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Kurzfassung

Das Examination Timetabling Problem (ETP) ist eine wichtige Aufgabe, die regelmäßig
an Universitäten, Hochschulen und Schulen auftritt. Eine allgemeine Definition des ETP,
welche die meisten Fälle abdeckt, lautet: ein Timetabing Problem ist ein Problem mit vier
Parametern: T, eine endliche Menge von Zeiten; R, eine endliche Menge von Ressourcen;
M, eine endliche Menge von Ereignissen; und C, eine endliche Menge von Bedingungen.
Das Problem besteht darin, den Ereignissen Zeiten und Ressourcen zuzuweisen, um die
aufgestellten Bedingungen so gut wie möglich zu erfüllen. Ein besonderer Fokus ist jedoch
aufgrund ihrer praktischen Ausrichtung auf die Formulierung auf dem ITC 2007 gerichtet.

Die Prüfungspläne wurden seit Jahren untersucht und die NP-Vollständigkeit einiger
Formulierungen wurde bewiesen. Daher ist die Verwendung von exakten Methoden
zeitraubend. Obwohl viele verschiedene Heuristiken entwickelt wurden, gibt es keinen
bekannten Algorithmus, der in allen Problemfällen optimal ist. Nach dem No Free
Lunch Theorem ist diese Situation sogar unmöglich. Um eine bessere Performance zu
erzielen, können wir daher die Heuristik mit den besten Ergebnissen für eine konkrete
Instanz auswählen. Diese Aufgabe wird allgemein als das Algorithm Selection Problem
(AS) bezeichnet, bei dem die Frage ist, welcher der gegebenen Algorithmen die besten
Ergebnisse für eine gegebene Instanz unter Verwendung einer bestimmter Instanzattribute
erhält. Zusätzlich kann es praktisch nützlich sein, die Qualität der Lösung vorherzusagen,
die von einer bestimmten Heuristik erhalten wird. Dieses Problem wurde als das Algorithm
Performance Prediction Problem (APP) bezeichnet.

In dieser Arbeit präsentieren wir die Lösung für das Algorithm Selection Problem und
das Algorithm Performance Prediction Problem für die ITC2007 Formulierung das ETP
mit Techniken des Maschinellen Lernens. Dazu präsentieren wir ein Set von 196 rele-
vanten Attributen und evaluieren außerdem die 3 modernen Heuristiken für das ETP
auf dem Datensatz von 2243 realen und künstlich erzeugten Instanzen. Die Ergebnisse
dieser Experimente ist, dass kein Algorithmus die anderen für alle Instanzen übertrifft.
Anschließend verwenden wir 6 Klassifikationsalgorithmen und 9 Regressionstechniken
zur Lösung die AS und die APP Problems. Darüber hinaus untersuchen wir den Einfluss
der Parametereinstellungen und Attributtransformationstechniken auf die Performan-
ce des Schaetzfunktion. Darüber hinaus untersuchen wir die Bedeutung bestimmter
Attributgruppen für die AS- und APP-Probleme.
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Als Ergebnis ist es uns gelungen, ziemlich genau die Performancevorhersagemodelle für
das APP und die Konstruktion des AS-Solver zu erstellen, die alle ihre zugrundeliegenden
Heuristiken einzeln übertreffen.



Abstract

The Examination Timetabling Problem (ETP)is an important task that appears periodi-
cally at universities, colleges and schools. A general definition of the timetabling problem
which covers most cases is as follows: a timetabling problem is a problem with four
parameters: T, a finite set of times; R, a finite set of resources; M, a finite set of exams;
and C, a finite set of constraints. The problem is to assign times and resources to the
exams so as to satisfy the constraints as much as possible. However, due to its practical
focus, a particular point of interest is the formulation presented on the ITC 2007.

Examination timetabling has been studied for years, and NP-completeness of some
formulations was proven. Therefore exact methods can not always solve large instances
in a reasonable time. Although a lot of different heuristics have been developed, there is
no known algorithm that dominates on all problem instances. Moreover, according to
the No Free Lunch Theorem, this situation is in fact impossible. Therefore, in order to
achieve better performance, we can choose the best performing heuristic for a particular
instance using a set of predefined instance characteristics. This task is commonly known
as the Algorithm Selection Problem (AS). Additionally, it might be practically useful
to be able to predict the quality of the solution obtained by a certain solver on a given
instance. This problem has been named the Algorithm Performance Prediction Problem
(APP).

In this thesis, we present the solution for the Algorithm Selection and the Algorithm
Performance Prediction Problems for the ITC2007 formulation of the ETP using Machine
Learning techniques. For that, we introduce a set of characteristics which consists
of 196 features. Also, we collect 3 State-Of-The-Art heuristics for the ETP and run
them on the dataset of 2243 real-world and artificially generated instances. We find
none of the algorithms outperforms the others for all instances. Subsequently, we use
6 classification algorithms and 9 regression techniques for solving the AS and the APP
problems respectively. Additionally, we investigate the influence of the parameter settings
and preprocessing techniques on estimator performance. Moreover, we inspect the
importance of particular feature groups for the AS and APP problems.

As a result, we succeed in the building of rather accurate performance prediction models
for the APP and construction of the AS solver that outperforms all of their underlying
heuristics individually.
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CHAPTER 1
Introduction

The Examination Timetabling Problem (ETP) is an important task that appears at
least twice in a year in different educational institutions. The quality of the constructed
timetables is especially important as it influences numerous stakeholders including lectures
and students. However, as real-word instances consist of thousands of students and
hundreds of exams, it is challenging to construct manually a good quality timetable in a
reasonable amount of time. Moreover, some of the formulations of the ETP have been
proven to be NP-compete [CK96]. As a result, the ETP obtained high research attention
since the 1960s, and it significantly increased in the last decades.

Burke et al [BKdW04] defined a general timetabling problem as follows: timetabling is a
problem that consists of the following four parameters: T, a finite set of times; R, a finite
set of resources; M, a finite set of events (exams); and C, a finite set of constraints. The
problem is to assign times and resources to the meetings so as to satisfy the constraints
as far as possible. However, there are many formulations of the ETP as scheduling
requirements vary from one university to another.

Although there were many algorithms developed for different problem formulations, due
to limitations and variations of the formulations the methods were barely helpful in
practice. Thus, in the International Timetabling Competition 2007 the ETP formulation
has been extended and unified with the potential to solve practical instances. Moreover,
a new benchmark dataset of real-world instances has been presented.

However, due to NP-completeness and problem size, the usage of exact methods that
explore the complete search space and guarantee the optimality of the solution is infeasible.
Therefore, most approaches are heuristics that can provide a fairly good solution in a
reasonable amount of time. Nevertheless, there is no known algorithm that outperforms
the others in all problem instances. Moreover, conforming to the No Free Lunch Theorem
[WM97] domination of one technique is even impossible. Due to the complexity of the
Examination Timetabling Problem choosing the best solver for a particular instance
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1. Introduction

manually can be hard and therefore we face the question: can we find a way to predict
which of the given algorithms will obtain the best solution on a given instance. This task
is commonly known as the Algorithm Selection Problem.

The Algorithm Selection Problem was introduced by Rice [Ric76] and he presented a
formal abstract model with 4 main components, namely: the problem space P with
instances of the problem, the feature space F with measurable characteristics of the
instances, the set of available algorithms A and the performance space Y . In present time
Machine Learning techniques are widely used to solve the Algorithm Selection Problem
where the features combined with performance metrics across the instances solved by
different solvers. One of the most important questions in Algorithm Selection is still
finding a set of relevant features which would be suitable for a given problem.

Additionally, as algorithm performance vary across the instance space, it might be
practically useful to get an idea about the quality of the solution without actually
constructing a timetable. This scenario arises when, for example, we need to optimize
the usage of certain resources, therefore, we need to test several settings, and choose the
best one. This problem is considered as the Algorithm Performance Prediction (APP)
problem that has been formally described by Leyton-Brown [LBNS06]. Interestingly, we
can also solve the APP problem by application of ML techniques.

The goal of this thesis is application of various Machine Learning techniques for solving
the Algorithm Selection and Performance Prediction problems for the Examination
Timetabling Problem on per instance basis using formulation from the ITC 2007 compe-
tition. For this purpose, we expect to find new features based on problem description of
the ETP and by reducing the ETP to other well-known problems. Besides, using feature
selection techniques, we try to determine which features provide the best characteristics
of the instance in general and characterize the empirical hardness for a certain solver.

On the one hand, we will use various classification algorithms for tackling the Algorithm
Selection Problem directly. Additionally, we will predict the quality of the solution
obtained by a certain solver after a predefined amount of time by constructing performance
prediction models using regression techniques. Finally, the performance of the Algorithm
Selection approach will be compared with the results of State-Of-The-Art algorithms for
the ETP. Additionally, the influence of different parameter settings and preprocessing
techniques for the performance of different estimators will be evaluated.

1.1 Objectives

The objectives of this thesis are the following:

• Investigation of State-Of-The-Art techniques developed for the ETP formulation
from the ITC 2007 competition and comparison of their performance on represen-
tative instance set;
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1.2. Main Results

• Examination of already known features for the ETP, construction of a new set
of features and identifying the most important attributes that characterize the
problem instance the best;

• Development of performance prediction models in order to predict the solver score
obtained on given instance;

• Exploring Machine Learning techniques for solving the Algorithm Selection Problem
for the ETP and analyzing the impact of different preprocessing techniques and
parameter configurations for the estimator performance;

• Comparing the results of application of Machine Learning approaches for the
Algorithm Selection with the results of State-Of-The-Art heuristics for the ETP.

1.2 Main Results

The main contributions of this thesis are:

• We investigated performance of 3 State-Of-The-Art techniques on set of 2248
instances that contains real-world and artificially created instances. We observed
that none of the methods outperform all other algorithm in all instances;

• We constructed a feature set containing 196 attributes for characterizing the
problem instance of the ETP based on the problem description and the reduction
to graph-related problems. Additionally, we identified important features for the
classification and the regression tasks using various variable selection methods;

• We built up a set of accurate performance prediction models using new constructed
features where 9 different regression approaches have been tested. These mod-
els allow us to predict the solution quality obtained by a certain solver after
predetermined amount of time;

• We applied 6 classification algorithms with the feature set to tackle the Algorithm
selection problem directly;

• We performed proper parameter tuning and inspected the impact of various pre-
processing methods into prediction results;

• Finally, we compared the developed Algorithm Selection approach with the perfor-
mance of underlying heuristics. As a result, our approach was significantly better
than any of the investigated algorithms individually.

3



1. Introduction

1.3 Structure of the text
This thesis consists of the following chapters: Chapter 2 focuses on the Examination
Timetabling Problem, its formulation and various approaches developed for tackling
the ETP. In Chapter 3 we present the Rice framework for the Algorithm Selection
problem and define the concept of Empirical Hardness Models for performance prediction.
Additionally, we observe some components of the Rice framework in detail. Also,
we provide a short overview on related work on algorithm selection and performance
prediction. In Chapter 4 we describe the experimental settings for the Algorithm
Selection and Performance Prediction Problems for the ETP using components of the
Rice framework. We specify the data and the methods used for identifying the instance, the
algorithm, the feature and the performance space for the ETP. In Chapter 5, we present
the experimental results and evaluate the impact of various preprocessing techniques and
parameter settings on estimator performance. In Chapter 6 we summarize the results
and discuss possible future work.

4



CHAPTER 2
The Examination Timetabling

Problem

2.1 Problem statement

The Examination Timetabling Problem (ETP) is one of the most challenging tasks that
regularly appears at universities, schools and colleges and has been studied since the
1960s. Below a general definition of timetabling is provided as in [BKdW04] and is
appropriate for most cases.

A timetabling problem is a problem with four parameters: T, a finite set
of times; R, a finite set of resources; M, a finite set of meetings; C, a finite
set of constraints.

The problem lies in assigning times and resources to the meetings so as to satisfy the
constraints as much as possible. Based on institution requirements, the timetabling
problem can be formulated either as a decision problem, where the question of the
possibility of finding any schedule that satisfies all the constraints is faced, or as an
optimization problem, where the solution does not violate any hard constraints and
satisfies as many of the soft constraints as possible based on the given objective function.
The NP-completeness of the decision problem was first proven in 1996 in five separate
ways where the constructed instances were being actually appear in practice [CK96].

Educational timetabling problems can be also classified depending on their purposes
and the institutions involved in school timetabling, course timetabling and examination
timetabling. Every class of scheduling is usually discussed separately, and it is because
of this that this thesis will concentrate on the Examination Timetabling Problem. In
addition, there are different formulations of the ETP as scheduling requirements vary from
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2. The Examination Timetabling Problem

one university to another; therefore, some benchmark datasets together with different
problem formulations were established. Nevertheless, in most cases the ETP is represented
as optimization problem.

One of the most well-known benchmark data is the Toronto dataset, and over the years,
researchers have used it to compare designed algorithms. This dataset, based on 13
real-world exam timetabling problems from Canadian high schools and universities, was
introduced by Carter [CLL96] in 1996. Two different objectives were defined: either
to find the shortest feasible timetable or minimize the average cost per student with
the calculation depending on the constraints’ violation. Over the years, additional
constraints for the Toronto dataset were also introduced and tested, for example in
[BNW96] [TMW99]. Other benchmark datasets that regularly appear in the literature are
Nottingham Benchmark Data, introduced in [BNW96], and Melbourne Benchmark Data,
published in [Bar96]. Additionally, due to high research attention paid to educational
scheduling, two International Timetabling Competitions were organized, namely in 2002
[Net] and 2007 [Gro]. In ITC 2007, the problem model for the ETP was extended and the
new, highly-constrained formulation was put forward in comparison with the previously
provided models. In this thesis, this model is the primary focus due to its high potential
to solve the practical instances of the problem.

The ITC 2007 problem model [MM08] is formulated as an optimization problem and
consists of the following:

• A list of periods over a specified length of time where the periods’ lengths are
provided;

• A set of exams is to be assigned to specified periods with sets of students enrolled
into each exam where each student can be enrolled into several exams;

• A set of rooms with individual capacities;

• A set of soft and hard constraints.

A timetable is considered to be feasible if it satisfies all hard constraints of the problem:

• All exams must have assigned periods and rooms;

• No student may attend two or more examinations at the same time;

• The number of students attending any exam must not exceed the capacity of the
assigned room;

• Period- and room-related constraints are met;

• Period duration restrictions are satisfied.

6



2.2. Algorithms for the Examination Timetabling Problem

The penalty for the constructed timetable is calculated based on the number of occurrences
of the following soft constraints:

• Two in a row – the student has to attend two exams in a row on the same day;

• Two exam a day – the student has to attend two or more exams on the same
day;

• Period spread – the student has to attend more than one exam within a specified
period;

• Mixed duration – exams with different durations that are assigned to the same
room;

• Large exam allocation - large exams are assigned later in the timetable;

• Room- and period-related soft constraints – use of specific time periods and
rooms that has an associated penalty.

The quality of the timetable is measured by the hard constraints violation (distance to
feasibility) and the weighted sum of the soft constraints violation. As the new model
was constructed using a real-world perspective, soft constraint weightings for resource
specific constraints are provided in the data itself within the “Institutional Model Index”
instead of in the problem formulation.

2.2 Algorithms for the Examination Timetabling Problem
In this section, we would like to provide a short overview of the different approaches that
have been developed since the 1960s. As previously mentioned, the decision variant of
the ETP is NP-complete, and the optimization variant can be formulated as a decision
problem as well. A determination must then be made as to whether or not it is possible
to find a solution with a given value of the objective function. Therefore, the optimal
solution can only be found for small instances of the ETP, but usually in practice each
instance has to assign at least few hundred exams. Another possibility would be to
reduce the ETP to other well-known problems that can be solved separately, e.g., the
satisfiability problem (SAT) or the Graph Coloring Problem (GCP). Nevertheless, soft
constraints are often contradictory, so satisfying all constraints would be impossible. This
fact makes reduction difficult because in complete mapping, no solution will be found,
or, alternatively, the question of which constraints to satisfy will be faced. However,
researches often use algorithms developed for other problems. For example, graph coloring
approaches are commonly employed as construction heuristics for the initial solution.

Because of the reasons described above, heuristics methods are necessary. While they
do not guarantee that the optimal solution will be obtained, satisfactory results can
be reached within a reasonable amount of time. Moreover, many successful approaches
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2. The Examination Timetabling Problem

consist of a combination of different techniques. Thus the classification of different
methods depends on the primary technique in use. For more information, the following
surveys [QBM+09, Sch99, CLL96] may be referenced.

2.2.1 Graph Based Techniques

Firstly, the connection between the timetabling problem and the GCP was established in
1967 by Welsh and Powel [WP67], so that was when research on the use of graph heuristics
in timetabling problems began. Graph coloring heuristics had a great impact on early
timetabling research [Car86], and today they are often utilized as construction heuristics
within hybrid techniques due to their relatively short runtime and simple implementation.
As previously mentioned, there are some potential problems with reduction that can occur
when searching for an optimal solution. However, it is possible to map the ETP to the
GCP to some extent. For the given ETP, a graph is constructed in such a way that each
exam is represented by a vertex, and an edge exists between two vertices if two exams
cannot be assigned in the same period or one of the hard constraints will be violated.
The typical question for the GCP is a graph can be colored using p different colors so
that none of the adjacent vertices have the same color corresponds to the question of
assigning exams into available timeslots. Nevertheless, soft constraints still need to be
taken into account separately.

Graph heuristics mostly use a special order according to how difficult it is to place the
exam into periods without violating any of the constraints. Moreover, some specific
strategies for choosing the timeslot can be used as well. A wide variety of such strategies
and their modifications have appeared in the literature [QBM+09, Car86]. In the section
below, some popular techniques from this family of algorithms will be be discussed.

The largest degree first (LDF) [WP67] heuristic is based on the idea that exams
that have the most conflicts with other exams are harder to schedule. Hence, all courses
are ordered decreasingly by the node degree of every vertex, and the hardest instances are
placed foremost into the first suitable timeslot. In the technique largest degree first:
fill from the top (LDFT) [PW66], exams have the same order as in the previously
described method, but we assign as many exams as possible to the first time period, then
move forward to the next timeslot and continue until all the vertices are assigned. The
Largest degree first recursive: fill from the top (LDFRT) method was proposed
in 1978 [Car78] and is similar to the latter algorithm. The difference is that after every
assignment the exam is removed after coloring and then the new nodes’ degrees are
recalculated in the residual graph before the next iteration. The saturation degree
heuristic (SATUR) [Bre79] was developed based on assumption that exams that have
the largest amount of available timeslots are easier to assign, so it is used increasing order,
depending on how many available timeslots an exam has. The coloring is performed
similarly to the LDF heuristic. The Largest Enrollment (LE) strategy was first
employed in [Zel74] and provides an order depending on how many students registered
for the exam. The color degree (CD) algorithm [CLL96] uses the decreasing order
of number of conflicts that an exam has with an already scheduled exam. Moreover,
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2.2. Algorithms for the Examination Timetabling Problem

the method of using random ordering (RO) of the vertices was employed in [CLL96] to
compare different techniques and is often used to introduce randomness into the combined
approaches.

Additionally, advanced methods based on combining different techniques were widely
developed. Burke et al [BNW99] introduced randomness in a hybridized algorithm
utilizing LDF, SATUR and CD which uses the following two strategies for selection:
tournament selection that randomly takes one of the top exams from one of the lists or
bias selection. The adaptive ordering strategy [BN04] was implemented in 2004 as part
of the iterative method which uses dynamic ordering instead of a static one. Depending
on how difficult the exam assignment was during the previous iterations, a new order
is created. Also, different reassigning techniques, such as backtracking (e.g. [CLL96])
and look ahead [BN99], in addition to graph coloring methods were widely studied and
implemented in the literature.

2.2.2 Local-search Based Techniques

Local search techniques have been successfully employed to solve a lot of different and
difficult computational problems, including timetabling problems. The main idea of
these algorithms is to search in the neighborhood from the initial solution to what is
deemed the optimal solution where the solution quality is defined by the given objective
function. These methods have been widely used for the ETP as the constraints can be
easily handled. In the following subchapter, we will describe the most popular methods
while focusing on techniques developed for the ITC 2007 formulation.

Simulated Annealing

Firstly, Simulated Annealing (SA) was introduced by Kirkpatrick et al [KGV83] in 1983
and then widely investigated by Laarhoven et al [vLA87]. Simulated Annealing is a
probabilistic local search algorithm that was inspired by natural annealing and the
crystallization processes and proceeds with the goal to reach the global optimum of an
objective function. At the beginning, the algorithm accepts worse moves with higher
probability that helps to extend the search space. At the end of the procedure, the
probability gradually decreases, so the algorithm converges to the optimum. This method
has a lot of parameters that can be tuned, and the result is directly dependent on the
parameter configuration.

One of the first successful applications of Simulated Annealing was presented in 1998 by
Thompson and Downsland [TD98] when they developed the two-stage approach. The
first phase was used to search for a feasible solution, and the quality of the timetable
was improved during the second phase based on soft constrains satisfaction. Another
hybrid technique using SA was developed in 2003 by Merlot et al [MBHP03] where
the initial solution was constructed by Constraint Programming Techniques. SA was
then used together with the modified Kempe chain neighborhood to find the optimal
solution. Finally, the Hill Climbing procedure has also been employed for further solution
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2. The Examination Timetabling Problem

improvement. Notably, this solver has achieved the best results for some of the benchmark
instances. Another important outgoing work was published by Battistutta et al [BSU14]
in 2014 where the single-stage SA technique was proposed together with feature-based
parameter tuning. Optimal parameters for the algorithm were found using the regression
model. Furthermore, this solver has been able to achieve the best scores for a few
instances of ITC 2007 formulation. It has been shown that with good parameter settings,
the solver based on SA can outperform some specific state-of-the art algorithms for
certain formulation.

In addition, some modifications of the SA procedure are widely used in current research,
such as the Great Deluge algorithm (GD) that was introduced by Duek [Due90] as an
alternative to SA. In this procedure, bad moves are accepted regarding current solution
just in case if the penalty of candidate solution is below predefined level. Such level is
decreasing with the time and so the algorithm will converge at some point.

Burke et al in 2004 [BBNP04] applied GD algorithms for the Toronto and Nottingham
datasets, and the authors were able to obtain good results. In addition, the initial
solution in this solver was constructed using the Saturation Degree heuristic that runs
several times. Mueller from Purdue University, the winner of Examination Timetabling
track in the ITC 2007 [Mue09], proposed a three-phased approach where the last phase
is based on a GD algorithm. In this solver, the feasible solution is constructed using the
Iterative Forward Search, and in the next stage, the Hill Climbing method is employed to
find the local optima. Lastly, as mentioned before, the Great-Deluge approach has been
applied for solution improvement. This solver is still producing the best scores for some
benchmark instances of the ITC 2007 formulation. Another successful approach for the
ITC 2007 formulation was developed by McCollum et al [MMP+09] where the extended
variant of the Great Deluge Algorithm was employed. Construction of the initial solution
was performed utilizing the adaptive ordering heuristic [BN04] where it is used a few
times to achieve better solution quality.

Tabu search

Tabu search (TS) is a local-search technique that was invented by Glover [LG97, dG02].
It tries to move towards the best available solution in the neighborhood. The hallmark
of this algorithm is its adaptive memory, or the list of the solutions that is forbidden
for some iterations. However, the tabu status of the solution can be overruled if the
aforesaid moves are better than the best existing solution (aspiration criteria). The
number of iterations has usually been used as a stopping criteria. Moreover, different
types or combinations of memory structures can be utilized.

One of the first practical applications of a simple Tabu Search to the ETP was performed
in 1991 by Herz [Her91] to address a problem at the University in Geneva and Swiss
Federal Institute of Technology in Zurich. Since then, it has been widely used to solve
real timetabling problems, e.g., in [BN96].
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In 2001, valuable work for the ETP using Tabu Search methods was carried out and ana-
lyzed by Di Gaspero and Schaerf in [dGS01] for the Toronto and Nottingham benchmarks.
They implemented two TS-based procedures together with violations list structures. The
course is considered to be in a violation list if it violates either hard or soft constraints.
A comparison of a simple TS and tandem strategy has been studied together with biased
and exhaustive selection methods. One year later, in 2002, the method was improved by
Di Gaspero [dG02] by developing multiple neighborhood structures to escape the search
from local optima. For this purpose, the token-ring search was used together with the
following neighborhoods which were implemented: recolor (change a single exam), shake
(swap groups of exams) and kickers (change the sequence of single exams).

In 2002, a four-stage Tabu search algorithm called OTTABU was developed by White and
Xie [WX01]. This approach uses frequency-based short-term memory and frequency-based
long-term memory for solution improvement. It was found that the length for long-term
memory strongly affects the quality of the solution, and as a result, the quantitative
analysis for appropriate length estimation was employed. The OTTABU technique was
examined on real data collected from University of Ottawa. In 2004 [WXZ04], the authors
enhanced the system by relaxing the tabu lists and adding several other features. When
the algorithm is compared to 5 other techniques on the data set from Carter, it compares
favorably.

The TS approach has been incorporated for solving the ETP within the Open Source
Business Rule Management System called Drools [GAH08]. Firstly, the constraints are
formulated as rules in Drools Rule Language, and the exams are assigned based on their
size and duration of ordering strategy. Afterwards, TS is implemented with the following
neighborhoods: exam, period and room moves and swaps. This solver participated in
ITC 2007 as well and received third place.

Other Local Search Based Techniques

Besides the algorithms described above, a large number of methods based on the Local-
Search concept have been developed and are used widely for solving the ETP. In this
subchapter, some of these methods that have shown good results on benchmark instances
are described.

Recently, the idea of having multiple neighborhoods structures to escape from local
optima has become popular and has been heavily studied within the last decade. One
of the techniques from Local-Search that has been employed for solving the ETP is a
Large Neighborhood Search (LNS) that was first proposed by Shaw [Sha98]. In 2007,
Abdullah et al [AABD07] utilized LNS for the Toronto variant of the ETP together
with the cyclic exchange neighborhood where the enumerating strategy is based on an
improvement graph. Furthermore, this method was late modified [AAB+07] so that the
tabu list is used to store the improvement moves. Another method based on a similar
idea is the Variable Neighborhood Search (VNS) where the neighborhoods are iteratively
changed during the search procedure. One example of the use of the VNS for the ETP
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was employed by Burke et al [BEM+06]. In addition, the genetic algorithm was used for
neighborhood selection.

In 2007, Gogos [dS08] implemented the GRASP (Greedy Randomized Adaptive Search
Procedure), which won second place in the competition. First, he made 5 lists of exams
using different ordering strategies. Then a tournament selection was applied for exam
placement together with the backtracking technique and the obtained solution was
improved using the Simulating Annealing procedure. Lastly, the Integer Programming
technique was exploited with the Branch and Bound strategy to switch the rooms. In
2012, this approach was improved [GAH12], and the Hill Climbing with the Kempe
chain neighborhood was implemented among the improvement phase in addition to other
modifications. The scheduling difficulty of the exam was defined by the incorporation of
various criteria such as student enrollment, conflicts and other criteria. Another alteration
of Integer Programming formulation is used for the period swap. Furthermore, "shaking"
the Kempe Chain moves for the rooms is utilized before passing the solution back to the
SA stage. Finally, another heuristic is trying to generate new and promising possibilities
for improvement by removing some exams stochastically and then rebuilding the initial
solution for SA using the initial construction procedure.

2.2.3 Population-Based Approaches

Population-based approaches have become popular for combinatorial problems over the
last decade, so a large amount of algorithms and their modifications have been developed.
In this subchapter, some well-known techniques that have achieved good results on
benchmark instances and their applications for real-world problems will be discussed.

Evolutionary Algorithms

Evolutionary algorithms are a huge family of algorithms that was inspired by evolution
in nature and mimics the biological processes. Usually these algorithms consider a set
of candidate solutions instead of a single assignment in comparison with Local Search
methods. One of the most well-studied heuristics from population-based methods for
timetabling research is the Genetic Algorithm (GA). At the beginning, the initial popula-
tion is created and then, using mutation and crossover operators, the new generation is
obtained and the best representatives are maintained to the next iterations. The quality
of the candidate solution is defined in terms of fitness function.

Schebani et al [She02] applied the standard variant of the GA for the ETP and designed a
mathematical model for problems in training centers with the fitness function concentrated
on the maximum spread between meetings. At the same time, Wong et al [WCG02]
presented work that created a timetable at the Ecole de Technologie Superieure that
was formulated as a Constraint Satisfaction Problem. Additionally, tournament selection
was employed for parent and mutation selection. In 2005, Cote at al [CWS05] studied a
bi-objective evolutionary algorithm with TS and Variable Neighborhood Decent operators
for recombination. Moreover, promising results have been obtained for some Toronto

12



2.2. Algorithms for the Examination Timetabling Problem

benchmark problems. In 2007, Ulker at al [OUOK07] proposed the use of the Linear
Linkage Encoding representation for the GA. This approach has been employed and
examined for both Graph Coloring and the ETPs.

For the ITC 2007 formulation, Pillay et al [PB08] investigated a technique inspired
by cell biology . The algorithm mimics cell processes of division, interaction and
migration. In 2010, Pillay and Banzhaf [PB10] developed a two-stage approach for the
ETP incorporating the GA where the feasible solution is obtained in the first stage, and
later an improvement that considers the soft constraints is made. Authors testing this
technique on Carter’s benchmark instances got results that were competitive with the
best.

Other Population-based Algorithms

Memetic algorithms [KS05] are modifications of a simple GA. The main idea of this
approach is that current population can be enhanced by employing Local-Search methods.
Recently, this method has been widely employed in research, and some promising results
have already been achieved.

Firstly, the Memetic approach for solving the ETP was developed by Burke et al
[BNW96] in 1996. Additionally, different mutation operators for both a single as well
as a set of exams were implemented and tested. For the improvement phase, the Hill
Climbing technique was utilized. In 2014, the variant of the Memetic algorithm called
Harmony Search was studied by Azmi Al-Betar et al [ABKD14]. Moreover, the authors
investigated the influence of different settings on the solution quality, namely randomness,
neighborhood structures and recombination.

One well-known technique from the population-based methods is the Ant algorithm
[DT05]. This approach mimics ants’ behavior of searching for the shortest path to
food source by leaving pheromones. Moreover, different algorithm modifications such as
the Ant Colony System, the Min-Max and others have been developed. However, this
algorithm has not been widely studied in the area of examination timetabling.

Naji Azimi [NA04] developed the framework, including the Ant Colony System (ACS)
algorithm, where the solution found by the ACS was later improved using simple Hill
Climbing. Afterwards, the results obtained were analyzed and compared with other
implemented techniques, namely the TS, SA and GA. It was shown that the ACS was
able to deliver the best solution compared to the other approaches employed most of
the time on the dataset proposed by Carter. In 2005, the author investigated hybrid
combinations of the TS and the ACS in three different variants [NA05]. The best results
were achieved by the sequential ACS followed by the TS, and it should be noted that all
of the proposed hybrid approaches performed significantly better than any of the single
methods. Downsland and Thompson [DT05] employed the Ant technique and carried
out additional research on the influence of various algorithm configurations to reach the
final solution, especially concentrating on different initialization techniques. The authors
consider the Carter problem formulation without soft constraints together with three
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variants of the fitness function. Furthermore, the results obtained were competitive with
others provided for this dataset.

2.2.4 Hyper-Heuristics

Most of the algorithms that display good results on benchmark instances highly depend
on the parameters turning. Moreover, they are specifically designed for one particular
problem and thus, do not perform well on other problems. Often, parameter turning
is considered to be hard, which has led many researchers to focus their attention on
developing more general approaches for solving combinatorial problems. The definition
of Hyper-Heuristics provided by [BGH+13] is "a search method or learning mechanism
for selecting or generating heuristics to solve computational search problems". In the
following chapter, some of applications of hyper-heuristics will be discussed; however, for
more detailed information the following surveys may be referenced [QBM+09, BGH+13].

One of the first times it was suggested that Hyper-Heuristics could be used to solve the
ETP was in research done by Ross et al [RHC98]. The authors suggested the use of the
Genetic Algorithm to search for an appropriate method instead of a specific solution
because, as they pointed out, the GA with direct encoding does not perform well on some
problem classes. Later, Ross et al [RMBH04] applied the GA to search in a simplified
problem-state description space, and, for this purpose, associations between the problem
states and heuristics have been established. The heuristics finding was used for solution
construction. In this work, the authors deployed and tested combinations of 16 algorithms
for exam ordering and 28 techniques for choosing the timeslot. Moreover, this approach
has been shown to deliver promising results across both the exam and course timetabling
formulations with three different fitness functions.

Pillay and Banzhaf [PB07a] studied the Genetic Programming approach for incorporating
different graph-based heuristics into a Hyper-Heuristic system to define the order in
which exams should be assigned. Pillay [Pil04] later extended the approach by three
various representations for heuristic combination. The method was examined on Toronto
benchmark instances, and a comparison of different representations was discussed. As a
result, feasible solutions were obtained in all cases. In 2010, the same concept [Pil10]
was applied for the ITC 2007 competition benchmark. In contrast, the combination of
chromosome representations had been employed. For all chromosome combinations, a
feasible timetable was produced, and one combination especially showed the solution
quality that was comparable with the best results that had been obtained at the time.
In 2009, Pillay [Pil12] applied Genetic Programming for heuristic generation where the
algorithm searches for a new heuristic constructed from low-level methods combined
by logical operators. This method calculates the difficulty of exam allocation for the
construction phase.

Ahmadi et al [Lin02] investigated the perturbation-based VNS for parameterized con-
struction heuristics. For defining heuristic space, different graph heuristics together with
weighted objective function were employed. For testing, the authors used real-world data
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obtained from Nottingham University. The approach showed promising results in finding
an appropriate combination of heuristics to solve that particular instances.

Burke et al [BQS14] provided a Hyper-Heuristic approach that combines low-level heuristic
moves to improve the timetable. In the experiments, it was observed that the Kempe
Chain Move heuristic and Time-Slot Swapping heuristic are the best suited for heuristic
moves and that the most appropriate techniques for defining the ordering of exams are
SD and breaking ties with the Largest Weighted Degree. Consequently, approaches
described above have been incorporated into an iterative two-phase approach. During
the first stage, graph-based algorithms are employed for feasible solution construction. In
the next stage, heuristics’ sequences have been established and are used to improve the
solution by reassigning the exams that violate the soft constraints. This method has been
examined for both the ITC 2007 formulation and the Carter benchmark. Furthermore, the
algorithm was able to achieve competitive results compared to the other Hyper-Heuristic
approaches.

Burke et al [BPQ06] describe a Hyper-Heuristic system based on case reasoning for the
ETP in which simple graph-based algorithms have been employed together with the Hill
Climbing technique. The methods that obtained good results in specific instances are
memorized, and heuristic selection is later performed based on the similarity measure
defined by problem features. During the case-base refinement process that follows, some
cases can be discarded if they prove to be useless in solving new instances. The authors
aimed to construct a more general timetabling system that performs well on a variety
of problem formulations instead of comparing and tailoring one to a specific problem
format.

2.2.5 Other Approaches

As previously mentioned, due to the lack of space it is impossible to describe all of the
strategies used to solve the ETP. However, in this subchapter a brief overview of other
approaches that were not yet considered are provided.

Due to their simplicity, constrained-based techniques are often used in different research
areas; therefore, exam timetabling is no exception. In such cases, the problem can be
modeled in terms of variables with a finite domain. The task is to assign values to these
variables so as to satisfy all of the constraints. These methods are usually computationally
expensive and, for this reason, typically incorporated into other algorithms.

There are also approaches based on the decomposition of complex problem into sub-
problems where every single problem can be solved separately. Researchers do not often
use this technique for the ETP as there are some significant drawbacks. Firstly, sometimes
there is the possibility that the combined solution will produce an unfeasible timetable.
Another complication is the evaluation of some of the soft constraints while the problem
decomposed. However, some research has made an attempt to put this technique into
practice.
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Based on the concept described above, Lin [ABC+03] created a multi-agent system where
the ETP is decomposed for particular problems. Every problem is solved separately
by agents, and the remaining schedules are solved by a broker. In the end the final
solution is obtained by combining all of the constructed timetables. This approach has
been investigated on both Toronto and randomly generated data, and it was observed
that its performance was adequate on some types of the problem. Another example of
decomposition techniques was proposed by Qu et al [QB07] in which the authors classified
the exams into two sets arranging them by the difficulty of the assignment on previous
iterations. The algorithm adaptively adjusts the ordering of the exams using the sets
obtained. For this purpose, both exams that led to infeasibility and exams that had the
highest impact on the solution score move forward in the ordering list. This approach
performed well compared to other State-Of-The-Art techniques.

Another promising approach is the Multi-Criteria technique. Traditionally, algorithms
consider constraints violations in terms of one objective function that is represented by
a weighted sum. However, with regard to real-word problems, it is necessary to take
every class of constraints into account separately, and Multi-Criteria techniques solve
this problem efficiently by using the vector of the constraint violation instead of a single
value. For a more detailed look at these algorithms refer to [PB07b].
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CHAPTER 3
The Algorithm Selection And

Algorithm Performance
Prediction Problems

In the following chapter, the Algorithm Selection problem will be introduced. Moreover,
different aspects of the Rice framework will be split up and examined in detail. Also, the
concept of Empirical Hardness will be presented, and the Empirical Hardness Models
(EHMs) employed for the Algorithm Performance Prediction Problem will be formally
described. The methodology used for the construction of the EHM will be presented as
well as some important aspects highlighted. Finally, work closely related to the Algorithm
Selection and Performance Prediction problems will be also observed.

3.1 The Algorithm Selection Problem

For many years, researchers mainly developed or improved the algorithms for one of the
combinatorial problems. However, even if in some cases one algorithm is significantly
better than other approaches, there is no known algorithm that outperforms all of the
others in all problem instances. Moreover, according to the No Free Lunch Theorem
[WM97] for one technique to dominate is impossible. Instead of inventing new algorithms,
some researchers started to work on the task of choosing an existing method that would
provide the best solution to any given circumstance. This undertaking is commonly
known as the algorithm selection problem and was first formalized by Rice in 1976
[Ric76]. In his paper, Rice presented a formal abstract model with 4 main components,
namely:

• the problem space P
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Figure 3.1: Schematic diagram of the Rice framework [SM08].

• the feature space F

• the algorithm space A

• performance space Y

In the model the problem space P consists of the set of problem instances, and the
feature space F represents the diversity of measurable instance characteristics that are
suitable for the given problem. Moreover, the algorithm space A is characterized by the
set of various existing algorithms, and performance space Y is identified by performance
criteria applied to a given algorithm portfolio. Schematic diagram of Rice model can be
seen on Figure B.5 and the formal definition of the Algorithm Selection Problem consists
of the following [SM08]:

For a given problem, instance x ∈ P with features fx ∈ F finds the
selection mapping S(fx(x)) into algorithm space A, so the selected algorithm
α ∈ A maximizes the performance mapping y(α(x)) Y.

In practice the use of good performance mapping is usually enough when it delivers satis-
factory results on new unseen instances and outperforms State-Of-The-Art approaches;
however, to even find good mapping is difficult. Moreover, it was also proven that the
Algorithm Selection (AS) problem is undecidable [Guo03].

Further reading about algorithm selection framework and its applications can be found
in the following papers [Kot14, SM08, HXHLB14].
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3.2 The Empirical Hardness Models
It is widely known that the performance of most of the algorithms for combinatorial
problems varies significantly across the instance space - even on instances of similar size
and structure. Because of this, the research has begun to focus on understanding the
complexity of an instance for a particular solver in terms of instance characteristics.

Firstly, the Empirical Hardness and APP concepts have been formalized by Leyton-
Brown et al [LBNS06] where they characterize instance hardness by the runtime of a
certain solver obtained on the instance. Moreover, the methodology of hardness models
construction has also been provided. Later this idea was formalized into the Empirical
Hardness Models (EHMs) [LBHHX14] where each instance has been characterized in
terms of problem features, and Machine Learning(ML) techniques are used for prediction.
Therefore, various performance measures have been employed in order to understand
hardness, such as solution quality obtained by an algorithm after a fixed amount of
time [KS04], a method’s probability of success [RH07] and others. However, it must be
noticed that the complexity of an instance heavily depends on the particular solver used.
In some cases, the instance may be considered "hard" for one algorithm, but another
technique could obtain a good solution relatively easily, so this instance could also be
considered as "easy".

As previously noted, the EHMs can be constructed using the methodology proposed in
[LBNS06] that can be summarized into the following steps:

• Step 1: Select the problem instance distributions;

• Step 2: Choose the algorithm set;

• Step 3: Select a set of inexpensive, distribution-independent features;

• Step 4: Generate data;

• Step 5: Feature preprocessing;

• Step 6: Application of Machine Learning techniques.

However, the Rice framework described in section 3.1 for the Algorithm Selection Problem
is sufficient enough to describe the APP problem. Therefore, some important aspects of
the Rice framework for the AS and APP problems will be discussed in more detail.

3.3 Instance and Algorithm Space
For combinatorial problems, the instance set is usually given; however, it must be
representative to cover the different aspects of the problem and must contain the instances
of various complexity. The instance distribution defines the boundaries of the instances
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to be considered, and so it outlines the scope of the EHM and AS application where
the model is expected to show good results. Typically, research is interested in practical
applications; therefore, in most cases distribution is drawn uniformly from real-world data
based on an observed parameter range. Nevertheless, sometimes it is practically necessary
to utilize instance selection methods such as, for example, [SMI11, Jan00, WM00] for
large datasets without the loss of essential information in a reduced subset.

