
Using the Internet of Things and
Real-time Data for Optimizing

Freight Streams in Transportation
Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Rafael Konlechner, BSc
Registration Number 1125679

to the Faculty of Informatics

at the TU Wien

Advisor: Dr.-Ing., B.Sc., Dipl.-Oec. Stefan Schulte

Vienna, 25th April, 2018
Rafael Konlechner Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Rafael Konlechner, BSc
Straß 4, 2860 Kirchschlag

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. April 2018
Rafael Konlechner

3

Acknowledgements

I enjoyed the support of a great many people in the course of writing this thesis. First of
all, I would like thank Stefan Schulte for supervising my thesis and giving me much needed
guidance in scientific writing, showing a lot of patience and a thorough sense of quality.
I would further like to express my gratitude to my superior, Alexander Marschoun, who
provided me with the chance of writing this thesis, even allowing me to dedicate some of
my working hours to that matter.

I would further like to acknowledge contributions from Iris Heckmann, Sebastian Fink,
Christoph Hochreiner, Philipp Hönisch and Michael Pichler. Another special word of
thank you goes out to my family, friends and to my girlfriend Julia, who continue to offer
support and encouragement and went through times, where we did not see each other
that often. Lastly, I would like to especially thank my colleague Richard Holzeis, who,
besides the countless hours we spent coding on the weekends, provided me with lots of
opportunities, ideas and was a constant source of motivation. Thank you!

5

Kurzfassung

Die effiziente Abwicklung von Teilladungstransporten stellt wegen kurzfristiger Änderun-
gen im Transportbedarf für die strategische Fahrplanberechnung eine Herausforderung
dar, die zu schlecht ausgelasteten Transportfahrzeugen und zu vielen ökonomisch und öko-
logisch problematischen Leerkilometern führt. In dieser Arbeit stellen wir eine technische
Lösung zur Erfassung von Echtzeitdaten in Logistiknetzwerken vor, mit deren Hilfe gewis-
se Entscheidungen der Transportplanung und Fahrplanerstellung vom strategischen in den
operationalen Horizont rücken, um die Effizienz von Teilladungstransporten zu erhöhen.
Im Detail präsentieren wir eine Systemarchitektur, die es erlaubt Daten aus heterogenen
Datenquellen — wie etwa Internet of Things (IoT) Sensoren und Datenservices — zu einem
detailreichen, aktuellen Abbild der physischen Realität zusammenzuführen, um auf Basis
dieses Abbildes mit Methoden aus dem Operations Research dynamische Fahrpläne abzu-
leiten, die besser auf Bedarfsfluktuationen reagieren können. Mit Dynamic Transshipment
with Time Constraints in a Finite Planning Horizon und Vehicle Assignment definieren
wir formal zwei mathematische Optimierungsmodelle, deren sequentielle Ausführung der
dynamischen Berechnung von Fahrplänen dient und die Beschränkungen auf Lieferzeiten,
Transportkapazitäten und Umschlagsvolumina berücksichtigen. In einer Auswertung mit
operativen Daten eines österreichischen Logistikunternehmens zeigen wir die deutlichen
Effizienzsteigerungen eines dynamisch errechneten Fahrplans, im Vergleich zu statischen
Fahrplänen. Unsere Ergebnisse zeigen eine Verringerung der Gesamtzahl an gefahrenen
Kilometern um durchschnittlich 15.2% und eine Erhöhung der Fahrzeugauslastung um 2.8
Prozentpunkte. Durch die Einführung eines Systems zur Behandlung von zu Verspätung
führenden Ausnahmezuständen — etwa Fahrzeuggebrechen oder Verkehrsverzögerungen
— zeigen wir zudem die Robustheit des Systems gegenüber ebensolchen Zwischenfällen.

7

Abstract

LTL (Less than Truckload) shipping has an efficiency problem, due to inflexible schedules
and the inability to address short-term changes in demand. We propose a technical
solution for improving the efficiency of LTL shipping by automating aspects of operational
decision-making using rich, real-time information. In particular, we propose a framework
for collecting heterogeneous data from Internet of Things (IoT) sensors and data services
in the context of logistics networks to maintain a rich state of the environment as
a basis for routing and scheduling decisions. We use this information for optimizing
freight streams by applying standard Operations Research methods to the problem. In
particular, we introduce a methodology for computing dynamic vehicle schedules based
on dynamic demand in a level of detail that allows schedules to be planned and adapted
in an autonomous decision process in day-to-day operations. To that end, we formally
define Dynamic Transshipment with Time Constraints in a Finite Planning Horizon and
Vehicle Allocation, two mathematical optimization problems that build a schedule based
on dynamic demand, considering constraints on delivery times, capacities of vehicles,
loading terminals and hubs. Finally, we demonstrate the performance of our approach
with evaluations based on operational data from an Austrian logistics company. In
these evaluations, we are able to reduce the total amount of driven kilometers by 15.2%
and improve vehicle utilization by 2.8 percentage points. By introducing and testing a
mechanism for incident handling, we also demonstrate the robustness of our framework
against unforeseen delays, such as vehicle breakdowns or traffic congestions.

9

Contents

Contents 11

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Aim of the Work . 5
1.4 Methodology and Approach . 6
1.5 Structure of the Thesis . 6

2 Background and Foundations 7
2.1 Less than Truckload Shipping . 7
2.2 Industry 4.0 . 9
2.3 The Internet of Things in Logistics . 10
2.4 Radio Frequency Identification . 10
2.5 Complex Event Processing . 11
2.6 Decision Support Systems . 13
2.7 Cloud Computing . 13
2.8 Operations Research . 15

3 Related Work 17
3.1 The Internet of Things for Real-time Data Capturing in Logistics 17
3.2 Event-driven Architectures and Event Processing 18
3.3 Autonomous Control and Decision Support 19
3.4 The Transshipment Problem . 20
3.5 FZI ProveIT . 22

4 Methodology 23
4.1 Properties of the Considered Transportation Network 23
4.2 Event Load Estimation . 24
4.3 Architectural Guidelines . 25
4.4 Software Agents . 27

5 A Framework for Real-time Optimization of Freight Streams 29
5.1 Architectural Overview . 29

11

5.2 Data Model . 30
5.3 Event Model . 33
5.4 Event Processing . 34
5.5 A Software Agent for Dynamic Vehicle Routing 38
5.6 Instruction Model . 41
5.7 Future State Prediction . 43
5.8 Subsystem for Unexpected Event Handling 44

6 Dynamic Transshipment with Time Constraints 49
6.1 Overview . 49
6.2 Dynamic Transshipment with Time Constraints in a Finite Planning Horizon 50
6.3 Vehicle Assignment . 55
6.4 Conclusion . 58

7 Evaluation 59
7.1 Performance of Routing Policy . 59
7.2 Performance of Incident Handling . 67
7.3 Weaknesses and Open Issues . 70
7.4 Evaluation Summary . 71

8 Conclusions 73
8.1 Summary . 73
8.2 Future Work . 74
8.3 Closing Remarks . 75

Acronyms 77

Bibliography 79

Appendix 88

CHAPTER 1
Introduction

1.1 Motivation

New technologies are reshaping the logistics landscape: Autonomous driving will soon
reach a stage of industrial application and manufacturers continue to move towards the
so-called Industry 4.0, allowing them to produce customized mass products on demand by
connecting machines, workpieces and systems with Internet of Things (IoT) technology
to form intelligent, autonomous networks of cyber-physical systems [NOV15]. This shift
has and will have a profound impact in the logistics and transportation service industry,
leaving logistics providers with major challenges in meeting modern demands [LSD+15].
Smart transportation systems and the IoT will play a key role in developing efficient and
sustainable logistics and will embrace trends and developments in manufacturing.

1.1.1 State of Logistics

Logistics is one of the most dynamic sectors of the European economy, contributing to
economic growth and international competitiveness. The sector accounts for a share of
7% of GDP in Europe and an overall freight volume of 2200 billion tonne-kilometers
[Eur16]. Road transport takes the biggest share, at about 75% of all transported goods
in the EU. It connects regions of high industrial activity with more remote areas over
the European road infrastructure, creating an integrated transport network and thus
enabling a single European market. Figure 1.1 provides an overview of the modal split of
European member states.

The freight volume is growing steadily. By 2050, the overall volume of transported
goods in the EU is projected to triple compared to the volume shipped in 2000. As
freight volumes are growing, so is congestion. Drivers are confronted with increasingly
congested roads while one out of four heavy goods vehicles still runs empty [ec211].
Figure 1.2 provides an overview of the share of all empty runs by European member

1

1. Introduction

0%

11%

23%

34%

45%

BG CZ DK DE EE IE EL ES FR HR CY LV LT LU HU NL AT PL PT SI SK FI SE UK EU-28 NO CH
Total transport National transport Total international transport

Figure 1.1: Modal split of domestic freight transport per country, 2013 (% of total tkm)
[Eur13]

0%

11%

23%

34%

45%

BG CZ DK DE EE IE EL ES FR HR CY LV LT LU HU NL AT PL PT SI SK FI SE UK EU-28 NO CH
Total transport National transport Total international transport

Figure 1.2: Share of empty journeys by type of operation, 2014 (% in vehicle kilometers)
[Eur14]

states. In the face of these prospects, the objective is to build smart, well-utilized and
safe road transportation systems, that ensure economic competitiveness and minimize
environmental impact.

For the last 15 - 20 years, research in logistics and supply chain management has been
focused around the development of tracking technologies such as Radio Frequency Identi-
fication (RFID) or the Electronic Product Code (EPC) standard, that can continuously
track the state of physical objects such as cargo, trucks or loading equipment across the
entire supply chain [SADP10, MD16, DHS07, SAB07]. Combined with other sensors (e.g.
GPS), these real-time tracking technologies can be used to maintain a digital copy of the
physical environment, which forms the base of smart transportation systems [MGYA14].

Despite many efforts, there is not yet one single standard for information exchange on

2

1.1. Motivation

the state of logistics objects. Many of the proposed technologies and standards, including
EPC have shown to be slow in adoption by the industry [NOV15]. This phenomenon
has a couple of reasons. Investing in new technologies and betting on new standards is
always associated with high costs and a certain risk. New standards are not immediately
beneficial for a migrating business - not until they become widely used. It is of course hard
to predict, which new standard will establish itself. For these reasons, logistics providers
still heavily rely on outdated and unsuited software to a large extent. Those systems
do not leverage modern information technology, which would yield big optimization
potentials. In addition, integrations for third party systems are costly and lead to
long-term commitments with business partners. This limits short-term flexibility and
the possibility of ad-hoc partnerships. When building a transportation system, these
issues have to be considered. Ideally, a modern transportation system can cope with
heterogeneous data from a wide range of data sources and integrates easily with software
from business partners [Gia09].

1.1.2 Future Trends in Logistics

According to a number of trend reports [Kü13, Kü14, MBC15, Yee15], the logistics sector
will go through some key business and technology transformations within the next years.
Mayor trends include:

Real-time tracking Using low cost sensors, the IoT and cloud computing technology,
rich information about the state of shipments, the transportation fleet and traffic (e.g.
temperature, humidity, acceleration, parcel dimensions, GPS) can be collected in real-time
[Kü14]. This technology serves as a prerequisite for other trends, such as anticipatory
logistics and shareconomies, described later in this section.

Omni channel logistics Modern retail happens on many channels. A customer might
shop for a product in the store and later buy it online in a customized variation. Logistics
providers have to make strategic decisions about warehouse placement and need to
provide flexible logistics services for their B2B customers. This again is only possible,
when maintaining rich information infrastructure, reaching across many business partners
[Yee15].

