Fs(Q) of the Si-
supercell. Figure 3.7 shows Fn(Q) and Fns(Q) (the curve of the noisy diffrac-
togram minus the slope of the noise). By the transformation from I(Q) to F (Q)

the noise is strongly amplified.
Figure 3.8 shows the PDFs corresponding to figure 3.7. As can be seen, there

is a strong effect in Gn(r) that is characterized by very pronounced ripples in the
front region and continuously smaller ripples with increasing r. A similar effect
is present in Gs(r) but not in Gns(r). This is evidence that, in sufficiently low
amounts, not the noise but the deviation from the baseline of F (Q) is negatively
influencing G(r). After subtraction of the "slope" of the noise in reciprocal space,
the effects of noise, although prominent in the scattering-signal, are almost
eliminated. The difference curve between Gns(r) and G(r) emphasizes this. The
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investigation shows that subtraction of a well suited function (best done after
physical meaningful data correction) could give improvements to PDFs.

Figure 3.9 shows a Gns(r) calculated for a Qmax of 40 Å-1 that shows strong
alteration compared to an ideal PDF without noise. The PDF’s quality was
higher for an Qmax of 21 Å-1.
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Figure 3.6: Illustration of noise in F (Q) calculated from a Si-supercell-model.
F (Q): ideal scattering curve. Fn(Q): a modified Gaussian noise ζn was added

to F (Q). Fs(Q): only the slope of the noise ζs was added to F (Q).

Figure 3.7: Fn(Q) from figure 3.6 and Fn(Q) with the slope of the noise ζs
subtracted resulting in Fns(Q). Fns(Q) oscillates around zero.
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Figure 3.8: Comparison of the PDFs obtained from the different F (Q)-curves.
The most remarkable result is that the differences between the PDF of the
dataset of the ideal structure and the PDF of the noisy and slope-corrected

dataset are already very similar.

Figure 3.9: PDF obtained from the data up to 40 Å-1 and a noise level of 0.05 %
of the maximum of the primary intensity. This is a good example that a high

value for Qmax is not a guarantee for a useful PDF.
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3.4 Remarks on scattering by the container and ab-
sorption related phenomena

For optimal subtraction of unwanted scattering, it is important to keep in mind
that in a scattering experiment the total scattering can be understood as the
sum of individual contributions: the empty device (presumably mostly gas) (a),
the container (b) and from the sample in the container (c). Then the scattering
of the empty container in theory is d = b− a and the scattering from the sample
in the container e = c− a. The difference of the scattering by the sample and
the container, and the scattering by the container e − d gives the scattering
of the sample alone. The procedure is defined this way because it is possible
that the contributions of the single components to the total scattering in the
system (air + container) and in the system (air + container + sample) differ
so that scaling of each single contributions must be performed. So the best
practice for background subtraction should be a separated subtraction of all
separable contributions to the integral scattering from the total scattering as
defined above.

Figure 3.10 shows the results of an in-house laboratory experiment: the
dataset from the empty device’s measurement contains signal that is not present
in the other measurements. The intensity data were collected under the same
settings as the other measurements. It could not yet be explained where it comes
from and if absorption effects cause it to not show up in the empty capillary’s
diffractogram.

What can be seen in figure 3.11 is a measurement of an Si-sample in a
Kapton (R) capillary. The scattering by the container in the measurement of the
filled capillary appears to differ from the scattering of the capillary measured
empty. Moreover, the measurements of two different empty capillaries show
different intensity profiles. It can only be speculated whether this difference
origins in a slightly different shape and thickness of each capillary or in a
different positioning (what can merely be improved over a certain level) and
which effects the precessing of capillaries has.

Another important observation is presented in figure 3.12: Diffractograms of
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a mixture of silicon and fused silica, and pure fused silica were recorded. The
diffractograms appear to be composed only of a strong contribution due to air
scattering at low scattering angles, and of the specimens’ scattering over the
remaining range. — The diffractogram of the mixture exhibits higher intensities
than the pure fused silica between 5 - 20° 2θ. As the materials exhibited grain
sizes of several µm, it is unlikely to be small angle scattering. A viable alternative
explanation is that pure fused silica shows stronger absorption behavior than the
mixture. From this it can be inferred that prior to any combination of scattering
data, proper correction of data should be performed, incorporating information
on all samples. Obtaining those might require an iterated correction procedure,
which incorporates and refines detailed sample information in order to find a
physically correct solution.

The observation made might also be crucial in for difference modeling where
a PDFs is subtracted from another. Background subtraction can be called the
prototype of all difference modeling. One might say that those effects do not
really matter, because the PDF-method is an insensitive method with many
approximations. In any case, insufficiently treated scattering by the container is
prone to influence quantitative and maybe even qualitative interpretations and
our practices should be characterized by striving for the best result possible.
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Figure 3.10: A comparison of the diffractograms of a container and the empty
device in a laboratory-diffractometer. The dataset of the empty device clearly
shows features (reproducible) that is not similar to the data curve of the empty

capillary. The reason could not be elucidated up to now. The empty device
should show less features than anything else.

Figure 3.11: Data from container measurements do not exactly overlap

58



Remarks on scattering by the container and absorption related phenomena 3.4

Figure 3.12: Comparison of X-ray absorption behavior of pure fused silica and
a mixture of silicon/fused silica. The curve at low angular region and the

artefacts differ in intensity. This might be an indicator for absorption effects at
this region. In order to eliminate all non-sample signal via subtraction, a

correction appropriate to the causes appears indicated.
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3.5 Conclusions

We should not always rely that our experimental setup gives directly useable raw-
data. As pointed out, more refined practices than applied at present might have
to be introduced in order to reach higher qualities of data analysis. The most
important conclusion from this chapter is that features owing to the instrumental
setup, radiation properties, noise, and background subtractions can introduce
artefacts. This must be considered in PDF analysis.

Either we get rid of them via deconvolution (Ida and Toraya 2002) or incor-
poration via convolution (Cervellino et al. 2005), which is an easier way.

By subtraction of a polynomial resembling the mean deviation of F (Q) due to
noise at high diffraction angles it is possible to reduce large ripples in the PDF.
The strong contribution of noise is due to the deviation of the signal from zero
at large Q, thus avoiding the demanded convergence. A corrective polynomial in
the diffraction pattern might be a very effective correction. Anyway, for reliable
correction of scattering data a reliable routine for achieving such a polynomial
has to be developed. The choice of the highest Qmax possible does not guarantee
a "smooth" PDF as noise or other artefacts can show influence. Instrumental
effects feature the PDF.

A certainly tedious and virtually unexplored, but nevertheless promising
option could be the simulation of the whole measurement setup including the
container. By doing so, errors from data corrections might be circumvented.
As the container consists of an amorphous material in most cases, a demand
for the simulation and quantification of amorphous structures arises. Iterative
procedures with parallel refinement in reciprocal and real space should be
considered. Further, correct data collection and reduction strategies must be
adopted.
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Chapter 4

Critical assessment of ad-hoc data
correction procedures in recent
literature

Because, as Juhás et al. (2013) frame it, of the "myriad of options available to users
as well as the esoteric nature of many of the corrections (Egami & Billinge, 2013),
PDF generation requires considerable user input and expertise in arcane details
of the technique." An older software [pdfgetX2] "[...]has a graphical user interface,
[but] it is a time-consuming process to carry out the corrections, with many
possibilities for input errors, and the process cannot be easily automated for
high throughput of many data sets." This is why an ad-hoc correction approach
by means of subtraction of a polynomial was suggested instead of physical
meaningful corrections (Billinge and Farrow 2013). A corresponding software
pdfgetx3, which does data correction and subsequent PDF-generation via an
FFT algorithm, was published recently (Juhás et al. 2013).

4.1 Description of the correction algorithm

Concerning the proposed correction procedure, firstly, it has to be mentioned
that multiple interpolations are made by the software. If the diffractogram is not
provided on a regular Q-grid it is transformed and interpolated onto a regular Q-
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grid, the step size being the distance between first and second data points. Then,
the container intensities are interpolated onto the same Q-grid as the raw data
in order to make possible proper non-sample-signal-subtraction (described in the
pdfgetx3-publication). Usually, it appears to be the best to record the scattering
by the container under the same condition as the scattering by the sample. Data
mapped on an equidistant Q-grid apparently should give constant weights in
Q-dependent fitting (what might be also true for Q-dependent corrections).

According to theory, the reduced structure function S(Q)− 1 = I(Q)/ < f >2

− < f 2 > / < f >2 should oscillate around zero (and approach zero at some
point). To achieve so, the background-corrected raw intensities are scaled by
a least-squares procedure so the formula fulfills the demanded conditions. We
thereby can sidestep the task of evaluating the amount of sample employed in the
measurement, what would be necessary for ordinary data reduction otherwise.

Then the function Q[S(Q) − 1] = F (Q) is formed and a polynomial is sub-
tracted. The correction polynomial is defined in equation 4.1. The polynomial
has (n+ 1) nodes, which are equidistantly distributed between 0 and Qmaxinst.
rpoly and Qmaxinst are adjustable parameters and must be defined by a user.

npolyπ = rpolyQmaxinst (4.1)

The subtraction of the corrective polynomial results in a corrected function
Fcorr(Q) which is not perfectly corrected. A difference function ∆F (Q) remains
and its Fourier transform is a function ∆G(r) that is interpreted as an error so
that:

F”real”(Q) = Fcorr(Q) + ∆F [Q] ∆G(r) = F [∆F (Q)] (4.2)

There should be no impact of ∆G(r) on the "real" PDF in the physical
meaningful region, i.e. the region below the first interatomic distance. An
impact emerges owning to the frequency of changes of ∆F (Q)) from positive to
negative sign. To prevent so, rpoly must be chosen that it is smaller than the first
interatomic distance and equation 4.1 must be tuned to achieve a suited value
for npoly (which defines the number transitions from negative to positive).
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Description of the correction algorithm 4.1

Further, as it is likely that npoly will not be integral, an adaptation procedure
is performed, to make the polynomial’s degree integer. The real-valued npoly

integer floor and ceiling are taken and polynomials are obtained for both values.
The weighted sum of the polynomials obtained with those floor and ceiling
values is taken. Weighting is done according to the respective distances of floor
and ceiling to the real-valued npoly lying in between them. Figure 4.1 shows
a correction-polynomial, the corresponding F (Q)-curve and the S(Q)-curve
calculated from F (Q) of an amorphous, organic solid.

As the number of data-points in G(R) directly obtained by FT is equal to the
number of points in the scattering curve additional interpolation is applied before
FFT is done. A shift of the limits Qmin and Qmax is done and then a partition of
the range between the limits. The Q-grid is set and F (Q) is interpolated to be
appropriate for the desired step size and number of data points in R.
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Figure 4.1: F (Q)-curve with ad-hoc correction polynomial and calculated S(Q)
curve thereof.

4.2 Analysis of some artefacts obtainable with the
ad-hoc method

In the following, some tuning experiments have been performed, to show what
novices are prone to perform. Figure 4.2 shows an exemplary series of achievable
polynomials for an unchanged dataset. Figure 4.3 gives closer comparison of
the obtained F (Q)-curves. Figure 4.4 documents the G(R)-curves obtained from
the datasets from figure 4.3. Figure 4.5 gives a zoomed-in comparison of the
short-range region from figure 4.4.

There is not much to comment. For five sets of parameters five sets of PDF-
functions are obtained, which considerably differ. - The curve, which will be
chosen for analyses or refinements, completely depends on a person’s subjective
criteria. - Unfortunately, so it seems, adopting an ad-hoc procedure that make
the work easy for laypersons, renders data correction arcana to «numerical
alchemy»(and also for experts as we have no reasonable criterion at hand to
select the parameters). Even the qualitative information we can get is prone
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to "tuning". But exactly quantification via the PDF method is what is desired
and what authors connected to the authors of pdfgetx3 claim to have achieved
quantification (Abeykoon et al. 2012). The same group published a software to
extract the "real" peaks from a PDF and that was tested on approximately 20
datasets (Granlund et al. 2015). — Applying a correction procedure of such kind,
demands prior knowledge of the correct PDF, otherwise no distinction between
real and superficial maxima, peak-shapes and distance distributions can be is
possible (Hans P., Leoni M. (2018) in preparation).

Another obstacle concerning data-extraction from PDFs was encountered
during the analyses of solid phase catalysts in modulation experiments at the
synchrotron (Diamond Lightsoure, beamline I15). In this case, time-dependent
experiments of repeated reaction-cycles were performed. The solid phase cata-
lyst Co3O4 was heated under defined temperature and in alternating reducing
(H2 / CO / He) and oxidizing (O2 / He) atmosphere. Diffractograms were recorded
with a flat plate detector in intervals of 5 seconds. The idea in the case at hand
was to apply a demodulation algorithm (such as performed by Beek et al. 2012
on X-ray diffraction data) by using PDFs to time-resolve changes of SRO and
phase composition in relation to the reaction start (Föttinger K., Lukashuk L.,
Yigit N., Leoni M., Hans P. (2018) in preparation).

Figure 4.6 shows three graphs: the top graph is an overlay of all F (Q)s,
which were recorded during the reduction reaction of a reaction cycle. The
difference-curves between each diffractogram and the first one are depicted in
the bottom graph. A defined relationship between the first diffractogram and
all other exists, and this relationship depends on the reaction time. Here, a
phase transition takes place under reducing conditions (which is reversible under
oxidizing conditions), so the corresponding peaks appear and disappear in the
difference curves. The graph in the middle gives information on a mathematical
phase relationship and correlation across the datasets of the cycle, but is
irrelevant for the discussion at this point. It is simply contained in the output of
the software for analysis.

In figure 4.7 the differences between the PDF of the first dataset and each
other has been taken and drawn in the same manner as above. The clear
relationship, which can be seen in the F (Q) curves in figure 4.6 is lost in the
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third graph. What should be seen is a selective appearing and disappearing
of bond-distances as the reaction progresses thus indicating the formation
dynamics of the phases and change in the SRO.

What remains to do is a detailed analysis of the reasons this correlation
between datasets is lost in real-space (Hans P., Leoni M. (2018) in preparation).
In the following only a few attempts to explanations are given:

One reason for the failure of extracting information on the correlation of
phase occurrence and SRO with reaction time compared to the initial structure
might be that the pdfgetx3-output is not normalized and not given per incident
intensity or per number of scatterers.

As the reactions occurred under reducing or oxidizing atmospheres, the
oxygen contents vary. Correct data correction is dependent on the stoichiometry
to separate ρ(r) from the atomic form factors.

The Warren-Krutter-Morningstar approximation (section 2.1.4), which appears
to result in artefacts for samples containing atoms with strongly differing form
factors, is applied. Anyway, this reason seems odd, because this information is
already used to achieve the F (Q)-curves where the trend can be seen.

Another explanation could be related to particle size and shape and growth
during the reaction: as the baseline of the PDF is determined by particle size
and shape, direct correlation between PDFs or selected peaks of PDFs might
not be possible so that models must be compared.
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Figure 4.2: A comparison of several polynomials, which were obtained from the
same dataset of an amorphous-organic solid, giving PDFs without severe

ripples and corresponding S(Q)-curves.

Figure 4.3: Detailed comparison of two F (Q)-curves constructed with the
ad-hoc correction method.
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Figure 4.4: A set of PDFs all obtainable from a single set of raw data.

Figure 4.5: Zoomed region from figure 4.4. No criterion for the distinction of
real bond distances from artefacts could be established.
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Figure 4.6: F (Q)-curves from modulation-experiments on solid-phase catalysts
at Diamond I15. A continuous relationship between first and subsequent

diffractograms can be seen in the difference-curve (bottom).

Figure 4.7: PDFs calculated from figure 4.6. No continuous relationship
between the first and subsequent PDFs appears to exist.

69





Chapter 5

Remarks on data acquisition and
data handling

The total scattering data, which are ultimately corrected and transformed to a
PDF, are usually containing intensities mapped either onto a 2θ or a Q-grid. Data
collection can happen in various ways. Here, data have been collected either
by: a) collection of a 1D-diffractogram with a point-detector or b) simultaneous
collection using a 2D-plate detector and reduction to 1D. In the process of data
reduction, many steps such as interpolations or integration are executed. Those
procedures are analysed in the following chapter.

5.1 Handling 1D-datasets - remarks concerning data
sampling and interpolation

5.1.1 Interpolation of 1D-diffractograms and its effect on G(r)

A recommendation concerning the reduction of 2D-detector images can be found
in Yang et al. (2014, p. 1282), namely the use of a non-pixel-splitting integration
algorithm and integrating data directly onto the final one-dimensional grid that
will be modeled or further processed. This is recommended because reliable
statistical uncertainties on points in a one-dimensional powder diffraction pat-
tern obtained from widely used two-dimensional integrating detectors can be
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determined not easily or not at all. (See section 5.2.3 concerning pixel-splitting
connected with the integration of 2D-detector images.) Juhás et al. (2013) write
that resampling introduces error correlations between points, which can be
minimized if the data are azimuthally integrated from two dimensions directly
onto a constant-Q grid. Anyway, it is to be questioned if the recommendation of
directly integrating onto an equidistant Q-grid is realizable. Most likely, it is
not possible to do an integration without pixel-splitting or without interpolation,
which results on an equidistantly spaced Q-grid. The detector’s pixel array does
not allow for evenly spaced intervals in Q. On the other hand FFT-algorithms
cannot be applied on datasets that are unevenly spaced in Q so interpolation
appears to be necessary if one wants to apply FFT.

Figure 5.1 gives a comparison of two curves: One curve shows the F (Q) of Si
that has been calculated onto an equidistantly spaced 2θ-grid with a step size of
0.01 and was directly transformed to the corresponding Q-grid. The diffractogram
has been calculated up to a Qmax of approx 40 Å-1. For the other curve, the
diffractogram was interpolated onto an equidistantly spaced Q-grid containing
the same number of points as the 2θ-grid. Figure 5.2 shows the corresponding
G(r)-curves and the difference between the two is minimal. Figure 5.3 shows
the strongly magnified difference curve, which exhibits a reverse dampening.
This means that the G(r) otained from the interpolated diffractogram exhibits a
damping-envelope in comparison to the non-interpolated diffractogram. It is hard
on this basis to estimate if the introduction of the above mentioned statistical
error correlations between points is crucial with respect to 1D-resampling or
if there it is only a special type of interpolation that introduces such error
correlations. Figure 5.4 shows the same example with a noise level of 0.025 % of
the maximum intensity in I(Q). There are slight differences between the PDFs,
but by comparison with the example free from noise, it is concluded that artefacts
introduced by noise can be influential whereas the differences stemming from
interpolation are negligible.
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Figure 5.1: Comparison of interpolation effects in I(Q) calculated for an
Si-model. Effects seem to mild for data-points spaced closely enough

Figure 5.2: G(r)-curves obtained by FT from F (Q)s in figure 5.2. With the bare
eye the curves are indistinguishable. The difference curve is shown in

figure 5.3.
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Figure 5.3: Differences between PDFs obtained by FT from ideal data, once
interpolated to an equidistant Q-grid, once taken as is from their 2θ-scale.

