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"In the beginning the Universe was created.

This has made a lot of people very angry

and been widely regarded as a bad move."

Douglas Adams, The Restaurant at the End of the Universe



Deutsche Kurzfassung der Dissertation

Die theoretische Beschreibung von Materie bei mittlerer Baryon Dichte erweist sich als äuÿert
komplex. Einerseits ermöglichen numerische Gitter Methoden nur die Beschreibung von rela-
tiv niedrigen Dichten, andererseits sind störungstechnische Methoden erst bei deutlich höheren
Dichten anwendbar. Der Parameterbereich mittlerer Dichten und niedriger Temperaturen des
QCD-Phasendiagramms ist daher nicht exakt beschreibbar. Erdgebundene Experimente, wie
der Teilchenbeschleuniger LHC am CERN, sind in der Lage den Hochtemperaturbereich bei
niedrigen Dichten des Phasendiagramms zu untersuchen. Für die Untersuchung dichter Kern-
und Quarkmaterie bei niedrigen Temperaturen müssen wir uns hingegen astrophysikalischen
Objekten zuwenden. Kompakte Sterne können uns hierbei als einzigartiges Labor für diesen
Bereich der Physik dienen. In kompakten Sternen existieren Kernmaterie als auch Quark-
materie vemutlich in Form von komplizierten, mehrkomponentigen Systemen aus Supra�üs-
sigkeiten und Supraleitern. Auf Grund der schnellen Rotation und des starken Magnetfeldes
der Sterne können Phänomene wie hydrodynamische Instabilitäten und die Entstehung von
Vortices beziehungsweise Flussschläuchen phänomenologisch relevant werden. In dieser Disser-
tation werden diese mehrkomponentigen Systeme in einem konsistenten Verfahren für mehrere
Flüssigkeitskomponenten behandelt. Zu diesem Zwecke starten wir von einem feldtheoretis-
chen, bosonischen Modell und untersuchen die Phasenstruktur eines zweikomponentigen Sys-
tems, wie es zum Beispiel supra�üssige Neutronen und supraleitende Protonen bilden. Die
zwei Felder stehen dabei durch zwei unterschiedliche Kopplungen in Wechselwirkung, einer
von der Dichte abhängigen Kopplung und einer Kopplung die proportional zur Ableitung der
Skalarfelder ist. Anschlieÿend werden hydrodynamische Instabilitäten, die als Auslöser so-
genannter "pulsar glitches" dienen könnten, untersucht. Von einem technischen Standpunkt
gesehen bedeutet das, dass die Schallmoden des Systems berechnet werden, wobei im Falle
zweier Supra�üssigkeiten äquivalenterweise die Steigung der Goldstone Moden berechnet wer-
den kann. Eine genaue Analyse zeigt, dass die dynamische Zweistrom-Instabilität nur für
relative Geschwindigkeiten gröÿer als Landaus kritischer Geschwindigkeit, also in einem ener-
getisch instabilen Bereich, existieren kann. Im Fall zweier idealer Flüssigkeiten hingegen kön-
nen in gewissen Fällen transversale Moden in einem energetisch stabilen Bereich dynamisch
instabil werden.
Durch Hinzufügen eines Eichfeldes und Berücksichtung der Ladung eines der Skalarfelder

wird anschlieÿend der Ein�uss einer Supra�üssigkeit auf die magnetische Phasenstruktur eines
Supraleiters untersucht. Konkret bedeutet dies, dass diverse kritische Magnetfelder, ausgehend
von einem temperaturabhängigen Ginzburg-Landau Energiefunktional, berechnet werden. Das
Energiefunktional selbst wird dabei von dem feldtheoretischen Modell des Zwei�üssigkeiten-
systems abegleitet. Die anschlieÿende Berechnung der kritischen Magnetfelder für den Über-
gang von der Meissnerphase zu einem System mit einem Gitter aus Flussschläuchen zeigt
dabei, dass der Übergangsbereich von Typ-I zu Typ-II Supraleitung durch die Supra�üssigkeit
drastisch verändert wird: Die Phasenübergänge am oberen und unteren kritischen Magnetfeld
werden zu Phasenübergangen erster Ordnung, was gemischte Phasen von sogenannten Flusss-
chlauch Clustern ermöglicht. Auf Grund der komplett relativistischen Berechnung sind die
präsentierten Ergebnisse relevant für verschiedene Systeme, von Supra�üssigkeiten in Neutro-
nensternen bis hin zu Laborsystemen im nicht-relativistischen Limes.
Farbsupraleitende Quarkmaterie kann näherungsweise ebenfalls als mehrkomponentiger

(Farb-) Supraleiter beschrieben werden. Sogenannte "color-�avor locked" (CFL) Quarkmaterie
verdrängt farbmagnetische Felder auf Grund des Meissner E�ekts. Eines dieser Farbfelder trägt
eine Beimischung des abelschen Magnetfeldes, wodurch sich unter Ein�uss eines gewöhnlichen
Magnetfeldes Flussschläuche in CFL-Materie formen können. In Anlehnung zur Herange-
hensweise in der nukleonischen Berechnung, dient ein Ginzburg-Landau Energiefunktional für
drei masselose Quark-Arten als Ausgangspunkt. Basierend auf der perturbativen Form der
Ginzburg-Landau Parameter, wird der Parameterberreich identi�ziert, in welchem CFL ein
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Typ-II Supraleiter ist, und die radialen Pro�le verschiedener farbmagnetischer Flussschläuche
berechnet. Unter den Kon�gurationen mit verschwindender Baryonzirkulation wird eine neue,
über den bisherigen Literaturergebnissen in dem für Neutronensterne relevanten Parameter-
bereich bevorzugte, Lösung gefunden. Der gleichen Methode folgend wird ein neuer Defekt in
der 2SC Phase beschrieben. Diese magnetischen Domänenwände entstehen natürlich aus den
bisher studierten Flussschläuchen durch die Verwendung eines allgemeineren Ansatzes für den
Ordnungsparameter. Farbmagnetische Defekte im Allgemeinen können zu dauerhaften Verfor-
mungen von Neutronensternen führen, die potentiell gravierend genug sind um detektierbare
Gravitationswellen zu erzeugen.
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Abstract

Matter at intermediate baryon densities and low temperatures is notoriously hard to tackle
theoretically. Whereas lattice methods cannot cover more than rather small densities, per-
turbative methods are only applicable at much higher densities. The regime of intermediate
chemical potential at low temperatures in the QCD phase diagram is therefore out of reach
of �rst-principle methods. Whereas earth bound laboratories, like particle accelerators as the
LHC at CERN, are capable of studying the high temperature/low density part of the phase
diagram, we have to rely on stellar objects to investigate dense nuclear and quark matter at
low temperatures. Compact stars can serve as a unique laboratory for this regime. In compact
stars, nuclear as well as quark matter possibly form complicated interacting multicomponent
systems of super�uids and superconductors. Due to their fast rotation and high magnetic �eld,
phenomena like hydrodynamic instabilities and the formation of vortices/�ux tubes become of
phenomenological interest. In this thesis, I try to investigate these multicomponent system in a
consistent multi-�uid treatment. By starting from a �eld-theoretical, bosonic model, the phase
structure of a two-�uid system, e.g. consisting of super�uid neutrons and superconducting
protons, is explored. The two �elds are coupled via a density and a derivative coupling, which
leads to the entrainment e�ect. Consequently, hydrodynamic instabilities, which might serve
as trigger for pulsar glitches, are calculated for two-�uid systems. Technically, this amounts
to calculating the sound modes of the system, which is identical to the slope of the Gold-
stone dispersion relation in the case of two super�uids. An analysis shows that the dynamical
two-stream instability can only occur beyond Landau's critical velocity, i.e., in an already
energetically unstable regime. A qualitative di�erence is found for the case of two normal
�uids, where certain transverse modes su�er a two-stream instability in an energetically stable
regime if there is entrainment between the �uids.
By incorporating a gauge �eld and taking into account the charge of one scalar �eld, the

in�uence of a super�uid on the magnetic phase structure of a superconductor is studied.
This amounts to calculating various critical magnetic �elds from a temperature-dependent
Ginzburg-Landau potential derived from the �eld-theoretical description of the two-component
system. A calculation of the critical magnetic �elds for the transition to an array of magnetic
�ux tubes, based on an approximation for the interaction between the �ux tubes shows that
the transition region between type-I and type-II superconductivity changes qualitatively due
to the presence of the super�uid: the phase transitions at the upper and lower critical �elds
in the type-II regime become �rst order, opening the possibility of clustered �ux tube phases.
Since all calculations are performed in a fully relativistic setup, the presented results are
very general and not only of potential relevance for (super)�uids in neutron stars but, in the
non-relativistic limit, in the laboratory.
Color-superconducting quark matter can e�ectively be described as a multicomponent

(color-)superconductor as well. Color-�avor locked (CFL) quark matter expels color-magnetic
�elds due to the Meissner e�ect. One of these �elds carries an admixture of the ordinary
abelian magnetic �eld and therefore �ux tubes may form if CFL matter is exposed to a mag-
netic �eld. As in the nuclear system, a Ginzburg-Landau approach for three massless quark
�avors is employed. Based on the weak-coupling expressions for the Ginzburg-Landau pa-
rameters, the regime where CFL is a type-II color superconductor is identi�ed and the radial
pro�les of di�erent color-magnetic �ux tubes are computed. Among the con�gurations without
baryon circulation, a new solution that is energetically preferred over the �ux tubes previously
discussed in the literature in the parameter regime relevant for compact stars, is found. Within
the same setup, a new defect in the 2SC phase, namely magnetic domain walls, is described.
These emerge naturally from the previously studied �ux tubes if a more general ansatz for the
order parameter is used. Color-magnetic defects in the interior of compact stars allow for sus-
tained deformations of the star, potentially strong enough to produce detectable gravitational
waves.
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Units and Conventions

In this thesis natural Heaviside-Lorentz units are used. This means that we set ~ = c = kB = 1,
and choose electron volts as the unit of energy. As a consequence, lengths are given by inverse
energies, [l] = eV−1. Sometimes, for comparison with existing literature, femtometers are used
as an unit of length. One femtometer, sometimes called one Fermi, is 1 fm = 10−15 m and
corresponds to 1 fm = 1 ~c

MeV ≈ 197.327MeV−1. Temperatures are given in eV as well, where

for a rough comparison 295K (room temperature) corresponds to 295K ≈ 1
40 eV. In order to

be able to compare the strength of the occurring magnetic �elds to the masses, [qB] = GeV2

with the electric charge q, and [m] = GeV is used. In natural units, the electric charge is
dimensionless. This is not true if one wants to compare the �eld strengths to the astrophysical
literature, where Gaussian units are common. For the proton, the charge is given by the
elementary charge, which can be calculated from the �ne structure constant, α = e2

4π ≈ 1
137 ,

leading to e ≈ 0.30 in our system of units. Using this, one obtains the conversion for the
magnetic �eld strength, qB = 0.1GeV2 is then equivalent to B = 1.7 × 1019 G (Gauss). The
Gauss as a unit for magnetic �eld strengths is very common in astrophysics and can be related
to the SI unit Tesla via 1G = 0.1 mT. 3

For the metric, the mostly-minus convention of particle physics is used,

gµν = diag(1,−1,−1,−1) . (0.0.1)

Three-vectors will be denoted by bold letters, e.g. a, where their norm will be denoted by
the corresponding normal letter, i.e. |a| = a. Whenever this notation might be ambiguous,
especially for Greek letters, the notation ~a will be used instead. Four-vectors will either be
written with a greek index, e.g. kµ where the index is lowered and raised with the Minkowski
metric gµν , or by capital letters, e.g. K. The Minkowski product will be abbreviated by a dot,
KµQµ = KµQνgµν := K ·Q.
Throughout this thesis, most of the thermodynamical quantities are expressed as densities,

since the thermodynamic limit is applied. For readability, we will simply write "free energy"
instead of "free energy density" if it is clear in the given context.

3The di�erence between Gauss (G) and Heaviside-Lorentz (HL) units for the gauge �elds is AµG =
√

4πAµHL,
and for the charges qG = qHL/

√
4π (such that the product qAµ is the same in both units). This implies for

the elementary charge eHL =
√

4πα ' 0.3, and eG =
√
α ' 0.085.
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Part I.

Introduction

Pulsar PSR B1509-58 makes gas glow and illuminates rest of the nebula. Source: NASA/CXC/SAO (X-Ray); NASA/JPL-Caltech (Infrared)
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1. The QCD Phase Diagram

In order to describe the world around us, physicists have been using the concept of "elements"
and their phases for millennia. In many areas of science, phase diagrams are used to draw a
map of the thermodynamically distinct states a single material can be found in at di�erent
external parameters, like temperature T and pressure P . In the simplest cases, a phase
diagram of a single substance shows, as a function of two parameters, the various states, like
liquid, gaseous and solid. These phases are often separated by phase transition lines between
them, which can end in critical points. A very common example is the phase diagram of
water, shown in Fig. 1.0.1. In principle, these diagrams can contain additional parameters and
become multi-dimensional or contain a plethora of di�erent information.
Due to the advances of particle physics in the last century, more and more fundamental

theories of matter aim to describe the entirety of what the world around us is built of in a single
theory. The standard model of particle physics is the most complete and successful attempt
in history of mankind to reach this goal. The standard model describes successfully and with
a never before achieved accuracy three out of the four fundamental interactions which govern
our universe: the electromagnetic interaction, which is responsible for next to all chemical
and every-day processes, the weak interaction, responsible for nuclear fusion and �ssion, and
the strong interaction. The latter one is the dominating force at the level of neutrons and
protons, holding together atomic nuclei and controlling the behavior of quarks and gluons,
the fundamental constituents of hadrons in the standard model. Hadron is therefore a name
for every particle which consists of quarks, in contrast to leptons like the electron which are
considered to be fundamental. Quarks come in three di�erent "colors" and six "�avors".
Besides their electromagnetic charge, which can be either positive or negative, quarks possess
another kind of charge associated with the strong interaction that comes in three instead of
one opposing variant like the electric charge. In analogue to the concept of additive color, we
call these color-charges red, green and blue. A bound object of either three quarks with one of
each color (called baryon), or two quarks, one with color and the other with the corresponding
anti-color (called mesons), are said to be color neutral. All particles we observe in nature are
such color neutral objects, a phenomenon which is called con�nement. In addition, there are
six di�erent �avors of quarks, grouped into three families. Ordered by their increasing mass,
the quarks are called up, down, strange, charm, bottom and top quark. A graphical summary
of their properties can be found in Fig. 1.0.2 and in the booklet of the particle data group
(pdg), Ref. [6]. We observe a signi�cant jump in the quark masses from the strange to the
charm. Thus the up, down and strange quarks are often referred to as light quarks, whereas
the charm, bottom and top quarks are called heavy quarks. For the purpose of this thesis, the
latter three are too heavy to occur in the described systems and are therefore neglected from
now on. All further statements refer to three �avor quark matter of up, down and strange
quarks.
The theory of the strong interaction, which describes quarks and their interactions, is called

quantum chromodynamics (QCD) and based on the QCD Lagrangian:

L = ψ̄QCD (iγµDµ −m)ψQCD −
1

4
F aµνF

µν
a , (1.0.1)

where the QCD spinor ψQCD is a multi-dimensional object in color-, �avor- and Dirac space
and F aµν is the gluon �eld strength tensor. Consequences of this formula will be discussed in
more detail throughout this thesis. Here, it rather serves a pedagogical purpose: although
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Figure 1.0.1.: On the left hand side a standard phase diagram of water, with the gas (brown), solid/ice
(blue) and liquid (purple) phase as function of temperature and pressure. On the right hand side the
highly speculative QCD phase diagram in the plane of temperature and quark chemical potential µ.

Figure 1.0.2.: The three quark families and their properties. Image credit: [7]

the theory can be written down in an incredibly compact way, it is far from trivial and to
a big extent not possible at all to use this expression directly to compute properties of our
world from �rst principles. However, putting together our knowledge from experiments, theory
and observations, it is possible to draw a sketch of the most fundamental phase diagram of
the world: the QCD phase diagram does not only show the phases of a speci�c material,
it summarizes our understanding of all (in�nite) nuclear and quark matter as a function of
temperature and chemical potential, a quantity which can be roughly translated to density
or pressure. Here, we focus on isospin symmetric matter, which means that the number of
up and down quarks is equal, but in principle the QCD phase diagram can be extended and
include isospin asymmetric matter. In the following I am going to describe brie�y the features
we believe to be hidden in the QCD phase diagram and how we can learn something about
them. For an extensive review about the challenges and perspectives of QCD see Ref. [8], for
a review on the QCD phase diagram itself see Ref. [9].

• Low densities. If we start in the origin at vanishing temperature and density, we are in
the vacuum, where no matter exists at all. Due to the critical end point of the liquid-
gas transition, which is indicated by the shorter curved line with the blue endpoint and
separates the vacuum from the hadronic phase at vanishing temperature, the vacuum
is continuously connected with the hadronic phase. This means, even at a too small
chemical potential (i.e. lower than indicated by the solid line), we will �nd a small baryon
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density at �nite temperature. Going up the temperature axis, we will reach the cross-over
to the decon�ned phase at approximately TQCD = 150 MeV. The region of small densities
and high temperatures is accessible in two ways: numerically, lattice QCD provides a
�rst-principles approach to QCD, which has provided us with tremendous insight to QCD
at low densities. Due to the sign problem, a computation at high densities is currently
out of reach. The second approach to this part of the phase diagram is experimental:
heavy ion colliders, like currently the large hadron collider LHC at CERN in Geneva, the
relativistic heavy ion collider RHIC at Brookhaven National Laboratory (BNL) in the US,
or in the future the PANDA experiment at the Facility for Antiproton and Ion Research
(FAIR) in Darmstadt, Germany and NICA in Dubna, Russia [10], explore various density
regimes in the phase diagram. Especially the last two upcoming experiments aim for
higher densities and lower temperatures in order to �nd the critical endpoint of QCD;
the blue point at the end of the dominating curved line separating the hadronic from
the decon�ned phase.

• Baryon onset of nuclear matter. If we follow the T = 0 axis to the right, we hit a �rst-
order phase transition from the vacuum to the hadronic phase, an in�nite, symmetric
phase of homogeneous nuclear matter. This transition can be found at a baryon chemical
potential1 µB = 922.7 MeV, which results from the mass of the nucleon mN = 939 MeV
reduced by the binding energy of homogeneous nuclear matter, EB = −16.3 MeV. The
shape of the transition can be in�uenced by other parameters, like magnetic �elds, see
for instance Refs. [11, 12]. This is practically also more or less the point in the diagram
where we actually live: the matter we and most of our surrounding world is made of,
is sitting in a mixed phase of nuclear matter clumped into more or less spherical nuclei
immersed in vacuum (and some electrons). Consequently, every earth-bound low energy
nuclear experiment (and in principle every "ordinary" experiment on earth) directly and
indirectly tests this region of the phase diagram.

• Decon�nement and chiral transition. If one increases temperature and density, one
reaches the decon�nement transition, which separates the con�ned hadronic phase, where
quarks are bound to hadrons, and the decon�ned phase. There, temperature and densi-
ties are so high, that the individual quarks cannot be assorted to speci�c bound states any
more. We are now dealing with a soup of quarks and gluons, the so called quark-gluon
plasma. This phase can be reached in heavy ion collisions. At asymptotic densities and
temperatures, QCD is asymptotically free: with rising chemical potential and tempera-
ture, quarks interact arbitrarily weak with each other [13]. This phase can be described
by perturbative methods. In addition, there is the restoration of chiral symmetry. Fun-
damental particles, like quarks, have an additional property which we call chirality or
handedness, from the ancient Greek word for hand. This basically means that quarks
come in two copies, a so called left-handed and a right-handed version. In contrast to the
weak interaction, the strong interaction treats massless left- and right-handed particles
equally, a phenomenon we call chiral symmetry. However, the ground state of QCD does
not respect this symmetry, which is related to the concept of spontaneous symmetry
breaking (SSB) and the formation of a chiral condensate consisting of quark antiquark
pairs. This mechanism is mainly responsible for the mass of the nucleons. Whether
the chiral phase transition, the transition where the chiral condensate is destroyed and
chiral symmetry is restored, is for low densities identical to the decon�nement transition
is an open question. Additionally, chiral symmetry is broken explicitly by �nite quark
masses and is consequently at most considered an approximate symmetry as long as the
chemical potential is still large compared to the masses.

1In the diagram, the quark chemical potential is used which is one third of the baryon chemical potential.
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• Low temperatures. Following the T = 0 axis to high densities, we stumble across a
new phenomenon: super�uidity and superconductivity. Right after the baryon
onset, we expect di�erent superconducting and super�uid nuclear phases, where neu-
trons and protons form Cooper pairs and condense. At higher densities, we reach color-
superconducting phases: quarks form Cooper pairs in a great variety of di�erent ways
and condense to form a color superconductor. At very high densities, we reach the
ground state of dense and cold matter, the color-�avor locking (CFL) phase, a color
superconductor with maximal high residual symmetry [14, 15]. These phases are going
to be investigated in more detail in the last part of this thesis. Theoretically, at inter-
mediate densities it is very hard to describe these regions. We have to rely on e�ective
descriptions like relativistic mean �eld models or the Nambu�Jona-Lasinio model [16]
for instance, which treats the quark-quark interaction contact-like. "Experimentally",
or rather observationally, there is another intriguing option: compact stars. Compact
stars are incredibly dense stellar objects, whose behavior has to be explained on the
microphysical level and can therefore be used as a unique laboratory for dense QCD at
low densities.
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2. Compact Stars

Compact stars are the collapsed cores of large stars, born in a supernova explosion. Due to
their neutron dominated composition, they are often called neutron stars in the literature.
Neutron stars are the densest objects known to mankind after black holes, in which matter is
crushed beyond the limits of a description within particles of the standard model. They have
typical radii of R ≈ 12 km and masses between one and a few solar masses, M ≈ 1 − 3M�
with a typical value ofM ≈ 1.4M�, where the mass of the sun is given byM� = 1.989 ·1033 g.
For a list of currently known neutron star masses see Fig. 2.0.1, general literature on compact
stars from a particle physics point of view can be found in Refs. [17�20], which are mainly
used as sources in this section. Using the latter numbers, we can estimate the average density
of a neutron star to reach around

ρ ' 7 · 1014 g cm−3 ≈ 2.8ρ0 , (2.0.1)

where ρ0 = 2.5 · 1014g cm−3 represents the density of heavy nuclei, the nuclear ground state
density. Although this might not sound impressive at �rst sight, one has to consider that the
matter we are made of is mostly "empty" considering the mass distribution. A sugar cube
of neutron star matter has approximately the same mass as the estimated total mass of the
entire earth's population.
The term neutron star originates in the traditional picture of the composition of these stellar

objects: neutron rich nuclear matter. However, even in this simpli�ed view a certain amount
(up to 10 %) of the baryon density is contributed by protons. Due to the requirement of
neutrality (the electromagnetic force would push away any signi�cant amount of charge, see
Chap. 2 note 1 of Ref. [20]), the same number density of particles with negative elementary
charge e has to be present. Moreover, the core of a compact star might contain a signi�-
cant amount of non-nuclear matter: hyperons (baryons with strange quark content), meson
condensates or color-superconducting quark matter. Consequently, the term "compact star"
should be preferred in order to include these exotic objects. On top of that, the possibility of
a strange quark star has been discussed extensively in the literature, for a review see Ref. [24].
Compact stars have some very interesting properties which help us to observe them in the

�rst place.

• Due to the conservation of angular momentum in the collapse, they are rotating, some
of them with an astonishing frequency. The current record holder is PSR J1748-244ad1

at a rotation period of only 1.39 ms, which means that its equator rotates approximately
with 24% of the speed of light [26]. The upper limit of rotation, where the neutron star
would tear itself apart, is given by the Kepler frequency. According to Refs. [27,28], this
critical frequency is above ν & 1 kHz, which is much higher than the observed maximum
value of ν ≈ 716 Hz. The reason for this gap is not fully understood and an open
question in neutron star research. It is worth mentioning that the Kepler frequency only
applies to rigidly spinning stars. By allowing for di�erential rotation, higher frequencies

1The label can be read as follows: PSR indicates that the object is a "Pulsating Source of Radio emission"
(either neutron star or white dwarf), the letter J the use of the J2000 coordinate system which is followed by
the right ascension and, after the minus sign − which indicates that the object can be seen in the southern
hemisphere (+ for northern), the declination. The extra letters are added if two stars are too close to each
other.
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Figure 2.0.1.: Table of neutron star mass measurements at a 68% con�dence level, originally published
in Ref. [21]. The color coding indicates di�erent kinds of sources. Due to the large systematic errors
in some measurements, the current accepted record holders (circled in red), measured using Shapiro
delay, are PSR J1614-2230 with M = 1.97±0.04M� (see Ref. [22]) and PSR J0348+0432 with a mass
of M = 2.01± 0.03M�(see Ref. [23]).

might be possible. However, this is not a stable con�guration since viscous e�ects will
always redistribute the angular momentum until uniform rotation is achieved.

• Conservation of magnetic �ux leads to huge magnetic �elds in compact stars. Surface
�elds are found to be around B ≈ 1012 G, but even larger �elds have been observed. Stars
with �elds of the order of B ≈ 1015 G are called magnetars [29,30], and it is conceivable
that the magnetic �eld reaches even higher values in the core of the star with a theoretical
stability limit of B ≈ 1018−1020 G in the core [31]. The combination of strong magnetic
�elds and rotation leads to the lighthouse e�ect - the de�ning phenomenon of a pulsar.
The emitted electromagnetic radiation is geared towards the magnetic axis, which does
not align necessarily with the axis of rotation. The beam of radiation therefore spins
around the star's rotation axis, hitting our telescopes on earth periodically like the light
of a lighthouse - therefore the term pulsar: pulsating star. Most of the compact stars we
know are observed as pulsars. Additionally, magnetic �elds lead to a stress on the crust
and deform the star if they are strong enough, leading to the emission of gravitational
waves [32]. These deformations are called "magnetic mountains", which can reach heights
of a few centimeters.

• In a particle physics language, neutron stars are cold. Compared to room temperature
of course they are quite the opposite, with temperatures reaching up to T ≈ 1011 K
after the supernova, which corresponds to T ≈ 10 MeV. Mainly driven by neutrino
emission, they cool down to the keV range within days. Compared to the other scales
which we have to consider, the quark chemical potential (several hundred MeV) and the
characteristic scale of QCD ΛQCD ≈ 150 MeV, this can be considered small, T � µq.
This allows us to work in the zero temperature approximation in most of this thesis,
T = 0. Observing the temperature of a star for a longer time can be used to learn
something about the microscopical transport properties of dense matter [33].

All of these properties can be deducted from the electromagnetic radiation we are receiving
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Hyperons?
Superconducting quark matter?

Figure 2.0.2.: Possible composition of a compact star. Super�uidity most likely starts to occur in the
inner crust in the form of super�uid neutrons. In the outer core, protons are believed to form a super-
conductor, rendering the liquid a complicated interacting multi-�uid system. The composition of the
inner core is fairly unknown, where hyperons and color-superconducting quarks are prime candidates.
Picture taken from Ref. [25].

from these stars. On August 17th 2017 however, a new window to the sky opened: in an event
named GW170817, the gravitational wave detectors LIGO and VIRGO observed the �rst
direct signal of a binary neutron star inspiral [34]. It is worth mentioning that the inspiral of
the Hulse-Taylor binary system served as an indirect proof for gravitational waves long before
the �rst LIGO event GW150914 in 2015. The orbit of this binary system is decaying at a
rate absolutely consistent with the expected energy loss due to gravitational wave emission
predicted by general relativity (GR) [35]. Gravitational wave astronomy will play a major role
in the future investigation of compact stars, but currently the sample size is still too small.
Nevertheless, the observation already impacted other �elds, like cosmology and astronomy,
and some constraints on the behavior of matter inside the star can be inferred [36�38]. In the
following, I will explain some of the intriguing phenomena we observe and how we can relate
them to the underlying microscopic properties of dense matter. Although most of them rely
on the observation of electromagnetic waves, possible sources of gravitational waves will be
mentioned.

2.1. Observations and Microscopic Physics

In this section I am going to explain some of the common features of compact stars and how
we can use them to learn something about fundamental physics. Although I will focus on
phenomena relevant to the research part of this thesis, I will outline other selected topics
for pedagogical purposes. Additionally, I will emphasize measurements with strong relation
to super�uidity respectively superconductivity and hints for the existence of quark matter in
compact stars.
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2.1.1. Mass-Radius Curves and the Equation of State

During the collapse of the core after the supernova, gravity compresses the matter inside the
star until we reach an equilibrium con�guration: the matter inside the star counteracts the
gravitational pull with its internal pressure. If the initial mass is too big, the collapse cannot
be stopped and we end up with a black hole. For a standard compact star, the gravitational
energy is more than 10 % of the star's mass, Egrav ' 0.12Mstar, which means that GR e�ects
have to be taken into account. The di�erential equation for a non-rotating compact star in
hydrostatic equilibrium is called the Tolman-Oppenheimer-Volkov (TOV) equation [39,40]:

dP (r)

dr
= −Gε(r)m(r)

r2

[
1 +

P (r)

ε(r)

] [
1 +

4πr3P (r)

m(r)

] [
1− 2Gm(r)

r

]−1

, (2.1.1)

with Newton's constant G, and where the di�erential mass m(r), the pressure P (r) and the
energy density ε(r) are given as a function of the radius of the star. Additionally, the equation
for the encapsulated mass as a function of the stellar radius reads

dm(r)

dr
= 4πr2ε(r) . (2.1.2)

At this stage we do not have enough information to solve this set of coupled equations; we
have to relate the pressure and the energy density. This additional input is provided by the
equation of state (EOS), which encodes the microscopic properties of the matter inside the
star in the form P (ε). In order to solve the TOV equation, we have to specify the boundary
conditions. By denoting the actual radius of the star by r = R we can specify the boundary
conditions at the edge of the star:

m(R) = M , (2.1.3)

P (R) = 0 . (2.1.4)

By integrating the mass function up to the surface of the star we obtain its total mass M .
On the surface, the internal pressure has to vanish, otherwise the star would blow itself apart.
Eq. (2.1.4) actually de�nes the surface of the star and allows us to determine its radius. In
the center of the star, the integrated mass m(r) is zero, whereas the pressure takes a �nite,
unknown value P0.

m(0) = 0 , (2.1.5)

P (0) = P0 . (2.1.6)

By varying the central pressure P0, we can compute a curve in the M −R plane, the so-called
mass-radius curve. For a given central pressure and an EOS, the solution of the TOV equations
will provide us with a point in the diagram, varying P0 and keeping the EOS �xed leads to
a continuous curve. Choosing di�erent equations of state for various nuclear matter models,
quark or hyperonic matter, leads to a huge variety of curves in theM−R diagram. All of these
curves possess a stable maximum of mass at a certain radius beyond which the pressure of
matter cannot counteract the gravitational pull anymore and the star collapses. An example
of such a diagram can be seen in Fig. 2.1.1. The varying slope of the majority of the presented
M −R curves shows some interesting behavior of nuclear matter: adding ordinary matter on
earth to a sphere will in most cases increase the radius of the sphere. This behavior can be
seen in the very steep part of blue curves, which slightly bend to the right. However, for the
biggest part nuclear matter seems to be rather compressible: throwing matter onto a compact
stars will lead in many cases to a decrease of its size.
In principle, measuring the exact radius and mass of a few stars should allow us to determine
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Figure 2.1.1.: M − R curve taken from Ref. [22]. The blue lines correspond to nucleonic equations
of state, pink denotes nucleonic plus some exotic matter (hyperons, kaon condensates), and green
represents strange quark matter. The shaded areas are excluded by theoretical constraints from GR,
requirements on the pressure and spin and the speed of sound, which has to be smaller than the speed
of light (causality). Every curve which does not intersect with the red band, the mass of one of the
heaviest known pulsars PSR J1614-2230, is e�ectively ruled out.

the equation of state. However, although several masses of neutron stars are well known,
measuring the extension of an object of approximately 20 km in diameter million kilometers
away from Earth turns out to be rather complicated. As shown at the beginning of this chapter,
the mass can be measured rather accurately in some cases. The measurements of PSR J1614-
2230 with M = 1.97±0.04M� [22] and PSR J0348+0432 with a mass of M = 2.01±0.03M�
[23] are considered especially robust because of the little model building involved. Both of these
stars are in a binary system with a white dwarf. Whereas the computation of the lighter mass
from Shapiro delay relies solely on the correctness of general relativity, the second observation
depends on the modeling of white dwarf stellar atmospheres and white dwarf cooling, which
are fairly well known. Since the behavior of dense matter should be unique, every EOS curve
in Fig. 2.1.1 which does not intersect with the horizontal red line, representing the mass of
PSR J1614-2230, is e�ectively ruled out. Especially the pink lines including hyperonic matter
evidently seem to fail this requirement. Intuitively, this can be understood as follows: every
new appearing (fermionic) particle species will soften the EOS, i.e. will only allow for lighter
stars. This is a direct consequence of Pauli's exclusion principle. Filling the Fermi sphere with
the same species of particles does not only get energetically more and more costly, it will also
increase the Fermi momentum and thus the pressure in the star. Any new species opens a new
Fermi sphere that can be �lled from below instead of adding new particles to an already existing
one. Hence, as soon as the chemical potential becomes high enough in the star to produce a new
species, we expect the Fermi sphere of the new particle to be populated, leading to a softening
of the EOS. The fact that we expect hyperons in a compact star (the chemical potential is
most probably high enough to produce them) combined with the non-ability to explain the
two solar mass stars within hyperonic models, is called the hyperon puzzle. Although new
models including for instance three-body interactions between the hyperons achieve su�ciently
high masses, the necessary tuning of model parameters is considered questionable, leaving the
hyperon puzzle a fascinating unsolved question of neutron star physics. For an extensive review
including further references on this topic see Ref. [41].
The discussion above shows an easy example how we are able to learn a lot about mi-

croscopical physics and dense matter by restricting the equation of state by an astronomical
observation like a mass measurement. The existence of neutron stars with masses larger than
one solar mass also disproves a very common misconception in popular science descriptions

10



of neutron stars: the stability of the star solely based on the neutron degeneracy pressure.
Since neutrons are fermions, they will form a degeneracy pressure based on Pauli's exclusion
principle. Very often, including the Wikipedia article on neutron stars [42], it is stated that
the collapse of the star is prevented by this pressure. Already in the original paper of Op-
penheimer and Volko� Ref. [39] in 1939 it was shown that a non-interacting Fermi gas, where
the only source of repulsion is the degeneracy pressure, cannot sustain masses larger than
M . 0.7M�. We can therefore conclude that the neutron-neutron interaction has a repulsive
component which stabilizes the star.
Nevertheless, a mass measurement alone does not provide us with su�cient information, it

only puts constraints on the equation of state. Earthbound experiments can only provide lim-
ited insight as well. Dense matter is largely isospin asymmetric, meaning that there are much
more neutrons than protons. As mentioned at the very beginning of this chapter, neutrons
make up at least 90 % of the nucleonic matter. This di�erence can be expressed with help of
the isospin asymmetry parameter or neutron excess parameter δ = (nN − nP ) /n , where nN
denotes the neutron, nP the proton and n the total density. The nuclear symmetry energy,
which can be expanded in δ, in�uences the equation of state signi�cantly. Unfortunately, the
largest somewhat stable nuclei on earth barely reach a neutron-proton fraction of 2, making
the measurement of the symmetry energy very di�cult. For a review on the nuclear symmetry
energy and its in�uence on various aspects of particle physics see Ref. [43].
For all these reasons, a stellar radius measurement is highly desirable. Most methods are

based on the behavior of hot spots. Hot spots can be created for instance via accretion: if
matter is accreted from a binary companion, most of the (charged) matter will follow the
magnetic �eld lines of the star and heat the crust of the star in the vicinity of the magnetic
poles. These hot spots slightly alter the photon �ux we are receiving on Earth and change
the wave form. The deduction of the radius from these observations requires GR corrections
(due to the e�ect of gravitational lensing we can observe parts of the hot spot which are
geometrically hidden behind the star), modeling of the neutron star surface and good statistics.
However, a lot of progress has been made in the last decade. Especially the installation of the
NICER (Neutron star Interior Composition ExploRer) instrument on the international space
station ISS in June 2017 will provide a lot of insight [25]. NICER enables rotation-resolved
spectroscopy in the soft X-ray band and is expected to measure up to 5 di�erent neutron star
radii within a precision of 5 − 10 %, which corresponds to an angular resolution in the range
of nanoarcseconds. For additional information on how the measurement of neutron star radii
and masses can help us to determine the EOS see for instance Refs. [44,45], a review on radius
determination using X-ray timing is presented in Ref. [46].

2.1.2. E�ects of Super�uidity and Superconductivity

One of the most striking phenomena, which is most likely connected to the existence of a su-
per�uid in the inner crust of compact stars, is pulsar glitches. Because the electromagnetic
radiation we are receiving from pulsars is driven by rotation, measuring their rotation frequen-
cies Ω = 2π/P with the period P can be done very accurately. Some millisecond pulsars spin
in an incredible constant fashion, their frequency is more stable than the best atomic clocks
on Earth [47]. Nevertheless, pulsars generally tend to spin down due to the loss of rotational
energy that is radiated away. Surprisingly, from time to time we observe sudden jumps ∆Ω in
the frequency, followed by a slow partial relaxation to a regular spin down rate. The relative
size of these jumps vary over many orders of magnitudes, ranging from ∆Ω/Ω ≈ 10−5 to
∆Ω/Ω ≈ 10−12. From all pulsars we observe, approximately 10 % show this behavior and we
have observed seven pulsars with more than ten events [48].
The leading and commonly accepted model for pulsar glitches has been presented the �rst

time in Ref. [51] and presents one of the strongest hints for the existence of a nuclear super�uid
in compact stars. As will be explained in much more detail in the following chapters, super-
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Figure 2.1.2.: Glitches in the Vela pulsar over a time span of more than twenty years. Modi�ed version
from Ref. [49] taken from Ref. [50].

�uids exhibit some striking phenomena. Most interestingly in this context is the existence of
super�uid vortices. A super�uid in a rotating bucket will not follow the rotation of the bucket,
instead it will store angular momentum in the form of microscopic super�uid vortices. These
vortices cannot move freely when the super�uid is embedded for instance in a solid lattice, as
is the case of the neutron super�uid in the ion lattice of a neutron star crust. Instead, they
will be pinned to the ion lattice. Whether they are actually pinned between or to the ions of
the lattice is an open question [52]. When the star, or to be more precise the crust, is spinning
down, the number of super�uid vortices has to diminish in principle, since the stored angular
momentum in vortices is proportional to the external rotation frequency. Additionally, vor-
tices are protected from decaying by topological properties. Due to the pinning force, vortices
cannot leave the system and a lag between the super�uid and the crust builds up. In other
words, the amount of angular momentum stored in the super�uid is bigger than the rotation
of the crust would induce in equilibrium. At some point, this lag becomes critical, a signi�cant
amount of vortices unpin and transfer angular momentum from the nucleonic super�uid to the
crust, which we observe as pulsar glitch. Despite the model's ability to explain the observed
data qualitatively, the underlying mechanism for the collective unpinning is fairly unknown.
Several triggers are discussed in the literature, including crust quakes, vortex avalanches and
hydrodynamic instabilities. For a review on glitches and trigger mechanisms see Ref. [48]. Hy-
drodynamic instabilities like the two-stream instability are an interesting trigger mechanism
�rst discussed in Ref. [53] and are highly relevant for this thesis. I will discuss the possible ex-
istence of two-stream instabilities in relativistic multi-�uid systems extensively in the research
section of this thesis which is based on publication [1]. Although a model for pulsar glitches
solely based on star quakes has been studied in the literature, its shortcomings in explaining
the large and frequent glitches in some pulsars and the slow post-glitch relaxation time lead
to the commonly accepted theory described above [48].
Another observable strongly correlated to superconductivity and super�uidity is cooling.

Cooling in compact stars is predominantly driven by neutrino emission, since photons are very
ine�ective except in the very late stages of the star's existence. The mean free path of neutrinos
in dense matter is of the same order or even longer than the radius of the star, meaning that
these weakly interacting particles can carry away energy more or less freely. The most e�cient
process for cooling is called direct Urca process, which emits neutrino and anti-neutrinos due
to the (inverse) beta decay: a neutron decays into a proton, an electron and an anti-neutrino
or a proton captures an electron and turns into a neutron plus an electron neutrino,

n→ p+ e+ ν̄e , p+ e→ n+ νe . (2.1.7)

Because of momentum conservation, this process is strongly suppressed in nuclear matter at
lower densities since it is sensitive to the proton fraction. By the presence of a spectator
nucleon, which balances out the momentum conservation equation, the processes can occur in
its modi�ed form, the modi�ed Urca. However, the formation of Cooper pairs in a nuclear
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super�uid leads to the existence of an energy gap ∆ in the quasi-particle spectrum. The
neutrino emissivity εν will be exponentially suppressed for temperatures far below the critical
temperature Tc, εν ∝ exp (−∆/T ). Although it appears that super�uidity therefore reduces
the cooling rate, an new formation channel for neutrinos opens: the constant breaking and
formation of neutron (or proton) Cooper pairs, which results in the emission of neutrino-
antineutrino pairs. This process is called pair breaking and formation process or short PBF.
Super�uidity can therefore also make positive contributions to neutron star cooling.
The combination of a superconductor and magnetic �elds can lead to the formation of

magnetic �ux tubes. The tension between the �ux tubes can lead to the formation of
magnetic mountains too. Furthermore, super�uid vortices can scatter on �ux tubes, which
is important for the movement of vortices in models for pulsar glitches. Electrons, which are
important for transport phenomena due to their low mass, can scatter o� vortices as well.
This e�ect is called mutual friction [54].

2.2. Quark Matter in Compact Stars

Since the 1960s it has been known that nuclear matter undergoes phase transitions to quali-
tatively quite di�erent states at densities a few times the nuclear saturation density [55, 56].
Compared to terrestrial standards, these phases are "exotic". One of the most intriguing ex-
otic phase is three �avor decon�ned quark matter. As conjectured in the QCD phase diagram
in Chap. 1, nuclear matter at low temperatures may undergo a �rst-order phase transition to
decon�ned (superconducting) quark matter. In a strongly simpli�ed picture, the density of
nucleons, which are made up of quarks, becomes so high that they "overlap" and we cannot
assign the quarks to single nucleons anymore. Quark matter stars basically come in two very
distinct fashions: strange quark stars and hybrid stars.
Strange quark stars are a possible consequence of the strange quark matter hypothesis

[57�59]. This hypothesis basically states that nuclear matter is only a metastable state, with
a liquid of decon�ned strange quark matter being the absolutely stable ground state at zero
pressure. Between the hadronic phase and the strange quark matter phase there has to exist
a huge energy barrier. It originates in the ine�ectiveness of the weak interaction: a conversion
from an ordinary nucleus to a stranglet (a "clump" of strange quark matter) requires a nearly
simultaneous conversion of a huge number of up and down quarks. Since �avor is conserved in
QCD (the number of each quark �avor stays constant), this transition can only be mediated
via the weak interaction. If only a small amount of quarks is converted there is no stable
nucleation because hyperons decay quickly in vacuum. If for any reason a stable stranglet hits
a neutron star, it can serve as a nucleation core for the successive conversion of the neutron
star into a strange quark star. In a binary star merger, stars are partially ripped apart, which
should lead to a certain amount of ejected stranglets. It has been argued that if the hypothesis
were true every star should be a strange quark star by now, which means a single observed
neutron star disfavors the hypothesis, although more recent publications question the amount
of ejected strangelets in these events [60]. An interesting property of strange quark stars is
their self boundedness: since strange quark matter is assumed to be stable at P = 0 they
are not necessarily held together by gravity. A strange star would consist almost entirely
of strange quark matter with a strangelet crust [61, 62] or a thin nuclear crust. For a more
detailed discussion of the strange quark matter hypothesis within the MIT bag model [63,64]
see Chap. 2.2.1 of Ref. [20], a review on strange quark matter in compact stars is presented in
Ref. [24].
The second kind of quark stars are called hybrid stars. Hybrid stars consist of a quark

matter core, which is normally supposed to be color-superconducting, and a nuclear matter
outer core and crust. The exact form of the interface is not known and depends on the surface
tension between the nuclear and the quark phase. Since theoretical predictions vary strongly,
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Figure 2.2.1.: R-mode instability window in the plane of temperature and spin frequency of the star
taken from Ref. [76]. The red, dashed line shows the standard instability window, the pink short-dashed
lines non-interacting and the solid blue lines interacting quark matter. The black dots, representing
actual stellar observations, are all found outside of the instability window if interacting quark matter
is assumed in the core.

it is unknown whether a sharp interface or mixed phases form [65�67]. Unfortunately, quark
matter cores are hard to observe directly, since a lot of the phenomena we observe are related to
the physics of the outer layers of the star. Depending on the exact form of the phase transition
and the interface, a strong �rst-order phase transition from nuclear to quark matter (and maybe
even between di�erent color superconducting phases [68]) can manifest itself directly in the
M−R curves in the form of disconnected branches [69,70]. In the mass-radius curve, we could
possibly observe (depending on some undetermined parameters of the quark matter equation
of state) two stars with the same gravitational mass but very distinct radii. In a simpli�ed
picture, the star undergoes a phase transition to a hybrid star because it accretes matter (so
its baryonic mass actually increases), but is compressed because of the strong interaction in
the quark core. The additional negative binding energy of the quark phase leads to a smaller
gravitational mass that we observe. Other bulk observables or properties which could provide
information on the nature of the core include temperature and bulk and shear viscosity.
The latter two are crucial microscopic ingredients to the solution of the r-mode puzzle.

R-modes (short for Rossby) are non-radial pulsation modes which are unstable with respect to
the emission of gravitational waves and have �rst been discussed in Refs. [71,72], for reviews see
Refs. [73,74]. Even at an arbitrarily small rotation frequency, the star can �nd a lower energy
and angular momentum con�guration by amplifying the mode. The instability is thereby
driven by the emission of gravitational waves but can only operate if the growth of the mode
is not damped by viscosity. Due to the temperature dependence of bulk and shear viscosity, one
can compute an r-mode instability window bounded by bulk viscosity on one side and by shear
viscosity on the other, in the plane of spin frequency and temperature. Within this window,
a star is thought to be unstable and should rapidly spin down and cool until it leaves the
unstable zone. However, calculations of the instability window using generic equations of state
combined with observations show numerous stars within the unstable region. Besides various
di�erent solutions including the coupling of the r-mode to its super�uid counterpart [75], a �rst
calculation of the instability window provided by interacting quark matter seems promising,
see Ref. [76] and Fig. 2.2.1. Also the damping of the modes due to a phase lag at the nuclear
matter - quark matter interface has been discussed [77].
As mentioned earlier, quark matter in compact stars is most likely a color superconductor.
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Color superconductivity and super�uidity can have similar e�ects like ordinary super�uidity
and superconductivity. For instance, it has been shown that color-magnetic �ux tubes can lead
to "color-magnetic mountains", which could emit gravitational waves detectable with future
telescopes [78]. Also the Urca process exists in quark matter and is a�ected by color supercon-
ductivity, leading to modi�ed cooling curves. A lot of the e�ects of color superconductivity on
observables depend on the details of the superconducting phase. Before I am going to explain
the details of color superconductivity in the last part of this thesis, I am going to discuss
super�uidity and superconductivity �rst in general and then in some detail in nuclear matter
in the following chapters and parts.
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3. Super�uidity and Superconductivity

Super�uidity and superconductivity are pure quantum e�ects, thus low temperatures are re-
quired to observe these peculiar phenomena. It is therefore no surprise that the discovery of
superconductivity was preceded by the liquefaction of helium at 4.2 K in 1908 by Heike Kamer-
lingh Onnes. Only three years later in 1911, Kamerlingh Onnes discovered that the resistance
of mercury drops at a critical temperature Tc of 4.20 K from 0.1 Ω below the sensitivity of his
experiment at approximately 10−6 Ω. The critical temperature is a material dependent con-
stant.Perfect conductivity is one of the de�ning properties of superconductivity. It can best be
studied in persistent current experiments: an induced current in a superconducting ring has
been observed to �ow without measurable decrease for a year and a lower bound of 105 years
for the characteristic decay time has been inferred. Another de�ning property, discovered in
1933 by Meissner and Ochsenfeld [79], is perfect diamagnetism: on the one hand, magnetic
�elds are excluded from entering a superconductor. This could be easily explained by perfect
conductivity and Lenz's law, which states that a time varying magnetic �eld will produce a
current in a conductor in such a way that the resulting �eld opposes the change that produced
it. On the other hand, magnetic �elds in an originally normal sample are getting expelled once
the material is cooled below the critical temperature (in �eld cooling). This e�ect is called
Meissner e�ect and implies the existence of a critical magnetic Hc �eld at which supercon-
ductivity is destroyed. In this simpli�ed explanation the existence of type II superconductors
has been completely neglected, but I will explain the behavior of superconductors in magnetic
�elds in much more detail later in this chapter, since it is a crucial ingredient of this thesis.
In Fig. 3.0.1, we see a graphical representation of this e�ect.
Surprisingly, it took another 16 years until super�uidity in helium-4 was discovered in 1927

by Wolfke and Keesom who observed a jump in the speci�c heat at 2.17 K [81]. Kapitza
and independently Allen and Misener then performed groundbreaking experiments establish-
ing the remarkable nature of super�uid helium in 1938 [82, 83]. Two of the key-experiments
led to the invention of the two-�uid model, which was able to solve the viscosity paradox.
Immersing a torsion pendulum in super�uid helium showed �nite damping times, whereas the
capillary experiment suggested vanishing viscosity for a super�uid. In such an experiment,
two containers are connected by a very thin tube, called a "superleak". Above the critical
temperature, helium is not able to �ow trough the capillary because of viscous e�ects. By
cooling it down, it is possible to observe the �uid to �ow from one container to the other.
In the two �uid picture, this paradox is solved as follows: super�uid helium consists of a su-
per�uid component and a normal �uid component, which originates in the excitations of the
�uid. At zero temperature, the normal �uid component therefore vanishes. However, at �nite
temperatures below the critical value, the normal �uid component leads to a damping of the
pendulum, but in the capillary experiment there is always the super�uid component which
�ows into the second container. Kapitza also was the �rst to use the phrase super�uidity,
anticipating a theoretical connection of super�uidity to superconductivity. This was rather
remarkable since a theoretical description of fermionic superconductivity was only provided in
the 1950s in works of Bardeen, Cooper and Schrie�er who shared the Nobel prize in 1972 [84].
We are going to see that a superconductor can be largely seen as an electrically charged super-
�uid. Therefore, I will use the terms super�uidity and superconductivity synonymously from
now on, whenever a distinction is not necessary. For both phenomena, we have to distinguish
between the fermionic and the bosonic case. Bosons can condense into a Bose-Einstein con-
densate (BEC), which is a coherent macroscopic quantum state. In a BEC, the majority of the

16



Figure 3.0.1.: Graphical presentation of the Meissner e�ect from Ref. [80]. A superconducting sample
is placed in a magnetic �eld. Below the critical temperature, magnetic �elds are expelled completely,
above the �eld can penetrate the material according to its magnetic properties. The same e�ect can
be seen if the sample is put into the magnetic �eld already at T < Tc.

particles occupy the same energy level, the ground state. Coherence means that the bosons
in the BEC can be described by a single-particle wave function with a single phase instead
of a complicated many-body quantum wave function. We are going to exploit this feature
in order to derive a phenomenological theory for bosonic super�uidity and superconductivity
called Ginzburg-Landau (GL) theory, which has been originally developed by Ginzburg and
Landau in the early 1950s [85]. Identical fermions cannot occupy the same quantum state
due to Pauli's exclusion principle, they obey Fermi-Dirac statistics instead of Bose-Einstein
statistics like bosons. Instead, they occupy higher and higher energy levels, consecutively
�lling the Fermi sphere. As a consequence, fermions have to undergo an "intermediate" step
before condensation: the formation of Cooper pairs. The Fermi surface is unstable towards
the formation of these pairs, as long as there is an arbitrarily small attractive interaction be-
tween the particles. In electronic superconductors, this attractive interaction is mediated by
the ion lattice, i.e. by electron-phonon interaction. In nuclear and quark Cooper pairing, the
strong interaction between the particles provides an attractive channel directly. Cooper pairs
can, to some extend, be seen as bosons and form a condensate, enabling fermionic super�uid-
ity.The condensate is the main ingredient to dissipationless transport of charge, it allows the
super�uid to �ow through the capillary and the superconductor to have vanishing resistance.
In the following chapters, I am going to present in some more detail the bosonic description
of super�uids and the behavior of superconductors in magnetic �elds. This entire chapter,
including the introduction above and the more technical discussion below, largely follows the
textbook of Tinkham, Ref. [86], and the Springer Lecture Notes in Physics of Schmitt, see
Ref. [87].

3.1. Landau's Critical Velocity

As described above, the formation of a coherent condensate allows us to transport charge, for
instance mass in a super�uid, without friction. For now we are going to restrict ourselves to
the super�uid case. As we are going to see in the next part, the condensation is connected
to the breaking of a global symmetry. Following Goldstone's theorem, the system therefore
possesses a gapless mode which can be excited by arbitrarily low temperatures. This mode is
called a Goldstone mode. In principle, a gapless mode is very easy to excite, for instance it will
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Figure 3.1.1.: Landau's critical velocity for a purely quadratic dispersion relation on the left and a
schematic dispersion relation of super�uid 4He on the right. In the right panel one can observe the
phonon, i.e. the Goldstone mode, and the roton contribution. Landau's critical velocity for a quadratic
dispersion relation is zero, whereas the dispersion relation of helium-4 is linear in the origin and thus
allows for a �nite critical velocity.

be populated for even arbitrarily low temperatures, and in principle could lead to dissipation.
However, Landau was able to �nd a general condition for these excitations to still enable
dissipationless transport. Consider a super�uid in a capillary moving with velocity vs. The
energy of an excitation in the rest frame of the �uid (where vs = 0 but the capillary moves with
−vs) is given by εp > 0 with momentum p. The entire energy of the system in the lab frame
is given by the kinetic energy of the �uid Ekin plus the energy of the excitation transformed
into the lab frame. We are going to use the non-relativistic Galilean transformation here to
do so instead of the more general, relativistic Lorentz transformation,

E = Ekin + εp + p · vs . (3.1.1)

If there is dissipation, the �uid loses energy which happens whenever

εp + p · vs < 0 , (3.1.2)

which can only be negative if at least its minimum is negative, i.e. when p and vs are exactly
anti-aligned, εp − pvs < 0. We can use this criterion for calculating the maximal critical
velocity below which the super�uid supports dissipationless transport:

vc = min
p

εp
p
, (3.1.3)

which can be rewritten as the solution of the equation

∂ (εp/p)

∂p
= 0⇒ ∂εp

∂p
=
εp
p
. (3.1.4)

This equation can be interpreted geometrically, which will be interesting for the discussion of
instabilities in multi �uid systems later on. Imagine plotting the quasi-particle excitations in
the εp − p plane. We now draw a straight line from the origin along the p−axis and start
rotating it upwards. If we can do so by a �nite angle before intersecting with the dispersion
relation there is a �nite critical velocity. Consequently, a purely quadratic dispersion relation,
like εp = p2/(2m) for a non-relativistic free particle does not support super�uidity. Goldstone
modes in general have a linear dispersion relation in the origin, therefore they do not destroy
super�uidity. If there are no further contributions for higher momenta, the critical velocity is
then directly given by the slope of the Goldstone mode at p = 0. Note that the existence of a
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�nite critical velocity is only a necessary but not a su�cient condition for super�uidity. The
dispersion relation of a free relativistic particle is gapped by its mass, ε =

√
p2 +m2, but is

certainly no super�uid. Only if there is a condensate and a �nite critical velocity the system
supports super�uidity.
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In this part of the thesis, the basics of Ginzburg-Landau theory are introduced. Afterwards,
I will start with connecting the well known machinery of quantum �eld theory (QFT) to the
models of super�uidity and superconductivity. For an introduction into quantum �eld theory
see Refs. [88,89]. Most of this part relies on the foundations of thermal (quantum) �eld theory,
the combination of statistical physics and quantum �eld theory. An extensive introduction
can be found in the textbook of Kapusta and Gale, see Ref. [90].
After doing so, I will introduce the main model of this thesis, which describes two interacting

super�uids. We are going to gauge one of the �elds later on in order to describe a mixed system
of a super�uid and a superconductor. The �rst chapters of this discussion follow the textbooks
of Schmitt Refs. [20,87] and Srednicki Ref. [88]. Large parts of this model have been developed
in the publications Refs. [91,92] and been discussed in more details in the phd thesis of Stetina,
see Ref. [93]. Furthermore, a slightly condensed description of the calculations presented in
this part concerning the two-�uid model can be found in our publications on which this thesis
is based on, see Refs. [1�4].
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4. Ginzburg-Landau Theory

Ginzburg-Landau theory was originally proposed by the famous Russian physicists Vitaly
Ginzburg and Lev Landau in Ref. [85] as phenomenological theory that describes supercon-
ductivity. Later, it has been shown that it can be obtained from the microscopic BCS theory
assuming, among others, temperatures close to the critical temperature, i.e. a small gap [94].
It is based on Landau's theory for second-order phase transitions. Landau formulated his
theory in terms of the free energy of the system, which he postulated to be analytic and to
obey the symmetries of the underlying Hamiltonian. The free energy is then written down
as an expansion of the order parameter and its gradients. This expansion assumes that the
order parameter is small, hence it cannot be applied to �rst order phase transitions because
the order parameter can jump to an arbitrary value at the transition. Thus, Landau's theory
works best for second order phase transitions and the free energy is technically only correct
close to the transition. Nevertheless, qualitative results can be obtained for a larger parameter
range. A general form for the free energy density can be written down in the form

FGL
V

= α |ϕ|2 +
β

2
|ϕ|4 +

1

2m
|−i∇ϕ|2 , (4.0.1)

with the order parameter ϕ, an e�ective mass m, and where V is the total volume of the
system which is sent to in�nity in the thermodynamic limit. Here, we already used symmetry
arguments to rule out odd terms in ϕ. The coe�cients α and β generally dependent on
thermodynamic variables like temperature and chemical potential. Note that the overall unit
of F/V is [F/V ] = m4, which leads to [ϕ] = m3/2, [α] = m and [β] = m−2 in the non-relativistic
setup used in this part of the thesis. In order to describe superconductivity, Ginzburg and
Landau identi�ed the order parameter in the general free energy with the superconducting
wave function. The square of the wave function accordingly describes the density of the
superconducting charge carriers ns,

ns = |ϕ|2 . (4.0.2)

Taking into account the e�ect of the magnetic �eld on the charged particles, we minimally
couple the gauge �eld A to the gradient and add the energy of the magnetic �eld, yielding

FGL
V

=
FN
V

+ α |ϕ|2 +
β

2
|ϕ|4 +

1

2m
|(−i∇− qsA)ϕ|2 +

B2

8π
. (4.0.3)

In an electron superconductor, m and qs correspond to the mass and the charge of the Cooper
pair, thus m = 2me and qs = −2e with the electron mass me and the elementary charge e.
The prefactor of the magnetic �eld contribution depends on the chosen units, in SI units it is
proportional to µ0, the magnetic permeability of the vacuum. The free energy of the normal
phase at zero magnetic �eld is given by FN , and the magnetic �eld and the vector potential
are connected via the curl operator,

B = ∇×A . (4.0.4)

By varying the GL free energy with respect to ϕ and the gauge potential we obtain the
Ginzburg-Landau equations, which are the Euler-Lagrange equations of motion (EOM) of the
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theory:

αϕ+ β |ϕ|2 ϕ+
1

2m
(−i∇− qsA)2 ϕ = 0 , (4.0.5)

∇×B = 4πjs , (4.0.6)

with the supercurrent
js =

qs
ms

Re {ϕ∗ (−i∇− qsA)ϕ} . (4.0.7)

The �rst equation takes the form of a non-linear Schrödinger equation.

4.1. Characteristic Length Scales

We can investigate the theory by computing simple solutions of the GL equations and study
the emerging characteristic length scales. Without magnetic �eld, the solution can be assumed
to be homogeneous, yielding

|ϕ0|2 = −α
β
. (4.1.1)

This is the homogeneous value of the condensate, which should vanish if the temperature is
approaching the critical temperature. This can be achieved by assuming an e�ective phe-
nomenological temperature dependence for the prefactor α of the following form:

α→ α0 (T − Tc) ,

with the actual temperature T and the critical temperature Tc. Note that α is negative in
the superconducting phase. This smooth transition of the order parameter indicates a second
order phase transition. Since the free energy has to be bounded from below in order to allow
for a �nite energy ground state, we have to demand that α0/β < 0. We will refer to this fact
as "boundedness of the potential".
As a next step we want to investigate how small perturbations of the homogeneous con-

densate behave. For this purpose, we are computing the change of ϕ and A perpendicular to
the surface of a plane in y, z-direction separating a superconducting half-space from a normal
conducting one. In the normal conducting half-space, we apply a constant magnetic �eld in
the z-direction. In this simple setup, the problem becomes e�ectively one dimensional. In
order to obtain analytical results, we investigate the behavior of the condensate and the gauge
�eld far away from the boundary by introducing perturbations around the equilibrium value,

ϕ = ϕ0 + δϕ(x) , (4.1.2)

A = δA(x)êy . (4.1.3)

Due to the geometry of the system we have assumed that all perturbations solely depend on
the direction pointing out of the phase-separation plane, and that the magnetic �eld in the
superconductor is parallel to the external magnetic �eld. The �rst component of Eq. (4.0.6)
shows immediately that the phase of the condensate is constant. This can be seen by separating
modulus and phase of ϕ. Therefore, we can assume the perturbations to be real and normalize
the condensate per ϕ0, f = δϕ

ϕ0
. We now linearize the EOMs in f and δA and obtain

f
′′

+ 4mαf = 0 , (4.1.4)

δA
′′

=
4πq2ϕ2

0

m
δA , (4.1.5)

where we have used Eq. (4.1.1) in order to eliminate the constant terms and β. The equations
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are solved by

f = c1e
−
√

4m|α|x = c1e
−x
ξ , (4.1.6)

δA = c2e
−
√

4πq2ϕ20/mx = c2e
−x
` , (4.1.7)

where c1 and c2 are integration constants and we dropped the exponentially growing solutions.
We see that the perturbations fall o� with characteristic length scales ξ, called the Ginzburg-
Landau coherence length, and `, the London penetration depth. The coherence length
is consequently the length scale at which the condensate varies. The penetration depth is the
crucial ingredient for the Meissner e�ect: computing the curl of A allows us to determine the
magnetic �eld in the superconductor,

B = B0e
−x
` , (4.1.8)

where B0 is the magnetic �eld at the surface, i.e. the external �eld. We see that the �eld is
not constant in the superconductor, but drops exponentially away from the surface. Note that
in the majority of the literature the London depth is denoted by λ, which we reserve for the
self-coupling constants of our �eld-theoretical model.
The exact form of the length scales will di�er slightly in a relativistic setup, but their meaning

will be unaltered. The temperature dependence of ξ and ` can be obtained by entering the
temperature dependence of α, which yields

ξ =
1√

4m |α(T )|
∝ 1

1− t , (4.1.9)

` =

√
m

2
√
πqsϕ0

∝ 1

1− t , (4.1.10)

with the reduced temperature t = T
Tc
. Note that, like for all second-order phase transitions, the

coherence length diverges at the transition at T = Tc. In the next chapter I am going to show
that the ratio of these characteristic length scales determines the behavior of superconductors
in external magnetic �elds.

4.2. Behavior of Superconductors in Magnetic Fields

In this section, we are going to explore in more detail the behavior of ordinary superconductors
in external magnetic �elds. Although calculations are done within Ginzburg-Landau theory,
the physical consequences are qualitatively correct. Most of the following arguments can be
found in the standard textbooks, e.g. Ref. [86]. Additionally, parts of this section are simpli�ed
versions of the calculations performed in Refs. [2�4]. In the previous section I have shown that
the Meissner e�ect prevents magnetic �elds to penetrate the superconductor. In the next
chapter we are going to see how this can be explained in a more �eld-theoretical framework.
However, in this section I am going to explain that the situation is actually more complicated
and argue that the behavior of a SC in an external magnetic �eld crucially depends on the
ratio of the London penetration depth ` and the Ginzburg-Landau coherence length ξ. This
dimensionless quantity is called the Ginzburg-Landau parameter κ,

κ =
`

ξ
. (4.2.1)

Most materials in the lab have constant values of κ, which allows us to characterize materials by
their Ginzburg-Landau parameter. Neutron stars on the other hand show a density dependent
κ, as we will later argue. In the non-relativistic setup used in this introductory part, κ is given
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by

κ2 =
m2β

πq2
s

, (4.2.2)

which is indeed dimensionless.
In order to understand the κ−dependence of the magnetic response, we have to look at

positive and negative contributions to the free energy of the system. Note that a "positive"
contribution in energy tends to disfavor a certain phase since the phase with the lowest free
energy is realized in thermodynamic equilibrium.
The total magnetic �eld B in any material is given by the sum of the external or "free"

magnetic �eld H and the induced magnetization M, in our case produced by the supercurrent
js.

