
An Interactive Optimization
Framework for Point Feature

Label Placement

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Raphael Löffler, B.Sc.
Registration Number 1025967

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc.Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg
Assistance: Univ. Ass. Fabian Klute, M.Sc., B.Sc

Vienna, 9th August, 2018
Raphael Löffler Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Raphael Löffler, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. August 2018
Raphael Löffler

iii

Abstract

This thesis describes an interactive user-centered and web-based optimization framework
for the point feature label placement problem. It tries to fill the gap between the time
consuming and expensive manual map creation and the less qualitative but much faster
and cheaper automatic label placement to eradicate the disadvantages of both approaches.
Given a set of point features we want to place for each feature a label on the map such
that the labels do not overlap. Since a high-quality map has to furthermore satisfy
cartographic guidelines and preferences, our developed framework allows an expert user
to add his or her domain knowledge in an interactive way by improving and updating an
initial labeling step by step. We therefore collected and formally defined user constraints
through interviews with a cartographic expert.

In this work we consider axis-aligned rectangular labels with predetermined fixed label
candidate positions in a fixed four position model on static geographical maps. We
describe the point feature label placement problem with a conflict graph and use it as
the basis for our algorithms. We present and implement in this thesis both existing and
new algorithms for the automatic point feature label placement. This includes simple
algorithms, exact algorithms and several heuristics for the label number maximization
problem as well as the minimum number of conflicts problem.

Finally, we investigate and evaluate our framework and its algorithms regarding the
performance and the quality of the created labeling solutions on real world data. We
hereby also concentrate on identifying well performing algorithm combinations for various
kind of data sets as they are used in typical use cases of our framework.

v

Kurzfassung

Diese Diplomarbeit beschreibt ein interaktives Benutzer-zentriertes und Web-basiertes
Optimierungsframework für das Point Feature Label Placement Problem. Die Arbeit
versucht die Lücke zwischen der zeitaufwändigen und teuren manuellen Kartenerstellung
und der weniger qualitativen aber wesentlich schnelleren und billigeren automatischen
Label Platzierung zu schließen und die Nachteile beider Ansätze auszumerzen. Für ein
gegebenes Set an punktuellen Features wollen wir für jedes Feature ein Label auf der
Karte so platzieren, dass sich keine Labels überlappen. Da eine Karte mit hoher Qualität
zusätzlich noch verschiedene kartographische Richtlinien und Präferenzen erfüllen muss,
erlaubt unser entwickeltes Framework einem Expertenbenutzer sein bereichsspezifisches
Fachwissen in einem interaktiven Vorgang einzubringen, um so eine initiale Karten-
beschriftung schrittweise zu verbessern. Wir haben dafür durch Interviews mit einer
Kartographin diese benutzerdefinierten Bedingungen und Beschränkungen gesammelt
und formal definiert.

In dieser Arbeit betrachten wir nur achsenparallele, rechteckige Labels mit vordefinierten
fixen Positionen in einem fixen Vier-Positionen-Model in statischen geographischen Karten.
Wir haben das Point Feature Label Placement Problem mittels eines Konfliktgraphen
beschrieben und verwenden diesen als Basis für all unsere Algorithmen. Wir haben in dieser
Arbeit sowohl existierende als auch neue Algorithmen für automatisches Point Feature
Label Placement präsentiert und implementiert. Dies beinhaltet einfache Algorithmen,
exakte Algorithmen und verschiedene Heuristiken für das Problem der Labelmaximierung
und dem Problem der Konfliktminimierung.

Letztlich untersuchen und evaluieren wir unser Framework und seine Algorithmen be-
züglich der Performance und der Qualität der erzeugten Lösungen mit realen Daten.
Wir konzentrieren uns hier auch auf performante Algorithmenkombinationen für ver-
schiedenartige Datensätze wie sie im normalen Gebrauch des Frameworks verwendet
werden.

vii

Contents

Abstract v

Kurzfassung vii

1 Introduction 1
1.1 Related Work . 2
1.2 Outline . 5

2 Preliminaries 7
2.1 The Label Placement Problem . 7
2.2 Objectives in Label Placement . 10
2.3 Terminology from Graph Theory . 11

3 Data Structures 13
3.1 Quadtree . 13
3.2 Conflict Graph . 21

4 Labeling Algorithms 25
4.1 Maximum Independent Set Approaches 25
4.2 SAT Approaches . 27
4.3 Three Rules Algorithm . 30
4.4 Integer Linear Programming Approaches 32

5 User Constraints 37
5.1 Interviews . 37
5.2 Label Modifications in our Framework 39
5.3 Classification of the Constraints . 40
5.4 Optimal Solution after Label Modification 42

6 Development and Implementation of the Prototype 43
6.1 Basic Workflow of the Framework . 43
6.2 Used Technology . 44
6.3 Implementation Details . 47
6.4 User Interface . 52

ix

6.5 Implemented Algorithms . 58

7 Evaluation 63
7.1 Setting . 63
7.2 Results . 65

8 Conclusion 73

Bibliography 75

CHAPTER 1
Introduction

Label placement is an important task in information visualization and especially in the
area of cartography where it is known as the map-labeling problem. Points of interest of
different spatial characteristics (i.e., point, line or area features) shall be described and
identified for example by a text element or an icon (a so called label) that is attached
to the feature. When creating (geographic) maps or diagrams each feature shall be
labeled so that no two labels intersect or overlap each other or obscure another feature.
Additionally cartographic placement guidelines and preferences (e.g., location, orientation,
shape, size) have to be obeyed. The quality of a map in the sense of legibility and clarity
is strongly dependent on the position of the labels for the features.

As the cartographic label placement is a very time-consuming task, large efforts have been
made to automatize the process of label placement. Different objectives like maximizing
the number of labeled features or maximizing the size of the labels can be pursued. These
are geometric optimization problems and are well known in the literature. The problem of
finding an optimal solution for both problems is known to be NP-hard [WWKS01, FW91].

For the label placement problem several exact approaches, practically effective heuristics
and approximations have been developed. But yet, after years of research, maps created
by automatic label placement algorithms do not meet the quality of those created by
human experts in cartography. Hence, in order not to release sub-optimal maps, the
automatically created maps need to be manually post-processed by a domain expert,
which is a very tedious procedure, or as an alternative, do a solely manual creation of
maps, which is even more time consuming and expensive.

With this thesis we want to fill the gap between high quality but expensive manual
map creation and the cheap and fast but less qualitative automatic map labeling. We
investigate an approach where the domain experts work hand in hand with the automatic
label placement algorithms during the whole map creation process. The idea is that
different algorithms or heuristics produce an initial labeling solution and then the domain

1

1. Introduction

expert improves and refines the labeling step by step by adding different constraints (i.e.,
his domain knowledge). The algorithms in the background then use these constraints to
recalculate an optimal labeling and improve the previous solution. We concentrate on
the cartographic point feature label placement problem on static geographical maps with
a discrete label positioning model and axis-parallel rectangular labels.

In particular we give in this thesis a formal definition of the problem, collect and formally
define the user constraints through interviews with a domain expert and implement,
based on these, a prototype of a web-based user-centered map creation tool. This tool is
intended to be used by domain experts in cartography to speed up their map creation
process and ensure a high quality of the created maps.

We study the complexity of the used algorithms and perform quality and performance
evaluation with real geospatial data from OpenStreetMap [osm]. Since our approach for
an automated human-centered label placement has underlying dynamic geometric and
combinatorial optimization problems, the outcome is also of interest for the algorithmic
community in general and may be applied to other problems too.

1.1 Related Work

Good label placement has been a significant challenge throughout cartographic history.
The placement of textual names for various types of features on a cartographic map is
highly significant to the quality of the resulting map [Imh75]. Since the manual map
labeling process can take up to more than 50 percent of the map production time [Yoe72],
the need of automation and use of computers for placing labels was seen already back
in the 1970s, e.g., by Yoeli [Yoe72]. Ever since then, there were many efforts made
to find approaches to address the automatization of label placement. It turned out
quickly, that the problem of label placement, regardless of the features being labeled,
leads to combinatorial optimization problems that are NP-hard for most of its practical
variants [MS91, CMS95]. Exact algorithms are only able to solve problem instances with a
few hundred of features. Consequently the researchers focused on finding approximations
and practically effective heuristics for objectives like the number of labels maximization
or label size maximization. A good list of publications surveying the label placement
problem until the year 2009 can be seen in “the map labeling bibliography” [map].

Most works in the literature for automated label placement concentrate on static maps.
The primary goal for static maps is to maximize the information content on the map like
maximizing the number of labels placed. Dynamic maps on the contrary are intended for
navigation. They are characterized by allowing the user to zoom (change the scale), pan
(change the region of interest) and rotate the map view and hence the labels have to be
placed in interactive speed. Since label placement on static maps is NP-hard, algorithms
and solutions for static maps are inadequate for dynamic maps.

Been et al. [BDY06] were one of the first that investigated label placement on dynamic
maps. They focused only on zooming and panning and identified that for dynamic maps

2

1.1. Related Work

(a) (b)

Figure 1.1: The (a) discrete model with four fixed positions for the label candidates, and
the (b) slider model where the label candidates can slide around the point feature.

distracting behaviour such as label popping (i.e., labels that disappear and reappear) or
labels that move about (i.e., labels that change their position or size in an unexpected
way) during monotonous map navigation shall be avoided.

In further work Been et al. [BNPW10] developed a model for consistent dynamic labeling
where each label is represented by a 3d-solid with scale as third dimension. Label popping
is avoided during zooming by calculating the so-called active range (i.e., a single range of
scales where the label is selected) for each label, so that no two selected labels intersect
at any scale. Maximizing the sum of heights of these ranges is then equivalent to the
goal of maximizing the number of labels selected at each scale.

Gemsa et al. [GNR11] did some research on dynamic rotating maps. They take a static
labeled map as input and try to find a consistent labeling of non-overlapping and non-
obscuring labels while rotating the map. The number of visible labels for all rotation
angles shall be maximal.

There exist many different position models for the label candidates of a feature in the
literature. While in cartographic maps the most common approach is to use internal
labels (labels placed in the immediate neighbourhood to the feature), in other application
areas like medicine and engineering external labels (labels placed outside the picture and
connected to the feature with a leader line) are used more frequently (e.g., for anatomic
or technical illustrations and drawings) [BKSW07]. In the literature external labeling is
also know as boundary labeling and has the advantage to manage labeling on very dense
feature areas. The drawback of boundary labeling is that it is often more difficult to see
to which feature a label belongs [LNS16]. Löffler et al. [LNS16] presented an approach
for mixed map labeling where each feature has to be labeled with either an internal or
an external label while maximizing the internal labels.

For internal labeling a popular approach is to create several candidate label positions and
then select one of them according to some labeling preferences and objectives. Basically
there are two types of positioning models for internal label placement namely the discrete
model and the slider model [FW91, vKSW98] (see Figure 1.1).

In a discrete positioning model the location and the number of the label candidates are
predefined. That means that each feature has a set of explicit enumerated possible label

3

1. Introduction

positions [ArDT09, MRL10]. All candidates are directly adjacent to the feature and
are of identical size. During the label placement one of the candidates is selected and
assigned to the feature.

The slider positioning model allows the label candidate to slide around the feature, i.e.,
the label candidate can touch the feature anywhere on its edges or in its corners. Hence, in
the slider model there is a continuous space with an infinite number of possible positions
for placing the label [MRL10]. The advantage of the slider model is that for the same
input in general more labels can be placed without overlaps than in the discrete model.

Much research concentrates on the discrete positioning model for point feature label
placement. Christensen et al. [CMS95] proposed methods based on simulated annealing
and a discrete form of gradient descent while Ribeiro et al. [RL06, RML11], Mauri et
al. [MRL10] and Zoraster [Zor86, Zor90] developed different approaches based on integer
linear programming.

Formann and Wagner [FW91] investigated the labeling problem in relation to the SAT
problem. They allowed the features to have two possible label candidate positions and
encoded the relations of intersecting candidates as clauses of a 2-SAT instance. Jung and
Chwa [JC04] took up this approach and extended it by suggesting a new encoding rule
where each feature can have four candidates. They present a 2-approximation algorithm
for non-uniform rectangle labels.

Since the label placement problem can also be described with a so-called conflict graph,
where each edge represents a conflict between two label candidates, the labeling problem
can be related to finding a maximum independent set in this graph. Approximation
algorithms for this kind of problem are presented by Agarwal et al. [AvKS98], Verweij
and Aardal [VA99] or Strijk et al. [SVA00]. More recent approaches try to reduce the
input size (i.e., the size of the conflict graph) in a preprocessing step [AKCF+04, GD06,
BT07, AI16, Str16].

Wagner et al. [WWKS01] focused on the combinatorial characteristic of the point feature
label placement with a discrete positioning model and proposed three rules to also reduce
the size of the conflict graph by placing and deleting several label candidates that do
not alter an optimal solution. These reduction rules are part of the algorithm and hence
are not done as a preprocessing step. This approach does not influence the size of an
optimal solution.

Less research was done in the area of line and area feature labeling. Niedermann and
Nöllenburg [NN16] as well as Wolff et al. [WKvK+00] proposed approaches for efficient
line feature labeling and Rylov and Reimer [RR17] developed an algorithm for area
feature labeling.

Even though there is much research done on map labeling and automated label placement,
automation is not applied broadly in commercial fields but the map labeling process
is often done manually or with little support of automatic tools [dNE08]. The main
issue is that many of these automatic labeling approaches do not include the subjective

4

1.2. Outline

knowledge of human domain experts such as aesthetic criteria or cognitive aspects of
human vision.

One promising approach was presented by do Nascimento and Eades [dNE08]. They
developed an interactive framework for point feature labeling where a domain expert user
can add his or her domain knowledge to the map creation process by adding so called
hints. Starting from an initial calculated solution the framework allows to continuously
refine the labeling solution by inserting additional constraints, calling optimization tools
and visualizing the solution. This loop can be repeated until the labeling result meets the
users subjective criteria in the sense of aesthetics and good visual appearance of the map.
In this process the user is responsible for detecting overlaps and ambiguities. He has to
apply the algorithms on regions with label overlaps or ambiguous regions. Optimization
is done with two implemented optimization algorithms based on simulated annealing and
hill climbing.

This technique may lead to better labeling solutions than other automatic methods
and saves much of the monotonic work required to create a high quality map by hand.
However, they do not show any evaluation on the effectiveness of their framework and the
optimality of the produced labeling solutions. In this thesis we will implement different
and more powerful optimization algorithms, evaluate and compare them and align the
implemented user constraints and workflows to the needs of cartographic domain experts.

1.2 Outline
The remainder of this thesis is organized as follows. We first describe in Chapter 2
the general label placement problem and its objectives. We sketch notations and label
placement strategies used in this thesis as well as useful concepts in graph theory. In
Chapter 3 we analyse and describe data structures suitable for storing our spatial input
data and for formally describing and efficiently solving our labeling problem. Chapter 4
then presents different automatic labeling algorithms used in the literature and useful for
this thesis. In Chapter 5 we collect and analyse the user constraints from a cartographic
expert and formalize them so that we can use them in our algorithms.

Chapter 6 then describes our developed framework. We give an overview about the used
technology, the implemented data structures, algorithms and label modifications, and
describe the user interface as well as the functionality of the prototype. We evaluate our
labeling approach and our prototype in terms of performance and solution quality in
Chapter 7. Lastly we summarize our work in Chapter 8 and give further prospects for
future research.

5

CHAPTER 2
Preliminaries

In this chapter we introduce and formulate the general label placement problem. We focus
on the point feature label placement and describe notations, position models and different
objectives as well as basic graph theory notions and aspects that we use throughout this
thesis. All other prerequisites are introduced when needed.

2.1 The Label Placement Problem

The general (cartographic) label placement problem can be informally described as
follows: Given are a map and a set of graphical features to be labelled. Basically these
features can be points, lines or polygons [RML11] where points represent, e.g, cities or
villages, lines represent, e.g., roads or rivers and polygons represent area features, e.g.,
countries or districts. The task in label placement is to assign for each feature a label
(e.g., a text or an icon) so that the feature is uniquely identified. See Figure 2.1 for an
example labeling of places in Iceland. Most often it is also required that the labels do
not intersect or overlap each other or obscure another feature. Additionally, cartographic
placement guidelines and preferences (e.g., location, orientation, shape, size) have to be
obeyed. The quality of a map in the sense of legibility and clarity is strongly dependent
on the position of the label for a feature.

We can formulate three important requirements for good label placement similar to
Klau [Kla01]. Besides these, there are more aesthetic requirements specified in the
literature, especially Imhof [Imh75] and Yoeli [Yoe72] list some more. But the main
requirements can be described as follows:

• Unambiguity: it shall be easy for the reader to see to which feature a label
belongs,

7

2. Preliminaries

Figure 2.1: An example labeling of a part of Iceland. Features that have a label assigned
(white box with text) are represented with a red filled circle. Features that are not labeled
are shown with a blue filled circle.

• Legibility: the information of the label shall be easy to read and fast to locate (the
position or position arrangements with other labels also influences the legibility)
and

• Disturbance: a label shall disturb or obscure other labels or features as little as
possible (no or only a few overlaps).

Since this thesis omits line and area features but concentrates on point features only
we give a formal definition of the point feature label placement problem (PFLP). We
formulate it as follows:

Problem 1 (PFLP). Given a map M and a set F of n point features (i.e., points of
interest) in the Euclidean plane R2 that shall be labeled in map M . Each feature fi ∈ F
(i = 1...n) has a set Ci of possible label candidates (this set may be infinite). The goal
of PFLP is to assign for each feature fi at most one of the candidates of its set Ci so
that certain objectives are optimally fulfilled. Examples of objectives are described in
Section 2.2.