Another essential question in Algorithm Selection process is defining the set of algorithms
that will be used. Generally, portfolios divided into two main categories: static and
dynamic [Kot14]. In dynamic portfolios the configuration of the algorithms or portfolio
itself can be changed during runtime. Alternatively, static portfolios are predefined
and so the choice of the algorithms in the set become crucial. For the best results the
algorithm set should be diverse and methods should complement each other for achieving
good performance on various problem classes. Moreover, different research has been
performed regarding selection the algorithms for the portfolio and it has been observed
that choosing the algorithms with overall best performance not necessarily led to the
best results [XHLB12, HP04]. For example, Xu et al [XHLB12] analyzed the portfolio
selection for SAT using 2011 SAT competition track and noticed that often solvers using
novel strategies in comparison with others contribute the most.

However, due to the complexity of the methods, explicit investigation of different approach
is hard and hence, often the solvers that either provided good scores in solver competitions
or obtain best results in comparison with other solvers on benchmark instances are used.

In contrast with the Algorithm Selection Problem for performance prediction, it is
sufficient to select some available algorithms and suitable performance criterion.

3.4 Feature Space

3.4.1 Feature Engineering

One of the key issues of the APP and AS problems is finding a good feature set in order to
cover the hidden properties of the instance that correlates with instance hardness [Ric76].
Moreover, it has been observed that finding a comprehensive feature set is not a trivial
task [Ric76, SML12] and it is usually necessary to have deep domain knowledge. At the
same time, it has been noticed that problem characteristics are strongly related to the
successful use of prediction mapping [Ric76, XHHLB08]. One of the requirements in the
feature engineering process is that characteristics must be calculated relatively quickly (in
low-order polynomial time) because a slow metareasoning procedure (including feature
extraction) reduces the benefits of APP and AS and at a certain point can be avoided.
This situation occurs if the time required by the metareasoning process is compared with
the time that it would take to run all selected solvers.

An excellent survey regarding the features classified by type for a variety of combinatorial
problems can be found in [HXHLB14, SML12]. Moreover, authors in [SML12] tried
to answer two main questions that occur during feature design process: how to find a

20



3.4. Feature Space

suitable feature set, and why selected features are appropriate for the characterization of
a particular problem. They also tried to find a relation between algorithm performance
on a particular problem in terms of problem characteristics. With regard to the first
objective, some similarities in feature sets between different combinatorial problems
has been observed and noted. However, the second question remains for the most part
open, and authors refer to the algorithm footprint as one of the possibilities to answer it
[SML11].

Notably, attributes can be classified into two different categories: problem specific and
domain independent features regardless of problem type. Problem independent features
usually consider some approaches that can provide some insights into the search space of
algorithms. One such method is the Fitness Landscape Analysis (FLA) [Ree99, ME14].
The fitness landscape structure is defined in terms of a search space that consists of a
set of solutions. Objective function represents the quality of the solution by assigning it
some value and a neighborhood that defines a distance metric over the solution space.
Unfortunately, it is impossible to construct a landscape structure until the solution set
is known; therefore, it might be most appropriate to regard a particular algorithm’s
performance on specific problem classes. Additionally, different metrics for FLA have been
developed and widely used such as ruggedness, fitness distance correlation, distribution
of local minima and others. Moreover, these features have been successfully employed for
the characterization of difficulties for such problems as the Travelling Salesman Problem
(TSP) [SS92], the Knapsack Problem [MF00], the Quadratic Assignment [TPC08] and
others.

Another problem-independent approach that can be used as an alternative to landscape
analysis and is conventional in APP and AS is the method based on the idea of landmarking
[PBGC00]. The intention is to run some simple algorithm for a short time such as
Local Search or the greedy method and then use information retrieved from these
runs as new characteristics. Such measures could include, for example, the number of
gathered local optima, changes of solution quality during search run as well as others.
Surprisingly, the landmarking concept is similar to the hyperheuristic approach described
in subsection 2.2.4, for example in [BPQ06] where simple heuristics and information
obtained are employed for choosing a more sophisticated algorithm to solve the ETP.
However, even if the idea of landmarking is to form domain-independent characteristics,
the availability of domain-specific solvers is essential.

Nevertheless, most of the features used for the APP and AS problems are domain specific.
Usually, such a set would consist of the set of features related to the problem itself, and
this hardly depends on problem formulation: size and constraint measures, statistical
measures or matrix characteristics. Moreover, the features obtained for one problem
class can be reused for another problem in the case of time-efficient reduction between
problems [SML12]. Recently more researchers have begun to utilize this approach as it
has demonstrated promising results.
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3.4.2 Feature Preprocessing

Surprisingly, some instance attributes may be irrelevant for a particular problem and
reduce the quality of the performance model even if they seem reasonable. Furthermore,
certain measures may be highly correlate with one another, producing additional noise. As
a solution to this problem, a variety of feature selection methods have been developed, and
nowadays, the feature selection step is one of the essential parts of the ML applications.
As further reading, the paper from [GE03] can be referred to where the authors highlight
some important steps to solve the feature selection problem and provide a comprehensive
overview of different variable elimination procedures. A more recent survey published in
2014 can be found in [CS14].

In general, feature selection is the process where the subset of attributes is chosen in
order to improve prediction quality or to reduce the dimensionality of the problem.
Variable elimination approaches are usually classified into 3 categories: filter, wrapper
and embedded methods. These groups will be discussed briefly below.

Filter methods are universal and may be used regardless of type of the predictor.
The main principle of this approach is to rank the variables based on certain relevance
criteria like, for example, the Pearson Correlation Coefficient (PCC) [Bat94], the Mutial
Information Coefficient (MIC) or Information Theoretic Ranking Criteria [LTM+12].

The PCC characterizes the existence and level of linear dependencies between variables.
Despite significant drawbacks, such as sensitivity to outliers [Ans73] and relevance only
for linear dependence recognition,the PCC is still used as a preprocessing step and data
interpretation in combination with other methods. PCC values vary from -1 to 1, where -1
indicates a total negative correlation (inverse proportionality), +1 displays a total positive
dependence (direct proportionality) and 0 means there is no linear dependence between
variables. The PCC is applied for the two datasets X and Y with the corresponding
mean values xm and ym calculated using the following formula:

r =
∑n

i=1(xi − xm) ∗ (yi − ym)√∑n
i=1(xi − xm)2 ∗

√∑n
i=1(yi − ym)2 (3.1)

Anoter filter-based approach, the MIC is related to the concept of Mutual Information
(MI) [SW48]. MI is a quantified measure of information that one variable can provide
about another determined in bits. Moreover, MI for certain n variables equals 0 only
if these variables are statistically independent. The formal definition of MI for the two
random variables x and y with the defined marginal distributions P (x) and P (y) and
joint distribution P (x, y) is:

I(x, y) =
∑
y∈Y

∑
x∈X

P (x, y)log( P (x, y)
P (x)P (y)) (3.2)

However, due to significant shortcomings, the direct use of MI in feature ranking can be
troublesome. Firstly, discretization by binning is needed for the calculation of continuous
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variables. Moreover, as MI is not normalized, it leads to incomparability between
different datasets. These drawbacks were treated in the MIC where continuous variables
are discretized by searching for optimal binning; the MIC values are also located in a
fixed range. Furthermore, in comparison with the PCC, the MIC is able to determine
non-linear dependencies.

However, for filter methods the measurements are usually defined individually for every
variable without taking into account the context of the others and that has led to the
presence of redundant variables. Nevertheless, due to simplicity and computational
scalability, it is often utilized as a preprocessing step.

Wrapper methods [KJ97] try to choose the best subset of characteristics where the
performance of a certain predictor is used as evaluation criteria. It has been shown that
finding an optimal subset is an NP-hard problem [AK98]. Because of this, heuristics
are used instead of an exhaustive search. Wrapper methods could be roughly classified
into heuristic search and Sequential Feature Selection (SFS) algorithms [CS14]. SFS
methods represent greedy approaches and use either forward selection strategy, where the
algorithm starts with an empty set and progressively add new attributes, or backward
elimination strategy, which starts with a full set and gradually eliminates characteristics
while maximizing performance.

As an example, two representatives of SFS methods are the Recursive Feature Elimination
(RFE) [GWBV02] and the Stability Selection (SS) [MB10] techniques that are widely
implemented as a part of different libraries.

RFE is based on backwards selection where feature sets are recursively evaluated using
the accuracy of a chosen predictor leading to features with the smallest weights being
removed from the set. The procedure is repeated until the desired number of features
has been reached. However, as the results of RFE are heavily dependent on the predictor
chosen, it is important to select it very carefully.

Another relatively new feature selection technique is the Stability Selection (SS). The
main idea of this method is to subsample the data with various feature subsets and
then to measure the performance using the selected predictor. The process is repeated a
number of times, and then, the resulting features’ importance is then gathered depending
on the feature relevance of subsampling results.

As a consequence, characteristics that are considered important and thus, repeatedly
chosen across the subsampling process, will get a higher score compared to rarely selected
features.

As heuristic approaches for feature selection, a wide range of algorithms could be employed
such as Tabu Search [CY09], Genetic Algorithm [SK04], Simulated Annealing [MZ06]
and others. However, a serious drawback of wrappers is significant computational cost.

The third group, embedded methods, is an approach in which the feature selection
procedure is employed as a part of the training process. These algorithms commonly
combine the benefits of the previously described methods as they are computationally
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inexpensive and tend to overfit the data less. As an example, the Lasso and the Ridge
regression belong to the family of embedded methods and additionally, are considered to
be regularization methods.

Lasso (or L1 regularization) [Tib96] is an approach where the loss function E(x, y)
(usually the Root Mean Square Error (RMSE) described in section 4.4) of the predictor
is regularized by an additional penalty. So in the case of L1 regularization the estimator
tries to minimize the expression where the penalty is represented by the sum of the
regression coefficients’ modules and α is a parameter for model tuning:

E(x, y) + α
n∑

i=1
|wi| (3.3)

Accordingly, as the penalty value grows in the case of non-zero coefficients, the Lasso
approach reduces the number of characteristics used in the prediction process. Moreover,
we can adjust the importance of model sparseness by the parameter α where, in the
case of increasing the parameter, the number of non-zero feature coefficients decreases.
Consequently, an α equal to 0 will correspond to a non-regularized model. A good
regularization parameter, however, instead of being manually chosen, can be selected by
the algorithm. An example of this is the Grid Search for the hyperparameter turning in
Scikit-learn.

Another method relatively similar to the Lasso approach is Ridge Regression [HHLB10]
(or L2 regularization for LR). In this case the penalty is represented by the sum of squared
coefficients of the model multiplied by the regularization parameter. Thus, the expression
minimized by the algorithm is defined by the following formula:

E(x, y) + α
n∑

i=1
w2 (3.4)

However, even if L1 and L2 regularizations seem similar, they can work differently in
some situations. For example, in the case of an increasing α, Ridge regression can
produce relatively small coefficients for less relevant features instead of zero values in
Lasso regularization. Moreover, L2 produces more stable models in comparison with the
previously described method where the coefficients tend to fluctuate even if there are
small changes to the data.

Additionally, the specific point of interest from the embedded methods’ group are tree-
based methods as they are able to model non-linear relationships. Hence, we can use
their feature importance values in order to identify influential variables.

Another useful feature preprocessing technique is discretization that transfers contin-
uous variables into nominal attributes. That is, as a variety of ML algorithms require
categorical data because they cannot handle continuous values directly. Moreover, it
was observed that other techniques provide better results with nominal attributes as
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well [ER04]. As a reference [KK06, GLS+13] can be used in which surveys about
different discretization techniques as well as an empirical analysis of different discretizers
in combination with supervised ML algorithms are presented.

Also, such methods as scaling and normalization become essential for the estimators
where the calculation depends on feature values and feature ranges. For example, for
SVM where we need to calculate the vector product, or KNN where the calculation
of the distances between different samples is required. For this purpose, there exist
a lot of different techniques, for example, Standard Scaler that standardizes features
by removing the mean and scaling to unit variance; MinMax Scaler that transforms
features into a specified range based on their minimum and maximum values; Robust
Scaler that transforms features based on percentile statistics, and therefore, robust to
outliers; Quantile Transformer represents non-linear transformation where each feature is
transformed in a way that its probability density function mapped into either uniform or
gaussian distribution, and Normalizer that scales the samples into unit form.

3.5 Performance Space

Performance space is characterized by the mapping of each algorithm into various
performance measures such as running time, solution quality, etc. Surprisingly, the
Algorithm Selection Problem could also be solved by utilizing the EPM for each algorithm
in the portfolio and then ranking them depending on the predicted value. Apart from
the EPM, various techniques could be employed to solve the AS and APP problems.
Moreover, an interesting fact is that choosing the best method for selection mapping is
also the Algorithm Selection Problem. However, one of the main requirements for such a
technique is that it will be relatively fast. Nevertheless, Machine Learning algorithms
have commonly been used in solving the AS and APP problems where each heuristic from
the portfolio runs on a problem set and performance models are therefore constructed.

Interestingly, choosing a simple method does not necessarily lead to a significant decrease
in the model’s accuracy. For example, Ridge regression for APP could demonstrate
relatively good results in comparison with more sophisticated methods such as Random
Forest. As an example, Xu et al [XHHLB08] preferred the model that performed well and
is computationally inexpensive rather than choose the model with the best performance.

3.6 Related work

In this subchapter, a short overview on related work on the AS and APP problems as
well as the applications of the EPMs to other problems will be provided. Moreover, areas
that are relatively close to AS and APP and the concept of Empirical Hardness will also
be briefly observed.
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3.6.1 The Algorithm Performance Prediction Problem

Over past decade, researchers have investigated various methods in order to predict
algorithm performance. The diversity of problem properties has been presented, and its
impact on empirical algorithm performance has been examined. Various metrics have
been tested as performance measures such as running time, solution quality, etc.

As previously mentioned, regression methods were first successfully applied by Leyton-
Brown et al [LBNS06] to the Winner Determination Problem in Combinatorial Actions in
order to understand algorithm-specific Empirical Hardness. The authors characterize the
problem using 35 features based on graph representations, problem size and price features.
As a performance criteria, the logarithm of running time of CPLEX method has been
examined. For testing, widely-used problem distributions have been considered. Later,
Almajano et at [ACRA10] applied a runtime prediction to a closely related problem
of Mixed Multi-Unit Combinatorial Auctions where simple Linear Regression (LR) was
employed; a high accuracy of the performance model was achieved.

Nudelman et al [NLBD+04] applied the concept of algorithm performance based on
runtime for understanding the empirical complexity of two SAT classes for random
instances. Furthermore, a comprehensive feature set for SAT was introduced. The
authors considered three different methods for SAT solving and tested performance
models obtained on two instance distributions. As an example for the application of
their approach, the authors developed the first version of a famous algorithm-selection
tool called SATZilla, where they used the EHMs to choose the solver for a specific SAT
instance. More information about this approach will be provided in subsection 3.6.2.

Kostuch et al [KS04] employed LR methods in order to predict the solution quality of a
MIN-MAX Ant System for University Course Timetabling. The authors characterize
the problem by 27 features based on problem size, room and period conflicts; however,
the final model only consists 8 features. The constructed prediction model resulted in
average error less than 17%.

Recently, Hutter et al [HXHLB14] performed an exhaustive empirical analysis of re-
gression techniques for APP and combined features from the literature. Moreover, new
features for the TSP, Mixed Integer Programming (MIP) and SAT problems were in-
troduced. In this work, the best results were achieved with the use of the RF and
Gaussian Processes Predictors. The authors also presented a comprehensive overview of
related work with a focus on the ML techniques used. Additionally, the authors proposed
several methods for improving prediction quality obtained by constructed models for
highly parameterized algorithms and experimented with automated parameter tuning for
algorithms using method parameters as input for the learning process.

Messelis [Mes14] used EHMs for APP for both Nurse Rostering and Multi-Mode-
Resource Constrained Project Scheduling Problems (MMRCPS). These problems have
been characterized by various extensive feature sets, so the impact of certain problem
characteristics to performance prediction quality was examined. Various performance
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criteria such as solution quality, solver runtime and the quality gap between the obtained
and best known solution have been investigated.

3.6.2 The Algorithm Selection Problem

One of the most famous AS systems is SATzilla [XHHLB08] that combines several State-
Of-The-Art SAT solvers. SATzilla has already won several medals in SAT challenges.
Additionally, an approach based on a latter version of SATzilla demonstrated the best
results in the 2015 ICON Challenge [ICfDA]. In a previous version, the main idea
was to run pre-solvers for a short amount of time in order to understand an instance’s
difficulty. If pre-solvers did not solve the problem, the feature computation time is
predicted using the EHM. If the feature calculation is too expensive, the back-up solver
is used. Otherwise, features are calculated, then solvers are ranked using the EPMs and
finally, the best predicted algorithm is used to solve the SAT instance. An updated,
newer version of SATzilla was presented in 2012 [XHHLB12] and won the 2012 SAT
Competition. Instead of the EHMs, cost-sensitive classification is employed for each
pair of algorithms in order to estimate the candidacy of methods and rank the solvers
accordingly using a voting system. Finally, the algorithm with the highest number of
votes is applied to solve SAT.

Another successful system for automatic AS is the AutoFolio framework [LHHS15]
that showed also good results in the 2015 ICON Challenge [ICfDA]. This system
makes use of FlexFolio [HLS14] which is comprised of a variety of AS approaches and
the SMAC framework [HHLB11] that perform automatic algorithm configuration for
hyperparameters’ settings of AS approach. An interesting fact was observed; as SATzilla
is the part of the FlexFolio framework, it was quite often chosen in various scenarios
tested in [LHHS15].

However, different AS approaches have mostly been developed and tested on a particular
combinatorial problem. Messelis [Mes14] constructed the Automatic AS framework for
the MMRCPS problem in two different ways. First this was done by employing the EHM
for the score prediction of each algorithm in the portfolio, which would therefore choose
the algorithm with best result. The second approach is based on a classifier that predicts
which algorithm will demonstrate the best result for a particular instance. It has been
observed that the second approach yields better results for the MMRCPS in comparison
with AS tool based on the use of EHMs. Furthermore, a successfully automated AS
based on ML was applied in such problems as Graph Coloring [MS13, SMWLI13],
TSP [KdCHS11, PM14], Nurse Rostering [MdC11], Quantified Boolean Formulas (QBF)
[PT09] and others.

Nevertheless, other approaches could often be employed instead of ML techniques. For
example, CPHYDRA [OHH+08], a portfolio-based solver for the Constraint Satisfaction
Problem (CSP) applied case-based reasoning in order to solve the ASP. In [LL98] the
Performance of Branch and Bound, an algorithm for the Maximal Constraint Satisfac-
tion Problem was estimated by iteratively generating random paths in the search tree.
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Vasilevska et al [VWW06] proposed a hybrid approach for graph problems and the CSP
where the selector was based on certain assumptions about a certain problem.

3.6.3 Algorithm Footprints

The concept of Algorithm Footprints is closely related to the idea of APP and
Empirical Hardness. The concept was first presented in [CR10] where the authors
emphasized the problems that developed techniques are usually tested on benchmark
instances and the conclusion about the performance of the algorithm is drawn from the
average performance on these specific problem sets in comparison with other methods.
However, this does not guarantee that the method will perform well on other instance
distributions, so it is important to know the boundaries of the algorithm performance.
The authors proposed an "Algorithm Footprint" to use for this purpose that shows how
an algorithm performance generalizes in instance space. The main idea is to identify the
area where the method shows good results based on instance characteristics. However,
this method also has certain drawbacks. For example, even if clusters help to understand
the relationship between problem characteristics and algorithm performance, the actual
footprint may still look different.

Nonetheless, this concept has been successfully applied on several problems. Smith-Miles
et al [SML11] used the Algorithm Footprint in order to identify performance boundaries
for two techniques developed for University Timetabling Track in the ITC 2007. The
authors used Self-Organizing-Maps (SOM) with the aim of performance visualization
and developed comprehensive set of characteristics. Moreover, using these features
they visualized instance space where a clear distinction was made between real-world
and generated instances. In addition, the authors visualized algorithms’ performance;
however, the regions of the methods were superimposed with only two small areas where
the difference was clearly distinguishable. Later in [SMT12], new methodology for
defining the Algorithm Footprint was presented, using the TSP as a case of study where
features were collected from the literature. In the article the Principle Component
Analysis was employed together with new metrics to measure relative performance. The
authors also developed a new instance set with specific distribution using the Evolutionary
Algorithm proposed in [SMvHL10]. As a result, the regions where each method performed
well was easily recognized.

3.6.4 Other Applications

Besides the AS and APP problems, the EHMs could be put to use in various applications
such as, for example, algorithm configuration in order to optimize performance of the
method either on a per instance basis [HLBHH06] or for specific instance distribution
[HLBHH06, HHLB11, HLBH12, JSW98]. Recently Algorithm Configuration Problem
received significant attention from researches as generally methods are highly parameter-
ized and finding good parameter settings is challenging [HHLB10]. Due to that, various
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automated algorithm configuration techniques have been developed. However, we will
highlight just those that are built upon the EHMs.

In the first case, parameter settings incorporated into the model as additional features
where the EHMs are used in order to predict performance of certain algorithm. This
approach has been tested on several problems such as SAT [HLBHH06], the TSP and
MIP [HXHLB14].

However, specifically researches were concentrated to find a configuration that performs
well for an instance set or distribution. One of the approaches that employed the EHMs
is the Sequential Model-Based Algorithm Configuration [HHLB11] where the promising
method’s settings are chosen using the EHM. Then the algorithm is run with the settings
obtained in the previous step. Subsequently, the EHM is updated based on the resulting
information. The process continues iteratively until a certain stopping criteria is met.

Another example of the EHMs application is in generating hard benchmarks where the
EHMs are used to set the parameters for benchmark generators. However, detailed
observation of this technique is out of scope this master thesis. More information about
this application can be found in [LBNA+03].
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CHAPTER 4
Algorithm Selection and
Algorithm Performance
Prediction for the ETP

In this chapter, the models for Algorithm Performance Prediction and Algorithm Selection
for the ETP will be built using the Rice Framework described in chapter 3. Moreover,
the experimental setup and environment for these experiments will be described in detail.
Some methods for building AS and the EHMs and several evaluation criteria will also be
introduced.

4.1 The Algorithm Space for the ETP

An overview of the approaches of different origins that have been developed for solving
the ETP was provided in chapter 2. However, the most interesting algorithms for the AS
and APP problems are the highly competitive State-Of-The-Art solvers developed for the
ITC 2007 formulation, especially for investigating and comparing the impact of various
problem characteristics on Empirical Hardness. For this purpose, exhaustive research
has been performed on already existing approaches and contact with the authors has
been established in order to obtain information on the original implementation of the
techniques. With the overwhelming support of the researchers, 5 different solvers have
been collected, namely [GAH12, Mue09, dS08, BSU14, ANI08]; however, [dS08] had to
be excluded due to its incompatibility with the test environment. Moreover, [ANI08] has
been removed because of incomparability of performance with other tested algorithms.
As a result, these experiments have been performed using 3 State-Of-The-Art heuristics
for the ETP.
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One of the techniques considered in this work is the SACP solver developed by Mueller
[Mue09], which was the winner of the ITC 2007. The method is an interesting candidate
for this investigation as it comprises three various LS-based approaches: Iterative Forward
Search, Hill Climbing Technique and Great Deluge Approach. Moreover, this solver
still produces the best results for some benchmark instances. Because this solver was
developed in order to comply with competition rules, the runtime limit must be set. As
a result, the solution and its quality is stored.

Then an approach based on the GRASP technique was chosen as a candidate for Algorithm
Selection and Performance Prediction. Developed by Gogos [GAH12], this solver
combines different methods such as Hill Climbing with the Kempe Chain Neighborhood
for the improvement phase, tournament selection, the backtracking phase and various
ordering strategies for exam placement in the initial solution. However, similar to the
previously described solver, a runtime limit is required. Moreover, this approach is
considered to be one of the State-Of-The-Art solvers.

Another approach used in our investigation is the SA solver [BSU14] based on Single-
Stage Simulated Annealing where the parameters were carefully tuned. This solver
demonstrates relatively good performance on both generated and benchmark datasets.
However, as a stopping criteria the number of iterations has been employed; therefore, it
is necessary to configure the solver manually on a per-instance basis in order to compare
the algorithms’ solution score after a predetermined amount of time. Nevertheless, one
solver run resulting in such parameters as the running time of the solver and the solution
quality.

4.2 The Problem Space For The ETP

One of the main problems when evaluating different techniques to address the timetabling
problem is the lack of sufficiently large benchmark sets of instances that consist exclusively
of real-world problems. This complication arises because universities usually construct
timetables just twice a year, and the diverse requirements for different institutions lead
to a variety of soft and hard constraints. Hence, publically available datasets generally
only contain a few examples, like the 12 instances in the Toronto dataset.

For the ITC 2007 formulation, the results of the algorithms in the literature are usually
compared using 8 instances that were released for the Second International Timetabling
Competition. However, the application of ML techniques requires at least a few hundred
instances to be available, which could then be solved by using an instance generator.

In this master thesis, the union of 2 datasets have been used for the experiments, namely
the dataset from the ITC 2007 competition [Gro] and 2248 generated instances that are
similar to the real-world instances that have been obtained by the random generator
provided by Prof. Andrea Schaerf. All generated instances were checked and discarded
if deemed infeasible or similar to other already obtained instances based on a certain
similarity filter. Moreover, the instances were created in order to gain better coverage of
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Problem Conflict
density
(%)

No.of
exams

No. of
Students

No. of
Periods

No of
Rooms

Exam 1 5.05 607 7891 54 7
Exam 2 1.17 870 12743 40 49
Exam 3 2.62 934 16439 36 48
Exam 4 15.0 270 5045 21 1
Exam 5 0.87 1018 9253 42 3
Exam 6 6.16 242 7909 16 8
Exam 7 1.93 1096 14676 80 15
Exam 8 4.55 598 7718 80 8

Table 4.1: Characteristics of the ITC 2007 problem set

feature space based on the ITC 2007 problem description. Detailed characteristics of the
ITC 2007 dataset can be found in Table 4.1, and the properties of the generated set is
provided afterwards.

The problem size of generated instances changes significantly across the instance space;
the number of exams is located in a range between 100 exams and 1000 exams with 563
exams per instance on average, and the number of students varies between 386 and 29592
with a mean value of 9565 per instance. However, the available resources differ from
one problem instance to another as well, but generally the variations are not very large.
The number of rooms range from 1 to 54 rooms with the average amount of rooms per
instance being 8, and the number of periods varies just between 10 and 80 with average
number of 49 periods. Conflict density, which reflects how the problem is constrained
regarding student enrolment, is mostly quite low for the dataset. It is located in a range
from 1 to 18 with a median value of 10.

For the experiments, two datasets were combined. The first dataset was compiled for
the SACP and GRASP solvers with the time point 210s having been obtained using
the benchmarking program provided for the ITC 2007 competition [140]. The second
dataset was combined for all solvers using the point of time where the SA solver finishes.
All runtime data has been collected using a machine with eight Intel Core i7-5960X
processors at 3.5 GHz with 32 GB RAM. All instances were solved simultaneously on
cores with a memory limit of 4 GB.

As a performance criterion for APP, the solution quality has been chosen and measured
for every solver run. Additionally, runtime for the SA solver has been recorded. However,
as almost all solvers are based on some random criteria, each solver has been executed 7
times for every instance with different random seed value. As a result, a median value
obtained by the solver on the same instance has been recorded.

However, the solution quality and runtime could differ significantly across the instance
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space (in several orders of magnitude: from hundreds for simple instances to hundreds of
thousands for hard ones). Therefore, the logarithm transformation of the performance
criterion has been chosen as a response variable for APP instead of a raw metric.
Moreover,up to this point most of the researchers used the logarithmic transformation of
the performance measure [HXHLB14, LBNS06, KS04] in their work because of the same
problems. Furthermore, the results will be still relevant as most of the time for measuring
the prediction quality of ML techniques the relative error has been used instead of the
absolute.

For classification, due to high variance between different solver runs we examined only
the instances where one solver dominated over the other solvers. We consider that the
solver outperformed the other solvers if its score is at least 10% better than the scores
of the other solvers in the dataset. Also, as for the SA_time dataset the SACP solver
shown the best performance only in 8% of the cases, we have constructed the second
version of the SA_time dataset where we only considered the results of the GRASP and
the SA solvers.

In in order to understand the class distribution among newly constructed datasets, we
calculated the fractions where each solver outperformed the other solvers on the training
and the test datasets. As a result, we obtained the training datasets with the following
class fractions: SA_3_class (710 instances) SA: 63.94%, SACP: 8.6%, GRASP: 27.5%;
SA_2class (871 instances) SA: 66.6%, GRASP: 33.3% and ITC_2class (843 instances)
GRASP: 76.15% and SACP: 23.84%. The characteristics and the class distribution of
the test datasets are as follows: SA_3class_test (99 instances): SA solver: 64.64%,
SACP solver: 7.07%, GRASP: 28.28%; SA_2class_test (110 instances): SA: 66.62%,
GRASP:33.37%; ITC_2class_test (94 instances): GRASP: 70.21%, SACP: 29.78%.

4.3 The Feature Space For The ETP

4.3.1 Feature Engineering for the ETP

As noted, a representative set of features is a crucial aspect of AS and APP. In this
section, the feature set for the ETP will be introduced that could reflect the Empirical
Hardness for a certain algorithm, thus making it suitable for our tasks. For the ETP
all features can be classified into three main categories, namely: domain-dependent
characteristics that are related to the problem itself, features related to the landmarking
concept and features obtained by reduction into the underlying graph problem.

Even if some characteristics seem redundant, the responsibility of feature elimination is
left to the application of feature selection techniques which were described in section 3.4.

Furthermore, in some cases, the use of a ratio between two values or fractions can be also
beneficial. Additionally, in the case that the series of values for some specific instance
property are produced, various statistical measures have been utilized, namely:
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• maximum (max), minimum (min) or for certain cases 5th (q5) and 95th (q95)
percentiles;

• median (med) and mean values;

• standard deviation and skew

• variation coefficient and entropy;

• 1th (q25) and 3th (q75) quartiles of the population.

However, although in our first experiments the complete feature set was used, we excluded
the features related to the Local Search (LS) as the results obtained by it was too close
to the scores obtained by the other solvers. Due to that, the LS score was strongly
correlated with the response variable for all solvers, and mainly used for Performance
Prediction by most of the models. Our guess is that it may be the case because we took
the Iterated Local Search [Mue09] that was implemented and optimized by Mueller, and
the running time of LS (60s) was too close to the benchmark running time (210s). Hence,
as we wanted to investigate other parameters that influences Instance Hardness for a
particular solver, we performed the the experiments without the usage of the LS features.

In order to differentiate between newly introduced characteristics and the features, that
have been already appeared in literature for the Educational Timetabling (including the
UCTP), the latter are marked by asterisk (*).

Problem Dependent Features

In this section, features that are considered domain-dependent and cover the different
aspects of the ETP will be introduced. These characteristics directly reflect the structural
properties of the problem and can be classified into the following categories: features
related to the problem size, features related to exam information and resource data.

Apart from most of the domain-specific features for the ETP that have been introduced,
research that is closely related to that of this paper already exists. These investigations
generally concentrate on another Educational Timetabling formulation, namely the
University Course Timetabling Problem (UCTP) that is reasonably similar to the ETP.
For example, Kostuch et al [KS04] presented a study that predicts the performance
of the MIN-MAX Ant System based on 8 features for the UCTP. The authors chose
several features that were based on period and room conflict graphs as well as some
characteristics related to room constraints. Additionally, slackness was also considered.
As mentioned in section 3.4, Smith-Miles [SMvHL10] characterizes the UCTP to obtain
an Algorithm Footprint in the instance space using the following categories: 3 size-related
features, 2 landmarking features based on the running of the DSATUR algorithm and 21
features based on Graph Coloring interpretation.
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Related To The Problem Description

All of the features introduced below are straight from the problem description and are
mostly based on the information about problem size. Moreover, as weights for objective
function in case of soft-constraint violation could be individual for every instance of the
ITC 2007 model, these parameters are considered as separate characteristics as well.

Features related to problem size (15):

• the number of students;
• the number of exams(*);
• the number of rooms(*);
• the number of periods;
• the number of days (concerning periods);
• slackness that is calculated by multiplying the number of periods to the number of

rooms(*);
• the number of time-related constraints, the total number of constraints;
• the fraction concerning the constraints’ type: the number of period and time-related

constraints calculated over the total number of constraints;
• the ratio of the number of exams over slack;
• the number of constraints of each type: AFTER, COINCIDENCE, EXCLUSION,

ROOM EXCLUSIVE.

Features related to the weights of objective function in case of specific soft-
constraint violation (7):

• TWOINAROW, TWOINADAY, PERIODSPREAD, NONMIXEDDURATIONS
weights;
• FRONTLOAD weight, threshold and value.

Features Related To The Problem Structure

The set of features related to the problem structure itself is the largest group for the ETP,
and it describes the statistics and the relationships between different problem variables.
These characteristics are mainly classified into two categories where the first group
contains detailed information about exams, its conflicts with other exams concerning time
periods, the data about exam length, possible periods’ and rooms’ assignments. Note
that the second group incorporates all the data and statistics about available resources
such as time periods and room information, including penalty information for the use
of a certain resource. Additionally, to construct a feature set concerning exam data the
information regarding period-based exam conflicts is also considered where two exams are
considered to be in conflict if they have two students in common or a specified exclusion
hard constraint. Another characteristics’ group viewed separately are the properties
of the problem with regard to resources, namely information about periods and rooms.
Moreover, various ratios related to room occupation are also taken into account.
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Features related to exam information (63):

• min, max, median, mean, standard deviation, variation coefficient, entropy, skew,
q25, q75, the ratio of min over max, mean over max regarding:

– the number of exams per student;
– the number of students per exam (* mean, SD);
– the number of conflicts

• median, mean, q5, q95, standard deviation, variation coefficient regarding:

– the number of appropriate time periods per exam;
– the number of appropriate rooms per exam (* mean, SD);
– exam duration information;

• the number of exams

– that only fit in one room (*);
– that only fit in one period;
– that fit in all rooms;
– that fit in all periods;

• the fraction of exams

– that fit all rooms over all exams;
– that fit all periods over all exams;
– that fit only one room over all exams;
– that fit only one period over all exams;

Features related to period information (15):

• min, max, median, mean, standard deviation, variation coefficient:
– for the number of exams per period;

• maximum, minimum, median, mean:
– for period length information;

• maximum period penalty value;
• the number of periods with penalties;
• the number of periods to which each exam can be assigned without penalty;
• the fraction of the number of periods to which each exam can be assigned without

penalty over the total number of periods;
• mean number of periods per day.

Features related to room information (19):
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• median, mean, q5, q95, standard deviation, variation coefficient regarding:

– the number of exams per room(* mean);

• maximum, minimum, median, mean over:

– the room capacity;

• maximum room penalty value;
• the number of rooms with penalties;
• the number of rooms to which all exams can be assigned without penalty(*);
• the ratio of rooms that all exams can be assigned to without penalty over the total

number of rooms;
• rooms’ capacities available for one period calculated as the sum of all room capaci-

ties;
• total available rooms’ capacities for all periods calculated by multiplying room

capacities for one period by number of periods;
• the ratio of total capacities of all exams over total available rooms’ capacities;
• the ratio of maximum exam capacities over maximum room capacity;
• the ratio of mean exam capacity over mean room capacity.

Features Related to The Landmarking Concept

In this section features that were obtained using the concept of landmarking [PBGC00]
are provided; the concept for this approach was described in detail in section 3.2.
Landmarking has been successfully employed for APP and ASP in such systems as
SATzilla [XHHLB08], CPHYDRA [OHH+08]. Additionally, it has been utilized for
other combinatorial problems like TSP [HXHLB14], GCP [MS13, SMWLI13], SAT
[XHHLB08, HXHLB14] and many others. For this case two different methods have
been employed to explore the search space, namely a LS method that combines the Hill
Climbing technique with a construction heuristic and a greedy approach that is based on
the Greedy Coloring method.

Local Search Probing Features

LS techniques are often used for landmarking due to their simplicity and fast imple-
mentation. However, a complete LS run would be extremely time-consuming, so every
LS run has been limited by a timeout and furthermore, the search stops if no further
improvement has been made during a certain number of iterations. The LS used in this
thesis is evaluated in 5 runs, and the timeout provided for this LS method is the 60s.
The information from different LS runs is combined, so different statistical information
has been obtained.

In this work, the implementation of the Hill Climbing technique from Mueller solver
[Mue09]has been used. For neighborhood exploration, the swapping of exam periods has
been employed so that only moves that improve the current solution are accepted. The
initial solution has been constructed by iterative variables’ assignment in order to prevent
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a hard constraints violation. The variables are sorted in decreasing order based on a
ratio of the domain size to the number of hard constraints. If there is a tie, it is broken
randomly. If it is not possible to assign the variable so as satisfy all hard constraints,
the conflicting variables become unassigned. Additionally, conflict-based statistics is
employed to avoid the repetition of conflict assignments. As a result, in most cases a
feasible solution is already obtained after the construction phase.

For every search run, the initial score is stored after the construction phase and im-
provement steps namely iteration and scores where the overall solution quality has been
improved. For each of these iterations, the score, iteration number and improvement per
step is stored. As a result, the following Local Search Probing features (12)(*) was
obtained:

• the number of assigned variables, the ratio of the number of assigned variables over
total number of variables, the number of iterations corresponding to
– min, max, median LS scores over all runs;

• min, max, median LS scores over all runs.

Greedy Algorithm Probing Features

Another popular approach related to the landmarking concept is the use of information
obtained by the application of greedy methods, which is due to their short runtime
and simplicity of implementation. For Examination Timetabling, most of the greedy
algorithms are based on Graph Coloring approaches that were previously described in
subsection 2.2.1. In this thesis the modification of the SATUR heuristic [Bre79] that
demonstrated better results in comparison with other ordering methods has been used.

The main idea of an arrangement based on the saturation degree is to assign the exams
with the least available timeslots first. However, in case of the ITC 2007 formulation,
additional specified hard constraints need to be considered, namely constraints that
require the exams be assigned into the same periods or provide specific exam ordering
where one exam must be placed strictly later than another one. Due to the limitations of
such constraints, the ordering has been adjusted so that the exams that are restricted by
these constraints have the highest priority and must be placed first. Moreover, for exams
with the AFTER constraint, the priority assignment is given just for one exam that
should be assigned earlier. Subsequently, exams that are not restricted by the previously
described hard constraints are ordered as in the SATUR algorithm. If two exams have
the same number of possible assignments, the exam with a higher node degree is chosen.
The method is designed so as to minimize the number of time periods used; however,
room restrictions are considered as well.

As noted, the ETP is easily reducible to the famous Graph Coloring Problem. Furthermore,
due to the construction of the described algorithm, the number of periods it obtains
corresponds to the minimum number of colors needed to color the underlying graph
without conflicts. Additionally, some profitable results can be attained by applying
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reduction from the GCP into the Independent Set Problem where the subsets of exams
that have the same period (or color) assignment are considered to be independent sets of
the graph. Therefore, some extra information based on the size of color classes can be
obtained.

Accordingly, the Greedy Algorithm Probing features (15) consist of the following:

• the number of periods used (*);
• the ratio of the number of periods used over the total number of available periods;
• the number of unassigned variables, equals 0 in the case of a feasible solution;
• final score obtained, equals 0 in case of infeasible solution (*);
• computational time (*);
• min, max, median, mean, standard deviation, variation coefficient, entropy, skew,
q25, q75 regarding (*):

– independent set size.

Graph Coloring Features

As previously mentioned in subsection 2.2.1,the ETP can be reduced to the GCP where
exams correspond to the nodes and are connected by an edge if they have students in
common or specified exclusion hard constraints. However, some of the hard constraints
from the ITC 2007 formulation such as exam coincidence or exam precedence constraints
could not be easily represented. Nevertheless, the fraction of these constraints compared
with the total number of conflicts is relatively small. Thus, the described reduction can
provide some useful insights into the problem structure.

From a graph representation, useful features concerning period-based conflicts’ statistic
can generally be extracted in addition to some features that have been introduced for the
GCP that could also be reused in the ETP. Most of the characteristics presented below
have already been observed in several studies for the GCP [MS13, SMWLI13]; however,
a few novel features have also been introduced, such as the modularity related properties.
Features that have been already presented in literature, are marked by asterisk.

Features Related to Graph Size

The use of size properties of the graph as features are important due to conflict represen-
tation that could directly influence problem difficulty. Moreover, the number of edges
corresponds to the total number of period-based conflicts, and graph density conforms
to the conflict density of the problem. Therefore, the conflict density of the EPT for
the underlying graph G(V,E) will be calculated using the following formula where m
= |E| and n = |V| corresponds to the number of edges (conflicts) and nodes (exams)
respectively:

D = 2 ∗m
n ∗ (n− 1) (4.1)
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Therefore, the following properties regarding the Graph Size(3)(*) are employed for
the ETP characterization:

• the number of edges;
• graph (conflict) density;
• the ratio of number of edges over the nodes.

Features Related To Clustering Coefficient

The Clustering Coefficient measures the tendency of the nodes to cluster together.
Moreover, two types of clustering coefficients are distinguished: local and global. The
local clustering coefficient [DWS98] used in this work is computed for every node and
measures the probability that two randomly selected adjacent nodes of a certain node
are connected to each other. In other words, it can be also interpreted as the ratio of the
number of triangles connected to the node over the possible number of triangles.