Figure 5.4: Comparison of G(r) with noise and effect of interpolation.
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5.1.2 Data collection strategies and possible obstacles

Diffractometer mechanics as well as pixels from 2D detectors are designed in a
way to scan Q-space in (often equidistant) steps. No detailed survey concerning
devices available for doing scans with equidistant steps in Q was performed,
but none of the well known diffractometer companies advertise for such a thing.
For modern pixel array detectors it seems unlikely that sampling is possible
in arbitrarily varying Q-steps or in Q-steps at all. For moveable detectors it
might be possible to do data sampling on a Q-grid by oversampling (collecting
more data points than one would need) and selecting those which represent a
Q-point. Which points in Q are collected depends on the energy of the applied
probing radiation.

To improve the signal-to-noise (S/N) ratio in a dataset, it is common to perform
measurement of intervals with different scan speeds (figure 5.5). Subsequently,
the datasets have to be scaled and merged. It is wise to measure intervals so
that overlaps exist: if the data acquisition times of the intervals are not known,
a point wise comparison of overlapping regions and scaling by a mean scaling
factor can be performed. If the data collection times are known then scaling the
sections accordingly and discarding overlaps with the worse S/N ratio can be
performed.

The software of PANalytical diffractometers, which were used for data col-
lection in the investigations presented herein, sets the starting point of the
measurements differently than specified by a user. Altered starting points of the
collected diffractograms results in a not perfect overlap of data points in different
intervals, in most cases. To accomplish the necessary scaling and merging
of the intervals to a single diffractogram, a script was applied that performs
interpolation of all segments to a common grid, and scaling and combination
of the segments subsequently. The script was written in the python3 language
and is documented in the APPENDIX. (The PANalytical software for data pro-
cessing introduced steps between the sections, which render the diffractograms
unusable.)

In the following different approaches for data merging are discussed and com-
pared with a complete dataset that was recorded in one measurement: Figure 5.6
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gives a comparison of three different diffractograms of the Si-NIST standard
640d. The reference curve was measured in one scan without pause. A second
was created by merging three sections (figure 5.5), which were interpolated
to an equidistant grid and scaled by the intensity-ratios of overlapping points
prior. The third curve was also created by merging. Here, scaling was performed
according to te known measurements times of each interval. Finally, it was
interpolated onto the same grid as the two other curves for consistency. If, then
linear interpolation was chosen. Compared to the complete and not interpolated
dataset, slightly smoothed out maxima are observed.In acquiring data for PDF
analyses of samples intrinsically giving broad diffraction features it should be
negligible. What can be seen in addition and is most striking is that curve 2
shows an obvious deviation of the slope of curves 1 and 3.

Figure 5.7 shows the corresponding F (Q)-curves obtained by processing
with pdfgetx3. For each curve the same correction parameters rpoly an Qmaxinst

parameters have been chosen. It is possible to tune the parameters for curve 2
(interpolated, scaled, merged) to obtain a PDF of Si but it deviates from the two
other curves strongly nonetheless. Figure 5.8 shows the resultant G(r)s. It is
concluded from the investigations that interpolation between data with strongly
different S/N-ratios results in prominent artefacts.
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Figure 5.5: Measurement strategy for increasing the S/N-ratio.
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Figure 5.6: Comparison of interpolation strategies by means of measured data:
Curve 1 was measured as a whole. Curve 2 was interpolated to equal step size
and scaled by the mean ratios of each overlapping point. Curve 3 was scaled
according to the (in this case known) measurement times of each interval and

merged by adding the segments whilst discarding the overlaps with worse
S/N-ratio. Interpolation was done in order to keep procedures similar and to

obtain the same step size for each curve.
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Figure 5.7: The F (Q)-curves obtained by correction of the curves in figure 5.6.
Curve 2 results from the curve shifted in the high-Q region. Here, adjustment of
the segments was done by scaling of overlapping regions and it clearly shows a

different behavior. All curves have been processed applying the same
parameters. The differences in S/N-ratio are detrimental to proper scaling.
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Figure 5.8: G(r)s from figure 5.7

80



Handling and reducing 2D-datasets - remarks on artefacts in context with data-correction masking5.2

5.2 Handling and reducing 2D-datasets - remarks
on artefacts in context with data-correction mask-
ing

For calibration and integration of datasets, DAWN was used (Filik et al. 2017).
Examples for other, easy available packages are GSAS-II (Toby and Von Dreele
2013), FIT2D (Hammersley et al. 1996) or DIOPTAS (Prescher and Prakapenka
2015).

5.2.1 The reason for using 2D-flat-plate-detectors

1D-diffractograms are a vertical cut through all diffraction cones (i.e. a plane
going through radiation source, sample, and detector). In the case of statistically
oriented (ideal) powder samples, the profile of the recorded diffractogram is
independent from the sample orientation. The detector images of sufficiently
large 2D flat plate detectors are conic sections through the Debye-Scherrer-
cones. If the sample is ideal, it is justified to merge the signal by radial integration
along the conic sections. Thereby, the amount of collected intensity is distinctly
increased in comparison to a 1D-measurement and the signal-to-noise-ratio can
be improved.

5.2.2 Procession steps: Calibration, masking and integration

Calibration (with an optional correction procedure), masking and integration are
the three main steps in reduction of 2D-data to 1D-data.

The common procedure for obtaining a moveable 2D flat plate detectors’
geometrical parameters (distance from the sample, tilting, rotation) is to cali-
brate with a very well defined and characterized substance, such as a NIST-
standard. After evaluation of rotation and distance with this well-known standard-
substance, which has well-defined structural parameters, radial integration of all
images is performed . Note that of course there is no guarantee that each sample
is equally aligned (which is often mounted in a capillary for PDF-measurements).
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Artefacts would occur if malfunctioning pixels are included in data reduction.
These pixels are called faulty pixels and are masked so they are not accounted
for during azimuthal integration. Usually, faulty pixels either do not give a signal
(i.e. 0 or a defined negative number) or they are constantly giving the same and
unvaried signal. Some pixels respond differently dependent on their stimulation.

Prior to radial integration, correction steps can be performed such as X-
ray polarization correction (Detlefs et al. 2012), corrections for influences by
the sample geometry, correction for angle dependent pixel response (although
apparently not developed for synchrotron application; see He (2009)), etc. –
Some discussion on the achievement of "good" data from 2D-detectors is given
by Skinner et al. (2012).

5.2.3 Pixel splitting in 2D-detector-image integration

During azimuthal integration, each pixel is assigned to a bin in the one-
dimensional pattern. According to the position of the pixel along 2θ, the whole
or a part of it is assigned to a one-dimensional bin. Depending on the algorithm
deployed, the intensity in the corresponding bin is calculated as an average or
weighted average of the intensities of pixels overlapping that bin (concerning
general aspects see: Hammersley et al. 1996 and He 2009; concerning statistical
measures: Yang et al. 2014).

Figure 5.9 shows a comparison of a CeO2-standard measured at the ESRF
synchrotron facility (beamline ID31, λ = 0.175939 Å (70.47 keV ) with an detector-
to-sample distance of approximately 200mm), once integrated with pixel-splitting
and once without. - The diffractograms differ slightly and the result from non-
pixel-splitting has slightly better resolved peaks. Avoiding pixel-splitting leads
to distinctly stronger visibility of noise in the low Q-region (in this example
up to 4 Å-1; no plot is given). The noise is part of the recorded data and if it
vanishes due to a mathematical procedure one should be cautious if also other
information is altered. By smoothing noisy data one does not gain additional
information nor improves one the S/N ratio.
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Figure 5.9: Comparison of the integrated 2D-detector-image of a CeO2-sample
invoking and not invoking pixel splitting. Not invoking pixel splitting lead to

better resolved maxima and apparently better resolution. The data-points are
not evenly distributed along Q which renders the data unsuitable for an

FFT-algorithm.
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5.2.4 Discussion of artefacts and conditions under which they
can arise

As Hammersley et al. (1996) (the authors of FIT2D) write that "it is better
to account for the distortions within scientific analysis software, but often it
is more practical to correct the distortions to produce ‘idealised’ data". No
polarization correction has been performed here, as the assumption was made
that polarization correction can be done post-integration on the 1D-data. In
addition, there was not information available on how inelastic scattering is
influenced by the optional correction procedures during integration.

What was surprising in this context can be seen in figure 5.10. Here the
integrated curve of a 2D-detector-image of an amorphous organic solid S2 is
depicted. The synchrotron-data exhibit two broad peaks (marked with arrows)
and the origins of those have not been able to rationalize. (In fact the detector
image did not contain areas of intensities that are identifiable by eye as clearly
differing.) Figure 5.11 shows the corresponding PDF that has high-oscillation
ripples superimposed. To visualize and quantify the effects of such atrefacts,
small peaks were introduced into a very simple simulated curve (figure 5.12)
and the FTs to the corresponding G(r)s were taken (figure 5.13). As expected,
the FT of artefactuous peaks in I(Q) are ripples of corresponding frequency in
real space. They can be the origin of disturbing features in G(r), which do not
contain structure information.

Inspired by those artefacts, a test-procedure was developed. An investigation
of integration algorithm and masking was carried out (to test if artefacts are
introduced e.g. by the integration algorithm at the borders of the mask). The
mask’s task is to remove faulty pixels so an undisturbed picture is obtained and
to avoid artefacts. Therefore an "artificial detector image" was generated. The
program is documented in the APPENDIX.

Figure 5.14 shows the unmasked dummy-image, and the same image with
two different masks, which were applied for real data. Finally the integration
results and the curve as it was intended are plotted which coincide in shape
and differ only by a scaling factor. This schows that the integration procedures
as well as masking apparently do not introduce artefacts.
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What remains to do at this point is to search for the origin of the spikes in
intensity differences between pixels, i.e. differences that are not easy to detect:
To begin, figure 5.15 gives a comparison of the F (Q)-transformed integrated data-
sets of substance S2, both applying and not-applying a polarization correction.
It can be seen that the artefacts from the data not corrected for polarization
effects vanish. Figure 5.16 depicts the G(r)-curves obtained from figure 5.15.
The data seem improved, a discussion is given in the description of figure 5.16.

It is puzzling that polarization-correction should be the reason for eliminating
(influencing) signal of this sort. A dedicated investigation is still outstanding.
There is no reason to assume that polarization of light introduces peaks into a
signal. Polarisation of X-rays should happen through a continuous change in
intensity with angular region. Application of polarization-correction diminished
the spikes observed. Nonetheless, this does not mean that it corrects the
problems rooted somewhere else.

5.2.5 Remarks on masking and data correction strategies and
how to influence the integration result thereby

While masking was successful in the case discussed, other cases seem more
reluctant to an easy solution via careful inspection of raw data. In this section,
it is examined if masking different regions of 2D-images effects shows effects in
the integration result. The most simple approach is to apply a threshold mask to
discriminate all pixels giving a signal below or above a user-defined threshold.
Applying a threshold mask is insufficient for sophisticated masking problems:
while it would be possible to locally account for wrongly responding pixels with
an intensity-threshold, this is not possible globally as the primary beam and
diffraction peaks usually exhibit high intensities. An evaluation-algorithm that
compares the captured intensity of a given pixel with the captured intensities
of adjacent pixels and sorts out pixels by means of a criterion would be very
suitable. The FIT2D-software has a function to compare a pixel with adjacent
pixels but it is very slow and it is unclear how it operates. - The DAWN-software
has a built in outlier mask function, which works fast. Note that a user defined
value for the selectivity of the outlier detection must be specified nevertheless.
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Figure 5.10: F (Q) curve from the measured intensities of sample S2, obtained
by azimuthal integration from a 2D-detector image and corrected with an
ad-hoc polynomial, exhibits two big peaks (marked with arrows) at high

Q-values, which must be a measurement artefact.

Figure 5.11: G(r) curves from measured and corrected intensities in figure 5.10
exhibit strong oscillations which superimpose structural features.
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Figure 5.12: A theoretical model curve with a smooth slope was created and
spiked with some ripples. The comparison shows both curves.

Figure 5.13: G(r)s of the theoretical curves from figure 5.12 obtained by FT.
The FT of the "spiked curve" shows additional ripples, which stem from the

addition of a sinc-function.
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Figure 5.14: A "dummy image" has been integrated under three different
circumstances. Firstly without a mask (upper left). Secondly considering

masking only visible defect spots (lower left). Thirdly with visible defect spots
and boundaries between detector panels masked (upper right). In the lower

right the integrated curves are depicted. There is no difference between those
curves, verifying that the integration procedures are working correctly. GSAS-II

(Toby and Von Dreele 2013), FIT2D (Hammersley et al. 1996) or DIOPTAS
(Prescher and Prakapenka 2015) give very similar results. Some of the other
programs superpose a slope in order of resemblance the LP-effect found in

conventional diffractometer-data. The exact procedure of this superimposition
was not examined.
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Figure 5.15: Comparison of F (Q)s of S2 resulting from correction of raw
intensities obtained by integration of 2D-detector-images of an organic

amorphous substance applying and not applying polarization correction. The
points-and-stripes-mask from figure 5.14 was applied for masking faulty

regions. The spike vanished in the polarization corrected sample.
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Figure 5.16: Comparison of resulting PDFs from 2D-detector-images integrated
applying and not applying polarization correction using S2 (see page 84) as
example. The comparison, e.g. in the area marked by the red square, shows
quite plainly that slightest variations in the data processing steps can give

differences. High quality comparisons as done in Petkov et al. (2009) (who used
1D synchrotron detector data) might be rendered impossible. A data reduction

procedure should be traceable, reproduceable and unique. It is still under
investigation whether the main artefacts in the G(r) curve stem only from

details in 2D-integration or also on the data transformation procedures used in
pdfgetX3 in this case. Possibly it is a mixture of both. As figures 5.12 and 5.13
suggest, non-structural artefacts alter the PDF on their own. Also, we can keep
in mind that, even if an ad-hoc polynomial is applied in the pdfgetX3-software,

this does not remove sharp features as spikes. They become that obvious
because of the weighting with Q in Q[S(Q)− 1]. See also in the more recent

Hansen et al. (2018) who identified the allegedly contribution of an amorphous
phase in the layered compound CrTe3.
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Figure 5.17 gives a comparison of the outlier-masks S1-M1 (left) and S2-M1
(right), which were determined with DAWN after polarization corrections have
been performed, of the 2D-data sets of two different substances, S1 and S2
(see page 84). Figure 5.18 shows the outlier-mask of S2 (S2-M2) taken before
polarization correction. There is much difference between the masks S2-M1 and
S2-M2 but also an appreciable difference between S1-M1 and S2-M1, which
were obtained after corrections with the same parameters applied.

Figure 5.19 gives the F (Q) curves of polarization corrected S2 after inte-
gration with different masks (points, points-stripes, outlier-before-polarization-
correction, outlier-after-polarization-correction). Figure 5.20 shows the respec-
tive G(r) curves: The differences are small in this case, nevertheless they fall
into the same order of magnitude as differences in G(r)s found in examples cited
in the review article of Young and Goodwin (2011).

5.2.6 Do we need more sophisticated data-calibration and cor-
rection techniques?

It is clear that we can only do our best to rule out errors. In the light of the
observations concerning the limits of masking and intensity corrections it seems
advisable to reconsider the current practices from manipulating 2D-detector
images up to integration. In what follows an alternative calibration routine is
proposed. It is more sophisticated but also more complicated than the established
existing ones.

• Take the 2D-diffractogram of a well known ideal powder like a NIST
standard (state of the art)

• As in the current routine, evaluate detector tilt and rotation

• Calculate a 2D-pattern by means of a model that incorporates container,
specimen orientation, polarization state of incoming light etc

• Make very sure that you accounted for every known aspect

• Consider that pixels might respond differently according to exposure time.
(This might justify the application of an additional outlier-mask on the
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Figure 5.17: Comparison of the outlier-masks S1-M1 and S2-M1 of the
2D-diffraction patterns of two substances S1 (left) and S2 (right), which were

taken after polarization correction for the same detector. Even with an
outliermask, no definite solution concerning the faulty pixels is obtained (the

choice of the threshold is subjective).

Figure 5.18: Outlier-mask S2-M2 on the dataset of S2 before polarization
correction. In comparison to S2-M1 a very decent area of the image is masked.
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Figure 5.19: F (Q)s calculated with identical values for correction parameters
from S2 integrated with polarization corrections but with different masks. - An
ad-hoc polynomial correction has been applied . As the differences seen are

not continuous, it is asserted that the differences are already contained in the
raw intensities and therefore due to the differences in the integration procedure

and not subsequent to data correction.
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Figure 5.20: G(r)s of S2 calculated with identical values for the
PDF-correction parameters from the I(Q)s in figure 5.19 which were integrated

with polarization corrections but with different masks. - Slight difference are
seen. The PDF is sensitive to shifts of peaks along R due to variations of

bond-distances. Depending on the aim of analyses, the differences here might
not be neglected.
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other experimental patterns. The detector could also be evaluated by
means of substances with different scattering powers. A data extraction
approach to find a statistical model of the location of faulty pixels could
be applied on a set of images.)

• Do a normalisation of each pixel due to a comparison of measured and
calculated model

• Get a scaling matrix containing the ratios measured/model-calculation of
every pixel

• Define a mask

• Use the scaling-matrix for correction of each other experimental pattern.

• Do all other corrections if really necessary before integration

• Integrate. Take into account that signal stemming from an inelastic scat-
tering process might call for special treatment or correction.

5.3 Conclusions

Interpolation for rebinning was found to be neglectable, even under the presence
of noise in the raw data. Interpolation in data merging procedures might have
unwanted side effects and are not fully understood.

In processing data from 2D-detectors, masking is an important part. It
determines from which pixels intensities are azimuthally integrated to a 1D-
diffractogram. The 2D intensity distribution and which pixels must be masked
out is influenced by data correction procedures such as polarization correction.
Depending on the sequence of data reduction steps the integration results can be
vary, sometimes containing artefacts the origin could not yet be rationalized. The
questions how the elucidated effects in data handling and correction-methods
might be treated best and if it is always clear how to distinguish «real features»
from «artefacts» wait to be answered as well. Additional research is necessary.
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Chapter 6

Capabilities of PDF-analysis in
investigating quasi-amorphous
materials

- details on refinements and data reduction

PDF-refinements were performed with the DISCUS-SUITE (Neder and Proffen
1997), which is a feature-rich, flexible and efficient program. It is possible to
refine amorphous structures with this software if an initial-model is available.
There are also other programs dedicated to the building and refinement of
amorphous or strongly disordered supercells (RMCPOT Gereben and Pusztai
(2012) or RMCPROFILE Tucker et al. (2007)).

1D-data correction and PDF-creation was done using the pdfgetX3-software
(Juhás et al. 2013).

Values for Qdamp and Qbroad were obtained in a refinement against the PDF
of a CeO2 sample with an Rmax of 60 Å.

In the refinements, all data points below the first interatomic distance were
down-weighted by a factor of 1/10000, because this is the region below rpoly ,
which does not contain meaningful information. The concept of rpoly is discussed
in section 4. This gives the weighted R-values in this study and the weighted
R-values will simply be called R-values in this chapter.
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- details on data collection and reduction

Measurements were performed at the APS synchrotron facility (beamline 11 ID B,
λ = 0.21140 Å with an detector-to-sample distance of approximately 162 mm;
Argonne, U.S.A.).

