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Datum, Ort Unterschrift

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research
myself, using only literature cited in this volume. If text passages from sources are used
literally, they are marked as such.
I confirm that this work is original and has not been submitted elsewhere for any exami-
nation, nor is it currently under consideration for a thesis elsewhere.

Date, Place Signature



iv



Kurzfassung

Das Anderson-Störstellenmodell (AIM) ist von grundlegender Bedeutung für die Unter-
suchung von Materialien und Modellen mit starken elektronischen Korrelationen. Es
steht außerdem im Zentrum Feynman-diagrammatischer Methoden wie der dynamischen
Molekularfeldtheorie (DMFT) oder auch Erweiterungen zur DMFT, insbesondere was
den numerischen Aufwand betrifft. Letztere quantifizieren sowohl lokale- als auch nicht-
lokale elektronische Korrelationseffekte. Während lokale Korrelationseffekte in der DMFT
durch Ein-Teilchen-Selbstenergien darstellbar sind, werden nicht-lokale Korrelationsef-
fekte in diagrammatischen Erweiterungen zur DMFT aus Zwei-Teilchen-Vertexfunktionen
berechnet. Diese beschreiben alle möglichen Streuungen zweier Teilchen im wechselwirk-
enden System. Allerdings besitzen sie auch eine wesentlich höhere Komplexität als die
Ein-Teilchen-Selbstenergien.

Quantenmechanische Monte-Carlo Simulationen in kontinuierlicher Zeit (CT-QMC)
erlauben es, die unendliche Störungsreihe der Zustandssumme stochastisch aufzusum-
mieren, und liefern somit numerische Lösungen des AIM in einem großen Parameterbere-
ich. Eine besonders erwähnenswerte Klasse dieser Störstellenlöser, sogenannte CT-HYB
Algorithmen, entwickeln die Zustandssumme als Störungsreihe im Hybridisierungsanteil
des AIM. Die Formulierung basiert auf einer Stark-Kopplungs-Entwicklung und erlaubt
eine Erweiterung auf Mehrband-Systeme. Dadurch wird eine Analyse elektronischer und
magnetischer Eigenschaften korrelierter Materialien möglich.

Die vorliegende Arbeit beschreibt die Messung der Zwei-Teilchen-Greenschen Funk-
tion innerhalb des Mehrband-CT-HYB Algorithmus. Die zusätzliche Orbitalabhängigkeit
der lokalen Wechselwirkung führt zu einer grundlegend unterschiedlichen Struktur der
Zwei-Teilchen-Greenschen Funktion im Gegensatz zu der Ein-Teilchen-Greenschen Funk-
tion: Für SU(2)-symmetrische Wechselwirkungen beinhaltet die Zwei-Teilchen-Greensche
Funktion Komponenten, welche der Struktur von Spin-Umklapp- und Paar-Hüpf-Termen
entsprechen. Auch wenn Störstellen-Greensche Funktionen lokal definiert sind, wird in der
traditionellen Formulierung von CT-HYB die Greensche Funktion aus der Störungsreihe
der Zustandssumme, bestehend aus Hybridisierungsereignissen, berechnet. Daraus folgt
ein intrinsischer Mangel in dem ursprünglichen Algorithmus alle Zwei-Teilchen-Greensche
Funktionen zu berechnen. In dieser Arbeit wird daher Wurm-Sampling entwickelt um dies
zu ermöglichen. Im Zusammenhang mit CT-HYB, wird hier stattdessen die unendliche
Störungsreihe der Observable stochastisch aufsummiert. Dadurch kann einerseits die
vollständige Zwei-Teilchen-Greensche Funktion gemessen werden, aber auch verbesserte
Schätzer für verwandte Größen wie z.B. die Vertex-Asymptotik. Neben der Diskussion
diagrammatischer Grundlagen des Wurm-Samplings, werden in dieser Arbeit außerdem
die technischen Aspekte des Algorithmus erläutert.

Der Zusammenhang zwischen den methodischen Überlegungen dieser Arbeit und der
Physik wird in diversen Anwendungen hergestellt. Dabei werden Ein-Band- und Mehrband-
Systeme im Bezug auf lokale und nicht-lokale Korrelationen diskutiert.
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Abstract

The Anderson impurity model (AIM) is crucial to material- and model considerations of
strong electronic correlations in condensed matter physics. Numerically, the multi-orbital
AIM is the center-piece of several Feynman diagrammatic methods such as the dynamical
mean field theory (DMFT) or diagrammatic extensions to DMFT, which attempt to quan-
tify local- and non-local electronic correlation effects. While local correlations in DMFT
are best captured by one-particle self-energies, non-local correlations in diagrammatic
extensions to DMFT originate from two-particle vertex functions. The latter describe all
possible scattering events of two particles in an interacting system and greatly exceed the
former in terms of complexity.

Continuous-time quantum Monte Carlo (CT-QMC) impurity solvers provide solutions
to the AIM over a wide range of parameters. A noteworthy class of these solvers, CT-HYB
algorithms, stochastically sample the infinite series expansion of the partition function in
terms of the hybridization part of the AIM. This strong-coupling formulation allows for
a straight-forward extension to multi-orbital systems, highly relevant for the analysis of
electronic- and magnetic properties in correlated materials.

The following thesis attempts to incorporate the measurement of two-particle Green’s
function into the multi-orbital CT-HYB algorithm. An additional orbital-dependency
in the local interaction significantly changes the structure of the two-particle Green’s
function as opposed to its one-particle counterpart. For SU(2)-symmetric interactions,
the two-particle Green’s function features components that resemble the amputated outer
leg structure of pair-hopping and spin-flip terms. Although impurity Green’s functions
are defined locally, the traditional formulation of CT-HYB generates Green’s function
estimates directly from the stochastic series expansion of the partition function in terms
of hybridization events. This leads to intrinsic shortcomings in the original formulation,
which are remedied by a technique referred to as worm sampling. In the context of CT-
HYB, one instead stochastically samples the infinite series expansion of the observable
directly. This technique not only allows one to measure the full multi-orbital two-particle
Green’s function, but also leads to improved estimates of closely related quantities, such
as the asymptotical structure of two-particle vertex functions. Alongside diagrammatic
considerations of worm sampling, this thesis further discusses technical aspects of the
algorithm itself.

In an attempt to create a link of methodological considerations featured in this work
to physics, several applications to single- and multi-orbital systems are discussed with
respect to local- and non-local correlation effects.
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Chapter 1

Introduction and Outline

In 1918, exactly one century ago, the theoretical physicist Max Planck was awarded the
Nobel prize in physics “in recognition of the services he rendered to the advancement of
Physics by his discovery of energy quanta” [Nobel Media, 2014]. In order to explain the
evident absence of the ultraviolet catastrophe of black body radiation, Planck introduced
a quantized energy unit. Although seemingly unspectacular, this observation triggered the
groundbreaking development of quantum mechanics, which not only fundamentally altered
physical intuition, but further influenced the digital revolution beyond imagination.

While the diversity of quantum-mechanical particles was (and still is) systematically
uncovered by high-energy physicists, solid-state physicists started to investigate the col-
lective behavior of quantum-mechanical particles in periodic lattice structures. Electronic
correlation effects are encoded in the quantum many-body problem and are believed to
be responsible for some of the most interesting properties of condensed matter physics,
including superconductivity, correlation-driven metal-to-insulator transitions and some of
the recently much-discussed properties of topological insulators.

The quantum-mechanical solution of these deceivingly simple lattice systems is, in
general, exponentially difficult. The Hilbert space of the underlying Hamiltonian for
spin-1/2 particles (i.e. fermions) scales with 4N , where N is the number of lattice sites or
bands considered. Despite the advancements in modern computer technology, solutions
to the quantum many-body problem for lattice systems remain out of reach.

Classical lattice systems, such as the Ising model, and lattice systems for particles with
an integer spin (i.e. bosons) can be efficiently solved with Monte Carlo methods. However,
a straight-forward application of Monte Carlo onto the fermionic lattice problem results
in an exponentially hard sign problem, which is rooted in the sign flip when exchanging
two fermions in the many-body wave function. The sign problem can be controlled for
relatively small finite-sized clusters or single impurity sites. For that matter Feynman
diagrammatic mappings may be formulated between the lattice problem and the impurity
problem.

This work introduces the Hubbard model as the prototypical lattice model of solid
state physics in Chapter 2.1. In the following the weak-coupling and strong-coupling limit
of the Hubbard model are discussed in greater detail. The Anderson impurity model
is introduced as the prototypical impurity model (i.e. an impurity embedded in a non-
interacting bath) in Chapter 2.2. Different limiting cases of impurity models are discussed

1



2 CHAPTER 1. INTRODUCTION AND OUTLINE

similar to the lattice models. Additional derivations for lattice and impurity models are
presented in Appendix A.

The lattice- and impurity models of this chapter are primarily formulated for the
single-orbital case in order to avoid unnecessary complications by introducing additional
degrees of freedom. However, the multi-orbital lattice- and impurity models generally
possess a much richer phase diagram. The multi-orbital extension to the Hubbard model
in terms of the SU(2)-symmetric Slater-Kanamori interaction is introduced in Chapter 2.3.

Having formulated the lattice and impurity models, the remaining chapter introduces
various methods, which provide solutions for such model systems. For infinite lattice
dimensions, the exact mapping of the Hubbard lattice onto the Anderson impurity, re-
ferred to as dynamical mean field theory (DMFT), is introduced in Chapter 2.4. When
considering finite dimensional lattices, the exact mapping of DMFT is no longer fulfilled.
Such low-dimensional lattice systems, however, are especially interesting due to non-local
correlation effects. In order to approximate non-local properties of the lattice, the local
two-particle diagrams of DMFT can be used to construct additional non-local Feynman
diagrams. The two most prominent diagrammatic extensions to DMFT, the dynamical
vertex approximation (DΓA) and the dual fermion (DF) approximation are introduced in
Chapter 2.5.

Thermal quantum field theories are commonly represented in the Matsubara formalism,
which establishes an a priori artificial link between the time- and temperature domain
to simplify calculations. Diagrammatic methods and finite-temperature results obtained
from impurity solvers are mostly expressed in this formalism. The transition between the
Matsubara (imaginary) time/frequency domain and the real time/frequency domain is
accomplished by analytic continuation. Chapter 2.6 introduces the concept of analytic
continuation and further discusses different algorithms for its solution.

While DMFT formulates self-consistency equations for mapping the Hubbard model
onto an (auxiliary) impurity model, a priori the method does not specify how to solve the
impurity model itself. As of today, continuous-time quantum Monte Carlo (CT-QMC)
impurity solvers are the most popular option for solving the impurity model because
of their ability to treat continuous baths, their parameter robustness and (maybe most
important) their superior scaling in terms of the number of orbitals/sites in comparison
to methods based on exact diagonalizations of the Hamiltonian. Chapter 3 deals with
the CT-QMC algorithm in the hybridization expansion (CT-HYB). The chapter begins
with discussing CT-HYB in context of various other impurity solvers. In Chapters 3.1
and 3.2 the fundamentals of the conventional sampling- and estimator theory of CT-HYB
are derived and some resulting shortcomings are discussed. These sections describe the
CT-HYB method prior to this work. Chapter 3.3 discusses the theory and implications of
worm sampling as an extension to the CT-HYB algorithm and may be considered the most
important chapter of this work. Extending CT-HYB by worm sampling allows for the com-
plete measurement of the impurity two-particle Green’s functions in the multi-orbital case,
being the main ingredient for multi-orbital diagrammatic extensions to DMFT. Several
technical aspects including worm estimator theory, normalization and autocorrelation are
discussed. Chapter 3.4 concludes the discussion of CT-HYB by contrasting the one- and
two-particle Green’s function estimators with their analogs in weak-coupling CT-QMC.
This comparison ultimately motivates the derivation of symmetric improved estimators,
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resulting in enhanced Green’s function estimates over the entire frequency range.
The following two chapters summarize various applications of the CT-HYB algorithm

for the single-orbital (Chapter 4) and the multi-orbital case (Chapter 5), which were
worked out with several co-workers. Further, these two chapters attempt to create a
link to the lattice- and impurity models introduced in Chapter 2.1. Besides exploring
physical implications of the different applications, several technical aspects with respect
to Chapter 3 are discussed.

Chapter 4.1 investigates the transition between the Hubbard model and the Falicov-
Kimball model in the mass-imbalanced Hubbard model on the one-particle level. From a
technical point of view, this may be considered the physical counterpart to the implications
of the algorithmic extensions of CT-HYB by worm sampling. Chapter 4.2 investigates
divergences in irreducible subsets of diagrams of the two-particle vertex function for
the Anderson impurity model. These divergences generally indicate a break-down of
perturbation theory in a parameter region of the phase diagram, which otherwise seems
to be inconspicuous. Chapter 4.3 explores the phase diagram of the two-dimensional
Hubbard model by employing the DF approach. Various assumptions of the DF approach
are critically investigated.

Chapter 5.1 investigates the SU(2)-symmetry of the two-particle Green’s function
for the multi-orbital Anderson impurity model. The complete two-particle Green’s func-
tions includes renormalized vertices with an outer structure similar to the spin-flip and
pair-hopping bare vertex functions of the SU(2)-symmetric interaction itself. A complete
knowledge of the impurity two-particle Green’s function is necessary when constructing
non-local diagrams in the following. Chapter 5.2 derives the asymptotical frequency
structure of the multi-orbital impurity two-particle vertex function. The asymptotical
structure allows one to minimize box effects in frequency summations, which are important
when determining susceptibilities or self-energies from the corresponding vertex functions.
Furthermore, a two-particle vertex function including the spin-flip and pair-hopping con-
tributions and the asymptotical structure is constructed for the testbed material SrVO3.
Chapter 5.3 concludes the multi-orbital applications by calculating non-local effects for
SrVO3 within DΓA.

Chapter 6 summarizes the key findings of this work, especially with regard to extensions
to the CT-HYB algorithm with worm sampling and applications to the Hubbard model.
A concluding outlook is given, where open problems and future work is discussed.

On a final note, considerable efforts made in interfacing the CT-HYB algorithm with
various diagrammatic methods are not thoroughly described in this work. Instead, for
further information the reader is referenced to the following theses to be read in conjunction:
Ref. [Wallerberger, 2016] for DMFT, Ref. [Galler, 2017] for DΓA and Ref. [Ribic, 2018]
for DF.
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Chapter 2

Models and Methods

2.1 Lattice Models

2.1.1 Hubbard Lattice
The single-orbital Hubbard model [Hubbard, 1964] in second quantization is given by

Ĥhubbard = 1
2

N∑
ij,σ

tij(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) +
N∑
i

Un̂i↑n̂i↓, (2.1)

where ĉ
(†)
iσ is the annihilation (creation) operator at site i with spin σ = {↑, ↓} and

n̂iσ = ĉ†iσ ĉiσ is the density operator. The kinetic energy of the system is determined by
the hopping amplitude tij between sites i and j and the potential energy is determined
by the on-site Coulomb repulsion U . The above form of the Hamiltonian does not specify
the dimension or geometry of the lattice, although the site index in principle ranges over
a countably infinite set (i.e. N →∞). As Ĥhubbard is Hermitian, the hopping amplitude
satisfies tij = t∗ji. The factor 1

2 in the kinetic energy term compensates double counting.
While the hopping amplitude tij further connects any two sites i and j on the infinite

Hubbard lattice, in most cases it is useful to limit the hopping to neighboring sites only.
For nearest neighbor hopping, the above Hamiltonian simplifies, such that the kinetic
energy term reduces to

1
2

N∑
ij,σ

tij(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ)→ −µ
∑
i,σ

ĉ†iσ ĉiσ −
t

2

N∑
〈ij〉,σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ), (2.2)

where 〈ij〉 includes nearest-neighbors only, and −t is the respective hopping. The onsite-
energy µ usually encoded in tii is now explicit. An illustration of the Hubbard model
on a square lattice with nearest-neighbor and next-nearest-neighbor hopping is given in
Figure 2.1.

One can now observe that the kinetic energy term reduces the overall energy of the
system if a particle hops from one site to another, while the potential energy term increases
the energy if two electrons are located at the same site. Alternatively, one can interpret
this behavior as the interplay between single-particle processes (hopping) and two-particle

5



6 CHAPTER 2. MODELS AND METHODS

Figure 2.1: Hubbard model for the two-dimensional square lattice. Spin-up electrons are
marked with blue arrows, spin-down electrons with red arrows. (1) double occupation
with energy cost U − 2µ. (2) single occupation with energy cost −µ. (1)→ (2) hopping
forbidden due to Pauli principle. (1)→ (3) nearest-neighbor hopping with amplitude −t.
(1)→ (4) next-nearest-neighbor hopping with amplitude −t′.

processes (interaction). The intrinsic problem becomes more apparent, when transforming
the kinetic energy term into momentum-space:

Ĥhubbard =
BZ∑
~k,σ

ε~kĉ
†
~kσ
ĉ~kσ +

N∑
i

Un̂i↑n̂i↓. (2.3)

This shows that the kinetic energy term is now diagonal in momentum space, while
the potential energy term is diagonal in real space. Intuitively, the kinetic energy term
favors the non-localized band behavior of electrons, while the potential energy term favors
the localized electron behavior. In the limiting case of a vanishing potential energy
term (U → 0), the system becomes non-interacting and the Hamiltonian reduces to a
tight-binding like Hamiltonian, without any implicit many-body effects. Sometimes this
is referred to as the non-interacting limit. The case where the kinetic energy term is
significantly larger than the potential energy term (t� U) is referred to as weak-coupling
limit. On the other hand, the case where the potential energy term is significantly larger
than the kinetic energy term (U � t) is referred to as the strong-coupling limit. If the
kinetic energy term vanishes (t → 0), the Hamiltonian reduces to an atomic-limit like
Hamiltonian, which can be solved analytically.

Nevertheless, the most interesting physics take place if the kinetic energy term is of
a similar magnitude as the potential energy term. Without further simplifications, apart
from the one-dimensional lattice chain no analytic expressions exist for the Hubbard model
at this point and approximate solutions need to be considered.

2.1.2 Tight-binding Lattice
In the non-interacting limit, the potential energy term of the Hubbard model vanishes as
U/t→ 0. The Hubbard Hamiltonian then reduces to the tight-binding model [Slater and
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Koster, 1954] in real space:

Ĥtb = 1
2

N∑
ij,σ

tij(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ). (2.4)

The Fourier transform for the operators ĉjσ and ĉ†iσ is defined as:

ĉiσ = 1√
N

BZ∑
~k

e−i
~k~ri ĉ~kσ (2.5)

ĉ†iσ = 1√
N

BZ∑
~k

ei
~k~ri ĉ†~kσ (2.6)

This can be applied to the tight-binding Hamiltonian (2.4):

Ĥtb = 1
2N

BZ∑
~k~k′

N∑
ij,σ

tij(ei
~k~rie−i

~k′~rj ĉ†~kσ ĉ~k′σ + ei
~k′~rje−i

~k~ri ĉ†~k′σ ĉ~kσ) (2.7)

The non-interacting system is diagonal in momentum space, such that ~k = ~k′. This
recovers (2.3) for U = 0 and defines the relation between the hopping matrix tij and the
dispersion relation ε~k:

ε~k = 1
2N

N∑
ij

tij(ei
~k(~ri−~rj) + ei

~k(~rj−~ri)) (2.8)

By specifying the dimension and geometry of the lattice, one can now calculate the
dispersion relation ε~k explicitly. In the following the lattice parameter is set to a = 1,
so that |~k| ∈ [0, 2π) and ~ri = ~ei. For the two-dimensional tight-binding model on a
square lattice with nearest neighbor hopping −t each lattice site contributes with eight
hopping terms (only four being unique due to double counting reasons) and one on-site
term tii = −µ, such that:

ε~k = −µ− t(eikx + e−ikx + eiky + e−iky) (2.9)
= −µ− 2t(cos kx + cos ky) (2.10)

When also considering next-nearest neighbor hopping with −t′ another four terms
contribute:

ε~k = −µ− 2t(cos kx + cos ky)− 2t′(cos (kx + ky) + cos (kx − ky)) (2.11)
= −µ− 2t(cos kx + cos ky)− 4t′(cos kx cos ky) (2.12)

From a pragmatic point of view, it is more common to extract the density of states
(DOS) and Fermi surfaces from the dispersion relation. Both quantities follow from the
non-interacting Green’s function (in real frequencies ω):

G(~k, ω) = 1
ω − ε~k + iδ

, (2.13)
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Figure 2.2: Nearest neighbors (green) along the x- and y-axis and next-nearest neighbors
(purple) along the diagonals in the tight-binding model for the two-dimensional square
lattice.

where iδ is an imaginary-offset for the poles of the retarded-Green’s function. Rela-
tion (2.13) can be interpreted as a direct analytic continuation, which is possible if the
frequency dependence is known analytically. A more general form for interacting Green’s
functions is discussed later. The momentum dependent DOS is given as:

Aσ(~k, ω) = − 1
π
=G(~k, ω) = − 1

π
= 1
ω − ε~k + iδ

, (2.14)

where the subscript σ is the spin-dependence, which is necessary to assure the integrated
DOS evaluates to unity for each flavor. A direct evaluation of the above expression yields:

Aσ(~k, w) = 1
π

δ

(ω − ε~k)2 + δ2 , (2.15)

which is nothing but the definition of the δ-distribution following a Lorentzian with δ → 0.
The momentum integrated spectral function follows as:

Aσ(w) = 1
N

BZ∑
~k

δ(ω − ε~k). (2.16)

In case more orbitals are involved the dispersion relation needs to be diagonalized in
the first place. Intuitively, relation (2.16) can be interpreted as counting the number of
k-points whose eigen-energy ε~k equals a given energy ω.

The DOS for the two-dimensional tight-binding model of relation (2.11) is shown in
Figure 2.3. The integral over all frequencies for a given spin yields unity, which accounts for
the conservation of the particle number. Different types of critical points exist in the two-
dimensional DOS, which relate back to extrema of the dispersion relation. The minimal and
the maximal value of the dispersion relation form sharp edges of the spectra on either side.
The saddle-point of the dispersion relation at ~k = (π, 0) is responsible for the logarithmic
divergence at ω = 0, which is also known as the Van Hove singularity [Van Hove, 1953].
In general, these features are also present in density of states calculated from density
functional theory for materials, although in practice they may be further smoothened
by scattering with phonons or other quasi-particles. A more complete discussion about
singularities in the DOS is found in literature (e.g. Bassani and Parravicini [Bassani and
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Figure 2.3: DOS of the two-dimensional tight-binding model for a given spin on a square
lattice with nearest-neighbor hopping t = 0.25 at half-filling µ = 0 and 400 k-points in
both directions. The DOS is evaluated at the level of the Green’s function (2.16) on a
logarithmic ω-grid around the origin with 400 points (green) and at the level of binning of
eigen-energies (2.14) for a linear ω-grid with 2000 points (blue). The latter was smoothed
using a Gaussian filter to reduce the artifacts from the δ-like bins. The filtering procedure
is in direct analogy to the imaginary offset iδ of the Green’s function, which was set to
δ = 5 · 10−3. This smoothening also yields a cut-off for the Van Hove singularity at ω = 0.

Parravicini, 1975]). The bandwidth of the DOS follows from the minimal and maximal
possible value in the dispersion relation with W = 8t in two dimensions.

The Fermi surface can be extracted from the k-dependent density of states with
A(~k, ω = µ). For the non-interacting case very sharp one-dimensional boundaries define
the Fermi surface. Wave vectors within the Fermi surface ε~k < εF correspond to the
occupied energy levels, while wave vectors above the Fermi wave vector are unoccupied.
The Fermi surface for the two-dimensional tight-binding model is shown in Figure 2.4. At
half-filling the Fermi surface resembles a diamond-shaped boundary, with perfect nesting
at a nesting vector ~Q = (±π,±π). This exactly coincides with the Van Hove singularity
discussed earlier. Below half-filling the Fermi surface is a closed structure and above
half-filling it opens at wave vectors around ~k = (±π, 0) and ~k = (0,±π). Also for the
interacting case the analysis of the Fermi surface stays relevant. The Fermi surface gives
first hints about instabilities along nesting vectors or the formation of gaps.

In order to determine the magnetic ordering of the Hubbard model in the non-
interacting case it is necessary to investigate the static spin-susceptibility χs(~q, ω = 0) in
more detail. In a first approximation one can express the spin- and charge susceptibility
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Figure 2.4: Fermi surface (i.e. constant energy contours) of the two-dimensional tight-
binding model with the parameters defined in Figure 2.3 for the underdoped case (purple),
half-filling (turquoise) and the overdoped case (yellow). The underdoped case relates to a
closed Fermi surface centered around the origin. The half-filled case relates to a diamond
shaped Fermi surface with a nesting vector ~Q = (±π,±π). The overdoped case relates
to a Fermi surface where the four arcs form a closed Fermi surface if periodic boundary
conditions are included.
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as a diagrammatic ladder construction of (single-particle) Green’s functions:

χs(~q, ω = 0) = χ0(~q, 0)
1− Uχ0(~q, 0) (2.17)

χc(~q, ω = 0) = χ0(~q, 0)
1 + Uχ0(~q, 0) , (2.18)

where χ0(~q, ω) is the bubble-term, which is constructed from non-interacting Green’s
functions only

χ0(~q, ω) = 1
N

BZ∑
~k

f(ε~k−~q)− f(ε~k)
ω + iδ − (ε~k−~q − ε~k)

(2.19)

where f(x) = 1/(1 + eβx) is the Fermi distribution function. The ladder construction is
more commonly known as the random phase approximation (RPA), originally formulated
by Bohm and Pines [Bohm and Pines, 1953]. A more detailed derivation of the bubble-
term for the non-interacting Green’s is given in Appendix A.1. The static (i.e. ω = 0)
part of the bubble-term shows a logarithmic divergence for the nesting vector ~q = ~Q as
the dispersion relation maps to itself (i.e. ε~k = ε~k− ~Q). This suggest that the system
is magnetically ordering. As opposed to the Green’s function itself, the susceptibility
shows an explicit temperature dependence due to the Fermi distribution functions. The
divergence of the bubble-term with the temperature follows as [Shimahara and Takada,
1988]

χ0(~q = ~0, ω = 0) ∼ 1
t

ln tβ (2.20)

χ0(~q = ~Q, ω = 0) ∼ 1
t

ln2 tβ, (2.21)

which suggests that the temperature divergence occurs at ~q = ~Q first, before occurring at
~q = ~0 . Thus, the non-interacting two-dimensional Hubbard model with nearest neighbor
hopping has a tendency to order anti-ferromagnetically with ~Q = (±π,±π). The behav-
ior of the bubble-term for different values of ~q and inverse temperatures β is shown in
Figure 2.5. In order to extract the anti-ferromagnetic transition temperature, the spin sus-
ceptibility in (2.17) needs to be analyzed. The expression diverges for Uχ0(~q = ~Q, 0) = 1,
resulting in a transition temperature TN ∼ te−

√
t/U .

In the non-interacting system, the Green’s function itself has no explicit temperature
dependence. In the next section the atomic limit is investigated. While the analytic
solution of the Green’s function in the Matsubara frequency formalism shows a tempera-
ture dependence for the Matsubara frequencies, the temperature can be considered as a
parameter which determines the “resolution” of the analytic result on the Matsubara axis.
A true energy scale due to temperature effects is only observed in interacting-systems,
where both the potential energy and the kinetic energy term are present.
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Figure 2.5: Non-interacting bubble-term χ0(~q, ω = 0) for a q-path through the Brillouin
zone, where the Γ-point is at ~q = (0, 0), the X-point is at ~q = (π, 0) and the M -point
at ~q = (π, π) for different inverse temperatures β ∈ [0, 50/t]. The logarithmic divergence
at the Γ-point and the quadratic logarithmic divergence at the M -point with inverse
temperature can be observed. The system has a tendency to order anti-ferromagnetically.

2.1.3 Atomic Limit
In the atomic limit, the kinetic energy term of the Hubbard model vanishes as U/t→∞.
The Hubbard Hamiltonian then reduces to a lattice of disconnected Hubbard atoms:

Ĥat =
N∑
i

(
− µ(n̂i↑ + n̂i↓) + Un̂i↑n̂i↓

)
. (2.22)

Contrary to the non-interacting case, the above Hamiltonian displays properties of
many-body physics due to the non-vanishing two-particle interaction. More specifically,
the strong correlation effects present in the interacting atomic lattice, as opposed to the
non-interacting lattice, are captured in a non-vanishing self-energy. This can, nevertheless,
be solved analytically by first calculating the imaginary time Green’s function in the
Lehmann representation.1 A detailed derivation can be found in Appendix A.2. Here,
only the results for the Green’s function in Matsubara frequencies and the DOS are given:

Gσ(iν) =
∫ β

0
eiντGσ(τ) = 1

1 + 2eβµ + e−β(U−2µ)

(1 + eβµ

iν + µ
+ eβµ + eβ(2µ−U)

iν + µ− U

)
, (2.23)

with the fermionic Matsubara frequency iν = i (2n+1)π
β

and n ∈ Z. For the half-filling case
the above simplifies to:

Gσ(iν) = 1
2

( 1
iν − U

2
+ 1
iν + U

2

)
. (2.24)

1It is common to refer to the spectral representation of expectation values as the “Lehmann representa-
tion” explicitly. Historically, the spectral representation was independently formulated by Källén [Källén,
1952] and Lehmann [Lehmann, 1954] in order to derive a general expression of the two-point Green’s
function in interacting quantum field theories.
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Figure 2.6: DOS of the atomic limit for U = 1. The DOS is extracted from the Green’s
function and analytically continued using Padé approximants (blue). The analytic result
of two δ-peaks symmetrically offset from the origin by ±U

2 is shown in dashed-lines (gray).

From the poles of the Green’s function, one can immediately read off the DOS as:

Aσ(ω) = 1
2

(
δ(ω − U

2 ) + δ(ω + U

2 )
)
. (2.25)

The δ-peak at ω = −U
2 corresponds to the filled single-occupied states 〈↑| and 〈↓|, while

the δ-peak at ω = +U
2 corresponds to the empty state 〈 | and double-occupied state 〈↑↓|.

The two peaks are separated by an overall “distance” of U . The DOS of the atomic limit
is presented in Figure 2.6. Besides the analytic formula, a Padé approximant was fit to
the Matsubara data, to motivate the introduction of analytic continuation techniques. A
more thorough discussion of the analytic continuation procedure is given in Section 2.6.

The atomic limit fully suppresses any motion on the lattice. At half-filling, the lowest
lying energy states are occupied, i.e 〈↑| and 〈↓|. The double-occupied state 〈↑↓| is not
filled, according to the intuition that the potential energy cost becomes infinitely large
with respect to the kinetic energy. As there is no coupling between neighboring sites, there
exists no magnetic ordering at any given temperature. One may argue that this limit
is rather fabricated. If one instead allows for a finite, but non-vanishing hopping and a
much higher Coulomb repulsion U � t, the system is close to the atomic limit and the
double-occupied state can be ignored. In this scenario, the system can then be mapped
onto a Heisenberg model discussed in the next section.

2.1.4 Heisenberg Lattice
The spin-1/2 anti-ferromagnetic Heisenberg model [Heisenberg, 1928] is the limit of the
Hubbard model for U � t, i.e. a model which is close to the atomic limit, but not the
atomic limit itself. This immediately suggests formulating a perturbation theory around
the atomic limit to derive the Heisenberg model. Starting from the Hubbard model
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in (2.1), one sets the potential energy term as the unperturbed Hamiltonian Ĥ0 and the
kinetic energy term as the perturbation Ĥ1. With second-order perturbation theory and
nearest-neighbor hopping the Hubbard model reduces to the tJ-model:

ĤtJ = 1
2

N∑
〈ij〉,σ

tij(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + 1
2

N∑
〈ij〉

Jij

(
~̂Si · ~̂Sj −

1
4 n̂in̂j

)
, (2.26)

where Jij = 4t2ij/U is the spin-spin interaction due to second-order virtual processes for
electrons with opposite spin on neighboring sites and n̂i = (n̂i↑ + n̂i↓) is the density for
site i. Further, ~̂Si is the spin-operator at site i with:

~̂Si = 1
2
(
ĉ†i↑ ĉ†i↓

)
~σ

(
ĉi↑
ĉi↓

)
, (2.27)

with ~σ =
(
σx, σy, σz

)T
being the vector of Pauli-matrices. At half-filling the tJ-model

further reduces to the Heisenberg model:

Ĥheisenberg = 1
2

N∑
〈ij〉

Jij ~̂Si · ~̂Sj, (2.28)

The Heisenberg model assumes that the double-occupied state 〈↑↓| itself is never realized
for any prolonged period of time due to the high potential energy costs. Instead, the
double-occupied state is only temporarily realized during a second-order virtual process,
where an electron hops onto a site already occupied by another electron and either of
the electrons hops off the site immediately afterwards. Due to the Pauli principle, such a
process is only possible if the two electrons have opposite spin, such that the Heisenberg
model favors anti-ferromagnetic ordering. Intuitively the information about the second-
order virtual process is already encoded in Jij = 4t2ij/U . A detailed derivation is given in
Appendix A.3. The first-order and second-order processes of the tJ- and the Heisenberg
model are illustrated in Figure 2.7.

While the Heisenberg model itself allows for both ferromagnetic and anti-ferromagnetic
coupling, only the latter is realized in the limit of the Hubbard model. The magnetic
ordering of the Heisenberg model is further to be interpreted on top of the formation
of a local magnetic moment, which is already described in the atomic limit, where each
lattice site acts individually and is not connected to its neighboring sites. Ultimately,
the Heisenberg model thus adds insight into the anti-ferromagnetic ordering in the phase
diagram of the Hubbard model for large U/t with an ordering temperature TN ∼ t2/U .

2.1.5 Lattice Phase Diagram
The previous sections analyze different lattice models. Starting from the Hubbard model,
the weak-coupling and the strong-coupling limit are reviewed.

The non-interacting limit (U/t = 0, i.e. the weakest-coupling possible) of the Hubbard
model is described by the tight-binding model (see Section 2.1.2). The two-dimensional
square lattice at half-filling (or close to half-filling) shows distinct features in the DOS and
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Figure 2.7: Dynamics in the tJ-model for two neighboring sites i and j. (1): First
order hopping −t of a spin-up electron onto an empty site. (2): Second order virtual
hopping from of a spin-up electron onto a spin-down occupied site. As double-occupation
is prohibited, an immediate hopping of either the spin-up or spin-down electron back to
the empty site follows. The two neighboring sites are anti-ferromagnetically ordered. (3):
Attempted hop of a spin-up electron on a spin-up occupied site. Due to the Pauli-principle
this process is forbidden. The two neighboring sites are ferromagnetically ordered.
All processes also exist when exchanging spin-up and spin-down. In the Heisenberg model
only process (2) exists, while process (1) is not realized due to half-filling.
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the Fermi surface, such as the Van Hove singularity or perfect nesting. The RPA-ladder
construction of the spin-susceptibility can be considered a perturbative expansion around
the non-interacting limit. Although a full weak-coupling perturbation theory gives more
insight to the Hubbard model, the magnetic ordering for small U/t is determined to be
anti-ferromagnetic.

The atomic limit, on the other hand, (U/t =∞, i.e. the strongest-coupling possible)
of the Hubbard model is described by the atomic lattice (see Section 2.1.3). The DOS
reduces to δ-peaks separated by the Coulomb repulsion U , which correspond to the single-
occupied states below the Fermi energy and the empty and double-occupied state above.
The atomic lattice itself is special, as neighboring sites do not interact because there is no
hopping. Hence, any spatial- or momentum dependence is lost, and there is no magnetic
ordering for any given temperature. A perturbative expansion around the atomic lattice
is necessary to recover the strong-coupling case, which is given by the tJ-model or, at
half-filling, by the spin-1/2 Heisenberg lattice. The Pauli principle for electrons on the
same site is inherited from the Hubbard lattice, such that the Heisenberg model orders
anti-ferromagnetic. An illustration of the phase diagram of the Hubbard model according
to these limits is given in Figure 2.8.2

It is important to point out that other lattice models exist for limiting cases of the
Hubbard model, namely the periodic Anderson model, the Kondo lattice model and the
Falicov-Kimball lattice model. Alternatively, these models can be formulated as impurity
models, where a (single) impurity in the lattice is treated explicitly, with the rest of the
lattice being reformulated as a surrounding non-interacting bath. The mapping of such
lattice models onto impurity models is usually justified in cases of high lattice dimension
and becomes exact for infinite lattice dimensions, which is the principle of the dynamical
mean field theory. These impurity models are hence discussed in greater detail in the next
section.

2.2 Impurity Models

2.2.1 Anderson Impurity
The single-orbital Anderson impurity model (AIM) [Anderson, 1961] in second quantiza-
tion is given by

Ĥaim = 1
2

N∑
ij,σ

tij(ĉ†iσ ĉjσ+ĉ†jσ ĉiσ)+
N∑
iσ

(
Ṽiσ ĉ

†
iσd̂σ+Ṽ ∗iσd̂†σ ĉiσ

)
−
∑
σ

µdd̂
†
σd̂σ+Ud̂†↑d̂↑d̂

†
↓d̂↓, (2.29)

where ĉ(†)
iσ is now the annihilation (creation) operator at bath site i with spin σ = {↑, ↓} and

d̂(†)
σ is the annihilation (creation) operator at the impurity site. As opposed to Hubbard

2While parts of the derivations for the ordering temperature TN are here presented for the two-
dimensional Hubbard model at half-filling for reasons of simplicity, the low dimension and symmetry
actually suppress TN completely. The absence of ferromagnetism or antiferromagnetism in the one- or
two-dimensional isotropic Heisenberg model was shown in the work of Mermin and Wagner of the same
title [Mermin and Wagner, 1966]. The same theorem holds for the two-dimensional Hubbard model. In
one dimension the theorem is more commonly known as Lieb-Mattis theorem [Lieb et al., 1961].
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Figure 2.8: Illustration of the phase diagram for the Hubbard lattice with no magnetic or-
dering above the ordering temperature TN , and anti-ferromagnetic ordering below (hatched
region). In the weak coupling limit TN is approximated from the RPA ladder. In the
strong coupling limit TN follows from the Heisenberg model. The gray region represents
intermediate coupling, where neither of the two limits is valid. The non-interacting limit
(tight-binding model) follows for U/t = 0 and the atomic limit for U/t =∞.

model, the kinetic energy of the AIM consists of two parts: the hopping tij between two
bath sites i and j and the hopping/hybridization Ṽ ∗iσ from the bath onto the impurity and
vice versa. The main difference to the Hubbard model is that the interaction energy term
is now restricted to the impurity only.

Similar to the Hubbard model, it makes sense to reformulate the kinetic energy term
(bath and hybridization) of (2.29) in momentum space, where it is diagonal. The potential
energy term (impurity) of the Hamiltonian is kept in the real space formulation, such that

Ĥaim =
BZ∑
~kσ

ε~kĉ
†
~kσ
ĉ~kσ +

BZ∑
~kσ

(
V~kσ ĉ

†
~kσ
d̂
σ

+ V ∗~kσd̂
†
σ
ĉ~kσ

)
−
∑
σ

µdd̂
†
σd̂σ + Ud̂†↑d̂↑d̂

†
↓d̂↓, (2.30)

where the hybridization amplitude transforms with

V~kσ = 1√
N

N∑
iσ

Ṽiσe
i~k~ri . (2.31)

An illustration of the AIM is given in Figure 2.9.
Tackling the problem from the impurity perspective, one is not interested in the

hoppings within the bath. In fact, the only relevant coupling is the hybridization of the
impurity to the bath and the density of states of the bath electrons. Both are encoded in
the hybridization function. The hybridization function can be extracted from the action
formalism, where one exploits the fact that the bath is non-interacting. The path integral
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Figure 2.9: Illustration of the Anderson impurity model. Left: The non-interacting bath
is assumed to be a two-dimensional square lattice. (1) and (3): bath site occupation with
energy cost −µ. (4): impurity occupation with energy cost −µd. (1) → (2): nearest-
neighbor bath hopping with amplitude −t. (3)→ (4) hopping of a spin-up electron from
the bath onto the interacting impurity with a hybridization amplitude Ṽ↑ (resulting in an
energy cost of U − 2µ for the impurity). (4)→ (5): hopping of a spin-down electron from
the impurity onto the bath with a hybridization amplitude Ṽ ∗↓ . Right: Non-interacting
bath represented by hybridization function ∆(ω), where the bath degrees of freedom have
been integrated out. (1) → (2): spin-up electron hybridizing onto interacting impurity.
(2)→ (1): spin-down electron hybridizing off the impurity.

of the bath part is then of Gaussian form, so that an analytic integration is possible. This
is usually referred to as integrating out the bath degrees of freedom. The hybridization
function of the AIM in fermionic Matsubara frequencies iν is given by

∆σ(iν) =
BZ∑
~k

|V~kσ|2

iν − ε~k
. (2.32)

Identifying the denominator of the above expression as the non-interacting Green’s func-
tion, one can reformulate the hybridization function in terms of the density of states in
real frequencies ω with

∆σ(iν) =
∫ ∞
−∞

dω
BZ∑
~k

|V~kσ|
2 δ(ω − ε~k)
iν − ω

= − 1
π

∫ ∞
−∞

dω=(∆σ(ω))
iν − ω

(2.33)

=(∆σ(ω)) = −π
BZ∑
~k

|V~kσ|
2δ(ω − ε~k) = −π

BZ∑
~k

|V~kσ|
2Aσ(~k, ω), (2.34)

where Aσ(~k, ω) is the non-interacting DOS of the bath. One can now observe that the
hybridization function ∆σ(ω) is directly proportional to Aσ(~k, ω), where the real part of
∆σ(ω) follows from the imaginary part using the Kramers-Kronig relations.3 The impurity

3Mathematically the Kramers-Kronig relations are a special case of the Sokhotski-Plemlj theorem.
Nevertheless, the practical use was popularized by the two theoretical physicists Kramers [Kramers, 1927]
and Kronig [Kronig, 1926].
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Green’s function Gσ(ω) can be expressed using the hybridization function as:

Gσ(ω) = 1
ω −∆σ(ω) . (2.35)

Directly related, the impurity DOS for the non-interacting impurity (U = 0) follows as:

Aσ(ω) = − 1
π
= 1
ω −∆σ(ω) = − 1

π

=∆σ(ω)
(ω −<∆σ(ω))2 + =∆σ(ω)2 . (2.36)

Using relation (2.34), for a flat (i.e. featureless) non-interacting DOS Aσ(ω) = θ(1
2 − |ω|)

with bandwidth W = 1 and a momentum-independent hybridization amplitude Vσ = Vkσ,4
the impurity DOS can be approximated by

Aσ(ω) ≈ V 2
σAσ(ω)

ω2 + (πV 2
σAσ(ω))2 , (2.37)

where this result is valid for Vσ/W � 1, i.e. small hybridization amplitudes (sometimes
referred to as the broad-band limit, which is commonly employed). The Lorentzian shape
of the impurity DOS relates to a broadening due to the hybridization with the flat non-
interacting DOS. This implies that the existence of impurities in the host lattice broadens
energy levels and peak structures of the non-interacting DOS due to impurity scattering
events, even in the absence of an impurity interaction U . The non-interacting flat DOS
and the Lorentzian-shaped impurity DOS are illustrated in Figure 2.10. An extended
discussion of the AIM in general [Hewson, 1993] and specifically for the non-interacting
AIM [Mahmoud and Gebhard, 2015] can be found in literature.

