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Abstract

Information retrieved from the real world often contains some kind of inherent uncertainty. In
recent years there has been an effort to incorporate this aspect of data into visualizations. This
is also true for the representation of temporal data. How this can be done in an intuitive way is
still one of many open questions regarding temporal uncertainty visualization.

This thesis presents two subsequent user studies, which aim at providing insights into this
matter. In the first study, called the Drawing Study, 32 participants are asked to draw their own
visualization designs, based on predefined scenarios and tasks. These drawings are analyzed
through an open coding approach. The analysis yields a list of hypotheses regarding the intu-
itiveness of temporal uncertainty visualization. From this list a selection of hypotheses leads
to more concrete research questions, which form the basis for the second study, called the User
Survey. In this online survey 60 participants compare and rate different visualization approaches
in several scenarios.

This rating of intuitiveness yields valuable insights for future visualization design. The
results indicate that icon representations are not considered intuitive, even though they might
seem to be at first glance. It can be argued that icons just need to be designed specifically for
certain tasks and scenarios to be perceived intuitive. Furthermore, the results suggest that most
people prefer to have uncertainty presented to them, even if it is not relevant for the task at hand.
This finding could have important implications for the design of future visualizations.
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Kurzfassung

Datensätze, die aus der „echten Welt“ stammen, enthalten meist verschiedene Arten inhärenter
Unsicherheiten. In den letzten Jahren gab es Bemühungen, diesen Aspekt der Daten in Visua-
lisierungen zu berücksichtigen und sichtbar zu machen. Dasselbe gilt für die Darstellung von
zeitlichen Daten. Wie dies am besten auf eine möglichst intuitive Art bewerkstelligt werden
kann, ist in Bezug auf die Visualisierung von zeitlichen Unsicherheiten noch eine von vielen
offenen Fragestellungen .

In dieser Arbeit werden zwei aufeinander aufbauende Nutzerstudien präsentiert, welche dar-
auf abzielen, Erkenntnisse in diesem Bereich offenzulegen. In der ersten Studie, bezeichnet
als Drawing Study, wurden 32 Teilnehmer darum gebeten, basierend auf gegebenen Szenarien
und Aufgabenstellungen, eigene Visualisierungsdesigns zu entwickeln und zu zeichnen. Diese
Zeichnungen wurden mit einem sogenannten Open Coding-Ansatz ausgewertet. Das Ergebnis
dieser Analyse ist eine Liste von Hypothesen in Bezug auf die intuitive Darstellung von zeit-
lichen Unsicherheiten. In der Folge wurden aus dieser Liste Hypothesen ausgewählt, welche
zu genauer definierten Forschungsfragen führten. Diese Fragen bilden die Basis für die zweite
Nutzerstudie, welche als User Survey bezeichnet wird. In dieser Onlineumfrage wurden 60 Teil-
nehmer gebeten, jeweils zwei Visualisierungstechniken in gegebenen Szenarien zu vergleichen
und zu bewerten.

Diese Bewertung der Intuitivität der Techniken führte zu Erkenntnissen, welche für die Ent-
wicklung von zukünftigen Visualisierungen wichtig sein könnten. So weisen die Resultate unter
anderem darauf hin, dass symbolische Darstellungen unerwarteterweise nicht intuitiv wahrge-
nommen werden. Ein Grund dafür könnte sein, dass solche Darstellungen speziell auf bestimmte
Einsatzgebiete zugeschnitten werden müssen, um intuitiv zu sein. Außerdem deuten die Stu-
dienergebnisse darauf hin, dass die Visualisierung von Unsicherheiten von den meisten Men-
schen bevorzugt wird, auch wenn die Unsicherheiten selbst nicht von Bedeutung für die vorlie-
gende Aufgabe sind. Diese Erkenntnis könnte wichtige Implikationen auf die Entwicklung von
zukünftigen Visualisierungen haben.
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CHAPTER 1
Introduction

”A technical system is, in the context of a certain task, intuitively usable while
the particular user is able to interact effectively, not-consciously using previous
knowledge.”

— Naumann, Hurtienne, Israel, Mohs, Kindsmüller, Meyer and Hußlein,
Intuitive use of user interfaces: defining a vague concept. [44, p. 129]

1.1 Motivation

Information retrieved from the real world is almost always affected by inherent uncertainty,
because measurements can generally never be perfectly exact. Furthermore, data is often directly
aggregated during its time of capture. The same can be said about temporal data. Exact times of
events might not be known (e.g., ’time of the big bang’), they might be given in an imprecise way
(e.g., ’during the past hour’) or a prediction of the future, which is inherently vague (e.g., ’it will
take one or two weeks’). This kind of temporal uncertainty we are concerned with in this work
stands in contrast to uncertain values of time-oriented data. I. e. our focus lies on uncertain
time frames and not on uncertain values in time. Furthermore, temporal uncertainty is also
different from branching time models, which depict time as a graph that shows multiple possible
outcomes of future events [3]. Most existing information visualization (InfoVis) systems do
not incorporate uncertainty into their visual representations. Due to a shift from deterministic
approaches toward statistical models in certain areas, such as business, an increasing need for
novel visualizations arises [6]. To incorporate uncertainty into visual representations is the aim
of many works published in recent years. Several of them specifically focus on communicating
temporal uncertainty to users [22, 34, 10, 41, 4, 24].

It is important that novel visualization designs are properly evaluated. This ensures that the
target user group is effectively supported in their tasks. Furthermore, evaluation should not only
be done after a new approach is fully implemented, but also beforehand. This preceding evalua-
tion aims to evaluate the need of the target user, so the visualization can be specifically designed
to support this need. Tamara Munzner’s Nested Model [43] gives a thorough characterization of
evaluation methods. It encompasses evaluation done before, during and after the design process
of novel approaches.

1



Not all user studies aim to evaluate specific visualization approaches, but try to answer more
general questions [61, 60, 18]. These exploratory experiments serve the purpose of gaining gen-
eral insights about visualizations and their usage. Furthermore, they can discover and identify
potential directions for future research. Most of the empirical work done in the domain of Info-
Vis aims to evaluate and compare existing and newly devised designs [36]. This often leaves the
question open if the evaluated design was the user’s first choice, or if there is another preferred
or more intuitive solution. This is why it is important to do exploratory research to gain insights
toward the intuitiveness of visualizations and guide future research.

1.2 Aim of this work

The main goal of this work is to generate insights about the intuitive visualization of temporal
uncertainty. Our understanding of the term ’intuitive’ in this context stems from the definition
of Naumann et al. who state: ’A technical system is, in the context of a certain task, intuitively
usable while the particular user is able to interact effectively, not-consciously using previous
knowledge.’ [44, p. 129]

To this end our research goes through two main practical steps. In the first step we want to
explore this domain to generate interesting hypotheses. In this context interesting means that the
theory’s validation will lead to valuable insights that can be incorporated into future visualization
designs. This means that no existing, predefined visualization designs can be used at this stage,
since we want to keep the design space that is being explored as open as possible.

The first step yields a list of hypotheses which are unvalidated. From this list a selection
of the most promising theories is made. In step 2 this selection is then validated to generate
concrete results toward our main goal. To render these results valuable for future research in
this domain, it is important to test them in a way that keeps them generalizable and therefore
applicable to as many similar scenarios as possible.

Research Questions

The following list presents the main research questions answered by this thesis. They originate
from the selection process of hypotheses in the second step described above.

• RQ1 Is it more intuitive to the average user to use Gradient Plots (see Figure 2.25) or
temporal line charts to judge a specific probability value of an event to a given point in
time?

• RQ2 Is it more intuitive to the average user to visualize a comparison of two events,
with uncertain temporal bounds, in a superimposed view (overlapping representation) or
a juxtaposed view (side-by-side view)?

• RQ3 Is it more intuitive to the average user to use an explicit uncertainty representation
or uncertainty encoded in icons if the task at hand only calls for a rough approximation of
the probability?
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• RQ4 Is it more intuitive to visualize an underlying uncertainty or to omit it if the uncer-
tainty is not directly relevant for the task at hand?

Figure 1.1 shows an overview of the two main steps of this work and their in- and out-
puts. How the presented goals of the separate steps are addressed is explained in the following
Methodology section.

Figure 1.1: Before any practical work is done, a comprehensive literature research is conducted
to build a profound foundation of knowledge about the state of the art within the field. Building
upon this knowledge the first main step is a user study called the Drawing Study (described in
detail in Chapter 3). It yields a number of hypotheses, which are filtered for the most promis-
ing ones. This selection is then evaluated in a user survey to gain valuable insights about the
visualization of temporal uncertainty.

1.3 Methodology

The first part of this work consists of a comprehensive literature research. This yields the nec-
essary foundation of knowledge to build our work upon. Firstly, it informs about the current
state of research in the domain of temporal uncertainty visualization and its open questions to
determine which insights would be new and valuable to the research domain. Secondly, gen-
eral approaches of empirical user studies are identified to be utilized in our own study design.
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Thirdly, existing user studies are analyzed in regard to how they were designed, conducted and
evaluated to learn about conventions and typical approaches to empirical work within the field.
The most relevant works of this literature research are presented in the State of the Art Chapter.

This first part of gathering a comprehensive knowledge foundation is followed up by the first
practical step towards our goal of generating insights. It consists of an exploratory user study,
which we call the Drawing Study. The goal of this step is to address the need for interesting
hypotheses, as described in the previous section. Since the results of the Drawing Study leave
much room for interpretation, it is possible to generate many hypotheses from them. Some of
these could be of interest for future research, but not all of them are evaluated in the course of
this work. Instead we select only the most promising theories for evaluation. The assessment
of them happens in the second practical step, which we call the User Survey. It is an online
survey, which asks participants for their opinion about presented visualizations, with the aim of
answering the selected research questions. All the details about the design and conduct of this
survey are presented in Chapter 4, while the results are separately presented in Chapter 5.

1.4 Structure of this thesis

This thesis is structured in the following chapters:

• Chapter 2 State of the Art: In this chapter we present the state of the art of temporal
uncertainty visualization and other literature relevant for our work. The presented litera-
ture is split up into three main categories. The first one is about techniques for visualizing
temporal uncertainty. The second one is about the theory of user study design and the
third one presents existing user studies in the domain of InfoVis.

• Chapter 3 Drawing Study: Here we present our exploratory Drawing Study. The ratio-
nale behind its design is thoroughly explained. The results are analyzed through an open
coding approach, which is also described in detail. This analysis yields a list of hypothe-
ses about the visualization of temporal uncertainty, which are partly tackled in our User
Survey.

• Chapter 4 User Survey: This chapter encompasses our online User Survey. The selection
of hypotheses from the Drawing Study and the formulation of research questions from
those hypotheses is explained. Furthermore, the study’s design based on the selected
goals is described in detail.

• Chapter 5 Results: In this chapter the results of the User Survey are presented and ana-
lyzed in regard to the posed research questions. The results are also discussed with regard
to their implications and the insights they provide. Furthermore, the qualitative feedback
gathered from participants, as well as the limitations of this work are discussed. The last
part also encompasses possible directions for future research.

• Chapter 6 Conclusion: We conclude this thesis with an overview of our work and its
main contributions.
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CHAPTER 2
State of the Art

This chapter presents relevant literature for the design and evaluation of the practical part of this
thesis. The entirety of the collected works is split up into three main groups.

Before the findings are presented, the methodology of how this literature was explored and
found is explained in Section 2.1.

The first group, presented in the Section 2.2, is about the visualization of temporal uncer-
tainty. It encompasses a multitude of techniques, starting from early approaches like the box
plot [23] to more novel techniques.

In Section 2.3 the second group of literature is presented, which provides necessary theoret-
ical knowledge about the design of user studies. There are many ways how such a study can be
conducted, which becomes especially apparent if one considers small detail decisions made dur-
ing the design. It might be these small, seemingly insignificant, decisions that have an important
impact on the outcome of the experiment. Therefore, it is important to gather knowledge to be
able to avoid pitfalls and to correctly design a successful user study.

To also see how this theory can be put into practice, a selection of existing user studies in the
realm of InfoVis is presented in Section 2.4 of this chapter. Reviewing state-of-the-art experi-
ments is an important step to learn and understand how to design and evaluate such experiments.

The following Section 2.5 is compiled as a list of the most important points of all reviewed
works in regard to this thesis and the corresponding practical work. All these points are again
addressed in Section 2.6. There the relevance of every point in regard to the presented practical
work and how it impacts the final study design is explained in detail.

2.1 Method

To get a good overview of existing literature and to find relevant works to base this thesis on,
first and foremost the Google Scholar [21] search engine was used. The main reason for this is
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that this engine allows to search through a multitude of digital libraries at once and to also con-
veniently find referencing relationships between works. Additionally, the ACM Digital Library
[7], as well as IEEE Xplore [28] were utilized.

Since this thesis follows up on the work of Gschwandtner et al. [22], the literature research
was started by reviewing publications cited by their paper and more recent work referencing it.
After broadening the search to similar papers, all findings were structured into the three main
categories of literature of this chapter. Subsequently, more literature was reviewed in every
category.

The first category aims to give an overview of the state-of-the-art of temporal uncertainty
visualization. Search queries for this category included, for example, temporal uncertainty visu-
alization, temporal confidence visualization or uncertainty visualization temporal data.

The second category is about the theory of user study design in the context of visualization.
To find literature in this context, we used search queries like visualization user study, visualiza-
tion human factors, visualization user centered design and similar ones.

References for the third category which features existing user studies, from which more
about the actual implementation of such can be learned, mostly emerged in the same search
process as the last category. The reason for this is that most theoretical literature either reviews
existing study implementations or references them as examples.

2.2 Visualization of temporal uncertainty

One of the oldest techniques that is suited for visualizing temporal uncertainty is the box plot.
Its origins lie as far back as Haemer’s work from 1948 [23], in which he describes the range bar
chart. This representation is very similar to the first mention of the box plot by Tukey [58] and
encodes the same five values that describe the uncertainty of the data of interest. As shown in
Figure 2.1 it encodes the median, the upper and lower quartiles, as well as the maximum and
minimum value. By aligning a box plot along a time axis, it can be used to encode the uncertain
time of an event. It can also be used to represent the uncertain start and/or end times of an event.

