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Abstract

The concerned motion of fluid within a cylindrical tank driven by the axisymmetrical rotation

of the top lid is a well established benchmark problem for computational fluid dynamics. Yet,

regardless of the simplicity of its geometry, it exhibits a variety of remarkable fluid dynamical

phenomena.

Applying the spectral element solver Nek5000, we simulate fluid dynamical structures reported

in literature. An agreement of computational results with experimental measurements has been

shown for vortex breakdowns, the onset of which we determine for a variety of Reynolds numbers

and aspect ratios. For mentioned range we furthermore show the onset of traveling waves. We

compute the streamlines in combination with Poincarè sections to study the flow even further

by determining the sensitivity of these structures to artificial constructed perturbations.

Results suggest that the primary swirling motion of the flow dominates rendering the stream-

lines of the flow regular even when ideal or perturbed travelling waves occur. Also the system

exhibits a complex streamline topology, wherein two saddle foci are connected via a degenerate

heteroclinic connection.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Independent of their driving forces, either temperature gradients or moving boundaries, cav-

ity models in fluid dynamics are of significant scientific interest [1]. In particular cylindrical

enclosures with a moving boundary can be found in many engineering applications such as

fixed-geometry swirl generators, which are typically applied in combustors of large industrial

gas turbines for electric-power generation [2]. The residence time in the primary combustion

chamber can be extended by creating a localized recirculation zone. Due to the increased tur-

bulence intensity inside this zone, mixing of fuel and air is increased. This leads to a stable,

compact flame. Furthermore, one can find similar setups in chemical reactors, mixing tanks

and boilers [3]. These application designs include obstacles to disperse and stirrers to drive the

fluid, which can be considered to be challenging from a numerical point of view. However, a

simplified lid-driven cylindrical container system can provide useful insights in the dynamics of

mentioned applications.

The behavior of the steady-swirling flow produced in a cylindrical experiment was already

investigated in 1968 [4]. The inward spiraling fluid motion was visualized and revealed the

occurrence of a recirculation bubble on the axis of symmetry, which is interpreted as a vortex

breakdown. A systematical investigation showed that for certain conditions up to three vor-
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2 Chapter 1. Introduction

tex breakdowns can simultaneously occur [5]. Furthermore, non-axisymmetric instabilities, so

called traveling waves, were numerically discovered [6] and experimentally shown [7].

The lid-driven cylindrical tank has been investigated intensively over the past decades, sys-

tematically identifying a variety of occurring phenomena [4–7]. This thesis is concerned with

following up the existing work and contributing further to an in-depth understanding using

the spectral element solver NEK5000 to perform numerical simulations with high accuracy.

Initially validating results of the axisymmetric vortex-breakdown with measurement data of

Escudier [2], and further results of the non-axisymmetric instability with simulations by Gelf-

gat et. al [6]; subsequently computing streamlines in a range of different angular velocities to

determine whether or not localized chaos occurs within the swirling motion.



Chapter 2

Problem Description

This chapter is concerned with the problem setup, which is treated numerically within the frame

of this thesis. By describing separately the geometry, the driving force, boundary conditions

and governing equations we want to emphasize key aspects of the computational challenges

arising and approaches to their solution.

2.1 Geometry

The geometry of interest is a circular upright cylinder, which is general defined by its height H

and radius R. By taking the ratio of height to radius one can reduce the geometric parameter

Figure 2.1: Sketch of the geometry. Showing the parameters height H, radius R and angular
velocity Ω.

3



4 Chapter 2. Problem Description

space to a single parameter, which is referred to as the aspect ratio, which is defined by equation

2.1.

γ =
H

R
(2.1)

2.2 Driving Force

The system is driven by the angular velocity Ω of the top lid. Similar to the experimental setup

of the unconfined rotating disc by von Kármán [8] the rotating endwall acts as a pump, driving

the setup by drawing in fluid axially and ejecting it in an outward directed spiral.

The only dimensionless control parameter for the fluid motion is the Reynolds number, com-

monly defined as Re = u d/ν First introduced by O. Reynolds [9] for pipe flow. Wherein u

was defined being the bulk velocity, d the inner pipe diameter and ν the kinematic viscosity.

Generalizing, one can think of it as the ratio of inertial forces to viscous forces within a fluid.

Adapting Re to the lid driven cylinder system by defining u = Ω R and d = R results in

equation 2.2.

Re =
Ω R2

ν
(2.2)

2.3 Boundary Conditions

Considering the boundaries being walls, which are impermeable to mass, leads to the constraint

that the velocity normal component to that surface is zero. With n denoting the normal to the

surface and u being the velocity vector, this can be expressed as

u · n = 0 (2.3)

Whereas the tangential components of the fluid can be considered as

u− n(n · u) = Ψ (2.4)
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Equation 2.4 describes the velocity of the fluid and the velocity of the wall Ψ, which is assumed

to be zero in case of a stationary wall and Ψ = Ωreϕ in case of the moving top lid, where r

is the radial coordinate, Ω is angular velocity and eϕ is the unit vector in azimuthal direction.

