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Kurzfassung

Die Regelung eines elektrischen Hybridantriebs in elektrischen Hybridfahrzeugen (HEV) wird
durch das Energiemanagementsystem (EMS) umgesetzt und zielt darauf ab, den Kraftstof-
fverbrauch und die Abgasemissionen zu minimieren. Legislative Regulierungen verlangen die
Einhaltung von Abgasemissionen, wodurch das EMS gezwungen wird, bestimmte Strategien zu
verfolgen und die Beschränkungen des Antriebsstrangs zu berücksichtigen. In diesem Zusam-
menhang sind non-road Fahrzeuge, wie beispielsweise Radlader oder Bagger, besonders schwierig
zu steuern, da ihr Lastbedarf sehr dynamisch und vorab nicht bekannt ist.

Auf der Grundlage der verfügbaren Freiheitsgrade des Systems, präsentiert diese Arbeit ein
EMS, das die Abgasemissionen sowie den Kraftstoffverbrauch deutlich reduzieren kann. Das
EMS ist mit einem kaskadierten Regelungskonzept umgesetzt, welches die langsame Dynamik
der Batterie sowie die schnelle Dynamik der Drehzahl und Drehmomente adressiert. Eine opti-
male Regelung wird durch die nichtlineare Optimierung des Gesamtsystems erreicht, welches die
Nichtlinearitäten des elektrischen Systems, eine Prädiktion der zukünftigen kurzfristigen Last
und wiederkehrend auftretende zyklische Lasten der Anwendungen berücksichtigt. Zu diesem
Zweck sind Korrelationsanalyse und Bayessche Inferenz adaptiert.

Das EMS benötigt darüber hinaus den akkuraten Ladezustand (SoC) der Batterie, der on-line
nicht messbar ist und präzise geschätzt werden muss, um die physikalische Leistungsfähigkeit des
Antriebsstrangs voll ausschöpfen zu können. Aus diesem Grund wird in dieser Arbeit ein hoch
dynamisches Batteriemodell präsentiert, dass auf dem datenbasierten Ansatz des lokalen Mod-
ellnetzwerks aufbaut. Die Modellgenauigkeit ist aufgrund des datenbasierten Ansatz maßgebend
abhängig von den Trainingsdaten, weshalb optimale modellbasierte Versuchsplanung angewandt
wird, um die Genauigkeit der Batteriemodelle zu erhöhen. Basierend auf den erhaltenen Batterie-
Zellmodellen, werden dann ein Batterie-Modulmodell und ein SoC-Schätzer für den Einsatz in
non-road Fahrzeugen entworfen.

Um die Umsetzbarkeit des Konzepts in Echtzeit zu zeigen, wird das allgemein anwendbare
EMS auf einem realen Prüfstand implementiert. Ein Radlader ist als repräsentatives Beispiel für
mobile Arbeitsmaschinen gewählt. Reale Lastzyklen werden verwendet, um die Möglichkeit der
Prädiktion des zukünftig benötigten Lastbedarf ausschließlich anhand des aktuellen Fahrzeugzu-
stands sowie vergangenen Lastsignals zu demonstrieren. Am Prüfstand, zeigten die Ergebnisse,
dass der Kraftstoffverbrauch sowie die Abgasemissionen signifikant reduziert werden konnten,
obwohl die Strategien Phlegmatisierung (Beschränkung des Motordrehmomentgradienten) und
Downspeeding (reduzierte Drehzahl) die Motordynamik limitierten und ausgeglichen werden
mussten. Separat erhaltene Messungen von Batteriezellen und einem Batteriemodul konnten
die hohe Genauigkeit der vorgestellten Batteriemodelle und des SoC-Schätzansatzes zeigen.
Gleichzeitig wird aufgrund der Messungen von Lithiumeisenphosphat und Lithiumpolymer Bat-
teriezellen, die Zellchemie-Unabhängigkeit des Ansatzes demonstriert.
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Abstract

The control of hybrid electric powertrains in hybrid electric vehicles (HEV) is established by
the energy management system (EMS) and aims to minimize fuel consumption and exhaust
emissions. Legislative regulations require compliance with the limitations of exhaust emissions,
which forces the EMS to follow given strategies and to keep constraints of the powertrain. In
this context, non-road vehicles, such as wheel loaders or excavators, are especially difficult to
control since their load demand is highly dynamic and unknown in advance.

Based on the available degrees of freedom of the system, this work presents an EMS that is
able to significantly reduce the exhaust emissions and fuel consumption. The EMS is established
by an cascaded control concept that addresses the slow dynamics of the battery as well as the
fast dynamics of the rotational speed and torques, respectively. An optimal control is achieved
by the nonlinear optimization of the overall system, which considers the nonlinearities of the
electrical system, a prediction of the future short term load and recurrent cyclic loads of the
applications. To this end, correlation analysis and Bayesian inference are adapted.

The EMS furthermore requires the accurate state of charge (SoC) of the battery, which is
not measurable on-line and needs to be precisely estimated in order to fully exploit the physical
capabilities of the powertrain. For this reason, a high dynamic battery model is presented in
this work that is built on the data based local model network approach. The model accuracy
is due to the data based approach decisively dependent on the training data for which reason
optimal model based design of experiments is applied to increase the battery model accuracy.
Based on the obtained battery cell models, a battery module model and a SoC estimator are
designed to be used in non-road vehicles.

In order to demonstrate the feasibility of the concept in real time, the generically applicable
EMS is implemented on a real testbed. A wheel loader is chosen as representative example
for non-road machinery. Real load cycles are used to demonstrate the possibility of predicting
the future load demand exclusively by the actual vehicle states as well as past load signal. At
the testbed, the results showed that fuel consumption and exhaust emissions could be reduced
significantly, although phlegmatisation (constrained engine torque gradient) and downspeeding
(reduced rotational speed) strategies limited the engine dynamics and had to be compensated.
Separately obtained measurements of battery cells and an battery module could show the high
accuracy of the presented battery models and SoC estimation approach. Simultaneously, due
to the measurements of lithium-iron-phosphate and lithium-polymer battery cells, respectively,
the cell chemistry independence of the approach is demonstrated.
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Chapter 1

Introduction

1.1 Motivation

Non-road mobile machinery (NRMM), such as wheel loaders or excavators, are highly dynamic,
mostly cyclically used, applications (see Figure 1.1) that are operated by especially trained
drivers to bring out the maximum performance of the vehicles, c.f. [36]. Usually, compared to
on-road vehicles, higher power densities and load dynamics occur, which increase the exhaust
emissions of non-road vehicles significantly [92]. In the past years, the legislative regulations for
exhaust emissions of such vehicles also became more stringent (e.g. US EPA Tier 4 respectively
EU Stage IV, [146]) and will be more severe in the future (up to particle counting in e.g. EU
Stage V, [147]). Exhaust after treatment systems (EATS) are in general used to keep the exhaust
emission regulations, but they are cost intensive and may not be enough for future regulations
[163]. Lowering the rotational speed of the powertrain (downspeeding) and limiting the dynamics
of the engine torque (phlegmatisation) can decrease the fuel consumption and production of
emissions in the engine, but these are contrary objectives compared to the required powertrain
dynamics [152]. Considering the future load demand as well as cycle information in the control
of the powertrain might also have positive effects on exhaust emission reduction, whereby the
load demand of non-road machinery is mostly unknown and directly dependent on the driver.
Nevertheless, a reduction of the generated exhaust emissions not exclusively achieved by EATS
is desirable.

(a) Wheel loader at operation in stone quarry (b) Excavator at operation in earth moving

Figure 1.1: Typical examples for non-road mobile machinery.
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CHAPTER 1. INTRODUCTION 2

1.2 Characteristic applications of non-road mobile machines

Applications, where non-road mobile machines are established, are manifold. They are used in
earth moving, material loading, refilling of bulk storages, ditching, building demolition, flattening
and many other applications, which demand different requirements on their powertrain. The
requirements are basically defined by the dynamics of the powertrain loads and need to be
provided by the powertrain without engine stalling at high dynamic load peaks. In terms of
energy, the drivetrain of non-road vehicles is mostly the main energy consumer, which sometimes
enables recuperation of regenerative power. The wheel loader is such application that has high
drivetrain energy consumption as well as high dynamic load requirements due to the rough
environmental influences acting on the machinery during operation (e.g. unsuitable grounds,
slopes or task impacts,...). It is therefore chosen as example for which the concepts and proposed
methodologies are presented in this work.

Wheel loaders are widely used in the earth moving industry, equipped with buckets to load
trucks with bulk material or to transport it to a designated area. The driver controls the vehicle
with a joystick and an accelerator, which moves the shovel and requests the driving speed,
respectively. Load trajectory and driving patterns are exclusively dependent on the driver and
unknown in advance. Typical loading cycles – such as V or Y-cycles – are repeated periodically
for a few times and thereafter the operation is changed to another cycle. In Figure 1.2, a Y-cycle
is depicted exemplarily, which comprises of several steps repeated periodically.
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Filling lowered bucket

Reverse driving while lifting bucket

Stop for reversion

Forward driving towards load receiver

Emptying lifted bucket

Reverse driving while lowering bucket

Stop for reversion

Forward driving towards pile

Figure 1.2: Typical duty cycle of a wheel loader.

Filla [35] analyzed different loading cycles to optimize the path trajectory, in order to achieve
reductions in fuel consumption and an increase in productivity. However, the periodically oper-
ation is observable in the past load signal, which in fact can be considered for the control of the
powertrain.

1.3 Configurations of hybrid electric powertrains

Actual developments for conventional powertrains, which usually only consist of an internal
combustion engine (ICE), may not be sufficient to reach the low emission and fuel consumption
standards requested by the legislative law and customers, respectively. Therefore, a great deal
of interest is given to hybridization of non-road vehicles, where the conventional fuel based
powertrain is advanced with a secondary energy source to achieve lower fuel consumption and
exhaust emissions, respectively. Commonly, an electric energy source such as an electrochemical
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battery or double layer capacitor (DLC) is used, though hydraulic concepts are available as well.
Meanwhile, distinguished power capabilities are provided by power type batteries, which makes
batteries compared to DLCs more attractive to be used within non-road hybrid electric vehicles
(HEV) [149]. Hybrid powertrains can be assembled in series or parallel configuration as well as
a combination of both, which is depicted schematically in Figure 1.3.

ICE

ICE

ICE

EM

EM

EG

ISG

ISG

INV INV

INV INV

INV

Energy storage

Energy storage

Energy storage

Pload

Pload

Pload

Pload

(a)

(b)

(c)

Figure 1.3: Common hybrid configurations used in non-road hybrid electric vehicles. (a) Series,
(b) Parallel, (c) Combination of series and parallel.

In Figure 1.3, (a) depicts the series configuration, where no direct form-locking connection
between the ICE and the load Pload is realized. A secondary energy storage module supplies and
receives the power for the electric machines through an inverter unit (INV). Series configuration
means to the electric motor (EM) that the full power for the consumer needs to be provided,
while the electric generator (EG) may have less power capabilities. In case of high energy
conversions, the energy flow must be converted at least two times to reach the consumer, which
is disadvantageous. The parallel configuration (b), where ICE and EM are coupled form-locked
on one axis, the rotational speed for the ICE and the integrated starter generator (ISG) are the
same, while the torques add up. With this configuration, as long as no clutch is used between ICE
and ISG, an electric only strategy can not be realized without engine hauling. A combination
of series and parallel configuration (c) has the advantage to use electric power for the auxiliary
components. Much research interest is spend to analyze the different configurations (see e.g.
[165], [7], [76]), while following Kwon et at. [86], the parallel configuration is most favorable for
non-road vehicles, though. In Figure 1.4, a parallel hybrid electric powertrain is depicted with
the schematic overview of the energy management system (EMS). The depicted powertrain can
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be used in different non-road vehicles and applications, while the EMS needs to be especially
parametrized for the corresponding vehicles.

Tice

Tice,set

Tisg,set

Tice + Tisg

System Boundary

ω

Pload

I
V

SoCdmd

Battery

ICE
ISG

INV
EMS

Figure 1.4: Parallel hybrid powertrain to be controlled.

The duty of the EMS is to keep the state of charge (SoC) of the battery at the demand
value SoCdmd. This can be achieved by controlling the ICE set-point torque Tice,set and ISG
set-point torque Tisg,set under consideration of all constraints of the components in such a way
that the rotational speed ω is kept at an optimal value while the unknown load Pload acts on the
powertrain. Underlaid component series controllers apply the set-points to the ICE torque Tice
and ISG torque Tisg. Battery current I and voltage V attune to Tisg, but must be kept below
their limits to avoid physical damage. Due to the nonlinearities of the powertrain, achieving an
optimal control performance amounts to a nonlinear optimization problem to be solved in the
EMS in real time.

1.4 Challenges in control of hybrid electric vehicles

Hybridization can enhance the degrees of freedom of the powertrain to provide the high dynamic
load demand of non-road vehicles, but the engine needs to be limited in dynamics according
to the downspeeding and phlegmatisation strategies in order to reduce fuel consumption and
exhaust emissions. The reduced dynamic tightens to keep all physical constraints of the system,
though. Only the information of the entire future load cycle, which is in general unknown
for non-road machinery, provides the possibility to reduce the dynamic as far as possible and
to exploit the full energy storage capabilities of the battery [101]. An electrochemical battery
offers sufficient energy storage capabilities to recuperate regenerative power and consider motor
braking phases resulting from an entire load cycle, but the disadvantage of batteries is that the
SoC of the battery is not measurable on-line and requires an SoC estimator during operation
[118]. In this context, the SoC estimation is only accurate if a precise nonlinear dynamic battery
model is used that is capable of the high dynamic loads occurring at non-road vehicles [51]. Such
model needs to consider the nonlinear dependency on SoC, temperature and current, as well as
many other nonlinear effects such as relaxation and hysteresis [50].

Furthermore, due to the hybridization, system nonlinearities are implicated by the electrical
system and the system complexity as well as costs are increased [150]. Minimal costs can only
be achieved if the powertrain design is matched with the application [41] and the decrease
in fuel consumption and exhaust emissions is significant to reduce the operational costs of
the powertrain as well as the acquisition costs for the EATS, respectively. The latter is only
achievable if an appropriate framework is available that considers all information in the EMS.
Such a framework is provided by a model predictive controller (MPC), which is an advanced
method of process control that uses a model of the process to predict the future evolution of the
process to optimize the control signal [100]. Due to the nonlinearities of the powertrain, within
the MPC a nonlinear optimization problem results, for which an real time implementation in
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the hybrid control unit (HCU) is necessary. However, the fast sampling rates intensify the real
time requirements and the prediction of the entire future cycle load trajectory is difficult [101].

1.5 Proposed concepts

In this work, methodologies are presented for an efficient control of the described parallel hybrid
electric powertrain that is based on the prediction of the future load trajectory as well as for the
precise battery SoC estimation during high dynamic operation of a non-road vehicle, respectively.
An electrochemical battery is chosen in this work in order to show the applicability of batteries
as the secondary energy storage in non-road vehicles.

In the following, first, the functions of a battery management system (BMS) to precisely
estimate the SoC are discussed. Thus, a methodology for identification of high accurate battery
cell models based on the architecture of local model networks (LMN) is proposed. The global
nonlinear model output is obtained by weighted aggregation of the outputs of dynamic local lin-
ear models, while the LMN structure is built by an automatic iterative algorithm. Nonlinearities
of the battery cell are considered by corresponding inputs that provide sufficient information
for the model. Since the LMN approach is only data based, optimal model based design of
experiments is proposed to create optimal test sequences, which minimize the variance of the
identified parameters of the battery cell model. Based on an optimality criterion, which is deter-
mined using the Fisher information matrix, a gradient based algorithm is used for optimization,
while constraints of the battery cell are considered to avoid physical damage of the battery
cells. Note that due to the data-based approach, the methodology is applicable to different
battery cell chemistries and also for DLCs. The obtained LMN battery cell model is then used
to built the battery module model for which a SoC estimator based on Kalman filter theory is
built. Real measurements are made to verify the battery cell as well as module models and to
show their cell chemistry independence. In order to fulfill the dynamic requirements of non-road
machinery, a new high dynamic battery cell tester device was developed for the measurements
of lithium-iron-phosphate and lithium-polymer battery cells. The real lithium-iron-phosphate
battery module has been tested at a battery simulator/tester unit. A special measurement pro-
cedure, which is also proposed in this work, was followed exactly to achieve reproducible and
comparable measurements.

Second, an real-time capable EMS based on model predictive control is proposed, which
primary objective is to minimize the overall energy conversion, fuel consumption as well as
exhaust emissions, while constraints are kept to avoid physical damage to the system (safety-
related requirements) as well as to enforce that the degrees of freedom are optimally considered
(efficiency-related requirements). The EMS consists of a cascaded controller architecture that
refers to a linear slave and a nonlinear master MPC, respectively. In the prediction of the future
evolution of the process in both MPCs, the unknown future load trajectory is considered by a
prediction to increase the control performance as well as to achieve an optimal control during
an entire load cycle. Thus, two methodologies for prediction of short term load peaks and the
detection of recurrent load cycles are proposed. Bayesian inference is used to statistically predict
the short term load based on the available vehicle information such as accelerator position or
driving speed, while recurrent load cycles are identified by a cycle detection (CD) that analyzes
cyclic correlations within the past load trajectory based on the cross correlation function. Since
the electrical system including the ISG and the battery is nonlinear, the optimization problem
within the master MPC leads to a nonlinear optimization problem. A relaxation approach is
used to solve the problem in real-time, while simplifications are applied. Note that due to the
small number of non-road applications, the EMS must be generically applicable to any non-
road machinery to minimize the development and implementation costs. In order to guarantee
stability of the concept, stability as well as convergence are discussed.
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Third, for the example of a wheel loader, as representation of non-road machinery, the EMS
is implemented on a real testbed to demonstrate the feasibility of the whole concept including
the accurate battery models. The obtained battery module model is implemented at the testbed
battery simulator to emulate the battery during the measurements, which are made for different
controller adjustments. Three main results are discussed in detail by means of simulation and
real testbed measurements:

1. The feasibility of the proposed control concept with respect to the dynamic requirements
of the machinery, when downspeeding and phlegmatisation are applied.

2. The optimality of the control approach compared to the conventional powertrain by means
of fuel consumption and emissions.

3. The benefit given by the cycle detection to exploit the full energy storage capabilities.

1.6 Main contributions

The following papers of the author form the main contributions of this work:

Paper A

M. Quasthoff, J. Unger, S. Jakubek: Entwicklungsmethodik eines generischen Batterie-
Simulationsmodells und dessen Einsatzmöglichkeiten. 5. Fachtagung Baumaschinentechnik
2012 in Dresden, Baumaschinentechnik 2012 - Energie, Mechatronik, Simulation, Dresden,
Schriftreihe der Forschungsvereinigung Bau- und Baustoffmaschinen e.V. (FVB), Heft Nr. 44,
pages 263–284, 2012.

In Paper A, the focus lies on the identification of accurate battery models for the application
in non-road machinery. The methodology of the local model network applied to battery modeling
is given in detail and results without consideration of the temperature in the model are presented.

Paper B

J. Unger, C. Hametner, S. Jakubek, M. Quasthoff: Optimal Model Based Design of
Experiments Applied to High Current Rate Battery Cells. IEEE International Conference on
Electrical Systems for Aircraft, Railways, Ship Propulsion and Road Vehicles (ESARS 2012
Edition), Bologna, ISBN: 978-1-4673-1371-1, pages 1–6, 2012.

In Paper B, the optimal design of experiments for battery cells without consideration of the
temperature is presented in detail. The results show significant increase of model quality due to
optimal excitation signals used for the identification of the model parameters.

Paper C

J. Unger, C. Hametner, S. Jakubek, M. Quasthoff: A novel methodology for non-linear
system identification of battery cells used in non-road hybrid electric vehicles. Journal of Power
Sources, Volume 269, pages 883–897, Elsevier 2014.

In Paper C, the methodology of optimal model based design of experiments and the local
model network approach for battery modeling is presented including high current and temper-
ature dependency. Results are shown for lithium-iron-phosphate as well as lithium-polymer
battery cells.
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Paper D

J. Unger, M. Quasthoff, S. Jakubek: Innovative Energy Management System Using a
Model Predictive Controller with Disturbance Prediction for Off-Road Applications. 16. Antrieb-
stechnisches Kolloquium (ATK 2015), 1. Auflage 2015, pages 427–443, 2015.

In Paper D, the concept of the EMS is presented in the context of non-road machinery and
the improvement due to load and cycle prediction is discussed. The focus lies on the non-road
machinery and the generically applicability of the methodology.

Paper E

J. Unger, M. Kozek, S. Jakubek: Nonlinear model predictive energy management controller
with load and cycle prediction for non-road HEV. Control Engineering Practice, Volume 36,
pages 120–132, Elsevier, March 2015.

In Paper E, the energy management system for a parallel hybrid electric powertrain is pro-
posed including the load and cycle prediction. The results measured at the testbed measurements
show that a significant reduction in ICE dynamics is feasible and fuel consumption as well as
exhaust emissions can be reduced simultaneously by the proposed EMS. The results of Paper C
are directly considered within the EMS as well as for the emulation of the battery behavior.



Chapter 2

Battery Management

The battery management in non-road HEV is exposed to higher requirements compared to
on-road HEV since higher power densities and load dynamics are usually demanded. For the
control of HEV (see Chapter 4), a battery model comprising of the nonlinear effects is required
to be used in the controller itself as well as essentially within the battery management system.
The state of charge of the battery is not measurable on-line though and needs to be estimated
on-line during operation [51]. In this chapter, a generic methodology is proposed comprising
of nonlinear system identification and optimal model based design of experiments (DoE) of
battery cells, which can be used for battery module modeling and accurate SoC estimation
during operation.

2.1 Introduction

2.1.1 Motivation

In many BMS, the open circuit voltage (OCV) of the battery is used to estimate the SoC, which
is feasible as long as the battery is not in use. During operation, the nonlinear behavior of
the battery voltage comes into effect and big estimation errors occur if only the OCV is used
to estimate the SoC [64]. The integration of the battery current is another approach for SoC
estimation, which disadvantage is the drift due to the accumulation of current offsets when
time increases. Dynamic SoC estimators (e.g. extended Kalman filter) are a powerful way to
estimate the SoC, but require a precise dynamic battery model for accurate estimation [118].
Precise battery models describe the nonlinear dynamic behavior of the battery cell terminal
voltage accurately by considering nonlinear battery effects such as hysteresis, relaxation and
temperature effects. In general, due to the high power densities in non-road HEV, the nonlinear
effects of electrochemical batteries are increased [40], which complicates the modeling of the
nonlinear battery effects [149]. Note that the used battery model needs to be real time capable
in order to be implemented in the BMS, which is in general a trade off between accuracy and
complexity.

2.1.2 Cell chemistry dependent system behavior of batteries

The most known cell chemistry is the lead acid cell chemistry, which is used in almost every
vehicle to start the engine. Beside of lead acid, there are many other cell chemistries such as e.g.
lithium-iron-phosphate (LiFePO4), lithium-polymer (LiPo) or Nickel-Metal Hydride (Ni-MH).
However, electrochemical batteries are strongly nonlinear systems, which depend nonlinearly
on the SoC, temperature and current, while additional effects such as relaxation and hysteresis
are observable. In this context, relaxation refers to the slightly converging battery voltage at

8
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standby or steady state current, while hysteresis refers to a phenomenon in relation to the cell
polarization, which causes different shapes of the voltage values during charge/discharge of the
battery. Inner chemical reactions may not be observed clearly in the voltage behavior since they
occur randomly, but are present and may have an influence to the voltage behavior. Lithium-
ion batteries have a higher energy density compared to lead acid batteries and are therefore
often used in mobile phones. Ni-MH chemistry has been used for traction batteries of HEV,
but more and more traction batteries use the lithium-ion cells. This is not only caused by the
higher energy density of lithium-ion cells but also by a smaller referred to as ”memory effect”,
which reduces the capacity if the battery is not fully discharged before being charged again.
A comparison of different battery cell chemistries in terms of energy and power capabilities is
given in Figure 2.1.
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Figure 2.1: Specific energy and specific power of rechargeable batteries.