Additionally we want to investigate approaches to preserve an existing labeling solution,
e.g., after modification of some label candidates. Hence, a second problem arises that we
define as follows:

Problem 2 (PFLP-Update). Given a map M and a set F of point features in the
Euclidean plane R2 that shall be labeled in map M . Let L be the set of all label candidates

8

2.1. The Label Placement Problem

2 1

3 4

(a)

6

57

8

(b)

Figure 2.2: Eight candidate positions for a point feature.

of all features f ∈ F . Further let S ⊂ L be an existing labeling solution for map M . The
goal of PFLP-Update is to calculate a new solution S′ ⊂ L so that |S ∩ S′| is maximum
and certain objectives are optimally fulfilled.

Regarding the goal of our thesis we concentrate on the label placement on static maps
where the zoom size is fixed and no map rotation is allowed. Panning is allowed in a
“static” way, meaning that we only change the section of the map that is viewed without
changing any label placement. Since we are mainly working on cartographic maps in this
thesis we will concentrate on internal labeling with a discrete positioning model. Two
examples for discrete positioning models that we use in this thesis are the four-position
or the eight-position model.

• Four-position model: In the four-position model each feature has exactly four la-
bel candidates. Each candidate touches the feature in one of its corners. Figure 2.2a
shows the four positions of the candidates.

• Eight-position model: The eight-position model extends the four-position model
by the four candidate positions shown in Figure 2.2b. Each label candidate touches
the feature exactly in the middle of one of its edges.

We define the following notations shown in Figure 2.3. A point feature represents a
point of interest and is specified by its coordinates. Each point feature has a set of
label candidates placed around the point feature. They are indicated by rectangles in
Figure 2.3 but can be of any shape in general. If one of these candidates is selected for a
solution we call it the label of the point feature (indicated by the solid line instead of a
dashed line of the other label candidates). Each label candidate position is described by
its anchor point which is always in the upper left corner of the bounding box of the label
candidate. So the anchor point of the bottom right label candidate is equal to the point
features coordinates.

9

2. Preliminaries

Label CandidatesPoint Feature

Label
Anchor Point
of the Label

Figure 2.3: Notations used in this thesis.

2.2 Objectives in Label Placement
Dependent on what a cartographer or the creator of an illustration wants to achieve,
different objectives can be formulated in map labeling. These objectives can mostly be
described as an objective function. That is a function that assigns every possible labeling
a value that describes the quality of it [CMS95]. Many subjective quality aspects and
human expert knowledge in cartographic map creation or aesthetic requirements for
good label placement like Imhof lists [Imh75] hardly can be formulated as an objective
function. But quality aspects like the amount of overlaps, the number of features left
unlabeled or even some a priori preferences (preferred label candidates) can be described
formally and therefore also be used for automatic label placement approaches.

In the literature different objectives have been studied and formulated. Dependent on
the pursued goal some of the proposed approaches result in a conflict-free labeling, i.e., a
solution where no two labels overlap, others in a conflict-minimal labeling, i.e., a solution
where all features are labeled and the number of conflicts between them is minimal. The
main objectives used in the literature are defined as following problems:

Problem 3 (Label Number Maximization Problem (LNMP)). The objective for
this problem is to search for a subset in the set of all label candidates of all features that
is maximum and conflict-free (i.e., there are no two labels in this subset that overlap
each other or another feature). That means to try to place as many labels as possible
with the permission to leave some features unlabeled [CRL08, WWKS01]. In terms of
the objective function the optimal solution is the one with the highest value (i.e., largest
amount of placed labels). A valid solution for the LNMP is conflict-free.

Problem 4 (Label Size Maximization Problem (LSMP)). The goal of the label
size maximization problem is to find a maximum scale factor σ > 0 by which all labels

10

2.3. Terminology from Graph Theory

(respectively label candidates) are stretched so that each feature is labeled and no two
labels overlap in the corresponding solution [ArDT09, WWKS01]. Hence a valid solution
for this problem is a conflict-free labeling, but the labels may become tiny.

Problem 5 (Minimum Number of Conflicts Problem (MNCP)). The MNCP
problem was defined by Ribeiro and Lorena [RL08] but was also known as the Label
Overlap Minimization Problem [Kla01, ArDT09]. Unlike the above mentioned problems
in the MNCP label overlaps are allowed. The objective is to label all features without
scaling them and at the same time minimize the total number of conflicts in the whole
labeling. A valid solution for the MNCP is conflict-minimal.

Problem 6 (Maximal Number of Conflict Free Labels Problem (MNCFLP)).
The MNCFLP is another approach where all labels have to be labeled without stretching
them. But the objective for this kind of problem is to maximize the number of labels that
have no conflicts. Or in other words to minimize the number of labels that are obstructed
by at least one other label [MRL10].

Problem 3 as well as Problem 4 lead to solutions that are conflict-free and hence have no
two labels in the solution that overlap. Problem 4 additionally ensures that all features
are labeled like it is also in Problem 5 and Problem 6. The last two problems lead to
solutions that are not free but minimal in their number of overlaps. All of the above
mentioned problems can also be described in a weighted way, e.g., weights as priorities
for features or label candidates, or weights for specific label size.

2.3 Terminology from Graph Theory

A graph is a tuple G = (V,E) of a set V of vertices and a set E of edges (u, v) ∈ V × V .
The edges can have an orientation or no orientation and the graph is then called either
a directed graph or an undirected graph respectively. In an undirected graph G an edge
(u, v) ∈ E with u, v ∈ V is identical to the edge (v, u), i.e, the edges are unordered
pairs of vertices. We say that two vertices u, v ∈ V are adjacent to each other if they
are connected by an edge (u, v) ∈ E. In an undirected graph this adjacency relation is
symmetric.

A clique C in an undirected graph G is a subset of vertices C ⊆ V such that all vertices
in C are adjacent in G. A clique is called maximum clique if there is no other clique in
G that is larger in cardinality than C.

A vertex cover D of an undirected graph is a subset of vertices D ⊆ V such that
for each edge (u, v) ∈ E with u, v ∈ V at least one of its endpoints is in D, i.e.,
(u, v) ∈ E ⇒ u ∈ D ∨ v ∈ D. A vertex cover is called minimum vertex cover if it is of
smallest possible size.

An independent set S of a graph G is a subset of vertices S ⊆ V such that no two vertices
u, v ∈ S are adjacent in G. An independent set is maximal if it is not properly contained

11

2. Preliminaries

in any other independent set of G. In a maximal independent set S each vertex u in
the complement set V \ S is connected by an edge (u, v) ∈ E to some vertex v ∈ S, i.e.,
every vertex u ∈ V either is in set S or has at least one adjacent vertex v ∈ V in G that
is contained in set S. A maximum independent set S is an independent set that is largest
in its cardinality over all independent sets of graph G, i.e., there exists no independent
set S′ ⊆ V containing more elements than S. Let D ∈ V be a vertex cover of graph G.
Then the complement V \D is an independent set of G.

Finding a maximum clique or independent set as well as finding a minimum vertex
cover are classical optimization problems in computer science and are known to be
NP-hard [GJ79].

12

CHAPTER 3
Data Structures

In this chapter we give an overview of data structures useful for automatic label placement.
Section 3.1 describes the concept of quadtrees that are used for storing spatial data
preserving their location. Section 3.2 describes the concept of conflict graphs that are
used for describing conflicts between label candidates.

3.1 Quadtree
There is a high need on storing and indexing multi-dimensional data. This is not restricted
to spatial data, as we need it for this thesis, but any multi-dimensional information that
has to be stored or retrieved on composite keys, for example correlation data records where
the two dimensions represent age and annual income. Hence, much research has been done
to find efficient data structures. Even if the data are not spatial the multi-dimensional
data records are often related to multiple dimensions in space where each dimension
represents one attribute of the record [FB74]. Well known index structures for this
kind of data are besides the Quadtrees [FB74] for example Octrees (the tree-dimensional
analogon to the quadtree) [Mea82], kd-trees [Ben75] or R-trees [Gut84]. An often used
approach is the R*-tree [BKSS90] which is a variant of the R-tree. Since the complexity
increases with the number of attributes (=dimensions), techniques were developed to
reduce high-dimensional datasets to low or medium-dimensional datasets (usually 8 or
fewer dimensions) [KP07].

Especially when we look on spatial data, the datasets are usually very large and irregular
distributed. When searching for specific data records or query over specific ranges of
spatial objects, good indexing techniques are essential. Otherwise the whole dataset has
to be searched to find spatial objects with a specific criterion which is unacceptable in
practice for a large amount of data. For example if we have the set of all cities, towns and
villages of Austria given by their longitude and latitude as the two keys (two-dimensional
data records) a possible query could be to find all towns and villages that are within the

13

3. Data Structures

D

C

A

B

E

F

A

B C D

E

F

NE

NW
SW

SE

Figure 3.1: A point quadtree with subregions of different size and its tree representation.

area of 50 kilometres to the north and 50 kilometres to the west of Vienna. This query
shall be reasonable fast. Running through the whole set of places in Austria will be far
to slow.

Another aspect a good indexing technique shall be able to handle is irregularly distributed
data. In spatial datasets there can be many spots where the data are dense (e.g., cities
and agglomerations) and on other regions the data are sparse or empty (e.g., oceans).
Considering for example a grid file [NHS84] as an indexing structure there will be many
overfull cells and other cells which are empty but also have to be stored. This space
overhead shall be avoided in a good indexing technique.

A quadtree is a data structure first presented by Finkel and Bentley in 1974 [FB74].
The quadtree is a tree data structure for indexing two-dimensional data records and is
commonly used for image processing [SB94], mesh generation [PM98] or spatial indexing
with range queries (also known as window queries) [Sam90, AS95]. The term quadtree
meanwhile has more than one meaning and actually describes a class of hierarchical data
structures that are based on the principle of recursive decomposition of space. They
differ in the type of data they represent (e.g., points, rectangles or curves), the resolution
(describes the number of decompositions and can be variable or fixed) or the process of
decomposition, i.e., decomposition into subregions of equal size (quadrants) or regions of
different size. If the subregions for one level are all of the same size it is called regular
decomposition [Sam90].

As the name suggests, in a quadtree the space is partitioned by recursively subdividing it
into four subregions (also called quads, cells or buckets). In general these regions can be
squares or rectangles and do not need to have the same size within a quadtree [FB74].
To ease the denotation of the subregions they are often described in the map analogy of
northeast (NE), northwest (NW), southwest (SW) and southeast (SE).

Now looking on the tree representation, a quadtree is a rooted tree where each node is

14

3.1. Quadtree

(a) low node occupancy (b) compressed quadtree

Figure 3.2: An unbalanced point region quadtree (a) and a compressed quadtree (b)
based on the same input set.

either an internal node with exactly four children or a leaf node with no children (the root
node covers the entire area). Figure 3.1 shows a general point quadtree (further described
in Section 3.1.1) with quads of different size and its corresponding tree representation.
We define the ordering of the children in the tree representation as follows: the NE quad
is the first child, the NW quad is the second, the SW quad the third and the SE quad
corresponds to the fourth child.

Unlike other index structures (e.g., B-tree or R-tree) quadtrees are unbalanced. This
is on the one hand an advantage when it is used with data where a lot of balancing
would be necessary using a balanced data structure. On the other hand the unbalanced
property of quadtrees can be a drawback because the tree can be fanned out and there
can be a lot of not occupied (i.e., empty) nodes that also have to be stored. Figure 3.2a
shows a quadtree with low node occupancy. It shows an extreme case of a point region
quadtree (described in more detail in Section 3.1.1) with a maximum capacity of one
point per cell. It contains three points which are located in a way that the quadtree
has to be partitioned a lot and that one deep branch is created while most of the leaves
are empty. But this artefact can be eliminated by efficient node packing techniques like
the compressed quadtree [HP05] or the skip quadtree [EGS05] which is actually a region
quadtree (described in Section 3.1.1) based on a compressed quadtree. Figure 3.2b shows
a compressed quadtree based on the same dataset of the point region quadtree shown in
Figure 3.2a.

An advantage of the quadtree is the disjoint and regular space partitioning strategy. It
ensures that there are no overlaps between the quadrants. Different to this is the R*-tree
which does not result in disjoint decomposition of space and suffers from overlaps of the
MBRs (minimal bounding rectangles) even for low dimensional data [KP07].

An important approach in literature is the pyramid technique introduced by Berchtold
et al. [BBK98]. Like the quadtree it is an indexing technique that partitions space into
disjoint regions and can be used even for data of higher dimensionality. In the pyramid
technique data space is first divided into 2d-pyramids which have their top in the center
of the space and secondly these pyramids are cut into slices parallel to their basis. With

15

3. Data Structures

(a) (b) (c)

8 9

1 6 7

2 3 4 5

10 15 16

11 12 13 14

(d)

Figure 3.3: (a) An image, (b) its binary array representation, (c) its decomposition to
maximal blocks (d) and its tree representation.

this partitioning strategy d-dimensional data points are transformed to 1-dimensional
values (keys) which then can be stored in any efficient one-dimensional order-preserving
index structure (e.g., B+-trees). The keys are stored together with the corresponding
d-dimensional points in the leaf nodes [BBK98]. Kim and Patel [KP07] showed that
the pyramid technique outperforms other indexing structures on higher dimensions but
performs worse than quadtrees for low dimensions. Additionally they showed that the
quadtree performs much better than R*-trees and the pyramid technique on skewed data
(i.e., data with areas where data points are dense and other where there are no points).

Gargantini [Gar82] introduced an effective representation of quadtrees called linear
quadtree which is said to save 66 percent of storage required by a regular region quadtree.
The linear quadtree encodes only the non-empty quads as integers and stores them in a
sorted array. Samet et al. [SRSW84] further improve this quadtree and use the B-tree
indexing structure instead of an array and therefore benefits from the efficient and well
performing B-trees.

3.1.1 Common Types of Quadtrees

As described above there is not “the one” quadtree but the term describes a class of data
structures. In this section some common types of quadtrees shall be described. This
list is not to be regarded as exclusive. A more comprised list of quadtrees and other
hierarchical data structures can be found in [Sam84].

Region Quadtree

The region quadtree is the most common quadtree representation. It partitions the
two-dimensional space into four equal-size squares as long as more refinement is desired.
So the depth of the quadtree is dependent on the given input data. The sides of the
squares are always a power of two long and the value stored in a node is always applied to
the whole area of the quad [Sam90]. Since the region quadtree often represents an image
array, let us explain the region quadtree with the image shown in Figure 3.3a. It shows
an image with size 23 × 23 pixels. Figure 3.3b shows the binary array representation of
this image. A pixel value of 1 means that it belongs to the picture element (the gray

16

3.1. Quadtree

Figure 3.4: A point region quadtree with equal size quadrants and its tree representation.

image region) and a pixel value of 0 means that it does not belong to it. When creating
the region quadtree it is partitioned until there are only 1s or 0s in one quad. This can
go down until the block size of 1× 1 (one pixel). The optimal partitioning with maximal
blocks is shown in Figure 3.3c and the resulting region quadtree of the image can be seen
in Figure 3.3d. The gray and white nodes represent the corresponding regions in the
image while the black nodes represent inner nodes.

Point Region Quadtree (PR Quadtree)

The PR quadtree is an adaption of the region quad tree and is intended to store point data.
The difference is that in a region quadtree the value stored in a leaf node applies to the
entire area of the node while the leaf nodes of the PR quadtree store a list of points that
lie within the boundings of the corresponding quad. Each node has a maximum capacity
for storing points. When this capacity is exceeded (e.g., when inserting a new point into
a full quad) the quad gets divided into four new subquads and all the stored points of
this quad are put to a proper subquad. Figure 3.4 shows the equal-size decomposition
of a point region quad tree with maximal capacity of one point per quad. The point
data are only stored in the leaf nodes indicated by the red nodes. Empty nodes are
represented by white squares. The depth of the tree depends on the spatial distribution
of the points and therefore the quadtree can be quite unbalanced. Remember the point
region quadtree shown in Figure 3.2a. The tree could even be worse if the two points
on quadtree level four are much closer together. So the depth of this kind of quadtree
can not be expressed in the number of points it stores but as de Berg et al. [dBvKOS00]
describe, the depth is related to the distance between the points and the size of the initial
quad (the boundings of the root node). The depth is at most log(s/c) + 3

2 , where c is the
smallest distance between any two points and s is the side length of the root quad. De
Berg et al. [dBvKOS00] showed a proof for that.

17

3. Data Structures

Point Quadtree

The point quadtree is an adaption of the binary search tree to two dimensions and is
used to represent multi-dimensional point data. This type of quadtree divides its quads
in rectangular subregions that do not need to be square as it is for the above mentioned
quadtree types. Every time a point is added to the point quadtree a search is done first
to check if the point already exists in the tree. If not then the point is added to the
appropriate quad (a leaf node) which is then divided in four new subregions with the
point as the center of the subdivision. So the inserted point has four empty child nodes.
The depth of the tree is strongly dependent on the insertion order. So if we insert a set
of points in a “bad” ordering the depth can be linear in the number of input points.

Figure 3.1 shows the different size of the subregions in a point quadtree. The figure on
the right side shows the tree representation. Each inner node contains exactly one of the
input points. The leaf nodes are empty and also have to be stored. The point quadtree
was improved and surpassed by the kd-tree [Ben75].

3.1.2 Operations on the Quadtree

Since the operations are different on various types of quadtrees we will consider here the
operations on a point region quadtree because we use it in our thesis. The point region
quadtree may be not the fastest or most efficient quadtree for storing the spatial data we
need in our thesis, but it is a simple approach that satisfies the requirements of our thesis.
Other approaches like the linear quadtree, skip quadtree or even the compressed quadtree
will not use that much memory space and may perform better (which we actually did not
prove since it lies outside the realm of this thesis). But it is no main goal of this work
to find the best data structure for storing the spatial data. However, the framework is
implemented in a way so that the data structure can be exchanged by a better performing
structure very easily.