Figure 2.1: A box plot may be presented in slightly different appearance, but it always encodes
the same five values: median, upper and lower quartile and the maximum and minimum value.
(original illustration)
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There are further variations of the box plot, like the range plot by Spear and Spear [55] or
the interquartile plot by Tufte and Schmieg [57], which only change the visual appearance of
the plot, but still encode the same five values. Examples of these can be seen in Figure 2.2.

Figure 2.2: The range plot (a) and the interquartile plot (b) are visual modifications to the box
plot and also encode the same five values to describe a distribution of interest. [48]

Besides these cosmetic modifications of box plots, there are also variations that aim to con-
vey the underlying distribution. Typically this is done by encoding density information at the
sides of the box plot. Benjamini [8] proposed the Histplot, which is constructed in the following
way: A traditional box plot is drawn, with an additional encoding of the density at the median
and both quartiles, through the width of the box. These density landmarks are connected by
straight lines. Examples of the Histplot can be seen in Figure 2.3.

Figure 2.3: The Histplot encodes the
density of the underlying distribu-
tion at the median and both quartiles
through its width. [8]

Figure 2.4: The Vaseplot encodes the
density of the underlying distribution
at multiple points between both quar-
tiles. [8]

Furthermore, Benjamini proposed another variation, called the Vaseplot. It is constructed in
the same way, but the density is estimated at various points within the quartiles. The result of
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this is shown in Figure 2.4. The final appearance of this plot is highly dependent on the amount
of density estimates used to draw the plot, which is illustrated in Figure 2.5.

Figure 2.5: The five presented Vaseplots represent the same underlying distribution, but with a
different amount of density estimates between the quartiles, which strongly changes the appear-
ance of the plot. [8]

Figure 2.6: The same three distributions (bimodal, uniform and normal) are represented by
conventional box plots (top) and violin plots (bottom). The violin plot does a better job in
conveying information about the underlying distribution. [26]

Another extension to the traditional box plot, called violin plot, was proposed by Hintze
and Nelson [26]. In its core it features just a visual modification of a box plot. The box is
drawn in solid black, while the median is represented by a white dot within the box. This is
supposed to support a quick comparison of medians of multiple juxtaposed plots. Around this
core, a density plot is drawn symmetrically to the center axis to convey information about the
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underlying distribution. Figure 2.6 shows a comparison of violin plots and box plots representing
the same data.

A similar visualization, which yet conveys even more information about a distribution, was
proposed by Potter et al. [48]. The so-called summary plot visualizes the mean, kurtosis, first and
second standard deviation, skew and tailing, as well as the density in addition to the information
a traditional box plot presents. All these data elements are represented by icons placed along the
center axis. The distribution density is visualized similarly as in the violin plot, but also adds
a redundant color coding on top of the histogram. On top of the described visualization, which
can be seen in Figure 2.7, the density of a well-known distribution is plotted in dotted lines. This
is supposed to further help the user understand the underlying distribution, by comparing it to a
well-known one. This reference distribution is either the automatically chosen, best fitting curve
or a curve manually chosen by the user.

Figure 2.7: A summary plot consists of an abbreviated box plot, various icons representing
important moments, a histogram and a reference distribution. These elements are visualized
over each other, which leads to a lot of information packed into relatively little screen space.
[48]

As can be seen in Figure 2.6, a major shortcoming of the traditional box plot is that funda-
mentally different distributions may lead to the same five summary values, which subsequently
also lead to the same representation. This fact is further highlighted in Figure 2.8. Choonpradub
and McNeil [12] proposed an adaption of the box plot that should solve this problem. In contrast
to the methods presented previously, their goal was to not change or replace too much from the
original representation. One reason for this is that these changes often introduce new problems,
like the choice of the extent of smoothing. In their version of the box plot, which is shown in 2.9,
the line thickness of the median, upper and lower quartiles are modified to indicate the distribu-
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tion’s skew. If the distribution is skewed toward lower values for instance, the lower quartile is
emphasized. If the underlying distribution is bimodal, both quartiles are drawn thicker.

Figure 2.8: The four presented distributions lead to the same values of median, lower and upper
quartiles, minimum and maximum and therefore their box plot representation looks exactly the
same. [12]

Figure 2.9: The box plots by Choonpradub and McNeil [12] modify the thickness of the median,
upper and lower quartile markers based on the underlying distribution. Distribution shown from
top to bottom: normal, right-skewed, left skewed, bimodal, and centrally peaked. [12]
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There are many ways to visualize a distribution which can be used to represent the temporal
uncertainty of events [58, 8, 26, 48, 12]. All of them rely on experience with statistical models of
the user, to be used effectively [13]. This dependency of prior knowledge can be circumvented,
if the presented information is framed in terms of discrete events and outcomes [25]. I.e. people
can estimate probabilities more accurately, if the information is presented in countable outcomes,
instead of a graph for instance. Based on this finding Kay et al. [31] developed the quantile dot
plot. Instead of visualizing the density of a distribution in the traditional way, it is discretized
into a fixed amount of dots. To determine the amount of dots at a certain value, the density
function is evenly sampled. The sampling of a density function is illustrated in Figure 2.10 and
Figure 2.11 shows some example dot plots.

Figure 2.10: The density function is
uniformly sampled along the vertical
axis. The samples are places within
the interval [0,1] and their predefined
number defines how many dots are
used for the dot plot. The samples are
gathered in bins along the horizontal
axis. [31]

Figure 2.11: These are example quan-
tile dot plots with 20 or 100 samples
respectively. [31]

In some cases the exact distribution of temporal uncertainty is either not relevant or sim-
ply unknown. If the outer bounds of the uncertainty are known, we can speak of bounded
uncertainty, in contrast to statistical uncertainty, which entails knowledge of the underlying
distribution. Olston and Mackinlay [45] propose that these two kinds of uncertainty should be
visualized differently, because of their fundamentally different properties. They argue that error
bars are a good technique to convey statistical uncertainty, but should not be used for the first
type. For the representation of bounded uncertainty, they propose a technique called ambigua-
tion. It can be used to adapt traditional visualizations without uncertainty. To implement it the
hard points, lines or surfaces that represent values, are drawn in a lighter color at places where
they are uncertain. The uncertainty is bounded by the extent of the light color, while the default
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color of the graphic represents certain values. Figure 2.12 illustrates this principle for traditional
bar charts, scatterplots, line charts, stacked bar charts and pie charts. Because of the adaptability
of this technique, it can easily be used to modify a traditional visualization of temporal data to
also incorporate uncertainty.

Figure 2.12: The ambiguation technique shows the uncertain intervals of values in a lighter
color. bar charts: The lower bound of every bar is represented by a traditional bar. On top of
it is the uncertainty interval in lighter color. line charts: Instead of one solid line a surface is
drawn in a lighter color, which encompasses every possible line. scatterplots: Instead of solid
points there is a surface, in which a point may lie. pie charts: The lighter areas show where
a borderline between two wedged may be. stacked bar charts: Just like with pie charts, the
possible locations of borderlines are represented in a lighter color surface. [45]

Figure 2.13: The elastic band visualization suggests that the spring can pull and bend the elastic
bands to an uncertain distance. This distance is bounded by walls. In the spring visualization
the springs are bent by weights. Paint strips are also extended to an uncertain amount, because
weights pull on their paint rollers. [11]

Chittaro and Combi [11] propose three techniques that are similar to ambiguation and are
also fit to visualize bounded uncertainty. The biggest difference is that these approaches are
heavily focused on metaphors to promote intuitiveness. The three visualizations are called elas-
tic bands, springs and paint strips and work in a very similar fashion. The only difference is
their respective metaphor. They are all composed of a solid colored bar that represents the cer-
tain part of an interval. In the case of elastic bands and springs, certain boundaries are marked by
a screw icon to symbolize that they are fixed at this point and cannot be moved. Bars in the paint
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strips visualization are not ’screwed on’ because they represent paint on a wall, which cannot be
moved anyway. In all three approaches uncertainty is expressed through a moving mass system,
which can physically bend the elastic bands or springs or move paint rollers to extend the length
of the bar. The uncertainty is always bounded by some obstacle metaphor, which prevents the
springs and bands to extend farther and stops the paint rollers from moving beyond those bounds.
Examples of all three visualizations can be seen in Figure 2.13. Multiple dependent uncertainty
intervals can be linked by a solid connection to represent a fixed relationship of them.

The visualization of temporal uncertainty can often be important for the planning and man-
agement of complex projects. Such projects are often split into smaller tasks. The time it takes
to fulfill these tasks can often be only roughly estimated. Furthermore, these tasks can be closely
dependent on each other, which means that a delay of one of them leads to a delay of the whole
project. To visualize these dependencies the US Navy developed the Program Evolution and
Review Technique (PERT) charts. These charts depict every task as boxes which are connected
by arrows to symbolize inter-task dependencies. The time it takes to fulfill a task, as well as the
corresponding uncertainty is only given in numerical values and not visualized explicitly.

Figure 2.14: The horizontal axis is
used for possible starting times, while
the vertical axis represents possible
finish times. The earliest starting time
and finishing time, as well as the lat-
est starting and finishing time respec-
tively, form opposing corners of a rect-
angle. This rectangle is further con-
strained by cuts parallel to the 1st me-
dian line, which represent the maximal
and minimal durations. [49]

Figure 2.15: Two SOPOs are com-
pared by propagating their constraints
onto one another. In this example the
earliest and latest finish times of o1
are propagated to o2, to find out in
which cases o2 will take place before
o1 has finished. [49]

In 1896 Rit [49] proposed a technique that visualizes the temporal bounds and all possible
intervals of an event with uncertain start and end times. The technique, called sets of possible
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occurrences (SOPOs), was utilized in a system for medical planning [41]. In this approach the
time domain is split up into two axes. The horizontal axis depicts the interval of possible start
times, while the vertical axis encodes all possible end times. A resulting SOPO, defined by a
starting interval, an end interval and its maximum and minimum duration, can be seen in Figure
2.14. It is a surface which encompasses all possible time intervals in which the event can take
place. These intervals are represented by points within the diagram. Multiple SOPOs in the same
view can also be compared, by propagating their associated constraints onto one another, which
is demonstrated in Figure 2.15. As already mentioned before, SOPOs were integrated into a
medical planning system, called SOPOView [41] and evaluated in practice. The field experiment
showed that most physicians who worked with the system, found the visualization too complex
and confusing. It took them too long to familiarize themselves with the representation to be able
to use it effectively.

Figure 2.16: The two inner cylinders encode the minimum and maximum duration respectively,
while their possible extent is conveyed through two bounding caps. [4]

Figure 2.17: The 2D version of the visualization works analogous to the 3D glyph. The inner
bars encode the minimum and maximum duration, while the two caps represent the event’s
bounds. [4]
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There are further approaches that try to incorporate temporal uncertainty into planning sys-
tems. One technique was proposed by Aigner et al. [4] and is called PlanningLines. Their
visualization consists of two black boundaries that represent the earliest and latest start and fin-
ish times. Furthermore, there is a centered bar, which represents the minimum duration of the
event, while a the maximum duration is marked by a lighter color extending the first bar. These
bars can metaphorically be moved within their bounds to make up all possible event occurrences.
Figure 2.16 shows a 3D glyph version of the PlanningLines visualization and Figure 2.17 shows
a 2D version. Figure 2.18 shows how the approach is incorporated into a simple project plan.

Figure 2.18: This project plan utilizes Aigner et al. [4]’s visualization to show temporally un-
certain events and their dependencies. Dependent events are connected through arrows. The
possible extent of the whole project is visualized through two additional black bars. [4]

Figure 2.19: The main interface of AsbruView shows a topological view at the top and a temporal
view in the bottom. The temporal view utilizes Time Annotation Glyphs to represent events. [34]
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Another planning system, called AsbruView, was developed by Kosara and Miksch [34].
The main interface of AsbruView is shown in Figure 2.19. Its purpose is to help physicians in
planning therapy procedures for their patients. Traditionally, clinical protocols and guidelines
are represented using flow-charts, decision tables or plain text documents, which are not well
suited to display complex medical procedures. A far better suited alternative would be the use
of Asbru, which is a plan representation language. The problem is that Asbru requires expert
knowledge to be used and is therefore not suitable for physicians. AsbruView aims to close this
gap between applicability and usability, by providing an intuitive user interface to the underlying
planning language. To represent the plans, a visualization called Time Annotation Glyph was
developed which can also incorporate the temporal uncertainty of the bounds of events. An event
with uncertain start and finish times is defined by six values: the earliest and latest starting shift
(ESS/LSS), the earliest and latest finishing shift (AFS/LFS) and the maximum and minimum
duration (MaxDu/MinDu). Some of these values may also be undefined or uncertain. The
resulting glyph can be seen in Figure 2.20. The length of the two bars encode the MinDu and
MaxDu respectively, while the other temporal marks are represented by vertical lines and labels
along the time axis.

Figure 2.20: Upper left: Shows a fully defined event visualized through a Time Annotation
Glyph. Lower left: Shows an event with an undefined EFS and MaxDu. Upper right: Shows that
temporal marks can change their appearance to white circles if the definition granularity of the
marks is higher than the temporal granularity of the plan. Lower right: Shows that uncertainty
of temporal marks is represented by zig-zag patterns. [34]

All the approaches presented in this section so far are concerned with the temporal uncer-
tainty of an arbitrary event that does not necessarily have to be defined in any other way (0D
case). It would also be possible to show a temporal uncertainty along a linear path of some
kind. An example would be the arrival time of a bus along its route. This would mean that the
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uncertainty does not only have to be visualized at one point but along an axis (1D case). This
dimensionality can obviously be increased indefinitely, but especially the next logical step (the
2D case) is of great importance to many researchers. Being able to visualize Probability Density
Functions (PDFs) over a 2D field (e.g. a map) is of great interest to Global Information System
(GIS) specialists.

There have been many approaches to solve this problem, especially from the GIS commu-
nity [47, 29, 17, 39, 53, 46]. An interesting example is the system of Potter et al. [47], which
compares the PDFs defined over a 2D field with a reference distribution and visualizes the re-
sulting difference metric via a color code over the field. An overview of this system can be
seen in Figure 2.21. Another approach that aims to visualize uncertainty in spatio-temporal data
was proposed by Shrestha et al. [53]. The so-called Storygraph consists of two vertical axes to
encode two spatial dimensions. A spatial position is given by a line between those two axes.
The time is encoded as a horizontal axis in between. An event is therefore represented by a
point along a line. This principle is illustrated in Figure 2.22. To also incorporate spatial and
temporal uncertainty, instead of fixed points and lines, uncertainty intervals are used. This ex-
tension is very similar to the ambiguation approach proposed by Olston and Mackinlay [45].
Two examples for the visualization of uncertain data with this technique are presented in Figure
2.23.