In general, traction batteries are built by coupling battery cells in serial and parallel con-
nection in order to achieve a desired voltage level (series connection, since voltage add up) or
battery capacity (parallel connection, since capacity add up). For the powertrain of non-road ve-
hicles, the power capability of the traction battery is essential, due to which power type battery
cells are usually assembled in the battery module. Battery cells can be divided into power and
energy cells, while power cells usually have higher power capabilities than the energy density
maximized energy cells. The power capabilities of a battery cell can be expressed by the referred
to as C-rate, which is a battery capacity independent measure of the current intensity applied
to a battery and is obtained by the quotient of current [A] and battery cell capacity [Ah]. In
non-road vehicles, battery cells must be able to cope with possible C-rates above 20C, while
electric vehicles mostly require larger energy contents. Due to this reason in general power cells
are used in non-road HEV.

Furthermore, depending on the cell chemistry, voltage levels and battery behaviors are dif-
ferent, while even the shape of the discharge curve within the same cell chemistry may vary
(e.g. lithium-iron-phosphate and lithium-polymer). Also relevant is the voltage level, which
is significantly responsible for the overall energy flow and system requirements of the traction
battery system. The type of the cell and the geometric structure (e.g. cylindrical, prismatic, ...)
mostly define the temperature behavior of the cell. This can be seen at higher C-rates, where
the temperature increases significantly and limits the ability of the battery cells to be used in the



CHAPTER 2. BATTERY MANAGEMENT 10

high dynamic environment of non-road vehicles. In this context, the energetic efficiency plays
a major role for the temperature behavior of the cells and is especially essential in non-road
applications. Note here that the energetic efficiency is nonlinearly depending on the history of
the battery cell’s usage, which is important for the more than 10 years intended product life of
a non-road vehicle. For the lithium-ion chemistry, additionally higher safety requirements are
relevant, because overcharging with higher voltage may lead to explosion or fire and must be
avoided in any case.

2.1.3 Challenges in dynamic battery model identification

In order to use a battery model approach within non-road vehicles, it must be generically
applicable to any battery cell chemistry. A general model structure is therefore required that
considers nonlinear effects. The nonlinear relations between the voltage and temperature as
well as the SoC are unknown in advance and only physical measurable variables are available
for parameter identification. In order to identify specific nonlinear effects, long testruns must
be performed because the reaction times of batteries are slow. Time consuming and expensive
measurements are unacceptable for non-road applications, since the sales volume of non-road
machines is low. Data based approaches are methodologies which dependent only on the provided
data. The advantage of data based models is that the model is flexible to any cell chemistry,
while any model structure can be applied to consider the nonlinearities of the battery cells. On
the other hand, the disadvantage is that an appropriate model structure needs to be found and
suitable data must be available for parameter identification. Nevertheless, an initial structure
can be obtained from expert knowledge and included in the approach. The high dynamic
requirement of non-road vehicles challenges especially the test equipment, because high current
steps occur during operation. So far, high dynamics are not state-of-the-art in the testing
hardware of battery cells. A major role corresponds therefore to the design of experiments, in
order to achieve appropriate and reproducible measurements. The reproducibility of battery
measurements is depending on the excitation history of the battery and appropriate procedures
to clear the cell’s short time history must be applied. Though, finding the appropriate procedure
is challenging for battery cells, while the case is even more difficult for battery modules due to
the cell balancing. In order to gain the maximum information from one testrun, optimal design
of experiments can be applied. Optimized test signals are able to achieve sufficient information
content in the measurements, but since only the current is applied to the battery cell, in principle
a multi-dimensional optimization problem must be solved that consists of only one degree of
freedom and multiple effects to be tested.

2.1.4 State-of-the-Art

In the following, the literature known for battery cell modeling, design of experiments, battery
module modeling and SoC estimation is reviewed.

Battery cell modeling

Three model approaches have been mainly used in the literature to model the battery behavior:

1. Equivalent circuit models

2. Electrochemical battery models

3. Data-based battery models

In Figure 2.2, the equivalent circuit model (ECM) approach is depicted schematically. Ba-
sic electric elements are used to describe the behavior of the terminal voltage, due to which



CHAPTER 2. BATTERY MANAGEMENT 11

physically interpretable parameters and real time capability are achieved. Depending on the
number of RC-circuits, different time constants are considered in the model. Only one RC-
circuit accounting for nonlinear equilibrium potentials, rate- and temperature-dependencies,
thermal effects and response to transient power demand is used by Gao et al. [40]. A modified
equivalent circuit model is used by Pattipati et al. [113] to estimate SoC, state-of-health (SoH)
and remaining useful life in the BMS. Due to the high power density appearing in the automo-
tive industry, solution resistance, charge transfer resistance and Warburg impedance can not be
neglected and must be considered within the ECM [44].
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Figure 2.2: Equivalent circuit model with two RC-elements

Electrochemical battery models describe the electrochemical behavior of the battery by chem-
ical reaction equations, which results in a physical model that is computationally intensive. The
internal chemical states of the battery are simulated with high accuracy and insight into the
system is achieved [82], but in general the model is not real time capable. Concentrated solution
theory is used by Doyle et al. [31] to describe lithium-ion battery cells. Klein et al. [82] used
partial differential-algebraic equations for state estimation, while a single particle model (SPM)
is used by Santhanagopalan et al. [128] to estimate the SoC with an extended Kalman filter.
However, the SPM model approach neglects the spatial variation of the states within the battery
cell, which questions the validity for the operating region encountered for HEV [20].

Data-based system identification is a powerful approach for modeling and estimation pur-
poses. Model structure and order are easily adaptable, although in general, physical inter-
pretability is not given [82]. In a series of three papers, Plett [116], [117], [118], proposed a SoC
estimator based on a data-based nonlinear state space model and an extended Kalman filter.
The current direction is considered in the model and hysteresis as well as relaxation are also
included by a ”hysteresis state” and a low pass filter on the current, respectively. The model
is assumed to be cell chemistry independent. Neural networks for battery modeling have been
used by [19] and stochastic fuzzy neural networks by [160], [157], [73]. A stochastic fuzzy neural
network is also used by Wang et al. [158] for the purpose of modeling the nonlinear dynamics of
current, temperature and SoC, while Xu et al. [166] used it for the purpose of SoC estimation.

Hametner et al. [51] obtained a nonlinear battery model due to a local model network,
which composes of several local models that are linear in their model parameters and have a
certain area of validity defined by validity functions (see e.g. [49], [106], [47]). The nonlinear
interpolation of the local linear models (LLM) achieve a nonlinear model output, while the model
is constructed by an iterative algorithm. Starting with one global linear model, in each iteration,
a LLM is added to the network until a certain threshold is reached (partitioning). Depending
on the algorithm’s strategy, the validity of the new LLM lies in a specific form in the partition
space of the model. In order to identify the model parameters, any model approach requires
measurements for parametrization. Battery cells are tested by applying a current excitation
signal and recording the voltage response. Depending on the excitation signal, the testing
device needs to fulfill certain requirements in terms of dynamics.
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Design of experiments

Simple constant discharge and charge cycles are used by Kroeze et al. [85] to identify the
parameters of a ECM, while Gao et al. [40], Chen et al. [22] and Hentunen et al. [59] used a
discharge pulse excitation signal. Smith et al. [137] used also a discharge pulse excitation signal
for the model-based estimation of an electrochemical battery cell model. Charge and discharge
mode within a pulse profile have been considered by [66], [63] and [117], in order to identify the
parameters for more advanced ECMs (e.g. linear parameter varying models). An asymmetrical
current step profile, significantly more dynamic than the other excitation signals, has been used
by Hu et al. [65] for the purpose to cover a wide range of SoC as well as a wide range of the
current. The dynamic Federal Urban Driving Schedule (FUDS) is mostly used as a validation
signal (see e.g. [136], [166], [85], [141]), but in non-road applications the FUDS is rated as an
example for low dynamics.

The design of experiments plays an important role, especially for data-based approaches due
to the decisive influence of the excitation signal on the parameter estimation [149], [51]. In order
to maximize the information content of measurements, model based design of experiments can
be used. The idea of model based design of experiments is to use a prior model of the process
(reference model), to maximize the information content of measurements in order to identify
parameters with minimum variance [122]. A measure for the information content of an excitation
signal can be obtained by the Fisher information matrix I (FIM), which gives the covariance
for the parameters estimated from the excitation signal. Based on optimality criteria, the FIM
is often used to optimize the excitation signal. Furthermore, depending on the accuracy of the
reference model, constraints of the process can be considered in the excitation signal.

Static experiment design based on a local model network generation algorithm is proposed by
[56]. Dynamic experiment design for multilayer perceptron networks is proposed in e.g. [24] and
[28], where optimal inputs are chosen from a candidate set. Dynamic design of experiments based
on multilayer perceptron networks is also centered by Stadlbauer et al. [140], [139]. These papers
are used by Hametner et al. [54] to design nonlinear dynamic experiments, which minimize the
model variance of dynamic multilayer perceptron networks as well as local model networks.
The influence of optimal model based design of experiments on battery modeling, compared to
dynamic excitation signals from the literature, is investigated in [149]. Model based design of
experiments using a linear dynamic model and predefined current levels is proposed by [51] in
order to achieve optimal SoC excitation and minimal measurement duration.

Battery module modeling

The modeling of battery modules is different compared to battery cells since battery balancing
needs to be considered [8]. Furthermore, the internal resistance of the battery cell connections
as well as the temperature effect on the internal resistance of the battery play major roles in the
overall voltage behavior. Lee et al. [87] provided a comprehensive review of joining technologies
and processes for automotive lithium-ion battery manufacturing and discussed advantages and
disadvantages of the different joining technologies, while corresponding manufacturing issues
are mentioned. Since the battery forms a critical part of the HEV powertrain, Sen et al. [131]
presents a battery pack model that analyzes the variation of internal resistance as a function of
temperature in order to provide the possibilities to design a cost effective and efficient battery
management system. Watrin et al. [162] proposed a multiphysical battery pack model along
with a test procedure that must be followed to obtain the different model parameters. Based
on a screening process that provides a selection of battery cells with similar electrochemical
characteristics, in [81], the accuracy of the SoC estimator is increased. Due to the screening
process and a parameter comparison, the battery module model can be simplified into a unit
cell model that is multiplied with the number of series connected cells. A similar capacity and
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resistance screening process is used in [80] to improve the voltage/SoC balancing of a lithium-
ion series battery module. Dubarry et al. [32] uses an equivalent circuit technique commonly
applied for electrochemical impedance characterizations to describe the behavior of battery cells.
These battery cell models are furthermore used to express the behavior of a battery module,
while the imbalance of the battery cells are addressed along other effects to improve the battery
module model. Battery module model accuracy can be increased significantly if intrinsic cell-
to-cell variations in capacity and internal resistance are considered [33]. An estimation of the
remaining available power of a battery module, is presented in [119].

State of charge estimation

Many state of charge estimation algorithms are based on the open circuit voltage [88]. Since
the relationship between the OCV and SoC is not identical for all batteries, Lee et al. [88] pro-
posed a modified OCV-SoC relationship to increase the SoC estimation accuracy. Commonly
an equivalent circuit model is used in combination with an extended Kalman filter (EKF) for
the purpose of SoC estimation of batteries (see e.g. [30], [154], [153], [55], [11]), while San-
thanagopalan et al. [128] uses an electro-chemical model. A sliding mode observer is applied
by [79] to compensate the modeling errors of the used simple resistor-capacitor battery model.
Neural networks (NNs) and EKF are used for modeling and SoC estimation in [19]. Chen et
al. [23] used the same combination, but also developed a method to consider battery hysteresis
effects. An adaptive unscented Kalman filtering method is proposed in [142], which is further
compared with an extended and a unscented Kalman filter. He et al. [57] improved the de-
pendence of the traditional filter algorithm on the battery model by an adaptive Kalman filter
algorithm. An adaptive Luenberger observer for the SoC that uses an optimized model is built
by Hu et al. [62]. For the same purpose, a stochastic fuzzy neural network in combination with
an extended Kalman filter for SoC estimation is proposed by [166]. Plett et al. [117] based the
SoC estimation also on an EKF, but used a state space structure that considers the dynamic
contributions due to open circuit voltage, ohmic loss and polarization time constants.

An alternative to the Kalman filter is the Interacting Multiple Model (IMM) estimator,
which has the ability to estimate the state of a dynamic system with several behavior models
and switching between them by corresponding rules [103]. The IMM is one of the most cost-
effective hybrid state estimation schemes that can act as a self-adjusting variable-bandwidth
filter which is widely used for tracking maneuvering targets. Helm et al. [58] used the IMM
for a misfire detection that is based on two dedicated parametric Kalman filters. A fusion
prediction-based interacting multiple model algorithm is used in [138]. Another application of
IMM is hypotheses merging [13]. In the field of vehicle maneuvering, a fuzzy interacting multiple
model unscented Kalman filter approach is presented in [75]. Although the IMM approach could
be applied for SoC estimation, so far, no papers are known in the literature discussing this topic.

Two different sliding mode observers for dynamic Takagi-Sugeno fuzzy systems are proposed
by [9]. A nonlinear filter approach based on local linear models is proposed by [51]. Lendek et
al. [90] focused on the stability of cascaded fuzzy systems and observers.

2.1.5 Solution approach

In this chapter, the methodologies are presented to achieve a precise battery cell terminal voltage
model for non-road application, which can be applied to estimate the SoC of a battery module
with high accuracy during operation.

The model is based on the data-based LMN approach, which advantages are that expert
knowledge can be considered, the computational effort is low, a random initialization of the
parameters is avoided and the LLMs can be interpreted as local linearization of the process
[50], [107]. Nelles et al. [108] proposed the local linear model tree (LOLIMOT) construction
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algorithm, which is used to construct the LMN, while corresponding inputs are used to define the
LMN structure. In order to consider the battery nonlinearities SoC, relaxation and hysteresis
as well as temperature and current in the model, the inputs are adapted. In this context, a
physically appropriate network is obtained by adapting the LOLIMOT algorithm to make use
of a prepartitioned network and to prohibit splitting within specified dimensions of the network.
The resulting battery cell model is applicable to different cell chemistries and real time capable
due to the low computational complexity.

Furthermore, optimal model based design of experiments is utilized to achieve high dynamic
excitation signals, which cover the entire SoC range during the measurements. Based on the
Fisher information matrix I, a scalar cost function J(I) is used to optimize the excitation signal,
while the battery cell is sufficiently excited and relaxation, hysteresis as well as current and
temperature effects are considered additionally. For this reason, the optimization is furthermore
focused on real load ranges that are frequently used in operation. A gradient based algorithm
is used to solve the optimization problem, while battery constraints on current, voltage and
SoC are considered simultaneously. The obtained excitation signal reduces the identified model
parameter variance and maximizes the information content of measurements.

Based on the optimal model based DoE and the LMN approach, the battery module model
can be built. A simple approach that multiplies the cell voltage with the number of cells in
series connection is compared with the approach proposed in [81], which considers the internal
resistance of the battery cell connections as well as an voltage offset. The cell balancing is
neglected, because in non-road vehicles mostly a passive cell balancing strategy is used due to
the appearing high energy conversions.

An accurate SoC estimation is then achieved for the battery module using the fuzzy observer
approach as proposed in [51]. For a straight forward implementation, the battery module model
must be transferred into a state space representation with an augmented state vector that
includes the SoC. At the end, different choices of process and measurement noise within the
filter tuning show the trade off between convergence and accuracy of the filter.

This chapter is organized as follows: First, the battery cell model is developed and an appro-
priate optimal model based DoE is introduced for the developed battery cell model structure.
Second, the temperature model approach is described. Third, different battery module model
approaches that are based on the developed battery cell model are discussed. At the end, the
SoC estimation for battery modules as well as for battery cells are discussed.

2.2 Data-based identification of nonlinear battery cell models

In this section, the generic methodology for nonlinear identification of high dynamic, current-
voltage battery cell models is discussed. Nonlinear battery effects such as SoC, relaxation,
hysteresis and temperature as well as current effects are considered by the model. First, the
general architecture and structure of LMN is given, followed by the construction of the LMN
using the LOLIMOT algorithm. Based on this, the final battery model is developed.

2.2.1 General architecture and structure of local model networks

In principle, the local model network structure is built by local linear models that are only valid
in a certain operation regime and interpolated to obtain the global nonlinear model output. An
autoregressive with exogenous input (ARX) model structure is chosen for the LLM, by what
the regression vector ϕ follows with the global nonlinear model output ŷ, the global parameter
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vector θ and the input variables ul to

ϕ(k,θ) = [ȳ ū1 . . . ūq 1]
T ,

ȳ = [ŷ(k − 1,θ) . . . ŷ(k − n,θ)],
ūl = [ul(k − d) . . . ul(k − d−ml)], l = 1, ..., q,

(2.1)

where k is the actual time instant, n is the output order, ml is the input order of the l-th of q
input variables and d is the dead time. Following Nelles et al. [108], the input variables ul span
the so-called input space Q of the model. The bias is considered by the one in equation (2.1).
Note that (2.1) is denoted for MISO systems, but MIMO systems can be modeled as well [107].

One challenge in data-based modeling is the optimal choice of the model order of the inputs
and outputs. In [25], different methodologies such as goodness-of-fit (GOF) techniques are rec-
ommended to find the optimal model order. GOF from the statistical point of view is discussed
in [27]. Akaike’s information criterion trades off goodness-of-fit and model complexity and is
used in e.g. [168] for the optimal order of an ARX structured battery model. As presented in
[69], another methodology is to analyze different selections of the model order and choose the
best compromise between complexity and accuracy. To this end, the mean squared error (MSE)
provides a basis to make a decision.

The chosen model order is applied to theM LLMs, where the i-th model output ŷi is obtained
by

ŷi(k,θ) = ϕ
T (k,θ)ϑi, (2.2)

where θ = [ϑ1 . . .ϑM ]T denotes the global parameter vector, which consists of the local param-
eter vectors ϑi of all M LLM. Weighted aggregation of ŷi leads to the global nonlinear LMN
output

ŷ(k,θ) =
M∑

i=1

ŷi(k,θ)Φi(k), (2.3)

where Φi(k) is the validity function of the i-th LLM. Using a Kernel function µi(k, z), which
can be any common function (e.g. uniform, triangle,...) [107], the validity function follows by

Φi(k) =
µi(k, z)

M∑
j=1

µj(k, z)

, (2.4)

where z = [z1 . . . zφ] span the so-called partition space Z of the model using the φ partition
variables [47]. Note that the normalization results from the sum of all validity functions, which
is required to be 1. Though input and partition variables may be used in the partition space Z
and input space Q simultaneously, they are not mandatory the same [60].

2.2.2 Construction of LMN using LOLIMOT

A LMN is usually constructed by algorithms, which iteratively add new LLM to the network.
One such algorithm is the local linear model tree algorithm presented in [107]. LOLIMOT
searches for the worst LLM by the quadratic error criterion and identifies the dimension in
which a split of the model could achieve the best improvement for the global model output. The
worst LLM is then axis-orthogonal split into two new models in the dimension with the best
improvement [108]. Iteratively, the LMN grows until a certain threshold is reached, which in
this work is the maximal number of LLM M .

The parameters for the two new models are determined by weighted least squares (WLS).
In case of numerical effects due to significant differences in the input, partition and output
variables, all signals used within the algorithm are normalized from 0 to 1 [107]. Schematically,
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the LOLIMOT procedure for a two-dimensional partition space is depicted in Figure 2.3. In
every iteration, the quadratic evaluation criterion is used to find the worst LLM. The worst
model is split into all possible dimensions, while the best alternative, identified likewise with the
quadratic evaluation criterion, is chosen.
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Figure 2.3: LOLIMOT Scheme for two-dimensional partition space

A characteristic of the LOLIMOT algorithm is the Kernel function µi(k, z), which is chosen
to be Gaussian [107]

µi(k, z) = exp

(
−
1

2

(
(z1(k)− ci1)

2

σ2i1
+ · · ·+

(zφ(k)− ciφ)
2

σ2iφ

))
. (2.5)

Since the partition space Z is split axis-orthogonal, cij denotes the center point of the LLM and
σij is the corresponding individual standard deviation, which is approximated by

σij = kσ,j∆ij . (2.6)

The term ∆ij corresponds to the spread of the LLM, while kσ,j is a user-defined sharpness factor
that can be interpreted as an overlapping factor of the LLM and influences the smoothness of
the nonlinear model output. Note that depending on the specific application as well as the
partitioning dimensions, the optimal sharpness factor varies.

Alternative construction algorithms have the same aim, but are different to LOLIMOT.
Jakubek et al. [71] used a statistical criteria along with regularization to allow an arbitrary
orientation and extent in the partition space of the constructed LMN. In [70], a proper parti-
tioning of the LMN is achieved by an expectation-maximization algorithm that makes use of a
residual obtained from generalized total least squares parameter estimation. The advantage of
LOLIMOT compared to mentioned alternatives is the low implementation complexity due to
the axis orthogonal orientation, for which reason LOLIMOT is used in this work.

2.2.3 Battery cell modeling using LMN

So far, the methodology for battery modeling has been discussed. In the following, the procedure
to apply the LMN to battery modeling is presented. Corresponding inputs and the structure for
the LMN are presented in order to consider nonlinear battery effects and enhancements for the
LOLIMOT algorithm to increase the physical meaning of the battery model. Figure 2.4 depicts
an overview of the battery model construction process using a flowchart.

Corresponding LMN inputs of nonlinear battery cell effects

Electrochemical batteries comprise of physical and chemical nonlinear effects. In Figure 2.5, the
nonlinear effects can be observed and should be explained in detail in the following.
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Figure 2.4: Flowchart of battery model construction process.

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

 

 

2.8

3

3.2

3.4

3.6

 

 

0 20 40 60 80
−75

0

75

20 Deg Celsius

25 Deg Celsius

30 Deg Celsius

CellA Charge 2C

CellA OCV

CellA Discharge 2C

CellB Charge 4C

CellB Discharge 1C

CellB OCV

CellB Charge 1C

CellB Discharge 4C

Subplot (a)

SoC [-]

Subplot (b)

C
u
rr
en

t
[A

]
V
o
lt
a
g
e
[V

]

V
o
lt
a
g
e
[V

]

Time [s]

Figure 2.5: Subplot (a): Discharge and charge curves for a lithium-polymer (Cell A) and
lithium-iron-phosphate (Cell B) chemistry at different currents. The open circuit voltage is
estimated by interpolation between the charge and discharge curve.
Subplot (b): Voltage response of a current step sequence, similar to [65], at different temper-
atures for Cell B.
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Constant charge and discharge curves for different C-rates are depicted over the SoC in
Subplot (a) of Figure 2.5. Cell A refers to a lithium-polymer chemistry, while Cell B represents
a lithium-iron-phosphate chemistry. In order to be able to plot the voltage curves over the
SoC, the cell current is integrated [141], while interpolation between the charge and discharge
curve provided an estimate for the open circuit voltage [1]. A current step sequence at different
temperatures measured for Cell B is shown in Subplot (b).