B = H + 4πM , (4.2.3)

which means in order to reach B = 0 in the SC, the external �eld is always balanced by
a energetically costly magnetization. On the other hand, the gain of condensation energy,
which is a negative contribution since it is the ground state of the system at T = H = 0,
outweighs the cost of the magnetization up to a certain magnetic �eld. If there are no other
relevant contributions to the free energy, we can compute the critical magnetic �eld Hc by
comparing the energy of the SC phase with the normal conducting phase. Since we work at a
�xed external magnetic �eld H, we have to take the interplay between the external magnetic
�eld and the resulting total B-�eld into account. In other words, we perform a Legendre
transformation from the Helmholtz free energy F to the Gibbs free energy G,

G = F − H

4π
·
ˆ
d3rB . (4.2.4)

The Gibbs free energy includes the work done by the "generator" of the magnetic �eld, essen-
tially by taking the magnetization e�ectively into account.
In the SC the Meissner e�ect eliminates the magnetic �eld, therefore B = 0, whereas in

the normal conducting phase we ignore any possible magnetization of the normal conducting
matter and set B = H. Remember that FN is de�ned at B = 0, thus we have to add the
contribution of the magnetic �eld in the normal phase which is given by B2/8π. Starting from
Eq. (4.0.3), we �nd for the normal conducting and the superconducting phase

GN
V

=
FN
V
− H2

4π
+
H2

8π
, (4.2.5)

GSC
V

=
FGL
V

. (4.2.6)

The critical magnetic �eld Hc can be found by setting GN = GSC and H = Hc,

Hc =

√
8π

V
(FN − FGL) . (4.2.7)

At this �eld, the system undergoes a �rst-order phase transition from the Meissner phase to
the normal conducting phase, since the condensate jumps from its homogeneous value to zero.
Additionally, the magnetic �eld B immediately jumps from zero to B = H. This kind of
behavior was later termed type-I superconductivity by Abrikosov. The given expression is
very general and will hold in more complicated settings, but can be evaluated in the presented
case by inserting the de�nition of FGL, which yields

Hc =
√

4πϕ2
0α . (4.2.8)

To summarize the discussion above, we de�ne the critical magnetic �eld Hc as in Ref. [3]:
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Figure 4.2.1.: For κ� 1 the magnetic �eld is quickly damped leading to a high cost in magnetization
energy whereas the condensate has not recovered yet, leading to a positive surface energy. For κ� 1
the short coherence length leads to a high amount of condensation energy whereas a small ` reduces
the cost for expelling the �eld, leading to a negative surface energy.

• De�nition: The critical magnetic �eld Hc is the magnetic �eld at which the Gibbs free
energies of the superconducting phase in the Meissner state and the normal-conducting
phase are identical, resulting in a �rst-order phase transition between them.

First-order phase transitions have an interesting property: they can lead to mixed phases.
The mixed phase interpolates between the two separate phases by mixing phase a and b on a
macroscopic scale. The geometry of the mixing depends on the surface energy between a and b.
For example, one can imagine bubbles of phase a immersed in an otherwise homogeneous phase
b, or long strands or sheets. In neutron stars, the transition from an ion lattice in the crust to a
neutron super�uid is thought to undergo various mixed phases with di�erent geometries, which
are termed "nuclear pasta" due to the pasta-like shape [95, 96]. In a type-I superconductor,
the mixed phase consists of macroscopic normal conducting regions within a superconducting
material. The geometry largely depends on the geometry of the superconducting sample itself
and the surface tension between the phases, because the magnetic �eld will surpass the critical
magnetic �eld Hc in some regions of e.g. a spherical probe earlier than in others. The mixed
phase now interpolates between B = 0 in the Meissner and B = H in the normal phase, in the
sense that over the sample averaged magnetic �eld 〈B〉 = 1/V

´
V d

3r B rises from zero to Hc.
Thermodynamically speaking, this accounts to �xing the averaged magnetic �eld 〈B〉 in the
calculation instead of the external �eld H. These mixed phases have been already discussed in
the early works of Landau [97] and in the textbook of London [98], for a lengthy pedagogical
discussion see Ref. [86].
What we have not discussed so far are other possible lowering contributions to the energy.

One possible contribution which can diminish or raise the free energy is the surface energy
or tension between the normal conducting and the superconducting phase, which is of course
irrelevant for an in�nite superconductor in the Meissner phase. However, we could imagine
the magnetic �eld partially penetrating the SC in order to reduce the energetic cost of the
magnetization. For this to happen, the surface energy should be negative. One can intuitively
see that the surface energy depends on the ratio of ` and ξ. In each panel of Fig. 4.2.1, we
can see the transition from the normal phase on the left to the superconducting phase on the
right for two extreme values of κ. For κ � 1, the magnetic �eld is quickly damped leading
to a relatively high cost in magnetization energy, since more volume is in the Meissner state.
The condensate only recovers on a larger scale ξ, which means a slow gain of condensation
energy, leading to a positive surface energy. For κ� 1, the short coherence length leads to a
high amount of condensation energy whereas a small ` reduces the cost for expelling the �eld,
leading to a negative surface energy. The exact transition from a negative to a positive surface
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Figure 4.2.2.: Schematic plot of a �ux tube. The condensate goes to zero in the center and recovers at
a scale r ∼ ξ, whereas the magnetic �eld is maximal in the center and falls of at a scale r ∼ `.

energy happens at a critical κ of

κc =
1√
2
, (4.2.9)

which can be found in a numerical calculation of the surface energy. A negative surface energy
suggests that a possible mixed phase seeks to maximize the surface between the supercon-
ducting and the normal conducting phase, thus splitting into smaller and smaller regions of
separate normal conducting layers until this process is counteracted by a positive energy con-
tribution. In this discussion, the gradient term in the free energy provides such an energy
penalty: if the condensate has to vary to quickly from zero in the normal phase to ϕ0 in the
SC phase, the gain of surface tension will be compensated entirely. We have already seen that
the characteristic length scale of superconductivity is given by the coherence length, therefore
we can expect that the normal conducting regions will have a typical size of ξ. Furthermore,
we have argued that the magnetic �eld is shielded in the Meissner phase, such that the "de-
fect" in the superconductor has to reach the surface in order to allow the magnetic �eld to
penetrate the superconductor. A suitable solution seems to be a cylinder of normal conducting
matter with a typical radius r ∼ ξ parallel to the external magnetic �eld. These magnetic
defects of superconductors are called �ux tubes and are the de�ning property of type-II
superconductivity, �rst discussed by Abrikosov in 1957 [99]. The magnetic �eld in the �ux
tube is locally created by a ring-shaped supercurrent and is maximal in the center of the �ux
tube before it declines exponentially with the London penetration depth. A schematic plot of
the radial pro�le of a �ux tube can be seen in Fig. 4.2.2.

4.2.1. Type-II Superconductivity & Flux Tubes

Due to their importance for this thesis, I am going to discuss �ux tubes in more detail in
this subsection using GL theory. One of the most intriguing properties of �ux tubes is the
fact that the magnetic �ux in the vortex is quantized, i.e. it can only take integer values of
the fundamental magnetic �ux quantum Φ0 . This can be made plausible by looking at the
de�nition of the supercurrent in Eq. (4.0.7) and of the magnetic �ux itself,

Φ =

ˆ
A

B · dA =

ˆ
A

(∇×A) · dA =

˛
∂A

A · ds, (4.2.10)

where A is the area and ∂A the boundary of the area we are considering and we have used
Stokes' theorem. Assume that we want to compute the �ux of a single �ux tube in an otherwise
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in�nite homogeneous superconductor. First we express ϕ in the equivalent form

ϕ =
1√
2
ρeiψ , (4.2.11)

with the absolute value ρ, which we will call the condensate from now on, and the phase
ψ. Instead of the two complex variables ϕ and ϕ∗ we now use two real ones. Since we
need to evaluate the current in�nitely far away from the �ux tube, where the condensate is
homogeneous, we can neglect gradients of ρ and obtain

js =
qs
2m

ρ2 (∇ψ − qA) . (4.2.12)

From the Maxwell equations we know that every current creates a magnetic �eld, but we
have argued that we can only have a magnetic �eld in the �ux tube, not in the homogeneous
superconductor. Consequently, js = 0 at r = ∞, with the radial distance from the �ux tube
center r. This translates to a relation of the gradient of the phase and the vector potential,
A = 1/qs∇ψ. This means that a rotation of the phase is counteracted by a corresponding
change of the gauge �eld. Inserting this relation into the de�nition of the �ux yields

Φ =

˛
∂A

A · ds =
1

qs

˛
∂A
∇ψ · ds =

1

qs
∆ψtot , (4.2.13)

with the total change of the phase ∆ψtot. Uniqueness of the order parameter demands that
the phase can only change by integer multiples of 2π, which yields

Φ =
2πn

qs
= nΦ0 , (4.2.14)

with the winding number n and the fundamental �ux quantum

Φ0 =
2π

qs
. (4.2.15)

This picture provides us with further insight into the nature of �ux tubes: for winding
number n = 1, the phase of the condensate has to rotate by 2π around a closed circle around the
�ux tube. Now assume that we shrink this circle. The phase has to rotate "faster and faster"
around the tube, comparable to the relation of the velocity of a rotating string at �xed angular
velocity, which leads to a higher and higher contribution of the increasing gradient of the phase
to the free energy, which has, among other positive contributions, terms FGL ∝ ρ2 (∇ψ)2.
Shrinking the radius of our path around the �ux tube shows that we would receive an in�nite
contribution from this gradient term if the condensate ρ does not vanish in an area around
the center of the �ux tube. This also allows us to anticipate the radial �ux tube pro�le of �ux
tubes with higher winding numbers: for n > 1 the phase has to wind around the �ux tube
even faster, therefore we expect a larger area where the condensate vanishes. We are going to
con�rm this expectation by analytic and numerical calculations.
Another important property of �ux tubes is topological stability. We have just shown that

we cannot smoothly contract a circle around a �ux tube into a point, since the condensate
vanishes in the center. We have "drilled" a hole (the �ux tube) into the vacuum (the homo-
geneous superconductor), and the �ux tube solution is homotopically distinct from the pure
vacuum solution. As a direct consequence, the time dependent Ginzburg-Landau equations
of motion have no solution which smoothly interpolates between a static solution with a �ux
tube with winding number n to a solution with a di�erent winding number, especially not to
the completely homogeneous solution with n = 0. Changing the total winding of the system
requires a simultaneous change of the solution at every point in space, which means that it
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requires an in�nite amount of energy in an in�nite system. This is why �ux tubes are called
topological stable. They cannot simply decay, in the lab they can only leave the system by
creeping out of the sample. Note that this argument holds for the total winding of an in�nite
system. Locally, single �ux tubes might decay into multiple �ux tubes with smaller winding
n or may merge, which will be associated with a certain energy cost.
It is important to note that we have made a simplifying assumption which is true for the dis-

cussed case: the existence of a single gauge �eld. In �eld-theoretical terms, electromagnetism
is a U(1) gauge theory, which leads to a single gauge �eld (dimU(1) = 1). If we additionally
consider the strong force, we deal with an additional eight color-gauge �elds, since QCD is
a SU(3) gauge theory (dimSU(N) = N2 − 1). Roughly speaking, the winding of the phase
can be compensated by rotating several gauge �elds, which allows �ux tubes associated with
the electromagnetic gauge �eld for instance to "unwind". From a topological point of view,
the discussion above can be described as computing homotopy groups. We will resume to
this more mathematical description later when we discuss the symmetry breaking patterns for
(color-) superconductivity.
As a next step I will compute the critical magnetic �eld Hc1 starting from which �ux tubes

can penetrate the system. We are going to use the following de�nition again taken from
Ref. [3]:

• De�nition: The critical magnetic �eld Hc1 is the magnetic �eld at which it becomes
energetically favorable to put a single �ux tube into the superconductor in the Meissner
phase, resulting in a second-order phase transition from the Meissner phase into the �ux
tube phase. Hc1 is an upper bound for this transition because there can be a �rst-order
transition at some smaller H, i.e., it can be favorable to directly form a �ux tube lattice
with a �nite distance between the �ux tubes instead of adding a single �ux tube. We
call this �rst-order critical �eld H ′c1.

We will discuss a possible �rst order transition, which depends on the interaction between the
�ux tubes themselves, later on. Consequently, the Gibbs free energy of the �ux tube phase
G	 has only one additional contribution F	, the free energy of a single �ux tube.

G	 = FGL + F	 −
1

4π
H ·
ˆ
d3rB ,

= FGL + F	 −
HnΦ0

4π
L , (4.2.16)

where we have used ˆ
d3r B = nΦ0L , (4.2.17)

for a �ux tube with length L. The critical magnetic �eld can now be computed by equating
G	 with the Gibbs free energy of the SC in the Meissner state, which is FGL (remember B = 0
in the Meissner state):

Hc1 =
2qs
n

F	
L

(4.2.18)

The single �ux tube free energy F	 depends on the radial pro�le of the �ux tubes and the
behavior of the gauge �elds which can only be computed numerically. However, some analytic
solutions can be found for either small or large distances from the �ux tube center r, and in
the extreme type-II regime, κ� 1. In order to derive the corresponding equations of motion
we use cylindrical coordinates and the following ansatz for the condensate and the gauge �eld:

ϕ =
1√
2
ρ(r)eiψ(θ) =

1√
2
f(r)ρ0e

iψ(θ) , (4.2.19)

A =
na(r)

qsr
êθ ⇒ B(r) =

n

qsr

∂a(r)

∂r
êz , (4.2.20)
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where we will call f(r) and a(r) the pro�le function of the �ux tube and the gauge �eld,
respectively, and êθ and êz are the unit vectors in θ− and z−direction. Due to the symmetry
of the setup we assumed a purely radial dependence of the pro�le functions. The phase of
the condensate around a cylindrical �ux tube can only depend on the angle we have rotated
around the tube, not the distance, thus ψ = ψ(θ). In the ansatz of the gauge �eld we
have already anticipated the appearance of the winding number n, however one can always
rede�ne a(r) and absorb any prefactors. For a numerical investigation the particular ansatz
facilitates the boundary conditions. The homogeneous value of the condensate is given by
ρ2

0 = 1
2 |ϕ0|2 = −α/2β and the magnetic �eld is computed by taking the curl of the gauge

�eld in cylindrical coordinates. By inserting this ansatz into the free energy Eq. (4.0.3) and
varying it with respect to ψ, f and a we obtain the EOMs for a single �ux tube. For a detailed
derivation see App. A.2. The free energy itself can be written down as

F	
L

= πρ2
0

ˆ ∞
0

dRR

{
n2κ2a

′2

R2
+ f

′2 + f2n
2 (1− a)2

R2
+

1

2

(
1− f2

)2}
, (4.2.21)

which leads to the EOMs

f
′′

+
f
′

R
+ f

[(
1− f2

)
− n2

R2
(1− a)2

]
= 0 , (4.2.22)

a
′′ − a

′

R
= −f

2

κ2
(1− a) , (4.2.23)

where we have introduced the dimensionless coordinate

R =
r

ξ
. (4.2.24)

The boundary conditions for the pro�le functions are given by

f(0) = 0 , f(∞) = 1 , (4.2.25)

due to our normalization construction and

a(0) = 0 , a(∞) = 1 , (4.2.26)

which is in agreement with Eq. (4.2.22) for large R, where the pro�le function of the condensate
f becomes �at and approaches 1. Therefore, nearly all terms cancel and we are left with
1− a (∞) = 0. This justi�es the ansatz for the gauge �eld a posteriori.
For a numerical calculation and some analytic estimations it is useful to derive the solutions

for the equations of motions in the limits R � 1 and R � 1, i.e. for (physical) distances
smaller and larger than the coherence length.

Solution for R� 1

For small values of R, we neglect all terms that do not contain a derivative or are not inverse
proportional to R,

f
′′

+
f
′

R
− n2(1− a)2

R2
f = 0 , (4.2.27)

a
′′ − a

′

R
= 0 , (4.2.28)

30



The equations for the gauge �eld can in principle be solved by a constant. This would lead to
the trivial case without magnetic �eld. However, the equation is of the Euler form and can
therefore be solved by an ansatz a(R) = cRλ, which leads to

λ (λ− 1)Rλ−2 − λRλ−2 = 0 , (4.2.29)

λ = 2 .

We have therefore shown that a ∝ R2 for R� 1 independently of n. Plugging this result into
the remaining equation and dropping the term proportional to n2f and n2fR leads to

f
′′

+
f ′

R
− n2(1− cR2)2f

R2
= 0 ,

f
′′

+
f
′

R
− n2 f

R2
= 0 .

This equation is again an Euler di�erential equation and solved by the same ansatz f ∝ Rγ

leading to

γ = ±n .

With the boundary condition f(0) = 0 (the condensate vanishes in the center) we can deduce
that f ∝ rn for R � 1 as stated in Ref. [100] on p. 5. This con�rms the earlier statement
that the region of vanishing condensate will be larger with higher winding numbers n, since
the pro�les will start �atter and �atter in the center.

Solution for R� 1

For distances much larger than the coherence length, the condensate and the gauge �eld
approach their asymptotic value. Therefore, we write

a(R) = 1 +Rv(R) , f(R) = 1 + u(R) , (4.2.30)

and linearize the equations of motion in the perturbations v and u, leading to

0 ' R2v
′′

+Rv
′ −
(

1 +
R2

κ2

)
v , (4.2.31)

∆u ' 2u , (4.2.32)

with the Laplace operator in cylindrical coordinates ∆f = ∇·∇f . The equations decouple and
are solved by the modi�ed Bessel functions of the second kind Iα and Kα, which are de�ned
as the two linear independent solutions to the di�erential equation

x2 d
2y

dx2
+ x

dy

dx
−
(
x2 + α2

)
y = 0 , (4.2.33)

where Iα/Kα is exponentially growing/decaying for large x. By making the variable transfor-
mation x = R2/κ2 or x2 = 2R2 (note that all factors of κ or 2 then cancel) in the equation for
v and u and realizing that α = 1 in the �rst and α = 0 in the second case, we can write down
the solutions as

a(R) = 1 + CRv(R) = 1 + CRK1

(
R2/κ2

)
= 1 + C̃rK1

(
r2/`2

)
, (4.2.34)

f(R) = 1 +Du(R) = 1 +DK0

(
R2
)

= 1 +DK0

(
r2/ξ2

)
, (4.2.35)
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with the numerical constants C and D. In the �rst line, the additional factor of ξ has been
absorbed into the rede�nition of the constant C. By switching back to the dimensionful
coordinates r = Rξ we can see again the physical meaning of the length scales ` and ξ: the
deviation from the homogeneous solution falls of exponentially with the characteristic length
ξ for the condensate and ` for the gauge �eld.

4.2.2. Flux Tube Lattice

So far we have only discussed single �ux tube solutions. In a bulk superconductor, we expect
an entire lattice of �ux tubes to form, where the average distance R0 between two �ux tubes
depends on the external magnetic �eld. The average magnetic �eld inside the superconductor
can then be calculated from the �ux tube lattice density ν. With increasing external �eld and
decreasing distance between the �ux tubes, the cores of the tubes will start to overlap and "eat
up" the superconductor. Whereas close to Hc1 we can model the superconductor as a lattice
of �ux tubes of the form computed in the single �ux tube limit from Eqs. (4.2.22-4.2.23), the
actual solution will deviate strongly with increasing �ux tube density and has to be computed
numerically in a full 2D simulation. This type of transition, where a (topological) defect
successively destroys a phase is very common and leads to a second-order phase transition,
where the (average) condensate becomes arbitrarily small close to the transition. We can
derive the maximal magnetic �eld a superconductor can sustain by searching for the solution
to the linearized EOMs which allows for the highest external magnetic �eld. A convenient
gauge choice leading to a �eld in z−direction is given by

Ay = Hx . (4.2.36)

Inserting this into the GL-EOM Eq. (4.0.5) and linearizing the equation in ϕ leads to[
−∆ +

4πi

Φ0
Hx∂y +

(
2πH

Φ2
0

)2

x2

]
ϕ =

1

ξ2
ϕ , (4.2.37)

where we used the de�nitions of the �ux quantum Φ0 and the coherence length ξ to rewrite
some of the parameters. Since the equation only explicitly depends on the variable x, we make
the following ansatz:

ϕ = eikyyeikzzf(x) , (4.2.38)

which consists of plane waves with momentum ky and kz in the corresponding directions and
a scalar function f(x). The EOM for f(x) then reads

− f ′′(x) +

(
2πH

Φ0

)2

(x− x0)2 f(x) =

(
1

ξ2
− k2

z

)
f(x) , (4.2.39)

where we de�ned x0 = kyΦ0/(2πH). This equation can immediately be solved by realizing its
equivalence to the Schrödinger equation for the quantum harmonic oscillator,

− ψ′′ +m2ω2u2ψ = 2mEψ , (4.2.40)

where we formally compare the prefactors

u =̂ x− x0 , 2mE =̂

(
1

ξ2
− k2

z

)
, ω =̂

2πH

mΦ0
. (4.2.41)
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(a) Schematic phase diagram of a supercon-
ductor in a magnetic �eld as a function of κ.
Solid lines indicate �rst order, dashed lines
second-order phase transitions.

(b) Schematic plot of the �ux tube - �ux tube interaction
potential as function of the distance from the �ux tube cen-
ter.

Figure 4.2.3.: In a simple superconductor, the transition from a to b happens at κ2 = 1/2 and indicates
the transition from type-I to type-II behavior, where the three critical magnetic �elds intersect, see
left panel. The minimum of the attractive potential de�nes the �ux tube lattice spacing R0.

The solution for the eigenvalues of the Schrödinger equations are known to be En = ω
(
n+ 1

2

)
,

leaving us with

H =
Φ0

2π(2n+ 1)

(
1

ξ2
− k2

z

)
. (4.2.42)

The maximum of this expression can be found by setting n = kz = 0. The resulting value is
called the second critical magnetic �eld Hc2,

Hc2 =
Φ0

2πξ2
. (4.2.43)

By inserting the de�nitions of Hc, Φ0 and κ we can compare the critical magnetic �elds and
�nd that

Hc2 =
√

2κHc . (4.2.44)

A numerical calculation in Chap. 13 will show that actually all critical magnetic �elds of a
single superconductor will meet at κ2 = 1/2. Consequently, we have just discovered a new
criterion for the transition from type-I to type-II superconductivity: the intersection of the
critical magnetic �elds. We will see that this criterion becomes more complicated in the
multicomponent systems, nevertheless the analytic intersection of Hc and Hc2 will serve as a
guide line to �nd the type I/type II transition region. A schematic plot of the critical magnetic
�elds of a superconductor can be seen in Fig. 4.2.3a, where dashed lines indicate second order
and solid lines �rst-order phase transitions.
In principle, we have not proven yet that the superconductor undergoes a second-order phase

transition from the �ux tube phase (which is also called Shubnikov phase [101]) to the normal
phase, since we have not compared the free energies of the phases. However, it is pedagogically
not very instructive to perform this calculation here and repeat it for the coupled case we are
going to investigate in full detail later on, from which the single superconductor result can
be extracted trivially. We will see that the superconducting phase is actually preferred over
the normal phase right below Hc2, which proves that the method presented above actually
produces the correct critical magnetic �eld under the assumption of a second-order phase
transition. It does not exclude the possibility of a �rst order transition at a higher critical
magnetic �eld, since the entire discussion is based on the linearized equations of motion. It
seems unlikely though to �nd a �rst order transition to the normal phase below Hc2 because
we know that there is a region in parameter space close to Hc2 where the linearized equations
are valid and the superconducting phase with a small average condensate is preferred. It is
physically unreasonable (but not impossible) to go from a Meissner state to the �ux tube state,
then per �rst order transition to the normal phase and for even higher magnetic �elds back into
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the superconducting phase, before �nally reaching the normal phase again via second-order
phase transition at Hc2. Let us summarize the discussion above by the following de�nition of
Hc2.

• De�nition: Suppose there is a second-order phase transition between the superconductor
in the �ux tube phase and the normal-conducting phase, such that the equations of
motion can be linearized in the charged condensate. Then, the critical magnetic �eld
Hc2 is the maximal magnetic �eld allowed by the equations of motion. Hc2 is a lower
bound for the actual transition from the �ux tube phase to the normal-conducting phase
because it does not exclude a �rst-order transition at some larger H. We call the critical
�eld for such a �rst-order transition H ′c2.

In order to discuss the �rst order transitions and the lattice structure, the interaction between
the �ux tubes themselves within the �ux tube lattice is crucial. For a sparse lattice, where
the single �ux tube approximation is still useful and we only have to deal with a two-body
interaction, the interaction energy can be calculated. I will do so in the later parts of this
thesis, and once again just mention the most important result for the simple superconductor
system here, since it can be extracted easily from the complete calculation. The �ux tube -

�ux tube interaction has two major contributions:

1. Attractive contribution: for energetic reasons, �ux tubes prefer to overlap, i.e. minimize
the distance between the separate tubes. That way, for a �xed number of tubes, which
means for �xed magnetic �ux, the amount of lost (negative) condensation energy becomes
minimal.

2. Repulsive contribution: the magnetic �eld of one �ux tube might partially reach the
next �ux tube, where it interacts with its supercurrent. Using basic vector analysis and
the fact that the magnetic �elds of the separate �ux tubes are aligned, we �nd that the
resulting Lorentz force FL is repulsive:

FL(r) = j2(r− r2)×B1(r− r1) , (4.2.45)

where j2 is the current of the second �ux tube, B1 the magnetic �eld of the �rst tube
and r1/r2 are the position vectors of the �rst/second �ux tube.

Depending on the value of κ, one term or the other is dominating. In the simple system
discussed here, for κ2 > 1/2, which means in the �ux tube regime of the phase diagram, the
magnetic penetration length ` is rather large compared to the coherence length ξ, leading to
the dominance of the magnetic contribution of the interaction. Thus, the interaction is purely
repulsive. The �ux tube lattice is stabilized by the external magnetic �eld, which forces
magnetic �ux into the superconductor. At the transition, the interaction becomes attractive
at long distances but irrelevant, since in the type-I regime �ux tubes never exist. For very
short distances, the interaction however stays repulsive, because of the strong contribution
of the magnetic �eld. Due to this interplay, the interaction potential develops a non-trivial
minimum at a �nite �ux tube separation R0. We will see that due to the interaction of the
superconductor with a second component, this e�ect can become important. A schematic
plot of the interaction potential is shown in Fig. 4.2.3b. As explained in Ref. [3], such a
non-trivial minimum, if existent in the type-I regime, can have very interesting consequences.
Recall that Hc1 is the magnetic �eld at which the phase with a single �ux tube is preferred
over the phase with complete �eld expulsion. In other words, at Hc1 the �ux tube density
is zero and increases continuously with rising magnetic �eld, while the �ux tube distance
decreases starting from in�nity at Hc1. If the interaction at in�nite distances is attractive,
the �ux tubes do not "want" to form an array with arbitrarily small density. Assuming
that the interaction always becomes repulsive at short range, there is a minimum in the �ux
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R
0

(a) Hexagonal �ux tube lattice in a super-
conductor. The hexagonal unit cell with
lattice spacing R0 is shown in red.

(b) Schematic �ux tube lattice forms (square and hexagonal)

Figure 4.2.4.: The left panel shows an experimentally measured �ux tube lattice in NbSe2 in an magnetic
�eld of 1 Tesla, modi�ed from Ref. [102]. The right panel shows the di�erent unit cells in a square
lattice and a hexagonal lattice, taken and modi�ed from Ref. [86].

tube - �ux tube potential, which corresponds to a favored distance between the �ux tubes.
The negative contribution of the interaction energy in this scenario provides an extra sort of
"motivation" for the superconductor to form an entire lattice of �ux tubes at magnetic �elds
even lower than Hc1. The transition from the Meissner phase to the �ux tube phase occurs
at a critical �eld even lower than Hc1, which we call H ′c1. At this �eld, the �ux tube density
jumps from zero to a nonzero, �nite value. An instructive analogy is the onset of nuclear
matter as a function of the baryon chemical potential µB. If the nucleon - nucleon potential
was purely repulsive, there would be a second-order onset at the baryon mass, µc = mB. In
reality, there is a binding energy Eb, and the baryon onset is a �rst-order transition at a lower
chemical potential µ′c = mB − Eb. Here, the role of the chemical potential is played by the
external �eld H, the role of the nucleons is played by the �ux tubes with mass per unit length
Hc1 = 2qsF	/(nL), and the binding energy is generated by the attractive interaction between
the �ux tubes. In the textbook of Tinkham, Ref. [86], only a simple interaction model, where
only the magnetic contribution is taken into account, is discussed in some detail.
Finally, we have to discuss the geometric form of the lattice. A repulsive interaction between

the �ux tubes suggest a hexagonal lattice of �ux tubes, since at a �xed magnetic �ux the
average distance between the tubes is bigger than in a square lattice. This lattice structure
is also known as hexagonal close-packed (hcp). A numerical computation of the geometrical
lattice structure close to Hc2 discussed in Ref. [86] reveals that this is indeed the case, which
has been con�rmed experimentally, as can be seen in Fig. 4.2.4a.
However, the di�erence between the free energy of a square lattice and the hexagonal lattice

is very small, leading Abrikosov originally to the wrong conclusion, which was corrected by
Kleiner et. al. in Ref. [103] in 1964. Although the form of the lattice might change with the
magnetic �eld or with the onset of the attractive interaction, the expected deviations from the
hexagonal lattice is small, based on the argumentation above. Therefore, for the rest of this
thesis we are going to assume a hexagonal lattice.
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To summarize this section, we have seen various di�erent criteria for the transition of the
type-I to the type-II regime as a function of κ. In a single superconductor, all these criteria
lead to the same "critical" value of κ2 = 1/2.

1. The intersection of the three critical magnetic �elds Hc, Hc1 and Hc2 in one common
point.

2. The change of the sign of surface tension between the normal and the superconducting
phase.

3. The change of the interaction between the �ux tubes from purely repulsive to long-range
attractive.

In Part. IV, I will show that in more complex systems not only the value of the critical κ will
change but also that these criteria are not identical anymore.
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5. Super�uidity and Superconductivity in

Quantum Field Theory

In this chapter I am going to show how super�uidity and superconductivity can be described
within the framework of quantum �eld theory and how we can compute the Ginzburg-Landau
potential discussed extensively in Sec. 4 as tree-level potential of a particular scalar �eld theory
model. Most of the material presented here is basic textbook material and discussed exten-
sively for instance in Ref. [87], which I will follow more or less directly. However, since in
the mentioned reference one can �nd a very comprehensive but highly pedagogical introduc-
tion into the topic, I will keep this section short and only explain the necessary points for
understanding the research presented in the later parts of this work.

5.1. Scalar Field Theory and Noether's Theorem

In order to describe super�uidity on a more microscopic level, we use a rather simple model
of a bosonic �eld with a contact self-interaction. The version of the model presented here is
known as φ4-theory and serves as a standard toy-model for countless textbooks introducing the
concepts of quantum �eld theory [88,89]. We will see that we can derive the Ginzburg-Landau
free energy from it directly. However, starting from a more fundamental level allows us to go
beyond GL-theory and introducing temperature, interactions with other �uids, entrainment
interactions and more e�ects consistently. The Lagrangian of the theory is given by

L = ∂µϕ
∗∂µϕ−m2 |ϕ|2 − λ |ϕ|4 , (5.1.1)

where m is the particle mass and λ the (self-)coupling constant. We can use this bosonic
model for spin-0 particles to some extend to describe a super�uid of fermion Cooper pairs
as well. In this case, all parameters refer to the properties of the Cooper pair, not of the
particles themselves. In this approximation, we neglect any in�uence on and e�ects of the
constituents of the Cooper pairs. Additionally, the model is only valid as long as the Cooper
pairs stay intact, because the fermionic nature of the single particles is not re�ected in the
bosonic description.
We can easily check that the theory is invariant under global U(1) rotations of the �eld ϕ,

i.e. we can rescale the �eld by a complex phase,

ϕ→ e−iαϕ , (5.1.2)

without any change of the Lagrangian. The parameter α ∈ R is constant in space and time,
since the symmetry is global. For local symmetries, α becomes spacetime dependent. An im-
portant feature of global symmetries is the emergence of conserved quantities. This connection
was found by the German mathematician Emmy Noether in 1915 and published 1918, and
can be stated as follows:

• Noether's Theorem: To every continuous global symmetry of the action corresponds
a conserved quantity.

Very often, the Lagrangian is used as a starting point, however in some cases only the action,
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which is the physically relevant quantity and given by

S =

ˆ
dtL , (5.1.3)

is invariant. In �eld theory, the conserved quantity can be expressed as a four-current jµ that
obeys a continuity equation,

∂µj
µ = ∂tj

0 + ∂ij
i = 0 . (5.1.4)

The corresponding conserved charge can be obtained by integrating the zero-component of the
current over space,

Q =

ˆ
R3

d3x j0 . (5.1.5)

In order to compute the current, we assume the transformation parameter α to be spacetime
dependent, α→ α(x), vary the Lagrangian w.r.t. the derivative of α and set α = 0 in the end.

ϕ → ϕ
′

= eiα(x)ϕ , (5.1.6)

L′ = (−i∂µαϕ∗ + ∂µϕ
∗) (i∂µαϕ+ ∂µϕ)−m2 |ϕ|2 − λ |ϕ|4

= ∂µα∂
µα |ϕ|2 − i∂µαϕ∗∂µϕ+ i∂µϕ

∗∂µαϕ+ ∂µϕ
∗∂µϕ−m2 |ϕ|2 − λ |ϕ|4 .(5.1.7)

The current can now be computed as

jµ =
∂L

∂ (∂µα)
|α=0 (5.1.8)

=
{

2∂µα |ϕ|2 − iϕ∗∂µϕ+ i∂µϕ∗ϕ
}
|α=0

which �nally yields
jµ = i (ϕ∂µϕ∗ − ϕ∗∂µϕ) . (5.1.9)

We can easily check that this current is actually conserved by using the equations of motions
for ϕ and ϕ∗:

∂µ∂
µϕ = −ϕ

(
m2 + λ |ϕ|2

)
, (5.1.10)

∂µ∂
µϕ∗ = −ϕ∗

(
m2 + λ |ϕ|2

)
, (5.1.11)

which has to be plugged into

∂µj
µ = i (ϕ∂µ∂

µϕ∗ − ϕ∗∂µ∂µϕ) , (5.1.12)

which proves our calculation. A conserved current allows us to properly introduce a chemical
potential. This procedure is explained in detail in the textbook of Kapusta and Gale, Ref. [90],
Chap. 2.4. The chemical potential enters on the level of the Hamiltonian density as

H− µN , (5.1.13)

such that the energy needed to add one particle to the system is subtracted by the new term
and the thermodynamic potential stays constant. The charge density N is nothing but the
zeroth component of the conserved current,

N = j0 = i
(
ϕ∂0ϕ∗ − ϕ∗∂0ϕ

)
. (5.1.14)

The Hamiltonian density can be obtained from the Lagrangian density by a Legendre transfor-
mation, for which we need to compute the conjugate momenta to the �elds. It can be shown
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that, after switching back to the Lagrangian and integrating out purely quadratic terms in the
conjugate momenta, the chemical potential enters like the zeroth component of a gauge �eld,

L = |(∂0 − iµ)ϕ|2 − |∇ϕ|2 −m2 |ϕ|2 − λ |ϕ|4 . (5.1.15)

This is equivalent to introducing it as the time derivative of a complex phase after switching
to polar coordinates. For that purpose we write

ϕ =
1√
2
φeiψ , (5.1.16)

which yields, after putting it into the original Lagrangian without chemical potential in
Eq. (5.1.1) and neglecting gradients of the phase,

L =
1

2
|(∂0 − i∂0ψ)φ|2 − 1

2
|∇φ|2 − m2

2
φ2 − λ

4
φ4 . (5.1.17)

By setting ∂0ψ = µ we recover the Lagrangian at �nite chemical potential. We will proof later
on that both procedures are still valid in the multi-�uid calculation.
Earlier, it was argued that Bose-Einstein condensation is a crucial ingredient for super�uidity

and conductivity. In order to incorporate the BEC, we separate the condensate, which is the
expectation value (or vacuum expectation value, short: vev) of the complex �eld 〈ϕ〉, from the
�uctuations which we will for simplicity still refer to by ϕ:

ϕ(x)→ 〈ϕ〉 (x) + ϕ(x) , (5.1.18)

which essentially amounts to shifting the �eld by its vev. This form is a sense an ansatz for the
condensate. Depending on the external parameters, the vev will take on a �nite value or not.
In contrast to the condensate, the �uctuations are a dynamical �eld, i.e. we have to perform a
functional integration over the �uctuations in the path integral of the partition function. The
condensate on the other hand is a classical �eld which has to be determined via the equations
of motion. In order to obtain analytic results, sometimes it is justi�ed and useful (e.g. for
small temperatures) to expand the partition function in the �uctuations up to second order in
the path integral, which then can be solved analytically. As a next step, we write the complex
vev in polar coordinates in terms of its modulus ρ and phase ψ,

〈ϕ〉 =
1√
2
ρ(x)eiψ(x) . (5.1.19)

For the moment, we separate the �uctuations from the condensate and neglect them in order
to compute

L = L(0) + �uct. , (5.1.20)

L(0) =
1

2
∂µρ∂

µρ+
ρ2

2

(
∂µψ∂

µψ −m2
)
− λ

4
ρ4 , (5.1.21)

where the superscript i in L(i) denotes the order of the �uctuations taken into account. From
L(0) we compute the equations of motion for the condensate and the phase,

∂µ∂
µρ = ρ

(
p2 −m2 − λρ2

)
, (5.1.22)

∂µ
(
ρ2∂µψ

)
= 0 , (5.1.23)

where we have introduced the Lorentz scalar p2 = ∂µψ∂
µψ. By rewriting the conserved current

in Eq. (5.1.9) using the new parametrization, we see that the last equation is nothing but the
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conservation equation for the current,

∂µj
µ = ∂µ

(
ρ2∂µψ

)
= 0 . (5.1.24)

We have obtained it from the Euler Lagrange equations by varying the Lagrangian w.r.t. ∂µψ,

jµ =
∂L

∂ (∂µψ)
, (5.1.25)

which we expect from Noether's theorem. For a single �eld, we �nd

jµ = ρ2∂µψ . (5.1.26)

The current in general is computed by a variation of the Lagrangian (or more generally the
generalized pressure) with respect to its conjugate momentum pµ, which we found to be equal
to ∂µψ.1 This actually serves as the de�nition of the conjugate momentum. In this simple
setup, we see that the current is four-parallel to its conjugate momentum. From this form
of the current, it is possible to gain a better understanding of the phase of the condensate
in hydrodynamic terms. In general, the current can be written as the charge density n it is
transporting times the four-velocity of the �uid,

jµ = nvµ , (5.1.27)

where
vµ = γ (1,vs) , γ =

1√
1− v2

s

, (5.1.28)

with the super�uid (three-) velocity vs. Due to vµvµ = 1 per de�nition and use of the mostly-
minus metric convention, we �nd that

n =
√
jµjµ = ρ2p2, (5.1.29)

where we used
jµ = ρ2∂µψ , p2 = ∂µψ∂

µψ . (5.1.30)

Consequently,

vµ =
jµ

n
=
∂µψ

p
. (5.1.31)

We �nd that the macroscopic four-velocity is directly related to the gradient of the microscopic
phase of the condensate. The super�uid velocity now follows from Eq. (5.1.28):

vs = −∇ψ
∂0ψ

. (5.1.32)

In general, every gradient �eld is curl free. Therefore, if ∂0ψ is constant, we �nd

∇× vs = 0 . (5.1.33)

However, for instance when computing hydrodynamic modes, this is not necessarily the case.
In a non-relativistic setup, the super�uid velocity is proportional to the gradient divided by
the mass and thus always curl free. In a relativistic calculation, the actual gradient should
be used as a variable instead. The existence of such a curl-free variable is responsible for the
existence of super�uid vortices: only the vortex, where the condensate vanishes in the center
as it is the case of a superconducting �ux tube, can carry an angular momentum imposed from

1This explains the choice of the nomenclature p2 = ∂µψ∂
µψ as the square of the four-vector pµ.
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the outside. The result of Eq. (5.1.32) helps us to understand the role of the Lorentz-scalar p.
We have argued above that the chemical potential can be introduced as the time derivative of
the phase. Thus,

p =
√
∂µψ∂µψ =

√
(∂0ψ)2 − (∇ψ)2 = µ

√
1− v2

s . (5.1.34)

This is the Lorentz transformation of the chemical potential, therefore ∂0ψ = µ is the chemical
potential in the lab-frame, where the �uid moves with the velocity vs, whereas p is the chemical
potential in the rest-frame of the �uid! Note that neither the gradient nor the time derivative
of the phase are determined by the equations of motion, they are external thermodynamic
parameters set by the physical environment.
Going back to the equations of motion Eqs. (5.1.22), we still have to solve the �rst equation.

Let us assume for the moment that the condensate is static and homogeneous, then we �nd

ρ
(
p2 −m2 − λρ2

)
= 0 , (5.1.35)

which has two solutions,

ρ = 0 , and ρ2 =
p2 −m2

λ
, (5.1.36)

where the second solution can only exist for

p2 > m2 . (5.1.37)

This is the usual requirement for the chemical potential: as long as it is smaller than the mass
m, the minimum of the potential, which is given by

U = −L(0) , (5.1.38)

is found at ρ = 0, i.e. there is no condensation. On the one hand, this further proves our
interpretation of p to be correct. On the other hand, we have just discovered another fun-
damental property of super�uidity: spontaneous symmetry breaking. In order to have
condensation, the prefactor of the quadratic term has to be negative (p2 > m2). In this case,
the potential takes on the form of a Mexican hat or the bottom of a wine bottle. The U(1)
symmetry of the Lagrangian manifests itself in the rotational symmetry of the potential in the
space of real and imaginary part of φ. However, if ρ 6= 0, the ground state of the system breaks
this invariance spontaneously. SSB thus refers to a system where the action obeys a symmetry
that the ground state of the system does not. The condensate plays the role of the order
parameter, since it is responsible for the breaking of the symmetry. A graphic illustration of
this discussion can be found in Fig. 5.1.1.
Another conserved quantity, which follows from Noether's theorem for translational invari-

ance of the system, is the stress-energy tensor Tµν . By using the gravitational de�nition,
which is valid for curved space-times as well and manifestly symmetric, we compute

Tµν =
2√−g

δ (
√−gL)

δgµν
= 2

δL
δgµν

− gµνL , (5.1.39)

Tµν = ∂µρ∂νρ+ ρ2∂µψ∂νψ − gµνL(0) , (5.1.40)

where
√−g ≡ √−det gµν = 2 for Minkowski space. By using the equations of motion for the

condensate and the conserved current, it is straightforward to show that

∂µT
µν = 0 , (5.1.41)

which will be fundamentally important for the hydrodynamic description of super�uidity. Note
that for a homogeneous and static condensate both conservation equations are ful�lled trivially.
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Figure 5.1.1.: Form of the potential as a function of the complex �eld φ before (left panel) and after
(right panel) spontaneous symmetry breaking. Due to the �nite value of the condensate , which
is determined by the minimum of the potential, the U(1) symmetry is broken for µ2 > m2. The
magnitude ρ and the phase of the condesate ψ are shown as well.

5.2. Fluctuation Propagator and Goldstone Mode

Goldstone's theorem tells us that systems which undergo spontaneous symmetry breaking
of continuous global symmetries inherently possess a number of massless (or gapless) modes.
The number of modes depends on the number of broken generators. Usually, the dispersion
relation of the Goldstone mode is linear in the origin at k = 0. In this case, the number of
modes is equal to the number of broken generators. This massless excitation is attributed to
perturbations around the vev along the circle at the bottom of the Mexican hat potential.
Since I have already discussed the phenomenological aspect of the Goldstone mode in the
introductory chapter on super�uidity, see Sec. 3.1, we will now derive the dispersion relation
within our �eld-theoretical model. There are two basic ways to compute the excitation energies
of the system, both of which we are going to use at some point. The direct way consists of
introducing harmonic perturbations for the modulus and the phase of the condensate in the
equations of motion.

ρ→ ρ+ δρei(ωt−k·x) , ψ → ψ + δψei(ωt−k·x) , (5.2.1)

Afterwards, linearizing in δρ and δψ yields a condition for ω from which the excitations can
be extracted. Here, we are going to proceed by calculating the �uctuation propagator from
which the dispersion relations can be extracted by calculating the zeros of its determinant.
Going back to Eq. (5.1.18), we slightly modify the �uctuations by giving them the same phase
as the condensate, i.e. we write

ϕ =
1√
2

(ρ+ ϕ1 + iϕ2) eiψ , (5.2.2)

where ϕ1 and ϕ2 are the real and imaginary part of the �uctuation. This change of basis leads
to a diagonal tree-level propagator in momentum space. We now decompose the Lagrangian
in orders of the �uctuations, from zeroth to fourth order:

L = L(0) + L(1) + L(2) + L(3) + L(4) ,
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where

L(1) = ϕ1

[
ρ(p2 −m2 − λρ2)− ∂µ∂µρ

]
− ϕ2

ρ
∂µ(ρ2∂µψ) + ∂µ(ϕ1∂

µρ+ ϕ2ρ∂
µψ) , (5.2.3)

L(2) =
1

2

[
∂µϕ1∂

µϕ1 + ∂µϕ2∂
µϕ2 + (ϕ1

2 + ϕ2
2)(p2 −m2)

+ 2∂µψ(ϕ1∂
µϕ2 − ϕ2∂

µϕ1)− λρ2(3ϕ2
1 + ϕ2

2)
]
, (5.2.4)

L(3) = −λρϕ1(ϕ2
1 + ϕ2

2) , (5.2.5)

L(4) = −λ
4

(ϕ1
2 + ϕ2

2)2 . (5.2.6)

Computing the terms linear in the perturbations accounts to basically rederiving the equa-
tions of motion for the condensate up to a total derivative term which does not contribute
to the action. Therefore the linear contributions vanish. As an approximation, we neglect
the �uctuations in third and forth order and calculate the �uctuation propagator from the
quadratic contributions. This calculation is performed in Fourier space, thus we introduce the
dimensionless Fourier transformed �elds as

ϕi(X) =
1√
TV

∑
K

e−iK·Xϕi(K) , (5.2.7)

with the Minkowski four-product K ·X = k0x0 − k · x. Note that we use the imaginary time
formalism of thermal �eld theory, where x0 = −iτ with τ ∈ [0, β] and the inverse temperature
β = 1/T , and k0 = −iωn. The bosonic Matsubara frequencies are given by

ωn = 2πnT , n ∈ Z . (5.2.8)

In this formalism, the Minkowski product becomes essentially Euclidean,

K ·X = − (ωnτ + k · x) . (5.2.9)

The grand-canonical thermodynamic potential density or short grand potential Ω is the neg-
ative of the pressure, Ω = −P , and can be computed from the partition function Z

Z = Tre−βĤ , (5.2.10)

where Ĥ is the Hamiltonian operator, via

Ω = −T
V

lnZ . (5.2.11)

The partition function is calculated in the path-integral formalism,

Z = N

ˆ
Dϕ1Dϕ2e

S , (5.2.12)

with the action

S =

ˆ β

0
dτ

ˆ
d3xL , (5.2.13)

and a potentially divergent normalization constant N . In the free energy, due to the properties
of the logarithm, this constant will enter additively into the free energy, which we can then
renormalize by subtracting this constant. The zeroth-order contribution is trivial: due to the
assumption that the condensate is homogeneous and static, the integral over the Lagrangian
L(0) simply adds a factor V/T . There are no dynamic �elds, thus the functional integration
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Dϕi is trivial as well and can be absorbed into the normalization N . As a result, we obtain

Ω(0) =
T

V
ln e−

V
T
L(0) = U , (5.2.14)

where we used L(0) = −U with the tree-level potential U . On a diagrammatic level, the tree-
level potential does not include any loops, only "trees", hence the name. For the quadratic
contributions, we perform the calculation of the propagator in some more detail in the ap-
pendix, see App. B.1. As a result, we �nd

S(2) = −1

2

∑
K

[ϕ1(−K), ϕ2(−K)]
D−1(K)

T 2

(
ϕ1(K)
ϕ2(K)

)
, (5.2.15)

with the inverse propagator

D−1(K) =

(
−K2 − p2 +m2 + 3λρ2 −2iKµ∂

µψ
2iKµ∂

µψ −K2 − p2 +m2 + λρ2

)
. (5.2.16)

For simplicity, we are going to proceed without super�ow by setting ∇ψ = 0, which allows us
to write p2 = µ2 and Kµ∂

µψ = k0µ. In this case, the dispersion relations are isotropic and can
be derived analytically. Before we actually compute the dispersions we proceed slightly more
generally and compute the contribution of S(2) to the free energy density Ω. The functional
integration of a Gaussian integral can be done exactly and is proportional to the determinant
of the inverse propagator. Together with the zeroth-order contribution we obtain

Ω = U +
1

2

T

V
ln det

D−1(K)

T 2
= U +

1

2

T

V
Tr ln

D−1(K)

T 2
, (5.2.17)

where we have used the matrix identity ln detA = TrlnA for any square matrix A. The
dispersion relations are given by the zeros of the determinant, of which there are two di�erent
ones in the isotropic case, ε±k , and their negatives. Thus we decompose the determinant into
its zeros by writing det D−1 = [k2

0 − (ε+k )2][k2
0 − (ε−k )2], which yields

1

2

T

V
ln det

D−1(K)

T 2
=

1

2

T

V
ln
∏
K

[(ε+k )2 − k2
0][(ε−k )2 − k2

0]

T 4

=
1

2

T

V

∑
K

[
ln

(ε+k )2 − k2
0

T 2
+ ln

(ε−k )2 − k2
0

T 2

]
=
∑
e=±

ˆ
d3k

(2π)3

[
εek
2

+ T ln
(

1− e−εek/T
)]

.

In the last step we have performed the summation over the Matsubara frequencies as described
in detail in Ref. [90], and taken the thermodynamic limit V →∞, where we have to replace

1

V

∑
K

→
ˆ

d3k

(2π)3 . (5.2.18)

The integral over the �rst term is in general divergent and represents an in�nite contribution of
the vacuum energy at µ = T = 0. In principle, any proper renormalization procedure renders
this contribution �nite. One way is to subtract the vacuum free energy at µ = T = 0, which is
proportional to εk|µ=T=0. However, here we proceed by simply dropping the entire term εk/2,
which leaves us with

Ω = U +
∑
e=±

ˆ
d3k

(2π)3
T ln

(
1− e−εek/T

)
. (5.2.19)
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Figure 5.2.1.: The dispersion relations for the condensed and uncondensed case are plotted. The lowest
mode behaves linear in the origin and is called Goldstone mode, which results from the spontaneous
breaking of the global U(1) symmetry by the condensate. Reproduced from Ref. [87].

This is sometimes called the no-sea approximation. Note that we subtract more than the pure
vacuum contribution here, since εk depends on the full condensate which implicitly depends
on the temperature and the chemical potential. Finally, we are computing the dispersion by
solving detD−1(K) = 0 for k0, which results in

ε±k =

√
k2 +m2 + 2λρ2 + µ2 ∓

√
4µ2(k2 +m2 + 2λρ2) + λ2ρ4 . (5.2.20)

We can now discuss some interesting limiting cases. By setting the condensate to zero, ρ = 0,
we obtain the dispersion relations of free bosons,

ε±k =
√
k2 +m2 ∓ µ , (5.2.21)

where the sign distinguishes between particles and anti-particles. On the other hand, inserting
the result for the condensate at vanishing temperature allows us to compute

ε±k =

√
k2 + (3µ2 −m2)∓

√
4µ2k2 + (3µ2 −m2)2 . (5.2.22)

Finally, we have found the Goldstone mode: ε+k vanishes for k = 0 and behaves linearly for
small k, for which we approximate

ε+k =

√
µ2 −m2

3µ2 −m2
k +O(k3) . (5.2.23)

The second mode is gapped and thus called the massive or sometimes the Higgs mode and
given by

ε−k =
√

2
√

3µ2 −m2 +
1

2
√

2

5µ2 −m2

(3µ2 −m2)3/2
k2 +O(k4) . (5.2.24)

A comparison of the dispersions in the condensed and uncondensed case is shown in Fig. 5.2.1.
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5.3. Massive Gauge Boson

In order to describe a superconductor in the �eld-theoretical formalism, we have to incorporate
the charge of the �eld and the photon, which interacts with the charged �eld. The photon
is described by a gauge �eld, as it is known from classical electrodynamics. In order to
incorporate a gauge �eld into our Lagrangian, we promote the global U(1) symmetry to a
local gauge symmetry. Due to the derivative in the kinetic term of L in Eq. (5.1.1), the system
is a priori not invariant under this transformation, as we have seen in the derivation of the
Noether current in Eq. (5.1.7). By adding a vector �eld which transforms in such a way that
the extra terms are canceled, we can achieve local gauge invariance. The gauge �eld Aµ is
coupled to the scalar �eld with charge q via the covariant derivative Dµ = ∂µ − iqAµ. The
transformation description is then given by

ϕ→ e−iα(X)ϕ , Aµ → Aµ −
1

q
∂µα . (5.3.1)

The gauged Lagrangian now reads

L = (Dµϕ)∗Dµϕ−m2 |ϕ|2 − λ |ϕ|4 − 1

16π
FµνFµν , (5.3.2)

where the kinetic term of the gauge �eld is given by the standard Yang-Mills Lagrangian LYM ,

LYM = − 1

16π
FµνFµν , (5.3.3)

with the �eld strength tensor
Fµν = ∂µAν − ∂νAµ . (5.3.4)

This theory is often called scalar quantum electrodynamics (scalar QED). The chemical po-
tential can be still introduced like the zero-component of a gauge �eld, i.e. we can further
modify the covariant derivative to

Dµ = ∂µ − iqAµ + δµ0µ (5.3.5)

Let us use polar coordinates again for the �eld and separate the �uctuations from the conden-
sate,

ϕ =
1√
2

(ρ0 + ϕ) eiψ , (5.3.6)

where we assume that the condensate is independent of spacetime and takes its homogeneous
value

ρ2
0 =

µ2 −m2

λ
, (5.3.7)

which we derived earlier. As a reminder and for comparison we quickly repeat the exercise
without gauge �eld and �nd

L =
1

2
∂µϕ∂

µϕ+
(ρ0 + ϕ)2

2
∂µψ∂

µψ − λρ2
0ϕ

2 −
√
λ
(
µ2 −m2

)
ϕ3 − λ

4
ϕ4 +

λρ4
0

4
. (5.3.8)

Note that ∂µψ is the phase of the �uctuations and therefore a dynamic �eld (we have introduced
the chemical potential directly instead of as the phase of the condensate). We immediately
see that there is a massive mode ϕ with mass term −λρ2

0 and a massless mode ψ, for which
there are only a kinetic term and interaction terms, but no quadratic mass term. This is the
Goldstone mode which we have computed explicitly in the last section. In the gauged case,
we incorporate an intermediate step in which we use polar coordinates for the complete, not
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yet shifted �eld of the form ϕ = 1√
2
φeiψ, and compute

L =
1

2
∂µφ∂µφ+

q2φ2

2

(
Aµ −

1

q
∂µψ

)(
Aµ − 1

q
∂µψ

)
+

(
µ2 −m2

)
2

φ2 − λ

4
φ4 − 1

16π
FµνFµν . (5.3.9)

The expressions in the parentheses, which couple the gauge �eld and the mode ψ, are gauge
invariant. This means, a rede�ned gauge �eld of the form

Bµ ≡ Aµ −
1

q
∂µψ (5.3.10)

is invariant under gauge transformations, because the phase transforms as ψ → ψ − α which
cancels the transformation of Aµ. This procedure of rede�nition is equivalent to using unitary
gauge, where one sets α(X) = ψ(X), such that the phase cancels. As before, we shift the �eld
by its vev (but keep the common phase), φ→ ρ+ ϕ and obtain

L =
1

2
∂µϕ∂µϕ+

q2ρ2

2
BµBµ + q2ρϕBµB

µ +
q2

2
ϕ2BµBµ −

(
µ2 −m2

)
ϕ2

−
√
λ
(
µ2 −m2

)
ϕ3 − λ

4
ϕ4 +

(
µ2 −m2

)2
4λ

− 1

16π
FµνF

µν , (5.3.11)

where Fµν is unchanged since ∂µAν − ∂νAµ = ∂µBν − ∂νBµ.2By comparing to Eq. (5.3.8),
we see a very important di�erence: the gapless mode is not present in the gauged case, it
has been "eaten" by the gauge �eld. The gauge �eld on the other hand has become massive,
where the mass is proportional to the vev of the scalar �eld. This mechanism is known as the
Higgs mechanism and was �rst described using this very model presented here in Ref. [104].
Note that in the literature, this is often referred to as spontaneous symmetry breaking of a
gauge symmetry. However, Elitzur's theorem, which was proposed and shown to be correct in a
lattice formulation in Ref. [105] in 1975, tells us that local symmetries can not be spontaneously
broken. In the Higgs mechanism, only the global part of the symmetry is broken by the
condensate and leads to a conserved current. Applying Noether's theorem to local symmetries
leads to vanishing conserved charges. The fact that the ground state of the theory appears to be
not invariant under local transformations is due to the gauge �xing rather than to spontaneous
breaking of the gauge symmetry. The gauge invariant �eld Bµ should not be interpreted as
a gauge �eld, because it transforms di�erently under the local gauge transformation, it stays
the same. For a discussion of this topic see Ref. [106].
Although the Goldstone mode disappeared, the number of degrees of freedom is the same

in both cases before and after the condensation. In the super�uid case without gauge �eld,
we have:

• Before condensation: two massive degrees of freedom coming from the two scalar �elds
ϕ1 and and ϕ2 that form the complex �eld ϕ = ϕ1 + iϕ2.

• After condensation: one massive mode with a mass term proportional to the condensate
and the gapless Goldstone mode ψ

If we include the gauge �eld, we start with two additional degrees of freedom coming from the
gauge �eld.

2Note that this relies on the interchangeability of derivatives, [∂µ, ∂ν ]ψ = 0, which is not true if we deal with
�ux tubes where ψ has a �nite winding, in which case [∂µ, ∂ν ]ψ has to be interpreted as a distribution
around the �ux tube center.
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• Before condensation: two massive degrees of freedom from the complex �eld ϕ and the
two degrees of freedom from the massless gauge �eld corresponding to the two polariza-
tions of the photon, making a total of four.

• After condensation: only one massive mode because of the "eating" of the Goldstone
mode, but three degrees of freedom from the now massive gauge �eld, which allows for
longitudinal and transverse modes.

5.4. Ginzburg-Landau Theory from Scalar Field Theory

We have now all the ingredients to show how the GL free energy emerges as the tree-level
potential from the Lagrangian of scalar φ4−theory. We can directly start from the gauged
version of the theory since simply setting the charge to zero allows us to convert the super-
conductor to a super�uid. The starting point is therefore the Lagrangian given in Eq. (5.3.2).
We now ignore any �uctuations and temporal derivatives of the condensate ρ, but account for
an inhomogeneous ρ as we prepare for vortices and �ux tubes. Consequently, we replace the
complex �elds by

ϕ =
1√
2
ρeiψ , (5.4.1)

and introduce the chemical potential as the time derivative of the phase ψ. After doing so, we
obtain the tree level potential U by taking the negative of the resulting Lagrangian density,
U = −Lϕ→〈ϕ〉,

U =
1

2

∣∣∣(−i∇− qA) ρeiψ
∣∣∣2 − µ2 −m2

2
ρ2 +

λ

4
ρ4 +

B2

8π
, (5.4.2)

where we have used that FµνFµν = 2
(
B2 −E2

)
in general and set the electrical �eld E

to zero. By comparison to the Ginzburg-Landau free energy in Eq. (4.0.3), we see that we
have just obtained the same result as a limiting case, namely the tree-level potential, from
scalar �eld theory. The coe�cients α and β basically just have been replaced by the chemical
potential, the mass and the self-coupling constant λ. Additionally, we started from a fully
relativistic setup, which explains the di�erent prefactor of the gradient-energy, which has no
mass dependence in the relativistic case. Although this approach has so far no advantage over
starting directly from the Ginzburg-Landau free energy, it will allow us, especially in the more
complicated two-�uid setup in the next chapter, to introduce temperature in a consistent way.
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6. Two-Component Model

6.1. Motivation and Methods

The main goal of this thesis is to explore the behavior of multicomponent (super)�uids

and superconductors at �nite super�ow and in external magnetic �elds. In the interior
of neutron stars, this situation occurs in many places: First, in the crust, where super�uid
neutrons interact with the ion lattice that partially can be described as a normal �uid. Second,
in the outer core, where neutrons as well as protons can form Cooper pair condensates, giving
rise to a two-�uid system of a super�uid and a superconductor [2, 107�110]. If the inner core
consists of nuclear matter, hyperons can be present and form Cooper pairs as well. Then, even
more super�uid components can exist [111]. Additionally, a decon�ned quark phase in the inner
core is possible. Such a color-superconductor can exist in many di�erent states, depending
on the quarks which participate in the formation of the Cooper pairs. The most symmetric
phase is described by the the color-�avor locked (CFL) phase [15, 112], which is e�ectively
described by a three-component superconductor. The CFL-phase as well as the color-spin
locked phase [113, 114] are additionally super�uids, and kaon condensation in CFL may lead
to a two-component super�uid. In each case, temperature e�ects will add an additional �uid,
which renders dense neutron star matter a complicated multi-�uid system. Although I will
keep all results as generic as possible in order to apply the presented calculations to other, more
down-to-earth systems, this is the environment we have in mind whenever we have to assign
numeric values to the parameters of the model. Neutron stars also serve as primary motivation
to include, besides the simpler density coupling, a derivative or entrainment coupling between
the two components, which leads to the so-called Andreev-Bashkin e�ect [115,116], which will
be described in more detail later on. For a calculation of the strength of this coupling in dense
nuclear matter see for instance Ref. [117].

Hydrodynamic Instabilities

At vanishing magnetic �eld but �nite uniform super�ow, we will mainly focus on the dis-
cussion of hydrodynamic instabilities in two-�uid systems. These are phenomenologically
interesting for instance for pulsar glitches, which can be observed as sudden jumps in the
rotation frequency of the star that are commonly explained by a collective unpinning of su-
per�uid vortices from the ion lattice in the inner crust of the neutron star. For an elaborated
pedagogical explanation see the introductory part of this work and references therein. Hydro-
dynamic instabilities are one candidate for triggering such a collective e�ect [48, 118, 119]. In
this scenario, the role of the second (normal) �uid, besides the neutron super�uid, is played
by the lattice of ions, not unlike an atomic super�uid in an optical lattice [120]. Recently
it has been argued that also the super�uids in the core of the star might be important for
the glitch mechanism, because entrainment e�ects between the super�uid neutrons and the
lattice in the inner crust [121,122] reduce the e�ciency of the transfer of angular momentum
from the super�uid to the crust [123], and thus an analysis of hydrodynamic instabilities in a
two-super�uid system of neutrons and protons is of phenomenological interest. For simplicity
however, we will neglect a possible charge of one or both of the components, whether it is
a normal or a super�uid. This part is entirely based on our publication Ref. [1]. I want to
emphasize that the presented results are obtained in an idealized situation and are thus not
directly applicable to the actual physics inside a compact star. For instance, by neglecting
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the possible charge of the �uids, any e�ects of electromagnetism are ignored, which would be
necessary to describe the coupled system of neutrons, protons and electrons, unless protons
and electrons can be viewed as a single, neutral �uid. Also, our starting point is a bosonic
e�ective theory while the super�uids in a neutron star are mostly of fermionic nature which
condense via the Cooper mechanism. Additionally, any e�ects of rotation or a magnetic �eld,
i.e. super�uid vortices or superconducting �ux tubes, are ignored in the study of hydrodynamic
instabilities.
Although our main motivation comes from the study of neutron stars, the described model

is much more general. Two-�uid systems where at least one component is a super�uid are
realized in many di�erent contexts. For instance, any super�uid at nonzero temperature
is such a system because it can be described in terms of a super�uid and a normal �uid
within the two-�uid picture of super�uidity, which was �rst described in Refs. [124, 125],
for a pedagogical introduction see Chap. 2.3 of Ref. [87] or [93]. Systems with two super�uid
components can be realized in the laboratory by mixtures of two di�erent species at su�ciently
low temperatures. Examples are 3He-4He mixtures, where experimental attempts towards
simultaneous super�uidity of both components have been made [126,127], and super�uid Bose-
Fermi mixtures of ultra-cold atomic gases, which have been realized recently in the laboratory
as well, see Refs. [128, 129]. We can in principle directly infer all limits, from the ultra-
relativistic to the non-relativistic limit, directly from our results, which makes this study quite
versatile. While liquid helium and ultra-cold gases are of course most conveniently described in
a non-relativistic framework, a relativistic treatment is desirable in the astrophysical context.
On the microscopic level, this is mandatory for quark matter and for su�ciently dense nuclear
matter in the core of the star, whereas the high mass of the nucleons allows for a non-relativistic
treatment at lower densities in the crust. Under some circumstances, for instance in rapidly
rotating neutron stars, �uid velocities can assume sizable fractions of the speed of light, such
that also on the hydrodynamic level relativistic corrections may become important. The
non-relativistic limit can always be taken straightforwardly by increasing the mass of the
constituent �uid particles and/or by decreasing the �uid velocities, such that the presented
results can also be applied to super�uids in the laboratory.
In all mentioned systems, a counter�ow between the �uids can be created experimentally or,

in the case of neutron stars, will necessarily occur. It is well known from plasma physics that
this may lead to certain dynamical instabilities, called "two-stream instabilities" (or some-
times "counter�ow instabilities"). Such an instability manifests itself in a nonzero imaginary
part of a sound velocity, where the magnitude of the imaginary part determines the time scale
on which the given mode becomes unstable. In this work, the critical velocity of two-�uid
systems at which the two-stream instability sets in is computed. The two-stream instability
can even occur in a single super�uid at nonzero temperature [130], in mixtures of two super-
�uids [118, 129, 131�133], and in a super�uid immersed in a lattice [120]. In each case, it is
interesting to address the relation between this dynamical instability and Landau's critical ve-
locity, where the quasiparticle energy of the Goldstone mode becomes negative (for studies of
Landau's critical velocity in a two-�uid system see Refs. [134�136], for a simple derivation and
explanation see Chap. 3.1). We shall thus also compute the onset of this energetic instability
and in particular ask the question whether an energetic instability is a necessary condition
for the two-�uid system to become dynamically unstable. For the case of two super�uids, we
will start from a globally U(1) × U(1) symmetric Lagrangian for two complex scalar �elds.
For this investigation, both inter-coupling terms are taken into account: the non-derivative
coupling as well as the derivative coupling, the latter giving rise to entrainment between the
two �uids. We restrict ourselves to uniform super�uid velocities, but will allow for arbitrary
angles between the directions of the counter�ow and the sound mode, thus being able to an-
alyze the full angular dependence of the instability. In the zero-temperature approximation
which is applied for this calculation, the sound modes are identical to the two Goldstone modes

50



that arise from spontaneous breaking of the underlying global symmetry group, and we study
them through the bosonic propagator in the condensed phase and through linearized two-�uid
hydrodynamics. For both computation methods, I will present the same calculation for the
simple one �uid case for pedagogical reasons. For the calculation of the Goldstone mode from
the �uctuation propagator, see Chap. 5.2. On top of that, we shall compare our results for the
two-component super�uid with the case where one or both of the super�uids is replaced by a
normal, ideal �uid. Even though we always neglect dissipation, there is an important di�er-
ence between a super�uid and a normal �uid. In a super�uid, density and velocity oscillations
are not completely independent because they are both related to the phase of the condensate.
As a consequence, there is a constraint to the hydrodynamic equations, and only longitudinal
modes are allowed. We will discuss additional solutions that occur in the presence of one or
two normal �uids and point out an interesting manifestation of the two-stream instability in
the presence of entrainment for the case of two normal �uids, which is completely absent if at
least one of the �uids is a super�uid.