Insertion

Since the quadtree is unbalanced insertion into a PR quadtree is straight forward and is
similar to the insertion in ordinary binary search trees [FB74]. Starting at the root, each
of its child nodes is checked if the point we want to insert lies within its boundaries. If the
point lies outside of the boundings of the root quad it can not be added to the quadtree.
Since the quads are disjoint only one child node is selected at each level. This is done
recursively until we find the node respectively the quadrant the point belongs to. Since
a point can only be inserted into a leaf node the search goes down until a leaf node is
reached. The point is then added to the point list of this node, given that the capacity is
not exceeded. If there is no space in this list the quad is recursively subdivided into four
subquads until the point can be added. The points of the parent node are distributed to
the proper child nodes.

For the point region quadtree it is irrelevant in which order the points are added. The
resulting tree will always be the same. In case of “bad” datasets (i.e., many points are

18

3.1. Quadtree

located close to each other and others are far away from them) the quadtree may get
subdivided very often and may result in a completely unbalanced tree. As mentioned
before the depth of the PR quadtree can not be described in the number of points it
stores but in the distance between the points and the size of the initial quad. So the
complexity for inserting a point into the quadtree is in O(log(s/c)) where c is the smallest
distance between any two points including the point we want to insert and s the side
length of the root quad. But in the case of a well distributed dataset and therefore a
well balanced quadtree a point can be inserted in O(log n) time where n is the number
of points stored in the quadtree.

Deletion

The deletion of a point is the counterpart of the insertion and works similar to it. Instead
of subdividing a quad it may require that some nodes are merged. First we try to find
the point. Therefore we start at the root and go down the tree like we do for insertion
until we reach a leaf. Again there can only be one leaf that contains the point, since the
quads are disjoint. Arrived at the leaf we look into its list of stored points. If it does not
contain the point nothing is done and the point is considered as deleted. Otherwise we
delete the point and check if we have to merge.

Let v denote in the following the node where the point was deleted from. Then merging
has to be done if the sum of all points stored in the subtree rooted in the parent of v
is less than or equal to the capacity of one node. If we need to merge we first go up to
the immediate parent of v and check if all the other children are leaves. If not then we
cannot merge because a child contains a subtree and v is kept as empty leaf node. If all
children of the parent are leaves we check if the sum of points stored in the leaves exceed
the capacity of the tree. Only if the sum is less or equal to the capacity we can merge
and move all stored points to the parent node. The child nodes are not used any more
and are deleted. If merging was successful we need to recursively check the parent nodes
to see whether we can continue merging until a merge is no longer possible.

The complexity for the deletion of a point from the point region quadtree is O(d), where
d is the depth of the quadtree. Its just a point search with subsequent deletion of it.

Point Search

Searching for a specific point is as simple as going down the correct branch deciding on
every inner node in which child node the point lies that we want to find. This is simply
done by comparing the coordinates of the point with the bounding box of the quad each
quadtree node represents. When we reach a leaf node we just have to look into the list of
points stored in this node if we can find it. If not then the point does not exist in the
quadtree. Searching for a point is in O(d) where d is the depth of the quadtree.

19

3. Data Structures

Figure 3.5: A window (blue rectangle) in a point region tree.

Region Search (Window Query or Range Query)

A typical query on multi-dimensional data is to request all records that meet two-
dimensional criteria, i.e., records that lie within a specific range (also called window).
Thus a window can formally be defined as w = {(x, y) | (x, y) ∈ [x1 : x2] × [y1 : y2]}
where the interval from x1 to x2 describes the first dimension and interval y1 to y2 the
second dimension [AS95]. Taking up the example of correlation data records combining
age and annual income mentioned at the beginning of this section, a range query can
be to find all persons that are between 30 and 40 years old and have an annual income
between 10,000 and 20,000 euro. The resulting window can be described with w = {(x, y)
| (x, y) ∈ [30 : 40]× [10, 000 : 20, 000]}. Figure 3.5 shows a possible window w in a point
region quadtree.

This window (in the following denoted as “range”) is then used by the range query
algorithm which can be seen in Algorithm 3.1. Starting at the root the initial call for
this recursive procedure will be QueryRange(range, root). We first initialize an empty
list L where we want to gather all points that lie within the range. We then check if the
boundary of the current quad intersects (or includes) the given range r (line 2). If not
then return and ignore the whole subtree since no node in the subtree will intersect r. If
we have an intersection detected (line 5) we test if we are in a leaf node and if true we
add all points to our list L that are located within r. Else if we are currently in an inner
node we recursively perform the query range on all four child nodes (NE, NW, SW and
SE) and add their returned list to our list L (line 13). When the recursion returns we
have received a list of all points within r.

All in all the region search works like the point search but with the difference that we
possibly have to go down in several subtrees to get all points that lie within the window.
The advantage of the quadtree data structure respectively of a region search over other

20

3.2. Conflict Graph

indexing structures is, that in general many records stored in the tree do not need to be
examined.

The worst case is if the window is as big as the bounding box of the root node.
Hence we have to examine all subtrees (i.e., all nodes). As the number of nodes is
in O((d+ 1) · n) [dBvKOS00], where d is the depth of the quadtree and n the number of
points stored in the quadtree, the range query can be done in worst case in O((d+ 1) · n)
time.

Algorithm 3.1: QueryRange(range r, node n)
Input: A two-dimensional range r and a node n on which the query is applied.
Output: A list L containing all points within r.

1 L = ∅;
2 if boundary of this quad does not contain or intersect r then
3 return L;
4 end
5 if this node is a leaf then
6 for p← points stored in n do
7 if p lies within r then
8 add p to L;
9 end

10 end
11 else
12 for child ← children of n do
13 L← L ∪ QueryRange(r, child)
14 end
15 end
16 return L;

3.2 Conflict Graph
Many approaches for the label placement problem (exact or heuristic) have their solution
calculations based on conflict graphs, especially when using a discrete positioning model
where the positions and the number of label candidates are fixed. The first formulation of
a conflict graph was done by Kakoulis and Tollis [KT98]. They described a graph, called
overlap graph, that represents the relation between features and label candidates as well
as label candidates among themselves. It contains a node for every feature and every label
candidate and an edge for those who are related to each other. Most other researchers
in literature omit the relations between features and their candidates but only keep the
relations between label candidates in their conflict graph [MRL10, WWKS01, CRL08].

Formulating the labeling problem with a conflict graph revealed the close relation to the
independent set or more specific to the maximum independent set problem. Based on

21

3. Data Structures

(a)
(b)

Figure 3.6: Three point features and their corresponding conflict graph.

this approach much research was done (e.g., [SVA00, WWKS01]).

Strijk et al. [SVA00] show a reduction from the map labeling problem to the maximum
independent set problem and describe different heuristics that are based on finding a
large or optimal independent set as well as heuristics for the map labeling problem itself.
Additionally they describe a branch-and-cut optimization algorithm and compare and
evaluate it with the heuristics on randomly generated map labeling problem instances.

But using a conflict graph is not restricted to solving the maximum independent set
problem. Cravo et al. [CRL08] applied a greedy randomized adaptive search procedure
(GRASP) to the point feature label placement problem based on the conflict graph
structure. GRASP is a metaheuristic first introduced by Feo and Resende [FR89] and
is used to find approximate solutions to combinatorial optimization problems. It is an
iterative process where each iteration consists the two phases of construction and local
search. In the first phase a greedy randomized solution is constructed which is then
improved in the local search phase to find a local optimum. The best solution over all
iterations is kept [RR10].

Formal Definition of the Conflict Graph

Given a set F of graphical features to be labeled, and a set L of label positions for all
fi ∈ F , the conflict graph G = (V,E) is defined as follows:

• V = {v1, v2, ..., vn} where n = |L| and every vi represents a candidate l ∈ L

• E = {(vi, vj) | vi, vj ∈ V , i 6= j, vi and vj overlap}

In other words the conflict graph contains for each label candidate l ∈ L a node in the
set of its vertices V . Therefore the number of nodes in the conflict graph is equal to
the number of label candidates (|V | = |L|). The set of edges E contains for all node
pairs v, w ∈ V that overlap each other (i.e., their bounding boxes intersect or one box
lies within the other) an edge (v, w) which is equal to (w, v) since the conflict graph is
undirected. Note that a node can not be in conflict with itself.

22

3.2. Conflict Graph

Figure 3.7: The maximal possible overlap of two point features with the fixed four
position model.

Figure 3.6a illustrates three point features (u, v and w) and their label candidates (ui, vi

and wi with i = 1..4) in a fixed four position model. The corresponding conflict graph
is shown in Figure 3.6b. Each label candidate is in conflict with all other candidates of
the same feature (i.e., the candidates of each feature form a clique in the conflict graph).
This is indicated by the black edges. The overlappings of w2 with u3 and u4, of w1 with
u4, v2 and v3 as well as the overlapping of w4 with v3 are represented in the figure as red
edges.

Complexity

Assuming a discrete position model with a fixed number of possible positions, the number
of nodes in a conflict graph G = (V,E) is always in Θ(n) where n is the number of
features (regardless of the number of overlaps) or more precisely the number is always
c ·n where c is the number of possible positions per feature. The complexity for the edges
is different: assuming that no label candidate of one feature overlaps a label candidate of
another feature, i.e., there are no two nodes vi,k, vj,l ∈ V so that (vi,k, vj,l) ∈ E where i
and j are indices of two features fi, fj ∈ F (with i 6= j) and k and l are indices of the
label candidate of feature fi respectively fj . Then the number of edges of G is in Θ(n)
too.

But considering the worst case where every feature overlaps every other which is actually
unrealistic but possible, e.g., consider labeling all bars and restaurants of a city on a
map with a very low zoom level, the number of edges grows fast. Figure 3.7 shows two
point features in a fixed four position model that have a maximal overlap (regardless
if they have label candidates of same size or not). So additionally to the six overlaps
the label candidates of both features have separately, w4 has one, w1 and w3 have two
and w2 has four more overlaps that sum up to nine new overlaps. We can formally
describe this with 6n + 9

∑n−1
i=1 i where n is the number of point features and

∑n−1
i=1 i

describes the maximum number of conflicting point features. We multiply this sum by
nine because as we have seen, two point features can have maximum nine conflicts of their
label candidates. Simplifying then leads to 6n+ 9 · n2−n

2 = 9n2+3n
2 . Thus the number of

edges in this worst case for the fixed four position model can be described by the explicit
function g(n) = 9n2+3n

2 where n is the number of features. So the number of edges grows

23

3. Data Structures

in worst case quadratic and is in O(n2).

Hence the conflict graph can get very large and complex even for low numbers of features
so that it is hard to deal with it. For example when we have a set of thousand features
that overlap each other there can already be a million edges. Wagner et al. [WWKS01]
presented an approach of three rules that reduce the size of a given conflict graph without
influencing the optimality of the solutions. The basic idea is to apply the three rules
exhaustively to all given features to label as many as possible and at the same time
reduce the number of label candidates of other features and thus removing edges from
the conflict graph.

24

CHAPTER 4
Labeling Algorithms

This chapter covers different approaches for automatic map labeling. We use algorithms
for the point feature label placement problem proposed in the literature or adapt them
to our labeling problem. All approaches presented in this chapter assume a discrete
positioning model and most of them are based on a conflict graph described in the
previous chapter. The algorithms are intended to solve the point feature labeling problem,
but they are not necessarily restricted to point features only. More precisely, if we use a
conflict graph as the basis for our algorithm we are always independent of the type of
the features we want to label.

4.1 Maximum Independent Set Approaches
The maximum independent set problem is a well-known problem in graph theory where
the goal is to find a maximum subset of vertices in a graph so that no two vertices
contained in the set are adjacent. As the map labeling problem can be described with a
conflict graph where the vertices represent label candidates and the edges represent the
conflicts (i.e., intersections) between them, the similarity can be seen easily. This is since
in map labeling (regarding the label number maximization) it is necessary that no two
adjacent vertices shall be labelled at the same time and thus a valid solution shall form a
pairwise disjoint set, or in other words, form an independent set. For the label number
maximization problem the task is to find a maximum independent set. However, it is
known that computing a maximum independent set is NP-hard and thus approximation
algorithms or heuristics are necessary for larger instances.

Agarwal et al. [AvKS98] present in their paper an approximation algorithm for labeling
point features with rectangular labels of fixed but different size as well as an approximation
scheme for labels with unit height and varying width. Their polynomial-time approxima-
tion algorithm is based on divide and conquer and computes a large independent set in a
set of rectangles in the plane.

25

4. Labeling Algorithms

Strijk et al. [SVA00] show a reduction from the map labeling problem to the maximum
independent set problem and describe different heuristics that are based on finding a
large or maximal independent set as well as heuristics for the map labeling problem itself.
Additionally they describe a branch-and-cut optimization algorithm and compare and
evaluate it with the heuristics on randomly generated map labeling problem instances.

Verweil and Aardal [VA99] present a branch-and-cut algorithm for finding maximum
independent sets in the conflict graph and apply it to instances of map labeling. They
incorporated a local search heuristic in their algorithm to improve the quality of the
solution found by the branch-and-cut part.

More recent approaches use reductions to reduce the input size for the maximum inde-
pendent set problem while maintaining the optimality of the solutions. These reductions
turned out to be critical for efficient maximum independent set algorithms [Str16]. Some
approaches are based on kernelisation [GD06, AKCF+04], which is a polynomial-time
preprocessing stage in which the input to the algorithm is reduced to a smaller input,
called the kernel. The output of an algorithm on the reduced input shall be the same
or shall be easy to transform to the output for the original problem. Kernelization is
often used in algorithms that solve the (minimum) vertex cover problem, which is the
complementary problem to the (maximum) independent set problem. So if C is a minimal
vertex cover of a graph G = (V,E), then V \C is a maximum independent set of the
graph. Hence, when we solve the minimum vertex cover problem for a graph we can
simply transform it to a maximum independent set.

Butenko and Trukhanov [BT07] showed a reduction based on critical independent sets
which are solvable in polynomial time, and demonstrated their approach to solve the
maximum independent set problem on large graphs with up to 18,000 vertices. Very
promising is the work of Akiba and Iwata [AI16]. They showed that applying advanced
reductions is highly effective in practice and that an exact minimum vertex cover, and
hence an exact maximum independent set, can be found in graphs with up to 2 million
vertices. But they focus on sparse graphs of real networks (e.g., social networks, web
graphs or road networks).

Strash [Str16] showed that only two simple reductions are sufficient for many real-world
instances namely vertex folding and isolated vertex, and that the power of advanced rules
comes largely from their initial application (i.e., kernelization) and not their repeated
application during branch-and-bound.

The reductions are always done as a preprocessing step. Since these techniques seem to
be very promising it would be nice to see what impact such reductions would have on
our labeling instances in our framework. But this exceeds the realm of this thesis and
implementing reductions is future work.

Priorities

If every vertex has a (possibly different) weight, meaning that each vertex has a different
importance or priority, then we can build a maximum weight independent set. This is an

26

4.2. SAT Approaches

independent set where the sum of the total weights of the vertices in the independent set
is maximum. The maximum independent set problem is a special case of the maximum
weight independent set problem where all weights are one.

4.2 SAT Approaches
In propositional logic a literal is a Boolean variable p, called positive literal, or its negation
¬p, called negative literal. A logical operator is a symbol to logically connect two or
more literals or formulas, e.g., the conjunction (“AND”, denoted by the symbol ∧) or
the disjunction (“OR”, denoted by the symbol ∨). A formula φ is a set of literals that
are connected by logical operators. A satisfying truth assignment for a formula is an
assignment of truth values to its propositional variables such that the whole formula
evaluates to true. A clause is a disjunction of literals, i.e., all literals are connected with
the logical operator “OR”. A formula is in conjunctive normal form (CNF) if it is a
conjunction of one or more clauses. Every formula φ can be transformed to an equivalent
formula that is in CNF. If every clause consists of exactly two literals, then the formula
is of the type 2-SAT and can be evaluated in time proportional to its length. Finding an
assignment for any other k-SAT problem with k > 2 is NP-complete.

The Boolean satisfiability problem (also called SAT) is well known in computer science
and is the problem of determining if there exists an interpretation (i.e., a truth assignment)
that satisfies a given Boolean formula. It is a NP-complete decision problem and is well
researched. Hence there are many practically good and fast SAT solvers (i.e., algorithms
that decide if a given Boolean formula has a truth assignment) developed for these
decision problem.

In the area of map labeling for example Formann and Wagner [FW91] or Marks and
Shieber [MS91] studied the labeling problem in relation to the SAT problem. Both have
proved it to be NP-complete. Forman and Wagner researched the following point labeling
problem which they call the packing problem. Given a set of points in the plane, label
them with axis-parallel equal-sized square labels and make them as large as possible so
that no two labels overlap and that each point is labeled. They used the four-position
model where the point lies in one of the corners of the labels. Each label candidate is seen
as a Boolean variable and for each pair of overlapping candidates a clause is generated.
The set of clauses is then checked if there is a satisfying truth assignment.

Formulation

Since we have the conflict graph as a basis for our labeling approach it is quite straight
forward to translate the conflicts to SAT and generate a corresponding 2-SAT formula in
conjunctive normal form. Let us formulate our labeling problem as follows.

For a given conflict graph G = (V,E) it holds that there is an edge (u, v) ∈ E between
two nodes u, v ∈ V if and only if they are in conflict with each other (i.e., the label
candidates overlap). Thus, introducing two Boolean variables pu and pv and associate

27

4. Labeling Algorithms

them to the label candidates u and v we can build the clause ¬(pu ∧ pv) = ¬ pu ∨ ¬ pv.
This indicates that we do not want that pu and pv are true at the same time meaning u
and v are not both set as label for their feature simultaneously since there is a conflict
between them in the conflict graph. A Boolean value of 1 (=true) means in our case that
the label candidate is assigned to the feature as its label. The Boolean value of 0 (=false)
means the opposite.