In order to describe a non-interacting lattice with several impurities, the AIM may
be redefined as an impurity lattice. Such a model system is usually referred to as the
periodic Anderson model (PAM), which follows from (2.30) by introducing a sum over the
impurity terms with

Ĥpam =
BZ∑
~kσ

ε~kĉ
†
~kσ
ĉ~kσ +

BZ∑
~kσ,i

(
V~kσ ĉ

†
~kσ
d̂
iσ

+V ∗~kσd̂
†
iσ
ĉ~kσ

)
−

N∑
σ,i

µdd̂
†
iσd̂iσ +

N∑
i

Ud̂†i↑d̂i↑d̂
†
i↓d̂i↓ (2.38)

Although being a lattice model, the PAM is quite different from the Hubbard model.
More specifically, while the Hubbard model describes a lattice where interacting sites are
coupled directly to one another, the PAM describes a lattice, where interacting sites are
only coupled to one another indirectly over a non-interacting bath all of the impurity sites
share. Nonetheless, the two models share many common features and can be mapped
onto each other in certain limiting cases [Held et al., 2000,Held and Bulla, 2000].

In the following, different limits of the AIM are considered in a similar fashion as
for the Hubbard (lattice) model. When completely decoupling bath and impurity by
setting V~kσ = 0, the two extreme limits, i.e. the non-interacting case and the atomic limit,
are identical for the impurity and lattice sites respectively. The equivalence in the non-
interacting limit is straight-forward, as the non-interacting bath of the AIM fully describes

4In the context of the dynamical mean field theory the hybridization amplitudes and the DOS are
adapted self-consistently in the DMFT equations.
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Figure 2.10: Impurity DOS Aσ(ω) of the non-interacting Anderson impurity model with
hybridization amplitude Vσ = 0.1W for a flat non-interacting DOS Aσ(ω) for the bath
with bandwidth W = 1. The Lorentzian broadening of the impurity level can be observed.

tight-binding physics, where the impurity is entirely ignored (i.e. no hybridization V~kσ of
impurity and bath and no interaction U on the impurity).

The atomic limit of the AIM, on the other hand, is equivalent to the atomic limit of the
Hubbard model. While for the Hubbard model, the hopping t vanishes in the atomic limit,
in the AIM the hopping t and the hybridization amplitude V~kσ vanish in the atomic limit
(i.e. the total kinetic energy expression vanishes), which can be equivalently formulated
be requiring ∆σ(ω) = 0.

While the non-interacting limit and the atomic limit formally connect lattice and
impurity models, the weak coupling and strong coupling limit differ. In the strong coupling
limit the AIM is given by the Kondo impurity model.

2.2.2 Kondo Model

The Kondo model5 was introduced by Zener [Zener, 1951] and describes scattering pro-
cesses of non-interacting electrons with a local moment on a given impurity, where the
coupling of impurity to the bath is given by the spin-spin interaction. The spin-1/2 Kondo
Hamiltonian follows as

Ĥkondo =
BZ∑
~kσ

ε~kĉ
†
~kσ
ĉ~kσ −

1
2

BZ∑
~k~k′

J~k~k′
~̂S~k~k′

~̂S, (2.39)

5Historically, the Kondo model was introduced as the s−d model. This designation stems from the
application to materials: the non-localized s-orbitals relate to the non-interacting bath, while the localized
d-orbital relates to the impurities in the host lattice.
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where the bath spin operator ~̂S~k and an impurity spin operator ~̂S are defined as

~̂S~k = 1
2
(
ĉ†~k↑ ĉ†~k↓

)
~σ

(
ĉ~k′↑
ĉ~k′↓

)
(2.40)

~̂S = 1
2
(
d̂†↑ d̂†↓

)
~σ

(
d̂↑
d̂↓

)
. (2.41)

Further, ~σ denotes the Pauli matrices. The coupling constant in (2.39) is sometimes
chosen to be momentum independent, i.e. J = J~k~k′ . The Kondo Hamiltonian favors
anti-ferromagnetic coupling of the non-interacting bath to the impurity for J > 0.

The spin-1/2 Kondo model is obtained from the AIM in the strong coupling limit.
Mathematically this is achieved by a Schrieffer-Wolff transformation [Schrieffer and Wolff,
1966]. The transformation is closely related to the approach presented in Section 2.1.4 and
Appendix A.3. High-energy states are projected out and perturbation theory is considered
up to second order in the low energy model. Spin-flips between the non-interacting bath
and the impurity follow from second-order virtual processes, where an electron of a given
spin jumps onto a singly-occupied impurity of opposite spin, shortly resulting in a doubly-
occupied impurity, which then relaxes to its original occupation with opposite spin. The
Schrieffer-Wolff transformation further sets the coupling to

J~k~k′ = V~kV
∗
~k′

( 1
µd

+ 1
U − µd

)
. (2.42)

Assuming a momentum independent hybridization V = Vk and half-filling µd = U/2 the
above simplifies to J = 4V 2/U , which is identical to the anti-ferromagnetic Heisenberg
coupling J if one replaces t2 → V 2.

The Kondo model in itself has been studied extensively, as it describes electronic scat-
tering processes in host metals with magnetic impurities (local moments). The famous
Kondo effect, which states that there is a (negative) logarithmic behavior of the resistivity
due to electron-impurity scattering for low temperatures, follows from third-order pertur-
bation theory. In combination with the polynomial scaling of electron-electron scatterings
(quadratic) and electron-phonon scatterings (quintic), this results in a resistivity minimum
at finite temperatures, which was observed experimentally. The Kondo scattering implies
a logarithmic divergence of the resistivity with T → 0, which, on the other hand, has
not been observed and thus became known as the Kondo problem. The Kondo problem
was, at last, solved by a renormalization group approach, proposing a finite resistivity at
T = 0 [Wilson, 1975]. Note that at low temperatures the perturbative approach of the
Kondo effect is no longer valid.

In the context of this work, only two results of Kondo physics are considered in greater
detail: the Kondo temperature, i.e. the temperature scale at which the perturbative
approach breaks down, and the related Kondo peak - a central resonance of the DOS at
the Fermi energy relating to spin fluctuations of the local moment.

The Kondo peak at the Fermi energy is a sharp resonance resulting from electrons
scattering off the broadened impurity resonance introduced in (2.37) for the non-interacting
AIM. Following the derivations of Langreth [Langreth, 1966], in the following the height
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Figure 2.11: Illustration of the interacting DOS Aσ,U(ω) of the AIM, with a central Kondo
resonance for finite U. The resonance height of the non-interacting DOS Aσ,U=0(ω) of
the AIM with the broadening due to impurity scattering is identical to the interacting
resonance. Additionally, the featureless non-interacting DOS in the absence of impurities
AU=0(ω) is given for reference.

of the central Kondo resonance is calculated. Diagrammatically, the propagation of an
electron through the entire lattice Glat is given by the non-interacting propagation G,
which is modified by hybridizations of the electron onto the impurity, a propagation G
within the impurity and a (backwards) hybridization into the bath, such that

Glat(~k,~k′, ω) = G(~k, ω)δ~k~k′ + G(~k, ω)V ∗~k G(ω)V~k′G(~k′, ω) (2.43)

In the following the hybridization amplitudes are chosen momentum-independent, i.e.
V = Vk. The scattering amplitude in the above propagation directly relates to the
impurity Green’s function (2.35) with

T (ω) = V 2G(ω) ≈ V 2 1
ω − i=∆(ω) , (2.44)

where the approximate result is valid for the wide-band limit V/W � 1 as <∆(ω)� ω.
More importantly, one is interested in the phase shift δ(ω) due to scattering,6 which follows
as

δ(ω) = cot−1
(

ω

=∆(ω)

)
(2.45)

As =∆(ω) < 0, far below the Fermi energy (i.e. ω → −∞), the phase-shift is equal to zero.
Far above the Fermi energy (i.e. ω → ∞), the phase-shift is equal to π. At the Fermi
energy itself, the scattering becomes prominent with a phase shift of δf = δ(0) = π/2.7

6The relationship between the T-matrix and the S-matrix follows from the optical theorem S(ω) =
1− 2πiA(ω)T (ω). With S(ω) = e2iδ(ω) one can solve for T (ω) = −1/(πA(ω)(cot δ(ω)− 1)).

7The above is a simplified form of the Friedel sum rule, where the density at the Fermi energy is given
by n = δ(0)/π.
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By adiabatically turning on the interaction U , the broadened DOS Aσ,U=0(ω) trans-
forms into a DOS with two Hubbard-bands separated by U and a central peak of the
height following Fermi liquid theory

A(0) = − sin2 δf
π=∆(0) = − 1

π

1
=∆(0) . (2.46)

This is however also the height of the broadened DOS at the Fermi energy defined in (2.37),
which is why sometimes one refers to the Kondo peak as being pinned [Coleman, 2015].
An illustration of the different DOS for the Kondo model is shown in Figure 2.11.

Fermi-liquid theory assumes the area under the Kondo resonance is given by the
renormalization factor Z, such that the width of the Kondo resonance needs to be approx-
imately renormalized by ∼ Z∆. The width, however, further determines the life-time of
the quasi-particles, resulting in a new energy-scale TK ∼ Z∆, which is nothing but the
Kondo temperature. Thus, the Kondo temperature is to be interpreted with respect to the
Kondo resonance itself: low energy excitations probe the metallic properties of the system,
where the impurity is screened by the bath electrons resulting in a Fermi-liquid. High
energy excitations probe the local moments, as the impurities are no longer fully screened.
Analytically, the Kondo temperature for the half-filled AIM for a flat bath dispersion was
determined to [Hewson, 1993]

TK =
√
JU2A(0)

2 exp
(
− 1

2JA(0)

)
. (2.47)

Kondo physics also becomes relevant for the behavior of the charge susceptibility as a
function of interaction U and temperature T . As the (non-self-consistent) AIM, and for
that matter the Kondo model, stays metallic for all U , the static local charge susceptibility
does not display any discontinuities around the Fermi energy, as it would be the case
for Mott metal-to-insulator transitions. Further, for temperatures T < TK , the bath
electrons screen the impurity, which retains Fermi-liquid-like behavior. For temperatures
T > TK , the local moments are only partially screened, and the impurities display an
anti-ferromagnetic coupling to the bath [Janǐs and Augustinský, 2008].

Similar to the periodic Anderson model, which is the lattice formulation of the AIM, the
Kondo model may be redefined as a lattice model. The Kondo lattice model (KLM) [Do-
niach, 1977] follows from (2.39) by switching to the real-space representation and intro-
ducing a sum over the impurity sites

Ĥklm =
BZ∑
~kσ

ε~kĉ
†
~kσ
ĉ~kσ − J

N∑
i

~̂Si ~̂Si, (2.48)

where now ~̂Si is the bath spin operator evaluated at the impurity i and ~̂Si is the impurity
spin operator at site i. The Kondo lattice allows for the RKKY exchange mechanism, where
two local moments interact over the non-interacting bath indirectly. While the Kondo
effect attempts to screen local impurities, the RKKY exchange favors (anti-ferromagnetic)
ordering in the KLM, which leads to a more complex lattice phase diagram.
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2.2.3 Falicov-Kimball Model and Resonant Level Model
To this point, only SU(2)-symmetric models were considered. More specifically, the models
discussed in the previous sections stay invariant under an exchange of spins ↑↔↓. More
insight to the physics of impurity models may be gained when considering the SU(2)-
symmetry broken phase. The Falicov-Kimball model (FKM) assumes one spin (e.g. ↓) to
be localized, that is t↓ = 0, while the other spin (i.e. ↑) is considered to be itinerant, hence
t↑ = t 6= 0.8 In the limit of U/t =∞, the itinerant spin becomes just as localized as the
fixed spin, such that the impurity inherits the properties of the atomic limit. On the other
hand, in the limit of U/t = 0, the non-interacting bath of the itinerant spin behaves like
a tight-binding lattice. The additional existence of non-interacting impurities broadens
the DOS of the itinerant spin, as discussed in the context of the AIM. A finite Coulomb
repulsion U controls the level of correlation between the two spins. The resonant level
model, i.e. the impurity equivalent of the FKM [Falicov and Kimball, 1969], in second
quantization is given by:

Ĥfk = −
N∑
l>1

(
t0lĉ
†
0ĉl + t∗l0ĉ

†
l ĉ0 + µcĉ

†
l ĉl

)
+ Uf̂ †f̂ ĉ†0ĉ0 − µf f̂ †f̂ − µcĉ†0ĉ0, (2.49)

where ĉ(†)
i is the annihilation (creation) operator of the itinerant electron at site i and f̂ (†)

is the annihilation (creation) operator of the fixed electron at the impurity site i = 0.
The specific properties of the FKM allow for an analytic solution in terms of Green’s

function. This is achieved by applying the equation of motion (EOM), i.e. the (imaginary)
time derivative of either the itinerant creation or annihilation operator, on the impurity-
and on the bath-level successively. The itinerant c-electron impurity Green’s function of
the resonant level model in fermionic Matsubara frequencies was calculated by Brandt
and Mielsch [Brandt and Mielsch, 1989]

Gc(iν) = 1
iν + µc −∆(iν)− UNf

, (2.50)

with the hybridization function defined as ∆(iν) = ∑N
l>1

t0lt
∗
l0

iν+µc . Further, the impurity is
either unoccupied or occupied by a localized f -electron with Nf = {0, 1} (where a capital
Nf was used to denote a classical (binary) occupation). A derivation of the above result
is found in Appendix A.4.

More frequently than relation (2.50), usually the Green’s function is interpolated
between the two occupations Nf = {0, 1}. By defining p as the probability of the impurity
being unoccupied, the c-electron Green’s function is then formulated as

Gc(iν) = p
1

iν + µc −∆(iν) + (1− p) 1
iν + µc −∆(iν)− U . (2.51)

8More often, the FKM is referred to as a spinless model consisting of spinless itinerant electrons and
localized ions. In this case, the Coulomb interaction U is either repulsive or attractive and the ordering
mechanism of the itinerant electrons is classified by their charge/density on the lattice. In this work the
FKM is considered as a limit of the mass-imbalanced Hubbard model, where the hopping of one species
is set to zero.
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Figure 2.12: Impurity DOS of the c-electrons for the Falicov-Kimball impurity model
following a flat non-interacting DOS Ac(ω) with bandwidth W = 1. Due to scattering
with non-interacting impurities Ac,U=0(ω) reproduces the Lorentzian broadening of the
non-interacting AIM for U = 0. For finite interaction values, two Hubbard bands separated
by U form symmetrically around the Fermi energy, until they are cut off by the band
edges, where the interacting DOS starts to diverge.

For half-filling, the f -electron occupation is fixed to p = 1− p = 0.5 and further µc = U/2.
Figure 2.12 shows the c-electron DOS for the half-filled resonant level model following a
flat non-interacting DOS (i.e. a flat hybridization). As opposed to the Kondo model, the
resonant level model does not display a quasi-particle peak. The absence of the Kondo
resonance follows from the localization of one electron spin, which forbids spin flips and,
consequently, the Kondo effect as a whole. If the interaction strength is of the order of the
bandwidth U ∼ W , the two Hubbard peaks are cut off by the band edges, which results
in a divergence at the band edge itself and a metal-to-insulator transition.9

In an attempt to determine the ordering of the FKM, first the resonant level model
needs to be cast into its lattice version. Considering the FKM as a limit to the mass-
imbalanced Hubbard model, with localized and itinerant electrons associated with different
spins, the FKM orders magnetically [Kennedy and Lieb, 1986]. While the ordering is
in general dependent on the electron filling, analytic solutions exist for rational number
fillings [Kennedy, 1998]. At half-filling and low enough temperatures, the FKM on a
lattice orders anti-ferromagnetically, while above the critical temperature the system is in
a paramagnetic, i.e. disordered, state.10

9This feature is common for impurity models. In the context of the non-interacting AIM, the divergence
at the band edges can be tuned as a function of the hybridization. The square-root divergence at the
band edges for the semi-elliptical DOS can be derived analytically [Mahmoud and Gebhard, 2015].

10Sometimes the anti-ferromagnetic ordering is referred to as a charge-density wave, which is motivated
by just considering itinerant spinless electrons, which order periodically.
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2.3 Multi-orbital Hubbard Model
To this point only the limiting cases of single-orbital models were discussed. These
included variations in the interaction strength U with respect to the hopping t, the lattice
dimensionality d (and for that matter the number of nearest neighbors Z) and breaking
the SU(2)-symmetric hopping amplitudes. Nevertheless, up to this point the number of
orbitals was fixed to one. Extending the Hubbard model to multiple orbitals allows for
additional orbital-related physics, which are not present in the single-orbital model. Effects
like inter-orbital couplings and Hund’s exchange enrich the phase diagram of the multi-
orbital Hubbard model with respect to the phase diagram of the single-orbital Hubbard
model. New phases include orbital orderings [Tokura and Nagaosa, 2000], ferromagnetic
orderings [Held and Vollhardt, 1998], orbital-selective Mott-Hubbard metal-to-insulator
transitions [Anisimov, V. I. et al., 2002] and Jan-Teller metal phases [Hoshino and Werner,
2017]. The multi-orbital Hubbard with nearest neighbor hopping follows as

Ĥhubbard = −1
2

Nb∑
αβ

tαβ
N∑
〈ij〉,σ

(ĉ†iασ ĉjβσ + ĉ†jβσ ĉiασ)

+ 1
2

N∑
i

Nb∑
αβγδ

∑
σσ′

Uαβγδ ĉ
†
iασ ĉ

†
iβσ′ ĉiδσ′ ĉiγσ, (2.52)

where Greek indices denote orbital degrees of freedom, such that tαβ is the orbital de-
pendent nearest neighbor hopping and Uαβγδ is the orbital dependent interaction matrix.
Further Nb is the number of orbitals considered. It is common to parameterize the multi-
orbital Hubbard model with the intra-orbital coupling U , the inter-orbital couping V and
the Hund’s coupling J , such that the generalized density-density Hubbard model follows
as

Ĥhubbard,DD =− 1
2

Nb∑
αβ

tαβ
N∑
〈ij〉,σ

(ĉ†iασ ĉjβσ + ĉ†jβσ ĉiασ)

+
N∑
i

Nb∑
α

Un̂iα↑n̂iα↓ +
N∑
i

Nb∑
α 6=β,σ

(V n̂iασn̂iβ −σ + (V − J)n̂iασn̂iβσ) . (2.53)

However, only in the limit of a single-orbital, the above expression retains SU(2)-symmetry.
In the multi-orbital case, the spin-flip term recovers the spin-symmetry and the pair hop-
ping term the orbital-symmetry, such that the SU(2)-symmetric Slater-Kanamori [Kanamori,
1963] interaction follows as

Ĥhubbard,SK = Ĥhubbard,DD +
N∑
i

Nb∑
α 6=β,σ

J
(
ĉ†iασ ĉ

†
iβ−σ ĉiα −σ ĉiβσ + ĉ†iασ ĉ

†
iα −σ ĉiβ −σ ĉiβσ

)
(2.54)

Further assuming V = U − 2J ,11 the Slater-Kanamori Hamiltonian becomes SO(Nb)×
SU(2)-symmetric. In order to show the connection between the Hubbard model with

11The constraint V = U − 2J is imposed by spherical symmetry. More often the constraint is also
applied for cubic symmetry, where the deviations are mostly negligible for three orbitals (∼ 1% for SrVO3),
while becoming significant for five orbitals (25% for BaOsO3) [Ribic et al., 2014]



2.4. DYNAMICAL MEAN FIELD THEORY 27

Parameterization Spin Type
Uασ ασ′ ασ ασ′ → U σ 6= σ′ Intra-orbital
Uασ βσ′ ασ βσ′ → V σ = σ′, σ 6= σ′ Inter-orbital
Uασ βσ′ βσ ασ′ → J σ = σ′ Hund
Uασ βσ′ βσ ασ′ → J σ 6= σ′ Spin-flip
Uασ ασ′ βσ βσ′ → J σ 6= σ′ Pair-hopping

Table 2.1: SU(2)-symmetric Slater-Kanamori parameterization of the interaction matrix
with parameters U ,V and J for α 6= β.

Slater-Kanamori interaction and the general expression (2.52) it is helpful to additionally
specify the implicit spin-indices12

Uασ,βσ′,γσ,δσ′ := Uαβγδ. (2.55)

The parametrization of the Slater-Kanamori interaction is shown in Table 2.1. The half-
filling condition for the multi-orbital case is derived in Appendix D.

2.4 Dynamical Mean Field Theory
In the previous sections different limits of the Hubbard (lattice) model and the Anderson
impurity model were discussed in terms of the ratio of potential energy over kinetic energy
U/t. A summary of the links between the various models is illustrated in Figure 2.13.
Up to this point, the lattice dimension was assumed to be fixed (i.e. in most cases a
two-dimensional lattice was considered). However, the lattice dimension in itself proves
to be an important parameter to determine the limits of the Hubbard model. For the
one-dimensional Hubbard lattice (chain) analytic expressions were first derived by Lieb
and Wu [Lieb and Wu, 1968] employing the Bethe-Ansatz.13

For infinite lattice dimension, an exact mapping from lattice models onto impurity
models was formulated by Metzner and Vollhardt [Metzner and Vollhardt, 1989] and
Georges and Kotliar [Georges and Kotliar, 1992]. The latter work shows that the solution
of the Hubbard model can be obtained by a self-consistent mapping onto an auxiliary
AIM.

When naively considering the Hubbard Hamiltonian (2.1) for infinite lattice-dimensions,
however, the kinetic energy will dominate, resulting in a trivial tight-binding lattice. While
the potential energy term is not affected by the lattice dimension, the hopping of the
kinetic energy results in a diverging contribution, as each lattice site has infinitely many
neighboring sites.

Historically, this observation was first quantified by Wolff [Wolff, 1983] who calculated
the DOS for the infinite-dimensional hyper-cubic lattice with nearest neighbor hopping,

12In principle, the orbital-dependent interaction matrix Uαβγδ sufficiently describes all possible local
interactions.

13The Bethe-Ansatz is an analytic method originally formulated for a one-dimensional Heisenberg
chain [Bethe, 1931].
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Figure 2.13: Sketch of the connection between different lattice models and impurity
models for various interaction strengths (weak, intermediate and strong coupling). The
corresponding sections are given in parentheses. All impurity models exist also in a lattice
formulation, where the impurities on a lattice couple to each other via a non-interacting
bath. At infinite lattice dimension, the lattice models can be mapped onto impurity
models via the dynamical mean field theory.

where the dispersion relation is given by

ε~k = −µ− 2t lim
d→∞

d∑
i=1

cos(ki). (2.56)

The index i represents the dimension and ki ∈ [0, 2π). The DOS (see relation (2.16)) for
a given frequency ω can be evaluated by generating random vectors in the d-dimensional
momentum space. For d→∞ the central limit theorem applies, such that the DOS can
be formulated as

Aσ(ω) = 1√
2π
√

2dt
e
− 1

2 ( ω√
2dt

)2
, (2.57)

which is a Gaussian distribution with standard deviation
√

2dt (alternatively referred to
as N (0, 2d t2). In Figure 2.14 the non-interacting DOS for the hyper-cubic lattice for
different lattice dimensions is shown. At lattice dimension d = 50, the DOS calculated
naively using relation (2.16) already agrees well with the Gaussian result obtained from
the central limit theorem.14

14Looking at Figure 2.14, one observes that for higher dimensions d, the DOS develops a peak structure
around the Fermi energy, where most of the weight is centered. When assuming finite-dimensional
dispersion relations in DMFT, it is thus common to rescale the bandwidth W = 4td by a factor 1/

√
2d

to sustain a similar weight for a given frequency independent of the lattice dimension. For d = 2 the
bandwidth is then W = 4t and for d = 3 the bandwidth is W = 2

√
6t.
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Figure 2.14: Non-interacting densities of states for the hyper-cubic lattice with nearest
neighbor hopping for various dimensions d. The half-bandwidth for all dimensions was
fixed to D = 1. At dimension d = 50, the DOS is already well approximated by a
Gaussian with standard deviation σ =

√
2dt following the central limit theorem. Results

were obtained by a straight-forward Monte Carlo integration of (2.16) for the hyper-cubic
dispersion relation.

When taking the limit d → ∞, relation (2.57) goes towards zero, unless rescaling
t→ t∗/

√
d. The Hubbard Hamiltonian with a rescaled kinetic energy and nearest neighbor

hopping follows as:

Ĥhubbard = −1
2
t∗√
d

N∑
ij,σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) +
N∑
i

Un̂i↑n̂i↓. (2.58)

Based on this reasoning, Metzner and Vollhardt were able to show that self-energy diagrams
of the Hubbard model with infinite lattice dimension become purely local, i.e. Σ(~k, ω) =
Σ(ω). The momentum-independence (i.e. locality) of the self-energy already hints at the
connection to impurity models. Indeed, Georges and Kotliar were then able to show the
mapping of the Hubbard model to the Anderson impurity model and further provided the
self-consistent solution. Mathematically, the diagrammatic connection between the lattice
and impurity model is expressed with Green’s functions. An illustration of the DMFT
self consistency equations is shown in Figure 2.15.

The major successes of DMFT include its ability to predict the Mott-Hubbard metal-
to-insulator transition (MIT) [Mott, 1968]. In the previous sections, it was shown that
the atomic lattice at half filling has two peaks separated by the interaction strength U .
The repulsion between electrons assures that each atomic lattice site is singly-occupied
and the movement of electrons is effectively frozen due to the high energy costs of double
occupation. Consequently, the atomic lattice at half-filling is insulating. On the other
hand, the non-interacting (i.e. tight-binding) lattice at half-filling is metallic due to the
non-vanishing weight of the DOS at the Fermi level. Electrons feel no Coulomb repulsion
U and are allowed to move freely in the lattice. In order to remedy these two limits, a
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Figure 2.15: Illustration of the dynamical mean field theory self-consistency cycle. A:
the lattice Green’s function is typically initialized with a vanishing self-energy (non-
interacting), with a Hartree-like self-energy or the atomic-limit self-energy. B: in general,
the interacting impurity Green’s function is generated by k-space integration. Alterna-
tively, in the single-orbital case it can be generated from the non-interacting DOS due to a
Hilbert-transform. C: the auxiliary AIM is defined by the non-interacting impurity Green’s
function or equivalently the hybridization function. D: a new impurity Green’s function is
generated by an impurity solver. if the new impurity Green’s function is equal (equality
is determined for a given norm) to the initial impurity Green’s function, self-consistency
has been achieved. E: The local self-energy is calculated as a new feedback for the lattice
Green’s function.
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MIT is necessary for a given Uc/t.
In the previous sections it was also shown that the AIM has no MIT at half-filling and

low temperatures. Instead, the transition is protected by the central Kondo resonance,
which allows for a Fermi-liquid interpretation of the low-energy physics. Thus, the self-
consistency feedback of the DMFT loop is required to adjust the bath- and hybridization
parameters of the auxiliary AIM in order to allow for the MIT in the infinite-dimensional
Hubbard model.

In Figure 2.16 the Mott-Hubbard MIT is shown for the three-dimensional Hubbard
model at half-filling in DMFT.15 The self-energy is approximated in second-order pertur-
bation theory self-consistently, referred to as iterated perturbation theory (IPT) [Georges
and Kotliar, 1992]. The DMFT equations were calculated in the Matsubara formalism
and the DOS was extracted from Padé approximants.

The MIT is a first order phase transition, which results in a coexistence region, where
DMFT converges to either metallic or insulating solutions depending on the starting
conditions. Only by determining the minimum of the free-energy, the exact value of Uc
can be determined. In two dimensions, DMFT yields a finite Uc, although it was shown
that anti-ferromagnetic fluctuations fully suppress the MIT, such that Uc = 0. A full
discussion of the MIT in the two-dimensional case (and the one- and three-dimensional
case in context) is found elsewhere [Schäfer et al., 2015].

Extending DMFT to the multi-orbital Hubbard model is state-of-the art and is mostly
done in the context of combining DMFT with ab-initio methods like density functional
theory (DFT), first done by Anisimov et al. [Anisimov et al., 1997] and Lichtenstein et
al. [Lichtenstein and Katsnelson, 1998]. DFT+DMFT approaches come with a whole set of
challenges including determining correlated subspaces, screening the local interactions and
double counting issues. A more detailed review of DFT+DMFT was given by Held [Held,
2007]. An alternative route to combining ab-initio methods with DMFT was followed by
Aryasetiawan et al. [Aryasetiawan et al., 2004] starting with the GW method.16 As the
GW method is a diagrammatic approach, double counting corrections are quantifiable.
However, due to the non-local interactions of GW, the impurity interaction becomes
frequency dependent.

2.5 Diagrammatic Extensions to DMFT
DMFT allows for an exact mapping of the lattice model onto an impurity model at infinite
lattice dimensions. At finite lattice dimension, it turns out that the number of neighboring
sites is more relevant than the lattice dimension itself. Up to this point, only primitive
cubic lattices were discussed, where there are six nearest neighbors in three-dimensions.

15For finite-dimensional lattice systems, DMFT is no more an exact mapping between lattice and
impurity model. Instead, the physical correlation (self-energy) in the lattice is only approximated by its
local contribution. The three-dimensional Hubbard model as opposed to the two-dimensional model was
chosen in order to distinguish between the Kondo-resonance and the Van Hove singularity. Further the
DMFT approximation is more justified in three dimensions than in two dimensions.

16The GW method approximates the k-dependent self-energy by a Fock-like self-energy diagram, where
the k-dependent one-particle Green’s function G is contracted with the screened interaction W . The
screened interaction is obtained from a RPA ladder-like construction.
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Figure 2.16: Metal-to-insulator transition (MIT) for the half-filled three-dimensional
Hubbard model at β = 100 and energy-scale 2

√
6t = 1 obtained from DMFT. The critical

value of the interaction strength is determined to 1.5 < Uc < 3 (cf. Uc ∼ 2.6 in literature).
For U < Uc a central Kondo-like peak structure develops. For U > Uc two Hubbard bands
separated by U develop, with no weight at the Fermi energy. The impurity model was
solved with iterated perturbation theory and the analytic continuation was performed
with Padé approximants.

A body centered cubic (bcc) lattice, however, already has eight nearest neighbors and a
face-centered cubic (fcc) lattice has twelve. The 1/

√
d rescaling of the kinetic energy is

more precisely a 1/
√
Z scaling, where Z is the number of neighbors (coordination number).

The corresponding derivation was given by Metzner and Vollhardt [Metzner and Vollhardt,
1989] and is also recapitulated by Held [Held, 2007].

A multitude of DMFT calculations for finite-dimensional systems resulted in the follow-
ing crude observation: for three-dimensional (bulk) lattices, DMFT was able to reproduce
various properties obtained by other numerical approaches and measured experimentally.
For two-dimensional (surface) lattices, DMFT fails to verify experimental results, espe-
cially with regard to long-range orderings on the lattice. While on the one hand, the
Mott-Hubbard MIT, Kondo physics and local magnetic moment formation result from lo-
cal electronic correlations, on the other hand, magnetic ordering, d-wave superconductivity,
etc. are determined by non-local electronic correlations.

In order to quantify electronic correlations in low-dimensional systems, the locality
assumptions of DMFT need to be relaxed. Two different approaches have proven to be
successful. First, the extension of single-site impurities to impurity clusters was proposed.
These cluster impurities have to be solved numerically and give insight into medium-range
correlations. The two most prominent methods of cluster extensions are the dynamical
cluster approximation (DCA) [Hettler et al., 2000] and the cellular dynamical mean
field theory (CDMFT) [Lichtenstein and Katsnelson, 2000,Kotliar et al., 2001]. Cluster
approaches are capable of describing physics related to correlation lengths up to the cluster
size, but fail in describing larger correlation lengths than the cluster size. The cluster



2.5. DIAGRAMMATIC EXTENSIONS TO DMFT 33

size is usually limited to relatively small clusters (N ∼ O(10)) due to the exponential
scaling of the Hilbert space. Close to phase transitions, cluster approaches, thus have
severe difficulties. The same holds if orbital-realism with more than one-orbital needs
to be considered. A recent study compared several thermodynamic quantities of the
two-dimensional Hubbard model calculated from various numerical methods including
DCA [LeBlanc et al., 2015].

A different route was followed by diagrammatically extending the DMFT equations
and lifting the locality of the one-particle irreducible diagrams (self-energy) to the two-
particle level. The dynamical vertex approximation (DΓA) [Toschi et al., 2007] and the
dual fermion (DF) [Rubtsov et al., 2008] method are the most prominent methods in this
field. 17 The approach of diagrammatically extending DMFT is followed in this work. A
full review of diagrammatic extensions to DMFT was recently compiled by Rohringer et
al. [Rohringer et al., 2017].

While DMFT is constructed from one-particle diagrams only (one-particle Green’s
function and self-energy), DΓA and DF both operate on the two-particle level. A road-
map to two-particle diagrammatics is illustrated in Figure 2.17. An extensive discussion of
the local two-particle Green’s function and vertex functions is found elsewhere [Rohringer
et al., 2012].

2.5.1 Dynamical Vertex Approximation
The dynamical vertex approximation (DΓA)18 extends the local DMFT self-energy by
assuming locality on the two-particle level and constructing a non-local self-energy with
non-local one-particle propagators and the equation of motion [Toschi et al., 2007,Katanin
et al., 2009].

The equation of motion of the one-particle Green’s function is the (imaginary) time
derivative with respect to either of the creation- or annihilation operator. In case of the
latter, the equation of motion yields:

(GΣ)σ(~k, iν) =
BZ∑
~k′~q
ν′ω

UG
~k~k′~q,νν′ω
σσσ′σ′ , (2.59)

where σ′ = −σ. The above expression connects single-particle propagators on the left hand
17Analogous to the extensive list of elementary particles in particle physics, a whole zoo of diagrammatic

extensions to DMFT emerged during the last decade. Some noteworthy methods include the one-particle
irreducible approach (1PI) [Rohringer et al., 2013], DMFT as a starting point to functional renormalization
group (DMF2RG) [Taranto et al., 2014], the triply irreducible local expansion (TRILEX) [Ayral and
Parcollet, 2015] and the quadruply irreducible local expansion (QUADRILEX) [Ayral and Parcollet, 2016].
All these methods are based on the local two-particle Green’s function in one way or another and most
can be formulated with diagrammatic ladder approximations or with the Parquet equations.

18Historically, Γ referred to the fully irreducible two-particle vertex and the irreducible two-particle
vertices in a given channel (distinctions were made by subscripts). Today, it is more common to refer to
the fully irreducible vertex as Λ and the vertices irreducible in a given channel as Γ. Nevertheless the
abbreviation DΓA does specify either a ladder- or Parquet-variant. In case a distinction is necessary, the
two are referred to as ladder-DΓA and parquet-DΓA.
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Figure 2.18: Feynman diagrammatic representation of the frequency-momentum depen-
dent self-energy following from the equation of motion.

side with two-particle propagators on the right hand side. Diagrammatically relation (2.59)
is illustrated in Figure 2.18. The frequency-momentum dependent two-particle Green’s
function in the particle-hole notation is defined as

G
~k~k′~q,νν′ω
σ1σ2σ3σ4 =

∫ β

0
eiν(τ1−τ2)eiν

′(τ3−τ4)eiω(τ2−τ3)×

〈Tτ ĉσ1,~k
(τ1)ĉ†

σ2,~k−~q
(τ2)ĉσ3,~k′−~q(τ3)ĉ†

σ4,~k′
(τ4)〉dτ1dτ2dτ3dτ4, (2.60)

with the discrete fermionic and bosonic Matsubara frequencies

ν(′)
n = (2n(′) + 1)π

β
(2.61)

ωn = 2nπ
β
, (2.62)

and n ∈ Z. Usually the subscript n is dropped if the equations are exclusively repre-
sented in the Matsubara formalism.19 By assuming time-translational invariance of the
two-particle Green’s function in relation (2.60), the four (imaginary) time arguments
can be rewritten as three (imaginary) time differences. In the (Matsubara) frequency
formalism this relates to energy conservation, where the four fermionic frequency argu-
ments (not shown) can be rewritten as two fermionic frequencies and a bosonic transfer
frequency. Particular groupings of the imaginary time differences into the Matsubara
frequency arguments result in different frequency representations, of which the particle-
hole representation was employed. Due to the intrinsic freedom in defining the Fourier
transform in relation (2.60) several different frequency conventions exist. Appendix B pro-
vides a mapping between the frequency convention employed in this work and frequency
conventions in literature.

To obtain the self-energy, the remaining outer leg of the two-particle Green’s function
needs to be amputated.20 Further, it is common to write the disconnected part explicitly,

19Although it is common to denote the real frequency argument and the bosonic Matsubara frequency
argument both with ω, the frequency type can be inferred from the context: for generalized two-particle
response functions the bosonic Matsubara frequency is employed alongside the fermionic frequency argu-
ments. For physical susceptibilities with a single bosonic frequency, the bosonic Matsubara frequency is
recognizable by explicitly prepending the imaginary unit i or explicitly re-introducing the subscript n.

20The terminology of referring to single-particle propagators in Feynman diagrams as legs and the
division by the same as amputations reveals a short glance onto the dark humor of physicists.
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such that

Σσ(~k, iν) = U
∑
~k′ν′

Gσ′(~k′, iν ′)

+
BZ∑
~k′~q
ν′ω

UF
~k~k′~q,νν′ω
σσσ′σ′ Gσ(~k−~q, iν−iω)Gσ′(~k′−~q, iν ′−iω)Gσ′(~k′, iν ′). (2.63)

The first term of the rewritten EOM evaluates to the Hartree term

Σhartree
σ = U

∑
~k′ν′

Gσ′(~k′, iν ′)
n=1
= Unσ, (2.64)

which at half-filling further yields the expected expression U/2. It is noted that the Fock
term vanishes for a local interaction and a single orbital.

The EOM couples the two-particle frequency-momentum dependent full vertex F to
the local bare interaction U . Diagrammatically, the Coulomb repulsion U in itself can
be interpreted as a two-particle vertex function. In other words, given a two-particle
interaction, knowing the full two-particle vertex F is sufficient in order to calculate the
exact frequency-momentum dependent self-energy or Green’s function. On the other hand,
extending the approach to the n-particle level, where n > 2, the n-particle vertex is neces-
sary for calculating the exact self-energy. Nevertheless, even for two-particle interactions,
obtaining the exact frequency-momentum dependent full vertex F is a numerically infea-
sible procedure. Calculating non-local vertex functions becomes considerably difficult due
to the fermionic sign problem and the vast amount of degrees of freedom. Thus, the idea
of DΓA is to approximate the full vertex F by assuming a subset of irreducible diagrams
to be local in real space.

In the ladder-variant of DΓA, the full vertex F is rewritten in terms of the local
irreducible vertex Γ for a given channel. For the particle-hole channel, the full vertex
and the local irreducible vertex follow from ladder constructions of the Bethe-Salpeter
equations

F
~k~k′~q,νν′ω
σ1σ2σ3σ4 = Γph,νν′ω

σ1σ2σ3σ4 + Φph,~k~k′~q,νν′ω
σ1σ2σ3σ4 (2.65)

F
~k~k′~q,νν′ω
σ1σ2σ3σ4 = Γph,νν′ω

σ1σ2σ3σ4 −
∑
ν′′
σ5σ6

Γph,νν′′ω
σ1σ2σ5σ6Gσ6(~k, iν ′′)Gσ5(~k−~q, iν ′′−iω)F~k~k′~q,ν′′ν′ωσ6σ5σ3σ4 (2.66)

The local irreducible vertex Γph can be obtained from the local ladder with

F νν′ω
σ1σ2σ3σ4 = Γph,νν′ω

σ1σ2σ3σ4 −
∑
ν′′
σ5σ6

Γph,νν′′ω
σ1σ2σ5σ6Gσ6(iν ′′)Gσ5(iν ′′−iω)F ν′′ν′ω

σ6σ5σ3σ4 . (2.67)

Assuming SU(2)-symmetry, the Bethe-Salpeter equations can be solved for Γ by introduc-
ing linear superpositions of different spin combinations. These are commonly referred to
as density-, magnetic-, spin- and triplet channels. The Bethe-Salpeter equations decouple
in these channels, resulting in inverse Bethe-Salpeter equations similar to the (inverse)
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Dysons’s equation on the one-particle level. The density- and magnetic two-particle
irreducible vertex functions follow as:

Γνν′ωd,m =
(
χ−1
d,m − χ−1

0

)νν′ω
, (2.68)

where the inverses of χ and χ0 refer to matrix inversions in the discrete fermionic Matsubara
frequencies ν and ν ′. The spin superpositions are defined as Γνν′ωd/m = Γνν′ω↑↑↑↑ ± Γνν′ω↑↑↓↓ (and
equivalently for F ).

The transverse particle-hole and the particle-particle ladder are constructed in a similar
fashion (analogous to the ladders illustrated in Figure 2.17).