External Magnetic Fields

At �nite external magnetic �eld, big emphasis will be put on the transition from the type-I to
the type-II regime of superconductivity in the presence of a super�uid. As a simpli�cation,
we will assume that there is no counter�ow between the the components when there are no �ux
tubes. In a �ux tube, the supercurrent generates a �ow between the two components, however
this �ow is a result of the external magnetic �eld we apply and is not a free thermodynamic
parameter in our setup. The goal of this investigation is to study the critical magnetic �elds
for the �ux tube lattice in a two-component system, where the superconductor is coupled
to a super�uid. As explained, in an astrophysical context this is expected to exist in the
core of neutron stars. Microscopic calculations � which have to be taken with care at these
extreme baryon number densities � suggest that the proton superconductor turns from type
II to type I as the density increases, i.e., as we move further towards the center of the star.
In other words, a neutron star has a spatially varying κ, and the transition from type-II to
type-I superconductivity might be realized as a function of the radius of the star [137]. For a
schematic plot describing the behavior of the neutron singlet, neutron triplet and proton gaps
as a function of density in the star and the expected schematic critical magnetic �elds if the
coupling to the neutrons is neglected can be seen in Fig. 6.1.1.The details of all presented curves
are poorly known at large densities: it is not clear whether singlet and triplet neutron pairing
indeed coexist in a certain density regime, and the neutron triplet gap is rather weak, leading
to small critical temperatures for condensation in some regions. It is therefore conceivable
that some shells in the outer core are neither super�uid nor superconducting. For a recent
calculation of the neutron singlet and triplet gaps within chiral e�ective theory see for instance
Ref. [138]. Additionally, the density might not become large enough to indeed realize a type-I
superconductor. Also, the possible transition to a quark matter phase could cut o� the shown
nuclear matter phases somewhere in the core.
However, the possible interface between the type-I and type-II superconducting phase might

a�ect the evolution of the magnetic �eld in the star and is thus of potential relevance to
observations. Even if this interface is not realized, it is important to understand the magnetic
properties of the �ux tube phase in the presence of the neutron super�uid.
The magnitudes of the energy gaps, which are varying non-monotonically along the pro�le of

the star, reach a maximum of the order of 1 MeV at intermediate densities and are much smaller
at higher densities deep in the core [140]. Therefore, the critical temperatures, which can be
as high as Tc ∼ 1010 K, are very small in certain regions of the star. And, the critical magnetic
�elds for proton superconductivity, at their maximum about Hc ∼ 1016 G � larger than the
largest measured surface �elds � become very small as well. (A very feeble superconducting
pairing gap is neither robust against temperature nor against a magnetic �eld.) This motivates
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Figure 6.1.1.: Schematic view of the interior of a compact star. (Reproduced with modi�cations from
Refs. [137, 139], published in Ref. [2]) Left panel: critical temperatures for proton superconductivity
and neutron super�uidity, where Cooper pairing can occur in the 1S0 (singlet) or

3P2 (triplet) channels.
Outer and inner crust contain a lattice of ions. In the inner crust, a neutron super�uid is immersed in
this lattice. In the core, where the density exceeds nuclear saturation density, neutron super�uidity is
expected to coexist with a proton superconductor. Right panel: critical magnetic �elds for the proton
superconductor, as expected naively from a system without a coexisting super�uid, explained in detail
for the single superconductor case earlier in this thesis.

us to study the behavior of the superconductor at magnetic �elds close to the critical �elds,
and it motivates us to include temperature. For actual predictions in the astrophysical context,
the coe�cients of our e�ective model should be made density-dependent, using results from
more microscopic calculations. In the present work we mainly focus on deriving general results
and only mimic the situation of dense nuclear matter by varying our parameters in a way that
is reminiscent of the situation in a neutron star.
Some of the multicomponent systems mentioned before also consist of at least one charged

component. For instance, a charged hyperon condensate in coexistence with a proton super-
conductor can possibly form a two-superconductor system. In the color-�avor locked (CFL)
phase, the pairing of all quarks is usually described by a single gap function. This is di�erent
in the presence of a magnetic �eld, and the study of color-magnetic �ux tubes [141] or domain
walls [142] in a Ginzburg-Landau approach shows striking similarities with the investigated
two-component system. This motivates us to use our knowledge in the last part of this thesis
to invest these phenomena in quark matter in more detail. In coexistence with a kaon conden-
sate [15,143], the CFL phase couples a color superconductor with a super�uid and represents
another interesting system to which our results can be potentially applied directly.
In the context of laboratory systems, most approaches use neutral atoms, which then form

super�uids. However, at least for a single atomic species, the coupling to a "synthetic magnetic
�eld" has been realized, including the observation of analogues of magnetic �ux tubes [144�
146]. Therefore, future experiments may well allow for the creation of a laboratory version of
a coupled superconductor/super�uid system.
Systems of two superconducting components have been discussed in the literature [147�

150] and can be realized in the form of two-band superconductors, or even in liquid metallic
hydrogen [151].
The presented study is also related to so-called type-1.5 superconductivity, predicted to

occur in systems with two superconducting components [147, 152, 153]. Although in the two-
component system we are investigating only one component is charged, we shall �nd very
similar e�ects, for instance the possibility of �ux tube clusters.
From a technical standpoint, we again consider a system of two complex scalar �elds but

add an abelian gauge �eld, with the two scalar �elds coupled to each other as before and one
of them coupled to the gauge �eld � the neutral scalar �eld is then indirectly coupled to the
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gauge �eld through the charged scalar �eld. Various aspects of this system will be discussed,
such as the e�ect of di�erent forms of the coupling between the scalar �elds (density coupling
vs. derivative coupling), e�ects of nonzero temperature, and the interaction between magnetic
�ux tubes. I will show that the transition region between type-I and type-II behavior is altered
drastically because of the presence of the super�uid, and one of the main results will be the
topology of the phase diagram in this region.
The calculations are based on a Ginzburg-Landau free energy for two condensates, in the

same way I have discussed it at length in earlier chapters. As shown, it is possible to start from
a �eld-theoretical Lagrangian from which we compute the thermal �uctuations of the system.
This is necessary in order to systematically generalize the standard temperature-dependent
coe�cients of the Ginzburg-Landau potential to the situation of two coupled �elds. As we do
at �nite super�ow, we shall work in a relativistic formalism, but the main results hold for non-
relativistic systems as well because we only consider the static limit, where the equations of
motion are identical. The coupled equations of motion for the two condensates and the gauge
�eld � which yield the pro�le and energy of a single �ux tube � are computed numerically using
the Newton-SOR method explained in App. C. Nevertheless, where possible, simple analytical
results are derived. For instance, for the computation of the free energy of a �ux tube array,
an approximation valid for sparse arrays is employed, which is based on the numerical solution
for a single �ux tube. This is su�cient to derive certain aspects of the phase structure. For a
complete study of the phase diagram, a fully numerical calculation has to be carried out, which
is beyond the scope of this thesis. The obtained results should provide guidance and physical
insights that can support and complement such a numerical calculation in future studies.

6.1.1. Structure

In the following section, I will introduce the general model in the more general case which
includes gauged �elds and all cross-coupling terms. From the derived expression, the case of
two super�uids can be recovered by setting the charges to zero. After calculating the criti-
cal temperatures in the homogeneous case (i.e. without magnetic �eld or super�ow), which
includes a computation of the �uctuation propagator, I will present various phase diagrams.
All possible thermodynamic phases of the system as a function of temperature and chemical
potential, including �nite super�ow, are explained. In order to do so, we have to properly
introduce the chemical potential for the two-component system in the presence of a deriva-
tive coupling. In the chapters following the general introduction of the model, we will �rst
focus on the computation of hydrodynamic instabilities. Since these calculations are partially
performed in the framework of relativistic hydrodynamics, we will shortly discuss the use of
hydrodynamics as an e�ective theory and its limitations, and give a short introduction into the
topic. Afterwards, the sound modes are computed from the hydrodynamic equations, which
are derived in detail, for the three cases of two super�uids, one super�uid and one normal �uid,
and two normal �uids. Since we neglect any dissipative e�ects, our normal �uid is an ideal
�uid. These results are then used to discuss extensively various (hydrodynamic) instabilities
and their relation.
Since the proton component in the core actually forms a superconductor, we will then go

on to explore the behavior of the two-component, partially charged system, in an external
magnetic �eld. The expressions for the critical magnetic �elds Hc, Hc1, and Hc2 for our two-
component system are derived. We will see that the �ux tube - �ux tube interaction can enable
the existence of �rst-order phase transitions. Our numerical results, most of them in the form
of phase diagrams, are presented consequently, together with a discussion of the type-I/type-II
transition region. Finally, possible mixed phases are discussed, where �ux tube clusters form
within the super�uid or the Meissner phase.

53



6.2. Two-Fluid Model

In order to describe a system of two interacting superconductors, we start from a very similar
Lagrangian as presented in Chap. 5, especially Eq. (5.1.1). Of course we have to double the
�eld content to account for the second �eld. Having a nucleonic system in mind, we want the
two �elds to interact directly with each other and not only via the coupling to a common U(1)
gauge �eld. In order to preserve the symmetry of the two �elds and therefore super�uidity, we
construct the interaction term in such a way that it does not break the symmetry explicitly.
Since we allow the two �elds to have separate masses and self-coupling constants, the symmetry
of the system is given by

U(1)× U(1) , (6.2.1)

instead of a maximally possible SU(2) symmetry. Depending on the charges of the �elds, the
symmetry is either completely global (for q1 = q2 = 0 and therefore no gauge �eld), partially
local (for one non-vanishing charge) or completely local for two gauged �elds. The index
i = 1, 2 now denotes the �rst (e.g. the "neutron") or the second (e.g. the "proton") �eld, not
the real or complex part of the complex scalar �eld. The Lagrangian is then given by

L = L1 + L2 + Lint + LYM , (6.2.2)

where

Li = Dµϕi(D
µϕi)

∗ −m2
i |ϕi|2 − λi|ϕi|4 , i = 1, 2 , (6.2.3a)

Lint = 2h|ϕ1|2|ϕ2|2 −
g1

2

[
ϕ1ϕ2(Dµϕ1)∗(Dµϕ2)∗ + c.c.

]
− g2

2

[
ϕ1ϕ

∗
2(Dµϕ1)∗Dµϕ2 + c.c.

]
, (6.2.3b)

LYM = −FµνF
µν

16π
, (6.2.3c)

with the covariant derivative Dµϕi = (∂µ + iqiAµ)ϕi, where Aµ is the gauge �eld and q1,
q2 the electric charges, with the complex scalar �elds ϕ1, ϕ2, the mass parameters mi ≥ 0,
the self-coupling constants λi > 0, and the �eld strength tensor Fµν = ∂µAν − ∂νAµ. Since
the Lagrangian is a real quantity, the complex conjugate of the derivative-interaction term is
added and denoted by c.c. . We have included two types of cross-couplings between the �elds:
a density coupling with dimensionless coupling constant h, and a derivative coupling which
allows for two di�erent structures with coupling constants g1 and g2 of mass dimension −2.
Due to this derivative coupling, the model is non-renormalizable and an ultra-violet cuto� is
required in general. However, in a Ginzburg-Landau-like study we are only interested in an
e�ective potential for which the only occurring momentum integral is made �nite by nonzero
temperature. Therefore, the non-renormalizability will not play any role in the following. This
derivative coupling is responsible for the entrainment e�ect. Loosely speaking, entrainment
between two �uids denotes the ability of one �uid to drag the other �uid with it. In a more
�eld-theoretical de�nition, entrainment leads to the fact that the conserved currents of each
�eld are not four-parallel to their respective conjugate momenta, but receive a contribution
from the conjugate momentum of the other �uid. This is not automatically the case for all
derivative couplings, and never occurs in systems with a simple density coupling, which we
have introduced with the coupling constant h. I will discuss this in more detail when we derive
the hydrdynamic equations from the conserved currents later on. The density coupling earns
its name due to its mix of the squares of the two �elds, which are proportional to the particle
density of the corresponding �eld (in the uncoupled case). For the moment, let us compute
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the conserved currents which arise due to the symmetry using Noether's theorem and the
procedure described in Sec. 5.1:

jµ1 = i(ϕ1D
µϕ∗1 − ϕ∗1Dµϕ1) + g|ϕ1|2i(ϕ2D

µϕ∗2 − ϕ∗2Dµϕ2) , (6.2.4a)

jµ2 = i(ϕ2D
µϕ∗2 − ϕ∗2Dµϕ2) + g|ϕ2|2i(ϕ1D

µϕ∗1 − ϕ∗1Dµϕ1) , (6.2.4b)

where the di�erence of the two entrainment couplings is abbreviated by

g ≡ g1 − g2

2
. (6.2.5)

Later we shall also need the sum of them,

G ≡ g1 + g2

2
. (6.2.6)

6.2.1. Chemical Potentials with Derivative Couplings

The global part of the symmetry allows us to introduce a chemical potential for each �eld
separately. The chemical potentials µ1 and µ2 are introduced in the usual way, they can
be formally included in the Lagrangian as temporal components of the gauge �elds in the
covariant derivatives, qiA0 → −µi. It is important to note that they have to be included in
the covariant derivatives of the coupling terms as well, which is described in Ref. [1] and I will
show now. For simplicity, we will neglect the charges and the gauge �elds for the moment,
since they do not change the nature of the proof. The main idea of the proof is to introduce a
compact matrix notation in which the derivation then proceeds very similarly to the standard
scenario without derivative coupling, presented in Chap. 5. As an aside, I shall point out a
complication arising from the functional integration in the path integral over the canonical
momenta, which produces a nontrivial �eld-dependent factor in the presence of a derivative
coupling.
Let us introduce a new notation for the real and imaginary parts of the complex �elds in

order to reserve the index i = 1, 2 to indicate the �eld,

ϕi =
1√
2

(ϕ′i + iϕ′′i ) . (6.2.7)

Here, we do not have to separate the condensates and the �uctuations. In this basis, the
Lagrangian becomes

L =
∑
i=1,2

[
1

2
∂µϕ

′
i∂
µϕ′i +

1

2
∂µϕ

′′
i ∂

µϕ′′i −
m2
i

2
(ϕ′2i + ϕ′′2i )− λi

4
(ϕ′2i + ϕ′′2i )2

]

+
h

2
(ϕ′21 + ϕ′′21 )(ϕ′22 + ϕ′′22 )− g1

4

[
(ϕ′1ϕ

′
2 − ϕ′′1ϕ′′2)(∂µϕ

′
1∂

µϕ′2 − ∂µϕ′′1∂µϕ′′2)

+(ϕ′1ϕ
′′
2 + ϕ′′1ϕ

′
2)(∂µϕ

′
1∂

µϕ′′2 + ∂µϕ
′′
1∂

µϕ′2)
]
− g2

4

[
(ϕ′1ϕ

′
2 + ϕ′′1ϕ

′′
2)

(∂µϕ
′
1∂

µϕ′2 + ∂µϕ
′′
1∂

µϕ′′2) + (ϕ′1ϕ
′′
2 − ϕ′′1ϕ′2)(∂µϕ

′
1∂

µϕ′′2 − ∂µϕ′′1∂µϕ′2)
]
. (6.2.8)

By introducing the vector ~ϕ through

~ϕ =

(
~ϕ1

~ϕ2

)
, ~ϕi =

(
ϕ′i

ϕ′′i

)
, (6.2.9)
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we can write the Lagrangian in the compact form

L =
1

2

[
∂µ~ϕ

TQ−1∂µ~ϕ− ~ϕT (m2 + Y )~ϕ
]
, (6.2.10)

with m2 = diag(m2
1,m

2
2). Here we have abbreviated

Q−1 ≡
(

1 A

AT 1

)
, Y ≡ 1

2

(
λ1Y11 −hY12

−hY21 λ2Y22

)
, (6.2.11)

where

A ≡ −1

2
(GY12 + gτ2Y12τ2) , τ2 =

(
0 −1
1 0

)
, Yij ≡

(
ϕ′iϕ

′
j ϕ′iϕ

′′
j

ϕ′′i ϕ
′
j ϕ′′i ϕ

′′
j

)
. (6.2.12)

The compact form (6.2.10) seems to suggest that the Lagrangian is quadratic in the �elds,
which would allow us to perform the path integral analytically as an e�ectively Gaussian
integral. This is of course not true, one has to keep in mind that the matrices Q−1 and Y
contain terms quadratic in the �elds too. The point was to write the Lagrangian in a form
that shows the derivative terms explicitly, and absorb all remaining structure in the most
compact way. This facilitates the introduction of the conjugate momenta and the chemical
potentials, and also makes the structure of the Lagrangian very transparent: Y contains
the non-derivative self-couplings (diagonal terms, proportional to λi), and the non-derivative
cross-coupling (o�-diagonal terms, proportional to h), while Q−1 contains the derivative cross-
couplings (o�-diagonal terms, proportional to gi) and the kinetic terms (diagonal). We do not
include derivative self-couplings, which would occur diagonally in Q−1.
The canonical momenta conjugate to the �elds are de�ned as

π′i =
∂L

∂(∂0ϕ′i)
, π′′i =

∂L
∂(∂0ϕ′′i )

, (6.2.13)

which can be compactly written as
~π = Q−1 ∂0~ϕ , (6.2.14)

with the vector ~π de�ned analogously to ~ϕ. Below we shall need the inverse relation ∂0~ϕ = Q~π
with

Q =

(
(1−AAT )−1 −A(1−ATA)−1

−AT (1−AAT )−1 (1−ATA)−1

)
. (6.2.15)

We can now exactly follow the procedure explained for the single �eld. The Hamiltonian is
given by the Legendre transform of L with respect to the pair of variables (∂0~ϕ, ~π),

H = ~πT∂0~ϕ− L =
1

2

[
~πTQ~π +∇~ϕT ·Q−1∇~ϕ+ ~ϕT (m2 + Y )~ϕ

]
. (6.2.16)

Introducing two chemical potentials for the two conserved charges amounts to a shifted Hamil-
tonian H− µ1N1 − µ2N2 with the two charge densities given by the temporal components of
the currents, Ni = j0

i . The currents (6.2.4) can be written as

jµ1 = −~ϕT1 τ2

(
∂µ~ϕ1 −

g

2
τ2Y12τ2∂

µ~ϕ2

)
, jµ2 = −~ϕT2 τ2

(
∂µ~ϕ2 −

g

2
τ2Y21τ2∂

µ~ϕ1

)
. (6.2.17)

Remember that we have set q1 = q2 = 0, therefore we have to replace all covariant derivatives
in the original expression of the currents by ordinary partial derivatives. Now, using the
temporal component of these expressions and inserting ∂0~ϕ = Q~π with Q from Eq. (6.2.15),
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one computes the remarkably simple relations

j0
1 = −~ϕT1 τ2~π1 = ϕ′1π

′′
1 − ϕ′′1π′1 , (6.2.18a)

j0
2 = −~ϕT2 τ2~π2 = ϕ′2π

′′
2 − ϕ′′2π′2 , (6.2.18b)

and thus µ1j
0
1 +µ2j

0
2 = −~ϕTµτ2~π with µ = diag(µ1, µ2). (Note that τ2 is a matrix in the space

of real and imaginary parts, while µ is a matrix in the space of �elds 1 and 2.) The partition
function is

Z =

ˆ
Dϕ1Dϕ2Dπ1Dπ2 exp

[
−
ˆ
X

(
H− µ1N1 − µ2N1 − ~πT∂0~ϕ

)]
, (6.2.19)

with the abbreviation ˆ
X
≡
ˆ 1/T

0
dτ

ˆ
d3x , (6.2.20)

where τ is the imaginary time. Therefore, we compute

−
(
H− µ1j

0
1 − µ2j

0
2 − ~πT∂0~ϕ

)
=

−1

2
~πTQ~π + (∂0~ϕ+ µτ2~ϕ)T~π − 1

2

[
∇~ϕT ·Q−1∇~ϕ+ ~ϕT (m2 + Y )~ϕ

]
=

−1

2
~ΠTQ~Π +

1

2

[
(Dµ~ϕ)TQ−1Dµ~ϕ− ~ϕT (m2 + Y )~ϕ

]
, (6.2.21)

with the shifted momenta ~Π = ~π−Q−1(∂0~ϕ+µτ2~ϕ). The second term in the third line is the
"new" Lagrangian; it is identical to the original Lagrangian (6.2.10), but with the derivatives
replaced by the "covariant" derivativesDµ = ∂µ+δµ0µτ2. Consequently, the chemical potentials
are e�ectively introduced by adding to all derivatives in the Lagrangian the chemical potential,
not just in the kinetic terms as one might expect. They can thus equivalently be introduced
in the phase of the condensates.
The integration over the shifted momenta can now easily be performed. In the presence of

a derivative coupling, this integration induces a nontrivial, i.e., �eld-dependent, factor in the
integrand of the partition function,

Z =

ˆ
Dϕ1Dϕ2 (detQ)−1/2 exp

{
1

2

ˆ
X

[
(Dµ~ϕ)TQ−1Dµ~ϕ− ~ϕT (m2 + Y )~ϕ

]}
, (6.2.22)

with
detQ =

1(
1− G2

4 |ϕ1|2|ϕ2|2
)(

1− g2

4 |ϕ1|2|ϕ2|2
) . (6.2.23)

If we expand detQ around the condensates ρ1, ρ2 and only keep the lowest order contribution
we can write

Z ' [detQ(0)]−1/2

ˆ
Dϕ1Dϕ2 exp

[
−V
T
U +

1

2

ˆ
X
L(2) + . . .

]
, (6.2.24)

where
detQ(0) =

1(
1− G2

4 ρ
2
1ρ

2
2

)(
1− g2

4 ρ
2
1ρ

2
2

) , (6.2.25)

and where we have also employed the expansion in the exponent, keeping terms up to second
order in the �uctuations.
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6.3. Tree-level Potential and Phase Diagrams

Whenever we perform a calculation, e.g. if we compute the hydrodynamic instabilities or if
we analyze the interaction of the superconductor with the super�uid, we have to choose some
numerical values for the thermodynamic parameters, which are the two chemical potentials,
the temperature, and the two super�ows µi, T, and ∇ψi, and the coupling constants λi, h, g
and G as well as for the masses mi. However, we have to check whether the given set of
parameters leads to condensation in the �rst place, i.e. if we are in the super�uid respectively
superconducting phase at all. As we have learned, a single �eld condenses whenever µi > mi.
In the coupled case, this becomes more complicated. Consequently, the study of the phase
structure is a crucial �rst step. For this purpose, we compute the tree-level potential and the
homogeneous solutions to the equations of motion at vanishing magnetic �eld. At �rst, we
will work in the zero temperature approximation before computing �nite temperature e�ects
from the �uctuations. Once again, we separate the �uctuations from the expectation value,

ϕi = 〈ϕi〉+ fluctuations , (6.3.1)

and neglect the �uctuations for the moment by setting them to zero. This means that the �elds
are solely given by their expectation values 〈ϕi〉 (the "condensates"), which we parameterize
once again by their modulus ρi and their phase ψi,

〈ϕi〉 =
ρi√

2
eiψi . (6.3.2)

Since we are interested in a superconductor coupled to a super�uid, we assume only one of
the �elds to be charged, say �eld 1, and the second to be neutral,

q1 ≡ q , q2 = 0 . (6.3.3)

Because we restrict ourselves to uniform �uid velocities, ∂µψi = const, the phases ψi depend
linearly on time and space, with ∂0ψi = µi and ∇ψi = −µivi. As I have proven, if the chemical
potentials µi are introduced correctly via H− µ1N1 − µ2N2, where H is the Hamiltonian and
Ni = j0

i are the charge densities, then it is equivalent to introduce the chemical potential just
like a background temporal gauge �eld, ∂0ϕi → (∂0 − iµi)ϕi. Consequently, we can indeed
introduce the chemical potentials directly in the phase of the condensates. The same arguments
can be applied to the super�uid velocity, or more precisely to the spatial components of the
momentum conjugate to the current, such that we can write more generally H−p1µj

µ
1 −p2µj

µ
2 ,

and the vectors pi can be viewed as spatial components of a background gauge �eld. Moreover,
we are only interested in static solutions and thus drop all time derivatives of the condensates.
Then, the zero-temperature tree-level potential U = −Lϕi→〈ϕi〉 is

U(r) =
(∇ρ1)2

2
+

(∇ρ2)2

2
− p2

1 − (∇ψ1 − qA)2 −m2
1

2
ρ2

1 −
p2

2 − (∇ψ2)2 −m2
2

2
ρ2

2 +
λ1

4
ρ4

1

+
λ2

4
ρ4

2 −
h+ gp12

2
ρ2

1ρ
2
2 −

G

2
ρ1ρ2∇ρ1 · ∇ρ2 +

g

2
ρ2

1ρ
2
2(∇ψ1 − qA) · ∇ψ2 +

B2

8π
,

(6.3.4)

where we have reduced the Yang-Mills contribution to a purely magnetic term, B = ∇×A,
and used the abbreviations

p2
i ≡ ∂µψi∂µψi = µ2

i (1− v2
i ) , p2

12 ≡ ∂µψ1∂
µψ2 = µ1µ2(1− v1 · v2) . (6.3.5)

As explained in Sec. 5.1, p1 and p2 are the chemical potentials in the rest frames of the �uids.
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Here we keep the general notation p introduced there, deviating slightly from the notation in
Refs. [130,154], where ∂µψ∂µψ was instead denoted by σ2.
The potential U needs to be bounded from below, otherwise there is no ground state with

�nite energy. This requires λ1, λ2 > 0 (which we shall always assume and is already true in
the single �eld case) and

h+ gp2
12 <

√
λ1λ2 . (6.3.6)

In particular, the potential is bounded for arbitrary negative values of h + gp2
12. Notice that

the boundedness of the potential depends on the chemical potentials, which enter p12 (and
also on the �uid velocities). This is not a problem as long as we identify the unbounded
region and always work with externally �xed chemical potentials in the bounded region. Our
�rst goal is to �nd the phase structure of the model within a uniform ansatz at vanishing
magnetic �eld, i.e. we restrict ourselves to uniform condensates as well, ∇ρi = 0. Note that,
as a direct consequence, the derivative coupling G drops out of the potential at T = 0 and
plays therefore no role in the coming discussion. For the phase structure, we now need to
minimize the resulting potential U with respect to the condensates ρ1 and ρ2,

0 =
∂U

∂ρ1
=
∂U

∂ρ2
. (6.3.7)

We now identify the four di�erent phases that are solutions of these equations and that are
distinguished by their residual symmetry group. Let us �rst brie�y discuss the trivial situation
without coupling, g = 0, and without any velocities, v1 = v2 = 0. Bose-Einstein condensation
occurs for chemical potentials larger than the mass of the bosons. Therefore, in an uncoupled
system, there is no condensate for µ1 < m1, µ2 < m2, there is exactly one condensate if exactly
one of the chemical potentials becomes larger than the corresponding mass, and there are two
condensates if both chemical potentials are larger than the corresponding masses, µ1 > m1,
µ2 > m2. A coupling between the two condensates can disfavor or favor coexistence of the two
condensates, depending on the sign of the coupling constant. At �nite coupling, the following
solutions are possible:

• In the normal phase ("NOR"), neither the charged nor the neutral �eld condenses and
the residual group is U(1)× U(1).

ρ1 = ρ2 = 0 , UNOR = 0 . (6.3.8)

The other solutions are determined by the equations

p2
1 −m2

1 − λ1ρ
2
1 + (h+ gp2

12)ρ2
2 = 0 , (6.3.9a)

p2
2 −m2

2 − λ2ρ
2
2 + (h+ gp2

12)ρ2
1 = 0 . (6.3.9b)

• In the (pure) superconductor ("SC"), only the charged �eld forms a condensate, whereas
the condensate of the other �eld is zero, and only one global U(1) remains unbroken.
The transition from the normal to the condensed phase happens when the corresponding
chemical potential reaches the mass of the �eld.

ρ2
1 = ρ2

SC ≡
p2

1 −m2
1

λ1
, ρ2 = 0 , USC = −λ1ρ

4
SC

4
. (6.3.10)

Whenever we neglect the charge of this �eld as well, especially while discussing the
hydrodynamic instabilities, we equivalently call this phase super�uid one phase, "SF1".
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• If only the second �eld condenses, we are in a pure super�uid phase ("SF"), while the
charged �elds remains uncondensed and the (local) U(1) remains unbroken,

ρ2
2 = ρ2

SF ≡
p2

2 −m2
2

λ2
, ρ1 = 0 , USF = −λ2ρ

4
SF

4
. (6.3.11)

Once again, for the discussion of hydrodynamic instabilities, an index will be added to
distinguish the two super�uid phases from each other. Therefore, this phase will be
equivalently called the SF2 phase.

• In the coexistence phase ("COE"), both condensates exist simultaneously, and the sym-
metry is broken down to 1. Without coupling, the coexistence phase is realized if and
only if both chemical potentials are larger than the corresponding masses. The inter-
species couplings, the density coupling h and the entrainment coupling g, favor (h > 0
or g > 0) or disfavor (h < 0 or g < 0 in our convention) the COE phase. The second
derivative coupling plays no role at T = 0 since it drops out of the tree-level potential.1

The condensates and the free energy density are

ρ2
01 =

λ2(p2
1 −m2

1) + (h+ gp2
12)(p2

2 −m2
2)

λ1λ2 − (h+ gp2
12)2

, ρ2
02 =

λ1(p2
2 −m2

2) + (h+ gp2
12)(p2

1 −m2
1)

λ1λ2 − (h+ gp2
12)2

,

UCOE = −λ1(p2
2 −m2

2)2 + λ2(p2
1 −m2

1)2 + 2(h+ gp2
12)(p2

1 −m2
1)(p2

2 −m2
2)

4[λ1λ2 − (h+ gp2
12)2]

. (6.3.13)

The ground state is then found by determining the global minimum of U depending on the
free thermodynamic parameters, which include the super�ow.
In principle, one can now draw several phase diagrams and study the in�uence of several

parameters and coupling-constants simultaneously. In order to tame the parameters space, we
are going to focus on two main combinations, summarized in Tab. 6.3.1:

1) Finite entrainment coupling g and �nite super�ow vi, but vanishing density coupling,
h = 0. This particular choice of parameters will be mostly used in the discussion of
the hydrodynamic instabilities. We will see that the e�ect of �nite temperature mainly
reduces to altering the chosen parameters, therefore we proceed mostly with T = 0.

2) Finite density coupling h but no entrainment coupling, g = 0, and both �uids at rest in
the homogeneous phases. This set of parameters will be used for the examination of our
two-component system in an external magnetic �eld, where a super�ow can be induced
by �ux tubes but is not an external thermodynamic parameter in our setup. Since �nite
temperatures and magnetic �elds both weaken the condensate, we will compute T > 0
e�ects, where the derivative coupling G enters the temperature dependent condensates.

In both cases, we have studied the in�uence of the other parameters as well and found no
qualitative di�erences of the results, although the phase structure becomes slightly richer.
Therefore, a simple set of parameter that features all interesting results is chosen. Let us start
1In a system of neutrons and protons inside a neutron star, the results of Ref. [117] suggest that the entrain-
ment coupling g is negative. This can be seen by rewriting the homogeneous version of the free energy
(6.3.4) as

U = U(v1 = v2 = 0) +
µ2
1ρ

2
1

2
v21 +

µ2
2ρ

2
2

2
v22 +

gµ1µ2ρ
2
1ρ

2
2

2
v1 · v2 . (6.3.12)

By comparing this expression with the non-relativistic version in Ref. [117] and using the results from the
fermionic microscopic theory therein, we conclude g < 0 (with |g| depending on the baryon density). In view
of the results presented here it is thus an interesting question whether the entrainment coupling between
neutrons and protons may forbid the coexistence of both condensates, in particular under circumstances
(i.e., at a given temperature and baryon density) in which each of the condensates would be allowed to
exist on its own.
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set thermod. var. phases couplings neglected charges
1) T, µi, ∇ψi SF1, SF2, COE, NOR λ1, λ2, g h = 0, T = 0 q1 = q2 = 0

2) T, µi, H SC, SF, COE, NOR λ1, λ2, h ,G g = 0 q1 ≡ q, q2 = 0

Table 6.3.1.: Important parameter combinations for the investigation of hydrodynamic instabilities (1)
and �ux tubes (2). The �rst column shows the free external parameters, where i = 1, 2.
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Figure 6.3.1.: Phase diagrams for set 1) in the plane of the two chemical potentials µ1, µ2 for two
di�erent signs of the entrainment coupling g with the same magnitude |g| = 0.03/(m1m2) and vanishing
non-entrainment coupling h = 0. The mass ratio is chosen to be m2/m1 = 1.5 and the self-coupling
constants are set to λ1 = 0.3, λ2 = 0.2. Solid (black) lines correspond to vanishing �uid velocities,
v1 = v2 = 0, while dashed (blue) lines correspond to v1 = 0.7, v2 = 0 (in units of the speed of light).
Thin lines are second-order phase transitions, while the thick lines in the left panel are phase transitions
of �rst order. In the upper right corner of the right panel the potential is unbounded from below. The
lines and points are labeled, and their expressions are given in Table 6.3.2. For later discussions, a
point within the COE phase is chosen, marked here with a (red) cross.

by discussing the �rst set of parameters by looking at the phase diagram in Fig. 6.3.1.
Without loss of generality we can restrict ourselves to µ1, µ2 > 0 because the chemical

potentials enter the free energy U only quadratically and through the combination gµ1µ2, and
g only enters in this combination. All phase transition lines and critical points are given by
simple analytical expressions, see Table 6.3.2. We see in the left panel that the region for
the COE phase gets squeezed by the entrainment coupling. Let us examine the various phase
transitions by following a horizontal line in the phase diagram: for 1 < µ2/m2 . 2.3 we start
in the super�uid phase SF or SF2 phase depending on whether we set both charges to zero.
Besides altering the nomenclature of the phases, the charge q does not alter the phase structure
at vanishing temperature in any way. Upon increasing µ1, the line β2 is reached. At this line
both condensates change continuously, in particular the condensate of �eld 1 becomes nonzero.
This second-order phase transition line is found from USF = UCOE. It is easy to check that it
is identical to the line where ρ01 from Eq. (6.3.13) is zero. By further increasing µ1 we leave
the COE phase through a second-order phase transition line β1 and reach the superconducting
phase SC (alternatively SF1). For µ2/m2 & 2.3, we do not reach the COE phase by increasing
µ1, although there is a region where the COE phase is allowed, i.e., where both ρ01 and ρ02

from Eq. (6.3.13) assume real nonzero values. However, the free energy of this state turns out
to be larger than the free energies of the two phases with a single non-vanishing condensate.
Therefore, there is a direct �rst-order phase transition line η between SF1 and SF2. For larger
values of |g| the region of the COE phase becomes smaller, and beyond a critical value the
COE phase completely disappears from the phase diagram. This critical value is reached when
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Figure 6.3.2.: Same phase plot as in Fig. 6.3.1, but for v1 = 0.7, v2 = 0 (blue, dashed lines, as before)
and even higher velocities v1 = 0.85, v2 = 0. We see that the chosen point in the µ1-µ2 plane (red
cross) "leaves" the COE-phase due to the higher velocity.

the points P1 and P2 coincide, and it is given by

g = −
√
λ1λ2

m1m2

√
(1− v2

1)(1− v2
2)

1− v1 · v2
. (6.3.14)

The right panel shows the scenario where the coupling is in favor of the COE phase. In this
case, there is a region for large chemical potentials where the tree-level potential becomes
unbounded.
In each panel the phase structure for the case of zero velocities and for the case where the

velocity of super�uid 1 is nonzero is shown. The e�ect of the nonzero velocity on the SF1

phase is very simple: condensation occurs if p1 > m1, i.e., if the chemical potential measured
in the rest frame of the �uid is su�ciently large. We work, however, with �xed µ1, i.e.,
we �x the chemical potential measured in the frame where the �uid moves with velocity v1.
Therefore, the chemical potential relevant for condensation, p1 = µ1

√
1− v2

1, is reduced by a
nonzero v1 through a standard Lorentz factor, and thus a nonzero velocity e�ectively disfavors
condensation of the given �eld. The e�ect of the velocity on the COE phase is a bit more
complicated, in this case there is no frame in which the velocity dependence can be eliminated.
For either sign of the coupling g, a nonzero velocity reduces the region of the COE phase, i.e.,
there is a parameter region in which, for zero velocity, the COE phase is preferred, but which
is taken over by a single-condensate phase or the NOR phase at nonzero velocity. For negative
values of the entrainment coupling g, see left panel of Fig. 6.3.1, a nonzero velocity can also
work in favor of the COE phase: there are points in the single-super�uid phase SF1 at zero v1

which undergo a phase transition to the COE phase at nonzero v1. This can be seen in more
detail in Fig. 6.3.2, where the phase boundaries at even higher velocities are shown.
It has to be emphasized that the discussion in this section has been on a purely thermody-

namic level, in the sense that the velocities have been treated as external parameters in the
same way as the chemical potentials. This is possible when the velocity �elds are constant
in space and time. It is very natural from the point of view of the covariant formalism since
chemical potential and super�uid velocity are di�erent components of the same four-vector,
the conjugate momentum ∂µψ. This "generalized" thermodynamics can be carried further
to compute Landau's critical velocity from "generalized" susceptibilities [134, 136]. We shall
discuss this connection later on.
Let us now turn to the second set of parameters and examine the phase structure for �nite

density coupling, shown in Fig. 6.3.3. As it has been the case with the entrainment coupling
g, the inter-species coupling h can facilitate or hinder the formation of the coexistence phase.
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αi µi = γimi

β1/2 µ2/1 = γ2
2/1


√√√√g2µ2

1/2

4
ρ4

SF1/SF2
(1− v1 · v2)2 +

m2
2/1

γ2
2/1

−
gµ1/2

2
ρ2

SF1/SF2
(1− v1 · v2)


η µ1 = γ1

√
m2

1 +
√
λ1λ2ρ2

SF2

ζ µ2 =

√
λ1λ2

gµ1(1− v1 · v2)

P1 (γ1m1, γ2m2)

P2 (µ1, µ2) with µ2
1/2 =

γ2
1/2

2
√
λ2/1

[√(√
λ2m2

1 −
√
λ1m2

2

)2
+

4(λ1λ2)3/2

g2γ2
1γ

2
2(1− v1 · v2)2

±(
√
λ2m

2
1 −
√
λ1m

2
2)

]

Table 6.3.2.: Expressions for the phase transition lines α1, α2, β1, β2 (second order), η (�rst order),
the critical line ζ for the unboundedness of the potential, and the critical points P1 and P2 in the
phase diagrams of Fig. 6.3.1 (as in the phase diagrams, the non-entrainment coupling is set to h = 0
for simplicity, see Tab. 6.3.1). The Lorentz factors are γi = 1/

√
1− v2i and the condensates in the

absence of a second �eld ρ2SFi
= (p2i −m2

i )/λi, i = 1, 2.

Depending on the sign, increasing the magnitude of the coupling will further decrease (h < 0)
or increase (h > 0) the coexistence phase. For large negative values, the coexistence phase can
vanish entirely, which happens at a value of

h = −
√
λ1λ2 . (6.3.15)

The phase transition lines are slightly simpler in this setup and are given by µ2 as a function
of µ1:

SF→ COE : µ2 =
√
m2

2 + h/λ1

(
m2

1 − µ2
1

)
, (6.3.16)

COE→ SC : µ2 =
√
m2

2 + λ2/h
(
m2

1 − µ2
1

)
, (6.3.17)

where the �rst equation denotes the transition from the SF-phase to the COE phase, and the
second one the transition from the COE-phase to the SC-phase. In order to include a �nite
temperature, we have to compute the �uctuation propagator and the excitation energies, which
I am going to present in the next section.

6.4. Introducing Temperature

We intend to include temperature T into the potential (6.3.4) in an e�ective way. In Ginzburg-
Landau models this is usually done by introducing temperature dependent coe�cients, with a
T -dependence that is strictly valid only close to the critical temperature. In the two-component
system, the form of these coe�cients is not obvious because we have two �elds and hence (at
least) two critical temperatures. We thus proceed by introducing temperature in the under-
lying �eld theory and derive an e�ective potential. This will be done in a high-temperature
approximation, assuming the condensates to be uniform, and without background magnetic
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Figure 6.3.3.: Phase diagrams for set 2) of Tab. 6.3.1 in the plane of the two chemical potentials µ1, µ2

for two di�erent signs and absolute values of the density coupling h with magnitude |h| = 0.1 (dashed
lines) and |h| = 0.05 (solid lines) and vanishing entrainment coupling, g = 0. The masses are equal,
m1 = m2 = m, and the self-coupling constants are λ1 = 0.3, λ2 = 0.5. All phase transitions are �rst
order.

�eld. In order to calculate �nite temperature e�ects, we therefore have to compute the �uctu-
ation propagator at tree-level as it has been shown in Sec. 5.2 for a single �eld. As argued, in
the case of two super�uids, the T = 0 approximation for a neutron star environment is quite
reasonable. However, a high magnetic �eld can weaken the superconducting gap, leaving the
superconductor "vulnerable" to even small temperatures. Therefore, we are going to focus
on the superconductor-super�uid setup during this discussion, which means that we set the
super�ow in the homogeneous phases to zero and simply work with the chemical potentials µi,
which replace the frame dependent pi. Taking into account the gauged nature of the charged
�eld is essential, since the excitations are quite di�erent due to the "eating" of the Goldstone
mode, as discussed in Sec. 5.3. Later on we will need the �uctuation propagator for the two
super�uid setup as well, which is very similar from a technical point of view.
Neglecting zero-temperature quantum corrections, the one-loop potential is

Ω(µ1, µ2, T ) = U + T
6∑
i=1

ˆ
d3k

(2π)3
ln
(
1− e−εki/T

)
, (6.4.1)

where the sum is taken now over all six quasiparticle excitations εki instead of just two in
the case of a single scalar �eld, where we have derived the latter formula, see Eq. (5.2.19).
Without condensation, each of the complex scalar �elds yields 2 excitations (both massive
if mi > 0), corresponding to particle and anti-particle excitations, while the gauge �eld has
two massless excitations, corresponding to the two possible polarizations of massless photons.
These are 6 modes in total. In the coexistence phase both scalar �elds condense. As a
consequence, there is one Goldstone mode from the neutral �eld and one would-be Goldstone
boson from the charged �eld, which becomes a third mode of the now massive gauge �eld.
Together with the two massive modes from the scalar �elds and the two original modes of

64



the gauge �eld � which are now massive as well � these are again 6 modes. The excitations
εki are computed from the tree-level propagator. Their expressions are very complicated, but
for the high-T approximation we only need their behavior at large momenta. All details of
this calculation are deferred to appendix B. From a �eld-theoretical perspective our high-T
approximation is very crude, and for a quantitative evaluation of the model for all temperatures
more sophisticated methods are needed, such as the two-particle irreducible formalism [92] or
functional renormalization group techniques [155]. These methods are beyond the scope of the
present work because, �rstly, if applied to our present context of magnetic �ux tubes and their
interactions, they would render the calculation much more complicated and purely numerical
methods would be required. Secondly, having in mind the application of our model to nuclear
matter, the next step towards a more sophisticated description should probably be to employ
a fermionic model, rather than improving the bosonic one (note for instance that our bosonic
system has well-de�ned quasiparticle excitations for all energies, while a fermionic one has a
continuous spectral density for energies larger than twice the energy gap from Cooper pairing).
We also simplify the result by only keeping the leading order contribution from the derivative

coupling G. As a result, all temperature corrections can be absorbed into thermal masses and
a thermal density coupling, and we can work with the e�ective potential

U(r) ' (∇ρ1)2

2
+

(∇ρ2)2

2
−
µ2

1 − (∇ψ1 − qA)2 −m2
1,T

2
ρ2

1 −
µ2

2 − (∇ψ2)2 −m2
2,T

2
ρ2

2

+
λ1

4
ρ4

1 +
λ2

4
ρ4

2 −
hT
2
ρ2

1ρ
2
2 −

G

2
ρ1ρ2∇ρ1 · ∇ρ2 +

B2

8π
, (6.4.2)

where

m2
1,T = m2

1 +
2λ1 − h+ 6πq2

6
T 2 , (6.4.3a)

m2
2,T = m2

2 +
2λ2 − h

6
T 2 , (6.4.3b)

hT = h

(
1 +

GT 2

6

)
. (6.4.3c)

For the following, we can thus simply take Eqs. (6.3.8) � (6.3.13) and replace the masses and the
density coupling by their thermal generalizations. From these results we are able to compute
the critical temperatures. This can be done by comparing the now temperature dependent
free energies of the various phases and determine the value of T at which they are equal. As
expected, the temperature dependent condensates vanish at these critical values, indicating a
second-order phase transition. Therefore, it is su�cient to solve for the temperature at which
the condensates go to zero. In the presence of a derivative coupling G the resulting expressions
are very lengthy and not very insightful. Therefore, we set G = 0 for the moment, such that
the only e�ect of temperature is a modi�cation of the masses m1 and m2, not h. Inserting the
thermal masses into Eqs. (6.3.13), we compute the T -dependent condensates by minimization,

ρ2
0i(T ) = ρ2

0i(T = 0)

(
1− T 2

T 2
ci

)
, (6.4.4)

where the critical temperatures Tc1 and Tc2 indicate the phase transitions to the SF and SC
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phases,

T 2
c1 =

6(λ1λ2 − h2)

λ2(2λ1 + h+ 6πq2)− h2
ρ2

01(T = 0) , (6.4.5a)

T 2
c2 =

6(λ1λ2 − h2)

λ1(2λ2 + h)− h(h− 6πq2)
ρ2

02(T = 0) . (6.4.5b)

In the limit h = 0, Eq. (6.4.5a) reduces to the well-known result for a single charged �eld,
see for instance Eq. (4.24) in Ref. [156] (in this reference Heaviside-Lorentz units are used,
i.e., our charge q has to be divided by

√
4π to match that result exactly). If we set h = 0 in

Eq. (6.4.5b) the result becomes independent of the charge q, as it should be because �eld 2 is
neutral and couples to the gauge �eld only indirectly through �eld 1. For the transition from
the SC to the NOR and the SF to the NOR phase, we �nd

Tc(SC→ NOR) =

√
6
√
m2

1 − µ2
1√

h− 2 (3πq2 + λ1)
, Tc(SF→ NOR) =

√
6
√
m2

2 − µ2
2√

h− 2λ2
. (6.4.6)

The critical temperatures (6.4.5) and their more complicated versions with nonzero G are
interesting in themselves. For instance, they can be used to analyze systematically in which
regions of parameter space the COE phase is superseded by the SF phase at high temperature
(i.e., the charged condensate melts �rst, Tc1 < Tc2) or by the SC phase (i.e., the neutral
condensate melts �rst, Tc2 < Tc1). Or, they can be used to identify regions in the parameter
space where one or both critical temperatures squared become negative, indicating that one
or both condensates "refuse" to melt. This interesting observation � although it may be
an artifact of our approximation � has been pointed out previously in the literature, see for
instance appendix C in Ref. [157] and references therein. Here we shall not further analyze
the critical temperatures. None of the parameter sets used in the following show this unusual
behavior, i.e., we choose parameters such that Tc1 and Tc2 exist. The result of our �nite
temperature calculation can be seen for instance in Fig. 6.4.1.
There, the phase diagram in the plane of the chemical potentials is shown identically to

Fig. 6.3.3. Since the masses are e�ectively increased by the �nal temperature, we see a delayed
onset of all condensed phases compared to the solid T = 0 lines. Alternatively, one can draw
the phase diagram as a function of the self-coupling constants λ1 and λ2. A lot of e�ects that
we are going to discuss depend on these couplings, for instance the critical temperatures which
we want to plot here. In a �rst attempt to "tame" the parameter space, we parametrize a
simple path in the λ1 − λ2 plane by α ∈ [0, 1], which is de�ned by

~λ = ~λstart + α(~λend − ~λstart) , (6.4.7)

with ~λ = (λ1, λ2). This parameterization is reminiscent of how these parameters are expected
to vary as a function of increasing density in a neutron star. This e�ective parameter will
be used especially for the discussion of critical magnetic �elds and discussed in more detail
later on. For the moment, it allows us to vary at least two parameters simultaneously while
keeping the others �xed. A phase diagram in the plane of λ1-λ2 is shown in Fig. 6.4.2, where
the de�nition of the parameter α is visualized as well. The results are shown at vanishing
and �nite temperature. Interestingly, the normal region cannot be reached by increasing the
self-couplings at �nite temperature for either sign of the inter-species coupling, only at �nite
temperatures the NOR region appears. For the NOR phase to be preferred (which is chosen
to have free energy equals to zero), the COE phase has to become positive. The only positive
terms in the potential (6.4.2) dependent on λ1 and λ2 are the quartic self-coupling terms, which
are, in leading order at T = 0, still proportional to λ−1

i . At �nite temperature, the additional
λi−dependence of the thermal masses then drive the transition to the normal region. This
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Figure 6.4.1.: Phase diagrams in the plane of the two chemical potentials µ1, µ2 with same parameters
as in Fig. 6.3.3for |h| = 0.1 and T = 0 (solid lines) and T = 3m (dashed lines). Additionally, we set
G = 0, which would alter the e�ective value of h.

argument is independent of the sign of h. For positive values of h, which strengthen the COE
phase, the system stays in the COE phase at T = 0 as long as the potential is bounded
from below. The unbounded region where h >

√
λ1λ2, is shaded in grey. This of course

requires that the other parameters are chosen in such a way that the system is in the COE
phase in the �rst place. At �nite temperatures, once again the thermal masses lead to a more
complex phase structure, by not only enabling the transition to the normal but also to the
two single-condensate phases. Finally, we plot the critical temperatures given by Eqs. (6.4.6)
and Eqs. (6.4.5) as a function of the newly introduced e�ective parameter α in Fig. 6.4.3.
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Figure 6.4.2.: Phases in the λ1-λ2-plane at T = 0 [solid (black) curves] and T > 0 [dashed (black)
curves], at vanishing magnetic �eld and super�ow. The shaded region in the right panel has to be
excluded because there the potential is unbounded from below, h >

√
λ1λ2. While all derivative

couplings are set to zero, g = G = 0, the results are shown for two di�erent signs of h = ±|0.1|. The
other parameters are m1 = m2 ≡ m, µ1 = 1.5m, µ2 = 1.8m for both panels, and T = 2.43m (left),
while T = 3.5m (right). The (blue) paths in both panels de�ne the e�ective parameter α, see Eq.

(6.4.7), with ~λstart = (0.25, 1.2), ~λend = (0.1, 0.1) for h < 0 and ~λstart = (0.35, 0.2), ~λend = (0.05, 0.9)
for h > 0.
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Figure 6.4.3.: Critical temperatures as a function of the parameter α as de�ned in Fig. 6.4.2. All
parameters are taken from the same plot. In the left panel, we �nd that there is an upper limit for α
beyond which the COE phase cannot exist, which is in agreement with the de�nition of the parameter
in Fig. 6.4.2, where the end point lies in the SF phase for T = 0.
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Part III.

Instabilities in Two-Component
(Super)�uids
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After introducing the model and its phase structure in the last part, we will now focus on
the derivation of hydrodynamic instabilities of the two-�uid system. In order to do so, we
employ a �eld-theoretical approach for the system of two super�uids, where we compute the
dispersion relation of the Goldstone mode, from which we can deduce the speed of sound. The
sound modes indicate various instabilities, like the two-stream and the Landau instability.
Additionally, we take a hydrodynamic approach to compute the speed of sound of said system,
as well as of a mix of an ideal (i.e. dissipationless) �uid and a super�uid or two ideal �uids.
For centuries, hydrodynamics was understood as an application of Newton's laws to a

continuous deformable medium [158]. Nowadays, we have a much more general understanding
of hydrodynamics as an e�ective theory of non-equilibrium, long-wavelength, low-frequency
dynamics of many-body systems. These many body systems include quarks and gluons in the
QGP, as well as the sea of neutrons and protons in a compact star, or a color superconductor
which might exist in the core of such a star.
Hydrodynamics is a quite useful description since it is a coarse-grained theory. In many-

body systems, the shear amount of particles makes it nearly impossible to follow and compute
the microscopic details of the system. However, when the system contains su�ciently many
particles, thermodynamic concepts start to apply, like the notion of the static equilibrium.
Such systems can be described by a few quantities, like temperature, collective velocity (e.g.
the super�ow) and chemical potential, which determine the thermodynamic quantities such
as the energy density, the pressure and so on [159]. Hydrodynamics now allows us to study
deviations from this equilibrium. The validity of hydrodynamics is based on the existence of
two di�erent time or length scales. On the one hand, there is the microscopic time scale which
describes how long it takes for a local disturbance to relax. This can equivalently be described
by the scattering length or mean free path l, since particles with short mean free paths scatter
more often and can therefore equilibrate faster. The second time scale is the macroscopic
time scale of the observation, or in terms of lengths the size of the observed system, L. For a
hydrodynamic description, we require

l� L . (6.4.8)

The ratio of these two numbers is called the Knudsen number Kn, so equivalently we could
demand

Kn ≡ l

L
� 1 . (6.4.9)

Only then it is meaningful to talk about �uid elements, which are macroscopically small
but large on a microscopic scale such that each �uid element is in local equilibrium. If one
considers such a �uid cell around a position x at a given time t, then it becomes meaningful to
describe the system with a scalar temperature �eld T (x, t), and a velocity vector �eld vµ(x, t)
as well as with a local chemical potential µ(x, t). These quantities are related to the conjugate
variables of the conserved quantities like the energy, the momentum and the charge density.
Consequently, we will use their conservation equations to study the dynamics of the �uid with
input from the underlying microscopic theory [159].
The existence of a second particle species does not automatically allow for a two-�uid de-

scription. We now have to deal with four length scales, the system size L, the two separate
mean free paths l1 and l2, and the inter-species mean free path l12. On the one hand, we have
to require that both mean free paths are shorter than the system size in order to enable a
hydrodynamic description. On the other hand, we need a clear separation of the two individual
mean free paths and l12,

l1, l2 � L and l1, l2 � l12 . L . (6.4.10)

Otherwise, the two particle species interact microscopically with each other and one should
instead describe them as a single �uid consisting of two particle species. The inter-species mean
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free path can be of the order of the system size or smaller, but not larger, because then the
two �uids would essentially not interact. For a long introduction to relativistic hydrodynamics
see the reviews in [158�160], Chap. 2 of Ref. [87], and for a review on its use in nuclear
collisions see for instance Ref. [161]. For a connection of hydrodynamics and �eld theory see
Refs. [93, 154]. In the following chapter I will give a short introduction into single- and two-
�uid hydrodynamics and introduce the necessary quantities for the discussion of instabilities
in a two-�uid system. Consequently, the sound modes of a single �uid are computed, before
we turn to the more complicate two-�uid systems. Additionally, the dispersion relations of the
Goldstone modes are computed in order to study energetic and dynamic instabilities in more
detail.
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7. Sound Modes from Hydrodynamic

Equations

In this chapter we derive the sound modes in the presence of nonzero �uid velocities from the
hydrodynamic equations. As a warm-up exercise, and in order to establish the notation, we
will discuss a single �uid before turning to two coupled �uids. The derivation is general in
the sense that it holds for normal �uids as well as for super�uids. This enables us to discuss
the three cases of two super�uids, one super�uid and one normal �uid, and two normal �uids
from the �nal result. This chapter largely follows the Ref. [1] and is expanded with the help
of Ref. [87].

7.1. Single Fluid

The starting point of our calculation are the conservation equations for the conserved current
and the energy-momentum tensor,

∂µj
µ = 0 , ∂µT

µν = 0 . (7.1.1)

In contrast to our discussion of these quantities in quantum �eld theory, we are now looking
for expressions in terms of thermodynamic quantities instead of microscopic ones. Largely, we
will be able to relate these later on. For the current, we can write as usual

jµ = nvµ , (7.1.2)

with the associated conserved charge density n and the relativistic four-velocity vµ = γ(1,v).
In the rest frame of the �uid, where all thermodynamic quantities are de�ned, the energy-
momentum tensor of an ideal �uid is known to be

Tµν0 = diag(ε, P, P, P ) , (7.1.3)

with the energy density ε and the pressure P . We can now Lorentz transform this tensor with
a general Lorentz transformation Λµ ν ,

Tµν = ΛµαΛνβT
αβ
0 , (7.1.4)

to obtain the energy-momentum tensor in the frame where the �uid moves with the velocity
vµ:

Tµν = (ε+ P )vµvν − gµνP , (7.1.5)

with the Minkowski metric gµν . Although not speci�ed here, all quantities may in general
depend on spacetime. The conservation laws for energy and momentum now become

∂µT
µν = −∂νP + ∂µ [(ε+ P ) vµvν ] . (7.1.6)

One can gain some insight by separating the spatial and temporal components of these equa-
tions. For ν = 0 we obtain

∂P

∂t
− ∂

∂t

(
ε+ P

1− v2

)
−∇ ·

[
(ε+ P ) v

1− v2

]
= 0 , (7.1.7)
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whilst for ν = i we �nd

0 = ∇iP +
∂

∂t

[
(ε+ P ) vi

1− v2

]
+∇j ·

[
(ε+ P ) vjvi

1− v2

]
(7.1.8)

= ∇iP + vi
∂P

∂t
+
ε+ P

1− v2

(
∂vi
∂t

+ vj · ∇jvi
)
, (7.1.9)

where the Latin indices denote the components of the corresponding three-vector in order to
clarify which objects have to be contracted. In the second line we used the temporal equation
in order to eliminate the time derivatives of ε+P . The last equation can be further transformed
into

∂v

∂t
+ (v · ∇) v = −1− v2

ε+ P

(
∇P + v

∂P

∂t

)
, (7.1.10)

which is nothing but the relativistic version of the Euler equation. From the current conser-
vation we directly compute

∂µj
µ = 0 ⇒ ∂

∂t

(
n√

1− v2

)
+∇ ·

(
nv√

1− v2

)
= 0 , (7.1.11)

which is the relativistic version of the continuity equation. For a derivation of the non-
relativistic limit see for instance Chap. 2 of Ref. [87].
In principle, we could use these equations and introduce harmonic �uctuations of the chem-

ical potential and the velocity in oder to compute the sound modes of the ideal �uid. By
relating the chemical potential and the super�ow via the phase of the condensate we would
obtain the sound modes of a super�uid. However, we will introduce a more general notation
at this point, which will allow us to work with the same variables later on in the multi-�uid
case.
As a �rst step, we use the thermodynamic relation1 at zero temperature

ε+ P = pn , (7.1.12)

to rewrite the energy-momentum tensor in the following way:

Tµν = jµpν − gµνP , (7.1.13)

which leads to the conservation law of the form

∂µT
µν = jµ∂µp

ν − ∂νP , (7.1.14)

where we have used that the current is conserved. We can compare the energy-momentum
tensor to our �eld theoretical result from Eq. (5.1.40). Together with the result for the current
from Eq (5.1.26), we can read o� that the pressure at T = 0 for a single super�uid is given by
the tree-level Lagrangian. This is of course expected, because the grand canonical potential is
nothing but the negative of the pressure, Ω = −P . Ω itself at vanishing temperature is given
by the negative of the tree-level Lagrangian, canceling the other minus sign. Therefore we can
use

∂νP =
∂P

∂pµ
∂νpµ =

∂L(0)

∂pµ
∂νpµ = jµ∂

νpµ , (7.1.15)

where we have used the de�nition of the conjugate momentum to replace the derivative of L
1Note that in most textbooks, the relation is given with µ as the chemical potential because the di�erent
frames of reference are not taken into account. Since we de�ned µ as the chemical potential in the "lab
frame", and all thermodynamic relations are de�ned in the rest frame of the �uid, we have to use the
boosted potential p.
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with the conserved current. The conservation equation now becomes

∂µT
µν = jµ (∂µpν − ∂νpµ) = jµω

µν , (7.1.16)

where we have introduced the vorticity

ωµν ≡ ∂µpν − ∂νpµ . (7.1.17)

For a super�uid we see that the vorticity is identically zero since pµ = ∂µψ and the commu-
tativity of the four-gradients.
We want to generalize this discussion to the case of mixtures of ideal and super�uids. In

these cases, we might not always be able to start from a microscopic theory, or the pressure
itself does not depend on all conjugate momenta of the conserved currents. For instance in the
case of a single super�uid at �nite temperature, the entropy current sµ is conserved as well and
leads to the existence of a second sound mode, but does not have a conjugate momentum in
the pressure. Thus, we introduce the generalized pressure Ψ, such that all conserved currents
can be computed by

jµi =
∂Ψ

∂pi,µ
, (7.1.18)

with i indicating the i−th conserved current. In the limit of a single �uid, we know that Ψ is
equal to the pressure in the �uid rest frame. Consequently, we demand that Ψ is a Lorentz
scalar as well, which means that it depends on the squares and four-products of the conjugate
momenta pµi . For two �uids for instance, we can write

Ψ = Ψ
(
p2

1, p
2
2, p12

)
, (7.1.19)

with p12 = pµ1p
ν
2gµν . In general, we can decompose the energy-momentum tensor as

Tµν =
∑
i

jµi p
ν
i − gµνΨ , (7.1.20)

where i runs over all conserved currents and their conjugate momenta. Additionally, we
introduce the generalized energy density Λ, which is sometimes also called master function,
via the relation

Λ + Ψ =
∑
i

jµi p
ν
i , (7.1.21)

analogous to the thermodynamic relation ε+P = pn. For a more elaborate discussion of these
quantities see Refs. [93, 154, 162], and Ref. [87] for a more pedagogical approach. Equipped
with this setup, we can turn to the computation of the speed of sound of a single ideal �uid.
For a single �uid, we write

Tµν = jµpν − gµνΨ . (7.1.22)

As the generalized pressure only depends on one conjugated momentum squared, the Lorentz
scalar p2 = pµp

µ, we use the chain rule to write

jµ =
∂Ψ

∂pµ
= 2

∂Ψ

∂p2
pµ . (7.1.23)

With this relation between the conjugate momentum and the current it is obvious that the
stress-energy tensor is symmetric under exchange of the indicies ν and µ. In Chap. 5 we
have seen that the super�uid velocity is proportional to the derivative of the phase of the
condensate, which is the conjugate momentum to the current. We can repeat the argument
more generally for the ideal �uid as well. As a reminder, the Lorentz scalar p is the chemical
potential measured in the rest frame of the �uid. We write jµ = nvµ, where n is the charge
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density measured in the rest frame of the �uid. Since n2 = j2, we compute

n = 2
∂Ψ

∂p2
p . (7.1.24)

The generalized energy density can also be written as Λ = Tµµ + 3Ψ. Using Eqs. (7.1.22) and
(7.1.24), we consistently recover Λ + Ψ = pµj

µ = pn from Eq. (7.1.21).
The current can now be written as jµ = npµ/p, from which we conclude that the �uid

velocity is

vµ =
pµ

p
. (7.1.25)

Using vµ = γ(1,v), where γ = 1/
√

1− v2 is the usual Lorentz factor, the three-velocity
becomes v = p/µ, with µ = p0 being the chemical potential measured in the frame in which
the �uid moves with velocity v. In that frame, the charge density is j0 = nµ/p. With the help
of Eqs. (7.1.23), (7.1.24), (7.1.25) and the relation pn = Λ + Ψ, we see that the stress-energy
tensor (7.1.22) can be written in the familiar form Tµν = (Λ + Ψ)vµvν − gµνΨ, which can be
obtained from Eq. (7.1.5) by replacing all quantities by the corresponding "generalized" form.
We write the hydrodynamic equations (7.1.1) as

0 = ∂µj
µ =

n

p

[
gµν +

(
1

c2
− 1

)
pµpν
p2

]
∂µpν , (7.1.26a)

0 = ∂µT
µν = jµ(∂µp

ν − ∂νpµ) , (7.1.26b)

where, in the second relation, we have used ∂µjµ = 0, and we have introduced the speed of
sound c in the rest frame of the �uid,

c2 =
n

p

(
∂n

∂p

)−1

. (7.1.27)

To compute the sound modes, we need to treat the temporal and spatial components of
the momentum pµ = (µ,p) separately. Each component is assumed to �uctuate harmonically
about its equilibrium value with frequency ω and wave vector k,

µ(x, t) = µ+ δµ ei(ωt−k·x) , p(x, t) = p + δp ei(ωt−k·x) , (7.1.28)

where δµ and δp are the �uctuations which will be kept to linear order. Then, Eqs. (7.1.26)
become

0 =
n

p

[
ωδµ− k · δp +

µωv
p2

(
1

c2
− 1

)
(µδµ− p · δp)

]
, (7.1.29a)

0 =
n

p
p · (ωδp− kδµ) , (7.1.29b)

0 =
n

p
[µωvδp− k(µδµ− p · δp)] , (7.1.29c)

where ωv ≡ ω−v·k. We have decomposed Eq. (7.1.26b) into its temporal component (7.1.29b)
and its spatial components (7.1.29c).
We know that in the case of a super�uid, the conjugate momentum can be written as the

gradient of a phase ψ ∈ [0, 2π], pµ = ∂µψ. This has very interesting implications for the nature
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of the sound modes. By remembering that

µ = ∂0ψ , v = −∇ψ
µ

, (7.1.30)

we �nd that, together with ∂0p = −∇∂0ψ = −∇µ and p = µv, that the �uctuations in
the chemical potential and the super�uid velocity are not independent. Instead, they are
both related to the phase. As a consequence, only longitudinal modes are allowed where δp
oscillates in the direction of the wave vector k, ωδp = kδµ, and Eqs. (7.1.29b) and (7.1.29c)
are automatically ful�lled. We have argued this before, when we have seen that for the
very same reason the vorticity of a super�uid is zero and the conservation of the energy-
momentum tensor therefore trivial. We nevertheless wrote down the conservation equation
for the harmonic perturbations in order to cover the case of an ideal �uid as well. It only
remains to solve the continuity equation which yields a quadratic polynomial in ω. Since in
the given approximation all modes are linear in momentum, we can write ω = uk with the
angular-dependent sound velocity

u =
(1− c2)v cos θ ± c

√
1− v2

√
1− c2v2 − (1− c2)v2 cos2 θ

1− c2v2
. (7.1.31)

Here, v ≡ |v| is the modulus of the three-velocity and θ the angle between the directions of
the �uid velocity and the propagation of the sound mode, k · p = µvk cos θ. As a �rst check,
we set v = 0 and directly obtain that the sound velocity is equal to the sound velocity de�ned
in the �uid rest frame, u = c. As a further check one can set c = 1. If the sound velocity
in the �uid rest frame already equals the speed of light, it has to be the same in all frame of
references, i.e. u = 1. (

1− v2
)
u2 +

(
v2 − 1

)
= 0 , (7.1.32)

u = 1 . (7.1.33)

For a given angle θ ∈ [0, π], we consider only the upper sign in Eq. (7.1.31), such that the
sound speed is positive for small velocities v. Since we shall later be interested in instabilities,
we may already ask at this point when the speed of sound becomes negative. This happens at
the critical velocity v = c, where u starts to become negative in the upstream direction θ = π.
We also see that u never becomes complex because the arguments of either of the square roots
in the numerator only become negative for unphysical velocities larger than the speed of light,
v > 1.
In the case of a normal �uid, the same longitudinal modes are found, but p is now allowed

to oscillate in transverse directions with respect to k. This yields the additional mode u = v · k̂
with the conditions for the �uctuations p · δp = µδµ and µk · δp = k · p δµ.

