
Cloud Computing Techniques for
Winner Determination in

Computational Social Choice

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

eingereicht von

Mag. Julia Theresa Csar, Bakk.
Matrikelnummer 00601791

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Reinhard Pichler

Diese Dissertation haben begutachtet:

Priv.-Doz. Dr. Markus Endres Jun.-Prof. Dr. Gábor Erdélyi

Wien, 19. Juni 2018
Julia Theresa Csar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





Cloud Computing Techniques for
Winner Determination in

Computational Social Choice

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Mag. Julia Theresa Csar, Bakk.
Registration Number 00601791

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Reinhard Pichler

The dissertation has been reviewed by:

Priv.-Doz. Dr. Markus Endres Jun.-Prof. Dr. Gábor Erdélyi

Vienna, 19th June, 2018
Julia Theresa Csar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Mag. Julia Theresa Csar, Bakk.
1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. Juni 2018
Julia Theresa Csar

v





Acknowledgements

First I want to thank my advisor Prof. Reinhard Pichler for his guidance to a completely
new reserach area, his patients and his great support.

I would like to thank my co-authors Martin Lackner, Emanuel Sallinger and Vadim
Savenkov and my colleagues for all nice discussions, lunch breaks and all the support
over the last years while working on my dissertation. Especially I would like to thank
Andreas Pfandler and Sebastian Skritek, not only for proof-reading parts of this thesis
but also for their great support. As well I would like to thank Wolfgang Fischl who has
been my friendly office-roommate for quite some time.

Last but not least I would like to thank my friends and family who never lacked to
support me, believed in me at all times and encouraged me at the right moments.

This work was supported by the Austrian Science Fund projects (FWF):P25518-N23 and
(FWF):Y698.

vii





Kurzfassung

Diese Dissertation beschäftigt sich mit der Entwicklung von Algorithmen in Cloud-
basierten Systemen für Probleme im Bereich des "Computational Social Choice". Compu-
tational Social Choice beschäftigt sich unter anderem mit Methoden um die Gewinner
einer Wahl zu bestimmen. Eine solche Wahl ist dadurch gekennzeichnet, dass die Stim-
men in Form von Präferenzlisten bekannt gegeben, oder durch einen automatisierten
Mechanismus generiert werden. Das ist zum Beispiel in Online Diensten, wie Streaming
Services oder Shops der Fall, wenn Nutzer aus mehreren Möglichkeiten eine Wahl treffen
können. In so einem Szenario wären zum Beispiel die beliebtesten Lieder einer Gruppe
von Nutzern von Interesse. Methoden für die Identifikation von Gewinnern wurden bereits
einige entwickelt, allerdings sind die dazugehörigen Algorithmen für deutlich kleinere
Wahlen ausgelegt. Um die Verarbeitung von so großen Wahlen möglich zu machen wird
in dieser Arbeit der Grundstein gelegt um BigData Technologien auf dieses Problem
anzuwenden. BigData Technologien setzen voraus, dass eine Parallelisierung zu einem
gewissen Grad möglich ist. Komplexitätstheorie eröffnet die Möglichkeit ein Problem
auf Parallelisierbarkeit zu analysieren. Deshalb werden in dieser Arbeit bereits bekannte
Komplexitätsresultat diskutiert und diese um neue Resultate ergänzt. Weiters werden
zu einigen Methoden aus dem Bereich des Computational Social Choice Algorithmen
entwickelt. Diese Algorithmen basieren auf den Prinzipien der Programmierparadigmen
Pregel und MapReduce, welche beide für die Verarbeitung von großen Datenmengen
in sogenannten Cloudsystemen konzipiert wurden. Die in dieser Arbeit vorgestellten
Algorithmen werden hinsichtlich ihrer Performanz theoretisch analysiert. Weiters werden
die Algorithmen implementiert und sowohl an künstlichen als auch an realen Datensätzen
evaluiert. Die Implementierung der Algorithmen ist open-source verfügbar.

ix





Abstract

This work deals with the development of cloud-computing algorithms for problems
of winner determination in computational social choice. In winner determination in
computational social choice we are concerned with determining the winner(s) of an election.
In the considered elections the votes are given as preference profiles, i.e. a ranking of
candidates, by a voter or by an automated process. For example such scenarios include
preference data generated by online services, e.g. streaming services of music or movies,
or online shops. In such systems the user has to choose among many candidates and this
action is interpreted as a vote, i.e. the users express their preferences. Such online services
result in very large elections, but the developed algorithms for methods in computational
social choice are usually designed for much smaller settings. To make it possible to apply
the methods of computational social choice to such large elections it is necessary to adapt
new technologies. Such new technologies have been devised in other areas dealing with
huge data sets and include parallel computation and cloud computing techniques. For
developing algorithms suited for parallel computation in cloud computing environments
the programming paradigms MapReduce and Pregel have been proposed. This work
aims at developing algorithms for winner determination by using these programming
paradigms. In this thesis, first some problems of winner determination in computational
social choice are analysed regarding to their parallelizability. Known complexity results
are summarized and extended by new results. Based on this investigation new cloud
computing algorithms for several methods in computational social choice are proposed.
The algorithms are analysed with regard to common performance measures and are
further evaluated by an experimental study. The resulting source code is available as
open-source.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

I Introduction and Preliminaries 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries 13
2.1 Computational Social Choice and Winner Determination . . . . . . . . 13
2.2 Computational Complexity of Social Choice Rules . . . . . . . . . . . 23
2.3 Cloud Computing Techniques . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Cloud Computing Frameworks . . . . . . . . . . . . . . . . . . . . . . 27

II Complexity Results and Cloud Computing Algorithms 29

3 Complexity of Voting Rules 31
3.1 The Schulze Winner Determination Problem . . . . . . . . . . . . . . 32
3.2 The Ranked Pairs Winner Determination Problem . . . . . . . . . . . 34
3.3 The STV Winner Determination Problem . . . . . . . . . . . . . . . . 36

4 Cloud Computing Algorithms 43
4.1 Positional Scoring Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



4.2 Computing the Graph Representation . . . . . . . . . . . . . . . . . . 45
4.3 Copeland Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Smith Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Schwartz Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Schulze Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Ranked-Pairs Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8 STV Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

III Theoretical Performance and Experimental Evaluation 81

5 Theoretical Performance Guarantees of the proposed Algorithms 83
5.1 Performance Guarantees for Our MapReduce Algorithms . . . . . . . 83
5.2 Performance Guarantees for Our Pregel Algorithms . . . . . . . . . . . 89

6 Experimental Evaluation 93
6.1 MapReduce Algorithm for Computing the Schwartz Set . . . . . . . . 93
6.2 Pregel Algorithm for Computing the Schulze Winner . . . . . . . . . . 96

IVConclusion 101

7 Conclusion 103
7.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Open Issues and Directions for Future Work . . . . . . . . . . . . . . . 105

List of Figures 107

List of Tables 109

List of Algorithms 112

Bibliography 113



Part I

Introduction and Preliminaries

1





CHAPTER 1
Introduction

1.1 Motivation

When using online services we are constantly engaging in actions that create lots of user
specific data. The generated data and its usage is a major topic in today’s discussions.
Online stores or music and movie streaming services are used in every day life frequently.
The behaviour of users in such systems is monitored and analysed with regard to many
aspects. Naturally, one might be interested in the most preferred item, e.g. the most
liked movie by a certain group of users. This situation can be modelled as an election,
where the choice of watching a movie or listening to a song is interpreted as a vote of the
user and the available items are the candidates in the election. A vote in such an election
might be directly derived from the selection made by a user or from aggregated data of a
group of users. Such aggregated preferences are for example derived from a ranking of
the most viewed or most frequently purchased items during a given time period.

Finding the winner or winning set of candidates in an election is not as trivial as it might
look at first sight. In fact, the development of methods for the selection of the winner(s)
is a very old research topic. Fair winner determination is not only of interest in political
elections, but also in other situations of joint decision making. When voters provide a
ranking of several candidates, it is not always clear, which candidate should be selected.
For example in a very small election of three candidates (A, B and C) and three voters,
the following votes are obtained: A > B > C, A > B > C, B > C > A. (The vote
A > B > C was cast twice.) One might argue that candidate A is the winner of this
election, since it has been ranked first in the most votes, although it has been ranked last
by the third voter. An the other hand candidate B has never been ranked last, therefore
it might be the better choice. A different approach would be to select both candidates A
and B as a set of tied winners. As you can see, even in such a small election it is not
clear what the best way of decision making is.

3



1. Introduction

Methods for selecting a winner from candidates in elections can become very complex
and there is a vivid research area – social choice – dealing with the problem of proposing
voting rules, with different axiomatic properties and related topics. Such methods do
not only get complex in the sense of the fairness of the selection, but also when it comes
to computability. The field of computational social choice deals with the problem of
determining the computational complexity of methods in social choice and with the
development of algorithms for those. Many algorithms have been developed for selecting
the winner or the winning set of candidates in an election. The methods of computational
social choice are usually applied to elections of a relatively small size, e.g. political
elections, where the number of candidates is in the range of hundreds and voters might be
up to millions. But in the scenarios where we automatically generate lists of preferences,
i.e. in online services, the number of alternatives or candidates easily goes up to several
thousands and the number of voters seems to be rather unlimited. The computational
complexity of these problems becomes especially important when we are dealing with
such large elections. Not all of these methods are feasible in reasonable time when
working with such big elections and it becomes necessary to make use of new techniques
for algorithm design and computation. Such new techniques for dealing with big data
sets are devised in other data centered research areas and include parallel computation
or cloud computing techniques.

Cloud computing technologies are based on the idea of connecting many independent
computing resources and combine their computing power in a high performance cluster.
These systems are also referred to as shared nothing architectures, since the computing
nodes do not share any resources, but are connected over a fast network. Cloud computing
clusters offer the main advantage of scaling out instead of the scaling up. This means,
that instead of adding additional resources to one computing entity (node), additional
nodes can be added to the system. The new computing nodes are not required to have the
same hardware configuration as existing ones. This concept adds much more flexibility
to such high performance computing solutions, because many computing entities with
differing characteristics can work together and the system can be extended or scaled
down as needed.

To leverage the computing power in a cloud computing environment it is necessary to
design algorithms in a specific way. For this purpose several programming frameworks
have been proposed. The two most prominent of those are MapReduce and Pregel,
which are both based on the Bulk Synchronous Processing model proposed by [Val90].
MapReduce has first been proposed in [DG08] and is based on the general idea of splitting
data by mapping it to key-value pairs and perform computations on independent subsets
of the data. The key of such a key-value pair determines which computing entity, i.e.
reduce task, is receiving this data value. This splitting enables the system to distribute the
work load among the computing entities efficiently. The reduce tasks work independently
of each other and perform a computation on all received values and write the result
back to the (distributed) file system. In some cases several such MapReduce rounds
might be needed. This method of algorithm design is especially suited when it comes to

4



1.1. Motivation

batch processing, but might not be the best choice when the data shows a more complex
structure, or if the computation needs more iterations. For example, in many big data
tasks we are dealing with graph-based data and for this purpose a new programming
paradigm – Pregel – was proposed. Pregel is used for graph based computation in such
cloud computing environments and has first been proposed in [MAB+10]. A Pregel
algorithm is often described as a vertex-centric computation, since each vertex forms
its own independent computing entity which can be distributed on the cluster. The
vertices communicate with each other in this system and perform their computations
independently. The communication and computation is performed synchronously.

The first open-source software solution implementing MapReduce was Apache Hadoop.
Hadoop is an open source project and has been readily extended in the last years. Now it
contains much more than only MapReduce, but consists of a whole ecosystem of services
including a distributed file system and a resource manager. Cloud computing frameworks
on top of Hadoop are developing very quickly and one of the most recent advancements
was the development of Spark. The software Spark provides many more methods for data
heavy computations in cloud computing systems. It does not only come with a machine
learning library but also provides the possibility of graph based computations including
Pregel procedures by the package GraphX. Although Spark and Hadoop contain a lot of
optimization techniques and develop at a high rate, the basic principle of MapReduce
or Pregel form the heart of each program running in the system and therefore efficient
algorithms use the concepts of those paradigms.

An important aspect of algorithm design is the theoretical performance of the algorithm.
For the performance analysis of algorithms designed using MapReduce or Pregel several
important computation cost factors have to be considered. Those are especially com-
munication cost and memory usage, besides the actual computation time. While the
computation time heavily depends on the underlying cloud infrastructure, the program-
ming paradigms provide us with the possibility of formulating algorithms independently
of the underlying concrete cloud system and perform further theoretical analyses of other
factors of performance, such as communication cost and data replication rate.

Applying the methods of social choice to large scale elections (as created by streaming
services or online stores) makes it necessary to develop algorithms for those methods, which
are suited for the computation in a cloud based infrastructure. Extending the methods of
computational social choice for the use of cloud computing techniques lets us face many
new challenges. First of all not all methods of computational social choice are equally
well suited for parallelization and for the computation in cloud computing environments.
To determine whether a problem can be parallelized the methods of computational
complexity can be used. In computational complexity one seeks to categorize problems
into complexity classes by their computational properties. Depending on the complexity
class of a problem, we know whether an efficient parallel algorithm might exist and for
the problems known to be parallelizable, efficient cloud computing algorithms can be
designed.

5



1. Introduction

1.2 Problem Statement
Large scale election data is created in different types of online services. Data of that
size is often managed in cloud computing environments, but the current methods of
computational social choice do not take advantage of the cloud computing system. It
is necessary to develop new algorithms and techniques to deal with large data sets and
therefore "moving the methods of computational social choice to the cloud".

The aim of this thesis is to develop cloud computing algorithms for winner determination
in large scale elections. For this purpose existing methods are analysed regarding their
parallelizability. Further, for the parallelizable methods cloud computing algorithms are
developed and tested for their applicability.

In a nutshell, the goal of this work is to bridge the gap between the current state of big
data technologies and the methods of computational social choice.

1.3 Related Work
The research areas most closely related to this work are computational social choice and
algorithm design for cloud computing frameworks.

Computational social choice

The development of algorithms and methods for preference aggregation and winner
determination is a major topic in computational social choice. Preference aggregation
aims at combining a set of rankings to one universal ranking, wheras winner determination
aims at selecting a winner or several winners from the set of candidates in the election.
For many of the voting rules and scenarios important in the area, efficient algorithms
have been devised [DKNS01, San02, BGN10, BBF10, LPR+12, CKKP14].

Many recent papers in the direction of algorithm development and complexity analysis
focus on NP-hard voting rules, i.e. voting rules that cannot be solved in polynomial time
unless P = NP. One example of such a rule is the Kemeny rule, where a lot of work has
been done on studying practical algorithms [CDK06, BBN14, SvZ09, AM12]. The work
[DKNS01] focuses on developing algorithms for rank aggregation for ranking data on
the web. Their focus also lies on the Kemeny rule and their research focusses on finding
heuristic algorithms which provide good rankings, with respect to specific criteria.

Other NP-hard voting rules are the STV rule and the ranked-pairs rule, under the assump-
tion that no fixed-tie breaking rule is used [CRX09, BF12]. Recent work by [JSW+17] has
considered the NP-hard variants of STV and ranked pairs and established fast algorithms
for these problems. In this work the STV rule and the ranked-pairs method are discussed,
under the assumption that there is a fixed tie-breaking order. The Schulze method [Sch11]
is a relatively young method of rank aggregation and widely used in group decision of
political groups and open-source projects. Similarities and differences of the ranked pairs
and Schulze method in the context of strategic voting have been considered in [PX12].

6



1.4. Methodological Approach

In [MFG12] an empirical study on large election data was performed and they highlight
that there is a lack of support for existing statistical models which are used to generate
synthetic election data. In this work this problem is encountered during the experimental
evaluation.

Algorithm Design for Cloud Computing Frameworks

The theoretical frameworks for algorithm design used today are based on the work
of [Val90], where the bulk synchronous programming model was proposed. Later this
model has been adapted to fulfill the current needs and MapReduce was proposed by
Google [DG08]. Pregel [MAB+10] is a further adaptation for graph based algorithms.
For the design of algorithms, efficiency is of course a crucial topic. Therefore several
concepts of theoretical performance analysis have been proposed.

For designing MapReduce algorithms some approaches for minimizing the replication
of data in join computation have been used in [AU10, ASSU13]. Replication of data
occurs when the data values are needed at several reduce tasks during the computation.
The proposed algorithms in [AU10] are optimal in the sense that they minimize the
replication rate and also the lower and upper bounds of communication cost for the
proposed algorithms for join computations are derived. The structure of the underlying
data also plays a huge role in algorithm performance and it might be useful to consider
data characteristics in algorithm optimization. This can be observed by comparing the
solutions for optimizations of MapReduce algorithms for join computations presented
in [AU10, BKS13] and [BKS14]. Whereas [AU10, BKS13] rely on the assumption of a
uniform distribution of data values, for skewed data a different algorithm is proposed in
[BKS14]. The methods used for analysing the performance of MapReduce algorithms in
those works are relevant to this thesis.

In [YCX+14] many Pregel based graph algorithms have been proposed and the concept
of Balanced Practical Pregel Algorithms (BPPA) has been introduced. BPPA algorithms
have linear space usage, linear communication cost, linear computation cost and use
at most a logarithmic number of rounds (for more details see Section 2.3.2. Many
efficient Pregel Algorithms, analyzed by the same performance measures, are presented
in [SW14]. [YCX+14] and [SW14] also aim at developing efficient Pregel algorithms
and they introduce many methods and techniques that can be applied for algorithm
development. They propose algorithms for many common graph related problems such as
identifying strongly connected components. Their notion on efficient Pregel algorithms is
a good guideline for Pregel algorithm design and where an inspiration for the algorithm
presented in this thesis.

1.4 Methodological Approach

To reach the aim of this work several methods are used. For the theoretical analysis
of problems we use the methods of computational complexity theory. Further, the

7



1. Introduction

development of new algorithms is done by making use of the cloud computing paradigms
MapReduce and Pregel. The resulting cloud computing algorithms are analysed regarding
several performance measures defined by current research in algorithm development
for cloud computing environments. The practicality of the algorithms is shown by
experimental evaluation.

This defines the following methodological work-flow, throughout this thesis:

1. Analyse winner determination problems by using methods of complexity theory.
Existing complexity results are used as a starting point for this analysis, which
are then further extended by new results. The focus of our theoretical complexity
analysis lies on the parallelizability of the problems.

2. Develop new algorithms suited for a cloud-computing environment and analyse the
theoretical performance of our algorithms.
For the development of cloud computing algorithms the programming paradigms
MapReduce and Pregel are used. Despite the differences in the way they abstract
from the underlying cloud system, both paradigms aim at the same architecture
and thus share the same principal ideas (distribute the data onto the independent
computing entities in the system and perform computations separately). As a result,
similar performance measures apply to both of them. In general, the following
performance measures are of interest:

• number of rounds or supersteps – the number of rounds the algorithm needs
to iterate before termination. Ideally algorithms have a constant or at most
poly-log number of rounds.

• replication rate – the factor by which the number of the inputs received by
the parallel processes exceeds the size of the original input.

• computation time – the total time needed for the whole computation. In
a parallel computation, this corresponds to the time needed by the longest
computation path.

• memory consumption – for a more fine-grained differentiation the RAM
consumption and the data size stored in the file system in between rounds of
the overall computation can be distinguished.

3. Implementation of the algorithms using the cloud computing frameworks Hadoop [Bor07]
and Spark [ZCF+10].

4. Experimental Evaluation of the developed algorithms on different types of input
data. This includes real world data and synthetic data to show the practicality of
the algorithms.

8



1.5. Results

1.5 Results
Some of the results presented in this work have already been published in peer-reviewed
international conferences or workshops. In the lists of results it is noted if the result is
already contained in a publication and the publications are listed in Section 1.7.

Several complexity results for winner determination rules in computational social choice
are the starting point. For example in [BFH09] the complexity of computing the Smith
Set, Schwartz Set and Copeland Set was analyzed. Those existing results are extended by
new complexity results. In particular, in this work the following new results, are shown:

• Theorem 1: The Schulze Winner Determination problem is NL-complete –
published in [CLP18].

• Theorem 2: The Ranked Pairs Winner Determination problem is P-complete
– published in [CLP18].

• Theorem 3: The STV Winner Determination problem is P-complete – pub-
lished in [CLPS17b].

• Theorem 4: The STV Winner Determination problem can be solved in
O(m+ log(n)) space – published in [CLPS17b].

While we show the NL-completeness of the Schulze winner determination problem,
which means that it is suited for parallelization we show for the Ranked-Pairs winner
determination that it is P-complete and therefore inherently sequential. For the STV
winner determination method the P-hardness of this problem is shown and the paraL-
membership for the parameterization by the number of candidates in an election (but
with unrestricted number of voters) is proved. Under this parameterization a MapReduce
algorithm for the STV winner determination method is developed in the next step.

The results of the complexity analysis are further used to develop cloud computing
algorithms using the concepts of MapReduce and Pregel. In particular, the following
algorithms are proposed:

• MapReduce algorithm for computing scoring rules based on the preference profile –
published in [CLPS16].

• MapReduce algorithm for computing the weighted majority graph from the prefer-
ence profile – published in [CLPS17b].

• MapReduce algorithm for computing the Copeland set based on the graph repre-
sentation of the election.

• Mapreduce algorithm for computing the Smith set – published in [CLPS17b,
CLPS17a].

9



1. Introduction

• Pregel algorithm for computing the Smith set.

• MapReduce algorithm for computing the Schwartz set – published in [CLPS17b].

• Pregel algorithm for computing the Schwartz set.

• MapReduce algorithm for computing the Schulze winner.

• Pregel algorithm for computing the Schulze winner – published in [CLP18].

• Ideas for algorithms for computing the Ranked-pairs winner.

• Mapreduce algorithm for computing the STV winner – published in [CLPS17b].

Further, all those algorithms are analysed with regard to theoretical performance measures
of cloud computing algorithms and are implemented. The resulting code is available as
open source on Github:

• https://github.com/theresacsar/BigVoting
MapReduce algorithms implemented in Java.

• https://github.com/theresacsar/CloudVoting
Spark library implemented in Scala, containing methods for dealing with preference
data and Pregel algorithms.

The experimental evaluation is performed using different types of input data. We use
both, synthetic data and real world data to show the scalability and the practicability of
the algorithms. The real world data used for this work is based on data provided by the
music streaming service Spotify. The top most viewed songs per day and country over the
year 2017 where taken as input. This results in a real world winner determination problem
with more than 10,000 candidates (songs). The experimental evaluation shows that the
proposed algorithms scale very well in cloud computing environments and can deal with
large data sets. The experimental evaluation was partially published in [CLPS17b] and
[CLP18].

1.6 Structure of this Thesis
First of all the needed definitions and results from the areas of social choice and cloud
computing technologies are summarized in Chapter 2.

The theoretical results of this thesis are all contained in Part II in two separate chapters
for the complexity results and the designed algorithms. The results of the complexity
analysis of selected voting rules are presented in Chapter 3. In Chapter 4 the Cloud
Computing Algorithms are presented and explained in detail. All algorithms are presented
not only as pseudo-code but also illustrated by example.

10

https://github.com/theresacsar/BigVoting
https://github.com/theresacsar/CloudVoting


1.7. Publications

In Part III the performance of the proposed algorithms is investigated in more detail.
In Chapter 5 the theoretical performance measures of the algorithms are summarized,
compared and discussed. The results of the experimental evaluation are shown in
Chapter 6, where it is observed that the algorithms are scaling well in practice.

Finally there is Part IV with a summary of the results, concluding remarks and directions
for future work.

1.7 Publications
Some of the results presented in this thesis have already been published in the following
peer-reviewed publications:

[CLP18] Theresa Csar, Martin Lackner, and Reinhard Pichler. Computing the Schulze
method for large-scale preference data sets. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm,
Sweden, 2018. To appear.

[CLPS17b] Theresa Csar, Martin Lackner, Reinhard Pichler, and Emanuel Sallinger.
Winner determination in huge elections with MapReduce. In Proceedings of AAAI-
17,2017.

[Csa18] Theresa Csar. CloudVoting: Analyzing Preferences using Spark and GraphX.
In Online proceedings of MPREF-18 Workshop, 2018.

[CLPS17a] Theresa Csar, Martin Lackner, Reinhard Pichler and Emanuel Sallinger.
Computational Social Choice in the Cloud. In Proceedings of PPI17 Workshop at
BTW 2017, Datenbanksysteme für Business, Technologie und Web, 2017.

[CLPS16] Theresa Csar, Martin Lackner, Reinhard Pichler and Emanuel Sallinger.
Winner determination in huge elections with MapReduce. In Proceedings of the 10th
Multidisciplinary Workshop on Advances in Preference Handling, 2016.

[CPSS15] Theresa Csar, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov.
Using statistics for computing joins with map reduce. In Alberto Mendelzon Workshop
2015.

11





CHAPTER 2
Preliminaries

In this chapter an introduction to the used methods from computational social choice and
cloud computing techniques used in this thesis is given. First the basics of computational
social choice including methods for winner determination are explained and defined.
Further an introduction to the used complexity classes is given. The cloud computing
programming paradigms MapReduce and Pregel are explained and the used cloud
computing frameworks (Hadoop, Spark and GraphX) are introduced.

2.1 Computational Social Choice and Winner
Determination

Computational social choice is a huge research area dealing with joint decision making
(for an introduction to these topics see [CELM07]). In this thesis, we are focussing on
the problem of winner determination in situations where several voters provide a ranking
of candidates. This can be approached from two directions – on the one hand there is
voting theory which is concerned with reaching a common decision and on the other hand
preference aggregation, where all provided preference rankings are aggregated.

The area of voting theory is concerned with the development of methods to define the
winning candidate or a winning set of those candidates. There are many methods for
such joint decision making of groups of entities, i.e. groups of people, or some automated
processes (for an overview of methods see [BBH16]).

First the input data to problems of computational social choice is discussed in Section 2.1.1,
followed by an introduction to the used methods for winner determination in this thesis
in Sections 2.1.2- 2.1.6. Further the computational complexity aspects of the winner
determination problems are discussed (Section 2.2).

13



2. Preliminaries

2.1.1 Election Data

Before going into detail on the used methods of winner determination, we define the
problem instances and give an introduction to the used terminology. Given a set of
alternatives (or candidates) A of size m and a set of voters N = {1, . . . , n}, each voter
provides his or her preference over the candidates in A as a preference relation or vote.
This preference relation of a voter i is referred to by �i. Whereas �i contains a weak
order on A and the preference relation �i denotes the strict part of �i. We assume
that votes are strict partial orders, i.e., reflexive, antisymmetric and transitive binary
relations. The full preference profile P is the collection of all votes P = (�1, . . . ,�n).
An alternative a ∈ A strictly dominates an alternative b ∈ A if there are more votes
ranking a before b in the preference profile P . This means, a strictly dominates b if
| �i∈ P : a �i b| > | �i∈ P : b �i a|. Weak domination of candidates is defined
analogously, by replacing > by ≥. From the preference profile the dominance relation
D(P ) ⊆ A×A can be created by using the definition of weak or strict dominance. The
strict or weak dominance graph is a directed graph denoted as D� or D� where the
vertices of the graph are the candidates A of the election and there is an edge from
candidate a to candidate b if a strictly (or weakly) dominates b, i.e. D� = (A,EP ) with
EP = {(a, b) ∈ A2 : if a strictly dominates b}. We will simply use D to denote the weak
or strict dominance relation, if the variant is clear from the context or not important to
the specific case. From the definition of D� follows that the strict dominance relation is
asymmetric, since it is not possible that a strictly dominates b and b strictly dominates
a at the same time. Further D� is irreflexive, because no candidate can dominate
itself [BFH09].