In the ladder-variants of DΓA, one is restricted to physical processes linked to the
specific channel. While charge- and spin fluctuations are generally encoded in the particle-
hole ladders, superconducting fluctuations are encoded in particle-particle ladders. In
cases where all three channels compete, they all need to be taken into account on an equal
footing. The parquet-variant of DΓA includes all channels by constructing the full vertex
F in terms of the two-particle irreducible local vertex Λ with

F
~k~k′~q,ν ν′ ω
σ1σ2σ3σ4 = Λν ν′ ω

σ1σ2σ3σ4

+ Φph,~k ~k′ ~q,ν ν′ ω + Φph,~k ~k′−~q ~k−~k′,ν ν′−ω ν−ν′ + Φpp,~k ~k′ ~k+~k′−~q,ν ν′ ν+ν′−ω (2.69)
F ν ν′ ω
σ1σ2σ3σ4 = Λν ν′ ω

σ1σ2σ3σ4

+ Φph,ν ν′ ω + Φph,ν ν′−ω ν−ν′ + Φpp,ν ν′ ν+ν′−ω (2.70)

where the local Parquet equation needs to be inverted to obtain the local two-particle
irreducible vertex Λ (see i.e. [Valli et al., 2015] or [Li et al., 2016]). Each reducible vertex
function Φr of a given channel r is calculated from the corresponding Bethe-Salpeter
equation, which is evaluated in the natural frequency convention of the respective channel.
In order to evaluate the Parquet equations, all reducible vertices must be expressed in the
same notation. This results in the frequency transformations of the transverse particle-
hole and the particle-particle notation in relations (2.69) and (2.70) into the particle-hole
notation.

Extensions of DΓA to the multi-orbital case are in principle straight-forward, although
numerically expensive due to the additional orbital prefactor to the (already large) number
of local and non-local degrees of freedom of the two-particle vertex functions. A first multi-
orbital extension of ladder-DΓA in the context of ab-initio calculations was done by Galler
et al. [Galler et al., 2017].

2.5.2 Dual Fermion Approach
Similar to DΓA, the dual fermion (DF) approach [Rubtsov et al., 2008] quantifies non-
local electronic correlations by diagrammatically extending DMFT. The DF approach
decouples local and non-local degrees of freedom of the interacting lattice problem through
a Hubbard-Stratonovich transformation [Stratonovich, 1957,Hubbard, 1959] of the action,
followed by a Taylor expansion of the part linear in the initial and the dual variable.
The resulting infinite perturbation series couples single-particle dual propagators to local
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n-particle full vertex functions. While the infinite series is an exact representation of the
initial problem, in practice, the series is truncated at n = 2 (mostly for practical reasons).
As the local n-particle full vertex becomes the interaction vertex of the dual propagators,
the EOM is no longer an exact relation at the two-particle level. Thus, a truncation at
the two-particle level approximates the initial problem.

The derivation of the dual fermion approach to the Hubbard model is summarized in
Appendix C and is based on the path integral formalism. The action defined in terms of
the dual variables follows as [Rubtsov et al., 2008]

S̃[f̄ , f ] = −
∑
νkσ

G̃−1
kνσf̄kνσfkνσ +

∑
i

V [f̄ , f ], (2.71)

where f, f are fermionic Grassmann fields of the dual fermions and G̃kνσ := G̃σ(~k, iν) is the
bare dual Green’s function. The dual fermion interactions are encoded in V [f̄ , f ], which
follows an infinite Taylor expansion, with

V [f̄ , f ] = 1
4

∑
ν1ν2ν3ν4
σ1σ2σ3σ4

G−1
ν1σ1G

−1
ν2σ2G

−1
ν3σ3G

−1
ν4σ4 f̄iν1σ1fiν2σ2 f̄iν3σ3fiν4σ4G

c,ν1ν2ν3ν4
σ1σ2σ3σ4 + ..., (2.72)

where Gνσ := Gσ(iν) is the local one-particle Green’s function and Gc is the connected
part of the two-particle Green’s function. The term explicitly written in relation (2.72) is a
two-particle interaction among the dual fermions. The omitted terms of sixth- and higher
order describe three- and higher particle interactions. Truncating the above series at forth
or sixth order implicitly assumes that the dual fermions interact weakly. Having defined
the dual action in relation (2.71) proportional to Zsite (see Appendix C) redefines the
functional W ∼ lnZ. Thus, two-particle propagators extracted from the dual action are
connected propagators. Additionally, the outer legs of the connected parts are amputated
due to the local singe-particle Green’s functions introduced by the Hubbard-Stratonovich
transformation. Effectively, dual fermions couple to connected n-particle fermion vertices.
More intuitively, similar to the bath electrons of DMFT, the dual fermions hybridize onto
local impurities, where they interact with a spatially localized (although now dynamical
in frequency/time) interaction vertex.

In practice it is most common to truncate the Taylor series at the two-particle level21

and construct the dual self-energy from ladder equations. For this purpose, the particle-
hole dual full vertex function F̃ is defined by the following Bethe-Salpeter ladder in terms
of the dual fermion interaction F and the dual propagator G̃:

F̃
~k~k′~q,νν′ω
σ1σ2σ3σ4 = F νν′ω

σ1σ2σ3σ4 −
∑
ν′′
σ5σ6

F νν′′ω
σ1σ2σ5σ6G̃~k,ν′′,σ6

G̃~k−~q,ν′′−ω,σ5
F̃
~k~k′~q,ν′′ν′ω
σ6σ5σ3σ4 , (2.73)

where the sum is to be taken over all internal degrees of freedom. Diagrammatically, the
above relation is illustrated in Figure 2.19. The transverse particle-hole and the particle-
particle ladder are constructed in a similar fashion (analogous to the ladders illustrated in
Figure 2.17). The non-local dual self-energy is constructed from the dual vertex function

21With a notable exception, see Section 4.3.1 for the calculation of dual fermion corrections based on
the three-particle vertex.
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Figure 2.19: Non-local dual (dressed) vertex function F̃ constructed from the particle-hole
ladder. One-particle dual propagators are represented by dashed lines. Dual fermions
interact via local two-particle connected vertex functions F . The dual self-energy is
constructed by closing the dual vertex function with a dual propagator.

F̃ by contracting two of its legs with a dual single-particle propagator. The lowest order
Hartree-like term vanishes, when demanding the dual propagators to be fully non-local.

Lastly, the mapping of the non-local dual self-energy Σ̃ onto the actual non-local
self-energy Σ is defined with

Σσ(~k, iν) = Σ̃σ(~k, iν)
1 +GσνΣ̃σ(~k, iν)

+ Σσ(iν), (2.74)

where Σσ(iν) is the local self-energy of the DMFT problem.
Extensions of the DF approach to the multi-orbital case are in principle straight-

forward. The difficulties and numerical complexity of extending ladder-DF approaches are
in principle comparable to multi-orbital ladder-DΓA. While first proposals of extending the
method date back to the original publication [Rubtsov et al., 2008], actual implementations
are still under development.

2.6 Analytic Continuation
Most of the diagrammatic methods described in the previous sections primarily operate
in the Matsubara formalism [Matsubara, 1955]. The imaginary frequencies and imaginary
times of the Matsubara formalism follow their real counterpart trough a Wick rotation
and allow for a treatment of finite-temperature effects in thermal quantum field theories.
Intuitively, this can already be observed from the anti-/periodicity of fermionic/bosonic
imaginary time many-body Green’s functions in the interval τ ∈ [0, β) and, equivalently,
in the implicit temperature dependence of Matsubara frequencies with ∼ 1/β.

Nevertheless, Green’s functions can be also formulated (and for many physical questions
are required for) in real frequencies or real times. Thus, DMFT in principle does depend on
the representation (i.e. real or Matsubara). While some impurity solvers, like perturbation-
theory based methods or the analytic Falicov-Kimball impurity equations can be expressed
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in real frequencies, this is not true for most of the other impurity solvers. Specifically
the continuous-time quantum Monte Carlo methods primarily operate in the Matsubara
formalism. It is thus necessary to work out the back-transformation of Matsubara data to
real data, which is an analytic continuation of analytic Green’s functions from imaginary
frequency arguments to real frequencies.

The relation between the fermionic frequency Matsubara Green’s function G(iν) and
the imaginary part of the real frequency Green’s function G(ω) is given by

G(iν) = 1
π

∫ ∞
−∞

dω 1
ω − iν

=(G(ω)), (2.75)

where the real part of the real frequency Green’s function can be extracted using the
Kramers-Kronig relations

<(G(ω)) = 1
π
P
∫ ∞
−∞

dω′=(G(ω′))
ω′ − ω

, (2.76)

and P denotes the principal value. Alternatively, relation (2.75) can be formulated in the
imaginary time domain by evaluating the corresponding Fourier transform, such that

G(τ) = 1
π

∫ ∞
−∞

dω
∫ β

0
dτeiντ =(G(ω))

ω − iν
= 1
π

∫ ∞
−∞

dω e−τω

1 + e−βω
=(G(ω)). (2.77)

More often, one is interested in the spectral function A(ω), which is related to the
imaginary part of the (retarded) Green’s function as

A(ω) = − 1
π
=(G(ω)). (2.78)

Extracting the spectral function (or in that respect the imaginary part of the real
frequency Green’s function) from relations (2.75) and (2.77) results in evaluating an
inverse Laplace transform, which is generally ill-conditioned. To make this more apparent,
the two relations are discretized in the continuous variables ω and τ (where the imaginary
frequency iν is already discrete), such that

G(iν) =
∑
ω

K(iν, ω)A(ω) (2.79)

G(τ) =
∑
ω

K(τ, ω)A(ω), (2.80)

where K(iν, ω) and K(τ, ω) are referred to as kernel matrices and A(ω) is the spectral
function including the discretized spectral weight ∆ω. Naively, one can calculate A(ω) by
inverting the kernel matrices. Figure 2.20 illustrates the kernel matrices for an inverse
temperature of β = 50. The large variations in the density plot already hint conditioning
issues. The magnitude of the actual condition numbers22 for the above kernel matrices
evaluates to orders of 1021. Large condition numbers amplify numerical errors in the
floating point representation of otherwise analytic Matsubara Green’s functions. This
problem becomes much more severe for Green’s functions following statistical methods
such as Monte Carlo. In the following, different methods to overcome the ill-conditioned
nature of the analytic continuation will be discussed.

22The condition number of a matrix A for the 2-norm is calculated as the largest singular value of A
times the largest singular value of A−1.
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Figure 2.20: Logarithmic density plot of the kernel matrices |K(iν, ω)| (absolute value)
and K(τ, ω) in the Matsubara imaginary frequency and imaginary time representation
for an inverse temperature β = 50 and a real frequency energy window of ω ∈ [−5, 5].
The condition numbers evaluate to 9.7 × 1020 and 1.1 × 1021 for the iν- and τ -kernel
respectively.
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2.6.1 Padé
The Padé approximation is an interpolation of any given function through a low-order
rational function. In the context of the analytic continuation of Matsubara data to real
frequencies, the Padé approximation was employed long before the development of DMFT
and related diagrammatic methods [Vidberg and Serene, 1977]. The underlying idea is to
determine an analytic function f(z), which evaluates to the given data for a discrete set
of points, i.e. f(zi) = fi for the data (zi, fi). In the context of this work, zi is evaluated
for the Matsubara frequencies zi = iνi, and fi are the function values of the Matsubara
Green’s function fi = G(iνi). Although not required in the general definition of the Padé
approximation, one usually encodes 1/z asymptotic behavior of Green’s functions. The
rational function f(z) is then defined as

f(z) = p0 + p1z + . . .+ prz
r

q0 + q1z + . . .+ qrzr + zr+1 , (2.81)

where the last term zr+1 in the denominator accounts for the asymptotic behavior. The
polynomials p(z) and q(z) of order r follow from the linear system of equations, which
can be derived when evaluating relation (2.81) for the 2r data points. A more detailed
discussion including some technical details is found elsewhere [Osolin and Žitko, 2013].

It turns out that the coefficient matrix of the linear system of equations is more often
not well conditioned. Numerical implementations of Padé approximants should thus be
implemented with arbitrary precision libraries.

Particular care needs to be taken when analyzing spectral functions following Padé. In
some cases Padé produces results which violate physical intuition, e.g. negative spectral
functions. In practice, different rational functions are evaluated by varying the dimension
of the input data, thus testing the results of Padé for robustness. Padé has proven to
be a valuable tool for “analytic” (i.e. exact within machine precision) methods such as
exact diagonalization. Stochastic methods like Monte Carlo, on the other hand, cannot
be treated equally well. This is because Padé is not capable of considering the implicit
stochastic uncertainties of these methods.

2.6.2 Maximum Entropy Method

This section is based on: B. Hartl. Maximum Entropy Method for
Quantum Monte Carlo Simulations. Project Work (2015). Supervised
by P.G. and K. Held

The statistical uncertainties in the input data in combination with the ill-condition
nature of the kernels of analytic continuation allow for an infinite set of solutions (i.e.
an infinite set of spectral functions) fulfilling the initial data. The idea of the maximum
entropy method (MaxEnt) [Gubernatis et al., 1991] is to start with an initial guess
for the spectral function, usually referred to as model function m(ω). The Matsubara
Green’s function G in imaginary frequencies or imaginary times is calculated according
to relation (2.75) or (2.77). In a next step, one can calculate the deviations between the
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guessed Green’s function G and the input data G by calculating a weighted least-square
value χ2 with

χ2 =
∑
ij

(Gi −Gi)(Gj −Gj)
Cij

, (2.82)

where Cij is the covariance matrix for the discretized measurements i, j encoding the
stochastic uncertainties. For uncorrelated noise the covariance matrix becomes diagonal
with Cij = σ2

i · δij. Although in principle some care needs to be taken for Monte Carlo
results, empirical investigations of Matsubara imaginary frequency and imaginary time
for the CT-HYB algorithm support the assumption of a diagonal covariance matrix.23

By straight-forwardly minimizing the χ2-value, one would overfit the initial stochastic
data resulting in spectral functions, which show spurious (i.e. unphysical) features. Instead,
MaxEnt attempts to introduce physical information as an entropic prior. The entropy
may be defined as

S =
∫

dω
(
A(ω)−m(ω)− A(ω)lnA(ω)

m(ω)

)
, (2.83)

where m(ω) is the default model and A(ω) is the (guessed) spectral function. The above
entropy implicitly encodes the normalization and positivity of the spectral function as a
physical prior. The last term in the entropy is usually referred to as the relative entropy
and is related to the entropy of information theory p ln(p).

The posterior probability Pr[A|G], i.e. the probability of calculating A given G, follows
by combining the likelihood function, determined by the least-square value χ2, and the
entropy S as

Pr[A|G] = eαS−χ
2/2, (2.84)

where α is the hyper-parameter determining the relative weight between entropy and
least-square fit. A large value of α favors the entropy term and reproduces (i.e. infor-
mation fits) the model function as S becomes maximal for A(ω) = m(ω). A small value
of α, on the other hand, favors the likelihood term and tends to overfit (i.e. noise fit)
statistical fluctuations in the data. In practice the optimal α may be determined by Bayes
statistics [Jarrell and Gubernatis, 1996], or alternatively, simply by visual inspection deter-
mining the optimal value between noise fitting and information fitting. When extracting
spectral functions from fermionic Matsubara Green’s functions, it is common to start from
a featureless (i.e. flat) default model.

Further, maximizing the posterior probability in relation (2.84) for a fixed α can be
accomplished through various minimization methods, of which simulated annealing is
appealing due to its straight-forward implementation. The minimization can be optimized
in terms of numerical efficiency and error robustness by truncating the singular value
decomposition of the kernel matrices and conducting a minimization on the reduced
subspaces.

23The covariance matrix of Green’s functions in CT-HYB expressed in orthogonal Legendre polynomials
is, however, usually much stronger correlated than its Matsubara counterparts (see [Harrer, 2013]).
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2.6.3 Sparse Modeling
During the last decade the field of machine learning grew significantly in popularity. One
of its methods, namely sparse modeling (SpM), was recently adapted to the problem of
analytic continuation by Otsuki et al. [Otsuki et al., 2017]. In general sparse modeling
attempts to reduce the number of variables of noisy initial data to exclude redundant data
and hence avoid overfitting. The sparsity constraint is imposed by truncating the singular
value decomposition of the coefficient matrix. This approach is closely related to the
concept of the concept of principal component analysis in statistics, where one attempts
to describe a high dimensional set of parameters by their most prominent representatives.

In a next step, the linear system of equations of the reduced subspaces is solved by an
L1-regularization (similar to the χ2 minimization in MaxEnt).24

Applying SpM to the problem of analytic continuation, the singular value decomposi-
tion of the kernel matrices follows as

K = USV † (2.85)

with K referring to the M ×N -dimensional kernel matrices introduced in relation (2.79)
and S being the M × N -dimensional matrix of singular values, where M discretizes
the number of Matsubara points and N discretizes the number of real frequency points.
Further, U is an M ×M matrix and V † an N × N matrix. Investigating the singular
values of the kernel matrices more closely, one observes a strong exponential decay in the
singular values, which suggests introducing a threshold for small numbers. Figure 2.21
shows the singular values extracted from the kernel matrices at an inverse temperature
of β = 50. Introducing a threshold of 10−14 reduces the subspaces dimensionality by
an order of magnitude without noticeably changing the numerical representation of the
actual kernel matrices. Additionally, the compact dimensionality of the intermediate
Matsubara-real frequency notation may be exploited to store Green’s functions efficiently
(see i.e. [Shinaoka et al., 2017b] or [Shinaoka et al., 2018]).

Finally, the Matsubara Green’s function and the spectral function are projected on
the (truncated) subspaces with G̃ = U †G and Ã = V †A. One now attempts to minimize
the expression

1
2 ||G̃− SÃ||

2
2 + λ||Ã||1, (2.86)

which is similar to the minimization problem of MaxEnt in relation (2.84).
Although SpM is a relatively new method in the field of analytic continuation, it

benefits from its straight-forward implementation independent of the Kernel matrix under
consideration. An extension to bosonic kernel matrices in the context of susceptibility
continuations only requires little adaption to the diverging nature of the kernel matrix
itself at iω = ω = 0. MaxEnt, on the other hand, introduces physical intuition through
the entropic prior, which in case of off-diagonal Green’s functions or bosonic Green’s
functions needs to be adapted in terms of normalization and positivity. Both methods are
formulated as minimization problems, where a Matsubara Green’s function is calculated

24The minimization with respect to an L1-regularization is often referred to as least absolute shrinkage
and selection operator (Lasso).
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Figure 2.21: Singular values for the Matsubara imaginary time and imaginary frequency
kernel matrices for an inverse temperature β = 50 and a real frequency energy window of
ω ∈ [−5, 5]. The Matsubara- and real frequency grid was to discretized to M = N = 1000
points. The resulting singular value matrix includes N diagonal entries. By imposing
a threshold of 10−14 the 1000 singular values are truncated to 64 values in case of the
imaginary frequency kernel matrix and 79 values in case of the imaginary time kernel
matrix.

for a guessed spectral function and deviations relative to the data are evaluated. Future
applications will demonstrate which of the two methods is superior.
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Chapter 3

Continuous-time Quantum Monte
Carlo

In the previous chapter the Hubbard Hamiltonian was introduced as a model for strong
electronic correlations on a lattice. Due to the fermionic nature of the Hubbard model
a straight-forward solution is mostly out of reach. Instead, various limits were discussed,
which allow for an intuitive understanding of the physics involved by greatly simplifying
the complexity of the original model. For infinite lattice dimension, the mapping of the
Hubbard model onto an auxiliary Anderson impurity model is possible exactly, known as
the DMFT. Similarly, DΓA and DF and other diagrammatic extensions are based on local
diagrams generated from impurity models. As opposed to the underlying lattice models,
the impurity models are in principle solvable, although in general only numerically. This
is because of two different reasons: without any simplifications to the structure of the
bath, the AIM is characterized by infinite Feynman diagrammatic series and secondly, the
DMFT mapping procedure of the lattice problem onto an impurity requires a self-consistent
dynamic solution.1

Generally, the various impurity solvers can be classified into two groups: diagrammatic
solvers and solvers based on the diagonalization of the impurity Hamiltonian. Diagram-
matic solvers generate a certain set of Feynman diagrams in one way or another. Quantum
Monte Carlo methods stochastically sample the infinite series expansion of the partition
function. In this process diagrams are sampled according to their weight contributing to
the partition function. The Metropolis-Hasting construction assures a numerical conver-
gence within the otherwise infinite sampling space. As no further assumptions are made
to the diagrammatic series, these methods are in principle numerically exact, although
providing only stochastic results.2

1Similar to the Hubbard model in one dimension, the AIM itself can be solved analytically by the Bethe
Ansatz. By assuming a momentum-independent hybridization amplitude V and the parameters U, µd, V 2

being small relative to the Fermi energy εF the problem becomes effectively one-dimensional [Wiegmann,
1980]. However, the Bethe Ansatz only yields static quantities.

2It is no coincidence that the popularity of the Monte Carlo algorithm coincides with the development
of modern computer clusters. The trivial parallelization schemes of Monte Carlo allow for straight-forward
implementations with little network communication. The Metropolis Hasting algorithm was elected one
of the ten most influential computer algorithms since the breakthrough of supercomputing [Sullivan and
Dongarra, 2000].

47
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The traditional approach to deal with Feynman diagrams by partially resumming
diagrams, similarly assumes a series expansion of the partition function. By restricting
the sum over diagrams to a specific subset of diagrams, such partial resummations allow
for analytic expressions for the self-energy. By truncating the diagrammatic expansion
of the self-energy at a certain order, these perturbation theory approaches also provide
straight-forward expressions of the self-energy. Nevertheless, resummation- and finite
perturbation theory approaches do not provide an exact-, nor a numerically exact solution,
as certain diagrams are systematically excluded.

A different approach is followed by renormalization group solvers and exact diagonal-
ization. In either case, results are extracted from a finite-dimensional Hamiltonian with
a discrete bath, where for the renormalization group approaches the dimension of the
Hamiltonian is step-wise adjusted. Approaches based on diagonalizing the Hamiltonian
give an exact solution for the discrete bath problem, but only an approximate solution
for the continuous bath problem. The accuracy of the method is greatly determined by
how well the finite bath approximates the continuous bath. In this respect the numerical
renormalization group (NRG) step-wise adjustment is particularly constructed, so as to
obtain a logarithmically-good energy resolution around the Fermi energy.

A detailed list of impurity solvers with the corresponding references is given in Tables 3.1
and 3.2. While most of the impurity solvers are capable of providing numerical results for
single-site impurities as well as multi-site impurities (i.e. clusters), in the context of this
work, only single-site impurity solvers are considered. Nowadays, quantum Monte Carlo
methods are the primary choice, due to their numerical exactness and ability to treat
continuous baths. Although the (inverse) temperature directly affects the scaling of the
sampling and measurement in imaginary time or Matsubara frequencies, QMC algorithms
are more suited for low temperatures than exact diagonalization (ED), because the latter
discretizes the hybridization function. Nevertheless, zero-temperature results are not
obtainable by the QMC methods provided in Table 3.1. The Hirsch-Fye QMC algorithm
is generally considered to be outdated by today’s standards. Instead, the continuous-time
QMC methods are state-of-the-art. This work deals with the continuous-time quantum
Monte Carlo hybridization expansion (CT-HYB). This method is especially suited for
multi-orbital systems and allows for general local interactions, including (retarded) density-
density-, Slater-Kanamori SU(2)-symmetric- and full Coulomb interactions. Due to the
exponential scaling in the number of orbitals, CT-HYB algorithms are mostly limited to
about five orbitals, which covers the d-shells of ab-inito material calculations.

In the following chapter the basics of the CT-HYB algorithm are reviewed, the calcu-
lation of two-particle functions in the multi-orbital model is discussed, alongside technical
improvements to the Monte Carlo estimators. Sections 3.1 and 3.2 describe the CT-HYB
method prior to this work. Section 3.3 covers worm sampling as an extensions to the
conventional CT-HYB algorithm and represents the primary scientific contribution of this
work. Section 3.4 concludes the chapter with a critical discussion of one- and two-particle
Green’s function estimators in CT-HYB and the continuous-time Monte Carlo interac-
tion expansion (CT-INT). This comparison ultimately motivates the derivation of novel
“symmetric” improved estimators, beneficial for future implementations.

The numerical results are mostly benchmarked by exact diagonalization (ED), CT-INT
or atomic limit calculations.
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3.1 Impurity Observables

Parts of this section (marked by a vertical sidebar) have been already
published in: P. G., M. Wallerberger, T. Ribic, A. Hausoel, G.
Sangiovanni and K. Held; Worm-improved estimators in
continuous-time quantum Monte Carlo. Phys. Rev. B. 94, 125153
(2016)

Before discussing the series expansion of the partition function, it is useful to review
the relations between the various observables and the partition function itself. For this
matter, the path integral formulation of the partition function of the Anderson impurity
model is employed

Z =
∫
D[d̄, d]e−S[d̄,d] (3.1)

where d̄, d are the fermionic Grassmann fields of the impurity electrons.
The action S of the AIM, where the non-interacting bath fermions have been integrated
out, then reads

S = −T [d̄, d] + V [d̄, d] = −d̄aG−1
ab db + 1

2Uabcdd̄ad̄bdddc, (3.2)

where T [d̄, d] is the kinetic part and V [d̄, d] the interaction part of the action; G−1
ab =

−∂/∂τa − εab −∆ab is the non-interacting Green’s function. The hybridization function
∆ab, the on-site energies εab and the local orbital-dependent interaction Uabcd are, in terms
of the combined orbital-spin-time index, defined as

∆ab := ∆ασaβσb(τa − τb)
εab := εασaβσbδ(τa − τb)

Uabcd := Uαβγδδσaσcδσbσdδ(τa − τb)δ(τa − τc)δ(τa − τd), (3.3)

where α, β, . . . are the orbitals of the combined indices a, b, . . . .a We remind the reader
that the summation convention over repeated (Latin) indices requires the summation over
orbital (Greek) indices, spin indices as well as integration over τ ∈ [0, β).

aThe spin-convention in the interaction matrix (3.3) has been adapted for consistency with (2.55).

3.1.1 Green’s Functions
Starting from the partition function (3.2), the generating functional W = lnZ is used
to derive an important class of observables - the many-body Green’s functions. The
interacting one- and two-particle Green’s function are defined as the partial derivative
with respect to the hybridization function

Gab = −δ lnZ
δ∆ba

= − 1
Z

∫
D[d̄, d]e−S[d̄,d]dad̄b (3.4)

Gabcd = − δ lnZ
δ∆baδ∆dc

= 1
Z

∫
D[d̄, d]e−S[d̄,d]dad̄bdcd̄d, (3.5)
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where higher-particle Green’s functions are generated by further derivatives with respect
to the hybridization function.

3.1.2 Occupation
Further observables include the generalized density nab as a derivative with respect to the
on-site energy εασaβσb and the generalized double occupancy Dabcd as a derivative with
respect to the interaction matrix Uαβγδ

nab = − δ lnZ
δεασaβσb

= 1
Z

∫
D[d̄, d]e−S[d̄,d]d̄ασadβσbδ(τa − τb) (3.6)

Dabcd = − δ lnZ
δUαβγδ

= 1
Z

∫
D[d̄, d]e−S[d̄,d]d̄ασα d̄βσβdδσδdγσγ×

δσaσdδσbσcδ(τa − τb)δ(τa − τc)δ(τa − τd) (3.7)

The above relations are directly extracted from the partition function. A different
approach is followed by investigating the equation of motion, which starts from one of the
above relations and considers an imaginary time-derivative of a given fermionic Grassmann
field (or equivalently a given operator).3

In order to derive the improved estimators of the self-energy and the vertex function, we
formulate the identity (master equation)

Gae
Z

∫
D[d̄, d] ∂

∂d̄e
e−S[d̄,d]F [d̄, d] = 0, (3.8)

where F [d̄, d] is an arbitrary function in d̄ and d and S[d̄, d] is defined by Eq. (3.2). This
identity holds true because the integral of the derivative of a Grassmann field vanishes due
to the invariance of the path integral under infinitesimal transformations of this field. A
more general discussion of path integrals in a similar framework is found elsewhere [Zinn-
Justin, 2002]. Computing the derivative, we find the Schwinger-Dyson equation in the
path integral formalism as [Veschgini and Salmhofer, 2013]

1
Z

∫
D[d̄, d]e−S[d̄,d]daF [d̄, d] = Gae

Z

∫
D[d̄, d]e−S[d̄,d]

(
∂V [d̄, d]
∂d̄e

F [d̄, d]− ∂F [d̄, d]
∂d̄e

)
. (3.9)

The derivative of the interaction part in (3.9) is given by

∂V [d̄, d]
∂d̄e

= 1
2Ufghi

(
δfed̄g − d̄fδge

)
didh =: U[eg]hid̄gdidh, (3.10)

3The following derivations marked by a vertical sidebar do not distinguish between observables and
Monte Carlo estimators to the same extend as done in this work. Sections 3.1.3 and 3.1.4 show the
derivations of the observables, which are later on implemented as Monte Carlo estimators in worm
sampling.
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where the square brackets [...] denotes the anti-symmetrization over the indices (including
a factor 1

2).
By choosing F [d̄, d] properly we can generate improved estimators up to an arbitrary

order of Green’s functions. The important cases of the self-energy and two-particle vertex
function are discussed in the next two sections.

3.1.3 Self-energy

In order to obtain an estimator for the self-energy we set F [d̄, d] = d̄b in Eq. (3.9),
recovering the one-particle Green’s function (3.4) on the left hand side and the following
right hand side

Gab = Gab −
Gac
Z

∫
D[d̄, d]e−S[d̄,d]U[cg]hid̄gdidhd̄b. (3.11)

Comparing this with the Dyson equationa we find

(ΣG)cb = − 1
Z

∫
D[d̄, d]e−S[d̄,d]U[cg]hid̄gdidhd̄b. (3.12)

The diagrammatic representation of this one-particle improved estimator is given in
Figure 3.1 (top). Let us now recall the explicit indices from the combined Latin indices
and rewrite the path integral in second quantization as a thermal expectation value

(ΣG)ασ,βσ′(τ − τ
′) = −〈Tτ U[αγ]δε d̂

†
γσ′′(τ) d̂εσ′′(τ) d̂δσ(τ) d̂†βσ′(τ ′)〉, (3.13)

where we have introduced the time-ordering symbol Tτ and switched from fermionic Grass-
mann variables d̄, d to creation and annihilation operators d̂†, d̂. In making the imaginary
time index explicitb, we find that the spontaneous nature of the interaction contracts
three operators to a single (imaginary) time. In terms of computational complexity the
calculation of the one-particle improved estimator is thus comparable to the one-particle
Green’s function.
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Figure 3.1: Top: diagrammatic representation of the one-particle improved estimator
(ΣG)(1)

bc [Eq. (3.12)]. Bottom: diagrammatic representation of the two-particle improved
estimator H(2)

abcd [Eq. (3.18), the last part of Eq. (3.16)]. The local interaction is represented
explicitly by a wiggly line.c

3.1.4 Vertex Function

In order to obtain an estimator for the vertex-function we set F [d̄, d] = −d̄bdcd̄d in
Eq. (3.9), so that the left hand side becomes the two-particle Green’s function (3.5):

Gabcd = GabGcd − GadGbc + Gae
Z

∫
D[d̄, d]e−S[d̄,d]U[eg]hid̄gdidhd̄bdcd̄d. (3.14)

We multiply the above with G−1
aj from the left and apply the Dyson equation G−1

aj =
G−1
aj + Σaj

(
G−1
aj + Σaj

)
Gabcd = δjbGcd − δjdGbc + δje

Z

∫
D[d̄, d]e−S[d̄,d]U[eg]hid̄gdidhd̄bdcd̄d (3.15)

In the following we multiply with Gja from the left and finally rearrange the terms

Gabcd−GabGcd+GadGbc = −(GΣ)aeGebcd+
Gae

Z

∫
D[d̄, d]e−S[d̄,d]U[eg]hid̄gdidhd̄bdcd̄d. (3.16)

We can identify the left-hand side with the connected part Gconn of the two-particle Green’s
function. The diagrammatic representation of the two-particle improved estimator is
given in Figure 3.1 (bottom). We observe that we are required to obtain the one-particle
estimator (GΣ) apart from sampling the two-particle improved estimator. The final result
yields

Gconn
abcd = −(GΣ)aeGebcd +GaeHebcd. (3.17)

For the two-particle improved estimator we recover the explicit indices from the combined
Latin indices and rewrite the remaining path integral of Eq. (3.16) as a thermal expectation
value in second quantization

Hασa,βσb,γσc,δσd(τa, τb, τc, τd) = 〈Tτ U[αε]ζη×
d̂†εσe(τa) d̂ησe(τa) d̂ζσa(τa) d̂

†
βσb

(τb) d̂γσc(τc) d̂
†
δσd

(τd) 〉. (3.18)

Again, by making the imaginary time indexb explicit, we find that three operators are
contracted to a single time, whereas the other three operator have each a different time
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argument. In terms of computational complexity the two-particle improved estimator is
hence comparable to the two-particle Green’s function.

aThe Dyson equation is given by Gab = Gab + GacΣcdGdb
bAccording to (3.3) the spin convention in (3.13) has been adapted for consistency with (2.55).
cDirection of arrows has been adapted for this work. More commonly, local interactions are illustrated

as dots only, whereas wiggly lines are used for non-local interactions.

3.2 Hybridization Expansion

3.2.1 Partition Function
Having established how different observables can be extracted from the partition function
in the path integral formalism, in a next step the partition function is expanded in the
Hamiltonian formalism as an infinite perturbation theory, which can then be sampled
stochastically. In the context of CT-HYB these derivations were first introduced by Werner
and Millis [Werner and Millis, 2006].

The finite-temperature expectation value for an operator Ô(τ) and a Hamiltonian Ĥ
is given by

〈Ô(τ)〉 = 1
Z

Tr
(
Tτe

−βĤÔ(τ)
)
, (3.19)

where β is the inverse temperature, τ is the imaginary time argument and Tτ the time-
ordering operator. The partition function Z in the Hamiltonian formalism is defined
as

Z = Tre−βĤ . (3.20)
In order to write the partition function as an infinite series expansion, the Hamiltonian
is split into a non-interacting and an interacting part, with Ĥ = Ĥ0 + ĤI .4 Following
perturbation theory, the series expansion of the partition function is given by

Z = Tre−βĤ0 +
∞∑
n=1

(−1)n
n!

∫ β

0
dτn...

∫ β

0
dτ1Tr

[
Tτe

−βĤ0ĤI(τn)...ĤI(τ1)
]
. (3.21)

The above result is now applied onto the AIM Hamiltonian (2.30), which is repeated in
the multi-orbital variant at this point

Ĥaim =

Ĥbath︷ ︸︸ ︷
BZ∑
~k

Nb∑
ασ

ε~kαĉ
†
~kασ

ĉ~kασ +

Ĥhyb︷ ︸︸ ︷
BZ∑
~k

Nb∑
ασ

(
V~kασ ĉ

†
~kασ

d̂ασ + V ∗~kασd̂
†
ασ ĉ~kασ

)

−
Nb∑
ασ

µdd̂
†
ασd̂ασ +

Nb∑
αβγδ

∑
σσ′

Uαβγδd̂
†
ασd̂βσ′ d̂

†
δσ′ d̂γσ︸ ︷︷ ︸

Ĥloc

. (3.22)

4The detailed derivations of the partition function expansion in the given notation follow earlier works
by the author [Gunacker, 2015], which may be consulted for a pedagogical introduction. In this work
only the main results are summarized.
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By choosing ĤI = Ĥhyb and Ĥ0 = Ĥbath + Ĥloc the partition function in the hybridization
expansion follows as

Z =
∑
k∈2N

∫ β

τk−1
dτk

∫ β

τk−2
dτk−1 . . .

∫ β

τ1
dτ2

∫ β

0
dτ1

Nb∑
αkσk

. . .
Nb∑
α1σ1

×

Trd
[
e−βHlocdαkσk(τk)d†αk−1σk−1

(τk−1) . . . dα2σ2(τ2)d†α1σ1(τ1)
]
× Zbath det ∆, (3.23)

where k/2 is the expansion order of the perturbation series, Trd is the trace over the
impurity states of Haim. Only pairs of creation and annihilation operators are inserted in
the impurity (and the bath respectively) due to quantum number conservation. Further
the imaginary time ordering has been evaluated explicitly. The expansion order, the flavor-
summations and the imaginary time integrals represent a configuration space, which can
be effectively sampled by Monte Carlo techniques. The k/2-dimensional hybridization
matrix ∆ connects all impurity creation operators to all impurity annihilation operators
over hybridization events with the non-interacting bath:

∆ =


∆α1σ1,α2σ2(τ1 − τ2) . . . ∆α1σ1,αkσk(τ1 − τk)

... . . . ...
∆αk−1σk−1,α2σ2(τk−1 − τ2) . . . ∆αk−1σk−1,αkσk(τk−1 − τk)

 (3.24)

Due to the non-interacting nature of the bath, the bath trace simplifies to the determinant
of the hybridization matrix ∆.

It is common to abbreviate the series expansion (3.23) with

Z =
∫∑
wlocwbath, (3.25)

where
∫∑

is the summation/integration over all degrees of freedom, wloc is the local weight
and wbath is the bath weight of the configuration. This work only discusses the Monte
Carlo aspects of the weight wlocwbath from a methodological viewpoint, especially focusing
on the definition of different Monte Carlo estimators in the following. The numerical
evaluation of the weights is not considered in detail. In order to calculate wbath one would
need to evaluate the determinant of the hybridization matrix. In combination with rank-1
updates of the hybridization matrix for inserting and removing pairs of operators (see
i.e. Section 3.3.1) the determinant can be evaluated at numerical cost O((k/2)2) instead
of a direct determinant evaluation with O((k/2)3) [Werner et al., 2006]. Generally, the
number of operators scales linearly with the inverse temperature k/2 ∼ β. The O(β3)-
scaling common to many QMC algorithms results when including the autocorrelation
length scaling with an additional factor of β. The temperature scaling of the local
problem, on the other hand, is determined by the number of operators in the local trace
and the additional autocorrelation scaling, resulting in an overall scaling of O(β2). For
non-density-density interactions, however, the calculation of the local weight accounts
to the evaluation of matrix-matrix or matrix-vector products. The dimension of the
matrices scales exponentially with the number of orbitals considered. For five orbitals
the evaluation of the local trace typically dominates the computational effort. Notable
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improvements to the calculation of the time evolution include tree algorithms [Gull, 2008],
Krylov implementations [Läuchli and Werner, 2009] or enhanced block-diagonalizations
of the local Hamiltonian [Parragh et al., 2012].

3.2.2 Hybridization Estimators

Parts of this section (marked by a vertical sidebar) have been already
published in: T. Ribic, P. G., S. Iskakov, M. Wallerberger, G.
Rohringer, A. Rubtsov, E. Gull and K.Held; Role of three-particle vertex
within dual fermion calculations. Phys. Rev. B. 96, 235127 (2017)

Green’s Function Estimators

By replacing the functional derivatives introduced in Section 3.1 with partial derivatives
and applying them to the partition function in relation (3.23), explicit expressions for
the observables in terms of series expansions can be derived. The one-particle Green’s
function is given by [Werner et al., 2006]

Gab = − 1
Z

∫∑
wlocZbath

∂ det ∆
∂∆ba

= − 1
Z

∫∑
wlocZbath det ∆

k/2∑
ij

(∆−1)jiδaiδbj (3.26)

Here, the partial derivative of the determinant with respect to a given matrix element
∂ det ∆/∂∆ba follows from Jacobi’s formula.5 Due to numerical reasons,6 it is often more
convenient to relabel the inverse of the hybridization matrix as M = ∆−1, such that the
Monte Carlo estimator for the one-particle Green’s function follows as

Gab = − 1
β

〈 k/2∑
ij

Mjiδaiδbj
〉

MC
(3.28)

Gασαβσβ(τα, τβ) = − 1
β

〈 k/2∑
ij

Mjiδααiδσασαiδβαjδσβσαj δ(τα − ταi)δ(τβ − ταj)
〉

MC
, (3.29)

where in (3.29) the combined indices were resolved into flavor indices and imaginary time
arguments. The summation over all elements of the hybridization matrix results in the
entire configuration of k operators in w = wlocwbath to be considered for a single Green’s
function estimate.

5 Jacobi’s formula in the special case of deriving the determinant det A with respect to its matrix
elements follows as

∂ det A
∂Akl

= adj(A)lk = det A A−1
kl (3.27)

where the second equality is only true if A is invertible, as the adjugate matrix is defined as
AadjTA = det A 1.

6It is common for CT-HYB codes to store the inverse of the hybridization matrix and generate updates
to the determinant by fast-update matrix algorithms.
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In a similar approach to the one-particle Green’s function, the two-particle Green’s
function is given by

Gabcd = 1
Z

∫∑
wlocZbath

∂2 det ∆
∂∆ba∆dc

(3.30)

= 1
Z

∫∑
wlocZbath det ∆

k/2∑
ijkl

(
∆−1
ji ∆−1

lk −∆−1
li ∆−1

jk

)
δiaδjbδkcδld, (3.31)

where Jacobi’s formula was applied twice.7 The corresponding Monte Carlo estimator
follows as

Gabcd = 1
β2

〈 k/2∑
ijkl

(
MjiMlk −MliMjk

)
δiaδjbδkcδld

〉
MC
. (3.33)

The estimator for the two-particle Green’s function in relation (3.33) displays a special
feature, which is usually only observed in non-interacting systems. Considering that
the sum over the matrix elements of Mji in relation (3.28) represents the single-particle
bath propagator gba for the given configuration,8 the arrangement of the four sets of
matrix elements of M in (3.33) resembles a Wick decomposition in the non-interacting
bath. More precisely, the interacting impurity two-particle Green’s function is then
build from the non-interacting two-particle bath Green’s function (i.e. only disconnected
contributions). However, this only holds true within a given configuration, where the
Wick decomposition into bath propagators is fulfilled, and not when summed over all
configurations. Further, it is important to note that the bath propagators for a given
configuration do not share the time-translational invariance of actual propagators. Thus,
one cannot reduce the number of time/frequency arguments of the bath propagators.
The Monte Carlo estimators for the interacting one-, two- and three-particle Green’s
function in the hybridization expansion following Wick decompositions into single-particle
bath propagators are illustrated in Figure 3.2. A full discussion of this concept and
its implications in terms of scaling with respect to Fourier transforms was given by
Wallerberger [Wallerberger, 2016].

7By applying the chain rule the matrix elements of the inverse matrix are derived with respect to the
matrix elements of the matrix itself with

∂A−1
ji

∂Alk
= −A−1

li A
−1
jk (3.32)

8Although, gba is referred to as “bath propagator” in the context of CT-HYB estimators, formally the
bath propagator describes the renormalized propagation of a bath electron due to impurity scatterings
(see relation (2.43) in Chapter 2.2). Nevertheless, the CT-HYB estimators resemble the relevant impurity
contribution of the bath propagator (c.f. [Haule, 2007]) and are thus referred to as such.