Distinction must be made between physical and chemical effects. Physical effects are caused
by any physical interaction such as an applied current and the resulting temperature increase,
while chemical effects arise also without physical interaction such as hysteresis and relaxation.
Subplot (b) in Figure 2.5 shows the nonlinear physical influence of current and temperature.
Dynamic change in the battery voltage is caused by the applied battery cell current, while the
voltage drop is directly influenced by the temperature. Due to the lower/higher temperature,
increased/decreased internal resistance of the battery cell is obtained and a bigger/smaller volt-
age drop is caused. Current as well as temperature are physically measurable on-line and can
directly be considered in the model. Hence, the corresponding inputs uCurrent and zTemp are
selected. The time constant of the temperature is significantly higher than the time constant of
the current. Due to this reason, the current is included in the input space Q, while the temper-
ature is assumed to be static and is therefore included in the partition space Z. Note that the
small temperature gradients compared to gradients of the current underline the assumption.

The nonlinear influence of the SoC on the battery cell voltage is clearly shown in Subplot
(a) of Figure 2.5. Since the SoC can not change dynamically or independent to the current, the
SoC is considered as corresponding static input zSoC, which is the actual value of the SoC. The
value of the SoC is not measurable on-line and needs to be estimated in real batteries (see e.g.
[51], [118]). For simulation purposes, the current can be integrated to determine a value for the
SoC. Note that in Section 2.6, the SoC estimation is discussed in detail.

Chemical effects are not directly measurable and need to be provided indirectly by corre-
sponding inputs. The slightly to a steady state value converging voltage at standby current in
Subplot (b) of Figure 2.5 is referred to as relaxation [117], although, relaxation also acts during
current phases [10]. In [117], a low pass filter on the current, which follows certain requirements,
is used to model the relaxation, which time constant is significantely different to the one of the
current. Following [117],

• after a long rest period and

• during constant-current discharge/charge,

the relaxation state needs to converge to zero, which can be realized by the dynamic correspond-
ing input

uRelax = filt(∆uCurrent). (2.7)

Note that in order to force the filter filt(·) to have zero DC-gain, the change rate of the current
∆uCurrent is used. For lithium-iron-phosphate as well as lithium-polymer chemistry, a third
order low pass filter showed to be appropriate, which relaxation time constant is approximated
properly on the basis of the voltage converging speed at standby current after a current pulse
have been applied to the battery cell.

Different shapes of the charge and discharge curve in Subplot (a) of Figure 2.5 indicate
the nonlinear chemical effect referred to as hysteresis [145]. At standby current in Subplot
(b) of Figure 2.5, the effect is observable as well. In principle, the hysteresis effect separates
the model into a charge and discharge model, which can be achieved by using sign(·) of the
current as a corresponding first order hysteresis input zHyst that is kept at the last value, if the
current is zero. As hysteresis is acting statically on the battery behavior, zHyst is included in
Z. Intercalation effects, conductivity of anode/electrolyte/cathode, concentration gradients or
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other known chemical effects play a tangential role compared to the mentioned effects and are
therefore neglected.

LMN structure of battery cell models

Distinction must further be made between dynamic and static influence on the cell voltage.
Dynamic influence of the inputs needs to be considered in the dynamic LLM and must therefore
be included in the input space Q, while static influence is important for the partitioning and
must therefore be included in the partition space Z. This defines the structure of the LMN and
leads to

Z = [z1 z2 z3] =̂ [zSoC zHyst zTemp],
Q = [u1 u2 u3] =̂ [zSoC uCurrent uRelax].

(2.8)

To this end, the inclusion of the SoC zSoC in the input space Q implies two advantages. On
the one hand side, the continuous change of the voltage depending on the SoC is considered and
on the other hand, the observability of the SoC within the model is given, which is required by
the SoC estimation with a fuzzy observer (c.f. [51]).

User defined prepartitioning of the LMN structure

In the iterative construction of the LMN, only the quadratic evaluation criterion decides whether
to split a model or not. This may lead to physically inappropriate partitions that make a physical
interpretation impossible. Due to this reason, LOLIMOT is enhanced to use initial partitions
of Z instead of one global partition. The predefined physically appropriate partitions reduce
the computational efforts, while all partitions can be kept physically appropriate if selected
dimensions of the partition space are prohibited to be split. This influences the partitioning
significantly and needs to be discussed in detail in the following.

Prohibiting a dimension to be split is only appropriate, if a physical reason is given to limit
the number of LLM within this dimension. At this point, expert knowledge can be included
to improve the model accuracy. The hysteresis input zHyst refers to the corresponding cell
polarization, which can only reach two different states. In this case, an initial split into charge
as well as discharge mode and prohibiting to split within this dimension, is advantageous. From
Subplot (b) in Figure 2.5, the temperature influence seams to be evenly distributed and therefore
three initial partitions are defined for the temperature input. Note that due to the split in the
hysteresis dimension, a simultaneous split of charge and discharge mode can not be achieved by
definition, because of which partitioning is prohibited within the temperature dimension. The
number of initial partitions follows to 6 and the partitioning degree of freedom is limited to the
SoC dimension.

2.3 Optimal model based design of experiments

In this section, the optimal model based design of experiments for battery model identification is
discussed. The goal of optimal model based DoE is to obtain an excitation signal that minimizes
the variance of the identified model parameters. To this end, the system dynamics of a battery
cell must be sufficiently excited, while the entire SoC range is covered and relaxation as well
as hysteresis effects are considered. The battery system behavior is obtained by applying a
load current excitation signal U to the battery cell and recording the cell terminal voltage. In
on-road applications, intermediate current steps show sufficient dynamics [65], but in non-road
applications higher dynamic excitation signals are required [149].

For that purpose, a methodology to obtain optimal excitation signals for non-road application
is proposed. In the following, first, an a-priori available battery model and the Fisher information
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matrix I are used to formulate optimality criteria. Second, a constrained optimization problem is
formulated to optimize an excitation signal under consideration of constraints and the nonlinear
effects of a battery cell. Note that the information content is further improved by focusing the
optimization especially on load ranges frequently used in operation. Third, the optimization
by means of a gradient based algorithm is described in detail. At the end, some extensions are
made to the obtained optimal excitation sequence to take into account the entire SoC operating
range, relaxation, hysteresis and constant current behavior.

2.3.1 Optimization criteria based on the Fisher information matrix

The Fisher information matrix I is a tool to measure the information content of measurements in
terms of the covariance of the estimated model parameters. In order to increase the information
content, the system inputs by means of the excitation signal U needs to be modified [54]. The
calculation of I is based on the parameter sensitivity vector ψ(k), which is the partial derivative
of the model output with respect to the model parameters. For the LMN approach as described
in Section 2.2, ψ(k) follows by

ψ(k) =
∂ŷ(k,θ)

∂θ
=



Φ1(k)ϕ(k,θ)

...
ΦM (k)ϕ(k,θ)


 , k = 1, ..., N, (2.9)

where M denotes the number of LLM and Φi(k), ϕ(k,θ), θ as defined in (2.4) and (2.1). A
reference model is required for the optimization and can be obtained by two possibilities:

• A LMN model is available.

• A different model (no LMN model) or measurements are available.

A LMN with only one LLM describes a linear model of the battery and can be identified easily
based on a priori available measurements. In this work, the easy approach of only a linear
model is followed to show the significant influence of the methodology to the model quality.
Note that a reference LMN can be identified by simulation data created by an available complex
electrochemical model, alternatively.

The Fisher information matrix is defined by

I =
1

σ2

N∑

k=1

∂ŷ(k,θ)

∂θ︸ ︷︷ ︸
ψ(k)

∂ŷ(k,θ)

∂θ

T

, k = 1, ..., N, (2.10)

where σ is the variance of the measurement noise [46]. Denoting Ψ as

Ψ =
[
ψT (1) . . .ψT (N)

]T
, (2.11)

the FIM can be expressed by

I =
1

σ2
ΨTΨ. (2.12)

Based on the obtained FIM, in the literature three common scalar criteria are known for the
optimization of the excitation sequence. They are formulated as follows [46]:

A-optimality: JA = Tr
(
I
−1
)
→ min

U
(2.13)

D-optimality: JD = det (I) → max
U

(2.14)

E-optimality: JE = λmin (I) → max
U

(2.15)
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Figure 2.6: Process flowchart of the DoE to obtain the optimal excitation signal U . Compare
blue block with battery model identification flowchart in Figure 2.4.

A-optimality minimizes the trace of the inverse of the Fisher information matrix, D-optimality
corresponds to the maximization of the determinant of the FIM and E-optimality is targeted
to maximize the smallest eigenvalue of the FIM. The advantage of D-optimality is the higher
sensitivity to single parameter covariances compared to the A-optimality [140].

Following the three common criteria (2.13)-(2.15), Figure 2.6 shows the process to obtain
the optimal excitation signal U .

2.3.2 Formulation of the constrained optimization problem

The optimization aims primarily to achieve sufficient high dynamic currents within the excitation
sequence, while constraints on current and battery cell voltage are considered. Note that the
SoC is limited due to the physical capacity of the battery, which is automatically considered by
voltage and current constraints. Constraints must be kept to avoid, among other things, physical
damage, accelerated life time reduction, electrolyte oxidation, fire or explosion. Especially the
lithium-ion chemistry is sensitive to over charge and over voltage, respectively, which attracts
the attention due to safety issues.

The current is furthermore constraint to ranges frequently used in operation to increase the
information content especially in ranges used in real applications. Consequential, two possibili-
ties can be used for current constraints:

1. High dynamic excitation between physical minimum and maximum current.

2. High dynamic excitation between load (current) ranges, frequently used in operation.

The first approach simply defines the current constraints at the physical minimum and maximum
values, while the second approach defines the constraints using a real load cycle analysis that is
realized as follows:

1. Determine the distribution density of the load by a histogram with a defined number of
intervals.

2. Set the lower and the upper current constraints corresponding to the interval limits of the
histogram.
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3. Define the durations within the corresponding constraint ranges by the corresponding
distribution densities.

Figure 2.7 shows the load cycle analysis in more detail: Subplot (a) depicts the real load
cycle signal for which the analysis is done. The corresponding histogram is shown in Subplot
(b) and the resulting current constraints can be seen in Subplot (d). In order to consider output
constraints within the experiment design, the reference model must have sufficient accuracy. The
used linear reference model is not able to provide such a precision though, which implicate that
voltage constraints must be included indirectly through the current. To this end, a limitation
ratio for the current depending on the SoC is introduced. Subplot (c) in Figure 2.7 depicts the
limitation ratio. Note that the reliability of the output constraints in general depends on the
model accuracy and increases with each model update [53]. Nevertheless, due to the maximal
current constraints, the maximal deviation of the SoC from the starting SoC value is limited.
The SoC limits follow therefore by an adequately chosen starting SoC value.

0 50 100 150

−50

0

50

100

0 0.2 0.4

0 0.5 1
0

0.5

1

0 10 20 30 40 50

−50

0

50

100

Load Density [-]

C
u
rr
en

t
[A

]

L
o
a
d
[-
]

Subplot (a) Subplot (b)

Subplot (c) Subplot (d)

Time [s]

Time [s]

SoC [-]

L
im

it
a
ti
o
n
R
a
ti
o

Figure 2.7: Construction of the constraints for the optimization.
Subplot (a): Scaled real load cycle.
Subplot (b): Histogram of the load density distribution of the real load cycle.
Subplot (c): Limitation Ratio of the applied minimal/maximal physical current depending on
the SoC.
Subplot (d): Current constraints according to the histogram in Subplot (b). Green: Upper
current constraints. Red: Lower current constraints.

On the basis of these constraints, a formulation of the optimization problem can be obtained.
Following [122], the D-optimality criterion has higher sensitivity to single parameter covariances
and is more invariable to re-parametrization of the model than the A-optimality. Due to this
reason, the D-optimality criterion is used to formulate the optimization problem:

D-optimality: max
U

det (I) (2.16)

s.t.

{
Umin(k) ≤ U(k) ≤ Umax(k), k = 1, ..., N

U ∈ R
N×1

,

where U = uCurrent corresponds to the current input. Note that relaxation input and SoC are
directly dependent on the current, which is therefore the only degree of freedom within the
optimization.
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2.3.3 Constrained optimization

The constraints require to solve the stated optimization problem iteratively. One approach
with low computational efforts and sufficient performance is the gradient descent method. The
derivative of the design criterion with respect to the input U(r) for all observations N composes
the gradient g = [g(1) . . . g(N)]T . In order to obtain the single gradients, the trace of the product
of the derivative of the determinant of the FIM with respect to the parameter sensitivity matrix
Ψ and the derivative of Ψ with respect to U(r) need to be built, which is computationally
intensive [140]. Nevertheless, the r-th observation follows by

dJD(Ψ)

dU(r)
= Tr

(
dJD(Ψ)

dΨT

dΨ

dU(r)

)
, (2.17)

where for the D-optimality, the first term is obtained by (cf. [98])

dJD(Ψ)

dΨT
= 2JD(Ψ)Ψ[ΨTΨ]−1. (2.18)

Note that the inversion of the FIM appears in eq. (2.18), due to which the FIM is required to
be a regular matrix with full rank.

The second term in eq. (2.17) is obtained by the single derivatives of the parameter sensitivity
vectors with respect to the model input, which are based on the derivative of the regressor ϕ(k,θ)
as defined in eq. (2.1) with respect to the input U(r). Denoting the derivative of ϕ(k,θ) by

dϕT (k,θ)

dU(r)
=

[
dŷ(k-1,θ)

dU(r)
. . .

dŷ(k-n,θ)

dU(r)
δ1lδ(k−1)r . . . δplδ(k−ml)r 0

]
, k > r, (2.19)

where δij is the Kronecker delta function and l corresponds to the current input of the LMN
battery model. The former model output with respect to the input U(r) is recursively calculated
and follows to

dŷ(k,θ)

dU(r)
=

∂ŷ(k,θ)

∂ŷ(k-1,θ)
·

dŷ(k-1,θ)

dU(r)︸ ︷︷ ︸
recursive calculation

+
∂ŷ(k,θ)

∂ŷ(k-n,θ)

dŷ(k-n,θ)

dU(r)
+
∂ŷ(k,θ)

∂U(r)
, k > r. (2.20)

Based on equations (2.19), (2.20), the derivative of the parameter sensitivity vector with respect
to the model input is obtained by

dψ(k)

dU(r)
=




Φ1(k)
dϕ(k,θ)

dU(r)
...

ΦM (k)
dϕ(k,θ)

dU(r)



+




ϕ(k,θ)
dΦ1(k)

dU(r)
...

ϕ(k,θ)
dΦM (k)

dU(r)



, k > r, (2.21)

while the compact notation of eq. (2.21) yields the second term of eq. (2.17)

dΨ

dU(r)
=

[
dψT (1)

dU(r)
. . .

dψT (N)

dU(r)

]T
. (2.22)

Using equations (2.18), (2.22), the gradient g can be used in the gradient descent method to
update the excitation sequence. Considering the current constraints along with an adaptively
adjusted step size η, the update follows by

U (ν+1) = U (ν) + η · g(ν), ν = 0, 1, 2, ... (2.23)

s.t.

{
Umin ≤ U (ν+1) ≤ Umax

U ∈ R
N×1

,
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which process is repeated until no further improvement is achieved.

Note that the voltage constraints are included indirectly and therefore a nonlinear con-
strained optimization problem is avoided. Nevertheless, several alternative approaches are
known, which include the output constraints directly in the formulation of the optimization
problem: The (quadratic) difference between the gradient of the design criterion and the ex-
citation signal increment is minimized by Stadlbauer et al. [140], while the feasible area is
approached simultaneously. In order to realize the constrained optimization, Hametner et al.
[54] applied Lagrangian multipliers. Sequential quadratic programming (see [96]) and numerical
multi-objective optimization (see [133]) are further approaches.

2.3.4 Extensions on the excitation sequence

The previous sections discussed the optimization of the excitation sequence while constraints
are considered. For the purpose of especially including the battery specific nonlinear effects, the
optimized excitation sequence is extended in the following.

Constant discharge/charge currents with following standby currents are able to reveal the
voltage behavior caused by relaxation and to discharge/charge the battery to a desired SoC
value. Constant discharge/charge current pulses with subsequent standby current are therefore
added in front of/after the optimized sequence. Following the limitation ratio (see Subplot (c)
in Figure 2.7), the values of the constant currents are obtained, while the duration of the pulses
are related to the longest time constant of the system. Sufficient information about relaxation
requires the duration of the standby current to be at least a multiple of the duration of the
constant current. An analysis of Subplot (b) in Figure 2.5 leads to a duration ratio of at least
6 for an abated voltage degradation at standby current. Due to this reason, a duration ratio of
8 is suggested and used in this work.

The final excitation signal is obtained by merging the extended high dynamic sequences,
while the sequences are created for evenly distributed SoC values across the entire SoC range
of interest. Any SoC deviations from the desired SoC are carefully compensated by varying the
durations of the constant currents, in order to achieve information across the entire SoC range.
Note that the SoC range of interest for different non-road applications differs from each other
and therefore may vary.

2.4 Temperature model of battery cells

In order to provide a simulation model, the battery temperature needs to be modeled as well.
At high charge and discharge currents the cell temperature increases significantly and may raise
above allowable limits [112]. Hu et al, [61] proposed an accurate battery thermal model using
a Foster network, which extracts capacitance and resistance from computational fluid dynam-
ics (CFD) results. A simplified mathematical model is presented in [72] that considers heat
generations due to joule heating and entropy change, respectively. Sun et al. [143] developed
a three-dimensional thermal model to gain a better understanding of the thermal battery cell
behavior in a battery module. The more advanced approach considers the battery non-uniform
heat generation rate, the battery temperature distribution as well as battery temperature vari-
ation across the module in order to predict the temperature behavior during simulated driving
cycles. A lumped-parameter thermal model based on a differential equation is developed in [37],
which approach is used in this work. Based on the cell thermal capacity cp and the heat transfer
coefficient hout, the temperature behavior of a battery cell can be expressed by

cp
dϑcell
dt

= hout (ϑamb − ϑcell) + I2cellRint, (2.24)
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where ϑamb is the ambient temperature, ϑcell is the cell temperature, Rint is the internal resis-
tance of the cell model and Icell is the cell current. The battery type (energy or power cell)
influences the temperature behavior essentially, since the losses produce heat, which is dissipated
through the battery cell. In general, energy cells have a different design, due to which the heat
transfer resistance is higher. Nevertheless, as can be seen in equation (2.24), the internal resis-
tance Rint is required and needs to be exported from the LMN battery cell. Due to the nonlinear
behavior of the battery cell, Rint depends on the actual state of the battery cell though.

In this context, the interpretability of the LMN battery model should be discussed in more
detail. Due to the physical appropriate partitioning of the LMN, the steady state gain of the
LLM can be interpreted as the local internal resistance of the particular LLM. Note that the
calculated steady state gain is normalized and needs to be transformed first before it can be
interpreted as physical value. In Figure 2.8 in the upper two subplots, the identified internal
resistances for Cell A and Cell B, respectively, are shown for different temperatures. Since the
partition space is three-dimensional, the current is hold at Icell = −40 A to be able to depict a
two-dimensional representation of the parameters. The lower two subplots show the identified
open circuit voltages in comparison with an OCV that is obtained from an interpolation of the
charge and discharge curve at 2C. As can be seen, the OCV is precisely identified, though the
excitation signal has been highly dynamic and included only few standby phases during the
measurements. Based on this interpretation, look-up tables for the internal resistance Rint and
the OCV V0 can be exported from the LMN and used in equation (2.24).

2.5 Battery module model design

Battery module models are required for the simulation of powertrain concepts in hybrid electric
vehicles as well as for the implementation in battery simulators, which emulate the real battery
behavior at the test bed. Real time capability is especially necessary for the implementation in
battery simulators. Nevertheless, battery modules consists of multiple battery cells connected
in series and parallel connections, which results in a required monitoring system that observes
the voltage and SoC balance between the battery cells to avoid physical damage. The balancing
strategy needs to be included in a battery model, as long as there is an effect during operation.
Due to this reason, in the following cell balancing in battery modules is reviewed before the
design of the LMN based battery module model is discussed.

2.5.1 Battery cell balancing in battery modules

Battery balancing refers to the equalization of the state of charge of the battery cells within a
battery module to avoid overcharge, which might cause physical damage and safety issues due
to explosion and fire. Cao et al. [18] presents the theory behind balancing methods for battery
systems within the past twenty years and groups their nature of balancing. In general, two
different balancing techniques are known [3]:

1. Active balancing

2. Passive balancing

Active balancing draws the energy from the most charged cell and transfers the energy through
DC-DC converters to the least charged cells. Lee et al. [89] e.g. proposed an active balancing
algorithm for lithium battery modules. Passive systems waste energy from the most charged
cell as heat, until the cell charges are equalized. To this end, the balancing strategy needs to
be considered in the battery module model, if cell balancing is carried out during operation and
has an influence on the voltage behavior.



CHAPTER 2. BATTERY MANAGEMENT 26

0 0.5 1

2

2.5

3

3.5

4

0 0.5 1

5

10

15

20

25

30

35

40

0 0.5 1

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Discharge @ 2C

Charge @ 2C

OCV @ 2C

0 0.5 1
2.6

2.8

3

3.2

3.4

3.6

Discharge @ 1C

Charge @ 1C

OCV @ 1C

15◦C15◦C

15◦C15◦C

20◦C20◦C

20◦C20◦C

25◦C25◦C

25◦C25◦C

30◦C30◦C

30◦C30◦C

35◦C35◦C

35◦C35◦C

Cell A Cell B

OCV Cell A Cell B

R
i
[m

Ω
]

V
ol
ta
ge

[V
]

SoC [-]SoC [-]

Figure 2.8: Interpretability of LMN battery model parameters shown at Cell A and Cell B. The
current dimension is hold at Icell = −40 A.



CHAPTER 2. BATTERY MANAGEMENT 27

In this work, a battery module with implemented passive balancing system is used. Thus,
balancing is neglected in the proposed model approach. Nevertheless, different balancing strate-
gies and their implementation in battery models are discussed in e.g. [8], [26], [164].

2.5.2 LMN based battery module design

In non-road vehicles, the voltage level of battery modules is usually high, because the current
capabilities of electrochemical batteries for high power demands are in general limited. Thus
often super capacitors are used due to their significantly larger power capabilities. Nevertheless,
the higher energy densities of batteries make them an equal alternative. During the design
process of hybrid electric powertrains, the planned battery module may not physically available.
This complicates the design of battery module models, since a sufficient parametrization is
difficult. To this end, four different approaches of battery module model approaches Σi are
discussed in the following, in order to show the influence of different considered effects.

Battery cell measurements are easier to realize and therefore a battery module model that
is based on battery cell models is desired and advantageous. The proposed methodology in the
previous sections provides LMN battery cell models that can easily be obtained by cell measure-
ments, but does not consider the additional internal resistance of battery modules resulting from
the cell connections. Nevertheless, the internal resistance is unknown in advance and therefore
a first obvious model approach is

Vmodule,Σ1
= ncells · Vcell, (2.25)

where ncells is the number of series connected cells and Vcell refers to the battery cell voltage.
The battery cell voltage Vcell can be obtained by the LMN battery cell model using the battery
cell current

Icell =
Imodule
pcells

, (2.26)

where pcells is the number of parallel connected cells and Imodule is the battery module current.
Note that the internal resistances of the battery cell connections are not considered in this simple
approach and may limit the accuracy, but therefore, no information about the internal resistance
of a battery module is required.