Now generating for every edge in E such a clause we can generate the Boolean formula
as follows. ∧

(u,v)∈E

(¬pu ∨ ¬pv) (4.1)

It is easy to see that the formula is true if pu = 0 for all u ∈ V meaning that all Boolean
variables are set to false and thus no point feature gets a label. But this is not what we
want, since we want to maximize the number of labeled features.

The Way to Maximization

Hence we have to go beyond this and improve our approach by trying to maximize
the number of positive literals. For this we reformulate our labeling problem as a
maximum satisfiability problem (MAX-SAT) which is a generalization of the classical
Boolean satisfiability problem. MAX-SAT is an optimization problem of determining
the maximum number of clauses that can be satisfied for a given Boolean formula in
conjunctive normal form.

Now adding for each node u ∈ V a clause with the single literal pu indicating that we
want the literal to be positive, we get the formula shown in Equation 4.2. In conjunction
with Equation 4.1 it then is solved as MAX-2-SAT problem. While the 2-SAT problem
can be solved in polynomial time in the product of the number of clauses and the number
of variables in the given instance, the MAX-2-SAT problem is NP-hard [GJ79].∧

u∈V

pu (4.2)

The issue that arises here is that a clause representing a conflict between two nodes may
now be violated, see Table 4.1. It shows a very simple example of the Boolean variables
of two label candidates r and s that overlap (i.e., ¬r ∨ ¬s is in the set of clauses) and all
possible truth assignments. The last line counts the number of positive clauses. As can
be seen the assignment r = s = 1 is also maximal but the very important clause ¬r ∨ ¬s
is violated. Thus we need some priorities for the clauses that represent the conflicts of
the conflict graph. Here the partial maximum satisfiability problem (PMAX-SAT) can
do the trick. The PMAX-SAT problem subdivides the set of clauses in a set that has
to be satisfied (hard clauses) and a set where the positive clauses are maximized (soft
clauses) or in other words the number of falsified soft clauses is minimized [ABL10]. In
our case the conflict clauses are hard clauses and the clauses in Formula 4.2 are soft

28

4.2. SAT Approaches

r 0 0 1 1
s 0 1 0 1

¬r ∨ ¬s 1 1 1 0

Sum 1 2 2 2

Table 4.1: Three clauses, their truth assignment and the sum of positive clauses for a
single conflict.

clauses. Partial MAX-SAT is between MAX-SAT where no clause has to be inevitably
satisfied (i.e., all clauses are soft) and SAT where all clauses have to be satisfied (i.e., all
clauses are hard). The PMAX-SAT problem is NP-hard [ABL10].

Priorities and Weighted Partial MAX-SAT

In PMAX-SAT the soft clauses can be assigned different weights which can be seen as
the penalty for falsifying the clause. This makes the PMAX-SAT instance weighted. The
aim of weighted PMAX-SAT is to find an assignment that satisfies all the hard clauses
and minimizes the sum of penalties of the falsified soft clauses. The idea behind giving
different weights to soft clauses is that not all clauses are equally important. Hard clauses
can be seen to have infinite weight (i.e., maximal importance) [ABL10]. A practical
simple value for the weight of hard clauses is the sum of the weights of all soft clauses plus
one. So falsifying one hard clause has a penalty higher than it would be when falsifying
all soft clauses.

In our thesis we use the weighting of soft clauses on the one hand for priorities of some
label candidates. Higher priority means a higher weight respectively a higher penalty
and hence it is more likely that the clause is satisfied. This automatically means that the
objective of a label number maximization is changed to a maximization of the weights of
all labels in the solution. On the other hand we use weights of soft clauses to preserve an
initial solution (see Problem 2), e.g., for recalculations after a label modification, where
the soft clauses representing the labels in the initial solution have a slightly higher weight
than the others. The question that arises is: How can we preserve the current solution
as much as possible but also try to maximize the elements in the solution, i.e., maximize
the number of labeled features? The answer lies in a correct weighting of the soft clauses.

Assume that all label candidates have the same priority. The weighting of the clauses for
the recalculation can be done as follows: Hard clauses remain almost unchanged in their
weight which is still the sum of weights of all soft clauses. To achieve our goal that the
labels of the initial solution are also contained in the newly calculated solution, we have
to adapt the weights of the soft clauses depending whether they were contained in the
initial solution or not. Let w denote the weight of a soft clause in the initial solution with
k elements. Then the new clauses for label candidates that were not contained in the
solution still have a weight of w. Clauses contained in the initial solution which we want
to preserve, get a weight of w + ε with ε > 0 assigned so that the chance is higher that

29

4. Labeling Algorithms

they get satisfied in the new solution because of the higher penalty. We can not choose ε
arbitrarily since we still prefer a maximum solution to a solution that is similar to the
initial solution. Consequently we have to choose an ε > 0 so that (k − 1)(w + ε) < k · w
or simplified ε < w

k−1 . This indicates that we prefer a solution with maximal elements to
a solution that is similar to the initial solution but with one or more elements less.

Now allowing the candidates to have different priorities we can formulate the above
constraint as sums over the weights with

∑k−1
i=1 (wi +ε) <

∑k
i=1wi which can be simplified

to ε < wr
k−1 with r ∈ {1, 2, .., k} where wr is the weight of a possible removed label

candidate from the initial solution.

If we choose ε < wmin
k−1 with wmin = min(w1, ..., wk) then recalculating a solution after a

label modification and preserving the previous solution as much as possible works with
weighted PMAX-SAT for instances with and without priorities. The only drawback is
that after a priority modification of a label this approach will fail and we can neither
guarantee that the number of labels is maximized nor that the previous solution is
preserved as much as possible. Then automatically the sum of weights of the labels in
the solution is maximized.

4.3 Three Rules Algorithm
The three rules algorithm is an approach proposed by Wagner et al. [WWKS01] and aims
for label number maximization. The idea of this algorithm is to separate the geometric
and the combinatorial parts of the labeling problem. It therefore uses the conflict graph
of the label candidates on which a set of rules is applied to simplify it without influencing
the size of an optimal solution. The advantage of this algorithm is that it does not
depend on the shape of the labels and can be applied to label point, line and area features
given that each feature has a precomputed finite set of label candidates. It is quite
easy to implement, runs fast and returns good results in practice as they show in their
paper [WWKS01].

The algorithm consists of two phases:

• Phase I applies the set of rules exhaustively to all features.

• Phase II is a heuristic that eliminates candidates as long as each feature has at
most one candidate left.

This algorithm uses three rules that are designed for rectangular, axis-parallel label
candidates. The number of label candidates per feature is not restricted but for simplicity
they are described for the fixed four position model. In the following rule definition pi

describes the ith label candidate of feature p.

The illustrations (Figures 4.1 a to c) shall help to understand the three rules and show
the label candidates that are chosen to label a feature in blue shading and the candidates

30

4.3. Three Rules Algorithm

that are deleted after the rule was applied are drawn with dashed lines. The following
rules are taken from Wagner et al. [WWKS01]:

• Rule 1: If p has a candidate pi without any conflicts, declare pi to be part of the
solution, and eliminate all other candidates of p, see Figure 4.1a.

• Rule 2: If p has a candidate pi that is only in conflict with some qk, and q has a
candidate qj (j 6= k) that is only overlapped by pl (l 6= i), then add pi and qj to
the solution and eliminate all other candidates of p and q, see Figure 4.1b.

• Rule 3: If p has only one candidate pi left, and the labels overlapping pi form
a clique, then declare pi to be part of the solution and eliminate all labels that
overlap pi, see Figure 4.1c.

(a) Rule 1. (b) Rule 2. (c) Rule 3.

Figure 4.1: Three rules to simplify a conflict graph. Images taken from [WWKS01]

Phase I.

In phase one the three rules are applied to all features exhaustively to label as many
features as possible and to reduce the number of candidates of other features. These rules
are conservative which means that after applying the three rules the size of an optimal
solution is the same as before. A proof can be found in their paper [WWKS01].

Every time a candidate pi of a feature p is eliminated it is recursively checked whether
the rules can be applied in the neighbourhood (i.e., the features of label candidates that
conflict with pi). Since the rules work only on the conflict graph, it is irrelevant of which
shape the labels are or for which type of feature (point, line or area) they are applied.

Phase II.

If there are still conflicts in the conflict graph and there are features with more than one
label candidate left after applying phase one, phase two heuristically reduces the number
of candidates for each feature to at most one. It is a heuristic and thus optimality is no
longer guaranteed.

31

4. Labeling Algorithms

Phase two works as follows: we pick from the list of features that still have more than
one label candidate left the one with the most remaining candidates. If there are several
features with equal number of candidates it is not specified which one shall be taken and
depends on the implementation. Then we delete for this feature the label candidate that
has the most conflicts among the candidates. Afterwards we recursively apply the three
rules in the neighbourhood of the eliminated candidate. We repeat the whole process
in a loop until there are no conflicts any more and all features have at most one label
candidate remaining which is assigned to it as its label. The pseudocode of the three
rules algorithm with its two phases can be seen in Algorithm 4.1 which is taken from
Wagner et al. [WWKS01].

Algorithm 4.1: RULES(features F , candidates Cf for each f ∈ F , conflict
graph G)

1: //phase I
2: apply the three rules exhaustively to all features
3:
4: //phase II
5: while there are intersecting candidates do
6: f ← feature with maximum number of candidates in F
7: delete candidate c of f with maximum number of conflicts in Cf

8: apply the three rules exhaustively, starting in the neighbourhood of c
9: end while

Priorities

The initial version of the algorithm or more precisely of the three rules does not support
weighting of label candidates or features. But priorities can be added to the algorithm
by restricting the three rules. For that, rule one and rule three have to be restricted so
that only those candidates are deleted that have a priority less or equal than the selected
candidate (i.e., pi in Figures 4.1 a and c). Rule two has to be restricted so that only
those candidates of p and q are deleted that do not allow a higher value (i.e., most often
the sum of the priorities) compared with pi and qj (see Figure 4.1b).

4.4 Integer Linear Programming Approaches

Linear Programming (LP) is a mathematical optimization technique to minimize or
maximize a linear objective function subject to linear constraints. Formally we can define
it as follows.

Let A ∈ Rm×n be a matrix and b ∈ Rm and c ∈ Rn be two vectors of known coefficients.

32

4.4. Integer Linear Programming Approaches

Then a linear program can be defined as

maximize cTx (4.3)
subject to Ax ≤ b, (4.4)

where (c)T is the transpose of matrix c and x ∈ Rn is an n-dimensional vector of real
variables to be determined. Formula 4.3 represents the objective function (which also can
be minimized) and the inequality shown in 4.4 represents the linear constraints which also
can be exchanged for Ax = b or Ax ≥ b. A vector x ∈ Rn satisfying constraint 4.4 is called
a feasible solution. Finding the optimal feasible solution is the goal of linear programming.
If no vector x can be found then the linear program is said to be infeasible [Zor86, Kla01].

Integer linear programming (ILP) problems are LP problems where all the elements in
x have to be integers. A special form of ILP is the 0-1 integer linear programming (or
binary ILP) where all the elements of x are required to be zeros or ones [Zor86]. Both
problems, the ILP and the binary ILP, are NP-hard [GJ79], while an LP can be solved
in polynomial time [Kar84, GJ79].

A number of algorithms and approaches were developed for the label placement problem
using integer linear programming. Zoraster [Zor90] proposed and implemented an
algorithm for the label placement problem that uses binary ILP and aims at label number
maximization. The algorithm uses a Lagrangean relaxation to produce solutions close
to optimal. Ribeiro et al. [RML11] also developed an algorithm based on a very similar
binary ILP model for label number maximization. They use a Lagrangean decomposition
to partition the problem into small sub-problems.

Consider the following notation: Let i be a feature to be labelled and N the total number
of features. Each feature has a number Pi of candidate positions. Each candidate position
is represented by a binary variable xi,j where i ∈ {1, ..., N} and j ∈ {1, ..., Pi}. If xi,j = 1
then the candidate position j is assigned to the feature i as its label, otherwise xi,j = 0.
Each candidate additionally has a penalty (or profit) represented by wi,j . Let further be
Si,j the set of index pairs (k, t) of label candidates xk,t with i 6= k that conflict with xi,j .

The integer program for label number maximization can be described as follows:

minimize
N∑

i=1

Pi∑
j=1

wi,jxi,j (4.5)

subject to
Pi∑

j=1
xi,j ≤ 1, ∀i = 1, ..., N (4.6)

xi,j + xk,t ≤ 1 ∀i = 1, ..., N ; ∀j = 1, ..., Pi; (k, t) ∈ Si,j (4.7)
xi,j ∈ {0, 1} ∀i = 1, ..., N ; ∀j = 1, ..., Pi (4.8)

Formula 4.5 shows the objective function that has to be minimized (or maximized if
wi,j is seen as profit). Constraint 4.6 shows that each feature can have at most one

33

4. Labeling Algorithms

candidate assigned as its label, constraint 4.7 describes the overlaps of some candidates
and constraint 4.8 denotes that all variables are binary variables. Relating the constraints
to the conflict graph, every edge corresponds to one constraint of the form shown in
Formula 4.7.

Ribeiro and Lorena [RL06, RL08] additionally investigated a 0-1 ILP model combined
with Lagrangean relaxation heuristics for labeling all features and minimize the number
of conflicts. In both papers they rely on a conflict graph in the background. The integer
program we can use here is similar to the one for label number maximization. But for this
Ribeiro and Lorena additionally introduced a new conflict variable yi,j,k,t representing an
edge in the conflict graph, i.e., for every (k, t) ∈ Si,j , where k ∈ {1, ..., N} : k > i and
t ∈ {1, ..., Pk} there exists this binary conflict variable. The slightly modified integer
program is as follows:

minimize
N∑

i=1

Pi∑
j=1

(wi,jxi,j +
∑

(k,t)∈Si,j

yi,j,k,t) (4.9)

subject to
Pi∑

j=1
xi,j = 1, ∀i = 1, ..., N (4.10)

xi,j + xk,t − yi,j,k,t ≤ 1 ∀i = 1, ..., N, (4.11)
∀j = 1, ..., Pi,

(k, t) ∈ Si,j

xi,j , yi,j,k,t ∈ {0, 1} ∀i = 1, ..., N, (4.12)
∀j = 1, ..., Pi

(k, t) ∈ Si,j

As can be seen the constraint 4.10 has been strengthened because now exactly one
candidate has to be assigned as label to the feature. And in constraint 4.11 now
overlapping label candidates xi,j and xk,t can both be 1. But then it follows that the
conflict variable yi,j,k,t = 1 and this is what we try to avoid. Because by minimizing the
objective function shown in Formula 4.9 the conflict variables have to be eliminated or
minimized (if elimination is not possible).

By modifying this ILP model, it is relatively easy to adapt this approach to other
objectives. Mauri et al. [MRL10] showed a similar strategy combining ILP with a
Lagrangean relaxation for the problem of maximizing the number of conflict free labels
(MNCFLP). But this objective is not part of this thesis and hence this approach is not
further described.

Priorities

In ILP priorities can be added very easily. Because of the penalty factor wi,j that each
label candidate has, we simply can use this to express priorities. As mentioned above

34

4.4. Integer Linear Programming Approaches

for the label number maximization approach we just have to see this factor as a profit
factor and then maximize the objective function. For the minimum number of conflicts
approach we can not just maximize the objective function since we want to minimize the
number of conflicts. But we can multiply its priority with −1, i.e., wi,j = −1 · pi,j , where
pi,j is the priority of label candidate j of feature i. Hence, the higher the priority the
lower its penalty.

35

CHAPTER 5
User Constraints

Building a framework for a user-centered and semi-automatic map labeling process needs
to comprises thoughts on the use cases a real user will perform. It is not sufficient to
place as many labels as possible on a map but it strongly depends on the needs of the
user (that is the map creator) and on what he or she is interested to show with his or
her map. Does one want to create a thematic map like a hiking or political map, a road
map for navigation, or does one want to create a city map labeling any kind of point of
interest? Is one interested in labeling mountains and lakes or in labeling hotels, churches,
bars and sports facilities? Additionally to these considerations it is necessary to know
what the expert user wants to do during interaction with the framework to create maps.
Does one want to move or delete labels, change their size or define areas without labels?

This chapter will cover these aspects and considerations about constraints given by
the user. It first describes the interviews we made to identify which functionality the
framework shall include so that it can be used in real world tasks. Then a classification
of these constraints is given and lastly the influences to the conflict graph are discussed.
Again, as this thesis concentrates on point feature labeling the constraints are specific
but not exclusive for point features.

5.1 Interviews
As our thesis concentrates on cartographic map labeling we conducted some interviews
with a cartographic expert. The first interview was to identify the tasks a cartographer
wants to perform and the second one to review the implemented functionality.

5.1.1 First Interview

In the first interview we presented our basic framework to the cartographic expert to give
her an overview of our intended approach. At this point of time the framework already

37

5. User Constraints

included the functionality to load label data, filter for specific types of labels and display
them on the map. Additionally there already were some algorithms implemented that
produced an initial solution (i.e., an initial labeling). Point features not contained in the
labeling solution were shown in a different colour and on a mouseover the hidden label
candidates of the feature could be shown. A basic implementation of a label enlargement
was also existing in the framework representing the task of modifying labels on the map.

The goal of that interview was to get an idea if a cartographer wants to use such a
semi-automatic approach and which label modifications he or she uses in every day map
creation processes that need to be implemented to guarantee a framework satisfying the
experts needs.

After exploring the framework we identified the following list of constraints. It shows the
tasks a cartographer mainly performs during map creation.

• Change the font for the label text,

• Change the font size of the label text,

• Apply initial weights (i.e., give a certain type of features a specific priority. E.g.,
all towns with ten thousand or more inhabitants shall have a higher priority),

• Change the weight of one label,

• Delete irrelevant labels,

• “Stacking” of labels (i.e., multi-line label text),

• Possibility to abbreviate long labels and

• Adding a padding to the label (e.g., add a padding to important labels so that they
are prominent on the map).