Anticipatory logistics “Data is the new oil”1 Real-time tracking and big data tech-
nologies enable logistics providers to collect vast amounts of data and set anticipatory
actions based on insights gained from the data. This allows for better demand prediction
and yields better network utilization, higher efficiency and service quality as well as faster
delivery times. Anticipatory actions include anticipatory capacity planning (e.g. parcel
volume prediction), anticipatory shipping and anticipatory risk management [MBC15].

1http://ana.blogs.com/maestros/2006/11/data_is_the_new.html

3

http://ana.blogs.com/maestros/2006/11/data_is_the_new.html

1. Introduction

Shareconomies Sharing logistics infrastructure and crowd-sourcing certain aspects of
the supply chain (e.g. delivery) can have manifold benefits, including improved elasticity
of resources for changing demand and better utilization, new hybrid business models and
reduction of CO2 emissions [Kü14].

Autonomous Vehicles Self-driving vehicles are expected to have the most noticeable
impact in the logistics industry within the next 10 years [Kü16], yielding cost reductions
up to 75% and an increase in productivity of up to 25%2, making a strong case for fast
adoption of self-driving vehicles in the logistics industry. Autonomous technologies have
been successfully deployed in closed environments, e.g. in warehouse operations and in
some cases allow for semi-autonomous driving on highway sections in line haul transporta-
tion, but soon will reach a level of maturity that will enable the application of autonomous
driving technologies throughout all logistical responsibilities: from warehousing to line
haul and last-mile delivery.

1.2 Problem Statement

While containers and loading equipment have been standardized, information exchange
about the state of shipping goods is still lacking the same degree of standardization,
leading to the fact that many Information and Communications Technology (ICT) systems
in the transportation industry are proprietary and only work within the boundaries of
a company [Gia09]. As a result, real-time data covering cross-organizational logistics
processes is not available. This prohibits predictions and anticipatory actions, whether
autonomous or human, that would lead to better utilization of transportation networks
and overall less empty kilometers driven. Instead, changes in volume or other unforseen
events have to be handled manually [DDKS15], done by so-called schedulers. Schedulers
decide, how to distribute cargo to available trucks to get it to its destination. Those
trucks are often routed based on a fixed schedule, that determines which truck leaves for
which destination at what time, making reactions to changes in volume or other unforseen
events very unflexible. Schedulers decide mostly based on experience and expert intuition,
as they do not have rich data about the current state of their or their business partner’s
transportation network [Gud07]. This might lead to situations, where the decision was
appropriate from a local perspective, but would have been decided otherwise with more
information available.

Controlling freight streams with scheduling and routing can be vastly improved by
building an integrated framework for real-time data, that is able to collect data from
different data sources (e.g. IoT devices and sensor networks) and use it to make well
informed decisions. This allows decisions to be made autonomously and the detection of
anomalies and subsequent reactions to be made much faster [NLW+12, PGM12].

2https://www.flexport.com/blog/self-driving-truck-automation-of-million-jobs/

4

https://www.flexport.com/blog/self-driving-truck-automation-of-million-jobs/

1.3. Aim of the Work

1.3 Aim of the Work

While the technological foundations for real-time tracking, i.e. IoT and cloud computing
technologies, such as Complex Event Processing (CEP) have been established [EN10],
there has been little effort in creating a high-level integrated framework for road transport
logistics [Gia09]. Such a framework would steer freight streams to avoid empty runs,
schedule hauls in a way that all customers receive their shipments on time and quickly
react to changes in the schedule, e.g. because of a technical difficulty with a truck.
The framework would collect data from vehicle and warehouse sensors, cargo tags,
transport orders from business partners as well as traffic and weather services for making
well-informed, anticipatory routing and scheduling decisions.

This work aims at providing such a framework. It uses data from cargo tags (e.g. RFID),
vehicle and warehouse sensors (GPS, utilization), transport orders as well as traffic
and weather information services in order to estimate future network utilization and to
process incoming transport orders in a way that optimizes the overall driven distance,
avoiding empty runs. For this purpose, a software agent will be provided. This agent
makes autonomous decisions as reactions to changes in volume based on a mathematical
optimization model. In more detail, the presented concepts are:

Architectural Model The first step of the work addresses the subject of data collection
and data representation. It discloses decisions about what data is used, how that data is
represented in a data model and how the data is used for optimization. In other words,
it defines the mapping of physical objects to their digital counterparts. These modeling
decisions impact the software agent’s view on the environment and influence the decision
making process [Sch12, JBWL06]. To that end, an event-based data model that allows
the access of a complete, high-level view of a road transportation network by means of
snapshots will be introduced. A snapshot joins the latest available information about
every object in a transportation network (i.e. each truck, warehouse and cargo that is
labeled with a sensor or passive identification chip). The collected event data includes
entry and exit scan information for cargo entering or leaving a hub, the current geo
position of trucks, warehouse sensors that measure current warehouse utilization as well
as a traffic and a weather service.

Optimization Agent In a second step, the possibilities of anticipatory scheduling will
be demonstrated by proposing a decision agent, based on mathematical optimization
with IBM CPLEX. This model will use the collected data to schedule cargo and route
the vehicle fleet dynamically, minimizing the kilometers driven. The model will consider
changing travel times caused by unexpected delays (e.g. traffic congestion) and delivery
date constraints, since non-adherence may not only impact customer satisfaction, but
also lead to penalty costs.

5

1. Introduction

1.4 Methodology and Approach
A number of steps are necessary to provide a reasonable architecture and optimization
model:

1. A survey of related work on Industry 4.0 [WWB15, LSD+15, Dav15], industrial use
of IoT [AIM10, DXHL14], CEP [EN10] and Operations Research (OR) in logistics
[DDKS15, Gud07, EN10] will be conducted. This will disclose assumptions about
the shape and functionality of the proposed framework as well as embedding the
work into the bigger context of modern day logistics.

2. A framework for high-level, heterogenous event data will be introduced, following
the guidelines proposed in [CDCMB14, CBM+13].

3. A separate simulation application will be built, capable of simulating all events
considered by the framework and simulating work load on the transportation
network based on a real transportation data set, as well as simulating various
anomalies (e.g. leading to unexpected delays) [MKRW10].

4. An optimization model will be built, exploring both exact and heuristic solving
methods for different problem sizes. In order to build this optimization model,
reasonable assumptions about costs, utilization calculation and shipment parameters
will be necessary (e.g. defining the utilization of a warehouse at a given point in
time) [DDKS15, Pin15].

5. The proposed optimization approach will be evaluated in terms of a cost analysis,
taking into account a realistic set of transport data [MKRW10]

6. The results will be compared with a baseline, that is set by a simple, static timetable
routing algorithm, commonly used in the logistics industry [Gud07].

1.5 Structure of the Thesis
The reminder of this thesis structures as follows: Chapter 2 will provide the necessary
foundations and terminology for subsequent chapters. Chapter 3 will present a literature
study and related work regarding the fields of Decision Support Systems (DSSs) and
applied IoT in logistics. The chapters 5 and 6 are dedicated to the elaboration of the
first and second part of the solution respectively. The first part will cover aspects of
the proposed framework, namely the data collection and representation, as well as the
software agent interface. The second part will provide definitions for the mathematical
models that are used to build the dynamic vehicle schedule. The evaluation, based on
simulated scenarios, will be presented in Chapter 7. To conclude the work, Chapter 8
will provide a summary, closing statements and future prospects.

6

CHAPTER 2
Background and Foundations

This chapter will provide an overview of all necessary concepts and terms used in this
thesis. First, a short introduction into the application domain of road transportation will
be provided to help disclose assumptions about the shape of the transportation network
that is considered in this thesis. Subsequently, the main technological prerequisites for
this work will be introduced. The chapter concludes with a simple and practical example
for mathematical optimization: The Transshipment Problem.

2.1 Less than Truckload Shipping

Road transportation can be classified into two different categories. If the cargo occupies
a whole trailer, the term truckload or Full truckload (FTL) shipping applies. This type
of shipping is often done by direct transport from the consignor to the consignee. In this
case, there is no need for hubs or warehouses to be owned by the logistics provider. Thus,
direct transports are often done by trucking companies, that only maintain a truck fleet
[Gud13]. Unlike container shipping or FTL, where an entire trailer load is contracted to
a single customer, in Less than truckload (LTL) shipping, the cargo of one customer is
not large enough to occupy a whole truck. For LTL shipping, schedulers pool several
orders onto one truck to use its capacity as economical as possible [Gud13, Chr16]. A
typical scenario for the steps in the lifecycle of a shipment are depicted in Figure 2.1.
The three mayor steps include collection, line-haul and delivery. Traditionally line haul
connections, i.e. transport between hubs, were scheduled according to fixed time tables.
These time tables are updated very infrequently (yearly, quarterly or monthly update
cycles might apply [Gud07]) and do not consider changes in short-term demand. This
can be subject to optimization. In a hub system, where shipments can pass several
intermediate hubs before reaching its destination, a dynamic rerouting of shipments to
different intermediate hubs might lead to better utilization of resources. The purpose of

7

2. Background and Foundations

Pickup Address Delivery AddressOrigin Hub Intermediate Hub Destination Hub

DeliveryLine HaulCollection Line Haul

Figure 2.1: Typical shipping process for LTL shipping in a hub network

the optimization agent presented in this thesis is to find optimal combinations of LTL
orders and truck schedules that optimize for transportation costs and avoid empty runs.

Note: The topics of collection and delivery also offer large optimization potential, but
are out of the scope of this work, as they require fundamentally different optimization
approaches that are subject to a number of research projects [GVdVV11].

2.1.1 Typical Shipping Process

In the typical scenario covered by the thesis a customer orders a transportation from one
place to another, specifying the weight and volume of the cargo. The cargo is then picked
up at the specified pickup time and brought to the nearest hub by local transportation.
The scheduler then decides, which transport routes the cargo will be taking to reach the
hub that is closest to the destination address. From the destination hub, the cargo is
finally delivered by local transportation.

Transport Orders

Transport Orders are usually issued days before the desired pickup time, but no later
than a day before. Some customers, e.g. manufacturers that want their products to be
picked up periodically, use standing orders that arrange pickups in periodic intervals.
This makes anticipatory planning much easier, even though sometimes customers do not
specify the exact weight and volume of the cargo1.

2.1.2 Logistics Decision Making

Decision making in logistics considers different horizons of time, depending on the
lastingness and severity of effects of the decision being made [Gud13]:

• Planning: Planning describes long-term decisions concerning the design, organiza-
tion, dimensioning and optimization of logistical processes, networks and resources
in order to fulfill transport orders and adhere to quality requirements. Planning is
often done based on fuzzy data, forecasts and uncertain expectations. Decisions

1This information was acquired in a series of interviews and personal experience during my work at
DB Schenker AG in Vienna.

8

2.2. Industry 4.0

with consequences reaching for years are called strategic (e.g. building a new ware-
house), whereas consequences reaching for months are called tactical (e.g. creating
a new timetable for truck departures).

• Scheduling: Scheduling is concerned with the allocation of resources in order to
fulfill transportation orders under certain constraints. Scheduling is based on
actual customer orders, predictions from the planning phase or short-term demand
forecasts, but is in any case much more certain knowledge than data from the
planning phase. The operational scope for scheduling reaches from a couple of
hours to a couple of days and is also known as Supply Chain Event Management.

• Controlling: This term bundles all controlling and interference aspects of actual
operations (e.g. rerouting a truck on the road, loading, unloading and shipping
of goods) and the execution of internal orders. In controlling, all details such as
quantities, shipping contents, and deadlines are fixed as opposed to planning and
scheduling, where data can be based on predictions.

The proposed optimization framework will be able to set instructions a few days ahead,
e.g. for routing trucks. For this reason, it will have to work with predicted states, e.g. to
determine where the trucks will be at a certain time in the future, assuming they arrive
according to the schedule. Thus the framework will make decisions in the scheduling
horizon. It will however also be able to make controlling decisions, if unexpected delays
were to happen, that would make the planned schedule infeasible.