3.2. HYBRIDIZATION EXPANSION 59

Figure 3.2: Monte Carlo estimators for the one-, two- and three-particle Green’s function in
the hybridization expansion following the first, second and third derivative of the partition
function series with respect to the hybridization matrix. Dashed propagators represent
bath propagators. The one-particle Green’s function is the Monte Carlo average over the
one-particle bath propagator. The two- and three-particle Green’s function is the Monte
Carlo average over the disconnected two- and three-particle contributions in the bath.

Generalizing Eq. (3.28) to the three-particle Green’s function, we find:

Gijklmn(τ1, . . . , τ6) =〈gij(τ1,τ2)gkl(τ3,τ4)gmn(τ5, τ6)
− gil(τ1,τ4)gkj(τ3,τ2)gmn(τ5, τ6)
− gin(τ1,τ6)gkl(τ3,τ4)gmj(τ5, τ2)
+ gil(τ1,τ4)gkn(τ3,τ6)gmj(τ5, τ2)
+ gin(τ1,τ6)gkj(τ3,τ2)gml(τ5, τ4)
− gij(τ1,τ2)gkn(τ3,τ6)gml(τ5, τ4)〉 . (3.34)

This is nothing but the antisymmetrized sum over all possible removals of three hybridiza-
tion lines, which reflects the fact that Wick’s theorem is valid for the (non-interacting)
bath propagator.
It is worth pointing out that Eq. (3.34), and in general any estimator for n > 1 particles
constructed in this fashion, is not valid for systems with interactions beyond density-
density type and a hybridization function that is (block-)diagonal in i and j. In such
cases, one would have to resort to worm sampling, which we however gauge as a formidable
computational challenge in itself due to the sheer size of the worm configuration space
and the size of the measured object itself. Fortunately, this is not an issue here, as we are
studying the single-orbital case.

In principle Green’s functions up to arbitrary order may be calculated in the above fashion.
Numerically, it is worthwhile to Fourier-transform the one-particle bath propagator before
assembling it. Because the bath propagator is not time-translation invariant within a
given configuration, one needs to consider a two-dimensional Fourier transform even for
the one-particle Green’s function. In Matsubara frequency space, the resulting bath
propagator is assembled accordingly (see i.e. [Gull et al., 2011,Hafermann, 2014a]). The
scaling of a direct measurement (i.e. without assembly in Fourier space) and the two-step
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measurement (Fourier transform + assembly) follows as:

O
(
N3
f logNf +M(k/2)4

)
(direct measurement) (3.35)

O
(
M(N2

f logNf + (k/2)2 +N3
f )
)

(two-step measurement), (3.36)

where M is the number of measurements, Nf describes the length of a cubic-frequency box
and k/2 is the expansion order. Both measurements assume a nonequispaced fast Fourier
transform (NFFT), which is evaluated once in the direct measurement (if memory permits)
and M times in the two-step measurement. For the direct measurement, combinations of
four hybridization operators in the stochastic trace have to be considered, while for the two-
step measurement only combinations of two operators need to be considered. Assuming
that the expansion order k/2 and the number of frequencies Nf scales linear with the
inverse temperature β and k/2 ∼ Nf , the direct measurement scales with O(M(k/2)4),
while the two-step measurement scales with O(MN3

f ) ∼ O(M(k/2)3). In practice, current
post-DMFT methods consider two-particle Green’s functions with Nf ∼ 100. Thus,
whenever looking at medium- to low-temperature regions, the two-step measurement
should be employed. For higher temperatures typically k/2 < Nf , making the direct
measurement more feasible due to the overhead in calling NFFT routines repetitively.

It is noted that the n-particle Green’s function estimators (n ≥ 1) in the hybridiza-
tion expansion share a striking similarity to the Green’s function estimators of the weak-
coupling interaction expansion CT-INT [Rubtsov and Lichtenstein, 2004] and the auxiliary
field expansion CT-AUX [Gull et al., 2008]. This is a consequence of the Wick decom-
position in terms of bath propagators in the former and non-interacting propagators in
the later methods. Nevertheless, the estimators behave differently, mainly because the
one-particle estimators are constructed differently. The weak-coupling estimators measure
the one-particle Green’s function as a correction to the non-interacting Green’s function.
As the Monte Carlo error is suppressed with 1/(iν)2, the high-frequency behavior is in
principle much more precise in weak-coupling algorithms. Historically, this observation
motivated the construction of new estimators in the hybridization expansion, which display
a 1/iν suppression of Monte Carlo errors in the high-frequency region. Such improved esti-
mators are discussed in the next section. Estimators in CT-HYB with the same asymptotic
behavior as the estimators in CT-INT and CT-AUX are discussed in Section 3.4.

Improved Estimators

The improved estimators for the hybridization expansion were introduced by Hafermann
et al. [Hafermann et al., 2012] for density-density interactions and later on extended in
the context of retarded density-density interactions [Hafermann, 2014b].9

The improved estimator for the self-energy is based on relation (3.13). The density-
density interaction may be parameterized with U := Uαααα for σ 6= σ′, V := Uαβαβ for
σ = σ′, σ 6= σ′ and J := Uαββα for σ = σ′ as defined in Table 2.1. By excluding spin-flip
and pair-hopping terms, two of the three equal time operators in the improved estimator

9The two publications are based on the Hamiltonian formalism for deriving the equation of motion
and further present the derivation of GΣ instead of ΣG, which is equivalent for flavor-diagonal quantities.
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always build a density with a different flavor than the remaining annihilator. The improved
estimator simplifies to

(ΣG)ασ,βσ′(τ − τ
′) = −〈Tτ

∑
γ,σ′′ 6=σ

U[αγ] n̂γσ′′(τ) d̂ασ(τ) d̂†βσ′(τ ′)〉, (3.37)

where the density-density interaction matrix is reduced to an interaction matrix with
two orbital indices only Uαβ := Uαβαβ. The reduced structure can be parameterized with
U := Uαα for σ 6= σ′, V := Uαβ for σ 6= σ′ and V − J := Uαβ for σ = σ′ and α 6= β, where
the Hund’s coupling picks up a sign due to the exchange of annihilation operators. In
this case also the (anti)symmetrization over the indices changes to U[αβ] = 1

2 (Uαβ + Uβα),
which recovers the expressions of Hafermann et al..

As the density in proximity (i.e. equal time) of the annihilation operator is of different
flavor, it was suggested to calculate the (bath) propagator for a given configuration
analogously to (3.29) and read off the corresponding density next to the annihilation
operator. This simplification is intrinsic to the density-density interaction and unfolds its
true strengths in the segment sampling of CT-HYB. Reformulating (3.37) in terms of a
matrix element of the inverse hybridization matrix and an additional density, the Monte
Carlo estimator follows as

(ΣG)ασ,βσ′(τ − τ
′) = − 1

β
〈
k/2∑
ij

∑
γ,σ′′ 6=σ

U[αγ] n̂γσ′′(ταi)×

Mjiδααiδσσαiδβαjδσ′σαj δ(τ − ταi)δ(τ
′ − ταj)〉MC . (3.38)

The advantages of the improved estimator become apparent in Dyson’s equation, where
G = G + GΣG. While the errors in the naive measurement (3.29) and the improved
estimator (3.38) are constant over the entire time/frequency range, when calculating the
Green’s function from Dyson’s equation and the improved estimator, the errors are rescaled
by the 1/iν behavior of the non-interacting Green’s function,10 further motivating referring
to the estimators as improved estimators. Essentially, the above procedure yields similar
advantages as the Green’s function estimators of CT-INT, which are however rescaled by
a factor 1/(iν)2.

The concept of the improved estimators extracted from the equation of motion may very
well be extended to the two-particle level. The situation in this case, however, becomes
more involved as the two-particle Green’s function includes disconnected contributions.
Further, the irreducible two-particle vertex F is defined with respect to interacting propa-
gator lines G instead of non-interacting propagators G as in the case of Dyson’s equation.
Following equations (3.17) and (3.18), the same reasoning for the interaction matrix in
the density-density case as for the single-particle improved estimator applies, such that
the two-particle improved estimator (equal-time three particle contribution) H simplifies
to

Hασa,βσb,γσc,δσd(τa, τb, τc, τd) = 〈Tτ
∑

ε,σe 6=σa
U[αε]n̂εσe(τa) d̂ασa(τa) d̂

†
βσb

(τb) d̂γσc(τc) d̂
†
δσd

(τd) 〉.

(3.39)
10A more formal analysis is found in Section 3.4 and alternatively [Wallerberger, 2016]
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Figure 3.3: Illustration of the three-particle Green’s function contracted by two bare
interaction vertices as occurring in the self energy by another application of the equation
of motion or by substituting the two-particle improved estimator into the one-particle
improved estimator. This “symmetric” improved estimator may be classified into a one-
particle reducible contribution ΣGΣ and all remaining diagrams R.

The corresponding Monte Carlo estimator is constructed in analogy to (3.38) by considering
the Wick decomposition of the bath propagators introduced in (3.33). For density-density
interactions, the equal-time three particle object H may be calculated by generating
a two-particle Green’s function and reading off the densities for the given annihilation
operator.

Equation (3.17) sets the two-particle improved estimator H in relation to the con-
nected contribution Gconn being proportional to GaeHebcd. The addition of an external leg
generates a correlation function instead of a vertex function, which would be characterized
by the absence of outer legs. Thus, a general observation is that the equation of motion
amputates one propagator of the target quantity by introducing a bare interaction vertex
U at the time argument of the derivative. Assuming that such implicit amputations
improve the high frequency behavior over explicit (post-processing) amputations makes
further applications of the equation of motion appealing.

Diagrammatically it seems that ’improving’ improved estimators may not be beneficial:
applying another time derivative to the remaining Grassmann variable d̄b in (3.12), or by
substituting the two-particle improved estimator into the one-particle improved estimator,
generates a three-particle Green’s function contracted with two bare interaction vertices
U as illustrated in Figure 3.3. The three-particle Green’s function, however, includes two
two-particle Green’s functions connected by a single-particle Green’s function, which is
a one-particle reducible diagram and hence not part of the self-energy. This ΣGΣ-type
contribution needs to be subtracted from the final estimate. An explicit construction of the
diagram ΣGΣ diagram from two GΣ estimates requires an amputation of a single-particle
propagator G, not yielding a further enhancement of the self-energy.

However, it is stressed that the above diagrammatic reasoning is somewhat misleading
and that a formal derivation of equation of motion hierarchies results in enhanced improved
estimators. These estimators are characterized by a high-frequency behavior similar to the
estimators of CT-INT. These “symmetric” improved estimators are discussed extensively
in Section 3.4.
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Shortcomings of Hybridization Estimators

To this point, the Green’s function estimators and the improved estimators for density-
density interactions for the hybridization expansion have been presented. However, the
above estimators have several issues, which need to be considered:

• Neither the Green’s function estimators nor the improved estimators in the hybridiza-
tion expansion are capable of recovering the atomic limit, as the impurity does not
hybridize with the bath, such that ∆ = 0. It is thus likely that for ∆ → 0, the
estimators may break down, even before the atomic limit is fully reached. One can
observe this phenomenon for the two-particle Green’s function, where the hybridiza-
tion function of one spin (flavor) is atomic limit like (i.e. vanishes), while the other
spin (flavor) is non-vanishing. The above estimator for the two-particle Green’s
function between these two flavors fails to reproduce correct results (see [Gunacker,
2015]). Similar issues may arise for symmetry-broken systems due to the interaction
or the crystal field splitting.

• A very common simplification in CT-HYB is to assume a flavor diagonal hybridiza-
tion function so that the sign-problem vanishes or becomes weak. In this case, only
creation and annihilation operators of the same flavor are connected by hybridization
lines to one another. Non-density-density interactions (like the SU(2)-symmetric
Slater-Kanamori interaction), however, include further contributions to the two-
particle Green’s function. A low-order (first and second order) perturbation theory
in the one-particle irreducible vertex function F includes spin-flip and pair-hopping
bare interaction vertices, which cannot be measured by sampling the partition func-
tion for flavor diagonal hybridization functions. Pairwise flavor diagonal components
of the two-particle Green’s function, on the other hand, may very well include such
spin-flip or pair-hopping terms in a higher perturbation order and thus can be
generated by the hybridization estimators. The total number of non-vanishing com-
ponents of the two-particle Green’s function for N orbitals and the Slater-Kanamori
interaction is given by:

M = 6N + 36
(
N

2

)
, (3.40)

While for a single orbital, of the possible 16 components, the 6 non-vanishing compo-
nents are pairwise flavor diagonal (as the Slater-Kanamori interaction reduces to the
density-density interaction), for two orbitals of the possible 256 components a total
of 48 components are non-vanishing, where only 28 are pairwise flavor diagonal. A
analysis of the components shows that for a larger number of orbitals (e.g. already at
N=5) about half of the components are pairwise flavor diagonal, while the other half
is flavor off-diagonal (i.e. with four different flavor indices for the four operators).
The origin of relation (3.40) is shown Appendix D.2, where the distinction between
pairwise flavor diagonal and flavor off-diagonal components is discussed in detail.

• The improved estimators were introduced in the previous section, where a given
fermionic operator in combination with a bare interaction vertex contracting three
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further fermionic operators, returns an estimate for ΣG. For density-density interac-
tions, the density can simply be read off due to the flavor diagonal structure of the
local Hamiltonian. For non-density-density interactions the density operator preced-
ing the annihilator may no longer be a flavor diagonal operator. While the equal
time structure of the three operators in place is formally satisfied, other operators
at different time may generate a finite time segment. The density can no longer be
read off. As a result, the estimator cannot be generated from the partition function
series any more.

3.3 Worm Sampling

Parts of this section (marked by a vertical sidebar) were initially
formulated in [Gunacker, 2015] and have been published in: P.G., M.
Wallerberger, E. Gull, A. Hausoel, G. Sangiovanni and K. Held;
Continuous-time quantum Monte Carlo using worm sampling. Phys.
Rev. B. 92, 155102 (2015)

Conceptually, the shortcomings of the conventional estimators in the hybridization
expansion are rooted in the attempt to extract diagrams of a given observable (in most
cases Green’s functions) from a diagrammatic series expansion of a different quantity,
namely the partition function Z. While in many cases the diagrammatic series for the
partition function and the diagrammatic expansion of the observable are compatible, other
cases exist where diagrams of the observable are simply absent in the partition function
series and, thus, cannot be generated from it. The above issues may be alleviated by
directly sampling the diagrammatic series of the observable in question. In the context of
continuous-time quantum Monte Carlo algorithms this was first proposed by Gull [Gull,
2008] for the CT-INT algorithm and extended to the CT-HYB algorithm by Gunacker
et al. [Gunacker et al., 2015]. The modification of the partition function by inserting
additional operators to the diagrammatic series and thereby extending the configuration
space is referred to as worm sampling. This method was pioneered for diagrammatic Monte
Carlo solvers for bosonic Green’s functions by Prokof’ev et al. [Prokof’ev et al., 1998b,
Prokof’ev et al., 1998a] and for fermionic Green’s functions by Burovski et al. [Burovski
et al., 2006].11

The following sections discuss the worm algorithm for CT-HYB and represents the
core of this work. These sections may be considered the scientific contribution to the
former state-of-the-art. The CT-QMC chapter is concluded with a critical discussion
of Green’s function estimates in CT-HYB and newly proposed “symmetric” improved
estimators. Although this analysis is formally independent of worm sampling, combining
the concepts and observations of estimator theory and worm sampling allows for suitable
implementations of such estimators in the future.

11In most worm algorithms (i.e. for determinant Monte Carlo, Ising solvers, etc.), the extended config-
uration space with the worm operators is considered as an auxiliary configuration space to significantly
reduce autocorrelation lengths, while physical measurements are conducted in the partition function space.
In CT-QMC algorithms, on the other hand, actual measurements are performed in the worm space.
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3.3.1 Operator Sampling
In this work, only the worm algorithm for the hybridization expansion will be considered.
As already suggested by the terminology of the worm sampling algorithm itself, it is nec-
essary to discuss the details of Monte Carlo sampling prior to defining the estimators and
discussing further in-depth implications. Starting from the partition function expressed in
terms of local- and bath weights in relation (3.25), for the Metropolis-Hastings algorithm
it makes sense to explicitly specify the implicit degrees of freedom for each of the weights
with

wloc = wloc(k; τ1, . . . , τk) (3.41)
wbath = wbath(k; τ1, . . . , τk) (3.42)

The overall weight of a given configuration in the partition function expansion is thus
given by:

p(k; τ1, . . . , τk) = wloc(k; τ1, . . . , τk)wbath(k; τ1, . . . , τk)dτ1 . . . dτk, (3.43)

where the infinitesimal (imaginary) time arguments dτi have been explicitly included
into the weight.12 Now, one can define the detailed balance condition for the CT-HYB
algorithm for changing the order k/2 of the hybridization expansion with

p(k; τ1, . . . , τk)t(k → k + 2) = p(k + 2; τ1, . . . , τk+2)t(k + 2→ k), (3.44)

where t(k → k + 2) is the transition probability for adding one pair of creation and
annihilation operator at times τk+1 and τk+2 to the local trace and the corresponding pair
to the bath trace. This increases the overall expansion order from k/2 to k/2 + 1.13 In
order to define the Metropolis-Hastings condition, the transition probability t(k → k + 2)
is further split into an acceptance probability a(k → k + 2) and a proposal probability
f(k → k + 2), such that

a(k → k + 2)
a(k + 2→ k) = p(k + 2; τ1, . . . , τk+2)

p(k; τ1, . . . , τk)
f(k + 2→ k)
f(k → k + 2) (3.45)

12The following discussion assumes that p > 0, i.e. all weights may be interpreted as probabilities. Due
to the fermionic nature of the problem, also probabilities p < 0 are possible, such that the weights need
to be reweighed according to their absolute value. Measurements need to be corrected by the average
sign, possibly resulting in a vanishingly small denominator. More commonly, this is referred to as “sign
problem”. For flavor diagonal hybridization functions and Slater-Kanamori or density-density interactions
the sign problem is either weak or completely non-existent. A discussion about the technicalities of
calculating the different contributions to the sign in CT-HYB is found elsewhere [Gunacker, 2015].

13Attempting to add/remove single operators, i.e. proposing steps k → k + 1 to the impurity problem
fails due to the traces evaluating to zero, which is a consequence of quantum number violations. When
dealing with off-diagonal hybridization functions, it is necessary to add/remove four operators during
a Monte Carlo step to assure ergodicity with respect to spin-flip and pair-hopping terms contributing
to the hybridization expansion of the partition function (see i.e. [Sémon et al., 2014]). Attempting to
add/remove even more operators during a single step results in very low acceptance rates, but may be
necessary in the case of disconnected histograms for extremely low temperatures.
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In order to always move to more probable configurations and only to less probable config-
urations with a given probability the Metropolis-Hastings condition follows as

a(k → k + 2) = min
(

1, p(k + 2; τ1, . . . , τk+2)
p(k; τ1, . . . , τk)

f(k + 2→ k)
f(k → k + 2)

)
(3.46)

The above relation formally describes the sampling procedure. Calculating the weight
p of a given configuration is, in principle, a straight forward procedure as it boils down
to evaluating the local trace explicitly and the determinant for the bath problem. The
proposal probabilities encode the Monte Carlo moves, which are required for the sampling
process to become ergodic.

The proposal probability for adding a pair of creation and annihilation operators to
the series expansion is

f(k → k + 2) = dτ 2

β2 , (3.47)

which is motivated by the probability to insert either operator into an infinitesimal time
slice dτ . The proposal probability for removing a pair, requires one to first select the
specific annihilator/creator of all (k + 2)/2 annihilators/creators, such that

f(k + 2→ k) = 1
((k + 2)/2)2 . (3.48)

In a similar fashion the proposal probability for shifting a given operator to a given
infinitesimal time slice dτ is given by

f(k → k′) = 1
(k/2)

dτ

β
, (3.49)

where the inverse shift f(k′ → k) is defined equivalently, such that the ratio of proposal
probabilities drops out of the acceptance ratio.

Having established the Monte Carlo sampling procedure of the infinite series expansion
of the partition function Z, in a next step the sampling procedure of different operator
series expansions is considered, which will be referred to as worm sampling. Formally, in
the worm algorithm the configuration space of the partition function CZ is extended by
the configuration of the worm space CW , such that

C = CZ ⊕ CW . (3.50)

While the worm space CW is in principle defined in an abstract fashion, it is pedagogical
to introduce worm sampling with respect to the n-particle Green’s function, where CW →
CG(n) .
In Figure 3.4 the Monte Carlo moves in CZ and CG(n) are illustrated. We included all
steps needed to be ergodic and to decrease auto-correlation lengths in both configuration
steps. The pair insertion and removal steps in CZ (Figure 3.4 (a),(b)) are typical in the
CT-HYB algorithm. We further introduce the operator shift move for CZ (Figure 3.4(c)),
which shifts the time of a creation or annihilation operator.

For later discussion, we set up a modified partition function ZG(n) in configuration space
CG(n) by integrating over all degrees of freedom of the Green’s function G(n): [Burovski
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et al., 2006]

ZG(n) :=
∫∑
G(n)
α1,...,αn(τ1, . . . τn) =

∑
α1,...,αn

∫
dτ1 . . . dτn G(n)

α1,...,αn(τ1, . . . τn). (3.51)

This is not a “physical” partition function in the sense that it is connected to a thermody-
namic potential, but it simply represents a phase space volume in Green’s function space.
We will now discuss all the steps mentioned in Figure 3.4 in full detail.

Figure 3.4: Illustration of Monte Carlo moves in the extended configuration space of
worm sampling. Circles denote operators connected by hybridization lines (indicated by
vertical lines), while rectangles denote worm operators. Moves (a), (b) and (c) correspond
to insertion, removal and shift of an hybridization operator pair in the configuration
space Cz, respectively. Labels (d) and (e) exemplify worm insertion and removal moves
transitioning between the two spaces, where the parameter η(1) rescales the phase space
volume of CG(1) . Labels (f) and (g) denote removal and insertion of an hybridization
operator pair in CG(1) ; (h) labels the worm operator replacement move in CG(1) .

3.3.2 Worm Insertion and Removal Steps
The worm insertion and removal steps are transition steps between the two configuration
spaces, depicted in Figure 3.4 (d),(e). In order to sample in CZ and CG(n) , jumping between
the two spaces is needed. In general, the configuration spaces CZ and CG(n) have very
different phase space volumes. This difference is balanced out by introducing a weighting
factor η(n) so that the total partition function reads

W = Z + η(n)ZG(n) . (3.52)

For now it was not formalized how η(n) scales with the number of orbitals, temperature
and interaction strength. It is best to choose η(n) so that the simulation spends an equal
amount of steps in CZ and CG(n) . We revisit this fact when discussing the normalization
of the worm result in the following section.

It is important to mention that the only difference between worm operators and
hybridization operators is the missing of hybridization lines. This has some implications
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for our Metropolis acceptance rates. The proposal rate of inserting a worm is given
by the same expression as the proposal rate of inserting n hybridization operator pairs,
i.e., [Werner and Millis, 2006]

f(CZ → CG(n)) = dτ 2n

β2n . (3.53)

Adding worm pairs results in the expansion order k/2 of the local trace being increased
by n, whereas the expansion order in the determinant is kept constant. This adds an
ambiguity to the expansion order which needs to be kept in mind. The weight of a
configuration in CG(n) modified by η(n) is then:

p(CG(n) , τ1, . . . , τk; τi1 , ..., τi2n) =
η(n) · wloc(k + 2n, τ1, . . . , τk; τi1 , ..., τi2n)wbath(k, τ1, . . . , τk)dτ1 . . . dτk. (3.54)

We point out that combining the proposal probability and the configuration of the
weight, the 2n infinitesimals dτi1 . . . dτi2n do not cancel as they would have in partition
function sampling. This is due to the extra local degrees of freedom introduced by the
worm and is integrated over in the computation of ZG(n)(3.51). The proposal probability
for removing the worm is simply:

f(CG(n) → CZ) = 1. (3.55)

3.3.3 Pair Insertion and Removal Steps in Green’s Function
Space

In order to generate all possible Green’s function configurations, we need to introduce
additional updates in the Green’s function space CG(n) . This is a crucial part of worm
sampling: without it, the estimator is not ergodic (cf. Figure 3.5).

This explains why we are required to sample the Green’s function space CG(n) sep-
arately with operators having hybridization lines attached. To this effect, we perform
insertions and removals of hybridization operator pairs also in Green’s function space
(Figure 3.4(f),(g)).
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Figure 3.5: An “insertion estimator”, i.e. the mere insertion of local operators into a
diagram from CZ without sampling, is not ergodic: it fails to produce diagram (3) because
(2b) violates the Pauli principle and is therefore never reached. By first transitioning to
CG(1) space from (1) and then inserting a hybridization operator pair into (2a), one indeed
is able to reach diagram (3).

3.3.4 Worm Replacement Step in Green’s Function Space
While insertion and removal moves formally fulfill the condition of ergodicity, worm sam-
pling requires a shift/replacement move in order to allow for acceptable auto-correlation
lengths. We elaborate on this requirement here.

Let us assume a local trace filled with hybridization operator pairs. We now attempt
to insert a worm pair into this trace. It turns out that inserting a worm pair, where the
worm operators are relatively close to one another is probable, while inserting a worm pair
where the worm operators are far apart is less probable. This is because of (i) possible
quantum number violations since there may be many creation and annihilation operators
in between the pair for long time differences, and (ii) the pair insertion might lead to an
energetically disadvantageous local configuration which is unfavorable to have for a long
time.

Problem (i) is especially severe if we have a large amount of operators in the trace,
which occurs at small interaction or low temperatures. Additionally, more restrictive
interaction types, such as the density-density interaction, produce more rejects due to
quantum number violations of attempted worm inserts. This is why we do not observe
this auto-correlation problem at high temperatures, high interaction parameters and more
general interactions such as Slater-Kanamori interactions (which may change the quantum
number in the local trace).

At this point it is important to stress that this problem is not intrinsic to worm
sampling itself, but is present in a similar fashion in the conventional sampling of CT-
HYB. For low temperatures or high interaction values, pairs of creation and annihilation
operators are inserted over short imaginary time differences, while large time differences
become exponentially suppressed. This behavior is illustrated in Figure 3.6, where the
imaginary time dependent acceptance rate for hybridization pairs and worm pairs with time
difference τ 14 is shown for two different temperatures.15 This exponential suppression does
not impact the measurement of Green’s functions in conventional sampling, as the Green’s
function estimators in partition function space consider all contractions over operator pairs
simultaneously (see Section 3.2.2). For worm sampling, on the other hand, the sampling
procedure of the operator series expansion directly influences the measurement, as a worm
of a given length represents the imaginary time bin of the measurement.

14We note that τ = |τ1 − τ2|, where τ1 is the time argument of the creation operator and τ2 the time
argument of the annihilation operator. As a result the time dependent acceptance rate is symmetric, such
that only the domain τ ∈ [0, β/2) is of interest.

15This observation further triggered the development of window sampling techniques, where operator
pairs are proposed only within a short window as opposed to proposing them over the entire trace. The
method is extensively discussed by Shinaoka et al. [Shinaoka et al., 2014].
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Figure 3.6: Imaginary time dependent acceptance rate for hybridization operator pair
inserts (dashed line) and worm operator pair inserts (solid line) with time difference τ in the
Bethe lattice. The parameters are chosen to agree with Figure 3.7. Both the hybridization
operator pairs and the worm operator pairs are predominantly inserted for short times
and display an exponential suppression with τ . The exponential decay is faster for lower
temperature, such that operator pairs are inserted more locally. Hybridization operator
pairs are inserted more locally than worm operator pairs due to additional constraints in
the hybridization part, which is absent in worm sampling.

The solution to this problem is found in shift/replacement moves. We consider, instead
of a general worm shift move, a replacement move which exchanges one of the worm
operators with an operator of the hybridization expansion, i.e., we replace it with one of
the same flavor connected by a hybridization line as illustrated in Figure 3.4(h).

This way we do not have to recalculate the local trace, as two locally indistinguish-
able operators switch position. Instead, we need to recalculate the determinant of the
hybridization matrix since the replacement corresponds to a shift of the worm operator
and a shift of the hybridization operator. Further we do not encounter any rejects of
proposed moves due to local quantum number violations.

It turns out that worm replacement moves (or in the same way worm shift moves)
are equally important for traces with very few operators because of problem (ii). This
problem typically occurs if the weight e−Uτ of the worm becomes prohibitively small, i.e.,
in particular for a large interaction strength and a long τ difference such as β

2 . We are
then effectively restricted to inserting operator pairs into the trace, which are very close to
each other in imaginary time. These pairs have similar properties as density operators and
can in principle be inserted for very high insulating cases. By inserting hybridization pairs
at short distances τi − τj and then replacing one worm operator with one hybridization
operator we are able to pass this restrictions of the time evolution. As we will show in
the following, the replacement move only depends on the ratio of the determinant of the
hybridization matrix.
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The proposal probability of a worm replacement step is given by:

f ′(CG(n) , k + 2n→ k + 2n) = 1
2n(k/2) . (3.56)

This corresponds to selecting one creation/annihilation operator of the 2n worm oper-
ators at random and selecting one creation/annihilation of the same spin-orbit flavor with
a hybridization line. In practice, we choose an operator from the k/2 operators of the
same type (annihilator/creator) and then discard flavors, which are not equivalent to the
worm flavor. The proposal probability of switching the operators back to their original
position is hence also given by Eq. (3.56).

We observe that the proposal probabilities for the replacement move cancel out and
the acceptance ratio is fully determined by the ratio of weights. Further, the local
weights cancel, since a worm operator and the corresponding hybridization operator are
indistinguishable within the local trace.
Figure 3.7 shows how worm replacement moves alleviate the ergodicity problem of the
worm algorithm for the situation where many operators are found in the local trace.
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Figure 3.7: One-particle Green’s function G(1)(τ) in imaginary time τ , illustrating the
ergodicity problem of the worm algorithm for an average expansion order of k/2 ∼ 40.
Parameters: inverse temperature β = 200/D, Coulomb repulsion U = 0.5D and µ = 0.3D
(out of half-filling) for the single-orbital AIM with semi-elliptic conduction electron density
of states with half-bandwidth D = 1 and V = 0.5D. The balancing parameter η(1) was
chosen in the interval [0.15, 0.22]. We observe the ergodicity problem between τ = 25/D
and τ = 175/D (blue curve). When adding replacement moves, we are able to insert
worm operators for such τ ’s around β/2 (green triangles) and hence obtain much better
results. We have additionally supplied G(1)(τ) for the measurement in partition function
space (red curve).

3.3.5 δ-Estimators

In the previous section worm sampling was proposed as a method to overcome various issues
intrinsic to the conventional CT-HYB algorithm. Formally, the Monte Carlo configuration
space is extended from the configuration space of diagrams contained in the expansion
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series of the partition function to include the configuration space of diagrams contained
in the expansion series of the observable. In the following the worm estimators for the
Green’s function, the improved estimators and further equal time observables will be
discussed. As opposed to the conventional estimators of the hybridization expansion, the
estimators in worm space may be formulated in a trivial way, which in this work is related
to as “δ-estimators”.

The δ-estimators of worm sampling were first introduced by Gull [Gull, 2008] in the
context of CT-INT. The idea is to just consider the contributions to the observable gen-
erated by the worm operators themselves, i.e. a single δ-like imaginary time bin (or the
equivalent Fourier transform) at each measurement step. In the following, the estima-
tors for the one- and two-particle Green’s function, the one- and two-particle improved
estimator and the asymptotic (i.e. two-particle equal-time) estimators are discussed.

Green’s Function Estimators

The following paragraph was already published in: P.G., M.
Wallerberger, E. Gull, A. Hausoel, G. Sangiovanni and K. Held;
Continuous-time quantum Monte Carlo using worm sampling. Phys.
Rev. B. 92, 155102 (2015)

We now show how the measurement of Green’s function looks in CG(n) . It turns out that
the measurement itself is trivial and we only need to find the correct normalization of the
Green’s functions measured and the correct sign. For the one-particle Green’s function
G(1) a worm is defined by the operators d(τi) and d†(τj). The correct weight is intrinsically
given as we sample in the Green’s function space CG(n) . Thus, the estimator of the Green’s
function simply follows as:

G
(1)
CG(τ) = 〈sgn · δ(τ, τi − τj)〉MC. (3.57)

The Green’s function in Matsubara frequencies can be calculated by substituting the
δ-function by the Fourier transform:

G
(1)
CG(iν) = 〈sgn · eiν(τi−τj)〉MC. (3.58)

The measurement of the two-particle Green’s function in Matsubara frequencies in the
particle-hole channela is given by:

G
(2)
CG(iν, iν ′, iω) = 〈sgn · eiν(τi−τj)eiν

′(τk−τl)eiω(τj−τk)〉MC. (3.59)

While we both employ (3.57) and (3.58) for the one-particle Green’s function mea-
surement, the measurement of the two-particle Green’s function in Matsubara frequen-
cies, (3.59), is far more convenient than a binned measurement in imaginary time. It is
especially difficult to resolve jumps in the imaginary-time measurement due to fermionic
sign changes in the time ordering of operators. Measuring the two-particle Green’s func-
tion in imaginary time using a binning procedure and then applying the Fourier transform
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gives wrong high frequency asymptotics, while the direct measurement in Matsubara
frequencies is free of errors resulting from binning.

As with conventional sampling, we do not observe any sign-problem for worm sampling
in the case of a flavor-diagonal hybridization function. However, unlike in the G

(n)
CZ

estimator, the flavor indices and the imaginary time bins in the worm estimator G(n)
CG are

outer indices, such that the mean sign in principle also becomes flavor and τ dependent.
Eq. (3.57) and Eq. (3.58) are normalized to ZG(1) , Eq. (3.59) to ZG(2) as defined

in (3.51), as opposed to the physically correct normalization to Z.
aThe convention for the bosonic Matsubara frequency has been adapted for consistency with other

Monte Carlo estimators mentioned in publications referenced in this work.

Improved Estimators

The following paragraph was already published in: P. G., M.
Wallerberger, T. Ribic, A. Hausoel, G. Sangiovanni and K. Held;
Worm-improved estimators in continuous-time quantum Monte Carlo.
Phys. Rev. B. 94, 125153 (2016)

The measurement of observables in worm spaces is trivially determined by recording
imaginary time bins during the Monte Carlo sampling (〈. . .〉MC) for a given spin-orbital
component and only needs to be corrected in its normalization and sign (sgn), see [Gu-
nacker et al., 2015] for further technical details:

(GΣ)(1)
C(GΣ)

(τ − τ ′) = −〈sgn(Uwloc) δ(τ − τ ′)〉MC. (3.60)

or equivalently in Matsubara frequencies:

(GΣ)(1)
C(GΣ)

(iν) = 〈sgn(Uwloc) eiν(τ−τ ′)〉MC. (3.61)

Similarly, the two-particle improved estimator in the particle-hole convention is measured
as

H
(2)
CH (iν, iν ′, iω) = 〈sgn(Uwloc) eiν(τ1−τ2)eiν′(τ3−τ4)eiω(τ2−τ3)〉MC. (3.62)

It is important to note that the sign of the configuration now includes an additional
sign from the interaction term Uαβγδ, which was introduced to the Metropolis acceptance
earlier. We point out that the sign problem of the worm algorithm is identical to the sign
problem of the hybridization expansion itself. That is, the average sign in the denominator
of the estimators originates from the normalization with respect to the partition function,
i.e. being a consequence of the average sign of partition function space.

While Eq. (3.60) may be binned in imaginary time τ , and afterwards Fourier trans-
formed to Matsubara frequencies iν, the unbinned Fourier transform in Eq. (3.61) is
possible as well. In case of the two-particle quantities a binning procedure becomes much
more involved as one needs to generate a grid which further resolves the sign changes due
to anti-commutating operators. Thus, employing a nonequispaced fast Fourier transform
algorithm [Keiner et al., 2009] in Eq. (3.62) is preferable.
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Asymptotic Estimators

The following paragraph was already published in: J. Kaufmann, P.G
and K. Held; Continuous-time quantum Monte Carlo calculation of
multi-orbital vertex asymptotics. Phys. Rev. B. 96, 035114 (2017)

In the following the Monte Carlo estimators for the high-frequency asymptotics of the
two-particle vertex function F are defined. The actual construction of the vertex function
F from these observables is discussed in Chapter 5.2.

Figure 3.8: Vertex diagrams that depend on only one bosonic frequency, in ph-channel
(top left), ph-channel (right) and pp-channel (bottom left). Frequencies are given in the
channel-specific notation.

Figure 3.9: Vertex diagrams that depend on one bosonic and one fermionic frequency.

Considering the full Green’s function Gijkl(τ1, τ2, τ3, τ4), we need to form two equal-
time pairs for the diagrams of Figure 3.8 to arrive at a function of two time arguments or
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one frequency-difference. There are three distinct ways to achieve this:

τ1 = τ2 ≡ τ, τ3 = τ4 ≡ τ ′ (3.63)
τ1 = τ3 ≡ τ, τ2 = τ4 ≡ τ ′ (3.64)
τ1 = τ4 ≡ τ, τ2 = τ3 ≡ τ ′ (3.65)

which relate to the ph, pp and ph channel. The “two-legged” two-particle Green’s function
for the ph-channel is

Gph,ν1−ν2
ijkl =

∫
dτdτ ′ei(ν1−ν2)(τ−τ ′)〈Tτdi(τ)d†j(τ)dk(τ ′)d†l (τ ′)〉, (3.66)

and for the pp-channel, we get

Gpp,ν1+ν3
ijkl =

∫
dτdτ ′ei(ν1+ν3)(τ−τ ′)〈Tτdi(τ)d†j(τ ′)dk(τ)d†l (τ ′)〉. (3.67)

While the above functions have to be measured separately, the third, related to the
ph-channel, can be obtained from the first by the crossing relation (see [Galler et al., 2017]
for an illustration)

Gph
ijkl = −Gph

ilkj (3.68)

and depends on the frequency difference ν1 − ν4.
From the six ways to form one equal-time pair as needed for the diagrams Figure 3.8,

it is sufficient to consider only the following three, with the others related by time-reversal
symmetry:

τ1 ≡ τ, τ2 ≡ τ ′, τ3 = τ4 ≡ τ ′′, (3.69)
τ1 ≡ τ, τ3 ≡ τ ′, τ2 = τ4 ≡ τ ′′, (3.70)
τ1 ≡ τ, τ4 ≡ τ ′, τ2 = τ3 ≡ τ ′′. (3.71)

Here, Eqs. (3.69)-(3.71) are related, as before, to the ph, pp and ph channel. The “three-
legged” two-particle Green’s function in the ph-channel corresponding to Eq. (3.69) follows
as

Gph,ν1,ν1−ν2
ijkl =

∫
dτdτ ′dτ ′′ei(ν1(τ−τ ′)+(ν1−ν2)(τ ′−τ ′′)) × 〈Tτdi(τ)d†j(τ ′)dk(τ ′′)d

†
l (τ ′′)〉, (3.72)

and in the pp-channel (Eq. (3.70)) it is

Gpp,ν1,ν1+ν3
ijkl =

∫
dτdτ ′dτ ′′ei(ν1(τ−τ ′)+(ν1+ν3)(τ ′−τ ′′)) × 〈Tτdi(τ)d†j(τ ′′)dk(τ ′)d

†
l (τ ′′)〉. (3.73)

Again, the Green’s function in the ph-channel can be obtained by the crossing relation,
the frequency arguments are then ν1 and ν1 − ν4. Please note that ν1 − ν2, ν1 + ν3 and
ν1 − ν4 are referred to as the channel-specific bosonic Matsubara frequencies ωph, ωpp and
ωph, respectively.
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We redefine the single-frequency expectation values in Eqs. (3.66)-(3.67) in terms of worm
estimators:

G`,ω
C1,` = 〈sgn× eiω(τ−τ ′)〉MC , (3.74)

where C1,` are the configuration spaces of the particle-hole and particle-particle single-
frequency estimator and ‘sgn’ denotes the sign of the configuration. Further, the two-
frequency expectation values in Eqs. (3.72)-(3.73) follow as:

G`,νω
C2,` = 〈sgn× ei(ν(τ−τ ′)+ω(τ ′−τ ′′))〉MC , (3.75)

where C2,` are the configuration spaces of the particle-hole and particle-particle two-
frequency estimator. We emphasize that the measured quantities still need to be normal-
ized with respect to the partition function.

3.3.6 Full Estimators
The full estimators were introduced by Shinaoka et al. [Shinaoka et al., 2017a] for worm
sampling in combination with off-diagonal or complex hybridization functions. While
δ-estimators in worm sampling just consider the explicit worm operators themselves and
thus a single imaginary time bin for a given observable (see e.g. Eq. (3.57)), the conven-
tional hybridization estimators consider all operators present in the trace by generating
determinant ratios for all elements in the hybridization matrix of the perturbation expan-
sion (see e.g. Eq. (3.29)). This behavior can be mimicked by worm estimators and is here
related to as “full estimators”. By evaluating the contributions of several operator pairs
for a given configuration, parameter regions become accessible where the expansion order
of the algorithm becomes large (i.e. low temperature or weak interactions). This concept
is further described in the following.

As discussed in Section 3.3.4, a given worm configuration may be re-casted into another
worm configuration with replacement steps, that is, by detaching all hybridization lines
of a creation (annihilation) operator of the perturbation expansion and attaching them
to a creation (annihilation) worm operator. While the local trace of the problem remains
the same, the determinant of the hybridization matrix (i.e. the bath trace) needs to be
re-evaluated. The idea of the full-estimators is to include all locally identical traces with
different hybridization matrices in a single measurement step, effectively reconstructing
the conventional hybridization estimator. Essentially, this amounts to initiating virtual
replacement steps (i.e. Monte Carlo steps manipulating the configuration during the
measurement, which are reverted to obtain the configuration prior to the measurement)
to generate the different weights. The procedure is illustrated in Figure 3.10.

Having motivated the full estimators, the remaining step is to formally define them as
Monte Carlo estimators. For the one-particle Green’s function, the worm creation operator
can be exchanged with the remaining k/2 creation operators connected to hybridization
lines. Additionally, the worm annihilation operator can be exchanged with the remaining
k/2 annihilation operators connected to hybridization lines.16 Thus, the full estimator

16For diagonal hybridization functions, the worm creation/annihilation operator is only exchanged with
the creation/annihilation operators with hybridization lines of the same flavor.
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Figure 3.10: Illustration of four different random configurations including a pair of worm
operators (rectangles) and a pair of hybridization operators (circles with vertical lines),
i.e. operators with hybridization lines attached. In terms of the local trace, all four
configurations are equivalent. In terms of the hybridization matrix all four configurations
are different. By exchanging hybridization lines (i.e. using virtual replacement steps) each
configuration can be casted into all of the other configurations. This scheme is referred to
as “full estimators”.

for the one-particle Green’s function scales with (k/2)2, identical to the scaling of the
hybridization estimator.

