
DIPLOMA THESIS

Comparison of Verification and Productive Firmware for

a Wireless Low-power System-on-Chip

Submitted at the

Faculty of Electrical Engineering and Information Technology,

 TU Wien

in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur

under supervision of

Univ.Prof. Dipl.-Ing. Dr.techn. Axel Jantsch

Institute number: 384

Institute of Computer Technology

and

Dipl.-Ing. Michael Rathmair

Institute number: 384

Institute of Computer Technology

by

Christian Tauber, BSc

0928877

Fasangartengasse 64/9

1130 Wien

23 May 2017

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

 II

Kurzfassung

Steigende System-on-Chip (SoC) Komplexität und damit verbundener Aufwand für funktio-

nale Verifikation begründen die Nachfrage für innovative Ideen um den Ressourceneinsatz und Ti-

me-to-Market zu verringern. An einem aktuellen Pre-Silicon Entwicklungsprojekt eines ARM-

basierten drahtlosen Sensor-SoC wurde die Kombination eines Hardware Abstraction Software De-

signs für System-level Verifikation und einer produktiven Programmierbibliothek untersucht. Die

vorgeschlagene Ansatz ist ein drei schichtiger Hardware Abstraction Layer (HAL), unter Einhaltung

des ARM Cortex Microcontroller Software Interface Standard (CMSIS), wobei die unteren zwei

Schichten gemeinsam genutzt, und die oberste die individuelle Implementierung des Anwendungs-

falls beinhaltet. Um das vorgestellte Konzept zu untersuchen wurden exemplarisch die Implementie-

rungen zweier Hardware Module mit einem vorgeschlagenen Set an passenden Metriken für Bare-

Metal Software untersucht. Basierend auf batteriebetriebenem Einsatz des Chips und den damit ver-

bundenen Anforderungen an geringen Stromverbrauch, wurde der Teil des HALs für die Power Ma-

nagement Unit untersucht. Als zweites Modul wurde die Schnittstelle zum dem auf dem Chip inte-

griertem Transceiver gewählt, aufgrund der Schlüsselfunktion drahtloser Kommunikation. Die um-

fassende Auswertung zeigte, dass ungefähr 80% des HAL Quellcodes von der Pre-Silicon Verifika-

tion ohne Veränderung für die darauffolgende produktive Programmierbibliothek weiterverwendet

werden können. Jedoch müssen die genauen Schnittstellendefinitionen im Vorfeld festgelegt werden

und bedürfen der Achtsamkeit des Trade-Offs hinsichtlich Performance und Speicherbelegung. Ab-

schließend an die Anwendbarkeit der kombinierten Entwicklung, wird ein detaillierter Ausblick auf

weitere zukünftige Forschungsfragen zu diesem Thema gegeben.

 III

Abstract

Rising system-on-chip complexity and therewith functional verification effort drives the

demand for innovative ideas to decrease required resource usage and shorten time-to-market. On a

current pre-silicon development project of an ARM-based wireless sensor system-on-chip, the com-

bination of hardware abstraction software design for system-level verification and a productive pro-

gramming library was evaluated. The suggested approach is a three layer Hardware Abstraction

Layer (HAL), in accordance to ARM Cortex Microcontroller Software Interface Standard (CMSIS),

where the bottom two layers are used in common, and the upper one is providing the particular use-

case implementation. To survey the proposed concept, the implementations on two example hard-

ware modules were evaluated with a proposed set of appropriate metrics for bare-metal software.

Based on the battery-driven chip operation and therewith important low power requirements, the part

of HAL regarding the custom developed power management unit was evaluated. As second module,

the interface to the on-chip transceiver was selected, by the chip key functionality of wireless com-

munication. The comprehensive evaluation showed that reuse of about 80% of HAL source code

from pre-silicon verification could be achieved without any modification necessary, for the followed

productive programming library development. However, the straight layer interface definitions have

to be defined a-priori and need awareness for trade-offs regarding performance and memory utiliza-

tion. Concluded with the applicability of combined development, a detailed outlook on reasonable

extended future research on this topic is given.

 IV

Acknowledgements

After an intensive but interesting period of 8 months of working on this diploma thesis and

the achieved personal growth & development, I would like to thank everyone who has supported me.

First I have to thank my colleagues from Infineon Technologies AG for the enjoyable, in-

structive collaboration. Christian Hambeck and Johannes Schweighofer continuously and dedicated-

ly helped me during the challenging tasks of the development project. At TU Wien, I would like to

say thank you to my supervisor Michael Rathmair and Prof. Jantsch for their guidance to finish my

diploma thesis.

I would especially like to thank my parents and my sister supporting me throughout my

studies and give me the confidence to get where I am now. Finally, thanks to all my friends that ac-

companied me during the enjoyable time at university and the great time in Vienna.

 V

Table of contents

1. Introduction .. 1

1.1 Motivation .. 2

1.2 Problem Statement ... 2

1.3 Task Setting ... 3

1.4 Methodology .. 4

2. State of the Art and Related Work ... 5

2.1 Functional Hardware Verification ... 5

2.2 ARM Architecture ... 7

2.3 Hardware Abstraction Layer .. 10

2.4 CMOS Power Consumption and Management Strategies ... 13

2.5 Software Metrics .. 19

2.6 Related Work ... 26

3. Proposed Concept ... 27

3.1 ARM-based SoC with a custom Transceiver Module.. 27

3.2 Hardware Abstraction Layer for Processor-driven Verification 33

3.3 Evaluation of Verification and Productive HAL Variants ... 37

4. Implementation... 44

4.1 HAL Implementation in C ... 44

4.2 Development and Simulation Environment ... 46

4.3 Tools for Metric Evaluation ... 47

5. Benchmarking and Results ... 48

6. Conclusion .. 59

Literature .. 60

Internet References ... 64

Image References ... 65

Abbreviations

AES Advanced encryption standard

AHB Advanced high-performance bus

AMBA Advanced microcontroller bus architecture

ANSI American national standards institute

APB Advanced peripheral bus

API Application programming interface

CAN Controller area network

CLK Clock

CMOS Complementary metal-oxide-semiconductor

CMSIS Cortex microcontroller software interface standard

CPU Central processing unit

DAP Debug access port

DMA Direct memory access

DSP Digital signal processing

FCLK Free-running processor clock

FPGA Field programmable gate array

GND Ground

GPIO General-purpose input / output

GUI Graphical user-interface

HAL Hardware abstraction layer

HCLK High-speed clock

I2C Inter-Integrated circuit

IoT Internet of things

IP Intellectual property

ISO International organization for standardization

ISR Interrupt service routine

JPEG JPEG file interchange format, ISO/IEC 10918-1

JTAG Joint test action group

LED Light-emitting diode

LOC Lines of code

McCabeCC MyCabe cyclomatic complexity

MCI Memory card interface

MCU Microcontroller unit

MISRA Motor industry software reliability association

MOSFET Metal-oxide-semiconductor field-effect transistor

NAND Not-and

 VII

NMOS N-type metal-oxide-semiconductor

NVIC Nested vector interrupt controller

OOP Object-oriented programing

PCLK Peripheral clock

PDT Processor-driven verification

PLL Phase-locked loop

PMOS P-type metal-oxide-semiconductor

PMU Power management unit

RAM Random-access memory

RFID Radio-frequency identification

ROM Read-only memory

RTL Register-transfer level

SAI Serial audio interface

SCLK System clock

SEL Select

SFR Special function register

SLOC Source lines of code

SoC System-on-chip

SPI Serial peripheral interface

TLOC Total lines of code

TRX-IF Transceiver interface

U(S)ART Universal (synchronous/) asynchronous receiver/transmitter

UHF Ultra-high frequency

UPF Unified power format

USB Universal serial bus

Vdd Positive power supply

WB Wishbone bus

WIC Wakeup interrupt controller

XML Extensible markup language

1. Introduction

Next generation wireless sensor networks put the requirements on secure and flexible configuration

together with high-performance while satisfy the demand on low power consumption for longest

possible application lifetime. A system-on-chip (SoC) development project by Infineon on a sub-

GHz transceiver chip with integrated ARM Cortex-M0 processor and a flash memory combined

with efficient power management strategies shall meet these requirements. Figure 1.1 shows this

wireless sensor SoC, by the extension of microcontroller architecture with an application specific

sensor and a transceiver to communicate with other devices. The de-facto standard of ARM architec-

ture benefits compatibility, code reuse and integration of well-tested IPs. With the focus on perfor-

mance and flexibility, the request for intelligent Internet of Things (IoT) network nodes can be satis-

fied. The development of an efficient power management, the incorporation of versatile wireless

interfaces and the goal of minimal chip size integration are thus major challenges in the current pre-

silicon development stage.

Figure 1.1: Wireless Sensor System-on-Chip

Target firmware applications will be able to access the functionality of the modular hardware struc-

ture by simple, slight interfaces, provided by a Hardware Abstraction Layer (HAL). Within this con-

text, this thesis presents a concept for combining verification and productive purpose in the HAL

design, motivated by potential reduction of the development efforts, a challenging field in research

according to the raising system-on-chip complexity and consequently verification efforts. With the

research on state-of-the-art software metrics and the treatise on the applicability on embedded bare-

metal software an evaluation on two example hardware module implementations will allow an in-

depth conclusion about the proposed HAL and the code reuse over different software design goals.

Sensor

Impedance
Spectroscopy

Amperometry

Pressure
Sensor

Wireless Sensor SoC

Microcontroller

Introduction

 2

1.1 Motivation

In a current SoC development project by Infineon the upwards trend in project effort was identified

to be surveyed in the pre-silicon stage. A potential strategy for reduction in firmware development

and hardware verification is treated by this diploma thesis by examining overlapping tasks in soft-

ware design, and providing a contribution to a more efficient development process. In combination

with the contemporary requirements of IoT wireless nodes, driving node intelligence and longest

lifetime, this survey subject is positioned on current topics of research and development.

The design flow of a SoC starts from the specification, goes over to the co-development of hardware

and software, where the latter is quite important to verify the functional correctness of the chip, be-

fore it is sent to the fab for a first prototype production. This so-called “tape-out” and the associated

mask design for the production process is a quite expensive task in SoC development, justifying an

excessive effort in ensuring functional correctness. Post hoc design changes result in single or up to

total redesign of all masks and maybe in a project fail by financial unfeasibility. An industrial study

from 2014 [Fos15] claimed that in SoC development projects 57% of the total project time is spent

on verification, with an ongoing trend upwards. In addition, 61% of these projects are behind sched-

ule and thus, are not able to finish the project within the proposed time plan. Approaches and contri-

butions in efficient verification can therefore decrease the development effort and as a consequence

time and money resources.

1.2 Problem Statement

The overall rising complexity in systems design and the associated verification effort forces the crea-

tion of new innovative strategies and approaches in functional verification. On state-of-the-art SoC

development projects this task consists of assertion-based verification in hardware description lan-

guages (HDL including VHDL, Verilog, etc.) and processor-driven verification, where a C or As-

sembler test facilitates the processor and bus system to check the functionality of a module-under-

test on system level. The development of firmware therefore is done for verification purpose and in

addition to realise a productive firmware, generally in form of a HAL. This software is then provid-

ed for 3
rd

 party application engineering when using this SoC chip for custom application develop-

ment. Obviously, in pre-silicon development at the semiconductor manufacturer there is an overlap-

ping between verification and productive firmware development that could contain potential for

improvements in development effort reduction, by identifying redundant programming tasks and the

resulting parts of code.

Since power management is a major topic to enable longest lifetime with the hard limited amount of

energy from battery or energy harvesting, and the connection of the power management unit (PMU)

to almost all other components in the system to drive for example sleep or power down states, the

verification task is a formidable challenge.

 Introduction

 3

1.3 Task Setting

The proposed SoC development project is divided into several development domains, where the

delimitation to the thesis survey topic is quite important. The hardware development state includes

digital and analog design. While the digital components are controlled and in direct interaction with

the central processing unit (CPU) subsystem and the executed software instructions, the analog do-

main, including clock oscillators, power supply, or input/output pads, is connected to software via

digital interfaces. The digital hardware design is closely linked to the domain of software develop-

ment, with the application of verification firmware to ensure the functional correctness on system

level besides HDL module assertion tests. Therefore it is mandatory that the digital domain is ex-

plained in detail to understand the chip architecture. However, the digital design itself and detailed

questions about it are not part of this thesis, but important to describe the actual task setting.

Already mentioned, to present the software task intersection of verification and productive develop-

ment purpose, the combination through a particular HAL design was examined. To make both vari-

ants comparable, suitable metrics qualify the software attributes.

With the important role of the power management unit as all-connecting to the other modules and

the risk to bring the system into critical states, the verification of this component is devoted a major

focus in this thesis. Through evaluation of the two firmware variants with appropriate, state-of-the-

art metrics for embedded software, allowed a comprehensive conclusion about the proposed analy-

sis, with a proof-of-concept presented on the example of the power management module and the

transceiver interface.

Shortly summarized, the tasks of this thesis were:

 State-of-the-art survey on combined verification and productive firmware, plus as key sub-

ject on power management tests

 Survey on software metrics and examination of applicability in the context of bare-metal

software and HAL benchmarking

 Design and implementation of the combined HAL in C

 Functional verification of the hardware components with the developed HAL and deploy-

ment of the productive variant

 Evaluation of the proposed concept on the example of two hardware modules with the se-

lected set of appropriate metrics

 Discussion of results and contribution on development and verification effort

Introduction

 4

1.4 Methodology

The de-facto standard of ARM in microcontroller design includes the hardware environment and the

Cortex Microcontroller Software Interface Standard (CMSIS), a HAL design guideline with provid-

ed core-drivers and templates which was used as basis for the proposed software design.

The verification of hardware modules can be done on different abstraction levels and various meth-

ods. Single digital components often tested by assertion-based HDL tests which can get complex on

bigger design. Hardware Verification Languages (HVLs) therefore are designed to support the veri-

fication task. However, on microcontroller system level the interaction of a component with the oth-

er blocks, especially the CPU, via a common bus interface is a proper use-case. As a consequence

functional verification is in addition done by C-test, facilitating the microcontroller (MCU) system.

In the current development project, a combination of HDL-based tests and system-level tests was

applied, where the latter one is further discussed in this thesis. To realise the surveyed comparison of

the verification firmware variant to the productive application library, software metrics were used to

measure the quality of several meaningful attributes. A broad selection from the review on state-of-

the-art metrics was sorted out by the discussion about applicability for each metric and resulted in a

reasonable set for hardware abstraction layer measurements. These metrics evaluate characteristics

(i) of the source code itself only, to examine internal attributes and (ii) software within the environ-

ment, in particular by executing the software on the target MCU system. In this context, the execu-

tion was in the current pre-silicon development stage done in register-transfer level (RTL) simula-

tion, where the software binaries are loaded into memory behaviourals. As a consequence unrestrict-

ed white-box testing of software and hardware was possible in the RTL simulation environment. For

the source code and binaries analysis, several tools were applied to calculate metric results.

2. State of the Art and Related Work

Verification, the answer to the question “Does it work?” was historically side-by-side in an evolu-

tional process to the development tools and design process models. In SoC development both, hard-

ware and software are nowadays co-developed and have to be constantly checked against. With rais-

ing system complexity far beyond single and manageable HDL digital designs towards processor-

based microcontroller system architectures, assertion-based hardware verification methods were

extended by system-level tests, to test convincing use cases in interaction with the system environ-

ment itself. To clarify the context of this thesis, the term of verification in general and processor-

based verification are explained, with power management verification in detail. Subsequently, the

popular ARM architecture is due to its market and technological dominance discussed, by explaining

the modular structure and interaction of components. On the subject area of software, to fit to the

developed hardware and allow abstraction for simplified access of hardware functionality, the com-

mon hardware-abstraction layered design approach benefits flexibility and code reusability. ARM

provides a HAL design guideline, including core drivers and templates. To adjust this model for a

proper customized design, experiences from literature research shall allow a better understanding for

particular design decisions. Next, the focus to mobile low-power applications can best be discussed

by looking at the technical causes for power dissipation, and common minimization techniques. To

compare the developed HAL variants for verification and productive purpose a broadly based sum-

mary on state-of-the-art software metrics is presented. Finally, related work is discussed to point out

the positioning of the thesis contribution.

2.1 Functional Hardware Verification

IEEE 1012-2012 Standard for System and Software Verification and Validation [1] defines verifica-

tion as “the process of evaluating a system or component to determine whether the products of a

given development phase satisfy the conditions imposed at the start of that phase”.

Validation in contrary is explained by the IEEE Standard 15288-2008 [2] as “confirmation, through

the provision of objective evidence, that the requirements for a specific intended use or application

have been fulfilled”. To put it simply, verification answers the question “Does it work” and valida-

tion “Do we build the right thing?”

Hardware Verification in particular refers to the tools and techniques, used to ensure that a system

does not have critical hardware bugs and performs correctly in response to outside stimuli like exe-

cuting software. Setting up a system, run it and check if it fails is called testing, and is differentiated

to verification by being less comprehensive [And05]. While in in the early stages independent hard-

ware and software development were quite conventional, rising complexity and therewith higher

development cost substantiated new approaches. Hardware/Software Co-development parallels the

State of the Art and Related Work

 6

sequential development process by starting software implementation while still evolving and verify-

ing the corresponding hardware components. Hardware/Software Co-Verification is the process of

verifying embedded system software runs correctly on the hardware design before the design is

committed for fabrication [And05]. This is resulting in shorter time-to-market and an additional

stimulus in addition to HDL test benches for the hardware developers.

A few years ago the term Processor-driven Verification/Test (PDT) also known as Software-driven

verification [Bai14] [Goe14] was introduced and addresses the problem that test-benches for single

IP modules do not cover the interaction in systems with an embedded processor. In PDT the tests are

stored in memory, and the results evaluated after execution [Lus16]. A major advantage is the reusa-

bility of tests during the overall project lifecycle, since the C or assembly test programs could run on

all stages of development from RTL- and Gate-level-simulations to FPGA implementation or up to

the fabricated device.