Besides this listing of tasks a cartographer does during his or her daily map creation
process our interviewee told us the usual cartographic label position preferences. In a
discrete four position model the ranking of the label candidates would be like it is shown
in Figure 5.1.

5.1.2 Second Interview

The second interview was a presentation of our framework and its newly added func-
tionality to the cartographer. The main changes were a number of label modifications
and the automatic recalculation of a solution after these modifications. At that moment
the following modifications were implemented: change of font size, changing priorities,
modification of the label text (i.e., abbreviation and stacking), possibility for padding
and deletion of label candidates or whole features.

38

5.2. Label Modifications in our Framework

4 1

3 2

Figure 5.1: Cartographic label position preferences for the discrete four position model.

One point she mentioned in the second interview was the storage of the label text
modifications. In our framework the label text (i.e., the label meta data) is directly
modified when the user uses abbreviation or stacking. She told us that normally the label
text remains unchanged and only the operations like stacking or abbreviations are stored
in an extra data field and are then always applied to the label text when it is displayed.
But besides this she was satisfied with our implementation and wishes that the tools she
currently works with would already support parts of our framework to enhance her map
creation process.

5.2 Label Modifications in our Framework
Starting from the input of the interview with the cartographic expert we decided to
implement the following slightly different list of label modifications. The reason why we
did not implement the list of the expert one-to-one is that the implementation of some
of the label modifications would exceed the realm of this thesis and would not add any
additional value in the sense of our thesis interests.

1. Change the font size of a label,

2. Change the weight of a label candidate,

3. Add a padding to the label,

4. Abbreviation of the label text,

5. Stacking of the label text,

6. Text modification,

7. Delete label candidate,

8. Delete a point feature (i.e., deletes all its label candidates) and

9. Fixate a label candidate (i.e., set it as unchangeable label for the feature).

39

5. User Constraints

Modification Effect

1 Font Size A⊕B
2 Weight −
3 Padding A⊕B
4 Abbreviation A⊕B
5 Stacking A ∨B
6 Text Modification A⊕B
7 Delete Label Candidate B
8 Delete Point Feature B
9 Fixate Label Candidate B

Table 5.1: An overview of the implemented label modifications and their effect on the
conflict graph.

Compared to the list from interview one we left out the task of changing the font for the
label text since it does not add any new type of modification to the framework. Changing
the font is like changing the font size just a resizing of the label itself. Thus we decided
to leave it out for our thesis. We also omitted the initial weights for a specific type of
features as it works the same way as changing the weight for one specific label.

Instead of implementing complex automatic abbreviation and stacking techniques we
decided to let the user do this task manually by simply editing the label text. This is
why we have the additional modification number six in the enumeration above where the
user can edit the whole label text. The additional possibility to fixate a label candidate
is more or less a deletion of all label candidates that conflict the fixed one.

5.3 Classification of the Constraints

To include these constraints in our framework we had to classify them in respect to the
conflict graph we use. There are two possible operations on the conflict graph:

(A) Add an edge or

(B) Remove an edge.

Looking on the list provided in Section 5.2 it can be seen that most of the modifications
result in a resize (i.e., enlargement or downsizing) of the label respectively its boundings.
Modification one and modifications three to six are of this kind. An enlargement of a
label can effect new overlaps between labels and thus new conflicts, i.e., new edges have
to be inserted into the conflict graph. On the other hand downsizing a label can effect
that labels do not overlap and thus do not conflict any more, i.e., edges can be removed
from the conflict graph.

40

5.3. Classification of the Constraints

Figure 5.2: Uniform resizing of a label on the left, non-uniform resizing on the right.

The same applies to modifications seven to nine. Deleting a label candidate or a point
feature is just a remove of the corresponding node and all its edges from the conflict
graph. The fixation of a label is nearly the same, but without deleting the node from the
conflict graph. Instead the nodes of the conflicting label candidates are deleted. Since the
node of the fixated label remains without any conflicting edge it can always be selected
by any labeling algorithm.

The only remaining label modification number two can not be represented in the conflict
graph because a change of the priority does not change the size of the label and thus
does not add or remove any edges from the conflict graph. This modification has to be
considered in another way from the labeling algorithms. Table 5.1 shows an overview of
all implemented label modifications and their effect to the conflict graph. Effect A means
that possibly edges have to be added and B means that possibly edges have to be deleted
(the letters correspond to the enumeration above). The ⊕-operator indicates that for
most of the modifications only one effect to the conflict graph can occur. Either the label
grows in both directions or the label shrinks in both directions and hence either new
edges have to be added or edges have to be deleted, see the left illustration in Figure 5.2.
Note that the stacking modification can (but does not have to) effect both at the same
time because it is the only modification where the sides of the label can be extended in
one direction while the sides are shortened in the other direction, see the right illustration
in Figure 5.2. So previous conflicts of the yellow area are deleted and new conflicts of
the blue area are added.

Considering the efficiency of the two constraint classes, both are fast and have small
effort to update the conflict graph. Adding or removing a single edge from the conflict
graph can be done in constant time. A node lookup in the conflict graph can also be
done in constant time in a good implementation. Assuming the worst case that a node
in a conflict graph with n nodes is connected to every other node and we want to delete
every edge (that are n− 1 edges) it can be done in O(n). The worst case of adding n− 1
edges is equal to that. So all label modifications can at least be done in O(n).

41

5. User Constraints

5.4 Optimal Solution after Label Modification
Considering an existing optimal solution (i.e., the current labelling) then all above
mentioned modifications induce a recalculation of this solution because after updating the
conflict graph it may be invalid or not optimal any more. The special case of constraint
two (changing label weights) is excluded in the following since it does not affect the
conflict graph. The handling of this modification type depends on the applied algorithm.

Since the label number maximization is the main objective for label placement in this
thesis we focus on this kind of objective in the following remarks. Hence, when we
speak of an optimal solution it means a solution where a maximum number of features
is labelled or in other words a maximum independent set in the corresponding conflict
graph. To show the influence of the constraint classes on the size of optimal labeling
solutions we formulate the following two theorems.

Theorem 1. Let S be an optimal solution for a labeling instance containing k labels.
Then by removing one edge from the corresponding conflict graph a newly calculated
solution S′ contains at most k + 1 labels.

Proof. Assume to the contrary that the newly calculated solution S′ contains at least
k+ 2 labels. Since only one edge connecting two nodes in the conflict graph was removed
and the remaining conflict graph stayed untouched, our assumption implies that both
nodes are added to the new solution S′. If we again add the edge between these two nodes,
only one node has to be removed from solution S′ to maintain a maximum independent
set and we have found a valid solution with k + 1 labels. Hence the initial solution S
could not have been maximal and we have found a contradiction.

Theorem 2. Let S be an optimal solution for a labeling instance containing k labels.
Then by adding one edge to the correspondent conflict graph a newly calculated solution
S′ contains at least k − 1 labels.

Proof. There are three cases to be considered.

• Case 1. None of the nodes incident to the added edge were contained in the initial
solution S. Then adding the edge between them does not affect the solution and
hence S′ = S with |S′| = k which satisfies the requirement of at least k − 1 labels.

• Case 2. Only one of the two nodes that the edge connects was contained in the
initial solution S. Also in this case, the added edge does not influence solution S
and remains valid.

• Case 3. Both ends of the added edge are in the initial solution. By deleting one of
the two ends from our solution S we get a new valid solution S′ with k − 1 labels.
In this case S′ might not be maximal but it is a valid solution.

42

CHAPTER 6
Development and Implementation

of the Prototype

One aim of this thesis was to develop a prototype of a simple user-centered map creation
tool that supports a cartographic domain expert user in his or her map creation process.
It should provide different automatic label placement algorithms that produce an initial
labeling solution which is then refined and improved by the user. The framework should
be able to handle the user constraints identified in Chapter 5 and the algorithms in
the background shall respect them to recalculate an optimal labeling and optimize the
previous solution.

The prototype we present in this chapter concentrates on the point feature label placement
on static geographical maps with a discrete label positioning model and axis-parallel
rectangular labels. For this first attempt we leave aside the line and area feature labeling
and other positioning models because this would go beyond the scope of this thesis.

This chapter describes the basic approach of the framework (Section 6.1), gives an
overview of the used technology (Section 6.2) and describes some relevant implementation
details in Section 6.3, e.g., about the main data structures or the input data. Section 6.4
explains the user interface and its functionality and lastly in Section 6.5 all the labeling
algorithms available in the application are described and compared.

6.1 Basic Workflow of the Framework
The basic workflow of the framework can be described by the following steps. Starting
from a non-labeled map the user can import a set of data points that he or she wants
to be labeled on the map. By panning around in the map area of the framework he or
she can select the region he or she wants to label and by zooming in and out one can
or more precisely has to set the zoom level. Since we investigate the point feature label

43

6. Development and Implementation of the Prototype

placement on static maps the zoom level has to be fixed. In contrast to the fixed zoom,
panning around the map is possible even if a solution was already calculated since it has
no influence to an existing solution.

After importing a file the framework parses the input data and generates suitable label
candidates for each point feature dependent to the position model, i.e., the fixed four-
position model in our implementation. The spatial information of the features and their
label candidates are stored in a quadtree which is then used to generate a conflict graph
for storing the conflicts (i.e. the overlappings) between the candidates.

Based on this the user can now filter for specific types of features or apply different
algorithms and display the calculated labeling. Additionally he or she has the possibility to
modify, delete or fixate single label candidates. After a label modification the framework
automatically recalculates a new valid solution. The user can again specify which
algorithm is used for the recalculations. Since this step is possibly done very often the
recalculations shall be reasonably fast.

6.2 Used Technology
For the implementation of our prototype we used Java 8 as the programming language.
Since online maps are quite common and popular in these days, there exist a bunch
of JavaScript libraries for interactive maps. Hence, as the interactive map is a central
point in our application a web-based approach seemed to be a good starting point for
our application. For this we use the lightweighted Play Framework (version 2.6) in
combination with Leaflet (version 1.0.3) and D3 (version 4.9.1) for displaying a map and
drawing labels.

To give an idea of the developed prototype the basic user interface is shown in Figure 6.1.
It shows the large map area where the user can pan and zoom around and can see the
current labeling. Most of the action elements, i.e., buttons and dropdowns for loading a
file, filtering or applying an algorithm are in the left sidebar.

As the created tool is web-based it can basically be run on any browser and on any
operating system, but we mainly tested it with the Google Chrome browser (version 66.0)
on a 64-bit Windows 10 operating system. Test runs on a Linux system showed that the
label drawing does not work totally correct despite installing the same Java version and
libraries. The application is not designed to be used on mobile devices or devices with
small screens The tool is tested on and optimized for a 21 inches monitor with resolution
of 1920x1080.

6.2.1 Play Framework

The Play Framework1 is an open source web application framework and is available for
building scalable web applications with Java and Scala. It is based on a lightweight,

1https://www.playframework.com/ version 2.6

44

https://www.playframework.com/

6.2. Used Technology

Figure 6.1: The basic user interface of the developed prototype.

stateless and non-blocking architecture. It provides hot code reloading, displays errors
directly in the browser and supports REST and WebSockets. The latest version is 2.6
which by default has Akka HTTP2 as its server backend. It further uses sbt3 as the build
tool and for dependency management.

6.2.2 Leaflet

Leaflet4 is an open-source JavaScript library for building web mapping applications. It
was initially developed by Vladimir Agafonkin and first released in 2011. The library
supports most mobile and desktop platforms and supports the current web standards
HTML5 and CSS3. Besides OpenLayers and the Google Maps API it is one of the most
popular JavaScript mapping library [Bac]. It focuses on simplicity, performance and
usability and thus the core has only basic functionality which is sufficient for our needs
and for most real-life use cases. The small basis can be extended with a large amount of
plugins. It has a well-documented and easy to use API and hence allows less experienced
users or users without GIS background an easy creation of interactive maps.

For the interactive map Leaflet uses a tiled map. The approach of tiled maps is currently
the most popular way to display and navigate online maps. Instead of loading the world
map as a whole image, the map is sliced into square images of equal size and then showed
in an seamless grid arrangement. These images that are most often 256x256 pixel wide,
are called tiles. The advantage of tiled maps is, that only those tiles have to be requested
and downloaded that are currently needed for the specific zoom level and map area that

2https://doc.akka.io/docs/akka-http/current/index.html version 10.1
3https://www.scala-sbt.org/ version 0.13
4https://leafletjs.com/ version 1.0.3

45

https://doc.akka.io/docs/akka-http/current/index.html
https://www.scala-sbt.org/
https://leafletjs.com/

6. Development and Implementation of the Prototype

Figure 6.2: A tiled web map.5

is displayed. Additionally when a user pans around the map, most of the tiles are still
relevant and can be kept and only the missing tiles have to be fetched. This improves the
user experience and the performance of online maps since the tiles can be precomputed
on the server instead of rendering them in the browser ever and ever again. For the user
there is no visual difference since the tiles are seamlessly joined to a larger image and the
map looks like one.

At the outer most zoom level the entire world can be displayed in a single tile. The tiles
can often be fetched through a web server with a URL like http://.../Z/X/Y.png
where Z is the zoom level and X and Y identify the tile. Figure 6.2 shows an example of
a tiled web map. Normally the tiles are displayed without gap.

Leaflet natively supports different layer types such as GeoJSON, vector or tile layers.
Other types may be supported by a plugin. Like other web map libraries Leaflet displays
one basemap and several possibly interactive overlays, e.g., for markers, popups or
tooltips.

A Leaflet map can be added to a web page with the simple JavaScript code snippet
shown in Listing 6.1. A map element is bound to an HTML element such as a div (with
ID mapID) and the viewpoint and zoom level are set (line one). Other layers can then
be added to the map element like it is shown in line three. In this example a tile layer
is added to the map. Leaflet can be used with different tile sets by just exchanging
the URL to the tile web server. In our thesis we use a tile set with the name Hydda
from the Swedish OSM team [swe]. The “base” tile set has no labels which satisfies our
requirements. The Leaflet library is accessed through the variable L. Adding a label (or

5https://en.wikipedia.org/wiki/Tiled_web_map

46

https://en.wikipedia.org/wiki/Tiled_web_map

6.3. Implementation Details

as it is called in Leaflet, a marker) at a specific location, is as simple as it is shown in
line five.

1 var map = L.map(’mapID’).setView([51.505, -0.09], 13);
2
3 L.tileLayer(’http://{s}.tile.openstreetmap.se/
4 hydda/base/{z}/{x}/{y}.png’).addTo(map);
5 L.marker([50.5, 30.5]).addTo(map);

Listing 6.1: Creating a map with a tile layer in Leaflet.

6.2.3 D3 Library

Our labeling problem instances require to draw a lot of labels respectively markers.
Hence, the usability and performance of the application depends on the efficiency of label
rendering. It exposed, that the Leaflet markers are quite slow when creating and drawing
a large amount of them. Panning around was almost impossible on a map with a hundred
labels. We decided to use Leaflet just for the map, i.e., for map control (zooming and
panning) and for providing the tile set, and use another faster library for drawing the
labels.

D3 (Data-Driven Documents or D3.js)6 is a JavaScript library for dynamic data vi-
sualization using web standards like SVG, HTML and CSS. It combines visualization
and interaction techniques with a data-driven approach to Document Object Model
(DOM) manipulation. Arbitrary data can be bound to a DOM and then data-driven
transformations can be applied to the document.

In our thesis we use D3 to bind the label data to a DOM element and use it to generate
SVG elements for every label candidate. More precisely we generate for each label
candidate a rectangle indicating the boundings of the label, a circle representing the
point feature it belongs to, and a text element describing the point feature. Since Leaflet
supports SVG layers, the resulting label representations created by the D3 library can
simply be added to the Leaflet map. It turned out that this approach is much faster and
we are able to display up to 5.000 labels without slowing the application.

6.3 Implementation Details

In this section we give some details about the implementation of our prototype, especially
about the implementation of the main data structures and the input data.

6https://d3js.org/ version 5.5

47

https://d3js.org/

6. Development and Implementation of the Prototype

6.3.1 Basic Architecture

Our application is a classical client-server web application. This means that the logical
calculations run on the server and the graphical user interface is rendered in a browser
on the client. They both communicate with each other via web sockets.

One aspect about our application is, that we do not use a database to store the labeling
data. Everything that we need is kept in the internal memory. The advantage of that
is that we did not need to think about storing our large graphs in suitable databases
and implement efficient database connectivity and database queries. Of course the
disadvantage is that after our application shuts down the labeling is lost. But for the
use cases of our prototype version it is sufficient to keep the data in memory. It can be
changed in future work.

6.3.2 Client-Server Communication

As mentioned client and server communicate with each other over web sockets. WebSocket
is a communication protocol that provides full-duplex communication over TCP, i.e.,
communication is allowed in both directions simultaneously. So as long as the connection
is kept open, both can send messages and even if there was no client request the server
can send content to the client.

Client and server communicate with each other by sending their data in a special JSON -
format. JSON stands for JavaScript Object Notation and is a lightweight data-interchange
format. Since it is just text it is language independent. The communication structure of
our prototype is specified by

{"type" : SOME_TYPE, "data" : SOME_DATA}

where type specifies the type of the message and data the data that are transmitted.
When the client sends a message to the server the value of type is one of the types
defined in ClientMessageType which is an enumeration of all message types the
server can understand. And when the server sends a message to the client it is one of
the types defined in ServerMessageType which enumerates all types the client can
understand. The value of the data element contains the data the client or the server
wants to transmit. It is a string in JSON format and depends on the message type.

6.3.3 Input Data

To draw labels on the map we first need to get input data. Since we want to create
a realistic usable framework, we also want to use real geographical data which we
can get from OpenStreetMap (OSM). OpenStreetMap [osm] is a collaborative project
collecting geospatial data (e.g., ways, buildings, places) and making them available to
everyone (Open Data). The data are made available under the Open Database License
(ODbL) [odb].