Formally, the expectation value of the observable A expressed as a weighted average
over N configurations follows as

〈A〉 =
〈∑N

κ wκAκ∑N
κ wκ

〉
MC
, (3.76)

where wκ is the weight of the configuration κ ∈ {1, . . . , N} and Aκ is the observable
evaluated for configuration κ. In order to apply the weighted average to worm sampling,
it is necessary to define the weights as they appear in worm sampling

wij = wijlocw
ij
bath, (3.77)

where i, j ∈ {0, . . . , k/2} is the index denoting the position of the worm creation/annihilation
operator and k/2 is the number of creation and annihilation operators with hybridiza-
tion lines. Further w00 is the initial worm configuration, from which the measurement
procedure is initiated. As all further weights need to be considered with respect to this
initial weight, the formal weight wκ introduced in Eq. (3.76) is actually a ratio of weights
wij/w00. The worm sign including sorting the worm to the front of the configuration and
the conventional operator sorting, is given by sgn00 for the base configuration and sgnij
for the altered configurations. With this, the weighted average of the one-particle Green’s
function in worm sampling becomes:

Gab =
〈k/2∑

ij
sgnijsgn00(wijbath/w

00
bath)δaiδbj

k/2∑
ij
|wijbath|/|w00

bath|

〉
MC

. (3.78)
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The ratio of weights reduces to the ratio of bath weights, as the local weight is not altered
by the virtual worm replacement steps. By further expressing the ratio of bath weights
as the ratio of determinants of the hybridization matrix, the similarities to the Green’s
function estimator defined in Eq. (3.29) become apparent.

This observation further suggests a conceptually different interpretation of the full
estimators: instead of considering virtual replacement steps for generating various worm
contributions, one may choose to connect the worm operators to all remaining operators
in the trace using hybridization lines. Essentially, this generates a hybridization matrix
of dimension (k/2 + 1) for the one-particle Green’s function and (k/2 + 2) for the two-
particle Green’s function. This extended hybridization matrix is constructed only for the
measurement procedure, but becomes irrelevant during the sampling procedure. Further,
the extended hybridization matrix may be interpreted as a worm bath, which extends the
physical bath of the AIM. By inheriting the properties of the worm operators, such as the
off-diagonal structure of the two-particle worm, the worm bath has a different structure
than the physical bath.

Similar to the one-particle Green’s function estimator of traditional CT-HYB, one
can generate determinant ratios by reading off the elements of the extended inverse hy-
bridization matrix Mji. For the two-particle Green’s function estimator, one generate
determinant ratios by calculating the determinant of two-by-two sub-matrices of Mji.
Computationally, generating an extended inverse matrix Mji and reformulating the full
estimators in terms of the traditional estimators of CT-HYB is more feasible than calcu-
lating virtual replacement steps individually. The technicalities of this interpretation are
equivalent to the original formulation by Shinaoka et al. [Shinaoka et al., 2017a].

Nevertheless, it is important to stress the differences between the full estimator of worm
sampling and the conventional hybridization estimators, which follow from the fact that
the base configuration of the hybridization estimator is a configuration of the partition
function space, as opposed to the base configuration of the worm full estimator being a
configuration of worm space.

• While the measurement in partition function space is conducted simply by reading
off the values of Mji, in worm space one either first needs to construct the extended
hybridization matrix with the worm operators connected to all other operators,
which is then inverted to generate similar matrix elements or, generate all possible
worm configurations by applying virtual replacement moves consecutively.

• Although the hybridization estimator and the full estimator of worm sampling con-
sider configurations in a similar manner, the full estimator still profits from the
advantages of worm sampling itself. That is, diagrams belonging to the observable
series expansion, however, not being part of the partition function series expansion
can be measured. These include (but are not limited to) the equal-time diagrams
of the improved estimators and the spin-flip and pair-hopping diagrams of the two-
particle Green’s function for non-density-density interactions. A special case are
measurements close to or in the atomic limit, where no hybridization operators are
present. While the conventional hybridization estimators fail under these circum-
stances, any full-estimator simplifies to its δ-estimator, i.e. only the imaginary time
bin or Matsubara equivalent of the worm operators is recorded.
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In principle, any full estimator may be defined for all of the δ-estimators of worm
sampling, that is for the Green’s function estimators, the improved estimators and the
asymptotic estimators. The full estimators depend on the number of possible imaginary
time bins Nτ obtainable through virtual replacements or obtainable from the extended
hybridization matrix. Each operator that can be replaced with operators of the pertur-
bation series generates (k/2 + 1) imaginary time bins (the factor 1 is the initial worm
contribution). For flavor diagonal hybridization, (k/2) reduces to the number of operators
with the same flavor kflav/2. Further, the equal time two- and three-tuples present in
improved- and asymptotic estimators cannot be considered in the extended hybridization
matrix or by virtual replacement steps. This is because the probability for such equal
time tuples to exist in the series expansion of the partition function is essentially zero.
Thus, one cannot exchange the equal time worm operators with hybridization operators.
This effectively reduces the complexity of the full estimator corresponding to the improved
and asymptotic estimators. Of all observables discussed in this work, the full estimator
for the two-particle Green’s function has the highest number of possible exchanges with
(k/2 + 1)4.17 On the other hand, the full estimator of the asymptotic two-particle Green’s
function with two equal time pairs, simplifies to a δ-estimator, as no exchanges are possi-
ble without breaking the equal time condition. A detailed list of all estimators and the
corresponding scaling in imaginary time and Matsubara frequencies is given in Table 3.3.

Conceptually the full estimators and the δ-estimators result in comparable estimates,
when considering the measurement- and sampling procedure together. However, empir-
ically, the full estimators outperform the δ-estimators in terms of efficiency. The full
estimator offsets the computational burden of the sampling procedure to the measure-
ment. While computationally the latter can be treated more efficiently, the autocorrelation
length of the full estimator increases with respect to the δ-estimator (see Section 3.3.9).

3.3.7 Normalization
Although the δ- and full estimators scale differently depending on the expansion order
of the series expansion, all worm estimators are normalized to their integrated partition
function (3.51), while they are to be normalized with respect to the actual partition
function Z.
In principle we are ergodic in CG(n) , when assuming worm replacement or worm shift
moves. It turns out however that we need to sample both in CG(n) and CZ with about the
same number of steps to fix the normalization 1

Z
of the thermal expectation value.

When measuring the Green’s functions in CG(n) we implicitly normalize with the number
of steps taken in CG(n) . We correct for this factor by explicitly counting how many steps
NG were taken in CG(n) . We further count how many steps NZ were taken in CZ . This

17By formulating the full estimator in terms of an extended hybridization matrix, the two-particle
measurement can be written similar to the two-particle measurement of traditional CT-HYB. For low-
temperatures it is useful to Fourier transform the matrix-elements Mji with the corresponding δ-functions
encoding the time differences and then assemble the resulting “bath propagators” in Matsubara space.
This reduces the effective scaling of the estimator from O((k/2)4) to O((k/2)3). For more details see
Section 3.2.2.
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Observable /
Worm estimator

Imaginary time
scaling O(Nτ )
(δ, full)

Matsubara scaling
O(Nf

d log(Nf ) +Nτ )
(δ, full)

one-particle
Green’s function

Nτ = 1
Nτ = (k/2 + 1)2

Nτ = 1, d = 1
Nτ = (k/2 + 1)2, d = 1

one-particle
improved estimator

Nτ = 1
Nτ = (k/2 + 1)

Nτ = 1, d = 1
Nτ = (k/2 + 1), d = 1

two-particle
improved estimator

Nτ = 1
Nτ = (k/2 + 1)3

Nτ = 1, d = 3
Nτ = (k/2 + 1)3, d = 3

two-legged two-particle
Green’s function (asympt.)

Nτ = 1
Nτ = 1

Nτ = 1, d = 1
Nτ = 1, d = 1

three-legged two-particle
Green’s function (asympt.)

Nτ = 1
Nτ = (k/2 + 1)2

Nτ = 1, d = 2
Nτ = (k/2 + 1)2, d = 2

two-particle
Green’s function

Nτ = 1
Nτ = (k/2 + 1)4

Nτ = 1, d = 3
Nτ = (k/2 + 1)4, d = 3

Table 3.3: Formal scaling of various worm estimators represented as δ-estimators and full
estimators in imaginary time and Matsubara representation. The latter is assumed to
follow a NFFT, with the formal scaling O(Nf

d log(Nf ) +Nτ ), where Nτ is the number
of imaginary time bins and Nf the number of frequencies in each direction (omitting an
additional prefactor log(1/ε) to the number of imaginary time bins, where ε is the desired
accuracy). For multi-dimensional NFFT calls, a hyper-cubic box is assumed (i.e. in case of
the two-particle Green’s function, the number of fermionic and bosonic frequencies agrees).
A detailed discussion of NFFT in the context of CT-HYB is found elsewhere [Kaufmann,
2015].
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estimates the size of the configuration space CZ , which then gives the correct normalization.
The normalization for G(n) is then given by Gull et al. [Gull et al., 2010]

G(n) = 1
η(n)

NG

NZ

G
(n)
CG , (3.79)

where G
(n)
CG is measured in CG(n) and the factor 1/η(n) is a result of rescaling ZG(n) in

Eq. (3.52).
Let us note that Eq. (3.79) is only one way of normalizing the worm measurement. In

a different approach, we could do the entire sampling in worm space, without removing
the worm operators at all. We are then required to generate worm configurations by
shift moves and replacement moves. In this case, we could normalize the result by
assuming some physical knowledge of the Green’s function. One possibility is to extract
the normalization by assuming the correct behavior of the large-frequency asymptotics of
G(1)(iν) or G(2)(iν, iν ′, iω).

In order to calculate the Monte Carlo expectation value Eq. (3.58), we still need to
divide by the number of measurements N taken. It is important to note the difference
between the number of measurements N and the number of steps NG and NZ taken since
it is common to skip steps during two consecutive measurements to assure uncorrelated
measurements. This directly relates to the auto-correlation length of the QMC sampling.

3.3.8 Component Sampling
The relative phase space volume of the worm space CW and the partition function space CZ
is controlled by the balancing factor η (see (3.52)). For observables with a series expansion
that is comparable to the partition function series expansion, the balancing factor is
approximately one. For series expansions with little overlap, the balancing factor deviates
from unity.18 Up to this point, the actual type of worm space has been determined only
in terms of number and imaginary time structure of the worm operators being inserted,
while the flavor dependence has been ignored. As a result, the balancing factor η was
also considered to be flavor independent.19 This may turn out to be a severe issue,
when considering systems with flavor-dependent hybridization functions, flavor-dependent
interaction matrices or crystal field splittings. A straight-forward solution to this problem
is to consider the balancing factor to be flavor dependent in a similar manner. This can be
achieved in two ways. First, by indexing η, generating a flavor-dependent tensor. In this
scenario, the random proposal of worm-operator-inserts determines which element of the
η-tensor is accessed. Secondly, the flavor dependence of the observable may be considered
as a set of external degrees of freedom. Then, the entire worm sampling procedure may
be carried out by only proposing worm-operator-inserts for a given flavor at once. This

18An example are observables with large time differences at strong coupling. Such observables do not
typically emerge in the partition function expansion in strong coupling.

19In principle the balancing factor η has additional dependencies on system properties, such as the
inverse temperature or the number of orbitals. However, these dependencies are implicitly accounted for
by determining an optimal η at the beginning of the sampling process (either by root finding or Wang
Landau sampling), such that the number of steps in worm space are comparable to the number of steps
in partition function space.
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Figure 3.11: Component sampling of the two-particle Green’s function of the Anderson
impurity model. Left: selected random configurations of worm- and partition function
configuration space for the two-particle Green’s function. Two different components are
sampled simultaneously. Right: selected random configurations of flavor-dependent worm-
and partition function configuration space for the two-particle Green’s function. The
two components are sampled separately. Filled/empty squares (circles) illustrate worm
(hybridization) creation/annihilation operators for spin-up (blue) and spin-down (red).

approach will be referred to as component sampling. The procedure for the Anderson
impurity model is illustrated in Figure 3.11

In the following, the behavior of the balancing factor in the Falicov-Kimball model
with respect to temperature is discussed. The Falicov-Kimball model breaks the SU(2)-
symmetry by assuming one spin of electrons to be itinerant, while the other spin is
fixed (i.e. atomic limit-like). Although the Falicov-Kimball model shows no explicit
temperature dependence in the Matsubara frequency self-energy and Green’s functions,
for relatively low temperatures the balancing factor η becomes strongly flavor dependent.
The fc-components (i.e. mixed components) of the two-particle Green’s function have a
smaller phase space volume than the fixed ff -components (see Figure 3.12 right). The
cc-components (i.e. the itinerant component) becomes prohibitively small. For moderate
to high temperatures the flavor dependency of η vanishes (see Figure 3.12 left). With
respect to the partition function, the observable series expansion shares a large overlap
with the series expansion in Z in case of the fixed electrons, but very little overlap in
case of the itinerant spins. Assuming a flavor-independent balancing factor η, worm
operators are predominantly inserted for fixed spins, but with a much lower probability
for itinerant spins. This is because the acceptance rate for inserts of f -operators into
an otherwise empty (sub-) trace is relatively high, while the acceptance rate for inserts
of c-operators is significantly suppressed by a number of additional c-operators resulting
from the perturbation expansion itself. In severe cases, a flavor-independent balancing
factor may practically, although not formally, violate ergodicity.

The implications of component sampling are directly visible in the measured compo-
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Figure 3.12: Relative phase space volumes (extracted as the inverse of η after balanc-
ing) of component-resolved worm spaces of the two-particle Green’s function for the
two-dimensional Falicov-Kimball model in the resonant level model (D ≡ 1, U = 1) at
temperatures (a) β = 20 and (b) β = 200 and an f -electron occupation of p = 0.25. To
fix the occupation, for β = 20 this results in an f -electron energy level of εf = −0.038114
and for β = 200 an energy level of εf = −0.086125 in accordance to Falicov-Kimball
calculations in [Gunacker et al., 2016]. The spin-up electrons are associated with the
itinerant c-electrons and the spin-down electrons with the fixed f -electrons.

nents of the two-particle Green’s function. For the Falicov-Kimball model at β = 200
this is illustrated in Figure 3.13, where a flavor-independent balancing factor was set such
that total number of steps in all worm spaces combined is similar to the total number
of steps in partition function space. The phase space volume of the cc-component is
smaller than the phase space volume of the partition function space. The unbalanced
algorithm spends about a factor five more steps in partition function space than in worm
space (not shown). One can observe in Figure 3.13 (left) the balancing factor in principle
reproduces the correct shape relative to the component-wise balancing factor, however,
the normalization is off. For all different fc-components related by crossing symmetry, the
algorithm spends approximately four times as much time/steps in the corresponding worm
spaces (not shown). Only slight differences in Figure 3.13 (middle) are visible. The phase
space volume of the ff -component is larger than the phase space volume of the partition
function space. The algorithm spends almost all of its time in worm space (not shown).
In Figure 3.13 (right) one can observe larger error fluctuations relative to a balanced
measurement.

While one may consider the Falicov-Kimball model of academic use only, the balancing
issues discussed above also occur in systems with higher symmetry. More specifically, the
balancing factor may inherit additional constraints from the imaginary time structure of
the estimator. The balancing factor of individual components of the equal-time estimators
of the two-particle Green’s function (improved estimators and asymptotic estimators) may
look very different. While for some components of these estimators the equal-time pairs
form actual density pairs, for other components of the same estimator, the equal-time
pairs form finite-time “segments” with additional operators in the trace. Intuitively this
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Figure 3.13: Two-particle Green’s function of the Falicov-Kimball model with parameters
chosen according to Figure 3.12, at β = 200 for frequency slices (ν, π/β, 0). Blue lines
relate to component-wise balancing of worm spaces with the partition function space.
Orange lines relate to an flavor-independent balancing, where the total number in all
worm spaces is similar to the total number of steps in partition function space. The
number of measurements was kept constant for the two runs with different balancing
factor η. However, measurements are triggered independent of the current configuration
space (i.e. worm or partition). If the algorithm spends most of its time in partition
function/worm space, most measurements are conducted for partition function/worm
estimators and less for worm/partition function estimators.
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leads to large variations in the component-wise balancing factor.
Besides the advantages of a more balanced sampling procedure with respect to all

components, component sampling is further appealing for computational reasons:

• A component-wise sampling procedure allows one to selectively sample components
of an observable, which are of interest. The remaining components may simply
be ignored. This results in a more efficient (i.e. faster and more storage efficient)
sampling process.

• The flavor dependence of observables is not part of the Monte Carlo procedure itself.
Thus, arrays storing the estimators have reduced dimensionality (i.e. more memory
efficiency). According to relation (3.40) the two-particle Green’s function in the e.g.
five-orbital case already has 390 non-vanishing components. This prefactor to the
three-dimensional Matsubara arrays results in severe memory restrictions without
component sampling.

3.3.9 Autocorrelation

The results of this section (marked by a vertical sidebar) have been
obtained in the project work of: P. Heistracher. Autocorrelation
measurements in continuous time quantum Monte Carlo simulations
(2016), supervised by P.G. and K. Held

Due to the high dimensionality of the configuration space of the diagrammatic series
expansion of the partition function or, in the case of worm sampling, a given observable,
the Metropolis Hastings algorithm for Monte Carlo is employed. The underlying method
of importance sampling significantly reduces the variance of the Monte Carlo estimate by
generating configurations along a Markov chain. Consequently, two random configurations
i and j of the Markov chain are no longer uncorrelated but rather correlated, where the
strength of correlation depends on the number of Monte Carlo steps in between the two
configurations. The standard error of the Monte Carlo expectation value for the observable
A then becomes20

σA =
√

Var(A)
N

(1 + 2τA), (3.80)

where τA is the autocorrelation length defined as

τA =

∑∞
t=1

(
〈A1A1+t〉 − 〈A〉2

)
Var(A) . (3.81)

The usual 1/
√
N scaling of the error is modified by a factor

√
(1 + 2τA). This results is

derived in Appendix E.1. In practice one attempts to estimate or calculate τA beforehand
and introduce τA Monte Carlo steps in between two measurements of the observable to

20For a pedagogical introduction to autocorrelation lengths in Monte Carlo see e.g. [Ambegaokar and
Troyer, 2010].
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assure uncorrelated measurements.21 By first determining τA, the number of uncorrelated
measurements conducted during the entire sampling procedure is maximized for the given
computational resources.

Numerical considerations

An individual term in relation (3.81) for any given configuration Ai is often referred to as
the autocorrelation function

CA(t) =

(
〈AiAi+t〉 − 〈Ai〉2

)
〈A2

i 〉 − 〈Ai〉2
. (3.82)

Equivalently, in the continuous case, where ∆t→ dt, the integral of the autocorrelation
function over the infinitesimal length dt returns the autocorrelation length. The continuous
autocorrelation function formally consists of a linear combination of exponentially decaying
functions, while generally a single contribution dominates.22

In practice, the autocorrelation length is extracted by either integrating the discrete
autocorrelation function or by fitting an exponential function. Deviations between the two
methods originate from the assumption of the autocorrelation function being constructed of
a single exponential function in the latter case, or from not considering the autocorrelation
function on a large enough grid, i.e. integrating an autocorrelation function not decaying
sufficiently. For a more detailed discussion about autocorrelation and fast algorithms the
reader is referred to [Sandvik, 2014].

Green’s functions estimators

In principle it is necessary to determine the autocorrelation length for all degrees of freedom
for a given observable. In the following the autocorrelation length of the one-particle
Green’s function is investigated to analyze the differences between partition function
estimators and worm estimators. Figure 3.14 shows the autocorrelation length for the
one-particle Green’s function estimators for the Bethe lattice averaged over all imaginary
time bins. The δ-estimator of worm sampling behaves opposite to the partition function
estimator: for low interaction values, the δ-estimator displays small autocorrelation lengths,
whereas the partition function estimator displays larger lengths. Inversely, for large
interaction values the δ-estimator displays larger autocorrelation lengths, whereas the
partition function estimator displays smaller lengths. This is a direct consequence of the
δ-estimator representing a given imaginary time bin by a single configuration, which is
modified upon replacement or reinsertion of a given worm, while the partition function
estimator depends on all hybridization operators in the trace, thus displaying larger
autocorrelation lengths for higher expansion orders (i.e. small values of interaction U or
low temperatures 1/β). In the strong coupling limit (but not the atomic limit in itself), the

21Sometimes the estimated number of steps for two configurations to be uncorrelated is referred to as
“sweep”. This terminology originated from the Ising model, where the autocorrelation length is estimated
by the number of lattice sites N , such that N Monte Carlo steps on average “sweep” the entire lattice.

22The exponential decay allows for truncating the infinite sum t ∈ [1,∞) to finite order.
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Figure 3.14: Autocorrelation length of the one-particle Green’s function estimator in worm
sampling for the Bethe lattice at β = 40 and half-bandwidth D = 1 for different values of
interaction U . τGZ refers to the auto-correlation length in the partition function space Z
in the presence of an additional worm space. Here, τ refers to the autocorrelation estimate
introduced in relation (3.83), normalized to the auto-correlation length τGZ at U = 2 to
account for any additional multiplicative factors. In worm space, τGW is measured for
δ-estimators and full estimators. Around U = 2.5, within the coexistence region of the
Mott metal-to-insulator transition the autocorrelation length changes its behavior for all
estimators.

partition function estimator outperforms the δ-estimator in terms of the autocorrelation
length. The full estimator of worm sampling, on the other hand, behaves similar to the
partition function estimator, as it takes all operators into account in a similar fashion.
Only in the coexistence region of the Mott metal-to-insulator transition, the behavior of
the correlation length of the full estimator deviates from the partition function estimator.
This results from stable worm configurations, where the autocorrelation length increases
due to actual replacement steps compensating virtual replacement steps of the estimator.

Although quantitative differences in the autocorrelation lengths of δ-estimators and full
estimators in worm sampling formally compensate different scalings of the estimators with
the interaction strength U and the inverse temperature β, empirically it has been observed
that the full estimators outperform the δ-estimators for high expansion orders. The fact
that the full estimator of worm sampling and partition function (Green’s function-like)
estimators take all operators into account, adds to the efficiency of these estimators by
shifting the computational burden from the sampling towards the measurement procedure.

Due to the similarity between full estimators and partition function estimators, in the
following section certain approximations of the autocorrelation length of partition function
estimators with respect to the interaction strength U and the inverse temperature β are
examined in more detail.
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Estimates for the Autocorrelation Length

Intuitively, the autocorrelation length refers to the number of Monte Carlo steps necessary
to separate two configurations, making them uncorrelated (i.e. independent) from one
another. This can be interpreted as a global property of the Markov chain, independent
of the type of measurement conducted for individual random configurations. Nevertheless,
the autocorrelation length in Eq.(3.81) is defined with respect to the observable A. While
in worm sampling, the Markov chain implicitly follows the structure of the observable
expansion, this is not the case in partition function sampling. A priori, there is no reason
for the series expansion of the partition function to have any similarity to the series
expansion of the observable.

Historically, approximations to the autocorrelation length in partition function sam-
pling were thus independent of the observable under consideration. By investigating the
scaling behavior of the expansion order with the inverse temperature β and the interaction
U in CT-HYB, the autocorrelation length may be estimated by a trace renewal rate [Gull
et al., 2007]

τ = 〈k/2〉
rrem,Z

, (3.83)

where 〈k/2〉 is the average expansion order (i.e. the number of operator pairs connected
with hybridization lines in the local trace) and rrem,Z is the acceptance rate for removing a
pair of operators in partition function space. Thus, the above ratio estimates the number
of Monte Carlo steps necessary in order to exchange on average all operator pairs of a given
configuration.23 Figure 3.14 shows the autocorrelation estimate τ in comparison to the
autocorrelation length τGZ . By normalizing the estimate τ to the actual autocorrelation
length in order to account for multiplicative factors, one can observe a good qualitative
agreement of the estimate with the calculated result for different values of interaction U .

23The above estimate needs to be further modified by the inverse frequency for removal steps to occur,
that is assuming N removal steps are necessary to remove all operators of a given configuration, the
autocorrelation length estimate relates to the number of removal steps times the inverse frequency of
removal steps occurring during sampling. Further, one assumes rrem,Z ∼ rins,Z , i.e. the acceptance rate
for removing an operator pair is similar to the acceptance rate of inserting an operator pair, such that
the new uncorrelated configuration has a comparable number of operators to the number of operators
of the original configuration. In practice, any multiplicative factors to the to the acceptance rates (and
hence the autocorrelation length estimate) can be discarded by normalizing the autocorrelation estimate
to the calculated autocorrelation length for a given set of parameters.



3.3. WORM SAMPLING 89

 0

 2

 4

 6

 8

 10

 0.5  1  1.5  2  2.5  3  3.5

M
e

a
n

 e
x
p

a
n

s
io

n
 o

rd
e

r

U

k

 0.03

 0.035

 0.04

 0.045

 0.05

 0.5  1  1.5  2  2.5  3  3.5

M
e

a
n

 a
c
c
e

p
ta

n
c
e

 r
a

te

U

acc

(a) Mean expansion order 〈k〉 over U . (b) Acceptance rate over U .

Figure 3.15: A declining behavior of the mean expansion order 〈k〉 (a) and the mean
acceptance rate (b) with non-linearity at the phase transition can be observed.
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Figure 3.16: Mean expansion order 〈k〉 (a) and acceptance rate (b) as a function of β.
The green line represents a non-linear least-squares fit for the given fit-functions.

Figures 3.15 and 3.16 show the behavior of the mean expansion order 〈k〉 and the
acceptance rate for different values of the interaction U (at β = 40) and different values of
the inverse temperature β (at U = 2) for the Bethe lattice with half-bandwidth D = 1.24

The expansion order scales linearly with β, which results from the “length” of the
trace being proportional to β, i.e. the longer the trace the more operators may be placed
inside the trace. The acceptance rate scales with 1/β. According to the autocorrelation
estimate the actual autocorrelation length thus scales as β2.

The scaling of the mean expansion order 〈k〉 and the acceptance rate over U displays
comparable trends. The scaling of the mean expansion order of CT-HYB is a direct conse-

24Estimating the autocorrelation length according to relation (3.83) for the plotted data gives different
results to Figure 3.14. This has two reasons: the mean expansion order in Figure 3.15 and Figure 3.16
needs to shifted by −1 due to different definitions of the expansion order. Further, the proposal rates for
pair insertion and removal rates have changed due to additional off-diagonal flavor pair moves in more
recent versions of the algorithm. By normalizing the two estimates to one another at a fixed value of U
the results are in good agreement.
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quence of the strong-coupling formulation. A peculiar feature of both the expansion order
and the acceptance rate is their behavior in proximity of the Mott metal-to-insulator tran-
sition. The first order-phase transition results in plateaus in either quantity. Nevertheless,
the autocorrelation estimate is capable of reproducing the behavior of the autocorrelation
length in these regions.

3.4 Symmetric Improved Estimators
In the previous section worm sampling was introduced as an extension to conventional
CT-HYB. The extended algorithm becomes central when considering observables which
are not part of the infinite partition function series expansion. For example, the improved
estimators in Section 3.1, following the equation of motion for the one- and two-particle
Green’s function, result in three fermionic operators forming an equal-time object and
a fourth operator separated by an (imaginary) time offset. As the specific operator
structure is not contained in the series expansion of Z and can thus not be measured by
a removal of hybridization lines, the worm algorithm is required for an ergodic sampling
of the observable for non-density-density interactions. For density-density interactions
on the other hand, the improved estimators follow by inserting density operators into
the local trace. This is equivalent to the insertion of local operators in worm sampling,
but ergodicity is fulfilled even without an additional sampling of hybridization operators
within this configuration space. In general, the improved- and asymptotic estimators, i.e.
estimators with equal-time structure, enhance the high-frequency structure of one- and
two-particle Green’s functions.

While the improved estimators have been formally introduced in the previous sections,
the Monte Carlo error propagation has not been discussed extensively. In order to do so,
it is beneficial to compare Monte Carlo estimators of CT-HYB with estimators of CT-INT.
Within the CT-QMC community it is generally known that the high-frequency structure
of self-energies and irreducible vertex functions calculated in CT-INT is considerably less
noisy than when calculated in CT-HYB [Gull et al., 2007]. This even holds true when
considering one- and two-particle improved estimators in CT-HYB and has triggered
a series of developments for smoothing high-frequency noise in CT-HYB, including ex-
pansions of Green’s function in Legendre polynomials, effectively filtering high-frequency
noise [Boehnke et al., 2011], or measuring moments of the self-energy [Potthoff et al.,
1997,Wang et al., 2011] or the vertex functions [Kaufmann et al., 2017] explicitly.

3.4.1 One-Particle Symmetric Improved Estimator
Overall, the characteristic noise levels in the high-frequency regions of irreducible one- or
two-particle vertices in CT-HYB and CT-INT follow from the Monte Carlo error being
suppressed differently. More specifically, the one-particle Green’s function estimator in
CT-INT is given by [Rubtsov and Lichtenstein, 2004]:

G(iν) = G(iν)− 1
β

〈
G(iν)

[ k∑
ij

Mije
iν(τi−τj)

]
G(iν)

〉
MC
, (3.84)



3.4. SYMMETRIC IMPROVED ESTIMATORS 91

where Mij is now the inverse of the Green’s function matrix Dij = G(τi − τj) and G(iν) is
the non-interacting Green’s function. The sum is evaluated over all k (bare) interaction
vertices in the trace. Although both CT-INT and traditional CT-HYB define Green’s
function estimators with respect to the matrix Mij, in the latter case this matrix is
constructed as the inverse of the hybridization matrix. If one assumes that the error
in relation (3.84) is essentially constant in the Monte Carlo expectation value, the high-
frequency error of the one-particle Green’s function in CT-INT is suppressed with 1/(iν)2.
This results from the corresponding 1/iν behavior of the non-interacting Green’s functions.

The Green’s function estimator of CT-HYB, on the other hand, is given by rela-
tion (3.28), which is reformulated in Matsubara frequencies as:

G(iν) = − 1
β

〈 k/2∑
ij

Mjie
iν(τi−τj)

〉
MC
, (3.85)

where the matrix elements of Mji follow from the inverse hybridization matrix in CT-HYB.
If one assumes a constant error in the Monte Carlo estimator, the one-particle Green’s
function is no further suppressed by non-interacting Green’s functions.25

The improved estimator ΣG(iν) of CT-HYB is given by relation (3.38). The one-
particle Green’s function follows from the improved estimator as:

Gσ(iν) = Gσ(iν)− Gσ(iν) 1
β

〈
U

k/2∑
ij

n̂−σM
σ
jie

iν(τi−τj)
〉

MC
, (3.86)

where the explicit spin index σ distinguishes the flavor of the density from the flavor of
the remaining two operators in the expectation value. Furthermore, the density is directly
attached to the position of the annihilation operator. If one assumes that the Monte Carlo
error is essentially constant for the improved estimator, the high-frequency error of the one-
particle Green’s function is suppressed with 1/iν, resulting from the multiplication with
a single non-interacting propagator. This explains the somewhat worse high-frequency
behavior of self-energies calculated from improved estimators in CT-HYB as opposed to
self-energies calculated in CT-INT.

It is however possible to obtain the same high-frequency behavior of Green’s functions
and self-energies in CT-HYB as in CT-INT by applying the equation of motion on the
one-particle Green’s function twice.26 In the following this procedure is demonstrated for
the single-orbital AIM in the Hamiltonian formalism (cf. [Hafermann et al., 2012]), as
opposed to the path integral formalism of Section 3.1.3. The equation of motion for the

25The direct equivalent of relation (3.84) for CT-HYB corresponds to the measurement of the lattice
(i.e. bath) Green’s function of the AIM (see relation (2.43) in Chapter 2.2). A more detailed derivation
in the context of CT-HYB is found elsewhere [Haule, 2007].

26In a different context, the procedure of applying the equation of motion to both the creation and anni-
hilation operator of the one-particle Green’s function was used to approximate spectral functions [Górski
and Mizia, 2013]. During the finalization of this work, the author was made aware of a recent derivation
of the one-particle symmetric improved estimator in the diagMC context [Moutenet et al., 2018], where
the self-energy is calculated recursively similar to the diagrammatic representation introduced towards
the end of Section 3.2.2.



92 CHAPTER 3. CONTINUOUS-TIME QUANTUM MONTE CARLO

impurity Green’s function is defined as:

∂τ1Gσ(τ1, τ2) = −∂τ1〈Tτ d̂σ(τ1)d̂†σ(τ2)〉
= −δ(τ1 − τ2)〈{d̂σ, d̂†σ}(τ1)〉 − 〈Tτ∂τ1 d̂σ(τ1)d̂†σ(τ2)〉
= −δ(τ1 − τ2)− 〈Tτ

[
d̂σ, Ĥaim

]
(τ1)d̂†σ(τ2)〉, (3.87)

where the first term results from the time derivative of the time-ordering symbol Tτ and
the anti-commutator of the creation and annihilation operator and the second term is the
commutator between the annihilation operator and the AIM Hamiltonian defined in (2.30).
The commutator of d̂σ with Ĥaim evaluates to:

[
d̂σ, Ĥaim

]
= Un̂−σd̂σ − µd̂σ −

BZ∑
~k

V ∗~kσ ĉσ, (3.88)

where the last term with the single bath annihilation operator generates a mixed impurity-
bath Green’s function when evaluated in relation (3.87). The mixed impurity-bath Green’s
function can be evaluated by considering the equation of motion for the bath operator:

∂τ1〈Tτ ĉσ(τ1)d̂†σ(τ2)〉 = 〈Tτ
[
ĉσ, Ĥaim

]
(τ1)d̂†σ(τ2)〉

=
BZ∑
~k

ε~k〈Tτ ĉσ(τ1)d̂†σ(τ2)〉 −
BZ∑
~k

V~kσ〈Tτ d̂σ(τ1)d̂†σ(τ2), 〉 (3.89)

With the hybridization function in imaginary time defined as

∆σ(τ1) =
∑
~k

V ∗~kσV~kσ
∂τ1 − ε~k

, (3.90)

the one-particle Green’s function follows from relation (3.87) with:

Gσ(τ1, τ2) = − 1
∂τ1 + µ−∆σ(τ1)

(
δ(τ1 − τ2) + U〈Tτ n̂−σ(τ1)d̂σ(τ1)d̂†σ(τ2)〉

)
. (3.91)

The above equation recovers the well-known result of the equation of motion, which sets
GΣ into relation with a two-particle Green’s function with three operators contracted by
an interaction vertex.

In the following, the equation of motion is applied yet another time to the remaining
creation operator at time τ2, such that:

∂τ2〈Tτ n̂−σ(τ1)d̂σ(τ1)d̂†σ(τ2)〉 =
− δ(τ1 − τ2)〈Tτ{n̂−σd̂σ, d̂†σ}(τ1)〉+ 〈Tτ n̂−σ(τ1)d̂σ(τ1)

[
d̂†σ, Ĥaim

]
(τ2)〉 (3.92)

In order to evaluate the above expression, the following (anti-) commutators are provided:

{n̂−σd̂σ, d̂†σ} = n̂−σ (3.93)[
d̂†σ, Ĥaim

]
= −Un̂−σd̂†σ + µd̂†σ +

BZ∑
~k

V~kσ ĉ
†
σ, (3.94)
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where the resulting mixed impurity-bath Green’s function in relation (3.92) can be cal-
culated again through the equation of motion for the bath operators, analogous to rela-
tion (3.89). Thus, relation (3.92) can be expressed as:

〈Tτ n̂−σ(τ1)d̂σ(τ1)d̂†σ(τ2)〉 =
1

−∂τ2 + µ−∆σ(τ2)
(
δ(τ1 − τ2)n−σ + U〈Tτ n̂−σ(τ1)d̂σ(τ1)n̂−σ(τ2)d̂†σ(τ2)〉

)
, (3.95)

with the density n−σ = 〈n̂−σ〉. The last expectation value in the above equation is a
three-particle Green’s function, where six external legs were contracted by two interaction
vertices into two 3-tuples. The Monte Carlo evaluation of this expectation value will be
referred to as symmetric improved estimator.

In order to quantify the error scaling of the resulting expression, the Fourier transform
is defined as:

Gσ(iν) =
∫ β

0
eiν(τ1−τ2)Gσ(τ1, τ2)dτ1dτ2. (3.96)

The resulting expression for the one-particle Green’s function in Matsubara frequencies
follows as:

Gσ(iν) = Gσ(iν) + UG2
σ(iν)

(
n−σ + U〈Tτ n̂−σ(τ1)d̂σ(τ1)n̂−σ(τ2)d̂†σ(τ2)〉

)
. (3.97)

Assuming a constant error in the symmetric improved estimator and the density measure-
ment, one observes a 1/(iν)2 error suppression in the high-frequency region, just as for
the Green’s function estimator of CT-INT.

In Figure 3.17, the one-particle Green’s function in the atomic limit was calculated
by stochastically sampling the local trace for the different estimators discussed above.
The number of measurement steps for all three estimators was kept constant. The high-
frequency tail of the Green’s function following the improved- and symmetric improved
estimator is considerably better than of the naive estimator. Figure 3.18 shows the one-
particle self-energy corresponding to the Green’s functions calculated in Figure 3.17. One
can observe that the error scaling of the Green’s function directly affects the self-energy.
The error in the self-energy scales quadratically for the naive estimator and linear for the
improved estimator. For the symmetric estimator a constant scaling in the self-energy
is to be expected. The absolute error is illustrated in Figure 3.19. The superior scaling
properties of the stochastic error in the high-frequency region of the symmetric improved
estimator are clearly visible. The lowest frequencies resulting of the symmetric improved
estimator, on the other hand, converge more slowly towards the exact value.

Analytically, the error scaling in the high-frequency regions of the self-energy can be
further derived by a formal propagation of errors [Wallerberger, 2016]:

Var [Σ(iν)] ≈
∣∣∣∣∣∂Σ
∂G

∣∣∣∣∣
2

Var [G(iν)] = |G(iν)|−4 Var [G(iν)] , (3.98)

which essentially amounts to calculating the highest-order contribution to the variance
after Taylor expanding Σ(G, G) (i.e. Dyson’s equation) in terms of G and G and ne-
glecting any uncertainties in G. Now, Var [Σ(iν)] can be calculated from Var [G(iν)] for
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Figure 3.17: Imaginary part of the one-particle Green’s function in the atomic limit
with β = 8.0, U = 2.0 and µ = 1.0. The Green’s function was calculated by stochasti-
cally sampling the naive estimator (blue), improved estimator (orange) and symmetric
improved estimator (green dashed) with the same number of measurements. Left inset:
low-frequency behavior. Right inset: high-frequency behavior.

relations (3.85), (3.86) and (3.97):

lim
iν→∞

Var [Σnaive(iν)] = O(iν4)O(1) (3.99)

lim
iν→∞

Var [Σimp.(iν)] = O(iν4)O(iν−2) (3.100)

lim
iν→∞

Var [Σsym.(iν)] = O(iν4)O(iν−4), (3.101)

where the second O-term encodes the variance of each Green’s function expression. The
error (i.e. standard deviation) in the high-frequency region of the self-energy thus scales
quadratically following the naive estimator, linear following the improved estimator and
constant following the symmetric improved estimator.

3.4.2 Two-Particle Symmetric Improved Estimator
The two-particle symmetric improved estimator can be derived similar to the one-particle
symmetric improved estimator by applying time-derivatives to all four operators of the
expectation value. Before doing so, it is however useful to reconsider the two-particle
estimator of CT-INT [Gull et al., 2008]:

G1234 =
〈 ∣∣∣∣∣G12 − G1kMklGl2 G14 − G1kMklGl4
G32 − G3kMklGl2 G34 − G3kMklGl4

∣∣∣∣∣
〉

MC
, (3.102)

where in this simplified notation, the numbered subscripts denote a combined flavor-
imaginary-time index and Einstein sum convention is assumed. The matrix Mkl is the
inverse of the Green’s function matrix Dkl = G(τk−τl) (see also Section 3.4.1). For CT-INT,
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Figure 3.18: Imaginary part of the one-particle self-energy in the atomic limit with
β = 8.0, U = 2.0 and µ = 1.0. The self-energy was calculated for the naive estimator
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Figure 3.19: Absolute error of self-energy of Figure 3.18 in the atomic limit with β = 8.0,
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the naive estimator (blue), linear behavior following the improved estimator (orange) and
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the symmetric improved estimator showing larger deviations for the lowest frequencies
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Wick’s theorem applies, allowing one to write the two-particle Green’s function as a two-by-
two determinant of one-particle Green’s functions. By explicitly evaluating the determinant
and calculating the Fourier transform, it becomes obvious that in the lowest order a
constant Monte Carlo error in the sum of matrix-elements Mij is suppressed by 1/(iν)3 of
three non-interacting Green’s functions. In contrast, the two-particle measurement in CT-
HYB has no suppression of Monte Carlo errors in the naive estimator (see relation (3.33)),
while the constant error of the two-particle improved estimator is being suppressed by
1/(iν) (see relation (3.14)).

When calculating irreducible two-particle vertex functions (e.g. F , Γ or Λ), the
disconnected parts of the two-particle Green’s function need to be subtracted, while the
four outer legs of the remaining connected part need to be amputated. The CT-INT
error scaling of the products of one-particle Green’s functions in the disconnected part
and the two-particle Green’s function is relatively stable against these amputations. In
CT-HYB, on the other hand, the constant error in the two-particle Green’s function results
in significant high-frequency noise.