7.2. Two Fluids

We now generalize the results to the case of two coupled �uids. According to Eq. (7.1.20), we
write the stress-energy tensor as

Tµν = jµ1 p
ν
1 + jµ2 p

ν
2 − gµνΨ . (7.2.1)

Now Ψ is a function of all Lorentz scalars that can be constructed from the two conjugate
momenta pµ1 , p

µ
2 , i.e., Ψ = Ψ(p2

1, p
2
2, p

2
12). The currents are de�ned as in Eq. (7.1.23) and are

slightly more complicated than before, since the conjugate momentum of each current now

76



appears in the mixed scalar p12 as well. This yields

jµ1 = B1p
µ
1 +A pµ2 , (7.2.2a)

jµ2 = A pµ1 + B2p
µ
2 , (7.2.2b)

where we have abbreviated the various derivatives with

Bi ≡ 2
∂Ψ

∂p2
i

, A ≡ ∂Ψ

∂p2
12

, (7.2.3)

with the �uid index i = 1, 2. In general, the currents are not four-parallel to their own
conjugate momentum anymore, but, if Ψ depends on p2

12, receive a contribution from the
conjugate momentum of the other �uid. This e�ect is the entrainment e�ect we have discussed
before and A is called entrainment coe�cient. To guarantee the symmetry of the stress-energy
tensor, there can only be one single entrainment coe�cient, appearing in both currents. The
conservation equations now read

∂µj
µ
1 =

[
B1gµν + b1p1µp1ν + a1(p1µp2ν + p2µp1ν) + a12p2µp2ν

]
∂µpν1

+
[
Agµν + a1p1µp1ν + d p1µp2ν + a12p2µp1ν + a2p2µp2ν

]
∂µpν2 , (7.2.4a)

∂µj
µ
2 = (1↔ 2) , (7.2.4b)

∂µT
µν = jµ1 (∂µp

ν
1 − ∂νp1µ) + jµ2 (∂µp

ν
2 − ∂νp2µ) , (7.2.4c)

where Eq. (7.2.4b) is obtained from Eq. (7.2.4a) by exchanging the indices 1↔ 2 (a21 = a12),
and we have abbreviated second derivatives by

bi ≡ 4
∂2Ψ

∂(p2
i )

2
, ai ≡ 2

∂2Ψ

∂p2
i ∂p

2
12

, a12 ≡
∂2Ψ

∂(p2
12)2

, d ≡ 4
∂2Ψ

∂p2
1∂p

2
2

. (7.2.5)

Here, b1, b2 are susceptibilities that are given by the properties of each �uid separately, while
d describes a non-entrainment coupling between the two �uids, and the coe�cients a1, a2, a12

are only nonzero in the presence of an entrainment coupling. Again we introduce �uctuations
in the temporal and spatial components of the conjugate momenta, as given in Eq. (7.1.28).
The conservation equations then become

0 =
[
ωB1 + ωv1µ1(µ1b1 + µ2a1) + ωv2µ2(µ1a1 + µ2a12)

]
δµ1

+
[
ωA+ ωv1µ1(µ1a1 + µ2d) + ωv2µ2(µ1a12 + µ2a2)

]
δµ2

−(ωv1µ1b1 + ωv2µ2a1)p1 · δp1 − (ωv1µ1d+ ωv2µ2a2)p2 · δp2 − B1k · δp1 −Ak · δp2

−(ωv1µ1a1 + ωv2µ2a12)p2 · δp1 − (ωv1µ1a1 + ωv2µ2a12)p1 · δp2 , (7.2.6a)

0 = (1↔ 2) , (7.2.6b)

0 = (p1B1 + p2A) · (ωδp1 − kδµ1) + (p2B2 + p1A) · (ωδp2 − kδµ2) , (7.2.6c)

0 = (ωv1µ1B1 + ωv2µ2A)(ωδp1 − kδµ1) + (ωv2µ2B2 + ωv1µ1A)(ωδp2 − kδµ2) , (7.2.6d)
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where we have inserted ∂µTµ0 = 0 (7.2.6c) into the spatial components ∂µTµ` (` = 1, 2, 3) to
obtain Eq. (7.2.6d).

7.2.1. Super-Super

If both �uids are super�uids, the relation of the chemical potential and the �uid velocity via
the gradient of the phase dictates ωδpi = kδµi. The conservation of energy and momentum
is automatically ful�lled in this case, and the two continuity equations read

0 =
[
B1(ω2 − k2) + µ2

1b1ω
2
v1 + 2µ1µ2a1ωv1ωv2 + µ2

2a12ω
2
v2

]
δµ1

+
[
A(ω2 − k2) + µ2

1a1ω
2
v1 + µ1µ2(a12 + d)ωv1ωv2 + µ2

2a2ω
2
v2

]
δµ2 , (7.2.7a)

0 =
[
A(ω2 − k2) + µ2

2a2ω
2
v2 + µ1µ2(a12 + d)ωv1ωv2 + µ2

1a1ω
2
v1

]
δµ1

+
[
B2(ω2 − k2) + µ2

2b2ω
2
v2 + 2µ1µ2a2ωv1ωv2 + µ2

1a12ω
2
v1

]
δµ2 . (7.2.7b)

After some rearrangements this can be compactly written as

(u2χ2 + uχ1 + χ0)δµ = 0 , (7.2.8)

with u = ω/k, the vector δµ = (δµ1, δµ2), and the 2× 2 matrices χ2, χ1, χ0 whose entries are
given by

(χ2)ij =
∂2Ψ

∂µi∂µj
, (χ1)ij =

(
∂2Ψ

∂µi∂pj`
+

∂2Ψ

∂µj∂pi`

)
k̂` , (χ0)ij =

∂2Ψ

∂pi`∂pjm
k̂`k̂m ,

(7.2.9)
with i, j = 1, 2, and spatial indices `,m = 1, 2, 3. (The indices i, j are reserved for the two
di�erent �uid species, which should not lead to any confusion since spatial indices will not
appear explicitly from here on.) The sound velocity u is then determined from

det (u2χ2 + uχ1 + χ0) = 0 , (7.2.10)

which is a quartic polynomial in u with analytical, but very complicated, solutions. We shall
discuss and interpret these solutions in Chap. 9.

7.2.2. Super-Normal

Let us now assume that one of the �uids is a normal �uid. Say �uid 1 is a super�uid,
ωδp1 = kδµ1, while we make no assumptions about δp2. Of course, we still �nd the same
modes as for the two super�uids since the normal �uid can also accommodate the longitudinal
oscillations of a super�uid. An additional mode is found if we enforce a transverse mode by
requiring ωδp2 6= kδµ2. Then, Eq. (7.2.6d) yields the mode

u =
v2µ2B2 + v1µ1A
µ2B2 + µ1A

· k̂ . (7.2.11)

This is the generalization of the mode u = v·k̂ mentioned in the discussion of the single normal
�uid. We may apply this expression to a single super�uid at nonzero temperature. In this case,
there are two currents, the conserved charge current jµ1 = jµ and the entropy current jµ2 = sµ

(which is also conserved if we neglect dissipation). Their conjugate momenta are pµ1 = ∂µψ,
where ψ is the phase of the condensate, and pµ2 = Θµ, whose temporal component is the
temperature, Θ0 = T , measured in the normal-�uid rest frame, where s = 0. Analogously to
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Eq. (7.2.2) we can write [87,154,163]

jµ = B∂µψ +AΘµ , (7.2.12a)

sµ = A∂µψ + CΘµ . (7.2.12b)

Consequently, we can identify v2µ2B2 + v1µ1A → s and µ2B2 + µ1A → s0. Note that µ2,
the temporal component of the conjugate momentum pµ2 corresponds to the temperature T ,
and the velocity v2 corresponds to Θ/T . The four-velocity of the normal �uid is de�ned by
vµn = sµ/s, which yields the three-velocity vn = s/s0. (If normal �uid and super�uid velocities
are used as independent hydrodynamic variables, one works in a "mixed" representation with
respect to currents and momenta: while the super�uid velocity corresponds to the momentum
of one �uid, vµs = ∂µψ, the normal �uid velocity corresponds to the current of the other �uid,
vµn = sµ/s.) Inserting all this into Eq. (7.2.11) yields

u = vn · k̂ . (7.2.13)

This is in exact agreement with Ref. [164], where this mode has been discussed in the non-
relativistic context. (In Refs. [92,154], where sound modes in a relativistic super�uid at nonzero
temperatures were studied within a �eld-theoretical setup, this mode was not mentioned be-
cause the calculation was performed in the rest frame of the normal �uid.)

7.2.3. Normal-Normal

In the case of two normal �uids, we make no assumptions about the �uctuations δpi, δµi.
Let us �rst suppose there was no coupling between the two �uids at all, i.e., A = a1 = a2 =
a12 = d = 0. Without loss of generality, we can work in the rest frame of one of the �uids, say
p2 = 0 and thus ωv2 = ω. Then, we can express p1 · δp1, k · δp1, k · δp2 in terms of δµ1 and
δµ2 to obtain

0 = µ1ωv1 [B1(ω2 − k2) + ω2
v1µ

2
1b1]δµ1 + µ2ω[B2(ω2 − k2) + ω2µ2

2b2]δµ2 . (7.2.14)

This equation yields the separate modes of the two �uids: by setting δµ2 = 0 we �nd the
modes for �uid 1, and by setting δµ1 = 0 we �nd the modes for �uid 2. With

Bi =
ni
pi
, bi =

ni
p3
i

(
1

c2
i

− 1

)
(i = 1, 2) , (7.2.15)

we recover the modes discussed above for the single �uid.
Now let us switch on the coupling between the �uids. The simplest case is to neglect any

entrainment, a1 = a2 = a12 = 0, but keep a nonzero non-entrainment coupling, d 6= 0. For a
compact notation we de�ne the "mixed susceptibilities"

∆1/2 ≡
p2/1

n1/2

∂n1/2

∂p2/1
, (7.2.16)

(such that d = ∆1B1/p
2
2 = ∆2B2/p

2
1), which are only nonvanishing for nonzero coupling d.

Then, for δµ2 = 0 we �nd the modes u = v1 cos θ, and

δµ2 = 0 : u =
(1− c2

1)v1 cos θ ± c1

√
1− v2

1

√
1− (1 + ∆1)v2

1[c2
1 + (1− c2

1) cos2 θ] + ∆1c2
1

1− c2
1[v2

1(1 + ∆1)−∆1]
.

(7.2.17)
As for the case of a single �uid, we may ask whether and when the speed of sound turns
negative. And, in contrast to the single �uid, u may even become complex. The critical
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velocities for these two instabilities (to be discussed in detail in Sec. 9) are, respectively,

δµ2 = 0 : v<c =
c1√

c2
1 sin2 θ + cos2 θ

, v>c = v<c

√
1 + ∆1c2

1

c1

√
1 + ∆1

≥ v<c , (7.2.18)

For δµ1 = 0 we have

δµ1 = 0 : u =
∆2c

2
2v1 cos θ ± c2

√
1− v2

1

√
1− v2

1 + ∆2(c2
2 − v2

1 cos2 θ)

1− v2
1 + ∆2c2

2

. (7.2.19)

Again, we can easily compute the critical velocities,

δµ1 = 0 : v<c =
1√

1 + ∆2 cos2 θ
, v>c = v<c

√
1 + ∆2c2

2 ≥ v<c . (7.2.20)

In both cases, it is obvious (and we have indicated it by our choice of notation), that the
critical velocity for a negative sound velocity is smaller than or equal to that for a complex
sound velocity. We shall come back to this observation and also discuss the general case with
entrainment at the end of Sec. 9.
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8. Quasiparticle Propagator and Goldstone

Modes

At vanishing temperature, the speed of sound of a super�uid can equivalently be extracted
from the slope of the Goldstone mode which results from the spontaneous breaking of the
U(1)× U(1) symmetry. We have performed this calculation before, even in the presence of a
gauge �eld when introducing �nite temperatures in our microscopical model. Here, we neglect
any possible charge of the �elds and corresponding gauge �elds, but have to work at �nite
super�ow. Here, in the main text, I simply present the propagator in momentum space and
then directly proceed with evaluating the excitation energies. In appendix B.3, some details
of the derivation are laid out.
The inverse propagator obtained from the Lagrangian given in Eq. (6.2.2) can be written as

S−1 =

(
S−1

11 S−1
12

S−1
21 S−1

22

)
, (8.0.1)

where

S−1
11/22 =

(
−K2 + λ1/2(3ρ2

1/2 − ρ2
SF1/SF2) 2iK · ∂ψ1/2

−2iK · ∂ψ1/2 −K2 + λ1/2(ρ2
1/2 − ρ2

SF1/SF2)

)

−
(

(h+ gp2
12)ρ2

2/1 −igρ2
2/1K · ∂ψ2/1

igρ2
2/1K · ∂ψ2/1 (h+ gp2

12)ρ2
2/1

)
, (8.0.2a)

S−1
12/21 =

ρ1ρ2

2

(
GK2 − 4(h+ gp2

12) 2igK · ∂ψ1/2

−2igK · ∂ψ2/1 −gK2

)
, (8.0.2b)

with the four-momentum K = (k0,k), the four-product K · ∂ψ1/2 = Kµ∂
µψ1/2, and the

condensates in the SF1/SF2 phase from Eqs. (6.3.10,6.3.11). Note that here also the sum of
the two derivative coupling constants G appears, while in the tree-level potential only their
di�erence g had entered. This form of the propagator is general and holds for all possible
phases. We are only interested in the excitation energies of the COE phase, where both
condensates are nonzero. Therefore, we set ρi = ρ0i with the condensates in the COE phase
from Eq. (6.3.13) and use λ1/2(ρ2

01/02 − ρ2
SF1/SF2

)− (h+ gp2
12)ρ2

02/01 = 0, to simplify

S−1
11/22 =

( −K2 + 2λ1/2ρ
2
01/02 2iK · ∂ψ1/2

−2iK · ∂ψ1/2 −K2

)
+ igρ2

02/01K · ∂ψ2/1

(
0 1
−1 0

)
. (8.0.3)

The excitation energies are given by detS−1 = 0. Due to the symmetry of the determinant
under K → −K, the excitations come in 4 pairs: if k0 = εr,k is a zero, then also k0 = −εr,−k,
(r = 1, . . . , 4). In appendix B.3 it is shown that only one energy of each pair has to be kept
in order to compute the thermodynamic properties of the system. In the COE phase, the
solutions of detS−1 = 0 correspond to the two Goldstone modes and two massive modes.
For the simplest scenario, let us set the super�uid velocities, the mass parameters, and the
non-entrainment coupling to zero, ∇ψ1 = ∇ψ2 = m1 = m2 = h = 0. Then, the energy of the
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massive modes has the form εk = M +O(k2) with the two masses

M =
√

6

[
µ1/2 +

µ3
2/1

2λ2/1
g +O(g2)

]
. (8.0.4)

These modes are of no further interest to us since we shall focus on the low-energy properties
of the system. Also, we should recall that most of the real-world super�uids we have in mind
are of fermionic nature. Therefore, our bosonic approach can at best be a low-energy e�ective
description. In a fermionic super�uid there is a massless mode too because of the Goldstone
theorem, but typically there is no stable massive mode. There rather is a continuum of states
for energies larger than twice the fermionic pairing gap [165, 166], and thus at these energies
our e�ective bosonic description breaks down.
The energies of the Goldstone modes have the form εk = uk +O(k3), where

u =
1√
3

[
1± µ1µ2

2
√
λ1λ2

g +O(g2)

]
. (8.0.5)

We see that the e�ect of a small entrainment coupling is to split the two Goldstone modes,
with one mode becoming faster and one mode becoming slower. One can check that the
behavior of a non-entrainment coupling h is di�erent: if we set the entrainment couplings to
zero, G = g = 0, but keep a nonzero h, we �nd that one mode remains unperturbed by the
coupling and the other acquires a larger speed.
After these preparations we can now consider nonzero �uid velocities and discuss the result-

ing instabilities.
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9. Dynamical and Energetic Instabilities

9.1. Results for Sound Modes and Identi�cation of Instabilities

Having identi�ed the regions in parameter space where both species 1 and 2 become super-
�uid and having derived the quasiparticle propagator S for this phase, we now compute the
excitation energies numerically. We focus on the two Goldstone modes and do not discuss
the massive modes any further. For small momenta, the dispersion relations of the Goldstone
modes are linear, εk = uk, and their slopes u can also be computed from the linearized hy-
drodynamic equations, i.e., if we are only interested in the low-momentum behavior we may
alternatively employ Eq. (7.2.10) instead of detS−1 = 0. In general, this is not true. For
instance, in a single super�uid at nonzero temperature, there is only one Goldstone mode, but
there are two di�erent sound modes, usually called �rst and second sound. Only for small
temperatures, the Goldstone mode is well approximated by �rst sound, in general neither �rst
nor second sound corresponds to the Goldstone mode. In our zero-temperature approxima-
tion of two coupled super�uids, we have "two �rst sounds" which coincide with the Goldstone
modes at low momentum.
As discussed, the microscopic model contains several parameters, and a complete survey

of the parameter space is very tedious and not necessary for our purpose. Of course, many
details depend on the speci�c choice of the parameters. For instance, the di�erence in the phase
structure if we allow for a non-entrainment coupling h instead of the entrainment coupling g,
becomes apparent by comparing Fig. 6.3.1 with Fig. 6.3.2. The topology of the phase diagrams
could be even richer if we had allowed for both couplings simultaneously. However, the phase
structure is not our main concern, we are rather interested in the instabilities at nonzero �uid
velocities. To this end, we consider a particular point of the phase diagram in the left panel of
Fig. 6.3.1, marked with a red cross. This means that for the moment we restrict ourselves to
the case of a pure entrainment coupling, setting h = 0. The behavior of this point in terms of
dynamical and energetic instabilities is generic in a sense that we will discuss in Sec. 9.2. In
fact, for the two-component super�uid, the following discussion about dynamical and energetic
instabilities would be quantitatively the same for a non-entrainment coupling, entrainment is
not crucial. Therefore, (the non-relativistic limit of) the results will also be relevant for dilute
atomic gases, where entrainment is believed to be negligible. For a system of two normal
�uids, however, entrainment does make a qualitative di�erence for the dynamical instability,
see Fig. 9.2.2 and discussion at the end of Sec. 9.2. The entrainment terms themselves contain
two di�erent coupling constants and in principle we can choose both of them independently.
We have seen that for the tree-level potential only the combination g = (g1 − g2)/2 matters,
while in the propagator both constants enter separately. One can check, however, that for the
linear, low-energy part of the dispersion, again only g matters, such that we can keep working
with the single entrainment parameter g. Only in Fig. 9.1.1 we show dispersion relations that
go beyond linear order in momentum, and in this case we have made the choice g2 = 0, such
that g = G (again with quantitative, but for our conclusions irrelevant, changes if g1 and g2

are chosen di�erently).
In Fig. 9.1.1 we show the dispersion relations of the two Goldstone modes for four di�erent

values of v1, with v2 = 0, i.e., the calculation is done in the rest frame of super�uid 2. All
four massless solutions of detS−1 = 0 are plotted. As explained in the previous chapter, for
each solution εr,k (solid lines), −εr,−k is also a solution (dashed lines). Several observations
are obvious from the four panels. First of all we see the trivial e�ect that a nonzero super�ow
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Figure 9.1.1.: Goldstone dispersion relations with the parameters of the phase diagram in the left panel
of Fig. 6.3.1 with µ1/m1 = 2.8, µ2/m2 = 1.67 (marked point in that phase diagram), and four di�erent
velocities v1, parallel (k|| > 0) and anti-parallel (k|| < 0) to v1. The excitation energy εk is normalized
to the mass M of the lighter of the two massive modes. For small momenta the dispersion relations
are linear, their slope is shown in Fig. 9.1.2 for all angles. For a given k|| all four massless solutions of
detS−1 = 0, including the negative "mirror branches" (dashed lines), are presented. From the second
panel on, the branches that were positive for vanishing super�ow (solid lines) acquire negative energies
for certain momenta. In the third and fourth panels there are gaps in the curves for certain momenta
where εk is complex, indicating a dynamical instability.
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Figure 9.1.2.: Real part of the sound speeds with the parameters of Fig. 9.1.1 for all angles between
the wave vector k and the velocity v1, and four di�erent magnitudes v1 (the distance from the origin
to the curve is the speed of sound for a given angle). The velocity v1 points to the right. In the two
last panels there are unstable directions for which the sound speed becomes complex and the real parts
of two branches coincide, indicated by the shaded (green) areas.

(here of super�uid 1) leads to anisotropic dispersion relations, in particular to di�erent sound
speeds parallel and anti-parallel to the super�ow (�rst panel). Beyond a certain value of the
super�ow, negative excitation energies appear for small momenta (second panel), before the
energies become complex at small momenta (third panel), and this complex region moves to
larger momenta (fourth panel). Complementary information for the same parameter set is
shown in Fig. 9.1.2. The four panels in this �gure show less in the sense that only the sound
speeds are plotted (i.e., the slope of the Goldstone dispersion at small momenta), but they
show more in the sense that these speeds are shown for all angles between the direction of
the sound wave and the super�ow. Also, in Fig. 9.1.2 we have restricted ourselves to positive
excitations, i.e., only the branches of the upper half of Fig. 9.1.1 are shown in Fig. 9.1.2.
For instance, for v1 = 0.5, there is a branch with negative energy in the upstream direction
(anti-parallel to v1), see the lower (red) solid line in the second panel of Fig. 9.1.1. At the
same time, the "mirror branch" in the downstream direction has acquired positive energy, the
upper (red) dashed curve in the same panel. The latter is shown as a solid curve in the second
panel of Fig. 9.1.2, which also shows that this branch exists for all angles in the half-space
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Figure 9.1.3.: Real part of the sound speeds parallel ("downstream") and anti-parallel ("upstream")
to the velocity of super�uid 1, for the parameters of Figs. 9.1.1 and 9.1.2. Region I: stable; region II:
energetically unstable and containing a dynamically unstable region; region III: single-super�uid phase
SF2 preferred.

k · v1 > 0.
The most relevant information of Figs. 9.1.1 and 9.1.2 is extracted in Fig. 9.1.3, which we

now use to discuss the various instabilities.

9.1.1. Energetic Instability

The transition from region I to region II is de�ned by the point where the excitation energy
of one of the Goldstone modes becomes negative. Such a point is well known in the theory
of super�uidity. It exists even for a single super�uid and the corresponding critical veloc-
ity is nothing but Landau's critical velocity. Compared to Landau's original argument, our
calculation is a generalization to a two-component super�uid system and to the relativistic
case. Since in our system the onset of negative excitation energies is equivalent to the sound
speed becoming zero, we can also use Eq. (7.2.10) to compute the critical velocity. From this
equation we easily read o� that u = 0 occurs for detχ0 = 0 which, in turn, occurs at the
point where one of the eigenvalues of χ0 changes its sign; both eigenvalues are positive in
region I, one eigenvalue is negative in region II. Consequently, in our approximation, where
the quasiparticle modes and the sound modes coincide, Landau's critical velocity is a manifes-
tation of the negativity of the "current susceptibility", the second derivative of the pressure
with respect to the spatial components of the conjugate four-momentum pµ = ∂µψ. A more
common susceptibility is the "number susceptibility", the second derivative with respect to
the chemical potential, which is the temporal component of the conjugate four-momentum.
In this case, the negativity implies that the density decreases by increasing the corresponding
chemical potential, which indicates an instability. This is completely analogous to the spa-
tial components: here, a negative susceptibility implies that the three-current decreases by
increasing the corresponding velocity, again indicating an unstable situation. In general, one
has to check both stability criteria separately; Landau's critical velocity does not necessarily
coincide with the onset of a negative current susceptibility. An example is a single super�uid
at nonzero temperature, where neither of the two sound modes coincides with the quasiparticle
mode and thus the connection between the quasiparticle energy and the susceptibility cannot
be made.
In Fig. 9.1.4 Landau's critical velocity vL for all values of the chemical potentials for which

the COE phase is preferred in the absence of any �uid velocity is shown. We see that for
negative values of the entrainment coupling all states that where stable at v1 = 0 become
energetically unstable at some critical velocity. This is di�erent for positive values of the
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Figure 9.1.4.: Landau's critical velocity vL ("energetic instability") in the COE phase of the two
phase diagrams from Fig. 6.3.1, i.e., for negative (left panel) and positive (right panel) values of the
entrainment coupling g. The asymmetry between the two super�uids arises because we work, without
loss of generality, in the rest frame of super�uid 2, i.e., the critical velocity refers to v1. In the right
panel, the COE region is separated from the region where the tree-level potential is unbounded from
below by a band where vL = 0, i.e., states in this band are energetically unstable already in the static
case although they appear stable within our uniform ansatz. The critical velocity for the two-stream
instability is, where it exists, larger than Landau's critical velocity throughout the phase diagram.
The phases where only one �eld condenses, SF1 and SF2, also become unstable beyond certain critical
velocities, but these are not shown here.

entrainment coupling where there is a region in the phase diagram with no instability, indicated
by vL = 1. This case is also interesting because we �nd a region with vanishing critical velocity,
i.e., an unstable COE state which appeared to be stable in the calculation based on the tree-
level potential. This means that the COE phase may well be the global minimum of the
potential U within our ansatz of a uniform condensate, but it may be a saddle point if an
anisotropic or inhomogeneous condensate is allowed for.
Besides the negativity of the susceptibility, we can describe the energetic instability also in

the following intuitive way, using the picture of the sound waves: if a sound mode propagates
"upstream", it is natural to expect that it is slowed down compared to the situation without
super�ow. Landau's critical velocity is the point at which the mode is slowed down so much
that it comes to rest, and for larger velocities it appears to propagate in the "wrong" direction.
It then shows up as an additional downstream mode, which is manifest in all Figs. (9.1.1) �
9.1.3, for instance in the left panel of Fig. 9.1.3 where at the transition between regions
I and II a third mode appears in the downstream direction. Rephrased in this way, the
energetic instability encountered here is analogous to the Chandrasekhar-Friedman-Schutz
(CFS) instability [167,168] (including the r-mode instability [71], explained in Sec. 2.2) known
from astrophysics1: in that case, certain oscillatory modes of a neutron star can be "dragged"
by the rotation of the star, such that from a distant observer they appear to propagate, say,
counter-clockwise, while in the co-rotating frame they propagate clockwise. This is exactly
the same kind of behavior as we observe here, we just have to replace the oscillatory mode
of the neutron star by the sound mode and the angular velocity of the star by the velocity
of the super�uid. It is very instructive to develop this analogy a bit further: in a rotating
neutron star, the instability is realized due to the emission of gravitational waves, which are
able to transfer angular momentum from the system. In the same way, as already pointed
out by Landau in his original argument, the negative excitation energies lead to an instability

1In the astrophysical literature such an instability is called secular instability. Here we use the term energetic

instability synonymously, following the condensed matter literature, see for instance Ref. [169].
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if there is a mechanism that can exchange momentum with the super�uid, for example the
presence of the walls of a capillary in which the super�uid �ows. The exchange of angular
momentum or momentum is crucial for the instability to set in, and knowledge about how
this exchange works is required to determine the time scale on which the instability operates.
This is in contrast to the dynamical instability, where a time scale is inherent and which we
discuss next.

9.1.2. Dynamical Instability

In a sub-region of region II, two of the sound speeds acquire an imaginary part of opposite
sign and equal magnitude, while their real parts coincide (since the polynomial from which
the sound speeds are computed has real coe�cients, for any given solution also the complex
conjugate is a solution). This means that the amplitude of one of the modes is damped, while
it increases exponentially for the other one, with a time scale given by the magnitude of the
imaginary part. This kind of instability is well-known in two-�uid or multi-�uid plasmas [170�
172], and is termed two-stream instability or counter�ow instability. In plasma physics, usually
the �uids are electrically charged, and the calculation of the sound modes is somewhat di�erent
because the hydrodynamic equations become coupled to Maxwell's equations. This provides
an "indirect" coupling between the two �uids, while we have coupled the two �uids "directly"
through a coupling term in the Lagrangian. In the context of two-component super�uids
the two-stream instability has been discussed in a non-relativistic context [118, 133, 169] and,
without reference to super�uidity, in a relativistic context [173]. It has also been discussed in a
single, relativistic super�uid at nonzero temperature [130]. For a truly dynamical discussion of
the two-stream instability one has to go beyond linearized hydrodynamics [174] and possibly
take into account the formation of vortex rings and turbulence [132]. Our present calculation
only yields the time scale of the exponential growth at the onset of the instability.

9.1.3. Phase Transition to Single-Super�uid Phase

As the phase diagram in the left panel of Fig. 6.3.1 shows, a point within the COE phase
with �xed chemical potentials will simply leave the COE region beyond a critical velocity.
Therefore, in region III a di�erent phase, even within our simple uniform ansatz, is preferred,
in this case the phase SF2, where only �eld 2 forms a condensate. This instability is also seen
in the sound modes because the COE phase ceases to be a local minimum at that point. In
other words, the phase transition is of second order.

9.2. Further Analysis of Instabilities and Comparison to Normal
Fluids

In the results shown so far, the dynamical instability occurs in an energetically unstable region,
i.e., a complex sound speed only occurs if there is already a negative excitation energy. In
other words, the two branches that merge in the left panel of Fig. 9.1.3 are not the two
"original" downstream modes, but one downstream mode and the original upstream mode
that has changed its direction. Two questions arise immediately:

(i) Does the occurrence of complex sound speeds have any physical meaning if they occur
in an energetically unstable region?

(ii) Is this behavior generic or can a dynamical instability arise even in the absence of an
energetic instability?

As for point (i), we will give a brief qualitative discussion, while for point (ii) we will give
a de�nite answer within the presented approach.
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Figure 9.2.1.: Landau's critical velocity vL [inner (black) solid curve] and critical velocity for the two-
stream instability vtwo−stream [outer (blue) solid curve] for two super�uids moving with velocities v1
and v2 parallel [sgn(v1v2) > 0] or anti-parallel [sgn(v1v2) < 0] to each other for negative entrainment
coupling g of three di�erent strengths, and m1 = m2 = 0, λ1 = 0.3, λ2 = 0.2. (Angles in this plot
correspond to di�erent ratios v1/v2, not to angles between v1 and v2, which are always aligned or
anti-aligned.) The dashed square shows Landau's critical velocity 1/

√
3 in the absence of a coupling

between the �uids. The large (blue) dots on the horizontal axis mark the analytical result for small
coupling strength for the onset of the two-stream instability (9.2.3), while the small (black) dots mark
the points where both critical velocities coincide.

(i) The problem that seems to arise is that an energetically unstable system will choose a dif-
ferent con�guration, either another equilibrium state with lower free energy than the one that
exhibits the negative excitation energies, or it will refuse to be in equilibrium altogether. In
either case, the two-stream instability we have observed may well be absent in the new con�gu-
ration, simply because the calculation in the energetically unstable state is not valid since this
state is not realized. As mentioned above, the energetic instability is, in our approximation,
identical to a negative current susceptibility. Negative number susceptibilities are well-known
indicators of an instability, for instance for Cooper-paired systems with mismatched Fermi
surfaces [175�177], where the resolution may be phase separation, i.e., a spatially inhomoge-
neous state with paired regions separated from unpaired regions. In our present calculation,
the negative susceptibility may as well be cured by an inhomogeneous state which we have
not included into our ansatz, for example in the form of strati�cation of the two super�uid
components [178, 179] or a crystalline structure of the condensates [180]. While these solu-
tions to the problem concern equilibrium states, the fate of an energetically unstable state in
a real physical system, be it in a neutron star or in ultra-cold atoms, may be more compli-
cated. As mentioned above, the realization of the energetic (or secular, in the astrophysical
terminology) instability depends on a mechanism that is able to transfer momentum to and
from the system. If such a mechanism is absent or operates on a large time scale it is thus
conceivable (depending on the actual physical situation) that the two-component super�uid
becomes unstable only at the larger critical velocity where the two-stream instability sets in.

(ii) First of all we recall that the negative excitation energies and Landau's critical velocity
are frame dependent. So far we have worked in the rest frame of one of the two super�uids.
But one can well imagine that there is a third meaningful reference frame, for instance the rest
frame of the entropy �uid if we consider nonzero temperatures, which is the most convenient
rest frame in a �eld-theoretical calculation [154]. Therefore, for a general analysis of Landau's
critical velocity, we should allow both �uids to move with nonzero velocities v1 and v2. (In
Landau's original argument for a single super�uid a second reference frame is given by the
capillary.) Of course, the calculation becomes very tedious if we allow for three di�erent vectors
with arbitrary directions: v1, v2, and the wave vector k. Therefore, we restrict ourselves to
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the case where all these vectors are aligned with each other. As we have seen in Fig. 9.1.2, it
is the downstream direction where energetic and dynamical instabilities set in "�rst" (i.e., for
the smallest velocities). Therefore, it is a restriction to consider only aligned v1, v2, but once
they are aligned it is no further restriction to align k too if we are interested in the critical
velocities.
In Fig. 9.2.1 we plot Landau's critical velocity vL and the critical velocity for the two-

stream instability vtwo−stream for arbitrary values of v1 and v2, and three di�erent values of the
entrainment coupling. If the �uids were uncoupled, Landau's critical velocity for each of the
�uids is 1/

√
3 in the ultra-relativistic limit (for simplicity, we have set the mass parameters to

zero in this plot), irrespective of the velocity of the other �uid. This is indicated by the dashed
square. A nonzero entrainment coupling reduces Landau's critical velocity, and it tends to do
more so if the �uids move in opposite directions, where sgn (v1v2) < 0. (This is di�erent if we
choose the opposite sign for the coupling constant, g > 0: in this case Landau's critical velocity
is enhanced for anti-aligned �ow.) This is a similar e�ect as in the phase diagrams of Fig.
6.3.1: an entrainment coupling g < 0 disfavors the COE phase, it is stable only in a smaller
region compared to the uncoupled case in the µ1-µ2 plane (Fig. 6.3.1) or in the v1-v2 plane
(Fig. 9.2.1). The behavior of vtwo−stream, the outer instability curve, is easy to understand in
the following way: one might expect the two-stream instability to depend only on the relative
velocity of the two super�uids. So, if relativistic e�ects were neglected, one might expect two
straight lines given by v2− v1 = ±const. The actual curves are di�erent for two reasons: �rst,
relativistic e�ects bend the curves in the v1-v2 plane according to the relativistic addition of
velocities and, second, the velocities also have a nontrivial e�ect on the condensates of the
super�uids, as already discussed in the context of the phase diagram in the µ1-µ2 plane.
For v2 = 0 and small values of the entrainment coupling, one can �nd a simple analytical

expression for the critical velocity. The two stream instability occurs if the nature of the
roots of the polynomial for the sound modes change. In the stable region, there are four real
solutions, where two can be disregarded. At the onset of the instability, two of the solutions
merge. Since a quartic polynomial always has four complex solutions, the merged solution
becomes complex, where the complex conjugated number is also a solution. The nature of the
solutions can be determined from the discriminant of quartic polynomials, with the coe�cients
a trough e of the quartic function au4 + bu3 + cu2 + du+ e = 0,

∆ =256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e− 27a2d4 (9.2.1)

+ 144ab2ce2 − 6ab2d2e− 80abc2de+ 18abcd3 + 16ac4e

− 4ac3d2 − 27b4e2 + 18b3cde− 4b3d3 − 4b2c3e+ b2c2d2 .

If ∆ < 0, the equation has two real and two complex conjugate roots, i.e. the system is
two-stream unstable. If ∆ > 0, the function has four real (or four complex) solutions and
no two-stream instability occurs [181]. The coe�cients of the quartic function that enable
us to derive the sound modes depend on the velocity of the �uids also in a polynomial way.
Therefore, it is possible to compute an approximation for the critical velocity by calculating
the power series of the discriminant ∆ in second order of the entrainment coupling g, solve it
for v1 (for simplicity we are working in the second �uid rest frame, i.e. v2 = 0), and to expand
it again to �rst order in g. In the non-relativistic case without entrainment, the critical velocity
is given by the sum of the sound speeds of the two separate �uids, vtwo−stream = c1 + c2. In
the ultra-relativistic case (m1 = m2 = 0), we know that the sound speeds are given by the
conformal limit, c1 = c2 = 1√

3
. Using the relativistic velocity-addition formula, we compute

89



as the lowest order approximation,

vtwo−stream ≈
c1 + c2

1 + c1c2
=

√
3

2
. (9.2.2)

The entrainment coupling g reduces or enhances this result, depending on the sign of the
coupling constant. The �rst correction in the entrainment coupling is given by

vtwo−stream =

√
3

2

(
1 + g

λ2µ
4
1 + 16λ1µ

4
2

32λ1λ2µ1µ2
+O

(
h2
))

, (9.2.3)

which shows good agreement with the full numerical result.
We have indicated the value (9.2.3) in Fig. 9.2.1 as (blue) dots on the horizontal axis and

see that the approximation becomes worse for larger couplings. In interpreting Eq. (9.2.3) we
have to keep in mind that we have determined the critical velocity at �xed µ1, µ2, i.e., we have
�xed the chemical potentials in the "lab frame", not in the respective rest frames of the �uids.
Therefore, increasing v1 while keeping v2 = 0 a�ects the condensate 1 and not the condensate
2 (in addition to making the two �uids move with respect to each other). This asymmetry
is manifest in the term proportional to g in Eq. (9.2.3), and it becomes manifest even in the
limit g → 0 if we include nonzero masses m1, m2. We have checked that if we work with �xed
chemical potentials in the rest frames of the super�uids p1, p2, the critical velocity vtwo−stream

does become symmetric in the two �uids, and the g → 0 limit is the relativistic sum of the
two Landau critical velocities for all masses m1, m2. This includes the non-relativistic limit,
in agreement with Ref. [133].
The main conclusion from Fig. 9.2.1 regarding the above question (ii) is obvious: vL ≤

vtwo−stream for all ratios v2/v1, and there exists one ratio v2/v1 where vL = vtwo−stream. In
other words, the scenario shown in Fig. 9.1.3is generic, we have not found any region in the
parameter space where the two-stream instability sets in at smaller velocities than the energetic
instability. A general, rigorous proof of this statement is di�cult because the sound modes
are solutions of quartic equations. Thus, strictly speaking, we have not rigorously proven this
statement, but, besides the results shown in Fig. 9.2.1 we have checked many other parameter
sets, including a di�erent sign of the entrainment coupling and including a non-entrainment
coupling. The situation we are asking for is a merger of the two original downstream modes,
i.e., the two curves in region I in the left panel of Fig. 9.1.3. We have in particular looked at
parameter sets where the curves of these modes cross in the absence of any coupling. But, if a
coupling is switched on, no imaginary part but rather an "avoided crossing" develops at this
point. Therefore, in all cases we have considered, the qualitative conclusion about the order
of the two critical velocities remains.
At this point, let us come back to the modes that we have discussed in Sec. 7.2. We

pointed out that a two-�uid system allows for a richer spectrum of massless modes if one or
both of the �uids are normal �uids rather than super�uids. In a super�uid, the oscillations
are constrained because chemical potential and super�uid velocity are both related to the
phase of the condensate. As a consequence, only longitudinal oscillations are allowed. If
exactly one of the �uids is a normal �uid, one additional transverse mode appears, given in
Eq. (7.2.11). This mode has a �xed form, for all possible couplings between the �uids, and
thus does not couple to the other, longitudinal modes. Therefore, the discussion of energetic
and dynamical instabilities reduces to exactly the same modes as discussed in this section for
the two-component super�uid. Of course, for a speci�c discussion we need the generalized
pressure as a function of the Lorentz scalars p2

1, p
2
1, p

2
12, of which the microscopic theory here

only provides one speci�c example. An example for a system of one normal �uid and one
super�uid is a single super�uid at nonzero temperature, for which the generalized pressure has
been derived from a microscopic model in the low-temperature approximation, keeping terms
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Figure 9.2.2.: Real part of the sound speeds for transverse modes in the downstream direction, in a
system of two normal �uids with entrainment [solid (blue) lines]. Regions I and II are energetically
stable and unstable regions, respectively. For a positive entrainment coupling, there is a two-stream
instability in an energetically stable regime, which does not occur in the system of two coupled su-
per�uids, where the two-stream instability is always in region II. Here we have used the equation of
state of the super�uid system and chose the ultrarelativistic limit, m1 = m2 = 0, the ratio of chemical
potentials µ2/µ1 = 1.5, the self-couplings λ1 = 0.3, λ2 = 0.2, the non-entrainment coupling h = 0.05,
and the entrainment coupling gµ1µ2 = −0.003 (left panel) and gµ1µ2 = +0.003 (right panel). The
dashed (black) lines are the results with the same parameters, but in the absence of entrainment, g = 0.

of order T 4 [87,154,163], see for instance Eq. (4.45) in Ref. [87]. In its regime of validity, i.e.,
low temperatures compared to the chemical potential and also small super�uid velocities, there
is no dynamical instability, at least not in an energetically stable regime [154]. At arbitrary
temperatures below the critical temperature a covariant form of the generalized pressure,
based on a microscopic model, is unknown to the best of our knowledge, and one has to apply
more complicated methods. Within the self-consistent 2-particle-irreducible formalism, a two-
stream instability was indeed found at nonzero temperatures, remarkably in an energetically
stable regime, for velocities slightly below Landau's critical velocity [130].
For the case of two normal �uids, we discuss two intriguing observations. Firstly, in the

absence of entrainment, but in the presence of a non-entrainment coupling, we have found
sound modes whose speed has a very simple analytical form, see Eqs. (7.2.17) and (7.2.19).
Just like the two-component super�uid, they show an energetic instability and a dynamical
instability, with corresponding critical velocities given by Eqs. (7.2.18) and (7.2.20). As these
equations make obvious, the critical velocity for the energetic instability is always smaller than
that of the dynamical instability. We have thus found an example for a set of (transverse)
modes where there is a very simple proof that for all values of the coupling constant and for all
equations of state for each single �uid the dynamical instability can only occur if the system
is already energetically unstable. Secondly, let us discuss the modes (7.2.17) and (7.2.19) in
the presence of entrainment. In this case, their analytical form is extremely complicated, so
we again resort to a numerical evaluation. To this end, we need to specify an equation of
state, and we simply use the pressure from our microscopic model of the complex �elds, i.e.,
P = −UCOE with UCOE from Eq. (6.3.13). This is one particular example where both �uids
enter symmetrically, and we simply reinterpret the pressure in the sense that the conjugate
four-momentum is not related to any phase, thus allowing for non-longitudinal oscillations.
The results for a certain choice of parameters is shown in Fig. 9.2.2. The dashed (black)
lines show the result in the absence of entrainment: these are the modes from Eq. (7.2.17)
just discussed, with one mode becoming negative (in the upstream direction, not shown in
the �gure) and, at a larger velocity, two modes that merge and acquire complex values. This
is very similar to the super�uid case in Fig. 9.1.3. But, additionally, there is the transverse
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mode u = v1 cos θ which, in the absence of entrainment, is una�ected by the other modes.
In the presence of entrainment, the modes couple. Mathematically speaking, the polynomial
does not factorize in this case. In particular, for a certain sign of the entrainment coupling
constant, in our convention g > 0, there is a two-stream instability due to the presence of
this mode2. This is remarkable because of two reasons: it is an example where entrainment,
as opposed to a non-entrainment coupling, leads to a qualitative di�erence regarding the
dynamical instability. (In the case of the two-super�uid system, although we have only shown
results with entrainment coupling, the qualitative conclusions would not have changed had we
worked with a non-entrainment coupling.) And, it is an example for a two-stream instability
occurring in an energetically stable regime: none of the modes has negative energy at the point
where two of the modes become complex.

2We may also consider the generalization of the modes (7.2.19) in the presence of entrainment, i.e., the modes
that are continuously connected to the uncoupled oscillations of the �uid at rest. In this case, it is the zero
mode u = 0 instead of the mode u = v1 cos θ which, in the presence of entrainment, couples to the modes
(7.2.19), also resulting in a dynamical instability.
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10. Summary: Hydrodynamic Instabilities

in Two-Fluid Systems

In this part of the thesis, we have investigated quasiparticle excitations in a relativistic two-
component super�uid, by starting from a bosonic �eld-theoretical model for two complex scalar
�elds and including an inter-species derivative coupling that gives rise to entrainment between
the two �uids. We have focused on the simplest hydrodynamic situation where the �uid
velocities are uniform in space and time and have restricted ourselves to zero temperature
and zero magnetic �eld. As a preparation, in Sec. 6.3 the phase structure of the system
in an "extended" grand canonical ensemble was computed, where besides the two chemical
potentials also the two �uid velocities serve as externally given parameters. This is very natural
because both quantities are di�erent components of the same four-momentum conjugate to
the conserved current. By including �uctuations about the condensates, we have computed
the dispersion relations of the two Goldstone modes in the phase where both complex �elds
condense. Besides this microscopic approach, a general derivation of the sound modes from
two-�uid relativistic hydrodynamics in the linear approximation was presented. While this
approach reproduces the Goldstone dispersion relations of the two-component super�uid at
low energy, it also allows for a study of the sound modes in two-component normal �uids.
Our main focus has been on the instabilities that arise at nonzero �uid velocities. We

have systematically analyzed energetic and dynamical instabilities. The energetic instability
manifests itself in negative excitation energies beyond a certain critical velocity. This critical
velocity - or rather a critical surface in the space of both chemical potentials and �uid velocities
� is a generalization of Landau's critical velocity for a single super�uid. With the help of the
hydrodynamic equations, we have seen that this instability is, within the used zero-temperature
approximation, equivalent to a negative eigenvalue of the "current susceptibility" matrix, the
matrix of second derivatives of the pressure with respect to the �uid velocities (analogous to the
number susceptibilities which are second derivatives with respect to the chemical potentials).
In a certain parameter range this instability even occurs in the limit of vanishing �uid velocities.
Besides the energetic instability we have also computed the critical velocity for the two-stream
instability. This dynamical instability manifests itself in a complex sound velocity, whose
imaginary part determines the time scale on which the unstable mode grows.
As a result of this analysis, we have found that, in the case of a two-component super�uid

at zero temperature, the dynamical instability can only occur in the presence of an energetic
instability. In other words, one mode must acquire negative energy before it can couple
to another mode to develop an exponentially growing amplitude. Our numerical evaluation
suggests that this is a general result, holding throughout the parameter space and for both
kinds of couplings we have considered, non-entrainment and entrainment couplings. We have
complemented this result by an analysis of two normal �uids, which allow for non-longitudinal
oscillations. This is in contrast to a super�uid, where a constraint on the oscillations is given by
the relation of both chemical potential and super�uid velocity to the phase of the condensate.
Most importantly, we have found a set of transverse modes in a two-component normal �uid
that couple to each other if entrainment is present and that show a two-stream instability in
the absence of an energetic instability.
An obvious extension is to include electromagnetism, i.e., to promote one or both of the

global symmetry groups of our Lagrangian to a local one. It would be interesting to see
whether this changes any of the conclusions regarding the dynamical instability, especially
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in view of its possible relevance for pulsar glitches. However, already for vanishing �uid
velocities, an external magnetic �eld will lead to interesting e�ects, like a possible formation
of �ux tubes. The interaction of the remaining super�uid component with the superconductor
and the resulting phase structure at zero super�ow but in a magnetic �eld will be the topic of
the next part of this thesis.
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Part IV.

Critical Magnetic Fields of a
Superconductor Coupled to a

Super�uid
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After a thorough investigation of instabilities in the multicomponent system, we now turn
our attention to the e�ect of electromagnetism. For that purpose, we take into account the
electrical charge of one of the �elds. For simplicity we will ignore any potential relative veloc-
ities of the �uids at vanishing magnetic �eld, which means that all thermodynamic quantities
are now unambiguously de�ned in the common rest frame of the �uid and the heat bath. As
a further simpli�cation, we will set the entrainment coupling g, which enters into the phase
structure, to zero, g = 0. However, we will partially compute the e�ect of the second entrain-
ment coupling G. As we have discussed in some detail in the introductory part of this work, a
type-II superconductor in an external magnetic �eld can form an array of �ux tubes. This is in
contrast to type-I superconductors, where the magnetic �eld is either completely expelled or
completely destroys the superconducting state, but never penetrates partially through quan-
tized �ux tubes. The Ginzburg-Landau parameter κ predicts whether a superconductor is of
type I or of type II. In standard systems, the boundary between type-I and type-II supercon-
ductors is given by

κc =
1√
2
. (10.0.1)

As one result, we will see that the di�erent criteria to distinguish between the two types are
shifted and become ambiguous in the presence of the super�uid component. The goal of this
part is to study the critical magnetic �elds for the �ux tube lattice in the two-component
system. Since the two scalar �elds are coupled to each other and one of them is coupled
to the gauge �eld ,the neutral scalar �eld is coupled indirectly to the gauge �eld as well.
Various aspects of this system will be discussed, such as the e�ect of di�erent forms of the
coupling between the scalar �elds (density coupling vs. derivative coupling), e�ects of nonzero
temperature, and the interaction between magnetic �ux tubes.
As discussed extensively in Sec. 4.2.2, the properties of the type-II state are driven by �ux

tubes and their interactions. Magnetic �ux tubes in a proton superconductor in neutron stars
have already been studied in the literature, usually with a bigger emphasis on phenomenolog-
ical consequences. However, more microscopic approaches often do not include a consistent
treatment of both components as performed here, and rather put together separate results
from the proton superconductor and the neutron super�uid (which may be a good approxi-
mation for certain quantities because of the small proton fraction in neutral, β-equilibrated
nuclear matter). Studies relevant to this thesis that do include both components within a sin-
gle model can be found in Refs. [54,100,182,183]. In Ref. [100], �ux tube pro�les and energies
are computed. These results are largely reproduced and utilized in the following chapters.
The calculation of the interaction between �ux tubes is performed within an approximation
valid for large �ux tube separations, based on old literature for a single-component supercon-
ductor [184]; for a di�erent method leading to the same result see Ref. [185]. Extensions to
a system of a superconductor coupled to a super�uid can be found in Refs. [186, 187], where
the results were restricted to the symmetric situation of approximately equal self-coupling and
cross-coupling strengths of the scalar �elds (which is unrealistic for neutron star matter [188]),
and no derivative cross-coupling was taken into account. Interactions between �ux tubes have
also been computed, based on the same approximation, in the context of cosmic strings for
one-component [189] and two-component [190] systems.
Special emphasis will also be put on the transition region between type-I and type-II be-

havior, because this region is changed qualitatively by the presence of the super�uid, and one
of the main results will be the topology of the phase diagram in this region.
This part follows closely our publications published in Ref. [2] and Ref. [3].
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11. Critical Magnetic Fields

In order to compute the critical magnetic �elds in the system, we follow in principle the
procedure presented in Chap. 3, and especially in Sec. 4.2. The major di�erence consists of
the relativistic treatment here and obviously the coupling to the second, neutral, �eld. For
that purpose, we compute the Gibbs free energy G de�ned in Eq. (4.2.4). The free energy F
can be computed from the potential (6.4.2) by integrating over space,

F =

ˆ
d3r U(r) . (11.0.1)

We are interested in the phase structure at �xed external (and homogeneous) magnetic �eld
of the form H = Hez. As a reminder, the correct thermodynamic potential for this scenario,
the Gibbs free energy, takes the form

G = F − H

4π
·
ˆ
d3rB . (11.0.2)

To determine the complete phase diagram, we would in principle have to compute the Gibbs
free energy for all possible phases at each point in the phase space given by the thermodynamic
variables (µ1, µ2, T,H). The possible phases are the NOR, SF, SC, and COE phases listed
in Sec. 6.3. Note that the notation of the phases now accommodates the di�erence between
the charged and the neutral scalar �eld by relabeling the phases SF1 and SF2 by SC and SF
respectively. For the phases that are superconducting (SC and COE), we have to distinguish
the Meissner phase, in which the magnetic �eld is completely expelled, B = 0, from the �ux
tube phase, where a lattice of magnetic �ux tubes is formed, admitting part of the applied
magnetic �eld in the superconductor. We shall simplify this problem by not computing the
Gibbs free energy for the �ux tube phase in full generality, which would require us to determine
the spatial pro�le of the condensate and the magnetic �eld, including the preferred lattice
structure, fully dynamically. Instead � following the usual textbook treatment presented in
Sec. 4.2 � we shall compute the critical magnetic �elds Hc1, Hc2, and Hc, although they
do not provide complete information of the phase diagram, not even for a single-component
superconductor. To interpret their meaning for the phase diagram (in particular in our two-
component system) it is important to precisely recall how they are computed, and thus I will
shortly repeat the de�nition of the corresponding critical magnetic �eld before we compute
them for the coupled system. In general, when we speak of the superconducting phase, this
can be either the COE or the SC phase, while the normal-conducting phase can either be
NOR or SF. The concrete calculations will always be done for the most interesting case, where
both charged and neutral condensates exist in the superconducting phase (COE) and the
normal conductor is the pure super�uid (SF). The critical magnetic �elds for the transition
between the COE and NOR and between the SC and NOR phases are not needed for our main
results, but can be computed analogously. The latter appears to be the standard textbook
scenario. However, in our two-component system it is conceivable that in the SC phase a
neutral condensate is induced in the center of a �ux tube [191, 192]. Therefore, the pure
superconductor SC might acquire a super�uid admixture, which can a�ect the critical magnetic
�elds for the transition to the completely uncondensed phase (NOR). In the present calculation,
we shall only consider �ux tube solutions that approach the COE phase, not the SC phase,
far away from the center of the �ux tube.
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11.1. Critical Magnetic Field Hc

In Sec. 4.2, we have learned how to compute the critical magnetic �elds in a superconductor.
We can use the same de�nitions to derive the critical �elds in the two-component system. The
�rst-order phase transition from the Meissner phase to the normal-conducting, i.e. the SF
phase, can be obtained by a comparison of the corresponding free energies. The Gibbs free
energy of the COE phase with complete expulsion of the magnetic �eld is

GCOE = V UCOE , (11.1.1)

where V is the total volume of the system and UCOE is the free energy density from Eq. (6.3.13),
where we set g = 0 and neglect the super�ow. Therefore, we can replace the conjugate
momenta to the conserved currents pi with the chemical potentials µ1 and µ2. We further
incorporate �nite temperature e�ects by replacing the masses m1, m2 and the coupling h
by their thermal generalizations m1,T , m2,T , hT , presented in Eqs. (6.4.3). We neglect any
magnetization in the normal-conducting phases, and thus B = H in the SF phase, which yields
the Gibbs free energy

GSF = V

(
USF −

H2

8π

)
, (11.1.2)

with USF from Eq. (6.3.11). Note that the H2 term is a sum of the magnetic energy ∝ B2

and the term ∝ HB in the Legendre transformation from the free energy F to the Gibbs free
energy G. Therefore, the critical magnetic �eld, de�ned by GCOE = GSF, becomes

Hc =
√

8π(USF − UCOE) = 2πq
√

2κ

√
1− h2

T

λ1λ2
ρ2

01 , (11.1.3)

where ρ01 is the value of the charged condensate in the COE phase. Here we have introduced
the relativistic version of the Ginzburg-Landau parameter

κ =
`

ξ
=

√
λ1

4πq2
, (11.1.4)

with the magnetic penetration depth ` and the coherence length ξ,

` =
1√

4πq2ρ01

, ξ =
1√
λ1ρ01

. (11.1.5)

11.2. Critical Magnetic Field Hc2

The procedure to compute the second critical magnetic �eld in the two-component system,
which separates the �ux tube phase from the SF phase, is equivalent to the one component
case presented in Sec. 4.2. Therefore, we use the same de�nition and nomenclature introduced
before. By the de�nition of a second-order phase transition, as we approach Hc2, the charged
condensate approaches zero and the neutral condensate approaches the condensate of the SF
phase. For magnetic �elds H close to and smaller than Hc2, we can write the condensates and
the gauge �eld as their values at Hc2 plus small perturbations. Then, for the calculation of
Hc2, we compute the the in the charged condensate linearized equations. The critical magnetic
�eld is the maximally �eld allowed by these equations.
We are also interested in checking whether and in which parameter regime the �ux tube

phase is energetically preferred just below Hc2. This is done within the same calculation, but
taking into account higher order terms in the equations of motion and the free energy. This
calculation is somewhat lengthy and is explained in appendix D. Here only the results are
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summarized. The critical magnetic �eld becomes

Hc2 =
1

qξ2

(
1− h2

T

λ1λ2

)
=
√

2κ

√
1− h2

T

λ1λ2
Hc , (11.2.1)

where the second expression relates Hc2 to Hc by using Eq. (11.1.3). At zero temperature,
Hc2 does not depend on the gradient coupling G. However, the di�erence in Gibbs free
energies between the superconducting and the normal-conducting phases does depend on G,
see Eq. (D.0.16). For G = 0 we have

GCOE

V
=
GSF

V
+ λ1〈ϕ̄4

1〉
[

1

2κ2
− 1 +

h2

λ1λ2
I1(p)

]
, (11.2.2)

where 〈ϕ̄4
1〉 is the spatial average of the charged condensate (D.0.9), where

p2 =
2λ2ρ

2
SF

qHc2
, (11.2.3)

and where

I1(p) ≡ pep
2/4

2
√

2

ˆ ∞
−∞

dt e−t
2
{
ept
[
1− erf

(p
2

+ t
)]

+ e−pt
[
1− erf

(p
2
− t
)]}

, (11.2.4)

with the error function erf.
In the limit of a single superconductor, h = 0, we recover the standard result that we have

found earlier in Eq. (4.2.44), where the critical �elds Hc and Hc2 coincide at κ2 = 1/2, and
Eq. (11.2.2) shows that the �ux tube phase is preferred, GCOE < GSF, if and only if κ2 > 1/2.
We did not carry out this calculation for the simple case in the introduction, since it can easily
be obtained from the complete calculation of the two-component model by setting h = 0. In
the coupled system the situation is more complicated. Now, from Eq. (11.2.1) we see that Hc

and Hc2 coincide at a larger value of κ (since h2 < λ1λ2 to ensure the boundedness of the
potential for h > 0 and to ensure the existence of the COE phase for h < 0, the square root
is always real and smaller than 1). This appears to take away phase space from the �ux tube
phase. However, from Eq. (11.2.2) we see that the di�erence in Gibbs free energies between
the COE and the SF phases changes sign at a di�erent point, and this point is given not
just by the coupling constant h, but also depends on p, i.e., on the magnitude of the neutral
condensate ρSF compared to the square root of the critical magnetic �eld Hc2. Despite this
dependence we can make a general statement: we �nd 0 ≤ I1(p) < 1, and thus the factor
I1(p) weakens the e�ect of the term h2/(λ1λ2). At the value of κ where Hc and Hc2 are
equal, the superconducting phase is preferred and � for all p � remains preferred along Hc2,
until the smaller κ de�ned through Eq. (11.2.2) is reached. This observation is indicative of
the complications at the transition between type-I and type-II superconductivity in the two-
component system, and we shall �nd further discrepancies to the standard scenario when we
compute the critical �eld Hc1.
Anticipating the numerical results in Sec. 13, let us comment on a possible �rst-order phase

transition at H ′c2, as mentioned in the de�nition at the beginning of this chapter. Suppose
we are in a parameter region where the �ux tube phase is favored just below Hc2, i.e., let κ
be larger than the critical κ de�ned through Eq. (11.2.2). Then, any phase transition from
the �ux tube phase to the normal phase at a critical �eld smaller than Hc2 is practically
excluded because we know that the system prefers to be in the �ux tube phase just below
Hc2 (here we ignore the very exotic possibility that the system quits the �ux tube phase and
then re-enters it below Hc2). A phase transition at a critical magnetic �eld larger than Hc2 �
instead of the one at Hc2 � is however possible. This phase transition must be of �rst order

99



because by de�nition Hc2 is the largest magnetic �eld at which a second-order transition may
occur. Putting these arguments together leads to the conclusion that Hc2 is a lower bound
for the transition from the �ux tube phase to the normal phase, possibly replaced by a �rst
order transition at H ′c2 > Hc2. The numerical results I will present will indeed suggest such
a �rst-order phase transition. However, we shall �nd H ′c2 < Hc2, which, as we will explain, is
an artifact of the approximation applied for the interaction between �ux tubes. Nevertheless,
the result will allow us to speculate about the correct critical �eld H ′c2, obtained in a more
complete calculation that goes beyond this approximation.