Kenney proposed a detailed PDT methodology [Ken06] in 2004, with these advantages but de-

scribed PDT as just simple block tests written in C and not firmware per se. A similar approach was

shown in [Kom06] connecting several IPs around an Advanced Microcontroller Bus Architecture

bus (AMBA), and demonstrating that functional verification could be mainly achieved by software

tests in C. In [Hun03] the authors proposed a three-layer-architecture (HAL - API – Operating Sys-

tem) to use high level software test programs and showed the success in hardware abstraction, but

conclude a big overhead in debugging and simulation as a major disadvantage. A “Hardware Ab-

straction Layer Generator” as part of STMicroelectronics “Spirit Assisted Verification Environment

(SAVE)” was presented in [Lin10] to address the problem that test case coding is a critical phase

during functional verification and the challenge is to write bugless lowest-level C or assembly test

cases. In contrast to [Hun03] the architecture was reduced to two layers, to decrease the overhead. A

major idea was to automate the process of HAL generation to write and read the registers, and make

C test case coding much easier. A time reduction in the verification process of 33% is proposed, and

obviously an increase in test execution time. However, there is no information available on the on-

going status of this project. Moreover, the idea of HAL generation could be easily found on the web

from several digital design global players, but without specific conjunction with the topic of func-

tional verification.

Block-level verification is nowadays a widely solved problem, whereas the challenges at SoC level

are very different [Goe14]. The difficult task is the integration of various blocks and to make sure

that they all work properly together. Consequently PDT is a potential field of research by examining

methodology to balance high coverage and verification quality with delimitation of development

costs and time-to-market.

Power Management Verification

Wireless sensors have the requirement of low-energy to ration the limited amount of energy by a

battery or harvesting system to accomplish the goal of longest lifetime. Formats like the Unified

Power Format (UPF) [12] enable the modelling of power supply and control intent and thus extend

pre-silicon simulation and described in [Mba12] and [Kar13].

The central component is a power management unit that controls with a mix of power consumption

reduction techniques the other system modules, which are grouped together to power domains. A

 State of the Art and Related Work

 7

system-on-chip consists of several domains, for example the CPU-subsystem, the peripherals and the

PMU itself. Whenever the CPU-subsystem and peripherals are switched to a power saving mode, the

PMU domain is still supplied to wake-up the domains when for example an external event is detect-

ed on a preconfigured general-purpose input/output (GPIO) pin.

[Pin08] defines power management verification as the functional verification at pre-silicon stage and

involves functional correctness testing in a simulation environment. The challenge of power man-

agement verification is based on its very global functions, involving interactions with a lot of other

blocks. Thus tests should be system-like; the functional verification of the PMU component itself is

claimed as only around 30% of effort.

[Win12] divides the debug and verification of a power management system into hardware and soft-

ware section, while the latter is divided further into two layers: (i) firmware layer regarding hard-

ware functionality to manage power states without application interaction, such as shut down of

components after a certain idle time, (ii) application layer that contains four states with functionality

of configuration, operation, sleep and hibernation. With these two layers a fertile approach for a pre-

stage of abstracting power management tests from the particular hardware is presented.

One of the latest publications on this topic by [Mac16] shows a verification approach by performing

(i) syntactic checks, more precisely language syntax checks regarding to power management, (ii)

run-time checks that could not be revealed by a SystemC compiler, (iii) static analysis, to validate

semantic conditions like the number of power domains used, (iv) equivalency checking with UPF

and (v) assertion-based verification to check lower-level control sequences.

The literature on the broad topic of power management verification shows that common understand-

ing is not yet established. Therefore, rising system-complexity and the requirement to low-power

application design will make further research on this topic necessary. Innovative verification tech-

niques in general combined with a proper understanding and focus on power management verifica-

tion will be essential to meet the requirements of fast evolving trends in the wireless, low power IoT

domain.

2.2 ARM Architecture

The ARM microprocessor architecture, developed by ARM Limited [3] is a reduced instruction set

computer (RISC) architecture and nowadays very popular due to its industrial leadership and was

first introduced in 1985. The designs are developed by ARM and can be licensed by semiconductor

vendors to implement them into own custom products. ARM launched the very successful Cortex-

M3 processor in 2004. While in 2007 the microcontroller market was shared among 40 vendors in

50 different architectures and a per vendor share of maximum 5% [Pow10], in 2009, based on

“Gartner - Market Share Analysis - Preliminary Total Semiconductor Revenue, Worldwide 2008”,

ARM already had included 6 of the top 10 worldwide semiconductor companies as licensees

[Spe09]. In early 2015 ARM already reached a total market share of 24% in microcontrollers and

smartcards, and 70% in 32 bit MCUs [York15].

Figure 2.1 shows a typical ARM-based SoC. The ARM architecture not just includes the processor

core but also a great number of commonly integrated SoC components and appropriate interconnec-

tion buses. The ARM processor core is connected to the 32+ bit wide Advanced high-performance

State of the Art and Related Work

 8

bus (AHB), to access memory modules such as read-only memory (ROM), random-access memory

(RAM), Flash, additionally a graphics processing unit or other components that need high data rate

connections. When a direct memory access (DMA) controller is used, the bus is commonly imple-

mented as matrix, to available parallel access by paying this with higher gate count due to necessary

scheduling functionality. A DMA controller can then process data transfers between memory and/or

peripheral units, to relieve the core processing unit. Slower peripherals are connected via the Ad-

vanced Peripheral Bus (APB), such as a universal asynchronous receiver/transmitter (UART), tim-

ers or the Serial Peripheral Interface bus (SPI), and accessible via a transparent-operating bridge

between the two bus segments. This segmentation over different bus systems is not visible to the

CPU, all component access-operations are done in the same way, realized by a particular address

range of the AHB mapped to the APB bus domain. Both AHB and APB are part of the Advanced

Microcontroller Bus Architecture (AMBA). With the success of the ARM architecture, AMBA be-

came a de-facto standard for on-chip communication among functional blocks.

A debug controller in addition provides access to the microcontroller via JTAG or Serial Wire inter-

faces.

Figure 2.1: ARM System-on-Chip block diagram [3]

The ARM processor family provides processor systems for all kind of application requirements,

from highest performance to serve rich operating systems (Cortex-A Series), over fast response re-

quirements for hard real-time applications (Cortex-R), to smallest/lowest power optimized micro-

controllers (Cortex-M) or resistant security applications (SecurCore). In every domain again multi-

ple processor cores are available; distinguish from another again by performance, efficiency, power

CPU

AHB

APB

AHB

RAM ROM GPIO FLASH

DMA

AHB-APB
Bridge

ARM Processor

APB

TIMER SPI UART CAN PWM Ctrl

Application
Specific

Logic
USB Two Wire

Ethernet
MAC

 State of the Art and Related Work

 9

and area consumption. In the category of smallest cores, the Cortex-M family and particularly the

aforementioned first in 2004 released Cortex-M3 raised a significant market position in the embed-

ded ecosystem. Five years later, in 2009, the by now smallest family member Cortex-M0 was intro-

duced, aiming lowest gate count and power consumption. In 40nm technology process, a total floor-

plan area of 0.007 mm2 is achieved but by providing a full 32-bit processor core [4].

CPU CORE

AHB-Lite

Nested Vector Interrupt
Controller

Wakeup-Interrupt
Controller

Data
Watchpoint

JTAG

Breakpoint Unit Serial Wire

DEBUG

Figure 2.2: Main parts of a Cortex-M0 processor [4]

Figure 2.2 shows schematically the main components of the Cortex-M0 processor. The CPU is

equipped with the Nested Vectored Interrupt Controller (NVIC) that receives events from periph-

erals and triggers on input an interruption of the program execution by calling and executing the

assigned interrupt service routine (ISR). Cortex-M0 therefore supports up to 32 Interrupts. The

Wakeup Interrupt Controller (WIC) handles this functionality in combination with a Power Man-

agement Unit (PMU) when the core is in power saving deep sleep mode, to buffer the requests while

waking-up the core and then forwarding the interrupts. The WIC is a lightweight implementation

with only combinatorial logic, to provide the minimal necessary functionality for wake-up, to be

itself as power-efficient as possible. The AHB-Lite interface connects the processor to the other

components on chip, such as the memories and the peripherals.

For efficient application development, a Data Watchpoint is provided to monitor variables or ex-

pressions. In addition with a Breakpoint Unit and the JTAG/Serial Wire access ports (Debug Access

Port – DAP) debug functionality of the Cortex-M0 is served. The JTAG/Serial Wire access allows a

complete access to the CPU core registers and the bus system, thus all system components. It can

also be used to flash the system, besides popular implementation facilitating the simple UART or

SPI interface.

State of the Art and Related Work

 10

2.3 Hardware Abstraction Layer

The increase of SoC design and therewith software complexity drives the demand of code reusability

to hold the development time of a new application in an acceptable range. An answer is the concept

of decoupling the interfaces between software and addressed hardware, by dividing the software in a

hardware-dependent and hardware-independent part to challenge the requirement of portability

[Jer05] [Pos03]. However, the term of hardware abstraction layer is a widespread and abstract treat-

ed topic of study in literature. By the ongoing evolving field of SoC development, and lately domi-

nance of ARM in a former field of many share proprietary hardware architectures (see Chapter 2.2),

the subject literature still has to find concrete consolidations in many aspects to avoid ambiguity.

[Sun03] describes the hardware abstraction layer as all the software that is directly dependent on the

underlying hardware, including boot code, context switch code and providing configuration and

access to hardware resources. Thus, parts of this software have to be changed, whenever the hard-

ware architecture is changed. The question of one standard in hardware abstraction for SoCs is clear-

ly negated in this publication, reasoned by the application-specific hardware architecture design.

However the possibility of a generic set of specific application programming interfaces (APIs) com-

bined with a common HAL is considered or a possible focus on a suited HAL for specific applica-

tion domains.

A more detailed approach on HAL definition is presented by [Han05] in a specific tree-layer hard-

ware abstraction architecture design for wireless sensor networks, including a Hardware Presenta-

tion Layer (HPL) that interacts directly with the Hardware, a Hardware Abstraction Layer (HAL),

the core component that abstracts specific devices into domain models (like alarm or analog-digital

converter) and a Hardware Interface Layer (HIL) that provides the hardware-independent “typical”

hardware service interfaces to applications.

In a now standard reference book on this topic, “Hardware-dependent software” [Eck09] a HAL is

defined as a software layer that provides an abstract interface to access hardware resources, and typ-

ically divided into access, register, and functional shielding. Furthermore the code is divided into

processor specific software code, e.g. enable interrupt vectors, and device drivers to access periph-

erals or power management. The proposed services are ANSI C integration to provide standard-C

functions such as printf() or fopen(), the device drivers, a consistent interface to this services for the

application layer, as well as system and device initialization. The overall advantage of using hard-

ware abstraction to increase reusability and flexibility is shown on a proof-of-concept of a JPEG

application, ported to different processors by using hardware abstraction.

This definition of the term hardware definition, as software stack that abstracts the hardware access

from the application layer, is compliant to the following interpretation in the subchapter of standards

and classification for HAL, as well as to the nowadays dominant ARM architecture, which will be

topic of subchapter 2.3.2.

Standards and Classifications

[Bha13] presented an approach on separation of hardware abstraction in the following categories: (i)

industry-standard, (ii) vendor-definied or (iii) user-definied. Industry-standards are rare, but for ex-

 State of the Art and Related Work

 11

ample exist in the field of test and measurement equipment as part of the Interchangeable Virtual

Instruments (IVI) standard, driven by an industry consortium called IVI Foundation [5]. IEEE

Standards Association has an active project (P2415) on low power design and verification standard

in development that “addresses energy proportionality through tight interplay between energy-

oriented hardware and energy-aware software.” [6] The project authorization request was approved

in 2014 and expires in 2018. The overall goal is to provide a standard for well-connected energy

oriented design flow.

Vendor-defined HALs are developed by hardware vendors, for reusing the application software on

different projects, for example the Infineon Automotive Open System Architecture (AUTOSAR)

which provides a standard for all layers of software in the automotive area, including the in-

put/output hardware abstraction [7]. Another category of vendor-defined HALs, from the perspective

of software, is operating system dependent ones. Software companies create their own abstraction

designs, to use the operating system on all variations of hardware architectures, such as Windows

Embedded Compact (former Windows CE) [12].

User-defined HALs follow in principle no specific design rules, but a consideration on various de-

sign aspects might seem expedient. The intended goal is a thin software component, that just encap-

sulates all functionality that is hardware-dependent, and an appropriate interface to provide it to the

upper layers. In [Hel10] the authors describe a HAL design in two separated layers, the lower level

device specific code and above an application specific layer, which provides functions for the appli-

cation interface. According to [Ben15], the focus in development should be on core feature identifi-

cation, avoiding an all-encompassing HAL, and be aware of an iteration process in development.

Cortex Microcontroller Software Interface Standard (CMSIS)

To abstract the complexity of the ARM architecture and make developing applications much easier,

ARM provides the C-implemented hardware abstraction library CMSIS, vendor-independent and

expanded broadly in related areas such as debugger interfaces, a real-time system operating API or a

DSP library. The goal is better industry collaboration as well as accelerating software development

projects that make use of ARM microcontrollers [9]. It is checked against MISRA C, a set of pro-

gramming guidelines for critical systems, published by the Motor Industry Software Reliability As-

sociation (MISRA) [10].

State of the Art and Related Work

 12

Figure 2.3: ARM CMSIS [9]

In figure 2.3 the components of the ARM CMSIS, as well as the interfaces and interconnection be-

tween them is visualized. On the bottom, the CMSIS-CORE block allows the hardware access by

abstracting from writing bits to register addresses to name mappings. On the same level right-hand

connected is the CMSIS-SVD (System View Description) block, which allows abstract description

of peripheral devices in XML format for integration into the CMSIS Device family packs [11].

CMSIS-DAP (Debug Access Port) provides a standard communication between Debugger and ARM

Cortex device via a USB to JTAG/SerialWire debug unit, which runs the DAP firmware for

CoreSight Debug Access Port. Bottom-up arranged is the device HAL implemented by the silicon

vendor, and optionally a (usually 3
rd

 party) real time kernel when a real time operating system

(RTOS) is in use. The CMSIS software pack in addition optionally serves a digital signal processing

(DSP) library, containing basic signal processing functions, such as filters, matrix functionality or

complex math functions. The CMSIS-RTOS API provides easy access to real-time features and

makes middleware easier to adapt to the actual real-time kernel. The CMSIS-Driver API specifies

standardized peripheral driver interfaces for applications or middleware, to promote reusability and

abstract the actual peripheral implementations used, by categorizing in currently 11 different devic-

es. Figure 2.4 simply illustrates the abstraction from physical components on the microcontroller up

to middleware access and the logical abstracted units such as USB Device or Networking.

 State of the Art and Related Work

 13

Figure 2.4: Peripheral driver Interfaces [11]

At last, beyond in Figure 2.3 complex systems may use additionally 3
rd

 party middleware and code

templates. Based on this hierarchical architecture, the application layer in the top is able to access

the devices, independently from the actual physical hardware blocks implemented. In conclusion,

this HAL design and features are consequently in line with the definition of hardware abstraction in

the initial part of this chapter.

2.4 CMOS Power Consumption and Management Strategies

For wireless applications, power consumption is a major topic when for example a coin cell or ener-

gy harvesting determines low power requirements on the system-on-chip design to allow a

longstanding lifetime. Apart from wireless applications, high integration density such as in modern

multicore processors makes awareness to power consumption inevitable too. Dependent on the ap-

plication, the behavior in uptime and sleep modes, as well as on technology reasons the strategy for

power-saving can differ. With greater integration density, and decreasing sizes the dominant parts in

dissipation changes. This chapter outlines the two fundamental parts of power dissipation in com-

plementary metal-oxide-semiconductor (CMOS) technologies and the determining components,

followed by an overview of common techniques to minimize power loss in low power design.

There are basically two parts that determine CMOS power dissipation. A static component, which

does not exist in the ideal CMOS but has an impact in reality, describes the constant leakage when

the CMOS component is not switched. Secondly, a dynamic dissipation appears when CMOS is

switching states. The total dissipation is expressed in equation 1. Often read in literature, the dynam-

State of the Art and Related Work

 14

ic dissipation is further broken down in the short circuit current between Vdd and Ground and the

loss of power in the dynamic load of the capacitance, see Figure 2.5.

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + (𝑃𝑠ℎ𝑜𝑟𝑡 + 𝑃𝑠𝑤𝑖𝑡𝑐ℎ) (1)

Vdd

Dynamic
current

Leackage
current

Short-circuit
current

IN OUT

Figure 2.5: The three main components in CMOS power dissipation [Pan10]

CMOS Static Power Dissipation

In theory CMOS has the major advantage over other technologies that power dissipation does not

occur when the component is not switched, due to the complementary design with a P-type MOS

(PMOS) and a N-type MOS (NMOS) transistor. This ideal behavior is shattered in reality by multi-

ple parasitic leakage effects that cause current flow and therewith power dissipation. Figure 2.6

shows schematically the dominating effects that occur between the partly overlapping, different

doped junction areas on an NMOS transistor.

Gate

Source Drain

Gate-oxide tunneling

Reversed-bias
diode leackage

Gate induced
drain leackage

Subthreshold leackage

n n

p-well

Figure 2.6: NMOS Static Leakage: (i) Gate-oxide tunnelling (ii) Subthreshold leakage between source and

drain; (iii) Reverse-biased diode leakage across parasitic diodes; (iv) Gate induced drain leakage between drain

and substrate [Pan10]

 State of the Art and Related Work

 15

 Reversed Bias Diode Leakage

The diodes formed between the diffusion regions and the substrate float a parasitic current

based on the reverse bias of p-n junctions. The effect is shown graphically in Figure 2.7, rep-

resented by the offset current between 0V and the breakdown voltage. Overall the contribu-

tion to leakage is small compared to the other components, thus often neglected in power

calculations.