In order to derive the two-particle symmetric improved estimator of the two-particle
Green’s, a hierarchy of equations of motions needs to be applied to all operators appearing
in the expectation value. This derivation is discussed in Appendix F. The two-particle
Green’s function is given by:

Gτ1,τ2,τ3,τ4
σ1,σ2,σ3,σ4 = 1

∂τ1 + µ−∆σ1(τ1)

(
R1 + U

−∂τ2 + µ−∆σ2(τ2)×(
−R2 + U

∂τ3 + µ−∆σ3(τ3)

(
R3 + U

−∂τ4 + µ−∆σ4(τ4)×(
−R4 + U〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)q̂†σ4(τ4)〉

))))
, (3.103)

where Ri represents expectation values with an equal-time structure resulting from the
time-derivative of the time ordering symbol Tτ and the 3-tuple operators are abbreviated
by q̂σ := n̂−σd̂σ. The remaining expectation value of four q-operators is actually a six-
particle Green’s function, where twelve external legs were contracted by four interaction
vertices into four 3-tuples. The Monte Carlo evaluation of this expectation value will be
referred to as two-particle symmetric improved estimator.27 A constant Monte Carlo error
for the two-particle symmetric improved estimator is suppressed by four non-interacting
Green’s functions. The Ri terms, however, lift the error suppression to 1/(iν)3, equivalent
to the scaling in CT-INT. This can be illustrated by looking at R1 explicitly:

R1 = δ(τ1 − τ2)δσ1σ2〈Tτ d̂σ3(τ3)d̂†σ4(τ4)〉 − δ(τ1 − τ4)δσ1σ4〈Tτ d̂σ3(τ3)d̂†σ2(τ2)〉, (3.104)

where each of the two terms above is constructed of a one-particle impurity Green’s
function. Assuming the naive one-particle estimator, the error in the two-particle Green’s
function is rescaled to a 1/(iν) behavior due to the first non-interacting Green’s function
in relation (3.103). Only when assuming the one-particle symmetric improved estimator

27The symmetric improved estimator of a generalized n-particle Green’s function is hence a 3n-particle
Green’s function with equal-time structure.
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Figure 3.20: Real part of the two-particle Green’s function in the atomic limit with β = 8.0,
U = 2.0 and µ = 1.0. The two-particle Green’s function was calculated by stochastically
sampling the naive estimator G (left) and the symmetric improved estimator G̃ (right)
with the same number of measurements.

discussed in Section 3.4.1, the error in the two-particle Green’s function is rescaled with
1/(iν)3. It is thus important to further apply the equation of motion hierarchy to all “free”
operators appearing in the Ri terms.

The remaining Ri terms are constructed of various anti-commutators with q-operators
and evaluate to different expressions depending on the spins σi under consideration. An
explicit calculation for the Gνν′ω

σσσσ component of the two-particle Green’s function in the
particle-hole Matsubara representation and definitions of R2, R3 and R4 are given in
Appendix F.

Figure 3.20 shows the real part of the two-particle Green’s function in the atomic limit
with β = 8.0, U = 2.0 and µ = 1.0, calculated with the naive two-particle estimator 3.33
and the two-particle symmetric improved estimator 3.103. The number of measurement
steps was kept constant. Deviations between the two estimates are minimal. When
calculating the irreducible two-particle vertex function F , however, differences become
more apparent, as illustrated in Figure 3.21. The constant error of the naive two-particle
estimator is amplified by the amputation of four outer legs. The irreducible vertex
function extracted from the two-particle symmetric improved estimator, on the other hand,
displays very little noise in the high-frequency regions. Instead, the typical features of the
irreducible vertex function, i.e. a “plus” structure and a “cross” structure are observable
over the entire frequency range. It is further instructive to consider the absolute error of the
naive and the symmetric improved estimator in Figure 3.22. While the lowest frequencies
of the naive estimator converge fast against the analytic expression, the high-frequency
region is characterized by the typical noise pattern. The symmetric improved estimator,
on the other hand, does a significantly better job in approximating the high-frequency
regions. Nevertheless, the lowest frequencies converge slower towards the exact value.
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Figure 3.21: Real part of the irreducible two-particle vertex functions corresponding to
Figure 3.20. The vertex function F was calculated from the naive estimator G (left), while
the vertex function F̃ was calculated from the symmetric improved estimator G̃ (right).
In both cases, the one-particle Green’s functions for the outer leg amputations and for
the construction of disconnected parts were calculated from the one-particle symmetric
improved estimator.
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Figure 3.22: Absolute error of the irreducible vertex functions of Figure 3.21 (left: naive
estimator; right: symmetric improved estimator; calculated in comparison to the exact
atomic limit result Fat). The high-frequency values of the symmetric improved estimator
show a better convergence than high-frequency values of the naive estimator. The low-
frequency values of the naive estimator F , on the other hand, show a better convergence
than low-frequency values of the symmetric improved estimator F̃ .
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3.4.3 Generalizations and Feasibility

For density-density interactions, symmetric improved estimator can measured at essen-
tially no computational overhead with respect to the one- or two-particle Green’s function
(similar to traditional improved estimators). When considering non-density-density in-
teractions, however, worm sampling is necessary to evaluate improved- and symmetric
improved estimators (both on the one- and two-particle level). Nevertheless, the “free”
operator of traditional improved estimators can still be exchanged with the remaining
hybridization operators in the local trace through replacement steps and/or full estimators
(see Sections 3.3.4 and 3.3.6). The symmetric improved estimators, on the other hand,
only consist of equal-time operator tuples constructed of three individual operators. Thus,
the auto-correlation length can no longer be compensated by replacement steps or the full
estimator and the burden is offset to the sampling procedure entirely.

The discussion of the symmetric improved estimators is concluded with a word of cau-
tion. On the one-particle level, the impurity Green’s function is measured as a correction
to the non-interacting Green’s function. Hence, the high-frequency behavior is given by
the exactly known non-interacting Green’s function and is not subject to numerical noise.
For U = 0, the impurity Green’s function identically evaluates to the non-interacting
Green’s function. On the two-particle level, the two-particle Green’s function is also
measured as a correction to the non-interacting disconnected contributions. That is for
U = 0, the two-particle Green’s function following the symmetric improved estimator
identically evaluates to the two disconnected products of non-interacting one-particle
Green’s functions. This yields again a better convergence for large Matsubara frequencies.
However, as observed in the previous sections, typically the lowest frequencies of Green’s
functions constructed from symmetric improved estimators converge somewhat slower
than when measuring the Green’s function naively.28 This behavior is known to exist
for the Green’s function estimators of CT-INT [Rubtsov and Lichtenstein, 2004] and is
equally present for the improved- and symmetric improved estimator. The low-frequency
behavior of the Matsubara Green’s function, or equivalently the Matsubara self-energy,
largely determines the physics of the system. For example, the low-frequency divergence
of the imaginary part of the self-energy characterizes Mott insulators. Ultimately, it is
necessary to investigate the rate of convergence in different frequency regions for the naive
and the symmetric improved estimator. A numerical solution to this problem would be to
measure both the naive and the symmetric improved estimators in Matsubara frequencies,
patching together a combined solution depending on the amplitude of the Monte Carlo
error. In general this approach would require an additional factor two in memory to store
the measurement of the naive- and the symmetric improved estimator, determining the
optimal estimate for each frequency in a post-processing step. As the estimators can

28In the above numerical analysis, the atomic limit was considered, where the diverging behavior of G
amplifies errors in the lowest frequencies of improved- and symmetric improved estimators. For β →∞,
that is =G(0+)→ −∞, any error in the improved (and more so the symmetric improved) estimators will
completely dominate the low-energy behavior of the impurity Green’s function. It is to be expected that
the low-frequency behavior of the impurity Green’s function is more well-behaved in metallic systems
where G does not diverge.
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be measured simultaneously for density-density interactions, this becomes the method of
choice. Moreover, symmetric improved estimators seem to render the smoothing abilities
of low-pass Legendre filters unnecessary. Instead of potentially filtering-out physical infor-
mation, orthogonal polynomial representations may be only exploited in order to enhance
computational efficiency. Actual implementations of symmetric improved estimators for
CT-HYB codes have not been explored in this work (only the atomic limit has been
considered) and are left for future investigation.

On a different note, a diagrammatic interpretation of all terms contributing to the
final Green’s function expressions is still absent. While it is clear that equal-time correc-
tions to the symmetric improved estimator essentially avoid over-counting of diagrams, it
seems worthy to explore the connection of these diagrams with asymptotics of self-energy
and vertex functions. On the two-particle level, however, the presence of non-interacting
Green’s function in the equation of motion hierarchy prohibits a straight-forward interpre-
tation in the diagrammatic two-particle description, which otherwise lacks non-interacting
propagators.



Chapter 4

Single-Orbital Applications

4.1 Mass-imbalanced Hubbard Model

Parts of this section (marked by a vertical sidebar) have been already
published in: M. Philipp, M. Wallerberger, P.G. and K. Held;
Mott-Hubbard transition in the mass-imbalanced Hubbard model. Eur.
Phys. J. B 90,114 (2017)

In Chapter 2 the Hubbard model was introduced and, in order to provide a deeper
understanding of the underlying physics, different limiting cases were discussed in the
following. The most fascinating physics of the Hubbard model evolve when assuming
the potential energy term to be of the same magnitude as the kinetic energy term by
tuning the ratio of the Coulomb repulsion U over the hopping t. In the strong coupling
limit, where U/t� 1, the Hubbard model at half-filling closely follows the behavior of the
Heisenberg model. Electrons tend to stay localized at their initial site and spin-exchange
is only possible through second order processes. In combination with the Pauli exclusion
principle, this results in the antiferromagnetic ordering of the lattice.

In terms of dynamics, one may consider the mass-imbalanced Hubbard model, where
the hopping amplitudes for the two spin species differs, effectively breaking the SU(2)
symmetry of the system. By setting the hopping amplitude of one electron spin to zero,
the Falicov-Kimball model is obtained. The Falicov-Kimball model in the limit of the
mass-imbalanced Hubbard model orders antiferromagnetically. However, while the order
parameter of the Hubbard model and the Heisenberg model obeys O(3) symmetry, the
order parameter of the Falicov-Kimball model obeys Z2 symmetry. The Falicov-Kimball
model is further capable of describing metal-to-insulator transitions by varying the non-
vanishing hopping amplitude accordingly.

A smooth transition between the Hubbard model and the Falicov-Kimball model is
obtained by tuning the hopping amplitude of one spin, while the hopping amplitude of
the other spin remains unchanged. This is described by the mass-imbalanced Hubbard
model, which contains both the Hubbard model and the Falicov-Kimball model as limiting
cases. Experimentalists “simulated” the mass-imbalanced Hubbard model by generating
an ultra-cold fermionic quantum gas of two different atomic species [Taglieber et al., 2008].
Theoreticians, on the other hand, simulated the model employing DMFT, investigating the

101
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antiferromagnetic ordering [Sotnikov et al., 2012]. The metal-to-insulator transition of the
mass-imbalanced Hubbard model in DMFT was discussed at zero temperature [Dao et al.,
2012]. What remained to be investigated was the metal-to-insulator transition at finite
temperatures. Further, the effects of Kondo physics on the metal-to-insulator transition
present in the Hubbard model and absent in the Falicov-Kimball model is discussed in
the following.
In the following, we consider a Bethe lattice, i.e., a semi-elliptic densities of states Dx(ω) =

2
πDx

√
1− (ω/Dx)2 with half bandwidth Dx ∼ tx for the two fermionic species x = c, f .

In the following, we set Dc ≡ 2 as our unit of energy and vary the mass balancea

Df/Dc = tf/tc between 0 and 1.
The two limits of mass imbalance are evident: In the case Df/Dc = 0, the f fermions

are truly frozen and we arrive at the FKM. On the other hand, if Df/Dc = 1, we can
identify c and f with spin-up and spin-down, respectively, and obtain the mass-balanced
HM.

a Let us note here that in the literature sometimes a mass imbalance factor ζ ≡ (tc − tf )/(tc + tf ) is
used instead of our tf/tc.

Figure 4.1: Phase diagram of the mass-imbalanced Hubbard model as a function of
interaction strength U and mass imbalance Df/Dc at β = 50 (left panel) and β = 100
(right panel); Dc ≡ 2 sets our unit of energy. The critical interaction strengths Uc1 (blue
line) has been obtained by increasing U (→) and identifying up to which U value the
metallic solution (M, green plus) is still stable and from which U value on we get an
insulating solution (I, green boxes). For decreasing U (←), Uc2 (red line) marks the point
where the insulating solution (green diamonds) turns metallic (green crosses). The critical
point where the first order transition with coexistence region ends is extrapolated by hands
and indicated here by a green circle. The pink cross denotes the analytical continuous
phase transition for the FKM.
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Fig. 4.1 shows the phase diagram Df/Dc vs. U of the mass-imbalanced HM in between
these two known limits at two inverse temperatures β = 50 and 100. The first order
coexistence region has been determined in the same way as described above for the HM:
The four green symbols in Fig. 4.1 mark up to which point a metallic (M) or insulating (I)
solution is found upon increasing or decreasing U . We observe a coexistence region and
hence a first order transition in a wide range of mass imbalances. The coexistence region is
increasing upon decreasing temperature to β = 100, and the critical point where the first
order transition ends (green circle, Dcrit) is moving towards the FKM limit Df/Dc = 0.
To obtain the phase diagram, we discriminate between metallic and insulting solution by
means of the imaginary part of the self-energy Σ(iωn).

Figure 4.2: Spectral function A(ω) near the critical interaction strength Uc1 for different
mass imbalances Df/Dc at β = 100. The upper and lower two panels show the more
and less mobile c and f fermions, respectively. The left (right) panels show a metallic
(insulating) solution just below (above) Uc1, indicated by the three vertical arrows in Fig.
4.1. Specifically the Df , U values for the left panels (a) and (c) are: Df = 2.0, U = 5.2
(red); Df = 1.6, U = 4.1 (green); Df = 1.2, U = 3.4 (blue); and for the right panels (b)
and (d): Df = 2.0, U = 5.5 (red); Df = 1.6 U = 4.2 (green), Df = 1.2 U = 3.5 (blue).

Fig. 4.2 shows the corresponding spectral function comparing the HM (Df/Dc = 1)
and the mass imbalanced HM (Df/Dc = 0.8 and 0.6), immediately before (a,c) and after
(b,d) the transition Uc1 where the metallic solution ceases to exist. We see that the
spectral functions are actually quite similar with a three-peak structure on the metallic
side, consisting of a lower and upper Hubbard band and a central quasi-particle peak
in between. Immediately after the transition Uc1 there is a gap in the insulating phase.
This is very different from the FKM in Fig. 2.12a where we have two peaks which do not
overlap any more for U below the transition, as opposed by the overlap for U above the
transition. There is also no indication of a smooth crossover in Fig. 4.2 from the HM
behavior to that of the FKM. The major difference is that with reducing Df/Dc in Fig.
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4.2, the position of the upper (lower) Hubbard band shift to higher (lower) energies, which
is in agreement with the reduced Uc1 value at which the transition occurs.

aFigure reference adapted for an equivalent figure previously discussed in this work.

We have analyzed the Mott-insulator transition of the mass-imbalanced Hubbard model
within the paramagnetic phase. Our phase diagram, Fig. 4.1, shows a first order phase
transition in a wide range of mass imbalances Df/Dc. With decreasing temperature the
region of first order coexistence expands; and our results suggest that the mass-imbalanced
Hubbard model always displays a first order metal-insulator transition at zero temperature
as soon as a small, but finite, hopping of the less mobile f fermions is switched on (Df > 0).

For the FKM (Df = 0), we have two bands along with a gap opening with increasing U
as soon as these two bands do not overlap any longer. If we switch on f fermion hopping
however (Df > 0), a central resonance in this gap develops due to the Kondo effect. This
stabilizes the metallic phase and shifts the metal-insulator transition in the phase diagram
Fig. 4.1 towards larger U values. This resonance and a three-peak structure can be seen in
the spectral function, Fig. 4.2. We find that the width of the central resonance is the same
for the c and f fermions. This can be understood from the fact that the spin-flip (here
c-f) scattering is crucial for the Kondo effect. Hence we have a joint Kondo temperature
and width of the Kondo resonance for c and f fermions.

This is affirmed by an analysis of the quasi-particle renormalization factor Zxa, which
shows ZcDc → ZfDf when approaching the metal-insulator transition, i.e. when we are
in the Kondo regime accompanied by a narrow central resonance. It further shows that
the metal-insulator transition occurs simultaneously for both, c and f , fermions in the
mass-imbalanced Hubbard model. The Falicov-Kimball physics, where the f fermions
are insulating for any U and the c fermions for U > Dc, is a singular point of the phase
diagram at zero temperature.

Altogether our results show that the physics of the mass-imbalanced Hubbard model
in the paramagnetic phase resembles that of the Hubbard model. This is because of
the equalizing power of the joint Kondo effect of the two fermionic species. Regarding
the antiferromagnetic phase we nonetheless expect a qualitatively different behavior: the
mass imbalance breaks the c-f O(3) rotational symmetry of the order parameter; and
Monte-Carlo simulations [Liu and Wang, 2015] indeed indicate an Ising-type ordering.
Hence we expect Ising-type critical exponents similar to what has recently been reported
for the FKM, [Antipov et al., 2014] whereas we have a Heisenberg-type of ordering and
associated critical exponents [Rohringer et al., 2011] for the Hubbard model.

aFor results see [Philipp et al., 2017].

Technical Considerations

The transition between the Hubbard model and the Falicov-Kimball model is not only
interesting from a physical viewpoint. In the context of this work it is instructive to
discuss the technical implications of this transitions within CT-HYB. The ratio between
the hybridization function of the fully-mobile spin and the hybridization function of the less-
mobile spin in the mass-imbalanced Hubbard model becomes considerably large towards
the Falicov-Kimball limit, ultimately diverging for a vanishing hybridization function of
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the immobile spin. The hybridization expansion of CT-QMC constructs a perturbation
series, where the hybridization function essentially acts as the expansion parameter. While
the CT-HYB expansion order of the fully-mobile spin may remain reasonably large, the
expansion order of the less-mobile may become considerably small. Thus, the transition
between the Hubbard model and the Falicov-Kimball model can be re-interpreted as a
transition between the conventional sampling methods of CT-HYB and worm sampling.
While in the former case, the two-particle estimators following directly from the partition
function series fail to measure the mixed fc-components in the Falicov-Kimball model,1
the estimators of worm sampling are specifically constructed around this limit. When
considering CT-HYB for further investigations of the mass-imbalanced Hubbard model
at finite temperatures (especially with regards to two-particle response functions) worm
sampling should be employed.

4.2 Vertex Divergences in the AIM

Parts of this section (marked by a vertical sidebar) have been already
published in: P. Chalupa, P.G., T. Schäfer, K. Held and A. Toschi;
Divergences of the irreducible vertex functions in correlated metallic
systems: Insights from the Anderson Impurity Model. arXiv:1712.04171
(2017)

In the previous section, the Mott-Hubbard metal-to-insulator phase transition of the
mass-imbalanced Hubbard model was investigated. While the Mott transition is best
visible on the one-particle level in the Matsubara self-energies or the spectral function,
magnetic phase transitions follow from two-particle response functions. For example,
the antiferromagnetic ordering of the two-dimensional Hubbard model is linked to the
divergence of the momentum-resolved spin-susceptibility at ~q = (π, π). Typically, the
magnetic ordering and the transition temperature are probed by analyzing the temperature
behavior of different q-points of the static spin-susceptibility in the paramagnetic phase.
In parameter regions away from physical phase transitions, the two-particle response
functions seemingly behave normal, i.e. showing no divergences.

It was thus somewhat surprising that certain two-particle diagrams diverge in the
absence of physical phase transitions. More precisely, Schäfer et al. discovered divergences
in the two-particle irreducible diagram subsets Γ of the two-particle vertex function
F , when inverting the respective Bethe-Salpeter equations [Schäfer et al., 2013a]. The
divergences of the irreducible vertex functions were observed in various types of impurity
models, including the Falicov-Kimball model, the auxiliary AIM (mapping to the Hubbard
model in DMFT) and the atomic limit [Schäfer et al., 2016a]. In order to verify that these
divergences are not just artifacts of a local treatment, irreducible non-local two-particle
vertices were also studied in the dynamical cluster approximation, which shows similar
divergences [Gunnarsson et al., 2016].

1For a vanishing hybridization function, the estimators of partition function sampling may be extended
by insertions of local operators. For non-vanishing hybridization functions additional sampling in the
perturbation part needs to be considered, resulting in worm sampling
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In a different matter, certain peculiarities of the Luttinger-Ward functional [Luttinger
and Ward, 1960] were uncovered.2 More precisely, the (bold) perturbation expansion of
the self-energy results in two converged branches, where only one of them has physical
relevance. The branching of the self-energy relates to a breakdown of bold perturbation
expansions. Gunnarsson et al. were able to link the multivaluedness of the Luttinger-Ward
functional to the irreducible vertex divergences [Gunnarsson et al., 2017].

While the Luttinger-Ward functional and the Bethe-Salpeter equations describe certain
two-particle processes on a diagrammatic level, a proper physical interpretation of the
multivaluedness and the divergence lines was still missing. In the Hubbard model in DMFT,
the vertex divergences occur in the metallic parameter region prior to the Mott transition.
It seemed plausible to interpret these divergences as a breakdown of perturbation theory,
shielding the non-perturbative metal-to-insulator transition [Schäfer et al., 2013a]. In
order to verify this observation, vertex divergences are investigated in the following in the
“plain” AIM, without the self-consistent feedback. As discussed in Chapter 2, the Kondo
physics implicit to the AIM prohibits a metal-to-insulator transition. There is always
Kondo resonance at the Fermi level.
In the specific AIM chosen for this work the DOS of the bath electrons is ρ(ε) =
(1/2D)Θ(D − |ε|), with the half-bandwidth D = 10 being the largest energy scale of
the system. The hybridization is assumed to be k-independent and set to 2 (Vk = V = 2)
and the chemical potential is set to µ = U/2 (half-filled/particle-hole symmetric case).
The choice of a box-shaped DOS and a k-independent hybridization ensures that no
particular features of ρ(ε) or V will affect the study of irreducible vertex divergences, and
the selected parameter set should guarantee, that the Kondo temperature of our AIM
remains sizable with respect to the other energy scales, for the half-filled case considered.
We recall, that, in the case of SU(2)-symmetry, the Bethe-Salpeter equation can be
diagonalized in the spin sector defining the usual charge/spin channels. For this work, the
charge channel [χνnνn′Ωnc = χ

νnνn′Ωn
ph,↑↑ + χ

νnνn′Ωn
ph,↑↓ ] is of particular interest.

Note that Ωn will be set to zero throughout this work, and is therefore omitted
hereinafter. This is done to perform comparisons of the results presented here to results
of the recent literature [Schäfer et al., 2013b, Schäfer et al., 2016b], but also because
the irreducible vertex divergences appear, systematically, at lower interaction values for
Ωn = 0, compared to cases for Ωn 6= 0.

The Bethe-Salpeter equation in the charge channel reads:

χνnνn′c = χ
νnνn′
ph,0 −

1
β2

∑
νn1νn2

χ
νnνn1
ph,0 Γνn1νn2

c χνn2νn′
c (4.1)

Here Γνnνn′c is the irreducible vertex function in the charge channel, the bare susceptibility
is given by χνnνn′Ωnph,0 = −βG(νn)G(Ωn + νn)δνnνn′ .
Inverting Eq. (4.1) and considering Γc, χph,0 and χc as matrices of the fermionic Matsubara
frequencies (νn, νn′) leads to

2The Luttinger-Ward functional Φ sums all closed two-particle irreducible diagrams. The self-energy
Σ and the two-particle irreducible vertex Γ follow from functional derivatives of Φ with respect to the
one-particle Green’s function propagator G.
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Γc = β2
(

[χc]−1 − [χph,0]−1
)
. (4.2)

It is obvious, hence, that all divergences of Γc must correspond to a singular χc-matrix
[Schäfer et al., 2016b] (typically no divergence is expected in [χph,0]−1). In fact, analyzing
the matrix in its spectral representation, i.e., the basis of its eigenvectors,

[χc]−1
νnνn′

=
∑
i

V c
i (iνn′)∗(λi)−1V c

i (iνn) , (4.3)

leads to the one-to-one correspondence of an irreducible vertex divergence to a vanishing
eigenvalue (λi=α → 0) of the matrix χc in the fermionic frequencies νn, νn′ .

It is essential to recall [Schäfer et al., 2016b] that the way the divergence affects the
frequency structure of Γc is determined by the non-zero components of the eigenvector
V c
α(iνn) associated to the vanishing eigenvalue λα. This leads to a distinction of two

classes of irreducible vertex divergences, a global one with an eigenvector V c
α(iνn) 6= 0∀ νn

and a local one, where only for a finite subset of frequencies V c
α(iνn) 6= 0 holds.
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Figure 4.3: Left panel: T − U diagram of the AIM at half-filling, showing the first di-
vergence lines along which the irreducible vertex functions diverge. For red lines this
divergence takes place in the charge channel, Γνnνn′ (Ωn=0)

c , along the orange lines simulta-
neous divergences in the charge and the particle-particle up-down channel, Γνnνn′ (Ωn=0)

c

and Γνnνn′ (Ωn=0)
pp,↑↓ , are observed. The dashed blue box marks the parameter region where the

“atomic” ordering of divergence lines is violated. Right panel: A zoom of the T–U diagram
of the AIM at half-filling is shown. The blue-solid line marks the Kondo temperature (TK),
estimated from the rescaling of our numerical data for the magnetic susceptibility to the
universal function given in [Krishna-murthy et al., 1980]. The black-dotted line represents
an estimate for TK obtained from an analytic expression [Hewson, 1993] valid in the limit
D � U, T . An additional scale related to the Kondo screening, the half-bandwidth of
the T → 0 Kondo peak (π2Z∆) [Hewson, 1993] is marked with a gray-dotted line, and is
roughly 5-times larger than TK . The light-gray shaded area can be regarded, thus, as the
parameter region where the effects of the Kondo screening become visible.

We start to illustrate our numerical results by reporting in the T–U diagram of the
AIM (Fig. 4.3 left panel)a the first (five) lines along which the two-particle irreducible
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vertex diverges. These correspond to the interaction values Ũ at given temperatures
T , where an eigenvalue of the generalized susceptibility (charge or particle-particle up-
down channel) vanishes, see Eq. (4.2) and Eq. (4.3). Specifically, the red lines mark
irreducible vertex divergences taking place in the charge channel only, while orange lines
represent divergences taking place in the charge and the particle-particle up-down channel
simultaneously.

aRight panel of Fig. 4.3 replaced by zoom as opposed to original publication showing the divergence
lines of the HM.

Finally, as for the theoretical understanding of the low-T regime of the AIM, it is important
to estimate the Kondo scale TK and its possible connection to the properties of the
irreducible vertex divergences. In Fig. 4.3 (right panel) a zoom of the T–U diagram of
the AIM is presented together with several estimates for the Kondo temperature TK . In
particular, the black dotted line represents an analytic estimate valid in the D � U, T
parameter regime [Hewson, 1993] (TK = 0.4107U( ∆

2U )1/2e−πU/8∆+π∆/2U , where in our AIM:
∆ = πρ0V

2 = π/5), while the blue line is determined through the universal scaling of
the numerical susceptibility data [Krishna-murthy et al., 1980]. We note that the two
procedures yield extremely close estimates of TK . The Kondo temperature marks however
not a phase transition but a smooth crossover. Indeed, the screening processes associated
with it become active already at temperatures larger than TK . For instance, we see that
the temperature below which the effects of the Kondo resonance become visible in the
spectrum is T . Z∆π

2 , the half-bandwidth of the central peak [Hewson, 1993]. We choose
this scale to define the upper border of the corresponding crossover regime (shaded gray
area in the T–U diagram of Fig. 4.3 (right panel). It is quite visible, how the bending of
the divergence lines is essentially occurring in this parameter region.
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Figure 4.4: Zoom on the first red divergence line showing the low-T behavior (for T �
TK) which shows, that within the error bars obtained by a Jackknife analysis the line
bends towards the U axis for T → 0. Inset: Further zoom on the lowest temperatures,
emphasizing the growth of the error bar with decreasing temperature.

Before proceeding with the interpretation of our results and their implications, we
conclude this section with a detailed analysis of our data in the regime of the lowest
temperatures accessible to our algorithm.
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We start, thus, assessing the numerical accuracy of our results for the first red divergence
line in the low-T range (0.0033 < T < 0.05 < TK ∼ 0.07). Our results are shown in Fig. 4.4,
together with the corresponding error bars. The latter were obtained from a Jackknife
error analysis [Efron and Stein, 1981]. From the error bars in the main plot and the inset
of Fig. 4.4 it can be inferred, that the combined scaling (β3 of the CT-QMC sampling
and β2 of the Matsubara frequency box of the vertex function for Ωn = 0) prohibits us to
access temperatures lower than T = 0.0033, therefore not yielding any further informative
results about the vertex divergences. However, the numerical precision for T > 0.0033
was sufficient to accurately define the low-T behavior. In fact, we can compare our data
with the dotted gray line, showing a linear extrapolation of the divergence line to T → 0
using the (higher) temperatures T = 0.05 and T = 0.025. Even considering the growing
error bars, the first divergence line shows a progressive leftwards deviation from the linear
extrapolation when reducing the temperature. This is evidently completely inconsistent
with an infinite value of Ũ of the divergence line endpoint for T → 0.
Indeed, our study could clarify a set of relevant questions about the interpretation and
the consequences of the divergences of the two-particle irreducible vertex functions. In
particular, our results rule out that the Mott-Hubbard transition plays a crucial role as the
origin of the multiple divergence lines. This limits the previously proposed interpretation
[Schäfer et al., 2013b] of the vertex divergences as “precursors” of the MIT in the sense
of a necessary condition for vertex divergences to occur, consistently with the physical
interpretation presented in [Gunnarsson et al., 2016, Gunnarsson et al., 2017]. By a
thorough analysis of the low-temperature sector, we could ascribe, at the same time,
important characteristics of the vertex divergences, such as their structure in Matsubara
frequency space and the re-entrance of the divergences line, to the screening processes
of the local impurity moment occurring when approaching TK . Moreover, our data for
T � TK has unveiled a perfect scaling of the singular eigenvectors,a allowing us to
extrapolate the T = 0 behavior of the vertex divergences on the real-frequency axis.

aFor results see [Chalupa et al., 2017].

Technical Considerations

From a technical viewpoint the calculation of divergences of the generalized susceptibility
is somewhat similar to the procedure followed by diagrammatic extensions to DMFT. Both
approaches rely on local one- and two-particle Green’s functions of the AIM as an input,
generating eigenvalues in the former case and non-local diagrams in the latter. Usually
the extraction of two-particle functions from the impurity problem is numerically the most
expensive operation. Thus, computationally, methods building on top of the impurity
result may be considered “post-processing”.

Utilizing CT-QMC algorithms as impurity solvers, however, only returns stochastic
local Green’s functions including statistical uncertainties. Thus, in principle, a proper
error propagation in the aforementioned post-processing methods needs to be considered.3

3In a similar fashion, analytic continuation methods may be considered as post-processing steps to
obtaining results from the AIM, requiring a proper error-propagation. However, MaxEnt implicitly
considers stochastic error bars in the weighted least-square value χ2.
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Most of the time, however, the treatment of statistical uncertainties is ignored due the
complexity of the methods.

Instead of conducting the actual error propagation for any of these “post-DMFT”
methods, it is more feasible to generate a set of binned data for the input quantity. The
data bins are in principle all identical, but include different stochastic noise. The post-
DMFT methods are then calculated individually for each bin and an averaging procedure
is applied to the output quantity in order to generate error estimates. For these estimates
to be statistically representative, the number of bins should be on the order of N & 30.
As Monte Carlo bins may display some autocorrelation effects (see Chapter 3.3.9), it
is more suitable to employ re-sampling methods instead of naive error estimates. Two
re-sampling methods are noteworthy: Bootstrap [Efron, 1979] and Jackknife [Quenouille,
1956]. Bootstrap attempts to sample the distribution for the output quantity by evaluating
the function (i.e. the post-DMFT method) a large number of times (typically M ∼ 1000)
for pre-averaged bins generated from selecting with replacement N bins of the set of bins.
Obviously, bootstrap is not feasible for post-DMFT methods due to the high computational
costs of a single function call. The (n−1) Jackknife procedure, on the other hand, evaluates
the function exactly M = N + 1 times, by considering pre-averaged bins generated by
always omitting one of the N bins at a time (another function evaluation is required for
calculating the naively averaged bin).

From the Jackknife analysis of the results featured in the above work, the following
empirical observation can be made: Jackknife estimates for high-temperature results
following from binned two-particle functions behave similar to naive error estimates -
when applying post-DMFT methods to low temperatures, however, a proper Jackknife
analysis is necessary.

4.3 Dual Fermion for the Hubbard Model

4.3.1 Three-particle Corrections

Parts of this section (marked by a vertical sidebar) have been already
published in: T. Ribic, P. G., S. Iskakov, M. Wallerberger, G.
Rohringer, A. Rubtsov, E. Gull and K.Held; Role of three-particle vertex
within dual fermion calculations. Phys. Rev. B. 96, 235127 (2017)

The previous two sections discussed various single-orbital models based on insight ob-
tained from the local one- and two-particle Green’s functions. While the Mott transition
in the Hubbard model can be observed from the one-particle Green’s function, determining
the magnetic ordering follows the two-particle Green’s function. When considering dia-
grammatic extensions to DMFT, which build upon irreducible subsets of the local vertex,
such as DΓA, some care needs to be taken with respect to vertex divergences. DF on the
other hand, constructs diagrams from the full vertex function F and does not suffer from
divergences in the irreducible subsets. However, the local full vertex function F becomes
the interaction vertex of the dual fermions. In this case, the equation of motion couples
local n-particle vertex functions to the dual fermions. A priori there is no justification for
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truncating the Taylor expansion of the dual action (see Chapter 2.5.2) at the two-particle
level.

In the weak-coupling limit, three-particle corrections to DF may be negligible due to the
three-particle vertex scaling with U3. In the strong coupling limit, however, higher-order
vertex functions become dominant and may contribute to the DF corrections.4 Historically,
the importance of three-particle contributions was debated and some arguments became
popular in order to neglect these contributions. Actual calculations were mostly avoided
due to the computational complexity of three-particle vertex functions. Hafermann et
al. only found weak effects of three-particle diagrams on the leading eigenvalue of the
Bethe-Salpeter equations [Hafermann et al., 2009].

This debate was renewed, when Ribic et al. investigated the effects of three-particle
corrections to the self-energy in DF for the Falicov-Kimball model [Ribic et al., 2017b].5
What remained an open question is to what extend three-particle corrections in DF
need to be considered in the Hubbard model. In the following the dominant three-
particle corrections to the two-dimensional single-orbital Hubbard model within DF are
investigated.
Let us start by formally defining the local three-particle Green’s function

G
(3)σ1σ2σ3
ν1νν′ω

= 〈c†σ1(ν1)cσ1(ν1)c†σ2(ν − ω)cσ2(ν)c†σ3(ν ′)cσ3(ν ′ − ω)〉, (4.4)

with three fermionic Matsubara frequencies ν1, ν, ν
′ and one bosonic (transfer) frequency

ω.
To obtain the fully connected n-particle vertex functions F (n) from G(n), first any discon-
nected contribution to the propagators needs to be removed. Subsequently we need to
amputate the outer legs of the remaining, fully connected three-particle Green’s function
G

(n)
C . On the two-particle level, there are only two disconnected contributions to the

Green’s function G(2), both consisting of a product of two one-particle Green’s functions:
G(1)G(1). On the three-particle level, there is much more variety among the disconnected
terms. A three-particle Green’s function G(3) contains terms disconnected into three one-
particle propagators, G(1)G(1)G(1) (for example δω,0 G(1)σ1

ν1 G(1)σ2
ν G(1)σ3

ν3 ), as well as other
terms disconnected into a one-particle and a connected two-particle Green’s function,
G(1)G

(2)
C (for example G(1)σ1

ν1 G
(2)σ2σ3
C νν′ω ), as well as a fully connected term.

Starting from the dual action (see Chapter 2.5.2), a generalized Schwinger-Dyson
equation of motion can be defined, which couples local vertices of arbitrary order to dual
vertices:

Σ̃k = −
∞∑
n=2

∑
k2,k3,k4,...

(−1)n
n!(n− 1)!F

(n)(k2, k, k4, k3, ...)G̃(n)(k, k2, k3, k4, ...)/G̃k (4.5)

Diagrammatically, the interpretation of the above equation is straightforward: any dual

4In the atomic limit, DF corrections vanish as the vertices are suppressed by the vanishing non-local
dual fermion single-particle propagators.

5The local vertex functions of the Falicov-Kimball model can be calculated analytically up to arbitrary
order. At half-filling, odd-ordered vertex functions vanish, which is why the study was conducted out-of-
half-filling.
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self-energy diagram has to start with an interaction vertex. Since there are infinitely
many types of interaction vertices, an infinite sum of contributions to the self-energy
exists. Note that the dual Green’s functions G̃(n) describe all possible diagrams which can
be built from the original local vertices F (n). The remaining external leg G̃k of the dual
Green’s function has to be amputated to generate a self-energy diagram.

In Eq. (4.5) full dual n-particle Green’s functions appear (not connected ones). How-
ever, any disconnected contribution to the Green’s function where a dual one-particle
Green’s function closes a loop locally does not influence the dual self-energy if the one-
particle dual Green’s functions are required to be completely non-local, i.e. ∑k G̃kνσ = 0.
For this reason, e.g. no Hartree or Fock term appears for the dual fermions when truncating
on the two-particle vertex level.

In this paper, we consider local interaction terms up to the three-particle vertex.

Figure 4.5: Left: Feynman-diagrammatic representation of the dual self-energy in terms of
the local two-particle vertex F (2), the dual propagator G̃ (line) and the full DF vertex F (2)

(obtained, e.g., through a ladder series). Right: Feynman-diagrammatic representation
of an additional contribution to the dual self-energy that includes the local three-particle
vertex of the real fermions F (3).

Thus, within our approximation, and taking into account all combinatorial prefactors
our dual self-energy from the two- and three-particle vertex reads

Σ̃k ≈ −
∑

k2,k3,k4

1
2F

(2)(k2, k, k4, k3) G̃0,k2 G̃0,k3 G̃0,k4 F (2)(k, k2, k3, k4)

+
∑

k1,k2,k3,k4

1
4F

(3)(k, k, k2, k1, k4, k3) G̃0,k1 G̃0,k2 G̃0,k3 G̃0,k4 F (2)(k1, k2, k3, k4). (4.6)

The diagrammatic representation of the first line is given in Fig.4.5 (left panel); it
corresponds to standard DF and n = 2 in Eq. (4.5). The new contribution in the second
line stems from n = 3 and is illustrated in Fig. 4.5 (right panel).
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Figure 4.6: Imaginary part of the dual self-energy correction of the standard DF theory
Σ̃kν for two k-points and the correction Σ̃3 based on the three particle vertex and diagram
Fig. 4.5. From left to right, we present data for U = 1, β = 8, n = 1; U = 2, β = 8,
n = 1 and U = 1, β = 15, n = 0.8. Inset in the first figure shows fitting function used to
estimate high-frequency behavior.

Let us now present the numerical results for one-shot DF calculations based on con-
verged DMFT baths for the two-dimensional Hubbard model. For every discussed point,
Fig. 4.6 shows the (Matsubara) frequency dependence of the DF self-energy correction. a

This self-energy needs to be added to the DMFT self-energy to obtain the physical
self-energy of the Hubbard model. We compare in Fig. 4.6 the standard DF self-energy
Σ̃2kν [first line of Eq. (4.5)] at the nodal (π/2, π/2) and antinodal (π, 0) k-point of the
Fermi surface with the selected additional contribution based on the three-particle vertex
[second line of Eq. (4.5)]. This specific three-particle correction couples the two-particle
ladder diagrams with the three particle vertex, see Fig. 4.5, and is k-independent.

aThe presented DF results are without self-consistency. However, for the parameters considered,
imposing an inner self-energy self-consistency (not shown) leads only to minor modifications for U = 1
and reduces both two- and three-particle corrections to about half their values for U = 2. A closer
investigation should also include an outer self-consistency with an update of the vertex and local problem,
but is beyond the scope of the present paper.

Let us now discuss and interpret these results. At high temperatures [(U = 1, β = 8,
n = 1) and (U = 2, β = 8, n = 1)] and for the doped system [(U = 1, β = 15, n = 0.8)],
the standard dual Fermion self-energy Σ̃2 is only a relatively small correction to the
DMFT self-energy [ImΣloc

nν=1= −0.14, −0.96 and −0.075, respectively]. For U = 1, the
DF corrections based on the three-particle vertex Σ̃3 are again considerably smaller than
Σ̃2. Note that this does not hold for all k-points. For example, the scattering rate due to
ImΣ̃3 is larger than for ImΣ̃2 for k = (π/2, π/2). But Σ̃2 is much larger for k = (π, 0), and
also in general the variation of Σ̃2 with k is much larger than Σ̃3. While the three-particle
vertex corrections appear small in the lowest Matsubara frequency,a Fig. 4.6 reveals that
Σ̃3 is actually comparable in magnitude to Σ̃2 when taking the second (not the first)
Matsubara frequency into account. This is particularly true for (U = 2, β = 8, n = 1)
which happens to have a particularly small Σ̃3 at the lowest Matsubara frequency.

aFor results see [Ribic et al., 2017a].
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For different points in the parameter space of the Hubbard model, we find sizable cor-
rections to the DF self-energy when including specific three-particle diagrams. For high
enough temperatures and for the doped model, these three-particle vertex corrections are
considerably smaller than the standard DF self-energy. In particular they are smaller
than the two-particle DF corrections for the nodal point (π/2, π/2). In this parameter
regime, our calculations indicate a proper convergence of the DF theory when going to
higher orders in the expansions (from the n = 2- to the n = 3-vertex).

For higher interaction values, this picture changes. Spin fluctuations are the dominant
driving force influencing the self-energy on the two-particle level. The same kind of strong
two-particle ladder contributions (the same kind of spin fluctuations) couple additionally
via the three-particle vertex to an additional self-energy correction. This correction term
yields an additional k-independent contribution to the imaginary part of the self-energy,
which can be interpreted as additional scattering at spin fluctuations. The considered
three-particle vertex correction term also gives a 1/ν asymptotic behavior which is absent
in standard DF and calls for a closer investigation.

Technical Considerations

When analyzing the asymptotic behavior of self-energy corrections in DF (or DΓA) or
when attempting to evaluate self-energy corrections at low temperatures, it is essential to
calculate local two- and three-particle vertex functions with a reasonable high-frequency
behavior.