In some cases we are not only interested in the position of a candidate in the votes but
also in the number of voters ranking candidate a before candidate b. Therefore, we define
the majority margin of two candidates a, b ∈ A as the number of votes preferring a over
b minus the number of votes preferring b over a. The majority margin over a preference
profile P is defined as µP (a, b) = |i ∈ N : a �i b| − |i ∈ N : b �i a|.

The weighted directed graph with the candidates as vertices and weighted (directed)
edges between all candidates with a majority margin greater than 0 is called the weighted
majority graph of P . This means, if candidate a dominates b then there is an edge
from a to b with weight µP (a, b) in the weighted majority graph WP . Therefore, WP

has the same directed edges as the corresponding strict dominance graph, but with the
respective majority margin as weight. The weighted majority graph of P is denoted as
WP = (A,EP , µ′P ) with EP = {(a, b) ∈ A2 : µP (a, b) > 0}. The restriction of µP to EP
is denoted as µ′P , i.e. only keeping weights larger than 0.

Note, that there are two relevant dimensions that influence the size of the problem
instance: the number of candidates m and the number of votes n. In Table 2.1 the used
notations are listed.

14



2.1. Computational Social Choice and Winner Determination

A set of candidates (alternatives)
N = {1, . . . , n} set of voters

�i the preference (vote) of voter i
�i the strict part of �i

P = {�1, . . . ,�n} the set of votes; the full preference profile
a strictly dominates b if | �i∈ P : a �i b| > | �i∈ P : b �i a|

D�(P ) the strict dominance relation
D�(P ) the weak dominance relation

µP (a, b) = |i ∈ N : a �i b| − |i ∈ N : b �i a| majority margin of a and b
EP = {(a, b) ∈ A2 : µP (a, b) > 0} the edges in the weighted majority graph

µ′P restriction of µP to EP
WP = (A,EP , µ′P ) weighted majority graph

Table 2.1: Notation

Example 1 Consider the election with four candidates A = {a, b, c, d} and a preference
profile containing 30 votes given in Figure 2.1a (originally by Schulze [Sch03]). The
first column in the table gives the number of voters casting the preference relation in the
second column as vote.

There are 17 votes ranking a before b and 13 votes ranking b before a in the preference
profile P . Therefore a dominates b and the corresponding weighted edge in the weighted
majority graph has weight 4, i.e. µP (a, b) = 4. The other majority margins are computed
analogously and the resulting weighted majority graph can be found in Figure 2.1b. In
this example there are no ties and therefore the strict and the weak dominance graph
coincide. The strict and weak dominance graphs have the same directed edges as the
weighted majority graph, but without weights. �

#V otes Preference Relation
3 a � c � d � b
5 a � d � b � c
4 b � a � c � d
5 b � c � d � a
2 c � a � d � b
5 c � d � a � b
2 d � a � b � c
4 d � b � a � c

(a) Full Preference Profile P

a

b

d

c

4

6

10

82

12

(b) Weighted Majority Graph WP

Figure 2.1: The Full Preference Profile and the Weighted Majority Graph in Example 1

15



2. Preliminaries

2.1.2 Winner Determination and Rank Aggregation

In Winner Determination we are interested in finding a winner or a winning set of
candidates of an election. We refer to methods which define how to select a winner as
winner determination rules, social choice rules or social choice functions. Probably one of
the most natural approaches of winner determination is to consider pairwise comparisons
and to declare a candidate to be the winner if it strictly dominates all other candidates.
Such a candidate is called a strong Condorcet winner, and is unique if it exists. In some
cases, e.g. if there is a cycle in the dominance graph, there is no Condorcet winner in the
election.

It is possible that there are several weak Condorcet winners. A weak Condorcet winner
is a candidate that dominates or ties all other candidates. The Condorcet method is a
choice rule that selects all weak Condorcet winners as the winning set of the election.

Winner determination rules are categorized by the type of input used (Fishburn’s clas-
sification [Fis77]). The discussed rules are either based on the dominance relation (or
dominance graph), weighted majority graph or the preference profile. The social choice
functions based on the dominance relation D are referred to as C1-functions. This means
that C1-functions only consider the relation if a candidate defeats another candidate
in a pairwise comparison, but no further information is used for winner determination.
Therefore adding additional votes, that do not alter the dominance graph, does not effect
the outcome of the choice rule. C2-functions take the weighted majority margin as input,
i.e. C2-functions are based on the weighted majority graph WP . So called C3-functions
use strictly more information than the weighted majority graph. They require the full
preference profile, and often yield computationally hard winner determination problems.

The corresponding Winner Determination problems based on a social choice rule R are
defined as follows:

R Winner Determination (C1-function)

Instance: dominance relation D, candidate c
Question: Is c a winner in D according to rule R?

R Winner Determination (C2-function)

Instance: weighted majority graph WP = (A,EP , µ
′
P ), candidate c

Question: Is c a winner in WP according to rule R?

R Winner Determination (C3-function)

Instance: preference profile P , candidate c
Question: Is c a winner in the election given by P according to rule R?

Some social choice functions can also be used to create an aggregated ranking. The
problem of rank aggregation is defined as follows:

16



2.1. Computational Social Choice and Winner Determination

R Rank Aggregation

Instance: a preference profile P .
Question: Find a linear order of candidates that is optimal with respect to R.

The winner determination rules used in this thesis are discussed in the remaining
subsections: Next we discuss positional scoring rules (very simple voting rules, where
scores are assigned to the candidates by the position in the votes). Then we proceed
with C1-functions, which are based on the strict or weak dominance graph as input.
In particular we discuss the Smith Set and the Schwartz Set, which both follow a very
similar definition, but differ on the type of dominance graph they use - the Smith Set
uses the weak dominance graph as input and the Schwartz Set the strict dominance
graph. Next the Schulze method and the ranked-pairs method are discussed, which are
based on the weighted majority graph WP and are therefore C2-functions. The Schulze
method is originally a method for rank aggregation. Last but not least we review the
C3-function Single Transferable Vote (STV).

2.1.3 Positional Scoring Rules

The most commonly known and probably most intuitive positional scoring rule is the
plurality rule. The plurality rule selects the candidate as winner, which is ranked first
in most votes. In general a positional scoring rule is taking the preference profile P as
input and assigns a score to each candidate dependent on its position in each vote. The
final score of a candidate is the sum over its scores. This can be modelled by providing a
scoring vector, which gives the scores assigned to each position in the vote. For example
for the plurality rule the scoring vector is s = (1, 0, 0, . . . , 0), i.e. the only candidate
receiving a point is the candidate ranked first in each vote. Another frequently used
scoring rule is the Borda scoring rule. For a vote of length m the scoring vector is
s = (m − 1,m − 2, ..., 0). This version of the Borda method is also called asymmetric
Borda score. For other definitions of the Borda scoring rules see [BBH16].

The k-Approval rule assigned as score of 1 to the candidates ranked at the first k positions
and 0 otherwise. The plurality rule is a special case of the k-approval rule, where k = 1.
There are many different types of positional scoring rules, in Table 2.2 some scoring
vectors are listed.

Rule Scoring Vector
Plurality (1, 0, 0, . . . , 0)
Anti-plurality (0, 1, 1, . . . , 1, 1)
k-Approval (1, 1, 1, . . . , 1, 0, 0, . . . , 0)
Borda (m− 1,m− 2, ..., 0)

Table 2.2: Scoring Vectors for several Positional Scoring Rules [BBH16].

17



2. Preliminaries

Candidate Borda Plurality 2-Approval
a 53 8 16
b 46 9 13
c 41 7 15
d 48 6 16

Table 2.3: Positional Scores in Example 1.

It might come by surprise that even such simple voting rules lead to different results in a
simple election. In Example 1 one such election is shown and the results of the applied
scoring rules can be found in Table 2.3.

Example 1 continued. For the preference profile given in Figure 2.1a positional
scoring rules are computed. The computation of the Borda Scores works as follows: The
first entry of the preference profile states that the preference list a � c � d � b was given
by three voters. The number of candidates in the preference relation is 4 and therefore the
scoring vector for the Borda method is s = (3, 2, 1, 0). Therefore candidate a receives three
times 3 points for its position in the first preference relation in Figure 2.1a. When looking
at the other preference relations the total Borda score can be calculated and therefore the
Borda score of a is BordaP (a) = 3∗3 + 5∗3 + 4∗2 + 5∗0 + 2∗2 + 5∗1 + 2∗2 + 4∗2 = 53.
The calculation of the Borda scores of the other candidates works analogously. The scores
by Borda rule and some other scoring rules for the candidates in the preference profile P
can be found in Table 2.3. Each scoring rule then selects the candidate with the highest
score as winner. It can be observed that already for such a small election with only four
candidates the scoring rules are not selecting the same candidate as winners. Whereas
Borda would select candidate a, Plurality chooses candidate b and 2-Approval is undecided
for candidates a and d. In Table 2.3 the scores of the respective winners are printed bold.
�

2.1.4 Winner Determination Methods based on the Dominance
Relation (C1-Functions)

There are many choice sets based on structural graph properties of the dominance graph.
One example is the Copeland Set, which is based on the number of incoming and outgoing
edges of the dominance graph. There are also social choice functions depending on other
structural graph properties. We will discuss two closely related sets: the Smith set and
the Schwartz set.

So-called C1-functions are based solely on the dominance graph and are not effected by
any changes in the underlying preference profile, that do not alter the dominance graph.
Before discussing such choice rules in more detail we will first introduce the Condorcet
Winner and the important properties: Condorcet-consistency and Smith-consistency.

18



2.1. Computational Social Choice and Winner Determination

Condorcet Winner and Property Condorcet-consistency

The Condorcet Winner is the candidate that defeats all other candidate in the election in
a pairwise majority sense, i.e. the Condorcet Winner is dominating all other candidates.
In some elections there is no Condorcet winner, but if there exists one it is unique. In
some cases the dominance relation might contain a cycle. If this happens, then there
is no Condorcet winner. This phenomenon is also referred to as the Condorcet’s voting
paradox.

The property Condorcet consistency is used to describe voting rules. A voting rule is
Condorcet consistent if it selects the Condorcet winner as the unique winner, if there is
one.

Property: Smith-Consistency

The subset A1 ⊆ A of candidates of the total set of candidates A is said to be Smith-
consistent if all candidates in A1 dominate all candidates in A \ A1. The smallest set
satisfying this property is called the Smith set and will be discussed later.

Copeland Scores and Copeland Set

Other then the positional scoring rules introduced before, the Copeland scores are based
on the structure of the dominance graph. In particular, the Copeland Score of a candidate
a is the difference of the number of candidates that are dominated by a and the number
of candidates that dominate a. In the dominance graph this can easily be computed by
counting the number of incoming and outgoing edges and computing the difference. The
candidate with the highest score is then selected as the Copeland Winner. In other words
the Copeland Winner is the candidate winning most pairwise majority contests [BBH16].

The Copeland Scores [BBH16] are defined as CopelandS(a) = |{b|a � b}| − |{b|b � a}|.

The Copeland Set is the set of all candidates with the maximum Copeland score[Cop51].
The Copeland set is always non empty and it is straight-forward to see, that the Copeland
Set is Condorcet-consistent, but not necessarily Smith-consistent. Since a candidate in
the Copeland Set might be dominated by an outside candidate.

Smith Set

The Smith set is the (unique) minimal set of candidates that dominate all outside
candidates in the weak dominance graph. We define the Smith Set via dominant sets. A
dominant set A1 is a nonempty set of candidates (A1 is a subset of A), that dominate
all candidates outside of A1, i.e. each candidate in A1 dominates all candidates in
A \A1 [BBH16]. Obviously, each candidate contained in A1 has a larger Copeland score
than a candidate in A \A1. Therefore, the Smith set is a superset of the Copeland Set.

For finding an algorithm for computing the Smith set a different definition, based on
strongly connected components in the weak dominance graph, is useful. The Smith set

19



2. Preliminaries

can also be defined as the unique undominated strongly connected component in the weak
dominance graph [BFH09]. For the computation of the strongly connected components
in graphs many algorithms have been developed, e.g. Tarjan’s algorithm or a Pregel
based algorithm presented in [YCX+14].

Schwartz Set

The Schwartz set is very similar to the Smith set, but it is based on the strict dominance
graph, whereas the Smith Set is based on the weak dominance graph. Therefore, the
Smith Set and the Schwartz Set differ in their treatment of ties [BFH09]. The Schwartz
set is defined as the union of all minimal sets (strongly connected components) that are
not dominated by outside candidates in the strict dominance graph [BFH09]. Further
[BFH09] show that the Schwartz Set is always a subset of the Smith Set.

Example 1 continued. The weighted majority graph of the Example can be seen in
Figure 2.1b. The candidates a and d both have a Copeland score of 1 and form the
Copeland Set. There is no Condorcet Winner in this election. The Schwartz and Smith
Set are identical, because the strict and the weak dominance graph coincide. Further, both
sets contain all candidates, since the dominance graph is one single strongly connected
component. �

Example 2 An election with four candidates {a, b, c, d} and a preference profile P with
six votes is given. The preference profile P is as follows:

P = {a � b � d � c, b � a � c � d,
a � c � d � b, c � b � d � a,
a � c � b � d, c � b � a � d}

This preference profile P results in the weak dominance graph shown in Figure 2.2a
and the strict dominance graph shown in Figure 2.2b. The strict dominance relation is

D� =


0 0 1 1
0 0 0 1
0 1 0 1
0 0 0 0

 and the weak dominance relation is D� =


0 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

.

Condorcet Winner. There is no strict Condorcet Winner, but candidate a is a weak
Condorcet Winner.

Copeland Scores. The Copeland Scores can easily be computed from the strict
dominance relation D�. The Copeland Scores of the candidates are: CopelandScore(a)
= 2, CopelandScore(b) = 0,CopelandScore(c) = 1,CopelandScore(d) = -3. Therefore,
candidate a is the Copeland Winner with score 2 and a is the only candidate in the
Copeland Set.

20



2.1. Computational Social Choice and Winner Determination

(a) Weak Dominance Graph (b) Strict Dominance Graph

Figure 2.2: Dominance Graphs for Example 2

Smith Set. The set of candidates {a, b, c} is the smallest undominated set in the weak
dominance graph, i.e. {a, b, c} is the Smith Set. The weak dominance graph only contains
two strongly connected components. Those are {a, b, c} and {d}.

Schwartz Set. The Schwartz Set only contains one candidate, that is a. Candidate
a is the only undominated candidate (and the only undominated strongly connected
component) in the strict dominance graph. In this example, each candidate in the strict
dominance graph forms its own strongly connected component. �

2.1.5 Winner Determination Methods based on the Weighted
Majority Graph (C2-Functions)

In this work two C2-functions are discussed: the Schulze method and the ranked-pairs
method.

Schulze Method

The Schulze Method [Sch03, Sch11] is originally a method for preference aggregation, this
means that the Schulze method does not only return a winner, but returns an aggregated
preference profile over the whole set of candidates. The candidate ranked first in the
aggregated preference is the Schulze winner; but it is not necessary to compute the full
ranking to find the Schulze winner. The Schulze method [Sch11] is a refinement of the
Schwartz method and always selects a candidate contained in the Schwartz set as winner.
It is a so called C2-function and therefore uses the weighted majority graph as input.
Its definition depends on widest paths in the weighted majority graph. In a weighted
majority graph (A,E, µ) a path (x1, . . . , xk) has width α if mini∈{1,...,k−1} µ(xi, xi+1) = α.
A widest path from a to b is a path from a to b of maximum width. We use p(a, b) to
denote the width of such a path. According to the Schulze method, an alternative a beats
alternative b if there is a wider path from a to b than from b to a, i.e., if p(a, b) > p(b, a).
An alternative a is a Schulze winner if there is no alternative b that beats a. It is
guaranteed that such a candidate exists but it is not necessarily unique. The Schulze
method can be used to compute an aggregated ranking, then the outcome is defined

21



2. Preliminaries

a b c d
a - 6 6 6
b 2 - 10 8
c 2 8 - 8
d 2 12 10 -

Table 2.4: The widest paths in Example 1

by the relation (a, b) ∈ R if and only if p(a, b) ≥ p(b, a). It can be shown that R is a
weak order [Sch11]. The Schulze winners are exactly the top-ranked alternatives in R.
Note, that also the scoring rules presented in the beginning of the section can be used to
aggregate a ranking over all candidates.

Ranked-Pairs

We define the ranked pairs method [Tid87] subject to a fixed tie-breaking order T , which is
a linear order of the candidates. The ranked pairs method creates a ranking of alternatives,
starting with an empty relation R. All pairs of candidates are sorted according to their
majority margin and ties are broken according to T . Then, pairs of candidates are added
to the relation R in the sorted order (starting with the largest majority margin). However,
a pair is omitted if it would create a cycle in R. The final relation R is a ranking of all
alternatives and the top-ranked alternative is the ranked-pairs winner (subject to T ).

Example 1 continued. The preference profile P of the election given in Example 1
results in the weighted majority graph displayed in Figure 2.1b. Table 2.4 shows the
widest paths between any two vertices. The unique Schulze winner is candidate a, having
a widest path of width 6 to every other candidate, whereas all incoming widest paths to
vertex a have width 2. The unique ranked-pairs winner is d (independently of the chosen
tie-breaking order). It is obtained by inspecting the edges in descending order of weights
and retaining an edge only if it does not cause a cycle. We thus retain (d, b), (b, c), omit
(c, d), and retain (a, c), (a, b), (d, a). Hence, d is the only vertex without incoming edge in
the resulting directed acyclic graph. �

2.1.6 More Winner Determination Methods (C3-Functions)

Winner determination methods which use more information than the weighted majority
graph, are referred to as C3-functions. These voting rules are often observed to be
NP-complete. In this thesis we only discuss the C3-function single transferable vote
(STV) rule.

Single Transferable Vote (STV)

The winner determination method "single transferable vote" (STV) is based on the full
preference profile as input and is defined as follows: In each round the candidate that

22



2.2. Computational Complexity of Social Choice Rules

3 a � c � b
5 a � b � c
4 b � a � c
5 b � c � a
2 c � a � b
5 c � a � b
2 a � b � c
4 b � a � c

(a) Preference Profile after deleting d

3 a � b
5 a � b
4 b � a
5 b � a
2 a � b
5 a � b
2 a � b
4 b � a

(b) Preference Profile after deleting c

Figure 2.3: STV Method by Example

is ranked first in the least number of votes is removed from each vote. Therefore, after
m− 1 rounds only one candidate remains and this candidate is selected as the winner.
In case of ties we assume that a tie-breaking order is given.

Example 1 continued. We calculate the winner by the STV method from the preference
profile given in Figure 2.1a. The candidate ranked first in the least votes is identified,
which is d (ranked first in 6 votes) and is deleted from the profile. The resulting new
preference profile is shown in Figure 2.3a. The next candidate to remove is candidate c,
since it only appears in 7 votes in the first position. In the remaining preference profile
shown in Figure 2.3b, candidate a is ranked first in 17 votes and b in 13 votes, therefore
b is removed and a is selected as the STV winner. �

2.2 Computational Complexity of Social Choice Rules
We use the methods of computational complexity theory to determine whether a parallel
algorithm for a winner determination problem might exist. Tractability in the form
of P-membership is often considered as the optimal outcome of a complexity analysis.
Analogously, in parameterized complexity theory, one aims at showing FPT-membership,
i.e., fixed-parameter tractability. However, in order to establish high parallelizability
of a problem, we have to look inside P and FPT. A more fine grained view is needed
to distinguish between P-hard problems (which are considered as inherently sequential
[Joh90]) and problems which actually lie in some class inside P. A problem is considered
as parallelizable if it can be solved on polynomially many processors in poly-log time,
i.e., in time O(log(n)i) for some i ≥ 0. NC is the class of all such parallelizable decision
problems.

The formal definition of NC is usually via Boolean circuits. A family {Bn : n ≥ 1} of
Boolean circuits is log-space uniform if there is a deterministic Turing machine which,
when given n, constructs Bn in space O(logn). Then we can define NC =

⋃
i≥0 NCi,

where NCi is the class of problems that can be decided by a log-space uniform class of
Boolean circuits having size O(nO(1)) and depth O(log(n)i). If we allow Boolean circuits

23



2. Preliminaries

of unbounded fan-in, then we get the classes ACi. Therefore the class AC0 is the class of
problems solvable by uniform constant-depth Boolean circuits with unbounded fan-in and
a polynomial number of gates [BFH09]. The class TC0 additionally allows for treshold
gates. Treshold gates output true if and only if the number of true inputs exceeds a
certain treshold.

The complexity classes used in this work are known satisfy in the following inclusions:

AC0 ⊂ TC0 ⊆ L ⊆ NL ⊆ NC ⊆ P ⊆ NP (2.1)

Problems contained in the classes AC0, TC0, L, NL and NC are considered as highly
parallelizable.

The space complexity class L (log-space) is closely related to these circuit-classes. Problems
in L can be solved with logarithmic space and membership in L can be seen as evidence
that a problem is parallelizable as it can be computed in log2 time with a polynomial
number of parallel processors.

2.3 Cloud Computing Techniques

To deal with ever growing datasets in various data centric applications many of new
methods have been developed. Cloud computing technologies are built upon using a
cloud based infrasture, i.e. shared nothing architectures. For implementing software
and to formulate algorithms on such cloud-based infrastructure various programming
frameworks were proposed. In particular MapReduce [DG08] and Pregel [MAB+10]; both
frameworks are special cases of the bulk synchronous processing model (BSP) [Val90].

In this section the theoretical background for the design of Algorithms using MapReduce
and Pregel is introduced. In the following section, Section 2.4, the software and computing
frameworks commonly used in cloud computing environments are reviewed.

2.3.1 MapReduce

MapReduce was first introduced by [DG08] for distributed batch processing. MapReduce
algorithms are based on the concept of splitting problem instances into small parts (not
necessarily disjoint) and performing computations on those parts using independent
computation nodes.

In particular MapReduce algorithms work in three phases: (1) map, (2) shuffle and (3)
reduce phase. In the map phase, the input data is read from the file system and the read
values are mapped to an arbitrary number of key-value pairs. Then, in the shuffle phase,
those key-value pairs are distributed among the reduce tasks depending on the key. In
the reduce phase, each worker performs a computation on the received key-value pairs
and writes the result back to the file system.

24



2.3. Cloud Computing Techniques

Introduction by example. The concept of MapReduce is best illustrated by an
example. We compute the Borda scores of a small election using a simple MapReduce
algorithm. The algorithm is illustrated in Figure 2.4. The set of candidates is A = {a, b, c}
and a valid vote is for example a > b > c. The used scoring vector for the Borda
scoring rule is s = (2, 1, 0). Therefore, the candidate ranked first receives 2 points, the
second 1 point and the last 0 points. In the map-phase each preference relation is read
and mapped to key-value pairs. The vote a > b > c results in the key-value pairs:
(key=a,value=2),(key=b,value=1) and (key=c,value=0). The key-value pairs with value
0 can be omitted, since they are not relevant for the result. In the shuffle phase, all
those key-value pairs are assigned to reduce tasks by their key, such that all scores of a
candidate end up at the same reduce task. In the reduce phase each reduce task just
sums up all the scores for the given candidate. Then the reducers write their calculated
Borda scores back to the file system.

a > b > c

b > a > c

c > a > b

Map

(a, 2)
(b, 1)
(b, 2)
(a, 1)
(c, 2)
(a, 1)

Shuffle

(a, 2)
(a, 1)
(a, 1)
(b, 1)
(b, 2)
(c, 2)

Reduce

(a, 4)

(b, 3)

(c, 2)

Figure 2.4: Calculation of scores by the Borda scoring rule.

Performance Analysis of MapReduce algorithms

There is a lot of research on analyzing the performance of MapReduce algorithms [ASSU13,
LRU14] designed for cloud computing environments. In such cloud computing environ-
ments the computing nodes are connected by a network and therefore the network
capacity can quickly become a barrier. That is why communication cost is an important
factor. The total communication cost is denoted as tcc. It measures the amount of data
that is moved to the reduce tasks during the shuffle phase. The tcc is closely related to
the replication rate (rr) and the replication rate is the average number of key-value pairs
that are produced by one input value. Therefore the rr measures the proportion of the
tcc to the input size. The number of keys used for the computation is referred to by #keys
and is a measure of parallelization. The more keys are used the more parallelization
is possible. Note, that the number of keys is not necessary identical to the number of
reduce tasks. Usually several keys can be processed by one reduce tasks. The assignment
of keys to reduce tasks can be done by a simple hash function and can be used to tune
the algorithm. Cloud computing frameworks discussed in Section 2.4 have some methods
for load balancing and performance optimization implemented.

It is often necessary to chain several MapReduce computations and therefore the number
of MapReduce rounds is also an important performance measure. The number of rounds
is referred to as #rounds.

25



2. Preliminaries

As another time measure we will study the wall clock time (wct), which measures the
maximum time consumed by a single computation path in the parallel execution of the
algorithm. Since the computations performed by the map and reduce tasks are very
simple, the predominant cost factor is the size of the input and output of the map and
reduce tasks. Therefore, we identify the wall clock time with the maximum number of
input and output data items (i.e., the number of emit() and return() statements in the
algorithms) in any computation path.

Performance Analysis of a MapReduce Algorithm by Example. Analysing the
simple MapReduce algorithm for Borda scores described above gives the following result:

Performance: The Borda scores for a given preference profile P can be computed
in MapReduce with the following characteristics: rr = 1, #rounds = 1, #keys = m,
wct ≤ n+ 1, and tcc ≤ m(n+ 1).

Argumentation: The algorithm takes only one MapReduce round (#rounds = 1).
Each entry in the preference list results in one key-value pair, therefore the replication
rate is 1 (rr=1). The candidates are used as key, such that we have #keys = m keys.
Each reduce task receives at most n values (one per vote) and outputs exactly 1 value.
From this follows that wct ≤ n+ 1 and tcc ≤ m(n+ 1). �

2.3.2 Pregel

In many big data applications we are dealing with large graphs, such as social networks
or linked data. For such data instances the MapReduce programming paradigm is not
that well suited. Pregel [MAB+10] was developed to optimize the computation of the
commonly known page-rank graph algorithm, for ranking web search results. Pregel
algorithms are often described as vertex-centric computations. Each vertex acts as its
own computation entity. Vertices send messages to other vertices, store their own vertex
information and perform computations. The whole Pregel computation works in several
supersteps. A superstep consists of three phases: (1) vertices send messages to other
vertices, (2) vertices process the data and perform computation, (3) vertices can be
set inactive. After receiving messages, a vertex performs its vertex program, in which
the information stored at the vertex can be changed. Inactive vertices do not send any
messages, and a vertex can be set to inactive/active by itself. If a vertex does not receive
any messages, it is set inactive automatically and can be reactivated by messages in
following supersteps. Pregel programs terminate as soon as all vertices are inactive.