0.7

V

I

0.5

Reversed Bias
Diode LeakageBreakdown

Voltage

Figure 2.7: Current-voltage characteristic of a p-n junction diode. The difference from the ideal zero current in

reverse mode is the reversed bias diode leakage

 Subthreshold Leakage

The weak-inversion effect describes the flow of current when the gate voltage is below the

threshold voltage and therefore the transistor operates not in saturation mode. As a result

free load carriers can move between drain and source. This effect is caused by diffusion, and

becoming most significant with higher gate voltage, near to the threshold voltage. In addi-

tion there are several effects that are directly influencing the subthreshold voltage. Drain-

Induced Barrier Lowering (DIBL) is a parasitic effect that explains the dependency and de-

crease of the threshold voltage on high drain voltage, while direct punch-through describes

the approaching and “touching” of the depletion regions, thus is a subsurface version of

DIBL.

 Gate Oxide Tunneling

The downsizing of MOSFET and as a consequence smaller gate-oxide layers increases the

electron tunneling rate through the physical energy barrier. With further ongoing downsizing

this component is effecting in a higher contribution to the total share of static power dissipa-

tion.

 Gate Induced Drain Leakage

In the overlap region of gate and drain region a current is generated caused by band-to-band

tunneling. To limit this effect, restrictions are set on the oxide thickness and power supply

voltage.

State of the Art and Related Work

 16

CMOS Dynamic Power Dissipation

This component of CMOS power loss occurs during switching activity, and described by the follow-

ing two main causes:

 Switching Power

Energy is dissipated by loading and unloading parasitic capacitances of the MOS transistors

where a major part dissipates in heat. The derivation of switching power loss is as follows.

Since

 dQ = C ∙ dU (2)

and the relation between shifting of a load between two points with voltage difference U and

the energy is

 dE = U ∙ dQ (3)

Inserting equation (2) in (3) and integrating over the supply (load) voltage leads to the ener-

gy supplied by the power source for charging:

 𝐸𝐿𝑜𝑎𝑑 = 𝐶 ∙ 𝑉𝑑𝑑 ∙ ∫ 𝑑𝑉 = 𝐶 ∙ 𝑉𝑑𝑑
2𝑉𝑑𝑑

0
 (4)

The energy stored in the capacitance is the integration of the instantaneous charge during the

load process, thus

 𝐸𝐶𝑎𝑝𝑐𝑖𝑡𝑦 = 𝐶 ∙ ∫ 𝑉 ∙ 𝑑𝑉 =
𝐶 ∙ 𝑉𝑑𝑑

2

2

𝑉𝑑𝑑

0
 (5)

Comparing equation (4) and (5) shows a difference of 𝐸𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 =
𝐶 ∙ 𝑉𝑑𝑑

2

2
 that was dissi-

pated in heat during the charge process.

To obtain the dissipation power the energy term is multiplied by the clock frequency f. Due

to the fact that not all logic gates in a digital circuit switch in each clock period, an activity

factor α in the range from 0 to 1 is added to express the probability of switching the state.

 𝑃𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 =
𝐶 ∙ 𝑉𝑑𝑑

2

2
 ∙ 𝑓 ∙ 𝛼 (6)

 Short-circuit current

Another dynamic dissipation effect is based on the finite rise and fall times of switching be-

havior in the used nMOS and pMOS transistor. As a consequence, for a short period both

are ON at the same time, establishing a direct current path connecting the positive supply

voltage (Vdd) and Ground (GND).

Vout

Vin

Short Circuit Current

V / I

Time

Figure 2.8: Short-circuit current in CMOS caused by the finite switching time behaviour [Pan10]

 State of the Art and Related Work

 17

Techniques to reduce Power Consumption

After working out the causes of power dissipation in CMOS technology, the question on how to

minimize the effects is coming up. Several, nowadays standard techniques evolved which are con-

secutively explained.

 Power Gating

The dissipation effects described in the previous chapter showed altogether a relation to the

supply by a power source. To address the simple solution of “where is no power, there is no

loss”, power gating explains the deactivation of CMOS cells or in bigger scope of compo-

nents in an MCU system, to fully disable power consumption in inactive mode, thus effec-

tively get rid of all dissipation effects. When the component is needed again for operation

the supply is being restored. Splitting up a SoC to shut down components is regularly real-

ized by forming power domains, thus an always-powered-on domain and one or multiple

domains for temporarily shut down.

 Clock Gating

As another approach to reduce dynamic power dissipation, clock gating addresses the prob-

lem that flip-flops are connected to the CLK and thus dissipate energy on every clock cycle.

The simplest way to overcome this loss when the input data is not changed is by grouping

flip-flops to functional units and transform the connection of the flip flop as seen in Figure

2.9 by AND connecting the SEL and CLK wire, thus only on activation the grouped flip-

flops dissipate power. A reduction of about 5-10% is possible [Pan10].

D

Q

IN

OUT
CLK
SEL

D

Q

IN

OUT

CLK

SEL

Figure 2.9: CLK passing to logic block only when selected [Pan10]

By adding more combinatorial logic to the design a more complex but higher reduction po-

tential could be achieved. In a so called pipelined design an input change of the first stage

determines the activation of the clock signal for the following flip-flops, see Figure 2.10.

State of the Art and Related Work

 18

D

Q

IN

CLK
SEL

D

Q

IN

CLK

SEL
Combinational Logic

D

Q

CLK

Combinational Logic

D

Q
CLK

Figure 2.10: Higher effectiveness of clock gating on pipelined designs [Pan10]

 Voltage and Frequency Scaling

The dynamic switching power is squared proportional to the power supply voltage, thus a

reduction in voltage can make significant decrease of power consumption possible. Frequen-

cy is direct proportional, but also has a direct proportion to voltage, thus both can be lowered

together resulting in a cubic proportional power reduction. However the circuit delay will

increase and must be considered to meet the system constraints. A common approach is to

settle at design time, by adjusting voltage and frequency just to meet the necessary con-

straints and fixate for application. A regulative approach but less sophisticated is dynamic

frequency scaling, see Figure 2.11, which is quite popular in embedded systems design, al-

lowing for setting the CLK speed during execution, and adjusting just the frequency to the

current work load and needed response time of the system. For example a system that just

waits for an signal edge on an input pin and the processing is not time critical, a lower fre-

quency could still be satisfying while lowering the overall power consumption.

Figure 2.11: A 2k clock divider to scale down frequency, configurable via a register

Dynamic Voltage and Frequency Scaling (DVFS) expresses the dynamic scaling during

runtime to achieve lowest power consumption, while concurrently analyzing and meeting

the systems performance constraints, for example by adaptive control, where previous con-

figurations and the current system measurements are determining the next frequency and

voltage configuration. DVFS for microcontrollers is mostly not suitable because of PLL in-

stabilities and where peripherals use the (constant) processor clock in operation [Yiu15].

However, multiple supply voltage domains can still meet these requirements, but then addi-

tional level-shifters are needed to convert the signals between the different voltage levels.

:2k
clk clk/2k

Register

 State of the Art and Related Work

 19

ARM architectural Low-power Management

The ARM Cortex-M0 is designed for ultra-low power consumption, to be suitable for small and

wireless applications. Besides the low gate count, ARM provides two built-in power modes to disa-

ble parts of the system, but leave the particular implementation details in the design of the particular

system-on-chip. The predefined standard modes are (i) SLEEP, to stop the processor clock (HCLK)

and (ii) DEEPSLEEP which stops the HCLK as well as turning off PLL and flash memory. The

deepsleep bit in the system control register defines whether SLEEP or DEEPSLEEP mode is trig-

gered when the associated sleep instructions WFI (wait for interrupt) or WFE (wait for event) are

called. When the system is in sleep mode, the WIC takes over the basic functionality served by the

disabled NVIC to power up the system again on allowed interrupt input. The WIC has only combi-

national logic therewith does not allow additional configuration. The interrupt mask is therefore

copied to the WIC before the CPU system switches into a sleep mode.

For applications that just react on time distributed events, and shall then go back to sleep as fast as

possible, the System Control Register provides the flag sleep-on-exit. After completing the handling

of interrupts, the processor enters immediately sleep mode again.

2.5 Software Metrics

A detailed background research on software measurements will found the knowledge for firmware

comparability that is treated as a key topic within this thesis. Therefore the definition and delimita-

tion of the terminology is quite important: (i) software testing addresses activities to find potential

errors, defects bugs and failures in the software, (ii) source code analysis collects and examines in-

formation about possible future errors that are mostly classified as warnings but can result in haz-

ards, and (iii) software metrics addresses the information collection regarding software characteris-

tics, with measurements such as Total Lines of Code (TLoC) or complexity estimations [Zou10].

While the first two are related and were also part of the implementation tasks of this thesis, the

benchmark and results is dependent on the survey of appropriate software attributes. The following

literature review and a detailed insight on software attributes will allow a differentiated understand-

ing and the ability to determine the necessary subset of metrics for embedded software.

Measuring all aspects of software and its interaction to the environment is still a challenging broad

subject area. While single terms are differently used under the hypernym of software metrics, a

commonly accepted classification and applicability yet accrued. From the comprehensive perspec-

tive of software project development [Vie14] [Gwa06] metrics can be divided into three categories:

 Product metrics measure the software quality by performance, complexity or size of the pro-

gram. They can be further divided into internal (static) metrics that examine attributes of the

product itself (code/binary) and external (dynamic) ones, including the interaction and exe-

cution within the hardware environment and user.

 Process metrics address testing, detection and fix of defects and can be used to improve

software quality.

 Project metrics pertain to the quality of the project including the quantification of cost,

productivity and the project schedule.

State of the Art and Related Work

 20

Product metrics can be divided into internal metrics, which only depend on the software itself and

not on the execution, and external metrics that can only be measured with respect of the environ-

ment, in particular the machine environment and the user. While the first ones are usually easier and

objectively measurable, the latter ones depend on subjective user perception and on sometimes diffi-

cult possibilities of accomplish measurements within the environment. In addition to mention, inter-

nal metrics are often used in early development stages, while external are evaluated (normally) on an

almost completed product [Fen14]. ISO/IEC 9126 [14] addresses the development of a common

understanding of project objectives by qualifying four parts: (i) a quality model with six abstract

objectives (functionality, reliability, usability, efficiency, maintainability and portability), connected

to (ii) internal metrics, (iii) external metrics and (iv) quality-in-use metrics for the final product de-

ployment. The relation of this metrics is that in ideal the internal determine external metrics, and

external determine the quality-in-use metrics.

Internal, static product attributes can be divided into five categories [Oli08]:

(i) Coupling counts the links of a software module to other elements, is positive (min. 0

connections), does not increase on multiple module relations, and is additive: merging

two modules results in the sum of the single coupling values. Metrics describing this at-

tribute allow conclusions on encapsulation, reuse and maintainability, in particular by

examining function calls and the number of instances to measure the relationship be-

tween components. Afferent couplings (Ca) counts number classes in other packages that

depend on classes in the current package, and Efferent Couplings (Ce) number of classes

on which classes from the current package depend, and can be used in modular pro-

gramming, first proposed by [Mar02]. In this context, packages are groups of classes in

object oriented programming languages. In addition, Instability describes the ratio of ef-

ferent coupling to the sum of couplings (Ca + Ce), where zero represents total stability

of a package.

(ii) Cohesion, determines the degree of interaction within one module. It is commonly a

normalized value between 0 to 1, where 0 means that all contents are not linked, adding

links is positive monotone, and the result of merging two modules cannot be greater

than the maximum of the single module values. Metrics can give information weather

modules (e.g. classes) should be separated in subclasses. For example, Lack of Cohesion

of Methods (LCOM) was first introduced by Chidamber and Kemerer by forming pairs

of methods and shared data [Chi94]. A high number indicates a poor design, and moti-

vating the question of splitting a module. This metric can be found in multiple varia-

tions.

(iii) Extendibility and reuse measurements qualify the degree of extension feasibility and the

ease of using parts of the software in other projects. It includes Abstractness which is the

ratio of the number of abstract classes to total number of classes in a package. Another

metric is Distance from the Main Sequence [Mar02], describing the balance of abstract-

ness to stability of a package by calculating

 𝐷 = | 𝐴 + 𝐼 − 1| (7)

 State of the Art and Related Work

 21

with Abstractness A and Instability I and a favored result against zero, indicating that

the package is exactly on the main sequence.

(iv) Population (size) metrics include the popular Total Line Of Code metric, Number of At-

tributes, Classes, Interfaces, Methods, Packages, Parameters, Static Attributes or Static

Methods which strongly determine performance and memory footprint.

A substantial attribute of code is the size of the program code, which can be commonly

counted in Lines of Code (LOC). This metric has to be differentiated, in particular of

what to do with blank and comment lines, with headers and multiple statements in one

line. The commonly accepted approach on comments and blank lines is to neglect them,

and counting the Source Lines of Code (SLOC). This seems reasonable to decide how

much space a program allocates in memory, but in terms of measuring effort for exam-

ple, commented lines are also carrying programming efforts [Fen14]. The count of

commented lines is the Comment Lines of Code (CLOC) and is related to the other

numbers by

 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑂𝑓 𝐶𝑜𝑑𝑒 (𝑇𝐿𝑂𝐶) = 𝑆𝐿𝑂𝐶 + 𝐶𝐿𝑂𝐶 (8)

Furthermore, the SLOC without headers and footers (incl. define and import statements,

brackets) is known as None-Commented Lines of Code (NCLOC) or Effective Lines of

Code (ELOC). Logical SLOC (LLOC) is tied to specific programming languages and

counts the number of executable statements, to solve the problem how to proceed with

multiple statement lines.

Another benchmark to determine software size is Function Point Analysis (FPA), by

considering amount of functionality as indicator. It quantifies functionality of the soft-

ware with the focus on the value for the users, by extracting functions, classifying and

assigning weights.

(v) Complexity, quantifies the degree of internal code interactions. The popular McCabe

Cyclomatic Complexity algorithm [McC83], calculates the flow through code by incre-

menting a count variable each time a branch occurs. It computes a control flow graph of

a software code, where the nodes represent program statements and the directed edges

the relation that the second statement is executed after the first one. Control structures,

such as IF, ELSE, FOR etc. create multiple independent paths through the program,

which can be counted as complexity M

 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑀 = 𝐸 − 𝑁 + 2𝑃 (9)

with number of edges E, the number of Nodes N and the number of connected compo-

nents P.

The Halsted Complexity Metrics [Hal77] proceed from the assumption that code can be

interpreted as a sequence of operators and operands, and includes eight metric calcula-

tions. First the Number of Operators (N1), Number of Operands (N2), Number of

unique Operators (n1) and Number of unique Operands (n2) are counted. Operators are

all operators defined in the C-standard (!, !=, +, -, etc.), storage and type qualifiers and

reserved keywords. Control structures (if, else, switch, for, etc.) are treated differently,

State of the Art and Related Work

 22

by describing the alternative program flows. Operands are identifiers, type names, type

specifiers (bool, int, etc.) and constants.

The Vocabulary Size (n) is the sum of distinct operators and distinct operands.

 𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 (𝑛) = 𝑛1 + 𝑛2 (10)

The Program Length (N) is the total sum of operators and operands.

 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑙𝑒𝑛𝑔𝑡ℎ (𝑁) = 𝑁1 + 𝑁2 (11)

The Program Volume (V) is the program length two times the logarithm of vocabulary

size and represents the implementation content of the program. Per function this metric

should result in a value between 20 and 1000, a greater number means the function

ought to be divided up; the volume of a parameter-less empty function is 20.

 Program volume (V) = N ∗ log2 (n) (12)

The Difficulty Level (D) or error proneness is driven by the new operators and repeated

operands.

 Difficulty level (D) = (
n1

2
) ∗ (

N2

n2
) (13)

The Program Level (L) is the inverse of the Difficulty Level. A more difficult (error

prone) program is equal to a low programming level.

 Program level (L) =
1

D
 (14)

The Implementation Effort (E) is the proportion of difficulty and program volume.

 Implementation Effort (E) = V ∗ D (15)

The Implementation Time can be determined by dividing the implementation effort with

a constant of 18. Halstead proposed this approximation for time in seconds.

 Implementation Time (T) =
E

18
 (16)

The Effort of a program directly affects the number of bugs in software.

 Number of delivered bugs (B) =
E

2
3

3000
 (17)

Additional complexity metrics are Nested Block Depth and Weighted Methods per Class

to indicate alternative execution flows, element granularity and nested execution. Fenton

et.al propose the importance of understanding that a single number cannot identify the

complexity of a whole system, but the combination of multiple metrics can together ac-

complish in an encompassing understanding [Fen14].

External, dynamic product attributes describe the quality of software and are related to the envi-

ronment, in particular the machine environment and the user. As a consequence, this embed-

dedness and interaction makes measurements much more complex as on the internal attributes

which only describe the software itself. The common external attributes of software are

(i) Functionality is defined by ISO/IEC 9126 as “A set of attributes that bear on the exist-

ence of a set of functions and their specified properties. The functions are those that sat-

 State of the Art and Related Work

 23

isfy stated or implied needs." The proper functionality is related to the defects that are

included in code, and often seen as the one and only major topic by developers in the

hypernym of software quality. Therefore Defect Density is the ratio of detected defect

count to total size of software

 Defect densit =
Number of detected defects

Software size
 (18)

This information can be used to decide if software is ready for deployment, or on a long-

term release to assess post hoc the quality level of the release.

(ii) Efficiency addresses the consumption of resources and in term of software can be meas-

ured by the execution performance on the target hardware environment.

ISO/IEC 25010 2011 defines: “Efficiency is resources expended in relation to the accu-

racy and completeness with which users achieve goals”.

In this context where software is executed on a hardware system, physical metrics de-

termine the resource consumption. Therefore, the count of program and data memory

determines the memory footprint of the software during runtime. Obviously there is a re-

lation to the static code size population metrics, examined in [Oli08]. For embedded ap-

plications the Energy Consumption and the Cycles for Execution are additional mean-

ingful numbers to evaluate software efficiency.

(iii) Usability describes the interaction of the software with the user and defined in ISO/IEC

25010 2011:“Usability is the degree to which a product or system can be used by speci-

fied users to achieve specified goals with effectiveness, efficiency and satisfaction in a

specific context of use.”

