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Kurzfassung

In der vorliegenden Arbeit untersuche ich, wie sich hyperbolische Diskontierung auf den

optimalen Abbau von nicht erneuerbaren Ressourcen auswirkt. Dazu löse ich ein einfaches

Modell des Ressourcenabbaus und das Dasgupta-Heal-Solow-Stiglitz (DHSS) Modell auf

zwei verschiedene Arten. Einmal wird klassischer exponentielle Diskontierung verwendet

und einmal eine zeitkonsistente Art der hyperbolischen Diskontierung. Anschließend ver-

gleiche ich die Resultate unter der Normierung, dass der Gegenwartswert eines konstanten

Nutzenniveaus unter beiden Diskontierungsarten gleich groß ist.

Die Analyse der Ergebnisse zeigt, dass Ressourcen unter hyperbolischer Diskontierung lang-

samer abgebaut werden, obwohl die kurzfristige Diskontrate der Haushalte viel höher ist als

bei exponentieller Diskontierung. Das liegt daran, dass die niedrige langfristige Diskontrate

der Haushalte die Effekte ihrer Gegenwartspräferenz ausgleicht. Dadurch sind sie bereit,

mittelfristig auf Konsum zu verzichten um langfristig mehr konsumieren zu können. Sowohl

der Kapitalstock als auch der Ressourcenbestand sind in der Nähe des Steady-States mit

hyperbolischer Diskontierung höher. Dies führt dazu, dass auch die langfriste Wachstums-

rate des Konsums höher ist als bei exponentieller Diskontierung. Insbesondere wird gezeigt,

dass unter exponentieller Diskontierung ein deutlich schnellerer technologischer Fortschritt

benötigt wird, um langfristiges Konsumwachstum zu garantieren.



Abstract

In this thesis, I investigate the effects of hyperbolic discounting on the optimal extraction

of non-renewable resources. For this purpose, I apply a time-consistent method of hyper-

bolic discounting to a simple model of resource extraction and to the Dasgupta-Heal-Solow-

Stiglitz (DHSS) model of resource extraction and capital accumulation. I then compare the

results to those obtained using conventional exponential discounting applying the normal-

ization that the present value of a constant utility stream is the same in both frameworks.

The analysis shows that resource use is more conservative under hyperbolic discounting,

even though households’ short-term discount rate is much larger compared to exponential

discounting. This is due to the fact that their low long-run discount rate offsets the effects

of their present-bias, making them willing to forgo some utility in the medium run in order

to consume more in the long run. Both the capital stock and the resource stock tend to

be larger in the scenario with hyperbolic discounting than with exponential discounting

near the steady state. This in turn leads to higher long-run consumption growth rate. In

particular, I show that with exponential discounting much higher technological growth is

needed to achieve positive consumption growth at all.
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1 Introduction

The appropriate choice of the social discount rate is of great importance for the evaluation

of policies with very long-run impacts. This is specifically true for environmental policies,

whose costs are typically borne in the near future while their benefits occur in the dis-

tant future. In economic analysis, the standard discounting method applied is exponential

discounting, which corresponds to a constant discount rate. However, empirical evidence

from the fields of psychology and behavioural economics suggests that the individual rate

of time preference declines over time (see DellaVigna, 2009; Frederick, Loewenstein, and

O’Donoghue, 2002; Loewenstein and Prelec, 1992). This suggests that the social discount

rate, which is closely related to the individual rate of time preference, declines over time

as well.

The same result is achieved by assuming that shocks to the consumption rate are uncertain

but positively correlated. Gollier (2013) shows that in this case the efficient result is a

declining discount rate as well.

Some countries, namely the United Kingdom and France, already apply declining discount

rates in the evaluation of public projects (Lebègue, 2005; Treasury, 2003). In the United

States, the Office of Management and Budget (OMB) still recommends the use of a constant

discount rate. However, a group of leading environmental economists recently suggested

the use of a declining discount rate for the costs and benefits of long-run projects in the

USA (Arrow et al., 2014).

A concern that often arises in the context of hyperbolic discounting is that it may lead

to time-inconsistent behaviour. Indeed, hyperbolic discounting is oftentimes used in be-

havioural economics to explain time-inconsistent decision making, which leads to many

people believing that hyperbolic discounting cannot be time-consistent. However, it can

be shown that decision making is time-consistent if and only if the discount function is

multiplicatively separable in decision time t0 and pay-off time t (Burness, 1976; Drouhin,

2009).

Strulik (2017) introduces a time-consistent hyperbolic discount function which is multiplica-

tively separable in decision time t0 and pay-off time t and therefore leads to time-consistent

decision making. He then uses this discount function to solve three environmental problems

for hyperbolic discounting: the optimal use of a renewable resource, the non-cooperative
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1 Introduction

use of an open access resource, and the problem of optimal growth and pollution.

In this thesis, I apply the method of hyperbolic discounting proposed by Strulik (2017)

to the well-known Dasgupta-Heal-Solow-Stiglitz (DHSS) model (Dasgupta and Heal, 1974;

Solow, 1974; Stiglitz, 1974) in order to understand how hyperbolic discounting affects the

extraction of non-renewable resources.

In order to gain a basic understanding of how hyperbolic discounting changes the mecha-

nisms of the model, I first introduce a simple model of resource extraction that does not

take capital accumulation into account. Utility is gained from resources extracted, which

are immediately consumed. The model can be solved analytically for both exponential

and hyperbolic discounting. I then compare the results using the equivalent-present-value

argument (Myerson, Green, and Warusawitharana, 2001), which gives me a parameter re-

striction for which both discounting methods provide the same present value of a constant

flow.

Contrary to what one might expect, the comparison shows that resource depletion is not

faster with hyperbolic discounting compared to exponential discounting. While the level of

the intertemporal rate of substitution determines whether resource extraction is higher for

exponential or hyperbolic discounting in the short run, resource extraction is always lower

with hyperbolic discounting in the medium run. This leads to a higher resource stock with

hyperbolic discounting in the long run. Therefore, the economy can afford to extract more

resources in the long run compared to exponential discounting.

This seemingly counter-intuitive result can be explained by the fact that even though the

discount rate is higher for hyperbolic discounting in the short run, it drops below the level

of the discount rate for exponential at some point and remains lower thereafter. Since com-

plete depletion of the resource in finite time can never be optimal, households inevitably

are more patient with hyperbolic discounting after some point. This leads to a more con-

servative resource use.

I then solve the DHSS model of resource extraction and capital accumulation for both dis-

counting methods analytically and numerically using the relaxation algorithm of Trimborn,

Koch, and Steger (2008). For the comparison between the discounting methods, I again

use the equivalent-present-value approach.