Considering the internal resistance of the battery module in Vmodule,Σ1
leads to model Σ2

Vmodule,Σ2
= ncells · Vcell −Rint,Σ2

· Imodule, (2.27)

where Rint,Σ2
refers to the internal module resistance. Battery cells usually vary in nominal

cell voltage, which can be considered by an offset voltage. Module model approach Σ3 follows
therefore to

Vmodule,Σ3
= ncells · Vcell −Rint,Σ3

· Imodule + Voffset,Σ3
, (2.28)

where the offset voltage Voffset,Σ3
also considers measurement sensor offsets and any other

additional influences on the module voltage. Electrical resistances are usually linear elements,
but a current dependent adaptation of the internal resistance and offset, respectively, have been
shown as advantageous. This can be caused by e.g. inaccuracies in the battery cells, different
ages of the installed battery cells or the battery cell used to identify the battery cell model.
Nevertheless, the resulting model can be denoted by

Vmodule,Σ4
= ncells · Vcell −R±

int,Σ4
· Imodule + V ±

offset,Σ4
(2.29)

with

R±
int,Σ4

=

{
R+
int,Σ4

if Imodule > 0

R−
int,Σ4

if Imodule ≤ 0
, V ±

offset,Σ4
=

{
V +
offset,Σ4

if Imodule > 0

V −
offset,Σ4

if Imodule ≤ 0
. (2.30)
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Battery module measurements can then be used to identify the module parameters Rint,Σi and
Voffset,Σi , respectively.

2.6 State of charge estimation

State estimation is required, if system states are not measurable. An observer is used to estimate
the unmeasurable states based on the measurable states and a dynamic model of the process. In
this context, the observability of the system must be given, which is the case if the observability
matrix O

O =




C

CA

CA2

...
CAnstates−1



, (2.31)

where nstates denotes the number of states in the state space system with state matrix A and
output matrix C, has full rank.

The linear Kalman filter is an efficient recursive filter that is able to observe the internal
states of a linear dynamic system by measurements corrupted with noise. Advantageous is
that the filter is based on time-invariant models, which reduces the computational complexity
significantly. Nonlinear processes are in general more challenging, since nonlinear estimation
approaches need to be applied. A well known nonlinear estimator is the extended Kalman filter,
which is based on the local Jacobian of a nonlinear model and is therefore more complex than a
linear Kalman filter. Note that the filter gain as well as the data dependent local linearization of
the EKF cannot be precalculated, which is disadvantageous for real time application [117], [154].
The interacting multiple models approach achieves a nonlinear estimation by running separate
linear Kalman filters and switching between the filters based on a detection scheme using the
validity probability of the underlying models [103], [58]. Another similar nonlinear estimator,
which is ideal in combination with LMN models, is the fuzzy observer [21], [132]. Since each
LLM of the LMN corresponds to an linear time-invariant dynamic system, the linear Kalman
filter theory can be applied and the global filter output can be obtained by weighted aggregation
of the local filters [134]. Furthermore, stability of the fuzzy observer can be shown based on
Lyapunov stability theory and is discussed in e.g. [102], [144]. The fuzzy observer approach is
therefore used in this work.

In the following, the general architecture of the SoC estimation scheme is presented, before
the fuzzy SoC observer is developed. Note that the SoC estimation approach is applicable for
cell and module SoC estimation, respectively, and is therefore developed for the general case.

2.6.1 General architecture of the SoC observer scheme

The estimation of the SoC of a battery can be obtained by two practical principles. First,
measuring the open circuit voltage leads to an accurate estimate of the SoC if the battery has
been in standby mode for a sufficiently long period of time, but can not be used during operation.
The second possibility is to integrate the current, which can be denoted by

SoC(t) = SoCinit +
1

Qc,batt

∫ t

0
ηbatt,cou(Ibatt(ν)) Ibatt(ν)dν, (2.32)

where SoCinit is the initial SoC, Qc,batt is the battery capacity and ηbatt,cou is the charge efficiency.
Note that ηbatt,cou is usually 0.99 and can be neglected for the purpose of observer based SoC
estimation. Nevertheless the integration of the current leads to an acceptable initial SoC value
that can be used in an advanced SoC observer scheme.
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Following [51], the estimation of the SoC can be done by automated nonlinear observer
design using a fuzzy observer. In this context, the relative SoC estimation given by eq. (2.32)
should be included in the observer scheme. For that purpose, eq. (2.32) is represented in the
discrete formulation

SoC(k) = SoC(k − 1) +
ts,bms
Qc,batt

Ibatt(k), (2.33)

where ts,bms corresponds to the sampling time. An overview of the observer scheme is depicted
in Figure 2.9 exemparlily. As can be seen in the figure, the SoC is corrected by the observer,
which obtains the simulated battery voltage by the LMN battery model discussed in Section 2.2.
Any drift of the SoC due to extended operational time is compensated since the SoC estimator
is able to act during operation. Note that the estimation accuracy is mainly dependent on the
battery model accuracy. In the next subsection, the SoC fuzzy observer is developed in detail.

Ibatt

Ibatt

Vbatt

ϑbatt

SoCinit

ˆSoC

SoC estimation

V̂batt

LMN Battery Model

BMS SoC estimator

∫ t
0
ηbatt,cou(Ibatt(ν)) Ibatt(ν)

Qc,batt
dν

Figure 2.9: SoC fuzzy observer scheme

2.6.2 SoC fuzzy observer design

The automated nonlinear observer design requires the nonlinear LMN in state space (SS) rep-
resentation [132], which state vector needs to be augmented in order to consider the initial SoC
from the current integration in the fuzzy observer. A correct transformation of the LLM (c.f.
eq. (2.2)) into the SS-representation can be achieved by including the past outputs y and the
previous state of charge SoC(k − 1) in the augmented state vector xaug, which follows to

xaug(k) =




y(k − 1)
y(k − 2)

...
y(k − n)

SoC(k − 1)



. (2.34)

The parameter vector of the i-th LLM can be be denoted by

ϑi =
[
a1,i · · · an,i b11,i · · · blml,i · · · bqmq ,i b0,i

]
, (2.35)

where a·,i and b·,i denote the output and input parameters, respectively, while b11,i = bSoC,i
corresponds to the order-one SoC input parameter used in the LMN design (cf. eq. (2.8)). Note
that the LMN design described in Section 2.2.3 already includes the SoC as input variable, in
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order to be able to use the identified parameter for the augmented state variable in the design
of the linear Kalman filters. Using these parameters, the state matrix Ai can be established by

Ai =




a1,i a2,i . . . an,i bSoC,i
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1




(2.36)

and the input matrix Bi follows by

Bi =




b21,i · · · blml,i · · · bqmq ,i b0,i
0 0 0 0 0 0
...

. . .
...

. . .
...

...
ts,bms
Qc,batt

0 0 0 0 0


 , (2.37)

where b0,i corresponds to the local affine term (bias term). Note that the corresponding param-
eter of the SoC input b11,i = bSoC,i, is excluded from Bi since it is already considered in Ai.
The augmented input vector for the augmented observer SS model follows then to

uaug(k) =




u1(k)
u1(k − 1)

...
uq(k −mq)

1



, (2.38)

where ui corresponds to the actual and past elements of the model inputs. At this point it
is important to mention that the integrator needs to be adapted if the a normalization of the
LMN is used. In case of scaled parameters, the integrator increment can be transformed by a
corresponding additional term in the last row and column of the matrix Bi.

Using equations (2.34)-(2.38), the augmented state equation

xaug(k) =
M∑

i=1

Φi(k − 1) {Aixaug(k − 1) +Biuaug(k)} (2.39)

leads to the global model output

y(k) = Cxaug(k) (2.40)

with

C = Ci =
[
1 0 . . . 0 0

]
. (2.41)

Based on these equations, the local steady-state Kalman filters can be designed for each
local linear model, while the global filter is obtained by weighted aggregation of the individual
local estimates. The state estimate x̂aug of the global filter can be determined based on the gain
matrix Ki by

x̂aug(k) =
M∑

i=1

Φi(k − 1)
{
x∗
aug,i(k) +Ki [y(k)− ŷ(k)]

}
, (2.42)

with

x∗
aug,i(k) = Aix̂aug(k − 1) +Biuaug(k), (2.43)
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where

ŷ(k) =
M∑

i=1

Φi(k − 1)Cx∗
aug,i(k). (2.44)

The gain matrix Ki is calculated by

Ki = AiP
T
i C

T
(
CP T

i C
T +RT

)−1
, (2.45)

where P i refers to the solution of the discrete-time algebraic Riccati equation (DARE)

AiP iA
T
i − P i −AiP iC

T
(
CP iC

T +R
)−1

CP iA
T
i +Q = 0. (2.46)

In eq. (2.46), the matrices R and Q reflect the covariance matrices of the measurement and
process noise, respectively. The Kalman filter theory assumes R, Q to be known, but often
the covariance matrices are unknown and R, Q are used as tuning parameters [51]. For the
application of SoC estimation in batteries, the terminal voltage measurement noise R can be
found by experiments. The process noise Q, similar to [154], is used to tune the filter and no
correlation between the different elements in Q is assumed.



Chapter 3

Results for BMS in Non-Road

Vehicles

The battery management system of batteries used in non-road vehicles needs to be able to provide
an accurate value of the SoC, even during operation if high dynamic currents act on the battery.
This can be achieved based on the generically applicable methodologies proposed in Section 2.
In this chapter, the proposed concepts and methodologies are validated using measurements
from real battery cells with different cell chemistries as well as a battery module. The battery
module is established with battery cells, which are separately available to be investigated with
cell measurements.

In the following, first, the measurement procedures and hardware are specified. Second, the
results for the nonlinear battery cell model identification are discussed. Third, the results for the
temperature and battery module model are validated and at the end, the estimation accuracy
achieved with the SoC estimator introduced in Section 2.6, is demonstrated.

3.1 Generation of reproducible high dynamic data sets

The reliability of precise battery models depend on the data set used to identify the model
parameters. Due to this reason, the reproducibility of measurements is essential for the whole
methodology, since only reproducible measurements can verify the model accuracy. In the
following, the measurement procedure is discussed and the measurement hardware is described.
At the time, when battery cell measurements were required, an affordable and sufficiently high
dynamic battery cell tester was not available and therefore a cell tester hardware has been
developed. Measurements on a real battery module could be achieved using an adapted battery
simulator available at the test bed also used to measure the hybrid powertrain (cf. Section 5).
In the following, the measurement procedures are introduced before the developed battery cell
tester as well as module tester are described in detail.

3.1.1 Measurement procedures

Electrochemical batteries show that the previous excitation has influence on the voltage behav-
ior of the cells. Reproducibility can only be guaranteed, if the initial battery conditions are
uniquely defined in advance to the measurements. Unexpected and undefined appearing effects
are avoided and all short term history of the battery cells (cell conditioning) is erased. It has
been shown that the following procedure enables to compare measurements as well as different
battery cells and chemistries, respectively, with each other:

1. Initial capacity check at 25 ◦C

32
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2. Set temperature of climate chamber

3. Fully charge the battery cell

4. Discharge until initial SoC is reached

5. Apply excitation signal

6. Repeat 3 to 5 until all excitation signals are recorded

7. Repeat 2 to 6 until all temperatures are recorded

Since the exact capacity of a battery cell is in advance unknown, the initial capacity check
(see enumeration 1) is applied only once before any dynamic measurements are taken. Eight
charge/discharge cycles with different C-rates from 4C to 1C are applied to the battery cell,
due to which the short term history is reduced and the true capacity can be calculated. Due to
the high C-rates, the full capacity of a battery cell can not be exploited, because of which only
the last cycle is used to calculate the capacity. The difference between the quotient of discharge
capacity divided by charge capacity can additionally be used to obtain a charge efficiency for
each cycle. Any battery cell measurements obtained in this work are based on this procedure.

In case of battery modules, the capacity check is due to the cell balancing more difficult.
Nevertheless, in order to achieve the best reproducibility possible, the battery module is fully
charged and balanced before the battery module is discharged to the demanded initial SoC.
Prior to the measurements, a conditioning cooling circuit established the demand temperature
of the battery module.

3.1.2 Test hardware for battery cells

High dynamic current excitation signals such as real load profiles are so far not state-of-the-art,
which implicates that high dynamic battery cell testers with reasonable price are unavailable.
Due to this reason, a battery cell tester is developed based on a Hoecherl&Hackl source/drain
module for closed-loop current control and a National Instruments USB data acquisition board
for the measurements. A LabView control software executed the measurement procedure, kept
any physical constraints and monitored battery states and safety issues. The voltage range is
−1V to 10V and the current range is ±240A. A Vötsch climate chamber, also triggered by the
LabView control software, provided an ambient temperature between −20 ◦C and 60 ◦C (relevant
temperature range for non-road application is between 12.5 ◦C and 35 ◦C). Note that the system
is designed for up to 10 kHz with step response time constants of the source/drain module for
less than 200 µs. Due to the slow system behavior of battery cells, the measurement duration
is very long and an enormous amount of data is generated, if the sampling time is chosen too
high. Any voltage response from the applied excitation signals as well as the cell temperature
are therefore recorded with a sampling rate of 100Hz. In Figure 3.1, the battery cell tester (left)
and the climate chamber (right) are depicted.

3.1.3 Test hardware for battery modules

A battery simulator (KS BattSim) from Kristl, Seibt & Co GmbH, usually designated to emulate
battery models in real time, is adapted to test the available real battery module. The battery
simulator has a voltage range from 500V to 750V and a current range of ±250A. These spec-
ifications are sufficient for the battery module measurements and the emulation of the battery
module during the hybrid powertrain test bed measurements. The current excitation signal is
directly programmed into the control unit of the battery simulator and an implementation of
high dynamic excitation signals is possible. Depending on the purpose of the battery simulator,
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(a) (b)

Figure 3.1: Battery cell tester (left) and climate chamber (right) used to test different cell
chemistries and temperatures.

the control interface is changed. In Figure 3.2, the battery simulator and the real battery module
are depicted.

3.2 Battery cells and battery module specifications

The presented methodologies are data-based approaches that are generically applicable to any
battery chemistry. In order to show this benefit, battery cells with different cell chemistry are
investigated in this work. The three battery cells and one battery module under investigation
are introduced in the following:

Cell A is a prismatic type, energy cell based on the lithium-polymer chemistry, which has a
nominal voltage of 3.7V. Cell B and C are cylindrical type, power cells based on the lithium-
iron-phosphate cell chemistry and have a nominal voltage of 3.3V. The capacity of Cell A is
40Ah, while Cell B and Cell C have a capacity of 4.4Ah and 1.1Ah, respectively. In Figure
3.3, similar battery cells commonly used in HEV are depicted exemplary and compared with a
standard AA sized primary battery cell. The battery module is built by 192 series and 2 parallel
connected cells (192S2P-configuration) of type Cell B, has a nominal voltage of 630V and a
maximal current of ±200A (c.f. Figure 3.2 (b)). Passive cell balancing is established between
the battery cells, but balancing does not start until a 15 minute standby time of the battery.
All battery cells and the battery module allow a temperature range for charge and discharge,
respectively, between 0 ◦C and 40 ◦C, although the investigated and relevant temperature range
in non-road application lies between 12.5 ◦C and 35 ◦C.

3.3 Training data for battery cell models

The methodology of optimal model based DoE, described in Section 2.3, provides excitation
signals, which minimize the parameter variances of the identified battery models. In this work,
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Source: Kristl, Seibt & Co GmbH

(a) (b)

Figure 3.2: Battery simulator (KS BattSim) adapted for battery module testing (left) and real
battery module (right).

Figure 3.3: Exemplary battery cells commonly used in HEV compared to a commercial AA-type
battery cell.
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these signals are used as training data and should be presented exemplary for battery cell B in
the following. Figure 3.4 shows the result for the obtained optimal excitation signal with recorded
voltage response of battery cell B. The current signal and current constraints are depicted in
Subplot two, where currents with more than 100A can be observed. Cell B has a capacity of
4.4Ah, which results in a C-rate of more than 22.5C. Nevertheless, the corresponding voltage
responses for the two depicted temperatures (see Subplot one) and the SoC (see Subplot three),
keep the constraints. Note that even though the constraints of voltage and SoC are indirectly
considered, any constraints are met and the entire relevant range of the SoC is covered.

2.6

2.8

3

3.2

3.4

3.6

 

 

25 Deg Celsius
35 Deg Celsius
Constraints

−100

−50

0

50

100

 

 
Current
Constraints

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

 

 
SoC
Constraints

Enlargement in Figure 3.5

V
o
lt
a
g
e
[V

]
C
u
rr
en

t
[A

]
S
o
C

[-
]

Time [s]

Figure 3.4: Optimal excitation signal obtained from optimal model based DoE for Cell B de-
picted for two temperatures.

In Figure 3.5, one extended excitation sequence is shown in more detail. Subplot two shows
that the optimization considered the current constraints and the maximal current depending on
the SoC, respectively. Furthermore can be seen that high dynamic current is obtained between
the lower and upper current constraints (green and red lines), which is the optimized part of the
optimal model based DoE methodology. Though, the voltage response depicted in Subplot one
shows that the degree of freedom due to the linear reference model has not been fully exploited.
Note that the spread of the current over the dynamic range may also include more intermediate
steps, if a nonlinear reference model is used [149].

3.4 Validation of battery cell model accuracy

The results obtained with LMN battery models are presented in this section. First, the im-
provements due to optimal excitation signals are discussed based on two different LMN battery
models. Second, the generic applicability to different cell chemistries and the influence of the
mentioned nonlinearities are demonstrated. Last, the best LMN battery model is further dis-
cussed in terms of the dynamic accuracy.
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Figure 3.5: Enlarged view of the optimal excitation signal in Figure 3.4 for Cell B at two
temperatures. In the second subplot, the current constraints for the optimization (green and
red lines) as well as the maximal current constraint depending on the SoC (black dashed lines)
are included.
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3.4.1 Battery model quality improvement with optimal DoE

The accuracy of data-based LMN is significantly dependent on the used training data. For this
reason, two local model networks (models Γ1 and Γ2) with the same configuration are identified
by conventional DoE and optimal model based DoE, respectively, to show this dependency. The
benefit can better be seen on a simplified LMN structure, which is chosen to Z12 = [zSoC zHyst] as
partition space and Q12 = [uCurrent] as input space of the models. Since the ambient temperature
is kept constant at 22.5 ◦C, zTemp is excluded in Z12 and zSoC, uRelax are neglected in Q12 in order
to exclusively show the effect of the training data. Following the methodology in [69], a good
compromise for the model order is found by analyzing the mean squared error of a linear model
for different selections of the order and choosing a suitable model order between complexity and
accuracy. The model orders of current and voltage are finally set by mCurrent = nVoltage = 5.

A LMN model with 10 local linear models is used to find a suitable choice for the kernel
function sharpness of the SoC kσ,SoC. The given configuration of the partition space leads to
a good compromise by kσ,SoC,12 = 0.75, which is obtained by comparing different selections of
kσ,SoC with each other. Note that smoothness and strict partitioning is controlled by kσ,SoC,
since the overlapping of the validity functions is increased with a larger kσ,SoC value. A smooth
separation between discharge and charge behavior of zHyst is not physically reasonable, due to
which a desired sharp separation is obtained by kσ,Hyst = 0.05. The threshold for the number of
LLM is predefined by the critical real time limit of the battery emulator control unit (Beckhoff
Industrial PC C6515), which is capable of M = 30 as is obtained by testruns1. Table 3.1 shows
the summary of the LMN configuration parameters for models Γ1 and Γ2.

LMN Structure Configuration Parameters

mCurrent = nVoltage = 5
Z12 = [zSoC zHyst] kσ,SoC,12 = 0.75
Q12 = [uCurrent] kσ,Hyst = 0.05

M = 30

Table 3.1: Summary of the LMN configuration parameters of models Γ1 and Γ2, which are
used to compare the benefits of optimal model based DoE to conventional DoE. The model
parameters are identified by different training data at 22.5 ◦C temperature (c.f. Figure 3.6 and
3.7).

In Figure 3.6, the raw training data for model Γ1 is depicted, where conventional DoE for
Cell C is used to obtain the excitation signal. Hu et al. [65] proposed a step profile training
data, which is similar to the one used. Note that the conventional DoE is more dynamic than
other excitation signals in the literature [149] and is therefore used for comparison with the
proposed experiment design. However, the step profile is established by alternating intermediate
current steps in charge and discharge direction and the variation of the step durations realizes to
cover the entire SoC range. Disadvantageous is that the DoE is very strict in terms of voltage,
since the voltage behavior is not considered. Expert knowledge needs to be used to limit the
current in order to avoid voltage violations. Nevertheless, in the second subplot the applied
current constraints can be seen, which ensure that current, voltage and SoC constraints are
met, although full current capabilities of the battery cell are not exploited by the step profile.
Subplot one includes the training result obtained for the battery model Γ1.

Model Γ2 is identified using an optimal excitation signal obtained with the methodology
proposed in Section 2.3 and adapted for Cell C. The optimal model based DoE is depicted in
Figure 3.7, where in the first subplot the training result of battery model Γ2 is included. Subplot

1CPU usage of the LMN with M = 30 lies between 8 and 12%, which exhausts the real time limits in the used
battery emulator.
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Figure 3.6: Step profile training data adapted for Cell C to be used for the parameter identi-
fication of model Γ1. The temperature is hold at 22.5 ◦C. The training result of model Γ1 is
included in the first subplot.
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two depicts the optimal excitation signal including the applied constraints, which indirectly
consider the voltage and SoC limits, respectively. In comparison to the conventional DoE in
Figure 3.6, the optimal excitation signal has superior dynamics and higher currents, while all
constraints are met.
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Figure 3.7: Optimal excitation signal training data for Cell C at 22.5 ◦C to be used for the
parameter identification of model Γ2. The training result of the model is included in subplot
one.

In order to validate the obtained battery models Γ1 and Γ2 in terms of dynamics and high
currents occurring in non-road applications, a repeated real (current-) load cycle is used, which
does not change the SoC on average. Alternatingly raising/lowering the mean current value of
the cycle, forces the SoC to pass the entire SoC range, due to which the signal is referred to as
SoC validation signal. Note that in the following the maximal current capabilities of the battery
cells under investigation are exhausted by scaling the cycle to the maximal current allowed for
the specific cells. Figure 3.8 depicts the obtained simulation results for the models Γ1 and Γ2.
In Subplot one, the voltage response of the battery and the simulated voltages of the models
are shown. Subplot two and three show the current and the SoC trajectory, respectively. The
ambient temperature during the experiment is kept constant at 22.5 ◦C.

Both models consider the nonlinear relationship between SoC and battery cell voltage, which
is observable by comparing the envelope curves of the maximal voltage values in Subplot one
of Figure 3.8. Nevertheless, a significant average error of model Γ1 (56.25mV) can be seen
compared to the error of model Γ2 (5.44mV). The marked region in Figure 3.8 is depicted in
detail in Figure 3.9.

In Figure 3.9, one cycle is enlarged to show the dynamic behavior of the models Γ1 and Γ2.
In general, the behaviors are similar, but model Γ1 shows a large offset compared to Γ2, which
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the high dynamic requirements of non-road applications. The envelope curves of the maximal
voltage values show a significant higher error of model Γ1.
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is observable in the first subplot. One reason is the lack of high dynamic excitation in the step
excitation signal used to train model Γ1. Due to the optimal model based DoE, an optimal
excitation signal is obtained, which is able to significantly increase the model accuracy at high
dynamic excitation of the battery cells. Even though, C-rates above 9C occur in the validation
signal, satisfactory model accuracy is obtained. For this reason, exclusively optimal excitation
signals are used in the following to train the battery models.

3.4.2 Comparison of battery cell models with different LMN structures and

cell chemistries

The influence of the optimal excitation signals on the LMN battery model quality is presented
in the previous section. In the following, the influence of hysteresis, relaxation and temperature
input on the LMN structure as well as the applicability of the LMN approach to different battery
cell chemistries are discussed in detail. To this end, three different LMN battery model structures
(Γ3, Γ4, Γ5) are validated using two different validation signals (temperature validation signal
and SoC validation signal) and two different cell chemistries (Cell A with lithium-polymer and
Cell B with lithium-iron-phosphate chemistry). The achieved results are then compared with
each other and interpreted.