The framework could also leverage short-term demand forecasts to make better routing
decisions [Mei11]. These forecasts could use historic data in different scopes, e.g. transport
volume of the last days, transport volume of the last years at that time as well as
information about holidays or special events. Demand forecasts are not within the
scope of the thesis, but predictions about the future state of the transportation network,
including predictions about utilization of trucks and hubs will be covered.

A number of ICTs and frameworks exist for distinct processes of logistical decision making,
which will be covered later in the thesis. Section 2.6 introduces the concepts of such tools
and Section 2.8 will offer a short introduction to OR, the scientific discipline of optimal
decision making based on mathematical optimization.

2.2 Industry 4.0
Thoughts about the future of logistics information systems cannot happen without con-
sidering future trends in manufacturing. Industry 4.0 stands for a digital transformation
process, that industries are experiencing at the moment. It is considered the next step
in the evolution of industrial production towards intelligent networks of cyber-physical
production systems that can control each other autonomously. By connecting machines,
facilities and systems and by automatizing modern manufacturing, efficient mass produc-
tion of customized products will be possible. These advances will have profound impacts

9

2. Background and Foundations

on logistics. Machines will be able to autonomously communicate with suppliers for
ordering the necessary resources which could then be automatically forwarded to logistics
providers for performing the transport. This will require very flexible logistics, being
able to process new orders with much shorter lead times and modern communication
that can easily integrate with a wide array of business partners.

2.3 The Internet of Things in Logistics

The development of Industry 4.0 heavily relies on IoT technology. IoT can be defined as
a technological infrastructure, that extends internet connections to physical objects that
are not computers in the classical sense, i.e. sensors, actuators, tagged objects, embedded
systems, and mobile devices [VKAB+11]. Another common definition defines the IoT
as a dynamic global network infrastructure with self-configuring capabilities based on
standard and interoperable communication protocols where physical and virtual objects
have identities, physical attributes, and virtual personalities and use intelligent interfaces,
and are seamlessly integrated into the information network [Kra08].

IoT related technology is expected to transform a large portion of operations and processes
in manufacturing, logistics and other industries [DXHL14, VKAB+11]. Estimations
predict that by 2025, over 50 billion devices will be connected to the internet [SGFW10].
In a logistical context, IoT could be used to create anticipatory transportation systems,
tracking each vehicle’s location and monitor shipment movements and conditions by
deploying a variety of different sensors and scanning devices. Many of these devices
already exist today, but most systems use them in an isolated environment and for very
specific purposes instead of using them in an integrated, generally available way for
day-to-day decision making [CGP09, Gia09].

2.4 Radio Frequency Identification

The term IoT was initially proposed to refer to RFID2, the first and most widely adopted
IoT technology. With RFID, physical objects can be uniquely identified and tracked
by tagging them with electromagnetic RFID tags and using a system of scanners and
middleware to track the objects’ state [SADP10]. RFID has been successfully applied to a
wide range of areas in different industries, ranging from manufacturing, retailing, shipping,
port operations, agriculture, pharmaceutical packaging processes, etc. and serves as an
enabling technology and prerequisite for more automated and efficient business processes
[MD16]. However, it has been argued that relatively high costs are still a major concern
for businesses that consider a migration from barcodes to RFID [WNLY06].

2http://www.rfidjournal.com/articles/view?4986

10

http://www.rfidjournal.com/articles/view?4986

2.5. Complex Event Processing

2.4.1 Electronic Product Code and EPCglobal

The EPCglobal network is the most widely adopted industry standard for RFID-based
information infrastructures. It uses the EPC to globally identify items based on a unique
identification number and provides a system of RFID transponders and readers for
identification, middleware, and an information and discovery service, as well as an object
name lookup service, similar to the Domain Name System (DNS) [SAB07]. The goal of
EPCglobal is to achieve real-time visibility of items throughout the supply chain, from
the manufacturer to the retailer. EPC is designed to also work with many existing coding
and tagging schemes, including barcodes. The canonical representation of an EPC code
is a Uniform Resource Identifier (URI) [MGYA14].

In a typical scenario a manufacturer would register each transponder (i.e. tag), uniquely
identified by the EPC, in the global object name service. By publishing the object in the
lookup service, the digital trail of the physical object becomes accessible by all partner
nodes within the supply chain and all information regarding the items are shared over
the EPC information service in real time.

2.4.2 Embedded Devices

Electromagnetic scanning techniques are actively used in daily operations across many
areas in the supply chain, but they have their technological foundations in the 1980s
[MD16] and bring certain limitations. The biggest limitation is the lack of visibility in
between scans [MGYA14]. Updates on the state of tagged items can only occur when the
object is scanned, not in between scans, since the tags themselves are not connected to the
internet. In many cases, this is no longer suitable for modern day logistics and leaves room
for improvement [DHS07]. For example modern, event-driven transportation systems and
real-time anomaly handling need these updates much more rapidly in order to maintain
an accurate digital copy of the state of vehicles and shipments. Thus, advances in the
low-cost production of embedded computing devices and networking technologies gave
incentive for new research on smarter identification devices that directly communicate
with central information systems and form a network of cyber-physical systems and
sensors that can be monitored in real-time [MGYA14]. These advances are considered
state-of-the-art in IoT in logistics and will be covered in Chapter 3.

2.5 Complex Event Processing

Since the proposed framework uses event-based, real-time information, one major techno-
logical prerequisite is CEP. The high number of incoming events necessary for maintaining
a rich and informative digital image of the observed reality requires a systematic, fast
and secure processing of events [EN10, PGM12]. CEP bundles methods, techniques and
tools for processing such events while they are happening, meaning continuously and near
real-time. By leveraging CEP, higher-level knowledge can be derived by accumulating
information of primitive events or raw measurements over time [EB09]. For example,

11

2. Background and Foundations

Time Window

Aggregation

Filter

Order Stream
e1

weight: 150

e3

weight: 200

e6

weight: 100

e8

weight: 150

e10

weight: 50

Time

Sum Weight
e2

sum: 150

e4

sum: 350

e7

sum: 450

e9

sum: 600

e11

sum: 650

Notifications
e5

"Daily target reached"

e12

"Warning: Overload"

* filter criteria: daily target for sum > 300, warn for sum > 600

Figure 2.2: Aggregation and Filtering in Data Stream Processing.

the proposed framework can detect incidents by listening to GPS position events. If the
latitude and longitude values of an observed vehicle do not change for an unusually long
period of time, a warning is displayed and certain countermeasures could be initiated. In
addition, other sensors might report information about mechanical failures (e.g. high
engine temperature).

2.5.1 Data Stream Processing

Data stream processing tackles the problem of deriving higher-level knowledge from simple
events. This is done by selecting, aggregating, joining and operating on (operations similar
to SQL) incoming data streams to produce new higher-level data streams as outputs. Data
Stream Management Systems (DSMSs) have their foundations in Database Management
Systems (DBMSs), but differ in the rate of data changes. Updates in databases happen
relatively infrequently in comparison to the transient, continuously changing data in data
streams. Therefore DSMSs execute their queries or rules continuously, while queries in
DBMSs are only executed once [CM12]. Figure 2.2 shows an example of stream processing.
This example application generates events, if the aggregated volume of incoming transport
orders reaches certain, predefined thresholds. The proposed framework leverages Data
Stream Processing to collect freight volume information from transport orders in order to
predict peaks of high or low utilization, which can be used to adapt resources accordingly
(e.g. acquire additional hauliers for a strong week). If a new transport order is issued, the
weight, volume and the pickup time are specified. By aggregating all incoming transport
order volumes on a timeline by pickup time, the overall transport volume for any given
instance in the near future can be predicted.

12

2.6. Decision Support Systems

2.6 Decision Support Systems
A DSS is a specific information system that supports the process of problem solving
and decision making [PGM12]. Properly designed, a DSS compiles and filters relevant
information from sensor and event data, documents, knowledge databases and per-
sonal knowledge to assist in choosing the right alternative. DSSs are classified in (1)
communications-driven, (2) data-driven, (3) document-driven, (4) knowledge-driven, and
(5) model-driven systems.

For a practical DSS in a dynamic setting, as it is given by the problem covered in the
thesis, three desirable characteristics can be identified [PGM12]:

• Event-driven: Decision support should be based on accurate data and get contin-
uous updates about the changing environment.

• Parallelized: Many of the supported problems require prompt answers (e.g. acci-
dent handling in logistics [NLW+12]). Thus, underlaying optimization algorithms
should be executed in parallel, taking advantage of distributed computing architec-
tures [CGP09].

• Flexible: Processes and procedures within a company change over time and the
landscape of decision problems is vast [PGM12]. Thus, DSSs should be easily
extensible to account for specific aspects of different applications and should easily
be adaptable to a continuously evolving environment.

As stated in the previous chapter, the proposed scheduling and routing framework will
be able to operate autonomously. It does however operate very similar to DSSs, which
is why the presented guidelines also apply for the framework. In fact, the framework
could be considered a DSS, if all instructions set by the framework were sent to a human
operator that could potentially interfere, instead of directly sending the instructions to
the (embedded) devices for execution.

2.7 Cloud Computing
Cloud Computing is a computing paradigm where computational and infrastructure
services (e.g. servers, storage, applications, services) are provided as a utility, over
a network [SHG+10]. Sharing those resources enables on demand and pay-per-use
provisioning with little to no overhead or prior commitment. By hosting software
solutions at third-party cloud providers, companies avoid acquisition and maintenance
costs of their own infrastructure and can dynamically scale their software solution stack,
depending on the current work load. Cloud computing can be provisioned by means of
reservation or on-demand. While provisioning by reservation is usually less expensive
than on-demand provisioning, there exists the risk of over-provisioning resources which
causes unnecessary costs. Cloud computing services are classified by different service
layers, depending on the level of abstraction and underlaying services:

13

2. Background and Foundations

Infrastructure as a Service (IaaS) is a low-level computing service, where the
provider hosts a virtual machine placement. Usually there exists a wide range of different
virtual machine configurations with different storage, memory and CPU options3 to suit
the needs of many different purposes. Examples include Amazon EC2 instances and
Microsoft Azure.

Platform as a Service (PaaS) provides a development platform with a set of services
to assist the design, development, deployment and monitoring of software in the cloud,
as well as offering the orchestration of additional software services (location, storage,
authentication, etc.). Examples include IBM Bluemix, Google App Engine and Heroku.

Software as a Service (SaaS) is software intended for end users and hosted in the
cloud. Instead of manually installing software, SaaS applications are usually consumed via
a web browser, saving the trouble of installing and updating the software on a device and
preventing compatibility issues. Examples include Google Docs, Amazon and Facebook.

2.7.1 Cloud Computing in Logistics

Cloud computing offers five essential characteristics that are of special interest in the
application domain of IoT and logistics [KK16]:

On Demand Service Resources can be allocated and released automatically, without
any need of human interaction with the service provider. This allows self-adapting
systems to request resources on demand according to the current workload.

Broad Network Access Computing and infrastructure services are provided by means
of standard internet protocols and mechanisms. This allows for a wide range of supported
devices (PCs, phones, embedded devices).

Resource Pooling Cloud Computing service providers share and dynamically allocate
their resources with multiple customers, which increases efficiency and utilization.

Rapid Elasticity Cloud computing allows for a very high degree of scalability, by
dynamically allocating and releasing resources. In theory, this gives access to an infinite
amount of computational resources from anywhere.

Measured Service Cloud computing providers measure the resource consumption of
computing and infrastructure use and invoice based on a pay-per-use billing model.