When comparing local two/three-particle Green’s functions extracted from weak-
coupling based CT-QMC algorithms, such as CT-INT or CT-AUX to two/three-particle
Green’s functions extracted from strong-coupling based CT-QMC algorithms (i.e. CT-
HYB), at first glance no major differences are visible in the high-frequency region. This
is because the (implicitly attached) outer legs of the two/three-particle Green’s function
essentially suppress all asymptotical structure. However, once subtracting disconnected
parts and amputating outer legs, i.e. calculating vertex functions, the asymptotical struc-
ture becomes crucial. In this case, vertices extracted from weak-coupling algorithms
display a significantly better high-frequency behavior than their strong-coupling counter-
part.6, as illustrated in Figure 4.7 for the two-particle vertex. This can be traced back
to the differences in the Monte Carlo estimators. While the weak-coupling estimators
construct n-particle Green’s functions from one-particle Green’s functions with an error
suppression of 1/iν2, the strong-coupling estimators construct them from single-particle
Green’s functions with a constant Monte Carlo error. The superiority of weak-coupling
vertices in one-band models over strong-coupling vertices calculated from naive estimators
was already pointed out by Gull et al. [Gull et al., 2011]. In strong-coupling solvers
this issue was partially alleviated by the introduction of improved estimators. A more
detailed discussion is found in Chapter 3.2.2. CT-HYB estimators (i.e. symmetric im-
proved estimators) with the same error behavior as the CT-INT estimators are discussed
in Chapter 3.4. For the analysis of dual fermion corrections the high-frequency regions of
the vertex functions are mostly irrelevant due to dual propagators decaying with 1/iν2.

6This was also found for two-particle vertices calculated from Hirsch-Fye data.
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Figure 4.7: Two-particle vertex function <F ν,ν′,0
↑↑ (left) and <F ν,ν′,0

↑↓ (right) for U = 1,
β = 15, n = 0.8. Data extracted from CT-HYB (upper row) shows significantly more
noise in the high-frequency region than data extracted from CT-AUX (lower row).

4.3.2 Dual Fermion Self-consistency

In Chapter 2.5 several diagrammatic extensions to DMFT were introduced in an attempt
to model non-local correlation effects for a given lattice. Most of these extensions assume
a certain subset of two-particle diagrams to be local. By connecting these two-particle ver-
tices with non-local one-particle propagators, non-local momentum dependent self-energies
can be calculated. This self-energy, however, again indicates an updated one-particle
Green’s function, which may differ from the initial propagator. This already suggests that
the equations intrinsic to the diagrammatic extensions (mostly Bethe-Salpeter or Parquet
equations and the Schwinger-Dyson equation) need to be calculated in a self-consistent
fashion, updating the one-particle propagators. This self-consistency cycle on the one-
particle level is referred to as “inner” self-consistency.7 When considering the two-particle
vertex functions fixed, converged DMFT simulations may be a reasonable starting point.
This and the fact that the local DMFT corrections are included is why non-local diagram-
matic methods are often referred to as diagrammatic extensions to DMFT. Nevertheless,
in principle, also an update of the vertex function itself is necessary in order to assure
consistency on the one- and two-particle level. This second self-consistency cycle on the
two-particle level is referred to as “outer” self-consistency.

Most of the present-day results calculated with DF or DΓA are based on “single-
shot” calculations, that is, making use of vertex functions following a converged DMFT

7Typically, inner self-consistency schemes are considered in parquet-DΓA and some DF implementa-
tions. Ladder-DΓA, on the other hand, uses Moriyaesque λ-corrections instead.
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calculation (i.e. omitting the outer self-consistency) and calculating the non-local equations
for the non-local self-energy once (i.e. omitting the inner self-consistency).

This work attempts to explore the effects of inner- and outer self-consistency within
DF for the single-orbital Hubbard model at half-filling. Figure 4.8 illustrates the self-
consistency cycle of a full DF calculation. Starting from one- and two-particle propagators
extracted from DMFT, first the inner self-consistency loop of DF is converged. In a next
step an updated hybridization function for the local reference problem is calculated with

∆(iν) = ∆old(iν) +G−1
loc(iν)−

 1
Nk

BZ∑
~k

G(~k, iν)
−1

, (4.7)

where ∆old(iν) and Gloc(iν) follow from the previous AIM and G(~k, iν) is the momentum-
dependent one-particle Green’s function including DF corrections:

G(~k, iν) =
[
iν − ε~k − Σloc(iν)− Σ̃(~k, iν)

]−1
. (4.8)

The new hybridization function ∆(iν) is used to determine the local one- and two-particle
propagators from the AIM. The inner- and outer self-consistency loops are repeated until
convergence (i.e. ∆(iν) = ∆old(iν)).8 Relation (4.7) constructs the physical bath for the
impurity problem corresponding to the lattice problem described by DF in analogy to the
DMFT equations.

Figure 4.9 shows which parameters were considered in the phase diagram of the two-
dimensional Hubbard model. The antiferromagnetic ordering temperature TN of DMFT
calculated with Hirsch-Fye QMC is supplied for reference [Kuneš, 2011].

Whenever DF corrections are negligible with respect to DMFT, the inner and outer
self-consistency loops converge well. This holds true for high-temperatures above the anti-
ferromagnetic ordering temperature TN of DMFT, where correlation effects are generally
small.

Approaching the DMFT magnetic ordering temperature TN from the paramagnetic
side, DF corrections to the DMFT self-energy become larger. The feedback to the outer
self-consistency loop weakens correlation effects. This is illustrated in Figure 4.10 (top row),
where the local self-energies following converged outer self-consistency DF calculations
are generally smaller in magnitude than the converged DMFT self-energies. While local
correlations become less pronounced, also the strength of the hybridization function needs
to be taken into account. Considering the local Green’s functions in Figure 4.10 (bottom
row), the interpretation needs to be adapted. At weak interactions (U = 1), the local
Green’s function becomes smaller in magnitude, just as the self-energy, which can be
attributed to a larger hybridization function (not shown). At intermediate- (U = 2)
and strong interaction (U = 3), the hybridization no longer compensates the changes in
the local self-energy. Instead, the Green’s functions become larger in magnitude for the
converged DF calculations. Looking at Figure 4.11, the interacting density of states for

8In the original DF work, Rubtsov et al. suggest a different outer self-consistency condition [Rubtsov
et al., 2008], by requiring non-locality of the dual propagator at each step. In this scheme, out of half-filling
the chemical potential needs to be recalculated to assure the correct filling. To this point no conclusive
statement about the validity of one or the other scheme can be made.
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Figure 4.8: Illustration of a full DF cycle with DMFT as a possible starting point. The
Bethe-Salpeter equations, the Schwinger-Dyson equation and the self-energy mapping are
part of the inner self-consistency cycle of DF. Here, only the one-particle propagators
are updated successively with the resulting momentum dependent self-energies. Upon
convergence, the outer self-consistency is obtained by solving an AIM for an updated
hybridization function yielding new two-particle vertices. The actual self-energy mapping
and the actual hybridization function update are not specified.
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Figure 4.9: Analysis of the DF self-consistency for the two-dimensional Hubbard model
at different parameters in units of 4t = 1. The antiferromagnetic ordering temperature
TN for DMFT [Kuneš, 2011] is given for reference. Parameter sets converged using inner-
and outer self-consistency are shown in green crosses. Parameter sets were manual modifi-
cations to the self-consistency loops were necessary are shown in blue crosses. Parameter
sets which did not converge are shown in red crosses.

intermediate- and strong coupling display a larger weight at the Fermi energy. Conclusive
statements about the changes in the effects of the self-energy and the hybridization
functions onto the local physics are yet to be made.

What remains to be discussed, is the numerical stability of the inner- and outer
self-consistency equations. Generally, the Mermin-Wagner theorem states the absence
of any long-range magnetic ordering in the two-dimensional Hubbard model. It seems
reasonable to associate this absence with the divergence of the spin-susceptibility being
shifted to zero temperature, i.e. TN → 0. Nevertheless, the inner self-consistency loop for
single-shot (in terms of outer self-consistency) DF calculations based on DMFT below the
antiferromagnetic ordering temperature of DMFT does not seem to converge well. This
can be attributed to physical divergences in the full vertex function F , which are intrinsic
to DMFT. In this case, the DF self-energy corrections can become significantly large and
the self-consistency loops start to oscillate wildly after a few iterations. Intuitively, it is
problematic to use DMFT as a starting point for non-local extensions, whenever local
susceptibilities diverge due to the finite TN in DMFT. Instead, it may be beneficial to
consider impurity clusters and DCA in combination with DF [Iskakov et al., 2017].9

Technical considerations

The outer self-consistency loop requires numerical solutions to multiple impurity models.
Unlike the impurity problem of DMFT, in this case the AIM needs to be solved for

9The cluster must be chosen sufficiently large and with a reasonable shape to avoid unphysical effects,
which then would propagate into the DF equations.
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Figure 4.10: Impurity self-energies (top row) and impurity Green’s functions (bottom row)
for selected parameter sets of Figure 4.9. Blue lines represent self-energies for converged
DMFT calculations, while orange lines represent self-energies for converged DF calculations
with outer self-consistency. The data points considered at interaction values U = 1 (left
column), U = 2 (middle column) and U = 3 (right column) each represent the lowest
temperature result with converged outer DF self-consistency available.
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Figure 4.11: Spectral function A(ω) for the impurity Green’s functions of Figure 4.10
calculated with MaxEnt. When outer self-consistency is obtained, the local spectral
function of the impurity problem is equivalent to the momentum-integrated spectral
function including the DF corrections, i.e. A(ω) = (1/Nk)

∑
k A(~k, ω).
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one- and two-particle Green’s functions. As discussed in the previous section, the vertex
functions extracted from CT-HYB data display a poor asymptotical structure, which is
however suppressed by the strong decay of the non-local dual propagators. In order to
assess the inner- and outer self-consistency of DF, the CT-HYB algorithm is employed.

While diagrammatic extensions like DF or DΓA operate in the Matsubara formalism,
CT-QMC algorithms operate in the imaginary time formalism. The implicit Fourier
transform to Matsubara frequencies during the Monte Carlo sampling is straight-forward.
On the other hand, some care needs to be taken during the back-transform of Matsubara
hybridization functions to the imaginary time domain, which is necessary for the outer
self-consistency in DF. Like Green’s functions, hybridization functions display a jump in
imaginary time at τ = 0 and respectively a 1/iν decay in Matsubara frequencies. This
relatively slow decay in Matsubara frequencies needs to be subtracted prior to the Fourier
transform in order to avoid unphysical oscillations more generally known as the Gibbs
phenomenon. In the imaginary time domain a constant offset is added. The procedure of
considering suitable models for Fourier transforms is standard in DMFT and is mentioned
here for reasons of completeness.
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Chapter 5

Multi-orbital Applications

5.1 Spin-susceptibilities in the AIM

Parts of this section (marked by a vertical sidebar) have been already
published in: P.G., M. Wallerberger, E. Gull, A. Hausoel, G.
Sangiovanni and K. Held; Continuous-time quantum Monte Carlo using
worm sampling. Phys. Rev. B. 92, 155102 (2015)

In the previous chapter the single-orbital Hubbard model was investigated with respect
to local- and non-local correlation effects. While the Mott-Hubbard metal-to-insulator
transition is described sufficiently by local correlation effects, magnetic ordering is mostly
determined by non-local correlation effects. The variety of different phases follows a
relatively simple model Hamiltonian, which is determined by a scalar hopping amplitude
t and a Coulomb repulsion U in the SU(2)-symmetric case. More so, in the single-orbital
case, the SU(2)-symmetric Slater-Kanamori interaction reduces to the density-density
interaction. In the multi-orbital case, on the other hand, the Slater-Kanamori interaction
features additional spin-flip and pair-hopping terms, which are not present in the multi-
orbital density-density interaction.1 A detailed discussion is found in Chapter 2.3 and
Appendix D. Calculating two-particle Green’s functions for the multi-orbital Hubbard
model with a diagonal hybridization function by conventional CT-HYB algorithms results
in serious limitations. These are extensively discussed in Chapter 3. More precisely,
contributions to the two-particle Green’s function with an outer leg structure resembling
the spin-flip and pair-hopping terms cannot be sampled.
However, for non-density-density interactions, such terms are indeed present in the two-
particle Green’s function G(2). One can immediately see this for the SO(n) ⊗ SU(2)-
conserving Slater-Kanamori interaction: here, the spin susceptibility is invariant under
spatial rotations, such that, e. g., 〈Sz(τ)Sz(0)〉 = 〈Sx(τ)Sx(0)〉. The spin susceptibility in

1The density-density interaction becomes SU(2)-symmetric in the multi-orbital case when assuming
J = 0. In this case, only intra-orbital couplings U and inter-orbital couplings V remain. The Hund’s
coupling, effectively decreasing the inter-orbital coupling, also vanishes.
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z-direction relates to flavor-diagonal terms of G(2):

〈Siz(τ)Sjz(0)〉 = 1
4〈(n

i
↑(τ)− ni↓(τ))(nj↑(0)− nj↓(0))〉 (5.1)

= 1
4〈c
†
i↑(τ)ci↑(τ)c†j↑(0)cj↑(0)− c†i↑(τ)ci↑(τ)c†j↓(0)cj↓(0)−

c†i↓(τ)ci↓(τ)c†j↑(0)cj↑(0) + c†i↓(τ)ci↓(τ)c†j↓(0)cj↓(0)〉.

All terms can be obtained in conventional CT-HYB by removing one hybridization line
for orbital i and one for orbital j. The spin susceptibility in x-direction on the other hand
manifests itself as spin flip terms in G(2), which are off-diagonal:

〈Six(τ)Sjx(0)〉 = 1
4〈(S

i
+(τ) + Si−(τ))(Sj+(0) + Sj−(0))〉 (5.2)

= 1
4〈c
†
i↑(τ)ci↓(τ)c†j↑(0)cj↓(0) + c†i↑(τ)ci↓(τ)c†j↓(0)cj↑(0)+

c†i↓(τ)ci↑(τ)c†j↑(0)cj↓(0) + c†i↓(τ)ci↑(τ)c†j↓(0)cj↑(0)〉.

Analyzing Eq. (5.2) more closely, one finds that the first and the last term vanish. The spin
in both orbitals i and j changes in the same direction violating total spin conservation
in z direction. The remaining second and third term of Eq. (5.2) are actual spin-flip
components.

The rotational invariance of the SU(2)-symmetric interaction allows one to calculate
such off-diagonal two-particle correlation functions exploiting symmetry relations for the
subset of correlation functions accessible to conventional CT-HYB (see i.e. [Hoshino and
Werner, 2016]). Whenever the rotational invariance is broken (e.g. through crystal field
splittings), such symmetry relations fail and worm sampling becomes relevant.
We choose the two-orbital AIM with semi-elliptic conduction electron density of states and
Slater-Kanamori interaction [Kanamori, 1963,Parragh et al., 2012]. This local interaction
includes an intra-orbital repulsion U , SU(2)-symmetric Hund’s exchange and pair hopping
terms J , and inter-orbital interaction U ′ = U − 2J .
Using partition function sampling, we can calculate the spin susceptibility in z-direction
in a straight-forward manner. Note that we can express Sz(τ) = ni↑(τ)−ni↓(τ) in terms of
density operators so that 〈Sz(τ)Sz(0)〉 can eventually be sampled by removing diagonal
hybridization functions in partition function sampling.

This is not possible for 〈Sx(τ)Sx(0)〉 which is expressed in terms of spin flip two-
particle Green’s functions. While this cannot be calculated in conventional partition
function sampling, we can do so by using worm sampling. Instead of looking at the
imaginary-time resolved spin susceptibility, we verify the SU(2)-symmetry for the local
spin susceptibility in terms of its Fourier transform to Matsubara frequencies χloc(iω) =∫ β

0 dτe−iωτ 〈Sz(x)(τ)Sz(x)(0)〉.
Fig. 5.1 shows the spin-susceptibilities for the two-orbital AIM on a Bethe lattice. The

worm sampling estimate for the SxSx susceptibility in x-direction agrees with the SzSz
susceptibility in z-direction, which can be calculated both by worm and partition function
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sampling. This further demonstrates the power of worm sampling to calculate general
Green’s functions and susceptibilities.
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Figure 5.1: Local spin susceptibility Reχloc(iω) of the two-orbital AIM as a function of
the bosonic Matsubara frequency iω. Parameters: identical semi-elliptic bands of half-
bandwidth D, β = 5/D, U = 1.0D, J = 0.4D, U ′ = 0.2D, and µ = 0.5D (half-filling).
The balancing parameter was set to η(2) = 0.08. The SU(2)-symmetry is conserved, as
the SxSx susceptibility of the worm algorithm (green error bars) agrees well with the SzSz
susceptibility of partition function sampling (red line) and worm algorithm (blue error
bars).

5.2 Vertex Asymptotics

Parts of this section (marked by a vertical sidebar) have been already
published in: J. Kaufmann, P.G and K. Held; Continuous-time
quantum Monte Carlo calculation of multi-orbital vertex asymptotics.
Phys. Rev. B. 96, 035114 (2017)

Presumably, calculating SU(2)-symmetric multi-orbital n-particle Green’s functions
is computationally and conceptually one of the most challenging tasks in CT-HYB.2
Local two-particle response functions are, however, important for two reasons: first, they
provide valuable insight into physical ordering processes on the lattice and allow for a
good comparison with experiments, and secondly, two-particle vertices are the essential
building blocks of non-local diagrammatic extensions. Therefore, improving upon the
numerical quality of two-particle functions and the efficiency during calculation is crucial.

On the one-particle level it is very common to improve the asymptotic behavior of
multi-orbital self-energies by calculating densities and double occupancies explicitly (see
i.e. [Wang et al., 2011]). Intuitively, the one- and two-particle densities follow from equal-
time Green’s functions in imaginary time. In a similar fashion, the asymptotics of the
two-particle vertex function F have been derived for the single-orbital case [Wentzell et al.,
2016,Li et al., 2016]. One can parameterize the non-vanishing asymptotical structure of
the two-particle vertex in terms of Feynman diagrams. The asymptotical structure of the

2In terms of complexity, this procedure becomes even more involved when considering arbitrary
hybridization functions and retarded interactions, which are not part of this work.
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three-frequency function F consists of two-frequency functions, referred to as “Kernel-2”
diagrams, and single-frequency functions, referred to as “Kernel-1” diagrams. In the
imaginary time domain, these kernel functions relate to vertices, where one pair- or two
pairs of amputated outer legs are contracted. Numerically, the asymptotical structure
can be extracted by scanning the high-frequency regions of F calculated by impurity
solvers, such as exact diagonalization methods or weak-coupling CT-QMC solvers. The
high-frequency noise of vertex functions intrinsic to CT-HYB, on the other hand, prohibits
this approach.

Following a different route, Kuneš demonstrated how to extract the asymptotical
behavior for the multi-orbital two-particle irreducible vertex Γ [Kuneš, 2011], although
only limiting the analysis to the static (i.e. ω = 0) vertex functions. Due to the two-
particle irreducibility of Γ in a given channel, the asymptotical structure is determined
by the Kernel functions of the remaining channels. Further, the Kernel-2 diagrams are
suppressed for large frequencies, not contributing to the asymptotical structure of Γ.3

What remained an open problem is to determine expressions for the kernel functions in
the multi-orbital case and derive the connection between equal-time two-particle Green’s
functions (including disconnected parts and outer legs) and kernel (i.e. vertex) functions.
The technicalities of sampling equal-time two-particle Green’s functions with one- or two
pairs of outer legs contracted are found in Chapter 3.3.5, where also the Green’s function
and notation are explicitly defined.
We recover the physical single-frequency susceptibility in the particle-hole channel by
subtracting the constant “straight term”,

χph,ωijkl = Gph,ω
ijkl − (1− ni)(1− nk)δω0δijδkl, (5.3)

whereas the particle-particle susceptibility is already given by

χpp,ωijkl = Gpp,ω
ijkl . (5.4)

We will now turn to the three-legged Green’s functions, where we are again interested
only in the connected part. For the particle-hole channel we find

χc,ph,νω
ijkl = Gph,νω

ijkl −Gν
i

[
(nk − 1)δijδklδω0 −Gν−ω

k δilδjk
]

(5.5)

and for the particle-particle channel

χc,pp,νω
ijkl = Gpp,νω

ijkl − (δijδkl − δilδjk)Gν
iG

ω−ν
k . (5.6)

As usual, the corresponding expressions for the transverse particle-hole channel can be
obtained by applying the crossing relation.
After the subtraction of the disconnected parts from the two-particle Green functions,
the next step is to contract the equal-time legs with interaction vertices. The two-legged

3During the finalization of this work an in-depth comparison of the high-frequency asymptotics of Γ
based on Kernel-1 approximations and based on Kernel-1 and Kernel-2 approximations for arbitrary ω
was published [Tagliavini et al., 2018], albeit only for the single-orbital case.
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objects have two pairs of equal times and therefore need two distinct bare vertices to
contract their legs and obtain the Kernel-1 functions K(1),`:

K
(1),ph,ω
abcd = −

∑
ijkl

Uajbi χ
ph,ω
ijkl Ulckd (5.7)

K
(1),ph,ω
abcd = −

∑
ijkl

Ualid χ
ph,ω
ijkl Ujcbk (5.8)

K
(1),pp,ω
abcd = −

∑
ijkl

Uacki
2 χpp,ωijkl

Uljbd
2 (5.9)

For the Kernel-2 approximations, the procedure is a bit more involved. After the bare
vertex contraction, we need to amputate the remaining legs. Thus, the Kernel-2 functions
K(2),` in all three channels are

K
(2),ph,νω
abcd =

∑
ij

−χc,ph,νω
abji

Gν
aG

ν−ω
b

Uicjd −K(1),ph,ω
abcd (5.10)

K
(2),ph,νω
abcd =

∑
ij

−χc,ph,νω
aijd

Gν
aG

ν−ω
d

Uicbj −K(1),ph,ω
abcd (5.11)

K
(2),pp,νω
abcd =

∑
ij

−χc,pp,νω
aicj

Gν
aG

ν−ω
c

Ujibd
2 −K(1),pp,ω

abcd , (5.12)

where we had to subtract the Kernel-1 functions in order to avoid double-counting of
diagrams.

Now we have six functions going to zero for high frequencies ν or ω, from which we
can compile the asymptotic vertex.
According to the (local) parquet equation, the full vertex Fabcd can be decomposed into a
fully irreducible and several reducible parts:

F νν′ω
abcd = Λνν′ω

abcd + Φph,νν′ω
abcd + Φph,νν′ω

abcd + Φpp,νν′ω
abcd . (5.13)

We are now able to construct the asymptotic form of the reducible vertices Φ using [Wentzell
et al., 2016]:

Φasympt,`,νν′ω
abcd = K

(1),`,ω
abcd +K

(2),`,νω
abcd +K

(2),`,ν′ω
abcd , (5.14)

where the functions K(2),` are found to be equal to K(2),` due to time-reversal symmetry.
Therefore summing up all K(i),`, we get the asymptotic form of the full vertex:

F asympt
abcd (ν`, ν ′`, ω`)− Uabcd =

K
(1),ph,ωph
abcd +K

(2),ph,νphωph
abcd +K

(2),ph,ν′phωph
abcd +

K
(1),ph,ω

ph

abcd +K
(2),ph,ν

ph
ω
ph

abcd +K
(2),ph,ν′

ph
ω
ph

abcd +

K
(1),pp,ωpp
abcd +K

(2),pp,νppωpp
abcd +K

(2),pp,ν′ppωpp
abcd (5.15)
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In this way we are now able to build arbitrarily large vertices in any frequency notation,
which leads to significant improvements of further calculations.
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Figure 5.2: (Color online) Matrix element of the full vertex F νν′ω15
d,1111 (upper row) and

F νν′ω15
m,1111 (lower row) for four times at the same t2g orbital. Left column: F extracted from

an improved-estimator CT-QMC measurement with full frequency dependence. Right
column: F , combined with asymptotics according to Eq. (5.16) with l = 15. To remove
the constant background, Fd was shifted by Ud = U and Fm by Um = −U .

Since the derivations in the previous sections were done without restriction to one-band
models or density-density interaction, it is possible to apply the procedure described above
to a more general case. As a suitable material, we chose SrVO3, which has a long tradition
for benchmarking realistic material calculations using DMFT [Sekiyama et al., 2004,Ishida
et al., 2006,Lee et al., 2012,Taranto et al., 2013,Sakuma et al., 2013]. Its band structure
can be calculated by wien2k [Schwarz and Blaha, 2003], using the generalized gradient
approximation. Subsequently, t2g bands, which cross the Fermi level, are projected onto
maximally localized Wannier functions by wien2wannier [Kuneš et al., 2010]. For these
strongly correlated t2g bands we consider a SU(2)-symmetric Slater-Kanamori interaction
that is parameterized by an intra-orbital Hubbard U , an inter-orbital U ′ and Hund’s cou-
pling J . Calculations in constrained local density approximation yield values of U = 5eV,
J = 0.75eV and U ′ = U − 2J = 3.5eV [Sekiyama et al., 2004,Nekrasov et al., 2006].
The following DMFT calculation, as well as the calculation of the one-, two- and three-
frequency two-particle Green’s functions, was done by w2dynamics at an inverse tem-
perature of β = 10eV−1.
Since we treat SrVO3 as a three-orbital system, the two-particle objects have in general
have (2 · 3)4 = 1296 spin-orbital components, of which due to the structure of the inter-
action, however, only 126 are non-vanishing. If we use instead of all spin-components
the density and magnetic channels, which is possible for SU(2)-symmetry, the number
of non-vanishing components is reduced to 21 per channel. Furthermore the local vertex
functions exhibit orbital symmetry that reduces the number of distinct components to 4
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per channel in our case of degenerate orbitals.
In Fig. 5.2 a slice of the vertex with four equal band indices is shown in the density and
magnetic channel: F νν′ω15

d/m,1111.
The first column shows vertices calculated by the improved-estimator method with worm
sampling in about 150000a CPU hours. In the second column, the data in the asymptotic
regions, defined by

ν1ν2ν3ν4
β4

π4 > l4 |δν1ν2 + δν1ν4 − δν1ν2δν1ν4 |
4 , (5.16)

were replaced according to the method proposed in this article, with a replacement
parameter of l = 15a. For comparison, we show ED results in the third column. The
replacement procedure Eq. (5.16) is motivated by atomic limit calculations.

aCPU hours and replacement adapted for SrVO3 study.

5.3 AbinitoDΓA

Parts of this section (marked by a vertical sidebar) have been already
published in: A. Galler, J. Kaufmann, P.G., M. Pickem, P. Thunström,
J. Tomczak and K. Held; Towards ab initio Calculations with the
Dynamical Vertex Approximation. Journal of the Physical Society of
Japan 87(4), 041004 (2018)

In the previous section the asymptotical structure of the multi-orbital two-particle ver-
tex function was derived and calculated for SrVO3. The true potential of the asymptotical
structure, however, unveils in combination with non-local diagrammatic extensions. The
AbinitoDΓA method discussed in the following is the first actual multi-orbital4 implemen-
tation in the entire category of multi-orbital diagrammatic extensions to DMFT [Galler
et al., 2017]. First theoretical proposals of fully self-consistent ab initio (i.e. material) dia-
grammatic extensions date were made by Rubtsov et al. for (ladder) DF in their original
publication [Rubtsov et al., 2008] and by Toschi et al. for (parquet) DΓA [Toschi et al.,
2011]. The basic concepts of ladder DΓA have been introduced in Chapter 2.5. In the
following, a first AbinitioDΓA (i.e. DFT+DMFT+DΓA) study of non-local correlation
effects in SrVO3 is presented.
In AbinitioDΓA the ph-irreducible vertex is then approximated by this local Γωνν′ supple-
mented with the non-local Coulomb interaction Vqkk′ .a This can be written in the form

4In this work “multi-orbital” refers to a single impurity with multiple orbitals, whereas other works
similarly consider multiple impurities with a single-orbital as “multi-orbital”, even tough only a single-
orbital single-site vertex is calculated for several atoms (see e.g. [Hirschmeier et al., 2017]). While the
implementation of diagrammatic extension shares some similarities in the Bethe-Salpeter equations for
both cases, a “true” multi-orbital implementation generally includes a more complicated representation
of the equation of motion due to the multi-orbital interaction matrix.
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of a crossing-symmetric vertex:

Γqkk′
σσ′,lmm′l′ ≡ Γωνν′σσ′,lmm′l′ + Vqkk′

σσ′,lmm′l′ , (5.17)

where

Vqkk′
σσ′,lmm′l′ ≡ β−2(V q

lm′ml′ − δσσ′V k′−k
mm′ll′). (5.18)

Approximating the exact vertex by Eq. (5.17) is the essential approximation of
AbinitioDΓA. Since Γωνν′ already contains the local Coulomb interaction U as its lowest-
order contribution, Eq. (5.17) represents a natural extension of the local Γωνν′ to non-local
interactions. That is, the AbinitioDΓA vertex Γqkk′ is made up from the local and non-local
Coulomb interaction (U and V q) as well as all local vertex corrections.

The ph-irreducible vertex Γqkk′ defined in Eq. (5.17) is then used to calculate the full
vertex function F qkk′ through the BSE.

aFor a schematic representation of the AbinitoDΓA equations see [Galler et al., 2018].

The latter can be considerably simplified if Γqkk′ does not depend on the momenta k
and k′. Indeed, this dependence arises only from the second (crossed) V k′−k term in Eq.
(5.18) which is, e.g., neglected in the GW approximation [Hedin, 1965]. If we follow the
philosophy of GW and neglect this term, Eq. (5.17) (now already in the two spin channels
r ∈ {d,m}) reads

Γqνν′
r,lmm′l′ = Γωνν′r,lmm′l′ + 2β−2V q

lm′ml′δr,d. (5.19)

With this simplification, the non-local BSE eventually becomes independent of k and k′
and reads

F qνν′
r,lmm′l′ = Γqνν′

r,lmm′l′ + φqνν′
r,lmm′l′ (5.20)

φqνν′
r,lmm′l′ =

∑
nn′hh′
ν′′

Γqνν′′
r,lmhnχ

qν′′ν′′
0,nhh′n′F

qν′′ν′
r,n′h′m′l′ , (5.21)

with
χqνν

0,lmm′l′ =
∑

k
χqkk

0,lmm′l′ = −β
∑

k
Gk
ll′G

k−q
m′m. (5.22)

The full vertex function F qνν′ constructed in this way contains non-local diagrams
only in the ph-channel. However, in DΓA we consider also the corresponding non-local
diagrams in the ph-channel. The latter do not need to be constructed explicitly, but
can be obtained through symmetry considerations, namely by the crossing symmetries.
Adding the ph and ph-channel and subtracting any double counted term yields—after
some algebra as discussed in Ref. Galler et al., 2017—the full AbinitioDΓA vertex:

Fqkk′
d,lmm′l′ =F ωνν′

d,lmm′l′ + F nl,qνν′
d,lmm′l′ −

1
2F

nl,(k′−k)(ν′−ω)ν′
d,m′mll′

− 3
2F

nl,(k′−k)(ν′−ω)ν′
m,m′mll′ . (5.23)
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Here, the non-local vertex F nl is defined as

F nl,qνν′
r,lmm′l′ ≡ F qνν′

r,lmm′l′ − F ωνν′

r,lmm′l′ (5.24)

with F qνν′ calculated from Γqνν′′ through the BSE (5.20)-(5.21).
The next step is to use the full vertex F of Eq. (5.23) in the Schwinger-Dyson equation

of motion to obtain the AbinitioDΓA self-energy. Since in the BSE (5.20)-(5.21) we
included V q through Γqνν′ but not V k′−k, it is consistent to also neglect corresponding
terms for the self-energy in the Schwinger-Dyson equation. We can also explicitly identify
the contribution Σν

DMFT that corresponds to the DMFT solution. After some algebra (see
Ref. [Galler et al., 2017] for details), the final expression for the non-local AbinitioDΓA
self-energy reads

ΣDΓA =Σν
DMFT − β−1∑

qν′
Uχnl,qν

′ν′

0 F ων′ν
d Gk−q

−β−1∑
qν′
V qχqν′ν′

0 F ων′ν
d Gk−q

−β−1∑
qν′

(
U + V q

)
χqν′ν′

0 F nl,qν′ν
d Gk−q

+β−1∑
qν′
Ũχqν′ν′

0

(1
2F

nl,qν′ν
d + 3

2F
nl,qν′ν
m

)
Gk−q. (5.25)

Here Ũlm′l′m = Ulm′ml′ ; χnl,qνν0 ≡ χqνν
0 −χωνν0 ; and orbital indices have been suppressed for

clarity.
This self-energy contains all DMFT and GW contributions as well as non-local correla-

tions beyond (e.g., spin fluctuations). It is constructed from the underlying AbinitioDΓA
approximation of considering only local vertex corrections. From the self-energy, we can
also calculate the Green’s function via the Dyson equation. This in turn allows us to
define a new impurity problem in a self-consistent scheme. Let us now turn to the results
obtained by AbinitioDΓA, so far without self consistency and without V q.
The AbinitioDΓA calculations were performed using the local vertex functions defined in
Section 5.2,a computed for an inverse temperature β = 10/eV, a Hubbard intra-orbital
interaction U = 5.0eV, and a Hund’s exchange J = 0.75eV. The AbinitioDΓA self-energy,
defined in Eq. (5.25), was computed with V q = 0)

aReference adapted for this work.

We now discuss the effects in the AbinitioDΓA self-energy—displayed in Fig. 5.3 for three
representative k-points—that are beyond DMFT. At low energies the imaginary part of
the self-energy on the Matsubara axis is—for all orbitals and k-points—slightly smaller
than in DMFT. As a result the scattering rate γ = −=Σ(iν → 0) very slightly decreases
with respect to DMFT, while the quasi-particle weight Zk increases. Besides this overall
effect, the momentum dependence of =Σ is small. Indeed Zk varies by less than 2%
within the Brillouin zone. The real-part of the self-energy shows larger deviations from
the DMFT result. Indeed, at low energies the difference between AbinitioDΓA and DMFT
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reaches 200meV, which amounts to about 7% of the Hartree term. Further, in DMFT the
dxy, dxz, and dyz self-energy components were identical due to their local degeneracy. As
a consequence of the lifting of the momentum-independence, the self-energy can now also
acquire an orbital dependence. The splitting between non-equivalent components at the
X and M -point of the Brillouin zone is displayed in the middle and right panel of Fig. 5.3.
The orbital splitting at a given k-point reaches up to 100meV.
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Figure 5.3: AbinitioDΓA results for the self-energy (top row: imaginary part, middle row:
real part) and real-frequency spectral functions (bottom row) for selected k-points in the
Brillouin zone (Γ-point: left column, X-point: middle column, M -point: right column).
In the two top panels, symbols indicate results for a small frequency box (N=60) and
using no vertex asymptotics, while lines depict results for the largest box (N=200) that
also makes use of the vertex asymptotics: Both results are on top of each other.



Chapter 6

Conclusion

The primary objective of this work was to present a comprehensive description of continuous-
time quantum Monte Carlo algorithms, specifically of those formulated in the hybridization
expansion. After all, impurity solvers prove to be at the center of various numerical meth-
ods attempting to solve the Hubbard model and to describe effects of strong correlations.

Before discussing the technicalities of CT-HYB, this work introduced various limits
of the Hubbard model in the first part of Chapter 2. Among others, these include the
Anderson impurity model, the Heisenberg model, the tight-binding model and the Falicov-
Kimball model. The weak- and strong-coupling limit of the Hubbard model are investigated
and several lattice dimensions are considered. Especially the two-dimensional- and the
infinite-dimensional Hubbard model are of importance in this work. As for any numerical
method, it is necessary to have an understanding of the underlying physics and being able
to correctly interpret results. In the following sections, various diagrammatic methods
to solve the Hubbard model were discussed, namely DMFT in Chapter 2.4 and the non-
local diagrammatic extensions DΓA and DF in Chapter 2.5. These methods are formally
expressed in terms of one-particle diagrammatics in the former case and two-particle
diagrammatics in the latter. The equations of DMFT and diagrammatic extensions need to
be solved self-consistently, making numerical methods necessary. Chapter 2 concluded with
a summary of analytic continuation methods. While these methods were only discussed
briefly, it turns out that they are a key point for evaluating results obtained by methods
based on finite temperature quantum field theories. The analytic continuation defines the
transformation of results represented in the Matsubara domain into the (experimentally
observable) real frequency/time domain. Hence, any algorithm generating Matsubara
results is only as good as the method used for analytic continuation, at least as far as
dynamical properties are concerned.

Chapter 3 represents the central chapter of this work. After introducing the most
popular impurity solvers, the remaining chapter dealt with CT-HYB exclusively. In this
context, the newly introduced worm algorithm was set in contrast to the CT-HYB algo-
rithm prior to its development. Worm sampling attempts to sample the infinite series
expansion of different observables directly, avoiding observable estimates from the partition
function expansion. Worm sampling becomes necessary for large crystal field splittings,
vanishing hybridization functions and for the measurement of certain observables for non-
density-density interactions. In this respect, several worm estimators were introduced
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which directly link to specific Feynman diagrams. Especially estimators for two-particle
diagrams were discussed due to their direct relevance in calculating susceptibilities and
their application to non-local diagrammatic extensions. A noteworthy class of estima-
tors discussed throughout the chapter includes the asymptotic two-particle estimators
and the improved- and symmetric improved estimators. These estimators enhance the
high-frequency behavior of one- and two-particle Green’s functions and irreducible vertex
functions, effectively circumventing the shortcomings of conventional estimators. Worm
estimators can be formulated as δ-estimators, where just the positions of the worm op-
erators are recorded. Alternatively, worm estimators may be reformulated in terms of
generalized hybridization matrices, allowing the measurement procedure to access the
entire configuration at once. On a different note, several technicalities in the worm sam-
pling procedure were analyzed, including the component-wise sampling of observables.
While the worm algorithm allows for more flexibility in terms of the estimator structure
as opposed to partition function sampling, certain care needs to be taken with respect to
balancing and normalization.

Chapters 4 and 5 presented several applications of the CT-HYB algorithm to impurity
and lattice models with a specific focus on two-particle response functions. From a technical
viewpoint this illustrated the versatility of CT-HYB for different models and parameter
set-ups. From a physical viewpoint, phase transitions due to local correlation effects and
non-local correlation effects were investigated. Chapter 4 started with an analysis of
the Mott-Hubbard metal-to-insulator transition in the mass-imbalanced Hubbard model
and its connection to the Falicov-Kimball model. The chapter then proceeded with the
discussion of divergences of the irreducible vertex functions of the Anderson impurity
model. While on the one hand these divergences need to be accounted for numerically, on
the other hand the divergences seem to be connected to the Kondo physics of the AIM.
Chapter 4 concluded with a self-consistency study of the two-dimensional Hubbard model
in DF. Non-local correlation effects occurring in systems with low lattice-dimension are
not adequately described by DMFT. For this purpose, one may consider diagrammatic
extensions instead. While the accuracy of methods in quantum chemistry allows for
quantitative statements, methods describing the non-local nature of correlations only
allow for qualitative interpretations. Applying a single iteration of DF (and similarly
DΓA) on top of DMFT generally leads to results that are not self-consistent on the one-
or two-particle level. A full solution, on the other hand, should be self-consistent on the
one- and two-particle level (i.e. inner and outer self-consistency). Chapter 5 discussed
an AbinitoDΓA study of SrVO3 with three d-orbitals and Slater-Kanamori interaction.
As of today, the Hubbard Hamiltonian is mostly analyzed from two directions, namely
the “model” approach and the “ab initio” approach. In the former case, one attempts
to understand correlation effects by precisely controlling the lattice geometry and the
model parameters. In the latter case, strong correlation effects are analyzed in relation
to different materials. Calculating the local multi-orbital two-particle Green’s function in
CT-HYB posed a considerable numerical challenge. The worm algorithm was employed to
recover all components of the SU(2)-symmetric two-particle Green’s function and vertex
asymptotics were used to improve the numerical result. As non-local correlation effects
in (bulk) SrVO3 are minimal at the temperature considered, future investigations will
consider materials at lower temperatures (e.g. room temperature) and reduced lattice
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dimension. Optimizations for the worm algorithm (and CT-HYB in general) will open
a route for understanding how physical properties of such materials are influenced by
non-local correlations.

The developments presented in this work may prove to be some of the fundamental
building blocks required to advance CT-HYB and are important in generating numerical
solutions for the single-orbital and multi-orbital Hubbard model, necessary both for model
calculations and ab initio calculations. While implementing state-of-the-art CT-QMC
algorithms is already a complex task from a developmental point of view, some further
details are yet to be worked out. The most complete solutions to the multi-orbital AIM
are based upon general hybridization functions (not restricted to diagonality constraints)
and retarded interactions. Such solutions to the AIM would, in principle, include Green’s
functions up to an arbitrary number of particles. Especially with regards to CT-HYB, an
accurate treatment of high-frequency regions in the vertex function remains challenging.
On an algorithmic level, optimizations to the Monte Carlo measurement and sampling
procedures will allow for lower temperatures and more orbitals in the future.

While at some point DMFT may be substituted by (fully) self-consistent non-local
diagrammatic methods, solving the AIM remains an intrinsic challenge and a numerical
bottleneck of most diagrammatic methods. A thorough algorithmic enhancement of
continuous-time impurity solvers may prove to be an essential step in fully uncovering the
physics of the Hubbard model.
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Appendix A

Limits of the Hubbard Model

The following sections provide in-depth derivations of different relations for limiting cases
of the Hubbard model.

A.1 Non-interacting Limit

In order to derive the bubble-term of the non-interacting susceptibility, it is easiest to
directly evaluate the corresponding diagram, where the building blocks are non-interacting
Green’s functions with

G(~k, iν) = 1
iν − ε~k

, (A.1)

where iν are fermionic Matsubara frequencies. An illustration of the bubble-diagram in
Matsubara frequencies is given in Figure A.1. Mathematically, the bubble diagram can
be expressed as:

χ0(~q, iω) = 1
N

BZ∑
~k

1
β

∑
iν

G(~k − ~q, iν − iω)G(~k, iν) (A.2)

= 1
N

BZ∑
~k

1
β

∑
iν

1
iν − iω − ε~k−~q

1
iν − ε~k

(A.3)

The Matsubara sum over the fermionic Matsubara frequency iν can be evaluated, such
that

χ0(~q, iω) = 1
N

BZ∑
~k

f(ε~k−~q)− f(ε~k)
iω − (ε~k−~q − ε~k)

, (A.4)

where f(x) = 1/(1 + eβx) is the Fermi distribution function. While in principle an
equivalent substitution iω → ω + iδ is necessary, the bosonic Matsubara frequency and
the real frequency share the same value at zero. This way, one can easily extract the static
part of the non-interacting susceptibility.
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Figure A.1: Bubble diagram of the non-interacting susceptibility χ0(~q, iω) in Matsubara
frequencies. Diagrammatically, the susceptibility is obtained by a contraction of two non-
interacting Green’s functions (dashed lines), where the energy- and momentum transfer
is given by the bosonic frequency iω and the transfer momentum ~q respectively. The
fermionic frequency iν and the initial momentum ~k become internal degrees of freedom,
which are then integrated over. The shape of the diagram is reminiscent of a bubble.