48

6.3. Implementation Details

There are several locations where we can get the data. The most famous snapshot of
the OSM database is Planet.osm [pla]. It is regularly updated and contains all nodes
(i.e., points in space), ways (i.e., linear features and area boundings) and relations (i.e.,
relationship between nodes, ways or other relations) of the whole map, i.e., it is a complete
copy of all OSM data. The data can be fetched as compressed XML file or in PBF
(Protocolbuffer Binary Format) which is much smaller than the zipped XML format.
The current size of the zipped XML file is about 66 GB. This is way to much data for
our application. Fortunately there are many mirrors where we can also get excerpts
of specific areas (e.g., individual countries) of the whole data set. We use the German
provider Geofabrik [geo] for downloading.

Although PBF is smaller in its size and faster to read we can not directly use it because
of its binary nature. It is easier for us to use the XML file. Actually the OSM data
contain far too much and for our purpose irrelevant information (e.g., ways and relations).
Parsing it directly would be too time consuming. We use a small piece of code to extract
the information we need for our application from the large XML files. The resulting file
is in JSON format and is far smaller. For example the XML data of Iceland currently has
about 714.000 kilobytes whereas the extracted JSON file has only about 500 kilobytes.
The structure of the file is an array of JSON Objects. Every object has the keys “label”
(the name of the feature), “mc” (the master category), “sc” (a second category) and the
coordinates “x” and “y” of the feature in WGS 84 Web Mercator (or EPSG:3857) [wgs]
projection which is popular for web mapping applications. Listing 6.2 shows an excerpt
of the Iceland dataset.

[
{"label": "Reykjavík","mc": "place","sc": "city",

"x": -2442598.6163094793, y": 9386931.633935148},
{"label": "Dalvík","mc": "place","sc": "town",

"x": -2062799.011391919,"y": 9868939.164436119},
{"label": "Ólafsvík","mc": "place","sc": "town",

"x": -2639210.8560456797,"y": 9581012.359032592},
{"label": "Akranes","mc": "place","sc": "town",

"x": -2458307.410593027,"y": 9430743.98638051},
{"label": "Húsavík","mc": "place","sc": "town",

"x": -1930395.7648896866,"y": 9888711.321015112}
]

Listing 6.2: JSON input format for our application.

Even though we create our own input files and input structure, they are somewhat specific
to the OSM data because we use the OSM specific category structure (master and second
category). However, the input is not tied to OSM data since data from other sources
may can also be translated to the two category structure.

A problem we faced during the implementation of the prototype was to handle different
coordinate systems that are used by the tools we use. Besides translations between the
different world coordinate systems WSG 84 (used by Leaflet) and EPSG:3857 (data from

49

6. Development and Implementation of the Prototype

Figure 6.3: Special label conflicts that could not be detected from both (left) or only
detected from one side (right) in a range query.

OSM) we also had to attend the flip of the y-coordinates. While the world coordinates
have their origin in the lower left corner and Y-values grow upward like it is in ordinary
cartesian coordinate systems, we have to draw the labels originated in the upper left
corner and with Y-values growing downwards like it is in many graphic libraries. It was
a source of inconsistencies between conflicts in the conflict graph and visible conflicts in
our labeling visualization that we did not find at first glance.

6.3.4 Implementation of the Data Structures

Quadtree

For the storage of the spatial data our framework uses an implementation of a point
region quadtree. As mentioned in Chapter 3 a compressed quadtree is more memory
efficient or there are other better performing alternatives but the point region quadtree
is sufficient for the purpose of this thesis. The quadtree is implemented as an interface
and therefore can be replaced by a more efficient quadtree easily.

In our application it is required to store all the label candidates in the quadtree preserving
their location and extension bacause the quadtree is used to determine overlaps. Storing
only the point features was not sufficient for detecting conflicts. Each label candidate has
an anchor point (i.e., the upper left corner of the label) which is stored in the quadtree.
Our version of the point region quadtree has a capacity of one point per quad. So in
every leaf there can be at most one label candidate stored. The inner nodes do not store
any point data.

With this approach we were able to check if the anchor point lies within an window
or within another label, but we could not detect special cases like they are shown in
Figure 6.3. Assuming in this illustration the label boundings of one label as the window
in a range query, then the left conflict case could be detected by none of the two labels
and the right one just from the larger one, since it contains the anchor point of the
smaller label.

50

6.3. Implementation Details

Hence we modified the point region quadtree so that each inner node now contains a list
of labels that intersect the quad node. On a range query we also check each quad that
intersects the window if it contains a label that intersects the window. This approach
helps and guarantees us to find all conflicts between the labels. One can easily see that
this implementation is not the most efficient one, but searching and implementing a more
optimal possibility for storing and detecting label conflicts is not part of the thesis and
can be done as future work.

Conflict Graph

The conflict graph of our application is implemented as a set of vertices where each
vertex represents a label candidate, as it is described in Section 3.2. A vertex stores the
corresponding label, the set of edges and the set of deleted edges. The vertex has an
edge to another vertex if the label candidates they represent are in conflict. The set of
deleted edges is stored so that we can get the original conflict set after some deletions.
The conflict graph is implemented as an interface so that it can be easily exchanged by
another implementation.

We tried different ways to store the vertices but the best performing was to store them
in a HashMap with the ID of the label as a key and the Vertex as the value. Searching
for a vertex in the hash map can be done in constant time and hence adding an edge
respectively a conflict between two vertices can be done in O(1). Removing an edge or
checking if a label conflicts with another is in O(k) where k is the number of conflicts
of the (first) label, because on these operations we have to run through all edges of the
corresponding vertex to find the correct one. Imagine the worst case of one large label
candidate where all other label candidates (except its siblings) lie within or intersect this
candidate. Then it has n− 1 conflicts, where n is the number of total label candidates.
Hence we can say that a removing an edge or checking for a conflict is in worst case in
O(n) although this case is very unlikely because normally k � n.

An expensive operation in our conflict graph implementation is to receive the full set of
conflicts because for this operation we have to run through the whole set of vertices and
through all edges of the vertices to retrieve the whole set. Hence we have a complexity of
O(n+m) where n is the number of vertices and m the number of conflicts in the conflict
graph. As mentioned in Section 3.2, in worst case the number of edges is quadratic in
the number of features (m = O(n2)). So the complexity of this operation is in worst case
in O(n2).

6.3.5 Position Model

For our axis-parallel labeling approach we implemented two position models in our
prototype. The fixed four-position model and the fixed eight-position model, as described
in Section 2.1. But we did not implement the possibility for a user to switch between the
models. Our investigations concentrate on the fixed four-position model and hence the
application uses this model. The eight-position model was only implemented for testing

51

6. Development and Implementation of the Prototype

Figure 6.4: User interface showing a labeling of Iceland and all sidebars.

reasons. Nevertheless a model switch can be added in the future. Changing the position
model would need to reparse the input data. Although we only use one position model,
our framework is designed in a way so that the backend can handle any kind of discrete
position model without modifying our implementation.

6.4 User Interface

In this section we want to describe the user interface and its functionality. For our
thesis the design of the interface was not in the foreground but to satisfy the functional
requirements.

Our application is a one site application. The basic user interface was already shown
in Figure 6.1. It consists of the large map area as its dominant UI part, where the
user mostly works on. Here the current labeling is shown and the user can edit specific
labels. On the left hand side there is a sidebar containing the main functional action
buttons, e.g., for loading a file or filtering the labels (see Section 6.4.1). On top of the
map area there are three minor options. The first one toggles tooltips (i.e., it toggles if
tooltips are shown for a label when the mouse cursor is moved over it), one for toggling
unlabelled features (i.e., it toggles if unlabelled point features are drawn on the map)
and one specifying if a label shall be kept after a label modification was applied.

Figure 6.4 shows a labeling of cities and towns of Iceland in our application. The point
features are displayed as filled red circles. The labels are drawn as white rectangles with
a black text identifying the corresponding point feature. Those point features that have
no label assigned (because they were deleted or they could not be labeled because of their

52

6.4. User Interface

(a) (b)

Figure 6.5: Feedback of the application shown to the user. Small message boxes (a) to
inform the user and blocking the user interface on long running operations (b).

conflicts with other point features) are shown with a filled blue circle only. As mentioned
above the unlabelled point features can also be hidden. Some hidden point features can
be seen in the neighbourhood of Icelands capital Reykjavík, i.e., the green label in the
figure.

By clicking on a label its background colour changes to green and a label modification
area on the right side of the page pops up. In the label modification area the user
can apply the different modifications to the label candidate or its point feature (see
Section 6.4.1).

Concerning user feedback the application informs the user via small message boxes on
the lower right corner, e.g., after successfully loading a file or on any kind of error (see
Figure 6.5a). Since our application has some long running operations and calculations
the user interface is blocked on these operations and a waiting progress modal is shown
as can be seen in Figure 6.5b .

6.4.1 Sidebars

In the following the numbers in brackets refer to Figure 6.6a and Figure 6.6b respectively.
Figure 6.6a shows the left sidebar of the user interface. “Load File” (1) loads the input
data from a file which then can be parsed (2) to create the label candidates as well as
the quadtree and the conflict graph. All available label candidates can be shown (3) or
hidden (4) in the map. The quadtree and the conflict graph can be rebuilt (5) dependent
to the current solution. “Show QT and CG” (6) is a debug function to display a visual
representation of the current quadtree and conflict graph. The current labeling can also
be printed to a file (7), i.e., all point features except the deleted ones. The file format is
the same as for the input data (see Section 6.3.3) and hence attributes like weight, font
size or fixations can not be stored. The label candidates are generated when the file is
read in again. We may switch to a more sophisticated file structure storing label meta
data in the future.

In the Algorithm area the timeout dropdown (9) defines the timeout after which the

53

6. Development and Implementation of the Prototype

(a) (b)

Figure 6.6: The left (a) and the right (b) sidebar.

algorithm selected in (8) is aborted. The discard option (10) defines if the current solution
shall be discarded when applying an algorithm. A click on the apply button (11) applies
the algorithm selected in the algorithm dropdown (8). Additionally an update algorithm
(12) can be selected that shall be used for the recalculations after a label modification.

The zoom area shows the current zoom level of the map (13). This does not need to be
the same as the zoom level set on the server. The auto parse option (14) defines if the
file shall be automatically reparsed when setting a new zoom level. By clicking button
“Set this zoom level” (15) the zoom level on the server is set to the current zoom level
of the map (13). This disables zooming in the map area. The input data have to be
reparsed. Zooming can be switched back on (16).

The filter type (17) defines if the categories selected in the filter selection (18) shall be
combined with an “OR” (i.e., a label in the filtered set has to have at least one of the
specified categories) or an “AND” (i.e., a label has to have all the specified categories).
The filter selection (18) is a multiselect dropdown to select some categories to be filtered.
The filter can be applied by clicking the apply button (19).

Figure 6.6b shows the right sidebar (or label modification area). It consists of an area
where properties of the label are displayed and an area with buttons for the label

54

6.4. User Interface

modification. The following label properties are shown:

• Name: The text of the label candidate.

• Weight: An integer value representing the weight of the label candidate.

• Font Size: The font size of the label text in pixel.

• Padding: Vertical and horizontal padding of the label candidate in pixel. This
moves the label candidate away from its corresponding point feature.

Changes to the properties can be saved by clicking the save button (20). All label
candidates that are in conflict with the currently selected label candidate can be marked
in the map area (21). The label candidate can be fixated (22), i.e, all conflicting label
candidates are deleted. Several fixated labels are allowed to overlap and have to be
solved manually by the user. The selected label candidate (23) or the corresponding
point feature (24) can be deleted. Deleting a point feature simply deletes all its label
candidates. A label candidate can be undeleted (25). This option is only visible for
deleted label candidates.

A label modification can either be applied to a single label candidate or to all label
candidates of a point feature. Modifications that change a single label candidate are
changing the weight and fixating or deleting the label candidate. All other modifications
are always applied to all candidates of the point feature.

Referring to the list of label modifications in Section 5.2 which we defined through to
the interviews with the cartographic expert, we can apply these modifications with the
following user interface actions. Font size, weight and padding each have separate fields
where we can change them. All text modifications (including stacking and abbreviations)
can be done in the text field for the label name. Clicking the save button then applies the
modifications. Deleting label candidates or point features and fixating a label candidate
each have separate action buttons.

6.4.2 Visual Appearance of the Labels

The visual appearance of the label shows the current state of the label. Table 6.1 lists all
possibilities. Some states allow combinations of effects, i.e., we can combine a border
colour with a background colour. For example if a deleted label is selected the visual
appearance changes to a green background with a red border. The light blue background
from the hidden label candidates can not be combined with any other visual effect.
Additionally if we move the mouse over a deleted or fixed label the border colour does
not change. The only difference is then the bold text.

55

6. Development and Implementation of the Prototype

Appearance Occurs Explanation

white background, no bor-
der

label candidate is
shown

This is the appearance of any “nor-
mal” label candidate.

green background click on label can-
didate

The label candidate is currently se-
lected. The modification area shows
the properties of this label candi-
date. See Figure 6.7a.

light blue background click on hidden
point feature

The point feature and hence all its
label candidates are hidden. See
Figure 6.7b.

red background and red
dashed border

click on “show
conflicting labels”
in the modifica-
tion area

The label candidate is in conflict
with the selected label candidate.
The red dashed border line shows
the border of the label candidates
including their paddings. See Fig-
ure 6.7c.

blue border label candidate is
shown

The label candidate is fixated and
all of its conflicting labels are
deleted. See Figure 6.7b.

red border label candidate is
shown

The label candidate is deleted. See
Figure 6.7d.

black border and bold text on mouseover If tooltips are enabled then a box
with infos about the label candidate
beneath the mouse cursor is dis-
played. Otherwise its just an indi-
cator which label would be selected
on a mouse click. See Figure 6.7e

Table 6.1: Description of all the visual appearances of a label candidate and its meaning
in our application.

56

6.4. User Interface

(a) (b)

(c) (d)

(e)

Figure 6.7: Different visual appearances of the label candidates.

57

6. Development and Implementation of the Prototype

6.5 Implemented Algorithms
This section describes the algorithms we implemented in our framework. Subsection 6.5.7
shows an overview and comparison between them.

6.5.1 ILP-Algorithm

Our ILP-Algorithm (Integer Linear Programming Algorithm) is an implementation based
on integer linear programming presented in Section 4.4. There we described two different
objective functions for the algorithm. Our implementation tries to minimize the number
of conflicts between the labels (i.e., we implemented the objective function shown in
4.9 and Constraints 4.10 to 4.12). By simply changing the objective function and
constraints we could transform this algorithm to a label number maximization algorithm.

For solving the 0-1 ILP the algorithm uses the Gurobi Optimizer7. Gurobi is a software for
mathematical optimization and solving linear programms. So the steps of our algorithm
are as follows: First we create a Gurobi model (i.e., a 0-1 integer linear program) from our
labeling instance, then we simply pass it to the Gurobi optimizer and then we translate
the solution back to a solution for our labeling problem. The ILP-Algorithm supports
weights by nature of linear programs, but it does not support the possibility to keep a
previous calculated solution.

6.5.2 MaxHS-Algorithm

The MaxHS-Algorithm is an algorithm based on SAT or more precisely on PMAX-SAT.
The foundations for this algorithm can be found in Section 4.2. The algorithm first
formulates our current labeling instance as weighted PMAX-SAT instance and writes it
to a file, since most solvers are designed to read the input from a file. On this file an
external MAX-SAT solver is called. The algorithm then reads the output of the solver
that contains an interpretation for the SAT instance passed to the solver and translates
it back to our labeling. The solution calculated by the SAT solver is exact, i.e., if the
algorithm returns a solution, it is guaranteed, that the sum of weights among all possible
other solutions is maximal. If the label candidates all have the same weight then the
number of labels in the solution is also guaranteed to be maximal.

Besides weighting of label candidates this algorithm also supports the possibility to keep
an initial solution as much as possible. This is done by adapting the weights of the labels
contained in the solution as it is described in Section 4.2.

To choose a solver for our weighted PMAX-SAT formulation the International Conference
on Theory and Applications of Satisfiability Testing (SAT) in Melbourn, Australia [sat]
was a good starting point. One part of this conference is the MAX-SAT evaluation where
different MAX-SAT solver are tested against each other. It showed that the solver called
MaxHS8 performed best for weighted instances. See the evaluation results in [max].

7http://www.gurobi.com/ version 7.5
8http://www.maxhs.org/ version 3.0

58

http://www.gurobi.com/
http://www.maxhs.org/

6.5. Implemented Algorithms

Since it also depends a bit on the input set, the solvers may perform differently for certain
input sets. So we compared them on our specific data sets but came to the same result,
that the MaxHS solver is the best choice for us.

The MaxHS solver was developed by Jessica Davies and Fahiem Bacchus [DB11]. It is a
solver for different MAX-SAT problems and takes its input of hard and soft clauses in
WDIMACS format. An additional benefit of MaxHS is that it supports floating point
weights unlike many other MAX-SAT solvers that require integer weights.

6.5.3 MNC-Algorithm

The MNC-Algorithm (Minimum Number of Conflicts Algorithm) is an algorithm that
labels all features while trying to minimize the number of conflicts between the labels.
This algorithm is an implementation of the approach presented by Cravo et al. [CRL08].
It uses the greedy randomized adaptive search procedure (GRASP) which is an iterative
process to find heuristic solutions. Each iteration consists of a construction phase and
a local search phase. In the first phase a feasible solution is constructed which is then
improved in a heuristic local search phase to find a local optimum. The best solution over
all iterations is kept. Cravo et al. describe that they achieve best solutions when allowing
100 iterations, but for our instances so many iterations are not required, because an
acceptable solution is found within the first few iterations. So we restrict the iterations
for performance reasons to ten.