Data handling was done with DAWN2 (Filik et al. 2017). Detector calibration
was done by means of a CeO2-standard. Radial integration of 2D-patterns was
done without geometrical correction or polarization correction (Juhás et al. (2013)
assert that correction for instrumental effects is not necessary with pdfgetx3).

6.1 The difficulties of describing glasses and creat-
ing initial models

Simulation of disorder in crystalline compounds is possible by (systematically)
altering a sufficiently sized model (see e.g. Neder and Proffen 2008). Glasses
(amorphous substances) mostly are also simulated by means of large cells but
often the treatment must be different and already arriving at at sufficient initial
model can be a task, which is no given by clear building instructions. - A
comprehensive overview is given by Zallen (1985).

A proper starting structure is crucial for any simulation. Such initial models
can be further refined and analysed. In the case that the material is built
of units that are in turn built of multiple atoms and which exhibit SRO, the
material can be built through arrangement of those building units. Dependent
on the interactions between the building units different approaches might be
chosen. As a rough classification, there appear to be two possibilities for creating
initial models of an amorphous material: A molecular glass without covalent
interactions might be an example for the first kind of amorphous solids, which are
similar to a molecular liquid. Alterations at the position of one molecule might
only slightly impact surrounding molecules. Network glasses as exhibited in
amorphous SiO2 are taken as an example for the second kind of amorphous solids.
There, the building units are interconnected covalently and share atoms at their
"points of connection". It appears that movements of a unit in those structures
impacts surrounding units stronger as is the case in molecular amorphous solids.
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Notably, modelling glasses is a problem of filling (packing; tiling) a space with
atoms in an appropriate manner but due to the geometric peculiarities, i.e.
mostly lack in periodicity, it is not clear which rules must be abided (Aste and
Weaire 2008).

Extensive studies and discussion on network glasses have been performed by
Djordjević et al. (1995), Wooten and Weaire (1984), Wooten and Weaire (1987b)
and Wooten et al. (1985), more recent Barkema and Mousseau (2000), Barkema
and Mousseau (1996), Mousseau and Barkema (2001), Pandey et al. (2016), Sava
and Popescu (2011) and Tu et al. (1998). Many of them deal with tetrahedral
networks but in any case of modeling it is preferred to achieve a set of basic
goals:

• Compatibility with periodic boundary conditions. - This is important
because we want to avoid finite-size and surface effects and yet obtain
reasonable coordinations of all atoms.

• The method must be practical for samples of at least several hundred
atoms.

• A flexible, efficient and comprehensible algorithm should be available.

• Good agreement with the observed radial distribution functions (which is
not sufficient, as e.g. Treacy and Borisenko 2012 show), angular distribution
function and ring statistics should be achieved. There might be more or
other criteria, depending on the structure at hand.

Known ways to create networks with tetrahedrally coordinated species in
software (Wooten and Weaire 1987a) are:

• Accretion. A cluster is grown by progressive addition of atoms. This is
attractive mostly when surface properties or the kinetics of a deposition
process are of interest. Moreover, chemical and geometrical constraints
have to be taken into consideration as well as mechanisms for preventing
infinite loops due to not satisfiable (surface) geometries. In the case of
packing isolated, intraconnected systems such as molecules to amorphous
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supercells, a packing problem must be solved. Research has been done
on that by Martínez et al. (2009) and for example the program PACKMOL
(Martínez et al. 2009) can fill space with objects by calculating the objects’
envelopes and trying to fill a given volume as dense as possible (or specified)
given those envelopes.

• Molecular dynamics. Examples for this are the in-silico "melting" of quartz
to get a silica-glass (Lee et al. 2006). One also has to consider the
possibility of multiple local minima (Soules 1990).

• Randomization and relaxation. By means of this procedure highly random
structures can be created and then relaxed towards a low-energy structure
which is so disordered that on average all long range correlation is lost but
SRO preserved. This method can use very simple interatomic potentials and
restrict covalent bonding to a given type. It works within a restricted space
of bonding possibilities. More and more precise interatomic potentials
are published to generate e.g. tetrahedral bonding (Pedone et al. 2006;
Shan et al. 2010). The rules and potentials may be rather arbitrary and
“unphysical” (in other terms empirical).
An example for this is the rule to only switch parallel (approximately)
second-neighbor bonds in the generation of amorphous Silicon (Wooten
and Weaire 1987a, p. 15). But the procedure can be fast and simple and
can give reasonable models. This exemplary procedure is also referred
to as Winer-Weaire-Wooten (WWW) algorithm. - Implementing of such a
modified WWW algorithm for the creation of amorphous SiO2 (as proposed
by Barkema and Mousseau 2000) into DISCUS for this work, was not (yet)
successful, due to limited resources.

As a literature research revealed, a reverse-monte-carlo (RMC) refinement is
well suited for creating amorphous Si with tetrahedrally coordinated Si. Given
some constraints concerning the coordination and center-to-center distances,
a configuration with the desired properties can be created out of a random
configuration of atoms.

Concerning silica-glasses, which are the subject of this chapter, much research
has been done, beginning with the general insights (Zachariasen 1932) over the
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SRO of the building units (e.g. Warren et al. 1936) to the atomic arrangement
at large scales (Bowron 2008; Lorch 1969; Marians and Burdett 1990; Wright
1994; Wright et al. 1991).

6.2 Analysis of amorphous networks with the stoi-
chiometry (SiO2)x (TiO2)y for use as catalysts

In 1983, Taramasso et al. filed a patent (Taramasso et al. 1983) concerning
the zeolithe TS-1 (titanium-silicalite), which exhibits catalytic activity (phenol
hydroxylation, olefin epoxidation, alkane oxidation, oxidation of ammonia to
hydroxylamine, ammoxidation of cyclohexanone and hydroxyacetophenones, and
oxidation of secondary alcoholes to ketones; see Henry et al. 2001). Its parent
structure is silicalite-1. Being a highly porous substance, TS-1 has a high
surface area and a large amount of active sites is therefore available.

An important, controversial question concerns the coordination number of the
Ti-atoms with respect to oxygen. No study of total scattering data is documented
in literature. Extensive studies (Rietveld analyses and neutron scattering using
isotope substitution) have been performed on TS-1 to gain information about
the crystallographic sites preferentially occupied by Ti (see Henry et al. 2001).

Li et al. (2001) state that a 4-fold coordination of Ti-atoms by substitution
of bulk Si from SiO2 is the reason for the material’s catalytic properties with
respect to e.g. epoxidation reactions of polypropylene in presence of H2O2. They
report three kinds of species composed from Ti and O, which are distinguishable
in spectroscopic analyses. One is anatase, which is capable of the oxidation
reaction of H2O2 alone and is therefore unwanted. The second species species
also exhibits sixfold coordination of Ti by O atoms and is removeable by washing
with HCl, and third is Ti in fourfold coordination by O. In catalysts without
anatase but the other species with sixfoldly coordinated Ti-atoms, only the
epoxidation reaction takes place. After washing with HCl, the catalytic activity
is preserved as well as the Ti on fourfold coordinated sites, but the species
exhibiting sixfold coordination vanished, as IR-spectroscopy reveals. - From
these experiments, it is inferred that the catalytically active site is Ti-atoms
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which substituted Si-atoms in the SiO2-network. It is argued that this Ti
species is relatively instable, because the ratio of the atom radii Ti4+/O2 in
TiO4-tetrahedra exceeds the range where a tetrahedral configuration is stable.
Nevertheless, this instability is required for the epoxidation reaction to take
place but it is also difficult for Ti atoms to enter the framework and occupy
Si-positions. This substitution happens only when low Ti amount are present
during synthesis, otherwise clustering to 6-fold species occurs.

Some Rietveld-studies indicate that tetrahedrally coordinated Ti at Si-
positions in TS-1 is consistent with the diffraction pattern and therefore Ti
is fairly distributed in the network (Lamberti et al. 1999). Yang et al. (2008) state
that TS-1 is a material, which exhibits multiple kinds of defects that are effective
in proton transfer reactions connected with catalytic activity. Also Henry et al.
(2001) report Si-vacancies and above this the systematic distribution of vacancies
ans Ti atoms in the framework.

No consensus appears to be found yet on the coordination or exact position
of Ti in TS-1 in literature and therefore also not on the origin of the catalytic
activity. It should be emphasised that there appear to be many routines for
preparation of TS-1 with different Ti-amounts. It might therefore be difficult
to speak of a unique TS-1 and even more difficult to make a valid statement
concerning the actual structure of "real" TS-1.

Porous and amorphous materials with the stoichiometry (SiO2)x (TiO2)y and Ti
in the required 4-fold coordination are said to be desirable from a technological
point of view, because they exhibit improved mechanical stability compared to
TS-1 and comparable catalytic activity. With increasing amount of Ti during
synthesis of these new materials, an elevated probability of elements with sixfold
coordination of Ti by O atoms, which form agglomerates with the characteristics
of an anatase unit cell is declared. This is supported by spectroscopic analyses
(EXAFS, UV-VIS, IR) (Flaig et al. 2014). As TS-1 is crystalline and periodic, strong
deviations from the mean atomic positions should be visible in the diffraction
pattern. On the other hand, nano-crystalline or amorphous structural elements,
which show very broad diffraction patterns, might be lost in the background in a
Rietveld refinement, especially in low concentrations. It is uncear, if clustering
of O, Ti and vacancies can fake 4-fold coordination of Ti by O in EXAFS or other
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spectroscopic measurements. Keeping the potential variability of the substances
and influences of the synthesis route in mind, a PDF-study is performed in the
following.

6.2.1 Samples and characterizations by XRF and SAXS

Two kinds of (SiO2)x (TiO2)y samples with the names SF154 and SF155 were
investigated. Their nominal TiO2-contents are y/x = 1/36 and 1/6. The samples
were synthesized by sol-gel-processes by S. Flaig according to Flaig et al.
(2014).

X-ray fluorescence analyses (XRF) have been performed on a home-built
device (by Peter Wobrauschek from Atominstitut/TU Wien) and the obtained
compositions under the assumption of stoichiometric oxides are shown in table
6.1.

Small-angle-X-ray-scattering (SAXS) measurements indicate elongated pores
in the substances with approximately hexagonal arrangement, spaced by 10 nm.
In the sample with higher Ti-content, this arrangement is lost. Th slope of the
curve could be explained by inclusions in the material in the nm-range. Fused
silica shows none of those features (figure 6.1).

Although interesting, no satisfactory investigations via TEM could be per-
formed because electrostatic charging of the samples made focusing impossible.

6.2.2 PDF-refinements and discussion

Figure 6.2 gives a comparison between the diffractograms and the PDFs of fused
silica, SF154 and SF155. The PDF of SF155 exhibits a shoulder at approximately
1.9 Å. A comparison with the partial PDFs of Ti-O from crystal-structures that

Table 6.1: Composition of the (SiO2)x (TiO2)y-samples according to XRF
measurements

sample Transition Si as SiO2 [wt%] Ti as TiO2 [wt%] Si [mol%] Ti [mol%]
SF154 XRF Ka 92.86 7.14 94.5 5.5
SF155 XRF Ka 70.36 29,64 75.9 24.1
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Figure 6.1: SAXS measurements of the Ti-containing SiO2 samples. Many
thanks to Herwig Peterlik from University of Vienna for measurements and

interpretation.

contain units of TiO4 (Ba2TiO4 and TS-1) is given in figure 6.3. It can be seen
that none of the structures help to explain the shoulder. This indicates that
there are Ti-O distances that do not correspond to tetrahedrally coordinated Ti.

The difference curve between SF154 and fused silica shows a decent alternat-
ing behavior in the regions at approx 4, 5.5 and 7 Å (figure 6.4). This could be de-
scribed by a dampened oscillation of the form sin[π(x/λ−ϕ)]exp[−(x−pos)2/σ2

as]

where σas = σ/asym if x < pos and σas = σ ∗ asym if x > pos. The distinction of
cases is incorporated in order to introduce an asymmetry. The fitted function
is drawn in turquoise and named "wave". A wave of this form was added to the
refinement in figure 6.5 and helps decreasing the R-value.

Investigation of SF155 shows that a fit of the PDF of fused silica and the
PDF of a spherical cut from a supercell of rutile can explain the features well
(figure 6.6). Also in this case, the difference curve shows a dampened oscillation.

A refinement of the PDFs of fused silica, spherical Rutile-particles and the
dampened oscillation to SF155 gives an reasonable fit as shown by the weigthed
R-value in figure 6.9. A refinement including the PDF of rutileand the PDF of
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SF154 (instead of fused silica and the dampened oscillation) gives a reasonable
fit as well, but the R-value is slightly higher (figure 6.8).

To justify the application of rutile in the initial model, anatase was ruled out.
This was done by refinements of the PDF of SF154 (= fused silica + dampened
oscillation) together with a spherical cut from a supercell of anatase against
SF155. The R-value is not as low as the R-value of the refinements invoking
rutile and the refinement is shown in figure 6.7

A final refinement of fused silica, rutile and a dampened harmonic oscillation
against SF154 shows that incorporating rutile even helps lowering the R-value
(6.10). This could be an indication that, also in the material with low amounts
of Ti, no incorporation of Ti into the SiO2-network happens but formation of
precipitates containing Ti and O atoms.

The refinements show that for SF154 and SF155, a model of fused silica and
titanium-oxide in the rutile modification together with a dampened harmonic
oscillation against the experimental PDFs gives reasonable fits. - In the original
publication (Flaig et al. (2014)) no such features were reported but on the other
hand they were not sought for. It is unlikely that the material altered because
the material’s porous structure remained stable also after long periods as SAXS
measurements showed.

It is an interesting question what the origin of the central two peak feature is.
Is it the same in SF154 and SF155 or does it appear for two different reasons: as
in both refinements incorporation of a Rutile-PDF helps lowering the weighted
R-value it seems sound to suppose that both materials contain small precipitates
of Ti-O in the Rutile-modification in different concentrations. The dampened
wave can be interpreted as restructuring of the amorphous matrix around the
TiO-particles. Such interpretations are accepted in the literature dealing with
colloids and other liquid-solid-dispersions (Zobel et al. 2015). Accordingly, it
would be interesting to do RMC-modeling of such small particles embedded in
the amorphous SiO2-matrix. Nowadays, interfaces of heterogeneous materials
are claimed to be modelable (Tu et al. 1998). Anyway, a low R-value is not
everything and strict attention must be paid to distinguish termination ripples,
artefacts owing to noise and data correction, and baseline differences, which all
can counterfeit structural features. More research is called for.
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Figure 6.2: Comparisons of the diffractograms and PDFs of fused silica, SF154
and SF155. The PDFs of fused silica and SF154 look very similar but SF155

exhibits a shoulder around 2 Å.
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Figure 6.3: Comparisons of the PDFs of SF154 and SF155 with the partial
PDFs of all distances between the Ti and/or O atoms in TS-1 and Ba2TiO4. -

Concerning the comparison with TS-1 there could be a bias because the
documented structure presupposes that Ti occurs on tertrahedrally coordinated

Si-sites. The tetrahedra in Ba2TiO4 are no perfect tetrahedra. A comparison
with the partial PDF can only be suitable at short distances because the long

range order in the crystalline structure strongly differs from the atomic
arrangement in the glass. - Comparisons should be taken with precaution

because of termination ripples, artefacts owing to noise and data correction,
and baseline differences.
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Figure 6.4: The PDF of fused silica was scaled to the PDF of SF154. The
difference curve shows an dampened oscillatory behavior which is indicated by

the fit "wave" to the difference curve; weighted R-value: 0.1339

Figure 6.5: Refinement of the PDF of fused silica and a dampened oscillation
such as seen in 6.4 against the PDF of SF154; weighted R-value: 0.0604
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Figure 6.6: Refinement of rutile and fused silica against the PDF of SF155:
also here, the difference curve shows an alternating behavior; weighted

R-value: 0.1587

Figure 6.7: Refinement of the PDFs of anatase and SF154 (which ressembles
the PDF of fused silica combined with a dampened oscillation) against SF155;

weighted R-value: 0.2237
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Figure 6.8: Refinement of the PDFs of rutile and SF154 (contains the wave)
against SF155; weighted R-value: 0.1031

Figure 6.9: Refinement of the PDFs of rutile with fused silica and a wave
against the PDF of SF155; weighted R-value: 0.0926
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Figure 6.10: Refinement of the PDF of SF154 by aid of fused silica, rutile and
dampened oscillation; weighted R-value: 0.0534

6.3 Conclusions

The PDFs of two amorphous mixed oxides with the stoichiometry (SiO2)x (TiO2)y,
intended to mimic the catalytic properties of the zeolite TS-1 were analyzed.
The experimental PDF could be modeled with a contribution by amorphous SiO2

and small spherically shaped crystalline TiO2-particles in the rutile modification,
i.e. Ti in six-fold coordination. A model based on a pure glass phase with Si
partially substituted by Ti in four fold coodination did not result in as good an
agreement. The features in the difference PDF indicate interaction between the
particles and the surrounding matrix. The PDF of fused silica plus a damped
oscillation and of the particles lead to a very good fit of the experimental data.

This is also interesting as in literature concerning TS-1 only the occurrence
of TiO2 in the anatase-modification at high Ti-contents during synthesis in
mentioned. In parallel, different literature asserted clustering of Ti and O atoms
as well as Si vacancies in the SiO2-matrix. At no point rutile was discussed or
taken into consideration. It is documented that embedded particles can alter
the properties of a material such as its glass-transition temperature (Berriot
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et al. 2002). It might be possible that this is valid also for catalytic properties in
this "derivatives" of TS-1.

TEM and SAXS measurements indicate a structure of elongated pores, but
due to electrostatic charging in the TEM no magnification sufficient for the
detection of the small TiO2 particles could be achieved.
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Capabilities of PDF-analysis in
investigating partly crystalline
materials

- details on instrument settings and data collection

Measurements for obtaining data suitable for PDF-analyses were performed on
a PANalytical Empyrean diffractometer in Debye-Scherrer setting. Table 7.2
contains the instrumental parameters and details on the measurements. Diffrac-
tograms were created with Ag-radiation because information on disorder was of
interest too.

Measurements for the quantification of amorphous contents were performed
on a PANalytical XPert2-Pro diffractometer in BB-geometry. Table 7.1 contains
the corresponding instrumental parameters.

- details on refinements and data treatment

Rietveld refinements were performed with Topas 4.2 (Coelho 2008). For the
Rietveld-refinements, no background subtraction (capillary, air-scattering,...)
was performed.