11.3. Critical Magnetic Field Hc1

The last critical magnetic �eld that we have to compute is the one responsible for the second-
order phase transition from the Meissner to the �ux-tube state. The slightly unconventional
order in which the critical �elds are presented can be explained easily. Whereas the other two
�elds can be computed analytically within the used approximations, Hc1 requires a numerical
computation of the single �ux tube energy. We have now to perform the energy comparison
between the Gibbs free energy for the COE phase with a single magnetic �ux tube, G	COE, and
the one completely without �ux tubes. Thus we compute, according to the de�nition (11.0.2),

G	COE = V UCOE + F	 −
HnΦ0

4π
L , (11.3.1)

where F	 is the free energy of the �ux tube, and where we have used the quantization properties
of the �ux tubes, ˆ

d3r B = nΦ0L , (11.3.2)

with the winding number n of the �ux tube, the length of the �ux tube L, and the fundamental
�ux quantum Φ0 = 2π/q. Placing a single �ux tube into the two-�uid system results in a loss
in (negative) condensation energy, and thus the free energy increases. However, at �xed
magnetic �eld H, there is an energy gain from allowing magnetic �ux into the system. For a
more detailed discussion see Sec. 4.2. As a consequence, there is a competition between these
two contributions of opposite sign in Eq. (11.3.1). At the critical point, the two contributions
exactly cancel each other,

Hc1 =
2q

n

F	
L
, (11.3.3)

which is identical as for the single superconductor, see Eq. (4.2.18),but with an altered expres-
sion for the single �ux tube energy F	. The calculation of Hc1 thus amounts to the calculation
of the free energy of a single �ux tube F	, for which we can largely follow Ref. [100]. We work
in cylindrical coordinates, r = (r, z, θ), and make the following, radially symmetric, ansatz for
the condensates,

ρi(r) = ρ0ifi(r) , ψ1(θ) = nθ , ψ2 = 0 , (11.3.4)

and the gauge �eld

A(r) =
na(r)

qr
eθ ⇒ B(r) =

n

qr

∂a

∂r
ez . (11.3.5)

The pro�le functions fi and a have to be computed numerically. Their boundary conditions
are fi(∞) = a(∞) = 1, f1(0) = 0, and ∂rf2(∞) = ∂ra(∞) = 0, such that the condensates
approach their homogeneous values ρ0i and the magnetic �eld vanishes far away from the
center of the �ux tube. The values of the neutral condensate and the gauge �eld at the center
of the �ux tube are determined dynamically. We have set the winding number of the neutral
condensate to zero because the �ux tube does not induce a super�uid vortex [100].
We insert our ansatz into the potential (6.4.2) and separate the potential of the homogeneous
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COE phase,
U(r) = U	(r) + UCOE , (11.3.6)

with

UCOE = −
µ2

1 −m2
1,T

2
ρ2

01 −
µ2

2 −m2
2,T

2
ρ2

02 +
λ1

4
ρ4

01 +
λ2

4
ρ4

02 −
hT
2
ρ2

01ρ
2
02 . (11.3.7)

To write the free energy of the �ux tube in a convenient form, we introduce the dimensionless
variable

R =
r

ξ
, (11.3.8)

abbreviate the dimensionless gradient coupling by

Γ ≡ Gρ01ρ02 , (11.3.9)

and the ratio of neutral over charged condensate by

x ≡ ρ02

ρ01
. (11.3.10)

It is also useful to write µ2
1 − m2

1,T = λ1ρ
2
SC = λ1ρ

2
01 − hTρ

2
02 and µ2

2 − m2
2,T = λ2ρ

2
SF =

λ2ρ
2
02 − hTρ

2
01, which follows from Eq. (6.3.13). Then, we obtain the free energy per unit

length

F	
L

=
1

L

ˆ
d3r U	(r) (11.3.11)

= πρ2
01

ˆ ∞
0

dRR

{
n2κ2a′2

R2
+ f ′21 + f2

1

n2(1− a)2

R2
+

(1− f2
1 )2

2

+x2

[
f ′22 +

λ2

λ1
x2 (1− f2

2 )2

2

]
− hT
λ1
x2(1− f2

1 )(1− f2
2 )− Γxf1f2f

′
1f
′
2

}
,

where prime denotes derivative with respect to R. This yields the following, coupled di�erential
equations of motion for a, f1, f2,

0 = a′′ − a′

R
+
f2

1

κ2
(1− a) , (11.3.12a)

0 = f ′′1 +
f ′1
R

+ f1

[
1− f2

1 −
n2(1− a)2

R2

]
− hT
λ1
x2f1(1− f2

2 )− Γx

2
f1

[
f ′22 + f2

(
f ′′2 +

f ′2
R

)]
,

(11.3.12b)

0 = f ′′2 +
f ′2
R

+ f2
λ2

λ1
x2
(
1− f2

2

)
− hT
λ1
f2

(
1− f2

1

)
− Γ

2x
f2

[
f ′21 + f1

(
f ′′1 +

f ′1
R

)]
. (11.3.12c)

We solve these equations numerically with a successive over-relaxation method. The pro�les
themselves have been discussed in detail in Ref. [100]1, additionally we will discuss them later
in this section. For the moment, we continue with the asymptotic solution, which will be

1Eqs. (11.3.12) are identical to Eqs. (16) in Ref. [100] if we identify

Γ

2
↔ σ , x↔ 〈φn〉〈φp〉

,
hT
λ1
↔ −apn

app
,

λ2

λ1
↔ ann

app
.

101



needed later.

11.3.1. Solutions for R� 1

Analogously to Sec. 4.2, we now compute the behavior of the pro�le functions far away from
the core of the �ux tube. In this region, all pro�le functions are close to one. Therefore,
we decompose the pro�le functions into an asymptotic part and small deviations from the
asymptotic values,

a(R) = 1 +Rv(R) , f1(R) = 1 + u1(R) , f2(R) = 1 + u2(R) , (11.3.13)

such that we can linearize the pro�le equations (11.3.12) in v, u1, and u2,

0 ' R2v′′ +Rv′ −
(

1 +
R2

κ2

)
v , (11.3.14a)

∆u ' Mu . (11.3.14b)

We notice that the equations are nearly identical to Eqs. (4.2.31) for the single superconductor.
Especially the equaion for the gauge �eld is identical, but the equations for the two pro�les
here mix via the following vector and matrix,

u ≡

 u1

u2

 , M ≡ 2

 1 −Γx
2

− Γ
2x 1

−1 1 −hT
λ1
x2

−hT
λ1

λ2
λ1
x2

 . (11.3.15)

However, in order to solve them analogously we can decouple the equations for u1 and u2 by
diagonalizing M ,

diag (ν+, ν−) = U−1MU , U =

 γ+ γ−

1 1

 , (11.3.16)

where ν± are the eigenvalues of M and (γ±, 1) its eigenvectors, given by

ν± =
λ1 + λ2x

2 − hTΓx±Q
λ1(1− Γ2/4)

, γ± =
x(λ1 − λ2x

2 ±Q)

λ1Γ− 2hTx
, (11.3.17)

where Q ≡ [(λ1−λ2x
2)2−2hTΓx(λ1+λ2x

2)+x2(4h2
T +Γ2λ1λ2)]1/2. This yields two uncoupled

equations for ũ1 and ũ2, where ũ = U−1u, which we solve with the boundary condition
ũ1(∞) = ũ2(∞) = 0 (which leaves one integration constant from each equation undetermined).
We undo the rotation with u = Uũ, and, together with the solution to Eq. (11.3.14a), insert
the result into Eq. (11.3.13) to obtain the asymptotic solutions

a(R) ' 1 + CRK1(R/κ) , (11.3.18a)

f1(R) ' 1 +D+γ+K0(
√
ν+R) +D−γ−K0(

√
ν−R) , (11.3.18b)

f2(R) ' 1 +D+K0(
√
ν+R) +D−K0(

√
ν−R) , (11.3.18c)

where K0 and K1 are again the modi�ed Bessel functions of the second kind, and the con-
stants C, D+, D− can only be determined numerically by solving the full equations of motion,
including the boundary conditions at R = 0. Comparing these asymptotic solutions to the
full numerical solutions to determine the numerical constants turns out to be rather di�cult
and extremely dependent on the matching points. For our calculations we therefore mostly
use the full numerical results. In deriving the linearized equations (11.3.14), we have not only
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m1 m2 µ1 µ2 λ1 λ2 T

m m 1.5 m 1.8 m 0.184 0.716 0

Table 11.4.1.: Numerical parameters for the �ux tube pro�les and magnetic �elds in Sec. 11.4.

used u1, u2, v � 1, but also v2 � u1, u2, which implies e−2R/κ � e−
√
ν±R. This assumption

is violated if κ is su�ciently large compared to 1/
√
ν± (compared to 1/

√
2 in a single super-

conductor), which means deep in the type-II regime. Later, when we use the solutions of the
linearized equations for the interactions between �ux tubes, we are only interested in the tran-
sition region between type-I and type-II behavior, where 1/κ ' √ν±. Thus the linearization
is a valid approximation for our purpose.

11.3.2. Solutions for R� 1

For small values of R, we neglect all terms in the equations of motion which do not contain a
derivative or are not inversely proportional to R.

f ′′1 +
f ′1
R
− n2(1− a)2f1

R2
= 0 , (11.3.19)

a′′ − a′

R
= 0 , (11.3.20)

f ′′2 +
f ′2
R

= 0 . (11.3.21)

The equations for the gauge �eld and the neutral condensate can be solved either trivially by
a constant or a polynomial. The two equations for the charged pro�le function f1 and the
neutral one f2 completely decouple. The neutral �eld cannot be in�uenced by the magnetic
�eld in this limit, thus we do not expect deviations from the trivial solution of the neutral
condensate, and we deduce that f2(r) = const. is the correct solution. The other two equations
are identical to Eqs. (4.2.27), therefore we can immediately write a ∝ R2 and f ∝ rn for R� 1
as stated in Ref. [100] on p. 5.

11.4. Flux Tube Pro�les

Although the pro�le functions have been studied in great detail in Ref. [100], we will discuss
them for some parameters in order to obtain some intuitive feeling for the behavior of the mul-
ticomponent system. In order to do so, we solve the coupled equations derived in Eqs. (11.3.12)
using the numerical procedure explained in App. C. The relaxation itself is carried out using
the Fortran code presented in the same appendix, whereas the input and the data processing
is carried out externally with the help of Wolfram Mathematica. As a �rst step we reproduce
the schematic �ux tube presented in Fig. 4.2.2 by setting all couplings to zero. The result
is presented in Fig. 11.4.1. As expected, the uncharged condensate, which is now completely
uncoupled from the magnetic �eld, stays constant at f2 = 1, which is a result of our normaliza-
tion. The behavior of the charged condensate depends on the winding number. In agreement
with our investigation in Sec. 11.3.2 we �nd a larger normal-conducting �ux tube core, which
also results in a broader plateau-like structure of the magnetic �eld, which is shown in the right
panel of the same plot. We see that the magnetic �eld in the core for large winding numbers
saturates at the critical �eld for the transition from the Meissner to the normal state in the
type-I regime (indicated by the horizontal dashed line). Since we have already discussed the
structure of a single �ux tube, this calculation merely serves as a conformation that the code
we use for the numerical investigation is able to produce reasonable results, therefore we turn
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Figure 11.4.1.: Left:Flux tube and gauge �eld pro�le functions f1(R) (blue), f2(R) and a(R) as a
function of the dimensionless radial coordinate R for winding numbers n = 1 and n = 20 at vanishing
interspecies coupling. The neutral condensate stays constant, whereas the �ux tube pro�le of the
charged condensate shows the Rn behavior for di�erent winding numbers.
Right: For large n, the magnetic �eld approaches Hc in the core of the �ux tube and then drops
exponentially due to the Meissner e�ect. All numerical parameters can be found in Tab. (11.4.1).

on the cross-coupling h in a next step. For the moment, we still set the derivative couplings g
and G to zero but investigate di�erent signs of h. The results are shown in Fig. 11.4.2.
In these plots, the pro�les are shown for h = ±0.1. For negative values of h, the two

condensates repel each other, therefore the density of the neutral condensate in the core,
where the charged condensate is destroyed, is enhanced. The neutral condensate is "pushed"
into the core by the charged one. By changing the sign of the interaction, the two condensates
energetically prefer to occur together, leading to a decreased value of the second condensate
in the core. The pro�le functions f1(R) and a(R) seem to be nearly identical for both values
of h, which is a result of the nearly symmetric splitting of the neutral condensate around the
unperturbed value f2 = 1. Note however that this is a result of the chosen parameters and
is not exact. As expected, the region where the charged condensates vanishes as well as the
enhanced or diminished plateau of the neutral condensate grows with the winding number.
The slope of the pro�le function for the gauge �eld a(r) decreases, which leads to a plateau
in the magnetic �eld which is basically given by the derivative of a(R). This behavior is
shown in Fig. 11.4.3. As a �nal step we additionally turn on the derivative coupling G. Since
the magnetic �eld does not change qualitatively we focus on the pro�le functions of the two
condensates. In the pro�le functions, the e�ect of the derivative coupling becomes clearly
visible. Whenever the gradient of the charged condensate is signi�cant, clear features in the
neutral condensate can be seen, for details see Fig. 11.4.4.
Generally, a slight extra bump can be seen in the neutral condensate. In Fig. 11.4.5, a zoom

in for the neutral condensate is presented.
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Figure 11.4.2.: Flux tube and gauge �eld pro�le functions f1(R) (blue), f2(R) (orange) and a(R)
(black) for winding numbers n = 1 and n = 20 at di�erent signs of h = ±0.1. The pro�les for h > 0
are plotted with dashed lines, for h < 0 solid lines are used. All other parameters are taken from
Tab. (11.4.1). The neutral condensate is either enhanced or diminished in the core. For large n the
neutral condensate approaches the value of the uncoupled condensate ρSF from Eq. (6.3.11).
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Figure 11.4.3.: Magnetic �eld corresponding to the pro�le functions plotted in Fig. 11.4.2 with the
parameters from Tab. (11.4.1). Solid lines correspond to h < 0 whereas dashed lines indicate h > 0.
The magnetic �eld in the core, which approaches Hc for large n, depends on the external parameters.
The �eld is plotted in units of the mass parameter m2.
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Figure 11.4.4.: Flux tube and gauge �eld pro�le functions f1(R) (blue), f2(R) (orange) and a(R) (black)
for winding numbers n = 1 and n = 20. The solid lines correspond to h = −0.1 and G = −0.4/m2

or equivalently Γ ≈ −1.442. For the dashed lines, h = 0.1 and G = 0.2/m2, which corresponds to
Γ ≈ 1.274, since for higher values of G the code turns unstable, for the remaining parameters see
Tab. (11.4.1).
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Figure 11.4.5.: Zoom in of the pro�le function of the neutral condensate f2(R) with �nite derivative
coupling G from Fig. 11.4.4.
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12. Flux Tube � Flux Tube Interaction and

First-Order Phase Transitions

After the discussion of the single �ux tube solutions in the latter chapter, we now turn our
attention to the interaction between the �ux tubes themselves. If the phase transitions from the
Meissner phase to the �ux tube phase and from the �ux tube phase to the normal-conducting
phase were of second order we would be done. The critical magnetic �elds of the previous
chapters would be su�cient to determine the phase structure. We shall see, however, that,
due to the presence of the super�uid, �rst-order phase transitions become possible. To this
end, we compute the Gibbs free energy of the entire �ux tube lattice, rather than only of a
single �ux tube. We shall do so in an approximation of �ux tube distances much larger than
the width of a �ux tube.
We generalize the Gibbs free energy (11.3.1) to a system with �ux tube area density ν and

add a term that takes into account the interaction between the �ux tubes,

G		COE

V
' UCOE +

nν

2q
(Hc1 −H) +

tν

2

F	int(R0)

L
, (12.0.1)

where we have eliminated F	 in favor of Hc1 with the help of Eq. (11.3.3), and where we have
employed the nearest-neighbor approximation for the interaction term with the number of
nearest neighbors t, and the dimensionless lattice constant R0. For a hexagonal lattice, which
we shall use in our explicit calculation, t = 6 and ν = 2/(

√
3R2

0). The interaction energy
F	int(R0) is de�ned by writing the total free energy of two �ux tubes with distance R0, say �ux
tubes (a) and (b), in terms of the free energy of the �ux tubes in isolation plus the interaction
energy,

F
(a)+(b)
	 = F

(a)
	 + F

(b)
	 + F	int(R0) . (12.0.2)

We calculate F	int(R0) in appendix E in an approximation that is valid for large R0. This cal-
culation makes use of the method �rst employed in Ref. [184], adapted to the two-component
system with gradient coupling here. All related references mentioned throughout the introduc-
tion and this chapter are based on this method or an equivalent one, and our results reproduce
the ones of those references in various limits. The result is given by

F	int(R0)

L
' 2ρ2

01R0

ˆ ∞
R0/2

dR√
R2 − (R0/2)2

{
κ2n2a′(1− a)

R2
− (1− f1)f ′1 − x2(1− f2)f ′2

+
Γx

4
(f1 + f2 + f1f2 − 1)[(1− f1)f ′2 + (1− f2)f ′1]

}
. (12.0.3)

As explained in the appendix in more detail, the integration can be reduced to an integral
over the plane that separates the two Wigner-Seitz cells, which, in this simple setup, are two
half-spaces. Since the integration along the direction of the �ux tubes is trivial, we are left
with a one-dimensional integral. As a consequence of the approximation, only the pro�le
functions of a single �ux tube appear in the integrand. In the derivation we have also assumed
the asymptotic values of the condensates to be identical to the homogeneous values in the
Meissner phase, ρ01 and ρ02. If the �ux tube density increases, the condensate will not be able
to recover fully to its homogeneous value, indicating the break down of our approximation. The
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coherence length ξ can therefore be used as an estimate of the applicability of the sparse lattice
approximation. Alternatively, the interaction energy between the �ux tubes can be computed
by introducing source terms for the asymptotic solutions. Although this approach allows for a
simple integration and yields the same result when expressed in terms of the Bessel functions
obtained from the asymptotic solutions, the �rst approach is better suitable for a numerical
calculation. It is actually easier to work with the full numeric solutions of the pro�le functions
instead of the asymptotic solutions, due to the complication arising from �xing the numerical
constants to the full solution. In the source term approach, a result as a function of the pro�le
functions cannot be obtained, since the dependence on the source terms only vanishes due to
the �nal integration procedure. We shall later insert our numerical solutions f1, f2, and a into
Eq. (12.0.3) to compute the Gibbs free energy numerically. Before we do so we extract some
simple analytical results with the help of the asymptotic solutions (11.3.18). Inserting them
into Eq. (12.0.3) yields a lengthy expression which is not very instructive, especially due to
the terms proportional to the gradient coupling. In appendix E.1 it is shown that a simple
expression can be extracted, even including the gradient coupling, if we restrict ourselves to
the leading order contribution at large distances. Here we proceed with the simpler case of
vanishing gradient coupling, Γ = 0, to obtain straightforwardly

F	int(R0)

L
' 2πρ2

01

[
κ2n2C2K0(R0/κ)−D2

+(γ2
+ + x2)K0(R0

√
ν+)−D2

−(γ2
− + x2)K0(R0

√
ν−)
]
,

(12.0.4)
where we have used γ+γ−+x2 = 0 for Γ = 0, which follows from Eqs. (11.3.17), the derivatives
K ′1(x) = −K0(x)−K1(x)/x, K ′0(x) = −K1(x), and the integral

ˆ ∞
R0/2

dRK0(αR)K1(αR)√
R2 − (R0/2)2

=
πK0(αR0)

αR0
. (12.0.5)

The result (12.0.4) shows that there is a positive contribution, which makes the �ux tubes repel
each other due to their magnetic �elds, and there is a negative contribution, which makes the
�ux tubes attract each other due to the lower loss of (negative) condensation energy if the �ux
tubes overlap. Let us �rst see how the case of a single super�uid is recovered by switching
o� the coupling h. (Since we have set Γ = 0, there is no temperature dependence left in hT
and we drop the subscript T in this discussion.) As h → 0, the quantities ν± and γ± go
to di�erent limits, depending on the sign of λ1 − λ2x

2. If λ2x
2 > λ1, we have γ+ ∼ h and

γ− ∼ h−1. Numerically, we �nd that while γ− diverges, the product D−γ− goes to a �nite
value. Moreover, D+ goes to zero, such that the attractive terms reduce to −D2

−γ
2
−K0(R0

√
2)

since ν− → 2 for h → 0. In particular, all dependence on x, which contains the neutral
condensate, has disappeared, as it should be. If, on the other hand, λ2x

2 < λ1, we see from
Eqs. (11.3.17) that now γ+ ∼ h−1 and γ− ∼ h, and it is the other term, −D2

+γ
2
+K0(R0

√
2),

which survives, again reproducing the correct result of a single superconductor. The result can
be used to �nd the sign of the interaction at R0 →∞, i.e., to determine whether the �ux tubes
repel or attract each other at large distances. Since the Bessel functions fall o� exponentially
for large R0, we simply compare the arguments of the Bessel functions of the negative and
positive contributions. For the single superconductor, the long-distance �ux tube interaction
is thus attractive for κ2 < 1/2 and repulsive for κ2 > 1/2, i.e., the sign change appears exactly
at the point where Hc = Hc2.
Going back to the full expression (12.0.4) for the two-component system, we compare ν−

with 1/κ2, because ν− < ν+, i.e., the term proportional to K0(R0
√
ν−) is less suppressed for

R0 → ∞. Therefore, the point at which the long-range interaction changes from repulsive to
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attractive is given by

1

κ2
= 1 +

λ2

λ1
x2 −

√(
1− λ2

λ1
x2

)2

+
4h2x2

λ2
1

=
H2
c2

κ2H2
c

[
1− h2

λ2
2x

2
+O

(
1

x4

)]
. (12.0.6)

By comparing Eq. (12.0.6) with Eq. (11.2.1), we see that in the two-component system the
long-distance interaction changes its sign at a point di�erent from Hc = Hc2. In Sec. 4.2.2
we learned that this is an indication for the transition from the type-I to the type-II regime,
which, for a single superconductor, is equivalent to the intersection point of the critical �elds.
This change in the coupled system is made particularly obvious in the second line of Eq.
(12.0.6), where we have expanded the result for large values of x, i.e., for large values of the
neutral condensate compared to the charged one, ρ02/ρ01 � 1. This limit is interesting for
the interior of neutron stars, where protons are expected to contribute only about 10% to the
total baryon number density1. From Eq. (12.0.6) we recover κ2 = 1/2 for h = 0, but only if
λ2x

2 > λ1. The reason is that the limits R0 → ∞ and h → 0 do not commute in general: in
deriving Eq. (12.0.6) we have �xed h at a nonzero value and let R0 →∞, while in our above
discussion of the single superconductor, we �xed R0 while �rst letting h→ 0.
An attractive long-distance interaction between the �ux tubes can have very interesting

consequences. Recall that Hc1 is the magnetic �eld at which the phase with a single �ux tube
is preferred over the phase with complete �eld expulsion. In other words, at Hc1 the �ux tube
density is zero and increases continuously, while the �ux tube distance decreases continuously
from in�nity at Hc1. If the interaction at in�nite distances is attractive, the �ux tubes do not
"want" to form an array with arbitrarily small density. Assuming that the interaction always
becomes repulsive at short range [which our numerical results con�rm if we extrapolate Eq.
(12.0.3) down to lower distances], there is a minimum in the �ux tube - �ux tube potential,
which corresponds to a favored distance between the �ux tubes. For a schematic plot see
Fig. 4.2.3b. As a consequence, the transition from the Meissner phase to the �ux tube phase
occurs at a critical �eld lower than Hc1, which we call H ′c1, at which the �ux tube density
jumps from zero to a nonzero value.
In the single-component system, this �rst-order phase transition is not realized because

it occurs in the type-I regime. More precisely, if we were to continue Hc1 into the type-I
regime, then, at Hc1, it does not matter that the �ux tube phase is made more favorable by
an attractive interaction because the normal-conducting phase is the ground state (under the
assumption that the gain in Gibbs free energy is not su�cient to overcome the di�erence to
the normal phase). In the two-component system, however, the attractive interaction may
exist in the regime where, at Hc1, the Meissner phase (and the phase with a single �ux tube)
is already preferred over the normal phase. Hence, any arbitrarily small binding energy will
lead to a �rst-order phase transition at H ′c1 < Hc1. As we move along Hc1 towards smaller
values of κ, i.e., towards the type-I regime, we hit the critical point given by Eq. (12.0.6),
where the second-order transition turns into a �rst-order transition. Since our approximation
is accurate for in�nitesimally small �ux tube densities, our prediction for this point is exact.
If we then keep moving along H ′c1, the �ux tube density at the transition increases and our

1In Ref. [187], the limit x � 1 was considered (n1/n2 � 1 in the notation of that reference), and it was
argued that the critical κ's for Hc = Hc2 and the sign change of the long-range interaction are identical,
in agreement with the leading-order contribution of our Eq. (12.0.6). Ref. [187] only considered the near-
symmetric situation λ1 = λ2 ≡ λ, h = −λ+ δλ with 0 < δλ� λ (notice that h < 0 here). In this case, our
results show that Hc = Hc2 occurs at κ2 ' λ

4δλ
and the sign change in the long-range interaction energy

at κ2 ' λ
4δλ

1+x2

x2
. Consequently, even in the near-symmetric situation the two critical κ's are di�erent and

only become identical in the limit x� 1.

109



results have to be taken with care.
We can directly compute H ′c1 by equating the Gibbs free energy of the �ux tube phase

(12.0.1) to the Gibbs free energy of the Meissner phase (11.1.1). In the �ux tube phase we
have to �nd the preferred �ux tube distance R0 (or, equivalently, the preferred �ux tube
density ν), which is given by minimizing the Gibbs free energy. Hence, we compute H ′c1 by
solving the coupled equations

G		COE = GCOE ,
∂G		COE

∂R0
= 0 (12.0.7)

for H and R0. These equations can be solved in the following elegant way:
We start by writing down the interaction energy Eq. (12.0.3) (for Γ = 0) in a general form ,

F	int(R0)

L
= 2ρ2

01R0

ˆ ∞
1

dρ√
ρ2 − 1

F
(
R0ρ

2

)
, (12.0.8)

with the integrand

F(R) =
κ2n2a′(1− a)

R2
− (1− f1)f ′1 − x2(1− f2)f ′2 , (12.0.9)

and where we have introduced the new variable ρ = 2R0R in order to eliminate the dependence
of the lower boundary of the integral on R0. Using this, we can write

0 =
∂G		COE

∂ν
=

n

2q
[Hc1(n)−H] +

tρ2
01R0

2

ˆ ∞
1

dρ√
ρ2 − 1

[
F
(
R0ρ

2

)
− R0ρ

2
F ′
(
R0ρ

2

)]
.

(12.0.10)

This equation can be trivially solved for H. Then we insert the result into the �rst equation of
Eqs. (12.0.7), where the Gibbs free energy of the lattice depends on H. The resulting equation
becomes very simple,

0 =

ˆ ∞
1

dρ√
ρ2 − 1

[
F
(
R0ρ

2

)
+
R0ρ

2
F ′
(
R0ρ

2

)]
. (12.0.11)

This equation can be solved numerically for R0, which is computed in such a way that it
represents the energetically favored �ux tube spacing at the onset, which then in turn is
inserted into the expression for H to compute the corresponding critical magnetic �eld for the
�rst-order phase transition.
We may use the same method to compute a potential �rst-order phase transition from the

�ux tube phase to the normal-conducting phase, i.e., in the free energy comparison we replace
GCOE with GSF from Eq. (11.1.2) and compute the resulting critical �eld H ′c2.

110



13. Phase Diagrams

13.1. Taming the Parameter Space

The results in the previous chapters have shown that the presence of the super�uid a�ects the
transition from type-I to type-II superconductivity in a qualitative way, and we will make these
results now more concrete by discussing the phase diagram of our model. To this end, we need
to locate this transition in the parameter space. As discussed, we have to deal with a large
number of parameters, m1, m2, λ1, λ2, q, h, G, and the external thermodynamic parameters
T , H, µ1, µ2. As we have done it in the discussion of the homogeneous phase structure, we
set m1 = m2 ≡ m and q = 2e reminiscent of a neutron and proton condensate, and express all
dimensionful quantities in units of m. Many interesting results can already be obtained with a
density coupling alone, and we shall therefore set the gradient coupling to zero, G = 0, which
implies hT = h, for all numerical results. This leaves us with the 3 coupling constants λ1, λ2,
h, plus 4 thermodynamic parameters. If we take the condition Hc2 = Hc as an indication for
the location of the type-I/type-II transition, then Eq. (11.2.1) shows that the transition is, for
G = 0 and �xed q, given by a surface in the λ1-λ2-h-space. (This surface is independent of µ1,
µ2, and T , but these parameters of course determine the favored phase, and thus, if embedded
in the larger parameter space, not everywhere on that surface the COE phase is the preferred
phase at H = 0.) Therefore, the phase diagrams in Fig. 6.3.3, where λ1, λ2, and h are �xed,
are not very useful for our present purpose, and it is more suitable to start from the λ1-λ2

plane, where, for a given cross-coupling h, we obtain a nontrivial curve H = Hc2. These phase
diagrams were presented in Fig. 6.4.2. Two phase diagrams in the λ1-λ2 plane at vanishing
magnetic �eld are shown in Fig. 6.4.2, one for positive and one for negative cross-coupling h.
The chemical potentials are chosen to be larger than the common mass parameter, µi > m, in
which case it is always possible to �nd negative and positive values of h such that at su�ciently
low T and H there is a region in the phase diagram where the COE phase is preferred, cf.
Fig. 6.3.3.
In the interior of a neutron star, as we move towards the center and thus increase the total

baryon number, the system will take some complicated path in our multi-dimensional param-
eter space, under the assumption that the model describes dense nuclear matter reasonably
well. Here we do not attempt to construct this path. But, we keep in mind that nuclear mat-
ter is expected to cross the critical surface H = Hc2 if we move to su�ciently large densities.
Therefore, we now choose a path with this property. Starting from the diagrams in Fig. 6.4.2,
the simplest way to do this is to choose a path in the λ1-λ2 plane with all other parameters
held �xed. We have already used this parametrization for the discussion of the �nite temper-
ature e�ects, where we parametrized the path by α ∈ [0, 1], which is de�ned in Eq. (6.4.7). In
Fig. 6.4.2 the paths for positive and negative h that we shall use in the following are shown.
Both paths cross from a type-II region for small α into a type-I region for large α. In a very
crude way, α plays the role of the baryon density in a neutron star. Since our paths are chosen
such that λ1 decreases along them and the charge q is �xed, the Ginzburg-Landau parameter
κ decreases as α increases.

111



κ
2
=

1
/2

FT

Meissner

Hc

Hc1

Hc2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

α(λ1,λ2)

H
/m

²

coupled system (h<0)

κ
2
=

1
/2

Meissner

FT
Hc

Hc1

Hc2

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

α(λ1,λ2)

H
/m

²

coupled system (h>0)

Figure 13.1.1.: Zero-temperature critical magnetic �elds along the paths de�ned in Fig. 6.4.2. The
magnetic �elds are given in units of m2. The black dots on the Hc1-curves represent the onset of
the �rst-order phase transition. The three critical magnetic �elds do not intersect in a single point
although they appear to do so in these plots, see Fig. 13.3.1 for a zoom-in. The red-shaded area
represents the Meissner phase, where as the blue-shaded area is the �ux tube (FT) phase. The vertical
dashed (red) line shows where the transition from type-I to type-II behavior occurs in the uncoupled
system. The numerical parameters are h = ±0.1, m1 = m2 = m, µ1 = 1.5m and µ2 = 1.8m, the
derivative couplings and temperature are zero, g = G = 0, T = 0.

13.2. Critical Magnetic Fields

In Fig. 13.1.1 we show the zero-temperature critical magnetic �elds Hc, Hc2, and Hc1, com-
puted as explained in Secs. 11.1 � 11.3. The horizontal axis is given by α. In principle, we
can use the model straightforwardly to determine the phases in the entire α-H-T -space. As a
rough guide to this three-dimensional space notice that increasing the magnetic �eld at �xed
T will eventually destroy the charged condensate, i.e., if H is su�ciently large only the SF and
NOR phases survive, while increasing the temperature at �xed H will eventually destroy all
condensates, i.e., at su�ciently large T only the NOR phase survives. For the critical temper-
atures see Fig. 6.4.3. Working out the details of the entire phase space might be interesting,
but it is tedious and not necessary for the main purpose of this thesis. Nevertheless, this
possibility makes our model very useful for nuclear matter inside a neutron star. For instance,
comparing Fig. 13.1.1 with Fig. 1 in Ref. [137], we see that our results are � on the one hand
� a toy version of more concrete calculations of dense nuclear matter, but � on the other hand
� more sophisticated because they include all possible phases in a consistent way, not relying
on any result within a single-�uid system.
Here we proceed with the discussion of the critical magnetic �elds, and for the remainder

of this part we shall restrict ourselves to zero temperature.

13.3. Type-I/type-II Transition Region

At �rst sight, the phase structure in Fig. 13.1.1 regarding the critical magnetic �elds looks as
expected from a single superconductor, only with a critical κ that is shifted from the standard
value. But, we already know from Sec. 20.4 that the point at which the second-order onset
of �ux tubes turns into a �rst-order transition is di�erent from the point where Hc and Hc2

intersect. We have marked this point in both plots of Fig. 13.1.1. Moreover, in the presence of
the super�uid, the three critical magnetic �elds do not intersect in a single point. This is only
visible on a smaller scale, and we discuss this transition region in detail now. With respect to
that region, there is no qualitative di�erence between the two parameter sets chosen in Fig.

112



Hc

Hc1

Hc2

0.445 0.450 0.455 0.460 0.465
7.30

7.32

7.34

7.36

7.38

α

H
/m

²

single superconductor (h=0)

Hc

Hc1

Hc2

Hc1
'

Hc2
'

0.355 0.360 0.365 0.370 0.375

5.67

5.68

5.69

5.70

5.71

α

H
/m

²

coupled system (h<0)

Figure 13.3.1.: Critical magnetic �elds in the type-I/type-II transition region as a function of the
parameter α for a single superconductor, h = 0 (left panel), and a superconductor coupled to a
super�uid with negative density coupling, h < 0 (right panel). All other parameters are taken from
Fig. 13.1.1, i.e., the right panel is a zoom-in to the transition region of the left panel of Fig. 13.1.1.
Solid (dashed) lines are �rst (second) order phase transitions.

13.1.1, and therefore we will restrict ourselves to the set with h < 0.
In Fig. 13.3.1, the critical magnetic �elds in the region that covers their intersection point(s)

is presented. In the left panel, we have, for comparison, set the coupling to the super�uid to
zero, h = 0, with all other parameters held �xed. As a result, we obtain the expected phase
structure of an ordinary superconductor, as schematically predicted in Fig. 4.2.3a. All three
critical magnetic �elds intersect at one point � which can be viewed as a check for our numerical
calculation of Hc1 � and this point corresponds to κ2 = 1/2. For magnetic �elds smaller than
Hc and Hc1 the superconductor expels the magnetic �eld completely, and magnetic �elds
larger than Hc and Hc2 penetrate the system and superconductivity breaks down. In the
open "wedge" between Hc1 and Hc2, an array of �ux tubes (with varying �ux tube density) is
expected to exist, with second-order phase transitions at Hc1 and Hc2.
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Figure 13.3.2.: Left panel: �ux tube density as a function of H with the parameters of the right panel
of Fig. 13.3.1 and α = 0.360, in units of ν0 = 1/(πξ2). The dashed line shows the unstable and
metastable part of the solution and is not realized, i.e., the density jumps at H = H ′c1 from zero to a
�nite value indicated by the black dot. For ν → 0, the dashed line approaches the mass per unit length
of the �ux tube, i.e., the "would-be" second-order transition Hc1. Right panel: Gibbs free energies as
a function of the external magnetic �eld H for the Meissner, �ux tube, and normal-conducting phases,
including higher winding numbers, n = 2, 4, 6, 10, which are energetically disfavored.
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In the right panel we zoom in to the critical region of the left panel of Fig. 13.1.1. From our
analytical results we know the following.

(i) The critical magnetic �elds Hc and Hc2 intersect at a point given by Eq. (11.2.1), which
corresponds for the chosen parameters to α ' 0.37182.

(ii) Just below the curve Hc2 the �ux tube phase is energetically favored over the normal-
conducting phase (not necessarily over the Meissner phase) for all α < 0.38265, as we
can compute from Eq. (11.2.2). This point is beyond the right end of the scale shown in
Fig. 13.3.1.

(iii) The second-order phase transition from the Meissner phase to the �ux tube phase turns
into a �rst-order transition at the point given by Eq. (12.0.6), here α ' 0.29236, which
is beyond the left end of the scale of the plot. In the single superconductor, these three
α's (or κ's) coincide. Had we only computed Hc, Hc2, and Hc1, we would have obtained
a puzzling collection of potential phase transition lines. However, together with the �rst-
order phase transitions H ′c1 and H ′c2, computed from Eq. (12.0.7), a consistent picture
of the phase structure emerges.

Before we comment on this structure, we make the behavior at H ′c1 more explicit by plotting
the �ux tube density ν and the Gibbs free energies in Fig. 13.3.2. The right panel of this �gure
includes the results for higher winding numbers. We see that they are energetically disfavored
for the parameter set chosen here. In Ref. [100] it was shown that higher winding numbers
become important if the magnetic �ux, instead of the external �eld H, is �xed. We have
con�rmed that our numerical procedure presented here indeed reproduce that observation,
but we have not checked systematically whether and for which parameters �ux tubes with
higher winding numbers are favored in an externally given magnetic �eld H.
The most straightforward interpretation of the right panel of Fig. 13.3.1 is to simply ignore

the second-order phase transition curves. Then, the topology of the critical region is the same
as in the left panel, only with �rst-order instead of second-order transitions at the boundaries
of the �ux tube phase (with H ′c1 turning into a second-order phase transition at α ' 0.29236).
However, this cannot be the complete picture. The reason is that after we have left the �ux
tube phase through H ′c2 and keep increasing H we reach Hc2, and we know that there should
be �ux tubes just below Hc2 for all α < 0.38265. In other words, our result contradicts
the observation that Hc2 is a lower bound for the transition from the �ux tube phase to the
normal-conducting phase, as explained at the end of Sec. 11.2. This contradiction is resolved
by remembering the regime of validity of the sparse �ux tube lattice approximation for the
free energy of the �ux tube lattice. This approximation is accurate where Hc1 turns into H ′c1
because the distance between the �ux tubes is in�nitely large at this critical point. As we
move along H ′c1 upon increasing α, and then along H ′c2 upon decreasing α, the approximation
becomes worse and worse. Within the present calculation it is thus not possible to determine
the phase structure unambiguously, but it is easy to guess a simple topology of the type-I/type-
II transition region that is consistent with all the presented results and takes into account the
shortcomings of the approximation. This conjectured phase structure is shown in Fig. 13.3.3.
The motivation for the conjecture is as follows. The existence of the �rst-order line H ′c1

and its starting point is predicted rigorously in our approach. Let us move along that line
assuming that we go beyond the approximation and know the complete result. As we move
towards large α, we will deviate from the line predicted by the sparse lattice approximation.
At some value of α, we will intersect the curve Hc. In order to resolve the contradiction of
the resulting phase structure, we expect this intersection to occur "on the other side" of the
intersection between Hc2 and Hc. This implies that our approximation underestimates the
binding energy of the �ux tubes, i.e., the �ux tube phase is expected to be more favored in the
full numerical result. A simple reason � other than the inconsistency of the phase structure �
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Figure 13.3.3.: Schematic phase structures for a single superconductor and our two-component system
in the type-I/type-II transition region. Solid (dashed) lines are �rst (second) order phase transitions.
The approximation of small �ux tube densities ν rigorously predicts the critical point at which Hc1

becomes �rst order. By extrapolating this approximation to compute also the upper critical �eld �
where ν is not small � one arrives at the inconsistent diagram shown in the middle panel: the �rst-order
transition H ′c2, computed from the small-ν approximation, must not be smaller than Hc2 (Hc2 is a
rigorous result, independent of the approximation). The conjectured phase structure in the right panel
is the simplest one consistent with all presented results, including a possible critical point between Hc2

and H ′c2.

why the approximation distorts the full result in this, and not the other, direction, cannot be
found trivially within the presented model. Now, at the new, correct, intersection of H ′c1 and
Hc, there must necessarily be a third line attached, namely H ′c2 (just like in the results of the
sparse lattice approximation). The reason is that if we cross H ′c1 we end up in the �ux tube
phase and if we cross Hc we end up in the normal-conducting phase, and these two phases
must be separated by a phase transition line. This critical �eld H ′c2 might be larger than Hc2

for all α (below the α of the triple point where H ′c1, H
′
c2 and Hc intersect) or H ′c2 might merge

with Hc2, leading to an additional critical point. The latter is the scenario shown in the right
panel of Fig. 13.3.3. One might ask whether H ′c1 and Hc intersect exactly at the point where
Hc and the second-order line Hc2 intersect. In this case, the entire upper critical line would
be of second order and given by Hc2. However, this seems to require some �ne-tuning of the
interaction between the �ux tubes since the second-order line Hc2 does not know anything
about this interaction.
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14. Flux Tube Clusters

First-order phase transitions in general open up the possibility of mixed phases. In a �rst order
transition, the order parameter, in our case for instance the �ux tube density ν or the internal
magnetic �eld B, jumps instead of smoothly changing. In a second-order phase transition, the
�ux tube density starts at zero at Hc1, which is not possible in the �rst-order transition, where
it jumps at the onset of the �ux tube (lattice) phase. This jump ∆ν can be "softened" by
allowing for mixed phases, where the averaged order parameter changes smoothly. This means
we expect clusters of �ux tubes within either the Meissner or the pure super�uid phase. More
technically speaking, the �rst-order phase transitions with H as an external variable translate
into mixed phases if we �x the magnetic �eld B (spatially averaged) instead. Again, this can be
illustrated by the analogy to the onset of baryonic matter at small temperatures as a function
of µB. This onset is a �rst-order transition with a discontinuity in the baryon number density
nB. If we instead probe this onset with �xed nB (spatially averaged), we pass through a region
of mixed phases, for example nuclei in a periodic lattice, until we reach the saturation density.
This mixed phase of clustered nuclear matter in the vacuum (mixed with some electrons) is
the basic form of matter that our everyday worlds is composed of. Further mixed phases are
realized in the outer regions of a neutron star and called "nuclear pasta" [193], and it would
be an intriguing manifestation if the mixed �ux tube phases discussed here are realized in the
core of the star. Each �rst-order transition in H yields two critical magnetic �elds B which
we compute as follows. At H ′c1, the lower critical �eld is B = 0, and the upper critical �eld is
〈B〉 = Φ0ν [using Eq. (11.3.2)], where ν is the numerically computed �ux tube area density as
we approach the �rst-order transition from above; at H ′c2, the lower critical �eld is 〈B〉 = Φ0ν,
with ν now being the numerically computed density as we approach the �rst-order transition
from below, while the upper critical �eld is B = Hc2; at Hc, the lower critical �eld is B = 0,
and the upper one is B = Hc. This calculation is performed using the parameters of Fig. 13.3.1.
As discussed for the H-α phase diagrams above, also for the B-α phase structure we do not
expect the sparse lattice approximation to yield quantitatively reliable results where the �ux
tube density is large. Therefore, these results re�ect the topology of the B-α phase diagram
correctly, but the precise location of the phase transition lines cannot be determined within this
approach. The phase diagrams for the single superconductor and the two-component system
are shown in Fig. 14.0.1. In a single superconductor, there is only one possible mixed phase:
macroscopic regions in which the magnetic �eld penetrates, mixed with regions in which the
magnetic �eld remains expelled [86]. The geometric structure of these regions depends on the
details of the system such as the surface tension, and it is beyond the scope of this paper to
determine them, however this mixed state is experimentally well known. In the two-component
system, two additional mixed phases are possible, both of which contain �ux tube clusters.
(Unrelated to the �rst-order phase transitions pointed out here, �ux tube clusters have been
suggested to exist in neutron stars in the vicinity of super�uid neutron vortices [194].) Firstly,
at H ′c1, �ux tube clusters are immersed in a �eld-free superconducting region, as predicted for
"type-1.5 superconductivity" [152]. Secondly, at H ′c2, there is a mixed phase of �ux tubes with
the normal-conducting phase, i.e., superconducting regions that enclose �ux tubes and that
are themselves surrounded by completely normal-conducting regions. Once again, the exact
form of these clusters is hard to determine and left for future research.
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Figure 14.0.1.: Phases in the B-α plane, computed with the parameters and from the results of
Fig. 13.3.1. In a single superconductor (left panel), the magnetic �eld penetrates in the form of a
�ux tube array ("�ux tube"), through macroscopic regions in a mixed phase ("Meissner/normal")
or homogeneously and space �lling ("normal"). In a superconductor coupled to a super�uid (right
panel), it can also penetrate in the form of �ux tube clusters, either in a mixture with �eld-free regions
("Meissner/�ux tube") or in a mixture with normal-conducting regions ("�ux tube/super�uid"). The
"Meissner/�ux tube" phase is, for the chosen parameters, only possible for α > 0.29236 (where the
phase transition in the H-α plane is of �rst order).
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15. Summary: Critical Magnetic Fields of a

Superconductor Coupled to a

Super�uid

We have seen that the coupling to a super�uid can have profound e�ects on the magnetic
properties of a superconductor. As for the investigation of the hydrodynamic instabilities in
the multicomponent system, we have started from our microscopic model for two complex
scalar �elds, coupled to each other via density and gradient coupling terms, with one of the
�elds being electrically charged. By computing the thermal excitations of the system we have
derived a Ginzburg-Landau-like e�ective potential for the charged and neutral condensates
and the gauge �eld. This potential has then been evaluated at nonzero temperatures and
external magnetic �elds, computing the two condensates dynamically for all 4 possible phases:
condensation of both �elds (superconductor + super�uid), condensation of only one �eld (pure
superconductor or pure super�uid), or no condensation. The structure of the resulting phase
diagram in the multi-dimensional parameter space, with the main focus on the transition region
between type-I and type-II superconductivity, has been discussed. To this end, the critical
magnetic �elds Hc, Hc2 (analytically) and Hc1 (numerically, based on the pro�le functions
of a magnetic �ux tube) have been computed. In contrast to the standard scenario of a
single superconductor, these three magnetic �elds do not intersect in a single point if the
superconductor coexists with a super�uid. The phase structure around these intersection
points is (at least partially) resolved by computing the �rst-order phase transitions H ′c2 and
H ′c1. This has been done by employing a simple approximation for the free energy of a �ux
tube array that is valid for large �ux tube distances and that e�ectively reduces the calculation
to solving the equations of motion for a single �ux tube. The new critical �elds Hc, H ′c2, H

′
c1

do intersect in a single point, restoring the topology of the transition region, with (segments
of) the second-order transition lines replaced by �rst-order transitions. In particular, we have
identi�ed a new critical point � and derived an analytical expression for its location � where
the second-order �ux tube onset Hc1 turns into a �rst order transition H ′c1. The presence of
the �rst-order transitions allows for mixed phases with �ux tube clusters, very similar to a
type-1.5 superconductor, which consists of two charged �elds coupled indirectly through the
gauge �eld.
There are several possible improvements and extensions. The approximation for the �ux

tube array can be improved for instance by determining dynamically the values of the conden-
sates far away from the �ux tubes instead of using the values of the homogeneous phase. To
settle the precise location of the phase transition lines, it would be interesting to perform a
brute force numerical calculation of the free energy of the �ux tube phase, for which our results
are a valuable guidance. First numerical investigations in Ref. [195] suggest the correctness of
the proposed structure of the full phase diagram. There are several other interesting aspects of
our model which were mentioned but not worked out in detail. For instance, one could perform
a more systematic study of the e�ect of the derivative coupling, which has been included in
all the analytical results, but set to zero in the �nal numerical results of the phase diagrams.
Or one could perform a more detailed study of �ux tubes with higher winding numbers, which
turned out to be energetically disfavored for the parameter regime we have studied, but which
are known to potentially play a role in the two-component system.
The setup and obtained results are applicable to dense nuclear matter in the core of neutron
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stars. However, for more direct predictions one must �t the model parameters, such as the
density coupling and gradient coupling, to values predicted for nuclear matter and eventually
compute the phase structure as a function of the baryon number density rather than of an
abstract model parameter.
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Magnetic Defects in Color
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16. Color Superconductivity

We have argued in Sec. 2.2 that nuclear matter at high baryon density undergoes a phase
transition to decon�ned quark matter. It is unclear at which densities this transition occurs,
however it might be within the conditions present in compact stars. Most likely, possible quark
matter in compact stars will exist in a color-superconducting state. Since quarks are fermions,
they undergo Cooper pair condensation instead of direct Bose-Einstein condensation. This
possibility was �rst mentioned before the invention of the current theory of QCD itself in
Refs. [55,56], but only later it was shown that such a quark matter phase exists at su�ciently
high densities [196]. The actual study of quark Cooper pairing started in the late seventies
of the 20th century in works of Barrois [197, 198] and Frautschi [199], where the term "color
superconductivity" originates. Bailin and Love already classi�ed many possible pairing pat-
terns of color superconductivity in the works Ref. [200,201]. Color superconductivity became
of phenomenological interested due to the prediction of large pairing gaps in the quasi-particle
spectrum, where models using a contact interaction of quarks predict a gap of ∆ ≈ 10 − 100
MeV [112]. Note that in contrast to the standard BCS-gap, which is exponentially suppressed
by the square of the coupling, the color-superconducting gap is parametrically larger,

∆BCS ∝ exp

(
−4π2M2

g2µ2

)
, ∆CFL ∝ exp

(
− 3π2

√
2gs

)
, (16.0.1)

where M and g are the mass of the Cooper pair and the coupling constant of the BCS Hamil-
tonian and gs is the (strong) QCD coupling constant. This particular form of the gap makes it
inaccessible for perturbative methods, since in a Taylor expansion around gs = 0, every term
of the expansion vanishes. For a general review on color superconductivity see Ref. [15] and
references therein.
The attractive interaction, which is necessary for Cooper pairs to form, is provided by the

strong interaction. At (asymptotically) high densities, this interaction is dominated by one-
gluon exchange [202]. We have seen in Fig. 1.0.2 that quarks come in six di�erent "�avors",
however in compact stars the high masses of the charm, bottom and top quarks which are all
on the GeV scale, allow us to ignore their contributions. The chemical potential in compact
stars is most likely only high enough to populate the lighter three �avors, consisting of up,
down and strange. Note that the bare mass of the strange quark at ms ≈ 95 MeV is already
comparably heavier than the mass of up and down quarks at a few MeV. Additionally, quarks
come in three di�erent color charges, which are denoted by red, green and blue. Considering
that a Cooper pair can roughly be written as the diquark expectation value

〈ψψ〉 , (16.0.2)

with the quark spinor ψ, we can see that there is a plethora of possible pairing structures
in color, �avor and spin space. Before discussing this structure in a more detailed, technical
manner we quickly recapitulate the symmetry properties of QCD.

Symmetries of QCD

• local symmetry: The local gauge group of QCD is given by SU(Nc), where the number
of colors in QCD is given by Nc = 3. Since the dimension of SU(N) is given by
the dimension of the group, dim(SU(N)) = N2 − 1, SU(3) is generated by the eight
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generators Ta, a = 1, ..., 8, which can be represented by the Gell-Mann matrices λa via
Ta = λa

2 . The Gell-Mann matrices can be found in App. F. The generators follow the
Lie-Algebra

[Ta, Tb] = ifabcTc , (16.0.3)

where fabc are the structure constants of SU(3). As a consequence, we have to deal with
eight self-interacting gauge �elds Aµa which represent the eight gluons. In contrast, in
the discussion of electromagnetic superconductivity, we had to deal with a single gauge
�eld since the gauge group of quantum electrodynamics is given by U(1). The resulting
�eld strength tensor, which includes the gluon self-interaction, is given by

Fµνa = ∂µAνa − ∂νAµa + gsf
abcAµbA

ν
c , (16.0.4)

with the strong coupling constant gs and where the gauge �elds contain the corresponding
generator and therefore do not commute in general.

• global symmetries: In the case of three massless quark �avors, QCD exhibits a global
U(Nf )×U(Nf ) symmetry with the number of �avors Nf = 3. This can be decomposed
into

SU(3)L × SU(3)R × U(1)B × U(1)A . (16.0.5)

The groups SU(3)R and SU(3)L represent the chiral symmetry of (massless) three-
�avor QCD: the Lagrangian is invariant under separate rotations of left- and right-
handed quarks. For (asymptotically) high chemical potentials, the approximation of
massless quarks becomes exact. For lower chemical potentials, the masses break the
chiral symmetry explicitly because left- and right-handed spinors are mixed by the mass
terms. In the case of equally massive quarks, i.e. a mass matrix which is proportional to
the unitary matrix in �avor space, the chiral symmetry is broken down to simultaneous
rotations of left- and right-handed particles,

SU(3)L × SU(3)R → SU(3)R+L . (16.0.6)

But even if we take all quark masses for all quark �avors into account, the strong in-
teraction conserves �avors; di�erent quarks cannot transform into each other. In this
case, the �avor symmetry reduces to separate U(1) groups for each quark �avor. In
principle, this would allow us to introduce a separate chemical potential for each quark
�avor. However, in compact stars the weak interaction, which does not conserve �avor,
leads to beta-equilibrium. In the limit of equal (or vanishing as here) quark masses,
beta-equilibrium is in accordance with the use of a single chemical potential µq.

Additionally, the (approximate) chiral symmetry can be spontaneously broken by a chiral
condensate

〈
ψ̄ψ
〉
. The conservation of baryon number U(1)B is exact and will play an

important role in the discussion of super�uidity in quark matter. The axial symmetry
U(1)A is anomalous, which means that it is conserved classically via Noether's theorem
but broken by quantum e�ects.

16.1. Order Parameter of Color Superconductivity

For Cooper's theorem to work, we need an attractive interaction between the fermions we
want to pair. Following Chap. 4 of Ref. [20], we write down the pairing process in terms of
representations of the quarks, which live in the fundamental representation of the color gauge
group SU(3). Consequently, we can write

[3]c ⊗ [3]c = [3̄]Ac ⊕ [6]Sc . (16.1.1)
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This basically states that the two quarks in the fundamental representation on the left-hand
side interact in an antisymmetric (A) anti-triplet channel and a symmetric (S) sextet channel.
The attractive interaction takes place in the anti-triplet. This can be made plausible by the
following argument: consider an overall color neutral baryon, which consists per de�nition of
three quarks. It can be thought for instance of consisting of a diquark of a red and a green
quark, and an additional blue quark. The combination of red and green gives anti-blue, so it
lives in the anti-triplet. In combination with the third, blue quark the baryon becomes color
neutral. Since it is e�ectively a bound state of the diquark and the blue quark, the interaction
in this channel must be attractive. Therefore, we expect quarks of di�erent color to pair.
Since the Cooper pair condensate is a quark quark condensate, we have no possibility to form
a color-neutral object. As a consequence, the order parameter is color charged. This is why
we speak of color superconductivity.
It is most likely that the pairing for high densities takes place in the anti-symmetric spin

zero channel, although under certain circumstances spin-1 pairing is feasible [203]. Since the
overall wave function has to be anti-symmetric as well, the pairing should take place in the
anti-symmetric �avor channel. Let us consider the chiral symmetry to be exact for the moment,
then both SU(3)f groups with f = L,R lead to the same representations as described for the
color gauge group. We can therefore write down the color-�avor structure of the Cooper pair
as

〈ψψ〉 ∈ [3̄]Ac ⊗ [3̄]Af . (16.1.2)

As a �nal ingredient, we have to discuss the Dirac structure of the Cooper pair, which de�nes
the pairing pattern even further. For instance, a Cooper pair of the form 〈ψCγ5ψ〉, where
C = iγ2γ0 is the charge conjugation operator with the gamma matrices γi, leads to even-
parity, spin singlet pairing. In principle, many di�erent structures are possible, for a general
discussion see Ref. [204]. In order to �nd the correct structure for a given set of thermodynamic
parameters, one has to compute the thermodynamical potential and minimize it with respect
to the gap for a given Dirac structure. The potential which has the lowest free energy after
inserting the result for the gap wins. We will omit this computation, since it is not relevant
for the following discussion, and work with the presented structure. Let us denote the basis
matrices in color and �avor space, where we need three matrices for both spaces, by (JA)αβ

and (IB)ij with the color indices A,α, β ≤ 3 and the �avor indices B, i, j ≤ 3. Due to their
anti-symmetric properties, the epsilon tensor turns out to be a viable candidate, thus we write

(JA)αβ = −iεαβA and (IB)ij = −iεijB . (16.1.3)

Using this basis, we write 〈
ψαi Cγ5ψ

β
j

〉
∝ εαβAεijBΦB

A , (16.1.4)

where the 3 × 3 matrix Φ determines the speci�c color-superconducting phase. Our goal in
the next chapter will be to write down a Ginzburg-Landau type potential using this matrix.
In the following we are going to distinguish between two di�erent order parameters. Assume

for the moment that we are looking for the ground state of three �avor quark matter at T = 0
for asymptotically large baryon chemical potential. In this scenario, it is reasonable to neglect
all three quark masses, leading to an exact chiral symmetry. As an educated guess, we are
looking for the most symmetric pairing pattern, which means we assume

φBA ∝ δBA ⇒
〈
ψαi Cγ5ψ

β
j

〉
∝ εαβAεijA . (16.1.5)

This is the order parameter of the color-�avor locked phase, short CFL [112]. By checking
for which color and �avor indices the order parameter is non-vanishing, we can read o� the
CFL pairing pattern, which is given by rd− gu, bu− rs, bd− gs, ru− gd− bs, where rd− gu
denotes the pairing of a red down with a green up quark and so on. All colors are "locked"
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to certain �avors, i.e. there is a one-to-one correspondence between the three colors and the
three �avors. The CFL order parameter is the only one where all quarks participate in the
pairing, which leads to the biggest gain in condensation energy, con�rming our claim that CFL
presents the ground state of QCD under the discussed conditions. In terms of symmetries,
the CFL phase is still symmetric under a combined rotation in color and �avor space. The
symmetry breaking pattern is thus given by

[SU(3)c]× SU(3)R × SU(3)L × U(1)B → SU(3)c+L+R × Z2 , (16.1.6)

where square brackets denote local symmetries. We can see that CFL breaks the global U(1)B
as well, meaning that the CFL phase is, besides a color superconductor, a super�uid as well.
Additionally, chiral symmetry is broken due to the locking of color and �avor and not by
the formation of a chiral condensate, which is a particle-anti-particle condensate. This gives
rise to eight (pseudo-) Goldstone bosons, the meson octet, which includes for instance kaons
and pions. The local SU(3)c is completely broken, therefore we expect eight massive gauge
bosons. But is CFL an electrical superconductor as well? To answer this question we have to
investigate the fate of the generator of electromagnetism, which we denote by Q and which
acts in �avor space. In the unbroken phase, it is contained in the chiral groups,

[U(1)Q] ⊂ SU(3)R × SU(3)L , (16.1.7)

since it can be built by generators of this larger group. However, after the SSB, only a
di�erent generator Q̃ ⊂ SU(3)c+L+R remains unbroken, which is a linear combination of the
original charge generator and (at least) one gluon generator. 1 Speaking in di�erent terms,
there is a linear combination of a gluon (in CFL normally the eighth) with the photon that
remains massless. The orthogonal combination T̃8 becomes, together with the remaining seven
gluons, massive. This phenomenon is called rotated electromagnetism. Every diquark in
the CFL phase is neutral with respect to Q̃, but di�erently charged under T̃8. Whether Q̃
is predominately a photon or a gluon depends on the mixing angle. For CFL, it turns out
that the mixing angle is rather small, making the CFL phase almost transparent for ordinary
light. This is plausible since the relative size of the coupling constants plays a crucial role in
determining the angle, and the strong coupling in neutron star environments is much larger
than the electromagnetic coupling, g � e. Only the orthogonal generator, which is a small
admixture of the photon to a gluon, becomes massive. The answer whether CFL can be
considered a electronic superconductor therefore is yes, but only "a little bit". Let us assume
a sphere of quark matter in the CFL phase, like the core of a compact star, in an external
electromagnetic �eld. Most of the �eld, given by the mixing angle, freely penetrates the
sphere. However, a small part of the �eld is, depending on the type of superconductivity
present and the strength of the �eld, either expelled due to the Meissner e�ect or forms Q̃-�ux
tubes. We will discuss rotated electromagnetism in more (technical) detail later on, where we
will determine the mixing angle for CFL for instance. For a more detailed discussion on the
symmetry breaking pattern of CFL and its topological defects, see Ref. [205].
In the entire discussion above, we have assumed that we can neglect all quark masses,

including the mass of the strange quark which is, upon neglecting medium e�ects, ms ≈ 95
MeV. However, for smaller chemical potential the strange quark mass induces a stress on the
Cooper pair. Roughly speaking, the mass of the strange quark leads to a splitting of the Fermi
spheres of the three �avors by an amount of ∆pF ≈ m2

s/4µ. Since Cooper pairing at small
interactions occurs on the Fermi surface, as an intermediate step a common Fermi sphere is
created, which costs energy. If the energy cost of the creation of this common Fermi sphere

1In most cases this linear combination only consists of the charge operator and the eighth gluon generator,
however this statement is gauge dependent and one can in principle work in a more complicated basis where
there is an admixture of the third gluon as well.
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Figure 16.1.1.: Pairing pattern and splitting of Fermi surfaces pF in unpaired and paired quark matter
in the 2SC and CFL phase, taken from Ref. [15]. It shows quarks of which �avor and color participate
in the pairing and the formation of the common Fermi sphere for Cooper pairing of quarks living in
split Fermi spheres due to the strange quark mass, here denoted by Ms.

becomes too large, other color-superconducting phases can take over. The splitting of the
Fermi spheres and the pairing in common Fermi spheres is schematically shown in Fig. 16.1.1
taken from Ref. [15].
A logical candidate is a phase where the strange quark does not participate in the pairing.

The simplest possible order parameter for such a phase is given by

φAB ∝ δA3 δ3
B ⇒

〈
ψαi Cγ5ψ

β
j

〉
∝ εij3εαβ3 , (16.1.8)

which is called the 2SC phase, where the strange quark and all blue quarks remain unpaired
[14, 200, 201]. As in the CFL phase, rotated electromagnetism is present, where the mixing
angle of the 2SC phase slightly di�ers from the one in the CFL phase. The symmetry breaking
pattern, assuming massless up and down quarks, is found to be

[SU(3)c]×SU(2)L×SU(2)R×U(1)B×U(1)S → [SU(2)rg]×SU(2)L×SU(2)R×U(1)B̃×U(1)S .
(16.1.9)

Interestingly, no global symmetry is broken, since the baryon symmetry survives as B̃, which
is a linear combination of the original generator with the broken diagonal T8 color generator.
For a more detailed discussion see Ref. [15]. Consequently, 2SC is not a super�uid.
Although we have only discussed two particular phases, it is clear that the rich structure of

color superconductivity allows for a much more diverse phase diagram of color-superconducting
phases. One possibility to gain further insight into the pairing of quark matter is to use Nambu�
Jona-Lasinio type models, where the gluon interaction is only e�ectively taken into account
via a direct quark interaction [16,206]. An extensive review of the use of NJL models in quark
matter can be found in Ref. [207]. In Ref. [208], a phase diagram including only homogeneous
phases is presented, which is shown in Fig. 16.1.2. For a description of the depicted phases
see Tab. I of the original reference.
An alternative approach to such calculations is the use of perturbative QCD methods, which

use the asymptotic freedom of QCD [13] to treat the problem at weak coupling. We will use
results obtained within this framework later on, however its validity is probably limited to
extremely high chemical potentials, µ & 106 MeV, whereas chemical potentials expected in
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Figure 16.1.2.: Phase diagram of electrically and color neutral quark matter in weak equilibrium, in
the plane of baryon chemical potential and temperature, taken from Ref. [208], where an explanation
of the depicted phases can be found in Tab. I. Here, �rst-order phase transitions are denoted by a solid
line and second-order phase transitions by a dashed line. This phase diagram shows part of the rich
phase structure of color superconductivity.

compact stars are roughly at µq ≈ 400 MeV.
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17. Magnetic Defects in Color

Superconductivity

We already know that ordinary superconductivity can be destroyed by an external magnetic
�eld: either partially, by the formation of magnetic �ux tubes if the superconductor is of
type II, or completely, if the external �eld is su�ciently large [86, 99, 209]. Now, we want to
investigate the fate of color superconductivity in three-�avor quark matter in the presence
of an ordinary external magnetic �eld, with an emphasis on the magnetic defects created in
type-II color superconductors. The entire following discussion until the end of this thesis was
originally published in Ref. [4].
We have made plausible in the latter chapter that at the highest densities, three-�avor

quark matter is in the color-�avor locked (CFL) phase, where all quarks participate in Cooper
pairing. In this phase, all Cooper pairs are neutral with respect to a certain combination of
the electromagnetic gauge �eld and the eighth gluon gauge �eld. This phenomenon is what
we introduced as rotated electromagnetism. The corresponding magnetic �eld, which we call
B̃, can penetrate the CFL phase, while the magnetic �eld corresponding to the orthogonal
combination, termed B̃8, and the �elds corresponding to the other seven gluons are expelled
due to the Meissner e�ect. Since an ordinary magnetic �eld B has a B̃8 component it will
eventually destroy the CFL phase and, in the type-II regime for intermediate �eld strengths,
will lead to the formation of magnetic �ux tubes that carry B̃8 �ux.