Fields of application for Cloud Computing in logistics exist in cloud based DSSs [NLW+12]
and IoT information systems [HZLQ15] (both will be covered in more detail in Chapter 3)
and autonomous logistics [SHG+10]. The goal of autonomous logistics is to develop

3https://aws.amazon.com/ec2/pricing/on-demand/

14

https://aws.amazon.com/ec2/pricing/on-demand/

2.8. Operations Research

transportation systems that require minimal human interference. Many of the proposed
solutions for autonomous transportation systems choose a distributed, multi-agent ap-
proach [Sch12, JBWL06]. This way, the high overall complexity of logistics processes
and decision problems is handled in a decentralized manner and can be done in parallel,
which vastly improves scalability.

The proposed framework takes a centralized approach for an autonomous transportation
system. This way, the software agent (i.e. the decision unit for making scheduling
instructions) can use the state of the whole transportation network for scheduling and
routing decisions, rather than only having a local view. The elasticity of cloud computing
infrastructure and easy data synchronization make cloud computing a suitable paradigm
for this centralized approach.

2.8 Operations Research

OR is the scientific discipline that provides the formal foundations and analytical methods
to solve decision problems by means of mathematical modeling. In a wider sense OR also
includes tasks regarding the problem definition and problem description, data acquisition
and data analysis, which bridge the gap to other scientific disciplines like Management
Science and Data Analytics [WN13]. Primarily, and in a more narrow sense, OR is
defined as the mathematical modeling of decision problems as well as the development of
algorithms to solve those problems efficiently [DDKS15].

Planning (i.e. decision making) which also applies to OR supported planning, is a
well-structured process that follows six distinct steps [DDKS15]:

1. Problem Analysis: The decision problem and possible actions are formally
defined.

2. Goal Definition: Rational acting needs to have a goal. Since never all possible
aspects of optimality can be considered, this simplifies the model of the real world.

3. Mathematical Model Creation: The problem is formalized by defining decision
variables and constraints on those variables.

4. Data Collection: The input for the model can also be based on predictions and
forecasts.

5. Model Execution: The provided input is used to execute the model with an
appropriate algorithm.

6. Result Evaluation: Finally, the solution is classified as useful, improvable or
useless.

15

2. Background and Foundations

2.8.1 The Transshipment Problem

The Transshipment Problem is a combinatorial decision problem that can be solved by
means of OR methods. It forms the basis for the scheduling and routing decision problem
proposed by this thesis, which will later be described in Chapter 6.

For a given instance of the Transshipment Problem, the goal is to find the optimal
transportation routes between sources (the supply nodes) and sinks (the demand nodes)
by using intermediate hubs. A problem instance is defined by a set of hubs connected by
weighted edges that represent the distance between the two adjacent nodes. Depending
on the definition, the set of sources and sinks can be disjunct. The goal for a given
transportation network, supply and demand is to find the route(s) that minimize(s) the
overall distance driven.

The Transshipment Problem can be formalized to a non-linear mathematical optimization
model. Table 2.1 briefly describes all variables used in the model. (2.1) denotes the
objective function to be minimized. It is the sum of distances of all driven tours times the
cost. In (2.2) incoming and outgoing shipments are constrained. All incoming shipments
subtracted by all outgoing shipments have to be equal to the balance. The balance
specifies the supply and demand of each hub. (2.3) limits the capacity of hubs and (2.4)
determines the number of trucks that is required to transport the given volume si,j .

Table 2.1: Variable Description

Variable Name Description

H Set of hubs
d Duration matrix (di,j = travel duration from i to j : i, j ∈ H)
t Trucks on route matrix (ti,j = number of trucks from i to j : i, j ∈ H)
s Shipment matrix (si,j = shipment volume from i to j : i, j ∈ H)

cost Cost per distance driven
balanceh , h ∈ H Balance of hub h, > 0 for supply, < 0 for demand
capacityh, h ∈ H Hub capacity of hub h
capacityt Truck capacity

minx∈Z+
∑
i∈H

∑
j∈H

di,j · ti,j · cost (2.1) ∀i ∈ H :
∑
j∈H

si,j −
∑
k∈H

sk,i = balancei

(2.2)

∀i ∈ H :
∑
j∈H

sj,i ≤ capacityi (2.3) ∀i, j ∈ H : ti,j = si,j
capacityt

(2.4)

16

CHAPTER 3
Related Work

This chapter will provide an overview of recent contributions in the fields of research
that are relevant to the thesis. This includes the Internet of Things in logistics (Section
3.1), event driven architectures (Section 3.2), autonomous control and decision support
systems in logistics (Section 3.3) and algorithms for dynamic transshipment (Section 3.4).
The review will be followed up by a short introduction of ProveIT 1, a project that is
currently conducted at Forschungszentrum Informatik (FZI) in Karlsruhe.

3.1 The Internet of Things for Real-time Data Capturing
in Logistics

Any type of decision support system for anticipatory logistics relies on a satisfactory level
of real-time visibility of relevant resources [MGYA14]. Traditionally, this was achieved
with passive identification technologies in the form of RFID. A number of surveys
[MD16, DXHL14, SADP10, AIM10] have shown that the use of RFID in supply chain
management has grown steadily. Applications for RFID include distribution and fleet
management [WB12, NLW+12], as well as in-transit product visibility [DHS07, VLK07].
More recent work has investigated ways on how to extend the capabilities of RFID and
EPC to overcome identification-only and inter-checkpoint limitations and to enable real-
time tracking of resources. One major contribution, authored by Musa et al. [MGYA14],
proposes “Smart tags” as an extension of RFID. These tags are small embedded devices
that are attached directly to the cargo and use IP-based wireless communication to send
data to service endpoints. The provided data depends on the configuration of the device,
as the system architecture is modular. In addition to RFID for identification, the device
can be equipped with location sensors (GPS, terrestrial), ambient sensors (e.g. humidity,
temperature, etc.) and wireless network interfaces (e.g. 3G cellular, IEEE 802.11 Wi-Fi,

1http://prove-it.org

17

http://prove-it.org

3. Related Work

IEEE 802.15.4 WPAN, ZigBee, etc.). An embedded computational unit is used for
information handling and the transmission of sensor measurements, but could also serve
more sophisticated purposes. To that end, Musa et al. provide a conceptual framework
for product intelligence of IoT technologies in logistics. This framework distinguishes
four levels of intelligence, depending on the capabilities a technology provides. Each level
assumes to also have the capabilities of all previous levels. The four levels are:

1. Identification: The product has a unique local or global identity (e.g. barcode or
RFID).

2. Data acquisition and handling: The product can monitor its environment with
sensors and communicate the measured data wirelessly.

3. Problem recognition and reporting: The product can identify problems such
as system malfunctions or exceptions in the physical environment (e.g. temperature,
location).

4. Decision making: The product is able to determine what needs to be done to
remedy or handle exceptions and can give advice on its use, maintenance, recycling
or disposal.

According to this classification, the most commonly used technologies today, RFID and
EPC, would classify as first level product intelligence. Higher level technologies are not
yet actively used in regular logistics, but are restrained to high-value products in the
aviation and military industries. This is due to a number of limitations, mostly tied to
costs and uninterrupted wireless communication [MGYA14].

The proposed framework in its initial configuration will work with devices with a product
intelligence equivalent to RFID, i.e. will only require status updates for cargo at certain
checkpoints (e.g. hub entry and hub exit) for routing decisions. However, by leveraging
truck telematics and GPS location, rich data during the transit is available, allowing for
routing decisions and rerouting of vehicles to happen while the vehicle is on the road.
For usual distances between hubs, it might not be reasonable. To reroute vehicles, it is
however a desired property for clusters of high activity and short hub distances (travel
times < 1h), which also exist in the given transportation network.

3.2 Event-driven Architectures and Event Processing
Event-centric architectures for IoT based systems have been studied in recent literature.
Liao et al. [LSSW11] present a real-time event streaming framework for RFID systems
in retail. The framework supports real-time event queries as well as historic event
queries from persisted events and serves as a generic source for real-time data, usable
for both analytical and operational (e.g. optimization) purposes. The authors outline
a benchmark by stating that even mid-size RFID deployments in retail would generate

18

3.3. Autonomous Control and Decision Support

vast amounts of data, at a rate of 1 TB per day, much of it being redundant. To avoid
data redundancy, the authors propose a filtering mechanism for RFID event processing.
Similarly, Rinne et al. [RSN16] propose a RFID-based logistics monitoring system based
on CEP. The authors use patterns in events and time-window queries for counterfeit and
theft detection with general cargo (i.e. small cargo loaded onto standardized containment
units, e.g. palletes). Their work also includes a qualitative performance comparison of
Esper2 and Instans3, two competing event processing platforms. The authors come to
the conclusion that while both platforms are suitable tools for their intentions, Esper
demonstrated clearly better performance and platform maturity. For this reason the
framework presented in the thesis also uses Esper as a CEP platform.

It is worth noting, that both of the projects presented above consider only RFID-based
events in their architecture, hence do not offer heterogenous event processing from
different logistical objects and data sources. The framework presented in this thesis
additionally considers telematic and location data from trucks as well as updates from
traffic and weather services.

3.3 Autonomous Control and Decision Support
Autonomous control is an emerging field of research that addresses the increasing complex-
ity of logistical processes [WH07]. In general, autonomous control attempts to manage
logistical processes on an operational level, in a way that optimizes for certain criteria (e.g.
costs, utilization) and can handle unforeseen events [SHG+10]. From an architectural
point of view, this can be done either in a centralized or in a distributed way, where
embedded devices, mounted on the cargo or a vehicle, are granted some autonomy in
decision making and as a consequence, classify as fourth level product intelligence (as it
was described in the previous section) [MGYA14]. DSSs are a predecessor of autonomous
control. They also use methods of OR for decision making, but require human operators
to make the final decisions and determine details, that have not been considered by the
system [HRR00].

A number of projects for autonomous control and decision support in logistics have
been published. Hu and Sheng [HS14] propose a DSS that aims at minimizing Empty
Load Ratios (ELRs) in direct transport logistics using a multi-objective, mixed-integer
linear optimization model. It monitors the state of vehicles and incoming transport
orders and optimizes truck schedules by matching available trucks to compatible goods
from orders. Aside from the primary objective function, which is to minimize for ELR,
two additional objectives improve the matching rate and favor short travel distances.
The authors present a sophisticated matching algorithm for cargo, that uses product
compatibility matrices, integer range (e.g. temperature), and time window comparisons
for compatibility checking. Similarly to the approach presented in this thesis, dedicated
pickup and delivery times have to be considered by the optimization model. However,

2http://www.espertech.com/esper
3http://instans.org

19

http://www.espertech.com/esper
http://instans.org

3. Related Work

the matching of general bulk cargo, as it is considered in the thesis, does not require the
same degree of sophistication in product matching. The shipment size for this type of
transportation typically does not exceed the standard dimensions of a EUR pallet.

Ngai et. al [NLW+12] designed a context-aware DSS for fleet management, that helps
schedulers to make decisions in case of unforeseen events that cause delays. Such incidents
include technical breakdowns, unplanned trips, delays and cancellations. The system
generates an initial schedule for each day at a fixed time interval and reschedules in case
of an unforeseen event. The incident handling is done by means of a predefined process
that considers alternative actions depending on the context, modeled as a decision tree.
Context information includes the position of vehicles, telematic data about the condition
of the vehicle and eSeal4 data about the status of transported goods. As an example, the
countermeasures for a broken down vehicle would be different than for a vehicle that is
stuck in traffic. Similar to this thesis, the project uses a cost-based objective function for
scheduling. By using expenditures and revenue rather than utilization or ELR as the
objective for optimization, a large number of factors in logistics processes (e.g. terminal
handling, warehousing) can be quantized by means of a single metric and considered for
optimization. With cost-based optimization, the utilization of resources is improved as a
side effect, as good utilization generally is the cheapest way of operating those resources.
Unlike the solution presented in the thesis, the system relies on a user interface and
manual input for reporting incidents, rather than using CEP and IoT events.