PDF-refinements of crystalline contents were performed with PDFgui, a "real
space" Rietveld program (Farrow et al. 2007). Its capability were exhausted with
being able to simulate crystalline phases. It was not possible to account for
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Table 7.1: Instrumental parameters for BB-measurements

Instrument PANalytical XPERT-PRO

Radiation Copper Kα1/α2: λα1 = 1.5405980 Å; λα22 = 1.5444260 Å
BBHD-Mirror to remove other radiation

Scattering geometry Line focus (length/height: 20mm/1mm)
Distance source/sample 200 mm

Entrance slit 15 mm
Soller slits primary 0.04 rad

Divergence slit ½°
Distance sample/detector 200 mm

Soller slits secundary 0.04 rad
Anti-scatter slit height 5.5 mm

Detector X’Celerator (scanning line detector); continuous mode, active lenght 2.546°

Table 7.2: Instrumental parameters and measurement strategy for
PDF-measurements

Instrument PANalytical Empyrean

Radiation Silver Kα1/α2: λα1 = 0.559421 Å; λα22 = 0.563812 Å
Rhodium foil (Kβ-filter; thickness: 0.05 mm); line focus

Scattering geometry Line focus (length/height: 20mm/1mm)
Sample Powder within Quartz capillary (diam 1mm)

Distance source/sample 140 mm
Entrance slit 15 mm

Soller slits primary 0.04 rad
Exit slit ½° Tantalum slit

Distance sample/detector 240 mm
Soller slits secundary 0.04 rad

Anti- scatter slit height 2 mm
Detector slit height 2 mm

Detector Scintillation detector (point detector); continuous mode
Measured range in Q 0.8 Å-1 < Q < 21.5 Å-1

Measuring time Angle
°2θ

Step
°2θ

time
s/Step No. repetitions

2.0 – 40.0 0.04 6 2
38.0 – 75.0 0.04 6 8
73.0 – 100.0 0.04 6 16
98.0 – 115.0 0.04 6 24
113.0 – 150.0 0.04 6 32
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amorphous contents in the refinement by adding e.g. a strongly dampened PDF
of quartz.

Data processing to obtain PDFs was done using the pdfgetX3-software
(Juhás et al. 2013).

Figure 7.1 shows the Rietveld-refinement of a the Si-NIST-standard substance
640d (Fm3m, a = 0.54312(3)nm) with an Si-model. Especially around the peaks
with low indexes, strong peak tails are observed. This is due to filtering the
primary beam only with a Rh-filter and no further monochromator. Adequate
peak tails could not be evaluated and an additional peak was inserted at the
right side of the first few peaks to improve the refinement. By a refinement
of the structure model to a the experimental PDF of the Si-NIST-standard,
the parameters Qdamp and Qbroad (section 2.2.6) were evaluated (figure 7.2).
The lattice parameters were fixed to 0.54312(3)nm for the Rietveld and PDF
refinements.

Values for Qdamp = 0.04(3) and Qbroad = 0.02(3) were obtained for an Rmax of
60 Å. Those values were used for PDF-refinements and particle size estimates
from the PDF. Note that with an Rmax of 30 Å, values for Qdamp = 0.04(9)

and Qbroad = 0.03(4) were obtained. Figure 7.3 shows that the experimental
damping is strong. In the first comparison, the PDF of a cubic particle of Si
with an approximate space diagonal of 94 Å with the Si-NIST-standard is given.
The second comparison contrasts this model with the experimental PDF of a
synthesised substance NHMS3. The third comparison compares the PDFs of
models with space diagonals of 94 and 103 Å respectively.

It can be seen from figure 7.3 that the PDFs of the NIST-standard and the
experimental pattern are very similar to the 94 Å model and therefore similar to
each other. It should be noted that the PDF of an arrangement of atoms with cube
shape looks different than ensembles with approximate equal number of atoms
with sphere- or rod-like shapes, due to their different distance-distributions.
The third graph is intended to show that in theory small differences are visible.
The differences in the experimental patterns to the models might be due to
differences in the particles’ shapes as well as to influences due to noise or
instrumental effects (see section 3.3).

115



Chapter 7 Capabilities of PDF-analysis in investigating partly crystalline materials

Figure 7.1: Rietveld-refinement Si-NIST 640d with TOPAS 4.2

Figure 7.2: PDF-Refinement of Si-NIST 640d with pdfgui in order to obtain the
instrumental parameters Qbroad and Qdamp.
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Figure 7.3: Comparison of dampening effects in lab measurements. The first
curve shows the PDF of a Si-NIST standard. The second one of a synthesised

sample. Curves three and four in lab and calculated Compared with a cubic
supercell of Si with an extension of 10x10x10 unit cells .
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7.1 A comparison of crystallite sizes from reciprocal
space and real space estimates

The aim of the syntheses was the preparation of either nano-particulate material
or amorphous silicon (a-Si) or both. Due to a large expertise in sol-gel chemistry
for the production of SiO2-networks PLUS (Salzburg), a large and defined
variety of such networks can be produced. Those differently shaped silicas were
reduced with Mg in a magnesiothermic reaction and further shaped by washing
with either HCl oder HCl and HF. By this route cellular Si-networks with mean
crystallite sizes of at least 20 nm can be prepared. It is asserted that by variation
of the reaction parameters: temperature, stoichiometric ratio of Mg/SiO2, and
duration of the reaction, crystallite size, crosslinking of crystallites as well as
specific surface area can be set specifically. A higher temperature and longer
reaction time lead to larger Si-crystallites. Removal of MgO (reaction product)
and remaining SiO2 are strongly infuential on the area of the resulting specific
surface. Sample preparation was done by Nastaran Hayatiroodbari at PLUS.
The reaction conditions of the materials are not available. Out of this reason,
the analyses here are limited to a general comparison of analytic methods and
general remarks on the materials.

Figure 7.4 gives an exemplary comparison of only HCl washed (left), and HCl
and HF washed (right) material. Unsurprisingly, in the HF washed material less
Silica remained.

Under the assumption of collecting data from nano-particles, data suitable
for PDF-creation were collected of all received samples. The corresponding
PDF-refinements can be found in figures 7.38 to 7.34 in section 7.5. PDF-
measurements were not only intended for a possible estimation of crystallite
sizes but also for the determination of amorphous contents. Figures 7.5 and 7.6
exemplary show the refinements of the diffractogram and the PDF of a substance.

It is possible to estimate the largest extension of a coherently scattering
structure from the PDF. This is meaningful only if the "experimental damping"
is less strong than the decay by the structure itself and if the instrumental
influence on the signal could be determined. Such a "particle or crystallite
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Figure 7.4: SEM-images of synthesised materials. The left image shows the
material only HCl-washed (NHMS2). The right image shows the material after

washing with HCl and HF (NHMS3).

Figure 7.5: Refinement of NHMS2 with TOPAS
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Figure 7.6: Refinement of NHMS2 with pdfgui

size analyses" can be done by looking for a cutoff in the PDF. Such a cutoff
corresponds to the largest distance in a material. - It is also possible to get
an estimate the decay and calculate from that where the PDF will be zero. -
Another approach could be to calculate distinct structures and compare those
with the PDF. The applied parameters give then an information on the particles
properties. Given the availability of a shape function, the PDF of an extended
structure e.g. crystalline and several unit cells in extension) can be multiplied
with the corresponding shape function. Masadeh et al. (2007) did this for the
case of spherical particles.

In theory, there is no advantage or disadvantage for choosing either method.
The only thing that must be known is the relationship between the diffractogram
and the structural properties. - What appears important to mention is that there
seems to be an upper limit of 100-200nm concerning crystallite sizes analyses,
at least when applying the Scherrer-equation. At higher crystallite sizes, the
peak broadening cannot be "reliably" distinguished from other broadening effects
(Holzwarth and Gibson 2011 and references in Masadeh et al. 2007). As a matter
of principle, this limitation might be true for other approaches to analysis of
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diffractograms. As a word of caution, a description of an ensemble of crystallites
which underlies a distribution in sizes and structures by means of only one
parameter might be insufficient and physically incorrect.

In practice, as very small nano-particles show very broad features in the
diffraction image, it might be impossible to elucidate the broad "peaks" by pattern
decomposition or to distinguish the signal of interest from the underground
(Compton-scattering, TDS, other non-sample related signal). So no "correct"
FWHM might be obtained and analysis of a PDF could be more suitable in such
cases.

If, on the other hand, a highly crystalline material is to be investigated,
the PDF decays to zero beyond very high values of Rmax only. In such cases
it is questionable if the PDF approach should be chosen. A large amount of
data (xy-table) has to be calculated and processed and prior to FT it is not
sure if a sufficient limit for Rmax was chosen. Also, over large R-ranges, it will
be questionable if the very weak (exponential?) decay of the PDF has been
estimated correctly; an analysis of the peak shape in the diffractogram, which
are ready at hand, might be more accurate. Another obstacle in crystallite-size
analysis from the PDF might be that much information on the particles’ shape-
properties might be necessary prior to analysis. The particles’ shapes influence
the PDF differently than they influence the diffraction peaks and it seems to be
less of a problem when FWHMs of the diffraction peaks in reciprocal space are
estimated (besides the fact that also this is an unreliable practice).

Table 7.3 gives a comparison of crystallite sizes estimated from Rietveld-
and PDF-refinement for each material that was obtained from PLUS. It can
be seen that there is a strong discrepancy between the values which were
estimated with TOPAS from the reciprocal space data and pdfgui from the PDFs.
TOPAS applies a fundamental parameter approach and the estimated values are
congruent with the values in figure 7.3 and corresponding discussion (section 7).
Not only do the values between TOPAS and pdfgui differ, also the estimated
standard uncertainties (ESUs) are in unacceptable ranges. It cannot be said
here if this testifies against the PDF-method or the applied software.

Furthermore, a lithiated Si-compound could be prepared by Nastaran (see
figure 7.7). The substance reacted in the capillary, presumably with oxygen
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Table 7.3: Comparison of crystallite size estimates for spherical crystallite
approximation in [nm] from reciprocal and real space Rietveld-refinements

substance diam PDF ESU diam Rietveld (recip) ESU
NHM3 36.0 38 14.6 2.8
NHM4 100.0 960 8.9 1.1

NHMS1 62.2 54 22.8 4.4
NHMS2 81.0 150 23.6 8.3
NHMS3 54.2 110 19 8.9

NHS2 50.0 400 6.3 0.6
NHS5 41.7 400 14.9 1.8
PN45 12.0 -12 13.4 2.9
RaSi2 34.8 240 19.3 3.5
Si325 1621594.3 -7.40E+10 500.3 319.6
Si50 42.2 -74 32.6 3.9

or humidity, as the capillary was not air-tight. Although no refinement was
possible with pdfgui, a simple calculated PDF of Li12Si7 shows that the material
is the intended material. The materials suitability as anode material was not
tested owing to its predisposition to exothermic reaction
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Figure 7.7: Comparison of the experimental PDF of Li12Si7 with a model
calculation. Although oxidation occurred during the measurement, a relatively

good agreement shows that the aim of synthesis has been accomplished.

7.2 No amorphous silicon via synthesis.

As far as data quality, current methodology and data corrections permit, the
investigation of the PDF reveals that syntheses gave exclusively crystalline Si.
The corresponding Rietveld- and PDF-refinements are documented in section 7.5.
- Concerning a-Si, Mousseau and Barkema (2001) state that "in fact, a material
like a-Si cannot be formed experimentally by quenching from the melt; it is
produced by vapor deposition or ion-bombardment ". Our present study might
by an indication that it is also not possible via chemical reactions.

Some of the patterns exhibit distances corresponding to Si-O (Peaks at 1.6 Å)
from oxides (figure 7.8). This can be observed particularly well in the difference
curve. It was not possible to account for amorphous contents by corefinement
of e.g. a strongly dampened PDF of a crystalline Si-O compound with pdfgui
(which in general seems to be capable only of handling very simple (crystalline)
structure models).

In the next section methods for quantification of amorphous contents and an
attempt at doing so will be discussed.
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Figure 7.8: Structure refinement against the PDF of a material with remaining
amorphous SiO2 with pdfgui. It was not possible to fit a a dampened PDF of an

SiO2-compound such as quartz to the experimental PDF with the
pdfgui-software. The difference curve shows similarities to a PDF of fused

silica measured at APS. The second broad contribution could stem either from
the differing atomic arrangement in the used kind of silica or it is a mixture of

instrumental effects and termination ripples subsumed with the natural
contributions of fused silica.
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7.3 Quantifying amorphous parts in crystalline sys-
tems

The amount of amorphous content in a system can be an important indicator for
the efficiency of a synthesis. Furthermore, amorphous content might or might
not be wanted because of structural or chemical properties. It is possible that
crystalline particles are covered by an amorphous shell.

A suitable definition of "amorphous" is given by Klug and Alexander (1974)
so that the term, amorphous solid, must be reserved for substances that show
no crystalline nature whatsoever by any of the means available for detecting it.
Anyways, here is no definite distinction between amorphous and crystalline.

Amorphous materials don’t give well defined peaks. Therefore, in contrast to
crystalline compounds, no phase-identification algorithms for identification of
amorphous phases are available. Furthermore, owing to its shape, scattering
from amorphous structures can be hard to distinguish from peak tails. In addition,
broad background intensities, which result in increased peak overlaps, make
it even more difficult to distinguish its contribution to the diffractogram from
other sorts of diffuse scattering (Madsen et al. 2011). Without a structure of
the amorphous material, quantification and calculation of physical properties
is not possible in e.g. a Rietveld-refinement. This happens especially when an
intensity contribution to the diffractogram is small, e.g. at low concentrations of
the amorphous phase.

To summarize, amorphous structures are hard to detect, identify and discrim-
inate in reciprocal space, making it thereby challenging to quantify them.

7.3.1 General discussion of methods for quantification of amor-
phous contents and methodological problems thereof.

Quantification by help of data in the reciprocal space representation

There are numerous possibilities for the quantification of amorphous contents
from a diffractogram, each with their advantages and disadvantages. Some give
the proportion directly and others indirectly by means of comparison with a
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well defined standard substance. Depending on the ratio of amorphous material
and the amount of sample given, different methods are proposed. The effect
of (micro)absorption depends on the composition of the sample and cannot be
handled with every method. In other cases, calibration with a mixture of known
composition has to be made in order to evaluate absorption and composition of
the amorphous phase. (See Kern et al. (2012) and Madsen et al. (2011) for much
more detailed information.)

Widely used methods for quantification of amorphous phases are according
to Madsen et al. (2011):

• In a whole powder pattern modeling (WPPM; Scardi and Leoni 2002)
approach, the diffraction pattern of the amorphous phase is decomposed
into parametrized peaks. The obtained set of parametrised peaks is kept
fixed then and used as a phase in a refinement. The amorphous content is
determined from its refined scale factor.

• A well known standard substance (e.g. Corundum) can be added and from
the overestimation of the amounts of crystalline phases calculated in a
Rietveld-refinement, the amount of amorphous substance can be deduced
(internal standard method).

• The peak intensities of the crystalline phase(es) can be compared with the
diffraction pattern of the pure substance. This needs additional calibration
methods and ideal sample-preparation (external standard method).

• The diffractogram of a crystalline structure can be convoluted with a
broadening function and damped to get the shape of the signal stemming
from amorphous content. The amount of amorphous content present is
determined by means of a scaling factor.

• Le Bail et al. (1985) attempted simulation of amorphous phase by the
distortion of an ordered supercell. A problem with this latter method could
be that some for of periodicity remains, which introduces artefacts. With
suitable terms to model size dependent broadening, this issue could be
resolved.
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Quantification by help of data in the real-space representation

Concerning investigation via PDF-analysis it appears unclear how it could
unambiguously be used for quantification of amorphous phases in heterogeneous
systems. For systems with compounds of the same stoichiometry - although the
evaluation of the baselines of various phases due to differences in extension and
varying ρ0s of different modifications -might be possible and was approached
(Davis et al. 2013). The theory is not designed for polyphasic materials. In the
known ways for data extraction are developed for single-phase materials and
the estimation of a mean atomic form factor as described seems not possible. So
while qualitative information could be still available, the validity of quantitative
information obtained could be difficult to determine. Also here, errors due to
absorption might have to be taken into consideration and there is no method
yet to apply this on PDF-data.

Another point is that for correct data reduction, the correct stoichiometry
has to be known. If there is only one amorphous phase present, quantification
in direct space appears to be unnecessary. - Conventional analysis could be
done and from the mass ratios, the rest can be calculated. We don’t need to
transform then and we also do not need to find a structural model. - Nevertheless,
determining the correct stoichiometry (eg the oxygen content in unstoichiometric
oxide-compounds) by RFA, XPS or spectroscopic analysis is difficult. Either the
radiation (electrons, light) does not penetrate the material or the emitted signal
is absorbed by the matrix (XRF) where characteristic energies are very low.
In summary, in dealing with stoichiometric Si/Si-O compounds the information
about atomic ratios would suffice for quantification. And this we supposedly do
not get from PDF-analysis, it has to be known beforehand.

7.3.2 Quantification of amorphous content with a method de-
veloped in this work and comparison with the standard-
series approach

The common methods for quantifying amorphous contents from the diffraction
pattern rely on references. Small sample-amounts, which preclude series of
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mixtures or blending with a standard, are a problematic aspect. In the following,
a potential solution to this problem is discussed. A method (that was not found
in literature in this form) for quantification of amorphous content is proposed
and compared with the internal-standard method:

internal-standard method: A series of mixtures of Si and fused-silica powder
(with approximate same coarseness) have been analyzed. For the internal-
standard method, corundum (Al2O3) was added in a defined amount. In a
Rietveld-refinement, the amounts of crystalline phases are systematically over-
estimated, because the scattering from amorphous parts is shifted into the
underground. Because the mass content of corundum is known, the overestima-
tion of all crystalline phases can be corrected. The remainder is the amount of
amorphous phases (see Westphal 2007).

proposed method (similar to the PONKCS-method mentioned in Madsen et al.
(2011) but no calibration step is needed):

• The aim of the method is to identify the contribution of the scattering from
the amorphous phase (fused silica) to the total intensity.

• To do so, the pure amorphous phase and a sample containing this phase
of interest are measured.

• Since the signal stemming from air scattering shows strong contribution to
the left part of the diffractogram (figure 7.9), it is necessary to subtract this
contribution. This is accomplished via subtraction of an estimated baseline
(figures 7.10 and 7.11)

• After the baseline-subtraction, a constant is added to both diffractograms
in order to eliminate negative intensities (figure 7.12). It is disputable if it
would be better to set all values under a threshold |I| < δ, e.g. the largest
negative value, to zero. The determination of such a δ is dependent on the
amount of noise present in the data and the quality of the polynomial to
be subtracted. Each procedure influences the areas under the corrected
diffractograms.
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• The diffraction pattern of the amorphous substance is scaled in order to
fully overlap with the contribution in the sample of interest (figure 7.13)

• The scaled pattern of the amorphous phase is subtracted (figure 7.14)

• The areas of both curves are determined by integration and the relative
contributions are calculated to obtain a scale-factor.

• The weight-fraction can be calculated according to Wa = Sa(ZMV )a∑
[Si(ZMV )i]

, with
Z the formula units per unit cell, V unit cell volume and M the mass of a
formula unit (see e.g. Kniess et al. (2012) and Madsen et al. (2011)).

• Estimating the correct amount of atoms, which corectly arranged would
give the diffraction pattern of the amorphous solid, is difficult. This is also
one of the main problems of the other methods. According to the PDF of
fused silica, correlation ends at approximately 8 Å. To account for this, 3
times the unit cell of alpha-quartz was chosen, weighted with the ratio of
the density of fused silica and the reciprocal density alpha-quartz.