A formal definition for the local clustering coefficient will now be provided. Consider a
node vi ∈ V in a graph G (V, E) where Ni denotes the set of adjacent nodes to vi: vj ∈ Ni

if and only if there exists an edge such that (vi, vj) ∈ E. Let tri denote the number of
edges (vk, vm) ∈ E such that vk, vm ∈ Ni. Therefore, the number tri is precisely the
number of triangles that node vi forms with two of its neighbors. Let ki define the degree
of node vi, where ki = |Ni|. Accordingly, the maximum possible number of edges between
the node neighbors in undirected graph is defined by the formula ki(ki−1)

2 ; finally, formula
of clustering coefficient Ci can be obtained:

Ci = 2 ∗ tri

ki ∗ (ki − 1) (4.2)

Therefore, as the problem features different statistics based on the Local Clustering
Coefficient has been employed. However, due to the drawback that the Clustering
Coefficient does not take into account the node degree, vertexes with a low node degree
have higher weights. Nevertheless, this problem could be solved with the Weighted
Clustering Coefficient. The Weighted Clustering Coefficient is calculated by multiplying
the Local Clustering Coefficient by the node degree, and various statistical measures
have also been applied.

Therefore, the following features related to Clustering Coefficient(21)(*) have been
obtained:

• min, max, median, mean, standard deviation, variation coefficient, entropy, skew,
q25, q75, regarding:
– Local Clustering Coefficient;
– Weighted Local Clustering Coefficient;

• computational time for all computation regarding clustering coefficients.
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Features Related To The Community Structure Of The Network

One of the issues in Network Science is the characterization of its community structure,
or, more specifically, how easily the network could be broken down into groups that
are densely connected internally and have sparser connections between communities.
Modularity [New06b] is a measure that characterizes quality over possible divisions
into communities in the network and is widely used in community detection algorithms
where high modularity indicates a good split of the network into groups. Generally, the
idea of modularity is in comparison to the quality of the current division in the given
graph with the quality of the same division in a graph where edges are placed randomly.
Formally, modularity can be defined as follows [New06b]. Suppose a certain network has
already been split into communities. Then let eij define a fraction of edges in the graph
between ith and jth, and eij denotes a fraction of the edges within community i. Then
aij =

∑n
j=1(eij) is the fraction of edges with one end-point in ith community, and a2

i - is
the probability that the randomly selected edge falls into i. Accordingly, the modularity
Q of a graph G(V, E) is defined as the following:

Q =
∑

i

(eii − a2
i ) (4.3)

Moreover, in practice the Q > 0.3 is an indicator of significant community structure.
However, an exhaustive search over all possible splits for modularity maximization
leads to an exponential amount of time, so the algorithm for community detection that
was described by Neumann [New06a] has been employed. This technique is based
on modularity maximization and belongs to the group of agglomerative hierarchical
clustering methods. The method greedily searches for a possible division of the vertexes
into groups in order to find a meaningful network split with high modularity. In detail,
the idea is to start with communities represented by single nodes and iteratively join the
communities’ pairs that lead to the greatest increase (or smallest decrease) in modularity
value. As a result, the split with the biggest modularity value is selected.

It is supposed that the characterization of graph structure could provide additional
benefits in the description of the internal properties of the ETP instance; the following
features based on community detection (9) were used:

• best modularity value obtained;
• the number of communities corresponding to the best modularity value;
• min, max, median, mean, standard deviation, variation coefficient over:

– community size corresponding to the best modularity value;
• computational time (*).

Features Related To The Maximum Clique Problem

In graph theory, a clique is a subset of vertices in an undirected graph such that all
vertices are adjacent to each other. Formally, in the graph G (V, E), a clique C ≤ V
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is such that for each pair of nodes v1, v2 ∈ C there exists an edge (v1, v2) ∈ E. The
maximum clique is a clique where there is no clique with a greater number of vertices. The
problem of finding a maximum clique is famous in graph theory; moreover, it is proven
to be NP-hard [Kar72]. Due to this importance, this problem has been widely studied;
therefore, a large number of different approaches have been employed. Additionally, it
has been investigated with regard to the characterization of the GCP [MS13, SMWLI13].
Furthermore, features based on the maximum clique could be profitable for describing
the ETP as the number of nodes in the maximum clique corresponds to the minimum
number of periods needed to obtain a feasible solution.

Due to the difficulty of the maximum clique problem and because of the relatively fast
performance required for feature calculation, the greedy approach has been used in this
research. The method starts with the single node as a clique, which iteratively enlarges
the clique by adding a new vertex from the list of the vertexes that are connected with
all of the nodes in the clique and has the highest node degree in comparison with other
vertices from the list. If there are no nodes that can be added to the current clique, the
method tries to drop one node from the clique in order to make it possible to obtain a
bigger clique. For that, it forms the list of the nodes that are connected to all nodes
in the clique except one and also were not previously dropped from the clique. The
vertex in the clique that has the least number of connections to nodes in the list is the
best candidate to drop. The method finishes if the current clique could not be enlarged
and if there are no new candidates’ nodes to drop. The algorithm is run for every node
in the graph, and a series of cliques is produced. Based on the information obtained,
the features related to the maximum clique problem (11)(*) are calculated:

• min, max, median, mean, standard deviation, variation coefficient, entropy, skew,
q25, q75, regarding:
– clique size;

• computational time.

4.3.2 Feature Preprocessing

The importance of the feature preprocessing step and its impact on prediction results
has already been mentioned. In these experiments, the Python Scikit-learn 0.18.1 library
[sci] has been used due to its simplicity, a large range of implementations of different ML
algorithms as well as good visualization tools.

In our experiments the feature selection methods do not depend on variance, and all
estimators mostly show better performance on the preprocessed datasets, therefore, the
feature selection experiments have been performed on the standardized versions of the
datasets for both classification and regression. Also, the discretized variants of the
datasets have been used for classification task.

In this work, we investigated several feature selection approaches, the wrappers such
as Recursive Feature Elimination (RFE) [GWBV02] where as the estimators Linear
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Regression and Random Forest have been employed and Bidirectional Best-First Search
(BFS) [Hal99] with the ClsSubsetEval criteria and limited backtracking from Weka.

Additionally, as filter methods are based on various assumptions about statistical signifi-
cance and tend to evaluate every feature separately, we combined several filter techniques
with the embedded methods into the compound approach, named as Filter Feature
Selection (FFS or F), in order to obtain better results. For regression problem, the
filter methods are the Pearson Correlation Coefficient (PCC) [Gay51] and the Maximal
Information Coefficient (MIC) [RRF+11]. From the ensembles methods we used the
coefficients from Lasso and Ridge regression and the features’ importance provided by
RF. Additionally, we experimented with Randomized Lasso (or Stability Selection) that
resamples the train data and then, repeatedly ran Randomize Lasso on it, and chose
the features correspondingly. For classification, the incorporated methods are Anova
F-value, Mutual Information, Stability Selection that represented by Randomized Logistic
Regression and features’ importance from the Random Forest Classifier. After that, we
scaled all the results and calculated a mean feature importance for each variable. The
attribute will be chosen to be presented in the reduced dataset if either it has been ranked
as one of the most important among others based on one selection technique, or it has a
high mean importance based on the results of several techniques.

Based on empirical observations, different threshold values for the FFS method have
been chosen. For regression problem, the mean threshold values is: 0.15, the Correlation
Coefficient: 0.8, the Linear Regression coefficient: 0.8, the Lasso regression coefficient:
0.5,the Ridge regression coefficient: 0.5,the Stability Selection coefficient: 0.5,the MIC
coefficient: 0.8,the Random Forest importance: 0.5. For classification problem the mean
threshold value: 0.2, the Anova value: 0.5, the Stability Selection coefficient: 0.3, the
MIC coefficient: 0.8, the Random Forest importance: 0.5.

Additionally, we constructed a new extended feature set that contains composite features
in addition to the original features, where the composite features are obtained in the
following way: for each features’ pair fx, fy we calculated multiplication fx ∗ fy, division
fx/fy, addition fx + fy, and subtraction fx − fy. However, as in that case the number of
features increase drastically in comparison with the number of samples (more than 68
000 vs 2000), the models will overfit and take an extreme amount of time for training.
Therefore, we only experimented with the reduced version of the features. However,
as the wrappers are computationally expensive and our experiments on the original
datasets reduced by FFS show that the results of the estimators do not worsen and even
improved, we applied the wrappers only after the usage of the FFS method. Due to
high computation cost we had to run the RFE procedure two times: at first, with the
step equals ten where ten features may be removed at once, and then, a second time
with the step one for the reduced dataset obtained on the previous step. These datasets
are named RFE1 and RFE2 correspondingly. Additionally, we have constructed the
datasets using the BFS method applied to the extended datasets reduced by FFS.

For regression tasks, as evaluation criteria for RFE RMSE has been used, while ROC_AUC
and Log_Lossmetrics have been employed for the binary and the multiclass classification
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cases respectively.

For scaling, several algorithms represented in Scikit-Learn [sci] have been employed. These
methods are Standard Scaler, MinMax Scaler, Robust Scaler, Quantile Transformer and
Normilizer. Although all the methods (except Normalizer) show comparable results in
our preliminary experiments, Standard Scaler outperforms other techniques for the most
estimators. Therefore, it will be used as a default scaling method for all the experiments,
unless otherwise noted.

Also, as it has been shown, that for classification problems discretization of continuous
variables can have positive effects on prediction results [KK06, DKS95]. Therefore, we
experimented with several discretization methods, namely Equal-Frequency, Equal-Width
methods with various number of bins represented in Orange library [DCE+13] and the
MDL discretization with Mutual Information[FI93] and Kononenko criteria [Kon95] from
Weka [HFH+09]. According to our preliminary experiments, the MDL discretization with
Kononenko criteria shows the best performance for the ETP problem across different
estimators, therefore, it has been chosen as a representative of discretization methods for
further experiments.

4.4 The Performance Space for the ETP

As noted, ubiquitously various ML have been used for the AS and the APP problems.
Moreover, it has already been pointed out that choosing the best algorithm for these
problems is the Algorithm Selection Problem, making it undecidable [Guo03]. Manually
testing all available ML approaches is time consuming, so several State-Of-The-Art
techniques have been chosen from different categories from the Scikit-learn library.
However, a detailed observation of the ML algorithms is not within the scope of this
work. For that please refer to this book with a comprehensive survey of various ML
techniques [WFH11].

The regression techniques used in this work are Linear, Ridge, Elastic Net and Lasso
regressions. Despite their simplicity, many researchers preferred the use of these methods
instead of more sophisticated ones due to their low computational cost and relatively
good results [XHHLB08]. Moreover, they have already been successfully applied for
APP for several combinatorial problems such as the Winner Determination Problem for
Combinatorial Actions [LBNS06], SAT [NLBD+04] and Course Timetabling [KS04].
Additionally, for classification problem we tested the Naive Bayes algorithm.

Another group of methods investigated for the ETP performance prediction and algorithm
selection is tree-based approaches. These techniques have become fairly popular recently
due to their relatively fast model building and often perform the best compared to other
techniques [HXHLB14, Mes14]. Moreover, various tree-based methods for regression and
classification have been implemented in the Scikit-learn library. While we have tested
most of them, the Gradient Boosting Machine (GBRF) has been left out of the final
evaluation as other versions of Decision Trees, such as ID3/4/5 decision trees tend to
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have less predictive power compared to the boosted version. Additionally, we included
the Random Forest estimator in our experiments.

The regression and classification implementations of popular ML approaches represented
within the Scikit-learn library such as KNN, Multi-layer Perception (MLP) and SVM re-
gressors that are considered to be among the most influential ML techniques [WKRQ+07]
has also been included. We experimented with various configurations and the proper
tuning of the estimator parameters as well.

For regression case, in order to measure the quality of the constructed models, several
performance metrics have been introduced, namely the Root Mean Squared Error (RMSE)
of log and raw response, and the CC between the predicted and actual value of response
variables has been calculated. Also, the Median Absolute and Percentage Errors (MedAE
and MedAPE), the Mean Absolute and Percentage Errors (MAE and MAPE) have been
used.

For classification, it is essential to use a variety of classification metrics, because different
estimators are based on optimization of different loss functions, especially, in the case of
imbalanced datasets where we can obtain the Accuracy Paradox. Further, we separated
the metrics used for the binary and the multiclass classifications, as some of them may
be less efficient in either case. However, one of the main metrics is still classification
accuracy – the portion of correctly classified instances. In addition, for the binary cases
we used Precision, Recall, F1-score, Area Under ROC curve (ROC). For the multiclass
problem F1, Accuracy, Recall and Precision metrics in both micro and macro variants
have been employed. Moreover, in case if the classifier was able to produce the probability
of belonging to a certain class, the log-loss metric has been calculated also.

It is a widely-known problem that ML algorithms tend to overfit when the same dataset
is used for learning and testing. In order to prevent this, a 10-fold cross-validation has
been used where the sample is randomly divided into 10 subsets. The process is then
repeated 10 times where each subsample is used precisely once as a test set for model,
and the rest is employed as a training set. As a result, the average performance statistic
is reported over all runs. Moreover, we additionally validate the performance of the best
model obtained by using a set of new unseen instances as a test set.

For statistical significance testing between the results of various estimators, we have used
the Welch’s statistical test [Wel47]. The test has been performed with the threshold
value p=0.01.
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CHAPTER 5
Experimental Results

In this chapter, we present the results of the experiments for the APP and AS problems
for the Examination Timetabling Problem using different classifications and regressions
algorithms. Also, the performance of the regression and classification methods is investi-
gated in terms of different performance measures discussed before. In addition, using
various feature selection methods, the importance of particular features for APP and AS
is investigated in detail, and then, employing the information obtained, the feature set is
reduced. Finally, the best estimators together with the reduced feature set are used for
prediction on the test set of unseen instances. Additionally, we study hyperparameter
optimization for different estimators in detail.

5.1 Feature Selection Results

In the next subsections, we look closely at application of the feature selection approaches
for Algorithm Selection and Performance Prediction. Moreover, the importance of the
feature families and its impact into estimator performance are described for each dataset
separately. Additionally, our feature selection results include information about the most
frequently selected features that have been chosen by the different methods and statistics
regarding the most frequent features that are used as constituents for the compound
features in the reduced versions of the expanded datasets. For that, we decomposed each
feature in the reduced datasets into original components and then, count these features
together with individual attributes. Moreover, a feature in an expanded dataset is
considered to be related into two groups if its constituents are from the different attribute
classes, otherwise it corresponds to a single group. All statistics and all features chosen
by the different methods for APP and AS can be found in section A.1 and section A.2
respectively.
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Figure 5.1: The average number of features per attribute class chosen by the methods
for the APP problem
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5.1.1 Application Of The Feature Selection Methods For
Performance Prediction

In this subsection, we briefly analyze the feature selection results for Performance
Prediction. The detailed results regarding the different estimators tested on the reduced
datasets can be found in section B.1. The average number of features per attribute class
chosen by the methods which has been normalized by the number of the selection results
used can be seen on Figure 5.1.

First, let’s start with the performance comparison of the feature selection techniques. As
mentioned, FFS has been used as a preliminary step in order to reduce computational
time. Although we used comparably low threshold values for the FFS method in order
to retain important features in the datasets, we were able to reduce the features in the
training dataset from 184 to 65-75 for the original datasets and by factor ten (from 68
000 to 6000-10000 features) in the case of the extended datasets. Further, while retaining
good estimator performance, we were able to significantly reduce the datasets by the RFE
method for the original and the expanded datasets. For the original ITC2007_time
datasets, RFE keeps about 10-17 features, while for the solvers in the extended SA
versions of the datasets it leaves about 25-35 features. On the other hand, while the
number of features in the datases obtained by BFS were even lower, about 5-15 attributes
per the dataset, in comparison with RFE the regression results have been worsen. This
can be clearly recognizable by the quantitative comparison of the performance metrics
and the visual comparison of corresponding scatter plots.

The opposite situation may be noticed on the test datasets. Although performance of
the estimators based on the RFE results drops significantly, the estimators show rather
good performance on the dataset reduced by BFS. Therefore, we may conclude that the
features chosen by BFS are appropriate for more general models, while RFE tends to
overfit. However, the RFE results may be further improved, but this question needs
further investigation.

Now, let’s analyze the importance of various feature groups. Surprisingly, we can see
that most of the time we obtained similar results for the different solvers. It is clearly
recognizable that the group of features that corresponds to the instance size prevails
in most cases, especially for the extended datasets. Another attribute group that was
considered the most statistically significant by various filter and embedded methods
in the original datasets is the features related to exam information. These attributes
mostly consist of various statistics about exams per student. Less frequently, but still
employed in the reduced datasets, are the features based on period, student, conflict and
room information. Interestingly, the features which are based on the reduction of the
Examination Timetabling Problem into the graph problems, such as Community features,
Greedy algorithm features, Clustering Coefficient and Clique size attributes are less
frequently chosen. This can be the case because we consider only the hard constraints for
the graph construction and do not take into account the soft constraints which are used
for the score calculation. Therefore, these attributes may be more useful in case we want
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to predict whether the ETP algorithm will be able to obtain a feasible solution. Also, as
in most cases it may be impossible to satisfy all soft constraints, another possibility would
be to construct several graphs based on the hard constraints and some soft constraints
and rerun all graph-based algorithms on these new graphs.

The important point from the previous observation is that as the most selected feature
groups are based on the problem formulation, therefore, they are easy to compute. On
the other hand, a lot of algorithms for the corresponding graph problems may take a
lot of computational time and are also harder to implement. Therefore, it may be also
interesting to investigate the Performance Prediction Problem using only the features
that can be directly obtained from the problem formulation. However, it is also out of
scope of this work, and left for future work.

Concerning individual attributes, based on statistics, we can see that the ExamPerStu-
dentSD is the most frequent feature chosen, which is individually presented in 30% of the
different datasets. Additionally, the statistics about the ExamPerStudent information
frequently presented in the reduced datasets: the ExamPerStudentMax (25%), the
ExamPerStudentMean (25%),the ExamPerStudentVarCoef (20%), the Exam-
PerStudent1Q (15%),the ExamPerStudenEntropy (15%) etc. This result seems
logical as the violation of the soft constraints such as, for example, two in a row, two in
a day or the period spread constraints, depends on placements between different exams
taken by one student, and therefore, the less exams one student takes, the easier it will be
to find a better solution. Moreover, in most cases the weights of the scoring function for
the violation of two in a day or especially for two in a row are greater than the weights for
other soft constraint violations, and moreover, the violation of these constraints happened
more often than the violations regarding exams or room placement.

The NumberOfStudents feature is dominant in comparison with other features ( 30%
vs 2%) based on both the expanded decomposed and the original feature sets. The
importance of the attribute may be explained by the same argument as above, because
the possibility of violating one of the student-related constraints increases with the
number of students to be placed. A similar situation takes place with other related
groups of the attributes such as, for example, the features corresponding to the Stu-
dentPerExam information. This can be the case because due to room and student
constraints larger exams are usually harder to place. Additionally, there is a special
penalty about large exam allocation where it is desired that these exams will be assigned
later in a timetable. Less frequently, but still relatively often, the other features related
to the problem description are used as the constituents in the extended datasets, namely
the NumberOfDays, the NumberOfRooms, the NumberOfPeriods, the NumerOfDays,
Slackness , WeightPeriodSpread, FlontLoadWeight, the NumberOfExclusionConstraints,
the NumberOfCoinsidenceConstraints, the NumberOfExams, the NumberOfRooms and
others.

Surprisingly, only one feature from the graph features, namely the CliqueCalculation-
Time, has been chosen by the wrappers in 25% of the datasets. Although at first sight
the choice of this feature is not obvious, it directly reflects the complexity of the related

50



5.1. Feature Selection Results

conflict graph. As we used the greedy approach that gradually tries to enlarge the clique
based on neighbor information, calculation time depends on the graph density, that
corresponds to the conflict density.

5.1.2 Application Of The Feature Selection Methods For Algorithm
Selection

In this subsection, we briefly analyze the feature selection results for the Algorithm
Selection Problem. Visual comparison of the feature selection results obtained on the
datasets regarding the different attribute groups can be found on Figure 5.2. Detailed
results achieved on the reduced datasets by the classification algorithms can be found in
section B.2.

As we can see, the attribute selection methods were able to reduce the number of features
noticeably, while retaining rather good estimator performance. However, the number
of features differs drastically depending on the preprocessing methods and the feature
selection techniques used. For example, for the extended version of the ITC_2class
dataset RFE left 239 and 259 attributes for the standardized and the discretized versions
respectively, while BFS considered important 30 and 14 variables only. Surprisingly, the
performance of the estimators on the datasets reduced by both methods are comparable,
and moreover, in some cases the estimator performance on the subsets reduced by BFS
is even better. However, in most cases the tendency is that BFS chose less variables
than RFE, and based on the classification results, it was more appropriate for our
task. However, RFE is also a powerful method, and can be further improved by the
usage of another estimator or proper parameter configuration of the algorithm employed.
Nonetheless, this question is left for future work.

In general, we may acknowledge that the feature subsets that are based on the reduction
of the extended datasets are more informative than the standardized ones. This may be
the case as the compound features help to model additional relations that are absent in
the original datasets. Another observation is that, in general, discretization improves
the results while decreasing the number of features needed for prediction. One possible
explanation is that the MDL discretization takes into account the target variable, and
therefore,the discretized features may be more informative compared to the original or
the standardized variables. However, detailed investigation of this question is out of
scope of this thesis.

Let’s start to analyze various feature groups chosen by the FS techniques. Notably, one
of the most selected group of the features are those related to the results of the greedy
heuristic. Moreover, the following attributes regarding the heuristic results itself such
as theGreedyScore, GreedyNumberOfUnassignedVariables, GreedyNumbero-
fUsedColorsPerPeriod and GreedyNumberOfUsedColors are the most frequent
constituents for the compound features in the reduced datasets. The reason might be
that the performance of the Greedy Coloring Algorithm is strongly correlated with the
performance of another ETP algorithm. Moreover, the number of used colors in the best
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Figure 5.2: The average number of features per attribute class chosen by different methods
for the AS problem
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case corresponds to the minimum number of periods required for the construction of
a feasible timetable. Other frequently chosen variables are the features related to the
GreedyIndependentSet characteristics. These attributes may also provide additional
information about performance of the algorithms as it corresponds to the exams that
potentially might be assigned into the same timeslots, and therefore, may correlate with
instance complexity. As future work, it may be interesting to implement other features
related to the landmarking concept, and investigate their impact into the results of the
AS solver.

Another group that is deemed to be important according to different FS methods is
the information regarding the instance size. One of the most frequently chosen feature
corresponds to the NumberOfExamsOverSlack that characterizes the distribution of
the exams over available resources, and therefore, may be helpful. Another interesting fact
is that specifically important are considered the features related to the different constraint
types: theNumberOfCoincidenceConstraints, the NumberOfAfterConstraints,
the NumberOfRoomExclusiveConstraints and the others. One explanation might
be that the higher number of constraints may cause inefficiency of some algorithms, and
as a result, increase the number of the soft constraint violation of the ETP heuristic.
However, understanding the instance characteristics where one of the ETP heuristic may
potentially have problems, could help to improve the heuristic itself. Nonetheless, this
observation need further investigation.

There are several other features groups that are supposed to be significant by the FS
algorithms, such as room and exam information. These attributes include also the
ExamPerPeriod and StudentPerExam information and the features related to the
resource information such as room capacity information and RoomPerExam statistics.
Similar to the previous group, these variables may define some instance specific properties
of the ETP that characterize the instance complexity for the algorithms, and therefore,
are considered to be important.

In most cases, the other features groups are chosen for some datasets, however, relatively
less frequently. The least chosen feature groups include the attributes related to the
period and the conflict information. However, some features that may be considered
to be presented in these groups are already included into other attribute groups, for
example, as ExamPerPeriod information mentioned before. Therefore, it is harder to
conclude whether these feature groups are fairly insignificant for our task.

5.2 Performance Prediction for the ETP
In this subsection, we carry out the experiments for the Algorithm Performance Pre-
diction problem. At first, we started with evaluation of various regression methods
using cross-validation on the training datasets, namely the ITC2007_time and the
SA_time datasets using the original feature set. Also, for the experiments on the reduced
datasets we used the estimators that have shown the best results across the original
datasets. At last, we train these estimators on the standardized versions of the SA_time
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Figure 5.3: Visual comparison of RMSE obtained by different regression models on the
original and the standardized versions of the ITC2007_time and the SA_time datasets
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Figure 5.4: Scatter plots obtained by ENet, SVR, GBR and MLP for the solvers on the
standardized versions of the ITC2007_time and the SA_time datasets
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and the ITC2007_time datasets, and then, test them on the test datasets named
ITC2007_time_test and SA_time_test respectively. The best parameters found
for each solver in the datasets can be found in section C.1. The results obtained for the
datasets can be found in section B.1. Quantitative comparison of RMSE obtained by the
different methods can be seen on Figure 5.3 and Figure 5.5 for the training datasets and
on Figure 5.7 for the test datasets.

Also, in order to gain a better understanding of the model performance, the scatter plots
for some estimators have been employed, where the x-axis corresponds to the predicted
score and the y-axis corresponds to the true score. The constructed scatter plots for the
training set can be found on Figure 5.4 and for the test dataset on Figure 5.6. Additionally,
the scatter plots for the reduced training datasets can be found in section B.1.

5.2.1 Performance Prediction On The Training Dataset

To begin with, let’s start with analysis of the performance of different estimators on the
original dataset. We can see that some of the estimators were able to predict the solver’s
score fairy accurately for all solvers even without any additional preprocessing. Besides
the quantitative comparison, we can acknowledge this conclusion by using the scatter
plots where in most cases the predicted score was relatively close to the true score. Even
in the case of the SA solver, despite some outliers, for most instances the results were
relatively accurate.

In almost all cases the GBR provided the best results for the original dataset, except
the GRASP for the ITC2007_time dataset where Ridge regression won first place.
However, after scaling SVR outperformed other algorithms for all solvers. Regardless
of simplicity, LR-based techniques showed good results, especially Ridge and ENet.
Interestingly, after preprocessing, Lasso, Ridge and ENet slightly improved their results,
while the performance of LR became a bit worse. Moreover, for the GRASP solver in
the standardized version of the ITC2007_time dataset LR dropped its performance,
and it was unable to predict some outliers as RMSE notably increased, while MedAPE
and MAPE values remain close to the non-standardized version. It is also clearly seen
that KNN, SVR and MLP suffered from non-scaled data, while after preprocessing its
performance increased significantly. However, even after scaling, KNN still provided poor
performance in comparison with the other methods, even with simple LR. The results
obtained by RF and GBR on both versions of the datasets are statistically insignificant,
as expected, as tree-based methods do not usually require any additional scaling. Also, it
worth mentioning that in our experiments the GBR always outperformed RF, and similar
observations have been examined in other works, for example in [RNM06, RNMY08].
The MLP regressor after standardization showed good performance, however, the training
process remained computationally expensive.

From the scatter plots we can observe that models constructed for the SA solver consisted
of more outliers than the models for the other solvers. Interestingly, the best models
have been obtained for the SACP solver on both datasets, and moreover, with regard to
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Figure 5.5: Visual comparison of RMSE obtained by different regression models on the
reduced versions of the ITC2007_time and the SA_time datasets
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the scatter plots, the difference between the predicted and the true value is relatively low
even for the outliers, especially in comparison with the SA solver.

Let’s discuss the impact of the feature selection techniques into the original and the
extended datasets. In most cases, the best results were obtained either by MLP or SVR
with only one exception where GBR obtained the best results for the SA solver for the
FFS and the RFE methods. However, in most cases GBR obtained the results relatively
close to the best, while the ENet results were comparably worse.

Also, we can see that for the original datasets, the FFS method was able further improve
the results and reduce the number of outliers, however, the number of chosen features still
remained relatively high. Furthermore, after application of the RFE method there was
no significant decrease in comparison with the previous results and the performance is
fluctuated just slightly. However, in some cases the feature selection led to an increase in
a median error while RMSE was decreasing. Therefore, sometimes it is hard to conclude
whether the results have been improved or worsened. The opposite situation can be seen
in the case of BFS application: while the number of features is similar to that obtained
by the RFE method, based on RMSE and MedAE metrics the results were worsened
significantly, even by several times in some cases.

For the extended version of the datasets, after the application of FFS and RFE, we
obtained a small decrease in RMSE while MedAE and MeanAE sometimes even increased,
however, they still remain pretty low. A similar situation, as in the case of the original
dataset, was obtained by the application of BFS where the method worsened the results,
even in comparison with results obtained by other methods on the original dataset.

5.2.2 Performance Prediction On The Test Dataset

Although we already carried out some experiments using cross-validation techniques,
in the real-world we need to predict the performance of the algorithm based on new
instances that have not been used during the training process. Moreover, some ML
methods tend to overfit, and as a result, do not generalize well. Therefore, we used the
best performing regression methods from the cross-validation experiments, trained them
on the standardized versions of the SA_time and the ITC2007_time datasets, and then,
tested them on the test datasets named ITC2007_time_test and SA_time_test
respectively which consist of 249 unseen instances. Additionally, we would like to mention
that in order to obtain appropriate results and do not provide additional information
about the test set, standardization techniques have been trained on the training dataset
only, and afterwards, this model has been applied to the test dataset.

Also, we investigated the behavior of the performance models on the reduced versions of
the datasets. In the experiments, GBR and SVR with the optimal parameter settings
obtained during the cross-validation process have been used. The detailed results received
by the regression models can be found in section B.1. The best parameter configurations
for the estimators tested can be found in section C.1. Visual comparison of the constructed
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Figure 5.6: Scatter plots obtained by the regression models on the test set
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Figure 5.7: Visual comparison of RMSE obtained by different regression models on the
test datasets

models can be observed on Figure 7. In addition, quantitative comparison of the RMSE
results on the test dataset can be found on Figure 5.7.

In general, even though performance of different estimators obtained on the training
dataset by 10-fold cross-validation is better, we still could predict the solver score for the
test set rather well. Interestingly, the best results have been obtained on the original
feature set, while in some cases the estimator performance for the reduced datasets
worsened significantly. Also, SVR performed just slightly better than GBR for most of
the datasets.
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We may notice that BFS technique was able to determine the most important features for
the test datasets, while significantly reducing the number of attributes, especially for the
extended versions of the datasets. In comparison, RFE performed relatively worse, and
for some datasets, especially for the expanded versions of the SA and the SACP_ITC, was
not able to obtain appropriate results. On the other hand, in cross-validation experiments,
the performance models based on the features chosen by RFE dominated over the BFS
feature-based models. This may be the case because the RFE technique is based on the
application of the specific estimator, RF in our case, therefore, we could easily overfit for
certain problem subclasses, while missing some important characteristics needed for the
performance prediction. This problem could be potentially solved by choosing another
estimator and its proper configuration for the RFE procedure, however, this question is
left for future investigation.

Another observation is that the constructed feature set characterized the performance
of the SACP and the GRASP solvers better for both versions of the datasets, while
performance models for the SA solver obtain more outliers. The same results have been
noticed for the training dataset where we were able to construct better performance
models using cross-validation for the SACP and the GRASP solvers in comparison with
the SA solver.

As a result, we may conclude that during our experiments we were able to construct
rather good performance prediction models in cross-validation settings for the different
solvers presented in the datasets using the introduced feature set. Moreover, we were able
further reduce the datasets, while preserving the performance of the prediction models.
Additionally, we confirmed the performance of the estimators by testing them in the
real-world settings using the test dataset of unseen instances.

5.3 Algorithm Selection for the ETP
In this subchapter, we describe the experiments conducted for the Algorithm Selection
(AS) Problem using various classification algorithms and preprocessing methods. At first,
we carry out the experiments on the training datasets using 10-fold cross-validation. For
this purpose, all classifiers with the optimal parameter configurations have been tested
on a complete feature set where the datasets have been presented in the original, the
standardized and the discretized forms. Further, we reduced the datasets by application of
BFS and RFE on the original and the extended versions of the datasets. As performance
of the estimators is usually better on the preprocessed datasets in comparison with
the original ones, we applied the attribute selection methods on the standardized and
the discretized versions only. Afterwards, we tested the best performing classification
techniques with the optimal parameter settings on the reduced datasets.

Additionally, we checked the performance of the estimators on the real-world settings
where the test dataset of unseen instances has been used. In addition to the initial
feature set, we tested various classification algorithms on the reduced versions of the
training and test datasets where the feature subsets have been obtained by the RFE
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Figure 5.8: Visual comparison of the accuracy obtained by the classification algorithms
on the original training datasets

and the BFS techniques on the previous step. The estimators have been examined with
the best parameters settings obtained on the cross-validation step. All datasets have
been presented in the standardized and the discretized versions, where the preprocessing
methods have been trained on the training dataset only, and then afterwards, applied to
the models on the test dataset.

The detailed results obtained during the experiments can be found in section B.2.
Quantitative comparison of the accuracy obtained on the original and the reduced
training datasets by different methods in comparison with the underlying heuristics can
be seen on Figure 5.8 and Figure 5.9 respectively. The parameter configurations used
in the experiments can be found in section C.2. The features chosen by the variable
selection methods for each dataset can be found in section A.2.

5.3.1 The Algorithm Selection Problem For The ETP On The
Training dataset

First, let’s starts with the performance analysis of various classification methods on the
initial feature set. As we can see, we were able to achieve 13%, 15% and 11% accuracy
improvements for the SA_3_class, SA_2_class and ITC_2_class respectively in
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Figure 5.9: Visual comparison of the accuracy obtained by the classification algorithms
on the reduced training datasets

comparison with the best performing heuristics for the ETP. In most cases, the best
results have been obtained by either GBC or MLP classifiers, however, SVC with the
proper parameter configuration was able to achieve analogous results on the preprocessed
datasets. Interestingly, Naïve Bayes and KNN have shown rather worse performance even
on the standardized and the discretized datasets compared to the other classification
algorithms, and therefore, they were excluded from further investigation. It is also worth
mentioning that preprocessing, especially discretization, improved the performance of
almost each every estimator, especially in the case of SVC and KNN. On the reduced
versions of the datasets, we were able further improve the accuracy of the AS-based
solver for the SA_time datasets on 18% achieving 81% and 84% accuracy respectively.
However, we did not obtain any additional improvements on the ITC_time dataset.
One assumption is that this might be the case because it is harder for the estimator
to differentiate between the SACP solver and the others using the current feature set.
However, we significantly increased the ability of the classification methods to identify
the instances where the GRASP outperformed the SA solver.

Although, in general, almost all methods have shown comparable performance, similar to
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the original datasets, in most cases the best accuracy has been achieved by GBC and
MLP. Interestingly, the best performance models for all datasets have been obtained
on the expanded discretized versions of the datasets reduced by BFS. Besides, for most
datasets we were able to achieve at least 10-12% improvement in comparison with the
best performing algorithm.

Surprisingly, although the number of features selected by the RFE procedure is sig-
nificantly greater than the number of attributes selected by BFS, we observed that
primarily, the classification algorithms performed better on the datasets reduced by
BFS, especially on the extended versions of the datasets. Similarly to the Performance
Prediction problem, the RFE procedure may require additional parameter configuration,
however, it is left for further investigation.

Another interesting observation is that the models constructed by various estimators
are better on the extended datasets than on the original ones. One explanation may
be that as the number of features increases drastically, and therefore, we may find
more appropriate attribute subsets for our task and model new dependencies that were
missing in the original datasets. Also, it is worth mentioning that even if, in general, the
preprocessing methods improved the estimator performance, the classifiers have shown
better performance on the discretized datasets compared to the standardized ones.

5.3.2 The Algorithm Selection Problem For The ETP On The Test
dataset

In our experiments on the test dataset, we were able to get rather good results, especially
on the extended versions of the datasets. The best accuracy improvement for all datasets
have been achieved on the extended discretized datasets reduced by BFS, specifically
about 17% for the SA_3class dataset, 18% for the SA_2class dataset and 16% for
the ITC_2class dataset in comparison with the best performing heuristics. Moreover,
in most cases the estimators were able to achieve at least 8-10% improvement. Another
observation is that we also got the results close to the best on the discretized datasets
with the original feature set and on the extended standardized datasets reduced by BFS.

In general, we might notice that the performance of the different models in our investiga-
tion was better on the discretized datasets than on the standardized ones. Also, based on
the results, the BFS technique was able to characterize the solvers rather well, while RFE
was not always successful, and as mentioned, apparently need to be properly configured.
Similarly, we were able to construct better classification models on the extended version of
the datasets, while the preprocessing and variable selection processes may be rather time
consuming. Mainly, GBC and MLP showed the best performance, while SVC and RF
performed comparably worse, however, in some cases SVC with the proper configuration
was also able to get good results. Interestingly, the described results and observations
are fairly similar to those that we have been already obtained on the training datasets
using cross-validation.
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Figure 5.10: Visual comparison of the accuracy obtained by the classification algorithms
on the test datasets

Based on the experiment’s results on the training and the test datasets we may conclude
that we were able to construct the AS-based solver that outperformed the underlying
heuristics for the ETP for most cases, especially for the SA_time dataset. In detail,
the solver based on the AS technique surpassed the best heuristics for the ETP up to
18% on SA_time and up to 11% on ITC_time training dataset. Moreover, almost all
constructed AS models outperformed the algorithms developed to the ETP by at least
10-12% on the training datasets. For the test datasets, we achieved 17%, 18% and 16%
accuracy improvement for the SA_3class, SA_2class and ITC_2class respectively.

However, the models might be further improved by introducing new features, finding
more appropriate feature selection techniques and finding new real-word based instances.
Nonetheless, all these questions are left for further investigation.
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5.4 Optimization of parameter settings
In this subsection, we discuss hyperparameter optimization for the estimators, as perfor-
mance of the model strongly depends on the parameters used. Some methods have a
lot of parameters to configure, and therefore, we will choose the parameters which are
considered to be the most influential for the outcome. For each estimator a range of
parameters is defined separately. Also, the estimators that can be used for both classifi-
cation and regression problems will be examined together as the working principle of the
algorithm and most of the estimator-specific parameters remain the same. Additionally,
we illustrate the comparison of some parameter configurations by the graphics where it is
considered to be useful. However, in most cases we display the results for the one dataset
only, as, in general, the results obtained on the different datasets are quite similar to
each other.

For parameter optimization, Scikit-learn provides several built-in methods, such as the
Exhaustive Grid Search (EGS) and the Randomized Parameter Optimization (RPO)
which simplify hyperparameter optimization process. In EGS you need to specify a
grid of parameters that will be tested and then, using the specified estimator, the best
combination of the parameters will be returned. In contrast, RPO randomly searches over
the provided parameters drawn from the distribution over the parameter values. While
the Grid Search approach looks more intuitive, RPO shows good results if the number
of iterations is sufficient [BB12]. Moreover, for the methods with a lot of parameters,
exhaustive enumeration will be fairly time-consuming.

Usually, in EGS and RPO the performance metrics for evaluation of the constructed
models are taken from the estimator tested, however, they may be specified separately,
as, for example, accuracy in case of imbalanced datasets can be uninformative. Moreover,
it is permitted to use multiple metrics or implement your own metric. Also, most binary
metrics can be averaged for the multi-class problems with several options for different
scenarios, such as unequal class importance or imbalance learning.

Also, there are some model-specific methods, for example, the Coordinate Decent Method
for Lasso and E-net regressions or the Leave One Out implementation for Ridge regression.
Therefore, as these approaches specifically optimized for a certain estimator, we used
them for finding the best parameters for regularization techniques.

For the other estimators in our experiments, we used the Grid-Search method, specifically
for K-Nearest Neighbors and Support Vector Machine. Due to the model complexity and
the large number of configuration parameters, for Random Forest, Gradient Boosting
Machine and Multi-Layer-Perceptron the RPO method has been employed with 90 as
the number of iterations, which is considered to be sufficient for achieving appropriate
results. As a measure of estimator performance, for regression techniques RMSE has been
employed, while for the classification case ROC_AUC and Log_loss have been used for
the binary and the multiclass problems respectively. The best parameters found for the
estimators and corresponding parameter range tested can be observed in section C.1 and
section C.2.

66



5.4. Optimization of parameter settings

Additionally, we experimented with several preprocessing techniques represented in Scikit-
Learn, namely Standard Scaler, MinMax Scaler, Robust Scaler, Quantile Transformer
and Normilizer. Also, we explored several discretization methods, namely the Equal-
Frequency, Equal-Width methods with the different number of bins represented in Orange
library and the MDL discretization with the Mutual Information and the Kononenko
criteria from Weka.

5.4.1 Linear Regression based Techniques

First, we start with analysis of the algorithms which are based on Linear Regression and
are mainly used for regression problems. These approaches are Lasso (L1), Ridge (L2)
regularizations and Elastic Net that compromises between Lasso and Ridge methods.
The main principle of these methods is to penalize regression coefficients in order to
prevent overfitting.

For Lasso and Ridge regressions we need to configure one parameter α that corresponds
to the penalty coefficient of the regularization term. Additionally, in Elastic Net, we need
to set up the parameter corresponding to the ratio between the usage of the L1 and the
L2 penalty terms.