Training data for the three models is obtained by creating optimal excitation signals for
each cell chemistry separately and measuring the voltage response at 10 different temperatures
between 12.5 ◦C and 35 ◦C in 2.5 ◦C steps. Figure 3.4 shows the optimal excitation signal of Cell
B at two different temperatures exemplarily for all cell chemistries, which are then merged to
one training data set (raw data for identification) for Cell A and B, similarly.

LMN Structure for Γ3, Γ4 and Γ5

Γ3: Z3 = [zSoC zCurrent zTemp], Q3 = [zSoC uCurrent]

Γ4: Z4 = [zSoC zHyst zTemp], Q4 = [zSoC uCurrent]

Γ5: Z5 = [zSoC zHyst zTemp], Q5 = [zSoC uCurrent uRelax]

Configuration Parameters for Γ3, Γ4 and Γ5

mSoC = 1 kσ,SoC,345 = kσ,Temp = 0.6
mRelax = 3 kσ,Hyst = kσ,Current = 0.05

mCurrent = nVoltage = 5 M = 30

Table 3.2: Summary of the LMN configuration parameters of models Γ3, Γ4 and Γ5. The
influence of the hysteresis as well as relaxation input on the model accuracy is illustrated by
different Z and Q. The model parameters are identified by the same training data (c.f. Figure
3.4).

In Table 3.2, the LMN structures and configuration parameters of the models explained in
the following are summarized. The purpose of the simplest model (Γ3) is to provide a reference
to show the influence of hysteresis and relaxation input to the model structure, which are not
considered in Γ3. However, the temperature is considered in the partition space, which follows
by Z3 = [zSoC zCurrent zTemp] and the input space, including the SoC as mentioned in Section
2.2.3, is defined by Q3 = [zSoC uCurrent]. Note that due to the excluded hysteresis input, the
corresponding polarization of the battery cell is not indicated through the current zCurrent at
standby, since zCurrent is only interpolated between charge/discharge behavior. The current
is therefore initially partitioned between positive/negative current instead of charge/discharge
mode, but nevertheless the current effects are considered in model Γ3.

Model Γ4 is improved compared to model Γ3 by replacing the current input with the hysteresis
input, which leads to a partition space Z4 = [zSoC zHyst zTemp] and an input space Q4 = Q3.
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At this point it is important to mention that the complexity of the model is unchanged in this
case. An increase in model complexity is obtained in model Γ5, which includes the relaxation
input in the input space. Hence the input space can be denoted by Q5 = [zSoC uCurrent uRelax]
and the partition space remain the same (Z4 = Z5). Note here, that any in this work mentioned
nonlinear and/or electrochemical effects are considered in model Γ5.

In terms of the configuration parameters, the objectives remain the same as for the models
Γ1 and Γ2 and can therefore directly taken from Table 3.1. Therefore, the parameters for models
Γ3, Γ4 and Γ5 follow to mCurrent = nVoltage = 5, kσ,Hyst = 0.05 and M = 30, while kσ,Current =
kσ,Hyst = 0.05 is set for the sharpness factor of the current input to achieve a sharp separation
between charge and discharge behavior. In case of the optimal kernel function sharpness of
the SoC and temperature, kσ,SoC,345 = kσ,Temp = 0.6 slightly increases the smoothness of the
validity function and is therefore chosen for the temperature input. The SoC input has no
dynamic influence on the system behavior, for which reason the order of the input is set straight
forward to mSoC = 1. Because filt(·) of the relaxation input is established using a third order
low pass filter, the order within the LMN model is also set straight forward to mRelax = 3.

The validation of the battery models is achieved using the two mentioned validation signals
for temperature and SoC, while the SoC validation signal is already introduced beforehand and
slightly improved. Aim of the temperature validation is to show the model accuracy in case of
temperature changes and different SoC values. Due to this reason, the ambient temperature
is heated up to the upper level of 32 ◦C and cooled back to the lower level of 18 ◦C, while the
aforementioned real load cycle is continuously applied to the battery cell. This procedure is
repeated for different SoC levels and is referred to as temperature validation signal.

The SoC validation signal, as introduced earlier in this section, is furthermore improved
to strengthen the significance of the validation by alternatingly raising/lowering the current
mean value in between the repetitions of the cycle. Due to the more often changed average
charge direction, the dynamic behavior is more excited and proves the battery model therefore
with more significance. Though, the entire SoC range is covered. In the next subsection, the
temperature validation signal and SoC validation signal are described in terms of the dynamic
behavior and depicted in Figures 3.10 and 3.12, respectively.

Based on the mean squared error and a normalized root mean squared error (NRMSE) as
given in eq. (3.1), the model accuracy can be evaluated. The NRMSE can be denoted by

eNRMSE,% =

√√√√ 1

Ns

Ns∑

i=1

(
yi − ŷi

max(y)−min(y)

)2

· 100%, (3.1)

where Ns is the number of samples, y is the measured output and ŷ is the simulated output. Note
that the different cell chemistries have different nominal voltages, due to which a normalization
of the measured output values in eq. (3.1) is required in order to allow a direct comparison
between the different battery model accuracies. Table 3.3 presents the MSE and NRMS values
for the different LMN architectures and cell chemistries.

In Table 3.3, a continuous decrease in the error values is observable from model Γ3 to
model Γ5. Reasons are the included hysteresis input (Γ4) and the increased complexity (Γ5)
similar for both cell chemistries. The interpolation between the charge/discharge behavior at
standby current in model Γ3 is not physically appropriate, while in contrast, the corresponding
polarization is indicated through the hysteresis input in model Γ4 and Γ5. In terms of the
electrochemical behavior of battery cells, models Γ4 and Γ5 are more physically appropriate and
therefore the model accuracies are improved.

The time constants of electrochemical batteries are usually very different, due to which a
high sampling rate is required for the measurements since otherwise the fast dynamic behavior
is not considered in the recorded data. A fast sampling rate causes a highly correlated data set
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Battery Cell: Cell A Cell B

Criterion: MSE NRMSE MSE NRMSE

Temp. Val. Sig. Γ3 2.935e−4 2.059% 7.592e−4 2.671%
Γ4 2.668e−4 1.963% 6.585e−4 2.487%
Γ5 2.447e−4 1.752% 5.236e−4 2.218%

SoC Val. Sig. 20 ◦C Γ3 3.711e−4 2.537% 5.652e−4 2.933%
Γ4 3.559e−4 2.485% 4.811e−4 2.706%
Γ5 1.431e−4 1.438% 3.386e−4 2.270%

SoC Val. Sig. 25 ◦C Γ3 - - 4.622e−4 2.928%
Γ4 - - 4.094e−4 2.756%
Γ5 - - 3.109e−4 2.402%

SoC Val. Sig. 30 ◦C Γ3 - - 3.633e−4 2.847%
Γ4 - - 3.393e−4 2.752%
Γ5 - - 2.496e−4 2.360%

Table 3.3: Validation error values for the LMN battery models Γ3, Γ4 and Γ5 as defined in Table
3.2. The error values are shown for Cell A and B, respectively. Comparing the models with
each other, independent from the cell chemistry, model Γ5 has the best model accuracy, model
Γ3 the worst and model Γ4 denotes intermediate accuracy.

though and leads to numerical problems due to ill-conditioning at the parameter estimation [12],
[94]. This phenomenon is referred to as redundance [12]. The used sample time of 100Hz makes
a precisely identification of the corresponding relaxation time constant within the dynamic
behavior very difficult. Therefore, the relaxation input of model Γ5 is used to provide the
required information of the slow relaxation time constant. As is observable in the results, this
improves the accuracy significantly.

Based on Table 3.3 and the corresponding MSE/NRMSE values, the best model accuracy of
the three discussed models (Γ3, Γ4, Γ5) is achieved by model Γ5, which is discussed in detail in
the following.

3.4.3 Dynamic accuracy of the LMN battery models

Previously only the error values are used to evaluate the battery model accuracy. In the fol-
lowing, the dynamic accuracy achieved with the introduced battery model Γ5, which considers
all relevant electrochemical effects, is discussed in detail in terms of relaxation, hysteresis and
temperature influence. The dynamic behavior of the measured cell chemistries are all similar,
due to which the resulting plots are depicted for Cell B only. Figure 3.10 shows the temperature
validation signal, where SoC and temperature trajectory are depicted in Subplot three and four,
respectively.

The measured voltage response and the simulated cell voltage using model Γ5 can be seen
in Subplot one in Figure 3.10. Clearly observable is the dependence of the model output on the
ambient temperature. A changing time constant of the relaxation effect, which is not considered
in the constant time constant of the filter input, causes a model mismatch at the beginning of
the dynamic excitation at the different SoC levels. Nevertheless, following Table 3.3, the model
accuracy is increased significantly due to the relaxation input. Since high battery currents (more
than 20C) occur in non-road applications, the training data is focused to high dynamically excite
the battery behavior, which leads to a lack of sufficient information at low constant current
(below 2C). This is observable at the small model mismatch during transition to the different
SoC levels using low constant currents. Note that the continuous change between charge and
discharge prevents to observe the hysteresis effect directly in Figure 3.10. Influence and benefit
due to the hysteresis input are verified explicitly by the error values in Table 3.3 though. Figure
3.11 shows an enlarged view of the marked region (Enlargement (a)) in Figure 3.10.

In Figure 3.11 one load cycle is shown in an enlarged view. Enlargement (a) depicts the volt-
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Figure 3.10: Resulting plot of the temperature validation signal applied to Cell B and the
simulated cell voltage using model Γ5. The real load cycle is repeated at different SoC levels
while the ambient temperature is heated up to the upper level of 32 ◦C and cooled back to the
lower level of 18 ◦C.
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Figure 3.11: Resulting enlargement plots of the temperature validation signal (see Figure 3.10)
applied to Cell B. Enlargements (b) and (c) as defined in (a).

age and temperature signal, while enlargement (b) and (c) show the corresponding enlargement
of the marked regions in enlargement (a). The model dynamics, as can be seen, are sufficient for
non-road applications. A comparison between enlargement (b) and (c) shows the slightly bigger
voltage error in enlargement (b) due to the mentioned changing time constant of the relaxation
effect.

Figure 3.12 presents the resulting SoC validation signal at 20 ◦C, 25 ◦C and 30 ◦C constant
ambient temperature, where the temperature influence on the voltage behavior is clearly ob-
servable.

Subplot four in Figure 3.12 shows the invariant model error for the different temperatures,
which never exceed a maximum error of 90mV and stay within a small tolerance tube. Hence,
it can be concluded that the SoC and temperature are considered in the battery model since the
error does not depend on the changing SoC or temperature. In Figure 3.13 the marked region
in Figure 3.12 is depicted in detail, where one real load cycle with current rates above 20C at
30 ◦C ambient temperature can be seen.

The nonlinear behavior at low SoC is especially distinctive. In Figure 3.13 it can be seen that
although the SoC is low and high current values (above 20C) occur, the LMN battery model
represents the underlying strong nonlinear behavior of the battery cell accurately.

3.5 Battery cell temperature model accuracy

In order to simulate the battery model without measured signals, the temperature is required as
model input. The simple temperature model proposed in Section 2.4 is able to provide sufficient
accuracy for the simulation of the cell temperature. Based on the same training data used
for the battery cell identification, the cell thermal capacity and heat transfer coefficient can
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Figure 3.12: Resulting plot of the SoC validation signal applied to Cell B at three different
ambient temperatures (20 ◦C, 25 ◦C and 30 ◦C). An enlarged view of the marked region is
depicted in Figure 3.13.
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Figure 3.13: Enlarged view of marked region in Figure 3.12. One real load cycle applied to Cell
B at 30 ◦C ambient temperature. Simulation result of battery model Γ5 at applied current rates
above 20C.
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be identified. For Cell B, the temperature model parameters are obtained to cp = 833.34Ws
K

and hout = 3.686W
K
, respectively, which leads to the temperature model accuracy shown in

Figure 3.14. The first row of subplots shows the measured and simulated cell temperature,
respectively, for the optimal excitation signal, the SoC validation signal and the temperature
validation signal. In the second row of subplots, the corresponding errors are depicted, while
in the third row, the ambient temperature is shown. As can be seen is that the model quality
is accurate, while only the transient temperature changes of the temperature validation signal
shows higher errors. This is caused by the external mounted temperature sensor, which is in
case of the temperature validation signal more influenced by the strong gradient of the ambient
temperature. Nevertheless, these ambient temperature gradients usually do not appear in real
non-road vehicles, due to which the temperature model is legitimized. Note that the two error
peaks in the SoC validation signal result from the merging of the validation signals and is
observable at the non realistic steps in the ambient temperature signal.
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Figure 3.14: Result obtained for the temperature model of Cell B.

3.6 Battery module model accuracy

The used battery module is built with ncells = 192 series and pcells = 2 parallel connected cells
of type Cell B. Hence the obtained LMN battery cell model Γ5 (cf. Table 3.2) can be used for
the simulation of the battery module behavior, which is discussed in the following. Note that
the balancing is activated after 15 minutes in standby mode and thus has no influence in the
following.

Due to the limited time capacities at the test bed, only step profiles at three different
current levels are measured to create a set of training data for the battery module parameter
identification. Nevertheless, the training results showed that the step profile with the full current
coverage is sufficient. In Figure 3.15 the used step profile is depicted.

In the first subplot of Figure 3.15, the voltage behavior as well as the training results for
the four proposed module models are depicted. The corresponding current and SoC signals are
shown in the second and third subplot, respectively. In the last subplot, the absolute value of
the voltage difference between measurement and model (error) is shown. It can be observed
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Figure 3.15: Training data for battery module models
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that the error values are very small for all model approaches. An enlarged view of the training
data is depicted in Figure 3.16.
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Figure 3.16: Enlarged view of the marked region in Figure 3.15.

The error of the battery models is again depicted in the last subplot of Figure 3.16. Clearly
observable is the significantly higher error of the simple model Σ1, which does not consider the
internal resistance of the battery model. The other models are similar to each other, which
indicates that the internal resistance is the major influencing effect beside the electrochemical
effects considered by the LMN battery cell model. In order to validate the battery module
models, a SoC validation signal is generated that is based on the scaled real load cycle as
introduced for the battery cell validation. The repeated real load cycles are superposed with
zero, negative and positive constant currents, respectively, to obtain the system behavior across
the entire SoC range. Figure 3.17 depicts the SoC validation signal used for the battery module.

Subplot one of Figure 3.17 shows the measured as well as simulated voltages. The second
subplot shows the current signal, where can be seen that the full current range is exploited. In
subplot three, the SoC profile is shown, which passes the entire range of SoC used in non-road
vehicles. The last subplot shows the model errors, where the difference between model Σ1 and
the other models Σ2, Σ3 and Σ4 is clearly observable. Note that the reason for the peak errors
at the transitions, results from data set merging, since a continuous measurement of the entire
SoC validation signal is not supported by the battery tester. Nevertheless, Figure 3.18 shows
an enlarged view of the validation signal.
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Figure 3.17: Validation data for battery module models.
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Figure 3.18: Enlargement of Figure 3.17: Validation data for battery module models.
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As can be seen in Figure 3.18, all models are able to depict the high dynamic behavior of
the battery module, while only model Σ1 has a slightly larger mismatch. Although a current of
almost ±200A is applied to the battery module, the accuracy is superior. Nevertheless, model
Σ4 has a slightly better overall accuracy compared to the other models. This is also observable
in the MSE and NRMSE (cf. eq. (3.1)) values obtained for the SoC validation signal as shown
in Table 3.4.

Criterion: MSE NRMSE

Model Σ1 27.8851 2.5962%
Model Σ2 7.5727 1.3529%
Model Σ3 6.9949 1.3003%
Model Σ4 6.5871 1.2618%

Table 3.4: Battery module SoC validation signal error values for the LMN battery module
models Σ1, Σ2, Σ3 and Σ4.

Table 3.4 shows the slightly increase in accuracy due to the considered voltage offset and
current dependent parameters, respectively. Nevertheless, a NRMSE clearly below 2% is worth
mentioning.

3.7 SoC estimation accuracy

The SoC estimation is essential in non-road vehicles, since the occurring high power densities
cause measurement inaccuracies of the on-board sensors. Thus large SoC mismatches during
operation are observable in case of a current accumulated SoC. Several initializations during
operation are required to increase the accuracy, but mostly non-road vehicles are operated
without breaks due to which a SoC reset based on standby conditions is not possible. For
the SoC validation signal of the available real battery module, in Figure 3.19, the comparison
between the current accumulated SoC and the implemented BMS SoC is depicted. At this point
it is important to mention that a high accurate current sensor implemented in the battery tester
is used to measure the current signal, which admits the comparison.

The first, second and third subplot in Figure 3.19, show the voltage, current and SoC signal,
respectively. In the last subplot, the difference between the current accumulated SoC and the
BMS provided SoC is depicted, where a significant mismatch is observable clearly. Note that
the SoC validation signal is not measured in one test run, due to which the observable SoC drift
of the real BMS is cleared after the cycles without superimposed constant current. Based on
this information, the assumption of inaccurate SoC estimation of the BMS is shown to be true.

In the following, the results achieved with the LMN based SoC estimation for the battery
module are presented. Since cell monitoring is important in terms of safety issues of battery
modules, the SoC estimation methodology is also appliciable to battery cells. To this end, SoC
estimation results obtained for the battery cells are presented additionally. Nevertheless, an
overall SoC estimation is desired, for which the module SoC estimation is of main interest.

3.7.1 Battery module SoC estimation results

The battery module model Σ4 is used in the fuzzy observer to estimate the SoC of the battery
module. As discussed in Section 2.6.2, estimation accuracy of the Kalman filters can be tuned
by choosing the corresponding process Q = 1 · Q and measurement R = 1 · R noise variance
matrices, where 1 ∈ IRn×n indicates a one matrix with corresponding dimension n. For the
given battery module, a measurement noise variance is chosen to R = 25000, while the process
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Figure 3.19: SoC estimation accuracy shown on a SoC validation signal measured at a real
battery module.

noise variance is chosen between Q = 0.01 and Q = 1 to show the influence. In Figure 3.20 the
results are depicted.

The upper subplot in Figure 3.20 shows the estimated SoC, while in the lower subplot, the
difference to the current accumulated SoC is depicted. It can be seen that the accuracy increase
with smaller process noise, which in other terms can be interpreted as larger weighting of the
current accumulation within the augmented observer model. The disadvantage of a small Q
is though that the convergence in case of a wrong initial SoC is significantly slower. Since
usually a correctly approximated initial SoC value is obtained after standby, the OCV based
SoC estimation is accurate enough to initialize the fuzzy observer and the process noise can
be chosen small. Nevertheless, the convergence speed of the filter is also important and the
performance of the observer in terms of convergence should be discussed in the following. To
this end, unrealistic initial SoC values are used to test the convergence speed of the filter with
different process noise variances. In Figure 3.21, the results for initial SoC at SoCinit = 0% and
SoCinit = 200% are depicted. Note that SoCinit = 200% is not feasible in general, but shows
that the filter converges from any initial SoC.

As can be seen in the second subplot, the larger choice of the process noise variance has
a positive influence on the convergence speed, but the accuracy at converged state is poor.
Therefore, a trade off between a fast convergence and SoC estimation accuracy needs to be
made and the best application specific alternative must be chosen. In comparison to the SoC
value obtained through the BMS of the module, the differences are low due to the precise LMN
based battery model. Nevertheless, small process noise leads to unsufficient performance, since
the actual SoC of the module can not be reached, if the initial SoC is to far from the actual
value.

3.7.2 Battery cell SoC estimation results

Since monitoring purposes of the BMS are also important, in the following, the SoC estimation
applied to battery cells is reviewed shortly. The BMS requires to monitor the single cell voltages
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Figure 3.20: Accuracy of LMN based SoC estimation on real battery module.
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Figure 3.21: Convergence of LMN based SoC estimation on real battery module.
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and conditions, which provides the possibility to estimate the cell SoC beside of the module SoC
simultaneously. Note that the estimation of the cell SoC is more difficult than the module SoC,
since an already very small voltage difference indicate a large SoC difference. This is caused by
the flat discharge voltage behavior as discussed in Section 2.2.3 and Figure 2.5. Nevertheless,
similarly to the battery module, the filter parameters can be chosen correspondingly to the
desired filter properties.

Based on the merged SoC validation signals measured at different temperatures, the SoC
estimation of battery cells should be presented. In Figure 3.22, the validation data is depicted.
The merging of the individual data sets can be observed clearly in the temperature and SoC
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Figure 3.22: SoC estimation accuracy shown on the SoC validation signal at different tempera-
tures measured on battery Cell B.

signal, respectively, where steps in the ambient temperature and SoC due to a SoC reset occur.
In Figure 3.23, the battery cell SoC estimation results for the initial SoC values SoCinit = 0%,
SoCinit = SoC and SoCinit = 200% are depicted, which are obtained for a chosen measurement
noise variance of R = 1 · 25000 and a set process noise variance of Q = 1 · 100.01.

The convergence of the filter is observable clearly in Figure 3.23, where at the end of the
signal, all SoC signals are almost identical. Although the initial condition of SoCinit = 200% is
physically impossible, the filter is able to converge to the correct SoC. As can be seen in Subplot
two of Figure 3.23, the accuracy for the first SoC validation signal is better in comparison to the
others, although a SoC estimation error for the discharge part of the signal is observable. This
is caused by the model mismatch, although the accuracy of the LMN battery cell model is high.
For the higher temperature validation signals, the error is significantly higher, because the SoC
is reset in the reference SoC integration. In combination with the model mismatch, this leads
to an estimation error of up to 10%. Nevertheless, the voltage behavior is very similar around a
wide range of approximately 50% SoC, which makes an accurate estimation significantly below
10% very difficult. In comparison with the battery module SoC estimation, this influence is
reduced due to the higher voltage deviations.
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Chapter 4

Energy Management

4.1 Introduction

The energy management in hybrid electric vehicles in non-road application is the superordinated
control of the overall energy flows and influences the system behavior of the powertrain signifi-
cantly. Minimization of the overall energy flows, exhaust emissions as well as fuel consumption
are the primary objectives of the EMS, while all physical constraints of the system need to be
taken into account [130]. Due to the multiple energy conversions from and into the battery, the
minimization of the losses is essential and can only be achieved by an optimization of the overall
system. However, in general the overall system is strongly nonlinear and differs significantly
between different applications. A generic EMS in terms of applicability and cost reductions is
therefore favorable. In this chapter, the energy management system is described in detail and
methodologies to improve the EMS performance are introduced.

4.1.1 Challenges for energy management systems

Characteristic for non-road vehicles is the unknown high dynamic load acting on the power-
train. Compared to on-road vehicles, the driving directions and conditions as well as working
tasks change very often in non-road vehicles and depend directly on the driver. In this context,
the control of the powertrain has to cope with these circumstances to fulfill the requirement
of a robust operation and the obviation of engine stalling. Additional to the external circum-
stances, different strategies such as a limited ICE torque gradient to reduce exhaust emissions
(phlegmatisation) [93], [110] and a lowered average rotational speed to reduce fuel consumption
(downspeeding), influence the degrees of freedom to control the powertrain.

Vehicle misuse or driver errors often lead to unexpected load peaks, while noise corrupted
(measured) variables pretend the wrong actual state of the vehicle. Especially the actual load
value, which is obtained by the calculation from different signals, and the torque values, which
are obtained by the control units instead of being measured, are relevant for the controller. In
terms of minimization of the losses, cyclical operated vehicles are often especially challenging,
because higher SoC variations increase the usage of the electrical system. Nevertheless, the
potential for fuel and emission reduction of cyclical operated vehicles is higher if the load cycle
can be considered in the EMS. The required predictions of the future load trajectories are
difficult to achieve though and can only be based on statistical evidence, which is subject to
inaccuracies. Driver information, which is mostly not available in advance, can be considered
for prediction of the future load requirements, but however, the difficulty is to predict the future
load cycle sufficiently accurate and in particular at often changing load cycles. In the end, a
multidimensional nonlinear optimization problem results that needs to be solved in real time
in each time step to obtain the optimal control values, which is additionally tightened by the
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nonlinear behavior of the electrical system [97].