17.1. Method and Main Ideas

The main idea of this part is to write down an e�ective, Ginzburg-Landau style theory for
the diquark condensate, based on the order parameter discussed in Chap. 16. Then, we have
a theory of an up to three-component superconductor, for which we can use our knowledge
from the �rst parts of this thesis. Magnetic �ux tubes in CFL have been studied before in
Refs. [141, 210] within a Ginzburg-Landau approach [201, 211, 212], including an analysis of
whether CFL is a type-I or type-II superconductor. This question was also addressed within
the same approach in Ref. [142], by calculating the surface energy. In these works, CFL was
e�ectively described as a two-component superconductor, where the two components have
di�erent charges with respect to the rotated color gauge �eld Ãµ8 . In the following, the same
Ginzburg-Landau approach is employed, but improved in several ways. Firstly, we make use
of our recently gained understanding about two-component superconductivity in the previous
part of this thesis, in particular the unconventional behavior of such systems in the type-
I/type-II transition region. Secondly, we show that the CFL phase is, upon increasing the
magnetic �eld but still for massless quarks, superseded by the 2SC phase (except for very
small values of the strong coupling constant), which is indicative of the kind of �ux tubes that
develop in CFL. Thirdly, we will see that a new kind of �ux tubes is energetically preferred in
the parameter regime that is relevant for applications to compact stars. This new �ux tube
con�guration is found by allowing all three diagonal components of the order parameter to be
di�erent, in contrast to the two-component approach in the literature. The total winding of
the three components is minimized by setting the winding number of one component to zero,
resulting in a CFL �ux tube with a 2SC-like core. By computing the critical magnetic �eld at
which �ux tubes start to populate the system, we shall demonstrate that this con�guration is
favored over the previously discussed CFL �ux tubes with an unpaired core.
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We will also study �ux tubes in 2SC itself. Since the 2SC phase is a single-component
superconductor, the �ux tube con�guration considered in Ref. [213] appears to be unique,
analogous to ordinary superconductors. However, our general setup allows us to check whether
additional color-�avor components of the order parameter are induced in the core of a 2SC
�ux tube. We �nd that this is indeed the case. These new �ux tube solutions can reduce
their energy by increasing their winding number and thus their radius, eventually resulting in
a domain wall rather than a one-dimensional string.
By using the purely bosonic Ginzburg-Landau theory we neglect any e�ect of the charges of

the constituents of the Cooper pairs, which are now quarks instead of nucleons, and a fermionic
approach would have to be used to go beyond this approximation [214�217]. Moreover, the
same restrictions of this approach apply, like the fact that a Ginzburg-Landau approach is
strictly speaking only valid for small condensates, for instance for temperatures close to the
critical temperature. For the main numerical results, we do not investigate the complete
parameter space of the Ginzburg-Landau potential or introduce e�ective parameters like we
have done for the two-component system, but rather restrict ourselves to the weak-coupling
form of the parameters. Then, we extrapolate the results to larger values of the coupling,
which are expected in an astrophysical environment. We also work in the simpli�ed scenario
of vanishing quark masses, and it remains to be seen how our results are modi�ed if the strange
quark mass is taken into account; mass terms were included in the Ginzburg-Landau approach
in Refs. [218�220].

17.2. Relation to Super�uid Vortices in CFL

All �ux tubes we discuss in detail have, as an imposed restriction, a vanishing baryon circula-
tion far away from the �ux tube. In other words, the �ux tubes we are interested in can only
be induced by a magnetic �eld, not by rotation. Flux tubes that do have baryon circulation,
in particular the so-called semi-super�uid vortices, have been discussed extensively in the lit-
erature, for instance in Refs. [221�224], for a review see Ref. [205]. These vortices, just like
the vortices in an ordinary super�uid, have a logarithmically divergent energy, and a �nite
system or a lattice of vortices is required to regularize this divergence. This means that in
an numerical investigation, the energy of the vortex will depend logarithmically on the upper
bound of the integration.
The �ux tubes we discuss here, just like the �ux tubes in an ordinary superconductor, do not

show this divergence and their energy is �nite even in an in�nite volume. This would make
a comparison to the vortices above on a pure energy level di�cult. To put our discussion
into a wider context, we shall brie�y discuss how all line defects, with and without baryon
circulation, with and without color-magnetic �ux, are obtained by choosing di�erent triples of
winding numbers of the three order parameter components.
In contrast to the CFL vortices, the �ux tubes discussed here are not protected by topology.

This can be seen by computing the �rst homotopy group π1, since �ux tubes are string-
like defects. [205]. This means that con�gurations with di�erent windings are continuously
connected. In particular, the con�gurations we consider are continuously connected to the zero-
winding con�guration (not unlike the so-called "semilocal cosmic strings" [225]), i.e., they can
be unwound into "nothing" without encountering a discontinuity. Since such a discontinuity
typically translates into an energy barrier, one might question the stability of the objects
we consider in this paper. However, the main result of our calculation is a critical magnetic
�eld at which the �ux tube is energetically preferred over the con�guration without �ux tube.
Therefore, even though we do not explicitly prove local stability by introducing �uctuations
about the �ux tube state, the magnetic �eld stabilizes the �ux tube and by comparing free
energies we establish global stability. (The chosen ansatz is not completely general in color-
�avor space, i.e., while we will prove that the �ux tube cannot decay into "nothing" at a
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su�ciently large magnetic �eld, we can, strictly speaking, not exclude that it decays into more
exotic color-magnetic �ux tubes.)

17.3. Astrophysical Implications of Color Superconductivity

We have shortly discussed the phenomenological relevance of quark matter in general in the
introductory part of this thesis, see Sec. 2.2. Color-magnetic defects in CFL and 2SC quark
matter are very interesting as well for the phenomenology of quark stars or neutron stars with
a quark matter core. The critical magnetic �elds we compute here � as already suggested
from previous work � are most likely too large to be reached in compact stars. Nevertheless,
there might be other mechanisms to create magnetic defects in quark matter. As argued in
Ref. [213], �ux tubes can form if quark matter is cooled into a color-superconducting phase
at a given, approximately constant magnetic �eld. It is then a dynamic question how and on
which time scale the magnetic �eld is expelled from the system. A full dynamical simulation
of the expulsion of the magnetic �eld is extremely complicated and most likely involves the
formation of �ux tubes or domain walls, see for instance Ref. [226] for such a study in the
context of ordinary superconductors. While the results I am going to present only concern
equilibrium con�gurations, they show to the very least that new defects, so far overlooked in
the literature, should be taken into account in this discussion.
It has been argued that the color-�ux tubes thus created support a deformation of the rotat-

ing star ("color-magnetic mountains"). This deformation gives rise to a continuous emission of
gravitational waves because of the misalignment of rotational and magnetic axes [78]. (A dif-
ferent mechanism in quark matter to support continuous gravitational waves is the formation
of a crystalline phase [227�230].) The larger energy (and the only slightly smaller number)
of the color-magnetic �ux tubes compared to �ux tubes in superconducting nuclear matter
makes this mechanism particularly e�cient and the resulting gravitational waves potentially
detectable. The following calculation provides a quantitative, numerical calculation of the �ux
tube energy, putting the estimates used in Ref. [78] on solid ground. It also slightly changes
this estimate due to the new �ux tube con�guration, although this change is small compared
to the uncertainties involved in the estimate of the ellipticity of the star, which is necessary
for the emission of gravitational waves.

17.4. Structure

The �nal part of this thesis is organized as follows. In Chap. 18 we introduce the Ginzburg-
Landau potential which is expanded to color superconductivity, and a general ansatz for the
order parameter. Then, as a necessary preparation for the study of the �ux tubes, in Chap. 19
we discuss the homogeneous phases and the phase diagram at nonzero external magnetic �eld,
just as we did in the two-component system. We turn to the CFL �ux tubes in Chap. 20, with
a classi�cation of the �ux tubes and their radial pro�les shown in Sec. 20.5. In Chap. 21 we
discuss 2SC �ux tubes and domain walls and present the corresponding pro�les in Sec. 21.3.
The main results, putting together the phase diagram of the homogeneous phases with the
critical �elds for the magnetic defects, are discussed in Chap. 22, and I end with a brief
summary and outlook of this part, including further astrophysical implications, in Chap. 23.
In this part I use Heaviside-Lorentz units for the gauge �elds, in which the elementary charge
is e =

√
4πα ' 0.3. These are the units used in the most closely related literature about the

CFL phase, for instance Ref. [142]. Note, however, that Gaussian units are used in the rest
of this thesis and in other literature on multicomponent superconductors, for instance in our
publication Ref. [3].
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18. Setup for Color Superconductivity

18.1. General Form of Ginzburg-Landau Potential

We have seen that the order parameter Ψ for spin-zero Cooper pairing of three-�avor, three-
color quark matter is an anti-triplet in color and �avor space, Ψ ∈ [3̄]c ⊗ [3̄]f . We can thus
introduce the components Φij of the order parameter in the presented basis (Ji)jk = −iεijk in
color space and (Ii)jk = −iεijk in �avor space introduced in Chap. 16 via

Ψ = ΦijJi ⊗ Ij . (18.1.1)

Later, we shall only work with the 3 × 3 matrix Φ, not with the 9 × 9 tensor Ψ, and simply
refer to Φ as the order parameter. In general, there are two order parameters ΨL and ΨR for
pairing in the left-handed and right-handed sectors. They are di�erent for instance if kaon
condensation is considered [220]. Here we assume ΨL = ΨR ≡ Ψ. The Ginzburg-Landau
potential up to quartic order in Ψ is [142]

U = −3
{

Tr[(D0Ψ)†(D0Ψ)]− u2Tr[(DiΨ)†(DiΨ)]
}

+ kTr[Ψ†Ψ]

+
l1
2

Tr[(Ψ†Ψ)2] +
l2
2

(Tr[Ψ†Ψ])2 +
1

4
F aµνF

µν
a +

1

4
FµνF

µν , (18.1.2)

where u2 = 1
3 , with the gluon �eld strength tensors F

a
µν from Eq. (16.0.4) with a = 1, . . . , 8, the

color gauge �elds Aaµ, the strong coupling constant g, and the SU(3) structure constants fabc,
and Fµν = ∂µAν − ∂νAµ is the electromagnetic �eld strength tensor with the electromagnetic
gauge �eld Aµ. The parameters k, l1, l2 can be computed in the weak-coupling limit from
perturbation theory [211]. The covariant derivative is

DµΨ = ∂µΨ + igAaµΦij(TaJi + JiT
T
a )⊗ Ij + ieAµΦijJi ⊗ (QIj + IjQ

T ) , (18.1.3)

where Ta = λa/2, with the Gell-Mann matrices λa, such that Tr[T aT b] = 1
2δ
ab, where e is

the elementary electric charge, and where Q = diag(q1, q2, q3) is the U(1) charge generator in
�avor space with the individual electric charges of the quarks q1, q2, q3.
For simplicity, we shall work in the massless limit throughout the thesis, such that �avor

symmetry is only broken by the electric charges, not by the quark masses. In particular, there
is no distinction between d and s quarks in this approximation. We can write the covariant
derivative as

DµΨ = (DµΦ)ijJi ⊗ Ij , (18.1.4)

with
DµΦ = ∂µΦ− igAaµT Ta Φ + ieAµΦQ̄ , (18.1.5)

where we have used TaJi + JiT
T
a = −(Ta)ijJj and QIj + IjQ

T = Q̄jkIk with Q̄ = diag(q2 +
q3, q1 + q3, q1 + q2). Since the electric charges of u, d and s quarks add up to zero, we
have Q̄ = −Q, and thus it is not strictly necessary to introduce the notation Q̄. But, one
should keep in mind that the relevant charge matrix contains the charges of Cooper pairs,
not of individual quarks, as the notation −Q instead of Q̄ would have suggested. We can
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now perform the trace over the 9-dimensional color-�avor space in Eq. (18.1.2) and write the
Ginzburg-Landau potential in terms of Φ,

U = −12
{

Tr[(D0Φ)†(D0Φ)]− u2Tr[(DiΦ)†(DiΦ)]
}

+ 4kTr[Φ†Φ] + l1Tr[(Φ†Φ)2]

+(l1 + 8l2)(Tr[Φ†Φ])2 +
1

4
F aµνF

µν
a +

1

4
FµνF

µν , (18.1.6)

where the following properties of the color matrices are used:

Tr[JiJj ] = 2δij , Tr[JiJjJkJ`] = δijδk` + δi`δjk , (18.1.7)

(and the same for the �avor matrices Ii) and, as a consequence,

Tr[(DµΨ)†(DµΨ)] = 4Tr[(DµΦ)†(DµΦ)] (18.1.8a)

Tr[Ψ†Ψ] = 4Tr[Φ†Φ] (18.1.8b)

Tr[(Ψ†Ψ)2] = 2(Tr[Φ†Φ])2 + 2Tr[(Φ†Φ)2] . (18.1.8c)

All traces in the �nal result are now taken over the 3-dimensional order parameter space.

18.2. Super�uid Velocity

Super�uid vortices are characterized by a nonzero circulation around the vortex. We shall see
that line defects in CFL can carry magnetic �ux and baryon circulation. Therefore, we �rst
derive a general expression for the super�uid velocity, which can then be used to compute the
baryon circulation for particular �ux tube solutions, see Sec. 20.5. The super�uid velocity
is computed in analogy to the case of a scalar �eld [154]; for a derivation in the context of
CFL see Refs. [205,212]. We �rst introduce an overall phase ψ associated with baryon number
conservation U(1)B,

Φ = eiψ∆ . (18.2.1)

This allows us to compute the baryon four-current via

jµ = − ∂U

∂(∂µψ)
. (18.2.2)

We �nd

j0 = 12iTr[(D0Φ)†Φ− Φ†(D0Φ)] , ji = 12u2iTr[(DiΦ)†Φ− Φ†(DiΦ)] . (18.2.3)

The super�uid four-velocity vµ is de�ned through jµ = nsv
µ with the super�uid density ns

and vµvµ = 1, as described in the introductory part of the thesis. With vµ = γ(1,vs), the
components of the super�uid three-velocity vs become

(vs)i =
ji

j0
=

u2

4µq

iTr[(DiΦ)†Φ− Φ†(DiΦ)]

Tr[Φ†Φ]
, (18.2.4)

where we have assumed ∆ to be time-independent, set the temporal components of the gauge
�elds to zero, A0 = Aa0 = 0, and introduced the quark chemical potential µq through the time
dependence of the phase, ∂0ψ = 2µq, where the factor 2 arises from the diquark nature of the
order parameter.
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18.3. Ansatz and Gibbs Free Energy

We evaluate the potential (18.1.6) for the diagonal order parameter Φ = diag(φ1, φ2, φ3), with
the complex scalar �elds φ1, φ2, φ3. Allowing all three diagonal components to be di�erent
is a more general ansatz than used in the literature before. It is not the most general ansatz
because the reduced symmetry due to the electric charges of the quarks (and quark masses if
they were taken into account) does not allow to rotate an arbitrary order parameter matrix
into an equivalent diagonal form.
Due to rotated electromagnetism, the eighth gluon and the photon mix, which can for

instance be seen in a microscopic calculation of the gauge boson polarization tensor [231].
This mixing can also be derived within the Ginzburg-Landau approach by computing the
magnetic �elds in the CFL phase in the presence of an externally applied magnetic �eld,
which we will do in Chap. 19. We anticipate this mixing by de�ning the rotated gauge �elds

Ã8
µ = cos θ A8

µ + sin θ Aµ , (18.3.1a)

Ãµ = − sin θ A8
µ + cos θ Aµ , (18.3.1b)

with the mixing angle given by

cos θ =

√
3g√

3g2 + 4e2
, sin θ = − 2e√

3g2 + 4e2
. (18.3.2)

The derivation of the CFL mixing angle is presented in App. G. In the new rotated basis, the
magnetic �eld B̃8 is the one which experiences a Meissner e�ect in the CFL phase whereas
the magnetic �eld B̃ penetrates the CFL phase unperturbed, if the quark �avors in the charge
matrix are ordered (d, s, u), such that Q = diag(−1/3,−1/3, 2/3) is proportional to T8. If the
order (u, d, s) is used, the mixing between the gauge �elds involves A3

µ [212]. We shall work
with the more convenient order (d, s, u) in the CFL phase, but change to (u, d, s) in Chap. 21,
where we discuss magnetic defects in the 2SC phase.
For our diagonal order parameter, it is consistent with the non-abelian Maxwell equations

∂µF
aµν + gfabcAbµF

cµν = jaν , (18.3.3)

to set all gauge �elds corresponding to the non-diagonal SU(3) generators to zero, Aµ1 = Aµ2 =
Aµ4 = Aµ5 = Aµ6 = Aµ7 = 0. The current on the right hand side of Maxwell's equations can be
computed from the terms in the potential Eq. (18.1.6) that mix gauge and scalar �elds, which
are all contained in

Tr
[
(DµΦ)† (DµΦ)

]
=
(
∂µ + ig̃8Ã

8
µ + i

g

2
A3
µ

)
φ∗1

(
∂µ − ig̃8Ã

8
µ − i

g

2
A3
µ

)
φ1

+
(
∂µ + ig̃8Ã

8
µ − i

g

2
A3
µ

)
φ∗2

(
∂µ − ig̃8Ã

µ
8 + i

g

2
Aµ3

)
φ2

+
(
∂µ − 2ig̃8Ã

8
µ

)
φ∗3

(
∂µ + 2ig̃8Ã

µ
8

)
φ3 +

g2

4

[ (
A1
µA

µ
1 +A2

µA
µ
2

) (
|φ1|2 + |φ2|2

)
+
(
A4
µA

µ
4 +A5

µA
µ
5

) (
|φ1|2 + |φ3|2

)
+
(
A6
µA

µ
6 +A7

µA
µ
7

) (
|φ2|2 + |φ3|2

) ]
, (18.3.4)

where we have denoted the coupling to the rotated color �eld Ã8 by

g̃8 ≡
g

2
√

3 cos θ
. (18.3.5)
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The currents jaµ are now obtained by variation of these terms with respect to Aaµ.
Additionally, we set all electric �elds to zero, and only keep the magnetic �elds B3 = ∇×A3,

B̃8 = ∇×Ã8, and B̃ = ∇×Ã. We also ignore all time dependence since we are only interested
in equilibrium con�gurations. Putting all this together yields the potential

U = U0 +
B̃2

2
, (18.3.6)

with

U0 =
∣∣∣(∇+ i

g

2
A3 + ig̃8Ã8

)
φ1

∣∣∣2 +
∣∣∣(∇− ig

2
A3 + ig̃8Ã8

)
φ2

∣∣∣2 +
∣∣∣(∇− 2ig̃8Ã8

)
φ3

∣∣∣2
−µ2(|φ1|2 + |φ2|2 + |φ3|2) + λ(|φ1|4 + |φ2|4 + |φ3|4)

−2h(|φ1|2|φ2|2 + |φ1|2|φ3|2 + |φ2|2|φ3|2) +
B2

3

2
+

B̃2
8

2
. (18.3.7)

We have separated the rotated �eld B̃ because all scalar �elds are neutral with respect to the
corresponding charge, and the only contribution is the trivial B̃2 term. Furthermore, we have
introduced the new Ginzburg-Landau parameters

µ2 = −k ' 48π2

7ζ(3)
Tc(Tc − T ) , (18.3.8a)

λ =
l1
8

+
l2
2
' 72π4

7ζ(3)

T 2
c

µ2
q

, (18.3.8b)

h = −
(
l1
16

+
l2
2

)
' − 36π4

7ζ(3)

T 2
c

µ2
q

. (18.3.8c)

In the last expression of each line, the weak-coupling results have been used1 with the tem-
perature T and the critical temperature for color superconductivity Tc. (At weak coupling,
although the relation between the critical temperature and the zero-temperature gap di�ers
from phase to phase [232], the absolute values of the critical temperatures of CFL and 2SC
are the same.) The potential (18.3.7) describes three massless bosonic �elds which have the
same chemical potential µ, the same self-interaction given by λ, interact pairwise with the
same coupling constant h, and have di�erent charges with respect to the three gauge �elds.
(In comparison, the model of the neutron-proton system contained only two massive scalar
�elds but with di�erent chemical potentials and di�erent self-couplings, including derivative
coupling terms between the �elds.) For φ1 = φ2 the system is neutral with respect to Aµ3
at every point in space and we recover the potential used in Ref. [142]. Since we allow for
φ1 6= φ2, we must keep A3.
We are interested in the phase structure in an externally given homogeneous magnetic �eld

H, which, without loss of generality, we align with the z-direction, H = Hez with H ≥ 0.
Therefore, we need to consider the Gibbs free energy

G =

ˆ
d3r (U −H ·B) =

ˆ
d3r

[
U0 +

B̃2

2
−H · (B̃ cos θ + B̃8 sin θ)

]
. (18.3.9)

1Here, the convention of Ref. [142] is used. To compare with Refs. [141,205,210], the order parameter has to
be rescaled as

Φ→

√
3

7ζ(3)

π2Tc
2µq

Φ .
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Since Ã does not couple to the three condensates, its equation of motion is trivially ful�lled
by any constant B̃ and the Gibbs free energy is minimized by B̃ = B̃ez with

B̃ = H cos θ , (18.3.10)

such that we can write the Gibbs free energy density as

G

V
= −H

2 cos2 θ

2
+

1

V

ˆ
d3r

(
U0 −H · B̃8 sin θ

)
, (18.3.11)

where V is the total volume of the system.

18.4. Strategy of the Calculation

The calculation we are aiming for is very similar to the one carried out in the calculation of
the �ux tubes in a superconductor coupled to a super�uid, with the obvious complication of
an extra scalar �eld and extra gauge �elds. Our �rst aim is to identify the region in parameter
space where magnetic �ux tubes form, therefore we need to compute the three critical magnetic
�elds Hc, Hc1 and Hc2. The critical �eld Hc follows again from a simple comparison of Gibbs
free energies of the homogeneous phases. The critical �eldHc2 is calculated in the same manner
as for the simpler system, by linearizing the equations of motion. Once again, onlyHc1 requires
a fully numerical calculation, except for approximations that are valid only in the deep type-
II regime. Therefore, as a �rst location for the transition from type-I to type-II behavior
we compute Hc and Hc2 and determine the point at which Hc = Hc2. In a one-component
system, this yields a critical value for the Ginzburg-Landau parameter κ = κc = 1/

√
2, where

κ is the ratio of magnetic penetration depth and coherence length. However, we have already
seen that due to the coupling to other �elds, this is not exact anymore. Note that we have
now to distinguish di�erent coherence lengths and London penetration lengths for the various
condensates and magnetic �elds.
This makes the situation more complicated in a color superconductor, which was already

realized in Refs. [141, 142], where it was pointed out that various criteria for type-I/type-II
behavior do not coincide, i.e., do not yield a single critical κ, as we have seen in the two-
component system as well. Moreover, in our present three-component system there is not
simply a single superconducting phase and critical �elds for the transition to the normal-
conducting phase. Instead, we need to compute the critical �elds for all possible transitions
between the CFL, 2SC, and unpaired phases. The strategy is thus as follows. Analogously
to the neutron-proton system, we start with the homogeneous phases to construct a phase
diagram at nonzero external magnetic �eld H. This corresponds to computing the various
critical �eldsHc. Then, we compute the critical �eldsHc2, and the intersection whereHc = Hc2

will give us an idea (although not a precise location, because of the multicomponent structure)
for the transition between type-I and type-II behavior. The resulting phase diagram is then
used as a foundation for the calculation of the �ux tube pro�les and energies, which is done
in the type-II regime. For the color-superconducting system, we will not attempt to resolve
the details of the type-I/type-II transition region as we did before. Instead we will focus on
possible types of magnetic defects in the CFL and the 2SC phase.
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19. Homogeneous Phases

In this chapter we classify the homogeneous phases without magnetic �eld, as we have done
it in similar fashion for the two-component system. Once again, we write the complex scalar
�elds as

φi =
ρi√

2
eiψi , (19.0.1)

where the index i is now extended to i = 1, 2, 3. In this section, we only consider homogeneous
solutions, ∇ρi = ∇ψi = 0 (then, the phases ψi do not play any role). In this case, our ansatz
for the gauge �elds is A3 = xB3ey, Ã8 = xB̃8ey, such that the magnetic �elds, given by the
curl of the corresponding vector potentials, are homogeneous and parallel to the externally
applied �eld H. Then, the potential from Eq. (18.3.7) becomes

U0 =
B2

3

2
+
B̃2

8

2
− µ2

2
(ρ2

1 + ρ2
2 + ρ2

3) +
λ

4
(ρ4

1 + ρ4
2 + ρ4

3)− h

2
(ρ2

1ρ
2
2 + ρ2

1ρ
2
3 + ρ2

2ρ
2
3)

+
x2ρ2

1

2

(g
2
B3 + g̃8B̃8

)2
+
x2ρ2

2

2

(
−g

2
B3 + g̃8B̃8

)2
+
x2ρ2

3

2

(
2g̃8B̃8

)2
. (19.0.2)

The equations of motion for A3 and Ã8 are

0 = ρ2
1

(g
2
B3 + g̃8B̃8

)
− ρ2

2

(
−g

2
B3 + g̃8B̃8

)
, (19.0.3a)

0 = ρ2
1

(g
2
B3 + g̃8B̃8

)
+ ρ2

2

(
−g

2
B3 + g̃8B̃8

)
+ 4ρ2

3g̃8B̃8 , (19.0.3b)

and the equations of motion for the condensates ρi are

0 = ρ1

[
λρ2

1 − h(ρ2
2 + ρ2

3)− µ2 + x2
(g

2
B3 + g̃8B̃8

)2
]
, (19.0.4a)

0 = ρ2

[
λρ2

2 − h(ρ2
1 + ρ2

3)− µ2 + x2
(
−g

2
B3 + g̃8B̃8

)2
]
, (19.0.4b)

0 = ρ3

[
λρ2

3 − h(ρ2
1 + ρ2

2)− µ2 + x2
(

2g̃8B̃8

)2
]
. (19.0.4c)

Since in this section the condensates and magnetic �elds are constant in space by assumption,
the terms proportional to x2 and the x-independent terms in Eqs. (19.0.4) must vanish sep-
arately. As a consequence, the terms proportional to x2 in the potential (19.0.2) vanish as
well. This must be the case because otherwise the free energy, obtained by integrating U0 over
space, would become in�nite. We conclude that any given combination of nonzero condensates
yields a condition for the magnetic �elds. We discuss all possible combinations now.

• If all three condensates are nonzero, Eqs. (19.0.4) show that B3 = B̃8 = 0 [which trivially
ful�lls Eqs. (19.0.3)]. This is the CFL solution, and Eqs. (19.0.4) yield

ρ2
1 = ρ2

2 = ρ3
3 =

µ2

λ(1− 2η)
≡ ρ2

CFL , (19.0.5)
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where we have abbreviated the ratio of the cross-coupling constant to the self-coupling
constant by

η ≡ h

λ
. (19.0.6)

To ensure the boundedness of the potential, we must have η < 0.5 (including all neg-
ative values), which also ensures ρ2

CFL ≥ 0. With the weak-coupling results from Eq.
(18.3.8), η = −0.5. The Gibbs free energy density of the homogeneous CFL phase is
now computed with the help of Eqs. (18.3.11) and (19.0.2),

GCFL

V
= −H

2 cos2 θ

2
+ UCFL , (19.0.7)

where

UCFL = − 3µ4

4λ(1− 2η)
. (19.0.8)

• If exactly one of the condensates vanishes, we also have B3 = B̃8 = 0 in all three
possible phases. The two non-vanishing condensates are identical, ρ2 = µ2/[λ(1 − η)],
and U0 = −µ4/[2λ(1 − η)]. We thus conclude that these phases are preferred over the
CFL phase if and only if η < −1, for arbitrary magnetic �eld H. However, we shall see
that in this regime the 2SC phase or the completely unpaired phase (to be discussed
next) are preferred. Therefore, the phases in which exactly one of the three condensates
is zero never occur and we will ignore them from now on.

• If two of the condensates vanish, we have the following possible phases:

(i) ρ1 = ρ3 = 0 ("2SCud"). If we label the three color components as usual by (red,
green, blue), this phase corresponds to Cooper pairing of red and blue up quarks
with blue and red down quarks, respectively. In this case, Eqs. (19.0.3) yield a
relation between B3 and B̃8, and Eq. (19.0.4b) yields the value for the nonzero
condensate,

ρ2
2 =

µ2

λ
≡ ρ2

2SC . (19.0.9)

Eliminating one of the magnetic �elds, say B3 in favor of B̃8, in the Gibbs free
energy (18.3.11) and minimizing the resulting expression with respect to B̃8 yields

B3 =

√
3 sin θ cos θ

1 + 3 cos2 θ
H , B̃8 =

3 sin θ cos2 θ

1 + 3 cos2 θ
H , (19.0.10)

where we have used Eq. (18.3.5). The Gibbs free energy density becomes

G2SCud

V
= −H

2 cos2 θ

2
− H2

2

3 sin2 θ cos2 θ

1 + 3 cos2 θ
+ U2SC , (19.0.11)

where

U2SC = −µ
4

4λ
. (19.0.12)

Up to a relabeling of the colors because of the chosen �avor convention which
corresponds to Q = diag(1/3, 1/3,−2/3), this phase is the phase commonly termed
2SC in the literature. In the 2SC phase, we expect a Meissner e�ect for a certain
combination of the photon and the eighth gluon, just like in CFL [231]. However,
the result (19.0.11) shows that both B3 and B̃8 are nonzero. The reason is that
the 2SC phase has a di�erent mixing angle. Since we are interested in comparing
the free energies of the di�erent phases, we obviously have to work within the same
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basis for all phases. The use of the CFL mixing angle, together with the chosen
convention for the charge matrix Q, therefore leads to a seemingly complicated
result for the 2SC phase. The mixing angle of the 2SC phase can be recovered from
these results by writing the Gibbs free energy (19.0.11) in the same form as the one
for CFL (19.0.7),

G2SCud

V
= −H

2 cos2 ϑ1

2
+ U2SC , (19.0.13)

where

cos2 ϑ1 =
3g2

3g2 + e2
. (19.0.14)

(In Chap. 21, where we discuss defects in 2SC, we shall use an additional rotation
given by ϑ2, hence the notation ϑ1.)

(ii) ρ2 = ρ3 = 0 ("2SCus"). This phase corresponds to green/blue and up/strange
pairing. The only di�erence to the 2SCud phase is that B3 has opposite sign, i.e.,
now B3 and B̃8 are anti-parallel, not parallel. In particular, the Gibbs free energies
are identical, because B3 enters quadratically. This is expected since we work in
the massless limit and thus interchanging d with s quarks should not change any
physics.

(iii) ρ1 = ρ2 = 0 ("2SCds"). This phase corresponds to red/green and down/strange
pairing and is genuinely di�erent from the usual 2SC phase � even in the massless
limit � because now quarks with the same electric charge pair. In this case, we �nd
B3 = B̃8 = 0, ρ2

3 = µ2/λ, and

G2SCds

V
= −H

2 cos2 θ

2
+ U2SC . (19.0.15)

Without magnetic �eld, these three phases have the same free energy and are preferred
over the CFL phase for η < −1. In the presence of a magnetic �eld, the Gibbs free energy
of the 2SCds phase is always larger than that of the 2SCud and 2SCus phases. Therefore,
we no longer need to consider the 2SCds phase and use the term 2SC for both 2SCud

and 2SCus in the present section. (In Chap. 21 we will come back to the de�nitions of
2SCud and 2SCus because we will discuss domain walls that interpolate between these
two order parameters.)

• Finally, in the completely unpaired phase ("NOR"), where ρ1 = ρ2 = ρ3 = 0, we �nd

B3 = 0 , B̃8 = H sin θ , (19.0.16)

and the Gibbs free energy density is

GNOR

V
= −H

2

2
. (19.0.17)
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Figure 19.0.1.: Left panel: phases in the plane of external magnetic �eld H and ratio of cross-coupling
to self-coupling η = h/λ. The solid lines are the critical �elds Hc from Eq. (19.1.1) for two di�erent
values of the strong coupling constant g. The vertical dashed line indicates the weak-coupling value
η = −0.5. The horizontal scale terminates at the maximum value η = 0.5, beyond which the Ginzburg-
Landau potential becomes unbounded from below.
Right panel: phases for η = −0.5. The critical point where all three phases meet is given by
(g,H) = (2e/

√
15, 3/

√
10µ2/

√
λ). For g → 0, the critical �eld between CFL and NOR phases goes to√

3/2µ2/
√
λ. The dashed lines are the critical �elds for g � e.

19.1. Critical Fields Hc

With these results one can easily compute the critical magnetic �elds of the phase transitions
between CFL, 2SC, and NOR phases by comparing the corresponding free energies,

H2
c

µ4/λ
=



3g2 + e2

2e2
2SC/NOR

3

2(1− 2η)

3g2 + 4e2

4e2
CFL/NOR

1 + η

1− 2η

(3g2 + e2)(3g2 + 4e2)

9e2g2
2SC/CFL

. (19.1.1)

We plot the critical �elds in the phase diagrams of Fig. 19.0.1. In the chosen units for the
magnetic �eld, the phase structure only depends on η and the strong coupling constant g
(the electromagnetic coupling constant e is held �xed). This will no longer be true when we
discuss the type-I/type-II transition in the subsequent chapters. This transition depends also
on λ separately, i.e., on the ratio Tc/µq. To avoid a multi-dimensional study of the parameter
space, we shall thus later restrict ourselves to the weak-coupling results of the Ginzburg-
Landau parameters, which imply η = −0.5, and extrapolate these results to large values of g.
This is already done in the right panel of Fig. 19.0.1, which means that the left panel of this
�gure is the only plot where η is kept general.
We see that at zero magnetic �eld and weak coupling CFL is preferred over 2SC, which is

well known and remains true if a small strange quark mass together with the conditions of
color and electric neutrality are taken into account [233]. If η is kept general, there is a regime
where 2SC is preferred, even for vanishing magnetic �eld. This can be understood within
the three-component picture, having in mind that η = h/λ with λ > 0: a negative coupling
h implies repulsion between the three components. If this repulsion is su�ciently large, the
condensates no longer "want" to coexist and the 2SC phase becomes preferred.
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In the presence of a magnetic �eld H, the Gibbs free energy can be lowered by admitting
this �eld into the system. This situation becomes slightly more complicated due to the rotated
electromagnetism. In CFL, part of the magnetic �eld is already admitted because it is B̃8,
not B, that is completely expelled from the superconductor. Admitting a larger B �eld can
be achieved by breaking all condensates (now the entire applied magnetic �eld penetrates,
H = B, but all condensation energy is lost) or by �rst going to the "intermediate" 2SC phase,
where some condensation energy is maintained. Both scenarios are realized, as the right panel
shows: for small values of the strong coupling constant, the CFL phase is directly superseded
by the unpaired phase, while for all g > 2e/

√
15 the 2SC phase appears between CFL and

NOR.

19.2. Critical Fields Hc2

Next, we compute the critical �eld Hc2 for all three phase transitions given in Eq. (19.1.1). We
follow the standard procedure as we did for the single superconductor and the two-component
system, to compute these �elds , which becomes slightly more complicated for the CFL/2SC
transition, where we can follow the two-component treatment. The equations of motion for
the complex �elds are computed from Eq. (18.3.7),[(

∇+ i
g

2
A3 + ig̃8Ã8

)2
+ µ2 − 2λ|φ1|2 + 2h(|φ2|2 + |φ3|2)

]
φ1 = 0 , (19.2.1a)

[(
∇− ig

2
A3 + ig̃8Ã8

)2
+ µ2 − 2λ|φ2|2 + 2h(|φ1|2 + |φ3|2)

]
φ2 = 0 , (19.2.1b)

[(
∇− 2ig̃8Ã8

)2
+ µ2 − 2λ|φ3|2 + 2h(|φ1|2 + |φ2|2)

]
φ3 = 0 . (19.2.1c)

We discuss the three phase transitions separately.

• The simplest case is the transition between 2SC and NOR, where φ1 = φ3 = 0 in both
phases. We linearize in φ2 and set A3 = 0 because B3 = 0 in the unpaired phase. This
leaves the single equation [(

∇+ ig̃8Ã8

)2
+ µ2

]
φ2 = 0 . (19.2.2)

With the usual argument [86] this gives a maximal �eld B̃8 = −µ2/g̃8. Since in the
normal phase B̃8 = H sin θ, the critical �eld is

Hc2 =
3µ2

e
(for 2SC/NOR) . (19.2.3)

At the 2SC/NOR transition, the system is an ordinary single-component superconductor,
and we expect an ordinary type-I/type-II transition at exactly Hc = Hc2. This can be
con�rmed by the numerical calculation of Hc1 for ordinary 2SC �ux tubes, see Fig. 22.0.1
in Chap. 22. Therefore, using Eq. (19.1.1) and the weak-coupling expression for µ from
Eq. (18.3.8), 2SC �ux tubes appear for

Tc
µq

>

√
7ζ(3)

12
√

3π2

√
g2 +

e2

3
' 0.014

√
g2 +

e2

3
. (19.2.4)

This standard type-I/type-II transition is expected to occur at κ2
2SC = 1/2. As a check,
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we may thus de�ne the corresponding Ginzburg-Landau parameter a posteriori,

κ2
2SC =

72π4

7ζ(3)

3

g2 + e2

3

T 2
c

µ2
q

, (19.2.5)

which is in exact agreement with Eq. (112) of Ref. [210].

• For the transition between CFL and NOR phases we linearize in all three condensates
and set A3 = 0, because in the phase above Hc2 all condensates and B3 vanish. This
leads to the three equations[(

∇+ ig̃8Ã8

)2
+ µ2

]
φ1 = 0 ,

[(
∇+ ig̃8Ã8

)2
+ µ2

]
φ2 = 0 , (19.2.6)[(

∇− 2ig̃8Ã8

)2
+ µ2

]
φ3 = 0 .

The �rst two equations give a maximal �eld B̃8 = −µ2/g̃8, which we use to compute
Hc2, such that at least one of the condensates is nonzero below Hc2. This de�nition of
Hc2 for the CFL/NOR transition agrees with Ref. [141], and we �nd the same critical
�eld as for the 2SC/NOR transition,

Hc2 =
3µ2

e
(for CFL/NOR) . (19.2.7)

As an estimate for the location of the type-I/type-II transition we again use the point
Hc = Hc2, although in this case the critical region is expected to look more complicated
because CFL is a multicomponent system. We �nd that CFL �ux tubes appear (if the
next phase up in H is the NOR phase) for

Tc
µq

>

√
7ζ(3)

24π2

√
g2 + 4

3e
2

√
1− 2η

' 8.7× 10−3

√
g2 +

4

3
e2 , (19.2.8)

where, for the numerical estimate, η = −0.5 is used. As Fig. 19.0.1 demonstrates, the
CFL/NOR transition is only relevant for g < 2e/

√
15 ' 0.16, where one would expect the

weak-coupling results to be applicable. Hence, in this regime, Tc/µq ∝ exp(−const/g) is
exponentially suppressed and it seems very unlikely that the type-II regime is realized.

• For the transition between CFL and 2SC, without loss of generality, the 2SCud phase is
used. In this phase, φ1 = φ3 = 0 and thus we can linearize in φ1 and φ3 (but not in
φ2). Moreover, in 2SCud we have gA3 = 2g̃8Ã8, which follows from Eq. (19.0.10). This
relation is used to eliminate A3 and we arrive at the two equations[(

∇± 2ig̃8Ã8

)2
+ µ2 + 2h|φ2|2

]
φ1/3 = 0 , (19.2.9)

and the homogeneous solution for the second condensate |φ2|2 = µ2/(2λ). With Ã8 =
xB̃8ey this becomes

µ2(1 + η)φ1/3 =
[
−∆∓ 2i(2g̃8B̃8)x∂y + (2g̃8B̃8)2x2

]
φ1/3 , (19.2.10)

where ∆ = ∂2
x + ∂2

y + ∂2
z . As for the standard scenario, this equation has the form of the
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Schrödinger equation for the harmonic oscillator, and we can compute the critical �eld
in the usual way from the lowest eigenvalue [3, 86]. The result is

Hc2 =
2µ2(1 + η)(3g2 + e2)

3eg2
(for CFL/2SC) . (19.2.11)

Again, we can determine the point Hc = Hc2, which suggests type-II behavior for

Tc
µq

>

√
14ζ(3)

24π2
√

1− 2η
√

1 + η

g
√

3g2 + 4e2√
3g2 + e2

' 0.017g

√
3g2 + 4e2

3g2 + e2
. (19.2.12)

If we use the critical temperature for CFL from perturbative calculations [15, 232],

Tc = 21/3 e
γ

π
∆0 , (19.2.13)

with the Euler-Mascheroni constant γ and the zero-temperature gap

∆0 = µqb exp

(
− 3π2

√
2g

)
, b ≡ 512π4

(
2

g2Nf

)5/2

e−
π2+4

8 2−1/3 , (19.2.14)

and extrapolate the resulting ratio Tc/µq to large values of the coupling, we �nd that
the criterion (19.2.12) for type-II behavior is not ful�lled for any g. Thus, if we take Eq.
(19.2.12) as the relevant criterion, we have to assume that strong-coupling e�ects, not
captured by the extrapolation of the weak-coupling result, drive Tc su�ciently large to
allow for type-II behavior. As model calculations suggest, Tc/µq & 0.06 [choosing g = 3.5
in Eq. (19.2.12), which is plausible for interiors of neutron stars] is not unrealistically
large. We note, however, that the multicomponent nature of CFL suggests that �ux tubes
can appear for smaller values of Tc/µq due to a possible �rst-order onset of �ux tubes that
increases the region in the phase diagram where a lattice of �ux tubes is preferred [3].
The exact calculation of the modi�ed critical Tc/µq would require a numerical study
of the �ux tube lattice, and it is conceivable that even the extrapolated weak-coupling
result allows for type-II behavior.
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20. CFL Flux Tubes

We now turn to the �ux tube solutions in the CFL phase. The �rst step is the formulation of the
equations of motion in the most general way (within our diagonal ansatz for the gap matrix).
This allows us to discuss the various possible �ux tube con�gurations, compare their pro�les
and free energies, and determine the energetically most preferred �ux tube con�guration by
computing the critical �elds Hc1.

20.1. Equations of Motion and Flux Tube Energy for CFL

Having in mind a single, straight �ux tube, we assume cylindrical symmetry and work in
cylindrical coordinates r = (r, ϕ, z). We write the modulus and the phase of the condensates
from Eq. (19.0.1) as (i = 1, 2, 3),

ρi(r) = fi(r)ρCFL , ψi(r) = niϕ , (20.1.1)

with the CFL condensate in the homogeneous phase ρCFL from Eq. (19.0.5) and dimensionless
functions fi(r). Single-valuedness of the order parameter requires ni ∈ Z. These are the
winding numbers, for which there is a priori no additional condition, in particular they can be
chosen independently of each other. We will see that this choice determines the properties of
the �ux tube. For the gauge �elds, we make the ansatz

A3(r) =
a3(r)

r
eϕ , Ã8(r) =

ã8(r)

r
eϕ , (20.1.2)

with the dimensionless functions a3(r) and ã8(r). This yields magnetic �elds in the z direction,

B3(r) =
1

r

∂a3

∂r
ez , B̃8(r) =

1

r

∂ã8

∂r
ez . (20.1.3)

After eliminating µ in favor of ρCFL with the help of Eq. (19.0.5), we can write the potential
(18.3.7) as

U0 = UCFL + U	 , (20.1.4)

with UCFL from Eq. (19.0.8) and the free energy density of the �ux tube

U	 =
λρ4

CFL

2

{
λ(a′23 + ã′28 )

R2
+ f ′21 + f ′22 + f ′23 +

(1− f2
1 )2

2
+

(1− f2
2 )2

2
+

(1− f2
3 )2

2

−η
[
(1− f2

1 )(1− f2
2 ) + (1− f2

1 )(1− f2
3 ) + (1− f2

2 )(1− f2
3 )
]

+f2
1

N 2
1

R2
+ f2

2

N 2
2

R2
+ f2

3

N 2
3

R2

}
, (20.1.5)

where we have introduced the new dimensionless coordinate

R = r
√
λ ρCFL , (20.1.6)
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have denoted derivatives with respect to R by a prime, and have abbreviated

N1 ≡ n1 +
g

2
a3 + g̃8ã8 , N2 ≡ n2 −

g

2
a3 + g̃8ã8 , N3 ≡ n3 − 2g̃8ã8 . (20.1.7)

Consequently, the equations of motion for the gauge �elds become

a′′3 −
a′3
R

=
g

2λ

(
f2

1N1 − f2
2N2

)
, (20.1.8a)

ã′′8 −
ã′8
R

=
g̃8

λ

(
f2

1N1 + f2
2N2 − 2f2

3N3

)
, (20.1.8b)

and the equations of motion for the condensates are

0 = f ′′1 +
f ′1
R

+ f1(1− f2
1 )− f1

N 2
1

R2
− ηf1(2− f2

2 − f2
3 ) , (20.1.9a)

0 = f ′′2 +
f ′2
R

+ f2(1− f2
2 )− f2

N 2
2

R2
− ηf2(2− f2

1 − f2
3 ) , (20.1.9b)

0 = f ′′3 +
f ′3
R

+ f3(1− f2
3 )− f3

N 2
3

R2
− ηf3(2− f2

1 − f2
2 ) . (20.1.9c)

The boundary values of the scalar �elds are as follows. Far away from the �ux tube, the
system is in the CFL phase, such that fi(∞) = 1. In the origin, the scalar �elds vanish if
the respective component has nonzero winding, fi(0) = 0 if ni 6= 0. Otherwise, we require
f ′i(0) = 0 as a boundary condition, and fi(0) must be determined dynamically. For the gauge
�elds, we use Eqs. (20.1.8) to determine their values at in�nity. Assuming a′3(∞) = a′′3(∞) =
ã′8(∞) = ã′′8(∞) = 0, we �nd

a3(∞) =
n2 − n1

g
, ã8(∞) =

2n3 − n1 − n2

6g̃8
. (20.1.10)

In the origin we then have to require a3(0) = a8(0) = 0, which follows from the equations of
motion evaluated for small R. We solve the coupled di�erential equations (20.1.8) and (20.1.9)
numerically with the help of a successive over-relaxation method to obtain the pro�les of the
�ux tubes. The �ux tube energy F	 per unit length is then obtained by inserting the result
into Eq. (20.1.5) and integrating over space. We write the result as

F	
L

=
1

L

ˆ
d3rU	 = πρ2

CFL I	 , (20.1.11)

where L is the length of the �ux tube in the z-direction, and

I	 ≡
ˆ ∞

0
dRR

[
λ(a′23 + ã′28 )

R2
+

1− f4
1

2
+

1− f4
2

2
+

1− f4
3

2
− η(3− f2

1 f
2
2 − f2

1 f
2
3 − f2

2 f
2
3 )

]
,

(20.1.12)

where partial integration and the equations of motion (20.1.9) have been used.

20.2. Critical Field Hc1

To determine the critical magnetic �eld Hc1 we need to compute the Gibbs free energy of the
CFL phase in the presence of a �ux tube. We insert the energy density U0 from Eq. (20.1.4)
with the notation introduced in Eq. (20.1.11) into the general form of the Gibbs free energy
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(18.3.11). Furthermore, we use
ˆ
d3r B̃8 = 2πLã8(∞) , (20.2.1)

which follows directly from the form of the magnetic �eld in Eq. (20.1.3) and the boundary
condition ã8(0) = 0. Recall that we have de�ned B̃8 = B̃8ez, i.e., B̃8 is the z-component, not
the modulus, of B̃8. Therefore, H · B̃8 = HB̃8 with H being non-negative by assumption and
the sign of B̃8 indicating whether B̃8 is aligned or anti-aligned with H.
This yields the Gibbs free energy density

G

V
= −H

2 cos2 θ

2
+ UCFL +

L

V

[
F	
L
− 2πã8(∞)H sin θ

]
. (20.2.2)

It is favorable to place a single �ux tube into the system if this reduces the free energy of
the homogeneous CFL phase (19.0.7), i.e., if the expression in the square brackets becomes
negative. By de�nition, this occurs at the critical magnetic �eld Hc1. Writing this critical
�eld in the same units as the critical �elds in Fig. 19.0.1, we �nd

Hc1

µ2/
√
λ

=
(3g2 + 4e2) I	

4e
√
λ(1− 2η)(n1 + n2 − 2n3)

, (20.2.3)

where we have used Eqs. (18.3.2), (18.3.5), (19.0.5), (20.1.10), and (20.1.11). Note that the
critical �eld is proportional to the �ux tube energy per winding number n1 + n2 − 2n3. In
general, the expression on the right-hand side can be positive or negative, but we have assumed
H to be positive and hence Hc1 must be positive. We have 1 − 2η > 0 for all allowed values
of η and I	 > 0 [which we always �nd to be the case, although it is not manifest from Eq.
(20.1.12) since fi(r) > 1 is possible]. Therefore, the winding numbers must be chosen such
that n1 + n2 − 2n3 > 0, which can be understood as follows. If n1 + n2 − 2n3 > 0, we have
ã8(∞) < 0 because of Eq. (20.1.10). Hence, due to ã8(0) = 0 and Eq. (20.1.3), and assuming
ã8(r) to be a monotonic function of r, B̃8 is anti-parallel to H for all r. Therefore, B̃8 sin θ,
which is the contribution to B, is parallel to H because sin θ < 0, as it should be.

20.3. Asymptotic Behavior

It is useful to determine the point at which the long-range interaction between two �ux tubes
changes from repulsive to attractive in color superconductors as well. To compute the interac-
tion between �ux tubes in this more complicated setting, we �rst need to discuss the asymptotic
behavior of the �ux tube pro�les. Far away from the center of the �ux tube, i.e., for large R,
we use the ansatz for the gauge �elds a3(R) = a3(∞) + Rv3(R), ã8(R) = ã8(∞) + Rṽ8(R)
and for the scalar �elds fi(R) = 1 + ui(R) (i = 1, 2, 3). We assume n1 + n2 + n3 = 0. This is
equivalent to a vanishing baryon circulation far away from the �ux tube, as will be discussed
in detail in Sec. 20.5.
We linearize the equations of motion (20.1.8) and (20.1.9) in the functions v3, ṽ8, u1, u2, u3.

The equations for the gauge �elds then yield decoupled equations for v3 and ṽ8,

v′′3 +
v′3
R
'

(
1 +

R2

κ2
3

)
v3

R2
, (20.3.1a)

ṽ′′8 +
ṽ′8
R
'

(
1 +

R2

κ̃2
8

)
ṽ8

R2
, (20.3.1b)
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where we have used Eq. (20.1.10), and where

κ2
3 ≡

2λ

g2
, κ̃2

8 ≡
λ

6g̃2
8

. (20.3.2)

We can see that the two gauge �elds come with di�erent Ginzburg-Landau parameter, since
their magnetic penetration length depends on the charge, which is di�erent. The solutions of
these equations are

v3(R) = c3K1(R/κ3) , (20.3.3a)

ṽ8(R) = c̃8K1(R/κ̃8) , (20.3.3b)

where Kn are the modi�ed Bessel functions of the second kind and c3 and c̃8 are integration
constants which can only be determined numerically. By canceling the coherence length from
the two di�erent κ parameters with the one of the dimensionless radial variable R, we �nd
the expected exponential behavior of the gauge �elds with the characteristic scale set by the
penetration depth. The linearized equations for the scalar �elds are

0 ' u′′1 +
u′1
R
− 2u1 + 2η(u2 + u3) , (20.3.4a)

0 ' u′′2 +
u′2
R
− 2u2 + 2η(u1 + u3) , (20.3.4b)

0 ' u′′3 +
u′3
R
− 2u3 + 2η(u1 + u2) . (20.3.4c)

We solve these coupled equations as in the two-component system by diagonalizing the mixing
matrix. Hence, we �rst write them as

∆u = Mu , M ≡ 2

 1 −η −η
−η 1 −η
−η −η 1

 , u ≡

 u1

u2

u3

 , (20.3.5)

where ∆ is the Laplacian in cylindrical coordinates. Then, we diagonalize this system of
equations,

∆ũ = (U−1MU)ũ , (20.3.6)

with ũ = U−1u and

U =

 1 −1 −1
1 0 1
1 1 0

 , U−1MU =

 ν1 0 0
0 ν2 0
0 0 ν2

 , (20.3.7)

where the eigenvalues of M are denoted by

ν1 ≡ 2(1− 2η) , ν2 ≡ 2(1 + η) . (20.3.8)

Solving the uncoupled equations and then undoing the rotation yields the asymptotic solutions
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u1(R) = d1K0(
√
ν1R)− (d2 + d3)K0(

√
ν2R) , (20.3.9a)

u2(R) = d1K0(
√
ν1R) + d3K0(

√
ν2R) , (20.3.9b)

u3(R) = d1K0(
√
ν1R) + d2K0(

√
ν2R) , (20.3.9c)

with integration constants d1, d2, d3. From Fig. 19.0.1 we know that the CFL phase only exists
for −1 < η < 0.5. For values outside that regime the 2SC phase is preferred (large negative
values of η), or the Ginzburg-Landau potential is unbounded from below (large positive values).
Therefore, both eigenvalues ν1 and ν2 are positive in the relevant regime and the square roots
in Eqs. (20.3.9) are real.
We have thus found that all gauge �elds and scalar �elds fall o� exponentially for R→∞,

which guarantees the �niteness of the free energy of the �ux tube con�guration and justi�es
the boundary conditions used above for the gauge �elds. This is not the case if the baryon
circulation is nonzero, n1 +n2 +n3 6= 0, where, as suggested from ordinary super�uid vortices,
at least one of the �elds falls o� with a power law [222].

20.4. Interaction Between Flux Tubes

We can now use the asymptotic solutions to compute the interaction between two �ux tubes at
large distances. This calculation has been explained in detail for a two-component system in
App. E, based on well-known approximations for a one-component superconductor [184]. The
extension to the present case with three scalar components and two gauge �elds is straightfor-
ward, although somewhat tedious. The interaction energy F	int(R0) between two �ux tubes,
say �ux tube (a) and �ux tube (b), whose centers are in a distance R0 from each other, is
again de�ned as

F (a)+(b) = F (a) + F (b) + F	int(R0) , (20.4.1)

where F (a)+(b) is the total free energy of the two �ux tubes, F (a) is the free energy of �ux tube
(a) in the absence of �ux tube (b), and vice versa for F (b). A brief sketch of the calculation is
given in appendix H. The result for the interaction energy per unit length is

F	int

L
= 2πρ2

CFL

[κ2
3g

2c2
3

2
K0(R0/κ3) + 6κ̃2

8g̃
2
8 c̃

2
8K0(R0/κ̃8)− 3d2

1K0(
√
ν1R0)

−2(d2
2 + d2

3 + d2d3)K0(
√
ν2R0)

]
. (20.4.2)

This is in agreement with Eq. (46) in Ref. [141], where the term proportional toK0(R0/κ3) was
absent because only �ux tubes without B3-�ux were considered. There are positive (repulsive)
contributions from the gauge �elds and negative (attractive) contributions from the scalar
�elds. For η < 0 we have ν2 < ν1, and thus the long-distance behavior of the attractive
contribution is dominated byK0(

√
ν2R0) [note that 2(d2

2+d2
3+d2d3) = (d2+d3)2+d2

2+d2
3 > 0].

Since at weak coupling η = −0.5, we shall focus on this case. For the repulsive part we notice
that always κ3 > κ̃8, such that, if there is a nonzero B3-�ux, the dominant contribution is given
by K0(R0/κ3). Then, the interaction is attractive for

√
ν2 < 1/κ3. If the B3-�ux vanishes,

the contribution containing κ3 does not exist and the interaction is attractive for
√
ν2 < 1/κ̃8.

Inserting the de�nitions for κ3 and κ̃8 from Eq. (20.3.2), we �nd that the interaction is repulsive
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for

Tc
µq

>



√
7ζ(3)

12π2
√

2(1 + η)

√
g2 +

4

3
e2 ' 0.025

√
g2 +

4

3
e2 for B3 = 0

√
7ζ(3)

12π2
√

2(1 + η)
g ' 0.025g for B3 6= 0

, (20.4.3)

where, for the numerical approximation, we have inserted the weak-coupling result η = −0.5.
We shall make use of these results in our discussion of the phase diagram in Chap. 22.

20.5. Baryon Circulation and Magnetic Flux

In general, the �ux tubes described by Eqs. (20.1.8) and (20.1.9) have nonzero baryon cir-
culation Γ and nonzero magnetic �uxes Φ3 and Φ̃8. These three quantities are used in the
following to discuss the properties of the possible �ux tube con�gurations.
The baryon circulation is computed by inserting our ansatz for the order parameter into the

super�uid velocity (18.2.4) to obtain

vs =
1

6µq

ρ2
1n1 + ρ2

2n2 + ρ2
3n3 + g̃8ã8(ρ2

1 + ρ2
2 − 2ρ2

3) + g
2a3(ρ2

1 − ρ2
2)

ρ2
1 + ρ2

2 + ρ2
3

eθ
r
, (20.5.1)

where we have used u2 = 1/3. Then, the baryon circulation around a CFL �ux tube along a
circle at in�nity becomes

Γ =

˛
d` · vs =

π

3µq

n1 + n2 + n3

3
, (20.5.2)

where we have used that far away from the �ux tube the condensates assume their homogeneous
CFL values and become identical, ρ1 = ρ2 = ρ3. Consequently, the CFL �ux tube has
vanishing baryon circulation if the three winding numbers add up to zero. In particular, the
gauge �elds have dropped out of the result. This is di�erent from an ordinary �ux tube in a
single-component superconductor, where the circulation can only vanish due to a cancellation
between the winding number and the gauge �eld, as can be seen by setting ρ1 = ρ2 = 0 in
Eq. (20.5.1).
The magnetic �uxes are

Φ3 =

˛
d` ·A3 = 2πa3(∞) =

2π

g
(n2 − n1) , (20.5.3a)

Φ̃8 =

˛
d` · Ã8 = 2πã8(∞) =

π

g̃8

2n3 − n1 − n2

3
. (20.5.3b)

We can now classify all possible �ux tubes by their three winding numbers and use the baryon
circulation and the color-magnetic �uxes to understand their main properties. In Table 20.5.1
the most important con�gurations that are expected to appear in CFL in the presence of an
externally imposed rotation and/or an externally imposed magnetic �eld are listed. One point
of this table is to demonstrate that the CFL line defects considered so far in the literature
and the new con�gurations discussed here are all de�ned by a particular choice of the triple
of winding numbers. (We recall that the three-component nature of our system is a conse-
quence of the diagonal ansatz of the gap matrix. In principle, more components might appear
through non-diagonal gap matrices, which would induce additional color magnetic �elds. To
our knowledge, such con�gurations have not been studied in the literature.)
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CFL line defect (n1, n2, n3) Γ [π/3µq] Φ3 [2π/g] Φ̃8 [π/g̃8]

T111 (global vortex [234]) (n, n, n) n 0 0

T001 (semi-super�uid vortex, "M1" [221]) (0, 0, n)
n

3
0

2n

3

T110 (semi-super�uid vortex, "M2" [221]) (n, n, 0)
2n

3
0 −2n

3

T112 (magnetic �ux tube [141]) (n, n,−2n) 0 0 −2n

T101 (magnetic �ux tube) (n, 0,−n) 0 −n −n

Table 20.5.1.: Line defects in CFL, classi�ed by the winding numbers of the three components of the
order parameter, n ∈ Z, from which baryon number circulation Γ and color-magnetic �uxes Φ3 and
Φ̃8 are obtained.

If an external rotation is applied to CFL, vortices with nonzero baryon circulation must be
formed. This has been discussed in detail in the literature. For instance, it has been found
that the global vortex T111 (which has no color-magnetic �ux) is unstable with respect to decay
into three so-called semi-super�uid vortices [221,224]. Each semi-super�uid vortex has nonzero
color-magnetic �uxes, but a triple of vortices T100, T010, T001 (in an obvious generalization of
the notation introduced in Tab. (20.5.1)) is color neutral. We do not discuss rotationally
induced vortices here. We rather focus on con�gurations with vanishing baryon circulation Γ
and non-vanishing magnetic �ux Φ̃8,

n1 + n2 + n3 = 0 , (20.5.4a)

n1 + n2 − 2n3 > 0 . (20.5.4b)

These are �ux tubes that are formed in the type-II regime of CFL if an external (ordinary)
magnetic �eld is applied, but no rotation. In the interior of a neutron star, there is nonzero
rotation and a nonzero magnetic �eld, i.e., the total magnetic �ux and the total angular
momentum must be nonzero. We know that the rotational axis and the magnetic �eld axis
are, at least for some neutron stars, not aligned, otherwise we would not observe them as
pulsars. This suggests that, if there is a CFL core in the pulsar, magnetic �ux and baryon
circulation are not maintained by a single species of �ux tubes. Therefore, it appears that
purely magnetic �ux tubes, without circulation, are necessary.
Within the two constraints (20.5.4) we are interested in the energetically most preferred

�ux tube. In the previous literature, only the �ux tube T112 was discussed, but there are
obviously in�nitely many more possibilities to choose winding numbers that ful�ll the con-
straints (20.5.4). One can systematically study all possibilities: for instance, de�ne the length
(squared) of the vector (n1, n2, n3) by N2 ≡ n2

1 + n2
2 + n2

3, then choose an N0 and solve the
equations of motion for all vectors (n1, n2, n3) that ful�ll Eqs. (20.5.4) and whose length is
smaller than N0. This can easily be automatized with a computer. Such a calculation, in-
cluding the comparison of the free energies of the di�erent �ux tubes (for a certain choice of
the Ginzburg-Landau parameters) suggests that the obvious expectation is ful�lled: unless
we are in the type-I regime, where �ux tubes are never preferred, con�gurations with a small
"total winding" N tend to be favored. Therefore, we rather focus exclusively on the two
con�gurations with the smallest N , namely T112 and T101.
The price one has to pay for minimizing the total winding in T101 compared to T112 is a
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Figure 20.5.1.: Dimensionless condensates f1, f2, f3 and magnetic �elds B3 and B̃8 in units of µ
2/
√
λ for

the CFL �ux tubes T112 (left, where B3 = 0) and T101 (right) with n = 1 at the same coupling g = 0.1
and η = −0.5, Tc/µq ' 0.012, as a function of the dimensionless radial coordinate R = r

√
λ ρCFL. The

horizontal dashed line in the right panel marks the homogeneous 2SC condensate f2 =
√

1− 2η (f2
is rescaled with the CFL condensate). If we increase the winding, n1,−n3 → ∞, the condensate f2
approaches this value. The negative sign of B̃8 ensures that B̃8 sin θ ez is aligned with the magnetic
�eld H. At the relatively small value of g chosen here, the B3 �eld in the right panel falls o� on a
larger length scale than the B8 �eld, κ3/κ̃8 =

√
1 + 4e2/(3g2) ' 3.6.

nonzero B3 �eld. This gives an energy cost due to the B2
3 term in the free energy. (Presumably

this is the reason why this �ux tube has so far been ignored in the literature.) However, one
of the scalar �elds has zero winding and thus it is allowed to remain nonzero in the center
of the �ux tube. Moreover, the negative sign of the e�ective coupling constant h (using the
weak-coupling result) suggests that the scalar components interact repulsively with each other.
Hence, if ρ1 and ρ3 go to zero, ρ2 does not only not vanish, but is even expected to be enhanced
in the center of the �ux tube. This implies a gain in condensation energy and is exactly what
the numerical result will show.
There is another way of understanding the di�erence between T101 and T112. If, in the

con�guration T112, the winding n is increased, the �ux tube gets wider and the completely
unpaired phase in the center of the tube grows until eventually CFL has been replaced by
the NOR phase. As a consequence, Hc1 approaches Hc for n → ∞. (In the type-I regime,
Hc1 → Hc from above, and in the type-II regime from below.) This suggests that, in the
absence of �ux tubes, there is a transition from the CFL to the NOR phase. However, we have
seen in Chap. 19 that there is a parameter regime where CFL is, upon increasing H, replaced
by 2SC, not by the NOR phase. The con�guration T101 accounts for this transition: now, if
the winding n is sent to in�nity, the second component survives and one arrives in the 2SC
phase (more precisely, the 2SCud phase). This suggests that where there is a transition from
CFL to 2SC, the con�guration T101 should be favored.
We will thus refer to T112 as a "CFL �ux tube with a NOR core" and to T101 as a "CFL

�ux tube with a 2SC core", keeping in mind that this is a simplifying terminology for the
fully dynamically computed �ux tube pro�les. The pro�les of both con�gurations are shown
in Fig. 20.5.1 for the coupling constant g = 0.1 and the ratio Tc/µq at which the critical �elds
Hc1 of both con�gurations turn out to be identical. We shall compare the critical magnetic
�eld Hc1 for both kind of �ux tubes more systematically in Chap. 22.
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20.6. Physical Units and Numerical Estimates

As already pointed out in Refs. [141, 212], the critical magnetic �elds associated with the
(partial) breaking of color superconductivity are extremely large. The main reason is that
color superconductors � in an astrophysical environment where g � e � admit a large part of
the externally applied magnetic �eld because the massless gauge boson is almost identical to the
photon, with a small admixture of one of the gluons. Therefore, breaking the superconductor,
or partially breaking it through the formation of magnetic defects, requires an enormously
large ordinary magnetic �eld. In all our results, the magnetic �elds are given in units of
µ2/
√
λ, which is very convenient since it minimizes the number of parameters to be speci�ed.