Jedermann et al. [JCL+08] developed a system for distributed autonomous decision mak-
ing in perishable goods transport. Rather than routing trucks centrally, the authors use
embedded processing units deployed on trucks or food containers that act as autonomous
software agents. This way, trucks themselves are able to change routing decisions. If the
conditions change to be out of optimal, the agent can react autonomously to changes in
the environment and the goods’ shelf life. These agents use temperature and humidity
sensors to monitor the state of the goods and track the shelf lives of the contained goods.
The routing problem assumes trucks to be filled with goods that need to be delivered to a
number of stores, where the loss (i.e. the goods with zero shelf-live) should be minimized.
The distributed approach is based on the Traveling Salesman Problem (TSP) problem
and uses two steps to find a solution. In the first step, a central routing agent computes
an overall solution, where each vehicle is left with a number of options instead of one
concrete route. Based on the options, the software agents can then decide to adapt their
routes depending on the changing states of the goods.

3.4 The Transshipment Problem
Exact and heuristic algorithms of several variants of the Transshipment Problem (e.g.
balanced, unbalanced, dynamic, time minimizing, fixed transshipment cost, restricted
flow) have been proposed [EH08, LAP09, NT14, Khu15, HT01], with efficient polynomial
time heuristics existing for some constrained problem classes [HT00].

4http://www.esealinc.com/

20

http://www.esealinc.com/

3.4. The Transshipment Problem

Herer and Tzur [HT01] propose the dynamic Transshipment Problem with deterministic
demand over a finite planning horizon. This problem extends the original Transshipment
Problem by adding a time dimension T with fixed periods t = 1, ..., tmax and a dynamic,
deterministic demand dit at location i in period t. The authors represent the Transship-
ment Problem as a network flow problem and use a shortest path algorithm to find the
optimal solution.

For a transshipment network with stochastic demand (i.e. predicted, not dynamic),
Noham and Tzur [NT14] add considerations for fixed transshipment costs and provide a
branch-and-bound heuristic to find an optimal routing policy, minimizing transshipment
costs. Belgasami et al. [BSG08] use a genetic algorithm as a meta-heuristic for the trans-
shipment problem with limited storage capacity and provide a specific implementation of
recombination within the genetic algorithm.

Rais et al. [RAC14] consider a mixed integer model for solving the vehicle routing
problem with transshipment. The model considers a heterogeneous, dynamically sized
fleet and time windows for pickup and delivery. It provides a detailed description of the
mathematical model and serves as a foundation for the model presented in this thesis.

While not all authors have published detailed evaluation data about their proposed
algorithms, some benchmarks could be extracted. All of the presented algorithms were
evaluated based on a network of four to fourteen nodes and a predefined cost model. The
results of the branch-and-bound algorithm by Noham and Tzur showed a maximum gap
of 0.08% to the optimal solution (in a network of ten nodes). Rais et al. achieved results
with a maximum gap of 3.33%. The smallest CPU time for a network of fourteen nodes
was 17 seconds, the highest was 18182.82 seconds. Unfortunately, no further remarks on
the execution environment were found.

The optimization model proposed in this thesis shares certain characteristics with the
model proposed by Rais et al., but will additionally consider deadline penalties, loading
gate restrictions, as well as the results of previous optimization cycles for recalculating
the schedule. Typically, models solving the Transshipment Problem return the number
of vehicles that is required to distribute the cargo in order to correctly match supply
and demand, similar to the introductory example provided in Section 2.8. The proposed
solution formulates a second problem, that is used for assigning vehicles to the previously
computed vehicle demand. This aspect is a major requirement for the practical application
of vehicle routing in logistics, as some additional constraints for vehicles might apply.
As an example, the organizational form of the tested transportation network requires
vehicles to revisit their home hubs after certain periods of time, as drivers need to return
home after their shifts and trucks from external trucking companies are not provisioned
permanently. These constraints are modeled as a second optimization problem, using the
output of the first model and assigning vehicles to the vehicle demand. Details about the
two proposed models will be covered in Chapter 6.

21

3. Related Work

3.5 FZI ProveIT
ProveIT („Production plan based recovery of vehicle routing plans within integrated
transport networks“) is a project in development at FZI (Forschungszentrum Informatik)
in Karlsruhe that attempts to achieve similar goals to the solutions presented in this work.
The project is backed by industry partners such as Bosch, ZF, and Geis Global Logistics,
as well as the German Federal Ministry for Economic Affairs and Energy5. It is one of
the most recent projects in operational management of transportation networks. ProveIT
uses data from a mobile application, operated by the vehicle drivers and integrated
information from business partners for vehicle routing and incident handling. In contrast
to the projects presented in the previous sections, ProveIt aims at addressing all aspects
of a logistics process, providing high levels of autonomy from order placement to delivery.
A pilot of the project is currently evaluated by the sponsoring companies. The efficiency
gain, regarding energy consumption, costs, and emissions, is expected to be around 5
percent.

5Unfortunately, no publications for the project yet exist. In addition to the information available
at the website http://prove-it.org/, the information presented was gathered in an interview with
Dr.-Ing. Iris Heckmann, who leads the Department for Information Process Engineering at FZI. The
interview was conducted on September 20th, 2016 in Karlsruhe

22

http://prove-it.org/

CHAPTER 4
Methodology

In this chapter, the chosen methods and techniques for building, designing and evalu-
ating the proposed framework and optimization model will be discussed. This includes
architectural guidelines for event-driven architectures, DSSs and software agents, as well
as some key properties of the considered transportation network.

4.1 Properties of the Considered Transportation Network

The available transportation network data represents small to mid-size transportation
networks, as they are operated by many European logistics providers [Gud12]. With a
size of eleven hubs it is consistent with transportation networks considered in related
work, such as by Noham and Tzur [NT14] or Rais et al. [RAC14]. The transportation
network is based on the general cargo (LTL) road network of DB Schenker AG in Austria,
comprising eleven branches in all federal states of Austria and shipping a total volume
of 9 Mio. tons over their road transportation network per year [Sch16]. About 370000
tons (4% of the total volume) are shipped via LTL and general cargo logistics services,
which is the focus of this thesis. The volume breaks down to approximately 2 million
transport orders per year (about 30000 - 40000 orders per week)1. Typically, these orders
are processed within 24-48 hours.

The map depicted in Figure 4.1 provides an overview of all Austrian branches and
the main hub connections (non-exhaustive). The thickness of connections indicate the
transported volume transported over that connection. According to the analyzed test
data set, one particular region of very high activity was identified. This cluster of hubs is
in the mid-western part of Austria and comprises four hubs that all have a travel time
< 1h to any adjacent hub within the cluster and particularly high order volumes.

1The numbers were derived from the test data set provided by DB Schenker AG.

23

4. Methodology

50km

BGZ

VIESTPSTP
LNZ

RIE

BCH

SZG

KUF

INN

LIE

KLU

GRZ

CLUST
ER

Figure 4.1: Geographical overview of the considered transportation network

DB Schenker AG does not operate its own vehicle fleet, but uses third-party freight
companies for the traffic between branches. It is important to note that despite using
different companies, the vehicle fleet is homogeneous to a large extent, which is an
important factor for optimization. The number of trucks in operation for the network
depends on the time of the year, but can be estimated to be around 200 - 3002. More
details about the test data set will be presented in Chapter 7.

4.2 Event Load Estimation

As described above, the considered transportation network consists of eleven hubs
(|H| = 11), a fleet of about 300 trucks (|Tr| = 300) and a shipment volume of about
40000 shipments per week (|Sw| = 40.000). If we assume a truck location update frequency
ftr = 1

10s , a hub status event frequency fh = 1
30s , an average turnover rate psavg = 2.5

per shipment and two scan events per shipment and turnover, an average number of
line hauls per day for a truck ptravg = 5 and two docking events per line haul, the event
frequency f can be calculated by 4.1.

f = |Tr| · ftr + |H| · fh + |Sw| · psavg · 2 + ptravg · 2 (4.1)

For the given assumptions, this results in f = 30
1s or about 106000 events per hour that

need to be processed by the framework.

2The information was acquired in a series of interviews during my work at DB Schenker AG.

24

4.3. Architectural Guidelines

4.3 Architectural Guidelines

Certain principles and best practices have been incorporated in the design of the system
architecture. These principles have been proposed for similar settings, where a system
needs to observe certain aspects of a dynamic environment (e.g. a transportation network)
and manipulates it by applying its decisions back to the environment [PGM12, LSSW11,
NLW+12]. The guidelines will be presented in two parts: The first part will discuss
desirable characteristics for real-time DSS, the second part will cover the architecture of
software agents.

4.3.1 Guidelines for Real-time Decision Support Systems

Pillac et al. [PGM12] propose three desirable (fairly generic) characteristics for real-time
DSS in dynamic vehicle routing. These characteristics are:

• Event-driven: The architecture should promote events (i.e. messages) as the
main means of communication to model state changes in the data. Instead of
receiving updates periodically, the available data for decision making is updated for
every event, as real-time DSS should offer a consistent, up-to-date representation
of the environment.

• Parallelized: The underlying architecture should be parallelized and should take
advantage of distributed computing architectures in order to perform several tasks
in parallel. This allows for a large number of events to be processed and for decisions
to be made fast.

• Flexible: The logistics landscape is vast and changes quickly. Thus, DSS should
be based on universally valid assumptions and be extensible for specific aspects of
different applications and an evolving field of applications and technologies.

The proposed framework aims to achieve all three of the named characteristics. It is
inherently based on events as they are the major means of communications for the
system with the environment, as well as for software components within the system.
Secondly, it allows for a high level of parallelism, by using a multi-threaded environment
for event processing and a separate process for the software agent, which is responsible
for mathematical optimization. Third, all assumptions regarding the architecture and
the transportation network (i.e. considered events) have been chosen to represent the
problem domain as generically as possible. The application is highly parameterized and
can be easily tailored to specific transportation networks and IoT devices.

In addition to the three characteristics presented above, Ngai et al. [NLW+12] framed a
set of functional and non-functional requirements for real-time DSS. In the following, the
list of requirements will be presented, each supplemented with an explanation, of how
these goals are met by the design of the proposed framework.

25

4. Methodology

• Operate in real-time and provide prompt responses: While regular planning
cycles may be done overnight and last several hours (e.g. to compute the preliminary
schedule for the next day), unexpected events need to be dealt with promptly. In
this case, rescheduling cannot wait for a full evaluation, which likely takes hours
to compute with mathematical optimization, if it is done from scratch. Thus,
rescheduling has to be modeled in a way that can leverage and alter existing
solutions, which is sometimes referred to as a warm start [DDKS15]. The proposed
optimization model can use an existing schedule as input for a new calculation.
This tremendously speeds up the calculation of an adapted schedule.

• Be able to handle different kinds of unexpected events: In this work, only
a small number of unexpected events are covered, all of which affect the travel
duration between hubs. Three main cases can be distinguished: Cases where only
single trucks are affected (e.g. technical breakdown), cases where all trucks of a
connection before a certain point on the road are affected (e.g. traffic jam), and
cases where all trucks on a connection are affected (e.g. bad weather conditions).

• Consider different contexts when deciding on how to react to unex-
pected events: The subsystem for unexpected event handling considers different
contexts and determines appropriate actions by means of a predefined process.
The context is mostly defined by the current schedule, but also takes sensory
data into account. A truck delay might not have any impact on the schedule, if
all shipments reach their connection in time and the truck can execute its next
instructed movement without delay. Other cases might allow some instructions
to be postponed without any consequence to the rest of the schedule. Finally, if
all other options are exhausted, a rescheduling cycle (in the warm starting mode
mentioned above) is triggered. Details about the subsystem for unexpected event
handling will be discussed in the next chapter, in Section 5.8.