Figure 2.21: In the center of the interface the 2D field is presented. It is color coded based on
the difference metric of the respective PDF at every point compared to the reference distribution.
These distributions are also respectively visualized in the bottom left and right corners. In the
top right corner the legend of the color code is given. [47]
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Figure 2.22: The Storygraph on the left visualizes the same events that are listed on the conven-
tional map on the right. By depicting a linear time axis, temporal relationships between multiple
events are easy to detect. [53]

The visualization of temporal uncertainty embedded into a spacial domain is certainly very
interesting and important in fields like GIS science, but it is not the main focus of this work. The
presented overview and few examples given should provide the interested reader with a starting
point for further investigation. The rest of this thesis is focused solely on the 0D case of temporal
uncertainty. This means that the depicted events are not mandatorily spatially bound, or rather
their spatial occurrence is not explicitly depicted in the utilized visualization approaches.

Figure 2.23: The Storygraph on the left shows an event with spatial uncertainty. Instead of two
certain points along the spatial axis, there are two intervals. Therefore, the point that usually
represents an event becomes a vertical line. The same applies to the right story graph, which
also features temporal uncertainty. The result is a surface instead of a point representation of
the event. [53]

One way of looking at the state-of-the-art of temporal uncertainty visualization is to find
out which possible tasks there are existing methods for and which still lack a fitting solution.
To categorize all the different scenarios for temporal visualizations a taxonomy is needed. A
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suitable taxonomy for the given topic is given by Aigner et al. [3], who propose a systematic
view on the visualization of time-oriented data. Their approach to categorizing techniques is
based on three practical questions:

1. What are the characteristics of the time?

2. What is analyzed?

3. How is it represented?

The first question further splits up into sub-questions. The first determines if there are time
points to be visualized or time intervals. The second one regards the structure of time, which
can be linear, cyclic or branching.

The second question splits up into three sub-question, which further leads to two categories
each. The first one asks about the frame of reference, which can either be abstract or spatial.
The second one determines if the number of variables is either univariate or multivariate. The
third distinction regards the level of abstraction of the visualized data, which can be either raw
data or a data abstraction.

The last question splits into two sub-questions, which form two distinctions each. The time
dependency can either be static or dynamic and the dimensionality of the visualization can either
be 2D or 3D.

Figure 2.24: This illustration shows how the initial three questions on the left are further split
up into sub-questions, which each split up all techniques into two or three categories each. [3]

All these questions lead to the categorization illustrated in Figure 2.24. If a visualization is
categorized, every question has to be answered, which leads to a specific category. This means
that a specific category is defined by the combination of answers to each question. Hence, the
taxonomy leads to a number of 192 distinct categories.
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Originally this taxonomy is meant to categorize visualization techniques for time-oriented
data, which do not necessarily incorporate uncertainty. But since temporal uncertainty only
means an additional type of data added to the time-oriented data, the same taxonomy can be
used to categorize techniques for the visualization of temporal uncertainty. The challenge is that
192 categories are a vast number to find approaches dedicated to temporal uncertainty for. It is
also apparent that there are sub-categories which hold hardly any such approaches. For instance,
there are hardly any approaches that deal with branching time and temporal uncertainty at the
same time.

The gist of this is that given a specific scenario, by answering all questions of the categoriza-
tion, it is probable that there is no existing technique for this category, which also incorporates
temporal uncertainty. Obviously this does not mean, though, that the given data can not be vi-
sualized effectively. To tackle this problem Brodlie et al. [9] compiled a catalog of visualization
techniques, which allow traditional techniques to be extended to also encompass temporal un-
certainty. This way visualization designers can pick the right approach from all visualizations fit
to represent time-oriented data and extend them to also encode uncertainty.

2.3 User study design theory

To improve the design of the practical studies of this thesis, literature about the theory of study
design was reviewed. Especially works which feature common pitfalls and valuable advice are
most important to us. In this section all the relevant literature that has been found is presented.

Kosara et al. [33] states that visualization is mostly practiced as a craft and that techniques
might sometimes be well motivated by theory, but still do not work well in practice. Therefore,
it is not enough to justify a technique by theory, but its performance must also be measured.
A good way to gauge this performance is through user studies. The issue is that user studies
have to be well designed to yield valuable results. Furthermore, a user study needs to be the
right approach for a given problem or to answer a given question in the first place. Kosara puts
great emphasis on this initial decision, whether a user study is the right choice or an alternative
method should be used. To design, implement, run, and analyze a user study properly is very
time consuming, which makes this decision a very important one. Generally, this effort is worth
it if the goal is to answer a relatively small question, like whether one technique outperforms
another one in solving a certain task. To answer bigger questions this way, some amount of
generalizations are needed, which can be tough to get right and valid. Kosara also elaborates
on different kinds of failed studies. Study results might be null results, inconclusive or not
compelling. These three cases need to be handled differently and do not automatically mean
that the study was worthless nor that the results should be discarded.

Tory and Möller [56] also feature a section about the methodology of user studies. Just like
Kosara et al. [33], they state that user studies are generally expensive and time consuming. This
is especially the case if the study is aimed at evaluating a whole visualization system, since this
makes the design of the study very complex and the needed extent of it, to cover the whole
system, also grows quickly. For this reason it is usually better to focus on smaller questions and
only evaluate single tasks or visualization techniques through user studies at a time.
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The work of Hullman [27] is especially interesting in regard to this thesis, since it is focused
on evaluating visualizations concerned with uncertainty. Furthermore, this work does not only
fit thematically very well, it also gives clear guidelines for the design of user studies. These
guidelines are split up into three categories, concerned with different issues. The first category
of suggestions tackles the problem that the subjective view and understanding of uncertainty of
a study participant might influence the results. The understanding, for instance, can be checked
throughout an experiment, by checking if the given answers of a participant are logically sound
(e.g. estimated probability might need to add up to 1 at some point). The second category
of guidelines is concerned how answers are elicited from participants, without impacting the
results with the elicitation itself. The best way to ask a certain question can, for instance, be
tested in a pilot test. The last category sheds light onto the problem of heuristics used by the
participants. These heuristics are shortcuts how one can arrive at a certain answer to a posed
question. Through such a heuristic a participant might not even need to pay attention to a given
graphic, which should be the focus of a study. For this reason it is important to think about
possible heuristics during the design of a user study and also to look for signs of heuristics in
responses when evaluating the results of a study.

In Kinkeldey et al. [32]’s work they take a closer look at the correct way of assessing visual
representations of uncertainty. Because their main focus lies on geospatial data, they systemati-
cally review user studies in this domain. While the specific domain of this work does not match
the one of this thesis, we still believe that the presented findings are also of value in the context
of temporal uncertainty and its evaluation. One of their main contributions is the identification
of five main goals of user studies and their corresponding measures. First and foremost there are
experiments that measure user performance [22, 51, 14, 40]. This is usually done by analyzing
the accuracy of given answers and the speed at which those answers are given. The second type
of study tries to measure the acceptance of a new visualization. In the context of uncertainty
visualization this could be experiments that try to find out if users prefer to have uncertainty ex-
plicitly visualized, or rather not be presented with this additional information. Existing studies
in this direction yielded varied results. While some endeavors concluded that the additional in-
formation tends to clutter the view and had negative effects [52, 54, 30], other findings indicated
uncertainty information can clarify the view [1, 5, 15, 35, 37, 59]. The conclusion Kinkeldey
et al. [32] draw from this is that appropriate solutions need to be found to visualize uncertainty
in a way that is helpful and acceptable to the user. Another measure that can be taken into ac-
count is the user confidence while giving answers during a study. This measure is often used
additionally to performance evaluations. While this information can be valuable to find lucky
hits within the collected answers (i.e. a user could not determine the right answer, but still gave
it by guessing correctly), the further value of it seems questionable, since it usually correlates
strongly with the user’s performance. A similar measure is the user preference, which asks study
participants for their personal opinion. Interestingly, this measure does not necessarily correlate
directly with the performance measure. This means that it may be important to additionally ask
for user preference if the evaluated visualization should be deployed in a real scenario. The
fifth measure that is identified is the intuitiveness of a representation, which most user studies
do not concern themselves with. We believe this measure to be very important, especially if
the evaluated visualization is not only supposed to be used by experts, but also by non-expert
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users. Regarding the general approach of user studies Kinkeldey et al. [32] state that there is
no methodology commonly agreed upon. This is not only true for the domain of geospatial vi-
sualization or uncertainty visualization, but reaches much farther. This is also a reason why it
is important to review existing approaches and learn from them, until a systematized approach
for empirical studies is proposed and widely adopted in the InfoVis domain. In regard to the
evaluation of user studies, two main goals are identified. The first goal is the improvement of a
visualization by comparing multiple alternatives and see which one performs ’better’ (in regard
to the measures explained beforehand). The second goal is to gain deeper insights into cogni-
tive processes of the study participants and understand why one representation works better than
another.

Lam et al. [36] did an extensive literature review of about 850 publications with the goal
of giving a novel approach to determining the most effective evaluation of a given visualiza-
tion. Their approach works through defining seven scenarios with their respective goals/outputs,
typical evaluation questions and fitting methods and stands in contrast to existing approaches,
which are usually based on listing existing methods. Since there is a many-to-many mapping
between scenarios and methods, this new approach is supposed to limit the development of new
methods less than conventional approaches. The following scenarios are defined: 1. understand-
ing environments and work practices (UWP), 2. evaluating visual data analysis and reasoning
(VDAR), 3. evaluating communication through visualization (CTV), 4. evaluating collaborative
data analysis (CDA), 5. evaluating user performance (UP), 6. evaluating user experience (UE)
and 7. evaluating visualization algorithms (VA). These scenarios can be categorized into two
main groups. The ones that evaluate an underlying process and the role of a visualization (UWP,
VDAR, CTV and CDA) and those that focus the evaluation on the visualization itself (UP, UE
and VA). The literature review shows that a vast majority of 85 per cent of the evaluation done
falls into the second category, with two thirds being evenly split up between evaluation of user
performance (UP) and experience (UE). Since the study presented in this thesis also falls into the
UE scenario, we take a closer look at it. While performance evaluation is focused on providing
reproducible results, UE is about collecting subjective user reactions to inform the design of vi-
sualizations. In terms of observing users and collecting subjective information it can be similar
to UWP, but its main focus is on the visualization and not the context it is situated in. Typical
questions in UE are ’What features are seen as useful?’ or ’Is the tool understandable and can it
be learned?’, which are of similar nature to our own research questions. There are three typical
methods listed for UE. First, there is the informal evaluation, in which domain experts test a
given system informally and give their feedback. The second listed method is the usability test,
in which the participants are observed during the solution of predefined tasks. Lastly, there is
the laboratory questionnaire, which comes closest to describing the approach of this thesis. It
is often done additionally to an UP, by asking for subjective information, for instance through
Likert Scales.
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2.4 User studies in InfoVis

To optimize the design of a user study it is helpful to not only look at the theory behind it, but also
survey existing studies that have been put into practice before. By reviewing these experiments
we learn more about the state-of-the-art of study design and evaluation. In this section a selection
of user studies similar to the practical part of this work are presented and reviewed.

The user study that guides this thesis the most is the one by Gschwandtner et al. [22], as this
work builds up on theirs. This study compares six different techniques for the visualization of
uncertainty in the temporal domain. To determine which technique works best for certain tasks,
five different types of tasks were designed. The first type is about finding out how users interpret
the different visualization techniques. In the second type of tasks the users are asked to read the
boundaries of uncertainty intervals from the visualization. The third type is about determining
the extent of an uncertainty interval. In the fourth type of tasks, the users have to gauge certain
probabilities using the visualization and the last type of tasks asks the users for their opinion
about the visualization.

Figure 2.25: A gradient plot shows the certain parts of an interval as a solid color, while the
uncertain parts are represented by a color gradient. [22]

Figure 2.26: This technique, called ambiguation, shows the uncertain areas of an interval in a
lighter color than its certain part. [22]

The actual study was conducted with 73 participants who were all bachelor students in com-
puter science. The students were recruited from a course in information design and visualization,
which implies a certain knowledge about this topic. To automatically track relevant data, such as
completion time and accuracy during the study sessions, the EvalBench software library [2] was
utilized. This library was designed especially for the evaluation of visualization. To analyze the
results Gschwandtner et al. ran an ANalysis Of VAriance (ANOVA) for each task and subtask
and backed up their results with a non-parametric Kruskal-Wallis test. Their analysis showed
that the technique ambiguation, which can be seen in Figure 2.26 and is also reviewed in Sec-
tion 2.2, works best for tasks in which the user has to judge the exact duration and bounds of
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an uncertainty interval. If the user has to determine certain probabilities within the uncertainty
interval, gradient plots (see Figure 2.25) work best.

Kay et al. [31] based their work on an existing smartphone application, called OneBusAway
[16]. In an initial study they asked users about their opinion regarding the most important re-
quirements of a public transit application. To elicit those answers, every participant was provided
with suggested questions, which they had to rate based on how often they try to answer those
questions using OneBusAway. Furthermore, the participants were questioned about additional
information which the application does not provide and its potential helpfulness. Through this
survey the most important design requirements and a detailed description of user needs could be
identified.

Based on these results Kay et al. designed a visualization for bus arrival time predictions
aimed to be displayed on small screens. In their final design, which was developed in an iter-
ative process, they introduce quantile dotplots, which are modified dotplots that are a discrete
analogue to common probability density plots. An example plot can be seen in Figure 2.10. To
evaluate their novel design, a large user study was conducted. In total, 441 participants were pre-
sented with different visualizations, which can be seen in Figure 2.27, and asked to solve tasks
in which they had to estimate different probabilities. When evaluating the results Kay et al. [31]
were more interested in the answers’ variance than in the answers’ overall accuracy. The reason
for this is that very consistent but skewed estimates can easily be compensated by experience if
the user utilizes an application over a longer period of time, while inconsistent estimates can-
not be dealt with that easily and therefore indicate bad visualization design. The results of the
study show that the novel quantile dotplots perform better than common density plots in terms
of variance, while they are not as visually pleasing.