The analysis of the results shows a pattern of resource extraction similar to the simple

model. Again, resource extraction is lower in the medium run and higher in the long run

for hyperbolic discounting. However, short-term resource extraction is always higher for

hyperbolic discounting in the short run, reflecting households’ present-bias.

The DHSS model further provides results concerning the evolution of consumption and

capital stock. The long-run growth rate of consumption is always higher for hyperbolic

discounting. In particular, much higher technological growth is needed for consumption

2



1 Introduction

growth to be positive with exponential discounting.

After the qualitative comparison, I calibrate the model parameters to fit data from the

United States of America in order to make a quantitative comparison of the discounting

methods. The model predicts resource extraction with hyperbolic discounting to drop be-

low the level of the scenario with exponential discounting after 15 years. However, after

only 70 years, the resource extraction curves intersect again and resource extraction remains

higher with hyperbolic discounting thereafter. A sensitivity analysis shows that both the

qualitative and the quantitative results are robust with respect to parameter variations.

The remainder of this thesis is organized as follows. In chapter 2 I solve the simplified

model and compare both discounting methods. Chapter 3 and chapter 4 solve the DHSS

model for conventional exponential discounting and hyperbolic discounting. In chapter 5

the model parameters are calibrated and the results are compared in chapter 6, again using

the equivalent-present-value argument. Chapter 7 performs the sensitivity analysis and

chapter 8 concludes.

3



2 The Simplified Model

Before turning to the more complex DHSS model, we will first study the differences between

exponential and hyperbolic discounting in a simple resource model.

Consider a social planner who maximizes households’ welfare U understood as utility from

resource extraction u(R(t)) experienced over an infinite time horizon and discounted to the

present using the discount function D(t)

U =

∫ ∞
0

D(t)u(R(t))dt. (2.1)

The resources are extracted from a resource stock S, the initial resources stock S0 is given.

We will first solve the model using exponential discounting; afterwards, we will turn to

hyperbolic discounting and compare the solutions.

2.1 Exponential Discounting

Using exponential discounting and a utility function of the CRRA type, the model can be

written as

max
R

∫ ∞
0

R1−σ − 1

1− σ
e−ρtdt (2.2)

s.t. Ṡ = −R, S(0) = S0

The associated Hamiltonian and the first order conditions are given by

H =
R1−σ − 1

1− σ
e−ρt + λS(−R)

HR = R−σe−ρt − λS = 0

HS = 0 = −λ̇S
Ṡ = −R

4



2 The Simplified Model

To ensure that the value of resource stock S approaches 0 in the long run, the optimal

trajectory must further fulfil the transversality condition

lim
t→∞

λS(t)S(t) = 0

By combining the first order conditions we get the growth rates of S and R:

Ṡ

S
= −R

S

R−σe−ρt = λS | ln()

− σ ln(R)− ρt = ln(λS) | ∂
∂t

− σ Ṙ
R
− ρ =

λ̇S
λS

= 0

Ṙ

R
= −ρ

σ

The optimal path of resource extraction can easily be calculated:

Ṙ

R
= −ρ

σ
|
∫

ln(R) = −ρ
σ
t+ C | exp()

R = e−
ρ
σ
tC1

Because of

S0 =

∫ ∞
0

R(t)dt =

∫ ∞
0

e−
ρ
σ
tC1dt = e−

ρ
σ
t(−ρ

σ
)C1

∞∣∣
0

=
σ

ρ
C1

we set C1 equal to ρ
σ in order to normalize S0 to 1. The optimal path of resource extraction

is therefore given by

R = e−
ρ
σ
t ρ

σ
(2.3)
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2 The Simplified Model

2.2 Hyperbolic Discounting

We will now solve the same problem with hyperbolic discounting instead of exponential

discounting. The problem reads

max
R

∫ ∞
0

R1−σ − 1

1− σ

(
1

1 + at

)b
dt (2.4)

s.t. Ṡ = −R, S(0) = S0

Hamiltonian and first order conditions are given by

H =
R1−σ − 1

1− σ

(
1

1 + at

)b
+ λS(−R)

HR = R−σ(
1

1 + at
)b − λS = 0

HS = 0 = −λ̇S
Ṡ = −R

Similarly to the model with exponential discounting, we can now solve for the growth rates

of S and R.

Ṡ

S
= −R

S

R−σ(
1

1 + at
)b = λS | ln()

− σ ln(R)− b(ln(1 + at)) = ln(λS) | ∂
∂t

− σ Ṙ
R
− ba

1 + at
=
λ̇S
λS

= 0

Ṙ

R
= − 1

σ
(

ba

1 + at
)

For the optimal path of resource extraction we get

Ṙ

R
= − 1

σ
(

ba

1 + at
) |

∫
ln(R) = − b

σ
ln(1 + at) + C | exp()

R = (1 + at)−
b
σC2

6



2 The Simplified Model

In order to normalize S0 to 1 too, we calculate

S0 =

∫ ∞
0

R(t)dt =

∫ ∞
0

(1 + at)−
b
σC2dt =

σ

a(σ − b)
(1 + at)1− b

σC2

∞∣∣
0

There is no solution for b < σ, but for b > σ we get

S0 =

∫ ∞
0

R(t)dt =
σ

a(b− σ)
C2

Therefore, C2 has to be set equal to a(b−σ)
σ . The optimal path of resource extraction is

given by

R = (1 + at)−
b
σ
a(b− σ)

σ
(2.5)

2.3 Comparing Discounting Methods

In order to make a fair comparison between hyperbolic and exponential discounting, we

will apply the equivalent present-value approach (Myerson, Green, and Warusawitharana,

2001), which requires the parameters to be chosen such that the present value of a con-

stant utility stream is the same for both discounting methods,
∫∞

0 e−ρtdt =
∫∞

0 ( 1
1+at)

−bdt.

Solving the integrals leads to the parameter requirement

ρ = a(b− 1) (2.6)
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Figure 2.1: Discount rates for exponential (black line) and hyperbolic (red line) discounting
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2 The Simplified Model

We set a = 0.0225 and b = 1.777 (see Strulik, 2017) - this means that ρ = 0.0175 - to

illustrate the differences between the two discounting methods.

Figure 2.1 shows how the discount rates evolve over time. While the discount rate stays

constant at ρ for exponential discounting, it declines and approaches zero in the long run

for hyperbolic discounting.

We will now compare the paths of optimal resource extraction for both discounting methods.

Setting the inverse of the elasticity of intertemporal substitution, σ, equal to 1, we can plot

the paths of optimal resource extraction, which are shown in figure 2.2.
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0.002

0.004
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0.018
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Figure 2.2: Optimal paths of resource extraction for exponential (black line) and hyperbolic
(red line) discounting

The black line shows the optimal path of resource extraction for exponential discounting,

the red line the one for hyperbolic discounting. Resource extraction is higher for exponen-

tial discounting at first, but after around 150 years the curves intersect. After that point,

resource extraction is higher with hyperbolic discounting.