As mentioned, Scikit-learn also has several built-in methods that help to find the optimal
parameters for regularization techniques. As a result, for Lasso and E-net parameter
search we used the Coordinate Descent (CD) method that is based on approximate error
minimization. However, in order to obtain appropriate results, we need to specify the ε
parameter, which defines the length of regularization path and roughly corresponds to
the number of parameters tested. For Ridge regression, we tested a technique which is
based on the efficient Leave One Out implementation of cross validation. The example
of RMSE obtained for the different parameter configurations of various approaches and
preprocessing methods for the ITC2007_time dataset can be found on Figure 5.11.

Based on the quantitative results, we observed that for our experiments with Lasso
regression the best α values were small, while for Ridge they were relatively greater,
especially in the case of the standardized datasets. However, after comparison the
parameters for Ridge regression visually, we discovered that in most cases RMSE just
slightly fluctuated around one value, and therefore, good results for Ridge regression
may be also obtained with the smaller α values. On the other hand, the performance of
Lasso regression hardly depended on the α parameter and RMSE grown together with
the α value. Another important observation was that in most cases Elastic Net showed
the best performance when it mostly used the L2 penalization together with the small
penalty parameter. Moreover, when we considered the impact of both regularization
terms equally (l_1=0.5), while the α was increasing, RMSE also started to grow due
to the impact of the L1 term. However, the growth was still slower than in the case of
Lasso due to the presence of the L2 component.

Regarding different preprocessing techniques, we may notice that, in general, for Ridge
regression the results did not depend on the choice of the method, while for Lasso and
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Figure 5.11: RMSE obtained by different regularization techniques with various parameter
settings. For ENet L1 = 0.5, α=0.05

ENet it becomes essential. Based on the visual comparison we concluded that the best
results were obtained by the usage of Standard and Robust scalers for both the Lasso
and the Elastic Net models.

Based on these facts, we can assume that Ridge regression showed better performance on
the datasets than Lasso. This can be the case because Lasso tends to eliminate certain
features completely by assigning them zero coefficients, while missing some important
relations. On the other hand, although Ridge regression minimizes the impact of non-
informative features, it still considers them in the model. Another note is that, regardless
of simplicity, after proper configuration, all regularization methods were able to construct
the accurate predictive models for all solvers that are comparable with more sophisticated
methods, especially Elastic Net technique.

5.4.2 K-Nearest Neighbors

K-Nearest-Neighbor (KNN) is another State-Of-The-Art technique that is widely used
in regression and classification problems, and moreover, is considered one of the most
influential Data Science algorithms [WKRQ+07]. The main idea of this method is
to predict the label of a given instance based on k closest training samples for the
instance. Thus, as we need to compute the distances between all pairs of the samples, the
application of the brute-force implementation may be rather time consuming. Therefore,
for our experiments in order to address this drawback we chose time-efficient Ball-tree
implementation [Omo89] represented in Scikit-learn that encodes the aggregate distance
information and stores it into a tree-based data structure.

There are three main parameters that need to be configured for the supervised version
of KNN: the number of neighbors that corresponds to the number of the closest
samples used for the label prediction, distance measure and weight function. As
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Figure 5.12: The impact of different parameter settings of the KNN algorithm on
prediction quality

distance metric we tested several measures represented in Scikit-Learn, namely Euclidian,
Manhattan, Chebyshev and Minkowski distances. Weight function characterizes the
influence of different neighbors on prediction results: the "distance" function assigns
weights corresponding to the inverse of their distance, therefore, closer samples will get
greater impact, and the "uniform" function weights all samples equally. Also, as KNN
is a distance-based algorithm, it is essential to scale all attributes in the same range,
and therefore, data preprocessing is required. The impact of different parameters on
performance of the model can be seen on Figure 5.12.

For regression, the optimal n_neighbours for all solvers lies between 10 and 20 for
both the standardized and the original versions of the datasets. However, for the binary
classification the preprocessing significantly decreased the number of neighbors needed
for the prediction from 50 to 20-25, although for the multiclass case n_neighbours
increased from 50 to 75 for the standardized and the discretized versions of the datasets.
Therefore, we can conclude that the optimal value of n_neighbours is extremely data
dependent. However, after a certain point larger n_neighbours helps to suppress the
noise, therefore, the error starts to grow smoother.

Regarding the distance metrics, we observed that the Manhattan distance showed the
best performance, while the Chebyshev metric is the most unsuitable for our task.
Although the Manhattan measure has been frequently chosen as the most appropriate
one, visually it is recognizable that the results based on the Minkowski and the Euclidian
measures are relatively similar. Similar observation was for the weight function: KNN
with the "uniform" and the "distance" weights functions obtained approximately identical
performance. Also, the estimator constructed on the preprocessed versions of the datasets,
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in general, outperforms the algorithm which is based on the original version.

5.4.3 Support Vector Machines

SVM [CV95]is another popular method that is commonly employed in classification,
regression and outlier detection tasks. The main idea of SVM is a construction of
separation hyperplanes while maximizing the margin. Moreover, there is a kernel trick
where the data can be transformed into higher dimensional space, and as a result, SVM
can also model non-linear dependencies.

In Scikit-learn there are implementations of SVM for classification and regression tasks
with the Linear, the Radial Basis Function (RBF), the Sigmoid and the Polynomial
kernels. Parameter configuration for SVM hardly depends of the kernel transformation
used, because in addition to general SVM parameters we need to configure free parameters
of the kernel function. Also, SVM requires data preprocessing as the constructed model
depends on the vector product calculation, therefore, the attributes with higher spread
range will get more influence on the results. Additionally, different feature scales can
also lead to numerical difficulties in calculation.

In our work, we only experimented with the Radial Basis Function (RBF) kernel. RBF
is the most common choice due to the possibility for modeling non-linear relations and is
less computationally expensive than, for example, the Polynomial kernel [HCL10]. Also,
it has been observed that the Sigmoid kernel behaves like RBF with some parameters
[CV95], and the Linear kernel is a special case of RBF [KL03]. However, we also
experimented with several configurations of the Polynomial Kernel, but after several
hours of computational time we stopped it manually and considered it unsuitable for our
problem.

The common parameter for all SVM kernels is the parameter C that corresponds to the
penalty of an error term. This parameter characterizes the tradeoff between the training
error and simplicity of the decision surface. If C is too big, then the model overfits, and
computational time increases also as the model needs more support vectors. However,
if C is too small, it leads to underfitting, therefore, we need to find the parameter that
keep the training error small while provides good generalization. Also, SVM supports
the cost-sensitive classification for unbalanced cases where we can define an additional
multiplier of the error term for a given class. For regression task, we also need to configure
the parameter ε that is responsible for the margin of tolerance where the errors do not
receive any penalty. Also, we need to configure the RBF-specific parameter γ, that is
related to the spread of influence between different vectors. Visual comparison of SVM
with the different parameters can be found on Figure 5.13 and Figure 5.14.

In general, we observed that the SVM results hardly depended on the parameter config-
uration and the preprocessing methods used. Moreover, properly configured SVM can
outperform the other classification techniques for the ETP. This dependency is clearly
visible on the heatmaps which illustrate the relations between the γ and the C values for
classification and regression. The best parameter settings lie somewhere in the diagonal,
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Figure 5.13: The impact of different parameter settings of the SVM regressor on prediction
quality

Figure 5.14: The impact of different parameter settings of the SVM classifier on prediction
quality

where the small γ values, and therefore, the larger spread of influence of the support
vectors may be compensated by the larger number of support vectors (larger C). However,
for extremely large γ values it is nearly impossible to find such a C value that will be
able to prevent overfitting, and when the γ values are too small, the model will be too
constrained, and therefore, be unable to provide appropriate results. The best values
for the margin of tolerance (or ε) for the regression methods in most cases is below 0.1,
because otherwise RMSE started to increase. This observation may be examined based
on the parameter configuration results and the graphics.

Regarding the preprocessing techniques, for the regression case we may notice that
Standard Scaler may be considered the most suitable for our task, while for classification
in most cases all preprocessing techniques provided similar results. However, it is clearly
visible that the performance of SVM on the discretized datasets is better compared with
the other techniques.
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5.4.4 Tree-based approaches

Recently, Decision Trees (DT) and various Tree-Based approaches became popular due
to its simplicity, high performance and relatively simple parameter tuning. However,
as a single Decision Tree tends to have problems with overfitting, the most popular
methods from this family are the ensemble methods such as Random Forest (RF), Extra
Tree and others. Moreover, in Scikit-Learn there are boosting versions of the tree-based
approaches, for example, Gradient Boosting Machine (GBM) where the estimators are
sequentially built on each other.

In this thesis, we experimented with RF and GBM as they belong to the different families
of the ensemble approaches, and usually perform better than a single DT. RF is an
approach that is based on construction of multiple DT based on the subset of the features,
and therefore, reduce the tendency to overfit. Also, RF was noted as one of the best
performing models for the Runtime Prediction Problem employed for the SAT problem
[HXHLB14].

Regardless of diversity, RF and GBM have a lot of parameters in common which
correspond to the decision tree structure. One of the main parameters to configure
is the maximum number of features used to create a single tree. This parameter
must be chosen carefully as too small parameter may increase bias in a single DT,
especially in the case of noisy variables. However, too high a parameter may increase the
correlation between different trees, and therefore, we will lose the main advantage of RF.
Additionally, we need to tune the depth of a single DT, for example, by the minimum
sample leaf size that corresponds to the minimum number of samples required in a leaf
node. Another measure to prevent overfitting is the minimum number of samples
expected for the node to be further expanded. Finally, we need to specify the ensemble
parameter, namely the number of trees that we want to create. This parameter
depends on available computational resources, and also, after a certain point increasing
the number of estimators will not increase the performance of the estimator. Additionally,
we can choose the splitting criteria, for example, the gini or the entropy criteria for
classification or MSE or MAE for the regression problems.

Although GBM and RF have a lot of common parameters, the idea behind these methods
differs. While RF constructs the number of fully-grown trees in parallel, GBM builds
a set of weak learners iteratively, taking into account the samples that have not been
predicted correctly in the previous iterations. After the algorithm built the specified
number of estimators, the complex predictor will be constructed. Therefore, GBM has an
additional parameter, namely the learning rate, which defines the estimator influence
on the final outcome. Therefore, in order to obtain appropriate results for the low values
of the learning rate we need more trees. Additionally, we can choose a subsample size
that corresponds to the fraction of observations to be randomly selected for each learner.

Let’s start with analysis of the best parameter configurations for Random Forest.
For regression problems, in most cases max_features vary between 0.7-0.8 and
min_sample_split differs between 80-100. Therefore, these values are large enough
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5.4. Optimization of parameter settings

in order to get appropriate results, while still providing tree diversity and preventing
overfitting. For classification, these attributes are more dispersed, for example, while
in most cases the max_features values lie between 0.6-0.8, there are some cases
where the fraction of features is relatively low, about 0.2-0.3. The average number of
min_sample_split is also lower compared to the regression settings, and is around
70-80. This is because our classification tasks are consists of the imbalanced classes, and
therefore, for some instance groups we need to create more specific subtrees. Interestingly,
for regression, the number of estimators is fluctuating around 100, however, the classi-
fication tasks require the larger number of decision trees, therefore the optimal values
are about 130-140 trees. For all problems min_sample_leaf values are analogous and
around 30.

Surprisingly, in most cases for GBM we got rather similar parameter settings regarding
the decision tree structure in comparison with RF. For regression,the max_features
values are larger compared to the classification task, and are about 0.8. The optimum
values for the maximum fraction of features for classification vary 0.7-0.8 for the SA_time
datasets and are about 0.6 for the ITC_time dataset. For regression, the values for
the min_sample_split feature are fairly analogous, and changes between 150-200,
while for the classification tasks they are more scattered from the dataset to the dataset
and dispersed between 90 and 200. For classification, the optimal learning_rate
parameter is rather small, about 0.02-0.05, and therefore, required a large number of
estimators, about 180-200. However, for regression, the learning rate values are larger,
about 0.1-0.2, and accordingly, the optimal number of trees is smaller, about 150. Further,
the optimal values for the subsample size and the leaf size parameters are quite similar
for both problems, and are 0.8-0.9 and 30 respectively.

Another interesting observation is that in most cases the tree-based algorithms are
invariant to the scaling techniques,and therefore, they provide similar results regardless
of the preprocessing method used. However, discretization improves the performance of
Gradient Boosting and allows it to better differentiate between different classes. Never-
theless, RF also improved its performance after the discretization procedure, although
just slightly.

5.4.5 Multi-Layer Perception

Another approach that is able to model non-linear relationships is Multi-Layer Perception
(MLP). However, it requires rigorous tuning, because it has too many parameters to set.
Besides, some parameters depend on each other, and therefore, every time we need to
check the full network configuration. However, for some cases the methods were developed
which simplify the process. For example, we can adaptively decide when the learning
process must stop by defining the number of non-improving iterations after which the
process must be interrupted. Another possibility is to vary the learning rate instead of
using the constant one, for example, employing the bigger values in the beginning of the
learning process, and the smaller values in the end.
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5. Experimental Results

Nonetheless, still plenty of uncertainty is left. For example, two of the most important
parameters are the number of hidden layers and the number of neurons in them. However,
the large number of neurons lead to a lot of free parameters, and therefore, MLP tends to
overfit and requires plenty of computational resources. As a solution for the overfitting
problem, in Sklearn L2 regularization has been implemented. However, the appropriate
regularization parameter α must be set. In addition, we need to choose other parameters
such as activation function, weight optimization algorithm and in some cases define the
algorithm specific parameters. Another MLP problem is the weight initialization of the
neurons, because performance mostly depends on how the initial weighs are assigned.
Also, it is required to scale the data, as MLP is sensitive to it.

Because of the configuration difficulty, instead of finding the optimal parameters for each
dataset, we tried to find some general parameter settings that would provide rather good
results for the most datasets. At first, we experimented with the numbers of neurons and
the hidden layers separately up to 10 layers and up 1000 neurons in each layer. However,
due to the increasing number of neurons, the learning time started to rise significantly,
although it did not significantly influence the performance. Therefore, we considered 3
layers with 300 neurons each sufficiently enough for our experiments. The number of
non-improving iterations has been set to 2000. Although after initial experiments we set
all regression parameters, for classification we used the Grid Search in order to find the
appropriate parameters, namely the solver, the learning rate and the activation function.
For classification, all parameters settings for MLP can be found in Table C.11.

For regression, we determined that the SGD that corresponds to the Stochastic Gradient
Descent solver outperforms the others, and therefore, used it for the regression experiments.
Similarly, for classification, the SGD has been chosen as the most appropriate in most
cases. For regression, after initial experiments the adaptive learning rate has been
employed, while for classification either the constant or the adaptive learning rates have
been chosen from one dataset to another. Regarding the last parameter, we left the relu
activation function as the best performing method for the regression problem, but for
classification the function choice alternates between relu, logistic and tanh almost equally.

Despite limitations, we achieved rather good performance improvement and moreover,
MLP outperformed most of the methods in our experiments with the exception of
tree-based methods.
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CHAPTER 6
Conclusion

In this thesis, we developed an approach for the Algorithm Selection and Performance
Prediction Problems for the ITC2007 formulation of the Examination Timetabling
Problem based on Machine Learning. For this purpose, we introduced 196 features
based on the ETP itself and by reducing the ETP to the other well-known problems.
Furthermore, we collected the best performing heuristics (SA, SACP, GRASP) for the
ITC2007 formulation of the ETP and run them on the dataset of 2248 instances which
consists of real-word and artificially generated instances.

Afterwards, we investigated performance of different Machine Learning techniques for
the Algorithm Selection and Performance Prediction problems, namely SVM, KNN, RF,
GBR, MLP and also experimented with various estimator settings. In addition, we
explored LR, Lasso, Ridge and Naïve Bayes for the regression and the classification tasks
respectively. Moreover, the most relevant feature sets have been identified using various
feature selection techniques.

Finally, we concluded that SVM, GBR and MLP are the most appropriate ML algorithms
for solving the Algorithm Selection and Performance Prediction problems for the ETP.
In general, the preprocessing methods, such as scaling and supervised discretization,
improved the performance of the estimators. Moreover, the estimators’ performance
has been further increased by introduction of new composed features and application
of the feature selection techniques. As a result, the estimators were able to construct
rather accurate models for all solvers and the datasets in cross-validation settings and
the real-world-based scenario, using a test set of unseen instances. In detail, for the
regression problem the Correlation Coefficient between the true and the predicted solver
score exceeded 0.9 and the Algorithm Selection Solver outperformed the best performing
heuristics for all datasets.

Potential future work may include introduction of a new feature set and exploring other
formulations of the ETP. Additionally, it might be interesting to experiment on new
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6. Conclusion

instance distributions including the instances where none of the heuristics can achieve a
feasible solution and consider it as a separate class. Moreover, for the Algorithm Selection
Problem an algorithm portfolio may be further extended by other heuristics and also,
other approaches, such as dynamic algorithm portfolio, could be applied.

Another possibility for further investigation would be employing the performance pre-
diction models for the Algorithm Selection problem or experimenting further on closely
related domains, such as, for example, Runtime Prediction. Additionally, the performance
prediction models may be used as a part of an instance generator in order to obtain hard
instances. This question is especially essential for the ETP as it is rather hard to find
good benchmark datasets.
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APPENDIX A
Feature Selection Results

In this appendix we will provide detailed information about the variables chosen by the
Feature Selection methods for the Algorithm Performance Prediction and Algorithm
Selection problems. Additionally, we will observe statistics about the most frequently
chosen features by RFE and BFS for the original and the extended versions of the
datasets. However, as the extended datasets mainly consist of the compound features,
we also investigated the original features that have been used for construction of the
variables in the reduced datasets in addition to the original features. For that, after
decomposing these features into the original ones, we calculated the occurrence of each
original feature in the decomposition of the reduced dataset.

A.1 Feature Selection Results for The Algorithm
Performance Prediction Problem
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A. Feature Selection Results

Selected features Frequency
ExamPerStudentSD 30.0%
NumberOfStudents 25.0%
WeightPeriodSpread * TotalRoomCapacity 25.0%
ExamsPerStudentMax 25.0%
NumberOfStudents * NumberOfStudents 25.0%
CliqueCalculationTime 25.0%
ExamPerStudentMean 25.0%
ExamPerStudentSD * TotalExamCap/TotalRoomAndNrPeriods 20.0%
ExamPerStudentVarCoef 20.0%
StudentPerExam3Q 20.0%
StudentPerExamMeanMax 20.0%
TotalExamCap/TotalRoomAndNrPeriods 20.0%
ExamsPerStudentMax + RoomsPerExamSD 20.0%
NumberOfRooms 15.0%
StudentPerExam1Q 15.0%
RoomsPerExam95P 15.0%
ExamPerStudentEntropy 15.0%
NumberOfStudents + NumberOfDays 15.0%
StudentPerExamVarCoef 15.0%
NumberOfStudents * NumberOfPeriods 15.0%
StudentPerExamMax 15.0%
StudentPerExamEntropy 15.0%
NumberOfStudents / NumberOfDays 15.0%
NumberOfStudents - NumberOfRooms 15.0%
StudentPerExamEntropy + CliqueCalculationTime 15.0%
NumberOfStudents + NumberOfPeriods 15.0%
NumberOfStudents / NumberOfAfterConstraints 15.0%
NumberOfDays 15.0%
NumberOfRoomExclusiveConstraints 15.0%
NrOfConflictMax 15.0%

Table A.1: The most selected features among all datasets for the Performance Prediction
problem
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A.1. Feature Selection Results for The Algorithm Performance Prediction Problem

Selected features Frequency Frequency (%)
NumberOfStudents 132 28.09%
ExamPerStudentSD 14 2.98%
NumberOfDays 13 2.77%
NumberOfRooms 12 2.55%
TotalRoomCapacity 12 2.55%
NumberOfPeriods 11 2.34%
WeightPeriodSpread 10 2.13%
ExamsPerStudentMax 10 2.13%
Slackness 9 1.91%
StudentPerExamEntropy 9 1.91%
TotalExamCap/TotalRoomAndNrPeriods 9 1.91%
NumberOfExamsOverSlack 8 1.7%
StudentPerExamMax 8 1.7%
ExamPerStudentMean 8 1.7%
ExamPerStudentVarCoef 8 1.7%
RoomsPerExam5Per 8 1.7%
CliqueCalculationTime 8 1.7%
NumberOfAfterConstraints 7 1.49%
NumberOfCoincidenceConstraints 7 1.49%
NumberOfExams 6 1.28%
NumberOfExclusionConstraints 6 1.28%
FrontLoadWeight 6 1.28%
StudentPerExam3Q 6 1.28%
ExamPerStudentMedian 5 1.06%
ExamPerStudent1Quant 5 1.06%
ExamPerStudent3Q 5 1.06%
AllRoomExams 5 1.06%
RoomsPerExam95P 5 1.06%
RoomsPerExamSD 5 1.06%
NumberOfRoomExclusiveConstraints 4 0.85%
WeightNumberOfLargeExams 4 0.85%
StudentPerExamMin 4 0.85%
StudentPerExam1Q 4 0.85%
StudentPerExamMeanMax 4 0.85%
RoomsPerExamMean 4 0.85%
RoomsPerExamMed 4 0.85%

Table A.2: The most selected features among the original and the decomposed versions
of the extended datasets for the Performance Prediction problem
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A. Feature Selection Results

FS
method Selected features

FFS (74)

NumberOfStudents, NumberOfExams, NumberOfRooms, NumberOfPeriods,
NumberOfDays, Slackness, NumberOfAfterConstraints,
NumberOfCoincidenceConstraints, NumberOfExclusionConstraints,
NumberOfRoomExclusiveConstraints, NumberOfTimeRelatedConstraints,
TotalNumberOfConstraints, WeightPeriodSpread, StudentPerExamMax,
StudentPerExamMean, StudentPerExamMed, StudentPerExamSD, StudentPerExam1Q,
StudentPerExam3Q, StudentPerExamEntropy, ExamsPerStudentMax,
ExamPerStudent5thPerExamPerStudentMean, ExamPerStudentMedian,
ExamPerStudentVarCoef, ExamPerStudentSD, ExamPerStudent1Quant,
ExamPerStudent3Q, ExamPerStudentEntropy, ExamPerStudentSkew
ExamPerStudentMinMax ExamPerStudentMeanMax, NrOfConflictMax,
NrOfConflictMean, NrOfConflictVarCoef, NrOfConflictSD,
NrOfConflictEntropy, OneRoomOverTotalExams, RoomsPerExam95P,
RoomsPerExamMed, OnePeriodExamOverTotal, AllPeriodExam, PeriodPerExam95P,
PeriodPerExamMean, PeriodPerExamSD, nrOfConflicts,
RatioNrOfConflictsOverExams, RoomCapacityMax, RoomCapacityMed
RoomCapacityMean, TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods,
TotalExamCap/TotalRoomAndNrPeriods, ExamPerRoomMax, ExamPerRoomVarCoef,
RoomForAllExamsWithoutPenalty, RoomForAllExamsWithoutPenaltyOverTotal,
ExamPerPeriodMax, ExamPerPeriodMin, ExamPerPeriodMean, ExamPerPeriodMed,
CCMinMax WCCVarCoef, WCCMinMax, WCCMeanMax, CCCalculationTime,
CliqueSizeMax, CliqueSizeMin, CliqueSizemean, CliqueSizeVarCoef,
CliqueCalculationTime, GreedyScore, ComputationalTime, MaxMembers

RFE (15)

NumberOfDays, TotalNumberOfConstraints, WeightNumberOfLargeExams,
StudentPerExamMax,StudentPerExam1Q, StudentPerExamMinMax,
ExamPerStudentEntropy, ExamPerStudentSkew, ExamPerStudentMeanMax,
NrOfConflictVarCoef, NrOfConflictEntropy, RoomsPerExamMed, OnePeriodExam,
AllPeriodExam, PeriodPerExam95P

BFS (15)

NumberOfStudents, NumberOfRooms, StudentPerExam1Q, StudentPerExam3Q,
StudentPerExamEntropy, ExamsPerStudentMax, ExamPerStudentMean,
ExamPerStudentMedian, ExamPerStudentVarCoef, ExamPerStudentSD,
NrOfConflictMax, RoomsPerExam95P, TotalExamCap/TotalRoomAndNrPeriods,
CliqueSizeVarCoef, CliqueCalculationTime

F+RFE2
(17)

NumberOfStudents * NumberOfStudents, NumberOfStudents + NumberOfDays,
NumberOfStudents + FrontLoadWeight, NumberOfStudents * AllRoomExams,
NumberOfStudents + AllRoomExams, NumberOfStudents - RoomsPerExam95P,
NumberOfStudents * RoomsPerExam5Per, NumberOfStudents / RoomsPerExam5Per,
NumberOfStudents - RoomsPerExam5Per, NumberOfStudents + RoomsPerExam5Per,
NumberOfStudents * RoomsPerExamMean,NumberOfStudents / RoomsPerExamMean,
NumberOfStudents - RoomsPerExamMean, NumberOfStudents * RoomsPerExamMed,
NumberOfStudents / RoomsPerExamMed, NumberOfStudents + RoomsPerExamMed,
NumberOfStudents / ExamLengthVarCoef

F+BFS
(10)

NumberOfExams * TotalRoomCapacity, WeightPeriodSpread * TotalRoomCapacity,
StudentPerExamMed + NrOfConflictMean, StudentPerExamEntropy /
RoomForAllExamsWithoutPenalty, StudentPerExamEntropy +
CliqueCalculationTime, ExamsPerStudentMax + RoomsPerExamSD,
ExamPerStudentMean / PeriodPerExamMean, ExamPerStudentMean -
ExamLengthMin,ExamPerStudentSD * TotalExamCap / TotalRoomAndNrPeriods,
nrOfConflicts / WCCSD

Table A.3: The features selected by different methods for the SACP solver from the
original and the extended versions of the ITC2007_time datasets
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A.1. Feature Selection Results for The Algorithm Performance Prediction Problem

FS
method Selected features

FFS (71)

NumberOfStudents, NumberOfExams, NumberOfRooms, NumberOfPeriods,
NumberOfDays, Slackness, NumberOfAfterConstraints,
NumberOfCoincidenceConstraints, NumberOfExclusionConstraints,
NumberOfRoomExclusiveConstraints, NumberOfTimeRelatedConstraints,
TotalNumberOfConstraints, WeightPeriodSpread, StudentPerExamMax,
StudentPerExamMean, StudentPerExamMed, StudentPerExamSD, StudentPerExam1Q,
StudentPerExam3Q, StudentPerExamEntropy, StudentPerExamMinMax,
StudentPerExamMeanMax, ExamPerStudent5thPer, ExamPerStudentMean,
ExamPerStudentMedian, ExamPerStudentVarCoef, ExamPerStudentSD,
ExamPerStudent1Quant, ExamPerStudent3Q, ExamPerStudentEntropy,
ExamPerStudentSkew, ExamPerStudentMinMax, ExamPerStudentMeanMax,
NrOfConflictMax, NrOfConflictMean, NrOfConflictSD, NrOfConflict1Q,
NrOfConflict3Q, RoomsPerExam95P, RoomsPerExamSD, PeriodPerExam95P,
PeriodPerExamMean, RatioNrOfConflictsOverExams,
RoomCapacityMax,RoomCapacityMin, RoomCapacityMed,RoomCapacityMean,
TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods,
TotalExamCap/TotalRoomAndNrPeriods, RoomForAllExamsWithoutPenalty,
RoomForAllExamsWithoutPenaltyOverTotal, PeriodLengthMean, CC5th, CCmean,
CCMinMax, CCMeanMax, WCCVarCoef, WCCMinMax, WCCMeanMax, CCCalculationTime,
CliqueSizeMax, CliqueSizeVarCoef, CliqueSizethird, CliqueCalculationTime,
Greedy Score, Greedy Independent Set - Min,Greedy Independent Set MinMax,
Modularity, MaxMembers, MeanMembers

RFE (17)

NumberOfDays, TotalNumberOfConstraints, WeightNumberOfLargeExams,
StudentPerExamMin, StudentPerExamVarCoef, StudentPerExam3Q,
StudentPerExamEntropy, StudentPerExamMeanMax, ExamPerStudentSD,
ExamPerStudent3Q, ExamPerStudentEntropy, NrOfConflict5thP,
NrOfConflictMed, AllRoomExams, AllRoomOverTotalExams, RoomsPerExam5Per,
RoomsPerExamMean

BFS (11)

NumberOfStudents, StudentPerExamMax, ExamPerStudentMean,
ExamPerStudentMedian, ExamPerStudentSD, NrOfConflictMax, RoomsPerExamSD,
TotalRoomCapacity, TotalExamCap / TotalRoomAndNrPeriods, WCCMinMax,
CliqueCalculationTime

F+RFE2
(16)

NumberOfStudents * NumberOfStudents, NumberOfStudents + NumberOfPeriods,
NumberOfStudents + ExamPerStudentMedian, NumberOfStudents *
ExamPerStudentVarCoef, NumberOfStudents * ExamPerStudentSD,
NumberOfStudents / ExamPerStudentSD, NumberOfStudents - ExamPerStudentSD,
NumberOfStudents + ExamPerStudentSD, NumberOfStudents *
ExamPerStudent1Quant, NumberOfStudents / ExamPerStudent1Quant,
NumberOfStudents * ExamPerStudent3Q, NumberOfStudents - ExamPerStudent3Q,
NumberOfStudents + ExamPerStudent3Q, NumberOfStudents -
NrOfConflictMeanMax, NumberOfStudents - RoomsPerExam5Per,
NumberOfStudents + RoomsPerExam5Per

F+BFS (8)

NumberOfRooms * CliqueSizeThird, WeightPeriodSpread * TotalRoomCapacity,
StudentPerExam1Q + NrOfConflict1Q, ExamsPerStudentMax + RoomsPerExamSD,
ExamPerStudentMedian / PeriodPerExamMed, ExamPerStudentVarCoef +
OnePeriodExam, ExamPerStudentSD * TotalExamCap/TotalRoomAndNrPeriods,
TotalRoomCapacity / WCCVarCoef

Table A.4: The features selected by different methods for the GRASP solver from the
original and the extended versions of the ITC2007_time datasets
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A. Feature Selection Results

FS
method Selected features

FFS (52)

NumberOfStudents, NumberOfExams, NumberOfRooms, NumberOfPeriods,
NumberOfAfterConstraints, NumberOfCoincidenceConstraints,
NumberOfExclusionConstraints, NumberOfRoomExclusiveConstraints,
NumberOfTimeRelatedConstraints, TotalNumberOfConstraints,
TimeRelatedFractionOfConstraints, WeightPeriodSpread, StudentPerExamMax,
StudentPerExamMean, StudentPerExamMed, StudentPerExamSD, StudentPerExam1Q,
StudentPerExam3Q, StudentPerExamEntropy, ExamsPerStudentMax,
ExamPerStudent5thPer, ExamPerStudentMean, ExamPerStudentMedian,
ExamPerStudentVarCoef, ExamPerStudentSD, ExamPerStudent1Quant,
ExamPerStudent3Q, ExamPerStudentEntropy, ExamPerStudentSkew,
ExamPerStudentMinMax, ExamPerStudentMeanMax, NrOfConflictMean,
NrOfConflictSD, PeriodPerExamMean, nrOfConflicts,
RatioNrOfConflictsOverExams, RoomCapacityMax, RoomCapacityMean,
TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods,
TotalExamCap/TotalRoomAndNrPeriods, ExamPerPeriodMax, ExamPerPeriodMean,
AvNrOfPeriodPerDay, CCmean, CCMinMax, WCCVarCoef, WCCMeanMax,
CCCalculationTime, CliqueSizeVarCoef, CliqueCalculationTime, Greedy
Independent Set - Max

RFE (9)
NumberOfPeriods, NumberOfTimeRelatedConstraints, WeightMixedDuration,
FrontLoadWeight, StudentPerExamSD, StudentPerExamMeanMax,
ExamPerStudentVarCoef, NrOfConflictMean, NrOfConflictVarCoef

BFS (10)

NumberOfStudents, NumberOfRooms, NumberOfRoomExclusiveConstraints,
StudentPerExam3Q, ExamsPerStudentMax, ExamPerStudentMean,
ExamPerStudentVarCoef, ExamPerStudentSD,
TotalExamCap/TotalRoomAndNrPeriods, CliqueCalculationTime

F+RFE2
(38)

NumberOfStudents * NumberOfStudents, NumberOfStudents / NumberOfStudents,
NumberOfStudents - NumberOfStudents, NumberOfStudents + NumberOfStudents,
NumberOfStudents * NumberOfExams, NumberOfStudents / NumberOfExams,
NumberOfStudents - NumberOfExams, NumberOfStudents + NumberOfExams,
NumberOfStudents * NumberOfRooms, NumberOfStudents / NumberOfRooms,
NumberOfStudents - NumberOfRooms, NumberOfStudents + NumberOfRooms,
NumberOfStudents * NumberOfPeriods, NumberOfStudents / NumberOfPeriods,
NumberOfStudents - NumberOfPeriods, NumberOfStudents + NumberOfPeriods,
NumberOfStudents * NumberOfDays, NumberOfStudents / NumberOfDays,
NumberOfStudents - NumberOfDays, NumberOfStudents + NumberOfDays,
NumberOfStudents * Slackness, NumberOfStudents /
Slackness,NumberOfStudents - Slackness, NumberOfStudents + Slackness,
NumberOfStudents * NumberOfExamsOverSlack, NumberOfStudents /
NumberOfExamsOverSlack, NumberOfStudents - NumberOfExamsOverSlack,
NumberOfStudents + NumberOfExamsOverSlack, NumberOfStudents *
NumberOfAfterConstraints, NumberOfStudents / NumberOfAfterConstraints,
NumberOfStudents - NumberOfAfterConstraints, NumberOfStudents +
NumberOfAfterConstraints, NumberOfStudents *
NumberOfCoincidenceConstraints, NumberOfStudents /
NumberOfCoincidenceConstraints, NumberOfStudents -
NumberOfCoincidenceConstraints, NumberOfStudents +
NumberOfCoincidenceConstraints, NumberOfStudents *
NumberOfExclusionConstraints, NumberOfStudents /
NumberOfExclusionConstraints

F+BFS
(12)

WeightPeriodSpread * StudentPerExam3Q, WeightPeriodSpread *
TotalRoomCapacity, StudentPerExamMed + NrOfConflictMean,
StudentPerExamEntropy + CliqueCalculationTime, ExamsPerStudentMax +
RoomsPerExamSD, ExamPerStudentMean / PeriodPerExamMean,
ExamPerStudentVarCoef * ExamLengthMax, ExamPerStudentSD *
TotalExamCap/TotalRoomAndNrPeriods, ExamPerStudent1Quant /
PeriodPerExamMed, ExamPerStudentMeanMax * ExamPerRoomMean, AllRoomExams /
ComputationalTime, TotalRoomCapacity * WCCSD

Table A.5: The features selected by different methods for the SACP solver from the
original and the extended versions of the SA_time datasets
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A.1. Feature Selection Results for The Algorithm Performance Prediction Problem

FS
method Selected features

FFS (64)

NumberOfStudents, NumberOfExams, NumberOfRooms, NumberOfPeriods,
NumberOfDays, NumberOfAfterConstraints, NumberOfCoincidenceConstraints,
NumberOfExclusionConstraints, NumberOfRoomExclusiveConstraints,
NumberOfTimeRelatedConstraints, TotalNumberOfConstraints,
TimeRelatedFractionOfConstraints, RoomRelatedFractionOfConstraints,
WeightPeriodSpread, StudentPerExamMax, StudentPerExamMean,
StudentPerExamMed, StudentPerExamSD, StudentPerExam1Q, StudentPerExam3Q,
StudentPerExamEntropy, ExamsPerStudentMax, ExamPerStudent5thPer,
ExamPerStudentMean, ExamPerStudentMedian, ExamPerStudentVarCoef,
ExamPerStudentSD, ExamPerStudent1Quant, ExamPerStudent3Q,
ExamPerStudentEntropy, ExamPerStudentSkew, ExamPerStudentMinMax,
ExamPerStudentMeanMax, NrOfConflictMax, NrOfConflictMean, NrOfConflictSD,
RoomsPerExam95P, AllPeriodExam, PeriodPerExam95P, PeriodPerExamMean,
ExamLengthMax, RatioNrOfConflictsOverExams, RoomCapacityMax,
RoomCapacityMed, RoomCapacityMean, TotalRoomCapacity,
TotalRoomCapacityMultNrOfPeriods, TotalExamCap/TotalRoomAndNrPeriods,
ExamPerRoomMax, RoomForAllExamsWithoutPenaltyOverTotal, PeriodLengthMax,
ExamPerPeriodMax, ExamPerPeriodMin, AvNrOfPeriodPerDay, CC5th, CCmean,
CCMinMax, WCCVarCoef, CliqueSizeMax, CliqueSizeMin, CliqueSizemean,
CliqueSizeVarCoef, CliqueCalculationTime, GreedyScore

RFE (17)

NumberOfStudents, NumberOfPeriods, NumberOfDays,
TimeRelatedFractionOfConstraints, FrontLoadPenalty, StudentPerExamMin,
StudentPerExamVarCoef, StudentPerExam3Q, StudentPerExamMeanMax,
ExamsPerStudentMax, ExamPerStudentMean, ExamPerStudentSD,
ExamPerStudent3Q, ExamPerStudentMeanMax, NrOfConflict5thP, AllRoomExams,
RoomsPerExam95P

BFS (13)

NumberOfStudents, NumberOfRooms, StudentPerExam1Q, StudentPerExamEntropy,
ExamsPerStudentMax, ExamPerStudentMean, ExamPerStudentSD,
ExamPerStudentMinMax, NrOfConflictMax, TotalExamCap/TotalRoomAndNrPeriods,
RoomForAllExamsWithoutPenaltyOverTotal, CliqueSizeVarCoef,
CliqueCalculationTime

F + RFE2
(26)

NumberOfStudents * NumberOfStudents, NumberOfStudents - NumberOfRooms,
NumberOfStudents * NumberOfPeriods, NumberOfStudents / NumberOfDays,
NumberOfStudents / NumberOfAfterConstraints, NumberOfStudents +
NumberOfRoomExclusiveConstraints, NumberOfStudents -
RoomRelatedFractionOfConstraints, NumberOfStudents / WeightPeriodSpread,
NumberOfStudents - WeightPeriodSpread, NumberOfStudents *
WeightNumberOfLargeExams, NumberOfStudents / WeightNumberOfLargeExams,
NumberOfStudents - FrontLoadPenalty, NumberOfStudents * FrontLoadWeight,
NumberOfStudents / FrontLoadWeight, NumberOfStudents - FrontLoadWeight,
NumberOfStudents + FrontLoadWeight, NumberOfStudents * StudentPerExamMax,
NumberOfStudents / StudentPerExamMax, NumberOfStudents -
StudentPerExamMax, NumberOfStudents + StudentPerExamMax, NumberOfStudents

* StudentPerExamMin, NumberOfStudents / StudentPerExamMin,
NumberOfStudents + StudentPerExam3Q, NumberOfStudents -
StudentPerExamEntropy, NumberOfStudents / StudentPerExamMinMax,
NumberOfStudents + StudentPerExamMinMax

F + BFS
(9)

WeightPeriodSpread * TotalRoomCapacity, StudentPerExamMed +
NrOfConflict3Q, StudentPerExamEntropy / RoomForAllExamsWithoutPenalty,
StudentPerExamEntropy + CliqueCalculationTime, ExamsPerStudentMax +
RoomsPerExamSD, ExamPerStudentMedian / PeriodPerExamMed, ExamPerStudentSD

* TotalExamCap/TotalRoomAndNrPeriods, nrOfConflicts / WCCSD,
TotalRoomCapacity / CliqueSizeVarCoef

Table A.6: The features selected by different methods for the GRASP solver from the
original and the extended versions of the SA_time datasets
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A. Feature Selection Results

Table A.7: The features selected by different methods for the SA solver from the original
and the extended versions of the SA_time datasets

FS
method Selected features

FFS (73)

NumberOfRooms, NumberOfDays, Slackness, NumberOfExamsOverSlack,
NumberOfAfterConstraints, NumberOfCoincidenceConstraints,
NumberOfExclusionConstraints, NumberOfRoomExclusiveConstraints,
NumberOfTimeRelatedConstraints, TotalNumberOfConstraints,
WeightPeriodSpread, StudentPerExamMax, StudentPerExamMean,
StudentPerExamMed, StudentPerExamSD, StudentPerExam1Q, StudentPerExam3Q,
StudentPerExamEntropy, ExamsPerStudentMax, ExamPerStudent5thPer,
ExamPerStudentMean, ExamPerStudentMedian, ExamPerStudentVarCoef,
ExamPerStudentSD, ExamPerStudent1Quant, ExamPerStudent3Q,
ExamPerStudentEntropy, ExamPerStudentMinMax, ExamPerStudentMeanMax,
NrOfConflictMax, NrOfConflictMean, NrOfConflictSD, RoomsPerExam95P,
PeriodPerExam5Per, PeriodPerExamMean, PeriodPerExamSD, nrOfConflicts,
RatioNrOfConflictsOverExams, RoomCapacityMax, RoomCapacityMin,
RoomCapacityMed, RoomCapacityMean, TotalRoomCapacity,
TotalRoomCapacityMultNrOfPeriods, ExamPerRoomMax, ExamPerRoomMin,
PeriodLengthMean, ExamPerPeriodMean, CCSD, WCC5th, WCCmean, WCCVarCoef,
WCCSD, WCCthird, WCCMinMax, CCCalculationTime, CliqueSizeMax,
CliqueSizeMin, CliqueSizeVarCoef, CliqueSizeFirstQuart, CliqueSizeThird,
CliqueSizeMinMax, CliqueCalculationTime, Greedy Number of Unassigned
Variables, Greedy Score, Greedy Independent Set - Min, Greedy Independent
Set - Median, Greedy Independent Set MinMax , Modularity,
ComputationalTime, MaxMembers, MeanMembers, MedMembers