Figure 2.27: Shows the four different visualizations the participants of Kay et
al.’s study were presented with: a common density plot, a coarse and a finer
dot plot and a stripe plot (top to bottom). [31]

The main goal of this thesis is to find out more about the intuitiveness of representations of
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temporal uncertainty. These insights are valuable for the design of new visualizations, especially
those aimed at non-expert users. MacEachren et al. [40] also tried to find out more about the
intuitive design of visualizations through user studies. To do this they conducted two separate
user studies, of which the first one shares a similar goal to the work of this thesis. Their first
study compares many different sets of symbols for the visualization of uncertainty, to find out
which are most intuitive to people. Every set consists of three symbols, which encode high,
medium and low uncertainty of 3 different kinds (accuracy, precision and trustworthiness), for 3
data domains (spatial, temporal and attribute). Some example sets can be seen in Figure 2.28. In
total 102 symbol sets were rated by 31 undergraduate students for their intuitiveness on a scale
from 1 to 7. After this first series of tests, the most unintuitive symbol sets were filtered out,
which left 76 sets. Those were again rated by 72 participants with a background in GIScience.

Figure 2.28: Every column shows a set of three icons which represent high, medium or low
uncertainty respectively. [40]

After this first study about intuitiveness, the 20 highest rated symbols for every combination
of uncertainty type and data domain were compared in a second experiment. The goal of this
subsequent study is to compare the selected visualizations’ performance, so the combined results
of both studies yield the best visualizations for a given task, which is intuitive and efficient at the
same time. To compare the chosen symbols, two quadratic matrices with 9 symbols each were
visualized side by side. The participants were asked to answer the question which of the two
matrices featured a lower overall certainty, based on the presented symbols.

Walny et al. [60] conducted a study with the goal of providing deeper insights into the way
people think about and use visualizations to communicate their ideas. A total number of 69
researchers were observed using whiteboards during brainstorming, thinking, communication
and similar actions. Whiteboards were chosen as a visualization medium, because they support a
variety of thinking tasks, like personal and collaborative cognition, group meetings and planning.
The results of the study feature interesting insights, such as different uses of emphasis techniques
and the usage of ellipses as a focus and context technique. The pre-study presented in this thesis
aims to provide similar insights through a similar approach, by also observing users in their
creation of visualizations and reviewing those drawings.

In another study of greater exploratory nature, Walny et al. [61] asked 22 participants (mostly
computer science students) to sketch visualizations of a given dataset. The data was provided in
a table format and was about appropriateness ratings of certain behavior in given situations. The
students’ task was to create visualizations to find interesting patterns in the data and articulate
them in a post-sketching questionnaire. The results were analyzed through multiple coding
passes, which showed that, even though 9 out of 22 participants claimed to have no experience
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in visualization, most of the sketched representations could be classified as known types. As
already stated, the study is of exploratory nature and therefore it does not answer many questions,
but rather raises interesting questions and gives direction to future research.

Figure 2.29: On the left an example question from the first part of the first study by Chittaro and
Combi [11] is shown. The user’s task is to mark all the elements which seem to be movable in
the given visualization. On the right an example question from the second part is shown. Here
the user is asked to determine the bounds of the depicted uncertainty intervals. [11]

In Section 2.2 of this chapter three techniques proposed by Chittaro and Combi [11] are
presented. The same researchers evaluated their designs in two comparative user studies. The
first study is further split into two main parts and aims to find out which of the proposed tech-
niques is the most correctly understood. The first part consists of a single exercise, in which the
participant is asked to identify the movable objects of the given visualization. This question is
asked once for each of the three proposals in a randomized order. An example of this exercise
can be seen on the left side of Figure 2.29. The second part consists of three exercises, in which
the user is asked to determine the temporal bounds of uncertainty of a given visualization. An
example of such an exercise can be seen on the right side of Figure 2.29. These three exercises
are repeated once for each technique, with a randomized order of techniques. In this first study
30 participants (13 female, 17 male) took part, with ages ranging from 24 to 37 years. The
results, which are presented in Figure 2.30, show that elastic springs and paint strips are signif-
icantly easy to be understood correctly. For this reason these two techniques were chosen to be
compared in the second study.

Figure 2.30: The three charts show the number of correctly answered questions from the first
study of Chittaro and Combi [11]. Since elastic bands performed significantly worse than the
other two techniques, it was omitted from the following study. [11]

26



The second study is split into two parts. In the first part the participants are asked to inter-
pret given visualizations. This is done by presenting a visualization and offering three possible
interpretations to choose from, of which one is correct. The second part of the study is about
the generation of visualizations. The participants are provided with a tool that allows them to
create elastic spring and paint strip visualizations themselves. After a training phase in which
the participants have time to get familiar with the provided interface, they are asked to create
visualizations satisfying given textual specifications. Since one study session consisting of all
exercises concerned with one of the two proposed techniques took around 50 minutes, the two
sessions were split up into two separate days, to prevent fatigue from affecting the results. The
study was conducted with 31 participants (16 female, 15 male) with a medical background, be-
tween the ages of 23 to 44. To analyze the results the number of correct answers from the first
part of the study and the number of completely correctly generated visualizations from the sec-
ond part were counted. These sums were statistically evaluated with a Wilcoxon test for two
related samples. Paint strips scored better than elastic springs on almost all accounts, but only
by small margins and without statistical significants.

2.5 Discussion

In the preceding sections of this chapter a multitude of works of three main categories are pre-
sented. All these works are related to the practical part of this thesis and form the theoretical
basis for the study design of this work. The most important points (i.e. the ones that guide
our design the most) are compiled into a list and discussed. Every one of those points is again
addressed in the following section to explain how the insights gained are incorporated into the
resulting study design.

• D1: MacEachren et al. [40] try to find out which symbols of their test set are most intuitive
for the visualization of certain types of uncertainty. To find the most intuitive ones, they
directly let the study participants rate every symbol set’s intuitiveness. This direct method
stands in contrast to other methods which try to gauge intuitiveness by measures like
completion time and/or correctness of task solutions. Both approaches have their merits,
since the opinion of study participants is not necessarily reliant information. On the other
hand, judging intuitiveness in an indirect way means to generalize study results, which
may be tough to get right.

• D2: Since MacEachren et al. [40] work with a high number of symbol sets which are rated
for intuitiveness, they utilize a pre-study to filter out the most unintuitive sets and conduct
their main study with only the reduced set. This way it is possible to consider more
possibilities of different visualizations and still gather enough data of the most interesting
ones to draw statistical conclusions.

• D3: In the study of Walny et al. [60] visualizations drawn on whiteboards are analyzed.
Walny et al. give several reasons why they believe that whiteboards are a good medium
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for spontaneous visualizations. They state four main characteristics which make white-
boards particularly suitable in this context. These characteristics are listed as immediacy,
messiness, sketchiness and forgiveness. We believe that their choice of medium is well
justified by their reasoning.

• D4: After Walny et al. [60] analyzed visualizations for their study, they conducted follow-
up interviews with some of the participants. Through those interviews they managed to
find out more about the reason why the visualizations looked the way they did and what
they were supposed to convey. We believe that interviews like this could be very important
for some types of studies to get deeper insights into the way study participants think about
visualizations in a user study.

• D5: In both projects by Walny et al. [60, 61] which are presented in an earlier section, an
open coding approach is used to categorize all the different hand-drawn visualizations they
observed. This approach allows to find similarities between multiple drawings, without
knowing what to look out for exactly beforehand. This way new and unexpected findings
can be made. Open coding also is a way of handling the complexity that arises when a
collection of hand-drawn visualizations needs to be analyzed.

• D6: In their exploratory study Walny et al. [61] do not only analyze visualizations based
on their technique, but also take a look at how the drawings are bound to the provided
data. Every visualization is assessed whether its nature is more ’numerical’, which means
that the provided data is directly represented, or if it is more ’abstract’, which means that
the data is manipulated and/or filtered before it is visualized. This additional categoriza-
tion of sketches adds another dimension to the study results, which can be examined for
interesting correlations to other result dimensions. The assessment of how ’numerical’ or
’abstract’ a visualization is, leads to a continuum into which every data representation can
be put. Figure 2.31 shows what this continuum looks like.

Figure 2.31: The continuum of Walny et al. reaches from numeric to abstract and represents
how much the underlying data was manipulated to reach its visual representation. A countable
display, for instance, is directly bound to the underlying data, while a pictorial representation
only visualizes some kind of abstract conclusion drawn from the data. [61]

• D7: While the study participants of Walny et al.’s study [61] are kept anonymous, there
is still some information given about them. The authors state how many male and female
participants respectively take part in the study and also how many of them have a finished
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Bachelors’s, Master’s or PhD degree. This information is not apparently used in the anal-
ysis, but we still believe that it is an interesting idea to assess this information and provide
it, since it could be valuable for future follow-up research.

• D8: When it comes to comparative user studies, where multiple visual representations
are tested against each other for different types of tasks, it is necessary to decide how
visualizations and tasks should be distributed among the tested persons. For example,
Robertson et al. [50] used a between-subjects design for their type of task (presentation or
analysis) and a within-subjects design for the different visualizations and data sets.

• D9: Kosara et al. [33] point out that typically a user study is only suitable to answer small
questions, while larger conclusions or generalizations based on the study results might
not be valid. Hence, it needs to be considered whether a user study is sufficient for the
examined research questions.

• D10: Furthermore, Kosara et al. [33] state that “null results“ are a natural outcome of user
studies, as the proposed hypothesis might not be supported by the data or the expected
difference in results might not be significant. However, while results that are inconclu-
sive or not compelling typically cannot be published alone, they still provide important
information and insight for future research, and hence should not be considered a failure.

• D11: As explained by Hullman [27], it is crucial to ask participants in a way that provides
all needed information and elicits an unbiased answer. Hence, questions need to be for-
mulated carefully and in a direct way that allows for the most informative and insightful
answers that can be compared to the ground truth.

• D12: Kinkeldey et al. [32] state that a general objective for every user study should be
to recruit participants that represent the target user group as well as possible. However,
most existing studies neglect this objective and simply recruit students, since they are
easily available in a university context. These students are often chosen as representatives
for the target group of expert users. Often they do have a sufficient level of theoretical
expertise, but usually they lack practical work experience.

• D13: Another point advocated by Kinkeldey et al. [32] is that a training phase is important
for effective empirical analysis. Only through an extensive training phase the scenarios,
the data and the tasks can be sufficiently clarified. Furthermore, participants with different
prior knowledge can be put onto the same level through training.

2.6 Conclusion

The previous section compiled a list of important points for the reviewed literature, which are
relevant for the design of the user studies of this thesis (D1-D13). In this section every point is
addressed again to explain how it is connected to the presented work and how the lessons learned
are implemented into the study design (i.e. C1 addresses D1).
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• C1: The Drawing Study is of exploratory nature. Its goal is to invent theories about the
visualization of uncertainty. To reach this goal the participants of the study are asked to
come up with their own ideas and concepts, so that hypotheses about the intuitiveness of
visualizations can be derived. This means that the goal of our Drawing Study is different
from that of MacEachren et al. [40] and therefore the approach is different too. The main
study presented in this work, on the other hand, has a similar goal. It also compares the
intuitiveness of different visualizations by directly asking the study participants to gauge
the intuitiveness.

• C2: In MacEachren et al. [40]’s case the application of a pre-study makes sense because
it enables a higher number of visualizations to be evaluated than without a preceding
evaluation. In the case of this thesis, this approach is adopted, but the pre-study in form of
our Drawing Study serves a different purpose. Instead of just filtering the visualizations to
be tested, it is used to explore possible research questions to be tested in the User Survey.

• C3: Walny et al. [60] give several reasons why whiteboards are a good choice for the
creation of spontaneous visualizations. Pencil and paper is the medium of choice for the
Drawing Study. The reason for this is that it features all the desired characteristics of
whiteboards described by Walny et al. [60] and in addition is easier to transport.

• C4: In the course of our Drawing Study it is paramount for us to understand in detail
what our participants want to convey with their sketches. Since we are conducting the
study separately with every participant it is not necessary to do follow-up interviews,
as did Walny et al. [60]. The explanation of the drawing can happen during and right
after the creation of the sketch, within each study session. In regard to our User Survey
qualitative feedback is gathered through text fields accompanying each question which
offer the possibility of further explanations.

• C5: The open coding approach of Walny et al. [60, 61] is interesting in regard to the
Drawing Study, since there are also many hand-drawn sketches which need to be analyzed.
This approach seems to be a viable solution to the problem of finding similarities between
a great number of drawings.

• C6: Contrary to Walny et al. [61]’s analysis our Drawing Study is not analyzed in regard
to the connection between the underlying data and the corresponding sketches. There
does not seem to be an apparent benefit from arranging the sketches of this study along a
continuum.

• C7: Walny et al. [61] gather some background information about their participants, which
could be of interest when analyzing the data. In our case all participants of both evalu-
ations are known to us. Therefore, additional information about our user group can be
gathered without great effort. Furthermore, some personal information like the degree of
education and the age of our participants is inquired at the beginning of our User Survey.

• C8: Since all questions asked during the main study concern the intuitiveness of the pre-
sented visualizations and do not pose a task to be fulfilled through its use, we do not
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believe that there are important learning effects to be considered. For this reason a within-
subject design will be adopted. However, to make sure that there are no learning effects or
other effects caused by the sequence of questions, the order of questions will be different
from one user to another.

• C9: Since user studies are only suitable to answer smaller, rather specific questions, our
Drawing Study is conducted to find appropriate hypotheses to be examined. The resulting
research questions are specific enough to be validly answered by the main study of this
work.

• C10: In their work Kosara et al. [33] give suggestions about what is to be done with
inconclusive study results. These suggestions can be valuable for any user study that fails
to yield the expected results.

• C11: Especially our Drawing Study is vulnerable to suggestively asked questions. Special
care needs to be taken to not influence the participants in their answers. Giving them any
hints which visualization techniques might be applicable for the given data could have an
unwanted impact on their sketches and drawings, which would render the study useless.
The main study is more straightforward in this regard, since the posed questions are rather
simple and can easily be asked in a non-suggestive way.

• C12: Since the target user group of this work is the general public, some students can
conveniently be recruited as representative participants. However, there obviously must
not be participants from university only. It is important to recruit people with various
backgrounds and of different ages to declare it a representative sample.