The MNC-Algorithm supports weights by nature but as presented in their paper they are
seen as a penalty. So we multiply them with a factor −1 so that a higher weight leads to
a lower penalty and hence the label candidate is more likely to be selected. Despite the
objective of minimizing the number of conflicts the algorithm also maximizes the sum of
weights of the selected label candidates. The possibility to keep an initial solution and
modify it as little as possible is currently not implemented for this algorithm.

6.5.4 Simple-Algorithm

The Simple-Algorithm is an algorithm we implemented for our first fast tests. It is a
greedy, fast and straight forward approach with no optimization, which just runs through
the list of all label candidates sorted as they were added to the list, selects one and adds
all label candidates that are in conflict with it to a “blocked” set to indicate that they
can not be selected any more. For the blocked set we use a HashSet which stores the
IDs of the blocked label candidates and which needs constant time to check if it contains
a specific label candidate. So the runtime of this algorithm on average cases is just O(n).

Due to its simplicity and good performance it does not support sophisticated optimization
of an objective function. To a certain extent we can say that it pursues the objective
of maximizing the number of labels because it tries to label as many point features as
possible for the given candidates list order. Additionally the algorithm does not support
any weighting. Label candidates with a higher priority are treated as any other label
candidate. But as said, this algorithm was implemented for fast testing and as a reference

59

6. Development and Implementation of the Prototype

to the other algorithms that support optimization. Apart from that this algorithm
produces acceptable solutions on instances with a low number of conflicts.

A feature that this algorithm supports is to keep an initial solution as much as possible.
This is achieved by simply selecting the labels in the current solution first, before running
through the rest of the full label list. The runtime of O(n) is not altered by this feature.

6.5.5 IndependentSet-Algorithm

The IndependentSet-Algorithm we implemented in our framework searches for a
maximum weight independent set. We use the JGraphT 9 library that provides graph
structures and algorithms. Since there is no algorithm contained in the library to
calculate a maximum weight independent set we use the GreedyVCImpl implementation
to calculate a minimum weight vertex cover (or actually an approximation) that we then
invert to get a maximum weight independent set or to get at least an approximation if
the vertex cover is not of minimum weight.

This algorithm supports weights by nature but does not support the possibility to keep an
initial solution. The runtime of this algorithm is determined by the slowest part of finding
a minimal weighted vertex cover which is in O(m log n) for the used GreedyVCImpl
algorithm, where n is the number of vertices and m the number of edges in the conflict
graph.

6.5.6 ThreeRules-Algorithm

This algorithm is an implementation of the three rules approach proposed by Wagner
et al. [WWKS01] and is described in Section 4.3 in more detail. Our implementation
supports priorities of label candidates and pursues the objective of maximizing the total
weight of the labels in the solution. If all the label candidates have the same weight, the
number of labels is maximized (LNM). We also implemented a switch for this algorithm
so that only phase one can be applied in order to reduce the size of the conflict graph.
Since this algorithm modifies the conflict graph, the reduced version can then be used as
input for the other algorithms too. The ThreeRules algorithm does not support the
feature of keeping an initial solution.

Considering the time complexity of this algorithm, Wagner et al. [WWKS01] describe
that (with some enhancements of rule three) it is in O(n + k) where n is the number
of candidates and k is the number of edges in the conflict graph. Since the number of
candidates per feature is constant, the first two rules can be checked in constant time for
each feature. A feature is put on the stack when one of its candidates was deleted or it
has lost a conflict partner. Hence, this part of phase one sums up to O(n+k). Rule three
contains the check if the conflicting set of a candidate forms a clique which normally takes
time quadratic in the number of conflict partners. But the authors describe that falling
back on geometry it can be detected in linear time. With the additional enhancement to

9http://jgrapht.org/ version 1.0.1

60

http://jgrapht.org/

6.5. Implemented Algorithms

apply the rule only to candidates with less than a constant number of conflicts (since
it is not very likely that the neighbourhood of a candidate with many conflicts forms a
clique) it even can be checked in constant time. Phase two only needs linear extra time
and hence the time complexity of this algorithm is said to be in O(n+ k).

Since it was not the aim of this thesis to create the best implementation of this algorithm
we did not implement the enhancements of rule three for time reasons. Rule three is
checked in our implementation in O(k2) time.

6.5.7 Comparison of the Algorithms

In this section we want to compare the implemented algorithms available in our prototype.
Table 6.2 shows an overview of the algorithms, their objective function, their support
for an exact solution, support for weights and support to keep an initially calculated
solution as good as possible.

Considering weights (or priorities) all of our algorithms except Simple support weights
and hence have as first objective the maximization of the total weights in the calculated
solution (indicated by wMax). If the labels all have the same weight the second objective
is pursued. This is either the label number maximization (LNM) or the minimization of
the number of conflicts between the labels while labelling all features (MNC).

We only have one exact algorithm (the MaxHS-Algorithm) which is based on SAT solving.
Except this and our greedy Simple algorithm, all other algorithms are heuristics. As
can be seen in Table 6.2, most of our algorithms currently do not support to keep an
initial solution. Only the MaxHS and the Simple algorithm support this feature. For the
ILP, the MNC and the IndependentSet algorithms we can add this functionality by
adapting the weights as it is implemented in the MaxHS algorithm. For the ThreeRules
algorithm it is a bit more complicated to add.

Algorithm objective function exact weights keep solution

ILP wMax + MNC 7 3 7

MaxHS wMax + LNM 3 3 3

MNC wMax + MNC 7 3 7

Simple LNM 7 7 3

IndependentSet wMax + LNM 7 3 7

ThreeRules wMax + LNM 7 3 7

Table 6.2: A comparison of the implemented algorithms.

61

CHAPTER 7
Evaluation

In this chapter we present the experimental evaluation of our implemented prototype,
the implemented labeling algorithms and their combinations with randomized label
modifications. In the first section (Section 7.1) we describe the test setting and in the
second section (Section 7.2) we present the actual results and discuss them.

7.1 Setting
Our test scenario can be described as follows. After parsing an input file we first apply one
of our four label number maximization algorithms (IndependentSet, MaxHS, Simple
and ThreeRules) to create an initial solution S1. Then we randomly choose a number
of labels from the solution (in our tests 20 percent of the solution size) and apply to this
set M one of our modifications. We will use the font size shrink (i.e., label shrink) and
the font size enlargement (i.e., label enlargement) since they are the most interesting
modifications here. They represent the removing and adding of edges from and to the
conflict graph. We shrink or enlarge the font size by four pixel. The initial and default
font size of the labels is thirteen pixel. We further look at combinations of modifications
meaning that we choose a subset of set M and apply to 0, 25, 50, 75 or 100 percent of
labels in M the font size shrink and to the rest the font size enlarge. Then, applying
another possibly different algorithm we get a new valid (i.e., a conflict free) solution S2.
We run this setting of calculating an initial solution, modifying it and recalculating a new
one in a loop for a hundred times to avoid one-time artefacts and get better result data.

We investigate how the number of labeled features in S2 differs dependent to the applied
algorithm combinations and want to answer questions like: Do optimal algorithm com-
binations differ between dense and sparse data sets? Does it make sense to apply an
exact algorithm twice or is it advisable to combine the exact algorithm with a heuristic
approach? Is the non optimizing and greedy algorithm we implemented of any relevance?
How does it perform in combination with our heuristics and our exact algorithm?

63

7. Evaluation

data set number of features conflicts conflicts/node

Salzburg

137 3700 6,75

292 15176 12,99

473 33442 17,68

601 50590 21,04

Lower Austria

350 6004 4,29

531 10362 4,88

863 15928 4,61

1296 31108 6,00

Table 7.1: Our test data sets and their properties.

First of all we expect that the greedy algorithm Simple produces non competitive
solutions when applied as first algorithm because of its missing optimizations. But it
probably can produce sufficient solutions when applied as the second algorithm since
it can benefit from the fact that it tries to keep a given solution as good as possible.
Besides this it will be of course the fastest of all algorithms. We also expect that the
exact algorithm results in the best solutions in terms of maximum number of labeled
features but that it is very time consuming. Maybe a combination with a fast heuristic
is best for both dense and sparse data sets.

Clearly this test scenario will not happen in real use of our application, since it recalculates
a new solution after each modification. But this test scenario is of interest since it shows
the effects of the modifications to the conflict graph respectively the solution recalculation
better than just modifying one single label candidate. Additionally it shows which
combinations of algorithms are well performing in the sense of solution quality as well as
time used.

Like we did for our application we also use real world data from OSM for the evaluation.
We therefore have prepared two different regions of Austria. One is the city region of
Salzburg to get a quite dense data set and the second one is a rural region namely a
part of Lower Austria to get a sparser region and a sparser conflict graph but with a
higher number of features. We will call them dense and sparse data sets in the following.
We also filtered and rehashed these data sets to get different graduations of density and
feature amount with the same data. So in total we have eight different data sets where
we applied our tests. Table 7.1 shows our test data sets with their density, their number
of conflicts and their feature amount. As can be seen, the Lower Austria data sets have
similar low numbers of conflicts per node and only increase in their number of point
features. The zoom level for all of our tests is set to a zoom level of 16. This corresponds

64

7.2. Results

to a map scale of 1:8000.

The tests are implemented like our prototype in Java and we ran them on a standard
laptop system with 12GB RAM and an Intel R©CoreTMi5-5200U @ 2.20 GHz, using a
64-Bit Windows 10 as the operating system.

7.2 Results

The summary of our test runs is shown in Figure 7.1a and Figure 7.1b. They have to
be interpreted as follows. Each colour (or each facet) represents the algorithm that was
used for calculating the initial solution. The modification that was used is labeled on the
x-axis where, e.g., a value of ‘25’ indicates that 25 percent of the selected labels were
reduced in their size while the remaining 75 percent were enlarged. The different point
shapes indicate the second algorithm that was used to recalculate a new solution. The
y-axis then represents the percentage of features that were labeled in the final solution
by the specific algorithms and modification combinations. These values are the median
values of all aggregated data sets of one density (i.e., all Salzburg data sets or all Lower
Austria data sets) each containing one hundred runs. As can be seen in both figures, the
percentage of labeled features increases when increasing the amount of labels that get
shrunk while simultaneously decreasing the amount of enlarged labels. The rightmost
value is the one where the size of all selected labels is reduced and hence its obvious that
more features can be labelled.

One striking but expected detail is that on both, the dense and the sparse data set,
the Simple algorithm produces worse first solutions compared to the other algorithms.
Even when we apply the exact algorithm as the second algorithm the solution stays
suboptimal since this algorithm tries to keep the initial solution as good as possible.
Different from that the ThreeRules and the IndependentSet algorithms ignore a
solution calculated by a previous algorithm and hence result in quite competitive solutions
when applied after the greedy Simple algorithm.

Starting with an exact solution calculated by MaxHS we can observe the opposite. Then,
using MaxHS or Simple as second algorithm produces better solutions than the other
two. But this effect just occurs on dense data sets. On our sparse data sets there are
no significant differences except that the IndependentSet algorithm performs a little
worse. An interesting fact is that applying the exact algorithm twice does not lead to
much better solutions in the sense of more labels placed than applying the combination
of first MaxHS and then Simple which is much faster than the first variant. Especially
when all selected labels get shrunk this combination produces equally good results. This
is because both want to keep the initial solution as good as possible. In general, using
MaxHS for the recalculations on a sparse data set is not the best option, since it produces
only in one case (i.e., applying twice the MaxHS algorithm) a slightly better solution
then other faster algorithm combination.

Besides the above mentioned remarks there are no large differences between the other

65

7. Evaluation

(a) Dense Salzburg data set.

(b) Sparse Lower Austria data set.

Figure 7.1: Different algorithm and modification combinations. The x-axis shows the
percentage of labels that were reduced in their size (the rest were enlarged) and the
y-axis shows the percentage of features that could be labeled in the final solution.

66

7.2. Results

(a)

(b)

Figure 7.2: Runtimes of the implemented algorithms for the (a) dense Salzburg and for
the (b) sparse Lower Austria data sets. We use a logarithmic scale for the dense data set.

67

7. Evaluation

algorithm combinations on the dense data set (see Figure 7.1a). They all produce quite
competitive labeling solutions. We can just point out the running time performance
differences which can be seen in Figure 7.2a and Figure 7.2b for the two data sets. Note
that we have chosen a logarithmic scale for the dense data set because of the long time
needed for running the exact MaxHS algorithm. As expected the Simple algorithm is the
fastest and needs just a few milliseconds even for large data sets. IndependentSet and
ThreeRules are quite fast on small number of features whereas the latter is always a bit
slower. But with growing feature number the ThreeRules algorithm needs more and
more time and can not keep pace with the IndependentSet algorithm. The slowest
one is for sure the exact algorithm on both dense and sparse data sets.

Looking at the sparse data set in Figure 7.1b we can observe that the ThreeRules
algorithm outperforms the others when used for recalculation regardless which algorithm
was used for calculating the initial solution. As a little side note we have to say that the
ThreeRules modifies the conflict graph during its application so that we have to create
the conflict graph from scratch before we can apply another algorithm. But fortunately
this influences the overall runtime only minimally. An interesting fact for sparse data
sets is that the IndependentSet algorithm performs worse than the others both when
used as first and as second algorithm. Even the Simple algorithm outperforms it in
some combinations.

Quite surprising is the combination of Simple with ThreeRules. It produces in most
cases better solutions than any other combination using ThreeRules as the second
algorithm (see Figure 7.3) although the differences are quite minimal.

So as we have seen we can not identify the one combination for all kind of data sets. But
we can identify well performing combinations for specific use cases and specific conditions.
Table 7.2 shows some use cases and the best algorithm combination for it. For example if
the user always wants the best solution and is not interested in fast results but has time
in his workflow to wait for the solutions, he will obviously use the exact algorithm twice.
Much faster but also a bit less optimal variant for dense data sets is the combination of
the exact algorithm with the greedy algorithm Simple as second algorithm. If time is
the priority constraint for the user he can combine the Simple algorithm with either
the ThreeRules algorithm or if he works on large data sets he can combine it with the
IndependentSet algorithm because as we already said the ThreeRules algorithm
gets much slower on large data sets.

As we can see in Table 7.2 it is a quite good choice to use the greedy and simple algorithm
either as first or second algorithm but not twice. This is an interesting point that we
did not expect, since it is an algorithm without any optimization. But the fact that it
can keep an existing solution and the speed of its calculations makes it an interesting
algorithm for several use cases.

68

7.2. Results

Figure 7.3: Comparison of the algorithms when using ThreeRules as second algorithm
on the sparse data set.

Constraints Data set Algorithm combination

optimal, no time constraints dense or sparse MaxHS+MaxHS

optimal, fast
dense MaxHS+Simple

sparse Simple+ThreeRules or
IndependentSet+ThreeRules

good solution, fastest dense or sparse Simple+ThreeRules or
Simple+IndependentSet

Table 7.2: Different use case constraints and suitable algorithm combinations (the ordering
indicates which one is used as first and which one as second algorithm).

Fine Grained Evaluation

As we have said, in the above plots all data sets of one density per modification are aggre-
gated. Since there is some information lost we show here some selected (representative)
plots of different data sets and different modifications (see Figures 7.4 and 7.5). These
boxplots have to be read as follows. Each facet represents the algorithm that was used
to calculate the initial solution. The different coloured boxes then indicate the algorithm
that was used for the recalculation and on the y-axis we again have the percentage of
labeled features in the final solution by the specific algorithm combination. Each plot

69

7. Evaluation

represents one modification, e.g., Figure 7.4b is the plot for shrinking and enlarging each
50 percent of the selected labels in the dense Salzburg data set with 601 features.

First looking on the size of the initial solution (the blue dashed line in the figures) we can
see that for sure the exact MaxHS algorithm produces the best initial solutions and the
simple and greedy algorithm produces initial solutions that have more than ten percent
(in the dense data set) and six to eight percent (in the sparse data set) less features labeled
than the exact algorithm. Comparing the IndependentSet and the ThreeRules
algorithms we can see that those algorithms perform equally good on dense data sets
and calculate initial solutions that have about five to seven percent less features labeled
than the exact algorithm. On sparse data sets the ThreeRules algorithm outperforms
the IndependentSet algorithm by one percent and produces solutions near to optimal
especially on sparse data sets with lower numbers of features, i.e., in our tests for all data
sets with 863 features or less (see Figure 7.5a).

The red dashed line in the plots indicates the solution that is created by simply removing
all conflicting labels after the modification was performed. It is noticeable that some
algorithm combinations even calculate solutions that have less features labelled than
this simple conflict solving/removing. Drastic examples are when the IndependentSet
or the ThreeRules algorithms are applied to a solution calculated by MaxHS (see
Figures 7.4a and 7.4b). This is because these two algorithms ignore a previously calculated
solution.

Figures 7.5a and 7.5b show clearly the dominance of the ThreeRules algorithm
when used as the second algorithm on sparse data sets. And on dense data sets it
even depends on the number of features which one of the IndependentSet and the
ThreeRules algorithm is better. In Figure 7.4a the ThreeRules algorithm is ahead
of the IndependentSet and in Figure 7.4b it is inversely. Another aspect we can see
is that these two algorithms ignore the initial solution of the first algorithm and hence
produce similar good solutions regardless which algorithm was performed before. This is
also the reason why their solutions are much better than an initial solution calculated
by Simple. In this case the MaxHS algorithm is tied to that solution and can not keep
pace with them in this combination. For the update idea of our framework where we
want to keep the initial solution as much as possible, the IndependentSet and the
ThreeRules algorithms are not suitable when used as second algorithm since they
ignore a previously calculated solution. This can lead to solutions that are very different
from the initial solution. MaxHS combined with Simple does not have this drawback.

70

7.2. Results

(a)

(b)

Figure 7.4: Algorithm combinations for shrinking and enlarging each 50 percent of the
selected labels in the dense Salzburg data set with (a) 292 and (b) 601 features.