Table 7.4 gives a comparison of the amorphous contents, which are known
from the initial weights, calculated with the internal-standard method and the
method of directly determining the intensity contribution. - The comparison
shows that given an appropriate representative structure, the second method
is very capable of quantifying amorphous content. Certainly, the estimation of
the underground is a crucial step. In any case, for a more reliable investigation
series repeated of mixtures should be performed. Crucial questions that remain
are how much intensity data must be recorded and how micro-absorption effects
can be handled.
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Figure 7.9: A comparison of the datasets show that the diffuse contributions do
not overlap very well. This is due to an alleged contribution of air scattering.

Figure 7.10: This figure shows the baseline that was fitted onto the
diffractogram of the fused silica.

130



Quantifying amorphous parts in crystalline systems 7.3

Figure 7.11: This figure shows the baseline that was fitted onto the
diffractogram of a mixture.

Figure 7.12: The figure shows the diffractograms after baseline subtraction.
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Figure 7.13: The figure shows the diffractograms from figure 7.12 scaled in a
manner that the contribution due to amorphous contents are aligned.

Table 7.4: Estimation of amorphous contents

Ratio Si:Glas wt Si[g] wt Glas [g] wt% Si wt% fused silica wt% Al2O3
9010 89.519 10.481 67.732 7.930
7525 74.981 25.019 57.250 19.102 23.647
5050 50.006 49.994 38.051 38.041 23.908
2575 25.053 74.947 18.788 56.205 25.007
1090 11.074 88.926 8.420 67.610 23.971

quant crystalline phases by Rietveld recalculated from Rietveld
Si corrundum silicon fused silica corundum

9010 77.104 22.895 72.533 4.572 22.895
7525 74.000 26.000 67.304 6.696 26.000
5050 63.370 36.630 41.361 22.009 36.630
2575 45.440 54.560 20.827 24.613 54.560
1090 27.660 72.340 9.165 18.495 72.340

pure Si:fused silica from Rietveld Method examined
Si fused silica Si fused silica

94.070 5.930 81.406 18.594
90.951 9.049 71.591 28.409
65.268 34.732 50.569 49.431
45.834 54.166 23.662 76.338
33.136 66.864 9.135 90.865
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Figure 7.14: From the mixture’s diffractograms of figure 7.13 the contribution
from the amorphous content has been subtracted. The areas of both curves give
the total scattering contributions of the phases. The advantage of this method is

that instrumental contributions are the same for both phases and so no
additional special correction is needed.
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7.4 Conclusions

The project ended too early for finding an anode-material with the demanded
properties. Synthetic silicon particles (networks) showed crystallinity inde-
pendent of the synthesis-route. This is an empirical finding that strengthens
(Mousseau and Barkema (2001)) skepticism towards "bulk"-approaches leading
to amorphous silicon. - Crystallite size estimates which were obtained from
Rietveld- and PDF-refinements differ strongly. With the pdfgui-software stan-
dard deviations that were larger than the evaluated quantities were obtained.
For the evaluation of the Qbroad and Qdamp, it is possible to get different val-
ues for refinements over different R-ranges. In the optimal case, samples are
characterized with highly collimated radiation from a Cu-source before the mea-
surement in order to get an estimate for the necessity and required instrumental
parameters of a PDF-measurement of the sample in a capillary.

If an amorphous phase with a stoichiometry ditinct to a crystalline phase is
present, quantification by the PDF-representation is pointless. For the extraction
of the PDf the correct stoichiometry must be known and this information contains
the information on the mass amount of the amorphous phase. Further, it is still
a subject of research, inhowfar the analysis of a PDF of multiphasic compounds
is justified. In this work a method for the quantification of amorphous material
without additional measurements could be defined. If the for an amorphous
ensemble that would give the diffractogram is known, the quanification com-
petes much better then the established standard-series approach. As suitable
stoichiometry could be avaluated by an estimate from the PDF of fused silica.

7.5 Refinements
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Figure 7.15: Rietveld-Refinement of Si NIST 640d with TOPAS 4.2

Figure 7.16: Rietveld-Refinement of NHM3 with TOPAS 4.2
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Figure 7.17: Rietveld-Refinement of NHM4 with TOPAS 4.2

Figure 7.18: Rietveld-Refinement of NHMS1 with TOPAS 4.2
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Figure 7.19: Rietveld-Refinement of NHMS2 with TOPAS 4.2

Figure 7.20: Rietveld-Refinement of NHMS3 with TOPAS 4.2

137



Chapter 7 Capabilities of PDF-analysis in investigating partly crystalline materials

Figure 7.21: Rietveld-Refinement of NHS2 with TOPAS 4.2

Figure 7.22: Rietveld-Refinement of NHS5 with TOPAS 4.2
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Figure 7.23: Rietveld-Refinement of PN45 with TOPAS 4.2

Figure 7.24: Rietveld-Refinement of RaSi2 with TOPAS 4.2
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Figure 7.25: Rietveld-Refinement of Si325 with TOPAS 4.2

Figure 7.26: Rietveld-Refinement of Si50 with TOPAS 4.2
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Figure 7.27: PDF-Refinement of Si-NIST 640d with pdfgui

Figure 7.28: PDF-Refinement of NHM3 with pdfgui
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Figure 7.29: PDF-Refinement of NHM4 with pdfgui

Figure 7.30: PDF-Refinement of NHMS1 with pdfgui
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Figure 7.31: PDF-Refinement of NHMS2 with pdfgui

Figure 7.32: PDF-Refinement of NHMS3 with pdfgui
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Figure 7.33: PDF-Refinement of NHS2 with pdfgui

Figure 7.34: PDF-Refinement of NHS5 with pdfgui
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Figure 7.35: PDF-Refinement of PN45 with pdfgui

Figure 7.36: PDF-Refinement of RaSi2 with pdfgui
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Figure 7.37: PDF-Refinement of Si325 with pdfgui

Figure 7.38: PDF-Refinement of Si50 with pdfgui
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Figure 7.39: Rietveld-refinement of pure Silicon with 20wt% Al2O3 with Topas
4.2
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Figure 7.40: Rietveld-refinement of mixture Silicon:Glass 10:90 with 20wt%
Al2O3 with Topas 4.2
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Figure 7.41: Rietveld-refinement of mixture Silicon:Glass 25:75 with 20wt%
Al2O3 with Topas 4.2
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Figure 7.42: Rietveld-refinement of mixture Silicon:Glass 50:50 with 20wt%
Al2O3 with Topas 4.2
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Figure 7.43: Rietveld-refinement of mixture Silicon:Glass 75:25 with 20wt%
Al2O3 with Topas 4.2
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Figure 7.44: Rietveld-refinement of mixture Silicon:Glass 90:10 with 20wt%
Al2O3 with Topas 4.2
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“Relative to the potential structural information procurable, it is fair to
say that the quantity and quality of the results are a direct reflection
of the pains that have been exercised in measuring and processing the
experimental intensities.”
— Klug and Alexander (1974, p. 853), X-Ray Diffraction Procedures for

Crystalline and Amorphous Solids.

In contrast to giving striking new ’insights’ into the atomic arrangement of
nano-materials, this dissertation is critically assessing the PDF methodology.
This means: investigating effects caused by measurement artefacts, data "cor-
rection" and applications of PDF analysis where it is not valid according to the
theory.

As in today’s scientific practice large amounts of data are acquired and
handled, the development of convenient and fast-to-use tools is desired. More-
over, automated processing, refinements and data extraction are tempting. In
the newest developments of data correction by means of user defined ad-hoc
procedures, neither instrumental effects nor precise information on the sample
are considered any more. The use of empirical correction procedures is justified
and advantageous (e.g. empirical X-ray absorption correction), because it is
partly even impossible to describe all parameters important and necessary for
a physically meaningful data correction. On the flip side, procedures that are
specially designed for laymen, which are fast to learn and easy to use as a black
box, might have severe drawbacks - what seems easy can be treacherous. It was
easily possible to create a large variety of different PDFs from a single data set
by means of such an ad-hoc data correction. In addition, data collection and
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treatment procedures are not unique and PDFs of different appearance could be
obtained. Furthermore, it was possible to extract spurious structure information
from PDF simulations, which could not be confirmed by complementary methods
such as TEM.

It is crucial to understand the methods and possible error sources. Otherwise,
accuracy and even reliability of analysis suffer. While it is understandable that
ever increasing specialization does not leave much room for a human individual to
be a specialist on a range, there seems to be no alternative to a sufficient degree
of understanding even very complex systems and trends of physical quantities.
It must be emphasized, especially in the light of the increasing popularity of
PDF analysis, that many questions concerning the PDF methodology are still
unanswered.
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Some other thoughts

What I recognise is that (even) in science, there is lots of dogmatism and
unwillingness to critically reflect what became dear. Anyway, retrospectively
seen, staying in academia was the best and the most reasonable choice I could
make. It is clear for me now that I would not want to miss it. Properly done, a
PhD is an important and valuable personal accomplishment and the degree is
almost indispensable for entering the next level of research.

A part of my thesis was financed by the FFG project LixSi with the number
841218. TU Wien gave me financial support in form of a scholarship for my
scientific stay in Erlangen and a grant for my participation in the European
Crystallographers Meeting ECM30 in Basel. Surely, many things would not
have been possible without the good educational system that the state of Austria
provides.

I am more than happy that Elena Nourkova convinced me to stay at university
because she found the labs so interesting. It was good that she did it.

Also, I had much luck and am indebted to Hermine Peter, my grandmother,
who gave me a preliminary home.

I am glad that Klaudia Hradil offered me the possibility for performing a PhD-
thesis. Although appropriate communication was hard sometimes, she profoundly
supported me in many ways, such as giving me scientific, financial and personal
support. Without her, I would not have started a PhD in crystallography, what
has crystallised to be one of the best happenings in my live, both for scientific
and personal development. Without her, I likely would not have had the chance
of working together with Reinhard Neder and also Matteo Leoni.

Werner Artner, very patiently, gave me uncountable and invaluable personal
and scientific support in the laboratory.

155



Some other thoughts

Furthermore, I am glad about Berthold Stöger’s supervision and the manifold
help and support concerning scientific practice, argumentation etc he dedicated
to me.

I am also indebted to Reinhard Neder, who gave me manifold support in
many scientific issues and hope, as well as for being my scientific host for 6
months, which I am especially grateful for.

I am glad that Matteo Leoni was there for many important conversations. He
was readily there to support me and showed me that I am not the only person
puzzled by many scientific practices.

I think it is more than kind that Erich Halwax freely offered me his expertise
and support in the stage of finishing my thesis.

I am further glad to have shared my office with Stephan Pollitt, who was a
good colleague and conversation partner. Also, Stefan Diez from Erlangen, with
whom I had a great time when I came to visit Reinhard Neder, won me as a
friend.

I express my deep happiness about the support I received from my mother
Regina Hans, when I nearly had what some would call a substantial crises. With
wise and friendly words, she helped me to find a profound change of perspective,
which enabled me to resume and lately, but ultimately finishing my work. Also
Edmund Winkler helped me to find some insights.

In addition, I want to mention the involvement of Nastaran Hayati-Roodbari,
my colleague from PLUS, and Joong-Hee Han, the project coordinator from AIT. I
am convinced that both did their best in our mutual work. Herwig Peterlik from
the university of Vienna measured and interpreted small angle scattering for me
and kindly discussed with me. He is a great person.

Also, I am glad that Hermann Kronberger drew my attention to an open
position of an X-ray scientist at my current working place CEST, to earn me a
living besides finishing my thesis.

I hope that I was able to avoid the commonly used and empty standard
phrases. To subsume, I am a lucky person to find myself in this situation. Thanks
to everyone.
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A.1 Script to merge files

1 #!/usr/bin/env python3

2

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from scipy.interpolate import interp1d

6 import bisect

7

8 def index_le(a, x):

9 ’Find rightmost value less than or equal to x’

10 i = bisect.bisect_right(a, x)

11 if i:

12 return i-1

13 raise ValueError

14

15 data_directory= ’./’

16 data_working1 = ’1’

17 data_working2 = ’2’

18 data_working3 = ’3’

19 headerSkip = 0

20

21 # load data

22 d01 = np.genfromtxt(data_directory+ data_working1+’.xy’,

skip_header=headerSkip, dtype=float ,usecols=(0,1),

comments=’#’)
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23 d02 = np.genfromtxt(data_directory+ data_working2+’.xy’,

skip_header=headerSkip, dtype=float ,usecols=(0,1),

comments=’#’)

24 d03 = np.genfromtxt(data_directory+ data_working3+’.xy’,

skip_header=headerSkip, dtype=float ,usecols=(0,1),

comments=’#’)

25

26 # split data

27 X1 , I1 = d01.T

28 X2 , I2 = d02.T

29 X3 , I3 = d03.T

30

31 # remove overlaps with worse signal-to-noise ration

32 last = index_le(X1, X2[0])

33 X1 = X1[:last]

34 I1 = I1[:last]

35 last = index_le(X2, X3[0])

36 X2 = X2[:last]

37 I2 = I2[:last]

38 last = index_le(X3, 150)

39 X3 = X3[:last]

40 I3 = I3[:last]

41

42 # add and convert section

43 Xtot = list(X1) + list(X2) + list(X3)

44 Itot = np.array( list(I1/15) + list(I2/35) + list(I3/70) )/125.25

45

46 # interpolate on equidistant grid --- could be omitted

47 helperFunction = interp1d(Xtot, Itot)

48 Xtot = np.linspace(Xtot[0], Xtot[-1], num=len(Xtot), endpoint=True,

retstep=False)

49 Itot = helperFunction(Xtot)

50
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51 # save merged data set with specifications

52 outp = np.array([Xtot,Itot]).T

53 name = ’merged_wOutInt’

54 np.savetxt(name+’.xy’, outp, fmt=’%.3f’)
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A.2 Script for the creation of a dummy 2D-detector
image

1 #!/usr/bin/python3

2

3 from PIL import Image

4 from numpy import exp, sqrt, sin, tan, arcsin, arctan

5 from math import pi

6 import sys

7 import datetime

8

9 print(datetime.datetime.now())

10

11 imgDimX = int(2048/1) # gives img.size[0]

12 imgDimY = int(2048/1) # gives img.size[1]

13 pixLen = 0.2 |#| µm

14 Lambda = 0.21140 # Angstrom

15 D = 161.0 # direct distance sample-detector in [mm]

16 highest = 999999 # defines factor to calculate relative

intensities

17

18 QMAX = (4*pi/Lambda*sin(0.5*arctan((sqrt((imgDimX/2*pixLen)**2

19 +(imgDimY/2*pixLen)**2))/D)))

20 QMAXedge = (4*pi/Lambda*sin(0.5*arctan((imgDimX/2*pixLen)/D)))

21 bckgr0 = 1.5*sqrt(QMAX)#sqrt(2)*imgDimX*pixLenX)

22 print(’QMAX = ’, QMAX)

23 print(’QMAXedge = ’, QMAXedge)

24 print(’BackgroundZero = ’, bckgr0)

25

26

27 # define parameters for function

28 wantedMaxQ1 = 4.0
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29 wantedMaxQ2 = 8.2

30

31 sigma1 = 1.5

32 sigma2 = 3.0

33 sigma3 = 2.0

34 sigma4 = 7.0

35

36

37 img = Image.new(’I’, (imgDimX,imgDimY))

38 #created a new Image with dimensions X Y

39 pixels = img.load()

40 # created the pixel map

41

42

43 # sets a value for every pixel: We will calculate the Q that

corresponds to each R-value and

44 # calculate the intensities found at the corresponding pixel for

this Q and therefore R

45 for posHori in range(imgDimX):

46 x = (posHori - imgDimX/2 + 0.5) # corrected

x-pixel position for centre of image

47 for posVerti in range(imgDimY):

48 y = (posVerti - imgDimY/2 + 0.5) # corrected

y-pixel position for centre of image

49

50 radius = sqrt((x*pixLen)**2+(y*pixLen)**2)

51 Q = 4*pi/Lambda*sin(0.5*arctan(radius/D))

52

53

54 arg1 = exp(-(Q**2))

55

56 if (Q-wantedMaxQ1) <= 0:

57 arg2 = exp(-((Q-wantedMaxQ1)/sigma1)**2)
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58 else:

59 arg2 = exp(-((Q-wantedMaxQ1)/sigma2)**2)

60

61 if (Q-wantedMaxQ2) <= 0:

62 arg3 = exp(-((Q-wantedMaxQ2)/sigma3)**2)

63 else:

64 arg3 = exp(-((Q-wantedMaxQ2)/sigma4)**2)

65

66 bckgr = ((bckgr0-sqrt(Q))/bckgr0)

67

68

69 pixels[posHori,posVerti] =

int(round(exp(-Q*0.05)*highest*(arg1+arg2+0.8*arg3+bckgr)))

70

71 outfileName = sys.argv[1]

72 img.save(outfileName)

73 print(datetime.datetime.now())
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A.3 Script for the incorporatiin of a mask into a 2D-
image

1 #!/usr/bin/python3

2

3 from PIL import Image

4 from numpy import exp, sqrt, sin, tan, arcsin, arctan

5 from math import pi

6 import sys

7 import datetime

8

9 print(datetime.datetime.now())

10

11 imgDimX = int(2048/1) # gives img.size[0]

12 imgDimY = int(2048/1) # gives img.size[1]

13 pixLen = 0.2 |#| µm

14 Lambda = 0.21140 # Angstrom

15 D = 161.0 # direct distance sample-detector in [mm]

16 highest = 999999 # defines factor to calculate relative

intensities

17

18 QMAX = (4*pi/Lambda*sin(0.5*arctan((sqrt((imgDimX/2*pixLen)**2

19 +(imgDimY/2*pixLen)**2))/D)))

20 QMAXedge = (4*pi/Lambda*sin(0.5*arctan((imgDimX/2*pixLen)/D)))

21 bckgr0 = 1.5*sqrt(QMAX)#sqrt(2)*imgDimX*pixLenX)

22 print(’QMAX = ’, QMAX)

23 print(’QMAXedge = ’, QMAXedge)

24 print(’BackgroundZero = ’, bckgr0)

25

26

27 # define parameters for function

28 wantedMaxQ1 = 4.0
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29 wantedMaxQ2 = 8.2

30

31 sigma1 = 1.5

32 sigma2 = 3.0

33 sigma3 = 2.0

34 sigma4 = 7.0

35

36

37 img = Image.new(’I’, (imgDimX,imgDimY))

38 #created a new Image with dimensions X Y

39 pixels = img.load()

40 # created the pixel map

41

42

43 # sets a value for every pixel: We will calculate the Q that

corresponds to each R-value and

44 # calculate the intensities found at the corresponding pixel for

this Q and therefore R

45 for posHori in range(imgDimX):

46 x = (posHori - imgDimX/2 + 0.5) # corrected x-pixel

position for centre of image

47 for posVerti in range(imgDimY):

48 y = (posVerti - imgDimY/2 + 0.5) # corrected y-pixel position

for centre of image

49

50 radius = sqrt((x*pixLen)**2+(y*pixLen)**2)

51 Q = 4*pi/Lambda*sin(0.5*arctan(radius/D))

52

53

54 arg1 = exp(-(Q**2))

55

56 if (Q-wantedMaxQ1) <= 0:

57 arg2 = exp(-((Q-wantedMaxQ1)/sigma1)**2)
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58 else:

59 arg2 = exp(-((Q-wantedMaxQ1)/sigma2)**2)

60

61 if (Q-wantedMaxQ2) <= 0:

62 arg3 = exp(-((Q-wantedMaxQ2)/sigma3)**2)

63 else:

64 arg3 = exp(-((Q-wantedMaxQ2)/sigma4)**2)

65

66 bckgr = ((bckgr0-sqrt(Q))/bckgr0)

67

68

69 pixels[posHori,posVerti] =

int(round(exp(-Q*0.05)*highest*(arg1+arg2+0.8*arg3+bckgr)))

70

71 outfileName = sys.argv[1]

72 img.save(outfileName)

73 print(datetime.datetime.now())

165





Bibliography

Abeykoon, A.; Malliakas, C. D.; Juhás, P.; Bozin, E. S.; Kanatzidis, M. G. and
Billinge, S. J. (2012). ‘Quantitative nanostructure characterization using atomic
pair distribution functions obtained from laboratory electron microscopes’. In:
Zeitschrift für Kristallographie Crystalline Materials 227.5, pp. 248–256. doi:
10.1524/zkri.2012.1510.