4.1.2 State-of-the-Art

The field of EMS in HEV is strongly investigated, while only some of the authors consider
load predictions to improve their proposed energy management systems. In the following, the
state-of-the-art in EMS and load prediction is reviewed.

Desai et al. [29] classified and compared various control strategies to provide novel develop-
ment directions in HEV. In [115], three different energy management approaches are compared,
but a priori knowledge of the future load demand is not considered. A model based strategy to
control the load of an on-road parallel HEV is proposed in [129], which also does not include the
future driving conditions in the concept. In [92], dynamic programming is applied to simula-
tion data in order to extract a rule-based controller as power management for a parallel hybrid
truck. By accepting a small increase in fuel consumption, real time capability and a significant
emission reduction could be achieved by the extracted controller. Poursamad et al. [120] tuned
a genetic-fuzzy control strategy with a genetic algorithm based on three driving cycles including
NEDC1, FTP2 and TEH-CAR3. Stochastic dynamic programming is used by [105] to optimize
a power management for plug-in HEV over a distribution of drive cycles, rather than a single
cycle. Furthermore, fuel and electricity usage are explicitly traded off and the impact of vari-
ations in relative fuel-to-electricity pricing is considered. In general, off-line optimization may
lead to suboptimal control of non-road vehicles, since the load demand is unknown in advance.

For on-road vehicles several approaches are known that predict the future load demand in
order to be considered in the energy management. An approach with exponentially decreasing
torque demand across the prediction horizon is used by [167] and [15]. Lin et al. [91] proposed
a driving pattern recognition to classify the current state into one of six representative driving
patterns for which implementable sub-optimal controllers are extracted. Analytical approaches
for future load demands are very difficult or impossible to find, since load trajectories of non-road
vehicles are normally unknown in advance. A genetic-fuzzy HEV control is used by [104], which
classifies driving patterns by Hidden Markov models. Hulnhagen et al. [67] used a probabilistic
finite-state machine to merge basic maneuver elements to a driving pattern of on-road vehicles.
The classification into driving patterns or basic maneuver elements are not suitable for non-road
HEV, because in most non-road applications the elements are not clearly assignable. Since map
information is not available for non-road vehicles, GPS data based path-forecasting for trajectory
planning (c.f. [77, 39]), as mentioned for on-road vehicles by [130] and [5], is not feasible. Payri et
al. [114] extracts an estimate for the future driving conditions by analyzing the power demands
in a given receding horizon and uses the information in a stochastic controller. The prediction of
recurrent load cycles used by [101] is based on the cross correlation function algorithm proposed
by [95] that originally detected cycle boundaries automatically for a statistic evaluation. The
disadvantage of the autocorrelation function is the slow detection of a changing load cycle at
significantly different cycle times [152].

In summary, no on-line implemented MPC for non-road application is known, that features
real time prediction of the future load demand in the MPC.

4.1.3 Solution approach

In the following, a cascaded control concept is proposed for the parallel hybrid powertrain
schematically depicted in Figure 1.4. Additionally, two methodologies are presented to predict
the future short term load and to detect recurrent load cycles in the past load signal. The

1New European Driving Cycle
2EPA Federal Test Procedure
3Car driving cycle for the capital city of Tehran.
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proposed cascaded control concept consists of two separate controllers, which are both designed
as model predictive controllers. In this context, MPCs provide the required possibilities to
achieve an optimization of the overall system with consideration of the load predictions [100].
Note that an advanced solving algorithm as presented for the optimization problem and sufficient
computational capabilities in the HCU are required to achieve real time capability.

The operation of the powertrain on the optimal load cycle trajectory can increase the overall
efficiency and fully exploit the battery capacity. To this end, the cross correlation function
(CCF) is used by a cycle detection algorithm to identify a recurrent load cycle within the past
load signal that is further used to built the future load trajectory for the master MPC. Based on
the detected recurrent load cycle, the master MPC is designed to provide the optimal operation
point of the ICE as demand value for the slave controller, while the SoC of the battery is kept
at the demand SoC and constraints as well as the nonlinearities of the electrical system are
considered. In this context, the electrical system of the hybrid powertrain provides to boost at
high load demands and to recuperate regenerative loads, but the battery capacity and physical
constraints restrict it’s usage, which furthermore reduces the degrees of freedoms to a certain
operation range of the ICE. Within the master controller, a nonlinear optimization problem
results, which is iteratively solved by a real-time capable relaxation approach.

Purpose of the slave MPC is to apply the demands of the master MPC to the powertrain,
while constraints are considered. The ICE dynamics is significantly limited by the phlegmatisa-
tion and downspeeding strategies, which is disadvantageous for the high dynamic requirements
of non-road vehicles. However, in order to prevent engine stalling and being able to lower the
average rotational speed of the powertrain, Bayesian inference is applied to statistically predict
the future short term load by means of available vehicle information such as accelerator position
or driving speed (load prediction algorithm). This approach provides insight into the intentions
of the driver and allows an increase of the rotational speed in case of sudden load peaks, which
compensates the disadvantage of the restricted ICE dynamics. Nevertheless, the short term load
prediction is based on probabilities and misprediction is considered. Furthermore, the conver-
gence of the master MPC and the essential stability of the slave MPC are discussed, since the
controller directly acts on the vehicle.

4.2 Basic concept of model predictive control

Model predictive control is an advanced method in control theory, which is suited to solve
constrained control problems in the time domain. Different types such as Dynamic Matrix
Control (DMC), Model Algorithmic Control (MAC), Generalized Predictive Control (GPC),
etc. are known, but the main principle is similar for all approaches. The idea of the concept
is to obtain the control moves for a process based on an on-line optimization of an objective
(cost) function. A dynamic process model is used to predict the system output over a so called
prediction horizon. In order to minimize the control error, the sequence of control moves over a
so called control horizon, is optimized until the cost function reaches a minimum. Only the first
control move in the obtained sequence is applied to the plant, the horizons are moved for one
sample (receding horizon principle) and the optimization is done anew.

Process Model The process model has a substantial influence on the MPC. It is therefore
important that the process model fully captures the process dynamics and allows accurate pre-
dictions of the output. In general two main methodologies can be used to obtain a process
model: Modeling by physical principles to obtain a white box model or data-based system iden-
tification to obtain a black box model. Independent to the method of parameter determination,
different types of process model representations can be used in the MPC. Commonly a state
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space representation

x(k + 1) = Ax(k) +Bu(k) +Ez(k), (4.1)

y(k) = Cx(k), (4.2)

is implemented though, where A,B,C,D,E are the system matrices including the system
dynamics, x is the state vector, u is the input vector, y is the output, z is the disturbance
vector and the time instant is denoted by k.

Real processes are in many cases nonlinear, which means that system parameters depend
on system states or/and time. Linearization is one possibility to map the system behavior into
one invariant SS-system with the disadvantage of reduced model accuracy. Nonlinear system
behavior can be represented by e.g. local model networks (see Section 2.2), which use in principle
local linearizations to calculate the nonlinear system behavior. A fuzzy MPC [4] can handle the
LMN model to consider the nonlinearities. Another nonlinear MPC approach is presented in
the following sections and more information can be found in e.g. [2].

In Figure 4.1, the principle of MPC is depicted for a single-input-single-output (SISO) sys-
tem. The blue trajectory indicates the system output, if the red control moves and the grey
disturbance acting on the plant, while the green trajectory shows the system states. As can be
seen in the figure, the input and state trajectory keep the applied constraints of the plant.
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Figure 4.1: Principle of model predictive control trajectories

Prediction and Control Horizon As can further be seen in Figure 4.1, the control moves are
kept constant on the last calculated value u(k+ i) = u(k+nc) for i = nc, . . . , np−1 until the end
of the prediction horizon np [4], [159]. In order to predict further into the future, the prediction
horizon np is chosen larger than the control horizon nc, since nc determines the number of
manipulated variables and thus affects the computation time. Due to the process model, the
predicted output values ŷ(k + i|k), i = 1, . . . , np are influenced by the current state of the
process at time instant k and the future control moves u(k+ i), i = 0, . . . , nc− 1. However, the
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prediction and control horizons are tuning parameters and no general rule for optimal horizons
exists.

Objective Function In order to optimize the control moves, an objective function needs to
be formulated. A common cost function J is

J =

np∑

i=1

Qi[r(k + i)− ŷ(k + i|k)]2 +

nc∑

i=1

∆uT (k + i− 1)Ri∆u(k + i− 1), (4.3)

where np and nc denote the prediction and control horizon, respectively, the prediction of the
output is indicated by ŷ(k + i|k), i = 1, 2, . . . for time instant k at prediction instant i and Qi,
Ri weight output error and control effort, respectively. Note that in absence of constraints, an
explicit analytical solution can be found, due to the quadratic nature of the cost function.

4.3 Cascaded model predictive controller design

In this section, the cascaded model predictive controller design for parallel hybrid electric vehicles
is discussed. The architecture and system models are developed first, before constraints and both
MPCs are discussed in detail. Methodologies to predict the future load trajectory are discussed
in the next section (see Section 4.4).

4.3.1 Architecture of the control concept

In the following the controller architecture is briefly discussed to give a better overview of the
concept. The powertrain consists of significantly different dynamics. Rotational speed and the
torques represent fast dynamics within the ms time range. On the other hand, the battery’s state
of charge is only slowly changing within the seconds time range. This difference is addressed by
the cascaded control concept, which include a slow master controller and a fast slave controller
both established as MPC. However note that the interaction between inverter and battery also
has a fast electrical impedance time constant, which is not relevant to the in this work referred
change in SoC [52].

Fast
Dyn.

Slow
Dyn.

Slave
MPC

Master
MPC

Cycle Det. Load Pred.

α, nGW

Pload

SoCdmd
ωdmd

Tice,dmd

Tice,set

Tisg,set
Tice

Tisg

ω

SoC

ZCD ZLP

Controller

Vehicle

Figure 4.2: Overview of the cascaded controller scheme.

In Figure 4.2, the concept is depicted schematically, where the yellow area represents the
EMS and the gray area the vehicle. The load Pload (red) acts as the unknown disturbance of the
powertrain, nGW is the driving speed and α is the accelerator angle that is directly influenced
by the driver. Note that the actual SoC can be obtained by the SoC estimator presented in
Section 2.6 and is therefore assumed to be known. The aim of the master MPC is to hold the
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control variable SoC at the demand value SoCdmd, while a full recurrent load cycle as well as
all constraints are considered. In the concept, the cycle detection (Cycle Det.) provides the
predicted future load trajectory ZCD for the master MPC, while due to an optimization, the
optimal values for the demand rotational speed ωdmd and ICE torque Tice,dmd are obtained.
Note that the prediction of the SoC trajectory within the master MPC depends on the battery
conditions and is thus strongly nonlinear. In principle, the output of the master MPC defines the
operation point of the ICE. The aim of the slave MPC is then to compensate unpredicted short
term load peaks by considering the load prediction (Load Pred.) methodology that provides
the short term load trajectory ZLP for the slave MPC. Constraints are especially important to
be kept by the slave MPC, since the manipulated variables ICE torque Tice,set and ISG torque
Tisg,set directly act on the vehicle. In this context, it is worth mentioning that the rotational
speed ω is only controlled by ICE torque Tice and ISG torque Tisg, respectively. Note that
sufficient powertrain dynamics in case of strong load gradients must be guaranteed, which due
to the slow sampling time ts,m = 0.25 s of the master MPC must be compensated by the slave
MPC. To this end, also not or wrong detected load cycles must be compensated. The CD and
LP methodologies aim to find the a-priori unknown future load trajectories only based on the
actual during operation available system states Pload, α and nGW , which is discussed in more
detail in the next subsection (cf. Subsection 4.4).

4.3.2 System models for controller design

The models for the slow as well as fast system dynamics of the plant are required by the design
of the MPCs and are developed in the following.

First order lag elements and the principle of angular momentum, respectively, can be used to
model the fast dynamics of the rotational speed and the torques in the continuous time domain
(c.f. [121, 34]), which follow to

Tice(t) + Tisg(t)− Tload(t) = Θ ω̇(t), (4.4)

τice Ṫice(t) + Tice(t) = Tice,set(t), (4.5)

τisg Ṫisg(t) + Tisg(t) = Tisg,set(t). (4.6)

In equations (4.4)-(4.6), the powertrain’s total moment of inertia is denoted by Θ, the time
constants of the torques are denoted by τice, τisg and Tload(t) = Pload(t)/ω(t). The ICE is in
general a nonlinear system, but the dependence of Tice on ω is neglected. In order to consider the
variant time constant of the ICE, τice can be updated in each time instant to improve the control
quality of the slave controller. Nevertheless, for the main focus of this work, the simplified model
of the ICE dynamic is satisfactory because important is that time delays from the components
are addressed in the process model of the controller and feasibility of the concept can be shown.

For the SS-representation of the slave MPC process model, the input vector us, state vector
xd,s, output yd,s and disturbance zs can be chosen to

xd,s =



ω
Tice
Tisg


 , yd,s = ω, us =

[
Tice,set
Tisg,set

]
, zs = Tload, (4.7)

while the fast sampling time of the slave controller is defined by ts,s = 10ms. The discrete linear
state space slave controller model is obtained by

xd,s(k + 1) = Ad,sxd,s(k) +Bd,sus(k) +Ed,sTload(k), (4.8)

ω(k) = Cd,sxd,s(k), (4.9)
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where

Ad,s =



1

ts,s
Θ

ts,s
Θ

0 τice
τice+ts,s

0

0 0
τisg

τisg+ts,s


 ,Cd,s=

[
1 0 0

]
,

Bd,s =




0 0
ts,s

τice+ts,s
0

0
ts,s

τisg+ts,s


 , Ed,s =



ts,s
Θ
0
0


 .

(4.10)

The process model for the master MPC needs to constitute the relation between ISG torque and
the resulting battery SoC. Based on the fact that integral of the battery current I(t) and SoC
are proportional [51], a corresponding model is obtained by

SoC(t) = SoCinit +
1

Qc,batt

∫ t

0
ηbatt,Cou(I(ν)) I(ν)dν, (4.11)

I(t) = kI (Tisg,dmd, ωdmd, V )Tisg,dmd(t), (4.12)

where SoCinit is the initial SoC of the battery. The relation between current and SoC is defined
by battery capacity Qc,batt and coulombic efficiency ηbatt,Cou, while the proportionality between
ISG torque and current is denoted by kI . Note that the battery current I(t) is a nonlinear
function of ISG torque, speed and battery voltage. Since the voltage depends on the current
itself, the equations lead to an implicit form [101].

The difference between load and ICE torque define the ISG torque, which follows to

Tisg,dmd(t) =
Pload(t)

ωdmd(t)
− Tice,dmd(t). (4.13)

The nonlinear proportionality kI is invariant during transient operation and can therefore stat-
ically determined by testbed measurements. A characteristic map of kI can be extracted, which
includes the motor and drive efficiencies at different voltage levels. By means of analytical
polynomial surface approximation of each voltage level of the identified characteristic map, the
current can be expressed by

I(ωdmd, Tisg)v = p00,v + p10,v ωdmd + p01,v Tisg + p20,v ω
2
dmd + p02,v T

2
isg + p11,v ωdmdTisg, (4.14)

where pij are least squares identified parameters and v corresponds to the voltage level. Note
that the analytical approximation has sufficient accuracy and simplifies the further process
significantly. Differentiation of I(ωdmd, Tisg)v with respect to the ISG torque follows to

kI,v =
dI(ωdmd, TISG)v

dTisg
= p01,v + 2 p02,v Tisg + p11,v ωdmd. (4.15)

In order to obtain the value of kI , the obtained analytic equation for kI,v can be linearly inter-
polated between the different voltage levels

kI = kI,vi +
kI,vj − kI,vi
vj − vi

(V − vi) , (4.16)

where V is the terminal voltage of the battery. Note that for the purpose of the state prediction,
a battery model is required to provide a value for V in the prediction.

The system behavior of electrochemical batteries is nonlinearly dependent on SoC, tempera-
ture ϑbatt and current I [150]. Nonlinear effects such as relaxation and hysteresis are observable
as well [117]. A powerful approach is a local model network, though several approaches are
known for battery modeling (see Section 2). LMN comprise of local linear dynamic models,
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each of which is valid in a certain operating region of a partition space [50]. The mentioned
effects are considered by corresponding inputs, while the global nonlinear model output is ob-
tained by weighted aggregation of the LLM outputs. Automatic iterative algorithms (e.g. [108],
[70]) are used to built the LMN structure. A complete discussion about battery modeling with
LMN is given in Section 2.

Since dynamic models require past system inputs and outputs, the output trajectory for a
given input trajectory requires a simulation. The computational demand of dynamic models is
therefore significantly higher than for parameter varying static models. Due to this reason, in
the EMS, a simplified equivalent circuit battery model is used, which is depicted schematically
in Figure 4.3 (see e.g. [65]).

V0(SoC, ϑbatt)
I(t) V (t)

Rint(SoC, ϑbatt, I)

Figure 4.3: Simplified equivalent circuit model of a battery.

In order to consider the nonlinear parameter varying nature of batteries, look-up tables
of the values of inner resistance Rint (SoC, ϑbatt, I) and open circuit voltage V0 (SoC, ϑbatt) are
extracted from an identified LMN. Applying Kirchhoff’s second law, the battery voltage follows
by

V (t) = V0 (SoC, ϑbatt)−Rint (SoC, ϑbatt, I) I(t). (4.17)

Note that other modeling and prediction inaccuracies have large influences due to which the
effect of the decreased battery model accuracy is of no consequence. Discretizing equation
(4.11) using the master sampling time ts,m leads to a discrete time state space representation of
the SoC model. Accumulation of the discrete current I(k) multiplied with

kbatt(k) =
ηbatt,Cou(k) ts,m

Qc,batt
, (4.18)

where the coulombic efficiency ηbatt,Cou(k) of the battery

ηbatt,Cou(k) =

{
ηcha = 0.99 for I(k) > 0,

ηdis = 1 for I(k) < 0,
(4.19)

is obtained by [155], approximates the integral in equation (4.11). Choosing the input um, state
xd,m, output yd,m and disturbance zm of the system by

xd,m = yd,m = SoC, um = Tice,dmd, zm = Tload, (4.20)

the discrete SS representation of equations (4.11)-(4.19) follows to

xd,m(k + 1) = Ad,mxd,m(k) +Bd,m(k)um(k) + Ed,m(k)zm(k), (4.21)

yd,m(k) = Cd,mxd,m(k), (4.22)

with
Ad,m= 1,
Cd,m= 1,

Bd,m(k)= −kI(xd,m, um, zm, k) kbatt(um, zm, k),
Ed,m(k)= kI(xd,m, um, zm, k) kbatt(um, zm, k),

(4.23)

where the parameter varying structure of the ECM is directly integrated in kI .
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4.3.3 Structured constraints for controllers

The system states of both controllers do not directly include the battery current and voltage
as well as the temperature of the ISG and the battery. Thus these constraints need to be
considered indirectly by structured constraints. In this context, structured constraints means
to apply only the most constraining value, while current, voltage and temperatures can be
limited by increasing/decreasing the ISG torque. Equations (4.24)-(4.32) summarize all relevant
structured constraints:

ω̂min = max

{
ωmin

ωmin,driver
, (4.24)

T̂ice,min = max

{
Tice,min(ω)
Pload
ωdmd

− T̂isg,min
, (4.25)

T̂ice,max = min

{
Tice,max(ω)
Pload
ωdmd

− T̂isg,max
, (4.26)

T̂isg,min = max





Tisg,min(ω, V )

Tisg,min(ϑisg, ϑbatt)

Tisg,min(SoC)

Tisg,min(V, I)

, (4.27)

T̂isg,max = min





Tisg,max(ω, V )

Tisg,max(ϑisg, ϑbatt)

Tisg,max(SoC)

Tisg,max(V, I)

, (4.28)

Imin ≤ I ≤ Imax, (4.29)

Vmin ≤ V ≤ Vmax, (4.30)

ϑbatt,min ≤ ϑbatt ≤ ϑbatt,max, (4.31)

ϑisg,min ≤ ϑisg ≤ ϑisg,max, (4.32)

where ωmin,driver is the minimal rotational speed required by the driver and ϑ denotes the
temperatures. Based on the characteristic maps providing the values based on the actual states
of the system (see corresponding function arguments), min/max correspond to the minimal and
maximal constraints obtained. Note that f(V, I) additionally constrains the maximal/minimal
battery power.

The finally applied set of constraints for the slave controller can be summarized by

Cs =





ω̂min ≤ ω ≤ ωmax

∆Tice,min ≤ ∆Tice,set ≤ ∆Tice,max

∆Tisg,min ≤ ∆Tisg,set ≤ ∆Tisg,max

T̂ice,min ≤ Tice,set ≤ T̂ice,max

T̂isg,min ≤ Tisg,set ≤ T̂isg,max

, (4.33)

where the backwards difference operator ∆ indicates rate constraints. The set of constraints for
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the master controller follows to

Cm =





∆Tice,min ≤ ∆Tice,dmd ≤ ∆Tice,max

ω̂min ≤ ωdmd ≤ ωmax

T̂ice,min ≤ Tice,dmd ≤ T̂ice,max

SoCmin ≤ SoC ≤ SoCmax

. (4.34)

All given constraints are considered in the control system.

4.3.4 Slave controller

In the following, the slave MPC is discussed in detail. The demand values rotational speed ωdmd
and ICE torque Tice,dmd are applied to the plant, while the used manipulated variables Tice,set,
Tisg,set need to keep the constraints.

Slave MPC formulation

An augmentation of the process model (4.8),(4.9) provides the possibility to directly constrain
the gradient of the manipulated variables as well as allows an offset free control by avoiding a
steady state bias [17]. The augmentation is done by embedding an integrator which leads to an
incremental plant description [111]

[
∆xd,s(k + 1)
yd,s(k + 1)

]

︸ ︷︷ ︸
xs(k+1)

=

[
Ad,s 0

Cd,sAd,s 1

]

︸ ︷︷ ︸
As

[
∆xd,s(k)
yd,s(k)

]

︸ ︷︷ ︸
xs(k)

+

[
Bd,s

Cd,sBd,s

]

︸ ︷︷ ︸
Bs

∆us(k) +

[
Ed,s

Cd,sEd,s

]

︸ ︷︷ ︸
Es

∆zs(k), (4.35)

ω(k) =
[
0 1

]
︸ ︷︷ ︸
Cs

xs(k), (4.36)

where xs is the augmented state vector, ∆us is the incremental input, ∆zs is the incremental
disturbance and 0 represents a zero matrix with corresponding dimension. A sequence of nc = 25
incremental control moves

∆U s(k) =
[
∆us(k + 1)T . . . ∆us(k + nc)

T
]T
, (4.37)

can be found that minimizes a cost function

Js = Qs

np−1∑

i=1

(ωdmd(k + i)− ω(k + i))2 +

nc−1∑

i=0

(∆uTs (k + i)Rs∆us(k + i))

+

nc−1∑

i=0

(∆ũTs (k + i)R̃s∆ũs(k + i)) + Vf,s(xs(k + np)), (4.38)

with Vf,s(xs(k + np)) = xs(k + np)
TP sxs(k + np), where the term Vf,s is a terminal weight. In

principle, the cost function Js has no unique minimum, since the torque split between ICE

and ISG is not uniquely defined. For this reason, the term ∆ũs =
[
Tice,dmd Tisg,dmd

]T
− us

penalizes the deviations of the manipulated variables from the demand values provided by the
master MPC and forces us to reach the demand values at steady state if no constraints are
violated (c.f. [45]).
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Output, input rate and input respectively are penalized by user-defined, symmetric and
positive definite weighting matrices Qs, Rs and R̃s. The solution of the discrete algebraic
Riccati equation (DARE) is used as terminal weight matrix P s, which follows to

P s = A
T
s P sAs −K

T
s

(
Rs +B

T
s P sBs

)
Ks +C

T
s QsCs (4.39)

with Ks =
(
Rs +B

T
s P sBs

)−1
BT
s P sAs. Note that, Vf,s is used to obtain the stabilizing prop-

erties of the linear-quadratic regulator (LQR) [84].
As mentioned in Section 4.2, there exists no general rule for the selection of the prediction

as well as control horizon. However, a guideline for a minimum prediction horizon is to choose
it at least large enough to cover the smallest time constant of the system, while a maximum for
np is given by the maximal system runtime [17].