The initial amount of resource extracted is the same for both discounting methods in our

example. This is due to the fact that the inverse of the elasticity of intertemporal substi-

tution was set to 1, as Rexp0 = ρ
σ and Rhyp0 = a(b−σ)

σ are the same for σ = 1.

Concluding, it can be said that households are more patient in the model with hyperbolic

discounting. Even though their discount rate is larger in the short run, they attach greater

importance to the distant future than the households in the model with exponential dis-

counting. Therefore, they are willing to forgo some utility in the short run in order to be

able to extract more resources in the long run.
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3 The DHSS Model with Exponential

Discounting

In 1972, the Club of Rome published its much debated report on the ”Limits to Growth”

(Meadows et al., 1972), predicting a bleak future for the world and its natural resources.

The main argument was that increasing levels of pollution and rising resource scarcity

would eventually lead to a significant decline in standard of living.

The report was heavily criticised by other economists, who countered the arguments made

by Meadows et al. (1972) in a series of papers, which resulted in the well-known Dasgupta-

Heal-Solow-Stiglitz (DHSS) model (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz, 1974).

In the DHSS model output is produced using man-made capital and a non-renewable re-

source. The main argument against the limits to growth proposed by Meadows et al. (1972)

was that resources can be substituted by man-made capital, leading to sustainable growth.

Over the last decades, numerous variations of the DHSS model have been analysed. How-

ever, it is yet to be investigated how deviations from standard exponential discounting

affect the outcome of the model.

In the following two chapters I will analyse the DHSS model under both exponential dis-

counting and a time-consistent method of hyperbolic discounting introduced by Strulik

(2017). The comparison in chapter 6 shows resource use is more conservative in the model

with hyperbolic discounting compared to the model with exponential discounting. In par-

ticular, much higher technological growth is needed for positive consumption growth with

exponential discounting.

9



3 The DHSS Model with Exponential Discounting

3.1 The Model

We will analyse the DHSS model from the perspective of a social planner who maximises

the discounted utility stream of a representative household over an infinite time horizon:

max
C,R

∫ ∞
t0

u(C)e−ρ(t−t0)dt

The model includes two decision variables, consumption C and natural resources extracted

R.

The social planner has two constraints to take into account. The first one is the capital

accumulation equation which describes how capital K evolves over time:

K̇ = F (C,L,K)− C − δK

where F (C,L,K) denotes the production function. The size of the labour force L is assumed

to grow exogenously at rate n: L̇
L = n. The initial values of capital stock K(0) = K0 and

labour L(0) = L0 are assumed to be given.

The second constraint describes the development of the resource stock S:

Ṡ = −R, S(0) = S0

As the resource regarded is assumed to be non-renewable, the resource stock S shrinks by

exactly R at every point in time. An initial condition S(0) = S0, R ≥ 0 and S ≥ 0 have to

be taken into consideration as well.

In the following, we will assume a Cobb-Douglas production function

Y = F (C,L,K) = AKαLβRγ , α, β, γ > 0, α+ β + γ = 1

which means that the capital accumulation equation can be rewritten as

K̇ = AKαLβRγ − C − δK

Technological progress is exogenous, the level of technology A grows at rate g, Ȧ
A = g. We

further assume a CRRA type utility function

u(C) =
C1−σ − 1

1− σ

10



3 The DHSS Model with Exponential Discounting

with σ ≥ 1.

The complete model reads

max
C,R

∫ ∞
t0

C1−σ − 1

1− σ
e−ρ(t−t0)dt (3.1)

s.t. K̇ = AKαLβRγ − C − δK

Ṡ = −R

Ȧ

A
= g

L̇

L
= n

3.2 The Solution

Setting t0 = 0 the current value Hamiltonian of the problem is given by:

H =
C1−σ − 1

1− σ
+ λK(AKαLβRγ − C − δK)− λSR+ λAgA+ λLnL

in which λK , λS , λA and λL are the shadow prices of capital, the resource, technology and

labour, respectively. The first order conditions (FOCs) are given by

∂H

∂C
= 0⇔ C−σ − λK = 0 (3.2)

∂H

∂R
= 0⇔ γλKAK

αLβRγ−1 − λS = 0 (3.3)

K̇ = AKαLβRγ − C − δK (3.4)

Ṡ = −R (3.5)

Ȧ = gA (3.6)

L̇ = nL (3.7)

∂H

∂K
= αλKAK

α−1LβRγ − λKδ = ρλK − ˙λK (3.8)

∂H

∂S
= 0 = ρλS − λ̇S (3.9)

∂H

∂A
= λKK

αLβRγ + λAg = ρλA − λ̇A (3.10)

∂H

∂L
= βλKAK

αL(β − 1)Rγ + λLn = ρλL − λ̇L (3.11)

11



3 The DHSS Model with Exponential Discounting

The FOCs are supplemented by four transversality conditions for the capital stock, the

resource stock, technology and labour which ensure that their values approach zero in the

long run.

lim
t→∞

e−ρtλKK = 0

lim
t→∞

e−ρtλSS = 0

lim
t→∞

e−ρtλAA = 0

lim
t→∞

e−ρtλLL = 0

From equation (3.9) we get

λ̇S
λS

= ρ (3.12)

This means that the shadow price of a marginal unit of the resource grows at a rate of ρ.

From equation (3.8) we can derive a condition for λK :

˙λK
λK

= ρ+ δ − αAKα−1LβRγ (3.13)

Equation (3.3) establishes a relation between the two costate variables λK and λS . The

equation can be converted to growth rates by taking the logarithm of each side and their

derivatives with respect to time:

λS = γλKAK
αLβRγ−1 |ln(.),

∂

∂t

λ̇S
λS

=
˙λK
λK

+ g + α
K̇

K
+ βn+ (γ − 1)

Ṙ

R
(3.14)

The Keynes-Ramsey rule

By taking the logarithm of equation (3.2) and taking the derivative with respect to time

of the result, we get:

−σ Ċ
C

=
˙λK
λK

Combing this equation with equation (3.13) yields the familiar Keynes-Ramsey rule:

Ċ

C
=
αAKα−1LβRγ − ρ− δ

σ
(3.15)

12



3 The DHSS Model with Exponential Discounting

The Ṙ-equation

By substituting the growth rates of λK and λS into equation (3.14) we get

ρ = ρ+ δ − αAKα−1LβRγ + g + α
K̇

K
+ βn+ (γ − 1)

Ṙ

R

= ρ+ δ − αAKα−1LβRγ + g + αAKα−1LβRγ − αC
K
− δα+ βn+ (γ − 1)

Ṙ

R

Solving the equation for Ṙ
R yields

Ṙ

R
= − α

1− γ
C

K
+

(1− α)

1− γ
δ +

1

1− γ
(g + βn) (3.16)

The dynamic system

We can now write down the dynamic system that describes the economy:

K̇

K
= AKα−1LβRγ − C

K
− δ =

Y

K
− C

K
− δ (3.17)

Ṡ

S
= −R

S
(3.18)

Ȧ

A
= g (3.19)

L̇

L
= n (3.20)

Ċ

C
=
αAKα−1LβRγ − ρ− δ

σ
=
α YK −

C
K − δ
σ

(3.21)

Ṙ

R
= − α

1− γ
C

K
+

(1− α)

1− γ
δ +

1

1− γ
(g + βn) (3.22)

To solve the system, we will use the relaxation algorithm by Trimborn, Koch, and Steger

(2008). The algorithm can only be used if the long-run growth rate of all variables is 0.