• C13: During our User Survey it is important that every participant has the same under-
standing of the used visualizations and can interpret them correctly. To ensure that the
survey starts with an introduction, which presents every used visualization with examples
and a textual explanation.
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CHAPTER 3
Drawing Study

The following chapter presents the so-called Drawing Study. It is split into three sections. In the
first section, the introduction, the goal and rationale behind doing an exploratory study like this
are presented. Furthermore, the basic approach regarding the study design and the reasons for it
are explained.

The Design Section encompasses a detailed description of the concrete study design. It
covers information about the selected participants, about the tasks and how the evaluation was
conducted in practice.

The last section covers how the collected material of the study is analyzed to form hypotheses
about the visualization of temporal uncertainty. Furthermore, a list of all generated hypotheses
is presented.

3.1 Introduction

The main goal of this work is to generate insights about the intuitive visualization of temporal
uncertainty. To find such insights an experiment in the form of a user study is a viable approach.
However, as already mentioned in the last chapter’s conclusion in C9 and by Kosara et al. [33],
user studies are only suitable to provide answers to smaller, more concrete research questions.
This means that our goal needs to be defined more precisely before an appropriate experiment
can be designed.

Our solution for this, as mentioned in C2, is similar to the approach of MacEachren et al.
[40], who conducted a pre-study to filter out the most interesting visualizations from a prede-
fined collection to test in their main study. Our approach differs from that, because we do not
define possible visualization types in the first place. The reason for this is that we do not want to
restrict the design space of possible visualization approaches, lest we might filter out interesting
solutions. We utilize a pre-study with the goal of generating hypotheses toward the intuitive vi-
sualization of temporal uncertainty. These hypotheses are then formulated into concrete research
questions for our main study.
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Our goal is to gain insights about the intuitiveness of visualizations. We approach this prob-
lem by letting people design their own visualizations. The rationale behind this is that we believe
that people utilize data representations and interactions which are familiar and understandable to
them (i.e. intuitive to them). This means that by analyzing popular ways of visualizing temporal
uncertainty by study participants, we can generate hypotheses about the intuitiveness of these
approaches.

For this approach we want to restrict our participants as little as possible in their freedom
of creating visual representations. This means that we do not want to use a computer supported
tool that might have a learning-curve on its own and hence hinder our less skilled participants.
For this reason, as mentioned in C3, we pick a similar approach as Walny et al. [60]. However,
instead of using whiteboards, we opt to use a simple pen and paper setup. This option offers the
same freedom to our participants to communicate their ideas freely. Furthermore, the conduct of
the Drawing Study is easier, since a whiteboard would take up more space and cannot be used
comfortably in many situations.

To make sure that every participant has the same understanding of temporal uncertainty and
to give them direction in their creation of visualizations, we have to provide them with specific
scenarios to visualize. According to the data-user-task triangle [42] we thereby provide the data
for the visualization to be created. Furthermore, the target user group is provided by asking our
participants to create something that is intuitive to themselves (i.e. each participants constitutes
his/her own target user group). This means that only a specific task is missing to provide the
basis for the creation of a visualization. Hence, every scenario also features a predefined task the
visualization should support. The scenarios and tasks within these scenarios have to be defined
in a way that ensure their generalizability. This way the results can be applied to many real
world scenarios and tasks and are broadly applicable.

After collecting enough visualization designs from our participants the drawings have to be
analyzed. As mentioned in C5, we tackle this analysis similarly to Walny et al. [61] with an open
coding approach. This enables the identification of similarities between a large number of draw-
ings, without advance definition of what to look out for concretely. These similarities can then
be interpreted to form hypotheses about the intuitiveness of temporal uncertainty visualizations,
which fulfills the goal of this preceding exploratory study.

3.2 Design

The Drawing Study is conducted separately with every participant. There is no uniform location
specified for these separate sessions. The only important demand of the location is that it is a
quiet enough place with few distractions to make focused work possible. Concretely we met
with our participants at home (theirs or ours), at university or similar places. To enable our
participants to express their visualization ideas visually and at the same time document their
designs, pencils and sheets of paper were provided.

Every session starts with an oral introduction. At the beginning every participant is informed
about the purpose of the study and its goal. Furthermore, the procedure is explained. The
following points are also highlighted during the introduction:
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• The sketched designs are supposed to be computer supported visualizations. This means
that they may be interactive, may use animation and may have multiple colors. Since only
a single pencil is provided, all these aspects may simply be visually indicated in the sketch
and verbally explained.

• The assignment is to think of visualization designs and draw them as sketches. This does
not mean that the sketching should restrict the visualization design in any way. If an idea
is hard to draw, it should simply be drawn as well as possible and described.

• Since most participants are German native-speakers, we allow them to explain their de-
signs in German. This way we prevent people from rejecting ideas because they are hard
to explain. Only if they intend to use written words in their sketches, we ask them to write
in English, so that the results can be presented more easily.

After all these points are made clear and potential questions have been answered the assign-
ments are submitted to the participants. In total there are four assignments. Each consists of a
scenario and a specific task to be supported by the visualization. According to the data-user-tasks
design triangle proposed by Miksch and Aigner [42] this provided information is sufficient for
the design of a suitable visualization. The target user group is the general public, which is rep-
resented by our participants themselves. The data to be visualized is given through the scenario
and the task is provided explicitly. The same four scenarios are presented to each participant in
the same order. We do not believe that there are any relevant learning effects involved. Further-
more, the third scenario builds up onto the preceding one, which makes their order necessary.
The concrete scenarios are presented in detail in the next subsection.

Each scenario has an exact predefined textual description. This helps to keep the assignment
and provided information uniform between each participant. At the same time it is paramount
that every participant fully understands the described scenario and knows what to do. This
means that we support them and answer potential questions if anything seems to be unclear.
As mentioned in C11 this can be a delicate matter. We have to take special care to provide
enough information and make everything clear, but at the same time we must avoid to suggest
any possible solutions or influence the results in any other way.

The results collected from the Drawing Study consist of the hand-drawn sketches and our
personal notes. The purpose of the notes is to capture the intent of our participants throughout the
design process. This helps us to understand what the drawings are supposed to convey and how
more complex elements such as interaction or animation are incorporated. As already stated
in C4 this makes follow-up interviews obsolete, since we are already capturing all necessary
information during the creation of the sketches.

Scenarios

The following four scenarios are presented to each participant in the same order as they are
presented here. Each of them features a specific task that should be supported by the resulting
visualization. The scenarios are chosen to be representative for specific tasks that might benefit
from the visualization of uncertainties.
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Scenario 1 - Bus Scenario
The first assignment is to create a visualization that supports the user in gauging the probability
that an event will happen before/after a given point in time. The concrete scenario described to
the participants is as follows: ’A bus should arrive at 12:00, but may be running late for up to
10 minutes. How would you visualize this scenario, so that you can estimate the probability of
still catching the bus if you arrive at the bus station at a given point in time?’

Scenario 2 - Project Scenario (1/2)
The second scenario is about the comparison of two events with uncertain end times. The as-
signment is to create a representation that makes it possible to see which of the two events will
end earlier on average. The concrete scenario if formulated like this: ’There are two possible
approaches to a given project. The first approach will take 20 to 28 days, while the second one
will take 23 to 26 days. How would you visualize the scenario, so you can effectively judge
which of the two approaches will on average lead to an earlier completion of the project?’

Scenario 3 - Project Scenario (2/2)
The third assignment works with the same scenario as the second one, but a different user task
should be supported by the visualization. Instead of judging the average completion time, the
user should be able to distinguish which of the two events has a higher probability of having
ended before a given point in time. The concrete scenario is formulated like this: ’Consider
the same two project approaches as before and an additional given point in time. How would
you visualize the scenario, so you can effectively gauge which approach is more likely to have
finished until the given point in time?’ Since this scenario and the previous one are identical
apart from their tasks, they are collectively referred to as the project scenario.

Scenario 4 - Lecture Scenario
The fourth and last scenario is about judging the probability of two events overlapping in time
(i.e. taking place at the same time). The concrete scenario is formulated like this: ’Two lectures
are taking place after each other. the first lecture will end between 11:50 and 12:05, while the
second lecture will start between 12:00 and 12:15. How would you visualize the scenario to
be able to judge the probability of an overlap of the two lectures? Furthermore, it should be
possible to accurately judge the interval in which an overlap can take place.’

Participants

The target user group of this thesis is the general public. Therefore, our study group has to
be a heterogeneous user group consisting of people of different ages, gender and educational
background. As mentioned in C12 part of the selected participants may be students recruited
from university, but it is important to find people with a different background to complement
them.

In total we recruited 32 participants for the Drawing Study. 20 of them are male and 12
of them are female. 24 participants were under the age of 30, while 8 were older. We did not
collect any additional background information from our participants, but as mentioned in C7
every participant is known to us, which makes it easy for us to acquire more information should
it be needed for further analysis.
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3.3 Results and Generated Hypotheses

We collected one sketch for each Scenario (1, 2 and 4) per participant. Exceptions to this are
one participant who could not provide any sketches, as well as two participants who have not
provided sketches for the first and second scenario respectively. Scenario 3 yielded only 2 ad-
ditional sketches, because it only featured a different user task compared to Scenario 2. All
but two participants argued that their sketch for Scenario 2 was also applicable for Scenario 3.
This is the reason why both Scenarios (2 and 3) share a collective name and are also evaluated
together.

In total 93 sketches and corresponding descriptions were collected. To identify popular
approaches we decided to analyze the collected material using an open coding approach. This
means that in the first step appropriate categories need to be defined, by which every sketch
can be classified. In our case these categories were defined by cooperatively going through the
collected material to look for distinctive features. This iterative process of reviewing sketches
and adapting classification criteria led to the following categories:

Figure 3.1: This sketch shows an ex-
ample of an explicit representation of
uncertainty. The height of the graph
directly encoded the probability of an
event to the corresponding time.

Figure 3.2: This is a counterexam-
ple of the category of explicit uncer-
tainty representations. The uncertain
time frame between 12:00 and 12:10
is only marked by its bounds and no
element in the visualization is directly
mapped to the probability.

Figure 3.3: In this sketch smiley faces
are used to intuitively convey the no-
tion of a ’good’ or ’bad’ outcome.

Figure 3.4: This visualization de-
sign incorporates interaction and ei-
ther provides the user with a thumbs-
up or thumbs-down gesture conveying
the probability of catching the bus.
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• Cat. 1 – Explicit. Sketches fall into this category if they feature some kind of explicit
representation of uncertainty. This means that the uncertainty is not only given through the
bounds of an interval, but also somehow directly encoded. Figure 3.1 shows an example
of this category, while Figure 3.2 shows a counterexample. This category is further split
up into four types of explicit uncertainty representations.

– Icons. This category encompasses visualizations that encode uncertainty in some
kind of icon. Examples of this are smiley faces as in Figure 3.3, or thumbs-up/down
icons shown in Figure 3.4.

– Color Value. Sketches that encode uncertainty in the color of an object fall into this
category. Figure 3.5 shows an example.

– Length/Height. If the uncertainty is conveyed through the length or height of an
element, it falls into this category. An example can be seen in Figure 3.1.

– Interaction. Some visualization designs incorporate user interaction to present un-
certainty information for specific points in time more precisely. One of these designs
is shown in Figure 3.4.

• Cat. 2 – Temporal Line Chart. If the visualization sketch features a conventional tem-
poral line chart, it falls into this category. Figure 3.1 shows an example sketch.

• Cat. 3 – Clock. Drawings like the on shown in Figure 3.6 that feature a clock metaphor
to convey the notion of time fall into this category.

• Cat. 4 – Bounded. Contrary to Cat. 1 visualizations of this category convey uncertainty
through the bounds of an interval. Figure 3.2 illustrates this with an example sketch.

• Cat. 5 – Horizontal Time. A sketch falls into this category if it features a horizontal time
axis, as in Figure 3.5.

• Cat. 6 – Vertical Time. If the time is depicted on the vertical axis, the drawing falls into
this category. An example of this can be seen in Figure 3.7.

Figure 3.5: This sketch is very simi-
lar to a Gradient Plot. The color fades
from green to red to encode the proba-
bility of catching the bus.

Figure 3.6: This visualization utilizes
a clock metaphor to convey the notion
of time intuitively.
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Furthermore, the sketches of the project scenario and the lecture scenario are divided into
juxtaposed and superimposed representations. Juxtaposed visualizations show the two events
being compared in a side-by-side view, while superimposed approaches overlap both events in
the same space. All sketches with superimposed views of the lecture scenario are further split
up into a category that uses color to distinguish the two lectures and a category of drawings that
does not.

Figure 3.7: This sketch shows a rare
example of a vertical time axis col-
lected from our Drawing Study.

Figure 3.8: This drawing illustrates
that most categories are not mutually
exclusive. It features a temporal line
chart, as well as a color gradient to
encode the uncertainty.

It is important to note that not all of these categories are mutually exclusive. Therefore,
a single sketch might count for multiple categories at once. Figure 3.8 illustrates this with an
example.

The collected results of each scenario are presented in Figures 3.9, 3.10 and 3.11 respec-
tively. The figures show bar charts with a bar for each category. The subcategories of the Explicit
category and the division of the Superimposed category of the lecture scenario are represented
through corresponding colors and textures.

As mentioned in C6 the collected drawings are not analyzed in regard to the connection
between the visualizations and the underlying data, as in Walny et al.’s [61] work. All further
interpretation of the collected material stems from analyzing frequencies of different categories
in the specific scenarios.
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Results of the bus scenario

Figure 3.9: These are the results of the bus scenario, which yielded 30 sketches in total. The bar
chart shows how many sketches fall into each category. The category of explicit representations
is further split into subcategories, which are distinguished by color. The hatched areas represent
sketches that fall into multiple subcategories.

Results of the project scenario

Figure 3.10: These are the results of the project scenario, which yielded 32 drawings. The
chart features the same categories as in Figure 3.9 and adds two additional ones to distinguish
juxtaposed and superimposed representations.
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Results of the lecture scenario

Figure 3.11: The results of the lecture scenario are presented in the same way as the other
scenarios. Furthermore, the category for superimposed representations is further split into those
that use color to distinguish the visualized lectures and those that do not.