A simple metric to determine the effectiveness of software can be realized by setting a

set of tasks to multiple users, and calculating

 Effectiveness =
Number of tasks sucessfully completed

Total number of tasks
 ∙ 100 % (19)

Efficiency can be calculated by measuring the time users take to complete given tasks

and relate this result to the time experts take. Satisfaction, as subject sensation is com-

monly identified by questionnaires.

(iv) Maintainability addresses the change of software after deployment, and defined in

ISO/IEC 25010 2011: “Maintainability is the degree of effectiveness and efficiency with

which a product or system can be modified by the intended maintainers”.

One measurement is to address ratio of implementation attributes to code, number of

module or methods implemented. To indicate the changes by comparing a priori and

post hoc status, internal metrics are applied on the code modifications. In this context,

size and complexity are major features where McCabe suggested the guideline, that for

proper maintainability the cyclomatic number of a module is not allowed to be greater

than 10 [McC83]. The Maintainability Index (MI) represents, by including LOC, McCa-

be CC and the Halstead Metric, the ease of maintaining the software code.

(v) Reliability is the property of a system that indicates how safe the providing of function-

ality is for a time period. ISO/IEC 25010 2011 defines: “Reliability is the degree to

State of the Art and Related Work

 24

which a system, product or component performs specified functions under specified

conditions for a specified period of time”.

It is a well-studied quality attribute, by the common important interest of software quali-

ty in high reliability by often ignoring other attributes. Based on probability theory and

prediction models, various measures can be determined. The Rate of Occurrence of

Failures (ROCOFs) is the number of failures in a given time interval. To describe how

long a system runs successfully between the occurrences of failures, Mean Time be-

tween Failures (MTBF) is

 MTBF = MTTF + MTTR (20)

with Mean Time to Failures (MTTF), the expected value of the failure distribution func-

tion, and Mean Time to Repair (MTTR), an estimated or empirically determined value

how long it takes to locate the error and repair the system. The Availability of a system

is then simply calculated by

 Availability =
MTTF

MTTF+MTTR
 ∙ 100 % (21)

(vi) Portability qualifies how easy the software can be ported to another hardware or user

environment. ISO/IEC 25010 2011 defines: “Portability degree of effectiveness and ef-

ficiency with which a system, product or component can be transferred from one hard-

ware, software or other operational or usage environment to another”.

ISO/IEC 9126 [14] describes potential portability compliance metrics as a measure of

transfer ability to another environment by assessing applied standards in the software to

total available ones.

Summed up, the list of potential metrics for the comparison of the HAL variants is taken together in

Table 2-1. In general these metrics can be applied to any type of software. However, the particular

application characteristics, the hardware environment, the type of user interaction and of course the

objectives of interest will result in a subset of this comprehensive list.

 State of the Art and Related Work

 25

 Name Attribute

Internal

Metrics

Lines Of Code (LOC) Code Size

Number of

Parameters (NOP), Methods (NOM), Classes (NOC), Interfaces (NOI), Packages (NOP),

Static Attributes (NOSA), Static Methods (NOSM)

Code Population

Function Point Analysis Code Size

Halstead Metrics Code Size, Complexity

McCabe Cyclomatic Complexity (McCabe CC) Complexity

Method Lines Of Code (MLOC) Complexity

Nested Block Depth Complexity

Weighted Methods per Class (WMC) Complexity

Afferent Coupling (Ca) Coupling

Efferent Coupling (Ce) Coupling

Instability (I): Ce / (Ca + Ce) Coupling

Lack Of Cohesion Of Methods (LCOM) Cohesion

Abstractness Extendibility / Reuse

Depth of Inherence Tree (DIT) Extendibility / Reuse

Number Of Overridden Methods (NOVM) Extendibility / Reuse

External

Metrics

Defect Density Functionality

Maintainability Index Maintainability

Effectiveness Metrics Usability

Efficiency Metrics Usability

Satisfaction Metrics Usability

Rate of Occurrence of Failures (ROCOF) Reliability

Mean Time Between Failure (MTTF) Reliability

Portability Compliance Metrics Portability

Program Memory Efficiency

Data Memory Efficiency

Energy Consumption Efficiency

Clock Cycles Efficiency

Table 2-1: State-of-the-art software metrics

State of the Art and Related Work

 26

2.6 Related Work

You et.al presented a test method for power management modes in SoC [You11], motivated by the

functional key role of the PMU and the potential corruption of state information and data in volatile

memories. They described three typical power modes, (i) Standby, by applying clock gating, (ii)

Retention, by applying clock gating and power gating to the core domain, but still supply at least a

small portion of memory, and (iii) Power-off, where all components are clock- and power-gated. For

the tasks to do an “idle state”- driver design was presented, by setting the interrupt mask, saving the

processor states to retention memory and after sleep and wake-up trying to resume the processor

state to return to the original state. Secondly, they proposed some simple ways to estimate the power

consumption and transition delay of the processor to quantify these indicators. However, the shown

practices bring accuracy into question, but conclude with the essential importance of power man-

agement testing to ensure functional correctness.

A “Hardware Abstraction Layer Generator” was presented in [Lin10] to address the problem that

test case coding is a critical phase during functional verification and the challenge is to write bugless

lowest-level C or assembly test cases. A time reduction in the verification process of 33% is pro-

posed, and obviously an increase in test execution time. However, there is no information available

on the ongoing status of this project.

3. Proposed Concept

Based on a current development project of a system-on-chip for wireless sensor applications at In-

fineon, a three layer hardware abstraction design in accordance with ARM CMSIS is presented to

survey the combined implementation of a verification and productive API variant with appropriate

software metrics. This chapter will be structured as follow: first the SoC design and the correspond-

ing hardware modules are annotated. Subsequently, the implemented power management strategies,

which are targeting the low power requirements, are explained. Based on the hardware architectural

exploration, the within this thesis developed HAL design is presented in detail, with the realization

of the two variants with different requirements regarding the level of abstractness from the low level

register access and the interface to the application layer. For a profound evaluation of this concept,

several software attributes are measured on the implementations by a subset of the presented soft-

ware metrics from chapter 2.5. The selection process is explained by a review about applicability on

the bare-metal HAL. These metrics are exemplary evaluated on two essential, custom modules, the

power management unit as a system-critical component and the transceiver-interface which drives

the transceiver module for wireless communication.

3.1 ARM-based SoC with a custom Transceiver Module

The proposed system-on-chip is a development project that shall meet the requirements of next gen-

eration wireless sensor applications and is currently under development in pre-silicon stage at In-

fineon Austria Technologies AG. By using state-of-the-art chip architecture, flexible communication

interfaces and innovative long-lifetime power management strategies, a broad field of applications

could be served. An ARM low-power processor and standard bus systems form the core unit of the

chip and are connected to various peripherals, including a sub-GHz transceiver module to communi-

cate with other devices or base stations. Therefor chosen was an on-chip integrated, Infineon TDA

5340 module [15] that was redesigned for the technology of this SoC project. Equipped with a 64kB

flash module the system enables even complex firmware implementations or to cache data from the

on-chip sensor interface. Simple reprogramming is provided with a SerialWire and a UART inter-

face. In addition, an RFID interface allows near-field communication that can be used for example to

configure or readout the wireless sensor application with a smartphone. Equipped with a custom

developed power management system, a high coverage on clock and power gating could be

achieved, allowing applications to drive only parts of the chip that are actually needed, to realize

longest possible lifetime.

Proposed Concept

 28

Architecture

The system-on-chip architecture has to be flexible for serving a broad field of applications. The

dominance of ARM in the microcontroller sector enables code-reuse, a well-tested system and a

quasi-standard of the processor core and bus interfaces. This fact allows silicon vendors the easy

reuse of hardware IP-blocks among various development projects without any additional adaptions,

from small low-power to high performance microcontrollers. In the proposed project, presented in

Figure 2.1, due to the requirement of lowest power consumption for battery-driven operation, the

smallest available ARM processor, Cortex-M0 is used. Besides the core unit itself it is equipped

with an interrupt controller and a debug access port to enable the debugging and access via Serial

Wire for post-silicon application development.

ARM Cortex-
M0

ROM RAM FlashGPIO

DMA

Bridge

Power Management Unit

UART Timer AES

Bridge
Watch-

dog
DMA

Config

PMU
Config

Timer

RFID

UHF
Antenna

Sensor
Interface Sensor

AHB

APB

Wishbone Bus

SPI

TDA 5340
Transceiver

Figure 3.1: System-on-chip architecture

 Proposed Concept

 29

The Cortex-M0 processor unit is connected via the AHB to the high speed components, including

three memories:

(1) An 8kB ROM is equipped with a small bootloader, to configure core components on start-up

and to check whether the control shall be given to the flash firmware or to enter the

UART/SerialWire programming mode. This choice can be made by setting a predefined

boot-pin at the GPIO before powering up the device.

(2) A 4kB RAM contains the volatile data during program execution, and is also used in pro-

gramming-mode. Therefore, first flash tool software is loaded into and executed from RAM

and providing the load procedure of the actual firmware data from UART to the flash

memory.

(3) A 64kB flash module for non-volatile storage of firmware, configurations and data from the

sensor interface.

To serve the flexibility of an external connection interface for simple communication protocols a 16-

pin GPIO module is accessible via the AHB bus system. The DMA can copy data between periph-

erals and memory while the CPU can handle other tasks. Even event-driven activation is possible, by

a handshake and request/acknowledge interface to the peripherals. For example a preconfigured

DMA task can handle the periodical requests of the UART when a packet is in the receive buffer

ready to be copied to RAM. The AHB bus-matrix therefore allows parallel connections of the CPU

and DMA to other components, and applies a round-robin scheduling when both want to access the

same resource. At last module to be mentioned at the AHB domain a bridge connects to the slower

APB.

On the APB bus domain, a UART module provides a simple serial communication to external de-

vices, and can be used to flash firmware, copy configurations or is also popular for console debug

output by redirecting the appropriate C-commands printf or puts. Timers are used to interrupt the

system one-time or periodically to enable counting timespans. To give a simple example, it can be

used to control the brightness of an LED by creating pulses at the output of a GPIO pin. The power

management configuration registers are a custom module including control to energize and isolation

states of modules or put the system into one of the predefined power management sleep modes. By

the comprehensive functionality of this custom developed module where wrong configuration set-

tings or malfunction can bring the system into critical states, by for example disabling all wakeup

detection modes and putting the system into a deep power state, the functional correctness is very

important. A hardware implementation of the Advanced Encryption Standard (AES) enables en-

/decryption with high data rates and therewith lowest latency without facilitating the systems proces-

sor unit. The security requirements for wireless transmission can therefore for example be realised as

follow: A block of data, ready for transmission is stored in the RAM. The CPU configures DMA

tasks to copy the data subsequently to the AES and transfer them when finished to the transceiver

module. Since all of these tasks are not software implemented and outsourced to the peripherals and

DMA, the CPU can meanwhile execute other tasks, or wait for completion in an energy-saving sleep

mode. The aforementioned transceiver module is a redesigned TDA 5340 module that is integrated

as macro on the SoC. It is equipped with a SPI interface which is on-chip connected to a SPI master

module that provides the interface to the APB bus. The multiband, sub 1 GHz transceiver is de-

signed for lowest system power consumption and up to +14dBm output power [15].

Proposed Concept

 30

A watchdog is used to detect and recover from system faults by resetting the system. It is a 32-bit

counter, which raises an interrupt when reaching zero. On the next clock edge the timer is reloaded

and continues down counting. When until the next time the counter reaches zero a reset of the inter-

rupt was not monitored, the watchdog asserts the reset signal. The DMA has its data transfer inter-

face at the AHB bus, while the configuration is set via an APB interface. 4kB of memory is allocated

to set the controller configuration registers such as reading the status, starting the DMA, or setting

the address of channel control data structures stored in RAM. At last, a bridge connects the APB to

the open source 8-bit Wishbone bus system [13], which is integrated because of an ancestor project

for reasons of component reuse. Most importantly it connects a RFID module to support ISO 14443-

a tags and a sensor interface to connect the application specific sensor module. This can be for ex-

Bus Component Description

- Power Management Unit
Manages the power states of the system (e.g. SLEEP,
DEEPSLEEP, POWERDOWN)
configurable via the APB configuration interface

AHB Cortex-M0 Central processing unit (CPU)

AHB DMA (Direct Memory Access) Controller to transfer data independently from the CPU

AHB ROM (Read-Only Memory)
Non-volatile memory, contains bootloader (cannot be
changed after manufacture)

AHB RAM (Random-Access Memory) Volatile memory for data during execution

AHB GPIO (General Purpose Input/Output) 16 pins for additional external digital control lines

AHB Flash Non-volatile reprogrammable storage

AHB/APB AHB-APB-Bridge Connection between AHB and APB domain

APB
UART
(Universal Asynchronous Receiver/Transmitter)

Serial communication to external devices

APB Timer
Multiple timers that interrupt system on overflow, once
or continuously

APB Power Management Config Registers
Status and configuration of the power management
Unit

APB AES (Advanced Encryption Standard) Hardware implementation of AES algorithm

APB SPI Master / TDA 5340 Transceiver Interface
Interface to transceiver mode, for wireless communi-
cation to other devices

APB Watchdog
Timer to detect and recover from system faults, can
reset the system

APB DMA Config Status and configuration of the DMA controller

APB/WB APB-WB-Bridge Connection between APB and Wishbone domain

WB RFID (Radio-frequency identification) RFID interface

WB Sensor Interface Connection to application specific sensor

Table 3-1: SoC hardware modules

 Proposed Concept

 31

ample a pressor sensor or an amperometric sensor. Table 3-1 again summarizes all components of

the presented SoC.

Power Management Strategies

The reasonable application of power management techniques, discussed in chapter 2.4 allows the

system to utilize its limited amount of energy from battery for highest efficiency and longest life-

time. To reach this goal, functional domains shall be only powered on and provided with the clock

signal when actually used. As a demonstrative example on a typical sensor application, data is not

streamed periodically in that way that the whole system is constantly facilitated, the CPU subsystem

therefore could go into a sleep mode until a timer or an external interrupt signal indicates the next

data processing step. To address the different functional groups including each multiple modules,

three power domains are defined:

(i) MCUSYS: contains the Cortex-M0 processor system and all peripherals of the AHB,

APB und Wishbone subsystems

(ii) PMU: the power management unit, uncoupled, to control the state of the other domains

(iii) AHB-RAM: forms an own power domain to enable power-gating of the CPU-subsystem

while preserving the content of the RAM

To provide an adequate granularity in controlling the states of these domains, 6 different power

management modes are defined, listed in Table 3-2 with the associated behaviour. They are linked to

possible clock gating of the four clocks used in the ARM system, and power gating of the defined

power domains. In addition the disabling of the clock oscillators can save additional power con-

sumption, but results in a longer wakeup time due to the oscillators’ settling time.

The first two power management modes are ARM built-ins which can be activated in firmware by

calling the WFI (wait for interrupt) or WFE (wait for event) native instructions. The first one targets

the wait for an interrupt to wake-up the system, while the latter is to realize semaphores in a multi-

processor system. It can be used in spinlock loops, to avoid busy waiting for exclusive resource ac-

cess. In combination with the SEV instruction, a CPU can signalize the waiting others that the re-

source is free for allocation.

By setting in the Cortex-M0 System Control Register (SCTLR) the SLEEPDEEP bit defines weather

the processor goes into sleep or deep sleep mode when calling one of the standby instructions. By

setting the SLEEP-ON-EXIT bit in the same register, the processor goes back to sleep when an in-

terrupt service routine handling was finished. This makes short wake-up times possible to react on

an interrupt from a peripheral, process it and send the system immediately back to the sleep mode

until the next interrupt is raised. The other four modes are custom defined, and controlled by setting

the appropriate SFRs of the power management unit via the APB configuration interface.

Proposed Concept

 32

Power

management

mode

Clock Gating Power Gating Oscillators

disabled

HCLK SCLK FCLK PCLK MCUSYS PMU AHBRAM

ARM -SLEEP X

ARM-

DEEPSLEEP

X X

SLEEP X X X X

DEEPSLEEP

CLK-ON

X X X X X

DEEPSLEEP

CLK-OFF

X X X X X X

POWER-

DOWN

X X X X X X X X

Table 3-2 Power management modes and corresponding applied power saving techniques

The ARM-SLEEP mode gates just the HCLK, which is the appropriate clock for the AHB compo-

nents and the processor core. Consequently, the CPU subsystem freezes without losing the state

information, since the power supply is still available, while the APB peripherals can further operate

connected to the PCLK. The NVIC is supplied by the FCLK and thus, still available for peripheral

interrupts to wake-up the processor core within one cycle.

The ARM-DEEPSLEEP mode gates in addition the FCLK, and thus deactivates the NVIC for inter-

rupt handling. Therefore the much smaller WIC is then responsible for handling incoming request

and wake-up of the system. In the ARM reference implementation this mode also includes power

gating, which was redesigned for this SoC and shifted to the more powerful implementation of the

custom PMU modes.

The SLEEP mode applies clock gating on all system clocks, the HCLK, FCLK, SCLK and PCLK.

Hence the whole microcontroller system is frozen, but can be waked-up by the within the PMU inte-

grated wakeup timer or the event detector for external GPIO input within one clock cycle. The

DEEPSLEEP-CLK-ON mode includes power gating, by turning off the MCUSYS domain but keeps

the AHBRAM enabled for data retention and the PMU for wake-up. Since the system has to boot

when reactivated and restore its state, a longer delay is expected. DEEPSLEEP-CLK-OFF serves the

same power techniques, but in addition disabling the chip oscillators. As a consequence the more

stable synchronous event detection is disabled too and replaced by the slightly error prone asynchro-

nous event detector, which has to struggle with spikes on input signals. To be mentioned, the reacti-

vation and settling of the oscillators adds an additional wake-up delay. POWERDOWN disables the

overall digital system of the chip, thus only analog components on the chip can boot-up the system

again. As a result the lowest possible power consumption can be achieved, but results in the highest

delay in system reactivation.