As this is not the case in the dynamic system (3.17)-(3.22), the variables need to be scaled

appropriately. In order to do so, first, the steady state growth rates have to be calculated.

The steady state

At the steady state, all variables grow at constant rates. From the dynamic system (3.17)-

(3.22) we can see that this means that in the steady state, the ratios C
K ,

Y
K and R

S have to

be constant as well. Consequently, the steady state growth rates of the variables have to

13



3 The DHSS Model with Exponential Discounting

satisfy the following equations:

g∗R = g∗S , g
∗
C = g∗K = g∗Y

To calculate the steady state growth rates first consider the production function Y =

AKαLβRγ . Dividing both sides by K and converting to growth rates yields:

Y

K
= AKα−1LβRγ |ln(.),

∂

∂t

g∗Y − g∗K︸ ︷︷ ︸
=0

= g + (α− 1)g∗K + βn+ γg∗R

(1− α)g∗K = γg∗R + g + βn (3.23)

Substituting K̇
K and Ṙ

R into this equation we have

(1− α)

(
Y

K
− C

K
− δ
)

= γ

(
− α

1− γ
C

K
+

(1− α)

1− γ
δ +

1

1− γ
(g + βn)

)
+ g + βn

⇔ (1− α)
Y

K
=

(
(1− α)− γα

1− γ

)
C

K
+

(
(1− α) +

(1− α)γ

1− γ

)
δ +

(
γ

1− γ
+ 1

)
(g + βn)

=
1− α− γ

1− γ
C

K
+

1− α
1− γ

δ +
1

1− γ
(g + βn) (3.24)

This first relation between Y
K and C

K can be supplemented by a second one by equating gK

and gC :

Y

K
− C

K
− δ =

α YK − ρ− δ
σ

(3.25)

Equating (3.24) and (3.25) and solving for Y
K and C

K yields the following steady state values:

C

K
=

(1− γ)(1− α)

α(1− α− γ + σγ)
ρ+

1− α
α

δ +
σ − α

α(1− α− γ + σγ)
(g + βn)

Y

K
=

1− α− γ
(1− α− γ + σγ)α

ρ+
1

α
δ +

σ

α(1− α− γ + σγ)
(g + βn)

14



3 The DHSS Model with Exponential Discounting

Equating gR and gS results in:

R

S
=

α

1− γ
C

K
− (1− α)

1− γ
δ − 1

1− γ
(g + βn)

=
1− α

1− α− γ + σγ
ρ+

(
σ − α

(1− γ)(1− α− γ + σγ)
− 1

1− γ

)
(g + βn) +

1− α
1− γ

δ − 1− α
1− γ

δ

=
1− α

1− α− γ + σγ
ρ− 1− σ

1− α− γ + σγ
(g + βn) (3.26)

We get the following steady state growth rates:

g∗R = g∗S = −R
S

= − 1− α
1− α− γ + σγ

ρ+
1− σ

1− α− γ + σγ
(g + βn) (3.27)

g∗Y = g∗K = g∗C =
α YK − ρ− δ

σ

=
1− α− γ

(1− α− γ + σγ)σ
ρ+

δ

σ
+

1

1− α− γ + γσ
(g + βn)− ρ

σ
− δ

σ

= − γ

1− α− γ + γσ
ρ+

1

1− α− γ + γσ
(g + βn) (3.28)

As the resource in our model is non-renewable, the long-run growth rate of S, g∗S , which is

equal to the growth rate of R, g∗R, must be negative. This condition is fulfilled if (1−α)ρ >

(1− σ)(g+ βn). As the left-hand side of the inequality condition is positive, the condition

is always fulfilled for σ ≥ 1.

When we look at g∗Y = g∗K = g∗C , we see that the long-run growth rate of consumption can

only be positive for

γρ < (g + βn) (3.29)

The scaled system

In order to apply the relaxation algorithm we construct a stationary system by scaling the

variables according to their long-run growth rate. We obtain the scale-adjusted variables

x(t) = X(t)e−gxt

where x denotes the scaled variable, X the unscaled variable and gx the steady state growth

rate of the unscaled variable.

15



3 The DHSS Model with Exponential Discounting

The dynamic system for the scale-adjusted variables is given by:

k̇

k
=
y

k
− c

k
− δ − g∗k (3.30)

= akα−1lβrγ − c

k
− δ +

γ

1− α− γ + γσ
ρ− 1

1− α− γ + γσ
(g + βn) (3.31)

ṡ

s
= −r

s
− g∗s (3.32)

= −r
s

+
1− α

1− α− γ + σγ
ρ− 1− σ

1− α− γ + σγ
(g + βn) (3.33)

ȧ

a
= 0 (3.34)

l̇

l
= 0 (3.35)

ċ

c
=
α yk −

c
k − δ
σ

− g∗c =
αakα−1lβrγ − ρ− δ

σ
− g∗c (3.36)

=
αakα−1lβrγ − ρ− δ

σ
+

γ

1− α− γ + γσ
ρ− 1

1− α− γ + γσ
(g + βn) (3.37)

ṙ

r
= − α

1− γ
c

k
+

(1− α)

1− γ
δ +

1

1− γ
(g + βn)− g∗r (3.38)

= − α

1− γ
c

k
+

(1− α)

1− γ
δ +

1− α
1− α− γ + σγ

ρ+
σ − α

(1− γ)(1− α− γ + σγ)
(g + βn) (3.39)

As a and l do not change over time, we can normalize them to unity and omit the respective

equations. We will thus continue only using the dynamic system (3.31)-(3.33) and (3.37)-

(3.39).