Looking at the overall results it can be seen that uncertainty is most often represented through
length or height. Icon representations, on the other hand, are only used in the bus scenario.
This could be accounted for by it being the only scenario having a ’good’ and a ’bad’ out-
come (catching or missing the bus), which lends itself to a visualization using smiley faces or a
thumbs-up/down representation. Interaction is particularly popular in the project scenario. We
believe that this is due to the comparison needed to solve the posed task. Through interaction
the user can be provided with exact probability values, which can be compared accurately. In
the lecture scenario the share of bounded representations is higher than in the other scenarios.
We believe that this is due to the complexity of the task. It is hard to come up with a good visu-
alization that actually conveys the overlap of two lectures well. This leads many participants to
resort to a simple representation of two overlapping intervals. In the project scenario juxtaposed
representations are more popular than superimposed views, while in the lecture scenario it is
the other way around. A reason for this could be the nature and focus of the respective tasks.
The project scenario focuses on the difference of the two intervals, while the lecture scenario
specifically asks for the overlap of two intervals.

From the collected sketches, observations and category frequencies we derived 12 hypothe-
ses which are presented in the following list:

• DH1 - Temporal line plots are intuitive representations to support the user in judging
a specific probability value of a given point in time.
The results of the bus scenario show that almost two thirds of all drawings feature an
explicit representation of uncertainty of some kind. This makes sense, since the task
description directly asked to support the user in determining the uncertainty at a given
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point in time. In this context, especially temporal line plots, like the one in Figure 3.1, are
common.

• DH2 - Gradient Plots are intuitive representations to support the user in judging a
specific probability value of a given point in time.
Another popular explicit uncertainty representation from our results is the Gradient Plot,
like the one shown in Figure 3.5. This hypothesis is especially interesting in combination
with the results of other studies, which is explained subsequently to this list.

• DH3 - Icon representations, like smiley faces, are a good approach to represent prob-
ability values in a highly intuitive way, as long as these values do not have to be
judged very precisely.
Other explicit representations of uncertainty utilize icons to convey probability values.
An example of this can be seen in Figure 3.3. We believe this approach to be especially
intuitive, but lacking the precision to represent exact values.

• DH4 - Bounded visualizations are intuitive and effective ways to convey durations
and temporal bounds of events with uncertain start and end times to non-expert
users.
Even though most visualizations feature an explicit representation of uncertainty, bounded
representations, like the example shown in Figure 3.2, are also often used. An important
question that is left open by this observation is if bounded approaches were only used due
to a lack of a better solution, or because they are really seen as a good approach. Either
way, this approach seem to be intuitive to most people, even if it is not well suited for the
task at hand. Gschwandtner et al.’s [22] results show that this approach is well suited to
convey durations and temporal bounds to the user, which leads us to this joint hypothesis.

• DH5 - It is more intuitive to a non-expert user group to vertically map time from the
bottom to the top than vice versa.
The assumption that most people would represent time on the horizontal axis from left to
right is supported by our results. From the total amount of 93 sketches we collected and
analyzed, 80% represent time in this way. We also assumed that time would usually be
represented from top to bottom if the time line occupies the vertical axis. This assumption
does not seem to hold, since only two sketches feature time this way. One of them can
be seen in Figure 3.12. The rest of the drawings show time either in a clockwise manner
(clock metaphors) or from bottom to top, as in Figure 3.7. These unexpected findings
could make the verification of this hypothesis interesting.

• DH6 - If two or more events are compared to each other, it is more intuitive to show
them in a juxtaposition than superimposed in the same space.
This hypothesis stems from the fact that there are more than three times as many juxta-
posed approaches(23) than superimposed ones(7) for the project scenario.

• DH7 - Icon representations are not well suited for direct comparison.
The results of the project scenario mostly feature explicit representations of uncertainty.
Furthermore, there are multiple different approaches to convey uncertainty explicitly. Icon
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representations are not used at all, though. We believe that this is due to the comparison
task of this scenario which leads us to this hypothesis.

• DH8 - Most people prefer to have the underlying uncertainty of data presented to
them, even if it is not directly relevant for the task at hand.
The first task of the project scenario only called for a comparison of the mean values of
the two uncertain events. The fact that many drawings still feature explicit representations
of uncertainty leads us to this conclusion.

• DH9 - To represent the amount of overlap between events, it is intuitive to superim-
pose them in the same view.
In contrast to the results of the project scenario, which featured more juxtaposed views
than superimposed ones, the lecture scenario reversed this tendency. We believe this is
due to the fact that the scenario described an overlap of two events and hence people drew
the two events in an overlapping manner.

• DH10 - Clocks lend themselves to show two superimposed time intervals, as long as
the overlapping area does not exceed a one hour time frame.
The lecture scenario featured more clock metaphors than both other scenarios. This ob-
servation leads us to this hypothesis.

• DH11 - Most people cannot think of an intuitive way to visualize the probability of
two uncertain events to overlap each other.
The amount of explicit uncertainty representations is significantly lower in the lecture
scenario than in both other scenarios. We believe this is due to the complexity of the
task. Hence, most participants could not think of a good way to show the probability of
an overlap in an explicit manner and resorted to a simpler, bounded visualization.

• DH12 - Color is an intuitive way of separating two overlapping objects of the same
shape.
Exactly half of all lecture scenario drawings that featured a superimposed view utilized
color to distinguish the two overlapping events. An example of this can be seen in Figure
3.13.

It is important to note that not all of these hypotheses have been verified. They are merely
meant to give direction to future research. Some of them build the basis for derived research
questions for our User Survey explained in Chapter 4. The concrete research questions are
presented in Section 4.2.
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Figure 3.12: This is one of only two
collected drawings that features a ver-
tical time axis which progresses from
top to bottom.

Figure 3.13: This example shows a
drawing that utilizes color to distin-
guish two overlapping intervals.

Answers regarding the presented hypotheses are especially valuable in combination with the
results of other works. Gschwandtner et al. [22], for instance, identified Gradient Plots to be well
suited to judge specific probability values at given time points. However, it is not known how
long it took the participants of their study to understand the visualization. Our results suggest
that Gradient Plots are also intuitive and therefore readily comprehensible to most users. Hence,
the technique seems to be a good choice to convey specific probability values to non-expert users.
Moreover, a similar combined result can be drawn for ambiguation techniques. Gschwandtner
et al. suggested to use them to convey bounds of temporal uncertainty and our results suggest
that this approach is also intuitive. Corell and Gleicher [13] dedicated their work to highlight
issues with error bar visualizations (see Figure 3.14). In this context we believe it is noteworthy
that not a single collected sketch of our study contains anything resembling error bars.

Figure 3.14: This is a bar visualization utilizing error bars to convey temporal uncertainty. The
blue bar reaches from the mean start time to the mean end time of the visualized event. The black
error bars denote the bounds of the two uncertainty intervals. [22]
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CHAPTER 4
User Survey

This chapter presents the details of our User Survey in three sections. The introduction in the
following section recaps the goal and our approach to achieving it.

In Section 4.2 the concrete research questions are presented. We illustrate how they are de-
rived from the Drawing Study’s results and discuss their relevance for the scientific community.

The last section is about the survey’s design. The concrete approach and the reasoning
behind it are thoroughly discussed. Furthermore, details about the implementation are given.
Statistics about our participants are discussed at the end of this section.

The survey’s results are presented in Chapter 5.

4.1 Introduction

To make the design and rationale behind the User Survey easily comprehensible, we recap on
our goal and explain our approach. The previously presented Drawing Study constitutes the
basis for this survey. It functions as a pre-study to identify interesting hypotheses to be tested. In
total we listed 12 hypotheses, derived from the results of the Drawing Study (see DH1 - DH12
in the last chapter). In the next section the selection of hypotheses and the concrete research
questions of this survey will be explained.

User studies with the goal of evaluating visualization approaches typically measure the ac-
curacy and time taken by participants to solve a given task with the support of a visualization
[36]. Since our goal is not to evaluate the efficiency and effectiveness of a technique, but how
intuitive it is to the users, we adopt another approach of evaluation. To gauge the intuitiveness of
different approaches, we directly ask our participants for their opinion on the matter. After all,
our participants can give us direct feedback on whether or not the presented visualization makes
sense to them and is understandable. In the categorization of Lam et al. [36] this approach falls
under the category of ’Evaluating User Experience’.
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4.2 Research Questions

To define the research questions of this survey the results of the Drawing Study are reviewed and
the most promising hypotheses are selected. Most promising in this context means that answers
toward derived research questions lead to meaningful implications for the InfoVis community
and for the design of future visualizations. Furthermore, the hypotheses are picked and derived
into research questions in a way that leads to the comparison of two alternatives (e.g. visual-
izations with explicit uncertainty vs. visualizations without visible uncertainty). This helps in
obtaining precise answers toward the research questions, which are well generalizable.

The following list presents the four final research questions of this survey derived from the
Drawing Study’s results. Furthermore, these questions also represent the main issue of this
thesis:

• RQ1 - Is it more intuitive to the average user to use Gradient Plots or temporal line
charts to judge a specific probability value of an event at a given point in time?
The results of the Drawing Study suggest that Gradient Plots and temporal line plots are
both intuitive approaches to convey the probability of an event at a given point in time
(see DH1 and DH2). We believe that it would be valuable to know which of the two
approaches is generally perceived as more intuitive.

• RQ2 - Is it more intuitive to the average user to visualize a comparison of two events,
with uncertain temporal bounds, in a superimposed view (overlapping representa-
tion) or a juxtaposed view (side-by-side view)?
Judging from the Drawing Study, people seem to prefer juxtaposed visualizations to com-
pare two events with uncertain start and/or end times (see DH6). Our subjective assess-
ment of the collected sketches is that the superimposed approaches generally support the
comparison task better, especially if the average durations of events are compared. Hence,
we want to find out which of the two approaches is perceived as more intuitive.

• RQ3 - Is it more intuitive to the average user to use an explicit uncertainty repre-
sentation or uncertainty encoded in icons if the task at hand only calls for a rough
approximation of the probability?
The Drawing Study suggests that icon representations are intuitive approaches to convey
rough probabilities, but lack the precision to convey exact values (see DH3). This leads us
to the question if people generally prefer to see a more exact representation of uncertainty
or an icon representation if a rough probability estimate is sufficient for the task at hand.

• RQ4 - Is it more intuitive to visualize an underlying uncertainty or to omit it if the
uncertainty is not directly relevant for the task at hand?
The results of the Drawing Study suggest that most people like to see the underlying
uncertainty of the duration of an event even though it is not relevant for the task at hand
(see DH8). These results could be due to the fact that the study is aimed at the topic
of uncertainty visualization. This could have induced people to visualize the uncertainty
even though it is not needed for the task. Hence, we want to find out whether most people
really want to see this underlying uncertainty or not.
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A reason to select these three research questions is our believe that their answers will be
valuable for future InfoVis design. As already mentioned in the results section of the Drawing
Study chapter, results suggesting that Gradient Plots are intuitive could be very valuable, be-
cause of earlier results about this visualization technique. If they prove to be even more intuitive
as simple temporal line plots, they would be very recommendable for future use. When design-
ing a comparative visualization there is always a decision to be made between a juxtaposed or a
superimposed approach. Answers to our research question RQ2 could help future designers in
this choice. Question RQ3 has the potential to have a big impact on future visualization design.
If our results suggest that most people are interested in being presented with the underlying un-
certainty of visualized data, it would mean that many conventional techniques could be improved
in this regard. Most deployed approaches do not deal with the notion of uncertainty if they do
not specifically focus on this aspect of data [6]. Our results could suggest that it is important to
think about visualizing uncertainty even if it is not the central focus of the visualization.

4.3 Design

As mentioned before, every research question is a comparison of two alternative visualization
approaches for a given task. Hence, we compare the two approaches using a common scenario,
which can be represented by both techniques. The scenarios are similarly structured as in the
Drawing Study, providing context information, as well as a task to solve within the scenario.

Since we want to directly compare techniques to each other, but also want to get an overall
rating of intuitiveness of every approach, we do not only ask for a binary decision between two
alternatives. Our approach to elicit a numerical rating and also a clear decision for one of the
two alternatives works as follows. First the scenario is presented with one of the two techniques.
The participant is then asked to rate this first alternative on a Likert scale [38] from 1-10. This is
followed up with a repetition of the same scenario and the same first visualization. Additionally,
the second alternative is shown and the user is asked how it compares to the first one. The
answer can be given on a Likert scale from 1-3 (Worse - Equal - Better). By randomizing which
of the two visualizations is shown first and rated on the 1-10 scale and which comes second
and is compared to the first one, we gather ratings and comparisons for every visualization over
multiple participants.

The goal of these ratings is to determine how intuitive a visualization technique is to our
participants in a specific scenario. To enable our participants to provide these ratings, it is im-
portant to make sure that they understand how the visualization works in principle. As mentioned
in C13, we accomplish this through an introduction at the beginning of the survey. It presents
all visualization techniques used (Gradient Plot, temporal line graph, juxtaposed/superimposed
temporal line graph, icon visualization and bar chart without uncertainty) and gives example
scenarios to illustrate their function. Furthermore, to make sure that participants do not mis-
takenly think they are understanding the visualization of a scenario and its solution, we provide
the correct solution for each scenario at the end of the scenario description. This means that a
participant who misunderstands a visualization and therefore comes up with a wrong solution to
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a scenario’s task, the misunderstanding will be identified because the participant’s solution does
not match the correct solution given in the text.

Misunderstandings like this, other issues with the visualization or the scenarios, explanations
of the given answer as well as any other remarks may be given textually through a provided text
field after every question and after every part of the introduction. This form of feedback allows
us to identify problems with the scenarios, tasks and visualizations and also gives us qualitative
feedback to understand the ratings.

Figure 4.1 shows the structure of our User Survey. At first every participant is asked to
provide some personal data (name, age, gender and level of education). As mentioned in C7 we
collect this data because it could be used to analyze the survey results further. In the next step
the introduction of visualization techniques starts. There are four major techniques (Gradient
Plot, temporal line chart, bar chart with icon representation and bar chart without uncertainty),
which are presented one after the other. Every technique is textually and visually described and
presented. Furthermore, there are examples to illustrate their function.

Figure 4.1: This diagram illustrates the described structure of our User Survey. The left side
shows the sequence of survey sections from the top to the bottom. The right elements illustrate
which data is used in each section and how it is randomized in order.