Performance Considerations for Pregel Algorithms

There are very similar performance consideration for Pregel algorithms as for Mapreduce.
The communication cost and the usage of space plays an important role. In particular we
are interested in the following measures: space usage, communication cost, computation
cost and number of supersteps (rounds). The space usage refers to the space of storage each

26



2.4. Cloud Computing Frameworks

vertex requires to store its vertex information. The computation cost is the computation
cost of the vertex program, i.e. the computation performed by each vertex, and the
communication cost refers to the size of the messages sent by each vertex in each superstep.
The concept of balanced practical pregel algorithms (BPPA) has been introduced by
[YCX+14] and defined that a BPPA algorithm has the following properties: linear space
usage, linear communication cost, linear computation cost and uses at most a logarithmic
number of rounds [YCX+14]. For many problems it is difficult to find algorithms that
meet these performance guarantees.

2.4 Cloud Computing Frameworks

2.4.1 Hadoop

Apache Hadoop (hadoop.apache.org/) was originally programmed as an open source
implementation of MapReduce and is implemented in Java. It quickly developed to a
huge ecosystem of applications and is now much more than ’just’ MapReduce. It comes
together with highly developed resource management tools and the hadoop distributed
file system (HDFS) as a central part.

2.4.2 Spark

Spark1 is a cloud computing framework built on top of Hadoop and answers to many
weaknesses of Hadoop, when it comes to interactive datanalysis. Spark is widely applied
to many data-intensive tasks and has first been introduced in 2010 by [ZCF+10]. The
core concept of the Spark engine are the Resilient Distributed Datasets (RDD). RDDs
are distributed and read-only collections of objects. In contrast to Hadoop, where the
data has to be written back to the file system after each map task, the data can be held
in memory on the cluster. The ability of loading data into memory for reusing it in
following steps gains enormous speed to iterative computations and makes interactive
analysis possible. A quickly developing optimization engine is working in the background
to make this possible. RDDs are distributed and replicated across the nodes in the cluster,
which does not only speed up the computation but also provides adata safety in the case
one partition of an RDD is lost. The partitioning can be configured, but also internal
Spark processes optimize the process.
A very important concept of RDDs is their lazy evaluation. This causes that the RDD is
created only when the data is needed and not before. Therefore Spark tries to minimize
the size of datasets read into memory and can create an optimized execution plan before
even distributing the data on the worker nodes. There are usually two ways of creating
an RDD: either byloading data from a file or by parallelizing an already existing collection
of objects. The second approach is usually not applicable since this would require to load
the whole dataset in memory on one machine before distributing it.
RDDs allow for two types of methods: actions and transformations. Transformations

1https://spark.apache.org/

27

hadoop.apache.org/
https://spark.apache.org/


2. Preliminaries

cause a new RDD to be created. Because of the lazy-evaluation this new RDD is not
created before the data is actually needed. The computation happens only when an action
is called. Actions always cause the Spark engine to perform a computation [KKWZ15,
KW17].

2.4.3 GraphX

GraphX [XGFS13]2 is a library for Spark containing many methods for computations with
graphs. Besides basic graph operators and algorithms, GraphX also provides an Pregel
API. GraphX also provides methods to optimize the partitioning of the Graph on the
cluster in order to avoid huge communication costs and to speed up the computation time.

2https://spark.apache.org/graphx/

28

https://spark.apache.org/graphx/


Part II

Complexity Results and Cloud
Computing Algorithms

29





CHAPTER 3
Complexity of Voting Rules

The first step in developing successful algorithms is to get a thorough understanding of
the problem at hand. The goal of this theoretical complexity section is to determine the
properties and the structure of considered problems and extending known results. In
[BFH09] the complexity of the Smith Set, Schwartz Set and Copeland Set was analyzed.
Those methods are all methods for selecting a winning set of candidates from an election.
The results show that the winner determination problem in the Smith Set is AC0-
complete, the selection of the Schwartz set is NL-complete and the Copeland set is
TC0-hard [BFH09]. Based on these results cloud computing algorithms are proposed
and analyzed theoretically with regard to several performance measures in Chapter 4.

For several other voting rules new complexity results are derived. In particular the
STV rule, ranked-pairs method and the Schulze method are investigated. The STV und
ranked-pairs winner determination proplems are both known to be NP-hard under the
assumption that no tie-braking rule is given[CRX09, BF12]. In this work, for the STV
rule the P-hardness of this problem is shown and further the paraL-membership under
the parameterization by the number of candidates in an election (but with unrestricted
number of voters) is proved. Under this parameterization a MapReduce algorithm for
the STV rule is developed in Chapter 4.

For the ranked-pairs method we obtain a similar result and show that it is P-complete.
Problems which are P-complete are considered as inherently sequential [Joh90].

For the Schulze Winner Determination problem, we show, that it is NL-complete and
therefore suited for parallel computation.

31



3. Complexity of Voting Rules

The theorems together with their proofs presented in this section are:

• Theorem 1: The Schulze Winner Determination problem is NL-complete.

• Theorem 2: The Ranked Pairs Winner Determination problem is P-
complete.

• Theorem 3: The STV Winner Determination problem is P-complete.

• Theorem 4: The STV Winner Determination problem can be solved in
O(m+ log(n)) space.

3.1 The Schulze Winner Determination Problem

Theorem 1 The Schulze Winner Determination problem is NL-complete.

Recall from Section 2.1 that the Schulze-Winner-Determination problem selects a candi-
date as winner if the outgoing widest paths to all other vertices, are stronger than the
incoming widest paths.

In [BFH09] it is shown that any rule that selects winners from the Schwartz set—as
Schulze’s method does—and that breaks ties among candidates according to a fixed order
is NL-hard to compute. Our result is similar, but shows NL-hardness without requiring
a tie-breaking order. In this hardness proof, we construct the weighted majority graph
WP = (A,E, µ′) with even integer weights and with E being an asymmetric relation, i.e,
if (a, b) ∈ E then (b, a) /∈ E. It follows from McGarvey’s Theorem [McG53] that such
weighted majority graphs can be obtained even from preference profiles containing only∑
e∈E µ(e) many linear orders.

Of course, the results presented in this Chapter also hold if preference profiles (and not
the weighted majority graph) are given as input.

Proof 1 Our NL-membership proof for the Schulze-Winner Determination Problem is
based on the following two related problems WP≥ and WP>, where we ask if, for given
vertices s, t and width w, a path from s to t of width ≥ w or > w, respectively, exists.
Formally, we study the following problems:

Existence-of-Wide-Paths WP≥ / WP>

Instance: a weighted graph G, vertices s, t, weight w ∈ R
Question: Does there exist a path from s to t

of width ≥ w (in case of the WP≥-problem) or
of width > w (in case of the WP>-problem)?

32



3.1. The Schulze Winner Determination Problem

It is straightforward to verify that both problems WP≥ and WP> are in NL: guess one
vertex after the other of a path from s to t of length at most |V | and check for any two
successive vertices that they are connected by an edge of weight ≥ w or > w, respectively.

Since NL = co-NL by the famous Immerman-Szelepcsényi Theorem, the co-problems of
WP≥ and WP> are also in NL. We can thus construct a non-deterministic Turing
machine (NTM) for the Schulze winner determination problem, which loops through all
candidates c′ 6= c and does the following:

• guess the width w of the widest path from c to c′ (among the weights of the edges in
WP );

• solve the WP≥ problem for vertices c, c′ and weight w: check that there exists a path
from c to c′ of width ≥ w;

• solve the co-problem of WP> for c′, c and weight w: check that there is no path from
c′ to c of width > w;

The correctness of the non-deterministic Turing machine is immediate. Moreover, by
the above considerations on the problems WP≥, WP> and their co-problems, the NTM
clearly works in log-space time.

Note that if we want to check if c is the unique Schulze winner, then we just need to
replace the third step above by a check that there is no path from c′ to c of weight ≥ w;
in other words, we solve the co-problem of WP≥. Again, the overall non-deterministic
Turing machine clearly works in log-space.

We prove the NL-hardness of the Schulze Winner Determination problem by reduction
from the NL-complete Reachability problem. Let (G, a, b) be an arbitrary instance of
Reachability with G = (V,E) and a, b ∈ V . We construct a weighted majority graph
W = (V ′, E′, µ) from G as follows and choose a as the distinguished candidate:

• First, remove from G all edges of the form (v, a) and (b, v) for every v ∈ V , i.e., all
incoming edges of a and all outgoing edges from b.

• For every pair of symmetric edges e1 = (vi, vj) and e2 = (vj , vi), choose one of these
edges (say e1) and introduce a “midpoint”, i.e., add vertex wij to V and replace e1 by
the two edges (vi, wij) and (wij , vj).

• For every vertex u different from b, introduce a new vertex ru and edges (b, ru), (ru, u).

• Now there is exactly one incoming edge of a, namely e = (ra, a). Define the weight of
this edge as µ(e) = 2 and set µ(e′) = 4 for every other edge e′ 6= e.

It is easy to verify that a is a Schulze winner in W (actually, it is even the unique Schulze
winner), if and only if there is a path from a to b in G. To see this, first observe that

33



3. Complexity of Voting Rules

there is a path from a to b in W if and only if there is one in G. Hence, if there is a path
from a to b, then the widest path from a to any vertex in W is 4. Conversely, all paths
from any vertex to a must go through edge (ra, a) and, therefore, have width at most 2.
On the other hand, if there is no path from a to b, then a cannot be a winner, since b
indeed has a path to a (via ra) and, therefore, in this case, b is definitely preferred to
candidate a according to the Schulze method.

3.2 The Ranked Pairs Winner Determination Problem

Theorem 2 The Ranked Pairs Winner Determination problem is P-complete.

P-membership in case of the ranked pairs method is obvious (and well-known). It remains
to prove the P-hardness.

Proof 2 The P-hardness proof is by reduction from the classical P-complete Boolean-
Formula-Evaluation (BFE) problem: given a Boolean formula φ with variables in X and
truth assignment I on X, does I |= φ hold?

Consider an arbitrary instance (φ,X, I) of the BFE problem. Without loss of generality, we
may assume that (1) each variable in φ occurs exactly once in φ and (2) the only connective
in φ is nor. We construct an instance of the Ranked Pairs Winner Determination Problem
(W, v) with the weighted majority graph W = (A,EP , µ) as follows:

Consider the parse tree T of φ, where each node of T corresponds to a subexpression of
φ. In particular, the leaf nodes correspond to the variables in φ. Now let {g1, . . . , gm}
denote the inner nodes of T in some top-down order, i.e., whenever gi is an ancestor
of gj, then i < j holds. Moreover, let X = {x1, . . . , x`} and let {gm+1, . . . , gm+`} denote
the corresponding leaf nodes in T . Then we set

A = {g0} ∪ {g1, . . . , gm, gm+1, . . . , gm+`} ∪ {h1, . . . , hm}.

By slight abuse of notation, we use g1, . . . , gm+`, to denote (1) candidates/vertices in
W, (2) nodes in T , and (3) subexpressions of φ. The vertices g0, h1, . . . , hm are new
symbols. We say that “gj is the parent of gi”, if gj is the parent of gi in the parse tree T .
In addition, we define g0 as the “parent of g1”.

To define the set of edges E together with weight function µ, let α ∈ {1, . . . ,m+ `}; we
distinguish two cases:

Case 1: Suppose α ∈ {1, . . . ,m}, i.e., gα is an inner node of T . Let gi be the parent of
gα and, for α 6= 1, let gj be the parent of gi. Then E contains the following edges:

e0 = (gj , gα) with µ(e0) = 4α, for every α 6= 1.

e1 = (gα, hα) with µ(e1) = 4α− 1.

34



3.2. The Ranked Pairs Winner Determination Problem

e2 = (hα, gi) with µ(e2) = 4α− 2.

e3 = (gi, gα) with µ(e3) = 4α− 3.

Case 2: Suppose α ∈ {m+ 1, . . . ,m+ `}, i.e., gα is a leaf node in T (corresponding to
some variable xγ). Again, let gi denote the parent of gα and let gj denote the parent of
gi. Then E contains e0 = (gj , gα) with µ(e0) = 4m+ 2γ. Moreover, if I(xγ) = true, then
E contains e1 = (gα, gi). Conversely, if I(xγ) = false, then E contains e1 = (gi, gα). In
either case, we set µ(e1) = 4m+ 2γ − 1.

These are all the edges in E. For the sake of readability, we use the integer interval
from 1 to 4m+ 2` as weights (with weight 4 missing, since g1 has no grand-parent). The
weights could be easily made even by multiplying all weights by 2. Finally, we choose
g1 as the distinguished vertex for which we have to decide whether it is a ranked pairs
winner.

The intuition of this construction is as follows: in the ranked pairs method, we inspect the
edges in descending order of their weights (note that all edges in W have unique weights)
and check if the current edge may be added to the relation R (now considered as a DAG)
without producing a cycle. Then R contains either the edge (gj , gi) or a path from gi to
gj (in case gi is an inner node of T , this is the path gi → hi → gj; in case gi is a leaf
node, this is the edge (gi, gj)). The crucial property of our construction (which can be
proved by structural induction on the nodes of the parse tree T ) is that the existence of a
path from gi to gj encodes I |= gi (recall that we identify nodes in the parse tree with the
corresponding subexpressions of φ), whereas the existence of the edge (gj , gi) in R encodes
I 6|= gi.

In particular, for g1 with parent g0 this means that if I 6|= g1, then R contains the edge
(g0, g1) and g1 is clearly not a winner. Conversely, suppose that I |= g1 holds and let
g1 = gα nor gβ. Of course, I |= g1 means that I 6|= gα and I 6|= gβ. Hence, R contains no
incoming edge to g1 at all. Hence, in this case, g1 is a winner (actually even the unique
winner) independently of the chosen tie-breaking order.

The construction is illustrated by Example 3.

Example 3 Consider formula φ = x1 nor (x2 nor x3) and assignment I with I(x1) =
I(x2) = true and I(x3) = false. The parse tree T of φ has 2 inner nodes (g1, g2)
corresponding to the two occurrences of nor and 3 leaf nodes (g3, g4, g5) for the 3 variables.
The graph W resulting from our problem reduction and the DAG R resulting from applying
the ranked pairs method are displayed in Figure 3.1, where W contains all edges shown
in the figure while R contains only the edges with solid lines.

The edges to the leaf nodes x1, x2 and from leaf node x3 directly encode the truth value of
these variables in I. For each inner node gα (for α ∈ {1, 2}) with parent gi, the graph W
contains the triangle gα, hα, gi. Depending on the truth value of gα, either edge (hα, gi)

35



3. Complexity of Voting Rules

Figure 3.1: Graph W and relation R of Example 3 for Boolean formula φ =
x1 nor (x2 nor x3) and assignment I with I(x1) = I(x2) = true and I(x3) = false.

is retained in R (if I |= gα) or edge (gi, gα) (if I 6|= gα). Formula φ evaluates to true for
the assignment I and g1 is indeed the unique winner in the election represented by W.

3.3 The STV Winner Determination Problem

In this section the Single Transferable Vote (STV) rule is studied as one example of a
voting rule that allows for only limited parallelization. Recall from Chapter 2.1 that STV
is defined as follows: Every voter provides a total order of all m candidates. In each
round the candidate that is ranked first in the least number of votes is removed from
each vote. The remaining candidate after m− 1 rounds is the winner. In case of ties we
assume that a tie-breaking order is given. In the following we will show that STV is in
general difficult to parallelize effectively.

Theorem 3 STV-Winner is P-complete.

Proof 3 The proof of P-hardness is by reduction from the well-known P-hard Boolean
Circuit Evaluation problem. Let an arbitrary instance of this problem be given by a
Boolean circuit C. We may assume that C has the following form [GHR95]:

• C has gates g1, . . . , gn;

• the gates g1, . . . , gk with 1 ≤ k < n are the input gates, i.e., each gi with 1 ≤ i ≤ k
is either of type > or ⊥;

• all non-input gates (i.e., gi with k + 1 ≤ i ≤ n) are either ∧-gates or ∨-gates;

• for every i in {k + 1, . . . , n}, gi receives its input from some gates gα and gβ with
α, β < i;

• gn is the output gate.

36



3.3. The STV Winner Determination Problem

From this, we construct an instance (C, V, cn) of the STV Winner Determination
problem, where the set of candidates C and the set of votes V are defined as follows:

C = {c1, c̄1, c2, c̄2, . . . , cn, c̄n}.

For the definition of V , it is convenient to introduce the following notation: Let D =
{d1, . . . , dj} ⊆ C, s.t. either {cn, c̄n} ⊆ D or {cn, c̄n} ∩D = ∅. Then we write

d1 � d2 � · · · � dj

as a short-hand for the total order

d1 � d2 � · · · � dj � ej+1 � ej+2 � · · · � en,

where {ej+1, ej+2, . . . , en} = C \D is defined as follows: If {cn, c̄n} ⊆ D holds, then the
ei’s are arranged in arbitrary order. If {cn, c̄n} ∩D = ∅ holds, then ej+1 = cn, ej+2 = c̄n,
and the remaining ei’s are arranged in arbitrary order.

The intuition here is that cn or c̄n serve as “stop elements”, i.e., our definition of the
instance of STV-Winner will guarantee that one of cn and c̄n must be the winner.
Hence, the order of the candidates after cn and c̄n in any vote is irrelevant, since they
will never come to first place no matter in which order the candidates different from cn
and c̄n get eliminated.

We now define the set of vertices V = V1 ∪ V2 ∪ V3 as follows:

V1 contains 8n3 + 2n2 · (n− 1) votes, namely for every i ∈ {1, . . . , n}:
4n2 + 4n · (i− 1)-times the vote ci � c̄i
4n2 + 4n · (i− 1)-times the vote c̄i � ci

V2 contains n votes, namely for every i ∈ {1, . . . , n}:

[Case 1.] If gi is an input gate of type > or an ∨-gate, then V2 contains the vote ci � c̄i.

[Case 2.] If gi is an input gate of type ⊥ or an ∧-gate, then V2 contains the vote c̄i � ci.

V3 contains 4(n− k) votes, namely for every i ∈ {k + 1, . . . , n}:

[Case 1.] If gi is a an ∨-gate, which takes its input from gα, gβ with α < β, then V2
contains
2-times the vote cβ � cα � c̄i � ci
2-times the vote c̄β � cβ

[Case 2.] If gi is a an ∧-gate, which takes its input from gα, gβ with α < β, then V2
contains
2-times the vote c̄β � c̄α � ci � c̄i
2-times the vote cβ � c̄β

37



3. Complexity of Voting Rules

For the correctness of our problem reduction, we have to show that cn is the STV-winner
of the election (C, V ) if and only if the Boolean circuit C (i.e., the output gate gn)
evaluates to true.

First recall that according to the STV-rule, the winner is determined in 2n− 1 rounds,
such that in each round one candidate is eliminated, namely the one that is ranked in
first place (among the remaining candidates) by the smallest number of votes. For every
j ∈ {0, . . . , 2n − 1}, let Cj denote the set of remaining candidates after j rounds. To
prove the above equivalence, it suffices to prove the following two claims:

Claim 1. For every j ∈ {0, . . . , n}, Cj has the following properties:

for every i ∈ {1, . . . , j}, exactly one of ci and c̄i is in Cj:
ci ∈ Cj if and only if gate gi evaluates to true and
c̄i ∈ Cj if and only if gate gi evaluates to false;

for every i ∈ {j + 1, . . . , n}, both ci and c̄i are in Cj.

Claim 2. For every j ∈ {0, . . . , n− 1}, Cn+j has the following properties:

for every i ∈ {1, . . . , j}, neither ci nor c̄i is in Cn+j;
for every i ∈ {j + 1, . . . , n}, exactly one of ci and c̄i is in Cj (namely the one which was
in Cn according to Claim 1).

From these two claims, the correctness of our reduction follows immediately. Indeed,
by Claim 2, the set C2n−1 of candidates remaining after 2n − 1 rounds is a singleton
consisting of either cn or c̄n. By Claim 1, it is cn if and only if gn evaluates to true (and
it is c̄n if and only if gn evaluates to false).

Proof of Claim 1. We proceed by induction on j. For j = 0, the claim holds trivially.
So suppose that the claim holds for some j ∈ {0, . . . , n − 1}. We have to show that it
also holds for j + 1. To this end, we divide Claim 1 in two parts: (1) First we show
that in the (j + 1)-st round, either cj+1 or c̄j+1 is eliminated from Cj. (2) We will then
show that cj+1 is retained if gate gj+1 evaluates to true and c̄j+1 is retained if gate gj+1
evaluates to false.

(1) For the first part of the proof, we may assume by the induction hypothesis that the set of
candidates Cj retained after j steps has the form {d1, d2, . . . , dj}∪{cj+1, c̄j+1, . . . , cn, c̄n},
where di is either ci or c̄i.

First inspect the votes in V1: in the original votes ci � c̄i and c̄i � ci with i ≤ j, candidate
di is now in first place. This is at least 8n3-times the case. All candidates ci and c̄i with
i ≥ j + 1 are exactly 4n2 + 4n · (i− 1)-times in first place. In particular, each of the two
candidates cj+1 and c̄j+1 occurs exactly 4n2 + 4n · j-times in first place.

Now inspect the votes in V2. For every i ≤ n, at least one of ci or c̄i is still present in
Cj. Hence, over all votes in V2, each candidate of Cj (i.e., this applies in particular to
cj+1 and c̄j+1) occurs at most once in first place.

38



3.3. The STV Winner Determination Problem

Finally, recall that V3 contains in total 4(n− k) votes. Hence, even if one of cj+1 and
c̄j+1 happens to be in first place in all of these votes, there are clearly no more than
4(n− 1) votes with this property (since we have k ≥ 1 for the number k of input gates).
Summing up all possible occurrences of cj+1 or c̄j+1 in first place of some vote, we get
(4n2 + 4n · j) + 1 + 4(n− 1) = 4n2 + 4n · (j + 1)− 3 as a first upper bound. By j ≤ n− 1,
we can transform this expression into 8n2 − 3 as a second upper bound.

Now consider the number of occurrences in a vote in V1 alone for each di ∈ Cj and each
ci, c̄i with i ≥ j + 2. As we have observed above, there are at least 8n2 occurrences of
every di ∈ Cj in first place, which is greater than the second upper bound on the possible
occurrences of cj+1 or c̄j+1 in first place. Moreover, each ci, c̄i with i ≥ j + 2 has at least
4n2 + 4n · (i − 1) occurrences in first place. For i ≥ j + 2, this means that there are
at least 4n2 + 4n · (j + 1) such occurrences, which is greater than the first upper bound
derived above for cj+1 or c̄j+1. Hence, in any case, each di ∈ Cj and each ci, c̄i with
i ≥ j + 2 has more occurences in first place than cj+1 and c̄j+1 and, therefore, one of
cj+1 and c̄j+1 must be eliminated in round j + 1.

(2) For the second part of the proof, we have to check which of cj+1 and c̄j+1 is deleted in
round j + 1. As observed above, in V1 both have precisely the same number of occurrences
in first place, namely 4n2 + 4n · (i− 1). Now, if gj+1 is an input gate of type > or an
∨-gate, then we have the vote cj+1 � c̄j+1 in V2 and no further vote with cj+1 or c̄j+1
in first place. If gj+1 is an input gate of type ⊥ or an ∧-gate, then we have the vote
c̄j+1 � cj+1 in V2 and again no further vote with cj+1 or c̄j+1 in first place.

Finally, look at the votes in V3. Consider the votes cβ � cα � c̄i � ci and c̄β � cβ each
included twice in V3 if gi is a an ∨-gate, which takes its input from gα, gβ with α < β < i.
Likewise, we have votes c̄β � c̄α � ci � c̄i and cβ � c̄β twice each in V3 if gi is a an
∧-gate, which takes its input from gα, gβ with α < β < i.

Clearly, gj+1 may play the role of such a gate gβ providing input to some other gate gi
with j + 1 < i. By the induction hypothesis, since we assume α < β, cα may be present
in Cj or not. In any case, in these 4 votes introduced into V3 for gate gi, each of cj+1
and c̄j+1 has precisely 2 occurrences in first place in V3 after j rounds. Hence, if gj+1
is an input gate (i.e., j + 1 ≤ k), then, in V3, the candidates cj+1 and c̄j+1 have the
same number of occurrences in first place after j rounds. Hence, the winner between cj+1
and c̄j+1 only depends on the votes in V2. That is, we get the desired equivalence: gj+1
evaluates to true if and only if input gate gj+1 is of type > if and only if after j rounds,
cj+1 has in total more occurrences in first place than c̄j+1 (namely by a margin of just 1)
if and only if cj+1 is retained in Cj+1 while c̄j+1 is deleted in round j + 1.

It remains to consider the case that gj+1 is not an input gate. By the above consideration,
in the 4 votes added to V3 for some gi with i 6= j + 1, either both cj+1 and c̄j+1 have two
occurrences in first place or both have no such occurrence. We therefore only need to
consider the 4 votes introduced in V3 for non-input gate gi with i = j + 1. We treat the
cases of ∨-gates and ∧-gates separately.

39



3. Complexity of Voting Rules

Case 1. First consider the case that gj+1 is an ∨-gate which receives its input from
some gates gα, gβ with α < β < j + 1. We have the following chain of equivalences:
The two original votes of the form cβ � cα � c̄j+1 � cj+1 are turned into c̄j+1 � cj+1
after j rounds if and only if both cβ and cα have been deleted in the first j rounds if
and only if (by the induction hypothesis) both gates gβ and gα evaluate to false if and
only if the ∨-gate gj+1 evaluates to false. In other words, in V3, c̄j+1 has two more
occurrences in first place than cj+1 if and only if gj+1 evaluates to false, while c̄j+1 and
cj+1 have the same number of occurrences in first place in V3 if and only if gj+1 evaluates
to true. Combining this with the above observation that, in V2, cj+1 has exactly one more
occurrence in first place than c̄j+1, we get the desired equivalence, namely: gj+1 evaluates
to true if and only if after j rounds, cj+1 has in total more occurrences in first place than
c̄j+1 (namely by a margin of just 1) if and only if cj+1 is retained in Cj+1 while c̄j+1 is
deleted in round j + 1.