The relaxation algorithm

We can now apply the relaxation algorithm (Trimborn, Koch, and Steger, 2008), which

allows us to analyse how the economy converges towards its steady state. The parameter

values used for the following graphs are listed in table 3.1. For information on their cali-

bration see chapter 5.
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3 The DHSS Model with Exponential Discounting

Parameter Description Value

α Output elasticity of capital 0.3
δ Depreciation rate 0.08
γ Output elasticity of resources 0.1
β Output elasticity of labour 0.6
ρ Discount rate 0.024
σ Inverse of the intertemporal elasticity of substitution 2
g Growth rate of the level of technology 0.015
n Growth rate of population 0.01

Table 3.1: Parameter values used for numerical simulation

In order to understand the economy’s development, we consider the phase diagram of the

scaled system in the (k, s) plane, see figure 3.1. The balanced growth path of the original

system becomes a (saddle-point stable) center manifold in the scaled system. For each

combination of initial values (k0, so) the economy converges towards a point on the center

manifold.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10
phase diagram

k

s

Figure 3.1: Phase diagram of the scaled system

The center manifold can be computed by dividing the production function by k:

y

k
= kα−1rγ
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3 The DHSS Model with Exponential Discounting

Inserting the steady state values of y
k and r

y

k
=

1− α− γ
(1− α− γ + σγ)α

ρ+
1

α
δ +

σ

α(1− α− γ + σγ)
(g + βn)

r

s
=

1− α
1− α− γ + σγ

ρ− 1− σ
1− α− γ + σγ

(g + βn)

and solving for s yields:

s =

(
1−α−γ

(1−α−γ+σγ)αρ+ δ
α + σ

(1−α−γ+σγ)α(g + βn)
) 1
γ

1−α
(1−α−γ+σγ)ρ−

1−σ
1−α−γ+σγ (g + βn)

(3.40)
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Figure 3.2: Development of the variables of the scaled system

The development of the variables depend on the initial values k0 and s0. If (k0, s0) lies

above the center manifold, k grows over time while s shrinks, see 3.2a. If (k0, s0) lies below

the center manifold, the opposite happens: k shrinks over time and k grows, see 3.2b1.

For (k0, s0) = (3, 1) (see chapter 5), the adjustment process of the variables is depicted in

figure 3.3. As the initial value lies below the center manifold, the capital stock k decreases

while the resource stock s increases.

1Even though the constraint R ≥ 0 was not explicitly taken into account in the calculations, it is always
fulfilled for the parameter combinations we used. Therefore, in the unscaled system Ṡ ≤ 0.
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3 The DHSS Model with Exponential Discounting
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Figure 3.3: Development of the variables for (k0, s0) = (3, 1)

19



4 The DHSS Model with Hyperbolic

Discounting

We will now turn to the DHSS model under hyperbolic discounting. In contrast to the

simplified model presented in chapter 2, where the discount function was given by D(t0, t) =(
1+at0
1+at

)b
with t0 = 0, we will now use the discount function

D(t0, t) = e−ρ̄(t−t0)

(
1 + at0
1 + at

)b
(4.1)

The discount rate, defined as −∂D(t0,t)
∂t /D(t0, t), changes from ab

(1+at) to

ρ̄+
ab

(1 + at)
(4.2)

While the discount rate still declines over time, this combination of exponential and hy-

perbolic discounting ensures that the discount rate does not vanish, but approaches ρ̄ in

the long run. A small but positive long-run growth rate accounts for the possibility of

humanity being extinguished (Stern, 2007).

4.1 The Model

Similarly to chapter 3, we will analyse the DHSS from the perspective of a social planner

who maximises the discounted stream of a representative consumer’s utility over an infinite

time horizon by choosing optimal paths of consumption C and extraction of resources R.

While we used a standard exponential discount function e−ρt in chapter 3, utility will now

be discounted by the discount function (4.1), which yields

max
C,R

∫ ∞
t0

u(C)e−ρ̄(t−t0)

(
1 + at0
1 + at

)b
dt
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4 The DHSS Model with Hyperbolic Discounting

Apart from the discounting method, the model does not differ from the model presented

in chapter 3. The social planner faces the same two constraints as before:

K̇ = F (C,L,K)− C − δK (4.3)

Ṡ = −R, S(0) = S0 (4.4)

Equation (4.3) describes the process of capital accumulation in the economy. The produc-

tion function F (C,L,K) depends on consumption C, capital K and labour L. The labour

force is assumed to grow exogenously at rate n. The initial values of capital stock and

labour are given by K(0) = K0 and L(0) = L0, respectively.

Equation (4.4) describes the evolution of the resource stock, which shrinks by R at every

point in time as the resource is assumed to be non-renewable.

Using a Cobb-Douglas production function Y = F (C,L,K) = AKαLβRγ , α, β, γ >

0, α+ β + γ = 1 with the level of technology A growing at rate g, a CRRA type utility

function u(C) = C1−σ−1
1−σ and t0 = 0, the problem reads:

max
C,R

∫ ∞
0

C1−σ − 1

1− σ
e−ρ̄t

(
1

1 + at

)b
dt (4.5)

s.t. K̇ = AKαLβRγ − C − δK

Ṡ = −R

Ȧ

A
= g

L̇

L
= n

4.2 The Solution

In the case of hyperbolic discounting, we have to consider the present value Hamiltonian:

H = e−ρ̄t
(

1

1 + at

)b C1−σ − 1

1− σ
+ λK(AKαLβRγ − C − δK)− λSR+ λAgA+ λLnL
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4 The DHSS Model with Hyperbolic Discounting

The first order conditions are given by:

∂H

∂C
= 0⇔ e−ρ̄t

(
1

1 + at

)b
C−σ − λK = 0 (4.6)

∂H

∂R
= 0⇔ γλKAK

αLβRγ−1 − λS = 0 (4.7)

K̇ = AKαLβRγ − C − δK (4.8)

Ṡ = −R (4.9)

Ȧ = gA (4.10)

L̇ = nL (4.11)

∂H

∂K
= αλKAK

α−1LβRγ − λKδ = − ˙λK (4.12)

∂H

∂S
= 0 = −λ̇S (4.13)

∂H

∂A
= λKK

αLβRγ + λAg = −λ̇A (4.14)

∂H

∂L
= βλKAK

αL(β − 1)Rγ + λLn = −λ̇L (4.15)

In order to get a unique solution, again, the FOCs have to be complemented by four

transversality conditions:

lim
t→∞

λKK = 0

lim
t→∞

λSS = 0

lim
t→∞

λAA = 0

lim
t→∞

λLL = 0

The Keynes-Ramsey rule

In order to get the Keynes-Ramsey rule, we take the logarithm of equation (4.6) and

differentiate the result with respect to time:

ln(λK) = −b(ln(1 + at))− ρ̄t− σln(C) | ∂
∂t

˙λK
λK

= − ba

1 + at
− ρ̄− σ Ċ

C
(4.16)
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4 The DHSS Model with Hyperbolic Discounting