Abeykoon, A.; Castro-Colin, M.; Anokhina, E.; Iliev, M.; Donner, W.; Brunelli,
M.; Jacobson, A. and Moss, S. (2008). ‘X-Ray Scattering Studies of HgSe
Nanoclusters in Zeolite’. In: Metallurgical and Materials Transactions A 39.13,
pp. 3179–3183. doi: 10.1007/s11661-008-9563-9.

Alexandropoulos, N. G.; Cooper, M. J.; Suortti, P. and Willis, B. T. M. (2006).
‘Correction of systematic errors’. In: International Tables for Crystallogra-
phy. International Union of Crystallography, pp. 653–665. doi: 10.1107/
97809553602060000607.

Aste, T and Weaire, D (2008). The Pursuit of Perfect Packing. Institute of Physics
Publishing.

Barkema, G. T. and Mousseau, N. (2000). ‘High-quality continuous random
networks’. In: Physical Review B 62.8, p. 4985.

Barkema, G. and Mousseau, N. (1996). ‘Event-based relaxation of continuous
disordered systems’. In: Physical review letters 77.21, p. 4358.

Beek, W. v.; Emerich, H.; Urakawa, A.; Palin, L.; Milanesio, M.; Caliandro, R.;
Viterbo, D. and Chernyshov, D. (2012). ‘Untangling diffraction intensity: mod-
ulation enhanced diffraction on ZrO2 powder’. In: Journal of Applied Crystal-
lography 45.4, pp. 738–747. doi: 10.1107/s0021889812018109.

167

http://dx.doi.org/10.1524/zkri.2012.1510
http://dx.doi.org/10.1007/s11661-008-9563-9
http://dx.doi.org/10.1107/97809553602060000607
http://dx.doi.org/10.1107/97809553602060000607
http://dx.doi.org/10.1107/s0021889812018109


BIBLIOGRAPHY

Berriot, J.; Montes, H.; Lequeux, F.; Long, D. and Sotta, P. (2002). ‘Evidence for the
Shift of the Glass Transition near the Particles in Silica-Filled Elastomers’.
In: Macromolecules 35.26, pp. 9756–9762. doi: 10.1021/ma0212700.

Beyerlein, K. R.; Leoni, M. and Scardi, P. (2012). ‘Temperature diffuse scatter-
ing of nanocrystals’. In: Acta Crystallographica Section A Foundations of
Crystallography 68.3, pp. 382–392. doi: 10.1107/s0108767312009853.

Beyerlein, K. R. (2013). ‘A review of Debye function analysis’. In: Powder diffrac-
tion 28.S2, S2–S10. doi: 10.1017/s0885715613001218.

Billinge, S. (2013). ‘Materials science: Nanoparticle structures served up on a
tray’. In: Nature 495.7442, pp. 453–454. doi: 10.1038/495453a.

Billinge, S. J. L. and Farrow, C. L. (2013). ‘Towards a robust ad hoc data correction
approach that yields reliable atomic pair distribution functions from powder
diffraction data’. In: Journal of Physics: Condensed Matter 25.45, p. 454202.
doi: 10.1088/0953-8984/25/45/454202.

Billinge, S. J. (2010). ‘Viewpoint: The nanostructure problem’. In: Physics 3, p. 25.
Billinge, S. J.; Dykhne, T.; Juhás, P.; Božin, E.; Taylor, R.; Florence, A. J. and

Shankland, K. (2010). ‘Characterisation of amorphous and nanocrystalline
molecular materials by total scattering’. In: CrystEngComm 12.5, pp. 1366–
1368. doi: 10.1039/b915453a.

Billinge, S. and Kwei, G. (1996). ‘Probing the short-range order and dynamics of
phase transitions using neutron powder diffraction’. In: Journal of Physics and
Chemistry of Solids 57.10, pp. 1457–1464. doi: 10.1016/0022-3697(96)00013-
3.

Billinge, S.; Gutmann, M and Bozin, E. (2000a). ‘Local structure as a probe of
stripes and its relation to T’. In: Physica C: Superconductivity 341, pp. 1795–
1796.

Billinge, S.; Petkov, V and Proffen, T. (2000b). ‘Structure on different length
scales from powder diffraction: The real-space pair-distribution function
(PDF) technique’. In: Commission on Powder Diffraction of the International
Union of Crystallography Newsletter 24.

Bordet, P. (2015). ‘Local structure studies using the pair distribution function’.
In: EPJ Web of Conferences 104. Ed. by M. Ceretti; W. Paulus; M.-H. Mathon
and C. Ritter, p. 01003. doi: 10.1051/epjconf/201510401003.

168

http://dx.doi.org/10.1021/ma0212700
http://dx.doi.org/10.1107/s0108767312009853
http://dx.doi.org/10.1017/s0885715613001218
http://dx.doi.org/10.1038/495453a
http://dx.doi.org/10.1088/0953-8984/25/45/454202
http://dx.doi.org/10.1039/b915453a
http://dx.doi.org/10.1016/0022-3697(96)00013-3
http://dx.doi.org/10.1016/0022-3697(96)00013-3
http://dx.doi.org/10.1051/epjconf/201510401003


BIBLIOGRAPHY

Born, M. (1926). ‘Quantenmechanik der Stoßvorgänge’. In: Zeitschrift für Physik
38.11-12, pp. 803–827.

Bourderau, S; Brousse, T and Schleich, D. (1999). ‘Amorphous silicon as a
possible anode material for Li-ion batteries’. In: Journal of power sources 81,
pp. 233–236. doi: 10.1016/s0378-7753(99)00194-9.

Bowron, D. (2008). ‘An experimentally consistent atomistic structural model of
silica glass’. In: Materials Science and Engineering: B 149.2, pp. 166–170.
doi: 10.1016/j.mseb.2007.11.030.

Bricogne, G. (2010). ‘Fourier transforms in crystallography: theory, algorithms
and applications’. In: International Tables for Crystallography. International
Union of Crystallography, pp. 24–113. doi: 10.1107/97809553602060000760.

Cervellino, A.; Giannini, C.; Guagliardi, A. and Ladisa, M. (2005). ‘Disentangling
instrumental broadening’. In: Journal of Applied Crystallography 38.4, pp. 685–
687. doi: 10.1107/S0021889805017206.

Cervellino, A.; Giannini, C. and Guagliardi, A. (2006). ‘On the efficient evaluation of
Fourier patterns for nanoparticles and clusters’. In: Journal of Computational
Chemistry 27.9, pp. 995–1008. doi: 10.1002/jcc.20407.

Chung, J. S. and Thorpe, M. (1997). ‘Local atomic structure of semiconductor
alloys using pair distribution functions’. In: Physical Review B 55.3, p. 1545.
doi: 10.1103/physrevb.55.1545.

Cliffe, M. J. and Goodwin, A. L. (2013). ‘Nanostructure determination from the
pair distribution function: a parametric study of the INVERT approach’. In:
Journal of Physics: Condensed Matter 25.45, p. 454218.

Cliffe, M. J.; Dove, M. T.; Drabold, D. and Goodwin, A. L. (2010). ‘The nanostructure
problem’. In: Physical Review Letters 104.12. doi: 10.1103/PhysRevLett.104.
125501.

Coelho, A. (2008). ‘DIFFRACplus TOPAS 4.2’. In: BrukerAXS GmbH, Karlsruhe.
Collins, H. M. (1994). ‘A strong confirmation of the experimenters’ regress’. In:

Studies in History and Philosophy of Science Part A 25.3, pp. 493–503. doi:
10.1016/0039-3681(94)90063-9.

Compton, A. H. (1923). ‘The quantum integral and diffraction by a crystal’. In:
Proceedings of the National Academy of Sciences 9.11, pp. 359–362.

169

http://dx.doi.org/10.1016/s0378-7753(99)00194-9
http://dx.doi.org/10.1016/j.mseb.2007.11.030
http://dx.doi.org/10.1107/97809553602060000760
http://dx.doi.org/10.1107/S0021889805017206
http://dx.doi.org/10.1002/jcc.20407
http://dx.doi.org/10.1103/physrevb.55.1545
http://dx.doi.org/10.1103/PhysRevLett.104.125501
http://dx.doi.org/10.1103/PhysRevLett.104.125501
http://dx.doi.org/10.1016/0039-3681(94)90063-9


BIBLIOGRAPHY

Coppens, P. (2010). ‘The structure factor’. In: International Tables for Crystal-
lography. International Union of Crystallography, pp. 10–23. doi: 10.1107/
97809553602060000759.

Davis, T.; Johnson, M. and Billinge, S. J. L. (2013). ‘Toward Phase Quantification at
the Nanoscale Using the Total Scattering Pair Distribution Function (TSPDF)
Method: Recrystallization of Cryomilled Sulfamerazine’. In: Crystal Growth &
Design 13.10, pp. 4239–4244. doi: 10.1021/cg400179p.

Davis, T. D. (2011). Fingerprinting analysis of non-crystalline pharmaceutical
compounds using high energy X-rays and the total scattering pair distribution
function. Columbia University.

Debye, P (1930). ‘Röntgeninterferenzen und Atomgröße’. In: Physik. Zeitschr. 31,
p. 419.

Debye, P. (1915). ‘Zerstreuung von Röntgenstrahlen’. In: Annalen der Physik
351.6, pp. 809–823. doi: 10.1002/andp.19153510606.

Debye, P. J. W. and Menke, H. (1931). ‘Untersuchung der molekularen Ord-
nung in Flüssigkeiten mit Röntgenstrahlung’. In: Ergebnisse der technischen
Röntgenkunde. Vol. 2. Akademische Verlagsgesellschaft. Chap. 1.

Detlefs, C; Rio, M. S. del and Mazzoli, C (2012). ‘X-ray polarization: General
formalism and polarization analysis’. In: The European Physical Journal
Special Topics 208.1, pp. 359–371.

Djordjević, B.; Thorpe, M. and Wooten, F (1995). ‘Computer model of tetrahedral
amorphous diamond’. In: Physical Review B 52.8, p. 5685.

Durbin, S. (1995). ‘Darwin spherical-wave theory of kinematic surface diffraction’.
In: Acta Crystallographica Section A: Foundations of Crystallography 51.3,
pp. 258–268.

Dykhne, T.; Taylor, R.; Florence, A. and Billinge, S. J. (2011). ‘Data requirements
for the reliable use of atomic pair distribution functions in amorphous phar-
maceutical fingerprinting’. In: Pharmaceutical research 28.5, pp. 1041–1048.
doi: 10.1007/s11095-010-0350-0.

Egami, T. and Billinge, S. J. (2003). Underneath the Bragg peaks: structural
analysis of complex materials. Vol. 16. Elsevier.

Ekstein, H (1942). ‘Connection between the kinematic and dynamical theories of
x-ray diffraction’. In: Physical Review 62.5-6, p. 255.

170

http://dx.doi.org/10.1107/97809553602060000759
http://dx.doi.org/10.1107/97809553602060000759
http://dx.doi.org/10.1021/cg400179p
http://dx.doi.org/10.1002/andp.19153510606
http://dx.doi.org/10.1007/s11095-010-0350-0


BIBLIOGRAPHY

Enderby, J. E.; North, D. M. and Egelstaff, P. A. (1966). ‘The partial structure
factors of liquid Cu-Sn’. In: Philosophical Magazine 14.131, pp. 961–970. doi:
10.1080/14786436608244767.

Ewald, P. (1969). ‘Introduction to the dynamical theory of X-ray diffraction’. In:
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical
and General Crystallography 25.1, pp. 103–108.

Farrow, C. L. and Billinge, S. J. (2009). ‘Relationship between the atomic pair
distribution function and small-angle scattering: implications for modeling of
nanoparticles’. In: Acta Crystallographica Section A: Foundations of Crystal-
lography 65.3, pp. 232–239. doi: 10.1107/s0108767309009714.

Farrow, C. L.; Ruan, C.-Y. and Billinge, S. J. L. (2010). ‘Quantitative nanoparticle
structures from electron crystallography data’. In: Physical Review B 81.13.
doi: 10.1103/physrevb.81.134104.

Farrow, C.; Juhas, P; Liu, J.; Bryndin, D; Božin, E.; Bloch, J; Proffen, T. and
Billinge, S. (2007). ‘PDFfit2 and PDFgui: computer programs for studying
nanostructure in crystals’. In: Journal of Physics: Condensed Matter 19.33,
p. 335219. doi: 10.1088/0953-8984/19/33/335219.

Feil, D. (1977). ‘II. Diffraction Physics’. In: Israel Journal of Chemistry 16.2-3,
pp. 103–110.

Filik, J.; Ashton, A. W.; Chang, P. C. Y.; Chater, P. A.; Day, S. J.; Drakopoulos,
M.; Gerring, M. W.; Hart, M. L.; Magdysyuk, O. V.; Michalik, S.; Smith, A.;
Tang, C. C.; Terrill, N. J.; Wharmby, M. T. and Wilhelm, H. (2017). ‘Processing
two-dimensional X-ray diffraction and small-angle scattering data in DAWN
2’. In: Journal of Applied Crystallography 50.3, pp. 959–966. doi: 10.1107/
s1600576717004708.

Finbak, C.; Schwarz, B.; Melaja, A.; Kainulainen, A.; Halonen, A. and Pulkkinen,
E. (1949a). ‘The Structure of Liquids. I.’ In: Acta Chemica Scandinavica 3,
pp. 1279–1292. doi: 10.3891/acta.chem.scand.03-1279.

— (1949b). ‘The Structure of Liquids. II.’ In: Acta Chemica Scandinavica 3,
pp. 1293–1308. doi: 10.3891/acta.chem.scand.03-1293.

Flaig, S.; Akbarzadeh, J.; Dolcet, P.; Gross, S.; Peterlik, H. and Hüsing, N. (2014).
‘Hierarchically organized silica–titania monoliths prepared under purely

171

http://dx.doi.org/10.1080/14786436608244767
http://dx.doi.org/10.1107/s0108767309009714
http://dx.doi.org/10.1103/physrevb.81.134104
http://dx.doi.org/10.1088/0953-8984/19/33/335219
http://dx.doi.org/10.1107/s1600576717004708
http://dx.doi.org/10.1107/s1600576717004708
http://dx.doi.org/10.3891/acta.chem.scand.03-1279
http://dx.doi.org/10.3891/acta.chem.scand.03-1293


BIBLIOGRAPHY

aqueous conditions’. In: Chemistry-A European Journal 20.52, pp. 17409–
17419.

Frey, F.; Boysen, H. and Jagodzinski, H. (2010). ‘Disorder diffuse scattering of X-
rays and neutrons’. In: International Tables for Crystallography. International
Union of Crystallography, pp. 492–539. doi: 10.1107/97809553602060000774.

Gelisio, L. and Scardi, P. (2016). ‘100 years of Debyes scattering equation’. In:
Acta Crystallographica Section A Foundations and Advances 72.6, pp. 608–
620. doi: 10.1107/s2053273316014881.

Gelisio, L.; Ricardo, C. L. A.; Leoni, M. and Scardi, P. (2010). ‘Real-space calculation
of powder diffraction patterns on graphics processing units’. In: Journal of
Applied Crystallography 43.3, pp. 647–653. doi: 10.1107/s0021889810005133.

Gereben, O. and Pusztai, L. (2012). ‘RMC_POT: A computer code for reverse monte
carlo modeling the structure of disordered systems containing molecules of
arbitrary complexity’. In: Journal of Computational Chemistry 33.29, pp. 2285–
2291. doi: 10.1002/jcc.23058.

Gibson, J. M. (2007). ‘Understanding the limits of pair-distribution functions for
nanoscale correlation function measurement’. In: Journal of Physics: Con-
densed Matter 19.45, p. 455217. doi: 10.1088/0953-8984/19/45/455217.

Gingrich, N. S. (1943). ‘The diffraction of x-rays by liquid elements’. In: Reviews
of Modern Physics 15.1, p. 90. doi: 10.1103/revmodphys.15.90.

Gingrich, N. and Heaton, L. (1961). ‘Structure of alkali metals in the liquid
state’. In: The Journal of Chemical Physics 34.3, pp. 873–878. doi: 10.1063/1.
1731688.

Godin, B. and Gingras, Y. (2002). ‘The experimenters’ regress: from skepticism
to argumentation’. In: Studies in History and Philosophy of Science Part A
33.1, pp. 133–148. doi: 10.1016/s0039-3681(01)00032-2.

Granlund, L.; Billinge, S. J. L. and Duxbury, P. M. (2015). ‘Algorithm for sys-
tematic peak extraction from atomic pair distribution functions’. In: Acta
Crystallographica Section A Foundations and Advances 71.4, pp. 392–409.
doi: 10.1107/s2053273315005276.

Grigson, C. (1967). ‘Validity of the Debye Scattering Equation in Elastic Electron
Diffraction’. In: Nature 215.5099, p. 382.

172

http://dx.doi.org/10.1107/97809553602060000774
http://dx.doi.org/10.1107/s2053273316014881
http://dx.doi.org/10.1107/s0021889810005133
http://dx.doi.org/10.1002/jcc.23058
http://dx.doi.org/10.1088/0953-8984/19/45/455217
http://dx.doi.org/10.1103/revmodphys.15.90
http://dx.doi.org/10.1063/1.1731688
http://dx.doi.org/10.1063/1.1731688
http://dx.doi.org/10.1016/s0039-3681(01)00032-2
http://dx.doi.org/10.1107/s2053273315005276


BIBLIOGRAPHY

Hamad, E. Z. and Mansoori, G. (1989). ‘Mixture radial distribution functions:
Are they all independent?’ In: Fluid Phase Equilibria 51, pp. 13–21. doi:
10.1016/0378-3812(89)80351-6.

Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N. and Hausermann, D.
(1996). ‘Two-dimensional detector software: From real detector to idealised
image or two-theta scan’. In: High Pressure Research 14.4-6, pp. 235–248.
doi: 10.1080/08957959608201408.