This assumption results in the no-slip boundary conditions for all walls. Both conditions lead

to a singularity along the circumference of the rotating lid, where no-slip and moving-wall

boundary conditions are simultaneously enforced. To resolve this singularity we included a

monomial filtering approach. Based on an asymptotic assumption, the flow field is expanded at

the elements which touch the singular border using a coordinate which accounts for the distance

from the singular edge. The monomial filtering takes into account a monomial expansion in

terms of distance from the edge of this intersection between the steady and the rotating wall

based on this coordinate.

2.4 Dynamic Equations

The governing equations, which describe the dynamical motion of viscous fluids were derived in

1822 by two mathematicians, Claude-Louis Navier and George Gabriel Stokes, which they were

named after. The Navier-Stokes equations are strictly a statement of the balance of momentum.

These partial differential equations can basically be derived from applying the laws of motion

to a fluid volume element. However, by using momentum instead of forces, which allows to

calculate with conservation approaches rather than force balances lead, for a Newtonian fluid

of constant viscosity µ and density ρ to the general form of:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ g (2.5)

When looking at equation 2.5, it is important to be aware of the interpretation of the individual

terms.
inertial force︷ ︸︸ ︷

∂u

∂t︸︷︷︸
variation

+ (u · ∇)u︸ ︷︷ ︸
convection

=

divergence of stress︷ ︸︸ ︷
−1

ρ
∇p︸ ︷︷ ︸

pressure

+ ν∇2u︸ ︷︷ ︸
viscous forces

+ g︸︷︷︸
external forcing
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The first term ∂u
∂t

describes the temporal variation in the flow velocity, e.g. the flow which

develops starting from rest after the lid impulsively stats to rotate. The second term (u · ∇)u

is in the form of an advection term, i.e. (u · ∇)A, which describes the transport of a quantity

A due to the velocity u, whereas in our case A is represented by the three components of

the vector u for the three momenta. Such a transport occurs every time the quantity A is a

non-uniform field, which admits a gradient, and the transport velocity u is non-parallel to the

gradient, which is a typical case in cavity flows like the one we consider. On the right hand

side of 2.5 the external forcing term g describes an acceleration term. The term −1
ρ
∇p shows

influences resulting of a pressure gradient on the flow field, e.g. a pressure force to drive the

system. Whereas % describes the density of the fluid. The remaining term ν∇2u represents

viscous forces due to friction.

Introducing a reference velocity U and a reference length L equation 2.5 can be non-dimensionalized

by introducing following non-dimensional variables x̂ = x/L for space, û = u/U for velocity,

t̂ = t/(L/U) for time, p̂ = p/(ρU2) for pressure for flows dominated by convective effects and

ĝ = gL/(U2) for external acceleration, leading to the non-dimensionalized form:

∂û

∂t̂
+ (û · ∇)û = −∇p̂+

1

Re
∇2û+ ĝ (2.6)

To further fully describe the flow of a fluid, more information is needed, how much depends on

the assumptions made. Next to the information already treated like boundary conditions and

now balance of momentum, also the conservation of mass has to be formulated. In a general

form one can formulate this as in equation 2.7.

∂ρ

∂t
+∇ · (ρu) = 0 (2.7)

Which is in called continuity equation. By furthermore assuming, as we did for eq. 2.5, the
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fluid dealt with to be incompressible, one can rewrite equation 2.7 as:

∇ · u = 0 (2.8)

The properties of the Navier-Stokes equations, being non-linear partial differential equations,

result in a complex approach to find analytical solutions in simple geometries. However, a

general solution still has to be derived, if existent. This circumstance contributes on one hand

to the scientific interest in fluid dynamical problems, on the other hand to the complexity

of flows even in rather simple geometries. The flow in a cylinder can be considered as a

geometrically simple setup, whereas the motion of the fluid within it is anything but trivial.



Chapter 3

Methodology

3.1 General

For solving a given numerical problem one faces the act of balancing accuracy and computational

costs by choosing the applied numerical method. Simply increasing the overall accuracy leads

to a significant increase in computational cost. Therefore, it is desirable to obtain the possibility

of limiting the increase of accuracy in certain areas of interest. Finite element methods provide

such a possibility by locally refining the computational grids, but lack on the overall accuracy of

spectral methods, provided through their spectral properties. A combination of both methods

seems desirable, which was introduced by A. Patera in 1984 called spectral element method

(SEM) [10]. Furthermore, this method was implemented in the incompressible fluid flow solver

NEKTON by Paul Fischer, Lee Ho and Einar Rønquist, with technical input from A. Patera

and Y. Maday. Paul Fischer developed a research version of the original code now known as

Nek5000 [11], which we apply in the frame of this thesis. The code is written in Fortran 77

and C and provides an option for parallelization of processes via MPI. Nek5000 was recognized

with Gordon Bell prize for algorithmic quality and sustained parallel performance.