Case 2. The case that gj+1 is an ∨-gate which receives its input from some gates gα, gβ
with α < β < j + 1 is similar. Our chain of equivalences now looks as follows: The two
original votes of the form c̄β � c̄α � cj+1 � c̄j+1 are turned into cj+1 � c̄j+1 after j
rounds if and only if both c̄β and c̄α have been deleted in the first j rounds if and only
if (by the induction hypothesis) both gates gβ and gα evaluate to true if and only if the
∧-gate gj+1 evaluates to true. In other words, in V3, cj+1 has two more occurrences in
first place than c̄j+1 if and only if gj+1 evaluates to true, while cj+1 and c̄j+1 have the
same number of occurrences in first place in V3 if and only if gj+1 evaluates to false.
Together with V2, we again get desired equivalence, namely: gj+1 evaluates to true if and
only if after j rounds, cj+1 has in total more occurrences in first place than c̄j+1 (namely
by a margin of just 1) if and only if cj+1 is retained in Cj+1 while c̄j+1 is deleted in
round j + 1. �

Proof of Claim 2. Again we proceed by induction on j. For j = 0, we have Cn+j = Cn.
Hence, Claim 2 follows directly from Claim 1. So suppose that Claim 2 holds for some
j ∈ {0, . . . , n − 2}. We have to show that it also holds for j + 1. By the induction
hypothesis, the set of candidates Cn+j has the form {dj+1, dj+2, . . . , dn}, where di is
either ci or c̄i. We have to show that in round n + j + 1, the candidate dj+1 gets
eliminated, i.e., candidate dj+1 has the least number of occurrences in first place among
the candidates in Cn+j.

We first observe that in V1 alone, every di with i ≥ j + 1 has exactly 8n2 + 8n · (i− 1)
occurrences in first place. For i ≥ j + 2, we get the lower bound 8n2 + 8n · (j + 1) on the
occurrences in first place in V1 and, hence, also in V .

Now compute the number of occurrences of dj+1 in first place. In V1, we get exactly
8n2 + 8n · j occurrences. By |V2| = n and |V3| < 4n, we get the upper bound 8n2 + 8n · j+
n+ 4n = 8n2 + 8n · (j + 1)− 3n < 8n2 + 8n · (j + 1). Hence, dj+1 is indeed the candidate
that is deleted in round n+ j + 1. �

As argued above, the correctness of the P-hardness proof follows immediately from the
correctness of Claims 1 and 2.

40



3.3. The STV Winner Determination Problem

The next theorem shows that only the number m of candidates is the source of P-
completeness and the number n of voters is not an obstacle to parallelization.

Theorem 4 STV-Winner can be solved in O(m+ log(n)) space.

Proof 4 We require the following variables to be kept in memory: the current vote
under consideration (i ∈ {1, . . . , n}), the current candidate cj (j ∈ {1, . . . ,m}), the
current score of candidate cj (s ∈ {1, . . . , n}), the minimum score of the preceding
candidates c1, . . . , cj−1 (t ∈ {1, . . . , n}), the candidate having this minimum score cj′

(j′ ∈ {1, . . . , n}) and the set of candidates that have already been removed A ⊆ C. The
algorithm starts with i = 1, j = 1, j′ = 0, s = 0, t = +∞ and A = ∅. We repeat the
following steps m− 1 times: For every candidate cj /∈ A we compute the score of cj by
verifying for each vote Vi whether cj is the highest ranking candidate not contained in
A; if yes, we increase s by 1. If s is smaller than t (that is, we assume lexicographic
tie-breaking), we set t← s and j′ ← j. Once this has been done for every candidate, we
add candidate cj′ to A, and set i = 1, j = 1, j′ = 0, s = 0 and t = +∞. The remaining
candidate after m− 1 iterations is the winner. The space requirements of this algorithm
are log(n) for the variables i, s, t, log(m) for the variables j, j′ and m for the set A.

From the perspective of classical complexity theory, we have shown that the STV
Winner Determination problem is contained in the complexity class L, if we fix m to
a constant. Problems in L can be solved with logarithmic space and membership in L can
be seen as evidence that a problem is parallelizable as it can be computed in log2 time
with a polynomial number of parallel processors. Theorem 4 can also be seen from the
perspective of parameterized space complexity [EST14]. The result translates to a para-L
membership proof for the STV-Winner Determination problem with parameter m.
para-L membership requires that the problem can be solved in O(f(m) + log(n)) space
for some computable function f . Note that para-L containment is a stronger result than
L membership for fixed m since the latter would also hold, for instance, for a space
complexity of O(m · log(n)).

41





CHAPTER 4
Cloud Computing Algorithms

In this section the developed cloud computing algorithms are presented. For the design of
the Algorithms we took the complexity results from the preceding chapter into account.
Those results give us insight which problems are parallelizable. We derive several
cloud computing algorithms for winner determination methods: positional scoring rules,
copeland scores, Smith set, Schwartz set, the Schulze method and the STV rule.

The outline of this section is as follows: first the calculation of positional scoring rules
based on the preference profile is discussed. Next the transformation of a preference profile
to a graph representation is explained. Following this preparation we discuss algorithms
for voting rules for winner dermination problems based on the dominance graph and
weighted majority graph. The chapter finishes with a MapReduce algorithm for the STV
Winner Determination and some algorithm ideas for the ranked-pairs method. For the
discussed winner determination problems we propose a Pregel based and a MapReduce
based algorithm, if it makes sense to do so. Escpecially for problems which are not graph
based, a Pregel algorithm is not proposed.

The presented cloud computing algorithms are:

• MapReduce Algorithm for calculating positional scoring rules

• MapReduce Algorithm for computing the weighted majority graph from the prefer-
ence profile

• MapReduce Algorithm for computing the Copeland Set

• Mapreduce Algorithm for computing the Smith Set

• Pregel algorithm for computing the Smith Set

• MapReduce Algorithm for computing the Schwartz Set

43



4. Cloud Computing Algorithms

• Pregel Algorithm for computing the Schwartz Set

• MapReduce Algorithm for computing the Schulze Method

• Pregel Algorithm for computing the Schulze Method

• Mapreduce Algorithm for computing the STV rule

The properties of all proposed algorithms are summarized and discussed in Chapter 5
and the experimental evaluation is presented in Chapter 6.

4.1 Positional Scoring Rules

The Winner Determination problem for positional scoring rules takes a preference profile
P containing the preferences of all voters as input.

Winner Determination under scoring rule S

Instance: a preference profile P containing m votes, scoring vector s of length
m, candidate c

Question: Does c have the maximum score of all candidates under scoring rule
S?

In Section 2.3.1 the MapReduce algorithm for computing Borda scores has already been
explained and discussed. The MapReduce algorithm for computing Borda scores is
illustrated in Figure 2.4 and the computational properties of computing Borda scores
are discussed. Computing other positional scoring rules, which are based on a scoring
vector, is done with a very similar aglorithm; only the scoring vector has to be adapted
accordingly.

We do not propose a Pregel algorithm for positional scoring rules, since the computation
is based on the original preference profile and not on a graph representation.

4.1.1 MapReduce Algorithm for Positional Scoring Rules

The MapReduce algorithm for general scoring rules with a scoring vector s of length m is
shown in Algorithm 4.1.1. First every single vote is mapped to key-value pairs using the
procedure MapScores (shown in Algorithm 4.1.2). The key of the resulting key-value
pairs is equal to the candidates id and the value is the corresponding score, depending
on the position of the candidate in the vote. For example, the vote a � b � c under
the scoring vector s = (2, 1, 0) would result in the key-value pairs: (key=a, value=2),
(key=b,value=1) and (key=c, value=0). Key-value pairs with a value equal to 0 can be
left out, since they are not influencing the outcome. The key-value pairs are then shuffled
to the reduce tasks (all key-value pairs with the same key end up at the same reduce

44



4.2. Computing the Graph Representation

task). The reduce tasks then just sum up all received values per key to compute the
scores. This is done by using the procedure ReduceSum shown in Algorithm 4.1.3.

To keep the notation simple the actual parameters in the procedure calls are omitted,
but they are usually clear from the context. For the very first map procedure, the input
is always the original input, i.e. the problem instance – for the scoring rules this is the
preference profile as a list of preferences. The input to each reduce task corresponds to
the output produced by the preceding map task, grouped by key.

Algorithm 4.1.1: Computing Positional Scores
Input: Preference profile P containing m votes and scoring vector s
Output: Candidates together with their score

1 MapScores
2 ReduceSum

Algorithm 4.1.2: MapScores()
Input: Preference profile P containing m votes and scoring vector s
Output: key-value pairs of the form (key=candidate,value=score)

1 foreach vote in P do
2 for i=1 to length(vote) do
3 emit(key=vote[i], value=s[i])
4 end
5 end

Algorithm 4.1.3: ReduceSum()
Input: Key-value pairs(key=candidate,value=score) produced by MapScores()
Output: Sum of all received values (candidate with score)

1 return (key, sum(values))

4.2 Computing the Graph Representation

Elections are usually given as a preference profile P , containing several votes, i.e. rankings
of the candidates. From the preference profile of an election the graph representation
– strict or weak dominance graph or weighted majority graph – can be derived. This
graph representation provides the bases for many other choice rules from computational
social choice. Social choice functions using the dominance graph as input are referred to
as C1-functions and C2-functions use the weighted majority graph as input[Fis77]. In
this Section a MapReduce algorithm for creating the weighted majority graph from the
preference profile is proposed. By a simple postprocessing step the weighted majority

45



4. Cloud Computing Algorithms

graph can be transformed to the strict or weak dominance graph. Since we are only
creating a graph as output of this procedure and the computation itself is not graph
based, we are not proposing a Pregel algorithm but only a MapReduce algorithm.

4.2.1 MapReduce Algorithm for transforming the Preference Profile
into a Graph Representation

The algorithm for creating the weighted majority graph from a preference profile P is
outlined in Algorithm 4.2.1. The output of this algorithm is a list of edges with the
corresponding majority margin as weight. This output can further be processed, for
example into an adjacency matrix with or without weights, representing the strict or
weak dominance relation respectively. This transformation is not explained in more detail
in this work.

This straightforward MapReduce algorithm for computing the weighted majority graph
needs one map-reduce round, with processes MapVotes and ReduceSum and a last post
processing step.

The algorithm works as follows: First the MapVotes procedure reads all votes contained
in the preference profile P and maps them to key-value pairs. For each vote the procedure
emits two key-value pairs for each pair of candidates (a, b) appearing in the order a � b.
The key-value pairs are of the form (key=(a, b), value=1) and (key=(b, a), value=-1).

The reduce task then perform the procedure ReduceSum on all received key-value pairs.
Each reduce tasks gets key-value pairs of the form (key=(a, b), value= 1 or -1) and
computes the sum of the values. The result is the majority margin of a and b, i.e.
µP (a, b).

If the strict or weak dominance relation is desired as output, this simple transformation
can be included in the postprocessing step.

Algorithm 4.2.1: Computing the weighted majority graph from the preference
profile
Input: Preference profile P containing m votes
Output: Edges EP with weights µ′P

1 MapVotes
2 ReduceSum
3 Postprocessing

4.3 Copeland Set
The computation of the Copeland scores and the respective Copeland set (containing the
candidates with the highest Copeland scores) is done based on the dominance relation.
The calculation of the scores can be performed in a very simple MapReduce round, or by

46



4.3. Copeland Set

Function MapVotes(P)
Input: Preference profile P containing m votes
Output: key-value pairs of the form (key=(a,b),value=1) and

(key=(b,a),value=-1) for each vote, if candidate a is ranked before
candidate b

1 foreach vote in P do
2 for i=1 to length(vote)-1 do
3 for j=i+1 to length(vote) do
4 emit(key=[vote[i], vote[j]], value=1);
5 emit(key=[vote[j], vote[i]], value=-1);
6 end
7 end
8 end

Function ReduceSum
Input: key-value pairs of the form (key=(a,b),value=1 or -1) produced by

MapVotes
Output: Sum of all received values (majority margin)

1 return (k, sum(values))

using graph functions. Again, there is no Pregel algorithm but there is a graph based
procedure. Depending on the distributed computation framework the dominance graph
may already be stored in a distributed file system and even simple graph operations
are performed in parallel. This depends highly on the system and therefore there a no
theoretical performance measures given. In such a graph-based environment the Copeland
score of a candidate is then simply the difference of outdegree (number of outgoing edges)
and indegree (number of incoming edges), e.g. GraphX has those functions implemented
and performs them in parallel depending on the chosen partitioning of the graph.

4.3.1 MapReduce Algorithm for Computing the Copeland Scores

The computation of the Copeland scores takes as input the dominance relation D. With
slight abuse of notation we also refer to the adjacency matrix of the dominance graph as D.
The overall algorithm is shown in Algorithm 4.3.1. Intuitively, a MapReduce algorithm
for computing the Copeland scores creates the key-value pairs (key=a, value=1) and
(key=b, value=-1) for each entry D[a, b] = 1 in the adjacency matrix of the dominance
graph, i.e. if a dominates b. In the algorithm presented in this section this is realized by
emitting the whole column or row, where the columns are multiplied by −1.

As input the adjacency matrix of the dominance graph (or simply denoted as the
dominance matrix) is used and the procedures MapRows and MapColumns map the

47



4. Cloud Computing Algorithms

rows and columns to the corresponding key-value pairs. The notations D[−, i] and
D[i,−] refer to the ith-column or ith-row respectively. The columns are multiplied by
−1, since they are representing incoming edges. The reducers then simply have to sum
up the values to calculate the Copeland score. This is done by using the procedure
ReduceVectorsSum.

For determining the Copeland set the candidates with the highest Copeland score can be
selected in a simple postprocessing phase.

Algorithm 4.3.1: Copeland Scores
Input: Dominance Relation D
Output: Candidates with Copeland scores

1 MapRows;
2 MapColumns;
3 ReduceVectorsSum;

Algorithm 4.3.2: MapRows()
Input: Dominance Relation D
Output: (key=i, value = D[i,-])

1 for i=1 to m do
2 emit(key=i, value=D[i,−]);
3 end

Algorithm 4.3.3: MapColumns()
Input: Dominance Relation D
Output: (key=i, value = (-1) · D[-,i])

1 for i=1 to m do
2 emit(key=i, value=(−1) ·D[−, i]);
3 end

4.4 Smith Set

Recall the definition of the Smith set from Section 2.1. Given a set of candidates A, a
preference profile P and the resulting weak dominance graph D� = (A,EP ). A candidate
a is in the Smith set if and only if for every candidate b ∈ A there is a path from a to
b in the weak dominance graph [BFH09]. A naive algorithm would therefore compute
the full transitive closure in order to identify the candidates in the Smith set. However,
[BFH09] proof a Theorem that allows us to compute the Smith set by knowing only the
paths of length 2 and 3 in the weak dominance graph. In particular, they show that in

48



4.4. Smith Set

Algorithm 4.3.4: ReduceVectorsSum()
Input: key-value pairs: (key= candidate, 1 or -1)
Output: (key=candidate, value = CopelandScore)

1 ReduceVectorsSum(key k, list vectors);
2 result = 0;
3 for v in vectors; i=1 to m do
4 result = result + v[i];
5 end
6 return (k, result);

the weak dominance graph a vertex t is not reachable from a vertex s if and only if there
exists a vertex v, with the following properties: (1) paths of length 3 starting from v
do not reach any other vertices than the paths of length 2, (2) s is reachable by v on
a path of length 2, but t is not. More formally there exists a vertex v ∈ A such that
D2
�(v) = D3

�(v), s ∈ D2
�(v), and t /∈ D2

�(v). Where Dk
�(v) denotes all vertices reachable

from vertex v by a path of length at most k. All such vertices v and all vertices in the
sets D2

�(v) can be excluded from the Smith Set and the remaining vertices in the graph
are the winning set – the Smith set. Therefore, it is sufficient to compute paths of length
2 and length 3 to identify the candidates included in the Smith Set. We use this property
for the MapReduce algorithm.

For the Pregel algorithm we use the following definition of the Smith Set: The Smith
set is the unique undominated strongly connected component in the weak dominance
graph [BBH16]. The presented Pregel algorithm uses this property to determine the
Smith set by adapting an algorithm for finding strongly connected components.

In this section first the MapReduce algorithm and then the Pregel algorithm for computing
the Smith set is described.

4.4.1 MapReduce Algorithm for Computing the Smith Set

For identifying the candidates in the Smith set it is necessary to compute paths of length
2 and 3 in the weak dominance graph, as discussed before (Section 4.4). Therefore, we
construct a MapReduce algorithm that computes the reachable candidates iteratively.
Intuitively, in each round the MapReduce algorithm combines the known paths ending
and starting in each vertex. As stated above we only need to know paths of length at
most 3 and therefore we construct a MapReduce algorithm taking three rounds. The
result of the MapReduce computation are all candidates which are not part of the Smith
Set. Therefore a last post-processing step is needed to identify the candidates, which
form the Smith set. The overall computation is shown in Algorithm 4.4.1.

For storing information about the vertices we use the data type VertexWritable.
VertexWritable consists of three sets storing the vertices which are known to be have
incoming paths to or outgoing paths from the considered vertex v. The sets stored in

49



4. Cloud Computing Algorithms

Algorithm 4.4.1: Smith Set MapReduce
Input: Weak Dominance Graph D�
Output: Smith Set

1 FirstMap
2 ReduceVertex
3 MapVertex
4 ReduceVertex
5 MapVertex
6 ReduceComplement
7 ComputeSmithSet

VertexWritable are updated in each MapReduce round. In particular, the three sets
stored in the VertexWritable of vertex v are:

• The set v.new contains all newly found reachable vertices from v, i.e. all vertices
that are reachable on a path of length k.

• The set v.old contains all vertices that are reachable from v on a path of length at
most k.

• The set v.reachedBy contains all vertices known to reach v on a path of length at
most k.

The known paths in MapReduce round i have length of at most k = 2i−1 and the
VertexWritable of v in round i contains the following sets of vertices:

v.new = {a ∈ A | ∃v 7→ a of length k ∧ @v 7→ a of length < k} (4.1)
v.old = {a ∈ A | ∃v 7→ a of length < k} (4.2)

v.reachedby = {a ∈ A | ∃a 7→ v of length ≤ k} (4.3)

A path from a to b in the weak dominance graph is denoted as a 7→ b.

Another central data type used in this Algorithm is the type VertexSetWritable.
This data type consists of a set of vertices plus a mode. The mode can take one of the
values {‘old’, ‘new’, ‘reachedBy’}. The data type is used for the values of the produced
key-value pairs in the reduce phase.

The whole MapReduce algorithm works as follows. As input the adjacency matrixD of the
weak dominance graph is given. The first Map procedure is needed to create the desired
data structure from the input data. For the i-th row D[i,−] in the dominance matrix,
FirstMap emits a pair (key = i, value = (set, ’new’)) with set = {j | D[i, j] = 1}. In
other words, all vertices reached by an outgoing edge from i are emitted as part of the set in
the VertexSetWritable with mode = new, which is used as the value in the key-value

50



4.4. Smith Set

pair. Additionally FirstMap also emits the values (key = j, value = ({i}, ’reachedBy’))
for each vertex j which has an incoming edge to i in the weak dominance graph. The proce-
dure ReduceVertex (shown in Algorithm 4.4.4 combines all received VertexSetWritables
to a new VertexWritable. After the FirstMap procedure the input to each reduce task
consists of one VertexSetWritable with mode new and several VertexSetWritables, each
containing only one vertex, with mode reachedby. The VertexWritable of vertex v pro-
duced by ReduceVertex (in this first round) contains the received set with mode=’new’,
the union of all ’reachedBy’ values as the set v.reachedBy and an empty set as v.old.
The ReduceVertex procedure is shown in Algorithm 4.4.4. After the first MapReduce
round (FirstMap + ReduceVertex) each VertexWritable contains the information of all
adjacent vertices (candidates).

This first MapReduce round is needed to create the starting values from the dominance
graph for the following MapReduce computation. The pseudo code for the FirstMap
procedure is shown in Algorithm 4.4.2.

Algorithm 4.4.2: FirstMap(D)
Input: Adjacency Matrix D
Output: key-value pairs of the form (key=VertexID,value=VertexSetWritable)

1 foreach row with index i in D do
2 emit(key=i,value=({j | D[i, j] = 1}, ’new’))
3 for j=1 to length(row) do
4 if row[j]==1 then
5 emit(key=j,value= ({i}, ’reachedBy’)
6 end
7 end
8 end

Algorithm 4.4.3: MapVertex(VertexWritable)
Input: VertexWritable v of vertex i
Output: key-value pairs of the form (key= VertexID,value=VertexSetWritable)

1 emit(i,VertexSetWritable(v.new, mode=‘old’))
2 emit(i,VertexSetWritable(v.old, mode=‘old’))
3 emit(i,VertexSetWritable(v.reachedBy,mode=‘reachedBy’))
4 for r in v.reachedBy do
5 emit (r, VertexSetWritable(v.new, mode=‘new’))
6 end
7 for n in v.new do
8 emit(n,VertexSetWritable(v.reachedBy, mode=‘reachedBy’))
9 end

51



4. Cloud Computing Algorithms

Algorithm 4.4.4: ReduceVertex(key=i,value=VertexSetWritable)
Input: key i, list of VertexSetWritable
Output: VertexWritable

1 new = ∅
2 old = ∅
3 reachedBy = ∅
4 for (set,mode) in input-list do
5 if mode = ‘old’ then
6 old = old ∪ set
7 end
8 if mode = ‘new’ then
9 new = new ∪ set

10 end
11 if mode = ‘reachedBy’ then
12 reachedBy = reachedBy ∪ set
13 end
14 end
15 new = new \ old
16 return (i, VertexWritable(old, new, reachedBy))

In the following rounds the FirstMap procedure is replaced by the MapVertex proce-
dure. The MapVertex function (shown in Algorithm 4.4.3) receives the VertexWritables
as input and produces new key-value pairs. The VertexWritable v is mapped to the
following key-value pairs:

• The vertices previously stored in the set v.new are emitted with mode ’old’,
such that the ReduceVertex function knows, that they have previously been
known to be reached by v, i.e. there is a path of length < k. Those vertices are
going to be part of the set v.old in the output of the following ReduceVertex
procedure.

• The vertices stored in v.old are going to stay in v.old in the next round. So
v.old is emitted with mode ’old’.

• For each vertex in v.new a VertexSetWritable with the set v.reachedBy
and mode ’reachedBy’ is emitted.

• For each vertex in v.reachedBy a VertexSetWritable with the set v.new
with mode ’new’ is emitted.

The purpose of the MapReduce procedures is to combine the known incoming and
outgoing paths of each vertex to new (longer) paths; i.e. the known paths in round i
have length ≤ 2i−1.

52



4.4. Smith Set

ReduceVertex (Algorithm 4.4.4) receives values of type VertexSetWritable for a
given vertex v and calculates the new VertexWritable data structure for v: the union
of all input sets with mode ’reachedBy’ is assigned to the set reachedBy. The union of
the input sets with mode ’old’ is assigned to the set old. The set new should only contain
vertices newly found in this round to be reachable by v. Therefore, we first combine all
input sets with mode ’new’ and then set new to new \ old.

After the last call of MapVertex in Algorithm 4.4.1 the information of all paths of
length at most 4 is stored at each vertex. We can use this information to exclude all
vertices v where v.reachedBy contains vertices not contained in v.new ∪ v.old. The
remaining vertices are part of the SmithSet. This post processing can be done by using
the procedures ReduceComplement and ComputeSmithSet. Thus by doing this we
checked whether D2

�(v) = D4
�(v) holds, which is equivalent to checking D2

�(v) = D3
�(v).

Recall the Theorem mentioned at the beginning of the section – if we find such a vertex
with D2

�(v) = D3
�(v) and D2

�(v) ⊂ A we can exclude v and all vertices reachable by v
from the possible winners, i.e. we exclude v and v.new ∪ v.old from the Smith Set. Thus,
the ReduceComplement function returns vertices which are not in the Smith Set – the
complement of the Smith set. In the last procedure ComputeSmithSet the Smith set
is derived using this information.

MapReduce Algorithm for computing the Smith Set by Example

Example 4 (Example 2 continued.)

An election with four candidates {a, b, c, d} and a preference profile P with six votes is
given. The preference profile P is as follows:

P = {a � b � d � c, b � a � c � d,
a � c � d � b, c � b � d � a,
a � c � b � d, c � b � a � d}

This preference profile P results in the weak dominance graph shown in Figure 4.1.

The output values produced in each step are shown in Table 4.1. The entries in ’(2)
ReduceVertex’ are the output of the first ReduceVertex call after FirstMap. Therefore this
row contains the starting values of each vertex; i.e. the sets new and reachedBy contain
only adjacent vertices. ’(3) MapVertex’ shows all key-value pairs produced in the following
map process. The key-value pairs are of the form (key=destination, value=(Set,mode)).
The key-value pairs containing the information that at vertex can reach itself, or is reached
by itself are omitted, e.g. the key-value pair (b, ({b}, ’rB’)) is left out. In the shuffle
phase the key-value pairs are then grouped by their key (destination) vertex and the values
are processed in the reduce phase. The output resulting from the reduce phase is shown in
’(4) ReduceVertex’, i.e. the new VertexSetWritables with the updated information.

53



4. Cloud Computing Algorithms

Figure 4.1: Weak Dominance Graph for Example 4

At this point the information about all paths ≤ 2 is stored in the VertexWritables.
The steps ’(5) MapVertex’ and ’(6) ReduceVertex’ are part of the last MapReduce round.
The resulting VertexSetWritables in ’(6) ReduceVertex’ contain all paths of length
≤ 4. It remains to perform the post-processing step, where we check for each vertex v if
(1) v.old contains all other vertices and (2) if v.new is empty. If v.new is empty, this
means that D�(v)2 = D�(v)4. We identify d as the only vertex, where this is the case.
Thus we exclude d from the SmithSet and if there where any vertices contained in old, we
would exclude them too. The remaining vertices {a,b,c} form the Smith Set. �

Step a b c d
(2) ReduceVertex new = {b, c, d} new ={a, d} new = {b, c} new = ∅

old = ∅ old = ∅ old = ∅ old = ∅
rB = {b} rB = {a, c} rB = {a} rB = {a, b, c}

(3) MapVertex (a,({b, c, d},’old’)) (b,({a, d},’old’)) (c,({b, c},’old’) (d,({a, b, c},’rB’)
(a,({b},’rB’)) (b,({a,c},’rB’)) (c,({a},’rB’))
(c, ({b},’rB’)) (a, ({a,c},’rB’)) (b, ({a},’rB’))
(d, ({b},’rB’)) (d, ({a,c},’rB’)) (d, ({a},’rB’))
(b, ({b,c,d},’new’)) (A, ({a,d},’new’)) (a, ({b,d},’new’))

(c, ({a,d},’new’))
(4) ReduceVertex new = ∅ new = {c} new = {a} new = ∅

old = {b,c,d} old = {a, d} old = {b, d} old = ∅
rB = {b,c} rB = {a, c} rB = {a, b} rB = {a, b, c}

(5) MapVertex (a,({b,c,d},’old’)) (b,({a,d,c},’old’)) (c,({a,b,d},’old’)) (d,({a,b,c},’rB’))
(a,({b,c},’rB’)) (b,({a,c},’rB’)) (c,({a,b},’rB’))

(c, ({a,c},’rB’)) (a, ({a,b},’rB’))
(a, ({c},’new’)) (b, ({a},’new’))

(6) ReduceVertex new = ∅ new =∅ new = ∅ new = ∅
old = {b,c,d} old = {a, c, d} old = {a, b, d} old = ∅
rB = {b,c} rB = {a, c} rB = {a, b} rB = {a, b, c}

Table 4.1: Computing the Smith Set by Example.