For the example of the wheel loader, usual short term load peaks occur within 250ms ahead,
which leads to a prediction horizon of np = 25 chosen in this work. The matrix notation of the

output prediction Ŷ s is obtained by

Ŷ s =
[
ω(k + 1) · · · ω(k + np) xs(k + np)

T
]T

= F sxs(k) +Φs,u∆U s(k) +Φs,z∆ZLP (k), (4.40)

where ∆ZLP is the incremental disturbance trajectory predicted by the short term load predic-
tion and the matrices F s, Φs,u and Φs,z predict the system states based on xs(k) and ∆U s(k):

F s =

[
(CsAs)

T
(
CsA

2
s

)T
· · ·

(
CsA

np−1
s

)T (
A
np
s

)T
]T
, (4.41)

Φs,u =




CsBs 0 . . . 0
CsAsBs CsBs . . . 0

...
...

. . .
...

CsA
np−2
s Bs CsA

np−3
s Bs . . . 0

A
np−1
s Bs A

np−2
s Bs . . . A

np−nc
s Bs



, (4.42)

Φs,z =




CsEs 0 . . . 0
CsAsEs CsEs . . . 0

...
...

. . .
...

CsA
np−2
s Es CsA

np−3
s Es . . . 0

A
np−1
s Es A

np−2
s Es . . . Es



. (4.43)

Following Wang et al. [159], the slave controller constraints (4.33) can be formulated by
corresponding linear inequalities and directly implemented in the the optimization problem.
The compact notation follows to

Cs : M s∆U s ≤ γs, (4.44)

with M s =



M s,∆u

M s,u

M s,y


 , γs =



γs,∆u
γs,u
γs,y


 ,

where the indices refer to the rate, input and output constraints, respectively. A formal formu-
lation of the final constrained optimal control problem can be denoted by

Ps(xs(k)) : ∆U∗
s(xs(k)) = argmin Js(xs(k),∆U s) (4.45)

s.t. M s∆U s ≤ γs.
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Real-time implementation

The given optimization problem (4.45) needs to be solved in each time instant, which gives a time
frame of ts,s = 10ms to solve the full optimization problem. In order to reduce computational
loads, in the work of Unger et al. [151], an approach to reduce the order of the formulated MPC
problem by using principal control moves is presented. Following e.g. [148], [127], the idea is to
parametrize ∆U s in equation (4.37) according to

∆U s = Ωsps, (4.46)

where Ω ∈ IRnc·nu×νp is a matrix whose columns form a basis for ∆U s, nu is the number of input
variables and ps ∈ IRνp×1 is the new decision variable with reduced dimension (νp ≤ nc · nu).
The columns of Ω describe the shape of the control increments of every manipulated variable
up to the control horizon and are called principal control moves, while the integer variable
νp indicates the number of columns in Ω and is called the order of principal control moves
(PCM-order). Replacing ∆U s in the constrained optimization problem (4.45) by (4.46), the
optimization problem (4.45) with ps as the new decision variable follows to

Pp(xs(k)) : p∗s(xs(k)) = argmin Js,p(xs(k),ps) s.t. M sΩsps ≤ γs. (4.47)

Another approach for real time implementation of the MPC is the fast model predictive
control (FMPC) algorithm proposed by [161]. The particular structure of the MPC problem is
exploited to decrease computation times. Since the algorithm is provided for implementation,
this method is used, though, the algorithm is appropriately extended to include the disturbance
costs in the optimization.

Further approaches are presented in e.g. [125], [169] and [123].

Stability analysis slave controller

The stability of the slave controller is essential, since it directly acts on the plant. In order
to show stability for the constrained controller, distinction is usually made between stability
inside a terminal set Xf , where no constraints are active and a region of attraction X̄N , where
constraints are active [83, 135].

Assuming that xs ∈ Xf and x̃s(k + 1) = (As −BsKs)x̃s(k) ∈ Xf , a stabilizing control law
∆U s = −Ks(xs−x

∗
s) = −Ksx̃s inside the positive invariant terminal set Xf is obtained so that

all constraints Cs are satisfied, when a terminal weight Vf,s is applied to the MPC [124]. Outside
the terminal set, an N -step admissible set XN can be found, for which the MPC is enforced
to reach Xf in N steps if a terminal set constraint xs(k + N) ∈ Xf is added to Ps(xs(k)).
Following [124], the terminal set constraint is usually too complex for real time implementations
and can be omitted if the initial state lies inside a region of attraction X̄N . Depending on the
choice of the controller parameters, the region of attraction is defined as a sufficiently small
subset of the admissible set X̄N ⊆ XN .

A terminal set Xf for the given controller can be calculated following the algorithm proposed
by [43], while Keerthi et al. [78] proposed an algrithm to calculate XN . Since the state vector
only consists of three variables, Xf and XN can be determined straightforward and depicted
in a 3-D figure. Figure 4.4 depicts the terminal set Xf and the 25-step admissible set X25.
Additionally the state trajectories with initial states inside (black) and outside (red) X25 are
depicted as well.

As can be seen in the figure, both trajectories converge to the origin, while the black trajec-
tory reaches Xf in less than 25 samples. Since the initial state of the red trajectory is outside
the admissible set, the controller needs almost 23 samples (corresponds to 230ms) to reach X25.
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Figure 4.4: Terminal set Xf and 25-step admissible set X25 of slave MPC with ωdmd = 100 rad/s.
Black: State trajectory with initial state inside X25. Red: State trajectory with initial state
outside X25.

The slightly increase of the rotational speed in both cases results from the input constraints
which implies due to the compensation of the excessive torque.

Note that the prove of stability does not guarantee that engine stalling is avoided and that
due to this reason, the load must lie within the feasible range of the powertrain. The stability of
the control loop is also not effected by unpredicted disturbances, though the performance of the
control loop is mainly depending on the controller tuning which may cause poor performance in
case of prediction errors.

4.3.5 Master controller

The goal of the master controller is to take SoCdmd as a reference value and provide the demand
set point values speed ωdmd and ICE torque Tice,dmd for the slave controller. Due to the non-
linear behavior of the plant, optimal demand values are only obtained if the nonlinearities are
considered [97]. In the following, the concept and design of the master controller are developed
in detail and the convergence of the iterative approach is discussed.

Concept of master controller

A link between the applied load of the powertrain and the battery SoC must be established
in the controller. Due to this reason, following the SoC model in Section 4.3.2, the nonlinear
function kI in (4.12) links the SoC to the ISG torque, which is proportional to the current of the
battery. In each time as well as prediction step the model changes, which results in a nonlinear
optimization problem to be solved in real time. A solution of the optimization problem can
only be achieved by an iterative approach. The master controller is designed to consider a full
load cycle duration in the optimization. In this work, a solution approach is proposed that
consists of an inner iteration loop, a linear optimization P(xm) as well as an outer iteration
loop. The flowchart in Figure 4.5 depicts the concept schematically, where the variables refer
to the trajectories across the prediction horizon Np. Note that the minimum prediction horizon
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is defined in such a way that the full cycle duration can be considered, while the real time
capability gives an upper limit for Np. Due to consideration of the entire load cycle within the
optimization, the energy storage can be fully exploited. In the following, the concept is discussed
in more detail.

Init: P ice,dmd = ZCD

ωdmd = f(P ice,dmd)

T isg,dmd

kI Init: V = V init

V

∆V < δ

opt.: P(xm)
SoCdmd

Cm

P ice,dmd

∆P ice,dmd < γ

ωdmd, T ice,dmd
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n
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It
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n
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Figure 4.5: Flowchart of the master controller concept.

Inner iteration loop

In the inner iteration loop, a relaxation approach is used to consider the influence of the battery
behavior. The implicit equations for the SoC model are evolved for optimization by using the
predicted load trajectory ZCD ∈ IRNp to initialize the ICE load trajectory P ice,dmd ∈ IRNp and
to obtain the optimal demand speed trajectory ωdmd ∈ IRNp from a characteristic map of the
ICE. From (4.13) follows the ISG demand torque trajectory T isg,dmd ∈ IRNp from which the
initial kI ∈ IRNp can be obtained using an initial voltage trajectory V init ∈ IRNp as the actual
voltage. Due to the ISG torque trajectory T isg,dmd ∈ IRNp , the current trajectory I ∈ IRNp by
(4.12) affects the battery voltage V which behavior is updated with the implemented battery
model (4.17). Based on the determined V , a more accurate voltage trajectory V is obtained
by updating kI . This iteration is done until the voltage change ∆V has converged to a small
threshold value δ. A small threshold implies that the nonlinear plant behavior is considered in
the SoC model.
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MPC formulation

The master controller, similar to the slave controller, is based on the augmentation of the
obtained SoC model (4.21), (4.22) which follows to the incremental formulation [159]

xm(k + 1) = Amxm(k) +Bm(k)∆um(k) +Em(k)∆zm(k), (4.48)

SoC(k) = Cmxm(k), (4.49)

where xm(k) =
[
∆SoC(k) SoC(k)

]T
is the augmented state vector, ∆um is the incremental

input and ∆zm is the incremental disturbance. For the optimization, the objective function Jm
to be optimized can be formulated by

Jm = Qm

Np−1∑

i=1

(SoCdmd − SoC(k + i))2 +Rm

Nc−1∑

i=0

(∆um(k + i))2

+ xm(k +Np)
TPmxm(k +Np) (4.50)

where Qm, Rm are weights. The weight Pm is calculated by the discrete algebraic Riccati
equation

Pm = AT
mPmAm −KT

m

(
Rm +BT

mPmBm

)
Km +CT

mQmCm, (4.51)

whereKm =
(
Rm +BT

mPmBm

)−1
BT
mPmAm. The stacked output prediction Ŷ m follows then

to

Ŷ m =
[
SoC(k + 1) · · · SoC(k +Np) xm(k +Np)

T
]T

= Fmxm(k) +Φm,u∆Um(k) +Φm,z∆ZCD(k), (4.52)

with
∆Um(k) =

[
∆um(k + 1) . . . ∆um(k +Nc)

]T
, (4.53)

Fm =

[
(CmAm)

T
(
CmA

2
m

)T
· · ·

(
CmA

Np−1
m

)T (
A
Np
m

)T]T
, (4.54)

Φm,u =




CmBm(k|1) 0 . . . 0

Cm

2∑
i=1
Bm(k|i) CmBm(k|1) . . . 0

...
...

. . .
...

Cm

Np−1∑
i=1

Bm(k|i) Cm

Np−2∑
i=1

Bm(k|i) . . . 0

Np∑
i=1
Bm(k|i)

Np−1∑
i=1

Bm(k|i) . . .
Np−Nc∑
i=1

Bm(k|i)




, (4.55)

Φm,z =




CmEm(k|1) 0 . . . 0

Cm

2∑
i=1
Em(k|i) CmEm(k|1) . . . 0

...
...

. . .
...

Cm

Np−1∑
i=1

Em(k|i) Cm

Np−2∑
i=1

Em(k|i) . . . 0

Np∑
i=1
Em(k|i)

Np−1∑
i=1

Em(k|i) . . . Em(k|1)




, (4.56)

where (k|i) denotes the time step k at prediction step i, ∆ZCD is the incremental disturbance
trajectory obtained by the cycle detection and Fm, Φm,u and Φm,z predicting the states. Due
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to the time varying process model (4.21), (4.22), the terms in Φm,u and Φm,z appear to be sums
instead of a multiplication of Am.

In order to provide sufficient dynamics within the master controller, a sampling time of at
least ts,m = 0.25 s is beneficial, while the used computational capability limits the prediction
horizon to Np = 100. Due to this reason, cycle durations up to 250 s can only be considered
by implementing a not equidistant prediction model. Following equation (4.18), which contains
the sampling time ts,m = 0.25 s of the master controller, ts,m is adapted for the prediction
instants. Note that this provides the possibility to achieve dynamic control with a sampling
time of ts,m = 0.25 s, while a wide prediction horizon is covered. The inaccuracy due to the
larger sampling intervals towards the end of the prediction horizon may have negligible influence,
since the mean discharge – mainly important – is considered. A multiplication factor for each
single SS-model can be used to implement the different sampling times of the prediction within
the cost function Jm.

Under consideration of the set of constraints (4.34), the formal optimization problem can be
denoted by

P(xm(k)) : ∆U∗
m(xm(k)) = argmin Jm(xm(k),∆Um), (4.57)

s.t. Cm : Mm∆Um ≤ γm

with Mm =



Mm,∆u

Mm,u

Mm,y


 , γm =



γm,∆u
γm,u
γm,y




referring to rate, input and output constraints, respectively. Similar to the slave controller, the
real time optimization is realized using the FMPC algorithm proposed by [161].

Outer iteration loop

As a result, the optimization problem (4.57) provides the incremental trajectory of the ICE
torque ∆U∗

m that minimizes the SoC deviation from SoCdmd at a defined ωdmd. Calculating the
demand ICE torque by

Tice,dmd(k + i) = Tice(k) +
i∑

l=1

∆u∗m(l) (4.58)

and taking ICE load constraints into consideration, the demand ICE load P ice,dmd can be
obtained by

Pice,dmd(k) = ωdmd(k)Tice,dmd(k), (4.59)

s.t. Pice,min ≤ Pice,dmd(k) ≤ Pice,max.

The outer iteration loop is obtained by solving the inner iteration loop as well as the optimization
(4.57) anew with the obtained ICE load P ice,dmd until ∆P ice,dmd is converged to a defined
threshold γ or the maximal sampling time is reached. Note that the ICE load represents another
nonlinearity of the master controller that is considered due to the iteration loop.

The master controller equals a power controller that is capable of controlling the SoC, speed
as well as ICE and ISG torque, if no constraints are violated. Nevertheless, the optimal trajec-
tories can only be achieved if the system is controllable, which is assumed for any load request.

Convergence of the concept

The Banach fixed-point theorem shows convergence for iteration loops, if the Lipschitz condition
is fulfilled and the sequence is Cauchy. Using equations (4.12) and (4.17), the inner iteration loop
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can be expressed by an implicit equation V = fv(T isg,dmd,ωdmd, SoC, ϑbatt,V ) = fv(ζ,V ). Sim-
ilarly, with equations (4.11), (4.12), (4.13), (4.18) and (4.19) as well as the MPC, the outer iter-
ation loop is expressed by a function P ice,dmd = fp(P load, SoC, ϑbatt,P ice,dmd) = fp(ξ,P ice,dmd).
Both equations are assumed to be feasible in the operation range, since the output voltage V
as well as demand ICE load P ice,dmd are bounded by constraints.

The prove for convergence can be done by standard linear MPC literature (c.f. e.g. [48],
[68], [156]) and is similar for both iterations as given in the following.

Assumption 1. Both functions fv and fp satisfy the Lipschitz condition such that

|fv(ζ,V +∆V )− fv(ζ,V )| ≤ Lv |∆V | , (4.60)

|fp(ξ,P ice,dmd +∆P ice,dmd)− fp(ξ,P ice,dmd)| ≤ Lp |∆P ice,dmd| , (4.61)

with Lv, Lp > 0 hold. Therefore, if fv and fp are continuous and satisfy (4.60) and (4.61),
respectively, it follows that each of fv and fp have unique solutions [42].

Denoting X instead of V and P ice,dmd, respectively, with Assumption 1 and mathematical
induction, Lemma 1 follows:

Lemma 1. For all k ∈ N>0, arbitrary X0 and Lipschitz constant L ∈ [0, 1), ‖Xk+1 −Xk‖2 ≤
Lk ‖X1 −X0‖2 holds.

Proof. Proceeding using mathematical induction, the base case holds:

‖X2 −X1‖2 = ‖f (X1)− f (X0)‖2 ≤ L ‖X1 −X0‖2 (4.62)

Then, supposing the statement holds for some k ∈ N>0, the induction hypothesis follows to

‖f (Xk+1)− f (Xk)‖2 ≤ L ‖Xk+1 −Xk‖2 (4.63)

≤ LLk ‖X1 −X0‖2 (4.64)

= Lk+1 ‖X1 −X0‖2 , (4.65)

which proves the Lemma by the principle of mathematical induction [48].

Based on Lemma 1, the sequence can be shown to be Cauchy.

Lemma 2. Let M ∈ R
Np be a metric space. The sequence {Xk} in M is a Cauchy sequence

and therefore converges with a Lipschitz constant L ∈ [0, 1) to a limit X∗ in M [68].

Proof. Let m,n ∈ N>0 such that m > n. Using the Triangle Inequality, Lemma 1 and the
Geometric Series, the following can be denoted:

‖Xm −Xn‖2 ≤ ‖Xm −Xm−1‖2 + · · ·+ ‖Xn+1 −Xn‖2 (4.66)

≤ Ln ‖X1 −X0‖2
∑m−n−1

k=0 Lk (4.67)

≤ Ln ‖X1 −X0‖2
∑∞

k=0 L
k (4.68)

= Ln ‖X1 −X0‖2

(
1

1− L

)
. (4.69)

Let ε > 0 arbitrary, a large N ∈ N>0 can be found such that

LN <
ε (1− L)

‖X1 −X0‖2
(4.70)

is satisfied, and

‖Xm −Xn‖2 ≤ Ln ‖X1 −X0‖2

(
1

1− L

)
< ε (4.71)

follows for m,n large enough. Since ε > 0 is arbitrary, the sequence is proven to be Cauchy.
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Using Assumption 1, Lemmas 1 and 2, Theorem 1 follows:

Theorem 1 (Banach Fixed-Point Theorem [6]). A map f : M → M is called contraction
mapping on M if there exists a Lipschitz constant L ∈ [0, 1) such that

‖f (Xk+1)− f (Xk)‖2 ≤ L ‖Xk+1 −Xk‖2 , ∀k ∈ N>0 (4.72)

with Xk = f (Xk−1). If

LN <
ε (1− L)

‖X1 −X0‖2
, ε > 0, (4.73)

is satisfied for a large N ∈ N>0, the following inequalities hold:

‖Xk+1 −Xk‖2
‖X1 −X0‖2

≤ Lk <
‖X2 −X1‖2
‖X1 −X0‖2

< 1. (4.74)

Theorem 1 is fulfilled if ∃L ∈ [0, 1), which is shown for both iteration loops in the following.

Convergence of iteration loops Based on Theorem 1, 0 ≤ L < 1 can be shown for both
iteration loops separately by evaluating the closed set of possible configurations. Both iterations
converged to the true value V ∗ (see Figure 4.6) and P ∗

ice,dmd (see Figure 4.7), respectively.
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Figure 4.6: Contraction map of the inner iteration loop showing that L exists and 0 ≤ L < 1 for
all possible configurations.

4.4 Load and cycle prediction for non-road machinery

The driver exclusively influences the load trajectory and driving patterns of non-road machinery
[38]. Exact prediction of future load demands is in general very difficult or sometimes impossible.
Nevertheless, in the following, two statistical approaches are introduced, which are able to predict
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Figure 4.7: Contraction map of the outer iteration loop showing that L exists and 0 ≤ L < 1
for all possible configurations.

the future load trajectories with sufficient accuracy for the usage in non-road vehicles. A short
term load trajectory ZLP for use in the slave MPC and a long term cycle prediction ZCD for
use in the master MPC are proposed in detail. The cycle prediction is based on a cycle detection
that is similar to the approach proposed by [101].

4.4.1 Short term load prediction

The idea of the short term load prediction is to detect critical load demands of e.g. wheel
loaders at digging or at reversion, in order to permit a control action in advance (e.g. increasing
the rotational speed in advance to a load peak acting on the powertrain). For example, at
reversion of the vehicle, if the load requirement is especially high shortly after direction change
and vehicle acceleration, the load prediction offers the possibility to avoid engine stalling or a
speed undershoot. Driveability and handling capacity may be increased, which is especially of
interest for the industry. In the following the theory of Bayesian inference is shortly reviewed
before the methodology is discussed in detail. Based on the wheel loader the accuracy of the
methodology is validated based on real data measured on a real wheel loader.

Bayesian inference

In the field of mathematical statistics, the Bayesian inference (BI) is an important technique
to update a probability of a hypothesis (H) as new evidence (E) is available. Especially for
dynamic data sequence analysis, the BI has a decisive role. Based on Bayes’ rule, the posterior
probability is calculated using the a prior probability and the likelihood function, respectively.
The latter two can be obtained from a probability model describing the data to be observed.
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The posterior probability is calculated using Bayes’ theorem (4.75)

P (H | E) =
P (E | H) · P (H)

P (E)
, (4.75)

where | denotes a conditional probability, P (H) and P (H | E) are prior and posterior probabil-
ity, respectively, P (E) is the likelihood function and P (E | H) is the conditional probability of
observing evidence E if hypothesis H is given. Note here that the posterior probability is pro-
portional to P (H) and P (E | H), since these values appear in the numerator of equation (4.75).
Using the theory of Bayesian inference, the load prediction methodology can be developed.

Methodology of load prediction

The actual vehicle inputs ui, such as accelerator angle α, driving speed nGW and load Pload offer
the only information about the vehicle state that can be used to predict the future load demand.
In case of a specific input state configuration, a probability can be calculated that provide
statistical evidence about the future load demand depending on the actual vehicle state. For
that purpose, inputs and outputs are assigned to discrete classes φij in the possible input/output
range in order to be able to apply the theory of the discrete Bayesian inference. Based on Bayes’
rule, the a posteriori probability for a certain load class ψ1j given a certain input configuration
Φ(k) can be calculated. A priori probability and the likelihood function are required [99] and
can be obtained from training data [16]. Note that the accuracy is directly dependent on the
training data and therefore all relevant information needs to be included in the training data.
Determining the a priori probability and the likelihood function based on training data shifted
backwards in time, the basis to calculate the a posteriori probabilities P (ψhj |Φ) for further
prediction steps h is given. Exemplarily, the methodology is depicted in Figure 4.8 and the rule
of Bayes to calculate P (ψhj |Φ) is given.

Prediction of the future load demand

Since a load trajectory is required by the controllers, the probabilities P (ψhj |Φ) need to be
converted into a load value. A simple approach to extract the load value is to choose the
highest load class probability max (P (ψhj |Φ)) and use the corresponding maximum load value
associated by the class for each prediction step h. Note that in case of large load classes, the
resolution is rough and the prediction may have insufficient accuracy. This can be avoided by
choosing enough output classes or an average class load value. The short term load trajectory
ZLP (green stair function) follows therefore by storing the corresponding load value zLP,h of the
class in a vector

ZLP =
[
zLP,1 · · · zLP,np

]T
. (4.76)

The incremental notation required by the MPC follows by

∆ZLP =
[
∆zLP (1) · · · ∆zLP (np)

]T
, (4.77)

with ∆zLP (i) =

{
zLP,1 − Pload(k) if i = 1

zLP,i − zLP,i−1 else
.