Dividing equation (4.12) by λK yields

−
˙λK
λK

= αAKα−1Rγ − δ (4.17)

Combing equation (4.16) and equation (4.17) we get the Keynes-Ramsey rule:

Ċ

C
=
αAKα−1Rγ − δ − ρ̄− ba

1+at

σ
(4.18)

The dynamic system

The remainder of the dynamic system can be derived analogously to chapter 3. The

complete dynamic system reads:

K̇

K
= AKα−1LβRγ − C

K
− δ =

Y

K
− C

K
− δ (4.19)

Ṡ

S
= −R

S
(4.20)

Ȧ

A
= g (4.21)

L̇

L
= n (4.22)

Ċ

C
=
αAKα−1Rγ − δ − ρ̄− ba

1+at

σ
=

Y
K − δ − ρ̄−

ba
1+at

σ
(4.23)

Ṙ

R
= − α

1− γ
C

K
+

(1− α)

1− γ
δ +

1

1− γ
(g + βn) (4.24)

In contrast to the dynamic system (3.17)-(3.22) in chapter 3, the system (4.19)-(4.24) is

non-autonomous. Therefore, calculating the steady state in order to apply the relaxation

algorithm is not as easy as in the model with exponential discounting. However, as the

term containing t approaches 0 in the long run, we can calculate an asymptotic steady

state, which is enough to be able to apply the relaxation algorithm.

The steady state

At the steady state, all variables grow at a constant rate. As the term containing t converges

to 0, this means that at the steady state Y
K , C

K and R
S have to be constant, which is

equivalent to:

g∗R = g∗S and g∗C = g∗K = g∗Y
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4 The DHSS Model with Hyperbolic Discounting

Similar to chapter 3 we can now calculate the steady state values of Y
K , C

K and R
S . We get

Y

K
= lim

t→∞

[
1− α− γ

(1− α− γ + σγ)α

(
ρ̄+

ba

1 + at

)
+

1

α
δ +

σ

α(1− α− γ + σγ)
(g + βn)

]
C

K
= lim

t→∞

[
(1− γ)(1− α)

α(1− α− γ + σγ)

(
ρ̄+

ba

1 + at

)
+

1− α
α

δ +
σ − α

α(1− α− γ + σγ)
(g + βn)

]
R

S
= lim

t→∞

[
1− α

1− α− γ + σγ

(
ρ̄+

ba

1 + at

)
− 1− σ

1− α− γ + σγ
(g + βn)

]
The corresponding steady state growth rates are:

g∗R = g∗S = −R
S

= lim
t→∞

[
− 1− α

1− α− γ + σγ

(
ρ̄+

ba

1 + at

)
+

1− σ
1− α− γ + σγ

(g + βn)

]
(4.25)

g∗Y = g∗K = g∗C = lim
t→∞

[
− γ

1− α− γ + γσ

(
ρ̄+

ba

1 + at

)
+

1

1− α− γ + γσ
(g + βn)

]
(4.26)

Just like in the model with exponential discounting, we need to make sure that the growth

rate of the resource stock S converges towards a non-positive value. From equation (4.25)

we see that this is the case for (1−α)ρ̄ > (1−σ)(g+βn). This condition is always fulfilled

for ρ̄ ≥ 0 and σ ≥ 1.

For the growth rate of consumption to approach a positive value, the parameter restriction

γρ̄ < (g+βn) must hold. Note that this condition is not as restrictive as the corresponding

condition in the model with exponential discounting (see equation (3.29)), as ρ̄ will typically

be much smaller than ρ. For ρ̄ = 0 the growth rate of consumption is always positive.

The scaled system

Just like in the model with exponential discounting, we will now scale the variables accord-

ing to their long-run growth rates such that the relaxation algorithm (Trimborn, Koch, and

Steger, 2008) can be applied. However, this time we do not take the steady state growth

rates, but time-dependent scaling variables. We define the scaled variables as:

x(t) = X(t)e−gx(t)

where X denotes the original variable and gx(t) the growth rate given in equations (4.25)

and (4.26) without taking the limit t→∞.

As the scaled versions of the level of technology A and labour L grow at rate zero, we can

normalize them to unity and omit their respective equations.
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4 The DHSS Model with Hyperbolic Discounting

Thus, the dynamic system of the scaled variables reads:

k̇

k
=
y

k
− c

k
− δ − g∗k (4.27)

= kα−1rγ − c

k
− δ +

1

1− α− γ + γσ

(
γ

(
ρ̄+

ba

1 + at

)
− (g + βn)

)
(4.28)

ṡ

s
= −r

s
− g∗s (4.29)

= −r
s

+
1

1− α− γ + σγ

(
(1− α)

(
ρ̄+

ba

1 + at

)
− (1− σ)(g + βn)

)
(4.30)

ċ

c
=
α yk −

c
k − δ
σ

− g∗c =
αkα−1rγ −

(
ρ̄+ ba

1+at

)
− δ

σ
− g∗c (4.31)

=
αkα−1rγ − δ

σ
− 1− α− γ

(1− α− γ + γσ)σ

(
ρ̄+

ba

1 + at

)
− 1

1− α− γ + γσ
(g + βn) (4.32)

ṙ

r
= − α

1− γ
c

k
+

(1− α)

1− γ
δ +

1

1− γ
(g + βn)− g∗r (4.33)

= − α

1− γ
c

k
+

(1− α)

1− γ
δ +

1

1− α− γ + σγ

(
(1− α)

(
ρ̄+

ba

1 + at

)
+
σ − α
1− γ

(g + βn)

)
(4.34)

We can now use the relaxation algorithm to solve the system (4.30)-(4.34). The results are

presented in chapter 6.
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5 Calibration

The model is calibrated to fit data for the United States of America as there is good data

on the natural resource base available.

The capital share in the Cobb-Douglas production function is set to α = 0.3, which is

in line with (common/current/standard) literature (suggesting a plausible range for the

capital share of 0.3 to 0.4) (see Collins, Bosworth, and Rodrik, 1996; Maddison, 1987;

Englander and Gurney, 1994). The output elasticity of resources, γ, is set to 0.1. We

assume constant returns to scale which means that α+ β + γ = 1. Thus, the labour share

in the production function, β, is set to 0.6.

The depreciation rate, δ, is set to 0.08 which is a standard value in literature.

For the calibration of the inverse of the elasticity of intertemporal substitution, σ, we use

a meta-analysis of 2735 published estimates of the elasticity of intertemporal substitution

by Havranek et al. (2015). They find the average value of the elasticity of intertemporal

substitution to be 0.5. Accordingly, we set σ = 2.