54



4.4. Smith Set

4.4.2 Pregel Algorithm for computing the Smith Set

For the Pregel algorithm for computing the Smith set we adapt an algorithm for finding
strongly connected components presented in [YCX+14]. The algorithm for finding
strongly connected components is based on propagating the id of each vertex in forward
and backward direction along the edges in the graph. Each vertex then only remembers
the smallest number it received for each direction. This procedure is called forward
and backward min label propagation. This results in the situation that the vertices
contained in the same strongly connected component are labelled with the same forward
and backward min-labels. We adapt this algorithm for our purpose to identify the unique
undominated strongly connected component in the weak dominance graph of an election,
i.e. the Smith set.

As input the weak dominance graph D� is given. Each vertex has as vertex id vid and
the forward and backward labels (s, t) together with a status as value. The label s
(source) is the forward min-label and t (target) the backward min-label. The status
can be unknown, notSmith or Smith. At the beginning of the algorithm the status
of each vertex is initialized with unknown. The label s stands for the smallest id of a
source of a path that reaches v in the weak dominance graph. Similarly t stands for the
smallest id of all vertices (targets) that can be reached by v. To give some intuition of
the algorithm: For example after the forward and backward min-label propagation the
labels (s = 2, t = 1) of a vertex v mean that the vertex with the smallest id that can
reach v is the vertex with id 2 and the vertex with the smallest id reachable from v has
id 1. From this follows, that the vertex with id = 1 cannot reach v, because otherwise
the forward level of v was equal to 1 too. From this we know that the vertex with id = 1
is dominated by v and we know that the vertex with id = 1 cannot be part of the Smith
Set. So we set the status of this vertex to notSmith. We also know that all vertices that
are reachable by the vertex with id=1 are not part of the Smith set either (because they
are dominated by v too). Those vertices can be easily identified, because they have the
forward label s = 1.

For a vertex v with the forward and backward min-labels (s, t) we distinguish the following
cases:

• If s < t we know that the there is a path from s to v but no path from v to s, i.e.
s strictly dominates v. Therefore v can be excluded and the status of v is set to
notSmith.

• If s > t: there exists a path from v to t but there is no path from t to v. Therefore
t and all vertices with forward label t are strictly dominated by v and can be
excluded, i.e. their status is set to notSmith.

• s == t: the vertex is still a possible candidate for the Smith set and its status
remains unknown.

55



4. Cloud Computing Algorithms

Further inference by the labels can be done by looking at adjacent vertices. The vertices
u and v are connected by the edge u → v in the weak dominance graph and have the
labels (u.s, u.t) and (v.s, v.t). The following cases can be distinguished:

• u.s < u.t: u and v are both excluded from the Smith Set (see case above).

• u.s = v.s ∧ u.t = v.t: the vertices are both candidates for the Smith set and their
status remains unknown.

• u.s > v.s: vertex v.s can reach v but not u. Therefore v, v.s and all other
vertices with forward label v.s cannot be in the Smith Set and their status is set to
notSmith.

• u.s < v.s: not possible, since there is an edge (u, v).

• u.t < v.t: there is a path from u to t but v cannot reach t, therefore v is excluded
from the Smith Set. Further all other vertices with backward-label v.t are excluded.

• u.t > v.t: not possible, since there is an edge (u, v).

Following from these observations we formulate the following algorithm outlined in
Algorithm 4.4.1. At the beginning of the computation all vertices are initialized with
status=’unknown’ and their id as forward and backward label (s = id, t = id).

In the while-loop the preprocessing procedure sets the labels of vertices that are already
known to be notSmith to (s =∞, t =∞) (in the first iteration there are no vertices with
status notSmith). This labelling causes the vertices to act as gateways for the labels of
other vertices, since they do not propagate their own id as forward or backward label. In
this way only ’unknown’ vertices are checked, whether they are in the Smith set. In the
Preprocessing procedure all vertices with status ’unknown’ send their labels to the
adjacent vertices in the messages (’forward’,s) in outgoing direction and (’backward’,t)
in incoming direction. Those are the first messages sent in the Pregel computation.
The Forward-Backward-Propagation realizes the forward and backward min-label
propagation and the (s, t) labels of the vertices under the current initialization are
computed. This procedure is the actual ’pregel heart’ of the computation and is shown in
Algorithm 4.4.3. If a vertex receives a message with a forward or backward label smaller
than its current label, it updates its label. Vertices only send messages if their label has
changed. Otherwise the status is set to ’inactive’. Recall, that Pregel algorithms stop as
soon as all vertices are ’inactive’. This happens as soon as the forward and backward
labels converge to their final value under the current initialization (the (s,t) values set
in the preprocessing). The post processing (Algorithm 4.4.4) then checks all labels
and changes the status of a vertex, if it can be excluded from the possible candidates of
the Smith set. The following cases are checked:

• mark all vertices v with v.s < v.t as not in Smith Set, i.e. set v.status = notSmith.

56



4.4. Smith Set

• if ∃v : v.s > v.t: mark vertex t and all vertices with forward label t as not in Smith
Set, i.e. t.status = notSmith and ∀u ∈ A with u.t = t set u.status = notSmith.

• for each edge (u, v) in the graph check if u.s > v.s. If this is the case then vertex
v.s can reach v but not u. Therefore v, v.s and all other vertices with forward label
v.s cannot be in the Smith Set (set their status to notSmith).

• for each edge (u, v) in the graph check if u.t < v.t. If this is the case then vertex u
can reach u.t but v cannot reach u.t. Therefore v, v.t and all other vertices with
backward label v.t cannot be in the Smith Set (set their status to notSmith).

The only case when no status of a vertex is changed, is when all labels (backward and
forward) of the vertices with status unknown are identical. From this follows that only
one single SCC is left in the computation and this SCC is the unique undominated SCC,
i.e. the Smith Set. So we can select all remaining ’unknown’ vertices as the Smith Set.

Algorithm 4.4.1: SmithSet(D�)

1 Initialisation-of-vertices;
2 while the number of vertices with status = ‘unknown’ changes do
3 PreProcessing;
4 Forward-Backward-Propagation;
5 PostProcessing;
6 end
7 Output vertices with status ‘unknown’;

Algorithm 4.4.2: PreProcessing()
1 if v.status = ‘unknown’ then
2 s = v.id;
3 t = v.id;
4 foreach outgoing edge (v, u) do
5 send (‘forward’, s) to vertex u;
6 end
7 foreach incoming edge (u, v) do
8 send (‘backward’, t) to vertex u;
9 end

10 else
11 s = ∞;
12 t = ∞;
13 end

57



4. Cloud Computing Algorithms

Algorithm 4.4.3: Forward-Backward-Propagation

1 foreach received value (d, i) do
2 if d = ‘forward’ ∧ i < s then
3 s = i;
4 else if d = ‘backward’ ∧ i < t then
5 t = i;
6 end
7 if s has changed then
8 foreach outgoing edge (v, u) do
9 send (‘forward’, s) to vertex u;

10 end
11 end
12 if t has changed then
13 foreach incoming edge (u, v) do
14 send (‘backward’, t) to vertex u;
15 end
16 end
17 if s and t remain unchanged then
18 set v inactive;
19 end

Pregel Algorithm for Computing the Smith Set by Example

Example 5 (Example 4 continued.) An election with four candidates {a, b, c, d} and a
preference profile P with six votes is given. The preference profile P is as follows:

P = {a � b � d � c, b � a � c � d,
a � c � d � b, c � b � d � a,
a � c � b � d, c � b � a � d}

This preference profile results in the weak dominance graph shown in Figure 4.1.

Initialization and Preprocessing: All vertices start with status unknown and the s
and t labels are initialized with the id of the corresponding vertex. In the first row of
Table 4.2 the ids can be observed.

Forward Min-Label Propagation: Recall that a pregel procedure always works in
supersteps, where each superstep consists of two steps: (1) the active vertices send
messages to each other and (2) the vertices process the received data. In this Pregel
procedure each active vertex sends its s label along the outgoing edges to the adjacent
vertices. Then each vertex updates its label with the minimum s label it received. If a
vertex did not change its label in such a step it gets inactive and the computation stops

58



4.4. Smith Set

Algorithm 4.4.4: PostProcessing for vertex v

1 if v.s < v.t then
2 v.status = ‘notSmith’;
3 else if v.s > v.t then
4 set status of vertex with id v.t to ‘notSmith’;
5 foreach incoming edge (u, v) do
6 get (u.s, u.t) from vertex u;
7 if u.s > v.s then
8 v.status = ‘notSmith’;
9 foreach vertex a with a.s = v.s do

10 a.status = ‘notSmith’;
11 end
12 end
13 if u.t < v.t then
14 v.status = ‘notSmith’;
15 foreach vertex a with a.t = v.t do
16 a.status = ‘notSmith’;
17 end
18 end
19 end

when all vertices are inactive. Since s has the smallest label (1) and it can reach all
of the other vertices, all s labels are set to 1 after only one step (as can be observed in
Table 4.2).

Superstep a b c d
Init 1 2 3 4
(1) 1 1 1 1

Table 4.2: Forward (s) labels in Example 5

Backward Min-Label Propagation: The pregel procedure starts with each vertex
sending each t label in backward direction to the neighbours. Then each vertex sets its t
label to the minimum t value it received. Let us inspect vertex b in more detail: In the
first superstep vertex b sends its label (t = 2) to vertex c. It further receives two messages
- from vertex a it receives label 1 and from vertex D it receives label 4. Thus vertex b
updates its t label to 1.

Vertex c received the labels 2 and 4 from vertices b and d respectively and changes its label
to 2. In the next step vertex b passes his label (t = 1) on to vertex c.

Vertex d did not receive any messages in the backward propagation, because it has no
outgoing edges.

59



4. Cloud Computing Algorithms

Superstep a b c d
Init 1 2 3 4
(1) 1 1 2 4
(2) 1 1 1 4

Table 4.3: Backward (t) labels in Example 5

Postprocessing. Now we check the s and t labels to identify candidates, that cannot be
in the Smith set. Vertices a, b and c have the same labels (s = 1, t = 1 and no further
reasoning can be done on their status. Vertex d has the labels s = 1 and t = 4. Therefore
we know that vertex a can reach d, but there is no path in the other direction. The status
of d is therefore changed to notSmith.

Start of the next iteration of the while-loop.

Preprocessing: The vertices {a, b, c} are initialized with their ids as s and t labels,
since their status is still ’unknown’. Vertex d is initialized with the labels (s =∞, t =∞),
since it is already excluded from the possible Schulze winners.

Forward and Backward Min-Label propagation. In the beginning only vertices a,
b and c are sending initial messages to their neighbours. Again the labels are propagated
and after this procedure the vertices a, b and c have the label (s = 1, t = 1). Vertex d has
the label (s = 1, t =∞).

Postprocessing. In the post processing no status is changed, since d was already known
to not be in the Smith set.

Finished. Since no status was changed to computation stops and the Smith set is
{a, b, c}. �

4.5 Schwartz Set
Recall the definition of the Schwartz Set given in Section 2.1.2. Given a preference profile
P and the corresponding strict dominance graph D�, candidate a is in the Schwartz
set if and only if for every candidate b there is a path from a to b, whenever there is
a path from b to a [BFH09, Lemma 4.5]. For the Smith Set we could make use of a
result obtained by [BFH09] to only compute paths of length 3. For the Schwartz set this
optimization is not possible and we have to compute the whole transitive closure.

4.5.1 MapReduce Algorithm for computing the Schwartz Set

The algorithm for computing the Schwartz Set follows the same principles as the MapRe-
duce algorithm for computing the Smith set (Section 4.4), but there are several important
differences. First of all, for the Schwartz set it is necessary to compute the whole transitive
closure, whereas for the Smith set the paths of length 3 where sufficient and further the
post processing differs.

60



4.5. Schwartz Set

The overall structure of the Algorithm is given in Algorithm 4.5.1. In contrast to the
algorithm for computing the Smith set, the strict dominance graph is used as input.
The procedures FirstMap (Algorithm 4.4.2), ReduceVertex (Algorithm 4.4.4) and
MapVertex (Algorithm 4.4.3 are the same procedures as used for computing the Smith
set.

The central data types in this algorithm are again the VertexWritable and
VertexSetWritable. Recall that a VertexWritable consists of three sets of vertices
storing information on incoming and outgoing paths for a given vertex v as follows:

• the set old stores all vertices that have been found previously to be reachable from
v;

• the set new stores all vertices that have been found in the last map-reduce round
to be reachable from v;

• the set reachedBy stores all vertices known to reach v;

The data type VertexSetWritable contains sets of vertices together with a mode.
The mode can take one of the values ’old’, ’new’, and ’reachedBy’.

The function ReduceVertex always outputs all vertices as VertexWritables and
this data is used as input to the next MapReduce round; or to the PostProcessing
step.

The starting values for the VertexWritables are created by the procedures FirstMap
and ReduceVertex. After execution of those procedures on the adjacency matrix of
the strict dominance matrix, the VertexWritables of each vertex contain only the
information of directly adjacent vertices, i.e. paths of length 1.

The while-loop then iterates until all vertices converge, i.e. the set v.new is empty for
each vertex v. At this point the full transitive closure of the strict dominance graph is
stored in the VertexWritables. In the post processing step we only have to compare
the set v.old and v.reachedby to determine the vertices contained in the Schwartz set.
In particular, a vertex v is contained in the Schwartz set if the set of vertices reachable
by v (v.old) is a superset of the set of vertices that reach v (v.reachedBy); i.e., we have
to check if v.reachedby ⊆ v.old holds.

Example 6 (Example 4 continued) An election with four candidates {a, b, c, d}
and a preference profile P with six votes is given. The preference profile P is as follows:

P = {a � b � d � c, b � a � c � d,
a � c � d � b, c � b � d � a,
a � c � b � d, c � b � a � d}

61



4. Cloud Computing Algorithms

Algorithm 4.5.1: Schwartz Set
Input: Strict Dominance Graph D�
Output: Schwartz Set

1 FirstMap
2 ReduceVertex
3 while there exists a vertex with new 6= ∅ do
4 MapVertex
5 ReduceVertex

6 end
7 ComputeSchwartzSet

This preference profile P results in the strict dominance graph shown in Figure 4.2.
The output values of each procedure in the whole MapReduce computation are shown
in Table 4.4. The entries in the section ’(2) ReduceVertex’ show the result of the first
MapReduce round. At this point only the adjacent vertices are saved in the sets ’reachedBy’
and ’new’. In the following MapReduce round the process ’(3) MapVertex’ outputs new
key-value pairs. For vertex a the only key-value pair (a,({c,d},’old’)) is emitted. For
vertex b more is happening: first the set ’new’={b} is emitted with label ’old’ and the
the set ’rB’ is processed, as follows: From the information stored in the sets ’b.new’ and
’b.reachedBy’ we know that there is an outgoing path from b to d and an incoming path
from c to b. By emitting the key-value pairs (d,({c},’rB’)) and (c,({d},’new’) those paths
are going to get connected in the following reduce phase. The output of the reduce phase
is shown in ’(4) ReduceVertex’. The whole computation stops as soon as all sets ’new’
are empty. In the post processing only the condition reachedBy ⊆ old has to be checked.
If this condition holds, that vertex is part of the Schwartz set. Therefore we have only
one vertex in the Schwartz Set, namely vertex a. �

Figure 4.2: Strict Dominance Graph for Example 6

4.5.2 Pregel algorithm for computing the Schwartz Set

The Schwartz set is defined as the union of all minimal undominated sets of vertices
in the strict dominance graph [BFH09]. If all strongly connected components (SCCs)

62



4.5. Schwartz Set

Step a b c d
(2) ReduceVertex new = {c, d} new ={d} new = {b, d} new = ∅

old = ∅ old = ∅ old = ∅ old = ∅
rB = ∅ rB = {c} rB = {a} rB = {a, b, c}

(3) MapVertex (a, ({c, d},’old’)) (b, ({d},’old’)) (c, ({b, d},’old’)) (d, ({a, b, c},’rB’))
(b, ({c},’rB’)) (c, ({a},’rB’))
(d, ({c},’rB’)) (b, ({a},’rB’))
(c, ({d},’new’)) (d, ({a},’rB’))

(a, ({b,d},’new’))
(4) ReduceVertex new = {b} new = ∅ new = ∅ new = ∅

old = {c,d} old = {d} old = {b, d} old = ∅
rB = ∅ rB = {a, c} rB = {a} rB = {a, b, c}

(5) MapVertex (a,({b,c,d},’old’)) (b,({d},’old’)) (c,({b,d},’old’)) (d,({a,b,c},’rB’))
(b,({a,c},’rB’)) (c,({a},’rB’))

(6) ReduceVertex new = ∅ new =∅ new = ∅ new = ∅
old = {b,c,d} old = {d} old = {b, d} old = ∅
rB = ∅ rB = {a, c} rB = {a} rB = {a, b, c}

(7) rB ⊆ old true false false false

Table 4.4: Computing the Schwartz Set by Example

are known, the Schwartz Set is easily found by forming the union of all undominated
SCCs. Note, that in contrast to the Smith Set, the Schwartz Set is based on the strict
dominance graph. In the strict dominance graph several undominated strongly connected
components can occur, whereas in the weak dominance graph the undominated scc is
always unique.

We use the same basic ideas as for the pregel algorithm for computing the Smith Set
in Section 4.4.2. But there are very important differences in the post processing step,
where it has to be considered that it is possible to have several undominated SCCs in
the strict dominance graph.

Each vertex stores its vertex id vid and the pair (s, t) and a status as value, where s is the
forward min-label and t the backward min-label. Further, the status of a vertex can be
’unknown’, ’Schwartz’ or ’notSchwartz’. All vertices are initialized with status ’unknown’.
In the while-loop the preprocessing procedure sets the labels of vertices that are already
known to be notSchwartz to (s =∞, t =∞), all vertices with ’unknown’ are initialized
with their ids as s and t label. In the first iteration all vertices have status ’unknown’.
The forward and backward min-label propagation form the heart of the algorithm. The
forward min-label s corresponds to the smallest id of all vertices, which are known to
reach v, i.e. there exists a path from source s to v. The backward min-label t is the
smallest id of all vertices that are reachable by v, i.e. there is a path from v to target t.

In the PostProcessing step (illustrated in Algorithm 4.5.1) vertices which cannot be
in the Schwartz set are identified as follows:

• mark all vertices v with v.s < v.t as not in the Schwartz Set, i.e. set v.status =

63



4. Cloud Computing Algorithms

notSchwartz.

• if ∃v : v.s > v.t: mark vertex t and all vertices with backward label t as not
in Schwartz Set, i.e. t.status = notSchwartz and ∀u ∈ A with u.s = t set
u.status = notSchwartz.

Algorithm 4.5.1: Post processing for vertex v

1 if v.s < v.t then
2 v.status = ‘notSchwartz’;
3 else if v.s > v.t then
4 set status of vertex v.t to ‘notSchwartz’;
5 foreach vertex u with u.s = v.t do
6 u.status = ‘notSchwartz’;
7 end

The while-loop continues as long as the number of vertices with status ’unknown’ decreases.
All remaining vertices with status ’unknown’ are then selected as the Schwartz Set.

Pregel algorithm for Computing the Schwartz Set by Example

Example 7 (Example 6 continued.) An election with four candidates {a, b, c, d} and a
preference profile P with six votes is given. The preference profile P is as follows:

P = {a � b � d � c, b � a � c � d,
a � c � d � b, c � b � d � a,
a � c � b � d, c � b � a � d}

Initialization: all vertices start with status unknown and the s and t labels are
initialized with the id of the corresponding vertex.

Forward Min-Label Propagation: Recall that a pregel procedure always works in
supersteps, where each superstep consists of two steps: (1) the active vertices send
messages to each other and (2) the vertices process the received data. In this Pregel
procedure each active vertex sends its s label along the outgoing edges to the neighbours.
Then each vertex updates its label with the minimum s label it received. If a vertex did
not change its label in such a step it gets inactive and the computation stops when all
vertices are inactive. Since a has the smallest label (1) and it can reach all of the other
vertices, all s labels are set to 1 after only two steps(as can be observed in Table 4.5).

Backward Min-Label Propagation: The pregel procedure starts with each vertex
sending each t label in backward direction to the neighbours. Then each vertex sets its

64



4.5. Schwartz Set

Superstep a b c d
Init 1 2 3 4
(1) 1 2 1 1
(2) 1 1 1 1

Table 4.5: Forward labels (s) in Example 7

t label to the minimum t value it received. In the first superstep vertex b sends it label
(t = 2) to vertex c. It further receives one message from vertex d with label 4. Thus
vertex b keeps its t label as 2, but c updates its label to 2.

Vertex c received the labels 2 and 4 from vertices b and d respectively and changes its label
to 2. In the next step vertex b passes his label (t = 1) on to vertex c. On the other hand
vertex d never received a message, because it has no outgoing edges.

Superstep a b c d
Init 1 2 3 4
(1) 1 2 2 4

Table 4.6: Backward labels (t) in Example 7

Post processing. Now we check the s and t labels to identify candidates, that cannot be in
the Schwartz set. For vertices b, c and d we observe that they have labels s < t. Therefore
they are dominated by a vertex and are excluded from the Schwartz set. Candidate a is
the only vertex remaining and therefore the only candidate in the Schwartz set. �

65



4. Cloud Computing Algorithms

4.6 Schulze Method
The Schulze Method is a method for preference aggregation. It is a so-called C2 function
since it is using the weighted majority graph WP as input. For the MapReduce algorithm
we represent the weighted majority graph by the adjacency matrix M , with the majority
margin as values. The entry M [i, j] = k in the matrix would mean that the edge (i, j) in
the weighted majority graph WP has weight k and equivalently that the majority margin
of i and j is k, i.e., µP (i, j) = k.

4.6.1 MapReduce Algorithm for Computing the Schulze Winner

To find the Schulze Winner it is necessary to know the widest paths connecting all
vertices in the weighted majority graph WP . For the computation of the Schwartz set we
proposed an Algorithm in Section 4.5, which computes the full transitive closure in the
strict dominance graph as an intermediate result. For the Schulze Winner the transitive
closure alone is not sufficient, but we need it together with the width of the widest path
connecting the vertices. We can adapt the Schwartz Set algorithm in order to find all
widest paths in the weighted majority graph.

In this MapReduce algorithm we use the data types WidestPathsWritables and
WidestPathsSetWritables. The data type WidestPathsWritables stores the
targets and sources of all incoming and outgoing known widest paths, together with the
width in the sets new, old and reachedBy. The information about outgoing widest paths
is stored in the sets new and old; the set new only contains newly found widest paths
and the set old contains widest paths that have already been found in a previous round.
The incoming widest paths is stored in the set reachedBy. We do not store the whole
path, but the id of the source or target vertex is stored, together with the maximum
known weight of all paths connecting these vertices.

The WidestPathsWritable of vertex v therefore consists of the following three sets:

• the set old stores all ids of vertices, that have been found previously to be reachable
from v, together with the width of the widest known path;

• the set new stores all ids of vertices that were found in the last map-reduce round
to be reachable from v, together with the width of the path. Further, if a wider
path to a vertex is found, then the corresponding vertex id and the weight are
stored in this set too.

• the set reachedBy stores all vertices known to reach a, together with the width of
the widest known path;

The data type WidestPathsSetWritables contains a set of widest paths together
with a mode. The mode is either ’old’, ’new’, or ’reachedBy’. The set of widest paths is
a set of vertex ids together with the weight of the found paths, i.e. a set of tuples of the
form (id,weight).

66



4.6. Schulze Method

The overall algorithm is outlined in Algorithm 4.6.1.

After the procedure FirstWidthMap the input to each reduce task consists of one
WidestPathSetWritable with mode new and several WidestPathSetWritables, each con-
taining only one vertex, with mode reachedBy. The procedure ReduceWidestPath
(shown in Algorithm 4.6.4 combines all received WidestPathSetWritables to a new
WidestPathWritable. The WidestPathWritable produced by ReduceVertex (in this
first round) contains the received set with mode=new, the union of all reachedBy values
as the set reachedBy and an empty set as old. The information contained in these
sets after this first round is equivalent to all outgoing and incoming edges in the weighted
majority graph. Therefore only ’widest’ paths of length 1 are known at this point. The
ReduceVertex procedure is shown in Algorithm 4.4.4.

The operators ∪w and \w in the ReduceWidthVertex procedure consider the vertex
labels together with their width, i.e. tuples (id, w). The operator ∪w only keeps one entry
per vertex id, that is the entry with the maximum width. The operation new\w old causes
the result to only include vertices (together with the width of the newly found path) if
there is no stronger path contained in old, i.e. new \w old = {(n, n.w) ∈ new | @(n,w) ∈
old with w ≥ n.w}.

The procedure MapWidestPaths combines the widest incoming and the widest outgoing
paths of each vertex and emits the corresponding key-value pairs.

The while-loop continues until there is no new wider path found, i.e. the set new of each
vertex is empty. At this point we know all widest paths in the weighted majority graph.
In the post processing step (FindSchulzeWinner) we only have to compare the set
old and reachedBy to determine if all outgoing paths are wider than the incoming paths.
If this is the case, the corresponding vertex is a Schulze Winner.