8



3.2. Spectral Element Method 9

3.2 Spectral Element Method

The key feature of the spectral element method (SEM) is the combination of the accuracy of

Fourier spectral methods and the flexibility of methods based on low-order local approaches.

SEM is using the high order weighted residual technique based on orthogonal polynomials and

accurate numerical quadrature. Discretization nodes are defined using Gauss-Legendre-Lobatto

(GLL) polynomials, which will be explained in more detail in section 3.2.1. In addition the

method exhibits favorable computational properties, including tensor products and naturally

diagonal mass matrices, good scalability and the possibility of using message passing interface

(MPI) for parallel computing.

In the following sections, we will give an outline of the main steps of how the discretization

can be accomplished. We apply it to an example of the one-dimensional, non-linear Burgers

equation, we will follow the notation by Deville et al. [12] and Loiseau [13] . The Burgers

equation serves frequently as a benchmark problem for Navier-Stokes equations since it exhibits

properties such as non-linearity and important for modeling the turbulence.


∂ut + u∂ux = v∂2

xu

u(t = 0, x) = u0

u(t, x = −1) = 1;u(t, x = 1) = −1

(3.1)

Wherein u denotes the velocity and ν the viscous coefficient and the computational domain

considered is defined as Ω := {x ∈ [−1, 1]}. The key concepts for the discretization based on the

Galerkin method are the so called ”weak form” and the ”Galerkin projection” in combination

with ”high-order basis functions”. Therefore, let us focus on equation 3.1. One can recast it

into its weak counterpart by using a set of test functions v(x):

∫
Ω

v
∂u

∂t
dx+

∫
Ω

vu
∂u

∂x
dx = −ν

∫
Ω

v
∂v

∂x

∂u

∂x
dx (3.2)

Here the right hand side of the equation has been treated using integration by parts. Now we
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define N + 1 basis functions φi.


u(x, t) =

N∑
i=1

φi(x)ui(t)

v(x) = φj 0 ≤ j ≤ N

(3.3)

inserting into the weak formulation of the Burgers equation leads to:

(∫
Ω

φiφjdx

)
dui
dt

+

(∫
Ω

φjφiui
dφi
dx

dx

)
ui = −

(
ν

∫
Ω

dφj
dx

dφi
dx

dx

)
ui (3.4)

We define:

Bi,j =

∫
Ω

φiφjdx

Ci,j(uN) =

∫
Ω

φjφi
dφi
dx

dx

Ki,j = v

∫
Ω

dφj
dx

φiu

dx
dx

(3.5)

Bi,j is considered as the mass matrix, Ci,j(uN) is the convection operator applied on uN =

(u0, ..., uN)T and Ki,j is the stiffness matrix. Substituted into equation 3.4 leads to the matrix-

vector form:

B
duN
dt

+ C(uN)uN +KuN = 0 (3.6)

Numerical results for this system can be found in Deville et al. [12].

3.2.1 Spatial discretization

The internal meshing algorithm of Nek5000 uses Gauss-Legendre Lobatto formulae to spa-

tially discretize the computation grid. Their main feature is, that the nodes are related to the

stationary points of Legendre polynomials and include the extrema of the interval (−1, 1). Ad-

ditionally they are also represented by the maximum and minimum of the Legendre polynomial

LN of degree N . Therefore, the nodes {x0 = −1, x1, ..., xN−1, xN = 1} are defined by the zeros
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of the first derivative of the LN with respect to x, which we denote by prime.

L′N(xi) = 0, for i = 1, ..., N − 1. (3.7)

For simplicity we forth on apply the notation by A. Quarteroni [14] for the following derivations.

We define ψi to be the corresponding characteristic polynomials:

ψi ∈ QN : ψi(xi) = δij, 0 ≤ i, j ≤ N, (3.8)

which can be analytically formulated as:

ψi(xi) =
−1

N(N + 1)

(1− x2)L′N(x)

(x− xi)LN(xi)
, i = 0, ..., N (3.9)

-1 -0,5 0 0,5 1
x

-0,2

0

0,2

0,4

0,6

0,8

P
si

(x
)

Figure 3.1: The characteristic polynomials ψi, for i = 0, 1, 2, 3, 4

Figure 3.2.1 shows the characteristic polynomials ψi for N = 4, wherein its maxima and minima

give the location of the nodes.

The spectral elements approximation of ueN(x) of degree N in the element Ωe mapped onto the

reference element Ω̂ is:

ueN(x) =
N∑
j=0

uejψi(xi) (3.10)
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with {uej}Nj=0 the nodal values of the unknown scalar field u in Ωe. Replacing φ(x) in equation

3.4 by equation 3.9 and applying Gaussian quadrature rule based on the GLL nodes to evaluate

numerically the different integrals yields to:

Be
i,j =

he
2
ρiδij

C(uN)i,j = ρiuiD
1
N,ij

Ke
i,j = ν

he
2

N∑
m=0

ρmD
1
N,miD

1
N,mj

(3.11)

Compared to equation 3.5, Be
i,j denotes the now discretised elementwise mass matrix, C(uN)i,j(uN)

the non-linear convection operator and Ke
i,j the discretised elementwise stiffness matrix. Fur-

ther, we introduced ρi here as the GLL quadrature weight at the ith GLL node. In addition we

define D1
N such:

D1
N,ij =

dψi
dx

(x = (xi)) =



LN(xi) [LN(xj)(xi − xj)]−1 , i 6= j,

−(N + 1)N/4, i = j = 0,

(N + 1)N/4, i = j = N,

0 otherwise

(3.12)

The assembly of all elements Ωe to the global matrices direct stiffness summation is applied.