 Proposed Concept

 33

3.2 Hardware Abstraction Layer for Processor-driven Verification

The rising system complexity in current microcontroller systems and the demand for flexibility in

application code reuse substantiate the common approach of dividing the software into hardware

dependent and independent part. To ensure compatibility in the de-facto standard ARM environment

among various projects the incorporation of the ARM CMSIS is reasonable. To undertake the survey

of combined development of a HAL as verification and productive API a three layer HAL is pre-

sented. The basic two layers remain the same for both variants, while the layer on top is custom for

the particular use-case. Therewith the different requirements regarding functionality and the inter-

face to the application layer can be realized.

Layer Design

To divide the bare-metal API for hardware access in a hardware dependent and independent part, a

common three layer architecture was chosen in accordance to the design guidelines of the ARM

CMSIS architecture. While the lowest layer itself only contains definitions in header files, combined

with the middle layer basic driver functionality is provided to the top layer. Figure 3.2 shows the

schematic design, with the microcontroller and the component blocks at the bottom. To explain the

purpose of each of the three layers, the example on a flash module will be given, see Table 3-3.

The lowest layer (Layer 0: Register Definitions) of the HAL is formed by the register definitions,

where register addresses are defined relatively to the components base addresses and mapped into

symbolic names. In addition masks and bit values are declared with symbolic names and their write-

and readability, to avoid for example the write access to read-only status registers. On the same level

located is the ARM-specific CMSIS-CORE with the key features of abstracting the processor core

registers, the NVIC, debug and trace access configurations. On the flash module example to erase a

sector, registers for the sector address and control registers to start the erase operation are be defined

here.

On the next layer above (Layer 1: Basicdrivers) the register level access is abstracted into basic rou-

tines, which are still dependent on the hardware used. The multiple register assignments are encap-

sulated into basic routines, for example set_address(addr) to calculate and set the sector address

register, and an erase() routine to set the control register and check the correct completion.

The layer on top (Layer 2: Drivers) uncouples the application layer interface from the specific hard-

ware used, by using standardized routine templates for classes of devices. The CMSIS driver speci-

fication includes 11 definitions: CAN, Ethernet, I2C, MCI, NAND, Flash, SAI, SPI, Storage,

USART and USB
1
. Additional components, used in the presented system-on-chip architecture are

custom defined to enable a consistent interface, and can be reused for similar ARM-based SoC de-

velopments. For the flash example, ARM CMSIS driver specification for flash devices includes the

function int32_t ARM_Flash_EraseSector (uint32_t addr) to provide a generic API.

1 CAN… Controller Area Network, I2C … Inter-Integrated Circuit, MCI … Memory Card Interface, NAND … Not-And

Flash, SAI … Serial Audio Interface, SPI … Serial Peripheral Interface, USART … Universal Synchronous and Asyn-

chronous Receiver/Transmitter, USB … Universal Serial Bus

Proposed Concept

 34

ARM CMSIS Software
Pack

CORTEX
M0 CPU

SysTick
Timer

Nested
Vectored
Interrupt
Controller

Debug +
Trace

ARM
Peripherals

Custom
Peripherals

CMSIS-CORE

Layer 1: Basic Drivers
Real Time

Kernel
3rd Party

CMSIS-DSP
CMSIS-RTOS

API

Application Code

Layer 0: Device
Peripheral Definitions

 Layer 2: Drivers

System-on-Chip

Proposed Hardware
Abstraction Layer

DSP/Realtime Extensions

 CMSIS-
Driver API

H
A

R
D

W
A

R
E

SO
FT

W
A

R
E

Figure 3.2: Proposed HAL design in accordance with ARM CMSIS

Layer Example: Flash module

Layer 2: Driver

(Hardware/Vendor-independent)

ARM_Flash_Initialize (…)

ARM_Flash_ReadData (…)

Layer 1: Basic Drivers

(Hardware/Vendor-dependent)

Startup_flash_memory(…)

Remap_sector(…)

Layer 0: Device Peripheral Definitions

(Hardware/Vendor-dependent)

#define AHB_FLASH_STATUS

#define AHB_FLASH_CTRL

#define AHB_FLASH_MODE

Table 3-3: Flash module example of HAL layer competencies

 Proposed Concept

 35

Use-Case Variants for Verification and Productive API

The proposed HAL design should be both used in productive deployment as well as in the purpose

of hardware verification testing to abstract the access from register level to an appropriate applica-

tion interface. Both variants aim therefore different objectives, listed in Table 3-4, including the

granularity of low level register access. The coverage and quality of hardware verification is obvi-

ously dependent on a fine granularity level to monitor all various status registers after every possible

register manipulation. Hence, the high functional coverage of the underlying hardware, by facilitat-

ing and testing each configuration setting and is reflected by an extensive API. The productive use-

case will provide a slightly defined interface, by abstracting most of the complexity of register con-

figurations, apply default settings and provide only necessary configuration and status access for the

intended use of the module within the SoC.

Objective Verification Productive

Granularity Fine Coarse

Level of Abstraction Low, to enable profound configuration

and status flag access

Complexity obscured by simple access

members

Interface to Application Layer Broad Slight

Functional Coverage High Medium to Low

Table 3-4: Objectives of the two HAL variants

The major challenge is to identify the requirements for both use-cases in the a-priori software con-

cept stage, extract functional intersections to achieve an efficient trade-off for both application sce-

narios. In the previous subchapter, the three-layer architecture with a different implementation of

layer 2 was already presented, to meet the requirements for two use-cases. Figure 3.3 outlines the

interaction of the layers for the verification variant to provide accesses and to an example hardware

module, which provides several functional registers to set configurations, read status bits, data and

control the module’s processes. Layer 0 defines the access to these registers by their addresses and

the meaning of the values by textual mask identifiers. Obviously, for the verification purpose all

configuration registers as well as status bits are facilitated to obtain the highest possible test cover-

age. Above, layer 1 composes the combination of multiple register access in a collection of parame-

terized functions. These hardware dependent methods are providing still the broad functional cover-

age, but simplify the access by encapsulation to a smaller set of functions. A reasonable division

therefor, and the number of parameters allowed per function will be discussed in detail on the evalu-

ation results in chapter 5. It is connected to considerations regarding performance and memory foot-

print. On top, layer 2 provides a hardware independent, standardized interface from test applications

to the hardware specific layer 1 functionality. The challenge is to define an interface that allows the

reuse of the tests but connecting them to the underlying basic drivers without losing functional cov-

erage.

Proposed Concept

 36

Basicdriver2(..) Basicdriver3(..) Basicdriver4(..) Basicdriver5(..)

0
xF

C
0

8

SFR 1

0
xF

C
0

8

SFR 2

0
xF

C
0

8

SFR 3

0
xF

C
0

8

SFR 4

0
xF

C
0

8

SFR 5

0
xF

C
0

8

SFR 6
0

xF
C

0
8

SFR 7

0
xF

C
0

8

SFR 8

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

DriverFct1 DriverFct2 DriverFct3 DriverFct4

Hardware Module

SO
FT

W
A

R
E

H
A

R
D

W
A

R
E

H
A

R
D

W
A

R
E

 A
B

ST
R

A
TI

O
N

 L
A

Y
ER

Basicdriver1(..) ...

TEST APPLICATION for VERIFICATION

...

Layer0

Layer1

Layer2 for Verification

...

...

Figure 3.3: Interaction of HAL layers for the use-case verification API

Figure 3.4 outlines the layer interaction for the productive library use-case, by reusing exactly the

same implementation for Layer 0 and Layer 1 to abstract from hardware functional registers up to

the basic driver functionality. Nevertheless, the productive version does not facilitate all registers

definitions and basic driver functions (grayed out in Figure 3.4), for example certain status registers

or special functional modes used for debugging or in other SoC applications. Anyhow, the full

source code is added and used during programming, but just the necessary parts of code is then add-

ed by the linker in the binaries build process. It resolves the dependencies from application code

downwards, unreferenced files and functions are neglected. Therewith, the additional code is not

affecting the binary size. This is the key aspect that the total reuse of code can be accomplished and

likewise meets the slight interface requirements for a productive API deployment. On top of the

design, layer 2 provides the abstracted slight interface to the application, by connecting driver func-

tions to the fixed subset of configurations and actions of the basic drivers.

 Proposed Concept

 37

Basicdriver2(..) Basicdriver3(..) Basicdriver4(..) Basicdriver5(..)

0
xF

C
0

8

SFR 1

0
xF

C
0

8

SFR 2

0
xF

C
0

8

SFR 3

0
xF

C
0

8

SFR 4

0
xF

C
0

8

SFR 5

0
xF

C
0

8

SFR 6
0

xF
C

0
8

SFR 7

0
xF

C
0

8

SFR 8

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

#define
SFR1
#define
MASK1..
#define
MASK2..

DriverFct1 DriverFct2

Hardware Module

SO
FT

W
A

R
E

H
A

R
D

W
A

R
E

H
A

R
D

W
A

R
E

 A
B

S
T

R
A

T
IO

N
 L

A
Y

E
R

Basicdriver1(..) ...

APPLICATION

...

Layer0

...

Layer1

Layer2 Productive Library

...

...

Figure 3.4: Interaction of HAL layers for the use-case productive API

3.3 Evaluation of Verification and Productive HAL Variants

In the previous chapter the three layer hardware abstraction design with the proposed advantage of

code reusability, by replacing the highest layer for the particular use-case variant, were presented. To

evaluate the implementations with valuable quality assertions, software metrics are used and the

results discussed to justify the measured attributes as well as the meaningfulness of the proposed

concept. The evaluation is described on two examples, the power management unit, which allows

comprehensive power control operations, including power energize and isolation on the peripherals.

The multitude of configurations shall be encapsulated in a defined set of power management modes

for application development but all possible combinations of settings applied on verification. The

second example is the transceiver interface (TRX-IF) to provide communication and configuration

to the TDA 5340 transceiver module, which has around 260 hardware registers for settings and de-

bug access. However the interface itself is quite simpler, but must create the wave forms expected by

Proposed Concept

 38

the transceiver to be able to interpret the data. Both two examples serve a key functionality on the

chip, and chosen as example for a meaningful examination with the different requirements of full

functional coverage for verification and slight simplified interface for a productive library.

Suitable Metrics for Embedded Software

Measurements on software are applied to obtain information about attributes to meet product re-

quirements or to make it comparable to other software. In chapter 2.5 a comprehensive review on

state-of-the-art metrics was given, divided into internal (static) metrics, that evaluate internal attrib-

utes that are only related to the software itself, and external (dynamic) metrics by examining soft-

ware within the hardware environment and user interaction. In the context of embedded systems, the

hardware is delimited and the necessity and type of user interaction application dependent. It can

range from no user interface, via LEDs and buttons to complex interfaces using touch screens. The

heterogeneity of the hardware environment, by an indeed de-facto standard of ARM architecture but

mostly in combination with custom functionality and various contrary requirements (e.g. battery-

driven milliwatt vs. power electronics applications) make the objective evaluation of external attrib-

utes quite challenging.

“Embedded software is defined as a special-purpose software system built into a larger system. The

end user usually doesn't recognize embedded software as software in the traditional way; instead, he

or she perceives it as a set of functions that the system provides.” [Ebe09]

This definition of embedded software explains the unawareness of the user to the functionality and

sometimes either existence. Another aspect of embedded software is that it runs usually not as task

of an operating system, but directly on hardware as so called bare-metal software. The appropriate

source code is mostly written in C and single routines in Assembler, simple but powerful procedural

languages that however not support high-level concepts such as object-orientation. As a conse-

quence, the applicability of several metrics is restricted or not even possible. With these elaborated

limitations of the embedded system environment and the potential metrics for software analysis

summarized in Table 2-1 the following part of this chapter will present the selection process to get a

set of meaningful metrics that can be applied on embedded software in principle, and further for the

task of comparison of the two HAL variants.

For this elaboration, product metrics will be examined in detail to measure and compare the software

by internal and external attributes. Process metrics, which cover the testing process, detection of

bugs and improvement of quality will be neglected, as well as project metrics, including attributes of

project scheduling or development productivity. In the current scope the design of the HAL shall be

evaluated, where aspects of project and quality management are subsidiary, but however not unnec-

essary in the whole SoC development project and firmware development stage.

In the category of internal metrics, five categories were listed:

(i) Coupling represents the linkage of one module to others. Thereby the meaning of the

term module has to be declared first on C language. In object-oriented programming,

provided for example in C++ or JAVA, this term is mostly equated with classes that rep-

resent a template for object creation. However, the imperative C and Assembler lan-

guage do not support object-orientation, but are designed for structured programming.

 Proposed Concept

 39

Thereby, the C standard provides a multiple file concept where header files provide the

public interfaces of modules. By including a header file with function declarations from

another module, the functionality can then be called. Nevertheless, the loose concept of

module inclusion by the hierarchical file structure and especially the code include in-

stead of instantiation concept make the attribute of coupling not expressive in this con-

text. Strict interfaces in an object-orientated design are required for applicability.

(ii) Cohesion, as the contrary to coupling refers to the inner interaction of a module and is

also strongly related in the context of software engineering to object-oriented design.

Thereby classes with low cohesion indicate multiple non-related tasks that should be

outsourced into separate objects. However, it could not be applied on C and Assembler

source code.

(iii) Extendibility and reuse measurements qualify the effort of adding post-hoc functionality

to the software and reusing parts of code in related projects or reengineering tasks. The

metric Abstractness which sums the number of abstract classes cannot be applied on C

or Assembler Code. Abstraction as an OOP Concept has no direct equivalent in proce-

dural programming. However by the custom design specification for a hierarchical

structure of the HAL, where each layer is built up on the lower one, therefore a reuse of

code can be described by the encapsulation of layer functionality. Compared to the OOP

concept, where each layer would form mainly one object, the objects are here described

virtually by a source code file according to one layer. By calculating the size of each

layer SLOC0, SLOC1 and for the Layer2 variants SLOC2,V for verification purpose and

SLOC2,P for the productive library the reuse of code from verification during the soft-

ware and hardware co-development to the stage of software development for a produc-

tive library is proposed to be

 SLOC reuse in productive HAL =
SLOC0+SLOC1

SLOC0+SLOC1+SLOC2,P
 ∙ 100 % (22)

The code reuse is the sum of SLOC of layer 0 and 1 that is reused in the productive li-

brary divided by the total lines of code. Analogous to this definition we can also evalu-

ate how much code is being reused from the verification implementation by simply cal-

culating

 SLOC reuse of verification HAL =
SLOC0+SLOC1

SLOC0+SLOC1+SLOC2,V
 ∙ 100 % (23)

(vi) Population (size) metrics, includes the popular Total Line Of Code metric, Number of

Attributes, Classes, Interfaces, Methods, Packages, Parameters, static attributes or stat-

ic methods which strongly determine performance and memory footprint. The reuse es-

timation proposed in (iii) already used SLOC as size measurement. To recap an im-

portant statement from Chapter 2.5: LOC is not the only and often not the most suitable

size measurement, as it does not give any information on the functional content of these

lines. As an alternative function point analysis was discussed calculating a dimension-

less number by counting scores of code items with the value for the user. In the intro-

Proposed Concept

 40

duction to this chapter, the often missing awareness of the user about the software pres-

ence in embedded systems was listed. Since this SoC as wireless sensor node has no us-

er interface at all this metric is not applicable. For the evaluation of HAL the LOC met-

ric should be satisfying anyway, provided with explicit conditions and discussions about

the expressiveness in combination with other metrics. Number of methods and parame-

ters is in line with the language features of C code and will be used in extension to LOC

to examine the internal software attributes. Number of classes, attributes, interfaces,

static attributes, and packages are addressing OOP concepts and therefore neglected.

(vii) Complexity is measured to determine the degree of internal code interactions. McCabe

Cyclomatic Complexity algorithm, calculates the flow through code by incrementing

each time a branch is counted. It can be used in procedural languages like C and allows

conclusions about the proper design of the HAL, where greater numbers as 10 indicate

that splitting a function up would be useful. In this way, the single layers can be exam-

ined, and the question about the reasonable number of functions answered. The eight

simple measurements of the Halsted Complexity Metrics will allow additional infor-

mation about static code attributes, and are appropriate applicable on C-Code.

 External metrics were surveyed in chapter 2.5 on six different attributes:

(i) Functionality includes the set of functions that shall be satisfied and also the estimation

of defects that obstruct this goal. The overall interest in comparing the HAL versions is

to get information about the concept of combined HAL development, where the Defect

Density is not identified as major objective. Nevertheless, in software development these

metrics can provide an important contribution to software verification.

(ii) Efficiency addresses the consumption of resources during execution, which is an inter-

esting attribute on embedded systems. Especially the straight limitation of energy supply

by a small battery, reasons major interest in efficient system design. Therefore, the

hardware design and power management is considered to enable maximum battery life-

time. Battery-driven sensor SoCs normally spend most of the time in low power states,

and just reactivated for a short period of time to react on input changes or to periodically

process tasks. Obviously, the execution time measured in Clock Cycles determines the

up-time and hence power consumption. A common term of CPU Facilitation is not ap-

plicable here, where bare-metal software is executed directly on the system, and no

scheduling is applied. Furthermore in embedded systems, less memory is commonly

available to reduce chip size and dynamic power consumption. This limitation is a

straight delimiter for software design, and concerns therefore in particular the HAL.

Since it is no full-valued software, but instead providing functionality for the actual ap-

plication firmware code, the memory footprint should be as small as possible. Memory

resource measurements can be applied on program and data memory. First one can be

evaluated by analyzing the compiled binaries, depends on the instruction set and optimi-

zation techniques that are available on most standard compilers. The latter one is meas-

ured during execution, as minimum, maximum or average values, by examining directly

the content stored in RAM and monitoring the access and addresses via the bus inter-

face.

 Proposed Concept

 41

(iii) Usability describes the interaction of software with the user. The consequence of the

slight or non-existent user interface was discussed in the introduction to this chapter and

on other metrics yet. The presented SoC and the HAL itself have no user interface any-

way; hence this attribute is not present at all. Usability in terms of how easy the API can

be integrated and accessed in application development is not treated in this context.