Following the introduction the four scenarios of RQ3 are presented in a random order. The
reason for presenting these scenarios before the other ones is that all tasks are about judging
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probabilities and sometimes comparing them. In this regard the tasks of the scenarios of RQ3
are somewhat different, because they only ask for a rough estimation of a probability. For this
reason we believe that it is better to not mix them in between other scenarios. The participants are
also notified about these changing task characteristics. After these four scenarios the remaining
12 scenarios of the other research questions are presented. Again the sequence of scenarios
is randomized per participant. Furthermore, the order of the two alternative visualizations per
scenario is also random in every presented scenario.

After this main part of scenarios the participants are prompted with four final questions.
These questions always appear in the same order. First the users are presented with a compilation
of all visualizations of the scenarios of RQ1. On the left side all temporal line graphs are shown,
while the right side shows all Gradient Plots (see Figure 4.2). The users are then asked for their
opinion which of the two visualization approaches is generally more intuitive. The answer can
be given through a Likert scale from 1-3 (left approach - equally intuitive - right approach).
After this according compilations and questions are presented for the three remaining research
questions. These four final comparisons conclude the survey.

Figure 4.2: Each line shows the two alternative visualizations for the four scenarios of RQ1. On
the left are the temporal line charts and on the right are the Gradient Plots. In this final inquiry
the participants are asked which of the two approaches is generally more intuitive to them.

For our Drawing Study we recruited 32 participants. This is a sufficient number for a qual-
itative pre-study. The presented User Survey, however, aims to measure the intuitiveness of
visualizations in a quantitative manner. This means that a greater number of participants are
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needed to collect enough data. For this reason we decided to take a different approach from the
individual interview session of the Drawing Study. Meeting with every participant separately
to conduct the User Survey simply would take too much time. Hence, the User Survey is im-
plemented as an online questionnaire. This approach offers a series of additional benefits as
well. By simply providing our participants with a link to the survey, they are free to complete it
anytime. Furthermore, less organizational effort is required, since no meetings between us and
our participants have to be scheduled. The online implementation also enables the questionnaire
to be viewed and answered on many different devices, which further simplifies the conduct of
the study. To implement the survey and make it easily accessible to our participants we uti-
lized Google Forms [20]. To built the Google Forms with a randomized question order and
randomized visualization order, as previously described, we utilized Google Apps Script [19].

Scenarios

For each of the four research questions there are four scenarios. This totals 16 scenarios for every
participant. The following list describes the nature of the scenarios for each research question
and presents an example scenario:

• Scenarios of RQ1: The scenarios and tasks of RQ1 are very similar to the bus scenario of
the Drawing Study. The participant is presented with an uncertain start or end interval of
an event. The task is to determine the probability that the event has already started/ended
at a given time point. The two visualizations provided for these scenarios are Gradient
Plots and temporal line charts.
This is one of the four scenarios as an example: ’A lecture is scheduled to start at 14:15,
but may be delayed by up to 20 minutes. You want to estimate the probability of arriving
too late if you will be there at 14:17. (10%)’ Figures 4.3 and 4.4 show the two according
visualizations.

Figure 4.3: This temporal line chart
shows the probability of a lecture to
have already started. Since uniform
probability distributions are always
assumed, the probability rises linearly
from 0% to 100%.

Figure 4.4: This Gradient Plot shows
the same lecture as Figure 4.3. The
probability is encoded in the color
value of the gradient, rising from 0%
(white) to 100% (dark blue).
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• Scenarios of RQ2: To test whether people find juxtaposed or superimposed views more
intuitive, we provide scenarios that compare two durations of events. The task is to de-
termine which of the two events is more likely to have finished/not finished up to a given
point in time. We visualize these scenarios with temporal line plots, which either show
the two events juxtaposed or superimposed.
This is an example scenario: ’You want to download a big file and can do that either via
your Internet connection (A) at home, or via your mobile connection (B), which is sup-
posed to be faster, but also more unreliable. The download will approximately take 30 to
40 minutes using your home connection and 24 to 42 minutes using your mobile connec-
tion. You need the file in 35 minutes and therefore want to pick the connection with the
higher probability of finishing the download by then. (B)’ Figures 4.5 and 4.6 show the
two alternative visualizations for this scenario.

Figure 4.5: This juxtaposition of tem-
poral line charts shows a comparison
of two Internet connections and the
probability of when they will be done
downloading a big file.

Figure 4.6: This superposition of tem-
poral line charts shows the same com-
parison as Figure 4.6. In contrast to
the alternative visualization it over-
laps both line charts in the same
space.

• Scenarios of RQ3: The scenarios for this research question are similar to the scenarios
of RQ1. Their task is to estimate if an event will have started/ended before a given point
in time. It is important to notice that contrary to the scenarios of RQ1 a rough estimate
of this probability is sufficient. The exact probability is not relevant. One of the two
alternative visualizations is a Gradient Plot, while the other one is a simple bar visualizing
the average start/end time. Additionally, the average visualization features a smiley face
to encode the probability for the given point in time.
This example illustrates the nature of these scenarios: ’You are sitting in a train, reading
something on your phone. At 16:55 you will arrive at your destination. You want to
roughly guess if your phone’s battery will last until you arrive. (It is going to be very
close, 33-65%)’ The corresponding visualizations are presented in Figures 4.7 and 4.8.

51



Figure 4.7: This visualization shows
the average value of the uncertain end
time through a simple bar. The un-
certainty for a given point in time (red
line) is roughly represented by the smi-
ley face, which can either smile, frown
or look neutral.

Figure 4.8: This Gradient Plot shows
the same scenario as Figure 4.7, but
explicitly encodes the uncertainty over
the whole uncertainty interval.

• Scenarios of RQ4: These scenarios are derived from the first task of the project scenario
of the Drawing Study. They compare two events with uncertain start/end times. The task
is to determine which of the two events will start/end earlier/later on average. This means
that the underlying uncertainty is actually not relevant to the task, as long as the average
start/end time can easily be judged from the visualization. The compared visualizations
are a bar showing the average start/end time only and a Gradient Plot with an added marker
for the average start/end time.
This is one of the concrete scenario descriptions: ’You want to download a movie you
want to watch. There are two websites you can download it from, A and B. The download
will take 17 to 24 minutes from website A, while it will take 18 to 29 minutes from website
B. You want to determine which website to download from, to watch the movie as early
as possible. (A)’ Figures 4.9 and 4.10 show the two corresponding visualizations of the
scenario.

Figure 4.9: This visualization only en-
codes the average values of the two
durations. This information is enough
to solve the task at hand.

Figure 4.10: This Gradient Plot fea-
tures additional marks for the average
values of durations, which are needed
to solve the task of this scenario. The
bounds of the uncertainty as well as
the color gradient are additional in-
formation, which is not directly rele-
vant for the task.
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4.4 Participants

The target user group of this survey is identical with the one of the Drawing Study - the general
public. This means that we are again aiming for a heterogeneous group, consisting of people of
various ages, genders, and educational background.

In total we privately recruited 60 participants from our personal social environment (i.e.
family, friends, work colleagues, etc.). The gender distribution is exactly even, with 30 male
and 30 female participants. With only 4 people not having completed Matura, 17 stating Matura
as their highest education, 21 having completed a Bachelor’s program as their highest education
and 18 featuring a Master’s degree or higher, our user group leans toward being well educated.
The age distribution of the group looks like this: <20: 4, 20-24: 14, 25-29: 29, 30-34: 3, 35-39:
0, 40-49: 4, >50: 6.
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CHAPTER 5
Results

In this chapter the results of our User Survey are discussed in detail. These results shed light on
the four main research questions of this thesis. In the following section the research questions
are separately recapped and all relevant data collected from the User Survey are presented.

In Section 5.5, the qualitative feedback, gathered in textual form during the survey, is dis-
cussed. This feedback offers a means to gain deeper insights about the reason for the quantitative
results.

This chapter concludes with Section 5.6 which tackles the issue of limitations of our work.
Furthermore, open questions which could be the focus of future work are discussed.

There are 4 scenarios and a final comparison regarding each research question. Each sce-
nario represents a decision for the more intuitive one of two approaches. This means that from
our 60 participants we collected a total of 240 decisions from scenarios and 60 additional deci-
sions based on the overall comparison of the two approaches. For each research questions the
frequencies of these decisions are presented. Furthermore, the survey yields numerical ratings
from 1-10 for each visualization approach regarding a scenario type. Since the order of the
two compared techniques is randomized per participant and scenario, we collected an unequal
amount of ratings for each one. The number of ratings per visualization approach range from
108 to 132. These rating distributions are analyzed by a Welch’s unequal variance t-test. This
test allows us to judge if there is a significant statistical difference of mean values between two
samples of normal distributions.
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Average ratings and p-values of the t-tests

Figure 5.1: This is a comparison of the average ratings of each visualization approach for a
specific type of scenario. The first two bars show the visualizations of scenarios about RQ1. The
next two are the ratings regarding RQ2 and so on. The p-values of the respective t-tests indicate
the statistical significance of the rating difference (smaller is more significant).

5.1 Research Question RQ1

RQ1 - Is it more intuitive to the average user to use Gradient Plots or temporal line charts
to judge a specific probability value of an event at a given point in time?

The binary decisions for the more intuitive of the two approaches are presented in Figure 5.2.
These results are not at all conclusive for either of the two approaches. The scenarios yielded
71/240 (30%) decisions for the temporal line chart to be more intuitive, 67/240 (28%) votes for
the Gradient Plot and 102/240 (43%) of undecided votes. Furthermore, the results of the final
comparison of the two techniques look similar. It features 20/60 (33%) votes for the line chart,
26/60 (43%) for the Gradient Plot and 14/60 (23%) of undecided votes.

A comparison of these results reveals that both techniques are similarly often perceived as
more intuitive (30% - 28%, 33% - 43%). The main difference between scenarios and the final
comparison is merely that more people decided for either one of the two approaches instead
of giving an undecided vote. These results strongly indicate that neither of the two compared
approaches is more intuitive than the other one.

This conclusion is further supported by the collected ratings and their t-test, which are pre-
sented in Figure 5.1. With respective average ratings of 7.59 (temporal line chart) and 7.43
(Gradient Plot), there is not much difference to be seen. Furthermore, the t-test yields results
that do not allow us to reject the null-hypothesis (that both mean values are equal). This means
that the two rating distributions cannot be distinguished with this sample size.
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We therefore conclude with this answer toward our first research question: Neither Gra-
dient Plots nor temporal line charts are significantly more intuitive to judge a specific
probability value of an event at a given point in time.

Results regarding RQ1

Figure 5.2: These are the binary votes for when a decision has to be made which approach is
more intuitive. The blue bars show the votes for each scenario, while the yellow bars indicate
the votes in the final comparison at the end of the survey. This comparison is very even, with a
similar amount of votes for each visualization technique and many undecided votes.

Discussion of RQ1

Even though there is no clear indication which of the two techniques is the better choice, our re-
sults still offer valuable insights. By comparing the average scores attained by other techniques,
it can be seen that both alternatives of RQ1 scored rather highly with scores of 7.59 and 7.43
respectively. This indicates that it should be possible to utilize either approach to intuitively and
effectively represent temporal uncertainty to non-expert users.

Due to the indecisive results which of the two techniques should be chosen in a given sce-
nario it probably comes down to the specifics of the area of application. One advantage of
Gradient Plots is that they do not need any labeling of the y-axis, which makes the visualization
more compact and arguably more esthetically pleasing. Conversely, some of our participants
prefer temporal line plots because they feel they can perceive more precise probability values
in this representation. Another argument could be made for temporal line plots, because most
people learn how to read such visualizations in school and therefore have an easy time reading
them, whereas Gradient Plots might be new to people and therefore harder to interpret at first.
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Figure 5.3: The Accumulated probability visualization Gschwandtner et al. [22] test in their user
study is very similar to the temporal line plots tested in our own work. It shows the probability
accumulated over time of a certain event, which is identical to the data represented by our line
plots. [22]

Gschwandtner et al. [22] also compared Gradient Plots to a technique they call Accumulated
probability, which is very similar to the temporal line plots we examined (see Figure 5.3). Based
on their results Accumulated probability generally leads to a higher error rate when gauging
specific probability values. Because of these findings and the argument that Gradient Plots can
be represented more compactly, we recommend to use them over temporal line plots in most
scenarios, unless the specifics of an application area favor temporal line plots.

5.2 Research Question RQ2

RQ2 - Is it more intuitive to the average user to visualize a comparison of two events,
with uncertain temporal bounds, in a superimposed view (overlapping representation) or
a juxtaposed view (side-by-side view)?

In contrast to the last one, the results about this research questions are very decisive toward
one approach. As Figure 5.4 shows, there are only 28/240 (12%) votes for juxtaposition to be
more intuitive from the separate scenarios. Superposition has 169/240 (12%) votes and 43/240
(18%) votes are undecided.

The final comparison question yielded very similar results. 12% (7/60) of all participants
see juxtaposition as more intuitive, while 82% (49/60) prefer a superimposed view. 4% (7/60)
participants were undecided in the final comparison.

The presented result clearly suggests that a superimposed representation is more intuitive.
This is also supported by the collected ratings. Figure 5.1 shows that the average ratings of 6.03
(juxtaposition) and 7.48 feature a significant difference. The calculated p-values of the t-test are
0.0000006 and 0.000001, which shows that this result is also statistically significant.

This leads us to this conclusion toward our second research question: For the average user
it is more intuitive to visualize two events with uncertain temporal bounds in a superim-
posed view than in a juxtaposed view.

58



Results regarding RQ2

Figure 5.4: The distribution of votes clearly indicates that superimposed representations are
generally seen as more intuitive. During the scenario, as well as during the final comparison
superposition was significantly more often seen as more intuitive. Only a comparatively small
number of participants were undecided or saw juxtaposition as the superior approach.

Discussion of RQ2

The qualitative feedback collected suggests minor shortcomings in the design of our juxtaposed
representation technique. A major problem is the fact that the two line plots are not centered
within their respective rectangle, but always shifted toward the middle line, separating the two
plots. Furthermore, the visualization features many helper lines, which might clutter the repre-
sentation too much. These flaws probably impact the final results to a small degree and lead to
decreased ratings of this technique. Nevertheless, we believe that our superimposed view would
still outperform an improved version of the juxtaposed one.