This operation is beyond the scope of this rapid introduction to spectral elements and the reader

is referred to [12] or [14] for further information. Conclusively we read the semi-discretised

equation as:

B
d

dt
uN +C(uN)uN +KuN = 0 (3.13)

The global stiffness matrixK and mass matrixB resulting from the direct stiffness summation.

The mass matrix B exhibits a diagonal structure, whereas the stiffness matrix K exhibits a

block diagonal structure.
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3.2.2 Temporal discretization

Considering the established equation 3.13, this problem is formally equivalent to the semi-

discretised formulation of the Navier-Stokes equation. The temporal discretisation scheme

supported by Nek5000 are BDF/EXT and characteristics-based timestepping [15], both of

which are accurate to the kth-order. However, while the viscous terms are treated implicitly

via a kth order backward differentiation formula, the non-linear terms are discretised explicitly

by an kth order extrapolation. For k = 3 we write the now fully discretised Burgers equation

as:

( 11

6∆t
M +K

)
un+1
N −DT

i p
n+1 =

=
1

∆t
M
(

3unN −
3

2
un−1
N +

1

3
un−2
N

)
−
(

3CunN − 3Cun−1
N +Cun−2

N

) (3.14)

To recast equation 3.14 into a handy matrix form, we add DT
i p

n to both sides and rewriting

the right-hand side as a forcing vector MF n
i . Thus resulting in:

 H −DT

−D 0

 =

 un+1
N

δpn+1


MF n +DTpn

0

 (3.15)

H being the Helmholtz operator. Furthermore, we introduce a matrix Q to project the original

matrix onto a divergence-free space. Within a two-step treatment we remodel the system of

equation into:  H 0

−D −DQDT

 =

 u∗N

δpn+1


MF n +DTpn

0

 (3.16)

and  I −QDT

−D I

 =

 u∗N

δpn+1


MF n +DTpn

0

 (3.17)
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Choosing the matrix Q defines the applied projection method. Nek5000 sets Q to:

Q = H−1 (3.18)

leading to the Uzawa algorithm [16], which exact solution is for the inverse Helmoltz operator is

computational intensive. Therefore, the Blair-Perot algorithm is implemented within Nek5000,

changing the projection matrix to Q = γM−1/∆t with γ = 11∆t/6. One can find further

elaborations on temporal discretisation and projection methods applied in Nek5000 in [12].
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3.2.3 Applied Grids

Figure 3.2: Generated distribution of the nodes
in two cross-sections through the cylindrical
tank in two planes z = H/2 and φ = 0

Depending on the necessary accuracy to re-

solve given phenomena we applied multiple

refinements on the basic grid ( figure 3.2 )

used. Considered basic grid consisting of 140

elements, which were distributed based on the

level of interest for resolving specified regions

( eg. boundary layers). Mentioned distribu-

tion can be recognized close to the bound-

aries and axial region in figure 3.2 A notable

perk of Nek5000 is its capability of dealing

with elements, which boundaries consist of

straight as well as curved walls. We use this

feature to discretize the domain into differ-

ent shaped elements. Therefore, the domain

is radially speaking most accurately refined

near the boundaries r = [0.95, 1], where two

curved sided elements are applied. Moving

towards the axis, in the region of the core

flow r = [0.45, 0.9] the size of the elements

is increased and the walls of the elements are

straight and less refined. Conclusively the axial area r = [0, 0.45] is again refined and consists

of straight sided elements. To decrease the roughness of transition between curved and straight

sided element, we introduce transitional regions, which we refine additionally. The refined areas

near angles with multiples of π
4

are residuals of the grid generation. Wherein a sections of π
4

is

created, duplicated and rotated. To smooth the transition between those sections, these refined

areas are introduced.

During the computations described in Chapter 4 multiple grades of overall refined grids were
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Figure 3.3: Applied refined grids, starting from 140 elements (left) to a intermediate grid of
2240 elements (middle) and a grid of 17920 elements (right)

required leading to a maximum amount of 17920 elements. Figure 3.3 shows the progress of

refinement over the different grids.