(iv) Maintainability measures the ease of software modification after deployment. In the cur-

rent pre-silicon development and thesis topic this attribute is not of superior interest.

However, the maintainability index is an interesting metric that associates the results of

various other metrics, and can cover therefor in a single number multiple attribute quan-

tifications.

(v) Reliability estimates the system uptime and failure probability. The strong dependency

on the reliability of the hardware system and the determination through a prediction

model is not a component of this thesis and as a consequence, appropriate reliability

metrics neglected. The creation of an appropriate model to describe the system reliabil-

ity by the interaction of software with the hardware environment is quite challenging

and includes a future comprehensive analysis of the chip in post-silicon project steps in

prototype to product development.

(vi) Portability measurements qualify the transferability of software to other hardware sys-

tems. Since embedded software is due to the custom hardware strongly dependent on the

hardware environment used, portability is a difficult attribute to measure. However by

the layered structure of the HAL, where Layer 2 is independent from the particular

hardware implementation used, and written in standard-C code, at least the portability of

layer 2 is with compliance of the CMSIS driver classes fully given.

 Metric Name Description

Static

Code

Metrics

Lines of Code (LOC) Lines of code without blank and comment lines.

Number of Methods (NOM) Total number of methods defined.

Number of Parameters (NOP) Total number of parameters

Code Reuse Custom measurement to express the code reuse of Layer 0 and

Layer 1 among the HAL variants

McCabe Cyclomatic Complexity

(McCabeCC)

Each time a branch occurs this metric is incremented. High values

imply a high complexity and number of alternative program flows

Halsted Complexity Metrics Analysis of sequence of operators and operands and calculation of

eight metrics

Dynamic

Metrics

Program Memory Amount of memory needed by the firmware

Data Memory Amount of memory needed by the data

Clock Cycles Number of clock cycles for execution

Table 3-5: Selected Metrics for Hardware Abstraction Layer evaluation and comparison

Proposed Concept

 42

With the limitation in embedded systems and bare-metal software the large number of potential

software metrics was analysed and reduced to a proposed set of suitable metrics, see Table 3-5. They

are used to evaluate the characterizing attributes of the two HAL variants on the example of two

modules, which are described in the following subchapter.

Evaluation on the Example of two Hardware Modules

To evaluate the proposed HAL concept and apply the two implementation variants, two example

modules of the presented SoC are used exemplary for applying the proposed set of metrics. This

proof-of-concept shall allow a profound discussion about the HAL design in general, and the applied

use-case specific layer 2 implementations. To choose two hardware modules, the selection was ori-

ented on custom developments instead of out-of-the-box ARM components and such with system-

critical or key functions of the microcontroller. In this way the following two modules were selected:

The PMU is a custom module to control the power states of the multiple power domains, defined in

chapter 3.1, including clock and power gating of the CPU subsystem, peripherals, RAM and the

PMU itself. The switch of clocks, the power-up and shutdown of components and the control of

clock gating are major tasks. In addition related tasks include the declaration of wake-up sources

(GPIO pins, built-in wakeup timer) and state freeze of GPIO outputs to retain the values even when

the system is in sleep mode to provide it to external devices. With the complex cross-linkage to the

majority of other components on the MCU and the partly system-critical power configuration, the

functional verification of this module is of particular importance. Sending for example the CPU-

subsystem into a power saving sleep mode, but the wakeup detection is not properly working, the

system will never return into a safe working state, without an external power reset. To give another

example, wrong clock settings can massively affect the responsiveness and power consumption. For

the productive application development library the multitude of settings were composed in the fixed

set of power modes and the access abstracted by the HAL. Hence, a slight interface to switch the

power states, switch clock and configure the wakeup sources is provided. For the verification, all

possible combinations of settings must be applicable, even when a critical system state can be en-

tered. This can occasionally be requested by a verification engineer, to monitor the system behaviour

in RTL simulation regarding worst case scenario estimations. To avoid the risk of the system to go

into an unwanted state, the knowledge about the states can be quite helpful in accomplishing this

task. To check the state and have traceability when configurations are changed within the PMU, a

multitude of status flags allow the transparency at system-level to check whether the configured

settings are taken on, and the expected behaviour is entered.

The TRX-IF provides the communication to the TDA 5340 transceiver module by an internal SPI

connection. The transceiver itself has around 260 hardware registers to meet all different kind of

software and hardware requirements. However the tasks of the TRX-IF are just to generate the cor-

rect wave forms on the communication interface to realize a proper configuration and data connec-

tion to the transceiver. By the integration of the TDA5340 module as hard macro into the SoC de-

sign, the functional correctness is assumed, since it has reached a productive state in the develop-

ment cycle, was often implemented and well-tested. The communication and configuration to the

module and the interaction within in the SoC is still challenging. The TDA5340 therefore offers

multiple access modes to write and read its registers, with a strict specification on the signal wave

 Proposed Concept

 43

forms. A major issue in the digital design wiring the transceiver or the SPI interfaces would result in

a useless component on chip. Since the wireless communication is a key element of the wireless

sensor SoC, a defect results in an unusable device. This justifies the extensive verification efforts on

this module. To apply an extensive verification, all configurations, even those the transceiver would

not expect, are driven on the SPI to expose a potential design error. For the productive application

API a single default configuration can be sufficient, reducing the application interface to a minimal

of send and receive requests. Hence the interesting aspect on this module is this extreme difference

in granularity. As a consequence, significant differences in results are expected.

typedef struct
{
 __IO uint32_t CTRL; /*!< Offset: 0x000 Control Register (R/W) */
 __IO uint32_t VALUE; /*!< Offset: 0x004 Current Value Register (R/W) */
} Module_TypeDef;

#define MyModule ((Module_TypeDef *) ((uint32_t)0x40000000))

#define MASK_MYMODULE_CTRL_ENABLE_CONST_1 0x1

void _basicdriver_initMyModule(uint32_t initValue)
{
 /* Enable Module */
 MyModule->CTRL = MASK_MYMODULE_CTRL_ENABLE_CONST_1;

/* Set Initial Value */
 MyModule->VALUE = initValue;
}

4. Implementation

4.1 HAL Implementation in C

The proposed hardware abstraction layer is implemented in C and checked against the MISRA-C

standard to follow best practices with a safer language subset to enhance code security, safety and

reliability. As described in chapter 3 the HAL consists of three sublayers, each with the appropriate

functionality and abstractness. The tasks of the lowest layer (Layer 0: Register Definitions) is to

define the addresses of the registers and group related ones that are placed on the same basis address

with ascending offset, to structures. Hence, a first simplification for reuse and portability is

achieved.

Furthermore in this layer, masks and values are provided as string identifiers which can be used in

the next layer, by using again the define compiler macro.

On the next layer (Layer1: Basic Drivers), the register-based access is abstracted by simple func-

tions, which contain one or multiple register assignments and can be parametrized to enhance flexi-

ble configuration. Since the functions are customized to the particular hardware, this layer is still

not-hardware-independent.

The top layer (Layer 2: Drivers) provides the application interface; hardware independency is

achieved by using a set of standardized functions, which are independent from the accessed registers

and the underlying hardware. For that reason the ARM CMSIS driver pack was used, including 11

 Implementation

 45

groups (CAN, Ethernet, I2C, MCI, NAND, Flash, SAI, SPI, Storage, USART, USB) with standard-

ized peripheral driver interfaces including definitions for control and data structures. For the devices

not included in this specification (AES, Transceiver, PMU, Sensor Interface, RFID) the ARM driver

template was used to define equivalent standardized definitions for internal future reuse.

La
ye

r
2

:
D

ri
ve

rs
La

ye
r

1
: B

as
ic

 d
ri

ve
rs

La
ye

r
0

: R
eg

is
te

r
D

ef
s

Application Code

HAL_L0.h

include

Core_cm0.h PMU.h Flash.h AES.h DMA.h TRX_SPI.h UART.h

#include

HAL_L1.h

include

basicdriver_PMU.c basicdriver_AES.c basicdriver_DMA.c

#include

basicdriver_FLASH.c

#include

HAL.h

include

#include

Driver_DMA.c

Driver_AES.c

Driver_Flash.c

Driver_PMU.c

Verification Test Code
#include

VerifHAL.h

include

#include

VerifDriver_DMA.c

VerifDriver_AES.c

VerifDriver_Flash.c

VerifDriver_PMU.c
La

ye
r

2
:

V
er

if
.D

ri
ve

rs

Figure 4.1: File tree of the implemented HAL

In Figure 4.1 the tree structure of the files is presented, showing one header include file per layer,

that itself includes all appropriate header and code files. On top, both layer 2 implementations form a

variant of the hardware abstraction layer, providing the appropriate interfaces for application and

verification test code.

Implementation

 46

4.2 Development and Simulation Environment

The SoC development project is currently in pre-silicon stage, where the digital modules are imple-

mented by a mix of SystemVerilog, Verilog and VHDL. Primarily they run together with hardware

macros and the software within memory behavioural models in RTL simulation. When the pre-

silicon development and simulation stage is almost finished, near to the tape-out gate level simula-

tion is also applied, to check timing limitations and again functional correctness. By the expended

simulation time against RTL, this level of detail is inappropriate for test/debug simulation during

development. As a consequence, RTL simulation was used within software development.

The C and Assembler implemented code was built using the GNU ARM Embedded Toolchain, an

open source toolkit including tools for compiling, linking, operating of binaries and a lightweight C

standard library for embedded systems. To use in addition the comfort of a GUI based development

environment, the ARM DS-5 Development Studio was used in the free Community Edition by inte-

grating this toolchain. It is also available in licensed professional versions with the ARM compiler

toolchain included. The GNU ARM embedded toolchain as well as the ARM toolchain come with

examples for start-up code, including the vector table definition and initialization routines, and link-

er scripts to position the code on prerequisite addresses. For example the vector table is positioned

on hardware address 0x0 where Cortex-M0 expects it to be.

Figure 4.2: Development environment, software binaries are included within the RTL simulation

The built binaries where included by the HDL memory behavioural models, see Figure 4.2; for ex-

ample Verilog provides these feature with the built-in commands $readmemh and $readmemb (hex

and bin representation) to store the content of a file to a memory array on simulations start-up. To

debug the hardware and software system, a simple test-bench was used, capturing the UART output

and write to the simulator console using the Verilog $display command. In addition the GPIO pins

were stimulated and monitored to model in/outputs.

HDL Editor C Editor

Compile ARM GNU Embedded Toolchain

Run RTL Simulation

Modelsim

Compile

ARM CMSIS ha
Libs/

Macros

 Implementation

 47

4.3 Tools for Metric Evaluation

In the field of static code analysis a multitude of tools are available, from simple applications to

evaluate a particular metric, up to powerful code analysis toolkits. For the evaluation of the HAL

and the proposed metrics, several tools were used:

 CCCC (C and C++ Code Counter) [17] is a free command line tool to measure different

metrics on C, C++ and JAVA source code, including Lines of Code related measurements

and McCabe’s Cyclomatic Complexity. This program was in the first stage used to calculate

the SLOC and the McCabeCC.

 SourceMonitor 3.5 [18] is freeware to analyse C++, C, C+, VB.Net, Java, Delphi, Visual-

Basic or HTML code. It was used in addition to CCCC to check against on SLOC and

McCabeCC.

 HalsteadMetrics [19] is a simple metric analyser for the same-named metrics. It calculates

Number of Operators and Operands, Number of Unique Operators and Operands, as well as

the actual metrics: Program Vocabulary, Length, Volume, Effort, Difficulty and Time. An

export generation in HTML or PDF format is possible.

 GNU Binary Utilities - size [20]: displays the section sizes of an object or archive file. It is

part of the GNU Binutils, including the GNU linker and assembler, and miscellaneous helper

tools. This program was used to determine the program memory of the HAL implementa-

tions.

 ModelSim is a HDL simulation environment by Mentor Graphics [21] and was used to per-

form the pre-silicon RTL and Gate-level simulations of the digital SoC design. In chapter

4.2 the simulation and development environment was explained: The software is executed

within the RTL simulation, which allowed a profound evaluation of the dynamic metrics.

Data memory was determined by examining the content of the RAM and the clock cycles

for execution in the wave prints by measuring the rising clock edges between two curser

values when the particular analysed function was called, executed and called-back.

5. Benchmarking and Results

The proposed HAL for the developed SoC was designed in combination for both of the two use cas-

es of functional hardware verification and as application library. In the previous chapters the ap-

proach of reusing the lower two layers - register definitions and basic driver functions - for both

scenarios and a custom layer 2 implementation for each was presented. To evaluate the two resulting

software variations, a profound review on state-of-the-art software measurements and the check for

applicability on embedded software, in particular hardware abstraction firmware resulted in a set of

proposed conclusive metrics. The following benchmarking was just applied on a part of the entire

HAL software, to discuss the results in detail. Two example hardware modules that are custom de-

velopments, and therefore have a higher demand for functional verification, were chosen. The first

one is the power management unit of the chip and is a critical component of the system, by provid-

ing functional access to power down the core components of the system , thus including the risk of

crossing a point of no return where the system can be locked until a manual reset. The second com-

ponent is the transceiver interface, serving the communication to transmit and receive functionality

of the wireless SoC. As a key module, functional correctness had major priority in the project verifi-

cation plan.

The intro of this chapter is straight followed with the detailed result of the several metrics, analysed

with different 3
rd

 party tools on the internal and external software attributes. The setup and limita-

tions are important to review, to understand the expressiveness and coverage of the measurements.

Then a discussion on the meaning of these values, with comparing to limits and common results will

give a detailed analysis of the software characteristics. In the second part of this chapter these results

are jointly considered to discuss the proposed HAL concept in general, the advantages and disad-

vantages, as well as possible improvements. In addition yet untreated aspects on the HAL will be

introduced, such as the question on security aspects, by reusing low-access software und might open

security holes for system threats. When a sensor application is embedded in a safety critical system,

the harm of resources or human life is not acceptable. The disquisition on security and safety con-

siderations is finally followed by the discussion on extensibility of the proposed design and growth

of knowledge for HAL designs in combination with CMSIS.

 Benchmarking and Results

 49

Table 5-1: Evaluation results of the proposed metrics on the two example modules

2 Evaluated on HAL Layer 2 source code only.

 Power Management Unit (PMU) Transceiver Interface (TRX-IF)

Metric Verification Productive Verification Productive

Total Source Lines of Code

(TSLOC)
1190 1075 533 460

 SLOC - Layer 2 220 105 98 25

 SLOC - Layer 1 371 335

 SLOC - Layer 0 599 100

Number of Methods (NOM) 2 11 5 7 3

Number of Parameters (NOP) 2 14 6 17 6

SLOC Reuse 81,5% 90,2% 81,6% 94,6%

McCabe Cyclomatic

Complexity (McCabeCC) 2
Max.12, Avg. 4,64 Max. 6, Avg. 3,00 Max. 8, Avg. 3,71 Max. 4, Avg. 2,00

Halstead Complexity Metrics 2

 Number of Operators (N1) 456 134 186 47

 Number of Operands (N2) 890 340 507 133

 Number of Unique Operators (n1) 14 11 16 12

 Number of Unique Operands (n2) 111 52 43 24

 Vocabulary Size (n) 125 63 59 36

 Program Length (N) 1346 474 693 180

 Program Volume (V) 9375,95 2833,23 4076,67 930,59

 Difficulty Level (D) 56,13 35,96 94,33 33,25

 Program Level (L) 0,018 0,028 0,011 0,030

 Implementation Effort (E) 526 235,51 101 887,33 384 534,42 30 942,00

 Implementation Time (T) 29 235,31 5660,41 21 363,02 1719,00

 Number of Delivered Bugs (B) 0,32 0,11 0,26 0,05

Simulation and Results

 50

Metric Evaluation Results

To finally answer the questions on the hardware abstraction design about the meaningfulness of the

approach on verification and productive library combination, the quantification of software attributes

shall found the base for the following discussion. This examination on the two variants per example

was conducted with the composed suitable metrics, listed in Table 3-5. This set persists of measure-

ments for internal attributes of software (source code/binaries) and external attributes, including the

interaction with the environment in software execution. In Table 5-1 the final results of the HAL

evaluation are presented.

 Total Source Lines of Code (TSLOC) measures the size of code by counting all lines except

for commented and blank ones. In the results it is divided up into the single SLOC values for

each layer, to gain information about the amount of code distribution. Layer 0 consists of all

register definitions and masks, layer 1 of basic functionality to compose related register as-

signments to functions. These two are the same implementation for both use cases, whereas

layer 2 is adapted for the particular application layer. However, the presented SLOC values

of all layers in this table just represent the functionality for the specific hardware module,

and not the HAL in total. A look on the different values between PMU and TRX-IF is justi-

fied by the overall higher functionality served by the PMU. The connection to all memories

and peripheral domains, the exhaustive control of system states and access to distributed

state information make this component to a functional core block, but also in terms of risk.

Therefore on the functional verification tasks, the highest possible coverage is favoured, by

Program Memory [Bytes] 2556 1708 1192 334

Use-Cases to evaluate Clock Cycles and Data Memory

a) Set WakeupTimer, goto Sleep

 Clock Cycles 1260 829 n/a n/a

 Data Memory [Bytes] 56 48 n/a n/a

b) Clock Switch

 Clock Cycles 510 360 n/a n/a

 Data Memory [Bytes] 48 44 n/a n/a

c) Write 10 bytes of data

 Clock Cycles n/a n/a 243 60

 Data Memory [Bytes] n/a n/a 68 48

d) Read 10 bytes of data

 Clock Cycles n/a n/a 289 72

 Data Memory [Bytes] n/a n/a 64 48

 Benchmarking and Results

 51

a priori, in-between and post-hoc checking of flags, to monitor state transitions. This huge

number of flags and control options reflects in the high SLOC value of layer 0. Layer 1

combines register access to build-up a slighter interface to Layer 2. The difference on the

top layer, between verification and productive variant is around 48% because of the neglect-

ed flag and state checks for productive operation. The TRX-IF is less versatile compared to

the PMU, however providing a multitude of configurations and status registers. The higher

SLOC of layer 1 compared to layer 0 is justified by the combination possibility of the huge

number of configurations to customize the output signal. In the productive variant, there is

only one configuration used, whereas the verification firmware tries to provide this exten-

sive wideness for testing. This results at the layer 2 variants in the relation of SLOC by a

factor of 4.