71

7. Evaluation

(a)

(b)

Figure 7.5: Algorithm combinations for shrinking (a) 25 and (b) 75 percent of the selected
labels in the sparse Lower Autria data set with (a) 863 and (b) 1296 features.

72

CHAPTER 8
Conclusion

In this thesis we studied a semi-automatic and user-centered approach for labeling point
features on static cartographic maps. We presented an interactive labeling tool based on
user constraints. Beginning with an initial solution the domain expert user can add his
or her domain knowledge in the form of user constraints to the tool and so refine, adapt
and improve the labeling solution to create a high quality map.

We incorporated domain expertise collected in interviews with a domain expert to create
a software regarding the users needs. We use a conflict graph to formally describe the
user constraints and the labeling problem in general and we use it for our algorithms to
calculate valid and optimal labeling solutions. The advantage of this approach is that we
are not tied to a specific type of feature, a position model or a specific kind or shape of
labels although we currently use the fixed four position model for rectangular axis parallel
label candidates. We offer three different optimization approaches regarding automatic
labeling, namely weight maximization, label maximization and conflicts minimization. In
this thesis we focused on the label number maximization.

In an evaluation of our labeling prototype and our algorithms with real world data from
OpenStreetMap we showed that different algorithm combinations perform best based on
the input data set, the modification that is applied as well as the goals and constraints a
user is interested in. We could show differences between dense and sparse data sets and
gave suggestions for specific requirements of the creation process (e.g., optimal solution,
fast results). We have seen that our heuristics perform similarly well or even better than
the exact algorithm in the use cases of our application. For sure the exact algorithm
generates the best initial solution but in connection with the label modification and the
recalculations it does not always outperform the implemented heuristics. Additionally it
needs much more time to produce a solution. So the experiments showed, that it is not
necessary or advisable to always apply an exact algorithm to get the best solutions, but
that it is sufficient and not less optimal to use the faster heuristics. We have also seen,

73

8. Conclusion

that we can even use the very fast greedy algorithm with no optimization for calculating
or recalculating a solution and get quite competitive results.

One of our intentions for this thesis was to find techniques where we do not need
to recalculate the whole labeling after the user added a constraint by modifying the
initial solution. We tried to keep the changes in the conflict graph local and wanted
to update just the neighbourhood of where the modification happened to achieve an
efficient recalculation. For that we searched for some patterns and approaches that allow
us to keep the effects of a modification in some restricted area but unfortunately we
did not succeed here. We left out this aspect for now and for this thesis but we will
pursue this goal in future work. Actually, this problem does not need to be tied to the
labeling problem but can be seen as a more general problem in any undirected graph
in connection with some “solution” (i.e., a subset of graph vertices) like a (maximum)
independent set or a (minimum) vertex cover. The question that arises is: how can we
keep a graph modification (i.e., adding or removing an edge) local and influencing as
little as possible the given set of vertices?

We see this thesis as a first step and want to extend it further by, e.g., supporting line
and area features or improve the process of modification and recalculation including
the above mentioned local updates. If these changes are fast we can also extend the
framework by giving previews to the user of the effects a particular modification will have
or warn of modifications with wide-spread consequences. Another possibly interesting
approach is to compute small sets of distinct solutions with comparable quality values,
where the user can choose one.

We can also expand our framework by adding more algorithms or improve the exist-
ing ones. For example we can try to optimize the Simple algorithm or adapt the
IndependentSet and the ThreeRules algorithms so that they also take an initial
solution into account. Our current evaluation does not say anything about the percentage
of labels that are kept by a specific algorithm when calculating a new solution after
a label modification was applied. At the moment such an evaluation would be a bit
distorted because of the above mentioned missing support in the IndependentSet
and ThreeRules algorithms. But as we have tried to aim for algorithms that keep a
previously calculated solution as much as possible this is an interesting aspect that can
be evaluated in future work.

74

Bibliography

[ABL10] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. A new algorithm
for weighted partial maxsat. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI’10, pages 3–8. AAAI Press,
2010.

[AI16] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT
algorithms in practice: A case study of vertex cover. Theoretical Computer
Science, 609:211–225, 2016.

[AKCF+04] Faisal N. Abu Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A.
Langston, W. Henry Suters, and Christopher T. Symons. Kernelization algo-
rithms for the vertex cover problem: Theory and experiments. In Lars Arge,
Giuseppe F. Italiano, and Robert Sedgewick, editors, ALENEX/ANALC,
pages 62–69. SIAM, 2004.

[ArDT09] Adriana C.F. Alvim and Éric D. Taillard. POPMUSIC for the point
feature label placement problem. European Journal of Operational Research,
192(2):396 – 413, 2009.

[AS95] Walid G. Aref and Hanan Samet. A window retrieval algorithm for spatial
databases using quadtrees. In Proceedings of the 3rd ACM International
Workshop on Advances in Geographic Information Systems, Baltimore,
Maryland, December 1-2, 1995, in conjunction with CIKM 1995., page 69,
1995.

[AvKS98] Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label placement
by maximum independent set in rectangles. Computational Geometry,
11(3):209–218, 1998.

[Bac] Tomislav Bacinger. Best online mapping tools for
web developers. https://www.toptal.com/web/
the-roadmap-to-roadmaps-a-survey-of-the-best-online-
mapping-tools. Accessed: 2018-05-14.

75

https://www.toptal.com/web/the-roadmap-to-roadmaps-a-survey-of-the-best-online-mapping-tools
https://www.toptal.com/web/the-roadmap-to-roadmaps-a-survey-of-the-best-online-mapping-tools
https://www.toptal.com/web/the-roadmap-to-roadmaps-a-survey-of-the-best-online-mapping-tools

Bibliography

[BBK98] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. The pyramid-
technique: Towards breaking the curse of dimensionality. SIGMOD Rec.,
27(2):142–153, June 1998.

[BDY06] K. Been, E. Daiches, and C. Yap. Dynamic map labeling. IEEE Transactions
on Visualization and Computer Graphics, 12(5):773–780, Sept 2006.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, September 1975.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: An efficient and robust access method for points and
rectangles. SIGMOD Rec., 19(2):322–331, May 1990.

[BKSW07] Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander
Wolff. Boundary labeling: Models and efficient algorithms for rectangular
maps. Computational Geometry, 36(3):215 – 236, 2007.

[BNPW10] Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff.
Optimizing active ranges for consistent dynamic map labeling. Computa-
tional Geometry, 43(3):312–328, 2010.

[BT07] Sergiy Butenko and Svyatoslav Trukhanov. Using critical sets to solve the
maximum independent set problem. Operations Research Letters, 35(4):519–
524, 2007.

[CMS95] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of
algorithms for point-feature label placement. ACM Trans. Graph., 14(3):203–
232, July 1995.

[CRL08] Gildásio Lecchi Cravo, Glaydston Mattos Ribeiro, and Luiz Anto-
nio Nogueira Lorena. A greedy randomized adaptive search procedure for
the point-feature cartographic label placement. Comput. Geosci., 34(4):373–
386, April 2008.

[DB11] Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence
of simpler SAT instances. In Jimmy Lee, editor, Principles and Practice of
Constraint Programming – CP 2011, LNCS 6876, pages 225–239. Springer
Berlin Heidelberg, 2011.

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Quadtrees, chapter 14, pages 307–322. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000.

[dNE08] Hugo A.D. do Nascimento and Peter Eades. User hints for map labeling.
Journal of Visual Languages & Computing, 19(1):39–74, 2008.

76

Bibliography

[EGS05] David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun. The skip
quadtree: A simple dynamic data structure for multidimensional data.
In Proceedings of the Twenty-first Annual Symposium on Computational
Geometry, SCG ’05, pages 296–305, New York, NY, USA, 2005. ACM.

[FB74] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval
on composite keys. Acta Informatica, 4(1):1–9, Mar 1974.

[FR89] Thomas A Feo and Mauricio G.C Resende. A probabilistic heuristic for a
computationally difficult set covering problem. Operations Research Letters,
8(2):67 – 71, 1989.

[FW91] Michael Formann and Frank Wagner. A packing problem with applica-
tions to lettering of maps. In In Proc. 7th Annual ACM Symposium on
Computational Geometry, pages 281–288, 1991.

[Gar82] Irene Gargantini. An effective way to represent quadtrees. Commun. ACM,
25(12):905–910, December 1982.

[GD06] Stephen Gilmour and Mark Dras. Kernelization as heuristic structure for
the vertex cover problem. In Marco Dorigo, Luca Maria Gambardella,
Mauro Birattari, Alcherio Martinoli, Riccardo Poli, and Thomas Stützle,
editors, Ant Colony Optimization and Swarm Intelligence, LNCS 4150,
pages 452–459. Springer Berlin Heidelberg, 2006.

[geo] Geofabrik Download Server. http://download.geofabrik.de/. Ac-
cessed: 2018-05-16.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[GNR11] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Consistent labeling
of rotating maps. In Frank Dehne, John Iacono, and Jörg-Rüdiger Sack,
editors, Algorithms and Data Structures, LNCS 6844, pages 451–462, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.
SIGMOD Rec., 14(2):47–57, June 1984.

[HP05] Sariel Har-Peled. Quadtrees-hierarchical grids. Lecture notes, 2005. http:
//sarielhp.org/teach/2004/a_aprx/lec/03_quadtree.pdf
Accessed: 2018-08-06.

[Imh75] Eduard Imhof. Positioning names on maps. The American Cartographer,
2(2):128–144, 1975.

[JC04] Joo-Won Jung and Kyung-Yong Chwa. Labeling points with given rectan-
gles. Inf. Process. Lett., 89(3):115–121, February 2004.

77

http://download.geofabrik.de/
http://sarielhp.org/teach/2004/a_aprx/lec/03_quadtree.pdf
http://sarielhp.org/teach/2004/a_aprx/lec/03_quadtree.pdf

Bibliography

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. In Proceedings of the Sixteenth Annual ACM Symposium on
Theory of Computing, STOC ’84, pages 302–311. ACM, 1984.

[Kla01] Gunnar W. Klau. A Combinatorial Approach to Orthogonal Placement
Problems. PhD thesis, Saarland University, 2001.

[KP07] You Jung Kim and Jignesh M. Patel. Rethinking choices for multi-
dimensional point indexing: Making the case for the often ignored quadtree.
In CIDR, pages 281–291, 2007.

[KT98] Konstantinos G. Kakoulis and Ioannis G. Tollis. A unified approach to
labeling graphical features. In Proceedings of the Fourteenth Annual Sym-
posium on Computational Geometry, SCG ’98, pages 347–356, New York,
NY, USA, 1998. ACM.

[LNS16] Maarten Löffler, Martin Nöllenburg, and Frank Staals. Mixed map labeling.
J. Spatial Information Science, 13:3–32, 2016.

[map] The Map-Labeling Bibliography. http://i11www.iti.kit.edu/
~awolff/map-labeling/bibliography/. Accessed: 2018-04-11.

[max] MaxSAT Evaluation 2017. http://mse17.cs.helsinki.fi/
mse17-talk.pdf. Accessed: 2018-04-30.

[Mea82] Donald Meagher. Geometric modeling using octree encoding. Computer
graphics and image processing, 19(2):129–147, 1982.

[MRL10] Geraldo R. Mauri, Glaydston M. Ribeiro, and Luiz A.N. Lorena. A new
mathematical model and a lagrangean decomposition for the point-feature
cartographic label placement problem. Computers & Operations Research,
37(12):2164 – 2172, 2010.

[MS91] Joe Marks and Stuart Shieber. The computational complexity of carto-
graphic label placement. Technical report, Harvard Computer Science
Group, 1991.

[NHS84] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid file: An
adaptable, symmetric multikey file structure. ACM Trans. Database Syst.,
9(1):38–71, March 1984.

[NN16] Benjamin Niedermann and Martin Nöllenburg. An algorithmic framework
for labeling road maps. In Jennifer A. Miller, David O’Sullivan, and Nancy
Wiegand, editors, Geographic Information Science, pages 308–322, Cham,
2016. Springer International Publishing.

78

http://i11www.iti.kit.edu/~awolff/map-labeling/bibliography/
http://i11www.iti.kit.edu/~awolff/map-labeling/bibliography/
http://mse17.cs.helsinki.fi/mse17-talk.pdf
http://mse17.cs.helsinki.fi/mse17-talk.pdf

Bibliography

[odb] Open Database License (ODbL) v1.0 | Open Data Commons. https:
//opendatacommons.org/licenses/odbl/1.0/. Accessed: 2018-
05-15.

[osm] OpenStreetMap. www.openstreetmap.org. Accessed: 2018-05-15.

[pla] Planet OSM. https://planet.openstreetmap.org/. Accessed:
2018-05-16.

[PM98] F Pascal and JL Marechal. Fast adaptive quadtree mesh generation. In
7th International Meshing Roundtable, pages 211–224. Citeseer, 1998.

[RL06] Glaydston Mattos Ribeiro and Luiz Antonio Nogueira Lorena. Heuristics
for cartographic label placement problems. Computers & Geosciences,
32(6):739–748, 2006.

[RL08] Glaydston Mattos Ribeiro and Luiz Antonio Nogueira Lorena. Lagrangean
relaxation with clusters for point-feature cartographic label placement
problems. Computers & Operations Research, 35(7):2129 – 2140, 2008.

[RML11] Glaydston M. Ribeiro, Geraldo R. Mauri, and Luiz Antonio N. Lorena.
A Lagrangean decomposition for the maximum independent set problem
applied to map labeling. Operational Research, 11(3):229–243, 2011.

[RR10] Mauricio G.C. Resende and Celso C. Ribeiro. Greedy randomized adaptive
search procedures: Advances, hybridizations, and applications. In Michel
Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics,
volume 146 of International Series in Operations Research & Management
Science, pages 283–319, Boston, MA, 2010. Springer US.

[RR17] Maxim Rylov and Andreas Reimer. A practical algorithm for the external
annotation of area features. The Cartographic Journal, 54(1):61–76, 2017.

[Sam84] Hanan Samet. The quadtree and related hierarchical data structures. ACM
Comput. Surv., 16(2):187–260, June 1984.

[Sam90] Hanan Samet. Applications of spatial data structures. In Computer
Graphics, Image Processing, and GIS, pages 0–201. Addison-Wesley, 1990.

[sat] SAT 2017. http://sat2017.gitlab.io/. Accessed: 2018-04-30.

[SB94] G. J. Sullivan and R. L. Baker. Efficient quadtree coding of images and
video. IEEE Transactions on Image Processing, 3(3):327–331, May 1994.

[SRSW84] Hanan Samet, Azriel Rosenfeld, Clifford A. Shaffer, and Robert E. Webber.
A geographic information system using quadtrees. Pattern Recognition,
17(6):647 – 656, 1984.

79

https://opendatacommons.org/licenses/odbl/1.0/
https://opendatacommons.org/licenses/odbl/1.0/
www.openstreetmap.org
https://planet.openstreetmap.org/
http://sat2017.gitlab.io/

Bibliography

[Str16] Darren Strash. On the power of simple reductions for the maximum indepen-
dent set problem. In Thang N. Dinh and My T. Thai, editors, Computing
and Combinatorics, LNCS 9797, pages 345–356. Springer International
Publishing, 2016.

[SVA00] Tycho Strijk, Bram Verweij, and Karen Aardal. Algorithms for maxi-
mum independent set applied to map labelling. Technical report, Utrecht
University, 2000.

[swe] OpenStreetMap Sverige. http://openstreetmap.se. Accessed: 2018-
05-14.

[VA99] Bram Verweij and Karen Aardal. An optimisation algorithm for maximum
independent set with applications in map labelling. In Jaroslav Nešetřil,
editor, Algorithms - ESA’ 99, LNCS 1643, pages 426–437. Springer Berlin
Heidelberg, 1999.

[vKSW98] Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point set labeling
with sliding labels. In Proceedings of the Fourteenth Annual Symposium on
Computational Geometry, SCG ’98, pages 337–346. ACM, 1998.

[wgs] WGS 84 / Pseudo-Mercator. https://epsg.io/3857. Accessed: 2018-
05-16.

[WKvK+00] Alexander Wolff, Lars Knipping, Marc van Kreveld, Tycho Strijk, and
Pankaj K. Agarwal. A simple and efficient algorithm for high-quality line
labeling. In Peter M. Atkinson and David J. Martin, editors, Innovations
in GIS VII: GeoComputation, chapter 11, pages 147–159. Taylor & Francis,
2000.

[WWKS01] F. Wagner, A. Wolff, V. Kapoor, and T. Strijk. Three rules suffice for good
label placement. Algorithmica, 30(2):334–349, June 2001.

[Yoe72] Pinhas Yoeli. The logic of automated map lettering. The Cartographic
Journal, 9(2):99–108, 1972.

[Zor86] Steven Zoraster. Integer programming applied to the map label place-
ment problem. Cartographica: The International Journal for Geographic
Information and Geovisualization, 23(3):16–27, 1986.

[Zor90] Steven Zoraster. The solution of large 0–1 integer programming problems
encountered in automated cartography. Operations Research, 38(5):752–759,
1990.

80

http://openstreetmap.se
https://epsg.io/3857

	Abstract
	Kurzfassung
	Introduction
	Related Work
	Outline

	Preliminaries
	The Label Placement Problem
	Objectives in Label Placement
	Terminology from Graph Theory

	Data Structures
	Quadtree
	Conflict Graph

	Labeling Algorithms
	Maximum Independent Set Approaches
	SAT Approaches
	Three Rules Algorithm
	Integer Linear Programming Approaches

	User Constraints
	Interviews
	Label Modifications in our Framework
	Classification of the Constraints
	Optimal Solution after Label Modification

	Development and Implementation of the Prototype
	Basic Workflow of the Framework
	Used Technology
	Implementation Details
	User Interface
	Implemented Algorithms

	Evaluation
	Setting
	Results

	Conclusion
	Bibliography