3.3 Streamline

We compute the streamline topology of the three-dimensional flow and its properties within

a Lagrangian representation of the fluid kinematics. Therefore, we introduce X denoting the

position of an infinitesimal fluid element. Setting the initial condition to X0 = X(t = 0), its

motion is governed by

dX

dt
= u(X). (3.19)

The computing algorithm applied is a MATLAB based code using a linear interpolation scheme

to reconstruct the velocity field. Furthermore, we integrate the incompressible Euler equations

applying the Runge Kutta 4(5) Dormand-Prince method to compute the streamlines starting

from various initial points. To avoid any loss of accuracy by switching to a linear interpolation

method, we increased the number of elements by a factor of 128. Therefore, the applied grid

was generated using a quadratic refinement method within two refinement steps and inter-

polated spectrally on the new grid. Leading to a grid size consisting out of 17920 elements,
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previously shown in figure 3.3 (right). The applied code uses the within MATLAB implemented

ode45 solver, which is an ordinary differential equation solver, using the Dormand and Prince

algorithm [17]. The Dormand and Prince algorithm is a highly accurate, six-stage, fifth-order

Runge-Kutta based method. With an error esitmate of always less than 10−7
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Results

4.1 Flow

Figure 4.1: A qualitative depiction of the streamline topology of the flow obtained for γ = 2.0
and Re = 1800. Red colored streamlines represent fluid elements of high velocity, whereas blue
characterizes low velocity.

volume forces

Driven by the angular velocity of the rotating top endwall, the velocity of the axially drawn

18
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fluid increases towards the top upper boundary, where it is ejected in a spiraling motion along

the cylindrical wall. When reaching the bottom endwall, the downward forced spiral is forced

towards the axis of the fixed endwall and then again turns into the axial direction towards the

rotating upper endwall. The inward spiraling motion results in an initial increase in swirl ve-

locity, due to conservation of angular momentum, and so the creation of a concentrated vortex.

Computations are continued till the solution converges to a steady result for axisymmetric cases

and stationarity in the rotating frame of reference for travelling waves. Fig. 4.1 represents an

overview of the observed flow for γ = 2 and Re = 1800.

4.2 Vortex Breakdown

Figure 4.2: Experimental visualization of the changes in the vortex structure with increas-
ing Re by Escudier [5]. Shown visualization represents γ = 2.5 for a range in Re =
1918, 1942, 1994, 2126, 2494, 2765 from left to right. Due to opposite driving lids the origi-
nal plots are mirrored with respect to z = γ/2 for consistency with the position of the driving
lid in our simulations (top).

By injecting dye axially through a hole within the steady lid into the experimental setup it has

been shown [5], that for Reynolds numbers above a certain threshold a phenomenon along the

axis of rotation - further on called vortex breakdown - can be observed (Fig. 4.2). For certain

combinations of Re and γ up to three vortex breakdowns along the axis may occur. Varying

these two parameters Escudier obtained a map of the regions of appearance for those vortex

breakdowns. Furthermore it has been shown that the stationarity of the overall system is based

on those two parameters and is only given in a restricted region. Results of investigations by
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Figure 4.3: Quantitative representation of the experimental results by Escudier [5]. Blue crosses
represent parameter value combinations corresponding to simulations conducted in the frame
of this thesis.

Escudier are summarized in the plot represented by Fig. 4.3. Blue crosses mark simulations

done in the frame of this thesis, which are additionally summarized in table 4.1.

Re

1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100

γ

1.0 x x x x x x

1.5 x x x x x

2.0 x x x x x x x x x x x x x x x x x

3.5 x x x x x x x x x x

Table 4.1: Summarization of parameter value combinations covered by simulations.

Beside a quantitative validation of our carried out simulations with NEK5000 via a comparison

of the topology of the flow found by Escudier with resulting visualizations of simulations, a

quantitative comparison with experimental measurements is approached.

The comparison of experimental and numerical results is done by investigating the axial velocity

w along the axis of rotation of the cylinder. By choosing γ = 2.0 we cover multiple states
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Figure 4.4: Comparison of numerical results (orange) to experimental measurements (blue) for
γ = 2.0 in a range of Re = [1400, 1900]. Experimental data courtesy of H. Wu.

of the system by varying Re, ranging from a non existence of the vortex breakdown up to

the regime where 2 breakdowns occur. The points of interest for this variation are set in

range between Re = [1400, 2500] for a step-size of ∆Re = 100, excluding areas of unsteady

motion (see Fig. 4.3). Figure 4.4 shows this comparison for a range of Reynolds Numbers

in [1400, 1900]. The blue line represents the experimental data including error bars for the

experimental measurements, whereas the orange line refers to data acquired from the numerical

simulations. One can see an overall match between numerical and experimental results within

given error bars for experimental data. Furthermore one should emphasize in particular values

of w = 0 appearing in pairs, which are indicating stagnation points of the flow along the axis

of rotation. They are representative for the axial length of a vortex breakdown for observed

Reynolds number, which initially occurrence is shown for γ = 2.0 at Re = 1500 located between

z = [0.6, 0.8] (see Fig. 4.4 and 4.3). For a parameter combination of γ = 2.0 and Re = 1900

one can observe the entity of another vortex breakdown between z = [0.7, 1.2].
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Figure 4.5: Comparison of numerical results (orange) to experimental measurements (blue) for
γ = 2.0 in a range of Re = [2000, 2500]. Experimental data courtesy of H. Wu.