• Distribute responses to all necessary parties accurately, effectively, and
quickly: The technology stack that was chosen to implement and deploy the
framework (Java 8, Spring Boot3, IBM Bluemix4) provides a vast number of options
for IP-based communication. The framework uses web sockets to promptly display
changes in the web user interface and exposes a RESTful API that opens up all
major functionalities of the framework for potential partner applications in a very
interoperable way.

3https://projects.spring.io/spring-boot/
4https://www.ibm.com/cloud-computing/bluemix/

26

4.4. Software Agents

Environment / Simulation

Software Agent

R
ew

ar
d

O
bs
er
va
tio
n

S
etofactions

ot rt

a1t

a2t

a3t

(a) Generic case

P
ro
fit

N
et
w
or
k
sn
ap
sh
ot

S
etofinstructions

Transportation
Network

Weather
Service

Traffic
Service

Historic
Data

Customer
Orders

Scheduling
Unit

Vehicle AllocationTransshipment

...

ot rt

a1t

a2t

a3t

(b) Application specific case

Figure 4.2: Feedback loop of software agents interacting with the observed environment.

4.4 Software Agents
Systems, where a (semi-)autonomous entity observes and changes the environment based
on a set of rules are referred to as agent-based systems [VdHW08]. Software agents are
used in many disciplines, including chat applications and personal assistance (e.g. chat
bots), game theory, operations research and swarm intelligence [Nwa96]. By designing
the architecture of the framework around the concept of a software agent, the concerns of
monitoring the network and optimizing the schedules (i.e. the two parts of the proposed
solution) are cleanly separated. In this particular case, a software agent is used to decide
which actions to take in order to complete the transport orders in the most cost-efficient
way, based on the current state of the transportation network. Figure 4.2 illustrates this
basic feedback loop, both in the general case on the left (Figure 4.2a) and in the domain
specific case on the right (Figure 4.2b). The framework’s role is to provide the agent with
accurate observations of the environment, both in terms of data richness and freshness.

27

4. Methodology

4.4.1 Definition

Formally, a software agent interacts with its environment in discrete time steps. At
each time step t, the agent receives an observation ot which is a subset of the current
state st ∈ S of the environment, where S is the set of all possible states. Based on
the observation, the agent selects an action at ∈ A(st), where A denotes the set of all
available actions in the state st. By setting an action, the environment transitions into
a new state st+1 and the agent is signaled a certain reward by the environment. As an
example, the environment could be a transportation network, an observation could be
all sensor data collected with IoT devices and the reward could be the profit made by
successfully fulfilling transport orders. Possible actions would then include the loading
and unloading of cargo to trucks and the movement of trucks between hubs. In general,
the goal of an agent is to maximize the received reward over time [SB98]. This is done
by following a certain policy, i.e. a set of rules or mechanisms Πt(s, a), that maps states
to actions which are likely to maximize the reward. Strategies that focus on short term
rewards might not help the overall goal. The challenging part of defining a policy is
to find actions that maximize the long term reward, even though they might not be
immediately beneficial in the short-term.

Agents can fully (ot = st) or partially (ot ⊂ st) observe the environment, depending
on their complexity and nature. In the given case of a transportation network the
observation is only partial, since never all possible nuances of reality can be sensed by
electronic sensors. Since unexpected events cannot be prevented by the agent, actions
not always deterministically change the state of the environment [SB98]. In the case of a
transportation network, the probability of unexpected events is rather high compared
to more deterministic settings, where the environment is restricted and actions happen
deterministically. For example, a movement in chess is certainly followed by a state,
where the chess piece is in its new position. However, a movement action for a truck in a
logistics network does not imply that the truck will depart properly, much less arrive at
the destination on time. Those state transitions can only be assured to a certain degree.

In the following two chapters, the two main contributions of the thesis will be presented.
The next chapter will introduce a framework for optimizing freight streams based on
transportation network snapshots and IoT data. Chapter 6 will provide an implementation
of a routing policy Πt(s, a) for the software agent, based on mathematical optimization
of the Dynamic Transshipment Problem with time constraints.

28

CHAPTER 5
A Framework for Real-time

Optimization of Freight Streams

This chapter is dedicated to the first of two contributions of this thesis, a framework
for optimizing freight streams in transportation networks. The primary function of the
framework is to consolidate data from heterogeneous data sources in order to maintain
rich information about the state of the transportation network. It is characterized by
three fundamental concepts: An event-driven architecture, a software agent for optimizing
freight streams and a subsystem for unexpected event handling. These concepts, together
with a snapshot-based data access model and a service for future network state prediction
will be elaborated.

5.1 Architectural Overview

Figure 5.1 provides a top-level view of the proposed architecture. Its main components
are: The core framework (1), the software agent (2), and the environment (3), which, for
the purpose of evaluation, is replaced by an environment simulation application.

(1) can further be broken down into the modules for event processing (Section 5.4),
a prediction service for future states of the transportation network (Section 5.7), a
subsystem for unexpected event handling (Section 5.8), and an agent intermediator
(Section 5.5), responsible for communicating and triggering the software agent.

(2) is responsible for dynamically scheduling vehicles and routing shipments. Its consists
of a transformation unit to convert observations into mathematical models in a pre-
processing step (i.e. transforming Java objects to OPL1, the required input format for

1https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.odms.
studio.help/pdf/opl_langref.pdf

29

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.odms.studio.help/pdf/opl_langref.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.odms.studio.help/pdf/opl_langref.pdf

5. A Framework for Real-time Optimization of Freight Streams

DO CLOUD
OPTIMIZATION

MESSAGE BROKER
EVENT QUEUE

MESSAGE BROKER
INSTRUCTION QUEUE

HTTP
Endpoint

WebSocket
Endpoint

STATIC NETWORK DATA

DYNAMIC NETWORK DATA

PERSISTENCE

TRANSPORT ORDERS

INSTRUCTIONS

Agent

Dashboard

TRANSSHIPMENT

TRUCK ASSIGNMENT

Framework

Environment /
Simulation

EVENT HANDLING

SUBSYSTEM FOR
UNEXPECTED

EVENT HANDLING

EXECUTION
PLAN

NETWORK
SNAPSHOT

A
G
E
N
T

IN
TE

R
M
E
D
IATO

R

IOT MIDDLEWARECUSTOMER ORDERS EXTERNAL SERVICES TRUCK SCHEDULE

NETWORK
PREDICTION

EVENT QUEUE INSTRUCTION QUEUE

R
E
S
T
A
P
I

FETCHING SERVICE

JOB SCHEDULER

I/O
TR

A
N
S
FO

R
M
ATIO

N

GPS TELE
MATICS

GATE
RFIDRFIDMOBILE

APP ONBOARD
SYSTEM

DATA

TRAFFIC

DATA

WEATHER

KNOWLEDGE BASE
(HISTORIC DATA)

EVENT GENERATOR

IN-MEMORY
NETWORK DATA

CEPHANDLER

SELECTOR

Figure 5.1: Overview of the proposed framework architecture

CPLEX) and solutions into instructions in post-processing. The models are solved by
IBM Decision Optimization Cloud, a cloud service for solving CPLEX models. Details
about the agent will be discussed in Section 5.5.

(3) can be defined as every entity, system or service that is capable of sending events
to the event queue. This includes all sensory data from IoT devices deployed to cargo,
warehouses and trucks, new transport orders from customers and external services (e.g.
weather and traffic services). For the purpose of evaluation, the environment is simulated
by a separate application. This simulator can mimic incoming transport orders, moving
vehicles and the loading and unloading of cargo. In general, the simulator generates events
deterministically, based on the instructions provided by the software agent. It is however
also possible, to simulate unexpected events such as weather warnings, traffic congestion
and technical breakdowns of vehicles. The detailed event model will be presented in
Section 5.3. Details about the simulations will be discussed in Chapter 7.

5.2 Data Model
The class diagram depicted in Figure 5.2 provides an overview of the main entities and at-
tributes defined in the data model. The main entities of a transportation network are Hub,
Truck, TransportOrder, Connection and Cargo. Hubs are constrained by their

30

5.2. Data Model

Entity

+ id: String

n

Connection

+ origin: String

+ destination: String

+ distance: long

n

Hub

+ name: String

+ address: String

+ geoPosition: GeoPosition

+ loadingGates: int

+ capacity: long

trucksOnProperty

n

storedCargo

loadingList

nn

HubState

n

Cargo

+ transportOrderId: String

+ weight: double

+ dimensions: Dimensions

n

TransportOrder

+ originHubName: String

+ destinationHubName: String

+ issueDate: LocalDateTime

+ preferredPickup: LocalDateTime

+ preferredDelivery: LocalDateTime

+ weight: double

+ dimensions: Dimensions

+ quantity: int

n

Truck

+ name: String

+ homeHubName: String

+ truckBed: int

+ payload: int

Dimensions

+ width: int

+ length: int

+ height: int

dockedTrucks

TransportOrderState

+ transportOrderStage: <<TOStage>>

CargoState

+ lastEvent: Event

TruckState

+ coordinates: GeoPosition

ConnectionState

+ travelTime: long

State

+ entityId: String

+ timeStamp: LocalDateTime

GeoPosition

+ latitude: double

+ longitude: double

TransportationNetwork

+ name: String

<<enumeration>>
TOStage

PENDING

SCHEDULED

IN_PROGRESS

DELIVERED

Figure 5.2: Class diagram of the transportation network entities

overall capacity and their state holds two separate lists of trucks: trucksOnProperty
lists all trucks that are within immediate proximity of the hub (e.g. are parking on the
property) and dockedTrucks lists all trucks that are currently docked to a loading gate.
Additionally, the HubState holds the list of the currently stored cargo. The throughput
is limited by the number of loading gates. In a similar fashion, trucks are limited by
their overall payload, measured in loading meters, since the shipments are transported
via standardized EUR pallets. A truck state holds the current list of cargo that is on the
truck as well as its current GPS location. Transport orders specify the cargo dimensions,
weight, and quantity, as well as an issue date and dates and locations for pickup and
delivery. The respective state holds the processing stage of the order. Cargo entities store
its dimensions and weight and reference the transport order. Cargo states store cargo
related events that happen during the shipping process. By keeping a history of cargo
events, all steps of the shipping process can be retraced for each transported cargo (e.g.
[<2016-1-1:07:20:38,EXIT,HUB-A>,<2016-1-1:09:58:05,ENTRY,HUB-B>]).

31

5. A Framework for Real-time Optimization of Freight Streams

Separation of static and dynamic data

As it can be seen in the class diagram, the model distinguishes static (or immutable) data
stored in the entity classes and mutable (or dynamic) data stored in the state classes and
referenced by the entity. The distinction between static and dynamic attributes is done
in the following way: Each attribute, that can be altered by events is considered dynamic
and is stored as an entity state. This approach allows for the storage of multiple states
for each entity in order to track their history. In addition to the entities above, the data
model includes events (Section 5.3) and instructions (Section 5.6).

5.2.1 Data Access Model: Snapshots

In order to get a holistic, up-to-date view of the transportation network (i.e. have access
to all data relevant for optimization), the persistence layer is able to fetch all entities
of a transportation network at once, providing a single object containing all entities of
the network at their most recent states. As these information objects always hold the
state of a particular time instant, they are referred to as snapshots and are represented
as TransportationNetwork objects. Holding these objects in memory is feasible,
because completed transport orders and their associated cargo objects are not contained
in a snapshot. No events, except for the events referenced in the cargo state, and no
instructions are stored in a snapshot. Figure 5.3 provides a memory profile, showing
that the relevant data for optimization, i.e. the data stored in a snapshot, is only a
small fraction of all collected data over time. For the simulations that were performed,
simulating one week of network activity with about 35.000 transport orders, the size of
snapshots did not exceed 20 MB. As an alternative, it is possible to access the database
directly by the agent by granting him reading permissions. Reasons for why the snapshot
approach was chosen in favor to direct database access will be provided in Section 5.7.