The growth rates of the population and technology are set to 1% and 1.5%, respectively.

In order to calibrate the discount rate for the model with exponential discounting, ρ, we use

the assumption that the average growth rate of consumption is 1.8%. From the Keynes-

Ramsey rule we get

Ċ

C
=
r − ρ
σ

= gc = gy = 1.8%

Using r = 6% and σ = 2 yields ρ = 2.4%.

Finally, we need to calibrate the parameters for the model with hyperbolic discounting, a, b

and ρ̄. Following Stern (2007), we set ρ̄ to 0.1% to account for the possibility of humanity

being extinguished. The parameters a and b have to be chosen such that the present value

of a constant utility stream is the same for both discounting methods, see equation (6.1).

However, this condition is not sufficient to get unique values for a and b. Therefore, we use

values which provide a good fit to the responses Weitzman (2001) obtained from asking over

two thousand PhD-level economists ”what real interest rate should be used to discount over

time the (expected) benefits and (expected) costs of projects being proposed to mitigate

the possible effects of global climate change”. The forward rates he suggested are presented
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5 Calibration

in table 5.1.

Time Period Name Marginal Discount Rate (Percent)

Within years 1 to 5 hence Immediate Future 4
Within years 6 to 25 hence Near Future 3
Within years 26 to 75 hence Medium Future 2
Within years 76 to 300 hence Distant Future 1
Within years more than 300 hence Far-Distant Future 0

Table 5.1: Forward Discount Rate Schedule, Source: Weitzman (2001)

Using equation (6.1) and table 5.1, we obtain b = 2 and a ≈ 0.02.

For the calibration ofK0 we first take the United States’ 2016 GDP which amounts to 18.624

trillion dollars (The World Bank, 2018). In order to calibrate K0 we use the estimate of the

capital-output ratio given by Strulik and Trimborn (2010), K
Y = 2.16. We get K0 = 40.2

trillion dollars.

The initial resource stock is calibrated by adding up the worth of the United States’ proved

crude oil reserves, their recoverable coal reserves and their natural gas reserves which yields

S0 = 13.5 trillion dollars.

Finally, we normalise S0 to unity and scale K0 accordingly, yielding S0 = 1 and K0 = 3.
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6 Comparing Discounting Methods

Just like in the simplified model, we will apply the equivalent present-value approach (My-

erson, Green, and Warusawitharana, 2001) to compare exponential and hyperbolic dis-

counting. This means that the parameters have to be chosen such that the present value

of a constant utility stream is the same for both discounting methods:∫ ∞
t0

e−ρ(t−t0)dt =

∫ ∞
t0

e−ρ̄(t−t0)

(
1 + at0
1 + at

)b
dt (6.1)

Setting t0 = 0 and solving this equation for ρ yields:

ρ =
ρ̄

Γ(1− b, ρ̄a)e
ρ̄
a ( ρ̄a)b

(6.2)

where Γ(., .) is the incomplete gamma function. This equation, while more complex than

its counterpart in the simplified model (2.6), is numerically solvable.

Parameter Description Value

α Output elasticity of capital 0.3
β Output elasticity of labour 0.6
γ Output elasticity of resources 0.1
δ Depreciation rate 0.08
σ Inverse of the intertemporal elasticity of substitution 2
g Growth rate of the level of technology 0.015
n Growth rate of population 0.01
ρ Discount rate (exponential discounting) 0.024
a Parameter for the discount rate (hyperbolic discounting) 0.021
b Parameter for the discount rate (hyperbolic discounting) 2
ρ̄ Parameter for the discount rate (hyperbolic discounting) 0.001

Table 6.1: Parameter values used for numerical simulation

In order to compare the exponential and hyperbolic discounting, we set the parameters

according to table 6.1 (for further information on the calibration of the parameters see
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6 Comparing Discounting Methods

chapter 5).

First, we will have a look at the differences between the discount rates for the two methods

of discounting. Figure 6.1 illustrates the discount rates for exponential and hyperbolic

discounting.

Like in the simplified model, the discount rate does not change over time for exponential

discounting; it is constant at ρ = 2.4%. For hyperbolic discounting, the discount rate

declines over time. However, it does not vanish in the long run like it did in the simplified

model but converges towards ρ̄ = 0.1%, indicated by the dotted line.
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Figure 6.1: Discount rates for exponential (black solid line) and hyperbolic (red solid line)
discounting

We will now compare the optimal paths of resource extraction for both discounting methods.

Using the parameter values specified in table 6.1 we get the paths shown in figure 6.2a.
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Figure 6.2: Comparison of resource extraction levels
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6 Comparing Discounting Methods

Resource extraction is higher in the model with hyperbolic discounting at first due to the

high short-run discount rate. However, after around 15 years, the curves intersect and the

level of resource extraction in the model with hyperbolic discounting drops below the level

of resource extraction in the model with exponential discounting. After around 70 years,

the curves intersect again. From this point onwards, resource extraction is higher with hy-

perbolic discounting. This behaviour is similar to the behaviour described in the simplified

model, see chapter 2. Households attach greater importance to the distant future in the

model with hyperbolic discounting. Therefore, they are willing to sacrifice some short-term

utility in order to be able to extract more resources in the long run.

Figure 6.2b shows the ratio of resource extraction with exponential discounting and re-

source extraction with hyperbolic discounting Rexp/Rhyp. It rises to 1.1 after 40 years and

declines thereafter. The impatience of the households in the model with exponential dis-

counting does not only lead to lower resource extraction in the long run in absolute terms;

additionally, the ratio of the levels of extraction approaches zero in the long run.
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Figure 6.3: Comparison of resource stocks

Figure 6.3 shows the evolution of resource stocks with both discounting methods. Due

to higher short-run resource extraction the resource stock is smaller in the model with

hyperbolic discounting at first. However, the curves intersect after around 40 years. After

that, the resource stock is higher in the model with hyperbolic discounting.

Figure 6.3b shows the ratio of resource stocks Sexp/Shyp which looks similar to the ratio of

resources extracted in figure 6.2b. The ratio of resource stocks rises at first, but converges

towards zero in the long run.

The phase diagram represented in figure 6.4 shows the evolution of both R and S. Resource

extraction is higher with hyperbolic discounting when the resource stock is high, but falls
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6 Comparing Discounting Methods

below the level of resource extraction with exponential discounting for lower levels of the

resource stock.
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Figure 6.4: Phase diagram in the S/R-plane for exponential (black line) and hyperbolic
(red line) discounting
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Figure 6.5: Resource extraction rate for exponential (black line) and hyperbolic (red line)
discounting

Finally, we will compare the resource extraction rate for both discounting methods. Figure

6.5 shows the evolution of the resource extraction rate for exponential (black line) and

hyperbolic (red line) discounting. While the paths of resource extraction R and resource

stock S shown in figures 6.2-6.4 are similar for both discounting methods, the resource

extraction rate looks very different. The extraction rate rises in both cases in the short run.