An overall trend in reducing w along the axis with increasing Re is recognizable. The reduction

is remarkably visible at distances close to the bottom lid z = [0, 0.75]. This is a result from

the scaling itself, which is independent on the change of the rescaled flow. The change of the

rescaled flow is dependent on the Reynolds number. Fig. 4.4 shows that increasing Re reduces

the w velocity component close to the axis at the top lid.

For cases in the range of Re = [2000, 2500] we enter at Re = 1900 and exit at Re = 2300 the

2-breakdown regime (compare Fig. 4.5 and Fig. 4.3). The overall trend of a decreasing axial

velocity w is continued, decreasing the maximum w from w(Re = 1400) = 0.15 to w(Re =

2500) = 0.035 (almost a factor 5). One observes the overall agreement for numerical results

with experimental measurements, except for the case Re = 2100, where locally numerical

and experimental data do not overlap. Further results for simulations for Re > 2500 are in

agreement with the experimentally observed unsteady behavior, wherein the vortex breakdown

vertically oscillates along the centerline of the cylindrical container.
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Summarizing made observations one can deduce the following: An increase in Reynolds number

leads to an reduction of the boundary layer thickness at the rotating endwall. The boundary

layer sustains the circulating motion. Therefore, decreasing its thickness reduces the axial

component of the velocity in the inner core of the flow.
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4.3 Traveling Waves

�e = 25��

�e = 22��

�e = 31��

�e = 28��

Figure 4.6: Neutral Reynolds numbers Ren(γ, k) and critical Reynolds numbers Recr(γ, k) over
γ. Brown crosses represent simulation conducted in the frame of this thesis. Blue colored area
depicts the threshold underneath Recr(γ, k), wherein no traveling waves occur. Plot by Gelfgat
et al. [6].

Beside the previously described topological phenomenon, the existence of traveling waves with

modes k has been shown by Gelfgat et al. [6] in a lid driven cylindrical container. The modes

k vary within the investigated parameter space in a range of k = [0, 5], whereas k = 0 corre-

sponds to an azimuthal perturbation. Figure 4.6 depicts the results drawn from linear stability

analysis for the critical wavenumber kcr. The integer value kcr at a critical Recr correspond to

a threshold, which is called neutral stability curve. This threshold denotes the minimum values

in Re, which denotes the onset of an instability. In Fig. 4.6 Recr(γ) corresponds to a line

separating the parameter space. Re < Recr(γ) corresponds to the blue colored area in which

instabilities are non-existent. Probing the flow at x = (x, y, z) = [0.6175, 0.3090, 2.0086] for

γ = 3.5 reveals the occurrence of traveling waves after dependencies due to initial conditions

vanish (Fig. 4.7).

Considering traveling waves as a perturbation with respect to the mean-flow. One can write in

general:

u = ū+ u′ (4.1)
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Figure 4.7: Occurrence of a traveling wave for γ = 3.5 for Re = 2200, 2500, 2800, 3100. The
axial velocity w over time t probed at (x, y, z) = (0.6175, 0.3090, 2.0086).

Wherein ū denotes the mean-flow velocity and u′ deviations from such, which we refer to as

perturbations. By computing the perturbation by u′ = u − ū, one can detect and visualize

their time dependency. For parameters γ = 1.5 and Re = 2600 one can observe a traveling

wave with k = 2, which is shown in figure 4.8. The components of u are given in a cylindrical

coordinate system as u = f(ur, uφ, uz). Similar patterns were published by Gelfgat et al

[6]. By measuring the value of the axial component of u in a given point x = (x, y, z) =

[0.6175, 0.3090, 2.0086] over time, one can determine the frequency f of such a traveling wave

and further its angular velocity ω. Emphasizing a stable steady motion it can be concluded

given the measured frequency fm, that for k > 0 the frequency f is determined by f = fm
k

.

By applying this procedure for different Reynolds numbers within an aspect ratio near to Recr,

one converges towards the critical Reynolds number Recr. Whereas flow-fields for Re < Recr

does not include traveling waves. Results have been shown by Gelfgat et al within Figure 4.9,

including experimental data for 1.87 ≤ γ ≤ 3.5. Validating the code in use, an agreement
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Figure 4.8: Cross-section at z = 1.0 showing a traveling wave with mode k = 2 for γ = 2.0,
Re = 2600. Visualized as u′ = ū− u for cylindrical velocity components.

within corresponding has been shown for γ = [1.5, 3.5].

Re
2200 2500 2600 2650 2800 3100

γ
1.5 0.0113 0.0354
3.5 -0.2785 -0.3021 -0.3964 -0.4214

Table 4.2: Summarization of evaluated neutral frequencies.



4.3. Traveling Waves 27

�e = 22��

�e = 25��

�e = 28��
�e = 31��

�e = 26��

�e = 265�

Figure 4.9: Dependency of the neutral frequency ωn(γ, k) on the aspect ratio γ and number of
modes k. Colored crosses represent computed ωn for depicted Re. Plot by Gelfgat et al. 4.9.