RFE (12)

NumberOfRoomExclusiveConstraints, WeightPeriodSpread, WeightMixedDuration,
FrontLoadPenalty, StudentPerExamVarCoef, StudentPerExamMeanMax,
ExamsPerStudentMax, ExamPerStudentEntropy, NrOfConflictMed,
NrOfConflictSkew, RoomsPerExam95P, RoomsPerExam5Per

BFS (6)
NumberOfRoomExclusiveConstraints, StudentPerExamMax,
ExamPerStudentVarCoef, ExamPerStudentMinMax, TotalRoomCapacity,
CliqueCalculationTime

F+RFE2
(30)

NumberOfStudents * NumberOfStudents, NumberOfStudents + NumberOfStudents,
NumberOfStudents / NumberOfExams, NumberOfStudents / NumberOfRooms,
NumberOfStudents - NumberOfRooms, NumberOfStudents + NumberOfRooms,
NumberOfStudents * NumberOfPeriods, NumberOfStudents - NumberOfPeriods,
NumberOfStudents + NumberOfPeriods, NumberOfStudents * NumberOfDays,
NumberOfStudents / NumberOfDays, NumberOfStudents - NumberOfDays,
NumberOfStudents + NumberOfDays, NumberOfStudents * Slackness,
NumberOfStudents / Slackness, NumberOfStudents - Slackness,
NumberOfStudents + Slackness, NumberOfStudents * NumberOfExamsOverSlack,
NumberOfStudents / NumberOfExamsOverSlack, NumberOfStudents -
NumberOfExamsOverSlack, NumberOfStudents + NumberOfExamsOverSlack,
NumberOfStudents * NumberOfAfterConstraints, NumberOfStudents /
NumberOfAfterConstraints, NumberOfStudents /
NumberOfCoincidenceConstraints, NumberOfStudents -
NumberOfCoincidenceConstraints, NumberOfStudents +
NumberOfCoincidenceConstraints,NumberOfStudents *
NumberOfExclusionConstraints, NumberOfStudents /
NumberOfExclusionConstraints, NumberOfStudents -
NumberOfExclusionConstraints, NumberOfStudents +
NumberOfExclusionConstraints

F+BFS
(11)

Slackness - StudentPerExamMax, WeightPeriodSpread * ExamPerStudent5thPer,
WeightPeriodSpread * TotalRoomCapacity, ExamsPerStudentMax + Greedy
Number of Unassigned Variables, ExamPerStudentVarCoef * PeriodLengthMean,
ExamPerStudent1Quant / PeriodPerExam5Per, ExamPerStudent1Quant *
ExamPerPeriodMed, ExamPerStudentMinMax *
TotalExamCap/TotalRoomAndNrPeriods, RoomsPerExam95P * WCC5th,
TotalRoomCapacity * Greedy Number of Used Colors Per Period, Greedy
Number of Used Colors / ComputationalTime
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A.2. Feature Selection Results for The Algorithm Selection Problem

A.2 Feature Selection Results for The Algorithm
Selection Problem

Table A.8: The most selected features among all datasets for the Algorithm Selection
problem

Selected features Frequency Frequency (%)
NumberOfCoincidenceConstraints 12 0.67%
NumberOfExamsOverSlack 11 0.61%
ExamPerPeriodVarCoef 10 0.56%
GreedyNumberOfUsedColorsPerPeriod 10 0.56%
GreedyIndependentSetVC 9 0.5%
TotalRoomCapacity 9 0.5%
GreedyScore 9 0.5%
GreedyIndependentSetSD 8 0.44%
GreedyNumberOfUsedColors 8 0.44%
TotalExamCap/TotalRoomAndNrPeriods 8 0.44%
RoomsPerExamMean 8 0.44%
StudentPerExamSD 7 0.39%
ExamPerPeriodSD 7 0.39%
NumberOfCoincidenceConstraints /
GreedyNumberOfUnassignedVariables 6 0.33%

TotalRoomCapacityMultNrOfPeriods 6 0.33%
StudentPerExamMed 6 0.33%
RoomCapacityMin 6 0.33%
ExamPerStudentSkew 6 0.33%
ConflictGraphDensity 6 0.33%
NumberOfAfterConstraints 6 0.33%
TotalNumberOfConstraints 5 0.28%
ExamPerStudentSD 5 0.28%
CliqueCalculationTime 5 0.28%
NumberOfCoincidenceConstraints / ExamPerPeriodSD 5 0.28%
CCEntropy 5 0.28%
GreedyIndependentSetMinMax 5 0.28%
ExamPerStudentEntropy 5 0.28%
ExamPerStudentMean 5 0.28%
WeightPeriodSpread *
TotalExamCap/TotalRoomAndNrPeriods 5 0.28%

WCCEntropy 5 0.28%
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A. Feature Selection Results

Table A.9: The most selected features among the original and the decomposed versions
of the extended datasets for the Algorithm Selection problem

Selected features Frequency Frequency (%)
NumberOfCoincidenceConstraints 210 6.66%
GreedyScore 208 6.6%
NumberOfExamsOverSlack 154 4.88%
GreedyNumberOfUnassignedVariables 100 3.17%
GreedyNumberOfUsedColorsPerPeriod 95 3.01%
TotalExamCap/TotalRoomAndNrPeriods 88 2.79%
GreedyNumberOfUsedColors 85 2.7%
CliqueCalculationTime 76 2.41%
TotalRoomCapacityMultNrOfPeriods 70 2.22%
TotalRoomCapacity 65 2.06%
ComputationalTime 65 2.06%
GreedyIndependentSetVC 61 1.93%
TimeRelatedFractionOfConstraints 49 1.55%
WeightPeriodSpread 45 1.43%
NumberOfAfterConstraints 42 1.33%
GreedyIndependentSetSD 41 1.3%
NumberOfRoomExclusiveConstraints 34 1.08%
StudentPerExamMax 32 1.01%
WeightMixedDuration 31 0.98%
GreedyIndependentSetMax 31 0.98%
NumberOfExclusionConstraints 30 0.95%
StudentPerExamMean 30 0.95%
MaxMembers 29 0.92%
GreedyIndependentSet3Q 28 0.89%
NumberOfTimeRelatedConstraints 27 0.86%
Modularity 27 0.86%
WeightTwoInADay 26 0.82%
RoomCapacityMax 25 0.79%
RoomCapacityMean 25 0.79%
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A.2. Feature Selection Results for The Algorithm Selection Problem

Table A.10: The features selected by different FS methods for the standardized and
discretized versions of the SA_3class dataset

FS
method Selected features

S+RFE
(12)

NumberOfCoincidenceConstraints, TotalNumberOfConstraints , StudentPerExamMed, StudentPerExam3Q, CCVarCoef, WCC95th, WCCSD,
WCCEntropy, CliqueSizeMean, CliqueSizeVarCoef, CliqueCalculationTime, GreedyNumberOfUsedColors

S+BFS
(19)

NumberOfExamsOverSlack, NumberOfAfterConstraints, NumberOfCoincidenceConstraints, ExamPerStudentEntropy, NrOfConflictMean,
NrOneRoomExam, RoomsPerExamMean, PeriodPerExamSD, RoomCapacityMin, TotalExamCap/TotalRoomAndNrPeriods, ExamPerPeriodVarCoef,
CC95th, CliqueSizeMin, CliqueSizeMinMax, GreedyNumberOfUsedColors, GreedyNumberOfUsedColorsPerPeriod, GreedyScore,
GreedyIndependentSetVC, GreedyIndependentSetMinMax

Ext+S+BFS
(61)

NumberOfExams/StudentPerExamEntropy, NumberOfExamsOverSlack / NumberOfCoincidenceConstraints, NumberOfExamsOverSlack *
RoomRelatedFractionOfConstraints, NumberOfExamsOverSlack * StudentPerExamSkew, NumberOfExamsOverSlack -
AllPeriodExamOverTotal, NumberOfExamsOverSlack + PeriodPerExamSD, NumberOfExamsOverSlack + ExamLengthSD,
NumberOfExamsOverSlack * NrOfPeriodsWithPenalty, NumberOfExamsOverSlack / NrOfPeriodsForAllExamsWithoutPenaltyOverTotal,
NumberOfExamsOverSlack + CCEntropy, NumberOfAfterConstraints * ExamPerStudentSkew, NumberOfCoincidenceConstraints *
WeightPeriodSpread, NumberOfCoincidenceConstraints + ExamPerStudentMinMax, NumberOfCoincidenceConstraints / NrOneRoomExam,
NumberOfCoincidenceConstraints / OneRoomOverTotalExams, NumberOfCoincidenceConstraints * ConflictGraphDensity,
NumberOfCoincidenceConstraints / MaxRoomPenalty, NumberOfCoincidenceConstraints / ExamPerPeriodSD,
NumberOfCoincidenceConstraints * NrOfPeriodsForAllExamsWithoutPenalty, NumberOfCoincidenceConstraints *
NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, NumberOfCoincidenceConstraints + CliqueSizeMinMax,
NumberOfCoincidenceConstraints / GreedyNumberOfUsedColorsPerPeriod, NumberOfCoincidenceConstraints /
GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints / GreedyScore, NumberOfCoincidenceConstraints *
GreedyIndependent SetVC, NumberOfCoincidenceConstraints * GreedyIndependentSet, MeanMax, WeightPeriodSpread *
TotalExamCap/TotalRoomAndNrPeriods, StudentPerExamMax / GreedyNumberOfUnassignedVariables, StudentPerExamMinMax /
GreedyNumberOfUnassignedVariables, ExamPerStudentVarCoef + ExamPerPeriodSD, ExamPerStudentVarCoef - GreedyIndependentSetVC,
ExamPerStudentSD / SDMembers, ExamPerStudentSkew * ExamPerRoomSD, ExamPerStudentMinMax / GreedyNumberOfUnassignedVariables,
NrOfConflictSkew * TotalRoomCapacity, RoomsPerExam5Per * CCmean, PeriodPerExamVarCoef + TotalExamCap/TotalRoomAndNrPeriods,
PeriodPerExamSD + TotalExamCap/TotalRoomAndNrPeriods, TotalRoomCapacity - TotalExamCap/TotalRoomAndNrPeriods,
TotalRoomCapacity * Ccmed, TotalRoomCapacity + WCC95th, TotalRoomCapacity + WCCFirstQuart, TotalExamCap/TotalRoomAndNrPeriods

* PeriodLengthMed, TotalExamCap/TotalRoomAndNrPeriods - WCCMeanMax, TotalExamCap/TotalRoomAndNrPeriods / CliqueSizeMin,
TotalExamCap/TotalRoomAndNrPeriods - GreedyNumber of Used Colors Per Period TotalExamCap/TotalRoomAndNrPeriods -
GreedyIndependentSetVC, ExamPerRoomMed / GreedyIndependentSet3thQ, ExamPerRoomSD / GreedyScore,
RoomForAllExamsWithoutPenaltyOverTotal / GreedyNumberofUnassignedVariables, PeriodLengthMean + ExamPerPeriodVarCoef,
NrOfPeriodsForAllExamsWithoutPenaltyOverTotal * GreedyIndependentSetVC, CC5th / GreedyNumberOfUsedColors, CCThird *
GreedyIndependentSetVC, WCCVarCoef / GreedyNumberofUsedColorsPerPeriod, WCCFirstQuart / GreedyNumberofUnassignedVariables,
WCCEntropy - GreedyIndependentSetSD , WCCMinMax + GreedyNumberofUnassignedVariables, WCCMinMax - MeanMembers,
CliqueSizeVarCoef / GreedyNumberofUsedColorsPerPeriod, CliqueSizeMinMax / GreedyNumberOfUnassignedVariables

D+RFE
(39)

NumberOfStudents, NumberOfRooms, NumberOfExamsOverSlack, NumberOfCoincidenceConstraints, ExamPerStudentMean,
ExamPerStudentVarCoef, ExamPerStudentSD, ExamPerStudent3Q, ExamPerStudentSkew, NrOneRoomExam, RoomsPerExam95P,
RoomsPerExamMean, RoomsPerExamSD, PeriodPerExam5Per, nrOfConflicts, ConflictGraphDensity, RoomCapacityMax, RoomCapacityMin,
TotalRoomCapacity, TotalExamCap/TotalRoomAndNrPeriods, ExamOverRoomMeanCapacity, ExamPerPeriodVarCoef, ExamPerPeriodSD,
NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, CCEntropy, WCC5th, WCCEntropy, WCCMinMax, WCCMeanMax, CCCalculationTime,
CliqueSizeMax, CliqueCalculationTime, GreedyNumberOfUsedColors, GreedyNumberOfUsedColorsPerPeriod,
GreedyNumberOfUnassignedVariables, GreedyScore, GreedyIndependentSetVCGreedy, IndependentSetSD, ComputationalTime

D+BFS
(21)

NumberOfExamsOverSlack, NumberOfAfterConstraints, NumberOfCoincidenceConstraints, ExamPerStudentSD, ExamPerStudentMinMax,
NrOneRoomExam, RoomsPerExamMean, PeriodPerExamSD, ConflictGraphDensity, RoomCapacityMin, TotalRoomCapacity,
TotalExamCap/TotalRoomAndNrPeriods, ExamPerPeriodVarCoef, ExamPerPeriodSD, CCEntropy, CliqueSizeMin ,
GreedyNumberOfUsedColors, GreedyNumberOfUsedColorsPerPeriod, GreedyScore, GreedyIndependentSetVC, GreedyIndependentSetMinMax

Ext+D+BFS
(71)

NumberOfExams / GreedyIndependentSetMax, NumberOfRooms * GreedyNumberofUsedColors, Slackness * GreedyScore, Slackness /
MinMembers, NumberOfExamsOverSlack / NumberOfCoincidenceConstraints, NumberOfExamsOverSlack / RoomsPerExam5Per,
NumberOfExamsOverSlack / AllPeriodExamOverTotal, NumberOfExamsOverSlack + PeriodPerExamSD, NumberOfExamsOverSlack /
ConflictGraphDensity, NumberOfExamsOverSlack / Ccmed, NumberOfExamsOverSlack * GreedyScore, NumberOfAfterConstraints *
GreedyNumberOfUsedColors, NumberOfAfterConstraints / GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints /
WeightTwoInADay, NumberOfCoincidenceConstraints - StudentPerExam1Q, NumberOfCoincidenceConstraints - ExamsPerStudentMax,
NumberOfCoincidenceConstraints - OneRoomOverTotalExams, NumberOfCoincidenceConstraints * AllRoomOverTotalExams,
NumberOfCoincidenceConstraints / ExamLengthMean, NumberOfCoincidenceConstraints * ConflictGraphDensity,
NumberOfCoincidenceConstraints / TotalExamCap/TotalRoomAndNrPeriods, NumberOfCoincidenceConstraints / ExamPerPeriodSD,
NumberOfCoincidenceConstraints * NrOfPeriodsForAllExamsWithoutPenalty, NumberOfCoincidenceConstraints *
NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, NumberOfCoincidenceConstraints - WCC5th, NumberOfCoincidenceConstraints /
GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints + GreedyIndependentSetMedian,
NumberOfCoincidenceConstraints * GreedyIndependentSetVC, NumberOfCoincidenceConstraints * GreedyIndependentSetMeanMax,
NumberOfRoomExclusiveConstraints + GreedyNumberofUsedColors, WeightTwoInTheRow + GreedyNumberofUsedColors, WeightPeriodSpread
- GreedyNumberofUsedColors, StudentPerExam3Q - GreedyNumberofUsedColorsPerPeriod, StudentPerExamMinMax /
GreedyNumberofUsedColorsPerPeriod, ExamPerStudent5thPer / TotalExamCap/TotalRoomAndNrPeriods, ExamPerStudent5thPer /
ComputationalTime, ExamPerStudentVarCoef / GreedyIndependentSetVC, ExamPerStudentSD / GreedyNumberofUsedColors,
ExamPerStudentMeanMax + CC5th, NrOfConflict1Q / GreedyNumberofUnassignedVariables, NrOfConflictSkew + TotalRoomCapacity
NrOneRoomExam - WCCmed, RoomsPerExamSD + PeriodPerExam5Per, PeriodPerExamMean * RoomForAllExamsWithoutPenalty,
PeriodPerExamSD + TotalExamCap/TotalRoomAndNrPeriods, TotalRoomCapacity + WCC95th, TotalRoomCapacity + WCCFirstQuart,
TotalExamCap/TotalRoomAndNrPeriods + ExamPerPeriodVarCoef, TotalExamCap/TotalRoomAndNrPeriods / Ccmed,
TotalExamCap/TotalRoomAndNrPeriods / CliqueSizeMin, TotalExamCap/TotalRoomAndNrPeriods / GreedyNumberofUnassignedVariables,
TotalExamCap/TotalRoomAndNrPeriods - GreedyIndependentSetVC, ExamPerRoomMed / GreedyIndependentSet3thQ, ExamPerRoomSD /
GreedyScore, RoomForAllExamsWithoutPenaltyOverTotal - GreedyNumberofUsedColorsPerPeriod, PeriodPenaltyMax +
GreedyNumberofUsedColorsPerPeriod, ExamPerPeriodMin + GreedyIndependentSetVC , ExamPerPeriodMed +
GreedyNumberofUsedColorsPerPeriod, NrOfPeriodsForAllExamsWithoutPenaltyOverTotal + GreedyScore, CC95th *
GreedyIndependentSetVCC, FirstQuart / GreedyNumberOfUsedColors, CCEntropy * GreedyNumberOfUsedColorsPerPeriod, WCC95th /
CliqueSizemean, WCCThird / GreedyNumberofUsedColors, WCCEntropy / GreedyIndependentSetSD, WCCEntropy - GreedyIndependentSetSD,
WCCMinMax / GreedyNumberofUsedColors, CCCalculationTime / GreedyNumberofUnassignedVariables, CliqueSizeMax /
ComputationalTime, GreedyNumberofUsedColorsPerPeriod * Modularity, GreedyNumberofUnassignedVariables / GreedyIndependentSetVC
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A. Feature Selection Results

Table A.11: The features selected by the RFE method for the standardized extended
version of the SA_3class dataset

FS
method Selected features

Ext+S+RFE
(235)

NumberOfCoincidenceConstraints * NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, NumberOfCoincidenceConstraints * CC95th,
NumberOfCoincidenceConstraints + CC95th, NumberOfCoincidenceConstraints / CC5th, NumberOfCoincidenceConstraints * CCmean,
NumberOfCoincidenceConstraints * Ccmed, NumberOfCoincidenceConstraints * CCVarCoef, NumberOfCoincidenceConstraints * CCSD,
NumberOfCoincidenceConstraints * CCFirstQuart, NumberOfCoincidenceConstraints * CCThird, NumberOfCoincidenceConstraints * CCEntropy,
NumberOfCoincidenceConstraints * CCSkew, NumberOfCoincidenceConstraints / CCMinMax, NumberOfCoincidenceConstraints * CCMeanMax,
NumberOfCoincidenceConstraints * WCC95th, NumberOfCoincidenceConstraints / WCC5th, NumberOfCoincidenceConstraints * WCCmean,
NumberOfCoincidenceConstraints * WCCVarCoef, NumberOfCoincidenceConstraints * WCCSD, NumberOfCoincidenceConstraints * WCCEntropy,
NumberOfCoincidenceConstraints * WCCSkew, NumberOfCoincidenceConstraints / WCCMinMax, NumberOfCoincidenceConstraints * WCCMeanMax,
NumberOfCoincidenceConstraints / CCCalculationTime, NumberOfCoincidenceConstraints + CliqueSizeMax, NumberOfCoincidenceConstraints -
CliqueSizeMin, NumberOfCoincidenceConstraints + CliqueSizeMin, NumberOfCoincidenceConstraints * CliqueSizeMean,
NumberOfCoincidenceConstraints + CliqueSizeMed, NumberOfCoincidenceConstraints * CliqueSizeVarCoef, NumberOfCoincidenceConstraints *
CliqueSizeSD, NumberOfCoincidenceConstraints + CliqueSizeFirstQuart, NumberOfCoincidenceConstraints + CliqueSizeThird,
NumberOfCoincidenceConstraints * CliqueSizeEntropy, NumberOfCoincidenceConstraints * CliqueSizeSkew, NumberOfCoincidenceConstraints *
CliqueSizeMinMax, NumberOfCoincidenceConstraints + CliqueSizeMinMax, NumberOfCoincidenceConstraints - CliqueCalculationTime,
NumberOfCoincidenceConstraints * GreedyNumberOfUsedColors, NumberOfCoincidenceConstraints / GreedyNumberOfUsedColors,
NumberOfCoincidenceConstraints * GreedyNumberOfUsedColorsPerPeriod, NumberOfCoincidenceConstraints / GreedyNumberOfUsedColorsPerPeriod,
NumberOfCoincidenceConstraints / GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints - GreedyNumberOfUnassignedVariables,
NumberOfCoincidenceConstraints * GreedyScore, NumberOfCoincidenceConstraints / GreedyScore, NumberOfCoincidenceConstraints - GreedyScore,
NumberOfCoincidenceConstraints / GreedyIndependentSetMin, NumberOfCoincidenceConstraints - GreedyIndependentSetMin,
NumberOfCoincidenceConstraints * GreedyIndependentSetMean, NumberOfCoincidenceConstraints * GreedyIndependentSetVC,
NumberOfCoincidenceConstraints * GreedyIndependentSetSD, NumberOfCoincidenceConstraints / GreedyIndependentSetSD,
NumberOfCoincidenceConstraints * GreedyIndependentSetEntropy, NumberOfCoincidenceConstraints * GreedyIndependentSetSkew,
NumberOfCoincidenceConstraints + ComputationalTime, NumberOfCoincidenceConstraints + MinMembers, NumberOfExclusionConstraints +
StudentPerExamEntropy, NumberOfExclusionConstraints - ExamPerStudentSD, NumberOfExclusionConstraints - ExamPerStudentEntropy,
NumberOfExclusionConstraints - TotalExamCap/TotalRoomAndNrPeriods, NumberOfExclusionConstraints + GreedyIndependentSetVC,
NumberOfRoomExclusiveConstraints - ExamPerStudentMean, NumberOfRoomExclusiveConstraints + ExamPerStudentSD,
NumberOfRoomExclusiveConstraints - ExamPerStudentEntropy, NumberOfRoomExclusiveConstraints + ExamPerStudentEntropy,
NumberOfRoomExclusiveConstraints + TotalExamCap/TotalRoomAndNrPeriods, NumberOfRoomExclusiveConstraints - GreedyScore,
NumberOfTimeRelatedConstraints + ExamPerStudentMean, NumberOfTimeRelatedConstraints + ExamPerStudentSD, NumberOfTimeRelatedConstraints +
ExamPerStudentEntropy, NumberOfTimeRelatedConstraints - nrOfConflicts, NumberOfTimeRelatedConstraints - TotalExamCap /
TotalRoomAndNrPeriods, NumberOfTimeRelatedConstraints + TotalExamCap/TotalRoomAndNrPeriods, NumberOfTimeRelatedConstraints +
CliqueSizeMean, NumberOfTimeRelatedConstraints / GreedyNumberOfUsedColors, NumberOfTimeRelatedConstraints + ComputationalTime,
TotalNumberOfConstraints + ExamPerStudentEntropy, TotalNumberOfConstraints - nrOfConflicts, TotalNumberOfConstraints -
TotalExamCap/TotalRoomAndNrPeriods, TotalNumberOfConstraints - CliqueCalculationTime, TotalNumberOfConstraints / GreedyNumberOfUsedColors,
TotalNumberOfConstraints * GreedyScore, TotalNumberOfConstraints / GreedyScore, TimeRelatedFractionOfConstraints + TotalExamCap /
TotalRoomAndNrPeriods, TimeRelatedFractionOfConstraints / GreedyNumberOfUsedColorsPerPeriod, TimeRelatedFractionOfConstraints /
GreedyNumberOfUnassignedVariables, RoomRelatedFractionOfConstraints + TotalExamCap/TotalRoomAndNrPeriods, RoomRelatedFractionOfConstraints
/ GreedyNumberOfUsedColors, RoomRelatedFractionOfConstraints / GreedyNumberOfUsedColorsPerPeriod, RoomRelatedFractionOfConstraints /
GreedyScore, WeightTwoInTheRow + ExamPerStudentEntropy, WeightTwoInTheRow + TotalExamCap/TotalRoomAndNrPeriods, WeightTwoInTheRow /
GreedyNumberOfUsedColorsPerPeriod, WeightTwoInTheRow / GreedyScore, WeightTwoInTheRow - ComputationalTime, WeightTwoInADay +
ExamPerStudentEntropy, WeightTwoInADay + nrOfConflicts, WeightTwoInADay + TotalExamCap/TotalRoomAndNrPeriods, WeightTwoInADay /
GreedyNumberOfUsedColors, WeightTwoInADay / GreedyNumberOfUsedColorsPerPeriod, WeightTwoInADay / GreedyScore, WeightPeriodSpread +
ExamPerStudentEntropy, WeightPeriodSpread + NrOfConflictMean, WeightPeriodSpread + nrOfConflicts, WeightPeriodSpread -
RatioNrOfConflictsOverExams, WeightPeriodSpread + RatioNrOfConflictsOverExams, WeightPeriodSpread - TotalExamCap / TotalRoomAndNrPeriods,
WeightMixedDuration - ExamPerStudentMean, WeightMixedDuration - ExamPerStudentSD, WeightMixedDuration - TotalExamCap/TotalRoomAndNrPeriods,
CliqueSizemean * GreedyIndependentSetSD, CliqueSizemean + ComputationalTime, CliqueSizemean + MaxMembers, CliqueSizeMean + MinMembers,
CliqueSizeMean, CliqueSizeMed + Greedy Score, CliqueSizeMed * GreedyIndependentSetMedian, CliqueSizeMed * GreedyIndependentSet3thQ,
CliqueSizeMed - ComputationalTime, CliqueSizeMed + ComputationalTime, CliqueSizeVarCoef * CliqueSizeMinMax, CliqueSizeVarCoef -
CliqueCalculationTime , CliqueSizeVarCoef / GreedyNumberOfUsedColors, CliqueSizeVarCoef / GreedyNumberOfUsedColorsPerPeriod,
CliqueSizeVarCoef / GreedyNumberOfUnassignedVariables, CliqueSizeVarCoef / GreedyScore, CliqueSizeVarCoefMeanMembers, CliqueSizeSD +
CliqueSizeEntropy, CliqueSizeSD + CliqueCalculationTime, CliqueSizeSD * GreedyNumberOfUsedColors, CliqueSizeSD / GreedyNumberOfUsedColors,
CliqueSizeSD + GreedyScore, CliqueSizeSD * GreedyIndependentSetMean, CliqueSizeSD + MeanMembers, CliqueSizeFirstQuart /
GreedyNumberOfUnassignedVariables, CliqueSizeFirstQuart + GreedyScore, CliqueSizeFirstQuart + ComputationalTime, CliqueSizeThird -
CliqueSizeEntropy, CliqueSizeThird / GreedyNumberOfUsedColors, CliqueSizeThird * GreedyNumberOfUsedColorsPerPeriod, CliqueSizeThird *
GreedyScore CliqueSizeThird + ComputationalTime, CliqueSizeEntropy / GreedyNumberOfUsedColors, CliqueSizeEntropy /
GreedyNumberOfUnassignedVariables, CliqueSizeEntropy + GreedyNumberOfUnassignedVariables, CliqueSizeEntropy + GreedyIndependentSetMin,
CliqueSizeEntropy * GreedyIndependentSetMedian, CliqueSizeEntropy - GreedyIndependentSetVC, CliqueSizeEntropy - MinMembers,
CliqueSizeEntropy + MinMembers, CliqueSizeEntropy + MeanMembers, CliqueSizeEntropy, CliqueSizeSkew / GreedyNumberOfUsedColors,
CliqueSizeSkew / GreedyNumberOfUnassignedVariables, CliqueSizeSkew / GreedyScore, CliqueSizeMinMax - CliqueCalculationTime,
CliqueSizeMinMax / GreedyNumberOfUsedColors, CliqueSizeMinMax / GreedyNumberOfUsedColorsPerPeriod, CliqueSizeMinMax /
GreedyNumberOfUnassignedVariables, CliqueSizeMinMax / GreedyScore, CliqueSizeMinMax + GreedyScore, CliqueSizeMinMax / MinMembers,
CliqueSizeMinMax - MeanMembers, CliqueSizeMeanMax / GreedyScore, CliqueCalculationTime + CliqueCalculationTime, CliqueCalculationTime /
GreedyNumberOfUnassignedVariables, CliqueCalculationTime / GreedyScore, CliqueCalculationTime + GreedyIndependentSetMin,
CliqueCalculationTime * GreedyIndependentSetMean, CliqueCalculationTime + GreedyIndependentSetMedian, CliqueCalculationTime -
GreedyIndependentSetSD, CliqueCalculationTime - GreedyIndependentSetFirstQ, CliqueCalculationTime + GreedyIndependentSet3thQ,
CliqueCalculationTime * ComputationalTime, CliqueCalculationTime + MinMembers, CliqueCalculationTime + MeanMembers, CliqueCalculationTime
+ MedMembers, CliqueCalculationTime, GreedyNumberOfUsedColors * GreedyScore, GreedyNumberOfUsedColors - GreedyScore,
GreedyNumberOfUsedColors + GreedyScore, GreedyNumberOfUsedColors * GreedyIndependentSetMean, GreedyNumberOfUsedColors *
GreedyIndependentSetMedian, GreedyNumberOfUsedColors * GreedyIndependentSetVC, GreedyNumberOfUsedColors / GreedyIndependentSetVC,
GreedyNumberOfUsedColors * GreedyIndependentSetSD, GreedyNumberOfUsedColors * GreedyIndependentSetFirstQ, GreedyNumberOfUsedColors *
GreedyIndependentSetEntropy, GreedyNumberOfUsedColors / GreedyIndependentSetSkew, GreedyNumberOfUsedColors / Modularity,
GreedyNumberOfUsedColors * MaxMembers, GreedyNumberOfUsedColors / MinMembers, GreedyNumberOfUsedColors / MedMembers, GreedyNumber
OfUsedColorsPerPeriod + GreedyNumberOfUsedColorsPerPeriod, GreedyNumberOfUsedColorsPerPeriod / GreedyScore,
GreedyNumberOfUsedColorsPerPeriod + GreedyScore, GreedyNumberOfUsedColorsPerPeriod * GreedyIndependentSetMax,
GreedyNumberOfUsedColorsPerPeriod / GreedyIndependentSetVC, GreedyNumberOfUsedColorsPerPeriod * GreedyIndependentSetSD,
GreedyNumberOfUsedColorsPerPeriod * GreedyIndependentSetFirstQ, GreedyNumberOfUsedColorsPerPeriod * GreedyIndependentSet3thQ,
GreedyNumberOfUsedColorsPerPeriod * GreedyIndependentSetEntropy, GreedyNumberOfUsedColorsPerPeriod / GreedyIndependentSetSkew,
GreedyNumberOfUsedColorsPerPeriod / GreedyIndependentSetMinMax, GreedyNumberOfUsedColorsPerPeriod / Modularity,
GreedyNumberOfUsedColorsPerPeriod * ComputationalTime, GreedyNumberOfUsedColorsPerPeriod * MaxMembers, GreedyNumberOfUsedColorsPerPeriod /
MinMembers, GreedyNumberOfUsedColorsPerPeriod * MeanMembers, GreedyNumberOfUsedColorsPerPeriod + MeanMembers,
GreedyNumberOfUsedColorsPerPeriod * SDMembers, GreedyNumberOfUsedColorsPerPeriod, GreedyNumberOfUnassignedVariables - GreedyScore,
GreedyNumberOfUnassignedVariables + ComputationalTime, GreedyScore + GreedyScore, GreedyScore * GreedyIndependentSetMax, GreedyScore -
GreedyIndependentSetMax GreedyScore / GreedyIndependentSetMin, GreedyScore - GreedyIndependentSetMin, GreedyScore +
GreedyIndependentSetMin, GreedyScore * GreedyIndependentSetMean, GreedyScore * GreedyIndependentSetMedian, GreedyScore -
GreedyIndependentSetMedian, GreedyScore + GreedyIndependentSetMedian, GreedyScore * GreedyIndependentSetVC, GreedyScore /
GreedyIndependentSetVC, GreedyScore + GreedyIndependentSetVC, GreedyScore * GreedyIndependentSetSD, GreedyScore *
GreedyIndependentSetFirstQ, GreedyScore / GreedyIndependentSetFirstQ, GreedyScore - GreedyIndependentSetFirstQ, GreedyScore *
GreedyIndependentSet3thQ, GreedyScore - GreedyIndependentSet3thQ, GreedyScore * GreedyIndependentSetEntropy
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A.2. Feature Selection Results for The Algorithm Selection Problem

Table A.12: The features selected by the RFE method for the discretized version of the
SA_3class dataset

FS
method Selected features

Ext+D+RFE
(191)

WeightTwoInADay + TotalExamCap / TotalRoomAndNrPeriods, WeightTwoInADay + WCCThird, WeightTwoInADay - WCCEntropy,
WeightTwoInADay - CCCalculationTime, WeightTwoInADay + CCCalculationTime, WeightTwoInADay - CliqueCalculationTime,
WeightTwoInADay + CliqueCalculationTime, WeightTwoInADay / GreedyNumberOfUsedColors, WeightTwoInADay +
GreedyNumberOfUsedColors, WeightTwoInADay - GreedyNumberOfUsedColorsPerPeriod, WeightTwoInADay +
GreedyNumberOfUsedColorsPerPeriod, WeightTwoInADay * GreedyNumberOfUnassignedVariables, WeightTwoInADay - GreedyScore,
WeightTwoInADay + GreedyScore, WeightTwoInADay - ComputationalTime, WeightTwoInADay + ComputationalTime, WeightTwoInADay +
MeanMembers, WeightPeriodSpread - NrOfConflictMean, WeightPeriodSpread + NrOfConflictMean, WeightPeriodSpread +
NrOfConflictSD, WeightPeriodSpread - nrOfConflicts, WeightPeriodSpread + nrOfConflicts, WeightPeriodSpread -
RatioNrOfConflictsOverExams, WeightPeriodSpread + RatioNrOfConflictsOverExams, WeightPeriodSpread * TotalRoomCapacity,
WeightPeriodSpread * TotalExamCap / TotalRoomAndNrPeriods, WeightPeriodSpread - TotalExamCap /TotalRoomAndNrPeriods,
WeightPeriodSpread + TotalExamCap / TotalRoomAndNrPeriods, WeightPeriodSpread + WCCmed, WeightPeriodSpread +
CCCalculationTime, WeightPeriodSpread - CliqueCalculationTime, WeightPeriodSpread + CliqueCalculationTime, WeightPeriodSpread

* GreedyNumberOfUsedColors, WeightPeriodSpread / GreedyNumberOfUsedColors, WeightPeriodSpread - GreedyNumberOfUsedColors,
WeightPeriodSpread * GreedyNumberOfUsedColorsPerPeriod, WeightPeriodSpread / GreedyNumberOfUsedColorsPerPeriod,
WeightPeriodSpread - GreedyNumberOfUsedColorsPerPeriod, WeightPeriodSpread * GreedyNumber OfUnassignedVariables,
WeightPeriodSpread / GreedyNumberOfUnassignedVariables, WeightPeriodSpread * GreedyScore, WeightPeriodSpread / GreedyScore,
WeightPeriodSpread - GreedyScore, WeightPeriodSpread + GreedyScore, WeightPeriodSpread - ComputationalTime,
WeightPeriodSpread + ComputationalTime, WeightMixedDuration - StudentPerExam3Q, WeightMixedDuration - NrOfConflictMean,
WeightMixedDuration + NrOfConflictMean, WeightMixedDuration / NrOfConflictMed, WeightMixedDuration - NrOfConflictSD,
WeightMixedDuration + NrOfConflictSD, WeightMixedDuration - nrOfConflicts, WeightMixedDuration + nrOfConflicts,
WeightMixedDuration - RatioNrOfConflictsOverExams, WeightMixedDuration + RatioNrOfConflictsOverExams, WeightMixedDuration -
TotalExamCap/TotalRoomAndNrPeriods, WeightMixedDuration + TotalExamCap / TotalRoomAndNrPeriods, WeightMixedDuration + WCCmed,
WeightMixedDuration + WCCEntropy, WeightMixedDuration - CCCalculationTime, WeightMixedDuration + CCCalculationTime,
WeightMixedDuration - CliqueCalculationTime, WeightMixedDuration + CliqueCalculationTime, WeightMixedDuration * Greedy Number
of Used Colors WeightMixedDuration + Greedy Number of Used Colors WeightMixedDuration + Greedy Number of Used Colors Per
Period WeightMixedDuration * Greedy NumberOfUnassignedVariables, WeightMixedDuration * GreedyScore, WeightMixedDuration +
GreedyScore, WeightMixedDuration - ComputationalTime, WeightMixedDuration + ComputationalTime, WeightMixedDuration -
MedMembers, WeightNumberOfLargeExams + NrOfConflictMax, WeightNumberOfLargeExams - NrOfConflictMean, WeightNumberOfLargeExams
- NrOfConflictSD, WeightNumberOfLargeExams - NrOfConflictEntropy, WeightNumberOfLargeExams + NrOfConflictEntropy,
WeightNumberOfLargeExams - TotalExamCap / TotalRoomAndNrPeriods, WeightNumberOfLargeExams - WCCEntropy,
WeightNumberOfLargeExams - CliqueCalculationTime, WeightNumberOfLargeExams - GreedyScore, FrontLoadPenalty - NrOfConflictMean,
FrontLoadPenalty + TotalExamCap/TotalRoomAndNrPeriods, FrontLoadPenalty - CliqueCalculationTime, FrontLoadWeight +
GreedyNumberOfUsedColors, StudentPerExamMax / GreedyNumberOfUsedColors, GreedyNumberOfUsedColorsPerPeriod /
GreedyIndependentSetVC, GreedyNumberOfUsedColorsPerPeriod + GreedyIndependentSetFirstQ, GreedyNumberOfUsedColorsPerPeriod *
GreedyIndependentSet3thQ GreedyNumberOfUsedColorsPerPeriod / GreedyIndependentSetSkew GreedyNumberOfUsedColorsPerPeriod /
GreedyIndependentSetMinMax GreedyNumberOfUsedColorsPerPeriod * GreedyIndependentSetMeanMax GreedyNumberOfUsedColorsPerPeriod

* Modularity, GreedyNumberOfUsedColorsPerPeriod / Modularity, GreedyNumberOfUsedColorsPerPeriod * ComputationalTime,
GreedyNumberOfUsedColorsPerPeriod - ComputationalTime, GreedyNumberOfUsedColorsPerPeriod * MaxMembers,
GreedyNumberOfUsedColorsPerPeriod / MaxMembers, GreedyNumberOfUsedColorsPerPeriod - MaxMembers,
GreedyNumberOfUsedColorsPerPeriod / MinMembers, GreedyNumberOfUsedColorsPerPeriod - MinMembers,
GreedyNumberOfUsedColorsPerPeriod + MinMembers, GreedyNumberOfUsedColorsPerPeriod * MeanMembers,
GreedyNumberOfUsedColorsPerPeriod / MeanMembers, GreedyNumberOfUsedColorsPerPeriod / MedMembers,
GreedyNumberOfUsedColorsPerPeriod - MedMembers, GreedyNumberOfUsedColorsPerPeriod + MedMembers,
GreedyNumberOfUsedColorsPerPeriod * VarCoefMembers, GreedyNumberOfUsedColorsPerPeriod * SDMembers,
GreedyNumberOfUsedColorsPerPeriod / SDMembers, GreedyNumberOfUsedColorsPerPeriod, GreedyNumberOfUnassignedVariables *
GreedyNumberOfUnassignedVariables, GreedyNumberOfUnassignedVariables + GreedyNumberOfUnassignedVariables,
GreedyNumberOfUnassignedVariables / GreedyScore, GreedyNumberOfUnassignedVariables - GreedyScore,
GreedyNumberOfUnassignedVariables + GreedyScore, GreedyNumberOfUnassignedVariables * GreedyIndependentSetMax,
GreedyNumberOfUnassignedVariables / GreedyIndependentSetMin, GreedyNumberOfUnassignedVariables - GreedyIndependentSetMin,
GreedyNumberOfUnassignedVariables * GreedyIndependentSetMean, GreedyNumberOfUnassignedVariables / GreedyIndependentSetMean,
GreedyNumberOfUnassignedVariables * GreedyIndependentSetMedian, GreedyNumberOfUnassignedVariables /
GreedyIndependentSetMedian, GreedyNumberOfUnassignedVariables * GreedyIndependentSetVC, GreedyNumberOfUnassignedVariables /
GreedyIndependentSetVC, GreedyNumberOfUnassignedVariables * GreedyIndependentSetSD, GreedyNumberOfUnassignedVariables /
GreedyIndependentSetSD, GreedyNumberOfUnassignedVariables * GreedyIndependentSet3thQ, GreedyNumberOfUnassignedVariables /
GreedyIndependentSet3thQ, GreedyNumberOfUnassignedVariables * GreedyIndependentSetEntropy, GreedyNumberOfUnassignedVariables