Hansen, A.-L.; Dietl, B.; Etter, M.; Kremer, R. K.; Johnson, D. C. and Bensch, W.
(2018). ‘Temperature-dependent synchrotron X-ray diffraction, pair distribu-
tion function and susceptibility study on the layered compound CrTe3’. In:
Zeitschrift für Kristallographie - Crystalline Materials 233.6, pp. 361–370.
doi: 10.1515/zkri-2017-2100.

Harrington, R.; Neder, R. B. and Parise, J. B. (2012). ‘The nature of x-ray scattering
from geo-nanoparticles: Practical considerations of the use of the Debye
equation and the pair distribution function for structure analysis’. In: Chemical
Geology 329, pp. 3–9. doi: 10.1016/j.chemgeo.2011.06.010.

He, B. B. (2009). Two-Dimensional X-Ray Diffraction. JOHN WILEY & SONS
INC. 426 pp.

Henry, P. F.; Weller, M. T. and Wilson, C. C. (2001). ‘Structural Investigation of TS-
1: Determination of the True Nonrandom Titanium Framework Substitution
and Silicon Vacancy Distribution from Powder Neutron Diffraction Studies
Using Isotopes’. In: The Journal of Physical Chemistry B 105.31, pp. 7452–
7458. doi: 10.1021/jp0107715.

Holzwarth, U. and Gibson, N. (2011). ‘The Scherrer equation versus the’Debye-
Scherrer equation’’. In: Nature nanotechnology 6.9, p. 534.

Ida, T and Toraya, H (2002). ‘Deconvolution of the instrumental functions in
powder X-ray diffractometry’. In: Journal of applied crystallography 35.1,
pp. 58–68. doi: 10.1107/s0021889801018945.

Jensen, K.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhée, E.; Johnson,
D. C.; Iversen, B. B. and Billinge, S. J. (2015). ‘Demonstration of thin film
pair distribution function analysis (tfPDF) for the study of local structure
in amorphous and crystalline thin films’. In: IUCrJ 2.5, pp. 481–489. doi:
10.1107/s2052252515012221.

173

http://dx.doi.org/10.1016/0378-3812(89)80351-6
http://dx.doi.org/10.1080/08957959608201408
http://dx.doi.org/10.1515/zkri-2017-2100
http://dx.doi.org/10.1016/j.chemgeo.2011.06.010
http://dx.doi.org/10.1021/jp0107715
http://dx.doi.org/10.1107/s0021889801018945
http://dx.doi.org/10.1107/s2052252515012221


BIBLIOGRAPHY

Jeong, I.-K.; Heffner, R.; Graf, M. and Billinge, S. (2003). ‘Lattice dynamics
and correlated atomic motion from the atomic pair distribution function’. In:
Physical Review B 67.10, p. 104301. doi: 10.1103/physrevb.67.104301.

Jeong, I.-K.; Proffen, T.; Mohiuddin-Jacobs, F. and Billinge, S. J. L. (1999). ‘Mea-
suring Correlated Atomic Motion Using X-ray Diffraction’. In: The Journal of
Physical Chemistry A 103.7, pp. 921–924. doi: 10.1021/jp9836978.

Jeong, I.-K.; Graf, M. J. and Heffner, R. H. (2005). ‘Effects of Bragg peak profiles
and nanoparticle sizes on the real-space pair distribution function’. In: Journal
of Applied Crystallography 38.1, pp. 55–61. doi: 10.1107/s0021889804025841.

Juhás, P; Cherba, D.; Duxbury, P.; Punch, W. and Billinge, S. (2006). ‘Ab initio
determination of solid-state nanostructure’. In: Nature 440.7084, pp. 655–658.

Juhás, P; Granlund, L; Duxbury, P.; Punch, W. and Billinge, S. (2008). ‘The Liga
algorithm for ab initio determination of nanostructure’. In: Acta Crystallo-
graphica Section A: Foundations of Crystallography 64.6, pp. 631–640.

Juhas, P.; Granlund, L.; Gujarathi, S. R.; Duxbury, P. M. and Billinge, S. J. (2010).
‘Crystal structure solution from experimentally determined atomic pair dis-
tribution functions’. In: Journal of Applied Crystallography 43.3, pp. 623–
629.

Juhás, P.; Davis, T.; Farrow, C. L. and Billinge, S. J. (2013). ‘PDFgetX3: a rapid and
highly automatable program for processing powder diffraction data into total
scattering pair distribution functions’. In: Journal of Applied Crystallography
46.2, pp. 560–566. doi: 10.1107/s0021889813005190.

Kammler, D. W. (2008). A First Course in Fourier Analysis. Cambridge University
Press.

Keen, D. A. (2001). ‘A comparison of various commonly used correlation functions
for describing total scattering’. In: Journal of Applied Crystallography 34.2,
pp. 172–177. doi: 10.1107/s0021889800019993.

Keen, D. A. and Goodwin, A. L. (2015). ‘The crystallography of correlated disorder’.
In: Nature 521.7552, p. 303. doi: 10.1038/nature14453.

Kennefick, D. (2000). ‘Star crushing: Theoretical practice and the theoreti-
cians’ regress’. In: Social Studies of Science 30.1, pp. 5–40. doi: 10.1177/
030631200030001001.

174

http://dx.doi.org/10.1103/physrevb.67.104301
http://dx.doi.org/10.1021/jp9836978
http://dx.doi.org/10.1107/s0021889804025841
http://dx.doi.org/10.1107/s0021889813005190
http://dx.doi.org/10.1107/s0021889800019993
http://dx.doi.org/10.1038/nature14453
http://dx.doi.org/10.1177/030631200030001001
http://dx.doi.org/10.1177/030631200030001001


BIBLIOGRAPHY

Kern, A.; Madsen, I. C. and Scarlett, N. V. (2012). ‘Quantifying amorphous phases’.
In: Uniting Electron Crystallography and Powder Diffraction. Springer, pp. 219–
231.

Klug, H. and Alexander, L. E. (1974). X-Ray Diffraction Procedures for Crystalline
and Amorphous Solids. Wiley-Interscience New York, NY, USA.

Kniess, C. T.; Lima, J. C. de and Prates, P. B. (2012). ‘The quantification of
crystalline phases in materials: Applications of rietveld method’. In: Sintering-
Methods and Products. InTech.

Korsunskiy, V. and Neder, R. (2005). ‘Exact model calculations of the total
radial distribution functions for the X-ray diffraction case and systems of
complicated chemical composition’. In: Journal of applied crystallography
38.6, pp. 1020–1027. doi: 10.1107/s0021889805031948.

Korsunskiy, V.; Neder, R.; Hradil, K; Barglik-Chory, C.; Müller, G and Neuefeind, J
(2003). ‘Investigation of nanocrystalline CdS–glutathione particles by radial
distribution function’. In: Journal of applied crystallography 36.6, pp. 1389–
1396. doi: 10.1107/s0021889803018302.

Korsunskiy, V. I.; Neder, R. B.; Hofmann, A.; Dembski, S.; Graf, C. and Rühl, E.
(2007). ‘Aspects of the modelling of the radial distribution function for small
nanoparticles’. In: Journal of Applied Crystallography 40.6, pp. 975–985. doi:
10.1107/s0021889807038174.

Lamberti, C; Bordiga, S; Zecchina, A; Carati, A; Fitch, A.; Artioli, G; Petrini,
G; Salvalaggio, M and Marra, G. (1999). ‘Structural characterization of Ti-
silicalite-1: A synchrotron radiation X-ray powder diffraction study’. In: Journal
of Catalysis 183.2, pp. 222–231.

Landauer, R. (1989). ‘Nanostructure physics: fashion or depth’. In: Nanostructure
Physics and Fabrication, pp. 17–30.

Le Bail, A; Jacoboni, C and De Pape, R (1985). ‘REFINING STRUCTURAL
MODELS FOR GLASSES: IS IT POSSIBLE? THE CASE OF’. In: Le Journal
de Physique Colloques 46.C8, pp. C8–163.

Leadbetter, A. and Wright, A. (1972). ‘Diffraction studies of glass structure III.
Limitations of the fourier method for polyatomic glasses’. In: Journal of Non-
Crystalline Solids 7.2, pp. 141–155.

175

http://dx.doi.org/10.1107/s0021889805031948
http://dx.doi.org/10.1107/s0021889803018302
http://dx.doi.org/10.1107/s0021889807038174


BIBLIOGRAPHY

Lee, B. M.; Baik, H. K.; Seong, B. S.; Munetoh, S. and Motooka, T. (2006).
‘Generation of glass SiO2 structures by various cooling rates: A molecular-
dynamics study’. In: Computational Materials Science 37.3, pp. 203–208. doi:
10.1016/j.commatsci.2006.01.003.

Leonardi, A. and Bish, D. L. (2016). ‘High-performance powder diffraction pattern
simulation for large-scale atomistic modelsviafull-precision pair distribution
function computation’. In: Journal of Applied Crystallography 49.5, pp. 1593–
1608. doi: 10.1107/s1600576716011729.

Li, G.; Wang, X.; Guo, X.; Liu, S.; Zhao, Q.; Bao, X. and Lin, L. (2001). ‘Titanium
species in titanium silicalite TS-1 prepared by hydrothermal method’. In:
Materials chemistry and physics 71.2, pp. 195–201.

Lipkin, H. J. (2004). ‘Physics of Debye-Waller Factors’. In: arXiv preprint cond-
mat/0405023.

Lorch, E (1969). ‘Neutron diffraction by germania, silica and radiation-damaged
silica glasses’. In: Journal of Physics C: Solid State Physics 2.2, p. 229.

Madsen, I. C.; Scarlett, N. V. and Kern, A. (2011). ‘Description and survey of
methodologies for the determination of amorphous content via X-ray powder
diffraction’. In: Zeitschrift für Kristallographie Crystalline Materials 226.12,
pp. 944–955. doi: 10.1524/zkri.2011.1437.

Mansoori, G. A. (1993). ‘Radial distribution functions and their role in modeling
of mixtures behavior’. In: Fluid phase equilibria 87.1, pp. 1–22.

Marians, C. S. and Burdett, J. K. (1990). ‘Geometric constraints: a refined model
for the structure of silica glass’. In: Journal of Non-Crystalline Solids 124.1,
pp. 1–21.

Martínez, L.; Andrade, R.; Birgin, E. G. and Martínez, J. M. (2009). ‘PACKMOL: a
package for building initial configurations for molecular dynamics simulations’.
In: Journal of computational chemistry 30.13, pp. 2157–2164.

Masadeh, A. S.; Božin, E. S.; Farrow, C. L.; Paglia, G.; Juhas, P.; Billinge, S. J. L.;
Karkamkar, A. and Kanatzidis, M. G. (2007). ‘Quantitative size-dependent
structure and strain determination of CdSe nanoparticles using atomic pair
distribution function analysis’. In: Physical Review B 76.11. doi: 10.1103/
physrevb.76.115413.

176

http://dx.doi.org/10.1016/j.commatsci.2006.01.003
http://dx.doi.org/10.1107/s1600576716011729
http://dx.doi.org/10.1524/zkri.2011.1437
http://dx.doi.org/10.1103/physrevb.76.115413
http://dx.doi.org/10.1103/physrevb.76.115413


BIBLIOGRAPHY

McCusker, L.; Von Dreele, R.; Cox, D.; Louër, D and Scardi, P (1999). ‘Rietveld
refinement guidelines’. In: Journal of Applied Crystallography 32.1, pp. 36–50.

Mou, Q; Benmore, C. and Yarger, J. (2015). ‘X-ray Intermolecular Structure Factor
(XISF): separation of intra-and intermolecular interactions from total X-ray
scattering data’. In: Journal of Applied Crystallography 48.3, pp. 950–952. doi:
10.1107/s1600576715005518.

Mousseau, N. and Barkema, G. (2001). ‘Fast bond-transposition algorithms for
generating covalent amorphous structures’. In: Current Opinion in Solid State
and Materials Science 5.6, pp. 497–502.

Mukhopadhyay, A. and Sheldon, B. W. (2014). ‘Deformation and stress in electrode
materials for Li-ion batteries’. In: Progress in Materials Science 63, pp. 58–
116. doi: 10.1016/j.pmatsci.2014.02.001.

Neder, R. and Proffen, T. (1997). ‘DISCUS: A program for diffuse scattering
and defect-structure simulation’. In: Journal of applied crystallography 30.2,
pp. 171–175. doi: 10.1107/s002188989600934x.

Neder, R.; Frey, F and Schulz, H (1990). ‘Diffraction theory for diffuse scattering
by correlated microdomains in materials with several atoms per unit cell’.
In: Acta Crystallographica Section A: Foundations of Crystallography 46.10,
pp. 792–798.

Neder, R. B. and Korsunskiy, V. I. (2005). ‘Structure of nanoparticles from powder
diffraction data using the pair distribution function’. In: Journal of Physics:
Condensed Matter 17.5, S125–S134. doi: 10.1088/0953-8984/17/5/013.

Neder, R. B. and Proffen, T. (2008). Diffuse Scattering and Defect Structure Sim-
ulations: A cook book using the program DISCUS. Vol. 11. Oxford University
Press.

Olds, D.; Wang, H.-W. and Page, K. (2015). ‘DShaper: an approach for handling
missing low-Q data in pair distribution function analysis of nanostructured
systems’. In: Journal of Applied Crystallography 48.6, pp. 1651–1659. doi:
10.1107/S1600576715016581.

Page, K.; Hood, T. C.; Proffen, T. and Neder, R. B. (2011). ‘Building and refining
complete nanoparticle structures with total scattering data’. In: Journal of
Applied Crystallography 44.2, pp. 327–336. doi: 10.1107/s0021889811001968.

177

http://dx.doi.org/10.1107/s1600576715005518
http://dx.doi.org/10.1016/j.pmatsci.2014.02.001
http://dx.doi.org/10.1107/s002188989600934x
http://dx.doi.org/10.1088/0953-8984/17/5/013
http://dx.doi.org/10.1107/S1600576715016581
http://dx.doi.org/10.1107/s0021889811001968


BIBLIOGRAPHY

Paglia, G.; Božin, E. S. and Billinge, S. J. (2006). ‘Fine-scale nanostructure in
γ-Al2O3’. In: Chemistry of Materials 18.14, pp. 3242–3248. doi: 10.1021/
cm060277j.

Pandey, A.; Biswas, P.; Bhattarai, B. and Drabold, D. (2016). ‘Realistic inversion
of diffraction data for an amorphous solid: The case of amorphous silicon’. In:
Physical Review B 94.23, p. 235208. doi: 10.1103/physrevb.94.235208.

Patterson, A. L. (1935). ‘A direct method for the determination of the compo-
nents of interatomic distances in crystals’. In: Zeitschrift für Kristallographie-
Crystalline Materials 90.1, pp. 517–542. doi: 10.1524/zkri.1935.90.1.517.

Pedone, A.; Malavasi, G.; Menziani, M. C.; Cormack, A. N. and Segre, U. (2006). ‘A
new self-consistent empirical interatomic potential model for oxides, silicates,
and silica-based glasses’. In: The Journal of Physical Chemistry B 110.24,
pp. 11780–11795. doi: 10.1021/jp0611018.

Peterson, P. F.; Božin, E. S.; Proffen, T. and Billinge, S. J. (2003). ‘Improved
measures of quality for the atomic pair distribution function’. In: Journal of
applied crystallography 36.1, pp. 53–64. doi: 10.1107/s0021889802018708.

Petkov, V.; Cozzoli, P. D.; Buonsanti, R.; Cingolani, R. and Ren, Y. (2009). ‘Size,
Shape, and Internal Atomic Ordering of Nanocrystals by Atomic Pair Distri-
bution Functions: A Comparative Study of γ-Fe2O3Nanosized Spheres and
Tetrapods’. In: Journal of the American Chemical Society 131.40, pp. 14264–
14266. doi: 10.1021/ja9067589.

Petkov, V.; Prasai, B.; Ren, Y.; Shan, S.; Luo, J.; Joseph, P. and Zhong, C.-J. (2014).
‘Solving the nanostructure problem: exemplified on metallic alloy nanoparti-
cles’. In: Nanoscale 6.17, pp. 10048–10061. doi: 10.1039/c4nr01633e.

Prescher, C. and Prakapenka, V. B. (2015). ‘DIOPTAS: a program for reduction
of two-dimensional X-ray diffraction data and data exploration’. In: High
Pressure Research 35.3, pp. 223–230. doi: 10.1080/08957959.2015.1059835.

Prill, D.; Juhás, P.; Schmidt, M. U. and Billinge, S. J. (2015). ‘Modelling pair
distribution functions (PDFs) of organic compounds: describing both intra-
and intermolecular correlation functions in calculated PDFs’. In: Journal of
Applied Crystallography 48.1, pp. 171–178.

178

http://dx.doi.org/10.1021/cm060277j
http://dx.doi.org/10.1021/cm060277j
http://dx.doi.org/10.1103/physrevb.94.235208
http://dx.doi.org/10.1524/zkri.1935.90.1.517
http://dx.doi.org/10.1021/jp0611018
http://dx.doi.org/10.1107/s0021889802018708
http://dx.doi.org/10.1021/ja9067589
http://dx.doi.org/10.1039/c4nr01633e
http://dx.doi.org/10.1080/08957959.2015.1059835


BIBLIOGRAPHY

Proffen, T. and Billinge, S. (2002). ‘Probing the local structure of doped mangan-
ites using the atomic pair distribution function’. In: Applied Physics A: Mate-
rials Science & Processing 74.0, s1770–s1772. doi: 10.1007/s003390201846.

Proffen, T.; Billinge, S.; Egami, T and Louca, D (2003). ‘Structural analysis of
complex materials using the atomic pair distribution function—A practical
guide’. In: Zeitschrift für Kristallographie-Crystalline Materials 218.2, pp. 132–
143. doi: 10.1524/zkri.218.2.132.20664.

Proffen, T. and Kim, H. (2009). ‘Advances in total scattering analysis’. In: Journal
of Materials Chemistry 19.29, pp. 5078–5088. doi: 10.1039/b821178g.

Proffen, T.; Page, K. L.; McLain, S. E.; Clausen, B.; Darling, T. W.; TenCate, J. A.;
Lee, S.-Y. and Ustundag, E. (2005). ‘Atomic pair distribution function analysis
of materials containing crystalline and amorphous phases’. In: Zeitschrift für
Kristallographie-Crystalline Materials 220.12, pp. 1002–1008. doi: 10.1524/
zkri.2005.220.12.1002.

Pusztai, L.; Harsányi, I.; Dominguez, H. and Pizio, O. (2008). ‘Assessing the level
of consistency between diffraction experiments and interaction potentials:
A combined molecular dynamics (MD) and Reverse Monte Carlo (RMC)
approach’. In: Chemical Physics Letters 457.1-3, pp. 96–102. doi: 10.1016/j.
cplett.2008.03.091.

Qiu, X.; Božin, E. S.; Juhas, P.; Proffen, T. and Billinge, S. J. (2004). ‘Reciprocal-
space instrumental effects on the real-space neutron atomic pair distribution
function’. In: Journal of Applied Crystallography 37.1, pp. 110–116. doi: 10.
1107/s0021889803026670.

Rademacher, N.; Daemen, L. L.; Chronister, E. L. and Proffen, T. (2012). ‘Pair
distribution function analysis of molecular compounds: significance and mod-
eling approach discussed using the example of p-terphenyl’. In: Journal of
Applied Crystallography 45.3, pp. 482–488.