Algorithm 4.6.1: Schulze Winner
Input: Adj. Matrix M of the weighted majority graph
Output: Schulze Winner

1 FirstWidthMap
2 ReduceWidestPaths
3 while there exists a vertex with new 6= ∅ do
4 MapWidestPaths
5 ReduceWidestPaths

6 end
7 FindSchulzeWinner

67



4. Cloud Computing Algorithms

Algorithm 4.6.2: FirstWidthMap(M)
Input: Adjacency Matrix M of the weighted majority graph
Output: key-value pairs of the form (VertexID,WidestPathsSetWritable)

1 foreach row with index i in M do
2 emit(key=i,value=({(j, row[j]) | row[j] > 0}, ‘new’))
3 for j=1 to length(row) do
4 if row[j]>0 then
5 emit(key=j,value= ({(i, row[j])}, ‘reachedBy’)
6 end
7 end
8 end

Algorithm 4.6.3: MapWidestPaths(WidestPathsWritable)
Input: WidestPathsWritable v
Output: key-value pairs of the form (VertexID,WidestPathsSetWritable)

1 emit(key=i,value=(v.new, mode=‘old’))
2 emit(key=i,value=(v.old, mode=‘old’))
3 emit(key=i,value=(v.reachedBy,mode=‘reachedBy’))
4 for (r,rw) in v.reachedBy do
5 for (n,nw) in v.new do
6 emit (key=r, value=((n,min(nw, rw)), mode=‘new’))
7 emit(key=n,value=((r,min(nw, rw)),mode=‘reachedBy’))
8 end
9 end

Example: MapReduce Algorithm for Computing the Schulze Winner

Example 8 (Example 4 continued) An election with four candidates {a, b, c, d}
and a preference profile P with six votes is given. The preference profile P is as follows:

P = {a � b � d � c, b � a � c � d,
a � c � d � b, c � b � d � a,
a � c � b � d, c � b � a � d}

This preference profile P results in the weighted majority graph shown in Figure 4.3.
The output values of each procedure in the whole MapReduce computation are shown
in Table 4.7. The entries in the section ’(2) ReduceVertex’ show the result of the first
MapReduce round. At this point only the adjacent edges together with the weights are
saved in the sets ’reachedBy’ and ’new’. In each round also the set ’reachedBy’ and ’old’

68



4.6. Schulze Method

Algorithm 4.6.4: ReduceWidestPaths(key=i,value=VertexSetWritable)
Input: key i, list of WidestPathsSetWritable
Output: WidestPathWritable

1 new = ∅
2 old = ∅
3 reachedBy = ∅
4 for (set,mode) in input-list do
5 if mode = ‘old’ then
6 old = old ∪w set
7 end
8 if mode = ‘new’ then
9 new = new ∪w set

10 end
11 if mode = ‘reachedBy’ then
12 reachedBy = reachedBy ∪w set
13 end
14 end
15 new = new \w old
16 return (i, VertexWidthWritable(old, new, reachedBy))

are emitted by each vertex. Due to space reasons this is omitted in Table 4.7. The whole
computation stops as soon as all sets ’new’ are empty. In the postprocessing only path
widths saved in the sets ’old’ and ’reachedBy’ have to be compared. In (6) ReduceVertex
in Table 4.7 we can observe, that vertex b is reached by a on a widest path with weight 2,
but b cannot reach a. Therefore, b is not a Schulze Winner. The only vertex, where all
outgoing paths are stronger than the incoming paths is vertex a and therefore a is the
unique Schulze Winner in the example. �

Figure 4.3: Weighted Majority Graph for Example 8

69



4. Cloud Computing Algorithms

Step a b c d
(2) ReduceVertex new = {(c, 2), (d, 4)} new ={(d, 4)} new = {(b, 2), (d, 4)} new = ∅

old = ∅ old = ∅ old = ∅ old = ∅
rB = ∅ rB = {(c, 2)} rB = {(a, 2)} rB = {(a, 4), (b, 4), (c, 4)}

(3) MapVertex (a, ({(c, 2), (d, 4)},’old’)) (b, ({(d, 4)},’old’)) (c, ({(b, 2), (d, 4)},’old’)) (d,({(a, 4), (b, 4), (c, 4)},’rB’))
(b, ({(c,2)},’rB’)) (c, ({(a,2)},’rB’))
(d, ({(c,2)},’rB’)) (b, ({(a,2)},’rB’))
(c, ({(d,2)},’new’)) (d, ({(a,2)},’rB’))

(a, ({(b,2),(d,2)},’new’))
(4) ReduceVertex new = {(b, 2)} new =∅ new = ∅ new = ∅

old = {(c,2),(d,4)} old = {(d, 4)} old = {(b, 2), (d, 4)} old = ∅
rB = ∅ rB = {(a, 2), (c, 2)} rB = {(a, 2)} rB = {(a, 4), (b, 4), (c, 4)}

(5) MapVertex (a,({(c,2),(d,4),(b,2)},’old’)) (b,({(d, 4)},’old’)) (c,({(b, 2), (d, 4)},’old’)) (d,({(a, 4), (b, 4), (c, 4)},’rB’))
(b,({(a, 2), (c, 2)},’rB’)) (c,({(a, 2)},’rB’))

(6) ReduceVertex new = ∅ new =∅ new = ∅ new = ∅
old = {(b,2),(c,2),(d,4)} old = {(d, 4)} old = {(b, 2), (d, 4)} old = ∅
rB = ∅ rB = {(a, 2), (c, 2)} rB = {(a, 2)} rB = {(a, 4), (b, 4), (c, 4)}

(7) Schulze Winner true false false false

Table 4.7: Computing the Schulze Winner by Example

4.6.2 Pregel Algorithm for computing the Schulze Winner

In this section, we present our Pregel-based algorithm for determining the Schulze winners
for a given weighted majority graph W = (A,E, µ); we use p(a, b) to refer to the width
of the widest path connecting a to b. A straightforward algorithm would consist in
computing the path width for all pairs of vertices in the graph. So in particular, for
every pair (a, b) of vertices in W the widths p(a, b) and p(b, a) are computed. Such an
algorithm would require us to store a linear amount of information for each vertex v,
i.e. at each vertex v the information p(v, a) for every a ∈ A is stored. This contradicts
the philosophy of Pregel algorithms which aim at keeping the local information at each
vertex small [YCX+14].

The Schulze Winner is always a subset of the Schwartz set, i.e. the set of all undominated
vertices. This relationship is obvious from the definition. The Schwartz set is the union of
all undominated strongly connected components (SCCs) and therefore an algorithm using
this idea would first compute the Schwartz set and then only compute the widest paths
for pairs of vertices in the undominated SCCs. This approach has the disadvantage that
the set of pairs to be considered may still be very large. Moreover, the computation of
the SCCs only makes use of a part of the available information since it is not considering
the weights in the graph.

The idea of our new Pregel-style algorithm is therefore, to use the methods for computing
SCCs and adapt them in order to include the information of the weighted edges – the
majority margin. The forward/backward propagation of minimum vertex-ids, which has
already been used in the Sections 4.4 and 4.5, forms the heart of the algorithm. It is
adapted such that it additionally propagates the widths of the paths and utilises the
weight information to prune the search space as soon as possible. Further, the local
information stored at each vertex is guaranteed to be small.

Recall from Section 2.3 that Pregel Algorithms are often described as ’think-like-a-
vertex’ algorithms. This comes from the fact that each vertex acts as an independent

70



4.6. Schulze Method

entity. This means that the vertices are distributed among the nodes of the cluster and
the computations at each vertex can be performed in parallel. The vertices exchange
information by sending messages to each other along the edges of the graph. One
superstep of a Pregel Algorithm consists of the following two steps: sending messages, and
executing the vertex program. Vertices can be set inactive either by their vertex program,
or automatically if they did not receive a message by any other vertex. The Pregel
computation stops when there are no active vertices left. One important performance
measure of Pregel algorithms is the size of the local information saved at each vertex.
The proposed Pregel algorithm for computing the Schulze Method is guaranteed to have
small local information at each vertex. The overall structure of our algorithm is given in
Algorithm 4.6.1.

Algorithm 4.6.1: SchulzeWinner(WP )
Input: Weighted Majority Graph WP

Output: Schulze Winner
1 Initialisation-of-vertices;
2 while there exists a vertex v with v.status = ‘unknown’ do
3 Preprocessing;
4 Forward-Backward-Propagation;
5 Postprocessing;
6 end
7 Output vertices with status ‘winner’;

We assume that each vertex v is assigned an unique id v.id ∈ {1, . . .m}. Moreover,
each vertex v has a status which may take one of three possible values {‘winner’, ‘loser’,
‘unknown’} to express that v is a Schulze winner, not a Schulze winner, or if we do not
know yet, respectively. Additional information stored at each vertex includes the fields
s, t, ws, wt, and scc, whose meaning will be explained below, as well as information on
the adjacent edges together with their weights.

In Initialisation-of-vertices, we determine for each candidate v the maximum weight of
all incoming and outgoing edges and set the status accordingly: if maxa∈A µ(a, v) >
maxa∈A µ(v, a), then we know for sure that there exists a vertex c (namely the one with
µ(c, v) = maxa∈A µ(a, v)) which is preferred to v by the Schulze method. Hence, in this
case, we set v.status = ‘loser’; otherwise we set v.status = ‘unknown’;

The goal of each iteration of the while-loop in Algorithm 4.6.1 is to compute for every
vertex v the ids s (= source) and t (= target) which are the minimum ids among all
vertices with status = ‘unknown’ such that there is a path from s to v and from v to
t. Moreover, we also determine the weights ws and wt of the widest paths from s to v
and from v to t. Termination is guaranteed since in each iteration at least one vertex
changes its status from ‘unknown’ to ‘loser’ or ‘winner’. The experimental evaluation (see
Chapter 6) shows that the algorithm terminates very fast: on real-world data, typically
even a single iteration of the while-loop suffices. Preliminary experiments with synthetic

71



4. Cloud Computing Algorithms

data show that the while-loop is executed less than 10 times for instances with 10.000
candidates.

In Preprocessing, shown in Algorithm 4.6.2, we initialise the fields (s, ws, t, wt) of all
vertices. For every vertex v with v.status = ‘unknown’, we set v.s = v.t = v.id and
v.ws = v.wt =∞. Thus, initially, the minimum id of vertices to reach v and reachable
from v is the id of v itself. Of course, this path from a vertex to itself has arbitrarily big
width (although this does not matter in the sequel; we could have assigned any value
to ws and wt). We send the information on v as a source (resp. target) to its adjacent
vertices via outgoing (resp. incoming) edges. For vertices with status different from
‘unknown’, we set v.s = v.t = ∞ and v.ws = v.wt = 0. This allows such a vertex v to
pass on vertex ids from other sources and targets but it prevents v from passing on its
own id.

Algorithm 4.6.2: Preprocessing()
1 if v.status = ‘unknown’ then
2 s = v.id; ws = ∞;
3 t = v.id; wt = ∞;
4 foreach outgoing edge (v, u) with weight w do do
5 send (‘forward’, s, w) to vertex u;
6 end
7 foreach incoming edge (u, v) with weight w do do
8 send (‘backward’, t, w) to vertex u;
9 end

10 else
11 s = ∞; ws = 0;
12 t = ∞; wt = 0;
13 end

The Forward-Backward-Propagation is the actual ’Pregel heart’ of the computation. The
other procedures work in parallel too, but they do not use the Pregel Computation API.
Algorithm 4.6.3 realizes the forward and backward propagation as a Pregel procedure.
For each vertex v, we determine (1) the minimum source-id s together with the maximum
width ws of paths from s to v and (2) the minimum target-id t together with the
maximum width wt of paths from v to t. We thus analyse each received message (d, u, w)
consisting of a direction d (with possible values ‘forward’ and ‘backward’), vertex id u,
and width w. In case of ‘forward’ direction, we have to check if we have found a source u
with a yet smaller id than the current value s. If so, we update v.s and v.ws accordingly.
If the received vertex-id u is equal to the current value of c.s, we have to update c.ws in
case the received value w is greater than c.ws (i.e., from the same source we have found
a path of greater width).

Messages in ‘backward’ direction are processed analogously, resulting in possible updates
of the target-id t and/or the width wt of paths from v to t. After all messages have been

72



4.6. Schulze Method

Algorithm 4.6.3: Forward-Backward-Propagation

1 foreach received value (d, u, w) do do
2 if d = ‘forward’ then
3 if u < s then
4 s = u;
5 ws = w;
6 else if u = s then
7 ws = max(ws,w)
8 ;
9 else if d = ‘backward’ then

10 if u < t then
11 t = u;
12 wt = w;
13 else if u = t then
14 wt = max(wt,w);
15 end
16 if (s, ws) has changed then
17 foreach outgoing edge (v, c) with weight w do
18 send (‘forward’, s,min(ws,w)) to vertex c;
19 end
20 if (t, wt) has changed then
21 foreach incoming edge (c, v) with weight w do do
22 send (‘backward’, t,min(wt,w)) to vertex c;
23 end
24 if the labels were not changed then
25 set v inactive;

processed, we propagate the information on new source id s (resp. target id t) and/or
increased width of paths from s to v (resp. from v to t) to all adjacent vertices of v in
forward (resp. backward) direction. Forward-Backward-Propagation terminates when no
more messages are pending.

In Postprocessing, as shown in Algorithm 4.6.4, we use two crucial properties of source
and target ids, which are inherited from the SCC computation in [YCX+14]: First, if for
a vertex v, we have v.s = v.t, then the set of vertices u with the same source/target id
(i.e., u.s = u.t = v.s) forms the SCC of v. Second, if for two vertices v and u, we have
v.s 6= u.s or v.t 6= u.t, then v and u belong to two different SCCs.

In Algorithm 4.6.4, we first compare, as for the algorithm for computing the Schwartz
Set in Section 4.5, for each vertex v the values of s and t: if v.s < v.t, then v is reachable
from s but s is not reachable from v. Hence, v is a loser. If v.s > v.t, then t is reachable
from v but v is not reachable from t. Hence, t is a loser. Note that setting the status of t

73



4. Cloud Computing Algorithms

Algorithm 4.6.4: Postprocessing for vertex v

1 if v.s < v.t then
2 v.status = ‘loser’;
3 else if v.s > v.t then
4 set status of vertex v.t to ‘loser’;
5 else if v.s = v.t then
6 v.scc = v.s;
7 if v.ws > v.wt then
8 v.status = ‘loser’;
9 else

10 set status of vertex v.s to ‘loser’;
11 end

12 foreach incoming edge (u, v) do
13 get (u.s, u.t) from vertex u;
14 if v.s 6= u.s or v.t 6= u.t then
15 if v.s = v.t then
16 foreach vertex c with c.scc = v.s do
17 set status of vertex c to ‘loser’;
18 end
19 else if v.s 6= v.t then
20 v.status = ‘loser’;
21 end
22 end
23 if v.scc = c and v.status = ’unknown’ then
24 v.status = ‘winner’;
25 end

is done by a subroutine whose details are omitted here. Finally, if v.s = v.t, then (as
recalled above) we have found the SCC of v. As in [YCX+14], we use the minimum id of
the vertices in an SCC to label the SCC. If the width of the path from s (which is equal
to t by our case distinction) to v is greater than from v to s, then v is a loser (since s is
preferred to it). In the opposite case, s is a loser.

In the next step in Algorithm 4.6.4, we compare the values of (s, t) of each vertex v
with the values of (u.s, u.t) of all vertices u with an incoming edge (u, v). If u.s 6= v.s or
u.t 6= v.t, then v and u are in different SCCs. By the existence of the edge (u, v), this
means that there can be no path from v to u (otherwise v and u would be in the same
SCC). Hence, u is preferred to v according to the Schulze method. Moreover, if v.s = v.t,
then we have found the SCC of v. In this case, u is preferred to all vertices in this SCC.

Further, suppose that we have found some SCC such that the vertex v with minimum id
in this SCC has not been identified as a loser by any of the above cases. In particular,

74



4.6. Schulze Method

this means that none of the vertices in this SCC has an incoming edge from outside the
SCC and, moreover, the SCC cannot contain a vertex u with p(u, v) > p(v, u). In this
case, we may mark vertex v as a winner. It is now also clear that at least one vertex
must change its status from ’unknown’ to either ’loser’ or ‘winner’ in every execution of
Algorithm 4.6.4 and, therefore, in every iteration of the while-loop of Algorithm 4.6.1.

Finally, we remark that by iterating the algorithm k times and continuously removing
Schulze winners, it is straight-forward to compute a top-k ranking according to Schulze.

4.6.3 Computing the Schulze Winner by Example

Example 9 Consider the weighted majority graph displayed in Figure 4.4 (originally
by Schulze [Sch03]). The table in Figure 4.4 shows the widest paths between any two
vertices. The unique Schulze winner is candidate a, having a path of width 6 to every
other candidate, whereas all incoming paths to vertex a have width 2.

The weighted majority graph in Figure 4.4 is strongly connected. Hence, the set of
Schwartz winners is the entire SCC {a, b, c, d}.

a

b

d

c

4

6

10

82

12

a b c d

a − 6 6 6
b 2 − 10 8
c 2 8 − 8
d 2 12 10 −

Figure 4.4: A weighted majority graph and its widest paths

We go through the algorithm for computing the Schulze Winner step-by-step:

Initialisation-of-vertices: For each candidate we determine the maximum weight of
all incoming and outgoing edges and set the status accordingly. The result can be seen
in Table 4.8. After this initialisation step only candidates a and b remain as possible
winners, with status ’unknown’.

v v.id maxu∈A µ(u, v) maxu∈A µ(v, u) status
a 1 6 2 unknown
b 2 10 12 loser
c 3 8 10 loser
d 4 12 8 unknown

Table 4.8: Initialisation of Vertices

Start of the While Loop: First for each vertex the fields (s,ws,t,wt) are initialised,
based on their status.

75



4. Cloud Computing Algorithms

Superstep v v.id v.status v.s v.ws v.t v.wt

PreProc a 1 unknown 1 ∞ 1 ∞
PreProc b 2 loser ∞ 0 ∞ 0
PreProc c 3 loser ∞ 0 ∞ 0
PreProc d 4 unknown 4 ∞ 4 ∞

1 a 1 unknown 1 ∞ 1 ∞
1 b 2 loser 1 4 ∞ 0
1 c 3 loser 1 6 4 8
1 d 4 unknown 4 ∞ 1 2
2 a 1 unknown 1 ∞ 1 ∞
2 b 2 loser 1 4 4 8
2 c 3 loser 1 6 1 2
2 d 4 unknown 1 6 1 2
3 a 1 unknown 1 ∞ 1 ∞
3 b 2 loser 1 6 1 2
3 c 3 loser 1 6 1 2
3 d 4 unknown 1 6 1 2
4 a 1 unknown 1 ∞ 1 ∞
4 b 2 loser 1 6 1 2
4 c 3 loser 1 6 1 2
4 d 4 unknown 1 6 1 2

PostProc a 1 winner 1 ∞ 1 ∞
PostProc b 2 loser 1 6 1 2
PostProc c 3 loser 1 6 1 2
PostProc d 4 loser 1 6 1 2

Table 4.9: Vertices during the Computation

Only the vertices with status=’unknown’ initialise their attributes s and t with their
id, vertices with a different status use ∞ as starting value. Such that in the further
computation we only compute reachability and widest paths from and to ’unknown’ vertices
and other vertices only act as passageways. The resulting input to the first iteration of
the while-loop is shown in Table 4.9 in the first 4 rows.

In the first step (PreProc) only the vertices a and d send messages. Vertex a has
two outgoing edges to the vertices b and c and one incoming edge from d. Vertex a
therefore sends the message (’forward’,1,4) to vertex b, where 1 is the id of a and 4
is the minimum of its ws attribute and the weight of the edge connecting a and b (i.e.
min(a.ws, µ(a, b)) = min(∞, 4) = 4). This message informs b that a can reach it along
a path with weight 4. The edge connecting a and c has weight 6, therefore a sends the
message (forward, 1, 6) to vertex c. Along the incoming edge, vertex a sends a message
to d, with the information (’backward’, 1,2); telling vertex d that there is a path from d
to a with weight 2.

76



4.6. Schulze Method

Superstep sender receiver message
PreProc a b (’forward’, 1, 4)
PreProc a c (’forward’, 1, 6)
PreProc a d (’backward’, 1, 2)
PreProc d a (’forward’, 4, 2)
PreProc d b (’forward’, 4, 12)
PreProc d c (’backward’, 4, 8)

1 b c (’forward’, 1, 4)
1 c d (’forward’, 1, 6)
1 c a (’backward’, 4, 8)
1 c b (’backward’, 4, 8)
1 d c (’backward’, 1, 2)
2 b a (’backward’, 4, 8)
2 b d (’backward’, 4, 8)
2 c a (’backward’, 1, 2)
2 c b (’backward’, 1, 2)
2 d a (’forward’, 1, 6)
2 d b (’forward’, 1, 6)
3 b a (’backward’, 1, 2)
3 b d (’backward’, 1, 2)
3 b c (’forward’, 1, 6)

Table 4.10: Messages sent during the computation

Vertex d sends messages along its incoming and outgoing edges to the adjacent vertices
(outgoing: a and b, incoming: c).

The vertices b and c do not send any messages, but they are going to receive messages,
update their statuses and send messages in the next superstep.

Next each vertex combines the information contained in the received messages. Vertex
a received only one message (’forward’, 4,2). Since the id 4 is larger than the a.s = 1
attribute, the information saved at vertex a is not changed. Vertex b receives two ’forward’
messages: (’forward’, 1,4) and (’forward’,4,12). The received messages are compared to
its s attribute (b.s =∞) and the information is updated accordingly. Since (1 < 4 <∞)
the attribute b.s is set to 1 and because of the third attribute in the message (’forward’,1,4)
b.ws is set to 4. Now vertex b knows that the vertex with the smallest ID, that can reach
b (within a path length of 1) has id 1(=a.id) and that the widest path known from a to b
has width 4. The update procedure of the information at vertex c and d works in the same
way. After updating the attributes the vertices again start with sending messages. Only
vertices which updated attributes send messages. Following Algorithm 4.6.3 the messages
sent over the overall computation are shown on top of Table 4.10.

Each vertex processes its received messages independently and updates its vertex infor-
mation. Then new messages are sent to the adjacent vertices. The first column of

77



4. Cloud Computing Algorithms

Table 4.9 is the number of the superstep of the backward-forward-propagation algorithm.
The attributes changing in the corresponding step are formatted bold.

In Table 4.10 all messages sent in each step can be found. Only vertices with updated
attribute values send messages. In Table 4.9 it is interesting to observe, that in superstep
3 the attribute ws of vertex b is changed, but the attribute s is not changed. This is
because the smallest path from a to b has length 1, but the widest path has length 3 and is
therefore discovered in the third superstep. The messages sent after the third superstep do
not yield any changes in the attributes of the vertices.

The Postprocessing procedure following Algorithm 4.6.4 leads to the change of the status
of d since s = t = 1 (id of vertex a), and the path from a to d is wider than the path from
d to a. This can be read from the Table, where ws is larger than wt. In Table 4.9 for
the last superstep it can be oberved that all vertices have vertex a as s and t. For each
vertex the incoming widest path from a is larger than the outgoing path to a (ws > wt)
and therefore a is the Schulze Winner.

The Postprocessing changes the status of vertex a to ’winner’.

In this example we only need one iteration of the While-Loop and 4 Supersteps in the
Pregel procedure to identify the Schulze Winner. �

4.7 Ranked-Pairs Rule
In Chapter 3 it is shown that the winner determination problem by the ranked-pairs
method is P-complete and therefore inherently sequential [Joh90]. We will sketch some
algorithm ideas for this problem.

As stated in Section 2.1 the ranked pairs method is computed the following way: the
edges are sorted by their weight and starting from the heaviest edge one by one is added,
but only if it does not create a cycle in the graph.

Therefore, adding edges that cannot be part of a cycle is safe and consistent with the
method. Some edges can be identified which are definitely not part of a cycle:

• all incoming edges of a vertex with outdegree of 0

• all outgoing edges of a vertex with indegree of 0

• edges connecting vertices in different strongly connected components

Further, the edges within one SCC cannot interfere with edges in other SCCs. The
central problem of this method is the detection of cycles. The Schwartz-Set MapReduce
algorithm can be adapted to detect cycles: If a vertex a receives as input the key-value
pair (a, (′a′,′ rB′)), i.e. gets the information that it is reached by itself, then there is a
cycle in the graph.

We sketch the following algorithm:

78



4.8. STV Rule

• Detect SCCs – for example by using the min-label algorithm proposed in [YCX+14]

• Add all edges (u, v) satisfying at least one of the following conditions to the result
graph G(V,E) and add the vertices u and v to the set V .

– v has no outgoing edges
– u has no incoming edges
– u and v are not in the same SCC

• For each SCC i = {1, . . . , l} create a graph Gi(Vi, Ei) with the set Vi = ∅ of vertices
and Ei = ∅ of edges.

• Compute the ranked-pairs method for each SCCi separately by repeating the
following steps until no edges are left in the SCCi.
Start with the heaviest edge (u,v) in SCCi: if u ∈ Vi ∧ v /∈ Vi or u /∈ Vi ∧ v ∈ Vi:
add (u,v) to Ei and {u, v} to Vi; otherwise: check if a cycle is produced by adding
(u, v) to Gi. If ’yes’ delete the edge, otherwise add it to Gi

• Add all sets of vertices Vi and edges Ei to the result graph G.

• Select the root of G as winner.

4.8 STV Rule
The single transferable voting rule is based on the preference profile P as input. The
candidate with the lowest plurality score is removed from all votes in the preference
profile in each round. Then the plurality scores of the remaining candidates in the new
preference profile are calculated. Again, the candidates with the lowest score is removed.
This is repeated until only one candidate is left and this candidate is the winner.

4.8.1 MapReduce Algorithm for computing the Winner based on the
STV rule

The MapReduce algorithm for computing the winner according to the STV rule maintains
the set of already excluded candidates and controls the iteration throughm−1 MapReduce
rounds, such that each round excludes one more candidate. The MapReduce rounds are
used to compute the plurality score on the current set of votes. The preference profile
itself is not changed, but the map procedure gets the information of which candidates
have been excluded and uses this to assign the scores. The reduce task then simply sum
up the values to compute the plurality score of each candidate.

The basic idea of the algorithm is to use m− 1 rounds and exclude one candidate per
round. The overall algorithm is shown in Algorithm 4.8.1. During the map phase, the
highest-ranking not-yet-excluded candidate of each vote is sent to the corresponding

79



4. Cloud Computing Algorithms

reduce task, which simply counts the number of received messages. Each reduce task is
responsible for the score of one candidate. The map and reduce procedures are shown
in Algorithm 4.8.3 and Algorithm 4.8.2. The next round starts with the exclusion list
extended by the lowest scoring candidate (subject to tie-breaking). Clearly, this algorithm
is impractical for largem as it requiresm−1 rounds. However, for smallm, this algorithm
can be considered feasible – which matches exactly the theoretical claims of Theorems 3
and 4.

Algorithm 4.8.1: STV
Input: Preference profile P containing m votes
Output: STV Winner

1 excl_candidates=∅;
2 for 1 to m-1 do
3 MapSTV;
4 ReduceSum;
5 excl_candidates += candidate with the lowest sum;
6 # use tiebreaking order if needed;
7 end
8 return the single candidate not contained in excl_candidates;

Algorithm 4.8.2: MapSTV()
Input: Preference profile P containing m votes and the set excl_candidates
Output: key-value pairs of the form (key=candidate,value=score)

1 foreach vote in P do
2 for i=1 to length(vote) do
3 if vote[i] is not in excl_candidates then
4 emit(key=vote[i], value=1)
5 break;
6 end
7 end
8 end

Algorithm 4.8.3: ReduceSum()
Input: Key-value pairs(key=candidate,value=score) produced by MapSTV()
Output: Sum of all received values (candidate with score)

1 return (key, sum(values))

80



Part III

Theoretical Performance and
Experimental Evaluation

81





CHAPTER 5
Theoretical Performance

Guarantees of the proposed
Algorithms

5.1 Performance Guarantees for Our MapReduce
Algorithms

MapReduce algorithms for various problems in computational social choice have been
described in Chapter 4. In this section the performance guarantees for the Algorithms
are derived. The derivation of the performance guarantees by theorems and proofs can
be found in the following subsections, and a summary is provided in Section 5.1.8. For
an introduction to the performance measures of MapReduce algorithms see Section 2.3.1.
The size of a problem instance and therefore the computational performance of the
problems depends on the number of votes n in the election and the number of candidates
m.