Validation of the load prediction

For validation of the load prediction, training data were recorded on a corresponding wheel loader
at operation for an eight hour duration. An analysis showed the following input configuration
u to be significant for the load prediction

u =
[
α |nGW | Pload ∆2 (filt (Pload))

]
, (4.78)
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where ∆2 denotes the dual backwards difference operator and filt() is a low pass filter. The
selection includes the driver information (α), an indication for the overall power consumption
(|nGW |) and the actual state of the vehicle (Pload,∆

2 (filt (Pload))). Note that the filter input
corresponds to the mechanical inertia and needs to be tuned in such a way that strong gradients
are not too much delayed, but that noise and small load peaks are avoided. A selection of 6 input
classes nc,i for α, 4 for |nGW |, 24 for Pload and 6 for the filter input showed to be adequate, while
24 output classes nc,y have been chosen to achieve sufficient resolution for the load prediction.

Figure 4.9 shows the input signals (blue) corresponding to the measured load signal (red)
and the predicted short term load trajectories across a horizon of np = 25 samples (gray). The
load sequence is previously unknown by the load prediction, but though, accurate predictions
are achieved at increasing load gradients (c.f. around second 2 and 9). This is plausible since
accelerator position, filter input and driving speed indicate a clear load demand. The largest
part of the overall load is in general consumed by the drivetrain. Around second 6, the driving
speed is increasing although the accelerator position is around 60% and decreases. At this
point, a serious indication is impossible since not even the filter input can provide an additional
indication and therefore the actual load is in principle predicted.

Between second 7 and 8 negative loads appear, which are not critical to engine stalling. A
significant prediction mismatch results from a low resolution obtained by the simplification of
assigning only one load class for the entire negative load range. Note that an increase in the
number of output load classes would enhance the prediction accuracy in the negative load range.

4.4.2 Cycle detection

Dockside cranes or wheel loaders are mostly used in cyclical operations, which yield recurrent
load demands that can be used to predict the future cycles. The goal is to predict the load
trajectory by detecting a recurrent load cycle zcyc ∈ IRscyc within the past load signal and to

provide a disturbance trajectory ZCD =
[
zTcyc · · · z

T
cyc

]T
∈ IRNp with sampling time ts,m for the

master controller based on the obtained cycle information. Correlation analysis provides the
necessary theory to find the recurrent cycles within the past load signal. In the following, the
theory of correlation analysis is therefore reviewed before the methodology of the cycle detection
is presented in detail. Based on a real load signal obtained from a wheel loader, the methodology
is validated to show the possibilities.

Cross correlation function

Commonly in signal processing, tasks consist of finding short signals within a long signal. A
measure for the similarity of two signals is given by the cross correlation, which has applications
over all natural sciences. It is used in e.g. pattern recognition, single particle analysis, electron
tomography, averaging, cryptanalysis, or neurophysiology. In terms of statistical analysis, the
term cross correlation refers to the correlation between the values of two random vectors x and
y, while a special case is the correlation of the values of one vector x with itself, which is referred
to as auto correlation (ACF). The cross correlation function is defined by

R̂xy(l) = σ
N∑

k=1

x(k) y(k − l), (4.79)

where x, y are the entries of the vectors x and y respectively, N is the signal length and σ is a
scaling factor. Note here that in the field of statistical analysis, the scaling factor σ is usually
included in the definition in order to obtain correlations between −1 and +1. Based on the cross
correlation function, the methodology of the cycle detection can be developed in the following.
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Identification methodology for recurrent load cycles

Mayr et al. [101] proposed an algorithm to detect the cycle duration tcyc = scycts,m of a recurrent
load cycle within the past load signal yCD ∈ IR≥2·scyc based on the auto correlation function.
The first local maximum in the ACF is used to identify the cycle. One disadvantage of the ACF
is that in case of a changing load cycle, a detection of the cycle with an acceptable time delay
is difficult. In case of cycles with significantly different cycle times, the shape of the first local
maximum is not formed clearly, which makes a secure detection impossible.

In this work, the cross correlation function R̂xy,i between yCD and different parts xCD,i, i =
1, 2, 3, . . ., which are systematically taken from yCD, is used to adapt the ACF approach in order
to avoid this disadvantage. The size of the parts xCD,i are within the scope of the possible cycle
durations within yCD due to which reason a cycle change can be detected sufficiently fast. A
cycle is detected and included in yCD if more than two local maxima of R̂xy,i lie within a small
range around R̂xy,i = 1 and the distance between the local maxima defines the corresponding
cycle time.

Once a cycle is detected, the past scyc load values form the load cycle zcyc, which is used to
built the incremental notation of the future load trajectory ZCD used in the master controller
by

∆ZCD(k) =
[
∆zCD(1) · · · ∆zCD(Np)

]T
, (4.80)

with ∆zCD(i) =

{
ZCD(i)− Pload(k) if i = 1

ZCD(i)− ZCD(i− 1) else
.

Validation of the methodology

A more sophisticated representation of the methodology is depicted in Figure 4.10, where the
cycle detection is demonstrated on real load measurement from a wheel loader. The measured
signal (blue), the past load trajectory yCD (red) and the predicted disturbance trajectory ZCD

(green) are drawn in the first subplot, while the true (blue) with the detected (red) cycle time
tcyc are given in the second subplot. It can be seen that almost 3 cycles are required to detect
the cycle change, which is sufficiently fast since a confident prediction needs at least 3 occurred
cycles. Note that, though, the new cycle is only a short part of yCD, the cycle time can be
detected correctly.

Below the first two subplots, the past load signal yCD (red) and the different parts xCD,i
(cyan) are depicted on the left side, while the corresponding CCF R̂xy,i (blue) between xCD,i
and yCD is shown on the right side. The blue points indicate that the local maxima lie inside
the thresholds (green dashed lines) and match for the different R̂xy,i. Consequential, a cycle is
detected.
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Chapter 5

Application Example: Wheel Loader

The chapters 2, 3 and 4 discussed the methodologies to estimate the battery SoC with high
accuracy as well as to control a parallel hybrid electric powertrain in non-road vehicles. In this
chapter, the results obtained by these methodologies should be presented. First, the hardware of
the used real powertrain and testbed including a battery simulator, respectively, are described.
Second, simulation and real measurement results are presented in terms of dynamics, overall
optimality and efficiency improvement due to the proposed EMS.

5.1 Hardware configuration of the hybrid powertrain testbed

Non-road vehicles are usually equipped with more powerful engines than they are registered
with, which in this context means that they are restricted in power. At the testbed a real diesel
electrical parallel hybrid powertrain comprising of a 290 kW ICE (limited at Pice,max = 215 kW)
and a 120 kW ISG, is set up. A torque sensing shaft connects the testbed dyno with the
powertrain in order to apply the load. Instead of a real battery, a battery simulator supplies the
required power for the ISG where an accurate LMN battery model of the lithium-iron-phosphate
chemistry based battery module with 630V nominal voltage and ±200A maximal current (192
series and 2 parallel connected cells (192S2P) configuration) is implemented (see Section 3.6).
Note that the powertrain is also modeled and used for real time simulation.

A dSpace DS1006 platform is used to control the testbed measurements as well as real time
simulations. The platform runs the standard fixed step-size solver for which the controller is
compiled, while the optimization problem is solved using the primal barrier interior-point method
in the FMPC algorithm proposed by [161]. Further details on algorithm and computation times
can be found in [161] and e.g. [126], [169]. The proposed controller can be parametrized by
the number of iterations in the FMPC, which are properly chosen to niter,FMPC,slave = 10 and
niter,FMPC,master = 3, respectively, the number of inner (niter,inner = 10) and outer (niter,outer =
3) iteration loops of the master controller and the prediction horizons for both MPCs in order
to achieve lower computation times. Based on the given selections, the runtime limit of the
platform is fully exploited, but is not exceeded. Relevant information between platform and
supervisory testbed control system is exchanged with a CAN interface, while a sampling time of
ts,s = 10ms is used for the interface as well as for all measurements. Figure 5.1 shows a picture
of the testbed application.

5.2 Energy management in wheel loaders

The feasibility of the control concept is validated by carrying out real testbed measurements
using the real powertrain described previously. Important to show is that the controller is able to

83
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Figure 5.1: Parallel hybrid electric powertrain at the testbed.

cope with the high dynamic load transients appearing in non-road applications, while emissions
and fuel consumption are reduced simultaneously. A critical point of the control is, if constraints
are active. For the purpose of reasonable results, the controller is tuned based on simulations,
before testbed measurements are carried out. In the following, the controller penalties are
discussed before the simulations are presented and measurement results are discussed.

5.2.1 User-defined tuning of the controller penalties

The selection of the penalties used in the optimization problems Ps(xs(k)) and Pm(xm(k)), is
referred to as tuning and influences the behavior of the controller. In order to achieve maximal
efficiency of the powertrain, the electrical energy conversion (EEC) must be kept at a minimum,
since efficiency and EEC are directly linked by the conservation of energy principle. To this
end, the penalties need to be set in such a way that dynamic requirements of the powertrain are
provided in any case and the EEC is minimized simultaneously.

The SoC deviation from the demand SoC has direct influence on the EEC and can be
penalized with the state penalty Qm. By choosing Qm = 0.1 (more EEC ) and Qm = 10 (less
EEC ), the influence of the SoC deviation can be seen and compared. In terms of dynamic and
a good speed controlling performance, the state penalty Qs plays a major role and is therefore
chosen significantly higher than the control Rs and input R̃s penalties. Desirable is also a
smooth dynamic behavior of the ICE, since strong torque gradients cause higher emissions.
This is achieved by penalizing the ICE torque increments more than the ISG torque increments.
Note that this is inconsistent with the required dynamics, but due to the optimization, solved in
an optimal manner. In contrast to the slave dynamics, the master controller has inferior influence
on the fast control dynamics, due to which the control penalty Rm is chosen appropriately small.
The used parameters of the model and controller, respectively, are summarized in Table 5.1 to
give a better overview.
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Parameter Nominal value Description

ts,s 0.01 s sampling time slave
ts,m 0.25 s sampling time master
Np = Nc 100 prediction horizon master
Qm 0.1, 10 state penalties master
Rm 0.01 control penalty master
np = nc 25 prediction horizon slave
Qs 100 state penalty slave
Rs diag[10 2] control penalties slave

R̃s diag[0.5 1] input penalties slave
ωmin . . . ωmax 1000 . . . 2000 rpm speed range
SoCmin . . . SoCmax 20 . . . 80% state of charge range
Imin . . . Imax −200 . . . 200A current range
Vmin . . . Vmax 550 . . . 700V voltage range
Pice,max 215 kW maximal ICE load limit
Qc,batt 8.8Ah battery capacity
Θ 10 kgm2 total moment of inertia
τice 0.1 s ICE model time constant
τisg 0.05 s ISG model time constant

Table 5.1: Used user-defined controller and simulation model parameters.

5.2.2 Simulation results

The simulations are executed on the real time platform, where a real time model of the powertrain
is implemented. Main interest of the simulations is to validate the controller tuning in terms of
the optimality of the controller set points, while a ICE torque gradient restriction of ∆Tice,max =
1000Nm/s is applied to limit the ICE dynamics.

Based on the dimensionless energetic efficiency map ηice, in Figure 5.2, the simulation results
are compared with a real load cycle of a conventional operated powertrain (black ×). The results
of the hybrid powertrain are inserted for the hybrid strategies with small (red, Qm = 0.1) and
large (blue, Qm = 10) state penalty in order to see the difference between the strategies. As
can be seen, the distribution of the operation points is limited to the optimal characteristic line
(green) with the lowest specific fuel consumption for Qm = 0.1, while for Qm = 10 an increased
distribution is obtained due to the increased usage of the ICE to compensate the transient load.

Compared to the conventional powertrain, a significant decrease of the mean speed is ob-
servable due to the optimal operation set points, which proves that the downspeeding strategy
is considered directly as proposed. The outliers at ω ≈ 1250 rpm and Tice ≈ 700Nm are caused
by the driver request ωmin,driver.

5.2.3 Experimental results

The experimental results focus mainly on the three following critical points and are presented
in detail in the following:

1. Dynamic feasibility under consideration of all relevant constraints of the powertrain and
hybrid strategies such as downspeeding and phlegmatisation.

2. Reduction of exhaust emissions and fuel consumption compared to the conventional pow-
ertrain due to optimal control.
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Figure 5.2: Simulated operating points depicted on the dimensionless energetic efficiency map
ηice.

3. The benefit of a full exploitation of the energy storage capabilities by use of the cycle
detection.

Dynamic feasibility

Phlegmatisation incises the dynamics of the powertrain drastically, especially at an optimal (low)
rotational speed, but provides a large potential to reduce exhaust emissions significantly [110].
The feasibility depends mainly to the phlegmatisation rate though. On the testbed, different
phlegmatisation rates between ∆Tice,max between 500Nm/s and 5000Nm/s are measured, while
a rate of 500Nm/s showed a significant emission reduction. Nevertheless, cycles with higher load
gradients may not be feasible using 500Nm/s and therefore a time variant phlegmatisation rate
is applied to the powertrain: In general, the ICE torque is limited by ∆Tice,max = 500Nm/s,
but after an active constraint for the past 15 samples, it is relaxed to ∆Tice,max = 1500Nm/s.
Note that an effective maximum of 1350Nm/s is reachable, which is an appreciable limitation.
Furthermore, the load prediction is used to avoid engine stalling on high load peaks and to
provide sufficient engine dynamics. The influence of the load prediction on the reduced dynamics
of the ICE is presented in Figure 5.3.

The first subplot of Figure 5.3 shows the rotational speed trajectories of the actual speed
ω and the speed set point ωset for enabled (subscript LP) and disabled load prediction. En-
largement (c) shows that in case of an enabled LP, ωset is raised prior to the load peak and
engine stalling occurs for disabled LP due to insufficient ICE dynamics, which can be observed
in marked region (a).

The time variant phlegmatisation rate is observable in the second subplot (see marked region
(b)), where the trajectories of the ICE torques are depicted. Region (b) shows furthermore that
Tice,LP is increased prior to a load peak, due to which engine stalling is avoided. The missing
constraints for the driveability limit of the ICE are observable at higher torque levels, where a
large mismatch occurs. Prior to the testruns, driveability limit information was not available
and could not be considered. Nevertheless, the structured constraints as introduced in Section
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4.3.3 provide to integrate any additional limits easily.

The ISG torque signals are shown in the third subplot, where can be observed that in terms
of dynamics, the load prediction smooths Tisg as well as reduces the dynamics of the signal
in general. In the last subplot, the load Pload is depicted, which matches for enabled as well
as disabled LP. Note that in order to avoid engine stalling with disabled LP, the speed must
be increased, which also increases the fuel consumption due to friction losses. Hence, the load
prediction enables to further reduce fuel consumption although the load demand is unknown
and ICE dynamics are restricted.

Fuel consumption and exhaust emissions

In order to achieve a suitable comparison between the hybrid and conventional powertrain, real
load cycles are measured at the testbed with the same experimental setup. For that purpose,
four representative real load cycles are extracted from a large data set of field measurements
obtained from common wheel loaders representing common applications. In Table 5.2, more
details about the cycles are summarized, which testbed measurements are used for comparison
of fuel consumption and raw exhaust emissions.

Cycle Duration Mean Load Mean Speed
s kW rpm

1 38.48 70.1 1236
2 54.15 61.3 1215
3 189.84 58.4 1360
4 90.44 66.5 1277

Table 5.2: Specifications of the four representative load cycles.

The ECU of the used ICE provides two series controller that take the speed or ICE torque
demand as reference value. For the reference measurements on the conventional ICE, the speed
controller is used to control the speed demand, which is proportional to the accelerator position.
In contrast, the series torque controller is used for the hybrid measurements to execute the
set point torque of the hybrid controller on the shaft. Since the proposed control concept is
supervisory in terms of the components, the parametrization of both series controller is not
changed in any way.

The compensation of any SoC change in the battery is an important topic, which plays an
significant role, especially at short load cycles. Many works address the issue to compensate
the deviations correctly, e.g. [129], [74]. In this work, in order to avoid the problem, the values
for fuel consumption and raw exhaust emissions are obtained by repeating any load cycle for
10 times and determining the average value. Almost all cycles reached the initial SoC after
the 10-th cycle, due to what the SoC deviation can be neglected. Nevertheless, any significant
deviations are marked in Table 5.3, where the results for the measured values of fuel consumption
and raw exhaust emissions of the four representative cycles are summarized.

As can be seen in Table 5.3, fuel consumption, carbon monoxide (CO), hydrocarbons (HC)
and soot emissions are significantly reduced, while nitrogen oxide (NOx) emissions are slightly
increased. Note that the optimal rotational speed of the ICE is in the lower speed range, which
has higher specific NOx emissions and increase therefore the NOx emissions. Nevertheless,
the vehicle’s after treatment system is capable to compensate the slightly increased raw NOx
emissions.

It can be observed that significant SoC deviations mainly occur for Qm = 0.1, which is
caused by the small state penalty that focuses more on maximizing the powertrain efficiency
than minimizing the SoC deviations. Nevertheless, the capacity limits of the battery are not
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Cycle Strategy Fuel CO HC NOx Soot
% % % % %

1 Qm = 10 −2.04 −50.16 −9.64 8.12 −21.00
1 Qm = 0.1 −2.98∗ −54.98∗ −13.46∗ 8.44∗ −31.01∗

2 Qm = 10 −2.00 −55.09 −14.99 7.45 −27.25
2 Qm = 0.1 −1.39• −56.37• −13.52• 8.99• −29.81•

3 Qm = 10 −8.54 −71.76 −11.23 7.10 −17.74
3 Qm = 0.1 −9.14• −70.70• −3.65• 7.64• −7.47•

4 Qm = 10 −3.79 −51.26 −11.59 9.27 −19.02
4 Qm = 0.1 −4.26∗ −53.76∗ −11.76∗ 9.52∗ −22.35∗

∗ . . . Mean discharge (∆SoC < −0.05%, ∆SoCmin = −0.33%)
• . . . Mean charge (∆SoC > 0.05%, ∆SoCmax = 0.19%)

Table 5.3: Measured fuel and emission reductions of 4 representative cycles with enabled load
and cycle prediction compared to conventional ICE operation.

even closely reached since the overall energy conversion is large compared to the deviations and
two of the four test runs even increased the SoC in average.

Benefit for a cyclically working wheel loader using CD

Filla [35] analyzed different work cycles of wheel loaders in order to optimize the path trajecto-
ries to decrease fuel consumption and to increase productivity, respectively. The cycle detection
targets for the same aims, but only based on the past load trajectory since the applied cycles
are unknown in advance. In Figure 5.4, the influence on the system behavior due to enabled
(subscript extension CD) and disabled cycle detection is depicted in more detail for the mea-
surements of cycle number 3.

Subplot one in Figure 5.4 shows the rotational speed, while enlargement (a) emphasizes
that due to the CD, the speed is increased prior to the load peak. This reduces the need
of the electrical system to support any speed changes, which can be seen in marked region
(b) in Subplot four, where the ISG torques are depicted. The SoC trajectories are shown in
the last subplot, where in marked region (c), the difference is clearly observable. After the
second recurrence, the cycle is detected and the master MPC optimizes across the predicted
load trajectory, which enforces to optimally use the energy storage capabilities, minimizes the
fuel consumption as well as exhaust emissions and fully considers the phlegmatisation. Any
slightly larger deviation from the demand SoC has therefore less influence on the cost function
than the efficiency improvement. It is important to mention that the cycle detection in principle
needs at least two or more cycles to detect a cycle and reduces noise emissions due to the
smoothed operation of the powertrain.

Another way to express the benefit is to calculate the rate of electrical and overall energy
conversion, which follows for cycle number 3 to 28.14% with disabled CD and 25.21% with
enabled CD. In other words, almost 3% less electrical system usage can be achieved if the
information available from the past load trajectory is used accordingly in the control concept.
Nevertheless, the reduction in fuel consumption and exhaust emissions are the main aims of the
control concept and keeping the SoC at the demand SoC value is only of secondary importance.
On this account, there is a great importance on the accuracy of the SoC value though.
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Chapter 6

Conclusion and Outlook

In this work, the hybridization of non-road vehicles is discussed in terms of the control aspect.
The work is motivated by the continuously increasing legislative regulations of non-road mobile
machinery to decrease exhaust emissions and fuel consumption. Two topics are mainly relevant
to be discussed in this context: The energy management system of the hybrid electric powertrain
and the mandatory accurate estimation of the battery state of charge during operation.

First, the generic methodology for nonlinear system identification of battery models in the
context of accurate real time SoC estimation is discussed. The SoC is not measurable on-line
and needs to be estimated during operation, which in case of non-road vehicles is difficult due to
the high dynamic usage of the electrical system. In order to obtain a precise battery model for
different battery cell chemistries and different temperatures, the data based local model network
approach is used to model the battery cell terminal voltage. The LMN consists of local linear
models, which are interpolated to obtain the global nonlinear model output, while the LMN
structure is iteratively built by the automatic LOLIMOT algorithm. Battery cells have strong
nonlinear effects acting on the voltage, which need to be considered in the model structure.
To this end, relaxation and hysteresis effects as well as the SoC, current and temperature are
integrated by corresponding inputs in the LMN structure, which is enhanced by a prepartitioned
network to achieve a physically appropriate network. A significant increase in model accuracy
results from optimal model based design of experiments, where a model of the battery is used to
optimize the excitation signal of battery cell tests. The high dynamic excitation signal consists of
sufficient high currents, which are necessarily required for non-road applications. Furthermore,
a real load cycle analysis is made to especially consider frequently used load ranges in operation.
The results showed that a battery cell model accuracy with less than 3% NRMSE could be
achieved, while currents above 20C were applied to the cell. A proposed measurement procedure
guaranteed the reproducibility as well as comparability of the results.

Based on the battery cell model, different battery module models are built, while the results
showed that the consideration of the additional internal resistance due to the cell connections
can obviously increase the model quality significantly. Nevertheless, the results also showed that
the disregard of the battery module internal resistance also achieves reasonable accuracy, which
leads to the fact that if no battery module is available for measurements, the battery module
model can nevertheless be built and used for principle analyses. A NRMSE of significantly less
than 1.4% for the battery module models could be achieved. The obtained battery models could
further be used in a SoC estimator based on the theory of Kalman filter. Due to the LMNmodels,
a fuzzy observer is used to dynamically estimate the SoC during operation, which could achieve
an accuracy below 5% depending on the used filter tuning. The results obtained with the fuzzy
observer were compared to the SoC estimation provided by the battery management system of
the battery module, which showed that the assumption of an inaccurate SoC estimation of the
BMS after some time is justified.
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Second, an energy management system is presented for a non-road parallel hybrid electric
powertrain that considers physical constraints and the future load demand to achieve an optimal
control. A cascaded model predictive control concept provides the possibilities to implement
the mentioned requirements. The future load demand is in advance unknown, due to which
two data based methodologies are introduced, which predict the disturbance trajectories of the
vehicle with sufficient accuracy to be used in the control concept. To this end, a short term
load trajectory prediction based on the Bayesian inference provides a load trajectory for the
fast inner control loop, while a cycle detection based on correlation analysis is used to detect
recurrent cycles in the past load signal. The strong nonlinear behavior of the electrical system
is fully integrated by an iterative optimization of the master control loop.

Simulations and real time testbed measurements verify the feasibility of the concept on
the application example of a wheel loader, while also a theoretic prove of stability is given.
The special strategies downspeeding and phlegmatisation have a significant influence on the
powertrain dynamics, which could be compensated by the proposed controller. At the expense
of slightly increased NOx exhaust emissions, CO, HC and soot emissions as well as the fuel
consumption are significantly reduced. The results showed furthermore that a change in the
MPC penalties can easily implement different hybrid strategies on the powertrain due to which
an easy portability to other vehicles is given.

Future work needs to be focused on an experimental vehicle, which must prove the overall
methodology of energy and battery management system. Furthermore, the controller can be
improved by integrating material behavior and penetration force of the wheels in the process
model (see e.g. [109], [14]) .
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