To translate this into physical units we use the de�nitions (18.3.8) and �nd

µ2

√
λ
' 1.597× 1019(1− t)µ2

q400

Tc
µq
G , (20.6.1)

where t ≡ T/Tc and µq400 ≡ µq/(400 MeV). Although the ratio Tc/µq is exponentially small at
weak coupling, this is certainly not true in the interior of neutron stars. Therefore, Eq. (20.6.1)
shows that the critical magnetic �elds (for instance in Fig. 19.0.1) are much larger than the
measured magnetic �elds at the surface of the star, which are at most of the order of 1016 G.
Magnetic �elds in the interior that are several orders of magnitude larger seem unlikely, al-
though not inconceivable, given the estimate of maximal magnetic �elds in a quark matter
core of the order of 1020 G [235]. As we shall see later, the new �ux tube solution T101 has
a smaller critical �eld Hc1 compared to T112, but this decrease does not change the order of
magnitude estimate of the critical �eld strength.
We may also estimate the width of the �ux tubes in physical units. From the asymptotic

solutions of the CFL �ux tubes (20.3.9) and the de�nition of the dimensionless radial coordi-
nate R = r

√
λ ρCFL we read o� the coherence length ξ. This is the length scale on which all

three condensates approach their homogeneous values. Again using Eqs. (18.3.8) we �nd

ξ−1 =
√
λ ρCFL ' 10.76

Tc
µq

√
1− t µq400 fm−1 . (20.6.2)

For a numerical estimate, let us set Tc ' 40 MeV, such that Tc/µq ' 0.1. Judging from model
calculations and extrapolations from the perturbative result, this is a large, but conceivable,
critical temperature. Then, setting T = 0, we �nd that ξ ' 0.93 fm. The magnetic penetration
depth ` is obtained from the asymptotic solution (20.3.3). We have to distinguish between the
penetration depths of B3 and B̃8, which become identical only for g � e,

`−1
3 =

gρCFL√
2
' 0.37g

√
1− t µq400 fm−1 , (20.6.3a)

`−1
8 =

√
6g̃8ρCFL ' 0.37

√
g2 +

4e2

3

√
1− t µq400 fm−1 . (20.6.3b)

With T = 0 and g ' 3.5 we �nd `3 ' `8 ' 0.77 fm.
Finally, we write the energy of the �ux tube per unit length from Eq. (20.1.11) as

F	
L

= πρ2
CFLI	 ' 1.378× 109(1− t)µ2

q400 I	
erg

cm
, (20.6.4)

where I	 has to be computed numerically. For instance, with g = 3.5 and Tc/µq = 0.1 we �nd
for the T112 tube I	 ' 5.9 and for the T101 tube I	 ' 2.5, both with n = 1, in rough agreement
with the simple estimates used in Ref. [78], which yield F	/L ' 1.5× 1010µ2

q400 erg/cm.
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21. Magnetic Defects in the 2SC Phase

At �rst sight, color-magnetic �ux tubes in 2SC (= �ux tubes that approach the 2SC phase
at in�nity) are less exotic than their counterparts in CFL because 2SC is a single-component
superconductor, which means that only one of the scalar �elds in the Ginzburg-Landau po-
tential is nonzero. In an ordinary 2SC �ux tube, which we will refer to as1 S1, this component
has a nonzero winding and vanishes in the center of the tube [213]. One may ask, however,
whether the other two components are induced inside the �ux tube, similarly to the �ux tubes
discussed in Refs. [191, 192], or like the enhancement of the neutral condensate in the two-
component system. We shall investigate this possibility by considering 2SC �ux tubes within
the full three-component calculation. The result suggests the existence of domain walls, which
will emerge as the in�nite-radius limit of the �ux tubes.
In the 2SC phase, we work with Q = diag(2/3,−1/3,−1/3). This amounts to an ordering of

the quark �avors as (u, d, s). Then, the usual 2SC phase with up/down pairing, 2SCud, is given
by a nonzero condensate ρ3. Since we work in the massless limit, this phase is equivalent to
the 2SCus phase, where only ρ2 is nonzero2. For the magnetic defects in 2SC, it is convenient
to introduce the following rotated �elds3, Ã3

µ

Ã8
µ

Ãµ

 =

 cosϑ2 0 sinϑ2

0 1 0
− sinϑ2 0 cosϑ2

 1 0 0
0 cosϑ1 sinϑ1

0 − sinϑ1 cosϑ1

 A3
µ

A8
µ

Aµ

 , (21.0.1)

with

sinϑ1 =
e√

3g2 + e2
, cosϑ1 =

√
3g√

3g2 + e2
, (21.0.2a)

sinϑ2 =

√
3e√

3g2 + 4e2
, cosϑ2 =

√
3g2 + e2√
3g2 + 4e2

. (21.0.2b)

This two-fold rotation is motivated as follows. If we were interested in the homogeneous 2SCud

phase, given by a nonzero ρ3, the gauge �eld A3
µ would play no role and applying the rotation

given by ϑ1 yields a magnetic �eld that is expelled, B̃8, and the orthogonal combination that
penetrates the 2SC phase. This is well-known, see for instance Ref. [231]. Here, however,
we are interested in keeping all condensates. One �nds that ρ1 and ρ2 are charged under all
three gauge �elds that are obtained from this �rst rotation. The second rotation, given by
ϑ2, simpli�es the situation by creating a �eld, namely Ãµ, under which all three condensates
are neutral, while leaving Ã8

µ unchanged. This is useful because it eliminates Ãµ from the
calculation of the �ux tube and domain wall pro�les, and we only have to deal with two gauge
�elds in the numerical calculation. This derivation is laid out in more detail in App. G, where

1To distinguish 2SC �ux tubes from CFL �ux tubes, we denote them by S, instead of T . The 2SC domain
wall will be denoted by D.

2Recall that in all preceding sections we used Q = diag(−1/3,−1/3, 2/3), which is more convenient for CFL,
and thus the 2SCus and 2SCud phases were given by a nonzero ρ1 and ρ2, respectively.

3In many aspects, the 2SC calculation is analogous to the CFL calculation, and it is helpful to re�ect this in
the notation. Therefore, the notation Ã8

µ and Ãµ is used again, although these �elds are di�erent from the
rotated �elds in the CFL calculation. Since the CFL mixing will not appear from now on, this should not
lead to any confusion.
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the rotation is carried out in two intermediate steps for pedagogical reasons.
The Ginzburg-Landau potential in terms of the new rotated �elds is obtained by starting

from the potential given by Eqs. (18.3.6) and (18.3.7), undoing the CFL rotation and applying
the 2SC rotations, or by re-starting from the original potential (18.1.6). In either case, one
derives

U =
B̃2

2
+ U0 , (21.0.3)

with

U0 =
B̃2

3

2
+

B̃2
8

2
+

(∇ρ1)2

2
+

(∇ρ2)2

2
+

(∇ρ3)2

2
(21.0.4)

−µ
2

2
(ρ2

1 + ρ2
2 + ρ2

3) +
λ

4
(ρ4

1 + ρ4
2 + ρ4

3)− h

2
(ρ2

1ρ
2
2 + ρ2

2ρ
2
3 + ρ2

1ρ
2
3)

+
(
∇ψ1 + q̃3Ã3 + q̃81Ã8

)2 ρ2
1

2
+
(
∇ψ2 − q̃3Ã3 + q̃82Ã8

)2 ρ2
2

2
+
(
∇ψ3 + q̃83Ã8

)2 ρ2
3

2
,

where we have written the scalar �elds in terms of their moduli and phases according to Eq.
(19.0.1), and where we have abbreviated

q̃81 ≡
3g2 + 4e2

6
√

3g2 + e2
, q̃82 ≡

3g2 − 2e2

6
√

3g2 + e2
, q̃83 ≡

√
3g2 + e2

3
, (21.0.5)

and

q̃3 ≡
g

2

√
3g2 + 4e2

3g2 + e2
. (21.0.6)

We can write the Gibbs free energy density as

G

V
= −H

2 cos2 ϑ1 cos2 ϑ2

2
+

1

V

ˆ
d3r

[
U0 −H(B̃3 cosϑ1 sinϑ2 + B̃8 sinϑ1)

]
, (21.0.7)

where we have used B̃ = H cosϑ1 cosϑ2, which follows from minimizing G with respect to B̃.
For the homogeneous phases we repeat the calculation from Chap. 19 to �nd

2SCud : B̃3 = H cosϑ1 sinϑ2 , B̃8 = 0 , (21.0.8a)

2SCus : B̃3 =
3ge(3g2 − 2e2)H

2
√

3g2 + 4e2(3g2 + e2)3/2
, B̃8 =

9g2eH

2(3g2 + e2)3/2
.(21.0.8b)

21.1. Flux Tubes in 2SC

In analogy to the CFL calculation, we write the scalar �elds as ρi(r) = fi(r)ρ2SC with the
homogeneous 2SC condensate ρ2SC from Eq. (19.0.9), and introduce the winding numbers in
the phases through ψi(r) = niϕ. We use the 2SCud phase for our boundary condition far away
from the �ux tube, i.e., f1(∞) = f2(∞) = 0, f3(∞) = 1, while fi(0) = 0 if the corresponding
winding number ni is nonzero. For the gauge �elds we write

Ã3(r) =

[
H cosϑ1 sinϑ2

2
r +

ã3(r)

r

]
eϕ , Ã8(r) =

ã8(r)

r
eϕ , (21.1.1)

with ã′3(∞) = ã′8(∞) = 0 and ã3(0) = ã8(0) = 0. In contrast to the CFL �ux tubes,
there is a magnetic �eld, B̃3, which is nonzero far away from the �ux tube (in addition
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to the homogeneous �eld B̃, which simply penetrates the superconductor). This �eld will
become inhomogeneous in the �ux tube, unless the system chooses to keep ρ1 and ρ2 zero
everywhere. We have separated the homogeneous part of the B̃3 �eld in our ansatz (21.1.1),
such that far away from the �ux tube ã3 does not contribute to the magnetic �eld and we
have B̃3(∞) = H cosϑ1 sinϑ2 ez. This separation is useful, but not crucial. Alternatively, one
could have implemented the external �eld in the boundary condition for ã3.
Inserting our ansatz into the potential (21.0.4), we compute the Gibbs free energy density

U −H ·B = U2SC −
H2 cos2 ϑ1

2
− λρ2

2SCH sinϑ1
ã′8
R

+
λρ4

2SC

2

{
λ(ã′23 + ã′28 )

R2
+ f ′21 + f ′22

+f ′23 + f2
1

(
f2

1

2
− 1

)
+ f2

2

(
f2

2

2
− 1

)
+

(1− f2
3 )2

2
− η(f2

1 f
2
2 + f2

1 f
2
3 + f2

2 f
2
3 )

+
(N1 + ΞR2)2f2

1 + (N2 − ΞR2)2f2
2 +N 2

3 f
2
3

R2

}
, (21.1.2)

with U2SC from Eq. (19.0.12). Analogously to Chap. 20 we have introduced the dimensionless
coordinate R = r

√
λ ρ2SC, prime denotes derivative with respect to R, we have de�ned the

dimensionless external magnetic �eld

Ξ =
q̃3H cosϑ1 sinϑ2

2λρ2
2SC

=
3eg2

4
√
λ(3g2 + e2)

H

µ2/
√
λ
, (21.1.3)

and we have abbreviated

N1 ≡ n1 + q̃3ã3 + q̃81ã8 , N2 ≡ n2 − q̃3ã3 + q̃82ã8 , N3 ≡ n3 + q̃83ã8 ,(21.1.4)

in analogy to Eq. (20.1.7).
The equations of motion are obtained in a complete analogous way as in the CFL calculation,

presented in App. A.3, therefore we only state the result, which is given for the gauge �elds
by

ã′′3 −
ã′3
R

=
q̃3

λ
[(N1 + ΞR2)f2

1 − (N2 − ΞR2)f2
2 ] , (21.1.5a)

ã′′8 −
ã′8
R

=
1

λ
[q̃81(N1 + ΞR2)f2

1 + q̃82(N2 − ΞR2)f2
2 + q̃83N3f

2
3 ] , (21.1.5b)

and for the scalar �elds we �nd

0 = f ′′1 +
f ′1
R

+ f1

[
1− f2

1 −
(N1 + ΞR2)2

R2
+ η(f2

2 + f2
3 )

]
, (21.1.6a)

0 = f ′′2 +
f ′2
R

+ f2

[
1− f2

2 −
(N2 − ΞR2)2

R2
+ η(f2

1 + f2
3 )

]
, (21.1.6b)

0 = f ′′3 +
f ′3
R

+ f3

[
1− f2

3 −
N 2

3

R2
+ η(f2

1 + f2
2 )

]
. (21.1.6c)

Evaluating Eq. (21.1.5b) at R =∞ yields

ã8(∞) = − n3

q̃83
, (21.1.7)
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which is the usual relation for a single-component superconductor and implies vanishing baryon
circulation far away from the �ux tube. There is no analogous condition for ã3(∞), and we
determine this value dynamically in the numerical solution.
We can write the Gibbs free energy density as

G

V
= U2SC −

H2 cos2 ϑ1

2
+
L

V

[
F	
L
− 2πã8(∞)H sinϑ1

]
, (21.1.8)

where the �ux tube energy per unit length, in analogy to the CFL calculation, is

F	
L

= πρ2
2SC I	 , (21.1.9)

with

I	 ≡
ˆ ∞

0
dRR

[
λ(ã′23 + ã′28 )

R2
− f4

1

2
− f4

2

2
+

1− f4
3

2
+ η(f2

1 f
2
2 + f2

1 f
2
3 + f2

2 f
2
3 )

]
. (21.1.10)

The critical magnetic �eld Hc1 is again calculated by setting the expression in the square
brackets in Eq. (21.1.8) to zero, since the remaining terms are the Gibbs free energy density
of the homogeneous 2SC phase (19.0.13). However, this calculation is more complicated than
in the CFL phase because F	 now depends implicitly on H. Therefore, instead of simply
computing the free energy of the �ux tube we have to solve the following equation numerically,

Ξc1 +
g2I	(Ξc1)

8λn3
= 0 . (21.1.11)

This equation has a solution Ξc1 > 0 only for n3 < 0. This means that, in our convention for
the winding number n3, we need n3 < 0 to align the B-component of the magnetic �eld in
the �ux tube along the external magnetic �eld. In the simple case of the ordinary 2SC �ux
tube, i.e., where only the condensate ρ3 is nonzero and where only the gauge �eld ã8 needs to
be taken into account in the calculation of pro�les, the free energy of the �ux tube does not
depend on the external magnetic �eld. In this case, it is useful to write Eq. (21.1.11) in the
form

Hc1

µ2/
√
λ

= −(3g2 + e2)I	
6e
√
λn3

= −(3g2 + e2)

6e
√
λn3

ˆ ∞
0

dRR

(
1− f4

3

2
+ λ

ã′28
R2

)
, (21.1.12)

where now the right-hand side directly yields the critical magnetic �eld.

21.2. Domain Walls in 2SC

The pro�les of the �ux tubes from the previous subsection approach the 2SCud phase at
in�nity. We know that in the massless limit considered here the 2SCus phase is equivalent to
the 2SCud phase. Therefore, we can construct a domain wall that approaches 2SCus far away
from the wall on one side and 2SCud on the other side. It is conceivable that the "twist" that
changes 2SCus into 2SCud admits a magnetic �eld in the wall, which leads to a gain in Gibbs
free energy and might favor the domain wall over the homogeneous phase in the presence of
an externally applied �eld. We shall see that this is indeed the case and that, in a certain
parameter regime, the domain wall solution is favored over the �ux tubes from the previous
subsection.
Domain walls in the 2SC phase in the presence of a magnetic �eld were already suggested

in Ref. [236]. These domain walls are associated with the axial U(1)A. This symmetry is
broken due to the axial anomaly of QCD, but becomes an approximate symmetry at high
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density and is spontaneously broken by the 2SC condensate. These domain walls are perpen-
dicular to the magnetic �eld and their width is given by the inverse of the mass of the U(1)A
pseudo-Goldstone boson. This is di�erent from the domain walls discussed here, which align
themselves parallel to the magnetic �eld and which have �nite width even though our potential
does not include U(1)A breaking terms. The "anomalous" domain walls have been discussed
within an e�ective Lagrangian for the Goldstone mode [236], and it would be interesting for
future work to investigate their competition or coexistence with the domain walls discussed
here in a common framework.
The equations that have to be solved to compute the pro�le of the domain wall are derived

as follows. Due to the geometry of the problem, we work in cartesian coordinates rather than
the cylindrical coordinates used for the �ux tubes. We keep the external magnetic �eld in the
z-direction and, without loss of generality, place the domain wall in the y-z-plane, such that
the problem becomes one-dimensional along the x-axis. For the gauge �elds, our ansatz is

Ã3(r) =
[
(x− x0)H cosϑ1 sinϑ2 +

√
λρ2SCã3(x)

]
ey , Ã8(r) =

√
λρ2SCã8(x)ey ,(21.2.1)

such that the magnetic �elds point in the z-direction with z-components

B̃3 = H cosϑ1 sinϑ2 + λρ2
2SCã

′
3 , B̃8 = λρ2

2SCã
′
8 , (21.2.2)

where prime now denotes the derivative with respect to the dimensionless coordinate X ≡√
λρ2SC x. We have added an x-independent term proportional to x0 to the gauge �eld Ã3.

This term is irrelevant for the magnetic �eld and does not a�ect any physics. It is merely a
useful term for the numerical evaluation because it can be used to shift the location of the
domain wall on the x-axis. Since this location depends on the values of the parameters, we
conveniently adjust x0 to keep the domain wall in the x-interval which we have chosen for the
numerical calculation.
We set ρ1 = 0 and introduce the dimensionless condensates as above through ρi(r) =

fi(x)ρ2SC for i = 2, 3. As just explained, the phases of the condensates do not wind as we
move across the wall, and thus we set ψi = 0. One could de�ne a new angle α by writing
f1 = f cosα, f2 = f sinα and solve the equations of motion for f and α, see Ref. [237] for a
similar calculation in a two-component superconductor. This angle, which rotates between the
two condensates, does wind across the domain wall. But this change of basis is not necessary,
and we shall stick to the variables f1, f2. Then, from Eq. (21.0.4) we compute the Gibbs free
energy density

U −H ·B = U2SC −
H2 cos2 ϑ1

2
− λρ2

2SCH sinϑ1 ã
′
8 +

λρ4
2SC

2

{
λ(ã′23 + ã′28 ) + f ′22 + f ′23

+ [M2 − 2Ξ(X −X0)]2 f2
2 +M2

3f
2
3 − f2

2 − f2
3 +

1

2
(f4

2 + f4
3 ) +

1

2
− ηf2

2 f
2
3

}
,(21.2.3)

with Ξ from Eq. (21.1.3), X0 ≡
√
λρ2SC x0, and

M2 ≡ −q̃3ã3 + q̃82ã8 , M3 ≡ q̃83ã8 . (21.2.4)

The equations of motion are

ã′′3 = − q̃3

λ
[M2 − 2Ξ(X −X0)] f2

2 , (21.2.5a)

ã′′8 =
q̃82

λ
[M2 − 2Ξ(X −X0)] f2

2 +
q̃83

λ
M3f

2
3 , (21.2.5b)
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and

0 = f ′′2 + f2

{
1− f2

2 − [M2 − 2Ξ(X −X0)]2 + ηf2
3

}
, (21.2.6a)

0 = f ′′3 + f3

(
1− f2

3 −M2
3 + ηf2

2

)
. (21.2.6b)

The boundary conditions are determined as follows. On one side far away from the domain
wall, say atX = +∞, we put the 2SCud phase, while on the other side, atX = −∞, we put the
2SCus phase. Then, the boundary conditions for the scalar �elds are f2(+∞) = f3(−∞) = 0
and f2(−∞) = f3(+∞) = 1. For the boundary conditions of the gauge �elds we need the
magnetic �elds of the two phases far away from the wall (21.0.8) to �nd

ã′3(−∞) = −4q̃3Ξ

g2
, ã′8(−∞) =

6Ξ√
3g2 + e2

, ã′3(+∞) = ã′8(+∞) = 0 .(21.2.7)

Here the external �eld H appears inevitably in the boundary conditions (in its dimensionless
version Ξ), while this was avoided in the case of the �ux tubes by separating the H-dependent
part in the ansatz for Ã3. In addition to the boundary conditions for the derivatives, we have
ã8(+∞) = 0, which follows from evaluating Eq. (21.2.6b) at X = +∞. All other boundary
values of the gauge �elds must be determined dynamically.
The Gibbs free energy density becomes

G

V
= U2SC −

H2 cos2 ϑ1

2
+
Ayz
V

√
λρ3

2SC

2
I|| , (21.2.8)

where Ayz is the area of the system in the plane of the domain wall, and the dimensionless
energy per unit area of the domain wall is, after partial integration and using the equations of
motion,

I|| ≡
ˆ ∞
−∞

dX

[
λ(ã′23 + ã′28 )− 4λΞ

tanϑ1

q̃3 sinϑ2
ã′8 +

1

2
(1− f4

2 − f4
3 ) + ηf2

2 f
2
3

]
. (21.2.9)

As a check, we con�rm that the integrand goes to zero at X ± ∞: the contribution of the
scalar �elds is obviously zero at X = ±∞ because one of the two functions f2 and f3 goes
to 0 and the other one to 1. The gauge �eld contribution at X = +∞ is obviously zero
because all derivatives ã′3, ã

′
8 vanish. At X = −∞, we employ the boundary conditions from

Eq. (21.2.7) to show that the contributions quadratic in the derivatives of the gauge �eld are
exactly canceled by the term proportional to ã′8. This term comes from the H · B term in
the Gibbs free energy and was written separately in the �ux tube energies in the previous
sections, see for instance Eq. (21.1.8). Since here, in the case of the domain walls, this would
have required writing down a divergent integral [with the divergence being canceled by the
divergent ã8(−∞)], we have included the term linear in ã′8 into the integral.

21.3. Numerical Results and Pro�le Functions

The pro�les for a 2SC �ux tube and a 2SC domain wall are shown in Fig. 21.3.1. For all
�ux tube solutions discussed in the following, the winding numbers of the components that
vanish far away from the �ux tube are set to zero, n1 = n2 = 0. A check for some selected
parameter sets shows that nonzero n1 and/or n2 give rise to less preferred con�gurations,
which is expected because in this case f1 and/or f2 must vanish in the center of the tube and
can only become nonzero in an intermediate radial regime. The left panel of the �gure shows
a �ux tube in which one additional condensate, namely ρ2, is induced in the core. In principle,
it is possibly to �nd parameter regions which allow for solutions where both ρ1 and ρ2 become
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Figure 21.3.1.: Pro�les of the dimensionless condensates f2, f3 and the magnetic �elds B̃3, B̃8 in units
of µ2/

√
λ for a 2SC �ux tube (left panel, with winding number n3 = −1) and a 2SC domain wall (right

panel). The parameters for both panels are g = 3.5, Tc/µq ' 0.084, and the pro�les are plotted at their

respective critical �elds Hc1(S001) = 9.59µ2/
√
λ (left) and Hc1(D) = 8.99µ2/

√
λ (right), see also Fig.

21.3.2. The dimensionless radial coordinate for the �ux tube is R = r
√
λρ2SC, and the dimensionless

cartesian coordinate X for the domain wall is X = x
√
λρ2SC. We have placed the center of the domain

wall, where f2 = f3, at the arbitrarily chosen point X = 0.

nonzero in the center of the �ux tube. However, a parameter region where it is energetically
favorable to place a �ux tube with three nonzero condensates into the homogeneous state was
not found. We shall thus ignore these con�gurations from now on. The con�guration with two
nonzero condensates, on the other hand, can become favorable over the homogeneous phase.
This is shown in the left panel of Fig. 21.3.2, where the dimensionless Gibbs free energy
di�erence between the phase with a single �ux tube and the homogeneous phase is plotted,

∆G ≡ G−G2SCud

ρ2
2SCL

= π

(
I	 +

8λΞn3

g2

)
, (21.3.1)

with G from Eq. (21.1.8) and G2SCud
from Eq. (19.0.13). The two pairs of curves show one

example where the con�guration with an induced condensate in the core is preferred at the
point where ∆G = 0 over the standard �ux tube solution S1, and one example where there
is only a single condensate at ∆G = 0. In the former case, it turns out that the system can
further reduce its free energy by replacing S001 with a domain wall, whose critical �eld Hc1(D)
is determined by solving I|| = 0 numerically for Ξ. This critical �eld is indicated in the left
panel of Fig. 21.3.2 by a dot for both cases: Hc1(D) < Hc1(S001) < Hc1(S1) for Tc/µq = 0.084,
and Hc1(S1) < Hc1(D) for Tc/µq = 0.065. The connection between the �ux tube S001 and
the domain wall can be understood with the help of the right panel of Fig. 21.3.2. Let us
�rst explain the upper two (red) curves in this plot, which show the standard behavior of an
ordinary type-II superconductor: the most favorable con�guration is a �ux tube with minimal
winding number, and as we increase the winding, the critical �eld Hc1 approaches the critical
�eld Hc from below (in a type-I superconductor, it would approach it from above). This is
easy to understand: as the winding is increased, the core of the �ux tube becomes larger
and thus the normal phase "eats up" the superconducting phase. Hence, for in�nite winding,
the critical �eld Hc1 indicates that it has now become favorable to place an in�nitely large
�ux tube into the system, i.e., to replace the superconducting phase with the normal phase,
which is nothing but the de�nition of Hc. Similarly, the critical �eld for the �ux tube S001

approaches the critical �eld for the domain wall D: again, as we increase the winding, the
phase in the core, which now approaches the 2SCus phase for |n3| → ∞, spreads out and "eats
up" the phase far away from the �ux tube, which is the 2SCud phase. However, in contrast to
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Figure 21.3.2.: Left panel: Gibbs free energy di�erence per unit length, in units of ρ22SC, between the
phase with a single �ux tube and the homogeneous 2SC phase (∆G = 0 de�nes the critical �eld Hc1).
The solid (blue) lines are the curves for �ux tubes with an induced second condensate in the core
S001, dashed (red) lines correspond to standard �ux tubes S1. The lower pair of curves is computed at
Tc/µq = 0.084, the upper pair at Tc/µq = 0.065, both for g = 3.5 and winding n3 = −1. The two dots
indicate the critical �elds of the domain wall. Right panel: Critical magnetic �elds Hc1 for di�erent
winding numbers n3 for S1, S001, and the domain wall D for Tc/µq ' 0.084, g = 3.5. For large winding
numbers, Hc1(S1) approaches Hc from below, indicating ordinary type-II behavior, while Hc1(S001)
approaches the critical �eld for the formation of domain walls from above. The thin lines connecting
the data points are to guide the eye, only integer values of n3 make sense.

the ordinary �ux tube S1, these two phases have the same free energy for all parameter values
(in the massless limit), and there can never be a well-de�ned transition in the phase diagram
from the homogeneous 2SCus phase to the homogeneous 2SCud phase. Instead, we �nd that
a stable domain wall forms, which interpolates between the two phases. While Figs. (21.3.1)
and (21.3.2) only show results for speci�c parameters, we study the phase diagram more
systematically in the next section.
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22. Phase Diagrams

Putting together the results of the previous chapters, the magnetic phase structure of color-
superconducting quark matter in the H-Tc/µq-plane is shown in Fig. 22.0.1. The �gure in-
cludes all three critical magnetic �elds: Hc, indicating a �rst-order phase transition between
homogeneous phases; Hc2, the lower boundary for the transition of a �ux tube phase to a
homogeneous phase; and Hc1, the �eld at which the system starts to form magnetic defects.
As we have seen in Chap. 19, for small couplings g the CFL phase is directly superseded

by the NOR phase as we increase the magnetic �eld, while the 2SC phase appears as an
intermediate phase for couplings g > 2e/

√
15. One example for either case is shown here,

with the larger coupling chosen such that it is realistic for the interior of neutron stars (there
was not any qualitative di�erence for other values of g as long as g > 2e/

√
15 found). In

a single-component superconductor, the critical lines Hc, Hc1, and Hc2 intersect in a single
point, which marks the transition from type-I to type-II behavior, and in the type-II regime a
lattice of �ux tubes is expected between Hc1 and Hc2. This standard scenario is realized for
the 2SC phase, see the intersecting (red) critical lines Hc, Hc1(S1), and Hc2 in the right panel.
CFL, however, is a three-component superconductor and thus the transition region between
type-I and type-II behavior is more complicated, see the (black) transition lines Hc, Hc1(T101),
Hc1(T112), and Hc2 in both panels which do not intersect in a single point. This was expected
from our investigation of the two-component system earlier on. Along the dashed segments
of the transition lines Hc1, the long-range interaction between the �ux tubes is attractive, see
Sec. 20.4, and in this regime one expects a �rst-order phase transition at some H < Hc1 as
it was found in the neutron-proton system. For small coupling, the change from repulsive to
attractive interaction occurs at di�erent points for the T101 and T112 con�gurations (in the
left panel, the T101 tubes interact repulsively throughout the type-II regime). These points
become identical for g � e, as we can see in the right panel and in Eq. (20.4.3). The precise
structure of this type-I/type-II transition region is not the main point of this discussion. Our
investigation of the neutron-proton system suggests that �ux tubes in CFL are possible also
for values of Tc/µq smaller than indicated by the intercept of Hc and Hc2. For our purpose, the
main point is that for su�ciently large Tc/µq, such that the interaction between �ux tubes at
long distances is repulsive, we are in a "standard" type-II regime, and the onset of �ux tubes
occurs in a second-order transition. It is this region in which we can compare the di�erent
critical �elds Hc1 to obtain the energetically most preferred magnetic defect.
Another complication arises in the right panel. We recall that, usually, Hc2 is the lower

bound (assuming a second-order transition) for the transition of the �ux tube phase to the
normal-conducting phase. This is unproblematic in the case of the 2SC/NOR transition (upper
Hc2 in the right panel). The lower Hc2 marks the transition from a CFL �ux tube phase to
a homogeneous 2SC phase. However, for su�ciently large Tc/µq we expect 2SC domain walls
(or �ux tubes) in the region above this Hc2. Therefore, although the curve for Hc2 is continued
into the region of large Tc/µq for completeness, the actual phase transitions (possibly between
di�erent �ux tube lattices or stacks of domain walls) are beyond the scope of the present
approach.
In summary, neither panel in Fig. 22.0.1 is a complete phase diagram and more complicated

studies are necessary to �nd all phase transition lines. But they serve the purpose to carefully
locate the type-II regime where the main results presented here are valid:

• The CFL �ux tube T101 (which has a 2SC core) has a smaller critical magnetic �eld
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Figure 22.0.1.: Critical magnetic �elds for g = 0.1 (left panel) and g = 3.5 (right panel). For weak
coupling, the CFL �ux tube with a 2SC core T101 is preferred over the �ux tube with an unpaired
core T112 only for large values of Tc/µq, while for strong coupling this is the case for all Tc/µq in the
type-II regime. The dots separating the dashed from the solid segments in Hc1 mark the transition
from attractive (dashed) to repulsive (solid) long-range interaction between the �ux tubes. The point
marked with a cross in the left panel is the intercept Hc1(T101) = Hc1(T112). At strong coupling,
where the 2SC phase appears for large magnetic �elds, the 2SC domain wall D is preferred over the
"standard" 2SC �ux tube S1 for Tc/µq & 0.07.

Hc1 than the �ux tube T112 (which has an unpaired core), unless the strong coupling
constant is very small. This is equivalent to saying that the energy per unit length of
T101 is smaller. Although the con�guration T101 had never been discussed before in the
literature, this result is not surprising, because the "total winding" (for instance de�ned
by the sum of the squares of the winding numbers n1, n2, n3) is minimized by T101 within
the constraints of a nonzero B̃8-�ux and a vanishing baryon circulation.

• The 2SC domain wall, which interpolates between the two phases 2SCus and 2SCud, has
a lower critical �eld Hc1 than the standard 2SC �ux tube (in which two of the three
condensates are identically zero) for su�ciently large Tc/µq. Just like the �ux tube, the
domain wall admits additional B-�ux into the system, which is the reason it can have a
lower Gibbs free energy than the homogeneous phase.
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23. Summary: Color Superconductivity

We have discussed magnetic defects � �ux tubes and domain walls � in color-superconducting
phases of dense quark matter, using a Ginzburg-Landau approach. In a color superconductor,
line defects can, in general, carry baryon circulation, magnetic �ux, and color-magnetic �ux.
We have focused on the "pure" magnetic �ux tubes, which have zero baryon circulation and
thus are not induced by rotation. These �ux tubes are not protected by topology, but can be
stabilized by an external magnetic �eld. By solving the equations of motion numerically we
have calculated the pro�les of di�erent kinds of �ux tubes and their energy. As one of the main
results, we have found a new type of CFL �ux tube, which is most easily understood as a CFL
�ux tube with a 2SC core (while the �ux tube previously discussed in the literature has a core
with unpaired quark matter). After carefully identifying the type-II regime, in which �ux tubes
are expected, we have seen that, for su�ciently large values of the strong coupling constant,
the novel �ux tube con�guration has a smaller critical magnetic �eld than the �ux tube with
unpaired core. This result is supported by the observation that, in this strong-coupling regime,
CFL is superseded by 2SC as the magnetic �eld is increased, which makes the occurrence of
CFL �ux tubes with a 2SC core very plausible. (While, at small coupling, the CFL phase is
superseded by the unpaired phase, and the �ux tubes with unpaired core are favored.) Our
new solution minimizes the total winding of the �ux tube because one of the three condensates
� the one that survives in the 2SC phase � has zero winding. The second main result presented
is the discovery of magnetic domain walls in the 2SC phase, which emerge from 2SC �ux tubes
in the limit of in�nite radius. The crucial ingredient, never included in the literature before,
has been to allow for induced condensates in the core of the 2SC �ux tubes. We have found
that one of these induced condensates grows until it approaches the 2SC value, giving rise to
a domain wall where the pro�les of the condensates interpolate between two di�erent versions
of the 2SC phase. These two versions are distinguished by the pairing pattern (us pairing vs.
ud pairing) and have the same free energy in the limit of massless quarks, in which we have
worked throughout the investigation of color superconductivity. One might argue that in this
limit the 2SC phase is not relevant anyway. As it was pointed out, however, the 2SC phase
can be favored over the CFL phase not only if the strange quark mass is su�ciently large,
but also in the case of a large magnetic �eld. Therefore, the 2SC domain walls do exist in a
certain regime of the phase diagram, it is not necessary to arti�cially assume the 2SC phase
to be the ground state.
Nevertheless, it would be an important extension of the present calculation to include quark

masses, and, in particular, study the fate of the 2SC domain walls in this more realistic setting.
It would also be interesting to study lattices of �ux tubes or stacks of domain walls rather than
the single, isolated magnetic defects that we have studied here. One step in this direction has
been done by computing the long-distance interaction between CFL �ux tubes, but a full study
of inhomogeneous phases would require more involved numerical calculations. It is tempting
to speculate about the role of the CFL �ux tubes discussed here in the interior of compact
stars. If a rotating neutron star has a CFL core, �ux tubes with nonzero baryon circulation
must form, because this is how a super�uid accommodates rotation. Since it has been shown
that color neutral vortices are disfavored, these �ux tubes ("semi-super�uid vortices") have
nonzero color-magnetic �uxes. Although the total color �ux of three di�erent semi-super�uid
vortices is zero, particular arrangements of semi-super�uid vortices with nonzero total �ux are
conceivable (due to the mixing of photons and gluons, this also creates a nonzero �ux with
respect to the ordinary magnetic �eld). However, this would imply alignment of rotational
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and magnetic axes, which contradicts observations of pulsars because the pulsating signal that
we observe results from the misalignment of rotation and magnetic �eld. One solution might
be the coexistence of semi-super�uid vortices � aligned with the rotational axis � and the
"pure" magnetic �ux tubes considered here � aligned with the magnetic axis. The resulting
core with CFL matter would be very complicated, not unlike a nuclear matter core where
vortices from super�uid neutrons and �ux tubes from superconducting protons are expected
to coexist. Another question concerns the boundary between quark matter and hadronic
matter. It has been discussed how the vortices and �ux tubes of nuclear matter merge with
semi-super�uid vortices [238�240], and it would be interesting to investigate this question for
the non-rotational �ux tubes, in particular for the �ux tubes with 2SC core pointed out in this
work, which carry an additional component of color-magnetic �ux, on top of the �ux from the
rotated gluon �eld. Finally, it would be interesting to further investigate the in�uence of the
color-magnetic �ux tubes and domain walls on the emission of gravitational waves of neutron
stars. Besides the already mentioned continuous emission due to color-magnetic mountains in
the introduction, one could also imagine an e�ect of the color-magnetic �ux tube lattice on
the tidal deformability of neutron stars. This parameter is relevant for the gravitational wave
emission of neutron star mergers [34] (similar to a possible e�ect of the crust of the star [241]
or a crystalline quark matter phase in the core [242]).
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Conclusions and Outlook
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The research carried out for this thesis is centered around the behavior of multicomponent
super�uidity and superconductivity, where special emphasis was put on environments probably
present in compact stars. After an introduction into these topics from a phenomenological and
a technical point of view, three main topics were discussed in detail:

• Hydrodynamic instabilities in two-component (super-) �uids.

• The type-I/type-II transition in a superconductor coupled to a super�uid.

• Magnetic defects in color superconductivity.

For the �rst two points, a �eld-theoretical bosonic model of two scalar �elds with quartic
self-interactions and two types of interspecies coupling, a density coupling and a derivative
coupling, was introduced. It was shown that the derivative coupling is responsible for the
entrainment e�ect. Starting from this model, an e�ective, temperature dependent Ginzburg-
Landau energy functional was derived. The Ginzburg-Landau free energy was used to de-
rive the homogeneous phase structure at vanishing magnetic �eld in Sec. 6.3. Various phase
diagrams at �nite super�ow, �nite temperature and as a function of the various coupling
constants where plotted. In order to examine hydrodynamic instabilities in a system of
two super�uids, the hydrodynamic equations where derived. As an additional approach, the
quasiparticle spectrum of the Goldstone mode was derived from the �uctuation propagator at
tree-level. The hydrodynamic equations however allowed us to distinguish between super�uids
and ideal, dissipationless but otherwise normal �uids, which allow for additional transverse
modes. Whereas energetical instabilities manifested themselves by negative excitation ener-
gies, the onset of the two-stream instability was established to occur whenever the speed of
sound becomes imaginary. It was found that for a two-component super�uid at zero tempera-
ture, this dynamical instability only occurs in an energetically unstable regime. However, for
a system of two coupled normal �uids, the transverse modes can become unstable at velocities
lower than the generalized version of Landau's critical velocity, which itself marks the onset
of the energetic instability. These �ndings are of potential interest for the understanding of
pulsar glitches.
It is an open question whether the energetic instability can be resolved by the formation

of an inhomogeneous super�uid, possibly through a phase separation of the two components.
And, subsequently, it would be interesting to �nd out whether such an inhomogeneous state,
if energetically stable, will still su�er a dynamical instability. This can be relevant not only
for super�uids in the astrophysical context, but also for super�uids in the laboratory such as
Bose-Fermi mixtures in cold atomic gases.
By taking into account the charge of one of the scalar �elds and including a correspond-

ing gauge �eld, the in�uence of an external magnetic �eld on the two-component model was
studied thoroughly. Especially the transition from type-I to type-II superconductivity was
investigated. For this purpose, the critical magnetic �elds of the coupled system, which repre-
sents a superconductor and a super�uid, were derived. This included a numerical computation
of the single-�ux tube energy. By including the interaction between the �ux-tubes themselves
in a sparse lattice approximation, a �rst order transition from the Meissner phase to a lattice
of �ux tubes and successively to the normal phase was discovered. It was therefore shown that
the coupling to a super�uid has an immense in�uence on the magnetic phase structure of a
superconductor. This does not only include a shift in the critical value of the Ginzburg-Landau
parameter for the transition from type I to type II. In general, �rst-order phase transitions
allow for the existence of mixed phases. By varying the averaged magnetic �eld in the super-
conductor, the possible existence of new mixed phases of �ux tube cluster was demonstrated.
All these e�ects might in�uence the formation of the magnetic �eld in the early stages of a
compact star, where the critical magnetic �elds become rather small due to the high tempera-
tures present. It would be interesting to employ these results in studies of the time evolution of
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the magnetic �eld in a neutron star. Here, the ground state in equilibrium for given tempera-
ture, magnetic �eld and chemical potential has been computed, but for more phenomenological
predictions one needs to know whether and on which time scale this ground state is reached.
Simulations in Ref. [243] based on calculations �rst performed in Ref. [244] yield very large
time scales for the expulsion of the magnetic �eld, suggesting that a calculation at e�ectively
�xed magnetic �ux might be appropriate. One may also ask whether a potential phase of �ux
tube clusters would a�ect the transport properties of the core in a detectable way.
In general, the phase structure at nonzero temperature should be studied in more detail. An

improvement of the large-temperature approximation on which the Ginzburg-Landau potential
was based is highly desirable, but probably requires technically more sophisticated approaches
like the 2PI-formalism. Additionally, �nite temperature e�ects add another �uid-component
in the hydrodynamic treatment, given by the entropy current, which would complicate the
problem drastically. It would nevertheless be promising to study dynamical instabilities in this
case since for instance in super�uid neutron star matter temperature e�ects can be expected
to be relevant.
Although most parameters were chosen with having the physics of compact stars in mind,

the described model is rather general. All the presented results can be transferred to the
non-relativistic limit, where they are of potential interest for laboratory experiments as well.
Using the gained knowledge of multicomponent superconductivity, we turned our interest

to color superconductivity in massless three-�avor quark matter. As a starting point, a
Ginzburg-Landau type potential for color superconductivity consisting of three scalar �elds
and three (color-) gauge �elds was derived. As in the two-component system, the basic phase
structure was computed and revealed that the CFL phase can be superseded by the 2SC phase
by increasing the magnetic �eld. By using a general order parameter with separate winding
numbers, it was possible to classify a large amount of magnetic defects in the color �avor
locked phase known from literature [205] by the triplet of winding numbers. Additionally,
a new defect with minimized winding, so far unknown in the literature, was found. It was
demonstrated that this new defect is energetically preferred in the parameter space expected
in compact stars. An investigation of �ux tubes in the 2SC phase with induced condensates
in the core exposed the existence of a new defect in the 2SC phase: magnetic domain walls.
Especially for the investigation of domain walls, taking into account the mass of the strange
quark is a crucial next step.
All the presented results provide a small contribution towards our understanding of dense

matter in astrophysical environments. However, the models are still far from describing these
physical systems accurately. At this point, the presented investigation serves as an improve-
ment for the microscopic background of some astrophysical phenomena, like pulsar glitches
and the magnetic evolution of a compact star. Obviously, �tting the model parameters, espe-
cially of the two-component model, to nuclear properties would allow us to extract numeric
values for the onset of instabilities, the critical magnetic �eld strengths and location of the
�rst-order phase transitions and so on. However, I have resisted this temptation in order to
not overstress the accuracy of the current approach. The main goal of this thesis was to show
how multicomponent super�uidity and superconductivity can be treated consistently within
the approximations explained in detail. An improvement to this investigation would be the
use of fermionic models instead, which might prove to be very di�cult due to the more com-
plicated energy spectrum for instance. Within the current approach, investigating the e�ect of
an external imposed rotation of the system appears to be the most intriguing option to render
the model more realistic. The formation of vortices in the super�uid might alter our results
drastically. In a �rst attempt, vortices parallel to the magnetic �eld could be investigated.
However, due to the lighthouse e�ect, we know that in pulsars the axis of rotation and the
axis of the magnetic �eld are not aligned. Vortices in nuclear matter can scatter on �ux tubes,
which unfortunately makes a general investigation of creeping vortices and �ux tubes which
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are misaligned unfeasible within the semi-analytical approach presented in this thesis. Also for
CFL matter, including rotation can have profound e�ects on the presented results. Since CFL
�ux tubes can in principle carry angular momentum, one has to investigate the lowest lying
magnetic defect at given magnetic �eld and rotation. The lowest state might very well consist
of separate magnetic and rotational defects, which would allow for the lighthouse e�ect. If it
is rather found that CFL �ux tubes with rotation and magnetic �ux represent the true ground
state under these conditions, their existence in compact stars might be questionable.
The expected results of the NICER mission and the upcoming age of gravitational-wave

astronomy might allow us to make tremendous leaps in our understanding of dense nuclear
and quark matter in the future. Hopefully within the next decades we can �ll our gaps in our
understanding of physics in these extreme environments and allow us to draw a much more
accurate version of the QCD phase diagram.
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A. Ginzburg-Landau Equations of Motion

Throughout this thesis, the equations of motions of a Ginzburg-Landau style free energy are
used. In order to explain the most important steps I will derive them for the various cases in
this appendix, such that the �ow of the corresponding chapters does not get interrupted by
lengthy derivations.

A.1. Single Superconductor

The equations of motion for a single, non-relativistic superconductor from the Ginzburg-
Landau free energy can be derived in a rather straight forward manner. This appendix refers
to Sec. 4. The free energy reads

FGL
V

=
FN
V

+ α |ϕ|2 +
β

2
|ϕ|4 +

1

2ms
|(−i∇− qsA)ϕ|2 +

B2

8π
. (A.1.1)

The equations of motion can be derived by variation of the free energy with respect to ϕ∗ and
the vector potential A, which leads to the Euler-Lagrange equations:

∂FGL
∂ϕ∗

− ∂i
∂FGL
∂ (∂iϕ∗)

= 0 , (A.1.2)

∂FGL
∂Ai

− ∂j
∂FGL
∂ (∂jAi)

= 0 . (A.1.3)

The �rst variation is straightforward and directly leads to Eq. (4.0.5):

αϕ+ β |ϕ|2 ϕ+
1

2ms
(−i∇− qsA)2 ϕ = 0 ,

where the square of the covariant derivative is a shorthand notation for applying the di�erential
operator including the vector �eld two times, which also leads to derivatives of the gauge �eld.
Calculating the variation with respect to the vector �eld is best done in index notation. We
�rst focus in the pure magnetic �eld part and remember that B = ∇×A = εijk∂jAk .

B2 = εimn∂mAnεijk∂jAk , (A.1.4)

∂a
B2

∂ (∂aAb)
= ∂a

(
εimnδ

m
a δ

n
b εijk∂jAk + εimn∂mAnεijkδ

j
aδ
k
b

)
= 2εiab∂aεijk∂jAk

= −2εbai∂aεijk∂jAk = −2∇×B . (A.1.5)

The variation of the second term containing the covariant derivative is straight-forward since
it contains no derivatives of the gauge �eld and yields

q

m
Re {ϕ∗ (i∇+ qsA)ϕ} . (A.1.6)

Putting these results together leads to

q

m
Re {ϕ∗ (i∇+ qsA)ϕ}+

1

4π
∇×B = 0 , (A.1.7)
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which is in agreement with Eq. (4.0.6). Especially the variation of the pure magnetic �eld
term is of signi�cance in several chapters of this thesis.

A.2. Single Flux Tube

In this section I derive the equations of motion and the free energy of a single �ux tube
for Sec. 4.2.1. We start with the free energy from Ginzburg-Landau theory, subtract the
contribution of FN and insert our ansatz from Eq. (4.2.19)

F	 + F0 = L

ˆ
rdr dθ

{
αρ2

0f(r)2 +
β

8
ρ4

0f(r)4 +
1

8π

(
n

qsr

∂a(r)

∂r

)2

(A.2.1)

+
ρ2

0

4ms

∣∣∣∣[−i(∂rêr +
1

r
∂θêθ

)
− na(r)

r
êθ

]
f(r)eiψ(θ)

∣∣∣∣2
}
,

where we already performed the integration along the z−axis which yields the length of the
�ux tube L and F0 is the purely homogeneous solution which does not depend on the pro�le
functions,

F0

V
=
α

2
ρ2

0 +
β

4
ρ4

0 . (A.2.2)

As a �rst step we introduce dimensionless coordinates by scaling the radial distance from the
�ux tube center by the coherence length ξ,

R =
r

ξ
, (A.2.3)

F	 + F0 = Lξ2

ˆ
RdRdθ

{
α

2
ρ2

0f(R)2 +
β

8
ρ4

0f(R)4 +
1

8πξ4

(
n

qsR

∂a(R)

∂R

)2

(A.2.4)

+
ρ2

0

4ξ2ms

∣∣∣∣[−i(∂RêR +
1

R
∂θêθ

)
− na(R)

R
êθ

]
f(R)eiψ(θ)

∣∣∣∣2}
= Lξ2

ˆ
RdRdθ

{
α

2
ρ2

0f
2 +

β

8
ρ4

0f
4 +

1

8πξ4

(
n

qsR
a
′
)2

(A.2.5)

+
ρ2

0

4ξ2ms

∣∣∣∣[−if ′ êR +
f

R
∂θψêθ −

naf

R
êθ

]∣∣∣∣2
}
,

where prime denotes a derivative w.r.t. the dimensionless coordinate R and we expressed the
relevant part of the gradient in cylindrical coordinates,

∇ = ∂rêr +
1

r
∂θêθ (A.2.6)

We now compute the EL-EOMs with respect to f, a and ψ. For simplicity, we start with the
equation of motion for the phase ψ(θ), which reduces to

∂2
θψ = 0 ⇒ ψ = aθ + b , (A.2.7)

with numerical constants a and b. Following the discussion in Sec. 4.2.1 on the �ux quanti-
zation, we know that the phase can only rotate by an integer multiple of 2π if we go around
the �ux tube completely, therefore we can set b = 0 w.l.o.g. and identify a with the winding
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number n,
ψ = nθ, n ∈ N0, (A.2.8)

with the set of natural numbers including zero N0. This allows us to perform the integration
w.r.t. dθ which simpli�es the energy of the �ux tube to

F	 + F0 = πLξ2

ˆ
RdR

{
αρ2

0f
2 +

β

4
ρ4

0f
4 +

1

4πξ4

(
n

qsR
a
′
)2

(A.2.9)

+
ρ2

0

2ξ2ms

[(
f
′
)2

+
n2f2

R2
(1− a)2

]}
,

which we now use to perform the variation w.r.t. a and f :

2αρ2
0Rf + βρ4

0Rf
3 +

ρ2
0

ξ2ms

[
n2f

R
(1− a)2 −Rf ′′ − f ′

]
= 0 , (A.2.10)

ρ2
0

ms

[
n2f2

R
(1− a)

]
− n2

2πq2
sξ

2

(
a
′′

R
− a

′

R2

)
= 0 . (A.2.11)

In this step it is important to take the functional determinant of the integral into account dur-
ing the variation of the free energy. We can further simplify things by dividing or multiplying
both equations with R and using the de�nitions of ξ, `, κ and ρ2

0 = −α/2β.

f
′′

+
f
′

R
+ f

[(
1− f2

)
− n2

R2
(1− a)2

]
= 0 , (A.2.12)

a
′′ − a

′

R
= −f

2

κ2
(1− a) . (A.2.13)

It is interesting to note that these equations are formally identical to the relativistic version
in our more complicated setup in Sec. taken from our Ref. [3] if all couplings to the second
�eld and its contributions are set to zero. The free energy of a single �ux tube can now be
simpli�ed to

F	
L

= πρ2
0

ˆ ∞
0

dRR

{
n2κ2a

′2

R2
+ f

′2 + f2n
2 (1− a)2

R2
+

1

2

(
1− f2

)2}
. (A.2.14)

A.3. CFL Flux Tubes

We calculate the equations of motion for �ux tubes in the CFL phase presented in Chap. 20.
Our starting point is the free energy from Eq. (18.3.7)

U =
B̃2

2
+
B2

3

2
+
B̃2

8

2
+

∣∣∣∣(∇+ ig̃8Ã8 +
i

2
gA3

)
φ1

∣∣∣∣2 +

∣∣∣∣(∇+ ig̃8Ã8 −
i

2
gA3

)
φ2

∣∣∣∣2

+
∣∣∣(∇− 2ig̃8Ã8

)
φ3

∣∣∣2 − µ2
(
|φ1|2 + |φ2|2 + |φ3|2

)
+ λ

(
|φ1|4 + |φ2|4 + |φ3|4

)
−2h

(
|φ1|2 |φ2|2 + |φ1|2 |φ3|2 + |φ2|2 |φ3|2

)
. (A.3.1)
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In order to compute the equations of motion for general topological defects we make the
following ansatz in cylindrical coordinates,

φi =
1√
2
ρCFLfi(r)e

iniθ , (A.3.2)

Ã8 = a08
a8(r)

r
êθ , (A.3.3)

A3 = a03
a3(r)

r
êθ , (A.3.4)

with the pro�le functions fi(r), the winding numbers ni, the asymptotic value for the con-
densate ρCFL from Eq. (19.0.5), and where a08, a03 are kept general since they can be used
to de�ne the pro�le functions as dimensionless quantities, and the coordinate angle θ. Due to
the high symmetry in the free energy concerning the coupling constants, we can immediately
deduce that the scalar �elds have the same asymptotic value, ρ1 = ρ2 = ρ3 = ρCFL. In order
to keep the following lengthy formulas more compact, we will omit the index CFL for ρCFL

and simply write ρ, which is now static and constant. All the dynamics is captured in the
pro�le functions.
Entering our ansatz for the scalar and gauge �elds using the ∇ and the curl operator (since

B = ∇×A) in cylindrical coordinates1 yields

U = a2
03

(
a
′
3

)2

2r2
+ a2

08

(
a
′
8
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2r2
+

1

2
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êθf1 +

i

2
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a3(r)

r
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2
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r
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2
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r
êθf2

∣∣∣∣2

+
1

2
ρ2

∣∣∣∣f ′3êr +
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f3êθ − 2ig̃8a08

a8(r)

r
êθf3

∣∣∣∣2

−µ
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ρ2
(
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1 + f2
2 + f2

3
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4
ρ4
(
f4

1 + f4
2 + f4

3

)
− h

2
ρ4
(
f2

1 f
2
2 + f2

1 f
2
3 + f2

2 f
2
3

)
.

We now subtract UCFL from Eq. (19.0.8) from U to get the free energy of a single �ux tube.
(We could compute the EOM directly from U as well, but subtraction at this point facilitates
the numerical calculation because dimensional parameters are eliminated).

U	 = U − U0 , (A.3.5)

1∇f(r, θ) = ∂rfêr + 1
r
∂θfêθ , ∇×A = 1

r
∂r (rA) êz
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which yields
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ρ2
(
f
′2
1 +
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r2
f2

1 + g̃2
8a

2
08

a2
8

r2
f2

1 +
g2

4
a2

03

a2
3

r2
f2

1 + 2g̃8a08
a8
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. (A.3.6)

We now extremize the area integral of the free energy 2π
´
dr rU w.r.t. the pro�le functions

fi and ai. The Euler-Lagrange equations read

∂ (rU)

∂fi
− ∂r

∂(rU)

∂f
′
i

= 0 , (A.3.7)

where fi stands for all pro�le functions including the ones of the gauge �elds. This leads to
�ve equations.(
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(
f
′′
2 +

1

r
f
′
2

)
=

n2
2

r2
f2 + g̃2

8a
2
08

a2
8

r2
f2 +

g2

4
a2

03

a2
3

r2
f2 + 2g̃8a08

a8

r2
n2f2

−ga03
a3

r2
n2f2 − ga03g̃8a08

a3a8

r2
f2 , (A.3.9)
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(A.3.12)

We can further simplify these equations by using ρCFL to eliminate µ.
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In a last step, we introduce a dimensionless radial coordinate r = R√
λρ
, where ξ =

√
λρ is the

coherence length of the system, and divide all equations by ξ2. In the following, prime denotes
a derivative w.r.t. the new dimensionless variable.(
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2
a03a3

)2
−
[
f2

(
1− f2

2

)
− h

λ
f2

(
2− f2

1 − f2
3

)]
,

(A.3.19)(
f
′′
3 +

1

R
f
′
3

)
=

f3

R2
(n3 − 2g̃8a08a8)2 −

[
f3

(
1− f2

3

)
− h

λ
f3

(
2− f2

1 − f2
2

)]
, (A.3.20)(

a
′′
3 −

a
′
3

R

)
=

1

λa03

{g
2
f2

1

(
n1 +

g

2
a03a3 + g̃8a08a8

)
− g

2
f2

2

(
n2 −

g

2
a03a3 + g̃8a08a8

)}
,

(A.3.21)(
a
′′
8 −

a
′
8

R

)
=

1

λa08

{
g̃8f

2
1

(
n1 + g̃8a08a8 +

g

2
a03a3

)
+ g̃8f

2
2

(
n2 + g̃8a08a8 −

g

2
a03a3

)
− 2g̃8f

2
3 (n3 − 2g̃8a08a8)

}
. (A.3.22)

We can use the equations of motion to simplify the energy by replacing the derivative terms and
use partial integration, where the factor R of the Jacobi determinant in the partial integration
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must not be forgotten. We use
ˆ
dr r

(
f
′
)2

= −
ˆ
dr f

(
rf
′′

+ f
′
)
. (A.3.23)

F	
L

= 2π

ˆ
dr rU	 , (A.3.24)

and �nd

F	
L

= 2π

ˆ
dr

{
a2

03

(
a
′
3

)2

2r
+ a2

08

(
a
′
8

)2

2r
+

1

2
ρ2
[
− rf1

(f1

r2

(
n1 + g̃8a08a8 +

g

2
a03a3

)2

− ρ2
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λf1

(
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1

)
− hf1

(
2− f2

2 − f2
3
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1

r

(
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g

2
a03a3 + g̃8a08a8

)2 ]
+

1

2
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(
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(
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2
a03a3
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(
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2

)
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(
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1 − f2
3
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+
f2

2

r

(
n2 −

g

2
a03a3 + g̃8a08a8
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+

1

2
ρ2
[
− rf3

(f3

r2
(n3 − 2g̃8a08a8)2 − ρ2[λf3

(
1− f2

3

)
− hf3

(
2− f2

1 − f2
2

)
]
)

+
f2

3

r
(n3 − 2g̃8a08a8)2

]
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[
µ2

2
ρ2
(
3− f2

1 − f2
2 − f2

3

)
− λ

4
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(
3− f4
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h

2
ρ4
(
3− f2

1 f
2
2 − f2

1 f
2
3 − f2

2 f
2
3

)]}
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(A.3.25)

We see that a lot of terms cancel, which leaves us with a comparably compact form,

F	
L

= 2π

ˆ
dr

{
a2

03

(
a
′
3

)2

2r
+ a2

08

(
a
′
8

)2

2r
+

1

2
ρ4rf1

[
λf1

(
1− f2

1

)
− hf1

(
2− f2
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3

)]
+

1

2
ρ4rf2

[
λf2

(
1− f2

2

)
− hf2

(
2− f2
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3
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+

1

2
ρ4rf3

[
λf3

(
1− f2

3

)
− hf3

(
2− f2

1 − f2
2
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+ r

[
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2
ρ2
(
3− f2

1 − f2
2 − f2

3

)
− λ

4
ρ4
(
3− f4
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)
+
h

2
ρ4
(
3− f2
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2
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2
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2 f
2
3
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(A.3.26)

Replacing µ2 = ρ2 (λ− 2h) and switching to dimensionless variables leads to

F	
L

= ρ2
CFLπ

ˆ
dRR

{
λ

(
a03a

′
3

R

)2

+ λ

(
a08a

′
8

R

)2

+
1

2

(
1− f4

1

)
+

1

2

(
1− f4

2

)
+

1

2

(
1− f4

3

)

− h

λ

(
3− f2

1 f
2
2 − f2

1 f
2
3 − f2

2 f
2
3

)}
, (A.3.27)

which is identical to Eq. (20.1.11) upon setting a08 = a03 = 1.
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B. Derivation of the Propagator

In this appendix the derivation of the tree-level propagator of the various systems is presented
in some detail.

B.1. Single Field

The excitation energies of the system described by the Lagrangian in Eq. (5.1.1) can be
computed as follows.
We start by computing the �uctuation propagator as described in Sec. 5.2. Starting from

the action containing the quadratic contributions of the �uctuations, we write

S(2) =

ˆ β

0
dτ

ˆ
d3xL(2) , (B.1.1)

and use the Fourier transformed �elds

ϕi(X) =
1√
TV

∑
K

e−iK·Xϕi(K) , (B.1.2)

to compute the Lagrangian in Fourier space. A priori, we allow di�erent momenta Kµ and K
′
µ

in the transformation whenever two �elds are multiplied with each other.

S(2) =
1

2TV

∑
K

∑
K′

ˆ
dτ

ˆ
d3x e

−i
(
K+K

′)·X{−KµK
µ′ϕ1(K)ϕ1(K

′
)

−KµK
µ′ϕ2(K)ϕ2(K

′
) +

[
ϕ1(K)ϕ1(K

′
) + ϕ2(K)ϕ2(K

′
)
]

(p2 −m2)

+ 2∂µψ
[
−iϕ1(K)Kµ′ϕ2(K

′
) + iϕ2(K)Kµϕ1(K

′
)
]

− λρ2
[
3ϕ1(K)ϕ1(K

′
) + ϕ2(K)ϕ2(K

′
)
]}

. (B.1.3)

We use that the Fourier transform of the delta symbol is given by

δK,K′ =
T

V

ˆ
dτ

ˆ
d3x e−iX·(K−K

′
) , (B.1.4)

to perform the integrations over dτ and d3x and perform the summation over K
′
which leads

to K = −K ′ . We can simplify the calculation by introducing an internal 2−dimensional vector
space in ϕ1 and ϕ2 such that

S(2) = −1

2

∑
K

[ϕ1(−K)ϕ2(−K)]
D−1(K)

T 2

(
ϕ1(K)
ϕ2(K)

)
, (B.1.5)

where the inverse propagator is given by

D−1(K) =

(
−K2 − p2 +m2 + 3λρ2 −2iKµ∂

µψ
2iKµ∂

µψ −K2 − p2 +m2 + λρ2

)
. (B.1.6)
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In principle, there is some arbitrariness in the o�-diagonal components, but we we choose a
maximally symmetric version. The excitations from this propagator are computed in the main
text.

B.2. Single Charged Field

In this section I show the derivation of the propagator for a single charged scalar �eld coupled
to an abelian gauge �eld, in the next section this derivation will be extended to the two-�elds
case. Elements of this derivation can be found in discussions of the standard abelian Higgs
model, see for instance Chap. 85 of Ref. [88]. The Lagrangian in Heaviside-Lorentz units is
given by

L = − 1

16π
FµνF

µν + [∂µ + i(qAµ − δ0
µµ)]ϕ[∂µ − i(qAµ − δµ0µ)]ϕ∗ −m2|ϕ|2 − λ|ϕ|4

= − 1

16π
FµνF

µν + ∂µϕ∂
µϕ∗ + i(qAµ − δ0µµ)(ϕ∂µϕ∗ − ϕ∗∂µϕ)

+(µ2 −m2 + q2AµA
µ − 2µqA0)|ϕ|2 − λ|ϕ|4 . (B.2.1)

We now parametrize the �eld in terms of its real and imaginary part, ϕ = 1√
2
(φ+ iχ).

L = − 1

16π
FµνF

µν +
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ+ (qAµ − δ0µµ)(φ∂µχ− χ∂µφ)

+
1

2
(φ2 + χ2)(µ2 −m2 + q2AµA

µ − 2µqA0)− λ

4
(φ2 + χ2)2 , (B.2.2)

Next, we separate the real, spacetime-independent condensate by replacing φ→ ρ+φ, where
we use the residual global U(1) freedom to chose a real value for the condensate. Then, we
collect the terms of second order in the �uctuations φ, χ, Aµ,

L(2) = − 1

16π
FµνF

µν +
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ+ ρqAµ∂
µχ+

ρ2q2

2
AµA

µ (B.2.3)

−µ(φ∂0χ− χ∂0φ)− 2µρqA0φ+
1

2
(φ2 + χ2)(µ2 −m2 − λρ2)− λρ2φ2 .