* GreedyIndependentSetSkew, GreedyNumberOfUnassignedVariables / GreedyIndependentSetSkew, GreedyNumberOfUnassignedVariables *
GreedyIndependentSetMinMax, GreedyNumberOfUnassignedVariables * GreedyIndependentSetMeanMax,
GreedyNumberOfUnassignedVariables / GreedyIndependentSetMeanMax, GreedyNumberOfUnassignedVariables * Modularity,
GreedyNumberOfUnassignedVariables / Modularity, GreedyNumberOfUnassignedVariables * NrOfCommunities,
GreedyNumberOfUnassignedVariables / NrOfCommunities, GreedyNumberOfUnassignedVariables * ComputationalTime,
GreedyNumberOfUnassignedVariables / ComputationalTime, GreedyNumberOfUnassignedVariables - ComputationalTime,
GreedyNumberOfUnassignedVariables + ComputationalTime, GreedyNumberOfUnassignedVariables * MaxMembers,
GreedyNumberOfUnassignedVariables - MaxMembers, GreedyNumberOfUnassignedVariables + MaxMembers,
GreedyNumberOfUnassignedVariables - MinMembers, GreedyNumberOfUnassignedVariables * MeanMembers,
GreedyNumberOfUnassignedVariables + MeanMembers, GreedyNumberOfUnassignedVariables - MedMembers,
GreedyNumberOfUnassignedVariables + MedMembers, GreedyNumberOfUnassignedVariables * VarCoefMembers,
GreedyNumberOfUnassignedVariables / VarCoefMembers, GreedyNumberOfUnassignedVariables *
SDMembersGreedyNumberOfUnassignedVariables, GreedyScore * GreedyScore, GreedyScore + GreedyScore, GreedyScore +
GreedyIndependentSetMin, GreedyScore * GreedyIndependentSetMean, GreedyScore / GreedyIndependentSetMean, GreedyScore -
GreedyIndependentSetMedian, GreedyScore + GreedyIndependentSetMedian, GreedyScore / GreedyIndependentSetVC, GreedyScore *
GreedyIndependentSetSD, GreedyScore / GreedyIndependentSetSD, GreedyScore * GreedyIndependentSetFirstQ, GreedyScore -
GreedyIndependentSetFirstQ, GreedyScore / GreedyIndependentSet3thQ, GreedyScore - GreedyIndependentSet3thQ, GreedyScore +
GreedyIndependentSet3thQ, GreedyScore * GreedyIndependentSetSkew, GreedyScore / GreedyIndependentSetMinMax, GreedyScore *
Modularity, GreedyScore * NrOfCommunities, GreedyScore * ComputationalTime, GreedyScore / ComputationalTime, GreedyScore *
MaxMembers, GreedyScore / MaxMembers, GreedyScore - MaxMembers, GreedyScore - MinMembers, GreedyScore + MinMembers,
GreedyScore * MeanMembers, GreedyScore / MeanMembers, GreedyScore / MedMembers, GreedyScore - MedMembers, GreedyScore +
MedMembers, Greedy Score * SDMembers, GreedyScore / SDMembers, GreedyScore, GreedyIndependentSetMax - ComputationalTime
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A. Feature Selection Results

Table A.13: The features selected by different method on the standartized version of the
SA_2class dataset

FS
method Selected features

S+RFE
(55)

NumberOfExams, NumberOfPeriods, NumberOfExamsOverSlack, NumberOfAfterConstraints, NumberOfCoincidenceConstraints,
NumberOfTimeRelatedConstraints, TotalNumberOfConstraints, RoomRelatedFractionOfConstraints, StudentPerExamMed, StudentPerExamSD,
StudentPerExam3Q, StudentPerExamEntropy, ExamPerStudentVarCoef, ExamPerStudentSD, ExamPerStudentEntropy, ExamPerStudentSkew,
ExamPerStudentMinMax, RoomsPerExamMean, RoomsPerExamSD, AllPeriodExamOverTotal, PeriodPerExam95P, PeriodPerExam5Per, PeriodPerExamMean,
PeriodPerExamVarCoef, PeriodPerExamSD, ConflictGraphDensity, TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods, TotalExamCap /
TotalRoomAndNrPeriods, ExamOverRoomMeanCapacity, ExamPerRoomMax, ExamPerRoomMin, ExamPerRoomMean, ExamPerRoomMed, ExamPerRoomSD,
ExamPerPeriodMean, ExamPerPeriodMed, ExamPerPeriodVarCoef, ExamPerPeriodSD, NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, CCmean, CCSD,
CCSkew, WCCEntropy, CliqueSizeVarCoef, CliqueCalculationTime, GreedyNumberOfUsedColors, GreedyNumberOfUsedColorsPerPeriod,
GreedyNumberOfUnassignedVariables, GreedyScore, GreedyIndependentSetMax, GreedyIndependentSetMean, GreedyIndependentSetVC,
GreedyIndependentSetSD, GreedyIndependentSet3thQ

S+BFS(15)
NumberOfExamsOverSlack, NumberOfAfterConstraints, NumberOfCoincidenceConstraints, StudentPerExamSD, ExamPerStudent3Q, TotalRoomCapacity,
TotalExamCap / TotalRoomAndNrPeriods, ExamPerPeriodVarCoef, ExamPerPeriodSD, CC95th, CliqueSizeMin, GreedyNumberOfUsedColors,
GreedyNumberOfUsedColorsPerPeriod, GreedyIndependentSetVC, GreedyIndependentSetSD

Ext+S+RFE
(27)

NumberOfExamsOverSlack / PeriodLengthMed, NumberOfExamsOverSlack * NrOfPeriodsWithPenalty, NumberOfExamsOverSlack + ExamPerPeriodVarCoef,
NumberOfExamsOverSlack + ExamPerPeriodSD, NumberOfExamsOverSlack / NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, NumberOfExamsOverSlack -
NrOfPeriodsForAllExamsWithoutPenaltyOverTota, NumberOfExamsOverSlack / CC95th, NumberOfExamsOverSlack / CCmean, NumberOfExamsOverSlack /
Ccmed, NumberOfExamsOverSlack / WCCmean, NumberOfCoincidenceConstraints * WeightPeriodSpread, GreedyScore / Greedy IndependentSetMinMax,
GreedyScore / Modularity, GreedyScore / NrOfCommunities, GreedyScore * ComputationalTime, GreedyScore / ComputationalTime, GreedyScore /
MaxMembers, GreedyScore + MinMembers, GreedyScore + MedMembers, GreedyScore / VarCoefMembers, GreedyIndependentSetVC *
GreedyIndependentSetSD, GreedyIndependentSetVC - GreedyIndependentSet3thQ, GreedyIndependentSetVC / ComputationalTime,
GreedyIndependentSetVC - MaxMembers, GreedyIndependentSetVC - MedMembers, GreedyIndependentSetSD / ComputationalTime,
GreedyIndependentSetSD - ComputationalTime

Ext+S+BFS
(100)

NumberOfStudents / TotalRoomCapacity, NumberOfStudents - TotalRoomCapacity, NumberOfExams / NumberOfCoincidenceConstraints, NumberOfExams
/ GreedyIndependentSetMax, NumberOfExamsOverSlack / NumberOfCoincidenceConstraints, NumberOfExamsOverSlack /
NumberOfTimeRelatedConstraints, NumberOfExamsOverSlack / StudentPerExamMinMax, NumberOfExamsOverSlack / RoomsPerExam5Per,
NumberOfExamsOverSlack - AllPeriodExamOverTotal, NumberOfExamsOverSlack + PeriodPerExamSD, NumberOfExamsOverSlack + ExamLengthSD,
NumberOfExamsOverSlack / ConflictGraphDensity, NumberOfExamsOverSlack * NrOfPeriodsWithPenalty, NumberOfExamsOverSlack +
ExamPerPeriodVarCoef, NumberOfExamsOverSlack / NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, NumberOfExamsOverSlack + WCCSkew,
NumberOfAfterConstraints / ExamPerStudent5thPer, NumberOfAfterConstraints * ExamPerStudentSkew, NumberOfAfterConstraints * PeriodPerExamSD,
NumberOfAfterConstraints * ExamLengthVarCoef, NumberOfAfterConstraints * CliqueSizeVarCoef, NumberOfAfterConstraints *
GreedyIndependentSetSkew, NumberOfCoincidenceConstraints * ExamPerStudentMedian, NumberOfCoincidenceConstraints + ExamPerStudentMinMax,
NumberOfCoincidenceConstraints - NrOfConflictMax, NumberOfCoincidenceConstraints - OneRoomOverTotalExams, NumberOfCoincidenceConstraints +
OneRoomOverTotalExams, NumberOfCoincidenceConstraints + PeriodPerExamMed, NumberOfCoincidenceConstraints / ExamLengthSD,
NumberOfCoincidenceConstraints * ConflictGraphDensity, NumberOfCoincidenceConstraints / TotalExamCap / TotalRoomAndNrPeriods,
NumberOfCoincidenceConstraints * PeriodLengthMin, NumberOfCoincidenceConstraints / ExamPerPeriodSD, NumberOfCoincidenceConstraints /
GreedyNumberOfUsedColorsPerPeriod, NumberOfCoincidenceConstraints / GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints -
GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints - GreedyIndependentSetMedian, NumberOfCoincidenceConstraints *
GreedyIndependentSetMeanMax, TimeRelatedFractionOfConstraints * PeriodPerExam5Per, TimeRelatedFractionOfConstraints - ExamPerRoomSD,
RoomRelatedFractionOfConstraints + ExamPerRoomSD, WeightTwoInADay * ExamPerPeriodSD, WeightPeriodSpread * TotalExamCap
/TotalRoomAndNrPeriods, WeightPeriodSpread / CliqueSizeSD, StudentPerExamMax + CliqueSizeEntropy, StudentPerExamMin / ExamPerPeriodSD,
StudentPerExamSkew - ExamPerStudentVarCoef, ExamsPerStudentMax / GreedyNumberOfUnassignedVariables, ExamPerStudent5thPer / TotalExamCap /
TotalRoomAndNrPeriods, ExamPerStudentMean / GreedyNumberOfUnassignedVariables, ExamPerStudentVarCoef * NrOfConflict3Q,
ExamPerStudent1Quant / NrOfConflictSD, ExamPerStudentSkew * ExamPerPeriodVarCoef, ExamPerStudentSkew / GreedyNumberOfUsedColorsPerPeriod,
ExamPerStudentSkew * MaxMembers, ExamPerStudentMinMax * NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, ExamPerStudentMinMax /
GreedyNumberOfUnassignedVariables, ExamPerStudentMinMax * GreedyIndependentSetSD, ExamPerStudentMeanMax * GreedyIndependentSetVC,
NrOfConflictMean / GreedyNumberOfUnassigned Variables, NrOfConflictVarCoef + TotalExamCap / TotalRoomAndNrPeriods, NrOfConflictSkew *
TotalRoomCapacity, NrOfConflictSkew + TotalRoomCapacity, OneRoomOverTotalExams + GreedyNumberOfUnassignedVariables, AllRoomExams /
GreedyIndependentSetMax, AllRoomExams / MinMembers, RoomsPerExam5Per * CCmean, RoomsPerExam5Per * WCCMinMax, RoomsPerExamVarCoef *
NrOfPeriodsWithPenalty, PeriodPerExam5Per * GreedyIndependentSetVC, PeriodPerExamMean * RoomForAllExamsWithoutPenalty,
PeriodPerExamVarCoef + TotalExamCap / TotalRoomAndNrPeriods, PeriodPerExamVarCoef + GreedyIndependentSetVC, PeriodPerExamSD + TotalExamCap
/TotalRoomAndNrPeriods, ExamLengthMax / TotalRoomCapacity, ExamLengthMean + ExamPerPeriodSD, ConflictGraphDensity +
NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, RoomCapacityMed * CliqueSizemean, RoomCapacityMean * WCCmean, TotalRoomCapacity /
ExamPerRoomSD, TotalRoomCapacity - ExamPerRoomSD, TotalRoomCapacity + WCC95th, TotalExamCap /TotalRoomAndNrPeriods *
RoomForAllExamsWithoutPenaltyOverTotal, TotalExamCap/TotalRoomAndNrPeriods * NrOfPeriodsWithPenalty, TotalExamCap / TotalRoomAndNrPeriods
+ ExamPerPeriodVarCoef, TotalExamCap / TotalRoomAndNrPeriods / Ccmed, TotalExamCap/TotalRoomAndNrPeriods / CCFirstQuart, TotalExamCap /
TotalRoomAndNrPeriods - CCEntropy, TotalExamCap / TotalRoomAndNrPeriods / GreedyNumberOfUsedColors, TotalExamCap /TotalRoomAndNrPeriods /
GreedyNumberOfUsedColorsPerPeriod, MaxRoomPenalty / GreedyNumberOfUsedColors, ExamPerRoomMean / CliqueSizemean, ExamPerPeriodVarCoef /
CC95th, ExamPerPeriodVarCoef + CCEntropy, CC5th / GreedyIndependentSetMinMax, CCThird * GreedyIndependentSetVC, WCCMinMax -
ComputationalTime, CliqueSizeFirstQuart / GreedyNumberOfUnassignedVariables, CliqueSizeThird / GreedyIndependentSet, MinMax,
GreedyNumberOfUnassignedVariables / GreedyIndependentSetVC
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A.2. Feature Selection Results for The Algorithm Selection Problem

Table A.14: The features selected by different method on the discretized version of the
SA_2class dataset

FS
method Selected features

D + RFE
(109)

NumberOfExamsOverSlack, NumberOfAfterConstraints, NumberOfCoincidenceConstraints, NumberOfExclusionConstraints,
NumberOfRoomExclusiveConstraints, NumberOfTimeRelatedConstraints, TotalNumberOfConstraints, TimeRelatedFractionOfConstraints,
RoomRelatedFractionOfConstraints, WeightTwoInTheRow, WeightTwoInADay, WeightPeriodSpread, WeightMixedDuration, WeightNumberOfLargeExams,
FrontLoadPenalty, FrontLoadWeight, StudentPerExamMax, StudentPerExamMin, StudentPerExamMean, StudentPerExamMed, StudentPerExamVarCoef,
StudentPerExamSD, StudentPerExam1Q, StudentPerExam3Q, StudentPerExamEntropy, StudentPerExamSkew, StudentPerExamMinMax,
StudentPerExamMeanMax, ExamsPerStudentMax, ExamPerStudent5thPer, ExamPerStudentMean, ExamPerStudentMedian, ExamPerStudentVarCoef,
ExamPerStudentSD, ExamPerStudent1Quant, ExamPerStudent3Q, ExamPerStudentEntropy, ExamPerStudentSkew, ExamPerStudentMinMax,
ExamPerStudentMeanMax, NrOfConflictMax, NrOfConflict5thP, NrOfConflictMean, NrOfConflictMed, NrOfConflictVarCoef, NrOfConflictSD,
NrOfConflict1Q, NrOfConflict3Q, NrOfConflictSkew, NrOfConflictMinMax, RoomsPerExam5Per, AllPeriodExamOverTotal, PeriodPerExam5Per
PeriodPerExamVarCoef, PeriodPerExamSD, ConflictGraphDensity, TotalExamCap/TotalRoomAndNrPeriods, ExamPerRoomMed, ExamPerRoomVarCoef,
ExamPerRoomSD, RoomForAllExamsWithoutPenalty, RoomForAllExamsWithoutPenaltyOverTotal, PeriodLengthMax, PeriodLengthMin, PeriodLengthMed,
PeriodLengthMean, PeriodPenaltyMax, NrOfPeriodsWithPenalty, ExamPerPeriodMax, ExamPerPeriodMin, ExamPerPeriodMean, ExamPerPeriodMed,
ExamPerPeriodVarCoef, ExamPerPeriodSD, NrOfPeriodsForAllExamsWithoutPenalty, NrOfPeriodsForAllExamsWithoutPenaltyOverTotal,
AvNrOfPeriodPerDay, CC95th, CC5th, CCmean, Ccmed, CCVarCoef, CCSD, CCFirstQuart, CCThird CCEntropy, CCSkew, CCMinMax, CCMeanMax, WCC95th,
WCC5th, WCCmean, WCCmed, WCCVarCoef, WCCSD, WCCFirstQuart, WCCEntropy, WCCSkew, WCCMinMax, WCCMeanMax, CliqueSizeVarCoef, CliqueSizeThird,
GreedyNumberOfUsedColors, GreedyNumberOfUsedColorsPerPeriod, GreedyNumberOfUnassignedVariables, GreedyScore, GreedyIndependentSetMedian,
GreedyIndependentSetVC, GreedyIndependentSetSD

D+BFS
(13)

NumberOfExamsOverSlack, NumberOfAfterConstraints, NumberOfCoincidenceConstraints, StudentPerExamSD, ExamPerStudent3Q, TotalRoomCapacity,
TotalExamCap / TotalRoomAndNrPeriods, ExamPerPeriodVarCoef, ExamPerPeriodSD, GreedyNumber OfUsedColors, GreedyNumberOfUsedColorsPerPeriod,
GreedyIndependentSetVC, GreedyIndependentSetSD

Ext+D+RFE
(78)

NumberOfCoincidenceConstraints / ExamOverRoomMaxCapacity, NumberOfCoincidenceConstraints / ExamOverRoomMeanCapacity,
NumberOfCoincidenceConstraints / NrRoomsWithPenalty, NumberOfCoincidenceConstraints / ExamPerRoomMax, NumberOfCoincidenceConstraints /
ExamPerRoomMin, NumberOfCoincidenceConstraints / ExamPerRoomMean, NumberOfCoincidenceConstraints * RoomForAllExamsWithoutPenalty,
NumberOfCoincidenceConstraints / PeriodLengthMax, NumberOfCoincidenceConstraints - PeriodLengthMed, NumberOfCoincidenceConstraints /
NrOfPeriodsWithPenalty, NumberOfCoincidenceConstraints / ExamPerPeriodMax, NumberOfCoincidenceConstraints / ExamPerPeriodVarCoef,
NumberOfCoincidenceConstraints / ExamPerPeriodSD, NumberOfCoincidenceConstraints + CC95th, NumberOfCoincidenceConstraints * CCSD,
NumberOfCoincidenceConstraints / CCEntropy, NumberOfCoincidenceConstraints / CliqueSizeVarCoef, NumberOfCoincidenceConstraints -
CliqueSizeFirstQuart, NumberOfCoincidenceConstraints + CliqueSizeFirstQuart, NumberOfCoincidenceConstraints + CliqueSizeThird,
NumberOfCoincidenceConstraints - GreedyNumberOfUsedColors, NumberOfCoincidenceConstraints + GreedyNumberOfUsedColorsPerPeriod,
NumberOfCoincidenceConstraints / GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints / GreedyScore,
NumberOfCoincidenceConstraints / GreedyIndependentSetMax, NumberOfCoincidenceConstraints * GreedyIndependentSetVC, WeightPeriodSpread *
TotalExamCap / TotalRoomAndNrPeriods, FrontLoadPenalty * TotalExamCap / TotalRoomAndNrPeriods, StudentPerExamMed -
RoomForAllExamsWithoutPenaltyOverTotal, StudentPerExamMed - GreedyNumberOfUsedColorsPerPeriod, StudentPerExamEntropy * RoomsPerExamSD,
ExamsPerStudentMax / TotalExamCap / TotalRoomAndNrPeriods, RoomsPerExam95P + GreedyNumberOfUsedColors, RoomsPerExamSD - PeriodPerExamMean,
RoomCapacityMean - TotalExamCap / TotalRoomAndNrPeriods, TotalRoomCapacity / TotalExamCap/TotalRoomAndNrPeriods, TotalExamCap /
TotalRoomAndNrPeriods + ExamPerPeriodVarCoef, TotalExamCap / TotalRoomAndNrPeriods + GreedyIndependentSetMinMax, ExamPerRoomMax *
GreedyNumberOfUsedColors, ExamPerRoomMax / GreedyIndependentSetMedian, ExamPerRoomMin / GreedyIndependentSetMax, ExamPerRoomMed *
GreedyNumberOfUsedColors, ExamPerRoomMed / GreedyIndependentSet3thQ ExamPerRoomSD / GreedyScore, ExamPerRoomSD - GreedyScore,
RoomForAllExamsWithoutPenalty * GreedyScore, RoomForAllExamsWithoutPenaltyOverTotal / GreedyNumberOfUsedColors,
RoomForAllExamsWithoutPenaltyOverTotal / GreedyNumberOfUsedColorsPerPeriod, RoomForAllExamsWithoutPenaltyOverTotal / GreedyScore,
PeriodLengthMin - GreedyNumberOfUsedColors, PeriodLengthMed + GreedyNumberOfUsedColors, ExamPerPeriodMax * GreedyNumberOfUsedColors,
ExamPerPeriodMax / GreedyIndependentSetMax, ExamPerPeriodMed / GreedyNumberOfUnassignedVariables, ExamPerPeriodSD / GreedyIndependentSetSD,
ExamPerPeriodSD -GreedyIndependentSetSD, NrOfPeriodsForAllExamsWithoutPenalty - GreedyNumberOfUsedColorsPerPeriod, AvNrOfPeriodPerDay *
GreedyNumberOfUsedColors, CC95th * GreedyNumberOfUsedColors, CC95th - GreedyNumberOfUsedColors, CC95th - GreedyNumberOfUsedColorsPerPeriod,
CC95th + GreedyNumberOfUsedColorsPerPeriod, CC95th + GreedyScore, CC95th * GreedyIndependentSetVC, CCVarCoef * GreedyNumberOfUsedColors,
CCSD * GreedyNumberOfUsedColors, CCFirstQuart / GreedyNumberOfUsedColors, CCskew * GreedyScore, WCC95th * GreedyNumberOfUsedColors, WCC5th
/ GreedyNumberOfUsedColors, WCC5th - GreedyNumberOfUnassignedVariables, WCCmean * GreedyScore, WCCmed * GreedyScore, WCCVarCoef /
GreedyNumberOfUsedColorsPerPeriod, WCCVarCoef * GreedyNumberOfUnassignedVariables, WCCSkew * GreedyNumberOfUsedColorsPerPeriod,
CliqueSizeMax - GreedyNumberOfUsedColors, CliqueSizeMax + GreedyNumberOfUsedColorsPerPeriod

Ext+D+BFS
(68)

NumberOfStudents / TotalRoomCapacity, NumberOfStudents - TotalRoomCapacity, NumberOfExams / NumberOfCoincidenceConstraints, NumberOfRooms
+ GreedyNumberOfUsedColors NumberOfDays - GreedyNumberOfUsedColors, NumberOfExamsOverSlack / NumberOfCoincidenceConstraints,
NumberOfExamsOverSlack / NumberOfTimeRelatedConstraints, NumberOfExamsOverSlack / RoomsPerExam5Per , NumberOfExamsOverSlack -
AllPeriodExamOverTotal, NumberOfExamsOverSlack + PeriodPerExamSD, NumberOfExamsOverSlack / ConflictGraphDensity, NumberOfExamsOverSlack *
NrOfPeriodsWithPenalty, NumberOfExamsOverSlack + ExamPerPeriodVarCoef, NumberOfExamsOverSlack /
NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, NumberOfExamsOverSlack + VarCoefMembers, NumberOfAfterConstraints *
GreedyNumberOfUsedColors, NumberOfCoincidenceConstraints - NrOfConflictMax, NumberOfCoincidenceConstraints / NrOneRoomExam,
NumberOfCoincidenceConstraints / ExamLengthSD , NumberOfCoincidenceConstraints * ConflictGraphDensity, NumberOfCoincidenceConstraints /
TotalExamCap / TotalRoomAndNrPeriods, NumberOfCoincidenceConstraints / MaxRoomPenalty, NumberOfCoincidenceConstraints * PeriodLengthMin,
NumberOfCoincidenceConstraints / ExamPerPeriodSD, NumberOfCoincidenceConstraints * GreedyNumberOfUsedColorsPerPeriod,
NumberOfCoincidenceConstraints / GreedyNumberOfUnassignedVariables, NumberOfCoincidenceConstraints - GreedyNumberOfUnassignedVariables,
NumberOfCoincidenceConstraints - GreedyIndependentSet3thQ, NumberOfCoincidenceConstraints * GreedyIndependentSetMeanMax,
NumberOfCoincidenceConstraints / MaxMembers, WeightPeriodSpread * TotalExamCap / TotalRoomAndNrPeriods, StudentPerExamSD + CliqueSizeSD,
StudentPerExamEntropy * RoomsPerExamSD, ExamsPerStudentMax / GreedyNumberOfUnassigned Variables, ExamPerStudent5thPer / TotalExamCap /
TotalRoomAndNrPeriods, ExamPerStudent5thPer / ExamPerPeriodSD, ExamPerStudentMean * NrOfConflictSkew, ExamPerStudentMean /
GreedyNumberOfUnassignedVariables, ExamPerStudentVarCoef + TotalExamCap / TotalRoomAndNrPeriods, ExamPerStudentSkew /
GreedyNumberOfUsedColorsPerPeriod, NrOfConflictMed - GreedyNumberOfUsedColors, NrOfConflictVarCoef + TotalExamCap / TotalRoomAndNrPeriods,
NrOfConflictSkew * TotalRoomCapacity, NrOfConflictSkew + TotalRoomCapacity, NrOfConflictMinMax + TotalRoomCapacity, RoomsPerExam95P +
GreedyNumberOfUsedColors, RoomsPerExam5Per / TotalExamCap / TotalRoomAndNrPeriods, RoomsPerExamSD - PeriodPerExamMean,
AllPeriodExamOverTotal * GreedyIndependentSetVC, PeriodPerExamSD + TotalExamCap /TotalRoomAndNrPeriods, TotalRoomCapacity /
ExamPerRoomMean, TotalRoomCapacity / ExamPerRoomSD, TotalRoomCapacity - ExamPerRoomSD, TotalRoomCapacity + Ccmed, TotalRoomCapacity +
WCC95th, TotalExamCap / TotalRoomAndNrPeriods + ExamPerPeriodVarCoef, TotalExamCap / TotalRoomAndNrPeriods / Ccmed, TotalExamCap /
TotalRoomAndNrPeriods / CCFirstQuart, TotalExamCap / TotalRoomAndNrPeriods / GreedyNumberOfUsedColors, ExamPerRoomMed /
GreedyIndependentSetMax, ExamPerPeriodVarCoef / CC95th, NrOfPeriodsForAllExamsWithoutPenaltyOverTotal * GreedyIndependentSetVC, WCCSD -
Greedy IndependentSetVC, WCCMinMax - GreedyNumberofUsedColors, CliqueSizeFirstQuart / GreedyNumberofUnassignedVariables, CliqueSizeEntropy
- GreedyIndependentSetVC GreedyNumberofUsedColors + GreedyIndependentSetFirstQ, GreedyNumberofUnassignedVariables / GreedyIndependentSetVC
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A. Feature Selection Results

Table A.15: The features selected by different method on the discretized version of the
ITC_2class dataset

FS
method Selected features

S + RFE
(34)

NumberOfStudents, Slackness, NumberOfExamsOverSlack, NumberOfCoincidenceConstraints, WeightPeriodSpread, StudentPerExamMean,
StudentPerExamMed, StudentPerExamVarCoef, StudentPerExamSD, StudentPerExamEntropy, ExamPerStudentMean, ExamPerStudentSD,
ExamPerStudentEntropy, ExamPerStudentSkew, NrOfConflictSD, RoomsPerExamMean, PeriodPerExamMean, PeriodPerExamMed, PeriodPerExamVarCoef,
ConflictGraphDensity, RoomCapacityMax, RoomCapacityMean, TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods,
TotalExamCap/TotalRoomAndNrPeriods, ExamOverRoomMeanCapacity, MaxRoomPenalty, NrRoomsWithPenalty, ExamPerPeriodMean, ExamPerPeriodVarCoef,
CliqueSizeSD, GreedyIndependentSetMean, GreedyIndependentSetVC, GreedyIndependentSetSD

S+BFS
(31)

NumberOfStudents, Slackness, NumberOfExamsOverSlack, NumberOfCoincidenceConstraints, TotalNumberOfConstraints, FrontLoadPenalty,
StudentPerExamMin, StudentPerExamMed, StudentPerExamVarCoef, StudentPerExamSD, ExamPerStudent5thPer, ExamPerStudentMean, NrOfConflictSkew,
NrOfConflictMinMax, RoomsPerExamMean, PeriodPerExamMed, RoomCapacityMin, TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods,
ExamPerRoomVarCoef, RoomForAllExamsWithoutPenalty, ExamPerPeriodMed, ExamPerPeriodVarCoef, CCSD CCThird, CCEntropy, CCMeanMax, GreedyScore,
GreedyIndependentSetSD, GreedyIndependentSetMinMax, GreedyIndependentSetMeanMax

S+Ext+BFS
(30)

NumberOfExamsOverSlack / StudentPerExamEntropy, NumberOfExamsOverSlack / CliqueSizeSD, NumberOfCoincidenceConstraints * RoomCapacityMax,
NumberOfCoincidenceConstraints * RoomCapacityMean, NumberOfCoincidenceConstraints * MeanMembers, StudentPerExamMean + PeriodPerExamMean,
StudentPerExamMean + PeriodPerExamMed, StudentPerExamMean - ExamLengthMin, StudentPerExamMean - MaxRoomPenalty, StudentPerExamMean *
RoomForAllExamsWithoutPenalty, StudentPerExamSD - MaxRoomPenalty, StudentPerExam3Q - MaxRoomPenalty, ExamsPerStudentMax /
TotalRoomCapacityMultNrOfPeriods, ExamPerStudentMean + RoomsPerExam5Per, ExamPerStudentMean - NrRoomsWithPenalty, ExamPerStudentSD +
RoomForAllExamsWithoutPenaltyOverTotal, ExamPerStudentEntropy / TotalExamCap/TotalRoomAndNrPeriods, ExamPerStudentSkew *
TotalExamCap/TotalRoomAndNrPeriods, ExamPerStudentMinMax * TotalRoomCapacityMultNrOfPeriods, NrOfConflictEntropy * TotalRoomCapacity,
RoomsPerExamSD * GreedyScore, PeriodPerExamMean * GreedyIndependentSetMax, PeriodPerExamMean * GreedyIndependentSet3thQ, PeriodPerExamMed

* GreedyIndependentSetMax, PeriodPerExamMed * GreedyIndependentSetSD, TotalRoomCapacity / GreedyNumberofUnassignedVariables,
NrRoomsWithPenalty / GreedyScore, NrOfPeriodsForAllExamsWithoutPenalty * GreedyIndependentSetSD, WCCMeanMax - GreedyIndependentSetMeanMax,
CliqueSizeThird + GreedyIndependentSetSD

D+RFE
(51)

NumberOfRooms, Slackness, NumberOfExamsOverSlack, NumberOfCoincidenceConstraints, StudentPerExamMax, StudentPerExamMean, StudentPerExamSD,
StudentPerExam1Q, StudentPerExam3Q, StudentPerExamEntropy, StudentPerExamMinMax, ExamPerStudentMean, ExamPerStudentMedian,
ExamPerStudentEntropy, ExamPerStudentSkew, NrOfConflictMean, NrOfConflictSD, NrOfConflict3Q, RoomsPerExamMean, RoomsPerExamVarCoef,
PeriodPerExam5Per, PeriodPerExamMean, PeriodPerExamMed, RatioNrOfConflictsOverExams, ConflictGraphDensity, RoomCapacityMin,
RoomCapacityMed, RoomCapacityMean, TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods, ExamOverRoomMaxCapacity,
RoomForAllExamsWithoutPenaltyOverTotal, ExamPerPeriodMean, ExamPerPeriodSD, NrOfPeriodsForAllExamsWithoutPenalty,
NrOfPeriodsForAllExamsWithoutPenaltyOverTotal, WCC95th, WCCentropy, WCCMeanMax, CliqueSizeMax, CliqueSizeThird,
GreedyNumberofUsedColorsPerPeriod, GreedyIndependentSetMax, GreedyIndependentSetMean, GreedyIndependentSetVC, GreedyIndependentSetSD,
GreedyIndependentSetFirstQ, GreedyIndependentSet3thQ, GreedyIndependentSetEntropy, GreedyIndependentSetMinMax, MaxMembers

D+BFS
(27)

Slackness, NumberOfExamsOverSlack, NumberOfCoincidenceConstraints, TotalNumberOfConstraints, StudentPerExamMean, StudentPerExamMed,
StudentPerExamVarCoef, ExamPerStudent5thPer, ExamPerStudentSkew, NrOfConflictSkew, RoomsPerExam5Per, RoomsPerExamMean, RoomCapacityMin,
TotalRoomCapacity, TotalRoomCapacityMultNrOfPeriods, ExamPerRoomVarCoef, ExamPerPeriodMed, ExamPerPeriodVarCoef, CCSD, CCThird, CCEntropy,
WCCSD, CliqueSizeMin, GreedyScore, GreedyIndependentSetMax, GreedyIndependentSetMinMax, GreedyIndependentSetMeanMax

D+Ext+BFS
(14)

NumberOfDays * GreedyIndependentSetMax, NumberOfExamsOverSlack - CliqueSizeSD, NumberOfCoincidenceConstraints * RoomCapacityMean,
StudentPerExamMean + PeriodPerExamMed, StudentPerExam3Q - ExamLengthMin, StudentPerExam3Q - MaxRoomPenalty, ExamPerStudentSD +
RoomForAllExamsWithoutPenaltyOverTotal, ExamPerStudentEntropy / TotalExamCap/TotalRoomAndNrPeriods, ExamPerStudentMinMax *
TotalRoomCapacityMultNrOfPeriods, PeriodPerExamMean * GreedyIndependentSet3thQ, PeriodPerExamMed * GreedyIndependentSetSD ,
TotalRoomCapacity / MaxRoomPenalty, TotalRoomCapacity / CCThird, TotalRoomCapacityMultNrOfPeriods * RoomForAllExamsWithoutPenalty
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APPENDIX B
Regression And Classification

Results

In this appendix, we provide the results obtained by various regression and classification
methods on the datasets. The results on the training datasets have been obtained by
running 10-fold cross-validation 10 times using the estimator with the best hyperparameter
settings and recording a median value across the different cross-validation runs. The best
parameter settings for each estimator for the dataset can be found in ??. For testing the
statistical significance between the results of various estimators the Welch’s statistical
test [Wel47] has been used. The threshold value used for the tests is p=0.01. The best
results and the results that are not statistically significant from the best method are
marked by bold.

B.1 Detailed Results For The Algorithm Performance
Prediction Problem
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B. Regression And Classification Results

Solver Prepro
cessing

Method CC RMSE log MAE log MedAElog MAPE MedAPE

SACP O LR 96.31 0.651 0.396 0.276 0.376 0.188
Lasso 97.27 0.548 0.402 0.316 0.305 0.212
Ridge 97.54 0.522 0.371 0.275 0.286 0.187
ENet 97.33 0.54 0.392 0.3 0.297 0.2
KNN 87.07 1.13 0.905 0.756 0.82 0.484
SVR 38.06 1.691 1.44 1.402 1.382 0.771
RF 92.99 0.865 0.678 0.559 0.555 0.374
GBRF 98.03 0.469 0.349 0.272 0.257 0.187
MLP 45.21 1.504 1.271 1.195 1.184 0.696

SACP S LR 96.11 0.667 0.434 0.310 0.52 0.208
Lasso 97.76 0.497 0.358 0.277 0.27 0.18
Ridge 97.71 0.503 0.36 0.281 0.274 0.186
Enet 97.77 0.496 0.354 0.275 0.269 0.184
KNN 93.74 0.836 0.67 0.589 0.491 0.369
SVR 98.4 0.422 0.3 0.227 0.228 0.152
RF 93 0.864 0.678 0.558 0.555 0.375
GBRF 98 0.473 0.352 0.271 0.259 0.188
MLP 96.56 0.439 0.33 0.253 0.245 0.178

GRASP O LR 97.11 0.58 0.422 0.325 0.326 0.218
Lasso 97.15 0.57 0.424 0.337 0.326 0.223
Ridge 97.27 0.562 0.411 0.311 0.317 0.205
ENet 97.2 0.567 0.417 0.325 0.322 0.212
KNN 86 1.194 0.932 0.787 0.922 0.495
SVR 36.68 1.73 1.455 1.410 1.288 0.813
RF 92.26 0.923 0.719 0.615 0.610 0.397
GBRF 97.1 0.578 0.428 0.338 0.33 0.23
MLP 51.02 1.475 1.234 1.119 1.133 0.714

GRASP S LR 66.34 5.636 0.675 0.323 0.328 0.213
Lasso 97.58 0.526 0.381 0.28 0.294 0.193
Ridge 97.58 0.541 0.393 0.294 0.304 0.2
ENet 97.58 0.526 0.381 0.281 0.294 0.192
KNN 93.5 0.915 0.741 0.656 0.511 0.399
SVR 97.9 0.493 0.34 0.244 0.271 0.171
RF 92.25 0.923 0.718 0.614 0.61 0.397
GBRF 97.15 0.572 0.424 0.336 0.327 0.22
MLP 94.88 0.544 0.401 0.309 0.305 0.218

Table B.1: Quantitative comparison of the regression models with the optimal parameters
for the original and the standardized versions of the ITC2007_time training dataset
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B.1. Detailed Results For The Algorithm Performance Prediction Problem

Solver Prepro
cessing

Method CC RMSE log MAE log MedAElog MAPE MedAPE

SACP O LR 96.91 0.594 0.387 0.275 0.316 0.189
Lasso 97.28 0.549 0.404 0.309 0.307 0.208
Ridge 97.61 0.518 0.369 0.276 0.283 0.183
ENet 97.37 0.542 0.392 0.3 0.297 0.199
KNN 87.16 1.131 0.906 0.767 0.823 0.476
SVR 38.1 1,7 1,44 1,39 1.29 0.763
RF 93,41 0.844 0.659 0.548 0.54 0.364
GBRF 98 0.474 0.353 0.275 0.26 0.189
MLP 48.18 1.48 1.251 1.164 1.168 0.69

SACP S LR 96.85 0.601 0.393 0.28 0.322 0.191
Lasso 97.81 0.494 0.355 0.309 0.269 0.182
Ridge 97.76 0.5 0.358 0.271 0.272 0.184
ENet 97.82 0.493 0.351 0.27 0.266 0.179
KNN 93.76 0.839 0.672 0.576 0.49 0.374
SVR 98.35 0.43 0.304 0.226 0.23 0.156
RF 93,4 0,845 0.659 0.546 0.54 0.363
GBRF 98.99 0.476 0.352 0.272 0.26 0.188
MLP 96.59 0.438 0.319 0.24 0.237 0.161

GRASP O LR 95.98 0.702 0.415 0.303 0.320 0.2
Lasso 97.43 0.544 0.41 0.317 0.306 0.213
Ridge 97.38 0.55 0.413 0.321 0.31 0.22
ENet 97.46 0.541 0.406 0.313 0.303 0.216
KNN 87.26 1.148 0.912 0.76 0.838 0.5
SVR 38.38 1,731 1.474 1.448 1.317 0.778
RF 93.24 0.87 0.683 0.57 0.559 0.375
GBRF 97.86 0.499 0.372 0.289 0.276 0.197
MLP 52.16 1.472 1.235 1.161 1.171 0.68

GRASP S LR 94.92 0.806 0.443 0.327 0.352 0.218
Lasso 97.77 0.508 0.376 0.283 0.28 0.197
Ridge 97.72 0.513 0.378 0.293 0.283 0.195
ENet 97.78 0.507 0.371 0.279 0.278 0.385
KNN 93.8 0.863 0.699 0.603 0.499 0.385
SVR 98.29 0.445 0.322 0.243 0.242 0.163
RF 93.26 0.87 0.683 0.57 0.558 0.374
GBRF 97.87 0.497 0.372 0.285 0.275 0.196
MLP 96.31 0.465 0.342 0.26 0.252 0.176

SA O LR 92.19 0.954 0.669 0.47 0.604 0.311
Lasso 92.93 0.894 0.663 0.485 0.552 0.314
Ridge 92.85 0.9 0.667 0.497 0.558 0.319
ENet 92.82 0.902 0.668 0.5 0.561 0.315
KNN 83.84 1.281 1.019 0.851 1.01 0.526
SVR 38.33 1.75 1.49 1.456 1.403 0.769
RF 90.73 1.021 0.782 0.621 0.679 0.408
GBRF 95.12 0.75 0.525 0.363 0.414 0.248
MLP 44.99 1.555 1.298 1.189 1.279 0.7

SA S LR 91.99 0.968 0.68 0.486 0.613 0.314
Lasso 93.01 0.887 0.634 0.451 0.543 0.295
Ridge 93.11 0.884 0.633 0.465 0.544 0.294
ENet 93.11 0.884 0.627 0.456 0.542 0.295
KNN 90.58 1.041 0.804 0.65 0.616 0.411
SVR 95.5 0.722 0.474 0.288 0.386 0.193
RF 90.72 1.022 0.782 0.615 0.68 0.406
GBRF 95.08 0.753 0.527 0.364 0.416 0.246
MLP 89.58 0.782 0.54 0.38 0.456 0.26

Table B.2: Quantitative comparison of the regression models with the optimal parameters
for the original and the standardized versions of the SA_time training dataset

95



B. Regression And Classification Results

Solver Prepro
cessing

Method CC RMSE log MAE log MedAElog MAPE MedAPE

SACP F ENet 97.71 0.503 0.36 0.273 0.269 0.183
(Orig) SVR 98.57 0.4 0.283 0.195 0.206 0.136