5.1.1 Performance of the MapReduce Algorithm for Positional
Scoring Rules

Proposition 5 The scores of candidates, according to a scoring rule with scoring vector
s, in an election given by a preference profile P can be computed in MapReduce with the
following characteristics: rr = 1, #rounds = 1, #keys = n, wct ≤ m, and tcc ≤ mn.

Proof 5 The algorithm takes only one MapReduce round (#rounds = 1). Each entry in
a vote of the preference profile results in one key-value pair, therefore the replication rate
is 1 (rr = 1). The candidates are used as keys, from this follows that we have m keys.

83



5. Theoretical Performance Guarantees of the proposed Algorithms

Each reduce task receives at most n values (one per vote) and outputs exactly 1 value.
From this we know that wct ≤ n+ 1 and tcc ≤ m(n+ 1). �

5.1.2 Performance of the MapReduce Algorithm for transforming the
Preference Profile into a Graph Representation

Proposition 6 The MapReduce algorithm for computing the weighted majority graph
has the following characteristics: rr ≤ m − 1, nr = 1, nk = m2, wct ≤ n + 1, and
tcc ≤ m2(n+ 1).

Proof 6 There are m2 reducers (one for every pair (a, b) of candidates). Each reducer
receives at most n values (one key-value pair from each vote) and outputs the sum of
these values, i.e. the majority margin of a and b. From this follows that wct ≤ n+ 1.

Each vote has a maximum length of m and therefore results in a maximum number of
2 ·
(m

2
)

= m(m− 1) key-value pairs. Therefore the upper bound of the replication rate is
rr ≤ m− 1. �

5.1.3 Performance of the MapReduce Algorithm for Computing the
Copeland Scores

Proposition 7 The Copeland scores can be computed by a MapReduce algorithm with
the following characteristics: rr = 2, #rounds = 1, #keys = m, wct ≤ 2m + 2, and
tcc ≤ 2m2 + 2m.

Proof 7 Algorithm 4.3.1 takes one map-reduce round, therefore #rounds = 1. There
are m reducers (each corresponding to one candidate, i.e., one row or column in the
dominance matrix). Each reducer receives as input 2m values, because each reduce task
receives exactly one column and one row of the dominance matrix. Note, that each entry
in the dominance matrix is sent to exactly 2 reduce tasks. We thus have a replication
rate of 2 (rr = 2). Each reduce task then produces one pair (candidate, score) as output.
In total, we thus have wct ≤ 2m+ 2 and tcc ≤ 2m2 + 2m. �

5.1.4 Performance of the MapReduce Algorithm for Computing the
Smith Set

Proposition 8 Algorithm 4.4.1 for computing the Smith set has the following character-
istics: rr ≤ 2m+ 1, #rounds = 3, #keys = m, wct ≤ 6m2 + 8m and tcc ≤ 6m3 + 8m2.

Proof 8 The number of MapReduce rounds is 3 (#rounds = 3). For the replication
rate we inspect the total number of key-value pairs received by each reducer. In the first
MapReduce round the replication rate is trivially ≤ 2. Since each entry in the dominance

84



5.1. Performance Guarantees for Our MapReduce Algorithms

matrix is mapped to at most 2 key-value pairs. In the following two rounds each reducer
receives one set with mode = ’old’, at most m sets with mode = ’new’ and at most m sets
with mode = ’reachedBy’. Each of those sets has a maximal possible length of m. This
gives a total amount of at most 2m3 +m2 vertices. Since we started from a matrix of
size m2 the total replication rate is ≤ 2m+ 1. The number of keys is equal to the number
of candidates m.

The amount of information received by each reducer in each round is bounded by 2m2 +m,
namely linearly many VertexSetWritables with modes ’new’ and ’reachedBy’ and one
VertexSetWritable with mode ‘old’. The amount of information sent by each ReduceVertex
process is bounded by 2m. Since ’old’ and ’new’ are disjoint sets, the total size of the
three sets (’old’, ’new’ and ’reachedBy’) cannot be greater than 2m. The output of
ReduceComplement in the last map-reduce round is bounded by m. In total, for the 3
map-reduce rounds, we thus have wct ≤ 6m2 + 8m and tcc ≤ 6m3 + 8m2. �

5.1.5 Performance of the MapReduce Algorithm for Computing the
Schwartz Set

Proposition 9 Algorithm 4.5.1 for computing the Schwartz set has these characteristics:
rr ≤ 2m+ 1, #rounds = dlog2me+ 1, #keys = m, wct = (2m2 + 3m)(dlog2me+ 1), and
tcc ≤ 2m3 + 3m2(dlog2me+ 1).

Proof 9 The number of iterations of the while loop is bounded by dlog2me. Together
with the first map-reduce round, we thus get the upper bound #rounds ≤ dlog2me+ 1.

Inspecting the vertex-sets emitted by the mapper in each round, we observe that each
reduce task receives one set with mode = ‘old’, up to m sets with mode = ‘new’ and up to
m sets with mode = ‘reachedBy’. Hence, the m2 entries in the input dominance matrix
may give rise to at most 2m3 +m2 vertices communicated in total to the m reduce tasks
in each round. We thus get rr ≤ 2m+ 1.

The number of keys #keys is bounded by the number m of candidates.

The total size of all sets reachedBy or new that may ever be emitted is bounded by the
maximum number of possible combinations (r, i, n), where r stands for an entry in the
set reachedBy, n stands for an entry in the set new and i is an arbitrary vertex, i.e. the
number of combinations is m3.
Together with the set of mode = ‘old’, the total amount of information received by the
reducers is ≤ 2m3 +m2(dlog2me+ 1). For the total amount of information written as
output from the reduce tasks and serving as input to the mappers, we have the upper
bound (dlog2me + 1) · 2 ·m2, i.e., in each round, each of the m reduce tasks returns 3
VertexSetWritables of total size ≤ 2m, since the sets ’old’ and ’new’ are disjoint. In total,
we thus have tcc ≤ 2m3 + 3m2(dlog2me+ 1).

85



5. Theoretical Performance Guarantees of the proposed Algorithms

For an upper bound on the wall clock time wct we have to multiply the number of rounds
with an upper bound on the information received and sent by each reduce task in each
round. We thus get wct ≤ 2m2 + 3m(dlog2me+ 1). �

5.1.6 Performance of the MapReduce Algorithm for Computing the
Schulze Winner

For the MapReduce algorithm for computing the Schulze winner, shown in algorithm 4.6.1,
the following performance guarantees hold. Note, that the performance guarantees are
identical to the performance measures derived for the MapReduce algorithm for computing
the Schwartz Set in Section 4.5.

Proposition 10 Algorithm 4.6.1 for computing the Schulze winner has these character-
istics: rr ≤ 2m+1, #rounds = dlog2me+1, #keys = m, wct = (2m2 +3m)(dlog2me+1),
and tcc ≤ 2m3 + 3m2(dlog2me+ 1).

Proof 10 The number of iterations of the while loop is bounded by dlog2me. Together
with the first map-reduce round, we thus get the upper bound #rounds ≤ dlog2me+ 1.

Inspecting the vertex-sets emitted by the mapper in each round, we observe that each
reduce tasks receives one set with mode = ‘old’, up to m sets with mode = ‘new’ and up
to m sets with mode = ‘reachedBy’. Hence, the m2 entries in the input adjacency matrix
may give rise to at most 2m3 +m2 tuples communicated in total to the m reduce tasks in
each round. We thus get rr ≤ 2m+ 1.

The number of keys #keys is bounded by the number m of candidates.

The total size of all sets reachedBy or new that may ever be emitted is bounded by the
maximum number of possible combinations (r, i, n), where r stands for an entry in the
set reachedBy, n stands for an entry in the set new and i is an arbitrary vertex, i.e. the
number of combinations is m3.
Together with the set of mode = ‘old’, the total amount of information received by the
reducers is ≤ 2m3 +m2(dlog2me+ 1). For the total amount of information written as
output from the reduce tasks and serving as input to the mappers, we have the upper
bound (dlog2me + 1) · 2 ·m2, i.e., in each round, each of the m reduce tasks returns 3
WidestPathsWritables of total size ≤ 2m, since the sets ’old’ and ’new’ are disjoint. In
total, we thus have tcc ≤ 2m3 + 3m2(dlog2me+ 1).

For an upper bound on the wall clock time wct we have to multiply the number of rounds
with an upper bound on the information received and sent by each reduce task in each
round. We thus get wct ≤ 2m2 + 3m(dlog2me+ 1). �

86



5.1. Performance Guarantees for Our MapReduce Algorithms

Problem Input Input Size #keys rr
Scoring rules total orders O(mn) m 1
STV total orders O(mn) m 1
Dom. graph partial orders O(nm2) m2 m
Schwartz set dom. graph O(m2) m 2m+ 1
Smith set dom. graph O(m2) m 2m+ 1
Copeland set dom. graph O(m2) m 2
Schulze w. maj. graph O(m2) m 2m+ 1

Table 5.1: Summary of performance characteristics of our MapReduce algorithms.

5.1.7 Performance of the MapReduce Algorithm for Computing the
STV Winner

Proposition 11 For computing STV, we obtain the following characteristics: rr = 1,
#rounds = m− 1, #keys ≤ m, wct ≤ (m− 1)(n+ 1), and tcc ≤ (m+2)(m−1)

2 · (n+ 1).

Proof 11 There are m− 1 rounds. For every total order in the preflist of each voter,
the mapper only emits 1 value (namely score 1 for the top-candidate in this total order).
There is no duplication of values and therefore the replication rate is 1 (rr ≤ 1). Each
reducer receives at most n values and outputs 1 value. Thus wct ≤ (m− 1) · (n+ 1).

In each round, the number of keys (and, hence, the number of reduce tasks) is bounded by
the number of not yet excluded candidates. That is, we start with m reducers in the first
round and end up with 2 reducers in the (m− 1)-st round. The total number of reduce
tasks is therefore (m+2)(m−1)

2 and we have tcc ≤ (m+2)(m−1)
2 · (n+ 1). �

5.1.8 Summary of Performance Guarantees for Our MapReduce
Algorithms

In this section we derived performance guarantees for all proposed MapReduce Algorithms.
In Table 5.1 and Table 5.2 all performance guarantees of the proposed algorithms are
summarized.

Input type and size. The algorithms in Table 5.1 are ordered by the type of input
instance required. The algorithms for the positional scoring rules and for the STV winner
determination require total orders as input. Total orders always have size m · n, since we
have n votes ranking m candidates. In the proposed MapReduce algorithms a graph is
always represented as an adjacency matrix, where the entries in the matrix take either 0
and 1 in the dominance graph or the majority margin in the weighted majority graph as
values. Therefore the input size of all problems using a graph representation as input is
O(m2), which is the size of the matrix.

87



5. Theoretical Performance Guarantees of the proposed Algorithms

Problem #rounds wct tcc
Scoring rules 1 n+ 1 m(n+ 1)
STV m− 1 (m− 1)(n+ 1) (m+2)(m−1)

2 · (n+ 1)
Dom. graph 1 n+ 1 m2(n+ 1)
Schwartz set dlog2 me+ 1 O(m2 logm) O(m3)
Smith set 3 6m2 + 8m 6m3 + 8m2

Copeland set 1 2m+ 2 2m2 + 2m
Schulze dlog2 me+ 1 O(m2 logm) O(m3)

Table 5.2: Summary of performance characteristics of our MapReduce algorithms.

Number of keys. Most of the proposed algorithms use one key per candidate; only
the algorithm for creating the graph representation uses m2 keys. This is because we
have to consider all possible pairs of candidates in the computation.

Replication rate. The replication rate varies a lot among the different algorithms.
Scoring rules and STV winner determination have a replication rate of 1, since each vote
is considered as a whole and no complex splitting of the data is required. For creating
the graph representation it is necessary to first split each vote into all pairs of candidates.
This results in a replication rate of m. The computation of the Schwartz Set, Smith Set
and Schulze method are based on a special data structure and are solved by very similar
algorithms, for which the replication rate is bounded by 2m+ 1.

Number of MapReduce rounds. The algorithms for computing the scoring rules,
the graph representation, the Smith set and the Copeland set have a fixed number of
MapReduce rounds. The algorithm for STV Winner Determination is m− 1 since only
one candidate can be excluded per round. Note, that this is as expected from the derived
complexity result in Chapter 3, since the STV Winner Determination method is shown
to be in paraL.
For the Winner Determination problems by the Schwartz set and the Schulze method
the number of rounds is bounded by dlog2me+ 1, since the whole transitive closure has
to be computed, or in the case of the Schulze method all widest paths have to be found.
In practice the bound is usually not reached and the computation stops after much fewer
rounds; this is also observed in the experimental evaluation in Chapter 6.

Wall clock time. The wall clock time of the algorithms for computing the positional
scoring rules and the graph representation is n+ 1 and therefore only depends on the
number of votes. The algorithm for computing the STV winner results in a wall clock
time of (m − 1)(n + 1). Therefore it depends on both, the number of votes and the
number of candidates. The wall clock time of the remaining algorithms only depends on
the number of candidates.

88



5.2. Performance Guarantees for Our Pregel Algorithms

Total communication cost. The total communication costs of the algorithms for the
winner determination by C1- and C2-functions depend on the number of candidates m.
For the other methods: positional scoring rules, STV method and dominance graph; the
total communication cost also depends on the number of votes. The total communication
cost is cubic in the number of candidates for the Schwartz Set, Smith Set and the Schulze
method.

5.2 Performance Guarantees for Our Pregel Algorithms

In Chapter 4 Pregel algorithms for the winner determination problems by the following
methods have been proposed: Smith Set, Schwartz Set and Schulze Method. All of those
algorithms use the central Pregel procedures of the forward and backward min-label
propagation presented in [YCX+14]. The forward and backward propagation are both so
called BPPAs (Balanced Practical Pregel Algorithms) with O(δ) supersteps [YCX+14];
δ refers to the diameter of the graph. This means, that the algorithms have linear space
usage, linear computation cost and linear communication cost.

The number of iterations for identifying all strongly connected components in the graph
by min-label propagation is bounded by the longest path in the condensation of the
input graph [YCX+14]. The condensation is the directed acyclic graph resulting from
contracting each strongly connected component into one vertex. Unfortunately we cannot
give any tighter bounds on the number of iterations for our algorithms. Therefore the
number of iterations for the computation of the Smith set, the Schwartz set and the
Schulze method is bounded by the number of strongly connected components of the
input graph. In the following, we argue that the algorithms are not expected to reach the
bound. The Pregel algorithms for computing the Smith or Schwartz set take as input the
weak or strict dominance graph, respectively. The condensation resulting from the weak
dominance graph has only one root, but the condensation of the strict dominance graph
may have several roots. This property is implicitly used in the post processing procedures
of the algorithms and is important to the following performance considerations. Recall,
that the Schwartz set is the union of all undominated SCCs in the strict dominance
graph and the Smith set is the unique undominated SCC in the weak dominance graph.

We provide some observations on the performance behaviour of the Pregel algorithms:

Performance of the Pregel algorithms for computing the Schwartz and the
Smith Set. The (weak or strict) dominance graph D is given as input. The graph D
has l strongly connected components, denoted by {SCC1, SCC2, . . . , SCCl}, therefore
the resulting condensation C of D has l vertices and we are interested in finding the
root(s) of the directed acyclic graph C.

The vertex v with the smallest id (v.id) in the graph is contained in SCCi. The set S
(sources) contains all SCCs, which have a path to SCCi and the set T (targets) contains
all SCCs, that are reachable from SCCi. Note, that S, T , and SCCi are disjoint sets.

89



5. Theoretical Performance Guarantees of the proposed Algorithms

After the forward and backward min-label propagation the vertices have the following
labels (the notation ∗ refers to an arbitrary vertex id):

label(w) = (w.s, w.t) =


(∗, v.id) if w ∈ S
(v.id, v.id) if w ∈ SCCi
(v.id, ∗) if w ∈ T
(∗, ∗) otherwise.

Vertices that are not connected to SCCi can only occur if the strict dominance graph was
taken as input, i.e. vertices of this type only exist in the computation of the Schwartz
set. The postprocessing procedures of the algorithms cause us to exclude all vertices
contained in T , i.e. their status is set to ’notSmith’ or ’notSchwartz’. If S is the empty
set, then SCCi is an undominated strongly connected component and is identified as
a winning set; i.e., SCCi is either the Smith set or a part of the Schwartz set. If S is
not empty, than SCCi is excluded from the possible winners in the postprocessing step.
In the next iteration the vertices in this SCC are not initialized and therefore do not
propagate their ids as forward and backward labels in the pregel procedure. In this next
iteration the vertex with the smallest id labelling the remaining vertices, is therefore a
different one than in the preceding iteration.
In the worst case we exclude only one SCC per iteration. Therefore we have the worst
case number of rounds in the while-loop of l.

Performance of the Pregel algorithm for computing the Schulze method. For
computing the Schulze method the weighted majority graph WP is used as input. A
major difference to the algorithms for computing the Smith set and the Schwartz set is,
that we can eliminate many vertices from the set of possible winners in a preprocessing
step. In this preprocessing step we check the weights of the outgoing and incoming edges
of each vertex and exclude a vertex if the maximum weight of all outgoing edges is smaller
than the maximum weight of all incoming edges. For the further computation we observe
that the weighted majority graph has the same edges (with positive weight) as the strict
dominance graph. Note, that the Schulze Winners are always a subset of the Schwartz
set. Based on the min-label propagations we also use postprocessing steps to eliminate
vertices, as for the computation of the Schwartz set. We additionally use the information
on the width of the widest paths. The propagation of the information on the width of
the widest paths might take more supersteps than the propagation of the min-labels,
since the widest path might be longer than the shortest path connecting two vertices.
Nevertheless the theoretical performance boundaries of the Pregel procedure remain
the same, as for the min-label propagation without weights. Despite the adaptation of
the min-label propagation to maintain weights it is still a BPPA algorithm taking O(δ)
supersteps.
In the postprocessing step the additional information on the widest paths is used to
exclude vertices from the possible Schulze winners. We therefore expect the Schulze

90



5.2. Performance Guarantees for Our Pregel Algorithms

Algorithm to take much fewer iterations of the while-loop, than for the computation of
the Schwartz set; although we cannot provide a tighter theoretical upper bound.

91





CHAPTER 6
Experimental Evaluation

In this chapter the experimental evaluation of the proposed algorithms is documented. In
Chapter 5 the theoretical performance guarantees of all Algorithms were discussed and
we observed that the Schwartz Set and the Schulze Method are the computationally most
expensive methods. Therefore, we focus in the experimental evaluation on the Schwartz
set and on the Schulze method. First the experimental evaluation of the MapReduce
algorithm is discussed. For this evaluation we only used synthetic data. The evaluation
of the Pregel algorithm is discussed next, where we used real-world data and synthetic
data.

6.1 MapReduce Algorithm for Computing the Schwartz
Set

The MapReduce algorithms presented in this thesis are implemented in Java on top
of Hadoop. The source code is available opensource on GitHub1. The MapReduce
algorithms for computing the Schwartz set, the Smith set and the Schulze method are
very similar. By the theoretical performance guarantees of the algorithms we observed
that the Schwartz Set and the Schulze Method are the computationally most expensive
methods. Therefore, we focus on the Schwartz set, to show that the MapReduce algorithm
is practicable and that it scales well in a cloud computing environment. The scalabilty is
very important to ensure that the approach is suitable for even larger problem instances
and it fits the architecture of the cloud computing environment. From the property of
scalability it follows, that given larger and larger problem instances, one can achieve
reasonable computation times for determining the winners of these elections by choosing
an appropriate number of computation nodes.

1https://github.com/theresacsar/BigVoting

93



6. Experimental Evaluation

m Candidates 10m Edges m2/10 Edges
1,000 10,000 100,000
3,000 30,000 900,000
5,000 50,000 2,500,000
7,000 70,000 4,900,000

Table 6.1: Number of Edges of the Synthetic Graphs

m Candidates 10m Edges m2/10 Edges
1,000 0.02 0.2
3,000 0.007 0.2
5,000 0.004 0.2
7,000 0.002 0.2

Table 6.2: Density of the Synthetic Graphs

Test Environment. For the experiments the environment provided by Amazon as the
Amazon Elastic Compute Cloud (EC2)2 is used. It is possible to utilize an EC2 cluster
with many different configurations – ne can choose among various types of computing
nodes, with different hardware resources. The nodes in an EC2 cluster are called instances,
and we utilize instances of the type m3.xlarge for our experiments. The m3.xlarge
instances have the following configuration: 4 virtual CPUs, 15 GiB RAM, 2 x 40 GB
Instance Storage and high network performance 3. Note, that using different types of
instances doesn’t reflect on the general result of scalability of our algorithms. Up to 128
of such instances are used for the evaluation. The times we report in this section are
measured from the start of the first MapReduce round to the end of the final MapReduce
round.

Synthetic Datasets. To show practicality and scalability, synthetic datasets of varying
size are utilized. We use the DigraphGenerator [SW16] to randomly generate dominance
graphs with m candidates and 10m or m2/10 edges. In the experimental analyses it
can be observed that the number of edges is an important factor for the performance
of the algorithms. Therefore, two different types of graphs with different densities are
used. The generated random datasets have m = {1000, 3000, 5000, 7000} candidates. The
resulting number of edges are shown in Table 6.1. For each number of candidates, five
different graph instances for the "10m edges"-graphs and for the "m2/10 edges"-graphs are
generated. Only one dataset per number of candidates is used to limit the cost incurred
by the experiments. The density ( 2|E|

|V |(|V |−1)) of the used graphs can be seen in Table 6.2.

Computation Time of the Schwartz set. Run times for computing the Schwartz
set using the MapReduce algorithm as described in Section 4.5 are shown in Figure 6.1

2https://aws.amazon.com/de/ec2/
3https://aws.amazon.com/ec2/previous-generation/?nc1=h_ls

94

https://aws.amazon.com/de/ec2/


6.1. MapReduce Algorithm for Computing the Schwartz Set

and Figure 6.2. Figure 6.1 shows the results for the sparser datasets with 10m edges.
The number of candidates ranges from 1,000 to 7,000 and we used 1 + 2 to 1 + 32 EC2
instances (1 name node instance and x worker instances). A timeout of 60 minutes was
used for this experiment. It can be observed that the time incurred falls below 20 minutes
once 1 + 16 EC2 instances are used, and below 15 minutes for 1 + 32 instances.

The times for the denser (m2/10 edges) graphs is shown in Figure 6.2. In comparison
to the sparser graphs we use much more, up to 1 + 128, EC2 instances. As Figure 6.2
shows, the runtimes are higher for the denser graphs, but the general picture remains
the same. A timeout of 90 minutes was used for this experiment. We see that the time
incurred falls below 40 minutes for most inputs once 1 + 64 EC2 instances are used and
below 20 minutes once 1 + 128 EC2 instances are used.

Most importantly, we see that the implementation scales: We observe that utilizing a
larger number of EC2 instances significantly decreases the computation time. Note that
the main memory consumption used in the EC2 instances remains O(m), i.e., relative to
the number of candidates, and not O(m2). This is essential for scalability, as otherwise
main memory size would become a hidden limit for scalability, not obvious in Figures 6.1
and 6.2.

Figure 6.1: Time for the computation of the Schwartz Set with 10m edges using up to
1 + 32 instances.

In this evaluation, the focus is on the Schwartz set as it was the most complex and
theoretically most difficult one of the MapReduce algorithm proposed in this thesis –
thus showing the overall limits of the approach. We demonstrate with our experiments
that our algorithms indeed benefit from an increase in parallelization, i.e., a significant
decrease in the run time can be observed when the number of processors (instances) is

95



6. Experimental Evaluation

Figure 6.2: Time for the computation of the Schwartz Set with m2/10 edges using up to
1 + 128 instances.

increased.

6.2 Pregel Algorithm for Computing the Schulze Winner

The Schulze Method is the most involved of the proposed Pregel algorithms. We therefore
perform experimental evaluation of the Algorithm for the Schulze method presented in
Section 4.6. For this purpose we test them against actual real-world large-scale data sets.
We use the ranking data provided by the online music streaming service Spotify. The
Spotify ranking data4 of 2017 consists of daily top-200 music rankings for 53 countries.
First these rankings are transformed to the preflib dataformat (soi) [MW13]. This is done
by considering the ranking of each day and country as a single voter, and then generate
the corresponding weighted majority graph. The weighted majority graph in .soi format
is then used as input for the Pregel Schulze algorithm. The experiments are based on
four data sets generated from the spotify data: Global150, Global200, Europe150, and
Europe200, which are derived from the daily top-150 or respectively top-200 charts of all
available or only the European countries. We do not take into account the number of
listeners in each country, since this information is not available. This information could
easily be included by giving the votes/rankings by the countries corresponding weights.

In Table 6.3, we provide an overview of these four data sets. All four weighted tournament
graphs are dense — the density calculated as 2|E|

|V |(|V |−1) is between 0.94 and 0.97 for all
spotify graphs. Datasets referred to as global contain rankings from all countries available,

4https://spotifycharts.com/regional

96

https://spotifycharts.com/regional


6.2. Pregel Algorithm for Computing the Schulze Winner

Table 6.3: Spotify data sets

candidates m voters n edges after preproc.

Europe150 9,698 7,481 44.1M 11 undecided
Europe200 12,250 7,481 70.7M 12 undecided
Global150 14,187 15,553 94.9M 8 undecided
Global200 18,407 15,553 159.6M 9 undecided

where datasets europe only contain rankings from European countries. We also vary the
length of used votes - e.g. we only use the first 150 or 200 songs from each vote. This
means, the dataset Europe150 contains as votes all top 150 rankings of the available
European countries. We note that the Spotify data sets used here are significantly larger
than any instances available in the PrefLib database [MW13].

Our Schulze algorithm is implemented in the Scala language. Furthermore, we use
the GraphX library5, which is built on top of Spark [ZCF+10], an open-source cluster-
computing engine. GraphX provides a Pregel API, but is slightly more restrictive than
the Pregel framework. In particular, in GraphX, only messages to adjacent vertices
can be sent, while other Pregel implementations allow messages to be sent to arbitrary
vertices. The source code of our implementation is available as open source on GitHub 6.

We ran our experiments on a Hadoop cluster with 18 nodes (each with an Intel Gold 5118
CPU, 12 cores, 2.3 GHz processor, 256 GB RAM, and a 10Gb/s network connection).
To better observe the scalability of our algorithm, we restricted the number of cores and
nodes (details follow).

6.2.1 Results

Our experiments show that our algorithm scales very well with additional computational
resources: both an increase in nodes and in cores per node significantly sped up the
computation. We refer the reader to Figure 6.3 for an overview of run-times for 1,2,3
and 4 nodes with up to 1,2,4 and 8 cores each. Therefore, we have a total number of
cores of 1, 2, 3, 4, 6, 8, 12, 16, 24 and 32 in the experiments. On the x-axis of this chart
we show the total number of cores, i.e., the number of nodes times the number of cores
per node. For x-values with multiple interpretations we show the best runtime. This is
always the configuration with most cores per node, since using another node costs more
computing power. Note, that the differences between an increase in nodes or cores is
almost negligible. Furthermore, our implementation manages to compute Schulze winners
of all Spotify data sets within very reasonable time: with 4 nodes each using 8 cores, the
data sets could be handled in less than 6.5min.