We already know that the initial extraction rate is higher for hyperbolic discounting and it

remains higher for the first years. However, after around 15 years it starts declining while
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6 Comparing Discounting Methods

the extraction rate for exponential discounting further rises towards its steady state value
1−α

1−α−γ+σγρ−
1−σ

1−α−γ+σγ (g+ βn) ≈ 0.0473, see equation (3.26). For hyperbolic discounting,

the extraction rate converges towards the much smaller steady state value 1−α
1−α−γ+σγ ρ̄ −

1−σ
1−α−γ+σγ (g+βn) ≈ 0.0271. This means that in the medium and long run the share of the

remaining resource stock extracted at each point in time is much smaller with hyperbolic

discounting.
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7 Sensitivity Analysis

We will now investigate the sensitivity of our results to deviations from the benchmark

parameter values introduced in chapter 5. In order to do so, we vary the values of certain

parameters ceteris paribus and check how these deviations affect the depletion of the re-

source stock S, the extraction rate R
S and the initial resource extraction R0. More precisely,

we analyse how the changes affect the key figures Sintersect and R
S intersect

, which indicate

the time it takes until the resource stock and extraction rate lines intersect for exponen-

tial and hyperbolic discounting. Additionally, we will check how changes in the parameter

values affect the ratio of initial resource extraction, Rexp0 /Rhyp0 . Table 7.1 shows Sintersect,
R
S intersect

and Rexp0 /Rhyp0 for each scenario.

Scenario Sintersect
R
S intersect

Rexp0 /Rhyp0

- 40.73 20.24 0.91

γ+ 39.98 19.95 0.91

γ− 41.45 20.54 0.91

σ+ 48.48 23.93 0.92

σ− 27.27 13.87 0.92

g+ 45.98 22.50 0.91

g− 33.83 17.15 0.92

n+ 46.94 22.88 0.91

n− 36.83 18.52 0.92

a+ 23.02 12.03 0.93

a− 105.42 48.41 0.92

b+ 29.82 15.38 0.93

b− 56.36 26.80 0.90
K
S + 42.40 20.07 0.91
K
S − 39.64 20.38 0.92

Table 7.1: Sensitivity analysis

In our first scenario we increase the value of the output elasticity of resources γ from 1 to
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7 Sensitivity Analysis

1.1 (γ+) and decrease it to 0.9 (γ−). The effect on our key figures is minimal, Sintersect and
R
S intersect

both change by less than one year while the ratio of initial resource extraction

does not change at all.

Next, we vary the value of the inverse of the elasticity of intertemporal substitution, σ. An

increase of σ to 2.5 increases Sintersect by almost 8 years, a decrease of σ to 1.5 decreases

Sintersect by more than 12 years. R
S intersect

changes by 3 and 7 years, respectively. The

ratio of initial resource extraction is similar to the benchmark case for both scenarios.

Changes in the growth rate of technology g and the growth rate of population n have

similar effects on the key figures as they only appear together in the expression (g+βn) in

the dynamic system (4.28)-(4.34). Varying g between 0.01 and 0.02 and n between 0.005

and 0.2 leads to changes in Sintersect and R
S intersect

of up to 7 years. In these scenarios, too,

the changes in Rexp0 /Rhyp0 are minimal.

We next analyse changes in the initial capital-resource ratio K0
S0

. Varying the initial capital-

resource ratio between 1.5 and 4.5 does lead to changes in Sintersect of less than two years,

while R
S intersect

and Rexp0 /Rhyp0 hardly change at all. Considering that K0
S0

is changed by

50%, the sensitivity of the results with respect to the initial capital-resource ratio seems to

be rather small.

Finally, we investigate the effects of changes in the parameters a and b, which determine

the discount function in the hyperbolic model. Increasing a drastically to 0.03 - which

corresponds to a increase in ρ from 2.4% to 3.3% - significantly reduces both Sintersect and
R
S intersect

to 23.02 and 12.03 years, respectively. A decrease in a to 0.01 (≡ ρ = 1.25)%

increases Sintersect and R
S intersect

to 105.42 and 48.41 years, respectively. The impact of

changes in b is smaller. Varying b between 1.75 and 2.25 leads to changes in Sintersect

and R
S intersect

of up to 16 years. The ratio of initial resource extraction is similar to the

benchmark case for all scenarios.

Concluding, it can be said that the results are robust with respect to changes in some

parameters such as the output elasticity of resources, γ and the initial capital-resource

ratio K0
S0

. Other parameters, such as a and b, do impact the quantitative results quite

significantly when changed enough. However, none of the parameter alterations changed the

qualitative results of the model. Initial resource extraction is always higher with hyperbolic

discounting, which means that the resource stock declines faster in the short run. In the

medium-term, the level of resource extraction in the model with hyperbolic discounting

drops below the level of resource extraction in the model with exponential discounting.

Therefore, the resource stock declines slower in the model with hyperbolic discounting and

remains higher after a unique point of intersection, Sintersect. The extraction rate is also

higher in the model with hyperbolic discounting initially, but falls below the extraction

rate of the model with exponential discounting after R
S intersect

.
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8 Conclusion

In my thesis, I applied the time-consistent method of hyperbolic discounting proposed by

Strulik (2017) and applied it to the Dasgupta-Heal-Solow-Stiglitz (DHSS) model of capital

accumulation and optimal depletion of a non-renewable resource. I then compared the

results to those obtained under conventional exponential discounting. In order to be able

to make a fair comparison between both discounting methods, I applied the equivalent-

present-value argument which ensures that both discounting methods provide the same

present value of a constant utility flow.

The comparison showed that resource use is more conservative under hyperbolic discount-

ing, even though households’ discount rate is much larger in the short run than with

exponential discounting. However, their low long-run discount rate offsets the effects of

their present-bias, making them more patient in the long-run. Both the capital stock and

the resource stock tend to be larger in the scenario with hyperbolic discounting than with

exponential discounting in the long-run. This in turn leads to higher long-run consump-

tion growth rate. In particular, I showed that with exponential discounting much higher

technological growth is needed to achieve positive consumption growth at all.

Finally, I calibrated the model parameters to fit data from the United States of America.

The simulation shows that the resource extraction rate is only higher for the first twenty

years with hyperbolic discounting. After that, it is always lower compared to the model

with exponential discounting. The resource stock is lower with hyperbolic discounting at

first. Due to the lower resource extraction rate this changes after around 40 years. The

resource stock remains higher compared to exponential discounting thereafter.

A sensitivity analysis shows that the results are robust with respect to parameter variations.
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