GBR 98.15 0.457 0.335 0.254 0.246 0.174
MLP 97.51 0.373 0.259 0.186 0.186 0.128

F + RFE ENet 95.38 0.505 0.361 0.27 0.27 0.27
SVR 95.53 0.498 0.362 0.273 0.269 0.273
GBR 96.48 0.446 0.329 0.251 0.241 0.251
MLP 97.42 0.381 0.268 0.187 0.128 0.191

BDS ENet 88.39 0.786 0.616 0.513 0.499 0.513
SVR 89.38 0.755 0.579 0.458 0.486 0.458
GBR 88.49 0.783 0.606 0.498 0.497 0.498
MLP 73.8 1.292 1.0 0.812 0.507 0.936

SACP F+RFE ENet 96.59 0.435 0.32 0.25 0.229 0.25
(Ext) SVR 97.78 0.353 0.241 0.166 0.168 0.166

GBR 97.22 0.394 0.284 0.211 0.201 0.211
MLP 97.01 0.41 0.292 0.206 0.145 0.209

F+RFE 2 ENet 95.4 0.504 0.387 0.315 0.279 0.315
SVR 97.47 0.377 0.246 0.16 0.168 0.16
GBR 97.09 0.404 0.285 0.207 0.201 0.207
MLP 96.45 0.449 0.289 0.175 0.121 0.215

F+BDS ENet 93.39 0.601 0.463 0.374 0.353 0.374
SVR 96.15 0.463 0.324 0.221 0.231 0.221
GBR 94.86 0.532 0.395 0.301 0.289 0.301
MLP 93.33 0.617 0.411 0.264 0.18 0.29

GRASP F ENet 97.68 0.516 0.376 0.294 0.29 0.2
(Orig) SVR 98.16 0.461 0.324 0.238 0.243 0.164

GBR 97.45 0.543 0.399 0.3 0.303 0.206
MLP 96.04 0.48 0.342 0.23 0.252 0.165

F+RFE ENet 95.35 0.516 0.376 0.294 0.289 0.294
SVR 95.52 0.507 0.36 0.254 0.266 0.254
GBR 94.54 0.559 0.414 0.321 0.314 0.321
MLP 95.8 0.495 0.353 0.256 0.177 0.259

BDS ENet 88.26 0.805 0.625 0.512 0.519 0.512
SVR 88.9 0.785 0.593 0.465 0.522 0.465
GBR 87.54 0.828 0.635 0.522 0.544 0.522
MLP 74.57 1.281 0.958 0.746 0.48 0.903

GRASP F+RFE ENet 96.25 0.465 0.337 0.258 0.245 0.258
(Ext) SVR 97.17 0.405 0.272 0.199 0.192 0.199

GBR 96.42 0.456 0.33 0.246 0.238 0.246
MLP 96.6 0.446 0.301 0.208 0.145 0.217

F+RFE2 ENet 95.1 0.53 0.401 0.323 0.294 0.323
SVR 97.29 0.396 0.271 0.174 0.187 0.174
GBR 96.32 0.461 0.33 0.236 0.238 0.236
MLP 96.13 0.48 0.322 0.215 0.149 0.232

F+BDS ENet 93.43 0.61 0.469 0.381 0.362 0.381
SVR 94.62 0.555 0.411 0.307 0.316 0.307
GBR 94.58 0.556 0.417 0.327 0.311 0.327
MLP 93.52 0.625 0.432 0.294 0.403 0.335

Table B.3: Quantitative comparison of the regression models with the optimal parameters
on the reduced versions of the standardized and the extended ITC2007_time train
dataset
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B.1. Detailed Results For The Algorithm Performance Prediction Problem

Solver Prepro
cessing

Method CC RMSE log MAE log MedAElog MAPE MedAPE

SACP F ENet 97.69 0.507 0.371 0.283 0.278 0.188
(Orig) SVR 98.61 0.395 0.281 0.207 0.205 0.143

GBR 97.99 0.477 0.352 0.266 0.259 0.183
MLP 97.51 0.377 0.259 0.16 0.186 0.111

F+RFE ENet 95.3 0.512 0.376 0.288 0.282 0.288
SVR 80.23 1.091 0.847 0.652 0.714 0.652
GBRF 96.33 0.455 0.336 0.26 0.246 0.26
MLP 97.64 0.366 0.261 0.189 0.128 0.186

BDS ENet 88.34 0.791 0.62 0.506 0.509 0.506
SVR 88.98 0.771 0.593 0.473 0.498 0.473
GBR 87.98 0.802 0.62 0.52 0.512 0.52
MLP 73.81 1.275 0.97 0.747 0.48 0.915

SACP F+RFE ENet 96.28 0.456 0.342 0.272 0.245 0.272
(Ext) SVR 97.92 0.343 0.226 0.148 0.156 0.148

GBR 96.78 0.426 0.302 0.221 0.217 0.221
MLP 97.09 0.408 0.264 0.167 0.118 0.192

F+RFE2 ENet 96.28 0.456 0.342 0.272 0.245 0.272
SVR 97.92 0.343 0.226 0.148 0.156 0.148
GBR 97.41 0.383 0.269 0.192 0.189 0.192
MLP 96.74 0.434 0.282 0.173 0.118 0.205

F+BDS ENet 94.99 0.528 0.406 0.327 0.307 0.327
SVR 97.46 0.379 0.263 0.178 0.187 0.178
GBR 95.65 0.493 0.356 0.261 0.258 0.261
MLP 94.48 0.564 0.36 0.234 0.161 0.275

GRASP F ENet 97.77 0.507 0.373 0.285 0.278 0.189
(Orig) SVR 98.52 0.411 0.292 0.215 0.212 0.148

GBR 97.82 0.505 0.378 0.29 0.277 0.2
MLP 97.06 0.415 0.293 0.21 0.208 0.146

F+RFE ENet 95.38 0.517 0.382 0.286 0.283 0.286
SVR 96.4 0.458 0.337 0.259 0.24 0.259
GBR 96.01 0.485 0.358 0.269 0.261 0.269
MLP 97.03 0.417 0.298 0.211 0.145 0.215

BDS ENet 88.47 0.802 0.629 0.507 0.506 0.507
SVR 89.26 0.776 0.605 0.499 0.485 0.499
GBR 88.03 0.816 0.631 0.513 0.52 0.513
MLP 74.46 1.3 1.009 0.8 0.515 0.976

GRASP F+RFE ENet 96.18 0.471 0.353 0.274 0.254 0.274
(Ext) SVR 96 0.502 0.392 0.332 0.271 0.332

GBR 96.77 0.436 0.312 0.229 0.221 0.229
MLP 97.3 0.4 0.269 0.185 0.127 0.191

F+RFE2 ENet 95.38 0.517 0.395 0.32 0.287 0.32
SVR 97.64 0.371 0.244 0.16 0.17 0.16
GBR 96.87 0.428 0.306 0.224 0.217 0.224
MLP 95.92 0.497 0.325 0.202 0.142 0.246

F+BDS ENet 93.02 0.631 0.483 0.394 0.371 0.394
SVR 94.83 0.546 0.402 0.291 0.297 0.291
GBR 93.77 0.598 0.444 0.348 0.333 0.348
MLP 90.64 0.753 0.538 0.391 0.267 0.415

SA F ENet 93.84 0.836 0.602 0.431 0.494 0.286
(Orig) SVR 93.98 0.83 0.475 0.489 0.317 0.136

GBR 95.59 0.716 0.497 0.342 0.385 0.234
MLP 90.51 0.753 0.486 0.303 0.389 0.206

F+RFE ENet 87.68 0.836 0.602 0.431 0.494 0.431
SVR 70.22 1.313 1.058 0.896 0.93 0.896
GBR 91.28 0.713 0.498 0.35 0.383 0.35
MLP 90.38 0.764 0.492 0.298 0.205 0.411

BDS ENet 72.12 1.205 0.913 0.714 0.765 0.714
SVR 76.25 1.129 0.834 0.632 0.705 0.632
GBR 76.23 1.131 0.858 0.662 0.753 0.662
MLP 54.6 1.838 1.348 1.027 0.625 2.659

SA F+RFE ENet 87.7 0.84 0.598 0.435 0.468 0.435
SVR 94.17 0.588 0.346 0.177 0.242 0.177
GBR 92.88 0.645 0.422 0.269 0.32 0.269
MLP 88.32 0.852 0.493 0.258 0.176 0.394

F+RFE2 ENet 86.42 0.881 0.636 0.486 0.513 0.486
SVR 93.75 0.609 0.355 0.186 0.254 0.186
GBR 93.15 0.633 0.402 0.232 0.299 0.232
MLP 88.31 0.861 0.497 0.232 0.163 0.489

F+BDS ENet 86.11 0.884 0.655 0.477 0.537 0.477
SVR 90.14 0.755 0.517 0.347 0.393 0.347
GBR 89.49 0.776 0.55 0.389 0.432 0.389
MLP 81.22 1.103 0.708 0.431 0.293 0.657

Table B.4: Quantitative comparison of the regression models with the optimal parameters
based on the reduced versions of the standardized and the extended SA_time training
dataset
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B. Regression And Classification Results

Solver Prepro
cessing

Method CC RMSE log MAE log MedAElog MAPE MedAPE

SACP_ITC Orig SVR 95.96 0.45 0.33 0.25 0.26 0.17
GBR 94.41 0.53 0.41 0.32 0.31 0.23

RFE SVR 81.09 0.98 0.78 0.68 0.68 0.45
GBR 84.29 0.86 0.69 0.58 0.61 0.4

BFS SVR 87.03 0.8 0.62 0.52 0.54 0.33
GBR 86.38 0.81 0.64 0.53 0.56 0.35

SACP_ITC F+RFE SVR 48.95 1.43 1.19 1.09 1.24 0.67
(Ext) GBR 46.38 1.46 1.21 1.07 1.28 0.67

F+BFS SVR 95.34 0.49 0.34 0.24 0.27 0.17
GBR 93.93 0.56 0.42 0.33 0.32 0.22

GRASP_ITC Orig SVR 95.78 0.45 0.33 0.26 0.26 0.17
GBR 93.33 0.56 0.43 0.34 0.33 0.24

RFE SVR 87.93 0.75 0.6 0.51 0.49 0.34
GBR 85.68 0.81 0.64 0.55 0.54 0.36

BFS SVR 88.74 0.73 0.57 0.45 0.49 0.31
GBR 86.69 0.79 0.63 0.52 0.52 0.35

GRASP_ITC F+RFE SVR 80.64 0.93 0.71 0.55 0.62 0.39
(Ext) GBR 79.13 0.96 0.74 0.57 0.65 0.39

F+BFS SVR 93.65 0.56 0.43 0.34 0.33 0.24
GBR 93.2 0.57 0.44 0.35 0.33 0.26

SACP_SA Orig SVR 96 0.45 0.33 0.26 0.26 0.17
GBR 93.77 0.56 0.41 0.31 0.31 0.22

RFE SVR 78.62 1.01 0.8 0.65 0.72 0.43
GBR 81.49 0.93 0.73 0.61 0.65 0.42

BFS SVR 86.2 0.82 0.63 0.51 0.57 0.33
GBR 85.52 0.84 0.64 0.55 0.58 0.35

SACP_SA F+RFE SVR 82.31 0.91 0.7 0.6 0.65 0.41
(Ext) GBR 84.31 0.86 0.68 0.6 0.56 0.38

F+BFS SVR 96.89 0.4 0.28 0.21 0.2 0.14
GBR 93.81 0.55 0.4 0.3 0.31 0.21

GRASP_SA Orig SVR 96.28 0.44 0.33 0.25 0.24 0.16
GBR 93.49 0.59 0.44 0.32 0.33 0.21

RFE SVR 82.66 0.94 0.75 0.64 0.65 0.42
GBR 85.41 0.85 0.7 0.64 0.56 0.41

BFS SVR 87.5 0.8 0.62 0.49 0.51 0.33
GBR 86.55 0.83 0.65 0.53 0.55 0.37

GRASP_SA F+RFE SVR 79.89 0.9 0.78 0.68 0.61 0.43
(Ext) GBR 78.06 1.03 0.83 0.69 0.68 0.44

F+BFS SVR 93.6 0.58 0.43 0.33 0.32 0.23
GBR 91.67 0.66 0.5 0.4 0.38 0.27

SA_SA Orig SVR 89.65 0.73 0.48 0.32 0.38 0.2
GBR 88.86 0.74 0.51 0.35 0.39 0.23

RFE SVR 73.19 1.14 0.86 0.66 0.73 0.43
GBR 72.62 1.14 0.86 0.7 0.72 0.46

BFS SVR 73.49 1.11 0.82 0.61 0.65 0.39
GBR 73.72 1.1 0.86 0.67 0.73 0.44

SA_SA F+RFE SVR 33.29 1.57 1.31 1.21 1.29 0.71
(Ext) GBR 25.49 1.67 1.37 1.22 1.51 0.72

F+BFS SVR 87.89 0.78 0.53 0.35 0.4 0.23
GBR 87.88 0.8 0.55 0.38 0.45 0.25

Table B.5: Quantitative comparison of the regression models with the optimal parameters
based on the test dataset
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B.1. Detailed Results For The Algorithm Performance Prediction Problem

Figure B.1: Quantitative comparison of different regression models with optimal pa-
rameters on the reduced standardized versions of ITC2007time dataset for the SACP
solver
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B. Regression And Classification Results

Figure B.2: Quantitative comparison of different regression models with optimal pa-
rameters on the reduced standardized versions of ITC2007time dataset for the GRASP
solver
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B.1. Detailed Results For The Algorithm Performance Prediction Problem

Figure B.3: Quantitative comparison of different regression models with optimal parame-
ters on the reduced standardized versions of SA time dataset for the SACP solver
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B. Regression And Classification Results

Figure B.4: Quantitative comparison of different regression models with optimal pa-
rameters on the reduced standardized versions of ITC2007time dataset for the GRASP
solver
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B.1. Detailed Results For The Algorithm Performance Prediction Problem

Figure B.5: Quantitative comparison of different regression models with optimal parame-
ters on the reduced standardized versions of SA time dataset for the SA solver

103



B. Regression And Classification Results

B.2 Detailed Results for the Algorithm Selection
Problem

Prepro
cessing

Method Accuracy Log loss Precision (macro) Precision (micro) Recall (macro) Recall (micro) F1 (macro) F1 (micro)

O Naive Bayes 49.44 12.48 49.19 49.44 54.16 49.44 49.44 43.83
KNN 67.18 0.87 44.44 67.18 38.44 67.18 67.18 35.93
SVC 63.94 0.85 21.31 63.94 33.33 63.94 63.94 26
RF 64.51 0.82 55.24 64.51 61.39 64.51 64.51 54.43
GBC 73.24 0.65 56.46 73.24 50.2 73.24 73.24 51.09
MLP 65.92 0.77 41.32 65.92 36.99 65.92 65.92 33.76

S Naïve Bayes 49.44 12.48 49.19 49.44 54.16 49.44 49.44 43.83
KNN 64.93 0.76 39.05 64.93 35.41 64.93 64.93 30.9
SVC 71.97 0.65 58.25 71.97 58.39 71.97 71.97 58.28
RF 66.76 0.81 57.58 66.76 63.64 66.76 66.76 57.04
GBC 75.23 0.64 63.58 74.23 51.28 74.23 74.23 52.85
MLP 63.94 0.85 21.31 63.94 33.33 63.94 63.94 26

D Naïve Bayes 55.07 11.54 53.56 55.07 56.76 55.07 55.07 45.88
KNN 68.87 0.7 61.64 68.87 46.2 68.87 68.87 46
SVC 68.59 0.62 58.67 68.59 65.24 68.59 68.59 59.84
RF 65.49 0.8 56.43 65.49 64.2 65.49 65.49 56.37
GBC 75.94 0.61 62.24 73.94 56.26 73.94 73.94 58.31
MLP 73.66 0.63 62.26 73.66 55.3 73.66 73.66 56.73

S+RFE SVC 28.87 0.86 33.18 28.87 33.3 28.87 28.87 26.34
RF 67.46 0.71 45.42 67.46 38.19 67.46 67.46 35.3
GBC 73.52 0.66 70.72 73.52 52.06 73.52 73.52 54.15
MLP 67.46 0.74 43.84 67.46 41.31 67.46 67.46 40.38

S+BFS SVC 34.51 0.86 33.28 34.51 33.4 34.51 34.51 29.48
RF 70.85 0.68 45.82 70.85 43.66 70.85 70.85 42.65
GBC 71.83 0.64 62.46 71.83 49.83 71.83 71.83 51.55
MLP 73.24 0.64 63.51 73.24 50.51 73.24 73.24 51.14

Ext+S+RFE SVC 63.94 0.85 21.31 63.94 33.33 63.94 63.94 26
RF 72.39 0.65 45.97 72.39 46.32 72.39 72.39 45.27
GBC 76.34 0.6 66.05 76.34 54.99 76.34 76.34 56.69
MLP 70.7 0.74 58.22 70.7 51.59 70.7 70.7 53.52

Ext+S+BFS SVC 63.94 0.85 21.31 63.94 33.33 63.94 63.94 26
RF 71.55 0.67 46.02 71.55 44.81 71.55 71.55 43.87
GBC 76.48 0.6 65.41 76.48 54.69 76.48 76.48 56.22
MLP 69.44 0.76 43.45 69.44 44.29 69.44 69.44 43.14

D+RFE SVC 67.89 0.61 58.83 67.89 66.82 67.89 67.89 59.27
RF 68.03 0.69 40.31 68.03 41.41 68.03 68.03 39.79
GBC 73.38 0.6 62.13 73.38 58.82 73.38 73.38 60.19
MLP 71.27 1.16 58.18 71.27 54.39 71.27 71.27 55.78

D+BFS SVC 70.85 0.6 61.93 70.85 71.06 70.85 70.85 63.44
RF 67.04 0.69 39.15 67.04 40.31 67.04 67.04 38.54
GBC 73.52 0.6 61.55 73.52 57.47 73.52 73.52 59.06
MLP 73.24 0.61 60.11 73.24 53.54 73.24 73.24 55.05

Ext+D+RFE SVC 71.97 0.61 60.47 71.97 65.5 71.97 71.97 61.91
RF 71.27 0.66 44.03 71.27 46.81 71.27 71.27 45.22
GBC 75.63 0.61 66.84 75.63 60.21 75.63 75.63 62.43
MLP 72.25 0.63 60.93 72.25 55.64 72.25 72.25 57.53

Ext+D+BFS SVC 80.56 0.5 74.07 80.56 65.64 80.56 80.56 68.74
RF 74.79 0.62 49.7 74.79 47.96 74.79 74.79 47.37
GBC 80.14 0.52 71.83 80.14 66.28 80.14 80.14 68.54
MLP 80.14 0.53 72.42 80.14 68.19 80.14 80.14 69.98

Table B.6: Quantitative comparison of the classification algorithms on the training
SA_3_class dataset

104



B.2. Detailed Results for the Algorithm Selection Problem

Prepro
cessing

Method Accuracy ROC AUC Precision Recall Specificity NPV F1 score

O Naive Bayes 66.93 0.6139 50.58 44.67 78.1 73.78 47.45
KNN 69.58 0.5661 67.11 17.53 95.69 69.81 27.79
SVC 36.62 0.4985 33.33 89.69 10 65.91 48.6
RF 76.35 0.7385 64.12 66.32 81.38 82.81 65.2
GBC 76.81 0.6949 73.8 47.42 91.55 77.63 57.74
MLP 71.41 0.6056 67.5 27.84 93.28 72.04 39.42

S Naive Bayes 66.93 0.6139 50.58 44.67 78.1 73.78 47.45
KNN 72.22 0.6313 65.41 35.74 90.52 73.74 46.22
SVC 66.59 0.50 0 0 100 66.59 0
RF 74.74 0.7401 60.23 71.82 76.21 84.35 65.52
GBC 77.15 0.7103 71.5 52.58 89.48 79 60.59
MLP 78.76 0.7472 70.54 62.54 86.9 82.22 66.3

D Naive Bayes 68.77 0.5566 62.67 16.15 95.17 69.35 25.68
KNN 76.46 0.70 70.67 50.52 89.48 78.28 58.92
SVC 78.38 0.7737 63.2 77.32 77.41 87.18 69.55
RF 73.36 0.7409 57.66 76.29 71.9 85.8 65.68
GBC 80.19 0.7309 71.49 57.73 88.45 80.66 63.88
MLP 80.53 0.7369 71.67 59.11 88.28 81.14 64.78

S+RFE SVC 76.58 0.76 62.68 73.88 77.93 85.61 67.82
RF 74.86 0.66 74 38.14 93.28 75.03 50.34
GBC 77.15 0.72 70.35 54.64 88.45 79.53 61.51
MLP 77.73 0.72 71.75 54.98 89.14 79.78 62.26

S+BFS SVC 37.08 0.51 34 93.81 8.62 73.53 49.91
RF 75.89 0.75 61.81 72.85 77.41 85.04 66.88
GBC 77.5 0.72 70.93 55.33 88.62 79.81 62.16
MLP 76 0.69 69.9 49.48 89.31 77.89 57.95

Ext+S+RFE SVC 75.66 0.73 63.21 64.95 81.03 82.17 64.07
RF 72.33 0.69 58.22 60.82 78.1 79.89 59.5

GBC 77.38 0.71 71.56 53.61 89.31 79.33 61.3
MLP 75.43 0.69 68.97 48.11 89.14 77.4 56.68

Ext+S+BFS SVC 80.14 0.74 78.37 56.01 92.24 80.69 65.33
RF 79.45 0.78 67.83 73.2 82.59 86 70.41
GBC 82.66 0.78 80.43 63.57 92.24 83.46 71.02
MLP 79.45 0.75 73.53 60.14 89.14 81.67 66.16

D+RFE SVC 76.46 0.77 61.81 77.32 76.03 86.98 68.7
RF 72.68 0.73 56.88 75.26 71.38 85.19 64.79
GBC 78.3 0.73 71.98 57.39 88.79 80.59 63.86
MLP 78.53 0.74 71.49 59.45 88.1 81.24 64.92

D+BFS SVC 79.68 0.75 74.36 59.79 89.66 81.63 66.29
RF 66.7 0.8 100 0.34 100 66.67 0.68
GBC 77.5 0.72 70.21 56.7 87.93 80.19 62.74
MLP 69.8 0.57 65.91 19.93 94.83 70.24 30.61

Ext+D+RFE SVC 81.06 0.8 69.69 76.63 83.28 87.66 73
RF 76.92 0.76 63.55 72.51 79.14 85.16 67.74
GBC 80.71 0.77 74.31 64.6 88.79 83.33 69.12
MLP 80.02 0.76 72.08 65.64 87.24 83.5 68.71

Ext+D+BFS SVC 84.27 0.83 75.67 78.01 87.41 88.79 76.82
RF 79.68 0.79 67.59 75.26 81.9 86.84 71.22
GBC 84.16 0.81 78.44 72.51 90 86.71 75.36
MLP 83.58 0.8 80.33 67.35 91.72 84.85 73.27

Table B.7: Quantitative comparison of different classification algorithms on the training
SA_2_class dataset
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B. Regression And Classification Results

Prepro
cessing

Method Accuracy ROC AUC Precision Recall Specificity NPV F1 score

O Naive Bayes 73.31 0.7974 96.44 67.45 92.04 46.95 79.38
KNN 78.65 0.7214 87.02 84.58 59.7 54.79 85.78
SVC 76.16 0.50 76.16 100 0 86.46
RF 78.88 0.8289 96.22 75.23 90.55 53.37 84.44
GBC 84.27 0.7518 87.78 90.65 59.7 66.67 89.2
MLP 80.66 0.6971 84.96 90.65 48.76 62.03 87.72

S Naive Bayes 73.43 0.7914 95.63 68.22 90.05 47.01 79.64
KNN 82.44 0.7087 85.29 92.99 48.76 68.53 88.97
SVC 84.46 0.8177 92.23 86.92 76.62 64.71 89.49
RF 78.65 0.8308 96.57 74.61 91.54 53.03 84.18
GBC 84.93 0.7866 89.68 90.65 66.67 69.07 90.16
MLP 86.17 0.783 89.35 91.43 65.17 70.43 90.38

D Naive Bayes 77.7 0.7852 92.51 76.95 80.1 52.1 84.01
KNN 80.78 0.7047 85.4 90.19 50.75 61.82 87.73
SVC 75.8 0.8069 95.82 71.34 90.05 49.59 81.79
RF 78.05 0.8286 96.73 73.68 92.04 52.26 83.64
GBC 84.46 0.7767 89.13 90.65 64.68 68.42 89.88
MLP 84.58 0.7894 90 89.72 68.16 67.49 89.86

S+RFE SVC 83.87 0.85 95.83 82.4 88.56 61.17 88.61
RF 84.46 0.78 89.25 90.5 65.17 68.23 89.87
GBC 85.77 0.81 90.78 90.5 70.65 69.95 90.64
MLP 86.6 0.82 91.65 90.65 73.63 71.15 91.15

S+BFS SVC 80.43 0.84 95.95 77.57 89.55 55.56 85.79
RF 82.68 0.75 88.04 89.41 61.19 64.4 88.72
GBC 82.44 0.75 88 89.1 61.19 63.73 88.54
MLP 82.68 0.76 88.27 89.1 62.19 64.1 88.68

Ext+S+RFE SVC 76.51 0.82 96.84 71.5 92.54 50.41 82.26
RF 82.33 0.74 87.41 89.72 58.71 64.13 88.55
GBC 82.33 0.75 87.98 88.94 61.19 63.4 88.46
MLP 79.72 0.69 84.68 89.56 48.26 59.15 87.06

Ext+S+BFS SVC 81.61 0.86 97.65 77.73 94.03 56.93 86.56
RF 84.58 0.78 89.26 90.65 65.17 68.59 89.95
GBC 85.29 0.79 89.85 90.97 67.16 69.95 90.4
MLP 84.58 0.78 89.63 90.19 66.67 68.02 89.91

D+RFE SVC 83.99 0.76 88.24 91.12 61.19 68.33 89.66
RF 80.55 0.85 97.61 76.32 94.03 55.43 85.66
GBC 85.41 0.79 89.98 90.97 67.66 70.1 90.47
MLP 84.93 0.78 89.55 90.81 66.17 69.27 90.18

D+BFS SVC 80.19 0.84 96.66 76.64 91.54 55.09 85.49
RF 83.51 0.75 87.37 91.59 57.71 68.24 89.43
GBC 84.82 0.8 90.41 89.56 69.65 67.63 89.98
MLP 83.87 0.77 88.57 90.5 62.69 67.38 89.52

Ext+D+RFE SVC 81.14 0.84 96.18 78.35 90.05 56.56 86.35
RF 83.87 0.76 88.1 91.12 60.7 68.16 89.59
GBC 85.41 0.79 90.11 90.81 68.16 69.9 90.46
MLP 86.48 0.81 91.12 91.12 71.64 71.64 91.12

Ext+D+BFS SVC 86 0.82 91.85 89.56 74.63 69.12 90.69
RF 80.31 0.85 97.98 75.7 95.02 55.04 85.41
GBC 86.12 0.81 91.34 90.34 72.64 70.19 90.84
MLP 86 0.82 91.59 89.88 73.63 69.48 90.72

Table B.8: Quantitative comparison of the classification algorithms on the training
ITC_2_class dataset
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B.2. Detailed Results for the Algorithm Selection Problem

Prepro
cessing

Method Accuracy Log loss Precision (macro) Precision (micro) Recall (macro) Recall (micro) F1 (macro) F1 (micro)

S SVC 60.61 0.68 51.23 60.61 59.15 60.61 60.61 53.86
RF 60.61 0.84 51.18 60.61 66.29 60.61 60.61 54.94
GBC 69.7 0.74 67.35 69.7 58.93 69.7 69.7 61.85
MLP 64.65 0.83 21.55 64.65 33.33 64.65 64.65 26.18

S+RFE SVC 28.28 0.85 9.43 28.28 33.33 28.28 28.28 14.7
RF 69.7 0.7 65.4 69.7 55.58 69.7 69.7 52.04
GBC 74.75 0.62 64.83 74.75 63.54 74.75 74.75 62.67
MLP 67.68 0.71 58.96 67.68 42.49 67.68 67.68 42.44

S+BFS SVC 28.28 0.87 9.43 28.28 33.33 28.28 28.28 14.7
RF 64.65 0.77 49.8 64.65 48.07 64.65 64.65 45.97
GBC 67.68 0.74 54.84 67.68 52.98 67.68 67.68 52.4
MLP 73.74 0.62 66.33 73.74 60.34 73.74 73.74 59.69

S+Ext+RFE SVC 64.65 0.72 21.55 64.65 33.33 64.65 64.65 26.18
RF 74.75 0.61 79.44 74.75 54.39 74.75 74.75 59.2
GBC 76.76 0.6 70.3 75.76 66.29 75.76 75.76 62.17
MLP 72.73 0.66 61.8 72.73 65.4 72.73 72.73 60.32

S+Ext+BFS SVC 65.66 0.69 54.12 65.66 62.43 65.66 65.66 55.74
RF 69.7 0.76 58.44 69.7 50.45 69.7 69.7 52.59
GBC 74.75 0.71 65.56 74.75 58.63 74.75 74.75 60.42
MLP 73.74 0.73 69.55 73.74 63.91 73.74 73.74 61.49

D GBC 76.77 0.66 67.76 76.77 63.91 76.77 76.77 63.17
RF 48.48 0.94 44.06 48.48 53.57 48.48 48.48 45.19
GBC 79.8 0.57 72.74 79.8 70.39 79.8 79.8 69.17
MLP 64.65 0.82 52.23 64.65 59.9 64.65 64.65 53.97

D+RFE SVC 57.58 0.75 47.57 57.58 57.59 57.58 57.58 48.62
RF 46.46 0.96 41.95 46.46 51.86 46.46 46.46 42.1
GBC 67.68 0.72 56.48 67.68 57.89 67.68 67.68 56.18
MLP 73.74 0.74 66.12 73.74 61.01 73.74 73.74 61.5

D+BFS SVC 49.49 0.76 44.71 49.49 61.9 49.49 49.49 45.59
RF 48.48 0.98 44.64 48.48 57.81 48.48 48.48 44.42
GBC 71.72 0.68 62.29 71.72 66.22 71.72 71.72 62.61
MLP 63.64 0.79 52.43 63.64 55.13 63.64 63.64 53.15

D+Ext+RFE SVC 61.62 0.71 49.94 61.62 51.19 61.62 61.62 50.49
RF 42.42 0.95 42.68 42.42 46.21 42.42 42.42 41.81
GBC 66.67 0.76 56.78 66.67 53.12 66.67 66.67 54.24
MLP 73.71 0.75 65.03 70.71 59.45 70.71 70.71 59.72

D+Ext+BFS SVC 74.75 0.65 71.11 74.75 65.77 74.75 74.75 64.19
RF 50.51 0.87 42.48 50.51 59.75 50.51 50.51 43.66
GBC 80.79 0.63 73.16 78.79 75.45 78.79 78.79 72.46
MLP 72.73 0.74 68.65 72.73 68.97 72.73 72.73 66.43

Table B.9: Quantitative comparison of the classification algorithms on the test
SA_3_class dataset
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B. Regression And Classification Results

Prepro
cessing

Method Accuracy ROC AUC Precision Recall Specificity NPV F1 score

S SVC 69.57 0.5 0 0 100 69.57 0
RF 53.26 0.52 32.56 50 54.69 71.43 39.44

GBC 61.96 0.59 40 50 67.19 75.44 44.44
MLP 69.57 0.5 0 0 100 69.57 0

S+RFE SVC 71.57 0.55 100 9.38 100 70.71 17.14
RF 67.39 0.49 25 3.57 95.31 69.32 6.25
GBC 43.14 0.51 31.94 71.88 30 70 44.23
MLP 71.57 0.55 100 9.38 100 70.71 17.14

S+BFS SVC 30.43 0.5 30.43 100 0 46.67
RF 52.94 0.51 32.61 46.88 55.71 69.64 38.46
GBC 66.67 0.57 45.45 31.25 82.86 72.5 37.04
MLP 71.57 0.55 100 9.38 100 70.71 17.14

Ext+S+RFE SVC 67.39 0.52 40 14.29 90.62 70.73 21.05
RF 60.87 0.6 40 57.14 62.5 76.92 47.06
GBC 71.74 0.6 57.14 28.57 90.62 74.36 38.1
MLP 67.65 0.52 42.86 9.38 94.29 69.47 15.38

Ext+S+BFS SVC 71.57 0.55 100 9.38 100 70.71 17.14
RF 31.37 0.49 31 96.88 1.43 50 46.97

GBC 77.17 0.65 81.82 32.14 96.88 76.54 46.15
MLP 71.57 0.55 100 9.38 100 70.71 17.14

D SVC 66.3 0.52 36.36 14.29 89.06 70.37 20.51
RF 52.17 0.53 32.61 53.57 51.56 71.74 40.54

GBC 78.43 0.65 81.25 40.62 95.71 77.91 54.17
MLP 45.65 0.52 31.67 67.86 35.94 71.88 43.18

D+RFE SVC 39.13 0.5 30.56 78.57 21.88 70 44
RF 40.22 0.45 27.12 57.14 32.81 63.64 36.78

GBC 60.87 0.55 36.67 39.29 70.31 72.58 37.93
MLP 69.57 0.53 50 10.71 95.31 70.93 17.65

D+BFS SVC 45.65 0.45 26.09 42.86 46.88 65.22 32.43
RF 69.57 0.5 0 0 100 69.57 0
GBC 47.06 0.51 32.26 62.5 40 70 42.55
MLP 69.57 0.5 0 0 100 69.57 0

Ext+D+RFE SVC 73.53 0.6 72.73 25 95.71 73.63 37.21
RF 73.91 0.62 64.29 32.14 92.19 75.64 42.86
GBC 76.47 0.62 100 25 100 74.47 40
MLP 77.66 0.69 80 90.91 46.43 68.42 85.11

Ext+D+BFS SVC 79.45 0.81 64.53 84.32 77.03 90.84 73.11
RF 76.79 0.78 61.56 79.79 75.3 88.26 69.5

GBC 81.41 0.77 76.03 64.11 89.98 83.49 69.57
MLP 79.45 0.74 74.01 58.54 89.81 81.38 65.37

Table B.10: Quantitative comparison of the classification algorithms on the test
SA_2_class dataset
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B.2. Detailed Results for the Algorithm Selection Problem

Prepro
cessing

Method Accuracy ROC AUC Precision Recall Specificity NPV F1 score

S SVC 77.66 0.83 97.87 69.7 96.43 57.45 81.42
RF 74.47 0.78 92 69.7 85.71 54.55 79.31
GBC 77.66 0.74 84.62 83.33 64.29 62.07 83.97
MLP 77.66 0.68 79.22 92.42 42.86 70.59 85.31

S+RFE SVC 58.51 0.61 80 54.55 67.86 38.78 64.86
RF 79.79 0.75 85.07 86.36 64.29 66.67 85.71
GBC 81.91 0.75 83.56 92.42 57.14 76.19 87.77
MLP 81.91 0.76 84.51 90.91 60.71 73.91 87.59

S+BFS SVC 76.6 0.8 94 71.21 89.29 56.82 81.03
RF 71.28 0.67 80.95 77.27 57.14 51.61 79.07
GBC 81.91 0.78 86.57 87.88 67.86 70.37 87.22
MLP 79.79 0.69 79.75 95.45 42.86 80 86.9

Ext+S+RFE SVC 74.47 0.8 95.65 66.67 92.86 54.17 78.57
RF 73.4 0.66 78.87 84.85 46.43 56.52 81.75
GBC 74.47 0.68 80.88 83.33 53.57 57.69 82.09
MLP 75.53 0.64 77.22 92.42 35.71 66.67 84.14

Ext+S+BFS SVC 81.91 0.85 96.23 77.27 92.86 63.41 85.71
RF 77.66 0.73 83.58 84.85 60.71 62.96 84.21
GBC 78.72 0.74 83.82 86.36 60.71 65.38 85.07
MLP 78.72 0.71 81.94 89.39 53.57 68.18 85.51

D SVC 75.53 0.67 79.45 87.88 46.43 61.9 83.45
RF 74.47 0.74 86.21 75.76 71.43 55.56 80.65
GBC 75.53 0.65 77.92 90.91 39.29 64.71 83.92
MLP 80.85 0.75 84.29 89.39 60.71 70.83 86.76

D+RFE SVC 79.79 0.76 86.15 84.85 67.86 65.52 85.5
RF 74.47 0.77 90.38 71.21 82.14 54.76 79.66
GBC 80.85 0.75 84.29 89.39 60.71 70.83 86.76
MLP 77.66 0.69 80 90.91 46.43 68.42 85.11

D+BFS SVC 73.4 0.74 87.27 72.73 75 53.85 79.34
RF 71.28 0.63 77.46 83.33 42.86 52.17 80.29
GBC 75.53 0.67 79.45 87.88 46.43 61.9 83.45
MLP 74.47 0.73 85 77.27 67.86 55.88 80.95

Ext+D+RFE SVC 76.6 0.79 92.31 72.73 85.71 57.14 81.36
RF 74.47 0.65 78.38 87.88 42.86 60 82.86
GBC 78.72 0.74 83.82 86.36 60.71 65.38 85.07
MLP 77.66 0.79 90.91 75.76 82.14 58.97 82.64

Ext+D+BFS SVC 75.53 0.61 75.29 96.97 25 77.78 84.77
RF 73.4 0.77 91.84 68.18 85.71 53.33 78.26
GBC 84.04 0.78 85.92 92.42 64.29 78.26 89.05
MLP 76.6 0.65 77.5 93.94 35.71 71.43 84.93

Table B.11: Quantitative comparison of the classification algorithms on the test
ITC_2_class dataset
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APPENDIX C
The Optimal Parameters For
Classification And Regression

Models

This appendix contains the best parameters obtained for each estimator employed for the
Performance Prediction and the Algorithm Selection problems. All parameters have been
found for each solver/dataset separately based on the specified parameter range using
10-fold cross-validation using the training data. As the performance metrics for defining
the best parameters for the estimator, RMSE has been chosen for regression problems,
ROC_AUC for the binary classification problems, and Log_Loss for the multi-class
problems.

For our experiments, we used different built-in functions in Scikit-learn, such as Greed
Search (GS) for SVR/SVC and KNN methods that corresponds to the exhaustive enumer-
ation. In the other case, when GS would be too time-consuming, Randomized Search (RS)
with 90 iterations for RF, GBR/GBS and MLP has been used. For regularization methods
we employed the method-specific techniques represented in Scikit-Learn, namely LARs
for Lasso and Leave-One-Out for Ridge and ENet. All parameters and the parameters
range tested can be found in the following tables. Each table corresponds to one method
tested where regression and classification versions of the methods are considered as two
different techniques.