Showing this additional instability phenomenon provides a further validation of the code. The

appearance of instabilities in a lid driven cylinder is limited to an area above the neutral

stability curve. Values for this threshold are depending on the aspect ratio, shown within

figure 4.6 by Gelfgat et al including experimental data by Escudier. For γ = 1.5, 2.0, 3.5 it can

be observed that obtained neutral stability values were in agreement with numerical results. A

summarization of evaluated ωn is given in tab. 4.2, which are additionally implemented in fig.

4.9.
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4.4 Streamline Topology

Considering γ = 3.5 we study the dependency of the flow topology in a reference frame rotating

with the angular velocity of the travelling wave, i.e. u−Ωreφ using Poincarè sections in a half-

plane for φ = 0 for Re = 2200, 2500, 2800, 3100. The phase of the travelling wave is fixed taking

a snapshot of the flow at t = 12000 (see fig. 4.7) One can observe the development of up to

three vortex breakdowns for Re = 3100. Starting at Re = 2200 close to the axial region around

x(r, φ, z) = x(0, 0, 3) the flow-field is deformed and one can find the first breakdown bubble

0.0 0.5 1.0
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Figure 4.10: Poincarè sections for γ = 3.5 for Re = 2200, 2500, 2800, 3100. Sections are rotated
at a frequency f dependent on Re. Given frequencies were f2200 = 0.40, f2500 = 0.44, f2800 =
0.61 and f3100 = 1.50 Dots denote the point of intersection of streamlines through the plane.
Colors identify of the streamline. Black dots show the elliptic points which belong to the
periodic streamlines.
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occurring at Re = 2500 (not shown). Observed vortex breakdown enlarges at Re = 2800 (not

shown). For Re = 3200 the vortex breakdown splits into two separated closed bubbles and

forms an additional bubble close to the bottom wall. Figure 4.10 summarizes Poincarè sections

produced for γ = 3.5 and Re = 2200, 2500, 2800, 3100. One finds an overall regular regions of

flow attracting close by streamlines, which admits a toroidal topology. These tori are known

as KAM tori. Named after Kolmogorov, Arnold and Moser, who derived the relevant theorem

stating conditions under which chaos is restricted in extent. For further information about the

theory behind chaotic advection the reader is referred to H. Aref [18]. The coordinates of the

periodic streamline together with the dependency with respect to Re are summarized in table

4.3, showing the tendency of shifting towards the bottom wall for higher Re.

Re
2200 2500 2800 3100

γ = 3.5
r 0.756 0.780 0.775 0.756
z 2.786 2.694 2.608 2.559

Table 4.3: Coordinates of the periodic streamline in figure 4.10.

We observe for γ = 3.5 and Re = 3100 a chaotic region (see grey colored markers in fig. 4.10)

which invaded the structurally unstable recirculation bubble, as it was predicted by Sotiropoulos

et al. [19].

Given these observation we concern the stability of the basic flow. One could conclude two

possibilities. Firstly the main rotating flow serves as a highly dominant regularizing mechanism.

This motion dominates the dynamics of the flow and does not allow for the onset of chaotic

motion. Or secondly, the idealized approach of numerical simulations suppresses imperfections

of the real system, which would lead to the onset chaotic motions in an experiment.
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4.4.1 Perturbed Flow

�

!
�

Figure 4.11: Sketch showing the applied pertur-
bation for γ = 3.5

We want to rule out the second possibility

by adding an artificial imperfection to the

numerical simulation, which shall mimic the

most likely imperfection in an experimental

setup, which we consider to be a misalignment

of the shaft with the axis of the cylinder with

a small gap δ at the interface of the top lid

and the side wall. The misalignment results

in an additional rotation of the shaft around

the axis of the cylinder (see fig. 4.11. To real-

ize such, an artificial flow-field has been simu-

lated, which is considered as artificial pertur-

bation and superposed on the existing flow-

field for γ = 3.5 and Re = 3200. An addi-

tional perturbation flow is computed solving the Stokesian flow with the following boundary

conditions at the moving lid.

ux = −
y/ [0.005(π/2 + 1)] (atan(0.95−

√
x2
mD + y2)

2 az
(4.2)

uy =
y/ [0.005(π/2 + 1)] (atan(0.95−

√
x2
mD + y2)

2 az
(4.3)

Wherein xmD = (x − 0.05), az = [(z − zstart)/(3.5− zstart)]
5 and zstart is set to 0. Again using

Poincarè sections, figure 4.12 summarizes the results of this numerical experiment. Clearly

showing the regularity of the streamlines is not very influenced amplifying the perturbation. The

effect can be weakly recognized in the axial region near the upper lid x(r, φ, z) = x(0, 0, 3.4),

where the scale in magnitude of perturbation to general flow-field is more significant than in

other regions.
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Figure 4.12: Poincarè sections for γ = 3.5 for Re = 3100. Dots denote the point of trespass
of a streamline through the plane. Colors indicate the identity of the streamline. Black dots
show the periodic streamlines.