 Number of Methods (NOM) counts the number of methods in a module, here applied on lay-

er 2 only, to further characterize the interface to the application layer. Based on the state-

ments given to lines of code, the results of NOM can be explained in analogy. The differ-

ence between the verification and productive variants are justifiable by the granularity of the

application interface. The verification implementation tries to obtain the wideness of config-

urability for highest coverage on functional verification testing, whereas the productive li-

brary shall provide a slight, simple and default configured interface. This measurement ex-

clusively does not allow a comprehensive analysis. It is strongly dependent on the imple-

mentation, and is best combined with Number of Parameters and complexity measurements

to fully examine the functional division and internal structure of methods.

 Number of Paramters (NOP) counts the module’s parameters of a module. Obviously, again

the verification implementations have a greater number. In combination with the Number of

Methods (NOM) a derivation on the additional configurability against productive implemen-

tations can be made. For the PMU and TRX-IF the proportion is about 2. However, if in C

code for example structures in combination with typedef are used to encapsulate related data

into one variable, the expressiveness of this measurement has to be verified. For the pro-

posed examples, nested data encapsulations are mostly not selected; standard datatypes or

enumeration parameters were used to keep the interfaces simple.

 SLOC Reuse is a custom, within this thesis proposed number to reflect the reuse of layer 0

and 1 source code for both use case variants. In chapter 3.3 these numbers were defined by

formula 22 and 23 to calculate the ratio of the sum of layer 0 and layer 1 SLOC to total

SLOC. Taking a look at the results in Table 5-1, the numbers obviously create the impres-

sion of a very high scale, especially at the maximum result of 94.6% at the TRX-IF HAL.

Important at this point is to consider the outcome from SLOC review in chapter 2.5: Lines of

Code is just one measurement for software size, but it does not cover all aspects of size.

There is no information about the content and functionality of the lines, a highly complex

calculation is counted the same as a series of no-operation instructions. However, this calcu-

lation shows that a huge amount of source code can be shared between the two use cases and

the common intersection of programming tasks obviously exists. The linker will nonetheless

not add parts of the lower layers to the productive layer particularly, if they are not used

from the higher layer. In the second part of this chapter, this numbers will be taken up again,

as indicator for the connections between verification and productive purpose.

Simulation and Results

 52

 McCabe Cyclomatic Complexity (McCabeCC) measures the alternatives in the program flow

by counting a variable for each branch that occurs in the code including if-else, switch or

loops. The higher complexity values for the verification use-case are based on mainly two

reasons.

(i) The processing of a higher number of parameters, with reference to the results

of NOP. Not every (e.g. data value) but the configuration parameters (e.g.

choice of one clock out of four) create an additional branch in the program flow,

and therewith increase the cyclomatic number.

(ii) Checking the a-priori / in-between / post-hoc status flags in the verification pur-

pose, creating if/else branches and again the cyclomatic number

McCabeCC is popular metric to gain knowledge about the structure of code, in comparison

to just size and population metrics. The limit proposed by McCabe is a value of 10 [McC83]

to indicate that splitting up the function would be useful. Applied to the results the function-

al division in the verification purpose source code of PMU layer 2 is slightly across this line

and should be revised. The other values are in line with the limitation of McCabe.

 Halstead Complexity Metrics are a set of eight calculations, based on the assumption that

code can be seen as a series of operators and operands. The detailed definitions according to

C were given in chapter 2.5 and the calculations by formula 10 to formula 17. They are all

based on the count of operators and operands in total and distinct.

Number of Operators (N1) and Operands (N2) are another expression of the code size, and

therewith obviously correlate in sum as Program Length (N) with the SLOC results.

The values of Number of Unique Operators (n1) and Unique Operands (n2) describe the di-

versity of code. The results do not differ that much between the two examples and use-cases,

and can be explained by the similar composition of code. On layer 1 the register definitions

of layer 0 are assigned (“=”) with defined masks and values. Therefore, masking can be ap-

plied by AND-conjunction (“&”), multiple bit assignments with OR-conjunctions (“|”) ac-

companied by negations (“~”) and shift operators (“<<”, “>>”). On layer 2 and layer 1

Boolean statements (“= =”, “>” “<”, etc.) are used to control for example the if/else branch-

es. Consequently, with the difference in functionality per se, the operators are related to the

overall task of serving HAL functionality. By analogy, the quantification of operands can be

explained.

Program Volume (V) measures the information content of a source code, can be used as size

code measurement and is less sensitive against code structure than SLOC. The proposed lim-

its for a file are at least 100 and most 8000, where a greater number indicates that maybe the

file ought to be split up. Hence, in accordance to McCabe complexity results, not just the

functions, but also the file functional division should be reconsidered on the PMU verifica-

tion implementation. The other results are within the limits and obviously correlating to the

previous results that yet confirmed the higher code size of the verification versions.

The Difficulty Level (D) is proportional to Number of Unique Operators and to the ratio of

Number of Operands to Number of Unique Operands. Using more distinct operators or reus-

ing same operands multiply in code increases the Difficulty Level, whereas new operands

 Benchmarking and Results

 53

decrease it. The Program Level (L) is the inverse of it, where a lower level indicates the pro-

pensity for error occurrence. Very interesting in these two numbers compared to the previ-

ous results is the fact, that the use case PMU/Verification with the highest cyclomatic com-

plexity (max.12/avg. 4.64) and SLOC/Layer 2 (220), is not the implementation with highest

difficulty level with a result of 56.13 (and therewith expected lowest program level). TRX-

IF/Verification has a much greater result in the difficulty level of 94.33 by a cyclomatic

complexity of max.8/avg.3.71 and SLOC/Layer2 of 98. To find the explanation to this be-

haviour, a review on formula (13), definition of the Difficulty Level is necessary.

For the first term, the result of Number of Unique Operators is almost the same for both ex-

amples (PMU: 14, TRX-IF: 16), already justified above in the explanations to this metric.

The second term is the proportion of total operands to unique operands, and results for the

PMU in 8.02 and for TRX-IF in 11.79 and is dominating the result. This difference can be

explained by the broad configurability of the PMU (great number of unique operands) in

comparison to the less options but huge combination possibility of the TRX-IF (multiple re-

use of operands).

The Implementation Effort (E) is the direct proportion of Volume to Difficulty Level of soft-

ware, and in the results again dominated by PMU/Verification. While the difficulty is much

greater for the TRX-IF/Verification implementation, the dominance of the high value in

program volume at PMU/Verification results in a total higher scale of implementation effort.

After the revealing results on the Difficulty Level, the comparison to TRX-IF/Verification by

examining the ratio of SLOC to Implementation Effort can be quite interesting. The PMU

implementation resulted in a SLOC/Layer 2 of 220 to implementation effort of 526235.5,

which is now set into proportion resulting in 2391.98 calculated by formula (24). It shall re-

veal the average effort needed for implementation per source code line by simply calculating

 Effort per Source Line of Code =
Implementation Effort

SLOC
 (24)

TRX-IF/Verification with a SLOC/Layer2 of 98 and the Implementation Effort of 384534.42

results in an effort per line value of 3923.82, which is a 64% greater value compared to the

PMU software for verification. Hence, it makes sense to relate the number of Implementa-

tion Effort to a size measurement to examine the meaningfulness of the result.

The Implementation Time (T) approximation in seconds is the division of the Implementa-

tion Effort with the constant value 18. The high result values for the Layer 2 are converted

for easier understanding: 8h7min for PMU/Verification, 1h34min for PMU/Productive,

5h56min for TRX-IF/Verification and 29min for TRX/Productive. The difference within the

implementations for each example module is considerable, with an about 5 times higher time

amount for the verification compared to productive variant of the PMU in analogy a factor

of 12 for the TRX-IF example. These results can be explained similar to the reflections on

Implementation Effort, by creating a relation to software size. While these numbers only

present estimation for the layer 2 implementations, presumably the overall total implementa-

tion effort is primarily in the a-priori HAL design concept, and the implementations of layer

0 and layer1.

Simulation and Results

 54

At last, Number of Delivered Bugs (B) provides estimation for the number of errors in the

software. The recommended threshold is 2 for a file, which is far away from the small num-

bers calculated for the layer 2 implementations. However the results values shall be inter-

preted as a lower bound for expected errors in code, the actual error rate is of course de-

pendent on various factors, such as the experience of the programmer.

 Program Memory, in bytes, is the permanent memory footprint for the program in ROM. It

consists of the instructions and read-only data, including addresses to registers or the vector

table that contains the jump addresses to the interrupt handlers. Obviously, the results are

again greater for the verification implementations, but do not have the strong correlation to

SLOC that might be expected at first view. When the source code files are compiled and

linked together to a program, only actually referenced code is added. Even though, layer 0

and 1 are shared between verification and productive use-case, all parts of code will not be

used by the productive library. The evaluation of re-linked code resources is much more dif-

ficult than the source code analyzation, by the resulting binary file of the linking process

which then contains the application layer code as well, and is cleaned up from comments.

Therefore the mapping to the origin source code is tricky and prone to error. This kind of

analysis was neglected in this thesis, but might be an interesting additional source for exam-

ination. The particular limitations on Program Memory are dependent on the resources

available at the particular SoC; respectively for the presented microcontroller, with an 8kB

ROM for the bootloader application and a 64kB flash memory for the actual application the

values are within the limitations.

 Clock Cycles are counted to measure the execution duration of software on a specific target

system. Dividing the result with the clock frequency actually used (in the tests 6MHz), re-

sults in execution time. Clock Cycles makes comparability on similar hardware systems

much easier on a common level, by subtracting out the actual frequency used of the time

measurements. Data Memory, in bytes quantifies the volatile memory allocation that con-

tains mainly variables and register stacking on function calls.

During the realization of this thesis, a substantial problem of evaluating both of these met-

rics on the HAL variants was revealed: since verification and productive use-cases provides

an intersecting but also different set of functionality to the application layer, and a HAL is

not stand-alone software at all, a direct evaluation of the execution is hardly possible. To

quantify these interesting measurement anyway, significant example functionality was cho-

sen that are supported by both HAL variants, but implemented in a different way:

a) PMU – set WakeupTimer, goto Sleep: this example describes one of the key tasks of

the SoC’s power management, by sending the system into a power-saving sleep

mode. First, to make sure that a later return from this state is possible, a wake-up-

timer is configured within the PMU. Subsequently, the target power modus

DeepSleep is selected and the request for execution set.

For the productive variant, this procedure is straight forward implemented as de-

scribed, whereas the verification implementation is checking the status flags of the

timer a priori and post hoc to the configuration. Same is done for the power mode

selection, before the system actually is sent to the low power configuration. This re-

 Benchmarking and Results

 55

sults in an increase of 51% of clock cycles for this overhead checks. The data

memory is almost at the same level, by the main dominance of the register stacking

by function calls. Since both variants have the same software structure together in

principle and variable use is rare, the results are nearby. The results on the static

Halstead Metrics included a discussion about the similarities of the used operators

and operands. This can be directly associated to these results, where same operators

are resulting in a similar data memory behavior. A note on the remarkable high val-

ues of clock cycles is necessary here: the high amount of branches inside the func-

tions, and the function calls between the layers are dominating parts.

b) PMU – Clock Switch: The presented SoC is equipped with two oscillators, provid-

ing a 24 MHz and a 64 kHz Clock. In addition the 13MHz Clock of the RFID con-

troller can be used as system clock as well or an external input connected to a GPIO

pin. To enhance flexibility, from these clocks can be further subdivided with a con-

figurable clock divider. To switch from one clock to another, a control and status

register in the PMU allow the enable of the new clock source, the configuration of

the clock selection and the disable of the beforehand used clock. Again the proce-

dure is implemented in these steps in the productive use case, whereas on verifica-

tion the status registers are subsequently monitored. The justification on data

memory consumption is in analogy to a).

c) TRX-IF – Write 10 bytes of data: The transceiver to send and receive data to/from

other devices or base-stations is connected via an SPI interface to the core

AHB/APB bus system. The proper generation of the signal forms expected by the

transceiver is quite important for correct data transmission. Therefore the write of 10

bytes of data is started with the initialization including setting the baud-rate, duplex

mode, packet size, polarization, edge for writing etc. and followed by writing the

values subsequently into the send buffer. On verification, after setting the configura-

tion each setting is checked against the status flags and the subsequently write oper-

ations are checked for errors. The accessed register values at the transceiver can be

checked in the tests by reading them for comparing against the written values. The

significant difference of the clock cycles for execution can be in addition explained

by the high number of branches in the verification layer 2 implementation. All dif-

ferent settings are possible, whereas the production firmware can be used pre-

configured for the transceiver expectation data output and interface configuration.

d) TRX-IF – Read 10 bytes of data: Respectively to the procedure illustration in c) for

transmission of packets to the transceiver, the read initialization and receive is real-

ized in analogy. After the settings configuration, subsequently the packets are read

from the receive buffer. On the verification use-case the procedure is extended by

extensive status checks. Again the high number of branches in the layer 2 functions

justifies the great number of clock cycles needed for executing the verification im-

plementation.

Simulation and Results

 56

Within this comprehensive analysis on the example of PMU and TRX-IF, each implemented in the

two use-case variants for verification and application API, the obviously expected larger implemen-

tation for verification was confirmed. However some unexpected results were examined, but could

be justified by the particular program structures. With these single and partly already connected met-

ric results, a comprehensive further analysis is profound.

HAL Design Analysis and Security Aspects

Started from a comprehensive literature research on software metrics in general, a set of suitable

metrics for HAL analysis was proposed in chapter 3.3. It consists of metrics for the internal attrib-

utes regarding the software itself, and external attributes that are related to the hardware environ-

ment. Metrics on the internal attributes obviously show certain correlation, by evaluating similar and

related objectives of code. However, not a single metric actually allows the thorough analysis; the

combination of several is the key for substantiated assertions. For example the results in lines of

code revealed that size estimation can be applied; however there is now information about a reason-

able division of functions between and within the HAL sublayers.

Hardware abstraction code is bare-metal software, in other words run directly on the microprocessor

resources, without an operating system to manage the utilization or provide any abstracted function-

alities. Actually a HAL is part of operating systems to provide uncoupling from the particular hard-

ware used. This aspect made CPU Utilization not applicable, and was replaced by number of Clock

Cycles to measure the execution time by dividing it with the clock frequency. One problem in this

context that occurred during concept and evaluation was the evolving of the awareness on the differ-

ent functionality served by the HAL use-cases. Consequently, a direct total comparison is not feasi-

ble at all, furthered by the fact that a HAL is not stand-alone software and needs in addition applica-

tion software to be called. Besides Clock Cycles, the determination of Program Memory that is ob-

viously dependent on the particular program flow executed is affected too. Nevertheless, to allow a

comparison for each example two significant application scenarios were chosen and evaluated.

Besides the details about implementation, other aspects such as safety and security exist in the con-

text of a wireless sensor application. A particular question that occurred during analysis was: By the

reuse of a very low-level access, broad configurable code, that was obviously developed for verifica-

tion; is there any security considerations, using them in application code for 3
rd

 party developers? To

elaborate the answer, first the fact of bare-metal software has again to be mentioned. There is operat-

ing system or any other software below, that provides an access mechanism, and thus in principle

every register can be read or written. Of course particular hardware construct can be used to lock

various registers, but none of such mechanisms is realized in the presented SoC. The only way of

obscuring registers is by not providing the programmers model, i.e. not defining them and the ap-

propriate masks in layer 0. However, 3
rd

 party developer engineers would still have a change by

ARM debug and traces to scan the bus memory allocation and find obscured registers. At this point

the question of the reasonableness of such a lock-out is appropriate; there is no interest of locking

them out anyway. The security to upper laying, additional software has to be provided by an operat-

ing system, if necessary and can thus be neglected in this context on the bare-metal stage of HAL.

 Benchmarking and Results

 57

Code Reuse between Verification and Productive Use-Case

Based on the metric results and the general discussion about the proposed HAL design, a discussion

of the proposed approach on combining the interests of developing firmware for the pre-silicon veri-

fication, as well as defined reusing parts of code for the application API can be now carried out. The

approach compromised two lower layers as common basis for both use-cases and layer 2 implemen-

tations custom to meet the designated requirements. This particular code-reuse of the basis source

code is subsequently discussed in this chapter to allow a profound conclusion in the last chapter of

this thesis.

The common layer 0 and layer 1 implementation was approached by the identification of uniform

procedures that are needed for both scenarios. The abstraction from bit assignments in a multitude of

registers is achieved by functional encapsulation in a set of parametrized C-functions. Thereby the

fundamental task is how to divide the set of register assignments to a reasonable set of functions.

The degrees of freedom are the number of methods and the number of parameters and the bounda-

ries set by program-, data memory and execution time. Two possible extreme configurations are

possible:

(i) Implement for every register bit setting a single function without parameters. This re-

sults roughly in the number of methods equal to the number of registers times the width

of the registers (in bit) times 2 (value 0/1). This solution would allocate an enormous

amount of program memory, but would be extremely fast by the absence of branches in

code (switch/if/else). Anyhow, there is no added value for abstraction, and the additional

code would result in a lower programming level, and higher expectable amount of er-

rors.

(ii) Implement just one function, and pass all possible configurations as parameters. This so-

lution results in the minimal program memory solution, but the extensive branching for

all parameters would result in the worst-case number of execution cycles. Furthermore

the parameters have to be stored on stack and thus, increase the RAM footprint.