C.1 The Optimal Parameters For The Regression
Methods
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C. The Optimal Parameters For Classification And Regression Models

Table C.1: The optimal parameters obtained on the training data using 10-fold cross-
validation for Lasso and Ridge regression

Parameter Parameter range

alpha α from 0 to 1

Dataset Optimal parameters

SACP_ITC2007 (O) Lasso α = 0.005
SACP_ITC2007 (O) Ridge α = 0.08
SACP_ITC2007 (S) Lasso α = 0.005
SACP_ITC2007 (S) Ridge α = 16.3

GRASP_ITC2007 (O) Lasso α = 0.005
GRASP_ITC2007 (O) Ridge α = 0.14
GRASP_ITC2007 (S) Lasso α = 0.005
GRASP_ITC2007 (S) Ridge α = 12.38

SACP_SA (O) Lasso α = 0.005
SACP_SA (O) Ridge α = 0.1
SACP_SA (S) Lasso α = 0.005
SACP_SA (S) Ridge α = 16.37

GRASP_SA (O) Lasso α = 0.005
GRASP_SA (O) Ridge α = 0.1
GRASP_SA (S) Lasso α = 0.0066
GRASP_SA (S) Ridge α = 12.38

SA_SA (O) Lasso α = 0.02
SA_SA (O) Ridge α = 616
SA_SA (S) Lasso α = 0.005
SA_SA (S) Ridge α = 28
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Table C.2: The optimal parameters obtained on the training data using 10-fold cross-
validation for Elastic Net regression

Parameter Parameter range

alpha α from 0 to 1
l1_ratio from 0.05 to 0.95 with step 0.05

Dataset Optimal parameters

SACP_ITC2007 (O) α=0.005, l1_ratio=0.05
SACP_ITC2007 (S) α=0.01, l1_ratio=0.2
SACP_ITC2007_F(S) α=0.005, l1_ratio=0.3
SACP_ITC2007_F_RFE(S) α=0.005, l1_ratio=0.05
SACP_ITC2007_BDS(S) α=0.061, l1_ratio=0.05
SACP_ITC2007_E_RFE(S) α=0.005, l1_ratio=0.05
SACP_ITC2007_E_RFE2(S) α=0.087, l1_ratio=0.05
SACP_ITC2007_E_BDS(S) α=0.012, l1_ratio=0.4

GRASP_ITC2007 (O) α=0.005, l1_ratio=0.05
GRASP_ITC2007 (S) α=0.0066, l1_ratio=0.85
GRASP_ITC2007_F(S) α=0.005, l1_ratio=0.05
GRASP_ITC2007_F_RFE(S) α=0.05, l1_ratio=0.05
GRASP_ITC2007_BDS(S) α=0.046, l1_ratio=0.05
GRASP_ITC2007_E_RFE(S) α=0.005, l1_ratio=0.35
GRASP_ITC2007_E_RFE2(S) α=0.0087, l1_ratio=0.05
GRASP_ITC2007_E_BDS(S) α=0.015, l1_ratio=0.05

SACP_SA (O) α=0.005, l1_ratio=0.05
SACP_SA (S) α=0.005, l1_ratio=0.45
SACP_SA_F(S) α=0.005, l1_ratio=0.3
SACP_SA_F_RFE(S) α=0.005, l1_ratio=0.9
SACP_SA_BDS(S) α=0.005, l1_ratio=0.5
SACP_SA_E_RFE(S) α=0.005, l1_ratio=0.05
SACP_SA_E_RFE2(S) α=0.005, l1_ratio=0.05
SACP_SA_E_BDS(S) α=0.005, l1_ratio=0.05
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Dataset Optimal parameters

GRASP_SA (O) α=0.005, l1_ratio=0.25
GRASP_SA (S) α=0.005, l1_ratio=0.3
GRASP_SA_F(S) α=0.005, l1_ratio=0.05
GRASP_SA_F_RFE(S) α=0.066, l1_ratio=0.6
GRASP_SA_BDS(S) α=0.0152, l1_ratio=0.1
GRASP_SA_E_RFE(S) α=0.0066, l1_ratio=0.05
GRASP_SA_E_RFE2(S) α=0.0066, l1_ratio=0.05
GRASP_SA_E_BDS(S) α=0.015, l1_ratio=0.95

SA_SA (O) α=0.046, l1_ratio=0.4
SA_SA (S) α=0.027, l1_ratio=0.1
SA_SA_F(S) α=0.005, l1_ratio=0.05
SA_SA_F_RFE(S) α=0.005, l1_ratio=0.05
SA_SA_BDS(S) α=0.035, l1_ratio=0.05
SA_SA_E_RFE(S) α=0.142, l1_ratio=0.3
SA_SA_E_RFE2(S) α=0.108, l1_ratio=0.6
SA_SA_E_BDS(S) α=0.0116, l1_ratio=0.05
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Table C.3: The optimal parameters obtained on the training data using 10-fold cross-
validation for the KNN regressor

Parameter Parameter range

weights uniform, distance
n_neighbors 3, 5, 10, 15, 20, 25, 50, 75
leaf_size 5, 10, 15, 20, 25
metric euclidean, manhattan, chebyshev, minkowski
p 1, 2, 3

Dataset Optimal parameters

SACP_ITC2007
(O)

weights=distance, n_neighbors=20, leaf_size=5,
metric=manhattan, p=1

SACP_ITC2007
(S)

weights=distance, n_neighbors=10, leaf_size=5,
metric=manhattan, p=1

GRASP_ITC2007
(O)

weights=distance, n_neighbors=20, leaf_size=5,
metric=manhattan, p=1

GRASP_ITC2007
(S)

weights=distance, n_neighbors=15, leaf_size=5,
metric=manhattan, p=1

SACP_SA (O) weights=distance, n_neighbors=20, leaf_size=5,
metric=manhattan, p=1

SACP_SA (S) weights=distance, n_neighbors=10, leaf_size=5,
metric=manhattan, p=1

GRASP_SA
(O)

weights=distance, n_neighbors=20, leaf_size=5,
metric=manhattan, p=1

GRASP_SA
(S)

weights=distance, n_neighbors=15, leaf_size=5,
metric=manhattan, p=1

SA_SA (O) weights=distance, n_neighbors=20, leaf_size=5,
metric=manhattan, p=1

SA_SA (S) weights=distance, n_neighbors=10, leaf_size=5,
metric=manhattan, p=1

115



C. The Optimal Parameters For Classification And Regression Models

Table C.4: The optimal parameters obtained on the training data using 10-fold cross-
validation for the SVR

Parameter Parameter range

gamma_range from 2−15 to 23

C_range from 2−15 to 23

epsilon (0.001, 0.01, 0.1, 0.3, 0.5, 0.7,
1.0)

Dataset Optimal parameters

SACP_ITC2007 (O) C=2.0, epsilon=1.0, gamma=3.0
SACP_ITC2007 (S) C=128, epsilon=0.01, gamma=0.0005
SACP_ITC2007_F C=2048.0, epsilon=0.1, gamma=0.00049
SACP_ITC2007_RFE C=512, epsilon=0.01, gamma=0.0078
SACP_ITC2007_BFS C=2.0, epsilon=0.3, gamma=0.0078
SACP_ITC2007_E_F_RFE C=128, epsilon=0.001, gamma=0.00049
SACP_ITC2007_E_F_RFE2 C=32, epsilon=0.1, gamma=0.0078
SACP_ITC2007_E_F_BFS C=2048, epsilon=0.1, gamma=0.0078

GRASP_ITC2007 (O) C=2.0, epsilon=1.0, gamma=3.0
GRASP_ITC2007 (S) C=128, epsilon=0.01, gamma=0.0005
GRASP_ITC2007_F C=512.0, epsilon=0.1, gamma=0.00049
GRASP_ITC2007_RFE C=32, epsilon=0.01, gamma=0.0078
GRASP_ITC2007_BFS C=2.0, epsilon=0.3, gamma=0.0078
GRASP_ITC2007_E_F_RFE C=128, epsilon=0.1, gamma=0.00049
GRASP_ITC2007_E_F_RFE2 C=32, epsilon=0.001, gamma=0.0078
GRASP_ITC2007_E_F_BFS C=2, epsilon=0.3, gamma=0.0078

SACP_SA (O) C=0.03, epsilon=0.7, gamma=3.0
SACP_SA (S) C=128, epsilon=0.1, gamma=0.0005
SACP_SA_F C=32, epsilon=0.1, gamma=0.0078
SACP_SA_RFE C=8, epsilon=0.01, gamma=0.125
SACP_SA_BFS C=8, epsilon=0.5, gamma=0.0078
SACP_SA_E_F_RFE C=8, epsilon=0.01, gamma=0.0078
SACP_SA_E_F_RFE2 C=8, epsilon=0.01, gamma=0.0078
SACP_SA_E_F_BFS C=512, epsilon=0.1, gamma=0.0078
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Dataset Optimal parameters

GRASP_SA (O) C=0.03, epsilon=0.7, gamma=3.0
GRASP_SA (S) C=128, epsilon=0.1, gamma=0.0005
GRASP_SA_F C=2048, epsilon=0.1, gamma=0.0005
GRASP_SA_RFE C=512, epsilon=0.1, gamma=0.0078
GRASP_SA_BFS C=8, epsilon=0.7, gamma=0.0078
GRASP_SA_E_F_RFE C=512, epsilon=0.7, gamma=0.0078
GRASP_SA_E_F_RFE2 C=32, epsilon=0.01, gamma=0.0078
GRASP_SA_E_F_BFS C=512, epsilon=0.3, gamma=0.0078

SA_SA (O) C=8, epsilon=1.0, gamma=3.0
SA_SA (S) C=128, epsilon=0.1, gamma=0.0005
SA_SA_F C=32, epsilon=0.1, gamma=0.0078
SA_SA_RFE C=8, epsilon=0.1, gamma=0.125
SA_SA_BFS C=2, epsilon=0.5, gamma=0.125
SA_SA_E_F_RFE C=32, epsilon=0.01, gamma=0.0078
SA_SA_E_F_RFE2 C=32, epsilon=0.1, gamma=0.0078
SA_SA_E_F_BFS C=512, epsilon=0.01, gamma=0.0078
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Table C.5: The optimal parameters obtained on the training data using 10-fold cross-
validation for the RF Regressor

Parameter Parameter range

max_features from 0.05 to 1.0 with step 0.05
min_samples_leaf from 3 to 50 with step 2
criterion mse, mae
max_depth from 3 to 50 with step 2
n_estimators from 3 to 150 with step 2
min_samples_split from 1 to 200 with step 5

Dataset Optimal parameters

SACP_ITC2007 (O) max_features=0.75, min_samples_leaf=40,
criterion=mse, max_depth=45,
n_estimators=115, min_samples_split=77

SACP_ITC2007 (S) max_features=0.75, min_samples_leaf=40,
criterion=mse, max_depth=45,
n_estimators=115, min_samples_split=77

GRASP_ITC2007 (0) max_features=0.7, min_samples_leaf=31,
criterion=mse, max_depth=46,
n_estimators=55, min_samples_split=75

GRASP_ITC2007 (S) max_features=0.7, min_samples_leaf=31,
criterion=mse, max_depth=46,
n_estimators=155, min_samples_split=75

SACP_SA (O) max_features=0.9, min_samples_leaf=28,
criterion=mse, max_depth=69,
n_estimators=150, min_samples_split=82

SACP_SA (S) max_features=0.9, min_samples_leaf=28,
criterion=mse, max_depth=69,
n_estimators=150, min_samples_split=82

GRASP_SA (O) max_features=0.65, min_samples_leaf=28,
criterion=mse, max_depth=50,
n_estimators=100, min_samples_split=102

GRASP_SA (S) max_features=0.7, min_samples_leaf=28,
criterion=mse, max_depth=47,
n_estimators=120, min_samples_split=111
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Dataset Optimal parameters

SA_SA (O) max_features=0.8, min_samples_leaf=27,
criterion=mse, max_depth=64,
n_estimators=120, min_samples_split=112

SA_SA (S) max_features=0.7, min_samples_leaf=27,
criterion=mse, max_depth=60,
n_estimators=89, min_samples_split=98
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Table C.6: The optimal parameters obtained on the training data using 10-fold cross-
validation for the GBR

Parameter Parameter range

max_features from 0.05 to 1.0 with step 0.05
min_samples_leaf from 3 to 50 with step 2
criterion mse, mase
max_depth from 3 to 50 with step 2
n_estimators from 3 to 150 with step 2
min_samples_split from 1 to 200 with step 5
subsample from 0.05 to 1.0 with step 0.05
learning_rate 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7

Dataset Optimal parameters

SACP_ITC2007 (S) max_features=0.95, min_samples_leaf=38,
criterion=mse, max_depth=70,
n_estimators=120, min_samples_split=99,
subsample=0.55, learning_rate=0.2

SACP_ITC2007 (F) max_features=0.8, min_samples_leaf=26,
criterion=mse, max_depth=63,
n_estimators=118, min_samples_split=55,
subsample=0.7, learning_rate=0.1

SACP_ITC2007
(RFE)

max_features=1.0, min_samples_leaf=29,
criterion=mse, max_depth=65,
n_estimators=137, min_samples_split=96,
subsample=0.75, learning_rate=0.1

SACP_ITC2007
(BFS)

max_features=0.85, min_samples_leaf=40,
criterion=mse, max_depth=66,
n_estimators=117, min_samples_split=210,
subsample=0.9, learning_rate=0.05

SACP_ITC2007_Ext
(RFE)

max_features=0.85, min_samples_leaf=29,
criterion=mse, max_depth=52,
n_estimators=118, min_samples_split=143,
subsample=0.85, learning_rate=0.1
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Dataset Optimal parameters

SACP_ITC2007_Ext
(BFS)

max_features=0.4, min_samples_leaf=58,
criterion=mse, max_depth=52,
n_estimators=140, min_samples_split=143,
subsample=0.85, learning_rate=0.2

GRASP_ITC2007 (S) max_features=0.4, min_samples_leaf=62,
criterion=mse, max_depth=54,
n_estimators=86, min_samples_split=247,
subsample=0.9, learning_rate=0.2

GRASP_ITC2007 (F) max_features=0.25, min_samples_leaf=30,
criterion=mse, max_depth=56,
n_estimators=140, min_samples_split=151,
subsample=0.8, learning_rate=0.2

GRASP_ITC2007
(RFE)

max_features=0.6, min_samples_leaf=47,
criterion=mse, max_depth=43,
n_estimators=140, min_samples_split=117,
subsample=0.85, learning_rate=0.2

GRASP_ITC2007
(BFS)

max_features=0.85, min_samples_leaf=33,
criterion=mse, max_depth=43,
n_estimators=140, min_samples_split=191,
subsample=0.55, learning_rate=0.1

GRASP_ITC2007_Ext
(RFE)

max_features=0.75, min_samples_leaf=33,
criterion=mse, max_depth=35,
n_estimators=140, min_samples_split=142,
subsample=0.85, learning_rate=0.2

GRASP_ITC2007
(BFS)

max_features=0.5, min_samples_leaf=29,
criterion=mse, max_depth=52,
n_estimators=140, min_samples_split=84,
subsample=0.6, learning_rate=0.2

SACP_SA (S) max_features=0.85, min_samples_leaf=43,
criterion=mse, max_depth=46,
n_estimators=144, min_samples_split=144,
subsample=0.55, learning_rate=0.2

SACP_SA_F (S) max_features=0.8, min_samples_leaf=47,
criterion=mse, max_depth=42,
n_estimators=139, min_samples_split=84,
subsample=0.95, learning_rate=0.1
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Dataset Optimal parameters

SACP_SA_RFE (S) max_features=0.75, min_samples_leaf=47,
criterion=mse, max_depth=53,
n_estimators=139, min_samples_split=224,
subsample=1.0, learning_rate=0.2

SACP_SA_BFS (S) max_features=0.45, min_samples_leaf=44,
criterion=mse, max_depth=63,
n_estimators=102, min_samples_split=182,
subsample=0.6, learning_rate=0.1

SACP_SA_Ext_RFE
(S)

max_features=0.85, min_samples_leaf=30,
criterion=mse, max_depth=58,
n_estimators=143, min_samples_split=85,
subsample=0.5, learning_rate=0.1

SACP_SA_Ext_BFS
(S)

max_features=0.6, min_samples_leaf=32,
criterion=mse, max_depth=70,
n_estimators=118, min_samples_split=125,
subsample=0.8, learning_rate=0.2

GRASP_SA (S) max_features=0.8, min_samples_leaf=61,
criterion=mse, max_depth=52,
n_estimators=145, min_samples_split=220,
subsample=0.95, learning_rate=0.1

GRASP_SA_F (S) max_features=0.5, min_samples_leaf=64,
criterion=mse, max_depth=59,
n_estimators=125, min_samples_split=169,
subsample=1.0, learning_rate=0.1

GRASP_SA_RFE (S) max_features=0.55, min_samples_leaf=41,
criterion=mse, max_depth=42,
n_estimators=102, min_samples_split=156,
subsample=0.8, learning_rate=0.1

GRASP_SA_BFS (S) max_features=0.7, min_samples_leaf=35,
criterion=mse, max_depth=73,
n_estimators=90, min_samples_split=159,
subsample=0.75, learning_rate=0.1

GRASP_SA_Ext_RFE
(S)

max_features=0.4, min_samples_leaf=28,
criterion=mse, max_depth=52,
n_estimators=125, min_samples_split=171,
subsample=0.9, learning_rate=0.1
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Dataset Optimal parameters

GRASP_SA_Ext_BFS
(S)

max_features=1.0, min_samples_leaf=55,
criterion=mse, max_depth=30,
n_estimators=143, min_samples_split=172,
subsample=1.0, learning_rate=0.1

SA_SA (S) max_features=0.8, min_samples_leaf=26,
criterion=mse, max_depth=61,
n_estimators=93, min_samples_split=140,
subsample=0.6, learning_rate=0.1

SA_SA_F (S) max_features=0.8, min_samples_leaf=33,
criterion=mse, max_depth=69,
n_estimators=143, min_samples_split=92,
subsample=0.95, learning_rate=0.1

SA_SA_RFE (S) max_features=0.9, min_samples_leaf=29,
criterion=mse, max_depth=58,
n_estimators=90, min_samples_split=141,
subsample=1.0, learning_rate=0.2

SA_SA_BFS (S) max_features=0.45, min_samples_leaf=31,
criterion=mse, max_depth=64,
n_estimators=130, min_samples_split=63,
subsample=0.9, learning_rate=0.02

SA_SA_Ext_RFE (S) max_features=1.0, min_samples_leaf=30,
criterion=mse, max_depth=35,
n_estimators=76, min_samples_split=113,
subsample=1.0, learning_rate=0.1

SA_SA_Ext_RFE (S) max_features=0.5, min_samples_leaf=52,
criterion=mse, max_depth=36,
n_estimators=130, min_samples_split=137,
subsample=1.0, learning_rate=0.2
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C.2 The Optimal Parameters For The Classification
Methods

Table C.7: The optimal parameters obtained on the training data using 10-fold cross-
validation for the KNN classifier

Parameter Parameter range

weights uniform, distance
n_neighbors 3, 5, 10, 15, 20, 25, 50, 75
leaf_size 5, 10, 15, 20, 25
metric euclidean, manhattan, chebyshev, minkowski
p 1, 2, 3

Dataset Optimal parameters

SA_3_class (O) weights=distance, n_neighbors=50,
leaf_size=5, metric=manhattan, p=1

SA_3_class (S) weights=distance, n_neighbors=75,
leaf_size=5, metric=minkowski, p=3

SA_3_class (D) weights=uniform, n_neighbors=75,
leaf_size=5, metric=euclidean, p=1

SA_2_class (O) weights=distance, n_neighbors=50,
leaf_size=5, metric=manhattan, p=1

SA_2_class (S) weights=distance, n_neighbors=15,
leaf_size=5, metric=euclidean, p=1

SA_2_class (D) weights=uniform, n_neighbors=25,
leaf_size=10, metric=minkowski, p=3

ITC2007_2_class
(O)

weights=uniform, n_neighbors=50,
leaf_size=5, metric=minkowski, p=3

ITC2007_2_class
(S)

weights=distance, n_neighbors=25,
leaf_size=5, metric=minkowski, p=3

ITC2007_2_class
(D)

weights=distance, n_neighbors=20,
leaf_size=5, metric=manhattan, p=1

124



C.2. The Optimal Parameters For The Classification Methods

Table C.8: The optimal parameters obtained on the training data using 10-fold cross-
validation for the SVC

Parameter Parameter range

gamma_range from 2−15 to 23

C_range from 2−15 to 23

class_weight None, balanced

Dataset Optimal parameters

SA_3_class (O) C=128, gamma=0.0078125,
class_weight=balanced

SA_3_class (S) C=2, gamma=0.0078125,
class_weight=balanced

SA_3_class (D) C=8, gamma=0.0078125,
class_weight=balanced

SA_3_class_FFS(S) C=512, gamma=0.0078125,
class_weight=balanced

SA_3_class_FFS(D) C=8, gamma=0.0078125,
class_weight=balanced

SA_3_class_RFE(S) C=0.5, gamma=3.05-e05,
class_weight=balanced

SA_3_class_RFE(D) C=2.0, gamma=0.0078125,
class_weight=balanced

SA_3_class_BFS(S) C=0.03125, gamma=3.05-e05,
class_weight=balanced

SA_3_class_BFS(D) C=0.5, gamma=0.125,
class_weight=balanced

SA_3_class_E_RFE(S) C=2.0, gamma=0.125,
class_weight=balanced

SA_3_class_E_RFE(D) C=128.0, gamma=0.0005,
class_weight=balanced

SA_3_class_E_BFS(S) C=512.0, gamma=0.0078125,
class_weight=None

SA_3_class_E_BFS(D) C=2.0, gamma=0.0078125,
class_weight=None

SA_2_class (O) C=0.03125, gamma=3.05e-05,
class_weight=(1:1000)

SA_2_class (S) C=0.5, gamma=3.05e-05,
class_weight=None
Continued on next page
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Dataset Optimal parameters

SA_2_class (D) C=32, gamma=0.0078125,
class_weight=balanced

SA_2_class_FFS (S) C=0.5, gamma=3.05e-05,
class_weight=balanced

SA_2_class_FFS (D) C=128.0, gamma=0.0078125,
class_weight=balanced

SA_2_class_RFE (S) C=2, gamma=0.0078125,
class_weight=balanced

SA_2_class_RFE (D) C=128.0, gamma=0.0078125,
class_weight=balanced

SA_2_class_BFS (S) C=0.03125, gamma=3.05e-05,
class_weight=balanced

SA_2_class_BFS (D) C=8192, gamma=0.00049,
class_weight=None

SA_2_class_E_RFE
(S)

C=32, gamma=0.0078125,
class_weight=balanced

SA_2_class_E_RFE
(D)

C=8, gamma=0.0078125,
class_weight=balanced

SA_2_class_E_BFS
(S)

C=2, gamma=0.0078125, class_weight=None

SA_2_class_E_BFS
(D)

C=8, gamma=0.0078125,
class_weight=balanced

ITC_2_class (O) C=0.5, gamma=3.05e-05,
class_weight=balanced

ITC_2_class (S) C=2.0, gamma=0.0078125,
class_weight=balanced

ITC_2_class (D) C=8.0, gamma=0.00049,
class_weight=balanced

ITC_2_class_F (D) C=32.0, gamma=0.00049,
class_weight=None

ITC_2_class_RFE (S) C=8.0, gamma=0.0078125,
class_weight=balanced

ITC_2_class_RFE (D) C=512.0, gamma=3.05e-05,
class_weight=None

ITC_2_class_BFS (S) C=8.0, gamma=0.0078,
class_weight=balanced

ITC_2_class_BFS (D) C=32.0, gamma=0.0078,
class_weight=balanced

ITC_2_class_E_RFE
(S)

C=32.0, gamma=0.00049,
class_weight=balanced
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Dataset Optimal parameters

ITC_2_class_E_RFE
(D)

C=128.0, gamma=3.05e-05,
class_weight=balanced

ITC_2_class_E_BFS
(S)

C=512.0, gamma=3.05e-05,
class_weight=balanced

ITC_2_class_E_BFS
(D)

C=8.0, gamma=0.0078, class_weight=None
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Table C.9: The optimal parameters obtained on the training data using 10-fold cross-
validation for the RF classifier

Parameter Parameter range

max_features from 0.05 to 1.0 with step 0.05
min_samples_leaf from 3 to 50 with step 2
criterion gini, entropy
max_depth from 3 to 50 with step 2
n_estimators from 3 to 150 with step 2
min_samples_split from 1 to 200 with step 5
class_weight None, balanced

Dataset Optimal parameters

SA_3_class (O) max_features=0.7, min_samples_leaf=35,
criterion=entropy, max_depth=33,
n_estimators=130, min_samples_split=82,
class_weight=balanced

SA_3_class (S) max_features=0.7, min_samples_leaf=32,
criterion=entropy, max_depth=33,
n_estimators=150, min_samples_split=71,
class_weight=balanced

SA_3_class (D) max_features=0.45, min_samples_leaf=29,
criterion=gini, max_depth=29,
n_estimators=100, min_samples_split=62,
class_weight=balanced

SA_3_class_F (S) max_features=0.8, min_samples_leaf=32,
criterion=entropy, max_depth=74,
n_estimators=98, min_samples_split=91,
class_weight=None

SA_3_class_F (D) max_features=0.25, min_samples_leaf=27,
criterion=entropy, max_depth=69,
n_estimators=129, min_samples_split=67,
class_weight=None

SA_3_class_RFE (S) max_features=0.35, min_samples_leaf=37,
criterion=gini, max_depth=72,
n_estimators=119, min_samples_split=101,
class_weight=None
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Dataset Optimal parameters

SA_3_class_RFE (D) max_features=0.65, min_samples_leaf=31,
criterion=gini, max_depth=64,
n_estimators=102, min_samples_split=117,
class_weight=None

SA_3_class_BFS (S) max_features=0.85, min_samples_leaf=31,
criterion=entropy, max_depth=51,
n_estimators=114, min_samples_split=95,
class_weight=None

SA_3_class_BFS (D) max_features=0.6, min_samples_leaf=40,
criterion=entropy, max_depth=28,
n_estimators=99, min_samples_split=51,
class_weight=None

SA_3_class_E_RFE
(S)

max_features=0.85, min_samples_leaf=36,
criterion=entropy, max_depth=28,
n_estimators=59, min_samples_split=62,
class_weight=None

SA_3_class_E_RFE
(D)

max_features=0.9, min_samples_leaf=28,
criterion=gini, max_depth=42,
n_estimators=66, min_samples_split=51,
class_weight=None

SA_3_class_E_BFS
(S)

max_features=0.55, min_samples_leaf=40,
criterion=entropy, max_depth=55,
n_estimators=131, min_samples_split=101,
class_weight=None

SA_3_class_E_BFS
(D)

max_features=0.25, min_samples_leaf=26,
criterion=entropy, max_depth=43,
n_estimators=55, min_samples_split=81,
class_weight=None

SA_2_class (O) max_features=0.45, min_samples_leaf=27,
criterion=entropy, max_depth=46,
n_estimators=133, min_samples_split=57,
class_weight=balanced

SA_2_class (S) max_features=0.2, min_samples_leaf=52,
criterion=gini, max_depth=43,
n_estimators=60, min_samples_split=104,
class_weight=balanced
Continued on next page
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Dataset Optimal parameters

SA_2_class (D) max_features=0.25, min_samples_leaf=27,
criterion=entropy, max_depth=66,
n_estimators=127, min_samples_split=125,
class_weight=(0:10000)

SA_2_class_F (S) max_features=0.15, min_samples_leaf=40,
criterion=gini, max_depth=49,
n_estimators=114, min_samples_split=91,
class_weight=None

SA_2_class_F (D) max_features=0.15, min_samples_leaf=28,
criterion=entropy, max_depth=72,
n_estimators=134, min_samples_split=115,
class_weight=balanced

SA_2_class_RFE (S) max_features=0.25, min_samples_leaf=28,
criterion=entropy, max_depth=50,
n_estimators=119, min_samples_split=111,
class_weight=None

SA_2_class_RFE (D) max_features=0.15, min_samples_leaf=35,
criterion=gini, max_depth=45,
n_estimators=90, min_samples_split=74,
class_weight="balanced"

SA_2_class_BFS (S) max_features=0.05, min_samples_leaf=40,
criterion=gini, max_depth=42,
n_estimators=68, min_samples_split=51,
class_weight=balanced

SA_2_class_BFS (D) max_features=0.15, min_samples_leaf=30,
criterion=gini, max_depth=66,
n_estimators=118, min_samples_split=192,
class_weight=None

SA_2_class_E_RFE
(S)

max_features=0.9, min_samples_leaf=26,
criterion=entropy, max_depth=69,
n_estimators=136, min_samples_split=62,
class_weight=balanced

SA_2_class_E_RFE
(D)

max_features=0.95, min_samples_leaf=30,
criterion=entropy, max_depth=71,
n_estimators=131, min_samples_split=81,
class_weight=balanced

SA_2_class_E_BFS
(S)

max_features=0.65, min_samples_leaf=38,
criterion=entropy, max_depth=51,
n_estimators=61, min_samples_split=86,
class_weight=balanced
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Dataset Optimal parameters

SA_2_class_E_BFS
(D)

max_features=0.1, min_samples_leaf=32,
criterion=entropy, max_depth=63,
n_estimators=74, min_samples_split=78,
class_weight=balanced

ITC2007_2_class (O) max_features=0.85, min_samples_leaf=33,
criterion=gini, max_depth=30,
n_estimators=140, min_samples_split=62,
class_weight=balanced

ITC2007_2_class (S) max_features=0.9, min_samples_leaf=27,
criterion=entropy, max_depth=34,
n_estimators=100, min_samples_split=93,
class_weight=balanced

ITC2007_2_class (D) max_features=0.4, min_samples_leaf=28,
criterion=gini, max_depth=33,
n_estimators=100, min_samples_split=63,
class_weight=balanced

ITC2007_2_class_F
(S)

max_features=0.7, min_samples_leaf=30,
criterion=entropy, max_depth=45,
n_estimators=148, min_sample_split=80,
class_weight=None

ITC2007_2_class_F
(D)

max_features=1.0, min_samples_leaf=56,
criterion=entropy, max_depth=72,
n_estimators=90, min_samples_split=52,
class_weight=None

ITC2007_2_class_RFE
(S)

max_features=0.75, min_samples_leaf=37,
criterion=entropy, max_depth=71,
n_estimators=104, min_samples_split=62,
class_weight=None

ITC2007_2_class_RFE
(D)

max_features=0.5, min_samples_leaf=28,
criterion=entropy, max_depth=69,
n_estimators=140, min_samples_split=62,
class_weight=balanced

ITC2007_2_class_BFS
(S)

max_features=1.0, min_samples_leaf=68,
criterion=entropy, max_depth=67,
n_estimators=134, min_samples_split=106,
class_weight=None
Continued on next page
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Dataset Optimal parameters

ITC2007_2_class_BFS
(D)

max_features=0.55, min_samples_leaf=30,
criterion=entropy, max_depth=44,
n_estimators=106, min_samples_split=84,
class_weight=None

ITC2007_2_class_E_RFE
(S)

max_features=0.25, min_samples_leaf=38,
criterion=entropy, max_depth=52,
n_estimators=146, min_samples_split=117,
class_weight=None

ITC2007_2_class_E_RFE
(D)

max_features=0.8, min_samples_leaf=38,
criterion=entropy, max_depth=40,
n_estimators=102, min_samples_split=140,
class_weight=None

ITC2007_2_class_E_BFS
(S)

max_features=0.8, min_samples_leaf=26,
criterion=gini,max_depth=48,
n_estimators=147, min_samples_split=52,
class_weight=None

ITC2007_2_class_E_BFS
(D)

max_features=0.1, min_samples_leaf=35,
criterion=gini, max_depth=59,
n_estimators=122, min_samples_split=60,
class_weight=balanced
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Table C.10: The optimal parameters obtained on the training data using 10-fold cross-
validation for the GBC

Parameter Parameter range

max_features from 0.05 to 1.0 with step 0.05
min_samples_leaf from 3 to 50 with step 2
criterion mse, mase
max_depth from 3 to 50 with step 2
n_estimators from 3 to 150 with step 2
min_samples_split from 1 to 200 with step 5
subsample from 0.05 to 1.0 with step 0.05
learning_rate 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7

Dataset Optimal parameters

SA_3_class (O) max_features=0.8, min_samples_leaf=33,
criterion=mse, max_depth=37
n_estimators=83, min_samples_split=200,
subsample=0.75, learning_rate=0.05

SA_3_class (S) max_features=0.4, min_samples_leaf=52,
criterion=friedman_mse, max_depth=71
n_estimators=81, min_samples_split=97,
subsample=0.75, learning_rate=0.05

SA_3_class (D) max_features=0.8, min_samples_leaf=37,
criterion=mse, max_depth=55
n_estimators=62, min_samples_split=74,
subsample=0.8, learning_rate=0.05

SA_3_class FFS (S) max_features=0.7, min_samples_leaf=70,
criterion=mse, max_depth=51
n_estimators=203, min_samples_split=178,
subsample=1.0, learning_rate=0.02

SA_3_class FFS (D) max_features=0.05, min_samples_leaf=46,
criterion=mse, max_depth=69
n_estimators=180, min_samples_split=107,
subsample=0.8, learning_rate=0.05

SA_3_class RFE (S) max_features=0.75, min_samples_leaf=39,
criterion=mse, max_depth=49
n_estimators=132, min_samples_split=63,
subsample=0.8, learning_rate=0.02
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Dataset Optimal parameters

SA_3_class RFE (D) max_features=1.0, min_samples_leaf=33,
criterion=mse, max_depth=31
n_estimators=189, min_samples_split=241,
subsample=0.9, learning_rate=0.05

SA_3_class BFS (S) max_features=0.25, min_samples_leaf=60,
criterion=mse, max_depth=66
n_estimators=83, min_samples_split=123,
subsample=0.7, learning_rate=0.05

SA_3_class BFS (D) max_features=0.4, min_samples_leaf=39,
criterion=mse, max_depth=55
n_estimators=176, min_samples_split=215,
subsample=0.9, learning_rate=0.05

SA_3_class_E_RFE
(S)

max_features=0.05, min_samples_leaf=29,
criterion=mse, max_depth=53
n_estimators=187, min_samples_split=146,
subsample=1.0, learning_rate=0.02

SA_3_class_E_RFE
(D)

max_features=0.8, min_samples_leaf=27,
criterion=mse, max_depth=69
n_estimators=213, min_samples_split=93,
subsample=0.95, learning_rate=0.02

SA_3_class_E_BFS
(S)

max_features=0.95, min_samples_leaf=35,
criterion=mse, max_depth=40
n_estimators=75, min_samples_split=163,
subsample=0.85, learning_rate=0.05

SA_3_class_E_BFS
(D)

max_features=0.65, min_samples_leaf=64,
criterion=mse, max_depth=55
n_estimators=205, min_samples_split=136,
subsample=0.85, learning_rate=0.05

SA_2_class (O) max_features=0.35, min_samples_leaf=71,
criterion=mse, max_depth=69
n_estimators=59, min_samples_split=92,
subsample=0.85, learning_rate=0.05

SA_2_class (S) max_features=0.55, min_samples_leaf=54,
criterion=mse, max_depth=42
n_estimators=73, min_samples_split=57,
subsample=1.0, learning_rate=0.05

SA_2_class (D) max_features=0.1, min_samples_leaf=39,
criterion=mae, max_depth=30
n_estimators=72, min_samples_split=96,
subsample=1.0, learning_rate=0.1
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Dataset Optimal parameters

SA_2_class_F (S) max_features=0.15, min_samples_leaf=49,
criterion=mse, max_depth=28
n_estimators=127, min_samples_split=74,
subsample=0.85, learning_rate=0.05

SA_2_class_F (D) max_features=0.8, min_samples_leaf=48,
criterion=mse, max_depth=55
n_estimators=166, min_samples_split=105,
subsample=0.95, learning_rate=0.05

SA_2_class_RFE (S) max_features=0.85, min_samples_leaf=35,
criterion=mse, max_depth=37
n_estimators=209, min_samples_split=111,
subsample=0.85, learning_rate=0.02

SA_2_class_RFE (D) max_features=0.05, min_samples_leaf=28,
criterion=mae, max_depth=68
n_estimators=85, min_samples_split=98,
subsample=0.9, learning_rate=0.2

SA_2_class_BFS (S) max_features=0.2, min_samples_leaf=34,
criterion=mse, max_depth=50
n_estimators=119, min_samples_split=225,
subsample=1.0, learning_rate=0.05

SA_2_class_BFS (D) max_features=0.2, min_samples_leaf=51,
criterion=mse, max_depth=60
n_estimators=73, min_samples_split=228,
subsample=0.95, learning_rate=0.1

SA_2_class_E_RFE
(S)

max_features=0.1, min_samples_leaf=51,
criterion=mse, max_depth=41
n_estimators=216, min_samples_split=208,
subsample=0.8, learning_rate=0.05

SA_2_class_E_RFE
(D)

max_features=1.0, min_samples_leaf=30,
criterion=mse, max_depth=49
n_estimators=195, min_samples_split=113,
subsample=0.3, learning_rate=0.05

SA_2_class_E_BFS
(S)

max_features=0.9, min_samples_leaf=49,
criterion=mse, max_depth=53
n_estimators=182, min_samples_split=83,
subsample=0.9, learning_rate=0.02

SA_2_class_E_BFS
(D)

max_features=0.75, min_samples_leaf=41,
criterion=mse, max_depth=28
n_estimators=176, min_samples_split=249,
subsample=0.85, learning_rate=0.2

ITC2007_2_class (O) max_features=0.3, min_samples_leaf=72,
criterion=mse, max_depth=68
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Dataset Optimal parameters

n_estimators=130, min_samples_split=202,
subsample=0.85, learning_rate=0.2

ITC2007_2_class (S) max_features=0.55, min_samples_leaf=51,
criterion=mse, max_depth=43
n_estimators=139, min_samples_split=147,
subsample=0.95, learning_rate=0.05

ITC2007_2_class (D) max_features=0.1, min_samples_leaf=39,
criterion=mae, max_depth=30
n_estimators=72, min_samples_split=96,
subsample=1.0, learning_rate=0.1

ITC2007_2_class_F
(S)

max_features=0.2, min_samples_leaf=32,
criterion=mse, max_depth=39
n_estimators=200, min_samples_split=114,
subsample=0.6, learning_rate=0.02

ITC2007_2_class_F
(D)

max_features=0.35, min_samples_leaf=61,
criterion=mse, max_depth=28
n_estimators=191, min_samples_split=94,
subsample=1.0, learning_rate=0.02

ITC2007_2_class_RFE
(S)

max_features=0.5, min_samples_leaf=34,
criterion=mse, max_depth=71
n_estimators=173, min_samples_split=127,
subsample=0.95, learning_rate=0.05

ITC2007_2_class_RFE
(D)

max_features=0.5, min_samples_leaf=40,
criterion=mse, max_depth=55
n_estimators=177, min_samples_split=172,
subsample=1.0, learning_rate=0.05

ITC2007_2_class_BFS
(S)

max_features=0.95, min_samples_leaf=42,
criterion=mse, max_depth=66
n_estimators=196, min_samples_split=143,
subsample=0.75, learning_rate=0.05

ITC2007_2_class_BFS
(D)

max_features=0.65, min_samples_leaf=48,
criterion=mse, max_depth=73
n_estimators=139, min_samples_split=73,
subsample=0.8, learning_rate=0.05

ITC2007_2_class_E_RFE
(D)

max_features=0.8, min_samples_leaf=66,
criterion=mse, max_depth=40
n_estimators=141, min_samples_split=78,
subsample=0.55, learning_rate=0.05

ITC2007_2_class_E_RFE
(S)

max_features=0.55, min_samples_leaf=74,
criterion=mse, max_depth=54
n_estimators=136, min_samples_split=194,
subsample=0.65, learning_rate=0.1
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Dataset Optimal parameters

ITC2007_2_class_E_BFS
(S)

max_features=0.7, min_samples_leaf=35,
criterion=mse, max_depth=48
n_estimators=170, min_samples_split=64,
subsample=0.7, learning_rate=0.05

ITC2007_2_class_E_BFS
(D)

max_features=0.65, min_samples_leaf=57,
criterion=mse, max_depth=59
n_estimators=147, min_samples_split=213,
subsample=0.9, learning_rate=0.05
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Table C.11: The optimal parameters obtained on the training data using 10-fold cross-
validation for the MLP

Parameter Parameter range

activation identity, logistic, tanh, relu
solver lbfgs, sgd, adam
learning_rate constant, invscaling, adaptive
max_iter 1000
hidden_layer_sizes (300, 300, 300)

Dataset Optimal parameters

SA_3_class (O) activation=logistic, solver=adam,
learning_rate=invscaling

SA_3_class (S) activation=logistic, solver=sgd,
learning_rate=constant

SA_3_class (D) activation=logistic, solver=adam,
learning_rate=constant

SA_3_class (S +
RFE)

activation=tanh, solver=sgd,
learning_rate=adaptive

SA_3_class (D +
RFE)

activation=relu, solver=adam,
learning_rate=invscaling

SA_3_class (S +
BFS)

activation=relu, solver=sgd,
learning_rate=adaptive

SA_3_class (D +
BFS)

activation=relu, solver=sgd,
learning_rate=constant

SA_3_class_Ext (S +
RFE)

activation=tanh, solver=sgd,
learning_rate=constant

SA_3_class_Ext (D +
RFE)

activation=tanh, solver=sgd,
learning_rate=constant

SA_3_class_Ext (S +
BFS)

activation=logistic, solver=adam,
learning_rate=invscaling

SA_3_class_Ext (D +
BFS)

activation=tanh, solver=sgd,
learning_rate=adaptive

SA_2_class (O) activation=logistic, solver=adam,
learning_rate=adaptive

SA_2_class (S) activation=tanh, solver=sgd,
learning_rate=constant
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Dataset Optimal parameters

SA_2_class (D) activation=relu, solver=sgd,
learning_rate=constant

SA_2_class (S +
RFE)

activation=relu, solver=sgd,
learning_rate=adaptive

SA_2_class (D +
RFE)

activation=relu, solver=sgd,
learning_rate=adaptive

SA_2_class (S +
BFS)

activation=relu, solver=sgd,
learning_rate=adaptive

SA_2_class (D +
BFS)

activation=logistic, solver=adam,
learning_rate=invscaling

SA_2_class_Ext (S +
RFE)

activation=relu, solver=sgd,
learning_rate=constant

SA_2_class_Ext (D +
RFE)

activation=tanh, solver=sgd,
learning_rate=constant

SA_2_class_Ext (S +
BFS)

activation=relu, solver=sgd,
learning_rate=constant

SA_2_class_Ext (D +
BFS)

activation=logistic, solver=adam,
learning_rate=adaptive

ITC_2_class (O) activation=logistic, solver=adam,
learning_rate=constant

ITC_2_class (S) activation=relu, solver=sgd,
learning_rate=constant

ITC_2_class (D) activation=logistic, solver=adam,
learning_rate=invscaling

ITC_2_class (S +
RFE)

activation=tanh, solver=lbfgs,
learning_rate=adaptive

ITC_2_class (D +
RFE)

activation=indentity, solver=adam,
learning_rate=adaptive

ITC_2_class (S +
BFS)

activation=identity, solver=sgd,
learning_rate=adaptive

ITC_2_class (D +
BFS)

activation=logistic, solver=adam,
learning_rate=constant

ITC_2_class_Ext (S +
RFE)

activation=relu, solver=adam,
learning_rate=invscaling

ITC_2_class_Ext (D +
RFE)

activation=tanh, solver=sgd,
learning_rate=adaptive

ITC_2_class_Ext (S +
BFS)

activation=logistic, solver=adam,
learning_rate=invscaling

ITC_2_class_Ext (D +
BFS)

activation=tanh, solver=adam,
learning_rate=adaptive
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