Filtering past orders and instructions and only keeping the most recent state of objects
does not weaken the information available for the decision making process. Omitting
these large amounts of data is possible, because a transportation network snapshot has
the Markov Property in respect to the presented software agent.

The Markov Property

According to the definition of Sutton and Barto [SB98], an observation is said to have
the Markov Property, if it succeeds in retaining all relevant information, i.e. retaining
information also from previous observations, that are relevant in the decision making
process. In a chess game, for example, the current configuration of all pieces on the board
fulfills the Markov Property, even though the sequence of moves is not kept explicitly in
this representation. In the specific case of the thesis, where an observation corresponds
to a transportation network snapshot, previous movements and transport orders do not
influence the planning of future movements. All that is required is the current state of
all involved entities (hubs, trucks, connections) and currently open transport orders.

32

5.3. Event Model

Figure 5.3: Memory profile of a transportation network snapshot

Assuming that an observation does not fulfill the Markov property, then the expected
reward r for a taken action At at the current State St depends on the entire sequence of
actions and states, formally denoted as:

Pr{Rt+1 = r, St+1 = s′ | S0, A0, R1, ..., St−1, At−1, Rt, St, At} (5.1)

If, on the other hand, the observation has the Markov property, the environment’s
response at t + 1 only depends on the state and action representations at t, These
dynamics can be defined by specifying only the most recent state and action pair:

Pr{Rt+1 = r, St+1 = s′ | St, At} (5.2)

The Markov property is fulfilled by snapshots in respect to the given software agent,
because the agent does not require historic states for maximizing the expected reward.
This property allows for omitting large amounts of data and make snapshots a justifiable
representation of observations for the software agent.

5.3 Event Model
Figure 5.4 shows the class diagram for all events, grouped by originating entity. The
model distinguishes primitive and complex events. Primitive events are emitted by an
entity of the environment, complex events – marked with an asterisk – result from CEP
queries. The framework uses a number of CEP queries to derive higher-level knowledge
from primitive events or aggregate certain values over time. For example, one query
is used to monitor the incoming transport order volume: By default, the optimization

33

5. A Framework for Real-time Optimization of Freight Streams

TransportVolumeSum*

TransportVolumeAlert*

+ sumVolume: long

+ sumVolume: long

Event

+ timeStamp: DateTime

CargoEntry

+ parcelId: String

+ hubName: String

+ truckName: String

TruckDocked

+ hubName: String

+ truckName: String

LocationUpdate

TelematicsUpdate

+ truckName: String

+ truckName: String

+ coordinates: GeoCoordinates

+ data: String

TravelTimeUpdate InstructionUpdate

+ originHub: String + instructionId: String

+ destinationHub: String + stage: InstructionStage

+ travelTime: long

TruckUndocked

+ hubName: String

+ truckName: String

CargoExit

+ parcelId: String

+ hubName: String

+ truckName: String

Truck Events

TruckArrived*

DelayAlert*

DistanceToHub*

TruckDeparted*

+ truckName: String

+ truckName: String

+ truckName: String

+ truckName: String

+ hubName: String

+ estimatedDelay: int

+ hubName: String

+ distance: int

+ hubName: String

TransportOrder

+ transportOrder: TransportOrder

Cargo EventsTransport Order Events

Connection Events Instruction Events

Figure 5.4: Class Diagram of primitive and complex events. (“*” denotes complex events)

agent is triggered in fixed periods (e.g. daily). If however the demand of transport
volume exceeds a certain threshold for a certain time, i.e. many transport orders specify
similar preferred pickup times, an extra optimization cycle is triggered by the agent
intermediator. Table 5.1 provides a description of each event.

Updates from the traffic and weather service are not represented as dedicated events,
but rather influence the state by changing the expected travel times of connections. As
there is no standardized message protocol for data exchange, a small adapter service
periodically fetches traffic and weather data updates and transforms them into appropriate
TravelTimeUpdate events. The data sources that have been used for traffic and
weather information will be described in Subsection 5.5.3.

5.4 Event Processing
All events originating from the environment, i.e. all primitive events, are initially
queued in a message queue that is accessible via an IP endpoint. For this reason, IP-
based communication is the only prerequisite for sensor devices to communicate with
the framework. The framework uses RabbitMQ2 as a message broker. Each event –
primitive or complex – is processed by a dedicated handler and triggers the logic that is

2https://www.rabbitmq.com/

34

https://www.rabbitmq.com/

5.4. Event Processing

Table 5.1: Description of all events in the event model (primitive and complex)

Event Description
TransportOrder<o> A new transport order o was issued
CargoEntry<c,h,t> Cargo c was scanned entering hub h loaded

off truck t
CargoExit<c,h,t> Cargo c was scanned leaving hub h loaded

onto truck t
TruckDocked<h,t> Truck t docked to a free gate of hub h
TruckUndocked<h,t> Truck t undocked from a gate of hub h
LocationUpdate<t,p> Truck t has a new GPS position p
TelematicsUpdate<t,d> Truck t has new telematics data d
TravelTimeUpdate<c,d> Connection c has a new estimated travel

time of d minutes
*DistanceToHub<h,t,d> The distance between truck t and hub h is

d (derived from LocationUpdate)
*TruckArrived<h,t> The distance between truck t and hub h

fell below a certain value (derived from
DistanceToHub)

*TruckDeparted<h,t> The distance between truck t and hub
h exceeded a certain value (derived from
DistanceToHub)

*DelayAlert<t,d> The scheduled arrival of truck t will be
delayed for approximately d minutes

*TransportVolumeSum<s,t> The sum of collected order volumes at time
t is s (derived from TransportOrder)

*TransportOrderVolumeAlert<s,t> The sum of collected order volumes after
the last scheduling cycle exceeded a certain
value (derived from TransportOrder)

*InstructionUpdate<i,s> Instruction i changed to state s ∈ {
pending, in progress, completed}

35

5. A Framework for Real-time Optimization of Freight Streams

associated with the event. Some selected events are additionally processed by the CEP
platform Esper. Esper is specifically used to cover three use cases that require aggregated
knowledge, derived from a stream of previous events. The first use case has been briefly
discussed in the previous section: Esper is used to monitor incoming transport volume,
in order to detect future utilization peeks as early as possible and adapt the schedule
if necessary. The second two use cases demonstrate basic examples of geofencing with
Esper. One example detects unusually long standing times based on GPS trails. These
standing times might indicate breakdowns or delays of vehicles. The second example uses
calculated proximity to hubs in order to determine their arrival status. If the vehicles are
located within a certain radius to the hub, they are considered available at that hub. This
allows the distinction between docked trucks and available trucks, as not all trucks might
have a free terminal gate to dock to. Ideally, vehicle telematics and dedicated sensors at
the property gate would generate explicit events for these occasions, but these sensors
are often unavailable in current transportation networks. The three implemented CEP
queries merely serve as examples for possible use cases of CEP in road transportation.
The capabilities of the framework can easily be extended by providing additional queries
and event handlers.

5.4.1 Monitoring Incoming Transport Order Volume

Continuously collecting data about incoming transport orders helps to quickly derive
implications to the schedule. In general, the software agent optimizes the schedule in
fixed intervals with a default value of 24 hours, i.e. the schedule is adapted once a day
(this does not include the handling of incidents). If new transport orders with shorter
lead times than 24 hours are issued, the schedule might be adapted, considering the
new orders. If, for example, free transport volume is available on existing movements,
these orders are dispatched onto existing movements, to better utilize already provisioned
vehicles.

Listing 5.1 provides the Esper query that has been used to monitor the incoming order
volume. It uses TransportOrder events as input and produces TransportOrderSum
events as output. In the query, ts denotes a dedicated time service implemented in
Java, where ts.before_inv(x) returns true for dates that happen before the next
invocation of the software agent and ts.time_h(x) returns the time of x in the
granularity of hours. The latter function is used to group the incoming volume by the
hour of arrival, in order to detect times of high and low utilization. The resulting event
stream triggers a second query that checks for the volume limit limitv to be exceeded. If
the limit is exceeded at any given time, a TransportOrderVolumeAlert is issued.

36

5.4. Event Processing

Listing 5.1: Monitoring the weights of incoming orders within invocation intervals
expression filter { x => ts.before_inv(x)},
expression pickup { x => ts.time_h(ts.now,x)}
sum(transportOrder.weight) as sumWeight
from TransportOrder.win:time_batch(ts.now, ts.inv_interval)
where filter(preferredPickup)
group by originHub, pickup(preferredPickup)

5.4.2 Detecting Irregularities in Location Patterns

In order to detect unusually long standing times of vehicles, e.g. during unreported traffic
congestion or vehicle breakdowns, a query for detecting irregularities the sequence of GPS
location updates is provided. For the purpose of readability, the example depicted in
Listing 5.2 was condensed to two consecutive location events. This would be impractical
in a realistic scenario, as short stopping times, e.g. for traffic lights, should not produce a
warning. Depending on the update frequency for locations, the number of events in the
pattern has to be adapted. For the given assumptions of ftr = 1

10s , a low two-digit number
might be appropriate. The query uses a computed distance between the consecutive
locations of a truck to detect movement or standstill, provided by Geo.dist(latX,
longX, latY, longY).

Listing 5.2: Detection of GPS sequences for non-moving vehicles
select * from LocationUpdate
match_recognize (
partition by truck
measures
A.location.latitude as latA,
A.location.longitude as longA,
B.location.latitude as latB,
B.location.longitude as longB,
pattern (A B)
define
B as Geo.dist(latA,longA,latB,longB) < limit

5.4.3 Detecting Arrivals and Departures

Based on the DistanceToHub event, which is calculated for a subset of LocationUpdate
events, Esper signals Arrival and Departure events for trucks depending on their
proximity to hubs. The query depicted in Listing 5.3 signals an arrival, if the distance
between a truck and a hub falls below a certain radius. To prevent consecutive arrival
events for each location update within the radius, the second line of the query ensures,

37

5. A Framework for Real-time Optimization of Freight Streams

that only the first event with a distance smaller than the radius triggers an arrival. The
event query for departures is analogous.

Listing 5.3: Detection of arrivals based on the calculated distance to hubs
select * from pattern[every
a = DistanceToHubEvent(distance > radius) ->
b = DistanceToHubEvent(distance < radius, b.truck = a.truck, b.hub =

a.hub)]

5.5 A Software Agent for Dynamic Vehicle Routing

The discussion about the software agent, which is the central unit of decision making,
will be split into two parts. The first part, covering architectural aspects of the agent,
will be discussed in this section. The second part will cover the underlaying routing
policy in detail and will be discussed in Chapter 6.

5.5.1 Overview

All of the presented topics so far, including the data model and data access, as well as
events and event processing, have the fundamental goal of providing the software agent
(and the subsystem for unexpected event handling) with rich and up-to-date information.
The agents responsibility is to then take the current state of the network and provide a
vehicle schedule to process all pending transport orders. The subsystem for unexpected
event handling and the software agent are the only units that can issue instructions and
thereby actively influence the environment. The difference lies in the temporal scope
of decision making. While the agent makes planning decisions, focusing on long-term
efficiency, the decisions made by the subsystem only influence immediate outcomes,
triggered by unexpected incidents.

5.5.2 Framework Communication

Listing 5.4: The Software Agent Interface
interface Agent {

schedule(snapshot: TransportationNetwork) : List<Instruction>;
}

Whenever the agent intermediator triggers the agent, it transmits a transportation
snapshot to the agent. The agents’ job is to then provide a mapping from the snapshot
to instructions, i.e. a routing policy Πt(s, a). The implementation of the policy is not
limited to using mathematical optimization techniques, as long as it can adhere to the

38

5.5. A Software Agent for Dynamic Vehicle Routing

basic communication interface defined in the feedback loop, i.e. snapshots as input and
instructions as output. For the reason of adherence to this interface, the implementation
of the agent is restricted to a single public method, defined in Listing 5.4. This method
is used by the agent intermediator. The intermediator is responsible for triggering and
communicating with the agent, as well as fetching new instructions and handle further
distribution to appropriate channels of the environment.