5https://spark.apache.org/graphx/
6https://github.com/theresacsar/CloudVoting

97

https://spark.apache.org/graphx/


6. Experimental Evaluation

Figure 6.3: Runtime required for computing Schulze winners.

To the best of our knowledge the original, sequential algorithm [Sch11] based on the
classical Floyd–Warshall algorithm is the only published algorithm for computing the
Schulze winners. We compare the run-times of our implementation to this originally
proposed algorithm. These two algorithms differ not only in their capability of paralleliza-
tion, but also in that our algorithm only returns Schulze winners whereas the original
algorithm returns a full ranking of candidates. Due to our focus on Schulze winners, we
were able to include the many optimisations described in Section 4.6. We observe, that
our algorithm is faster than the original algorithm even without parallelization (1 node
with 1 core): Our algorithm requires with this configuration 26min/42min/64min/105min
for the the Europe150/200 and Global150/200 data sets, respectively. In contrast, the
original algorithm (also implemented in Scala) requires 71min/143min/221min for the
Europe150/200 and Global150 data sets; it did not terminate in reasonable time for the
Global200 data set. As mentioned before, this comparison is not completely fair due to
the different output, but shows the impact of the optimisations in our algorithm.

Synthetic Data. We also performed experiments with low-density graphs (based on
synthetic data). We observed that for these graphs the number of undecided candidates
decreases slower with each iteration of the forward-backward propagation, in contrast
to the Spotify data sets where even after preprocessing very few undecided candidates

98



6.2. Pregel Algorithm for Computing the Schulze Winner

Dataset Vertices Edges Density Time (s) Rounds µ σ

Dataset1 1,000 71,065 0.14 271 8 5 1.30
Dataset2 5,000 518,070 0.04 220 6 4 1.30
Dataset3 5,000 1,621,807 0.13 207 3 5 1.30
Dataset4 10,000 2,216,769 0.04 263 8 5 1.30
Dataset5 10,000 7,532,099 0.15 432 4 6 1.30
Dataset6 10,000 12,915,325 0.26 441 4 7 1.30

Table 6.4: Synthetic Datasets and runtime of the Pregel Algorithm for Computing the
Schulze method

remained (cf. Table 6.3). The computation of the spotify data sets takes at most 2 rounds,
whereas for the synthetic datasets we observe, that they take much longer to converge.

For the experiments with the randomly generated datasets we did not restrict the used
resources on the cluster so Spark can choose the optimal number of used nodes and
cores. The total number of available nodes is 18, but the Spark used at most 6 nodes,
so we never exceeded the maximum of cores used in the evaluation of the spotify data.
The random data is generated using the function GraphGenerators.logNormalGraph(µ,
σ) provided by GraphX. The chosen parameters, observed computation time and the
number of rounds are shown in Table 6.4. For the MapReduce algorithms we observed
in the preceding section that the density is an influential factor. This seems to not be
the case for the Pregel algorithms. For the Spotify real world datasets the number of
undecided candidates after the preprocessing was significantly lower than the number
observed in the evaluation of the synthetic datasets. Further, the number of undecided
candidates decreases much slower than in the real world data.

99





Part IV

Conclusion

101





CHAPTER 7
Conclusion

7.1 Summary and Discussion

This thesis deals with the computational challenges arising from selecting winners from
large elections. The focus lies on the design of cloud computing algorithms for selected
methods of winner determination in computational social choice. Complexity results on
winner determination methods – namely the single tranferable vote (STV) rule, ranked-
pairs rule and the Schulze method – are derived to show whether they are suitable for
parallel computation. The NL-completeness result for the Schulze Winner Determination
problem ensured us, that efficient parallel execution is possible. Further, it is shown
that the ranked-pairs methods is P-complete and therefore inherently sequential [Joh90].
For the STV Winner Determination problem it is shown, that it is solvable in O(m+
log(n)) space. Thus, a MapReduce algorithm under this parametrization is proposed in
Section 4.8.1.

For other winner determination methods – namely the Schwartz set, the Smith set, the
Schulze method, positional scoring rules and the Copeland scores – cloud computing
algorithms are designed using the programming paradigms MapReduce and/or Pregel.
For C1- and C2-functions, which take the dominance graph or the weighted majority
graph as input, MapReduce algorithms as well as Pregel algorithms are proposed. The
graph representation itself intuitively calls for a Pregel algorithm, but the representation
of the input graph as an adjacency matrix allows us to efficiently apply MapReduce
algorithms. The other winner determination methods are based on the preference profile
as input and only MapReduce algorithms are designed for this type of methods, since
the Pregel computation framework is only applicable to graph based computations.

The scalability and practicality of the proposed cloud computing algorithms is shown by
experimental evaluation.

103



7. Conclusion

MapReduce Algorithms. All proposed MapReduce algorithms are analysed with
regard to their theoretical performance measures. Performance guarantees for replication
rate, communication cost, wall clock time and the number of MapReduce rounds are
proposed and proved. We observe that the algorithms vary in their performance guarantees
and the predominant factor is either the number of votes or the number candidates;
dependent on the respective method.

The experimental evaluation of the MapReduce algorithms shows that the number of
edges or the density of the graphs is a very important factor for the performance of the
algorithms. This yet needs to be further investigated.

Pregel Algorithms. For the following winner determination methods Pregel algo-
rithms have been proposed: Smith set, Schwartz set, and the Schulze method.

The reason for the fact that there are more MapReduce algorithms than Pregel algorithms
designed is that Pregel algorithms can only be used for graph based computations. The
proposed Pregel algorithms are all making use of the idea of forward and backward
min-label propagation in the graph. This method is then adapted to the specific problem.
Besides the tuning of the Pregel procedure many logical considerations are comprised
in the preprocessing and postprocessing procedures in the respective algorithms. The
considerations vary depending on the problem statement and aim at shrinking the problem
space very quickly.

In the experimental evaluation it is observed that the reduction of the problem space
(reducing the number of possible candidates) works very well for the Schulze method.

Implementation. The implementation of the algorithms results in two open-source
projects: BigVoting and CloudVoting.

BigVoting (https://github.com/theresacsar/BigVoting) contains the MapRe-
duce algorithms implemented in Java on Hadoop.

CloudVoting (https://github.com/theresacsar/CloudVoting) is a Spark
library containing many methods necessary for working with election data. The pro-
gramming language used is Scala and the implementation makes use of the Spark library
GraphX for the graph based computations. The package CloudVoting contains many
functions for working with preference data: (1) functions for reading and writing election
data in the widely used PrefLib format, (2) methods for converting the representation of
election data (e.g. convert a weighted majority graph to a weak dominance graph), (3)
functions for computing scores based on various scoring rules, (4) the Pregel algorithms
presented in this thesis.

Experimental Evaluation. For the experimental evaluation the most involved
algorithms are chosen as representatives. The evaluation shows that the algorithms scale
very well and that they are practical on real-world data. In particular we observed, that
the algorithms perform better on real world data, than on the generated synthetic data.

104

https://github.com/theresacsar/BigVoting
https://github.com/theresacsar/CloudVoting


7.2. Open Issues and Directions for Future Work

Concluding Remarks. In this work, we have presented several cloud computing
algorithms for winner determination in computational social choice. The MapReduce
algorithms are implemented using the programming language Java on Hadoop and the
Pregel algorithms are implemented using the programming language Scala on top of Spark.
The Pregel algorithm also make use of the Spark library GraphX. Frameworks such as
Spark are quickly developing and offer more possibilities for algorithm optimization. For
example for the graph based algorithm it is possible to use graph partitioning techniques
for distributing the graph in the cluster and further speed up the computation. Spark also
makes it possible to combine Pregel based computations with MapReduce computations
and sequential operations seamlessly. From this follows that the actual performance of
the algorithms highly depends on the implementation and the underlying framework and
infrastructure on the used cluster.

Nonetheless, it remains necessary to formulate the algorithms using cloud computing
paradigms. Only the correct implementation makes it possible for the underlying
framework to efficiently execute the computation in the cloud system. The proposed
algorithms are expected to be used in future implementations and other software packages
combined with framework specific optimizations.

7.2 Open Issues and Directions for Future Work
The application of cloud computing techniques for methods in computational social choice
is a new research area. Therefore, we encountered many possible new directions and
open issues for future work.

Other Problems in Computational Social Choice. There are many other voting
rules that can be investigated for their parallelizability. The winner determination
problem by the Kemeny rule is NP-hard[BITT89, HSV05] and thus is unlikely to allow
for practical parallel computation. However, heuristic algorithms [DKNS01, DK04] for
computing the winners based on the Kemeny rule might be parallelizable.

Computational social choice is also dealing with other problems besides winner determi-
nation. Such topics include committee selection, judgement aggregation and problems of
fair division. It would be interesting to investigate the parallelizability of problems in
those areas.

Generate Random Preference Profiles. During the experimental evaluation we
experienced that the generation of large synthetic datasets is a no-trivial task. Also in
another studies on large election data (e.g. [MFG12]) it was highlighted that there is
a lack of support for existing statistical models which are used to generate synthetic
election data. We conclude, that there seems to be a need to gain more insight on the
statistical properties of election data.
The most widely used method for generating election data is the Mallows model. The
available implementations for random data generation by the Mallows model are not

105



7. Conclusion

suited very well for large scale election data generation, i.e. we experienced that the
Mallows model reaches its limits for elections with more than 10,000 candidates. Creating
new methods for the random data generation or devising new efficient algorithms for
already existing methods, would be very beneficial for future work on large scale election
data sets. Especially under the aspect that it is often difficult to obtain large scale
real-world election data.

Experimental Evaluation. It would be interesting to perform larger experiments
to identify characteristics in election graphs that influence the performance. In the
experimental section it has already been observed, that the performance of MapReduce
is influenced by the number of edges (or the density of the graph) and for the Pregel
algorithms the number of strongly connected components has been identified as a highly
influential factor. Generating large scale election data and performing experiments on
those could give valuable insights on the behaviour of those algorithms and to identify
graph properties influencing the performance.

Framework Specific Optimizations. The implementations of the algorithms can be
tuned to the specific underlying framework. For example for the Pregel algorithm several
methods of graph partitioning can be used to optimize the performance. Partitioning of
data is relevant to algorithms running on Spark or Hadoop too.

Further Algorithm Optimization. The algorithms can be further optimized by
applying other optimization approaches. For example the assignment of ids to the
vertices is currently done at random, but it would be more beneficial to assign the ids by
some scoring function, e.g. the Borda scores. With this approach the algorithms would
converge faster.

106



List of Figures

2.1 The Full Preference Profile and the Weighted Majority Graph in Example 1 15
2.2 Dominance Graphs for Example 2 . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 STV Method by Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Calculation of scores by the Borda scoring rule. . . . . . . . . . . . . . . . 25

3.1 GraphW and relationR of Example 3 for Boolean formula φ = x1 nor (x2 nor x3)
and assignment I with I(x1) = I(x2) = true and I(x3) = false. . . . . . . 36

4.1 Weak Dominance Graph for Example 4 . . . . . . . . . . . . . . . . . . . 54
4.2 Strict Dominance Graph for Example 6 . . . . . . . . . . . . . . . . . . . 62
4.3 Weighted Majority Graph for Example 8 . . . . . . . . . . . . . . . . . . . 69
4.4 A weighted majority graph and its widest paths . . . . . . . . . . . . . . . 75

6.1 Time for the computation of the Schwartz Set with 10m edges using up to
1 + 32 instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Time for the computation of the Schwartz Set with m2/10 edges using up to
1 + 128 instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Runtime required for computing Schulze winners. . . . . . . . . . . . . . . 98

107





List of Tables

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Scoring Vectors for several Positional Scoring Rules [BBH16]. . . . . . . . 17
2.3 Positional Scores in Example 1. . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 The widest paths in Example 1 . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Computing the Smith Set by Example. . . . . . . . . . . . . . . . . . . . . 54
4.2 Forward (s) labels in Example 5 . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Backward (t) labels in Example 5 . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Computing the Schwartz Set by Example . . . . . . . . . . . . . . . . . . 63
4.5 Forward labels (s) in Example 7 . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Backward labels (t) in Example 7 . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Computing the Schulze Winner by Example . . . . . . . . . . . . . . . . . 70
4.8 Initialisation of Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9 Vertices during the Computation . . . . . . . . . . . . . . . . . . . . . . . 76
4.10 Messages sent during the computation . . . . . . . . . . . . . . . . . . . . 77

5.1 Summary of performance characteristics of our MapReduce algorithms. . 87
5.2 Summary of performance characteristics of our MapReduce algorithms. . 88

6.1 Number of Edges of the Synthetic Graphs . . . . . . . . . . . . . . . . . . 94
6.2 Density of the Synthetic Graphs . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Spotify data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Synthetic Datasets and runtime of the Pregel Algorithm for Computing the

Schulze method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

109





List of Algorithms

4.1.1 Computing Positional Scores . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 MapScores() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3 ReduceSum() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Computing the weighted majority graph from the preference profile . . 46

- Function MapVotes(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

- Function ReduceSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Copeland Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 MapRows() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 MapColumns() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.4 ReduceVectorsSum() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Smith Set MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 FirstMap(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 MapVertex(VertexWritable) . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 ReduceVertex(key=i,value=VertexSetWritable) . . . . . . . . . . . . . . 52

4.4.1 SmithSet(D�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 PreProcessing() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 Forward-Backward-Propagation . . . . . . . . . . . . . . . . . . . . . . 58

4.4.4 PostProcessing for vertex v . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Schwartz Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Post processing for vertex v . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.1 Schulze Winner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.2 FirstWidthMap(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

111



4.6.3 MapWidestPaths(WidestPathsWritable) . . . . . . . . . . . . . . . . . . 68

4.6.4 ReduceWidestPaths(key=i,value=VertexSetWritable) . . . . . . . . . . 69

4.6.1 SchulzeWinner(WP ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.2 Preprocessing() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.3 Forward-Backward-Propagation . . . . . . . . . . . . . . . . . . . . . . 73

4.6.4 Postprocessing for vertex v . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8.1 STV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8.2 MapSTV() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8.3 ReduceSum() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

112



Bibliography

[AM12] Alnur Ali and Marina Meilă. Experiments with kemeny ranking: What works
when? Mathematical Social Sciences, 64(1):28–40, 2012.

[ASSU13] Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman.
Upper and lower bounds on the cost of a map-reduce computation. Proceedings
of the VLDB Endowment, 6(4):277–288, 2013.

[AU10] Foto N Afrati and Jeffrey D Ullman. Optimizing joins in a map-reduce envi-
ronment. In Proceedings of the 13th International Conference on Extending
Database Technology, pages 99–110. ACM, 2010.

[BBF10] Yoram Bachrach, Nadja Betzler, and Piotr Faliszewski. Probabilistic possible
winner determination. In Proceedings of AAAI-10, 2010.

[BBH16] Felix Brandt, Markus Brill, and Paul Harrenstein. Tournament solutions.
In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel
Procaccia, editors, Handbook of Computational Social Choice. Cambridge
University Press, 2016.

[BBN14] Nadja Betzler, Robert Bredereck, and Rolf Niedermeier. Theoretical and
empirical evaluation of data reduction for exact kemeny rank aggregation.
Autonomous Agents and Multi-Agent Systems, 28(5):721–748, 2014.

[BF12] Markus Brill and Felix Fischer. The price of neutrality for the ranked pairs
method. In Proceedings of AAAI-12, 2012.

[BFH09] Felix Brandt, Felix Fischer, and Paul Harrenstein. The computational
complexity of choice sets. Mathematical Logic Quarterly, 55(4):444–459,
2009.

[BGN10] Nadja Betzler, Jiong Guo, and Rolf Niedermeier. Parameterized computa-
tional complexity of dodgson and young elections. Information and Compu-
tation, 208(2):165–177, 2010.

[BITT89] John Bartholdi III, Craig A Tovey, and Michael A Trick. Voting schemes
for which it can be difficult to tell who won the election. Social Choice and
Welfare, 6(2):157–165, 1989.

113



[BKS13] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps
for parallel query processing. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2013, New York, NY, USA - June 22 - 27, 2013, pages 273–284, 2013.

[BKS14] Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query
processing. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 212–223. ACM, 2014.

[Bor07] Dhruba Borthakur. The hadoop distributed file system: Architecture and
design. Hadoop Project Website, 11(2007):21, 2007.

[CDK06] Vincent Conitzer, Andrew Davenport, and Jayant Kalagnanam. Improved
bounds for computing Kemeny rankings. In Proceedings of AAAI-06, pages
620–626, 2006.

[CELM07] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. A short
introduction to computational social choice. In International Conference on
Current Trends in Theory and Practice of Computer Science, pages 51–69.
Springer, 2007.

[CKKP14] Ioannis Caragiannis, Christos Kaklamanis, Nikos Karanikolas, and Ariel D
Procaccia. Socially desirable approximations for Dodgson’s voting rule. ACM
Transactions on Algorithms (TALG), 10(2):6, 2014.

[CLP18] Theresa Csar, Martin Lackner, and Reinhard Pichler. Computing the schulze
method for large-scale preference data sets. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
Stockholm, Sveden, 2018.

[CLPS16] Theresa Csar, Martin Lackner, Reinhard Pichler, and Emanuel Sallinger.
Winner determination in huge elections with mapreduce. 10th Multidisci-
plinary Workshop on Advances in Preference Handling, 2016.

[CLPS17a] Theresa Csar, Martin Lackner, Reinhard Pichler, and Emanuel Sallinger.
Computational social choice in the clouds. Datenbanksysteme für Business,
Technologie und Web (BTW 2017)-Workshopband, 2017.

[CLPS17b] Theresa Csar, Martin Lackner, Reinhard Pichler, and Emanuel Sallinger.
Winner determination in huge elections with MapReduce. In Proceedings of
AAAI-17, 2017.

[Cop51] Arthur H Copeland. A reasonable social welfare function. Technical report,
mimeo, 1951. University of Michigan, 1951.

[CPSS15] Theresa Csar, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov.
Using statistics for computing joins with map reduce. In CEUR Workshop
Proc, volume 1378, pages 69–74, 2015.

114



[CRX09] Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions
that score rankings and maximum likelihood estimation. In Proceedings of
IJCAI-09, pages 109–115, 2009.

[Csa18] Theresa Csar. Cloudvoting: Analyzing preferences using spark and graphx.
11th Multidisciplinary Workshop on Advances in Preference Handling, 2018.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[DK04] Andrew Davenport and Jayant Kalagnanam. A computational study of the
kemeny rule for preference aggregation. In Proceedings of AAAI-04, volume 4,
pages 697–702, 2004.

[DKNS01] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods
for the web. In Proceedings of WWW-01, pages 613–622. ACM Press, 2001.

[EST14] Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space
and circuit complexity of parameterized problems: Classes and completeness.
Algorithmica, 71(3):661–701, 2014.

[Fis77] Peter C Fishburn. Condorcet social choice functions. SIAM Journal on
applied Mathematics, 33(3):469–489, 1977.

[GHR95] Raymond Greenlaw, H James Hoover, and Walter L Ruzzo. Limits to parallel
computation: P-completeness theory. Oxford University Press, 1995.

[HSV05] Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. The complexity of
Kemeny elections. Theoretical Computer Science, 349(3):382–391, 2005.

[Joh90] David S. Johnson. A catalog of complexity classes. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A), pages 67–161.
1990.

[JSW+17] Chunheng Jiang, Sujoy Sikdar, Jun Wang, Lirong Xia, and Zhibing Zhao.
Practical algorithms for computing stv and other multi-round voting rules.
In Proceedings of EXPLORE-17, 2017.

[KKWZ15] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learn-
ing spark: lightning-fast big data analysis. " O’Reilly Media, Inc.", 2015.

[KW17] Holden Karau and Rachel Warren. High Performance Spark. " O’Reilly
Media, Inc.", 2017.

[LPR+12] Jérôme Lang, Maria Silvia Pini, Francesca Rossi, Domenico Salvagnin, Kris-
ten Brent Venable, and Toby Walsh. Winner determination in voting trees
with incomplete preferences and weighted votes. Autonomous Agents and
Multi-Agent Systems, 25(1):130–157, 2012.

115



[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive
Datasets, 2nd Ed. Cambridge University Press, 2014.

[MAB+10] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of SIGMOD-10, pages 135–146.
ACM, 2010.

[McG53] David C McGarvey. A theorem on the construction of voting paradoxes.
Econometrica, 21(4):608–610, 1953.

[MFG12] Nicholas Mattei, James Forshee, and Judy Goldsmith. An empirical study of
voting rules and manipulation with large datasets. Proceedings of COMSOC,
page 59, 2012.

[MW13] Nicholas Mattei and Toby Walsh. PrefLib: A library for preferences
http://www.preflib.org. In Proceedings of ADT-13, pages 259–270, 2013.

[PX12] David C Parkes and Lirong Xia. A complexity-of-strategic-behavior compar-
ison between schulze’s rule and ranked pairs. In Proceedings of AAAI-12,
2012.

[San02] Tuomas Sandholm. Algorithm for optimal winner determination in combina-
torial auctions. Artificial intelligence, 135(1):1–54, 2002.

[Sch03] Markus Schulze. A new monotonic and clone-independent single-winner
election method. Voting matters, 17(1):9–19, 2003.

[Sch11] Markus Schulze. A new monotonic, clone-independent, reversal symmetric,
and condorcet-consistent single-winner election method. Social Choice and
Welfare, 36(2):267–303, 2011.

[SvZ09] Frans Schalekamp and Anke van Zuylen. Rank aggregation: Together we’re
strong. In Proceedings of ALENEX-2009, pages 38–51, 2009.

[SW14] Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on
pregel-like systems. Proceedings of VLDB-14, 7(7):577–588, 2014.

[SW16] Robert Sedgewick and Kevin Wayne. Algorithms (Fourth edition deluxe).
Addison-Wesley, 2016.

[Tid87] T Nicolaus Tideman. Independence of clones as a criterion for voting rules.
Social Choice and Welfare, 4(3):185–206, 1987.

[Val90] Leslie G Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103–111, 1990.

116



[XGFS13] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems, page 2.
ACM, 2013.

[YCX+14] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel
algorithms for graph connectivity problems with performance guarantees.
Proceedings of VLDB-14, 7(14):1821–1832, 2014.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10,
2010.

117



Curriculum Vitae

Mag. Julia Theresa Csar, Bakk.

Homepage http://www.dbai.tuwien.ac.at/staff/csar/
Email csar@dbai.tuwien.ac.at

Date of Birth December th, —Wels, Austria

Education
– Mag.e.oc.oec Master in Statistics, University of Vienna
– Bakk. e. oc. oec Bachelor in Statistics, University of Vienna
 Maa Higher School Certificate at BG/BRG Dr. Schauerstraße , Wels

Working Experience
–today PaeDoc Uniei Aian in the Database and Artificial Intelligence Group at the Technical

University of Vienna. Besides doing research my responsibilities are also in teaching.

SS  Teaching the course ”Grundzüge Relationaler Datenbanken” (Databasesystems) at the Statistics
Department of the University of Vienna.

SS  Adjunct Professor for the Undergraduate Semester Course: MATH / Introductory College
Mathematics (Spring Semester) at the Webster University Vienna.

SS  Tutor for the course ”Evaluation und Assessment im Bildungsbereich” at the University of Vienna
WS / Tutor for the course ”System- und Modelltheorie” at the University of Vienna

– Pojec aian at the University of Vienna, Institute of Scientific Computing
Logi.Diag—Test Driven Development and Condition Monitoring in Automated Systems
Development and implementation of a statistical compression algorithm that can be used for real
time analysis and preventive maintenance. Implementation of functions used for condition moni-
toring.

Peer-reviewed Publications
 Computing the Schulze Method for Large-Scale Preference Data Sets

Theresa Csar, Martin Lackner, Reinhard Pichler
(to appear) IJCAI-, Stockholm, Sweden

 CloudVoting: Analyzing Preferences using Spark and GraphX
Theresa Csar, th MPREF Workshop @ AAAI-, New Orleans, USA

http://www.dbai.tuwien.ac.at/staff/csar/
mailto:csar@dbai.tuwien.ac.at


 Computational Social Choice in the Cloud
Theresa Csar, Martin Lackner, Reinhard Pichler, Emanuel Sallinger
PPI Workshop @ BTW , Stuttgart, Germany

 Winner Determination in Huge Elections with MapReduce
Theresa Csar, Martin Lackner, Reinhard Pichler, Emanuel Sallinger
AAAI-, San Francisco, USA

 Winner Determination in Huge Elections with MapReduce
Theresa Csar, Martin Lackner, Reinhard Pichler, Emanuel Sallinger
th MPREF Workshop @ IJCAI-, New York City, USA

 Using Statistics for Computing Joins with MapReduce
Theresa Csar, Reinhard Pichler, Emanuel Sallinger, Vadim Savenkov
Alberto Mendelzon Workshop, Lima, Peru

 Prototyping Predictive Maintenance Tools with R
Erich Neuwirth, Theresa Csar
R User Conference, Gaithersburg, Maryland, USA

Code projects available as open source
CloudVoting Spark library for Computational Social Choice (Scala)

https://github.com/theresacsar/CloudVoting

BigVoting MapReduce Algorithms for Computational Social Choice (Java)
https://github.com/theresacsar/BigVoting

Master’s and Bachelor’s Theses
 Master’s Thesis: Calculation of the transition density of allele frequencies in probabilistic models in

population genetics

 Bachelor’s Thesis: Measurements for Hurricane Intensity
 Bachelor’s Thesis: Vorhersage des Risikos einer Rezidiverkrankung von rombosepatienten

English title: risk estimation for recurrence of thrombosis disease

https://github.com/theresacsar/CloudVoting
https://github.com/theresacsar/BigVoting

	thesis
	Kurzfassung
	Abstract
	Contents
	Introduction and Preliminaries
	Introduction
	Motivation
	Problem Statement
	Related Work
	Methodological Approach
	Results
	Structure of this Thesis
	Publications

	Preliminaries
	Computational Social Choice and Winner Determination
	Computational Complexity of Social Choice Rules
	Cloud Computing Techniques
	Cloud Computing Frameworks


	Complexity Results and Cloud Computing Algorithms
	Complexity of Voting Rules
	The Schulze Winner Determination Problem
	The Ranked Pairs Winner Determination Problem
	The STV Winner Determination Problem

	Cloud Computing Algorithms
	Positional Scoring Rules
	Computing the Graph Representation
	Copeland Set
	Smith Set
	Schwartz Set
	Schulze Method
	Ranked-Pairs Rule
	STV Rule


	Theoretical Performance and Experimental Evaluation
	Theoretical Performance Guarantees of the proposed Algorithms
	Performance Guarantees for Our MapReduce Algorithms
	Performance Guarantees for Our Pregel Algorithms

	Experimental Evaluation
	MapReduce Algorithm for Computing the Schwartz Set
	Pregel Algorithm for Computing the Schulze Winner


	Conclusion
	Conclusion
	Summary and Discussion
	Open Issues and Directions for Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography


	cv