The results our study yielded also make a lot of sense. Since the corresponding scenarios
all aim at the comparison of two values at the same position in time, it is no surprise that su-
perimposed views fare better. This direct comparison becomes very clear and easy if the values
are represented in the same space, as opposed to a juxtaposed view. As described in Chapter
3 about our pre-study, the idea to compare these two techniques stems from the fact that many
participants generated sketches depicting juxtaposed views for similar scenarios. It is interesting
to see that juxtaposition is often utilized by non-experts in their own visualization designs, but
still seen as inferior to superposition in a direct comparison.

5.3 Research Question RQ3

RQ3 - Is it more intuitive to the average user to use an explicit uncertainty representation
or uncertainty encoded in icons if the task at hand only calls for a rough approximation of
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the probability?

The decision between an icon representation and an explicit representation is also relatively
clear. Only 21% (51/240) of all scenarios are voted to be more intuitively visualized by the icon
representation. In 57% (136/240) of all scenarios a Gradient Plot was seen as a superior solution.
22% of all decisions from the scenarios are undecided.

As in previously presented results these percentages are similar between the separate sce-
narios and the final comparison. The final comparison yielded 11/60 (18%) votes for the icon
representation, 44/60 (73%) votes for the Gradient Plot and 5/60 (8%) undecided votes.

The consequent conclusion that explicit uncertainty representations are more intuitive than
approaches using icons is also supported by the t-test using the collected ratings (see Figure 5.1).
The icon representations are averagely rated with 6.25 points, while the compared Gradient Plots
reached 7.05 points on average. The test’s resulting p-values of 0.0059 and 0.0119 suggest that
this difference is statistically significant.

Hence, we conclude with the following answer toward our research question: Even if only
a rough approximation of the probability is sufficient for a given task, an explicit encoding
of uncertainty is more intuitive than uncertainty encoded in icons.

Results regarding RQ3

Figure 5.5: It is clearly visible that most participants see an explicit representation of uncertainty
as more intuitive than icon representations. From the scenarios this tendency is already obvious
and is even more pronounced in the final comparison of the two techniques.

Discussion of RQ3

The qualitative feedback shows that the design of our icon representations has some shortcom-
ings. The main issue is that 0 percent probabilities share the same icon with low probabilities
and high probabilities share the same with 100 percent probabilities. I. e. there are no separate
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representations for certain outcomes. Our design also only features three different icons, since
they are only supposed to give a rough estimation of a value. It would be interesting to repeat
the experiment with a new design that directly and gradually maps the probability values to a
smiley face. This way both approaches (icons vs. explicit representation) would visualize the
same information without aggregating or simplifying it. Some participants state in their quali-
tative feedback that icons are a good way to get a quick estimation, but they ultimately prefer
an explicit approach because it is more precise. A continuously mapped smiley could possibly
unite both of these qualities.

The benefit of icon representations to quickly and intuitively give the user a good estimate
could be used to enhance more precise (but slower) visualizations. One could, for instance, use
an icon additionally to a Gradient Plot. This way a user can get a quick estimation via the icon
and more exact information from the Gradient Plot.

We believe that a major issue with icon representations is that they are highly dependent
on the scenario of application. In the case of our study each scenario features a desired and an
unwanted outcome. Therefore, smiling and frowning faces are a good choice. The same icons
might not be fitting for different scenarios. Even if a scenario features a desired outcome, it
may vary if a high probability or a low probability is to be fancied. This means that an icon
representations always needs to be fitted to the scenario to be applicable. We believe that there
is no good generic icon design that fits well for many cases.

5.4 Research Question RQ4

RQ4 - Is it more intuitive to visualize an underlying uncertainty or to omit it if the uncer-
tainty is not directly relevant fo the task at hand?

The results regarding the fourth research question look similar to the ones of the previous
two. The scenarios yielded 56/240 (23%) decisions for the visualizations without uncertainty
to be more intuitive and 131/240 (55%) decisions for the explicit representation. 53/240 (22%)
scenarios are undecided between the two approaches.

The results of the final comparison at the end of the survey again strongly correlate with the
results of the scenarios. 14/60 (23%) participants see a visualization without uncertainty as more
intuitive, while 37/60 (62%) believe the explicit approach is superior. 9/60 (15%) participants
are undecided.

The explicit representation is also favored in the numerical ratings. While omitting the
uncertainty yielded an average rating of 6.95, the Gradient Plots with additional average marker
are rated 8.26 on average. This result is statistically significant with p-values of 0.000004 and
0.000008 from the t-test.
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Results regarding RQ4

Figure 5.6: The results of the fourth research question show a clear tendency toward visualiza-
tions with explicitly represented uncertainty. More than twice as many participants voted for
this option in contrast to the visualizations omitting uncertainty.

Discussion of RQ4

To us these results are the most interesting ones, as they have the greatest potential to have
an impact on future visualization design. Even though all scenarios of our study are designed
to be solvable without taking the underlying uncertainty into account, an overwhelming ma-
jority of participants prefers to have uncertainty visualized. These findings are so significant
because most real world visualizations do not convey uncertainty, even though almost all rep-
resented datasets are afflicted by some kind of uncertainty (see 1.1 for further detail). Hence,
the intuitiveness of countless visualization designs could possibly be enhanced by incorporating
uncertainty into the visual representation.

It is important to note that this does not mean every visualization should deal with uncer-
tainty for intuitiveness’ sake. This additional data dimension usually takes up screen space and
adds more visual complexity. This means that designers have to carefully consider the benefit
of incorporating uncertainty into their design. Based on our findings, though, this considera-
tion is not only important when uncertainty plays a major role in the scenario at hand. As our
experiment shows there might be circumstances in which showing uncertainty, even though it
is not vital for the task at hand, is advisable to provide the user with more information. This
additional information may convey the feeling of being able to make better informed decisions
and therefore lead to higher user confidence and satisfaction.
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5.5 Qualitative user feedback

Qualitative feedback was collected textually during the survey. Corresponding text fields are
provided at the end of each of the four visualization introductions. Through them participants
can communicate any issues with their understanding of the presented techniques and/or give
further remarks regarding them. Furthermore, after every question during the scenarios we also
provide a text field for feedback. Our approach to analyzing the collected feedback is to simply
find remarks that occurred multiple times and seem relevant to the quantitative results.

The most common feedback regards the intuitiveness of the icon representation. In total,
eight participants state that they have some issue understanding the approach or explicitly state
that they do not like the visualization because of a specific shortcoming. Three participants
reason that the main problem is that there are no different icons for a 0% probability and a
low probability up to 33%. The same is true for high probabilities and 100% probabilities. Also
regarding the icon visualization, two participants state that they think that icons are very quick to
read, but still prefer an explicit approach, because it is more precise and gives more information.

The second most common remark regards the orientation of the probability distributions,
which was mentioned by five participants. If a visualization shows the extent of a car drive, for
instance, it is more intuitive for some persons to show the probability of the drive still lasting
(i.e. the probability decreases around the estimated arrival time). For other people it might be
more intuitive to encode the probability of having already arrived (i.e. the probability increases
around the estimated arrival time). We consistently encoded the probabilities of events to still
be going on, which is not always the most intuitive solution for all participants, hence some
remarked that a flipped visualization would be more convenient for them.

The superimposed temporal line charts work well for the comparison of two events, but
might not be a good solution if there are more than two events to be shown. This remark is only
stated once, but we believe that this is an important input. While superimposed charts are highly
rated in our results, it is still important to keep in mind that such a visualization can quickly
become cluttered if there is too much information overlapping in the same space.

Figure 5.7: On the right side of the figure the distances a and b are marked. These are the
distances of the graph to its respective borders. The inequality of a and b confused some partic-
ipants, which probably skewed the results toward the alternative visualization.
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Another feedback regarding the same research question of juxtaposition versus superposi-
tion, is critique on the juxtaposed visualization. The way we implemented this view features a
different vertical distance from the bottom of one axis to the bottom of the frame and the top
of the same axis to the top of the frame. I. e. the axes are not vertically centered within their
sub-frame (see Figure 5.7). This confused at least four of our participants, who state this in their
feedback. Shortcomings like this could skew our results to a certain degree, but we believe that
even better implementations of all utilized techniques would have led to the same outcome.

Our results show that there is no clear favorite among temporal line charts and Gradient
Plots, which is also reflected in the qualitative feedback. Two participants state that they prefer
line charts because they yield more precise probability values. Four other participants argue that
Gradient Plots are superior because they are more convenient to use. This is due to the obsolete
y-axis. The desired probability value can be directly estimated from the color gradient.

In the comparison of RQ4, which features an approach without uncertainty and one with
explicitly encoded uncertainty, our results show a clear tendency toward the explicit approach.
The qualitative feedback of two participants gives an indication why this is the case. They argue
that the additional information can be important in many real world scenarios and does not
distract from the task of comparing mean values.

5.6 Limitations and future work

Obviously user studies like ours are always subject to certain limitations, which cap the general-
ization of results. Experiments are only samples taken of specific configurations, under specific
conditions. To gain further insights and to make results applicable more generally, further evalu-
ations need to be conducted. This future work can alter details of existing work and put its focus
on other elements of the experiment to facilitate knowledge gain in another direction.

To keep the scenarios of our study as simple as possible to avoid distracting our participants
by unnecessary details, we only worked with uniform probability distributions. In real world
scenarios, though, countless other distributions might occur. Changing this underlying data
property might also have an impact on the relative effectiveness and intuitiveness of the tested
visualization approaches. This could be an interesting basis for future research.

Another restriction made for simplicity’s sake is the lack of interaction. All visualizations
of our User Survey are strictly static and cannot be interacted with. It would be interesting,
however, to find out which kind of interaction works well in the context of conveying temporal
uncertainty. Particularly how, how interaction can be offered in an intuitive way to novice users
could be the focus of future work.

As already mentioned in the discussion of RQ3, the effectiveness of icon representations is
dependent on the applicability of the used icons. Furthermore, other shortcomings of our icon
design are discussed. Future work could focus on fixing these mistakes to conduct a similar study
about icon visualizations for temporal uncertainty. We believe that well designed representations
could indeed be very intuitive to non-expert users. Especially icons in addition to an approach
depicting an explicit encoding of probability values could combine the benefits of both.
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Our Drawing Study yields a list of 12 hypotheses. Five of them are tackled by our User
Survey. The remaining ones are still open and unverified statements. Evaluating them in further
user studies could yield valuable insights into the visualization of temporal uncertainty.
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CHAPTER 6
Conclusion

Most data collected from the real world contains some kind of uncertainty. There are many
reasons for this which lead to different types of uncertainty. An overview of these types can be
found in Gschwandtner et al. [22]’s work. In recent years there has been an effort to incorporate
this data property into visual representations. This provides the user with more information
and a better understanding of the data, which in turn enables the user to make better informed
decisions. All this is also true for the field of InfoVis of time-oriented data.

Especially for non-expert users it is important to provide intuitive visualizations for them to
be able to effectively utilize it. In regard to temporal uncertainty there is still a lot of work to be
done to find out which visualizations are the most intuitive ones. To gain deeper insights into this
matter, user studies are generally a good approach. Since intuitiveness is such a subjective issue,
user studies provide the means of evaluating subjective opinions of participants and objectify
them through a large enough sample size. A downside of user studies is that they can generally
answer only rather specific questions [33]. Hence, it is important to first identify interesting
research questions before evaluating them in a comprehensive study. This is the reason we
conducted two user studies. The first study, called the Drawing Study, acts as an exploratory
pre-study, which yields possible research questions. The second study, called the User Survey,
then evaluates research questions and yields the desired insights.

To provide a good overview of the state-of-the-art of temporal uncertainty visualization a
comprehensive literature research was conducted. We present a multitude of example projects
which focus on representing temporal uncertainty. Furthermore, to provide the necessary the-
oretical background for the practical part of our work, we present the state-of-the-art of user
studies in the field of InfoVis. This current state is represented by a selection of presented ex-
ample projects and additionally by works that focus on the theory behind user studies.

The first study we conducted is called the Drawing Study because we asked our participants
to draw their own visualization sketches. These sketches are based on provided scenarios about
temporal uncertainty. Overall, there are four scenarios, featuring different user tasks that should
be supported by the visualization. The collected drawings are analyzed through an open coding
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approach. This means that they are categorized by similarities in their approaches and the total
number of drawings falling into each category is interpreted. Based on this analysis we generated
a list of 12 hypotheses regarding the intuitiveness of temporal uncertainty visualizations. Some
of these hypotheses are not further addressed in this work and could be the basis for future
research.

The most promising hypotheses of our list were formulated into concrete research questions,
which we evaluated in our main study, the User Survey. This study is implemented as an online
survey utilizing Google Forms [20]. Each of the 60 participants completed the survey separately.
Each participant was presented with 16 scenarios, four for each of the 4 research questions, in
total. Each scenario featured a scenario text, describing a situation, and a specific user task that
should be fulfilled. At first each participant was presented with one of two visualizations and
asked to rate how intuitively it supports the task. Then the other visualization was presented
as an alternative and the participant was asked to rate it as better, equally good or worse than
the first one. The User Survey concludes with four final comparisons, one for each research
questions. Each comparison features all corresponding visualizations presented in the scenarios
before and the participant is asked to make a final decision on which visualization technique is
more intuitive overall.

The results of the User Survey were analyzed using a Welch’s unequal variance t-test to
find statistically significant differences between ratings of compared visualization techniques.
Furthermore, the binary decisions (i.e. which visualization approach is more intuitive) gathered
from each scenario additionally show the general tendency of our participants. The results and
their statistical analysis are thoroughly discussed in Chapter 5. One of the most intriguing results
is that icon visualizations performed relatively poorly in our survey. This comes as a surprise to
us, because icons seem to be very intuitive at first glance. A reason why they did not perform
better could be that icons need to be specifically designed for their situated use. An icon repre-
sentation is most intuitively understandable if it fits the scenario and task at hand very well. In
our case we worked with generic smiley faces, which could have been too general to work well.
These open questions about icon visualizations offer opportunities for future research. Another
interesting finding is that our participants preferred to have uncertainty visualized to them, even
if it was not relevant for the task at hand. This is an important finding, because it could impact
future visualization design. Most InfoVis systems are not designed to incorporate uncertainty
into their data representations, but our results indicate that users generally like to have this infor-
mation presented to them additionally. Hence, existing visualization systems potentially could
be improved by incorporating uncertainty information and future designers should think about
uncertainty even if it is not central to the task at hand.
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