Increasing the perturbation in magnitude further can not be considered as slight imperfections

of the system, which would lead to unphysical results by pushing this numerical investigation

furthermore.

The additional perturbation is formulated as:

ur = −A R(1−R)
π

γ

(
πz

γ

)
(4.4)

uz = −A R(3R− 2) sin

(
πz

γ

)
(4.5)
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Setting Γ = 1, A is used as a scaling factor for the size of the perturbation, chosen within a

range of 10−2,10−1 and a case with a non degenerating connection between the saddle foci s1 and

s2 located along the axis over the two cylinder’s bases. This means that the no-slip condition

all over the cylinder walls is eliminated by the perturbation (4.4) and (4.4.1) superposed to

the Navier-Stokes solution. The reasoning behind this implementation was to create conditions

of a non degenerate perturbation. However, including this possibility does not lead to any

significant differences in the topology.

Based on this observation we consider that the rotating motion has a dominant regularizing

mechanism on the streamlines, which dominates over the flow perturbations.
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Conclusion

In the frame of this work, we have numerically studied multiple appearing flow structures in the

setup of a lid driven cylinder, reaching from vortex breakdowns, over traveling waves, to KAM

tori. Due to our demand for accuracy and efficiency we applied the spectral element solver

NEK5000 for solving Navier-Stokes equations. The applied code was verified by comparing our

results with literature as well as experimental measurements. For this verification we mainly

focused on the work of Escudier [2] and Gelfgat et al. [6], for both references we showed an

agreement with our computational results. The core frame of this thesis was aimed towards the

understanding of the occurring KAM tori and on the proof of coexistent regular and chaotic

regions of the flow, in a Lagrangian topological sense. Our investigations did not provided

evidence which support the second claim. However, we showed the robustness of regularity

within the proposed configurations for a range of artificial perturbations. Furthermore, we

speculate the swirling motion has a dominant regularizing effect on the flow streamlines, even

when additional perturbations are superposed.

Summarizing, the rotational driving force shapes the topology of the flow field into a spiralling

motion arranged by 2 co-rotating spiralling saddle foci. A spiral motion drives the flow near

the stationary cylindrical walls, which incorporates an upward facing spiral at the axis of

rotation. Observations made in chapter 4 let us conclude, that one can distinguish this overall

motion furthermore. Therefore, we decompose the overall flow based on the shape of the local

33
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Figure 5.1: A schematic sketch of the streamline of near wall and near axis streamlines. The
setup is decomposed into four regions due to different behavior in motion. (1) The top lid (red)
forcing the flow in an outward spiral away from the saddle focus (s2) to the top circular edge
(w2). (2) The streamlines at the cylindrical wall (yellow) changing the direction of motion to a
downward facing spiral ending at the bottom circular edge (w1). (3) Reaching the bottom lid
(blue) the direction of the streamlines changes to an inward facing spiral with a saddle focus
(s1) at its center. (4) Streamlines along the axis connect both saddle foci with an upward
spiral.

streamlines, which one can deduce based on the Poincarè sections computed in section 4.4.

The rotating top lid generates a distributing, outward facing spiralling motion from the axial

saddle focus s2, which intakes fluid axially. The axial flow itself connects this distributing

motion at the top lid with the collecting motion at the bottom lid, where an inward facing

spiral with a saddle focus s1 at the axis of the cylinder collects fluid from the cylindrical

walls and ejects it axially, feeding the axial motion, which is connecting s1 with s2. The

streamlines near the cylindrical walls describe a heteroclinic connection, connecting s2 with

s1 through two degenerating limit cycles w1 and w2. Figure 5.1 illustrates these observations

schematically, based on the streamlines of near wall and near axis fluid. Figure 5.2 summarizes

made observations concerning distributing and collecting motion. The streamline topology

indicates a heteroclinic connection.
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Figure 5.2: Schematic summarizations of distribution and collecting mechanism within the lid
driven cylinder setup.

However, the possibility of the origin of chaotic dynamics in a lid driven cylindrical tank has

been identified for the three-dimensional stationary vortex-breakdown bubble for an aspect ratio

of H/R = 1.75 [19] . Sotiropoulos et al. show that the onset of chaotic motion is connected

with the appearance of Shilnikov orbits. Therefore, the motion within the lid driven cylindrical

tank allows in general the onset of chaotic motion, but not for the here observed degenerate

connection w1 → s1 → s2 → w2 → w1.

Future work concerning the lid driven cylindrical container should aim for further investigations

towards the stability of the flow. While Shilnikov orbits signal the onset of chaotic dynamics

[20], it has been speculated that the swirling flow regularizes the topology of the main flow.

Remaining questions lie within the understanding of the limits of this mechanism and concern

how the transition to chaos occurs. Therefore, future investigations should be considered for

an aspect ratio for which both saddle foci are sufficiently close.
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