Rahman, M. (2011). Applications of Fourier Transforms to Generalized Functions.
WIT Press / Computational Mechanics.

Ravy, S. (2013). ‘Homometry in the light of coherent beams’. In: Acta Crystallo-
graphica Section A: Foundations of Crystallography 69.6, pp. 543–548.

179

http://dx.doi.org/10.1007/s003390201846
http://dx.doi.org/10.1524/zkri.218.2.132.20664
http://dx.doi.org/10.1039/b821178g
http://dx.doi.org/10.1524/zkri.2005.220.12.1002
http://dx.doi.org/10.1524/zkri.2005.220.12.1002
http://dx.doi.org/10.1016/j.cplett.2008.03.091
http://dx.doi.org/10.1016/j.cplett.2008.03.091
http://dx.doi.org/10.1107/s0021889803026670
http://dx.doi.org/10.1107/s0021889803026670


BIBLIOGRAPHY

Saravanan, R. and Rani, M. P. (2011). ‘Charge Density Analysis from X-Ray
Diffraction’. In: Metal and Alloy Bonding - An Experimental Analysis. Springer
London, pp. 31–64. doi: 10.1007/978-1-4471-2204-3_2.

Sava, F. and Popescu, M. (2011). ‘New structural features of non-crystalline
tetrahedrally bonded networks’. In: Journal of Non-Crystalline Solids 357.14,
pp. 2552–2554. doi: 10.1016/j.jnoncrysol.2011.02.056.

Scardi, P and Leoni, M (2002). ‘Whole powder pattern modelling’. In: Acta
crystallographica section A 58.2, pp. 190–200.

Schülke, W (1989). ‘Inelastic X-ray scattering’. In: Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 280.2-3, pp. 338–348.

Shan, T.-R.; Devine, B. D.; Hawkins, J. M.; Asthagiri, A.; Phillpot, S. R. and Sinnott,
S. B. (2010). ‘Second-generation charge-optimized many-body potential
forSi/SiO2and amorphous silica’. In: Physical Review B 82.23. doi: 10.1103/
physrevb.82.235302.

Sinn, H; Sette, F; Bergmann, U; Halcoussis, C.; Krisch, M; Verbeni, R and Burkel,
E (1997). ‘Coherent dynamic structure factor of liquid lithium by inelastic
X-ray scattering’. In: Physical review letters 78.9, p. 1715.

Skinner, L. B.; Benmore, C. J. and Parise, J. B. (2012). ‘Area detector corrections
for high quality synchrotron X-ray structure factor measurements’. In: Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 662.1, pp. 61–70. doi:
10.1016/j.nima.2011.09.031.

Soper, A. K. (2007). ‘On the uniqueness of structure extracted from diffraction
experiments on liquids and glasses’. In: Journal of Physics: Condensed Matter
19.41, p. 415108. doi: 10.1088/0953-8984/19/41/415108.

Soper, A. K. (2013). ‘The radial distribution functions of water as derived from
radiation total scattering experiments: is there anything we can say for sure?’
In: ISRN Physical Chemistry 2013.

Soper, A. K. and Barney, E. R. (2011). ‘Extracting the pair distribution func-
tion from white-beam X-ray total scattering data’. In: Journal of Applied
Crystallography 44.4, pp. 714–726. doi: 10.1107/s0021889811021455.

180

http://dx.doi.org/10.1007/978-1-4471-2204-3_2
http://dx.doi.org/10.1016/j.jnoncrysol.2011.02.056
http://dx.doi.org/10.1103/physrevb.82.235302
http://dx.doi.org/10.1103/physrevb.82.235302
http://dx.doi.org/10.1016/j.nima.2011.09.031
http://dx.doi.org/10.1088/0953-8984/19/41/415108
http://dx.doi.org/10.1107/s0021889811021455


BIBLIOGRAPHY

Soules, T. F. (1990). ‘Computer simulation of glass structures’. In: Journal of
Non-Crystalline Solids 123.1-3, pp. 48–70.

Taramasso, M.; Perego, G; Notari, B et al. (1983). Preparation of porous crystalline
synthetic material comprised of silicon and titanium oxides: US, 4410501.

Tarascon, J.-M. and Armand, M. (2001). ‘Issues and challenges facing rechargeable
lithium batteries’. In: Nature 414.6861, pp. 359–367. doi: 10.1038/35104644.

Temleitner, L and Pusztai, L (2013). ‘The origin of diffuse scattering in crystalline
carbon tetraiodide’. In: Journal of Physics: Condensed Matter 25.45, p. 454209.
doi: 10.1088/0953-8984/25/45/454209.

Thorpe, M. (1998). ‘Advances in Pair Distribution Profile Fitting in Alloys in Local
Structure from Diffraction’. In: ed. by M. Thorpe; J. Chung; S. Billinge and F
Mohiuddin-Jacobs. Springer Science & Business Media. Chap. 9, pp. 157–174.

Thorpe, M.; Levashov, V.; Lei, M and Billinge, S. J. (2002). ‘Notes on the analysis of
data for pair distribution functions’. In: From Semiconductors to Proteins: Be-
yond the Average Structure (eds Billinge, SJL & Thorpe, MF)(Kluwer/Plenum,
New York, 2002), pp. 105–128.

Toby, B. and Egami, T (1992). ‘Accuracy of pair distribution function analysis
applied to crystalline and non-crystalline materials’. In: Acta Crystallo-
graphica Section A: Foundations of Crystallography 48.3, pp. 336–346. doi:
10.1107/s0108767391011327.

Toby, B. H. and Billinge, S. J. L. (2004). ‘Determination of standard uncer-
tainties in fits to pair distribution functions’. In: Acta Crystallographica
Section A Foundations of Crystallography 60.4, pp. 315–317. doi: 10.1107/
s0108767304011754.

Toby, B. H. and Von Dreele, R. B. (2013). ‘GSAS-II: the genesis of a modern
open-source all purpose crystallography software package’. In: Journal of
Applied Crystallography 46.2, pp. 544–549.

Tong, L.; Rossmann, M. G. and Arnold, E. (2010). ‘Patterson and molecular
replacement techniques, and the use of noncrystallographic symmetry in
phasing’. In: International Tables for Crystallography. International Union of
Crystallography, pp. 244–281. doi: 10.1107/97809553602060000765.

Treacy, M. and Borisenko, K. (2012). ‘The local structure of amorphous silicon’.
In: Science 335.6071, pp. 950–953.

181

http://dx.doi.org/10.1038/35104644
http://dx.doi.org/10.1088/0953-8984/25/45/454209
http://dx.doi.org/10.1107/s0108767391011327
http://dx.doi.org/10.1107/s0108767304011754
http://dx.doi.org/10.1107/s0108767304011754
http://dx.doi.org/10.1107/97809553602060000765


BIBLIOGRAPHY

Treacy, M.; Newsam, J. and Deem, M. (1991). ‘A general recursion method for
calculating diffracted intensities from crystals containing planar faults’. In:
Proc. R. Soc. Lond. A 433.1889, pp. 499–520.

Trueblood, K.; Bürgi, H.-B.; Burzlaff, H; Dunitz, J.; Gramaccioli, C.; Schulz, H.;
Shmueli, U and Abrahams, S. (1996). ‘Atomic dispacement parameter nomen-
clature. Report of a subcommittee on atomic displacement parameter nomen-
clature’. In: Acta Crystallographica Section A: Foundations of Crystallography
52.5, pp. 770–781.

Tu, Y.; Tersoff, J; Grinstein, G and Vanderbilt, D. (1998). ‘Properties of a continuous-
random-network model for amorphous systems’. In: Physical Review Letters
81.22, p. 4899.

Tucker, M. G.; Keen, D. A.; Dove, M. T.; Goodwin, A. L. and Hui, Q. (2007).
‘RMCProfile: reverse Monte Carlo for polycrystalline materials’. In: Journal of
Physics: Condensed Matter 19.33, p. 335218. doi: 10.1088/0953-8984/19/
33/335218.

Van Houteghem, M.; Ghysels, A.; Verstraelen, T.; Poelmans, W.; Waroquier,
M. and Van Speybroeck, V. (2014). ‘Critical analysis of the accuracy of
models predicting or extracting liquid structure information’. In: The Journal
of Physical Chemistry B 118.9, pp. 2451–2470.

Van Hove, L. (1958). ‘A remark on the time-dependent pair distribution’. In:
Physica 24.1-5, pp. 404–408.

Waller, I and Hartree, D. (1929). ‘On the intensity of total scattering of X-rays’.
In: Proc. R. Soc. Lond. A. Vol. 124. 793. The Royal Society, pp. 119–142.

Warren, B. E. (1990). X-Ray Diffraction (Dover Books on Physics). Dover Publi-
cations.

Warren, B.; Krutter, H and Morningstar, O (1936). ‘FOURIER ANALYSIS OF X-
RAY PATTERNS OF VITREOUS SiO2 AND B2O2’. In: Journal of the American
Ceramic Society 19.1-12, pp. 202–206.

Welberry, T. R. (2010). Diffuse x-ray scattering and models of disorder. Vol. 16.
Oxford University Press on Demand. 266 pp.

Welberry, T. and Butler, B. (1994). ‘Interpretation of diffuse X-ray scattering via
models of disorder’. In: Journal of applied crystallography 27.3, pp. 205–231.
doi: 10.1107/s0021889893011392.

182

http://dx.doi.org/10.1088/0953-8984/19/33/335218
http://dx.doi.org/10.1088/0953-8984/19/33/335218
http://dx.doi.org/10.1107/s0021889893011392


BIBLIOGRAPHY

Westphal, T. (2007). ‘Quantitative Rietveld-Analyse von amorphen Materialien:
am Beispiel von Hochofenschlacken und Flugaschen’. In: Diss. Naturwis-
senschaftlichen Fakultät III der Martin-Luther-Universität Halle-Wittenberg.

Willis, B. (1969). ‘Lattice vibrations and the accurate determination of structure
factors for the elastic scattering of X-rays and neutrons’. In: Acta Crystal-
lographica Section A: Crystal Physics, Diffraction, Theoretical and General
Crystallography 25.2, pp. 277–300.

Wooten, F and Weaire, D (1984). ‘Generation of random network models with
periodic boundary conditions’. In: Journal of non-crystalline solids 64.3,
pp. 325–334.

— (1987a). ‘Modeling tetrahedrally bonded random networks by computer’. In:
Solid State Physics. Vol. 40. Elsevier, pp. 1–42.

— (1987b). ‘Recent developments with the sillium model’. In: Journal of Non-
Crystalline Solids 97, pp. 349–351.

Wooten, F; Winer, K and Weaire, D (1985). ‘Computer generation of structural
models of amorphous Si and Ge’. In: Physical review letters 54.13, p. 1392.

Wright, A.; Shakhmatkin, B. and Vedishcheva, N. (2001). ‘The chemical structure
of oxide glasses: A concept consistent with neutron scattering studies?’ In:
Glass physics and chemistry 27.2, pp. 97–113.

Wright, A. C. (1988). ‘Neutron and X-ray amorphography’. In: Journal of Non-
Crystalline Solids 106.1, pp. 1–16.

— (1990). ‘Diffraction studies of glass structure’. In: Journal of Non-Crystalline
Solids 123.1-3, pp. 129–148.

— (1993). ‘The comparison of molecular dynamics simulations with diffraction
experiments’. In: Journal of non-crystalline solids 159.3, pp. 264–268.

— (1994). ‘Neutron scattering from vitreous silica. V. The structure of vitreous
silica: What have we learned from 60 years of diffraction studies?’ In: Journal
of non-crystalline solids 179, pp. 84–115.

— (2000a). ‘Defect-free vitreous networks: The idealised structure of SiO2 and
related glasses’. In: Defects in SiO2 and Related Dielectrics: Science and
Technology. Springer, pp. 1–35.

183



BIBLIOGRAPHY

— (2000b). ‘Glass Structure by Scattering Methods and Spectroscopy—A. X-
RAY AND NEUTRON DIFFRACTION’. In: Insulating and Semiconducting
Glasses. World Scientific, pp. 147–190.

Wright, A. C.; Clare, A. G.; Bachra, B.; Sinclair, R. N.; Hannon, A. C. and Vessal,
B. (1991). ‘Neutron diffraction studies of silicate glasses’. In: Trans. Am.
Crystallogr. Assoc 27, pp. 239–254.

Xu, R. and Chiang, T. C. (2005). ‘Determination of phonon dispersion rela-
tions by X-ray thermal diffuse scattering’. In: Zeitschrift für Kristallographie-
Crystalline Materials 220.12, pp. 1009–1016.

Yang, G.; Lan, X.; Zhuang, J.; Ma, D.; Zhou, L.; Liu, X.; Han, X. and Bao, X. (2008).
‘Acidity and defect sites in titanium silicalite catalyst’. In: Applied Catalysis
A: General 337.1, pp. 58–65. doi: 10.1016/j.apcata.2007.11.037.

Yang, X.; Juhás, P. and Billinge, S. J. L. (2014). ‘On the estimation of statistical
uncertainties on powder diffraction and small-angle scattering data from
two-dimensional X-ray detectors’. In: Journal of Applied Crystallography 47.4,
pp. 1273–1283. doi: 10.1107/s1600576714010516.

Yang, Z. Q.; He, L. L.; Zhao, S. J. and Ye, H. Q. (2002). ‘Experimental evidence of
structural transition at the crystal-amorphous interphase boundary between
Al and Al2O3’. In: Journal of Physics: Condensed Matter 14.8, pp. 1887–1893.
doi: 10.1088/0953-8984/14/8/316.

Young, C. A. and Goodwin, A. L. (2011). ‘Applications of pair distribution function
methods to contemporary problems in materials chemistry’. In: Journal of
Materials Chemistry 21.18, p. 6464. doi: 10.1039/c0jm04415f.

Zachariasen, W. (1935). ‘Note on the Scattering of X-Rays from Fluids Containing
Polyatomic Molecules’. In: Physical Review 47.4, p. 277.

Zachariasen, W. H. (1932). ‘The atomic arrangement in glass’. In: Journal of the
American Chemical Society 54.10, pp. 3841–3851.

Zallen, R. (1985). ‘Models of amorphous solids’. In: Journal of Non-Crystalline
Solids 75.1-3, pp. 3–14.

Zernike, F. t. and Prins, J. (1927). ‘Die beugung von röntgenstrahlen in flüs-
sigkeiten als effekt der molekülanordnung’. In: Zeitschrift für Physik A Hadrons
and nuclei 41.6, pp. 184–194.

184

http://dx.doi.org/10.1016/j.apcata.2007.11.037
http://dx.doi.org/10.1107/s1600576714010516
http://dx.doi.org/10.1088/0953-8984/14/8/316
http://dx.doi.org/10.1039/c0jm04415f


BIBLIOGRAPHY

Zobel, M.; Neder, R. B. and Kimber, S. A. (2015). ‘Universal solvent restructuring
induced by colloidal nanoparticles’. In: Science 347.6219, pp. 292–294.

Zuev, A. (2006). ‘Calculation of the instrumental function in X-ray powder
diffraction’. In: Journal of applied crystallography 39.3, pp. 304–314. doi:
10.1107/s0021889806005693.

185

http://dx.doi.org/10.1107/s0021889806005693



	Short description
	Kurzbeschreibung
	Table of contents
	List of figures
	List of tables
	Nomenclature
	Introduction
	The pair distribution function (PDF) and its relation to matter
	Some important facts
	The limits of classical crystallographic approaches and the nano-structure problem
	A general expression for the scattering of X-rays in the elastic regime
	Classical assumptions for quasi-periodic arrangements
	Deviations from classical conditions

	A case for the PDF?

	Technical details
	Total scattering, the Debye-function, and the PDF
	Conceptual aspects of PDF-analysis
	Derivation of a PDF-equation for an extended (amorphous) ensemble with only one atom-species
	Introduction and subtraction of a mean pair density to account for the small angle scattering (SAS) signal
	Derivation for an extended (amorphous) ensemble with multiple atom-species
	Influences of the integration limits in the FT

	Developments of PDF-methodology according to literature
	Quality criteria for PDF-creation and refinements
	PDF for unique structure identification
	Intermolecular interactions
	Nanoparticles and amorphous structures - estimating the baseline of the PDF
	Recent approaches to data correction for inelastic scattering
	Influences of the instrumental setup on the PDF

	Modeling and refinement
	Traditional approach to PDF-modeling: altering the pair distribution
	- incorporating thermal motion and correlation
	- instrumental effects
	- measurement range
	- baseline of the PDF

	PDF-creation by FT of a calculated diffractogram
	- benefits of this method of PDF-creation
	- incorporation of thermal motion into diffractograms

	Structure refinement by aid of the PDF (PDF-refinement)

	Critical remarks related to PDF-methodology
	General assertions about PDF-analysis in literature
	Assertions about phonons in (1D-)PDF-literature
	Issues concerning the extraction of information
	PDF for multiphasic materials?

	Conclusions

	Investigation of non sample related information
	- details on exemplary calculations in this chapter
	Influences owing to the experimental setup
	Effects of non-monochromaticity
	Influence of noise
	Remarks on scattering by the container and absorption related phenomena
	Conclusions

	Critical assessment of ad-hoc data correction procedures in recent literature
	Description of the correction algorithm
	Analysis of some artefacts obtainable with the ad-hoc method

	Remarks on data acquisition and data handling
	Handling 1D-datasets - remarks concerning data sampling and interpolation
	Interpolation of 1D-diffractograms and its effect on G(r)
	Data collection strategies and possible obstacles

	Handling and reducing 2D-datasets - remarks on artefacts in context with data-correction masking
	The reason for using 2D-flat-plate-detectors
	Procession steps: Calibration, masking and integration
	Pixel splitting in 2D-detector-image integration
	Discussion of artefacts and conditions under which they can arise
	Remarks on masking and data correction strategies and how to influence the integration result thereby
	Do we need more sophisticated data-calibration and correction techniques?

	Conclusions

	Capabilities of PDF-analysis in investigating quasi-amorphous materials
	- details on refinements and data reduction
	- details on data collection and reduction

	The difficulties of describing glasses and creating initial models
	Analysis of amorphous networks with the stoichiometry (SiO2)x(TiO2)y for use as catalysts
	Samples and characterizations by XRF and SAXS
	PDF-refinements and discussion

	Conclusions

	Capabilities of PDF-analysis in investigating partly crystalline materials
	- details on instrument settings and data collection
	- details on refinements and data treatment

	A comparison of crystallite sizes from reciprocal space and real space estimates
	No amorphous silicon via synthesis.
	Quantifying amorphous parts in crystalline systems
	General discussion of methods for quantification of amorphous contents and methodological problems thereof.
	Quantification by help of data in the reciprocal space representation
	Quantification by help of data in the real-space representation

	Quantification of amorphous content with a method developed in this work and comparison with the standard-series approach

	Conclusions
	Refinements

	Final conclusions and outlook
	Some other thoughts
	APPENDIX
	Script to merge files
	Script for the creation of a dummy 2D-detector image
	Script for the incorporatiin of a mask into a 2D-image

	Bibliography