A.2 Atomic Limit
In order to calculate the Green’s function and self-energy in the atomic limit, the Lehmann
basis is employed. The following discussion is limited to the single orbital atomic limit,
although generalizations to multi-orbital systems are straight forward.

One possible basis choice is the (orthonormal) occupation number basis:{
〈 | , 〈↑ | , 〈 ↓| , 〈↑↓|

}
, (A.5)

with the empty state, two singly-occupied states and a doubly-occupied state. Next, the
creation and annihilation operators are expressed in the occupation number basis. A
creation operator of spin σ adds to the empty 〈 | and the opposite filled state 〈−σ|
an electron of spin σ, whereas the annihilation operator removes the electron from the
doubly occupied 〈↑↓| and the equally filled state 〈σ|. Additionally, some care needs to
be taken with preceeding signs. These signs result from the fermionic anti-commutation
rules {ĉi, ĉj} =

{
ĉ†i , ĉ

†
j

}
= 0 and

{
ĉ†i , ĉj

}
= δij. A possible sign convention is to modify

the annihilation operator ĉi with a sign (−1)N , where N is the number of electrons k < i
being occupied in the many body state. The matrix representation of the operators is
given as:

cmn↑ = 〈m| ĉ↑ |n〉 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 cmn↓ = 〈m| ĉ↓ |n〉 =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (A.6)

c†,mn↑ = 〈m| ĉ†↑ |n〉 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 c†,mn↓ = 〈m| ĉ†↓ |n〉 =


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 . (A.7)

The Hamiltonian for the atomic is given by:

Ĥat =
N∑
i

(
− µ(n̂i↑ + n̂i↓) + Un̂i↑n̂i↓

)
, (A.8)
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where n̂iσ = ĉ†iσ ĉiσ is the density operator. The above Hamiltonian can now be expressed
in the occupation number basis as:

Hmn
at = 〈m| Ĥat |n〉 =


0 0 0 0
0 −µ 0 0
0 0 −µ 0
0 0 0 U − 2µ

 . (A.9)

The matrix Hmn
at is already diagonal, such that the basis states form the eigenvectors and

the eigenvalues εnat can be immediately read off. With the above tools the Green’s function
can be evaluated explicitly:

Gσ(τ) = − 1
Z

Tr
(
e−βĤat ĉσ(τ)ĉ†σ

)
= −

∑
n 〈n| e−βε

n
at ĉσ(τ)ĉ†σ |n〉∑

n 〈n| e−βε
n
at |n〉

, (A.10)

where the creation and annihilation operator are given in the interaction picture, with an
explicit time-dependence according to ĉ(†)

σ (τ) = eτĤat ĉ(†)
σ e
−τĤat and τ ∈ [0, β). Evaluating

expression (A.10) yields:

Gσ(τ) = − eτµ + eβµeτ(µ−U)

1 + 2eβµ + e−β(U−2µ) . (A.11)

For the half-filling case with µ = U
2 this simplifies to:

Gσ(τ) = −1
2
eτ

U
2 + e(β−τ)U2

1 + eβ
U
2

. (A.12)

Sometimes the Hamiltonian Hmn
at is shifted relative to the zero-point energy (the lowest

lying eigenvalue min(εnat)) as Hmn
at → Hmn

at −min(εnat) to avoid the Boltzmann weight e−βĤ
to diverge for β →∞. This has no consequences on the expectation value itself, as this
is the ratio of the trace over the operator (with a factor e−βĤ relative to the partition
function. Any energy shift in the nominator and denominator cancels out.

In order to extract the DOS and self-energy it is convenient to convert the imaginary
time result in equation (A.11) into Matsubara frequencies. This is done by evaluating the
Fourier transform:

Gσ(iν) =
∫ β

0
eiντGσ(τ) = 1

1 + 2eβµ + e−β(U−2µ)

(1 + eβµ

iν + µ
+ eβµ + eβ(2µ−U)

iν + µ− U

)
, (A.13)

where the fermionic Matsubara frequency iν = i (2n+1)π
β

was used. For the half-filling case
the above simplifies to:

Gσ(iν) = 1
2

( 1
iν − U

2
+ 1
iν + U

2

)
. (A.14)

From the poles of the Green’s function, one can immediately read off the spectral function
as:

Aσ(ω) = 1
2

(
δ(ω − U

2 ) + δ(ω + U

2 )
)
. (A.15)
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The δ-peak at ω = −U
2 corresponds to the filled singly-occupied orbitals 〈↑| and 〈↓|, while

the δ-peak at ω = +U
2 corresponds to the empty and doubly occupied state 〈 | and 〈↑↓|.

The self-energy at half-filling can now simply be extracted from Dyson’s equation with

Σσ(iν) = G(iν)−1 −Gσ(iν)−1, (A.16)

with the non-interacting Green’s function G(iν) = 1
iν+µ .

A.3 Heisenberg Limit
In the limit of U � t the Hubbard Hamiltonian simplifies to the tJ-Hamiltonian, further
reducing to the Heisenberg model for half-filling. The limit U � t (but not t = 0) suggests
formulating a perturbation theory based on the atomic limit to derive the Heisenberg model.
A very similar derivation is found elsewhere [Cleveland and Medina, 1976]. Starting from
the Hubbard model the potential energy term is set to the the unperturbed Hamiltonian
Ĥ0 and the kinetic energy term as the perturbation Ĥ1.

Ĥ0 =
N∑
i

Un̂i↑n̂i↓ (A.17)

Ĥ1 = 1
2

N∑
〈ij〉,σ

tij(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) (A.18)

In order to derive the energy-corrections in perturbation theory it is necessary to define
a basis set for the ground state. In the half-filled case, where each site is either spin-up
or spin-down occupied this basis scales with 2N , where N is the number of sites. For
nearest-neighbor hopping, the ground state is given by |σi, σj〉, where σi is the spin of the
electron on site i. The energy of the unperturbed system follows as E(0) = −Nµ. The
energy correction in first order perturbation theory follows as:

E(1) = 1
2

N∑
〈ij〉,σ
〈σi, σj|H1 |σi, σj〉 = 0 (A.19)

The first-order correction vanishes as every site is singly occupied and any hopping from a
given site would result in a neighboring site being doubly occupied. Doubly occupied states
are, however, forbidden in the ground state of the unperturbed system. By alleviating
the restriction of half-filling, the first order energy correction recovers the dynamics of the
more general tJ-model.

In second order perturbation theory the energy correction is given by

E(2) = −1
2

N∑
〈ij〉

∑
σσ′

∑
I

〈σi, σj|H1 |ΦI〉 〈ΦI |H ′1 |σ′i, σ′j〉
EI − Eij

, (A.20)

where |ΦI〉 are the intermediate excited states |0, ↑↓〉 and |↑↓, 0〉 with energy EI = U − 2µ.
The ground-state of two neighboring sites has energy Eij = −2µ. Expanding the factors
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of the above expression results in:

E(2) = 1
2

N∑
〈ij〉

∑
σσ′

t2ij
U
〈σi, σj|

(
ĉ†iσ ĉiσ′ ĉ

†
jσ′ ĉjσ + ĉ†iσ′ ĉiσ ĉ

†
jσ ĉjσ′

)
|σ′i, σ′j〉 . (A.21)

The expression inside the parentheses can be simplified to (4 ~̂Si ~̂Sj − n̂in̂j), where n̂i =
n̂i↑ + n̂i↓ and

~̂Si = 1
2
(
ĉ†i↑ ĉ†i↓

)
~σ

(
ĉi↑
ĉi↓

)
. (A.22)

Further, ~σ =
(
σx, σy, σz

)T
is the vector of Pauli-matrices. One can now extract a corrected

Hamiltonian (with n̂i = 0 at half-filling)

Ĥheisenberg = 1
2

N∑
〈ij〉

Jij ~Si · ~Sj, (A.23)

where Jij = 4t2ij/U . This is exactly the spin-1
2 Heisenberg Hamiltonian for an antiferro-

magnetically ordering lattice.

A.4 Falicov-Kimball Limit
The (itinerant) c-electron Green’s function for the Falicov-Kimball impurity can be cal-
culated analytically. This is achieved by applying the equation of motion (EOM), i.e.
the (imaginary) time derivative of either the itinerant creation or annihilation operator,
on the impurity- and on the bath-level successively. While in a fully interacting system
the equation of motion results in a hierarchy of Green’s functions (i.e. the EOM for the
one-particle Green’s function generates a two-particle Green’s function), the localized
electrons of the Falicov-Kimball model truncate this series. The following derivations are
based on [Brandt and Mielsch, 1989] and [Ribic, 2015]. One starts by defining the EOM
for the itinerant c-electron impurity Green’s function

∂τG
c(τ) = −∂τ 〈Tτ ĉ0(τ)ĉ†0(0)〉 (A.24)

= −〈Tτ∂τ ĉ0(τ)ĉ†0(0)〉 − δ(τ), (A.25)

where c(†)
0 (τ) is the annihilation (creation) operator for the impurity site i = 0 at imaginary

time τ . Evaluating the time derivative generates a δ(τ) contribution following from the
jump of the fermionic Green’s function at equal times. The time derivative applied
onto an operator follows as ∂τ ĉ0(τ) =

[
Ĥfk, ĉ0

]
(τ), where square-brackets denote the

commutator (i.e. Heisenberg’s equation of motion). At this point, the Falicov-Kimball
Hamiltonian (2.49) in the resonant level model is restated:

Ĥfk = −
N∑
l>1

(
t0lĉ
†
0ĉl + t∗l0ĉ

†
l ĉ0 + µcĉ

†
l ĉl

)
+ Uf̂ †f̂ ĉ†0ĉ0 − µf f̂ †f̂ − µcĉ†0ĉ0. (A.26)
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With the Falicov-Kimball Hamiltonian, Heisenberg’s equation of motion evaluates to:

∂τ ĉ0(τ) =
[
Ĥfk, ĉ0

]
(τ) (A.27)

= −
N∑
l>1

(
t0l
[
ĉ†0ĉl, ĉ0

]
+ t∗l0

[
ĉ†l ĉ0, ĉ0

]
+ µc

[
ĉ†l ĉl, ĉ0

])
+ (A.28)

+ U
[
f̂ †f̂ ĉ†0ĉ0, ĉ0

]
− µf

[
f̂ †f̂ , ĉ0

]
− µc

[
ĉ†0ĉ0, ĉ0

]
(A.29)

The next step is to expand the above commutators and apply the fermionic anti-commutation
rules {ci, cj} =

{
c†i , c

†
j

}
= 0,

{
c†i , cj

}
= δij. The anti-commutator between f - (or multiples

of f) and c-operators vanishes for all combinations of creation and annihilation operators,
such that:

∂τ ĉ0(τ) =
N∑
l>1

t0lĉl(τ)− Uf̂ †(τ)f̂(τ)ĉ0(τ) + µcĉ0(τ) (A.30)

The (imaginary) time derivative of the c-electron impurity Green’s function follows as:

∂τG
c(τ) = −〈Tτ

N∑
l>1

t0lĉl(τ)ĉ†0(0)〉+ U〈Tτ f̂ †(τ)f̂(τ)ĉ0(τ)ĉ†0(0)〉 − µc〈Tτ ĉ0(τ)ĉ†0(0)〉 − δ(τ),

(A.31)

The mixed two-particle Green’s function between f -electrons and c-electrons can be further
simplified by realizing that the impurity is either unoccupied or occupied by a localized
f electron with Nf = {0, 1} (where a capital Nf was used to denote a classical (binary)
occupation), such that:

∂τG
c(τ) = −〈Tτ

N∑
l>1

t0lĉl(τ)ĉ†0(0)〉 − UNfG
c(τ) + µcG

c(τ)− δ(τ). (A.32)

The mixed one-particle Green’s function between c-electrons in the bath and the impurity
is evaluated by applying Heisenberg’s equation of motion for the bath operators ĉl another
time:

−∂τ 〈Tτ
N∑
l>1

t0lĉl(τ)ĉ†0(0)〉 =
N∑
l>1

t0lt
∗
l0〈Tτ ĉ0(τ)ĉ†0(0)〉+ µc〈Tτ ĉl(τ)ĉ†0(0)〉 (A.33)

−〈Tτ
N∑
l>1

t0lĉl(τ)ĉ†0(0)〉 = −
N∑
l>1

t0lt
∗
l0

∂τ + µc
Gc(τ) (A.34)

where for the mixed bath-impurity Green’s function the equal-time anti-commutator
vanishes and, as such, the δ(τ) contribution vanished.

In a last step, a Fourier-transform of relation (A.32) into fermionic Matsubara frequen-
cies yields:

Gc(iν) = 1
iν + µc −∆(iν)− UNf

, (A.35)

with the hybridization function defined as ∆(iν) = ∑N
l>1

t0lt
∗
l0

iν+µc .



Appendix B

Two-particle Frequency Conventions

In the following the frequency convention of this work is mapped onto the frequency
convention of [Rohringer et al., 2017]. The particle-hole frequency convention employed
in this work follows as:

G
~k~k′~q,νν′ω
σ1σ2σ3σ4 =

∫ β

0
eiν(τ1−τ2)eiν

′(τ3−τ4)eiω(τ2−τ3)×

〈Tτ ĉσ1,~k
(τ1)ĉ†

σ2,~k−~q
(τ2)ĉσ3,~k′−~q(τ3)ĉ†

σ4,~k′
(τ4)〉dτ1dτ2dτ3dτ4. (B.1)

The particle-hole convention employed by Rohringer et al. follows as:

G
~k~k′~q,νν′ω
σ1σ2σ3σ4 =

∫ β

0
eiν(τ1−τ2)eiν

′(τ3−τ4)eiω(τ3−τ2)×

〈Tτ ĉσ1,~k
(τ1)ĉ†

σ2,~k−~q
(τ2)ĉσ3,~k′−~q(τ3)ĉ†

σ4,~k′
(τ4)〉dτ1dτ2dτ3dτ4. (B.2)

The mapping between the two convention is given by ω → −ω. These conventions equiv-
alently apply for two-particle correlation functions χ, χcon and disconnected correlation
functions, as well as for two-particle vertex functions F,Γ,Φ and Λ in the particle-hole
frequency notation. Furthermore, the convention extends identically to momentum space
with ν → ~k, ν ′ → ~k′ and w → ~q. For multi-orbital systems the spin-indices are replaced
by generalized indices, i.e. σi → ai.

This work further sketches two-particle diagrams differently than the two-particle
diagrams of Rohringer et al.. While the former labels operators counter-clockwise starting
from the upper left, the latter labels operators clockwise, starting from the lower left. The
two conventions are illustrated in Figure B.1. Although these diagrams are topologically
equivalent, some care needs to be taken when constructing equations of motions etc.

Further popular works in literature with different (although very similar) conventions
are [Rohringer et al., 2012] (with a different operator order in the two-particle Green’s
function) and [Boehnke et al., 2011] (with the bosonic frequency attached to the first
annihilation- and second creation operator).
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Figure B.1: Particle-hole frequency convention for two-particle quantities. Left: Fre-
quency convention employed in this work. Right: Frequency convention employed by
Rohringer et al. [Rohringer et al., 2017]. The frequency conventions apply for two-particle
Green’s functions, correlation functions and vertex functions equivalently. Extensions to
for momentum-dependent- or multi-orbital two-particle functions follow by replacing the
frequency- and spin indices respectively.



Appendix C

Functional Derivation of the Dual
Fermion Approach

The following derivation of the dual action of the Hubbard model is based on the original
work of [Rubtsov et al., 2008]. The derivation is based on the action (path integral)
formalism, where the partition function of the Hubbard model follows as

Zhubbard =
∫
D[c, c]eShubbard[c,c]. (C.1)

Here c, c are fermionic Grassmann fields of the electrons and D represents the integration
over all paths. In the following the subscript label “hubbard” is dropped. More explicitly
the action of the Hubbard model follows as

S[c, c] = −c̄kνσG−1
kνσckνσ + U

∑
i

∫ β

0
dτ c̄i↑(τ)ci↑(τ)c̄i↓(τ)ci↓(τ), (C.2)

where the non-interacting lattice propagator is defined as

G−1
kνσ = iν + µ− ε~k. (C.3)

The non-local and local physics are formally separated by introducing the impurity ac-
tion to the above expression (which accounts to adding and subtracting a hybridization
function), such that

S[c, c] =
∑
i

Simp[c, c]−
∑
kνσ

(
∆(iν)− ε~k

)
c̄kνσckνσ, (C.4)

with the impurity action

Simp[c, c] = −c̄νσG−1
νσ cνσ + U

∫ β

0
c̄↑(τ)c↑(τ)c̄↓(τ)c↓(τ) (C.5)

and the impurity propagator

G−1
νσ = iν + µ−∆(iν). (C.6)
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In order to decouple impurity and lattice physics, a Hubbard-Stratonovich transforma-
tion is applied to relation (C.4), resulting in the new action1

S[c, c; f, f ] =
∑
i

Simp[c, c]

+
∑
kνσ

[
G−1
νσ

(
f̄kνσckνσ + c̄kνσfkνσ

)
+G−2

νσ

(
∆(iν)− ε~k

)−1
f̄kνσfkνσ

]
, (C.7)

where f, f are fermionic Grassmann fields of the dual fermions. Further the partition
function follows as

Z[c̄, c; f̄ , f ] = Zf

∫
D[c̄, c; f̄ , f ]e−S[c̄,c;f̄ ,f ], (C.8)

with an additional factor Zf = Gνσ(∆(iν)− ε~k) from the Hubbard-Stratonovich transfor-
mation. Up to this point the mapping between the initial problem and the dual problem is
exact. The functional derivative of the identical partition functions Z[c̄, c] and Z[c̄, c; f̄ , f ]
with respect to ε~k connects the lattice Green’s function Gkνσ and the dual Green’s function
G̃kνσ with

Gkνσ = (∆(iν)− ε~k)
−2G−2

νσ G̃kνσ + (∆(iν)− ε~k)
−1. (C.9)

By requiring ∑k G̃kνσ = 0, i.e. the dual propagator being completely non-local in space,
the hybridization function ∆(iν) is equivalent to the DMFT hybridization function.

In a last step the electrons are effectively integrated out of the action. For that matter
the coupling term between the electrons and dual fermions in relation (C.7) is Fourier
transformed into real space

∑
i

Scoupling[c̄, c; f̄ , f ] =
∑
kνσ

G−1
νσ

(
f̄kνσckνσ + c̄kνσfkνσ

)
=
∑
iνσ

G−1
νσ

(
f̄iνσciνσ + c̄iνσfiνσ

)
. (C.10)

Now, the electrons are integrated out by Taylor-expanding the action part including the

1The Hubbard-Stratonovich transformation is essentially a completion of the square in the Gaussian
part of the path integral. It expresses an interacting problem given by a quadratic form in the path
integral by a dual quadratic form and a coupling between the two. The dual problem may be chosen to
be non-local (as in this case) or, more common, non-interacting when decoupling the bare interaction,
overall resulting in a simplified, nevertheless exact, formulation of the initial problem.
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electrons at each site i, such that

Zsite =
∫
D[c̄, c]e−Simp−Scoupling =

∫
D[c̄, c]e−Simp×[

1− 1
2
∑
ν1ν2
σ1σ2

G−1
ν1σ1G

−1
ν2σ2

(
f̄iν1σ1fiν2σ2ciν1σ1 c̄iν2σ2 + {ν1 ↔ ν2;σ1 ↔ σ2}

)
+

+ 1
4

∑
ν1ν2ν3ν4
σ1σ2σ3σ4

G−1
ν1σ1G

−1
ν2σ2G

−1
ν3σ3G

−1
ν4σ4

(
f̄iν1σ1fiν2σ2 f̄iν3σ3fiν4σ4ciν1σ1 c̄iν2σ2ciν3σ3 c̄iν4σ4+

+ {ν1 ↔ ν2, ν3 ↔ ν4;σ1 ↔ σ2, σ3 ↔ σ4}+ ...
)

+O(N3)
]

= Zimp

[
1−

∑
νσ

G−1
νσ f̄iνσfiνσ+

+ 1
4

∑
ν1ν2ν3ν4
σ1σ2σ3σ4

G−1
ν1σ1G

−1
ν2σ2G

−1
ν3σ3G

−1
ν4σ4 f̄iν1σ1fiν2σ2 f̄iν3σ3fiν4σ4(Gc,ν1ν2ν3ν4

σ1σ2σ3σ4 + ...) +O(N3)
]

= Zimp

(
1−

∑
νσ

G−1
νσ f̄iνσfiνσ + V [f̄ , f ]

)
, (C.11)

where in the Taylor expansion only even orders result in a non-vanishing contribution as
creation and annihilation operators in either the electrons and the dual fermions need
to appear pairwise. The couplings between dual and real fermions due to the Taylor
expansion are now reintroduced to the action (C.7), resulting in the new action being
defined in terms of the dual variables only

S̃[f̄ , f ] =
∑
kνσ

[G−2
νσ

(
∆(iν)− ε~k

)−1
+G−1

νσ ]f̄kνσfkνσ +
∑
i

V [f̄ , f ] (C.12)

= −
∑
kνσ

G̃−1
kνσf̄kνσfkνσ +

∑
i

V [f̄ , f ]. (C.13)

By Taylor-expanding the action Scoupling in relation (C.11), one effectively assumes the
functional W ∼ lnZ. Thus, the interaction V [f̄ , f ] only includes connected propagators
Gc, excluding any disconnected contributions.



150 APPENDIX C. FUNCTIONAL DERIVATION OF THE DF APPROACH



Appendix D

Multi-orbital Hubbard Model

D.1 Half-filling Condition in DMFT
The half-filling conditions for N orbitals can be extracted from the local part of the
Anderson impurity model (see e.g. relation (3.22)). In the single orbital case (N = 1),
the local part of the Anderson impurity model is given by:

Hmn
at = 〈m| Ĥat |n〉 =


0 0 0 0
0 −µ 0 0
0 0 −µ 0
0 0 0 U − 2µ

 . (D.1)

Half-filling is obtained by setting the eigen-energy of the doubly occupied state U − 2µ
to be equal to the eigen-energy of the empty state ε0 = 0, resulting in a filling-symmetric
Hamiltonian. The condition for the chemical potential then follows as µ = U/2.

A straight-forward extension to the multi-orbital case requires the determination of
the eigen-energy of the fully occupied state |↑↓, ↑↓, . . .〉. In the multi-orbital case, the
SU(2)-symmetric Slater-Kanamori interaction may be parametrized by U, V and J . The
intra-orbital coupling U adds an energy cost for anti-parallel spins within a given orbital;
the inter-orbital coupling V adds an energy for having two electrons in different orbitals
independent of their spin; the Hund’s coupling J lowers the energy for parallel spins
between different orbitals. The total energy for the fully occupied state for N orbitals
may then be read off as presented in Table D.1. It is noted that the spin-flip and pair-
hopping term of the SU(2)-symmetric Slater-Kanamori interaction do not contribute to

Table D.1: Number of interaction terms contributing to the eigen-energy of the fully
occupied state in the local N -orbital Hamiltonian.

coupling number of terms
U (intra-orbital) N
V (inter-orbital) 2∑N

n=1 2(n− 1) = 2(N2 −N)
−J (Hund) 2∑N

n=1(n− 1) = N2 −N
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the total energy of the fully occupied state due to Pauli’s exclusion principle. This can be
directly verified by calculating the (vanishing) matrix elements of a fully occupied state
for the spin-flip or pair-hopping terms. Thus, the fully occupied state has the same energy
independent of the local interaction being SU(2)-symmetric or simply density-density.
In addition to the two-particle contributions stemming from the interaction part of the
Hamiltonian, the single-particle energy contributes with a factor −2Nµ, such that the
total eigen-energy of the fully occupied state is given by

εfull = NU + (N2 −N)(2V − J)− 2Nµ (D.2)

Assuming particle-hole symmetry, the chemical potential at half-filling follows by setting
ε0 = εfull, such that:

µ = U

2 + (N − 1)(V − J

2 ) (D.3)

For V = J = 0 only the intra-orbital coupling remains, so that µ = U/2 is recovered.
For the SO(N)× SU(2) symmetric Slater-Kanamori interaction, with V = U − 2J , the
chemical potential is given by µ = (N − 1

2)U − (N − 1)5
2J .
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D.2 Lowest-order Contributions to F

The number of components present in the vertex function F (and by extension also in the
two-particle Green’s function) can be determined by a perturbation expansion in terms
of the bare interaction vertex U . The following analysis is based on the SU(2)-symmetric
Slater-Kanamori bare interaction vertex, which is parametrized by U, V and J including
spin-flip and pair-hopping terms, as an extension to the density-density bare interaction
vertex, where the latter are missing.1

type component lowest order number of terms

flavor-diagonal ĉασ ĉ
†
ασ ĉασ ĉ

†
ασ U 2N

ĉασ ĉ
†
ασ ĉασ ĉ

†
ασ U 2N

ĉασ ĉ
†
ασ ĉασ ĉ

†
ασ U2,V 2, (V − J)2 2N

ĉασ ĉ
†
βσ ĉβσ ĉ

†
ασ V 4

(
N
2

)
ĉασ ĉ

†
ασ ĉβσ ĉ

†
βσ V 4

(
N
2

)
ĉασ ĉ

†
βσ ĉβσ ĉ

†
ασ V − J 4

(
N
2

)
ĉασ ĉ

†
ασ ĉβσ ĉ

†
βσ V − J 4

(
N
2

)
flavor off-diagonal ĉασ ĉ

†
ασ ĉβσ ĉ

†
βσ J (SF) 4

(
N
2

)
ĉασ ĉ

†
βσ ĉβσ ĉ

†
ασ J (SF) 4

(
N
2

)
ĉασ ĉ

†
βσ ĉασ ĉ

†
βσ J (PH) 4

(
N
2

)
ĉασ ĉ

†
βσ ĉασ ĉ

†
βσ J (PH) 4

(
N
2

)
ĉασ ĉ

†
βσ ĉασ ĉ

†
βσ J2 (SF + PH) 4

(
N
2

)
Table D.2: Perturbation order and number of components of the two-particle Green’s
function for the SU(2)-symmetric Slater-Kanamori interaction, with α 6= β and σ 6= σ.

The four operators of the two-particle Green’s function allow in principle for a total of
(2N)4 spin-orbital components for the two-particle Green’s function. Due to the structure
of the Slater-Kanamori interaction, only a subset of components results in a non-vanishing
contribution to the two-particle Green’s function as analyzed in detail in Table D.2.
Contributions with a single orbital index have a spin-multiplicity of 2 and a factor N for
the number of orbitals. Contributions with two orbital indices have a spin-multiplicity of 2,

1This discussion is especially relevant for CT-HYB implementations with diagonal hybridization
functions, which in the conventional way of “removing hybridization lines” do not sample all two-particle
objects, but only a subset of diagrams with pairwise flavor-diagonal outer legs. While for density-density
interactions, this is indeed no restriction, for more general interactions a significant amount of components
of the two-particle Green’s function is ignored.
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the binomial coefficient
(
N
2

)
for selecting 2 out of N orbitals and an additional factor 2 for

exchanging the two orbital indices. The number of pairwise flavor-diagonal components
Mdiag (Table D.2 upper category) for the two-particle Green’s function follows as:

Mdiag = 6N + 16
(
N

2

)
. (D.4)

The number of flavor-off-diagonal (i.e. four different flavors) components Moffdiag (Ta-
ble D.2 lower category) for the two particle Green’s function follows as:

Moffdiag = 20
(
N

2

)
. (D.5)

The total number of components M = Mdiag+Moffdiag for the two particle Green’s function,
thus follows as

M = 6N + 36
(
N

2

)
, (D.6)

which evaluates to M = {6, 48, 126, 240, 390} for N = {1, 2, 3, 4, 5}. The ratio of pairwise
flavor-diagonal components over the total number of components RN = Mdiag/M evaluated
in the limits of a single orbital is R1 = 1 and for infinitely many orbitals

R∞ = lim
N→∞

6N + 16
(
N
2

)
6N + 36

(
N
2

) = 4
9 , (D.7)

which means that approximately 44 percent can be attributed to pairwise flavor-diagonal
components. Already at N = 5, the ratio evaluates to R5 = 0.48.



Appendix E

Autocorrelation in CT-HYB

E.1 Error Estimation for Correlated Samples
In order to estimate the autocorrelation length it is necessary to compare the error
estimates for uncorrelated and correlated samples. A more detailed discussion of the
derivations is found elsewhere [Heistracher, 2016].

E.1.1 Standard Error of Uncorrelated Samples
In the following the expectation value of an observable A is denoted as 〈A〉. The sample
mean A for individual samples Ai for i = 1, ...N is defined as:

A = 1
N

N∑
i=1

Ai (E.1)

The expectation value of the mean follows as:

〈A〉 = 1
N
〈
N∑
i=1

Ai〉 = N

N
〈A〉 = 〈A〉, (E.2)

where 〈Ai〉 = 〈A〉. Thus, the expectation value of the mean is the expectation value of
the observable itself, such that the mean is often considered as an approximation to the
expectation value A ≈ 〈A〉. The square of the standard error is defined as:

σ2
A =

〈 (
A− 〈A〉

)2 〉
(E.3)

Expanding the mean in the above expression yields:

σ2
A =

〈
A

2〉− 2
〈
A
〉〈
A
〉

+
〈
A
〉2

=
〈
A

2〉− 〈A〉2
(E.4)

The expectation value of the square of the mean needs to be evaluated explicitly:

〈
A

2〉 =
〈( 1
N

N∑
i=1

Ai
)2〉

=
〈 1
N2

N∑
i=1

A2
i

〉
+
〈 1
N2

N∑
i 6=j

AiAj
〉

= 1
N

〈
A2
〉

+ N − 1
N

〈
A
〉2
, (E.5)
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where for uncorrelated samples 〈AiAj〉 = 〈Ai〉〈Aj〉 = 〈A〉2. The standard square of the
error follows as:

σ2
A = 1

N

(〈
A2
〉
−
〈
A
〉2
)

= 1
N

Var(A) (E.6)

The above relation encodes the 1/
√
N error scaling encountered in Monte Carlo.

E.1.2 Standard Error of Correlated Samples
For correlated samples 〈AiAj〉 6= 〈Ai〉〈Aj〉. Thus, equation (E.6) needs to be corrected
with:

σ2
A = 1

N
Var(A) + 1

N2

N∑
i 6=j

(
〈AiAj〉 − 〈A〉2

)
. (E.7)

This correction term includes the auto-correlation length:

1
N2

N∑
i 6=j

(
〈AiAj〉 − 〈A〉2

)
= 2
N2

N∑
i<j

(
〈AiAj〉 − 〈A〉2

)
(E.8)

= 2
N2

N−1∑
t=1

N−t∑
i=1

(
〈AiAi+t〉 − 〈A〉2

)
(E.9)

≈ 2
N

∞∑
t=1

(
〈A1A1+t〉 − 〈A〉2

)
, (E.10)

where in the approximation a large samples size of N →∞ is considered, such that one
of the two sums can be reduced by considering any one sample as a reference point. With
the auto-correlation length defined as

τA =

∑∞
t=1

(
〈A1A1+t〉 − 〈A〉2

)
Var(A) (E.11)

the square of the standard error for correlated samples follows as:

σ2
A = Var(A)

(
1 + 2τA

)
N

. (E.12)

While in principle, the 1/
√
N error scaling in Monte Carlo is preserved even for correlated

configurations of a Markov chain, the error scaling further obtains a
√

1 + 2τA factor,
which enlarges the error.



Appendix F

Symmetric Improved Estimators

F.1 Two-particle Symmetric Improved Estimator

In the following derivation of the two-particle symmetric improved estimator, the single-
orbital Hubbard model is considered and the following derivations are in analogy to the
one-particle symmetric improved estimator in Section 3.4.1. In order to simplify the
following equations, the three fermionic operators occurring at equal time are written in
a compact form as:

q̂σ := n̂−σd̂σ = d̂†−σd̂−σd̂σ (F.1)
q̂†σ := d̂†σn̂−σ = d̂†σd̂

†
−σd̂−σ. (F.2)

Some of the following intermediate steps are not shown explicitly, but are in principle
equivalent to the steps in Section 3.4.1. This includes the evaluation of commutators
of fermionic operators with the AIM Hamiltonian (i.e. Heisenberg equation of motion),
originating of the time-derivative of the specific operator. The resulting expression in-
cludes a mixed bath-impurity expectation value, which can be expressed as an impurity
expectation value by applying an equation of motion onto the bath operator. Intuitively,
the equation of motion procedure sets an impurity expectation value in relation to a
lower-order impurity expectation value multiplied by a non-interacting Green’s function.
Additional terms are generated by the time-derivative of the time ordering symbol Tτ .

The hierarchy of equation of motions for the two-particle Green’s function is defined
as:

∂τ1〈Tτ d̂σ1(τ1)d̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 = R1 + 〈Tτ∂τ1 d̂σ1(τ1)d̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉
(
∂τ1 + µ−∆σ1(τ1)

)
〈Tτ d̂σ1(τ1)d̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 =

R1 + U〈Tτ q̂σ1(τ1)d̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 (F.3)
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∂τ2〈Tτ q̂σ1(τ1)d̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 = R2 + 〈Tτ q̂σ1(τ1)∂τ2 d̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉
(
−∂τ2 + µ−∆σ2(τ2)

)
〈Tτ q̂σ1(τ1)d̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 =

−R2 + U〈Tτ q̂σ1(τ1)q̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 (F.4)

∂τ3〈Tτ q̂σ1(τ1)q̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 = R3 + 〈Tτ q̂σ1(τ1)q̂†σ2(τ2)∂τ3 d̂σ3(τ3)d̂†σ4(τ4)〉
(
∂τ3 + µ−∆σ3(τ3)

)
〈Tτ q̂σ1(τ1)q̂†σ2(τ2)d̂σ3(τ3)d̂†σ4(τ4)〉 =

R3 + U〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)d̂†σ4(τ4)〉 (F.5)

∂τ4〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)d̂†σ4(τ4)〉 = R4 + 〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)∂τ4 d̂†σ4(τ4)〉
(
−∂τ4 + µ−∆σ4(τ4)

)
〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)d̂†σ4(τ4)〉 =

−R4 + U〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)q̂†σ4(τ4)〉 (F.6)

The remaining terms Ri result from the time-derivative of the time-ordering symbol Tτ ,
with:

R1 = δ(τ1 − τ2)δσ1σ2〈Tτ d̂σ3(τ3)d̂†σ4(τ4)〉 − δ(τ1 − τ4)δσ1σ4〈Tτ d̂σ3(τ3)d̂†σ2(τ2)〉 (F.7)

R2 = −δ(τ1 − τ2)〈Tτ{q̂σ1 , d̂
†
σ2}(τ1)d̂σ3(τ3)d̂†σ4(τ4)〉

+ δ(τ2 − τ3)δσ2,σ3〈Tτ q̂σ1(τ1)d̂†σ4(τ4)〉 (F.8)

R3 = −δ(τ1 − τ3)〈Tτ{q̂σ1 , d̂σ3}(τ1)q̂†σ2(τ2)d̂†σ4(τ4)〉−
δ(τ2 − τ3)〈Tτ q̂σ1(τ1){q̂†σ2 , d̂σ3}(τ2)d̂†σ4(τ4)〉+ δ(τ3 − τ4)δσ3,σ4〈Tτ q̂σ1(τ1)q̂†σ2(τ2)〉 (F.9)

R4 = −δ(τ1 − τ4)〈Tτ{q̂σ1 , d̂
†
σ4}(τ1)q̂†σ2(τ2)q̂σ3(τ3)〉− (F.10)

δ(τ2 − τ4)〈Tτ q̂σ1(τ1){q̂†σ2 , d̂
†
σ4}(τ2)q̂σ3(τ3)〉 − δ(τ3 − τ4)〈Tτ q̂σ1(τ1)q̂†σ2(τ2){q̂σ3 , d̂

†
σ4}(τ3)〉

The anti-commutators in the above relations can be evaluated explicitly by setting the
spin-indices σi to either σ or −σ, i.e. considering specific components of the two-particle
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Green’s function. Combining the above hierarchy into a single equation, one finds:

Gτ1,τ2,τ3,τ4
σ1,σ2,σ3,σ4 = 1

∂τ1 + µ−∆σ1(τ1)

(
R1 + U

−∂τ2 + µ−∆σ2(τ2)×(
−R2 + U

∂τ3 + µ−∆σ3(τ3)

(
R3 + U

−∂τ4 + µ−∆σ4(τ4)×(
−R4 + U〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)q̂†σ4(τ4)〉

))))
(F.11)

As each of the Ri terms represents a Monte Carlo estimator in itself it is better to
assemble the two-particle Green’s function in Matsubara space. The above expression for
the two-particle Green’s function in Matsubara frequencies follows as:

Gν,ν′,ω
σ1,σ2,σ3,σ4 = G(ν)

(
F(R1) + UG(ν − ω)

(
−F(R2) + UG(ν ′ − ω)

(
F(R3)+

UG(ν ′)
(
−F(R4) + UF

[
〈Tτ q̂σ1(τ1)q̂†σ2(τ2)q̂σ3(τ3)q̂†σ4(τ4)〉

] ))))
(F.12)

In the Matsubara domain the error scaling of the symmetric improved estimator becomes
obvious. If one assumes a constant Monte Carlo error on the symmetric improved estimator
and no error on the estimators encoded in the Ri terms, the high-frequency error of the
two-particle Green’s function is supressed by O(iv−4). In the following the Ri terms
are calculated in particle-hole Matsubara representation for the Gνν′ω

σσσσ component of the
two-particle Green’s function:

F(R1) =
∫
eiν(τ1−τ2)eiν

′(τ3−τ4)eiω(τ2−τ3)

δ(τ1 − τ2)〈Tτ d̂σ(τ3)d̂†σ(τ4)〉−

δ(τ1 − τ4)〈Tτ d̂σ(τ3)d̂†σ(τ2)〉
dτ

= δω0Gσ(ν ′)− δνν′Gσ(ν ′ − ω) (F.13)

F(R2) =
∫
eiν(τ1−τ2)eiν

′(τ3−τ4)eiω(τ2−τ3)

− δ(τ1 − τ2)〈Tτ n̂−σ(τ1)d̂σ(τ3)d̂†σ(τ4)〉+

δ(τ2 − τ3)〈Tτ q̂σ(τ1)d̂†σ(τ4)〉
dτ

= −
∫
eiν
′(τ3−τ4)eiω(τ2−τ3)〈Tτ n̂−σ(τ2)d̂σ(τ3)d̂†σ(τ4)〉dτ+

δνν′
∫
eiν(τ1−τ4)〈Tτ q̂σ(τ1)d̂†σ(τ4)〉dτ (F.14)
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F(R3) =
∫
eiν(τ1−τ2)eiν

′(τ3−τ4)eiω(τ2−τ3)

− δ(τ2 − τ3)〈Tτ q̂σ(τ1)n̂−σ(τ2)d̂†σ(τ4)〉+

δ(τ3 − τ4)〈Tτ q̂σ(τ1)q̂†σ(τ2)〉
dτ

=
∫
eiν(τ1−τ2)eiν

′(τ2−τ4)〈Tτ q̂σ(τ1)n̂−σ(τ2)d̂†σ(τ4)〉+

δω0

∫
eiν(τ1−τ2)〈Tτ q̂σ(τ1)q̂†σ(τ2)〉dτ (F.15)

F(R4) =
∫
eiν(τ1−τ2)eiν

′(τ3−τ4)eiω(τ2−τ3)

− δ(τ1 − τ4)〈Tτ n̂−σ(τ1)q̂†σ(τ2)q̂σ(τ3)〉−

δ(τ3 − τ4)〈Tτ q̂σ(τ1)q̂†σ(τ2)n̂−σ(τ3)〉
dτ (F.16)

In order to fully profit of the superior scaling of the two-particle symmetric improved
estimator, another hierarchy of equations of motion needs to be applied onto the R1, R2 and
R3 to all remaining “free” fermionic operators. That is, for example for R1, the one-particle
Green’s functions need to be represented as one-particle symmetric improved estimators.
Essentially, this procedure advances some parts of R1, R2 and R3 to deeper levels of
the hierarchy. The error scaling of the final two-particle Green’s function expression is
nevertheless determined by the Ri terms and not the two-particle symmetric improved
estimator itself. Assuming the error of the one-particle Green’s function to scale with
O(iv−2) in R1, the error in the two-particle Green’s function is supressed by O(iv−3), due
to the additional non-interacting propagator in (F.13).

The expressions of the Gνν′ω
σσ−σ−σ component, or the crossing symmetric Gνν′ω

σ−σ−σσ com-
ponent can be derived in a similar fashion. However, the anti-commutators evaluate
differently when combining opposite flavor combinations, generating different overall con-
tributions.
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[Läuchli and Werner, 2009] Läuchli, A. M. and Werner, P. (2009). Krylov implementation
of the hybridization expansion impurity solver and application to 5-orbital models. Phys.
Rev. B, 80:235117.

[LeBlanc et al., 2015] LeBlanc, J. P. F., Antipov, A. E., Becca, F., Bulik, I. W., Chan, G.
K.-L., Chung, C.-M., Deng, Y., Ferrero, M., Henderson, T. M., Jiménez-Hoyos, C. A.,
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[Valli et al., 2015] Valli, A., Schäfer, T., Thunström, P., Rohringer, G., Andergassen, S.,
Sangiovanni, G., Held, K., and Toschi, A. (2015). Dynamical vertex approximation in its
parquet implementation: Application to hubbard nanorings. Phys. Rev. B, 91:115115.

[Van Hove, 1953] Van Hove, L. (1953). The occurrence of singularities in the elastic
frequency distribution of a crystal. Phys. Rev., 89:1189–1193.

[Veschgini and Salmhofer, 2013] Veschgini, K. and Salmhofer, M. (2013). Schwinger-
Dyson renormalization group. PRB, 88:155131.

[Vidberg and Serene, 1977] Vidberg, H. J. and Serene, J. W. (1977). Solving the eliashberg
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