Here, terms of higher order in the �uctuations are neglected, and the prefactors of the terms
linear in φ and χ are canceled as before by applying the equations of motions obtained from
the tree-level potential. We see that the gauge �eld acquires a mass term 1

2ρ
2q2Aµµ, which is

called the abelian Higgs mechanism [245,246], see Sec. 5.3. In order to compute the dispersions
we need to add a gauge �xing term,

Lgf = −(∂µA
µ)2

2ξ
. (B.2.4)

In general, together with the gauge �xing term, ghost �elds should be included in order to
cancel unphysical modes and all in�uence of the gauge parameter ξ in the end. Although
ghost �elds are trivial for abelian gauge �elds which interact with scalar or fermionic �elds
(the only become important for non-abelian gauge theories like QCD), this is not longer the
case as soon as the �eld forms a condensate. We also replace A0 → iA0 because we work in the
imaginary time formalism. The remaining procedure is analogous to the derivation without
gauge �eld. By writing down the �uctuations of all �elds in Fourier space, we can read o� the
inverse propagator in momentum space, where we introduce the Fourier transformed scalar
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�elds via

φ(X) =
1√
TV

∑
K

e−iK·Xφ(K) , χ(X) =
1√
TV

∑
K

e−iK·Xχ(K) , (B.2.5)

and the gauge �eld

Aµ(X) =
1√
TV

∑
K

e−iK·XAµ(K) , (B.2.6)

with the spacetime four-vector X = (−iτ,x) and four-momentum K = (k0,k), where the
zeroth component of the momentum vector k0 contains the the bosonic Matsubara frequencies
ωn. The second-order terms in the �uctuations can then be written as

ˆ
X
L(2) = −1

2

∑
K

Ξ(−K)T
S−1(K)

T 2
Ξ(K) , (B.2.7)

with the abbreviation

Ξ(K) =

 φ(K)
χ(K)
Aµ(K)

 , (B.2.8)

and the propagator

S−1 =

 S−1
0 I(K)

IT (−K) D−1

 , (B.2.9)

The inverse propagator for the scalar �eld is found to be

S−1
0 =

 −K2 − (µ2 −m2) + 3λρ2 2ik0µ

−2ik0µ −K2 − (µ2 −m2) + λρ2

 . (B.2.10)

The gauge boson propagator, including the mass term induced by the condensate, reads

D−1(K) = σ



ζ(K,ρ)
σ + k2

0 −ik0k1 −ik0k2 −ik0k3

−ik0k1
ζ(K,ρ)
σ − k2

1 −k1k2 −k1k3

−ik0k2 −k1k2
ζ(K,ρ)
σ − k2

2 −k2k3

−ik0k3 −k1k3 −k2k3
ζ(K,ρ)
σ − k2

3


, (B.2.11)

where σ ≡ 1 − 1/ξ and ζ(K, ρ) ≡ −K2 + 4πq2ρ2 and the o�-diagonal blocks that couple the
scalar �eld to the gauge �eld are given by

I(K) =
√

4πqρ



2iµ 0 0 0

−k0 ik1 ik2 ik3

0 0 0 0

0 0 0 0

 . (B.2.12)
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B.3. Two Scalar Fields

For the computation of the sound modes of the two super�uid system, we compute the slope
of the Goldstone mode. Once again, we introduce �uctuations of the form

ϕi =
eiψi√

2
(ρi + φi + iχi) , (B.3.1)

into the Lagrangian Eq. (6.2.2) as in the section before, but set all charges to zero and ignore
the gauge �eld. Note the di�erent notion compared to Ref. [1], where this derivation was
originally performed. Doing so, we obtain

L(2) =
1

2

∑
i=1,2

[
(∂φi)

2 + (∂χi)
2 + |φi|2(p2

i −m2
i ) + 2∂ψi · (φi∂χi − χi∂φi)− λiρ2

i (3φ
2
i + χ2

i )
]

+
h+ gp2

12

2

(
ρ2

1|φ2|2 + ρ2
2|φ1|2 + 4ρ1ρ2φ1φ2

)
− ρ1ρ2

2

(
G∂φ1 · ∂φ2 − g∂χ1 · ∂χ2

)
+
g

2

[
ρ2

1∂ψ1 · (φ2∂χ2 − χ2∂φ2) + ρ2
2∂ψ2 · (φ1∂χ1 − χ1∂φ1)

+2ρ1ρ2(φ1∂ψ1 · ∂χ2 + 2φ2∂ψ2 · ∂χ1)
]
, (B.3.2)

where we have assumed ρ1 and ρ2 to be constant, and where |φi|2 ≡ φ2
i + χ2

i . We introduce
the Fourier transformed �elds via

φi(X) =
1√
TV

∑
K

e−iK·Xφi(K) , χi(X) =
1√
TV

∑
K

e−iK·Xχi(K) , (B.3.3)

with the spacetime four-vector X = (−iτ,x) and four-momentum K = (k0,k), where k0 =
−iωn with the bosonic Matsubara frequencies ωn = 2πnT , n ∈ Z. Then, the second-order
terms in the �uctuations can be written as

ˆ
X
L(2) = −1

2

∑
K

Ξ(−K)T
S−1(K)

T 2
Ξ(K) , (B.3.4)

where we have abbreviated

Ξ(K) =


φ1(K)
χ1(K)
φ2(K)
χ2(K)

 . (B.3.5)

In this basis, the inverse tree-level propagator in momentum space S−1(K) is a 4× 4 matrix,
given in Eqs. (8.0.2), and the free energy (5.2.11) becomes

Ω = U +
1

2

T

V

∑
K

ln det
Q(0)S−1(K)

T 2
, (B.3.6)

where the determinant is taken over 4 × 4 space. The determinant of the inverse propagator
is a polynomial in k0 of degree 8, which we can write in terms of its zeros, k0 = εr,k. As
mentioned in the main text, these zeros can be grouped in 4 pairs, {εr,k,−εr,−k}, and we can
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thus write

detS−1 =

(
1− G2

4
ρ2

1ρ
2
2

)(
1− g2

4
ρ2

1ρ
2
2

) 4∏
r=1

(k0 − εr,k)(k0 + εr,−k) . (B.3.7)

The prefactor is exactly cancelled by detQ(0), see Eq. (6.2.25). This is important since other-
wise it would yield an unphysical, divergent contribution to the free energy.
As an illustrative example for a thermodynamic quantity, let us write down the charge den-

sities ni = −∂Ω/∂µi at nonzero temperatures. With the help of Eq. (B.3.6) and ln detS−1 =
Tr lnS−1 we �nd

ni = − ∂U
∂µi
− 1

2

T

V

∑
K

Tr

[
S
∂S−1

∂µi

]

= − ∂U
∂µi
− 1

2

ˆ
d3k

(2π)3
T
∞∑

n=−∞

F (k0,k)∏4
r=1(k0 − εr,k)(k0 + εr,−k)

, (B.3.8)

where, in the second step, we have rewritten the sum over four-momentum as a discrete sum
over Matsubara frequencies n and an integral over three-momentum k, and F (k0,k) is a
complicated function without poles in k0 which obeys the symmetry F (−k0,−k) = F (k0,k).
The sum over Matsubara frequencies creates 8 terms, each for one of the poles. Due to the
symmetries of εr,k and F (k0,k) these terms give the same result pairwise under the k-integral
(this is easily seen with the new integration variable k → −k in one term of each pair).
Therefore, we can restrict ourselves to 4 terms,

ni = − ∂U
∂µi

+
1

2

4∑
r=1

ˆ
d3k

(2π)3

F (εr,k,k)

(εr,k + εr,−k)
∏
s(εr,k − εs,k)(εr,k + εs,−k)

coth
εr,k
2T

, (B.3.9)

where the product over s runs over the three integers di�erent from r. There are two contri-
butions due to coth ε

2T = 1 + 2f(ε) with the Bose distribution function f(ε) = 1/(eε/T − 1).
The �rst one is temperature independent (more precisely, there is no explicit dependence
on T , in general a temperature dependence enters through the condensates). This contribu-
tion is in�nite and has to be regularized. The second contribution depends on temperature
explicitly. It is the "usual" integral over the Bose distribution, here with a complicated,
momentum-dependent prefactor. This prefactor is trivial in the NOR phase, where there are
no condensates, and particles and antiparticles carry positive and negative unit charges for
each of the species separately. In the COE phase, where both �elds condense, the 2 massive
and 2 massless modes each contribute to both charge densities in a nontrivial way. Note that
in the thermal contribution alone we do not have 8 terms that are pairwise equal. Instead,
now it is crucial to work with positive excitation energies, otherwise one obtains unphysical,
negative occupation numbers. We do not further evaluate the charge densities or any other
thermodynamic quantity since our main focus in this work is on the excitation energies εr,k
themselves.

B.4. Two Scalar Fields and one Gauge Field

This derivation is slightly modi�ed and extended from Ref. [3]. We can now easily add the
second, neutral, �eld. We can use the result for the single �eld (B.2.1) and add the respective
terms for the neutral �eld, which can be obtained from the gauged �eld by setting q = 0.
For simplicity, we set g = 0 as well. The coupling terms, especially the derivative coupling G
which also couples the scalar and the gauge �elds, have to be computed separately, and we

179



obtain

L = L1(ϕ1, Aµ) + L2(ϕ2) + LI(ϕ1, ϕ2, Aµ) + LYM(Aµ) , (B.4.1)

with

L1 =
1

2
∂µφ1∂

µφ1 +
1

2
∂µχ1∂

µχ1 + (qAµ − δ0µµ1)(φ1∂
µχ1 − χ1∂

µφ1)

+
1

2
(φ2

1 + χ2
1)(µ2

1 −m2
1 + q2AµA

µ − 2µ1qA0)− λ

4
(φ2

1 + χ2
1)2 , (B.4.2a)

L2 =
1

2
∂µφ2∂

µφ2 +
1

2
∂µχ2∂

µχ2 − µ2(φ2∂0φ2 − χ2∂0φ2) (B.4.2b)

+
1

2
(φ2

2 + χ2
2)(µ2

2 −m2
2)− λ

4
(φ2

2 + χ2
2)2 ,

LI =
h

2
(φ2

1 + χ2
1)(φ2

2 + χ2
2)− G

2
(φ1∂µφ1 + χ1∂µχ1)(φ2∂

µφ2 + χ2∂
µχ2)

LYM = − 1

16π
FµνF

µν , (B.4.2c)

We now allow for condensation of both �elds by shifting φ1 → ρ1 + φ1, φ2 → ρ2 + φ2, where
we once again have chosen the vacuum expectation value to be positive and real. The terms
quadratic in the �uctuations then become

L(2) = L(2)
1 (ϕ1, Aµ) + L(2)

2 (ϕ2) + L(2)
I (ϕ1, ϕ2, Aµ) + LYM(Aµ) , (B.4.3)

with

L(2)
1 =

1

2
∂µφ1∂

µφ1 +
1

2
∂µχ1∂

µχ1 + ρ1qAµ∂
µχ1 +

ρ2
1q

2

2
AµA

µ (B.4.4a)

−µ1(φ1∂0χ1 − χ1∂0φ1)− 2µ1ρ1qA0φ1 +
1

2
(φ2

1 + χ2
1)(µ2

1 −m2
1 − λ1ρ

2
1)− λ1ρ

2
1φ

2
1 ,

L(2)
2 =

1

2
∂µφ2∂

µφ2 +
1

2
∂µχ2∂

µχ2 − µ2(φ2∂0χ2 − χ2∂0φ2) (B.4.4b)

+
1

2
(φ2

2 + χ2
2)(µ2

2 −m2
2 − λ2ρ

2
2)− λ2ρ

2
2φ

2
2

L(2)
I =

h

2
(ρ2

1|ϕ2|2 + ρ2
2|ϕ1|2 + 4ρ1ρ2φ1φ2)−Gρ1ρ2

2
∂µφ1∂

µφ2 . (B.4.4c)

We now follow the same procedure as above and read o� the following inverse tree-level prop-
agator where the internal space is now spanned by the vector

Ξ(K) =


φ1(K)
χ1(K)
φ2(K)
χ2(K)
Aµ(K)

 , (B.4.5)
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and the propagator is given by

S−1 =

 S−1
0 I(K)

IT (−K) D−1

 , (B.4.6)

with S−1 coupling the scalar �elds;

S−1
0 =



−K2 + η1(ρi) + 2λ1ρ
2
1 2ik0µ1

ρ1ρ2
2 (GK2 − 4h) 0

−2ik0µ1 −K2 + η1(ρi) 0 0

ρ1ρ2
2 (GK2 − 4h) 0 −K2 + η2(ρi) + 2λ2ρ

2
2 2ik0µ2

0 0 −2ik0µ2 −K2 + η2(ρi)

 ,

(B.4.7)

where η1/2(ρ1, ρ2) ≡ −(µ2
1/2−m2

1/2) +λ1/2ρ
2
1/2−hρ2

2/1 and the o�-diagonal blocks that couple
the scalar �elds to the gauge �eld,

I(K) =
√

4πqρ1



2iµ1 0 0 0

−k0 ik1 ik2 ik3

0 0 0 0

0 0 0 0

 . (B.4.8)

The inverse gauge-boson propagator D−1 is identical by the one given in Eq. (B.2.11), where
the replacement ρ→ ρ1 has to be performed.
We are interested in an e�ective potential for the condensates ρ1 and ρ2, and thus we need to

keep these condensates general. Nevertheless, it is instructive to �rst discuss the dispersions at
the zero-temperature stationary point, i.e., we set ρ1 = ρ01 and ρ2 = ρ02 with the condensates
in the coexistence phase ρ01 and ρ02 from Eq. (6.3.13). Let us �rst set the cross-coupling
between the scalar �eld to zero, h = G = 0. The dispersion relations k0 = εk are given by
the zeros of detS−1. Since this is a polynomial of degree 8 in k2

0, we obtain 8 dispersions, 6
of which are physical. The two unphysical ones are of the form εk = k. These are the usual
unphysical modes of the gauge �eld, whose contribution to the partition function is canceled
by ghost �elds. With the given gauge choice, ghosts do not couple to any of the �elds and
merely serve to cancel the unphysical modes. None of the modes depend on the gauge �xing
parameter ξ, which only appears as a prefactor of the determinant detS−1 and thus does not
have to be speci�ed. The 6 physical dispersions are

εk =
√
k2 + 4πq2ρ2

01 (2-fold) , (B.4.9a)

εk =

√
k2 + 3µ2

1 −m2
1 + 2πq2ρ2

01 ±
√

4µ2
1k

2 +
(
3µ2

1 −m2
1 − 2πq2ρ2

01

)2
, (B.4.9b)

εk =

√
k2 + 3µ2

2 −m2
2 ±

√
4µ2

2k
2 + (3µ2

2 −m2
2)2 . (B.4.9c)

We have three gauge �eld modes with mass εk=0 =
√

4πqρ01 [the two modes of Eq. (B.4.9a)
and the mode with the lower sign in Eq. (B.4.9b)], two more massive modes from the scalar
�elds, and the Goldstone mode [the mode with the lower sign in Eq. (B.4.9c)].

181



If we switch on the coupling constants, the dispersions, including the masses, i.e. the disper-
sions at k = 0, become too complicated to write down, but can still be computed analytically.
Note however that the �rst two gauge-boson dispersions remain una�ected by the coupling
between the �uids. The same is true for the mass of the would-be Goldstone mode; It remains
qρ1, even in the presence of G and h. Consequently, there are always 3 modes with mass√

4πqρ1, two of which have always dispersion ε2k = k2 + 4πq2ρ2
1, while the dispersion of the

third one is complicated and depends on the coupling between the two �elds. The dispersions
at large momenta are independent of ξ (the determinant of the inverse propagator turns out
to be proportional to ξ−1, but this is the only ξ dependence. The zeros of the determinant
are independent of ξ). This is no longer true if we go to smaller momenta (in particular it
is not true for the masses). The determinant is a polynomial in k0 of degree 16: in addition
to the 6 physical dispersions shown above, the determinant also yields 2 unphysical modes,
εk = k, which cancel in a proper treatment including ghost �elds. However, since our results
are already gauge independent and we know which modes have to be considered unphysical
(it is possible to use unitary gauge in which the massless modes vanish already on the level
of the Lagrangian, showing that they have to be considered as pure gauge, see for instance
Chap. 6 of [87]), we do not perform this calculation. Additionally, all modes also appear with
a negative sign.

0 1 2 3 4
0

1

2

3

4

5

k/m

ϵ
k
/m

Figure B.4.1.: Excitation energies for the COE phase, where both charged and neutral �elds condense.
The dashed (red) line is the diagonal εk = k to guide the eye. There are 6 modes in total, including
one Goldstone mode and three massive gauge modes. The excitation εk =

√
k2 + 4πq2ρ201, which

approaches the diagonal from above, is 2-fold degenerate. All other dispersions have very complicated
expressions due to the mixing of the gauge �eld with the scalar �elds. The parameters used for this
plot are m1 = m2 ≡ m, µ1 = 1.2m, µ2 = 1.1m, λ1 = 0.3, λ2 = 0.5, h = −0.1, G = 0, q = 2e. While
these excitation energies are evaluated at the zero-temperature stationary point, the main purpose of
this appendix is to derive an e�ective thermal potential, for which the dispersions for general values
of the charged and neutral condensates are needed.

For our nonzero-temperature calculation we want to derive an e�ective potential for the
condensates, therefore we need to keep ρ1 and ρ2 general and compute the large-momentum
behavior of the six dispersions. A large-momentum expansion of the dispersion relation can
be written as

εk ≈ c1 + k +
c2

2

k
, (B.4.10)

which leads for the two gauge �eld modes εk =
√
k2 + 4πq2ρ2

1

c1 = 0 , c2 = 2πq2ρ2
1 . (B.4.11)
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For the other 4 modes we have

c1 = e1

√
µ2

1 + µ2
2 + e2

√
(µ2

1 − µ2
2)2 +G2ρ2

1ρ
2
2µ

2
1µ

2
2

√
2

√
1− G2ρ21ρ

2
2

4

, e1, e2 = ± , (B.4.12)

which goes to ±µ1, ±µ2 in the case without entrainment, G = 0 (h does not appear here). The
coe�cients c2 are in general too complicated to write down. We show the numerical result
of the expansion in Fig. B.4.1. The result for the nonzero-temperature potential however
becomes comparably simple. Starting from Eq. (6.4.1), we �nd

T

ˆ
d3k

(2π)3
ln
(

1− e−εk/T
)
' −π

2T 4

90
+
c1ζ(3)T 3

π2
+

(c2
2 − c2

1)T 2

12
. (B.4.13)

In general, the dispersions now do depend on the gauge �xing parameter ξ. However, in the
limit (B.4.10) this dependence drops out, i.e., the coe�cients c1 and c2 do not depend on ξ.
Moreover, now the unphysical gauge modes no longer have the simple form εk = k. Two of the
physical gauge modes keep their simple form (B.4.9a), while for the other 4 physical modes
the coe�cients c1 and c2 are (at least some of them) very lengthy. However, adding up the
result for all 6 physical modes yields a relatively compact result,

T
6∑
i=1

ˆ
d3k

(2π)3
ln
(

1− e−εki/T
)
'

−π
2T 4

15
− T 2

12
(

1− G2ρ21ρ
2
2

4

){2(µ2
1 + µ2

2)− (m2
1 +m2

2)−
(
2λ1 − h+ 6πq2

)
ρ2

1 − (2λ2 − h)ρ2
2

+Ghρ2
1ρ

2
2 −

G2ρ2
1ρ

2
2

8

[
µ2

1 + µ2
2 − (m2

1 +m2
2)− (λ1 − h+ 12πq2)ρ2

1 − (λ2 − h)ρ2
2

]}

' T 2

12

[
(2λ1 − h+ 6πq2)ρ2

1 + (2λ2 − h)ρ2
2 −Ghρ2

1ρ
2
2

]
+ const. , (B.4.14)

where, in the second step, we have absorbed all terms that do not depend on ρ1 or ρ2

into "const.", and dropped all higher-order terms in the derivative coupling (i.e., we assume
Gµ2 � 1, where µ stands for all energy scales µ1, µ2, m1, m2, ρ1 ρ2). Dropping the constant
contribution, we add the T 2 terms to the potential (6.3.4) and arrive at the potential (6.4.2)
in the main text.
Within our approximation of a small derivative coupling, we see that the temperature e�ect

reduces to adding new quadratic terms in the condensates and a term similar to a density
interaction. We therefore absorb this in�uence into a modi�ed "thermal" mass1 and density

1This should not be confused with the thermal mass known from thermal �eld theory in φ4-theory, which
arises from loop corrections
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coupling.

m2
1,T = m2

1 +
2λ1 − h+ 6πq2

6
T 2 , (B.4.15a)

m2
2,T = m2

2 +
2λ2 − h

6
T 2 , (B.4.15b)

hT = h

(
1 +

GT 2

6

)
. (B.4.15c)

This is in agreement for instance with Eq. (16) in Ref. [247] or Eq. (4.17) in reference [248]
(note the di�erent convention of the self-coupling λ in that paper and the use of Gaussian units
here). On the one hand, our calculation is simpler than the one of these references because it
does not include loops, but on the other hand it works with two scalar �elds (in particular,
a derivative coupling between them), and with chemical potentials (as opposed to negative
squared masses). Our result shows that � within our approximation � the coupling between
the �elds does not have any non trivial e�ect in the gauged theory that it didn't already have
in the ungauged case. In general, this is presumably not true, because the complicated terms
proportional to the entrainment coupling g are omitted.
The condensates at �nite temperature as well as the critical temperatures can now be

computed as explained in the main part of this work.

184



C. Numerical Methods

In order to solve the various equations for the di�erent pro�le functions, several algorithms
can be used. For the single �ux tube, the shooting method, where one has to iteratively
determine the �rst derivative at the origin, is quite popular. However, in the multicomponent
systems, guessing several derivatives for the various functions at the same time is rather
complicated. Consequently, we preferred a version of Newton Simultaneous Over-Relaxation
(SOR), described in some detail in Ref. [249]. On top of that, a Gauss-Seidel procedure is
applied, which fastens the numerical calculation and is described as well in Ref. [249]. The
computation of the pro�le functions itself is partially performed in FORTRAN 90, but the data
post processing and most further calculations are performed with Wolfram Mathematica. For
some calculations in the color superconductivity related chapters of this thesis, the solution
of the system of equations Eqs. (C.0.7) is of rank higher than three and is found with help of
the Linear Algebra Package LAPACK, see their users' guide for more information [250]. In
this appendix, I explain the general idea of the algorithm, the code itself can be found in the
corresponding subsections of this appendix.
In the numerical procedure, we set up a one-dimensional lattice and work with discrete func-

tions. All derivatives in the equations of motion are replaced with symmetric �nite di�erences,
i.e. we transform the continuous EOMs into FDEs (�nite-di�erences equation). A �rst and
second derivative then read

f
′
(x) =

f(xi+1)− f(xi−1)

2∆x
, (C.0.1)

f
′′
(x) =

f(xi+1)− 2f(xi) + f(xi−1)

∆x2
, (C.0.2)

with the i−th lattice point xi and the constant lattice spacing ∆x. This allows us to transform
di�erential equations into algebraic equations which can be solved on the computer.
The Newton method works in general as follows: suppose we have a set of coupled, non-

linear, one-dimensional equations which we call

Fi(yj) = 0 , (C.0.3)

where the vector Fi denotes the i− th equation and yj denotes the value of the j− th function
(the variables we are trying to solve for). The idea is to compute the derivative of F with
respect to a change of y. The change in the functions y is the next step of the iteration. In a
1st order approximation, the derivative reads

Fi(y
n+1
j )− F (ynj )

∆ynj
≈ ∂Fi

∂ynj
, (C.0.4)

Fi(y
n+1
j )− F (ynj ) ≈ ∂Fi

∂ynj
∆ynj . (C.0.5)

In the end, the equations Fi should be ful�lled after the (�nal) iteration, i.e. we want to achieve
that Fi(yn+1

j ) = 0 for all combinations of i and j. Note that for a system of n equations and
n unknowns, the derivative on the right hand side is a matrix of dimension n. We will denote
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it by

F
′
ij =

∂Fi
∂ynj

. (C.0.6)

Inverting this matrix allows us to compute the change in the functions yj :

∆ynj = −
(
F
′
)−1

ji
Fi(y

n
j ) , (C.0.7)

The Newton method allows us to write down the iteration procedure for yj ,

yn+1
j = ynj + ∆ynj . (C.0.8)

The Newton method now has to be performed at each lattice point. Special considerations
have to be taken at the boundary of the lattice: it is convenient to add two extra points at
each end of the domain at a �xed value in order to have a well de�ned derivative at both ends
of the calculation domain. Over relaxation means that we multiply ∆yni with a parameter w.
For faster convergence, it can be shown that ω has to be between 1 < w < 2 with w ∈ R.

yn+1
j = ynj − w

(
F
′
)−1

ji
Fi(y

n
j ) . (C.0.9)

Depending on the complexity of the problem, ω cannot be chosen arbitrarily close to its
maximum value. If it is chosen too large, the iteration will diverge quickly.
In addition, we can use the Gauss-Seidel method for faster convergence. This method uses

the newest results of the current iteration for lattice points that already have been computed.
This means that for the n−th iteration at the point xi, the values of the same iteration instead
of the (n− 1)− th iteration for points at which the iteration has already been performed are
used.
For the �rst iteration, we have to provide an initial guess for all functions we want to

compute, where a better initial guess usually leads to a faster convergence. The initial guess
has to obey the boundary conditions of the �nal solution, for a superconducting �ux tube the
use of the tanh(R) function has to be proven successful. For a successive calculation of pro�le
functions for various external parameters, the full solution for the preceding parameter can be
used as an initial guess, at least if the step size in the external parameter is small enough.
The procedure for solving the pro�le functions can be summarized as follows:

1. De�ne all external parameters and functions in Mathematica and write them into a text
�le.

2. Start the computation of a given set of parameters by executing the FORTRAN program,
which can be started from within Mathematica with the "RunProcess" command. The
return code of the program is transferred back to Mathematica automatically.

3. The FORTRAN SOR-program saves the data into a text �le

4. Read in the results in Mathematica from the text �le and perform all data processing,
including integration of curves and the calculation of the free energy, critical �elds and
so on in Mathematica.
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C.1. FORTRAN Code for Neutron-Proton System

This is the code used for solving the equations of motions Eqs. (11.3.12) of the two-component
system. Note that this code uses the parameters from Ref. [100], which can be easily translated
by following the footnote below Eq. (11.3.12).

1 program fluxtubesSOR

2

3 implicit none

4

5 integer :: nstart ,nend ,ninc ,np,it,maxit ,n,j,i

6 double precision :: eps , inf , h, nvev , pvev , bet

7 double precision :: kap , sig , w, ann , app , accgoal

8 character ::tmp

9 double precision , DIMENSION (:), ALLOCATABLE :: f1,f2,g1,g2,a1,a2,

r

10

11 !define input formats

12

13 200 format(A1)

14 400 format(I4)

15 300 format(F10.5)

16

17 !open parameter input file (input written into file from

Mathematica)

18 open(2,file='para.dat',status='old', action='read')

19

20 !read physical parameters

21 read (2,*) nstart !start of winding number n scan

22 read (2,*) nend ! end of n

23 read (2,*) ninc !increment of scan in n

24 read (2,*) kap !kappa

25 read (2,*) bet !non entr coupling

26 read (2,*) sig !entraiment coupling

27 read (2,*) nvev ! vev of neutral field

28 read (2,*) pvev ! vev of charged field

29 read (2,*) app ! self coupling of charged field

30 read (2,*) ann ! self coupling of neutral field

31

32 read (2 ,200) tmp

33 !read numerical parameters

34 read (2,*) it !maximal number of iterations

35 read (2,*) np !number of gridpoints

36 read (2,*) w !overshooting paramter

37 read (2,*) accgoal !accuracy goal

38 read (2,*) eps ! epsilon = "zero point" = start of radial

coordinate

39 read (2,*) inf ! "infinity" end of radial coordinate

40

41 close (2)

42
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43 !allocate tables for proton (f) neuton (g) and gauge field (a)

profile functions

44 allocate(f1(1:np+1),g1(1:np+1),a1(1:np+1),f2(1:np+1),g2(1:np+1),

a2(1:np+1))

45 allocate(r(1:np+1))

46

47 !first initial guess for n=1

48

49 h=(inf -eps)/np !grid stepsize

50

51 !initalize grid

52 do i=1,np+1,1

53 r(i)=eps+(i-1)*h

54 end do

55

56 !initial guess for functions

57

58 do i=1,np+1,1

59 g1(i)=1d0

60 f1(i)=tanh(2d0*r(i)/3d0)

61 a1(i)=f1(i)

62 end do

63

64 !BC's for first guess

65 f1(1:2)=0

66 a1(1:2)=0

67 f1(np:np+1)=1

68 g1(np:np+1)=1

69 a1(np:np+1)=1

70

71

72 !call subroutine for relaxation

73 open(3, file='f.dat' , status='replace ')

74 open(4, file='g.dat' , status='replace ')

75 open(5, file='a.dat' , status='replace ')

76

77 do n=nstart ,nend ,ninc

78

79 call sor(n,kap ,bet ,sig ,nvev ,pvev ,app ,ann ,it,np,w,accgoal ,eps ,

inf ,f1,f2,g1,g2,a1,a2,r)

80

81 !safe results in files

82 do j=1,np+1

83 write (3,*) r(j),f2(j)

84 write (4,*) r(j),g2(j)

85 write (5,*) r(j),a2(j)

86 end do

87 write (3,*) !write empty lines to separate results for different

winding numbers

88 write (4,*)

89 write (5,*)
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90

91 end do

92

93 close (3)

94 close (4)

95 close (5)

96

97 end program

98

99 subroutine sor(n,kap ,bet ,sig ,nvev ,pvev ,app ,ann ,it,np,w,accgoal ,

eps ,inf ,f1,f2,g1,g2,a1,a2,r)

100 implicit none

101

102 integer :: np,it,maxit ,n,i,j

103 double precision :: eps , inf , h, nvev , pvev , bet

104 double precision :: kap , sig , w, ann , app , accgoal , check

105 double precision , DIMENSION (1:np+1) :: f1,f2,g1,g2,a1,a2,r,fp,gp,

ap,det ,f,g,a,F11 ,F12 ,F21 ,F22 ,F23 ,F32 ,F33

106

107 maxit=0 !final iteration when accuaracy goal is reached

108

109 !relaxation , inital guess is provided by main program

110 h=(inf -eps)/np !grid stepsize

111

112 do i=1,it

113 f1(1)=0

114 a1(1)=0

115 f1(np:np+1)=1

116 g1(np:np+1)=1

117 a1(np:np+1)=1

118 f2(1)=0

119 a2(1)=0

120 f2(np:np+1)=1

121 g2(np:np+1)=1

122 a2(np:np+1)=1

123 do j=np -1,2,-1

124

125 a(j) = (a1(j-1) - 2d0*a1(j) + a2(j+1) - (h*(-a1(j-1) + a2(j+1)

))/(2d0*r(j)) + &

126 (h**2*(1 - a1(j))*f1(j)**2)/kap **2)

127

128

129 f(j) = f1(j-1) -2d0*f1(j)+f2(1+j)+(h*(-f1(j-1)+f2(1+j)))/(2d0*r(

j))+h**2* &

130 (-((n**2*(1d0-a1(j))**2*f1(j))/r(j)**2)&

131 -f1(j)*(-1d0+f1(j)**2) - (nvev **2/ pvev **2* bet*f1(j)*(-1d0 + g1(

j)**2)) - &

132 (nvev/pvev*sig*((f1(j)*(-g1(j-1) + g2(j+1))**2) /(4.*h**2) + &

133 f1(j)*g1(j)*((-g1(j-1) + g2(j+1))/(2d0*h*r(j)) + (g1(j-1) - 2d0

*g1(j) + g2(j+1))/h**2))))

134
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135 g(j) = g1(j-1) - 2d0*g1(j) +h**2*( -( bet*(-1 + f1(j)**2)*g1(j))

- &

136 (pvev*sig*(((-f1(j-1) + f2(j+1))**2*g1(j))/(4*h**2) + f1(j)*((-

f1(j-1) + f2(j+1))/(2d0*h*r(j)) +&

137 (f1(j-1) - 2d0*f1(j) + f2(j+1))/h**2)*g1(j)))/nvev -(ann*nvev

**2*g1(j)*(-1 + g1(j)**2))/&

138 (app*pvev **2)) + g2(j+1) + (h*(-g1(j-1) + g2(j+1)))/(2d0*r(j))

139

140 F11(j) = -2d0-h**2*f1(j)**2d0/kap**2

141 F12(j) = h**2d0*2*f1(j)/kap**2d0*(1-a1(j))

142

143 F21(j) = h**2d0*f1(j)*n**2d0/r(j)**2d0*2d0*(1-a1(j))

144 F22(j) = (-2-h**2*n**2*(1d0-a1(j))**2/r(j)**2-h**2*(3 d0*f1(j)

**2-1d0)-&

145 h**2* sig*nvev/pvev*(g1(j)*(((g2(j+1) -2d0*g1(j)+g1(j-1))/ &

146 h**2)+(g2(j+1)-g1(j-1))/2d0/h/r(j)) + (g2(j+1)-g1(j-1))

**2/(2 d0*h)**2)-h**2* bet*nvev **2/ pvev **2*&

147 (g1(j)**2-1d0))

148 F23(j) = -2*bet*(nvev/pvev)**2d0*f1(j)*g1(j)*h**2d0

149

150 F32(j) = -h**2d0*2*bet*f1(j)**2d0*g1(j)**2d0

151 F33(j) = -2 + h**2*( -( bet*(-1 + f1(j)**2)) - (pvev*sig*((-f1(j

-1) + f2(j+1))**2/(4.*h**2) + &

152 f1(j)*((-f1(j-1) + f2(j+1))/(2d0*h*r(j)) + (f1(j-1) - 2d0*f1(j

) + f2(j+1))/h**2)))/ &

153 nvev -(ann*nvev **2*( -1d0+3d0*g1(j)**2))/(app*pvev **2))

154

155 det(j)=-F11(j)*F23(j)*F32(j)-F12(j)*F21(j)*F33(j)+F11(j)*F22(j)

*F33(j)

156

157 a2(j) = a1(j) - w/det(j)*(F12(j)*F23(j)*g(j) - a(j)*F23(j)*F32(

j)-F12(j)*f(j)*F33(j) + a(j)*F22(j)*F33(j))

158 f2(j) = f1(j) - w/det(j)*(-F11(j)*F23(j)*g(j) + F11(j)*f(j)*F33

(j) - a(j)*F21(j)*F33(j))

159 g2(j) = g1(j) - w/det(j)*(-F12(j)*F21(j)*g(j) + F11(j)*F22(j)*g

(j) - F11(j)*f(j)*F32(j) + a(j)*F21(j)*F32(j))

160 end do

161

162 g2(1)=g2(2) !enforce BC for g

163 !check for convergence

164 If(check(f1,f2,np).le.accgoal.and.check(g1,g2,np).le.accgoal.

and.check(a1,a2,np).le.accgoal) then

165 write (*,*) "Accuarcygoal of ",accgoal ," reached at nit=",

maxit

166 write (*,*) "accuarcy is for proton ",check(f1,f2,np)," 

neutron ",check(g1,g2,np)," gauge field ",check(a1,a2,np)

167 return

168 end if

169

170 !"rewind" for next iteration step

171 f1(1:np+1)=f2(1:np+1)
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172 g1(1:np+1)=g2(1:np+1)

173 a1(1:np+1)=a2(1:np+1)

174 maxit=maxit+1 !counter for iteration

175 end do

176 write (*,*) maxit

177 end subroutine sor

178

179 double precision function check(f1,f2,np)

180 implicit none

181 double precision , DIMENSION (1:np+1) :: f1,f2

182 integer :: np

183

184 check = sqrt((sum(f2)-sum(f1))**2/(np+1))

185

186 end function
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D. Calculation of Hc2 and Gibbs Free

Energy just below Hc2

Here we derive Eqs. (11.2.1) and (11.2.2). To this end, we need the equations of motion for
the scalar �elds and the gauge �eld. We go back to the Lagrangian (6.2.2), take the static
limit and replace the parameters mi and h by their T -dependent generalizations mi,T and hT .
This yields the potential

U = (∇− iqA)ϕ1 · (∇+ iqA)ϕ∗1 − (µ2
1 −m2

1,T )|ϕ1|2 + λ1|ϕ1|4 +∇ϕ2 · ∇ϕ∗2

−(µ2
2 −m2

2,T )|ϕ2|2 + λ2|ϕ2|4 − 2hT |ϕ1|2|ϕ2|2

−G
2

[ϕ1ϕ2(∇+ iqA)ϕ∗1∇ϕ∗2 + ϕ1ϕ
∗
2(∇+ iqA)ϕ∗1∇ϕ2 + c.c.] +

B2

8π
, (D.0.1)

and the equations of motion for ϕ∗1, ϕ
∗
2, and A become[

(∇− iqA)2 + µ2
1 −m2

1,T − 2λ1|ϕ1|2 + 2hT |ϕ2|2
]
ϕ1 −Gϕ1∇ · Re (ϕ2∇ϕ∗2) = 0 , (D.0.2a)(

∆ + µ2
2 −m2

2,T − 2λ2|ϕ2|2 + 2hT |ϕ1|2
)
ϕ2 −Gϕ2∇ · Re [ϕ1(∇+ iqA)ϕ∗1] = 0 , (D.0.2b)

∇×B + 8πq Im [ϕ1(∇+ iqA)ϕ∗1] = 0 . (D.0.2c)

Since the transition from the �ux tube phase to the normal-conducting phase is assumed to
be of second order, the charged condensate becomes in�nitesimally small just below Hc2, and
we make the ansatz ϕ1 = ϕ̄1 + δϕ1 with ϕ̄1 ∝ (Hc2 − H)1/2, and δϕ1 includes terms of
order (Hc2 −H)3/2 and higher, i.e., is at least of order ϕ̄3

1. We also introduce perturbations
for the neutral condensate and the gauge �eld, ϕ2 = ϕ̄2 + δϕ2, A = (Āy + δAy)ey, where
δAy, δϕ2 include terms of order ∝ Hc2 −H and higher, i.e., they are at least of order ϕ̄2

1. As
the magnetic �eld completely penetrates the superconductor at the phase transition, we can
choose the unperturbed gauge �eld to be of the form Āy = xHc2, and we denote δB = ∂xδAy,
such that B = (Hc2 + δB)ez. We assume all functions to be real and to depend on x only,
not on y and z (solutions with these properties are su�cient for our purpose, the derivation
would also work without these restrictions but would be somewhat more tedious). We insert
this ansatz into the equations of motion (D.0.2), and keep terms up to order ϕ̄3

1. Then, the
linear contributions from Eqs. (D.0.2a) and (D.0.2b) yield two equations for ϕ̄1 and ϕ̄2,

D1ϕ̄1 = 0 , (D.0.3a)

D2ϕ̄2 = 0 , (D.0.3b)

with

D1 ≡ ∂2
x − q2Ā2

y + µ2
1 −m2

1,T + 2hT ϕ̄
2
2 −G∂x(ϕ̄2∂xϕ̄2) , (D.0.4a)

D2 ≡ ∂2
x + µ2

2 −m2
2,T − 2λ2ϕ̄

2
2 , (D.0.4b)
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while the subleading contributions from Eqs. (D.0.2a) and (D.0.2b) and the leading contribu-
tion from Eq. (D.0.2c) yield the following equations for the perturbations δϕ1, δϕ2, and δAy,

D1δϕ1 =
[
2(q2ĀyδAy + λ1ϕ̄

2
1 − 2hT ϕ̄2δϕ2) +G∂2

x(ϕ̄2δϕ2)
]
ϕ̄1 , (D.0.5a)

D2δϕ2 =
[
2(2λ2ϕ̄2δϕ2 − hT ϕ̄2

1) +G∂x(ϕ̄1∂xϕ̄1)
]
ϕ̄2 , (D.0.5b)

∂2
xδAy = −8πq2Āyϕ̄

2
1 . (D.0.5c)

Inserting our ansatz into the potential (D.0.1), using partial integration and the equations of
motion (D.0.3) and (D.0.5), and keeping terms up to order ϕ̄4

1, we �nd after some algebra the
free energy

F =

ˆ
d3r

{
B2

8π
− λ1ϕ̄

4
1 − λ2ϕ̄

4
2 + ϕ̄2δϕ2[2hT ϕ̄

2
1 −G∂x(ϕ̄1∂xϕ̄1)]

}
. (D.0.6)

We will �rst compute Hc2 from Eqs. (D.0.3) and afterwards compute the Gibbs free energy
just below Hc2 from Eq. (D.0.6).
We assume the neutral condensate in the SF phase to be homogeneous, and thus Eq. (D.0.3b)

yields 2ϕ̄2
2 = ρ2

SF, as expected. For the solution of Eq. (D.0.3a) we can simply follow the text-
book arguments because it has the same structure as for a single-component superconductor.
It reads

(−∂2
x + q2H2

c2x
2)ϕ̄1 = (λ1ρ

2
SC + hTρ

2
SF)ϕ̄1 , (D.0.7)

and thus is equivalent to the Schrödinger equation for the one-dimensional harmonic oscillator,
− ~2

2mψ
′′(x)+ m

2 ω
2x2ψ = Eψ with the identi�cation E/(~ω) = (λ1ρ

2
SC +hTρ

2
SF)/(2qHc2). Since

the eigenvalues are En = (n + 1
2)~ω, the largest magnetic �eld for which the equation allows

a physical solution is obtained by setting n = 0,

Hc2 =
λ1ρ

2
SC

q

(
1 +

hTρ
2
SF

λ1ρ2
SC

)
=

1

qξ2

(
1− h2

T

λ1λ2

)
, (D.0.8)

in agreement with Eq. (13) of Ref. [183]. In the second expression we have rewritten the
condensates ρSC and ρSF in terms of the charged condensate in the coexistence phase ρ01,
see Eq. (6.3.13), and used the de�nition of the coherence length ξ from Eq. (11.1.5). Since
the relevant eigenvalue of Eq. (D.0.7) is given by n = 0, the corresponding eigenfunction is a
Gaussian,

ϕ̄1(x) = C0e
−x2qHc2/2 , (D.0.9)

where the exact value of the prefactor C0 ∝ (Hc2−H)1/2 is not relevant for the following. The
result shows that, for H just below Hc2, charged condensation with small magnitude of order
(Hc2 −H)1/2 occurs in a slab con�ned in a direction perpendicular to the external magnetic
�eld, here chosen to be the x-direction, with width (qHc2)−1/2. Had we allowed for y and z
dependencies of the condensate, we could have used this linearized approximation to discuss
crystalline con�gurations and determine the preferred lattice structure. Here we continue by
checking whether the solution (D.0.9) is energetically preferred over the normal-conducting
phase for H below and close to Hc2. To this end, we need to compute the Gibbs free energy,
as de�ned in Eq. (11.0.2), from the free energy (D.0.6). We �rst solve Eq. (D.0.5c) with the
boundary condition δB(±∞) = H − Hc2 (since B = H in the normal-conducting phase) to
�nd

δB(x) = −(Hc2 −H) + 4πqϕ̄2
1(x) . (D.0.10)
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Inserting this result into Eq. (D.0.6) and using Eq. (D.0.9) yields the Gibbs free energy

GCOE = GSF +

ˆ
d3r

{(
1

2κ2
− 1

)
λ1ϕ̄

4
1 + ϕ̄2δϕ2

[
2hT ϕ̄

2
1 −G∂x(ϕ̄1∂xϕ̄1)

]}
, (D.0.11)

with GSF from Eq. (11.1.2). It remains to compute δϕ2. We use Eq. (D.0.5b), which can be
written as

(∂2
t − p2)δϕ2(t) = − hT p

2C2
0

2
√

2λ2ρSF

e−t
2
(2 + γ − 2γt2) , (D.0.12)

with the dimensionless variable t =
√
qHc2 x and the dimensionless quantities

p2 =
2λ2ρ

2
SF

qHc2
, γ =

GqHc2

hT
, (D.0.13)

where p indicates the magnitude of the neutral condensate and γ the magnitude of the gradient
coupling G relative to the density coupling hT , both in units given by the critical magnetic
�eld. With the boundary conditions δϕ2(±∞) = 0, this equation has the solution

δϕ2(t) =
1

2

hT p
2C2

0

2
√

2λ2ρSF

[
γe−t

2
+

√
π

p

(
1− p2γ

4

)
Z(p, t)

]
, (D.0.14)

where we have abbreviated

Z(p, t) ≡ ep2/4
{
ept
[
1− erf

(p
2

+ t
)]

+ e−pt
[
1− erf

(p
2
− t
)]}

, (D.0.15)

with the error function erf. Inserting Eq. (D.0.14) into Eq. (D.0.11) yields

GCOE

V
= λ1〈ϕ̄4

1〉
(

1

2κ2
− 1 +

h2
T

λ1λ2

{
p2γ

4

(
1 +

γ

4

)
+

(
1− p2γ

4

)[(
1 +

γ

2

)
I1(p)− γI2(p)

]})

+
GSF

V
, (D.0.16)

where 〈. . .〉 denotes spatial average, and

I1(p) ≡ p

2
√

2

ˆ ∞
−∞

dt e−t
2Z(p, t) , I2(p) ≡ p

2
√

2

ˆ ∞
−∞

dt t2e−t
2Z(p, t) . (D.0.17)

We discuss this result for the case without gradient coupling, γ = 0, in the main text.

194



E. Interaction between two Flux Tubes

In this appendix we derive the expression for the interaction energy Eq. (12.0.3). We start
from the de�nition (12.0.2), i.e., we consider two parallel �ux tubes (a) and (b) separated by
the (dimensionless) distance R0. We divide the total volume V into two half-spaces V (a) and
V (b), which are the simplest versions of two Wigner-Seitz cells: we connect the two �ux tubes
by a line with length R0, and the plane in the center of and perpendicular to that line divides
V into V (a) and V (b). The interaction free energy is then computed from

F	int = 2

ˆ
V (a)

d3r
[
U

(a)+(b)
	 − U (a)

	 − U (b)
	

]
, (E.0.1)

where, due to the symmetry of the con�guration, we have restricted the integration to the
half-space V (a), where U (a)

	 , U (b)
	 are the free energy densities of the two �ux tubes in the

absence of the other �ux tube, and where U (a)+(b)
	 is the total free energy of the �ux tubes.

(Recall that by de�nition U	 denotes the pure �ux tube energy density, with the free energy
density of the homogeneous con�guration already subtracted.)
We assume R0 to be much larger than the widths of the �ux tubes, such that the contribution

of �ux tube (b) to the free energy is small in V (a). Therefore, we will now compute the free
energy density of a "large" contribution that solves the full equations of motion plus a "small"
contribution that solves the linearized equations of motion. We shall do so in a general
notation, not referring to the geometry of our two-�ux tube setup. Only in Eq. (E.0.8), when
we insert the results into the free energy (E.0.1), we shall come back to this setup and introduce
a more explicit notation indicating the contributions of the two di�erent �ux tubes. Following
Ref. [184], we de�ne

Q ≡ ξ(qA−∇ψ1) = −n(1− a)

R
eθ , (E.0.2)

and write

Q = Q0 + δQ , (E.0.3a)

f1 = f10 + δf1 , (E.0.3b)

f2 = f20 + δf2 . (E.0.3c)

The equations of motion for a single �ux tube to leading order, δQ = δf1 = δf2 = 0, are (from
now on, in this appendix, all gradients are taken with respect to the dimensionless coordinates)

0 = ∇× (∇×Q0) +
f2

10

κ2
Q0 , (E.0.4a)

0 = ∆f10 + f10(1− f2
10 −Q2

0)− hT
λ1
x2f10(1− f2

20)− Γx

2
f10∇ · (f20∇f20) , (E.0.4b)

0 = ∆f20 +
λ2

λ1
x2f20(1− f2

20)− hT
λ1
f20(1− f2

10)− Γ

2x
f20∇ · (f10∇f10) , (E.0.4c)

[equivalent to Eqs. (11.3.12) in the main text], and the equations of motion of �rst order in
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the corrections δQ, δf1, δf2 become

0 = ∇× (∇× δQ) +
f10

κ2
(f10δQ + 2δf1Q0) , (E.0.5a)

0 = −Q0 · (2f10δQ + δf1Q0) + ∆δf1 + δf1(1− 3f2
10)− hT

λ1
x2[δf1(1− f2

20)− 2f10f20δf2]

−Γx

2
[δf1∇ · (f20∇f20) + f10∆(f20δf2)] , (E.0.5b)

0 = ∆δf2 +
λ2

λ1
x2δf2(1− 3f2

20)− hT
λ1

[δf2(1− f2
10)− 2f10f20δf1]

− Γ

2x
[δf2∇ · (f10∇f10) + f20∆(f10δf1)] . (E.0.5c)

We denote the free energy density, up to second order and after using the equations of motions,
by U0 + δU , where

U0 =
ρ2

01

2

{
κ2(∇×Q0)2 + (∇f10)2 + f2

10Q
2
0 +

(1− f2
10)2

2
+ x2

[
(∇f20)2 +

λ2

λ1
x2 (1− f2

20)2

2

]

−hT
λ1
x2(1− f2

10)(1− f2
20)− Γxf10f20∇f10 · ∇f20

}
(E.0.6)

is the free energy density of a single �ux tube from Eq. (11.3.11), and the �rst-order and
second-order corrections can be written as a total derivative,

δU = ρ2
01∇ ·

{
κ2δQ×

[
∇×

(
Q0 +

δQ

2

)]
+ δf1∇

(
f10 +

δf1

2

)
+ x2δf2∇

(
f20 +

δf2

2

)

−Γx

2

[
δf1

(
f10 +

δf1

2

)
f20∇f20 + δf2

(
f20 +

δf2

2

)
f10∇f10 +

1

2
∇(f10f20δf1δf2)

]}
.

(E.0.7)

Notice that any explicit dependence on the density coupling hT has disappeared, while the
derivative coupling Γ does appear explicitly.
We can now go back to the interaction free energy (E.0.1) and identify the full free energy

U
(a)+(b)
	 in the half-space V (a)with U0+δU . In V (a), U (a)

	 is given by setting δQ = δf1 = δf2 =

0 in U0 + δU (which simply leaves U0), and U
(b)
	 is obtained by setting Q0 = 0, f10 = f20 = 1

in U0 + δU (which leaves various terms from δU). Consequently, we �nd

F	int ' 2ρ2
01

ˆ
∂V (a)

dS ·
{
κ2δQ(b) ×

(
∇×Q

(a)
0

)
+ δf

(b)
1 ∇f

(a)
10 + x2δf

(b)
2 ∇f

(a)
20

− Γx

2

[
δf

(b)
1

(
f

(a)
10 +

δf
(b)
1

2

)
f

(a)
20 ∇f

(a)
20 + δf

(b)
2

(
f

(a)
20 +

δf
(b)
2

2

)
f

(a)
10 ∇f

(a)
10

+
1

2
∇(f

(a)
10 f

(a)
20 δf

(b)
1 δf

(b)
2 )− 1

2
∇(δf

(b)
1 δf

(b)
2 )

]}
, (E.0.8)
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where we have rewritten the volume integral as a surface integral and where we have made
the contributions from the two �ux tubes (a) and (b) explicit. Since the derivatives of all
�elds vanish at in�nity, the integration surface is reduced to the plane that separates the two
Wigner-Seitz cells. We now use the geometry of the setup to simplify this expression: we
align the z-axis with �ux tube (a), such that this �ux tube sits in the origin of the x-y plane,
with the x-axis connecting the two �ux tubes. Therefore, Q(a), f (a)

10 , f (a)
20 are functions only

of R, while δQ(b), δf (b)
1 , δf (b)

2 also depend on the azimuthal angle θ. However, since we only
need the functions and their gradients at the boundary between the two Wigner-Seitz cells
and since this boundary is by assumption far away not only from �ux tube (b) but also from
�ux tube (a), we can write (i = 1, 2)

Q
(a)
0 ' δQ(a) ≡ −δQ eθ = δQ(sin θ ex − cos θ ey) , (E.0.9a)

δQ(b) =−δQ(sin θ ex + cos θ ey) , f
(a)
i0 ' 1− δf (a)

i , δf
(b)
i = δf

(a)
i ≡ δfi , (E.0.9b)

∇f (a)
i0 '−∇δf

(a)
i = −δf ′i eR = −δf ′i(cos θ ex + sin θ ey) , ∇δf (b)

i = δf ′i(− cos θ ex + sin θ ey) .

(E.0.9c)

Note in particular that, at the relevant surface, δf (b)
i = δf

(a)
i , but dS · ∇δf (a)

i = −dS · ∇δf (b)
i .

Now, δQ and δfi are functions only of R. Inserting Eqs. (E.0.9) into Eq. (E.0.8) yields

F	int

L
= 2ρ2

01R0

ˆ ∞
R0/2

dR√
R2 − (R0/2)2

{
−κ2δQ

(
δQ

R
+ δQ′

)
+ δf1δf

′
1 + x2δf2δf

′
2

−Γx

4
[2(1− δf1 − δf2) + δf1δf2](δf1δf2)′

}
. (E.0.10)

We can employ this result by inserting the modi�ed Bessel functions from Eq. (11.3.18),

δQ ' −nCK1(R/κ) , (E.0.11a)

δf1 ' −D+γ+K0(
√
ν+R)−D−γ−K0(

√
ν−R) , (E.0.11b)

δf2 ' −D+K0(
√
ν+R)−D−K0(

√
ν−R) . (E.0.11c)

We may also extrapolate this result down to smaller distances by reinstating the full numerical
functions through δQ→ Q = −n(1− a)/R and δfi → 1− fi, which yields the result (12.0.3)
in the main text.

E.1. Asymptotic Approximation of Flux Tube Interaction with
Gradient Coupling

In the main text, we discuss the large-distance behavior of the �ux tube interaction without
gradient coupling. In the presence of a gradient coupling, the interaction is more complicated,
but, as we show in this appendix, an equally compact expression can be derived if we are only
interested in the leading order contributions, i.e., the exponential behavior.
We start by inserting the asymptotic solutions (11.3.18) into the expression for the interac-

tion free energy (12.0.3). The result is an integral over a sum of many terms, each of which is a
product of 2, 3, or 4 modi�ed Bessel functions of the second kind. In each product, one factor
is K1 and the remaining ones are K0. The integral over the terms with 2 Bessel functions
that have the same argument can be expressed again as a Bessel function with the help of Eq.
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(12.0.5). For the integral over all other products we use the expansion,

Kn(z) =

√
π

2z
e−z

[
1 +

4n2 − 1

8z
+O

(
1

z2

)]
, (E.1.1)

and only keep terms with the smallest exponential suppression. These terms are found as
follows. With Eq. (E.1.1) we approximate

e−αR ' αR

π
K0(αR/2)K1(αR/2) . (E.1.2)

Then, we approximate each product of Bessel functions K0K1, K0K0K1, K0K0K0K1 by the
leading order term, and re-express the exponential as a product K0K1 with the help of Eq.
(E.1.2). If we have started with a product K0K1 with di�erent arguments, we arrive at an
expression which we can integrate using Eq. (12.0.5). If we have started with a product of 3 or
4 Bessel function, we do not exactly reproduce the integrand of Eq. (12.0.5) because there is an
additional factor R−1/2 (for 3 Bessel functions) or R−1 (for 4 Bessel functions). The resulting
integral can be expressed in terms of the so-called Meijer G-function, which we expand again
since we are anyway only interested in the asymptotic behavior. As a result, we obtain

ˆ ∞
R0/2

dR
K0(α1R)K1(α2R)√

R2 − (R0/2)2
∼ e−

α1+α2
2

R0 , (E.1.3a)

ˆ ∞
R0/2

dR
K0(α1R)K0(α2R)K1(α3R)√

R2 − (R0/2)2
∼ e−

α1+α2+α3
2

R0 , (E.1.3b)

ˆ ∞
R0/2

dR
K0(α1R)K0(α2R)K0(α3R)K1(α4R)√

R2 − (R0/2)2
∼ e−

α1+α2+α3+α4
2

R0 . (E.1.3c)

For each of the terms in the interaction energy we need to replace αi by either
√
ν+ or

√
ν−.

From Eq. (11.3.17) we see that
√
ν+ >

√
ν−. Therefore, the largest contribution we obtain

is exp(−√ν−R0), and this contribution is only created by the product of 2 Bessel functions
with the same argument

√
ν− because 2 Bessel functions with di�erent arguments give rise to

exp[−(
√
ν+ +

√
ν−)R0/2], which is suppressed more strongly, 3 Bessel functions give rise to

suppressions of at least exp[−3
√
ν−R0/2] etc. The largest contributions are thus given by the

terms where we can apply the integral (12.0.5), and we obtain

F	int(R0)

L
' 2πρ2

01[κ2n2C2K0(R0/κ)−D2
+(γ2

− + x2 − Γxγ−)K0(R0
√
ν−)] . (E.1.4)

Therefore, if γ2
− + x2 − Γxγ− > 0, one can use the same arguments as in the main text for

the discussion of the attractiveness of the �ux tube interaction at large distances, only with a
more complicated eigenvalue ν−, which now depends on the gradient coupling Γ.
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F. Gell-Mann Matrices

The Gell-Mann matrices are a presentation of the generators for the special unitary group
SU(3).

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .
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G. Rotated Electromagnetism

Following Ref. [231], we will derive the mixing angels and rotated gauge �elds of the CFL
and 2SC phase. We work with the standard SU(3)c generators Ta = 1

2λa where λa are the 8
Gell-Mann matrices. Furthermore we need the electrical charge generator Q in �avor space,
where we are going to use a di�erent ordering in the two phases, and the eighth and the third
gluon generator T8 and T3:

T8 =
1

2
√

3

 1
1
−2

 , T3 =
1

2

 1
−1

0

 . (G.0.1)

All non-diagonal entries are zero. We introduce the rotated gauge �elds via(
Ãµ
Ã8
µ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
Aµ
A8
µ

)
,⇒

(
Aµ
A8
µ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Ãµ
Ã8
µ

)
.

(G.0.2)
We now want to �nd new generators Q̃ and T̃8 in such a way that Q̃ (Φ) = 0 by forming linear
combinations of T8 and Q in the following way:

Q̃ = Q⊗ 1 + η1⊗ T8 , (G.0.3)

T̃8 = 1⊗ T8 + λQ⊗ 1 , (G.0.4)

which determines η depending on the phase. Note that Q is acting in �avor and T8 in color
space. From now on we will omit the direct product with the unit element for simplicity. By
requiring that

gA8
µT8 + eAµQ = g̃Ã8

µT̃8 + ẽÃµQ̃ , (G.0.5)

and comparing the coe�cients of the generators we can immediately read o� that

g̃ = g cos θ, ẽ = e cos θ . (G.0.6)

Furthermore, we conclude −g sin θ = ẽη = e cos θη which allows us to compute the mixing
angle,

tan θ =
e

g
η , cos2 θ =

g2

g2 + η2e2
, (G.0.7)

where we use basic trigonometric relations to compute the cosine from the tan directly. The
relations allow us to determine λ as well,

λ = −e
g

tan θ = −e
2

g2
η . (G.0.8)

The parameter η has to be determined for each phase separately.
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G.1. CFL

In the CFL phase we assume a diagonal diquark order parameter

Φ =
1

2

 φ1

φ2

φ3

 , (G.1.1)

and use the generator of electromagnetism in the following form,

Q =
1

3

 −1
−1

2

 , (G.1.2)

which means that the �avor indices are ordered d̄, s̄, ū such that Q is proportional to T8.
This ordering allows us to �nd a rotated generator Q̃ to which all scalar �elds are neutral,
Q̃(Φ) = 0, without involving T3 in the linear combination. The requirement of Q̃(Φ) leads to

Q̃(Φ) = 0⇒ η =
2√
3
, (G.1.3)

in accordance with Tab. (1) of [231], which furthermore yields

λ = − 2e2

√
3g2

, cos2 θCFL =
g2

g2 + 4
3e

2
, (G.1.4)

and the new generators

Q̃ =

 0
0

0

 , T̃8 = − 1

2
√

3 cos2 θCFL

 1
1
−2

 . (G.1.5)

G.2. 2SCud

The "true" 2SC phase, which we will call 2SCud in the following, is the phase where blue quarks
of all �avors and strange quarks of all colors are unpaired. The diquark order parameter and
the charge generator read

Φ =
1

2

 0
0

φ3

 , Q =
1

3

 2
−1

−1

 , (G.2.1)

which immediately shows that T3(Φ) = 0. The �avor indices are ordered ū, d̄ and s̄ in contrast
to the derivation of the CFL mixing angle. The anti-strange quark channel s̄ can be interpreted
as a pair one up and one down quark (hence the abbreviation). The color indices are labeled
r̄, ḡ and b̄, which shows that no blue (anti-blue does not contain blue but can be seen as a
pair of a red and a green quark) quark participates in the pairing. The requirement of Q̃(Φ)
leads to the equation

Q̃ = Q+ ηT8 ,

Q̃(Φ) =

(
−1

3
− η√

3

)
= 0⇒ η = − 1√

3
, (G.2.2)
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in accordance with Tab. (1) of [231], which furthermore yields

λ =
1√
3

e2

g2
, cos2 θ2SC =

3g2

3g2 + e2
, (G.2.3)

and the new generators

Q̃ =
1

2

 1
−1

0

 , T̃8 =
1

3
√

3g2

 3
2g

2 + 2e2

3
2g

2 − e2

−3g2 − e2

 . (G.2.4)

G.3. 2SCus

The order parameter

Φ =
1

2

 0
φ2

0

 (G.3.1)

is energetically identical to the one of 2SCud as long as we neglect the strange quark mass ms.
In principle one can de�ne new mixing angles etc. such that the requirement Q̃ (Φus) = 0 is
ful�lled only in 2SCus. However, due to the similarity of Q̃ of 2SCud de�ned in the previous
section to T3, we can actually de�ne a new set of generators Q̄ and T̄3 such that Q̄ (Φ) = 0
is ful�lled in both phases, which should facilitate any calculation which requires simultaneous
treatment of both phases. We trivially �nd that

Q̄ = Q̃− T3 , (G.3.2)

which leads to Q̄ = 0 for every general diagonal order parameter. We now require

gA8
µT8 + eAµQ+ gA3

µT3 = g̃Ã8
µT̃8 + ẽÃµQ̃+ gA3

µT3 = g̃Ã8
µT̃8 + ēĀµQ̄+ ḡĀ3

µT̄3 , (G.3.3)

which means that we only rotate two �elds in every step. In the main part of this thesis,
we will perform both rotations simultaneously, rendering the introduction of Q̄ unnecessary.
Note that this leads to an inconsistency in notation. However, I decided to keep the standard
notation in this appendix in order to facilitate comparison to the literature like Ref. [231].
Furthermore, we introduce the rotated generator T̄3 = T3 +αQ̃ and the further rotated gauge
�elds(

Āµ
Ā3
µ

)
=

(
cos θ̄ sin θ̄
− sin θ̄ cos θ̄

)(
Ãµ
A3
µ

)
,⇒

(
Ãµ
A3
µ

)
=

(
cos θ̄ − sin θ̄
sin θ̄ cos θ̄

)(
Āµ
Ā3
µ

)
.

(G.3.4)
Inserting this into the latter equation yields

ẽ
(
cos θ̄Āµ − sin θ̄Ā3

µ

)
Q̃+ g

(
sin θ̄Āµ + cos θ̄Ā3

µ

)
T3 = ēĀµ

(
Q̃− T3

)
+ ḡĀ3

µ

(
T3 + αQ̃

)
,

(G.3.5)
from which we deduce that

ḡ = g cos θ̄ , ē = ẽ cos θ̄ , sin θ̄ = − ē
g

tan θ̄ = − ẽ
g
, cos θ̄ =

√
3g2 + e2√
3g2 + 4e2

, α =
ẽ2

g2
. (G.3.6)
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This leads to the generator

T̄3 = T3 +

(
ẽ

g

)2

Q̃ =

(
1 +

ẽ2

g2

)
T3 =

1

cos2 θ̄
T3 . (G.3.7)
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H. Flux Tube Interaction in Color

Superconductivity

The idea behind the derivation of the long-distance �ux tube interaction energy (20.4.2) is
to add a small correction to the gauge �elds and the scalar �elds, such that without that
correction the resulting pro�les are the ones for a single, isolated �ux tube. Instead of the
gauge �elds themselves, one works with the following vectors, which go to zero as R→∞,

Q3(R) ≡ g
a3(∞)− a3(R)

R
eϕ (H.0.1a)

Q8(R) ≡ 2g̃8
ã8(∞)− ã8(R)

R
eϕ . (H.0.1b)

The small perturbations are now introduced via Qa = Qa0 + δQa (a = 3, 8) and fi = fi0 + δfi
(i = 1, 2, 3), and we can compute the equations of motion to zeroth and �rst order in the
perturbations. Then, using these equations of motion, some tedious algebra yields the free
energy density up to second order in the perturbations from Eq. (20.1.5). Writing U	 =

U
(0)
	 + δU	, we have the zeroth-order contribution

U
(0)
	 =

λρ4
CFL

2

{
κ2

3

2
(∇×Q30)2 +

3κ̃2
8

2
(∇×Q80)2 + (∇f10)2 + f2

10

(Q30 + Q80)2

4
(H.0.2)

+
(1− f2

10)2

2
+ (∇f20)2 + f2

20

(Q30 −Q80)2

4
+

(1− f2
20)2

2
+ (∇f30)2 + f2

30Q
2
80

+
(1− f2

30)2

2
− h

λ

[
(1− f2

10)(1− f2
20) + (1− f2

20)(1− f2
30) + (1− f2

10)(1− f2
30)
]}

,

and the �rst- and second-order contributions, which can be written as a total derivative,

δU	 = λρ4
CFL∇ ·

{
κ2

3

2
δQ3 ×

[
∇×

(
Q30 +

δQ3

2

)]
+

3κ̃2
8

2
δQ8 ×

[
∇×

(
Q80 +

δQ8

2

)]

+δf1∇
(
f10 +

δf1

2

)
+ δf2∇

(
f20 +

δf2

2

)
+ δf3∇

(
f30 +

δf3

2

)}
. (H.0.3)
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We can now exactly follow the steps explained in Appendix C of Ref. [3] to �nd the interaction
energy for two �ux tubes in a distance R0 from each other,

F	int

L
=

ˆ ∞
R0/2

2ρ2
CFLR0dR√

R2 − (R0/2)2

[
− κ2

3

2
δQ3

(
δQ3

R
+ δQ′3

)
− 3κ̃2

8

2
δQ8

(
δQ8

R
+ δQ′8

)

+δf1δf
′
1 + δf2δf

′
2 + δf3δf

′
3

]

=

ˆ ∞
R0/2

2ρ2
CFLR0dR√

R2 − (R0/2)2

[
κ2

3g
2a′3

2

a3(∞)− a3(R)

R2
+ 6κ̃2

8g̃
2
8 ã
′
8

ã8(∞)− a8(R)

R2

−(1− f1)f ′1 − (1− f2)f ′2 − (1− f3)f ′3

]
. (H.0.4)

where, in the second line, we have written the result in terms of the full (numerically
determined) pro�le functions. This expression can be used to extrapolate the interaction
energy down to smaller distances. Instead, we shall only work with the asymptotic result which
is obtained by expressing the �rst line of Eq. (H.0.4) in terms of the asymptotic approximations
to the pro�le functions. This is Eq. (12.0.3) in the main text.
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