Apart from the not-applicability of both of the extremes described here, the best solution is lying in a

compromise in-between. The optimum is a trade-of the determining variables and the delimiters that

are obviously bound to the particular SoC implementation specifications. The decisions designed in

this stage, can influence the total system behavior, for example reaction time on an external interrupt

or the memory utilization, which are important practical delimiters (hopefully) known from a SoC

requirements concept. Anyhow the task on layer 1 design is getting much more difficult when it is

extended with a second set of requirements, to fulfill the proposed combination of verification and

application API development. In Table 5-1 the metrics Number of Methods and Number of Parame-

ters are listed for the four implementations. However they include no information about the reasona-

bleness of this implementation decision. McCabeCC presents complexity of functions, and therefore

shows within an upper and lower limit if the division was useful. A lack in the design can be seen in

the high branched functions in PMU/Verification, and should be revised again. On the TRX-IF, the

different implementation interests in terms of “best solution” for the division problem can be dis-

cussed best. The verification API has to provide the setting of all combinations of configurations,

while the productive API uses as the simplest implementation, just one set of them. Therefore on the

Simulation and Results

 58

extremum examples, (i) would fit best, whereas on the verification use case, (ii) is probably more

expedient. To overcome a satisfying trade-off, the awareness of this optimization problem hast to be

in mind in the earliest HAL design stages, by including all delimiters, verify the implemented HAL

with the stated metrics and update the HAL division if inefficiency is identified. A prioritization of

the productive implementation seems reasonable, where some limitations are having greater priority

(performance/power consumption). If there is just a small set of applied configurations, the imple-

mentation with multiple, less parametrized functions is beneficial. When both use-cases need the

comprehensive configuration settings, a trade-off with multiple parameters per function and not ex-

orbitant number of methods will both hold program memory allocation and execution time in favor-

able limits.

Another aspect on the combined development is the usefulness to reuse the broad abstracted register

access for the application library development as well, when only a subset of the actual provided

functionality is used anyhow. If the additional code would create an enormous overhead, a waste of

resources might make the SoC operation inefficient. The economically worst-case might be a favor-

itism of competitive products because of this major performance lack. Nevertheless, this worry is

arbitrary, because the compiler and linker are only adding code to the binaries that is actually used.

With additional code optimization techniques the sub code included into the application deployment

can be potentially further shrunk.

Power Management Verification

A central element of the SoC chip design is the low level requirement for running the microcontrol-

ler on battery or energy harvesting for wireless applications. Longest lifetime must be ensured by a

high coverage of clock and power gating techniques. To realize this, the PMU is connected all across

the microcontroller system to control the energy behavior. Hence, the importance of the functional

correctness was stated, and the decision for the example evaluation justified. If the functional cor-

rectness of the hardware is of this importance, is there any loss and risk in using a high-level abstrac-

tion to implement verification tests? To answer this importance question, already discussed metrics

results are examined in combination. Halstead’s metrics showed that with a particular amount of

written code a lower boundary for expected bugs within the code can be given. Consequently, higher

amount of code results in a higher probability of adding errors and the risk of bringing the system in

a state-of-no-return, where a power down mode is entered without an appropriate wake-up source to

reactivate it again. On the other hand, working on lowest level with register definitions and assign-

ments reduces the code readability. In addition Halstead’s difficulty metric would probably reveal

the problem of multiply reusing same registers and their assignments on different position in code,

which can be interpreted in a higher error prone of the source code too. Obviously, this aspect gives

a great opportunity for additional examinations to find the perfect trade-off in abstraction and lowest

error probabilities.

6. Conclusion

The ongoing rising system complexity and therewith verification effort motivated the feasibility

exploration of combining a hardware abstraction API development for the purpose of pre-silicon

verification and productive deployment. The goal of a contribution to shorten development cycles

was started with a comprehensive literature research on state-of-the-art functional verification, ARM

architecture, HAL-design, power-management and software metrics. Thereupon the concept of a

three-layer HAL was presented, with the lower two layers in common use and the highest including

the interface to the application layer as custom implementation to meet the requirements of the par-

ticular use-case. To evaluate the software design and the code reuse a set of proposed suitable met-

rics was examined on the HAL implementations of two example hardware modules. With these re-

sults, the feasibility of connecting the related software implementation tasks could be clearly shown.

On static code analysis, a reuse of about 80% of source code from pre-silicon verification can be

reused in the productive library development, including the layer 0 register definitions and layer 1

basic driver functions. However, the advantages are accompanied by a profound extended a-priori

software design, to ensure a justifiable trade-off between generalization to meet all requirements and

related performance losses. This disadvantage could get heavy without proper awareness during

HAL design, and can potentially result in the worst-case scenario of be wide apart of the perfor-

mance provided by other competitive microcontroller vendors.

By the topics discussed, advanced studies would be reasonable to answer several open questions

including

 Total degree of potential reduction of development effort, by examining the before men-

tioned increase in a-priori design concept but the proposed decrease of implementation time

to deploy a productive library for 3
rd

 party developers

 Examine portability, to quantify reuse of high-level tests and parts of the HAL over different

ARM-based SoC development projects

 Error susceptibility of tests using low-level register access versus a high-level hardware ab-

straction library. Register access is prone to error because of the multiple reuses of same as-

signments whereas the size of HAL code includes risk of software errors too.

Nevertheless, within this thesis an attempt was provided to make a research foray exploring the po-

tential in identifying, describing and evaluating intersecting development tasks. Mentioned at the

outset, the ongoing increase in system complexity and verification effort will be definitely a major

driver for future research on this and related promising approaches to improve SoC development.

Literature

[And05] Andrews J.R.: Embedded System Verification: An Introduction, In Co-verification of

Hardware and Software for ARM SoC Design. Burlington: Newnes, 2005.

[Bai14] Bailey B.: Software-Driven Verification. Semiconductor Engineering., 2014.

http://semiengineering.com/software-driven-verification/, accessed 07.11.2016.

[Ben15] Beningo J.: 10 Tips for designing a Hardware Abstraction Layer (HAL). EDN., 2015.

http://www.edn.com/electronics-blogs/embedded-basics/4439613/10-Tips-for-designing-a-

HAL, accessed 10.12.2016.

[Bha13] Bhatt R.: The Use of Hardware Abstraction Layers in Automated Calibration Software.,

NCSL International Workshop and Symposium, Nashville, Tennessee, NCSLI, 2013.

[Chi94] Chidamber S.R. und Kemerer C.F.: A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20 (6). S. 476-493, 1994.

[Dom09] Domer R.; Gerstlauer A. und Müller W.: Introduction to Hardware-dependent Software

design., Design Automation Conference, 2009. ASP-DAC 2009. Asia and South Pacific,

Yokohama, Japan, IEEE, pp 290-292, 2009.

[Ebe09] Ebert C. und Salecker J.: Guest Editors' Introduction: Embedded Software Technologies and

Trends. IEEE Software, 26, 3, pp 14-18, May-June 2009.

[Eck09] Ecker W.; Müller W. und Dömer R.: Hardware-dependent Software. 1st. Aufl. Springer

Netherlands, 2009.

[Fen14] Fenton N. und Bieman J.: Software metrics: a rigorous and practical approach. Third

Edition. CRC Press, 2014.

[Fos15] Foster H.D.: Trends in functional verification: A 2014 industry study., 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, pp 1-

6, 2015.

[Goe14] Goering R.: Q&A: Moving Towards Use Case and Software-Driven Verification. Cadence.,

2014. https://community.cadence.com/cadence_blogs_8/b/ii/archive/2014/11/18/q-amp-a-

moving-towards-use-case-and-software-driven-verification, accessed 07.11.2016.

 Literature

 61

[Gwa06] Gwak T. und Jang Y.: An Empirical Study on SW Metrics for Embedded System. In

Software Process Change: International Software Process Workshop and International

Workshop on Software Process Simulation and Modeling, SPW/ProSim 2006, Shanghai,

China, May 20-21, 2006. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg. S.

302-313, 2006.

[Hal77] Halstead H.M.: Elements of Software Science. New York: Elsevier Science Inc., 1977.

[Han05] Handziski V.; Polastre J.; Hauer J. et al.: Flexible hardware abstraction for wireless sensor

networks., Wireless Sensor Networks, 2005. Proceeedings of the Second European

Workshop on, Istanbul, Turkey, IEEE, pp 145-157, 2005.

[Hel10] Helms J. und Tacha N.: Strategy in practice: Taking a hardware abstraction layer from

design to deployment., 2010 IEEE AUTOTESTCON, Orlando, FL, USA, IEEE, pp 1-6,

2010.

[Hun03] Hunsinger F.; Francois S. und Jerraya A.A.: Definition of a systematic method for the

generation of software test programs allowing the functional verification of System On Chip

(SoC)., In Proceedings of the 4th International Workshop on Microprocessor Test and

Verification: Common Challenges and Solutions, Austin, TX, USA, 2003.

[Jer05] Jerraya A.A. und Wolf W.: Hardware/software interface codesign for embedded systems.

Computer, 38, 2, pp 63-69, February 2005.

[Kar13] Karmann J. und Ecker W.: The semantic of the power intent format UPF: Consistent power

modeling from system level to implementation., 2013 23rd International Workshop on

Power and Timing Modeling, Optimization and Simulation (PATMOS), Karlsruhe,

Germany, IEEE, pp 45-50, 2013.

[Kau14] Kaur A.; Kaur K. und Kaushal P.: Software maintainability prediction by data mining of

software code metrics., 2014 International Conference on Data Mining and Intelligent

Computing (ICDMIC), New Delhi, India, IEEE, pp 1-6, 2014.

[Ken06] Kenney J.: Using a processor driven test bench for functional verification of embedded

SoCs. Mentor Graphics., 2006. http://www.embedded.com/design/configurable-

systems/4006718/Using-a-processor-driven-test-bench-for-functional-verification-of-

embedded-SoCs, accessed 08.11.2016.

[Kom06] Komarnitzky A.; Ben-Ezer N. und Lyubinsky E.: Unique Approach to Verification of

Complex SoC Designs. Avnet ASIC Israel Ltd., 2006.

http://www.designreuse.com/articles/12496/uniqueapproach-to-verification-of-complex-soc-

designs.html, accessed 7.11.2016.

[Kwa08] Cho K.; Kim J.; Jung E. et al.: Reusable platform design methodology for SoC integration

and verification., SoC Design Conference, 2008. ISOCC '08. International, Busan, South

Korea, IEEE, 2008.

[Lin10] Lins T. und Barros E.: The development of a hardware abstraction layer generator for

system-on-chip functional verification., Programmable Logic Conference (SPL), 2010 VI

Southern, Ipojuca, Brazil, IEEE, pp 41-46, 2010.

Literature

 62

[Lus16] Luszczak P.: Processor Driven Verification—Use it for More Than Just Sign-off. Mentor

Graphics.. https://www.mentor.com/products/fv/verificationhorizons/processor-driven-

verification, accessed 07.11.2016.

[Mac16] Macko D.; Jelemenská K. und Čičák P.: Early-stage verification of power-management

specification in low-power systems design., 2016 IEEE 19th International Symposium on

Design and Diagnostics of Electronic Circuits & Systems (DDECS), Kosice, Slovakia,

IEEE, pp 1-6, 2016.

[Mar02] Martin R.C.: Agile Software Development, Principles, Patterns, and Practices 1st Edition.

Person, 2002.

[Mba12] Mbarek O.; Pegatoquet A. und Auguin M.: Using unified power format standard concepts

for power-aware design and verification of systems-onchip at transaction level. IET Circuits,

Devices & Systems, 6, 5, pp 287-296, September 2012.

[McC83] McCabe T.: Structured Testing. IEEE Computer Society Press, 1983.

[Oli08] Oliveira M.F.S.; Redin R.M.; Carro L. et al.: Software Quality Metrics and their Impact on

Embedded Software., 5th International Workshop on Model-based Methodologies for

Pervasive and Embedded Software, Budapest, Hungary, IEEE, pp 68-77, 2008.

[Pan10] Panda P.R.; Shrivastava A.; Silpa B.V.N. et al.: Basic Low Power Digital Design. In Power-

efficient System Design. Springer US. S. 11-39, 2010.

[Pin08] Pinto R.R.M.: Power Management Verification – An Evolving Discipline., Microprocessor

Test and Verification, 2008. MTV '08. Ninth International Workshop on, Austin, TX, USA,

IEEE, 2008.

[Pos03] Pospiech F. und Olsen S.: Embedded software in the SoC world. How HdS helps to face the

HW and SW design challenge [hardware dependent software]., Proceedings of the IEEE

2003 Custom Integrated Circuits Conference, San Jose, CA, USA, IEEE, pp 653-658, 2003.

[Pow10] Power L. und Robinson S.: The ARM Cortex-M3 and the convergence of the MCU market.

Embedded Labs Ltd., 2010. http://www.embedded.com/design/mcus-processors-and-

socs/4027587/PRODUCT-HOW-TO-The-ARM-Cortex-M3-and-the-convergence-of-the-

MCU-market, accessed 10.12.2016.

[Spe09] Spencer M. und Tringham A.: Media Alert: ARM Cortex-M3 Processor Momentum Grows.

ARM., 2009. https://www.arm.com/about/newsroom/24715.php, accessed 10.12.2016.

[Sun03] Sungjoo Y. und Jerraya A.A.: Introduction to hardware abstraction layers for SoC., 2003

Design, Automation and Test in Europe Conference and Exhibition, Munich, Germany,

IEEE, pp 336-337, 2003.

[Vie14] Vieira A.; Faustini P. und Cota É.: Using Software Metrics to Estimate the Impact of

Maintenance in the Performance of Embedded Software., 2014 IEEE International

Conference on Software Maintenance and Evolution (ICSME), Victoria, BC, Canada, IEEE,

pp 521-525, 2014.

 Literature

 63

[Win12] Winterholer M.: Co-debug and Co-verification environment for power management system.,

System, Software, SoC and Silicon Debug Conference (S4D), 2012, Vienna, IEEE, pp 1-6,

2012.

[Yiu15] Yiu J.: The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. Newnes,

2015.

[York15] York R.: Embedded segment market update. ARM., 2015.

https://www.arm.com/zh/files/event/1_2015_ARM_Embedded_Seminar_Richard_York.pdf,

accessed 10.12.2016.

[You11] You D.; Hwang Y.-S.; Ahn Y. et al.: A Test Method for Power Management of SoC-based

Microprocessors., 2011 12th International Workshop on Microprocessor Test and

Verification, Austin, TX, USA, IEEE, pp 28-31, 2011.

[Zou10] Zoubi Q.; Alsmadi I. und Abul-Huda B.: Study the impact of improving source code on

software metrics., 2012 International Conference on Computer, Information and

Telecommunication Systems (CITS), Amman, Jordan, IEEE, pp 1-5, 2010.

Internet References

[1] https://standards.ieee.org/findstds/standard/1012-2012.html

[2] https://standards.ieee.org/findstds/standard/15288-2008.html

[3] https://www.arm.com/

[4] https://www.arm.com/products/processors/cortex-m/cortex-m0.php

[5] http://www.ivifoundation.org/

[6] https://standards.ieee.org/develop/project/2415.html

[7] http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-

microcontroller/embedded-software-solutions/infineon-autosar-software/channel.html

[8] https://msdn.microsoft.com/en-us/library/ee504813(v=winembedded.70).aspx

[9] https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-

interface-standard.php

[10] https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx

[11] http://www.keil.com/pack/doc/CMSIS

[12] https://standards.ieee.org/findstds/standard/1801-2013.html

[13] http://opencores.org/opencores,wishbone

[14] https://www.iso.org/standard/22749.html

[15] http://www.infineon.com/cms/de/product/rf-and-wireless-control/wireless-

control/transceiver/smartlewis-trx-tda-

5340/channel.html?channel=db3a3043321e4994013224f2ffd85a92

[16] https://blog.sonarsource.com/

[17] http://cccc.sourceforge.net/

[18] http://www.campwoodsw.com/sourcemonitor.html

[19] https://sourceforge.net/projects/halsteadmetricstool/

[20] https://www.gnu.org/software/binutils/

[21] https://www.mentor.com/products/fv/modelsim/

https://standards.ieee.org/findstds/standard/1012-2012.html
https://standards.ieee.org/findstds/standard/15288-2008.html
https://www.arm.com/
https://www.arm.com/products/processors/cortex-m/cortex-m0.php
http://www.ivifoundation.org/
https://standards.ieee.org/develop/project/2415.html
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/embedded-software-solutions/infineon-autosar-software/channel.html?channel=db3a30431b3e89eb011b4aac01f07b7d
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/embedded-software-solutions/infineon-autosar-software/channel.html?channel=db3a30431b3e89eb011b4aac01f07b7d
https://msdn.microsoft.com/en-us/library/ee504813(v=winembedded.70).aspx
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
http://www.keil.com/pack/doc/CMSIS
https://standards.ieee.org/findstds/standard/1801-2013.html
http://opencores.org/opencores,wishbone
https://www.iso.org/standard/22749.html
http://www.infineon.com/cms/de/product/rf-and-wireless-control/wireless-control/transceiver/smartlewis-trx-tda-5340/channel.html?channel=db3a3043321e4994013224f2ffd85a92
http://www.infineon.com/cms/de/product/rf-and-wireless-control/wireless-control/transceiver/smartlewis-trx-tda-5340/channel.html?channel=db3a3043321e4994013224f2ffd85a92
http://www.infineon.com/cms/de/product/rf-and-wireless-control/wireless-control/transceiver/smartlewis-trx-tda-5340/channel.html?channel=db3a3043321e4994013224f2ffd85a92
https://blog.sonarsource.com/
http://cccc.sourceforge.net/
http://www.campwoodsw.com/sourcemonitor.html
https://sourceforge.net/projects/halsteadmetricstool/
https://www.gnu.org/software/binutils/
https://www.mentor.com/products/fv/modelsim/

Image References

Figure 1.1 Consists of contents from Infineon Technologies AG

Figure 2.3 Reproduced with permission from ARM Limited. Copyright (c) ARM Limited

Figure 2.4 Reproduced with permission from ARM Limited. Copyright (c) ARM Limited

Figure 3.1 Consists of contents from Infineon Technologies AG

Declaration

Hereby, I declare, this present work has been drawn up without inadmissible aid of third parties and without

usage of other than mentioned resources. Further sources or indirectly appropriated data and concepts are

identified by stating the source.

This work has not been presented to other examination procedures, neither nationally, nor in foreign

countries, in the same or in a similar form.

Vienna, 26 May 2017

Christian Tauber, BSc