5.5.3 Input Sources

As depicted in Figure 4.2, observations consists of several input sources. Those input
sources can be classified into three different categories:

• Sensor data (internal environment): The most important observational data
is the current network state, which is kept in a centralized data store, updated
by events from the sensor framework. The distinguishing factor of this category
is the internality of the data. This means that the observed data is mostly the
consequence of actions taken by the agent. This is in contrast to external events,
which the agent cannot influence.

• Information services (external environment): Besides the internal state of
the network, services that predict or report external events - i.e. events that cannot
be controlled by the agent - can be valuable sources of information. The proposed
agent uses two external data services to predict travel times between hubs, namely
the Google Distance Matrix API3 for computing dynamic travel times between
destinations and the Weather Company Data for IBM Bluemix API4 for weather
alerts. Traffic and weather are major factors regarding travel times and travel times
are essential factors for vehicle routing, since the overall shipment of a cargo usually
consists of several trips to intermediate hubs. Travel times (and delays of such) will
determine, whether a shipment can reach its connection transport or not.

• Knowledge base (context data): The knowledge base forms the third pillar of
observed data. It consists of data that is helpful in determining future demand.
Examples include historic data about the transported cargo volume (e.g. to
determine the demand based on the demand of the last years around this time),
patterns in transport orders of customers, data curated by experts or calendrical
data (e.g. information about public holidays). While the framework considers a
knowledge base as observational data to be integrated optionally, the implemented
prototype and the mathematical optimization model do not include stochastic
demand prediction, but solely work on the ground of existing transport orders and
instructions.

39

5. A Framework for Real-time Optimization of Freight Streams

DTS Model Input
Transformation

DTS Optimization
(Demand per Route)

Delta-Route
Extraction

TA Model Input
Transformation

VAOptimization
(Vehicle Assignment)

TA to Instruction
Transformation

Figure 5.5: Overview of the optimization pipeline. The shaded steps are solving mathe-
matical optimization problem.

5.5.4 Optimization Pipeline

On an architectural level, the implementation of the routing policy can be conceptualized
as a pipeline. The agent needs to process all steps in the pipeline, given the input data
(i.e. a transportation network snapshot) to return according instructions. Figure 5.5
illustrates this pipeline. The two main steps (shaded in the graphic) correspond to solving
the according two optimization problems for obtaining a schedule, namely calculating a
vehicle demand in the first step and assigning concrete vehicles to the demand in the
second step. The steps in between serve as transformations between the different required
input formats. In the first step of the pipeline, the given transportation network snapshot
is converted from a JavaBean object into the Optimization Programming Language
(OPL) data format, which together with the OPL model forms the optimization problem
that is solved by the CPLEX model solver. The hosted CPLEX solver IBM Decision
Optimization on Cloud was used for the implementation. The solution returned by the
service is represented in the JSON data format and lists the number of required vehicles
and shipped order ids for each connection and time interval. As the input for the model
also includes all movements from the previous calculation cycles, for assigning vehicles to
the demand, the difference from previous to newly required vehicles needs to be calculated.
These delta values, as well as the state of all vehicles and their future movements, are
then used as input for the second optimization problem, that assigns available vehicles to
the vehicle demand. Once all demanded movements have been assigned a vehicle, the
dispatch instructions for the cargo to the respective vehicles can be created.

Listing 5.5 provides an example for input orders passing the pipeline. In the example,
snapshot.orders hold the two sample orders that need to be transported and are
contained in the transportation network snapshot. The first order requires 25 volume
units to be shipped from VIE to INN, starting at time t+ 0 with a deadline at t+ 10
hours. The second order requires an equivalent transport from LNZ to INN. The result of
the first optimization results in the set of required movements for transportation, denoted
as demand. In the case of the given example, two separate movements are required. One
from VIE to LNZ and a separate one from LNZ to INN. Movements specify departure
and arrival times (i.e. t+ 1 and t+ 4 respectively for the first movement), as well as all
dispatched orders and the number of required vehicles. The demand is finally mapped to
actual vehicles in assignment, by solving the second optimization problem for vehicle
assignment to movements. The results corresponds to a preliminary schedule, that

3https://developers.google.com/maps/documentation/distance-matrix/
4https://twcservice.mybluemix.net/rest-api/

40

https://developers.google.com/maps/documentation/distance-matrix/
https://twcservice.mybluemix.net/rest-api/

5.6. Instruction Model

provides operational instructions for all movements within the transportation network to
complete the orders.

Listing 5.5: The Software Agent Interface
> snapshot.orders
[

{"order-a", 0, VIE, INN, 25, 10},
{"order-b", 0, LNZ, INN, 25, 10}

]
> demand
[

{"VIE", "LNZ", 1, 4, {"order-a"}, 1},
{"LNZ", "INN", 6, 9, {"order-a", "order-b"}, 1}

]
> assignment
[

{"V-VIE_1", "VIE", "LNZ", 1, 4, {"order-a"}},
{"V-LNZ_1", "LNZ", "INN", 6, 9, {"order-a", "order-b"}}

]

5.6 Instruction Model
Instructions (i.e. actions in the software agent nomenclature) are a one-way communica-
tion channel from the agent to the environment. When the agent issues an instruction,
it expects the environment to react in a certain way. For example, if the agent issues a
movement instruction for a truck, it expects an actual movement from that truck which
it could then observe via certain events, e.g. an undocking event from the origin hub,
followed by several location events and a final docking event at the destination hub. For
the given transportation network scenario, six different types of instructions have been
created, each of which yield a certain expected reaction from the environment.

• Collection instruction: A collection instruction orders the collection of the
transported cargo from the customer at the requested time. As an expected
reaction, the cargo would be picked up and brought to the nearest hub. This
behavior could be observed by a CargoEntry event at the hub.

• Dispatch instruction: Once a shipment lies in a hub, it needs to be loaded to a
truck, in order to be transferred to the destination or possibly an intermediate hub.
By issuing a dispatch instruction, the agent orders a shipment to be loaded on a
truck, observable by a CargoExit event from the current hub onto the specified
truck.

• Movement instruction: Truck movements between hubs are issued by movement
instructions. A movement instruction specifies the truck, the origin and the

41

5. A Framework for Real-time Optimization of Freight Streams

destination hub, as well as the time of departure. A movement can be observed by a
sequence of events, starting with Undocked and Departure from the origin hub,
followed by an Arrival and Docked event at the destination. Throughout the
movement, the vehicle sends LocationUpdate and TelematicsUpdate events.

• Delivery instruction: A delivery instruction orders the final delivery to the
customer. As an expected behavior the shipment would leave the hub, indicated by
a CargoExit event from the destination hub.

• Revocation instruction: A revoke instruction orders the revocation of another
instruction. This could be due to the cancelation of a movement or a rerouting of a
shipment, where existing dispatch instructions for the shipment need to be revoked.

• Postpone instruction: A postpone instruction is issued for postponing an arbi-
trary instruction for the defined time.

• Redirection instruction: A redirection instruction is issued to change the desti-
nation of a movement instruction, possibly due to an unexpected event.

The set of all movement and dispatch instructions make up the schedule of the transporta-
tion network and provide a means for the software agent, to control the freight streams
autonomously. Depending on the implementation of the routing policy, the schedule
can vary in the degree of dynamism. Modeling a more static scheduling strategy can be
done by predefining all (or the majority of) movement instructions according to a time
table. In a dynamic setting, as it is proposed in this thesis, movements are ordered on
demand, considering the utilization of the transportation network and can be planned
with different planning horizons, reaching from only hours in a very dynamic setting, to
multiple days for a more static setting. The majority of instructions does not have to
be executed immediately after they have been issued, but rather at a certain time in
the future. This is the reason why all instructions specify a scheduled execution time.
Additionally, all instructions specify an estimated duration of execution. This duration is
used in order to make predictions about the future state of the transportation network.

Note: Collection and delivery steps have only been modeled very rudimentary and
would require much more detailed sensory data when considering all steps in the process of
transportation. However, this thesis focuses around line haul operations with consolidated
goods in between hubs. There is a big difference in requirements and algorithms used for
local transportation (i.e. collections and deliveries) and line haul transportation [LW01].
Due to this difference, local transportation is a separate field of research. However, there
have been tremendous efforts both by research and the industry to develop new effective
ways of local freight distribution, since this part of the shipping process is – by distance –
the most expensive, making up to 30% [GVdVV11, Goo05] of the overall transportation
cost. The scenario covered by the thesis considers a transport order completed, once it
reaches the destination hub, i.e. the closest hub to the delivery address.

42

5.7. Future State Prediction

St0 StpTime

CURRENT SNAPSHOT PREDICTED SNAPSHOT

i1 e1 e2 e3 e4i2 i3

Figure 5.6: Predicting the future network state by applying expected events onto the
current snapshot.

5.7 Future State Prediction
As it was mentioned before, the software agent optimizes the vehicle schedule based on
snapshots of the transportation network. At each invocation cycle, the agent receives a
snapshot and returns a set of instructions. One practical requirement for these cycles
is, that – with the exception of incident handling – it is not reasonable to change the
schedule at the last minute. This would leave no lead time for planning work shifts,
coordinating with business partners or similar issues. Instead, the agent should preserve
the imminent schedule and plan beyond, i.e. optimize based on a future state of the
network. As an example, the schedule for the next day, denoted as the set of instructions
{i | i ∈ It, t ∈ [0, 24]}, where the interval ∆t = 1h should not be changed by the agent,
thus also preserving the set of expected states {st+i | st+i ∈ S, i ∈ [0, 24]}. The agent
would plan starting from t = 25 until reaching the planning horizon t ≤ tmax. The default
value for tmax = 96h = four days.

These circumstances require a mechanism, that is capable of building snapshots of a
predicted transportation network state Stp at a particular future time instant tp. This
can be done by taking all instructions {i | i ∈ It, t ∈ [0, tp]} that have been issued by the
software agent to be executed before tp and simulate these instructions, i.e. generate
according events for each instruction. These simulated events can then be applied to
a copy of the current transportation network state, effectively building an expected
future network state. Figure 5.6 illustrates this principle. In the depicted example, three
instructions {i1, i2, i3} are scheduled before the time of prediction tp. These instructions
cause the expected events {e1, e2, e3, e4}. The future state Stp is acquired by simulating
all events that happen before tp and applying the changes onto the copy of the current
state St0 . In the particular case, these are {e1, e2, e3}. Algorithm 1 (Appendix) defines
the general procedure for acquiring a future snapshot. It creates all events according
to the instructions, sorts them according to their time of emission and uses the default
event handlers to apply changes onto the copy of the current snapshot. For reasons of
brevity, the cases for collections and deliveries, as well as a number of non-essential other
events were omitted in the algorithm.

The value of the parameters (tp and tmax) have been chosen in consideration of the
provided data set, without loss of generality. That is, choosing the parameters do not have
implications for the framework, but only effect practical aspects of the transportation

43

5. A Framework for Real-time Optimization of Freight Streams

process, such as work shift planning and provisioning of resources. Yet, tp has to be
chosen at a value that exceeds the run time of the optimization cycle, which for large
networks could likely be hours.

The presented procedure is based on the simplifying assumption, that all events happen de-
terministically. Work on the stochastic prediction of events does exist [MTZ16, FFFM13],
however this does not lie within the scope of this thesis.

5.8 Subsystem for Unexpected Event Handling

Unexpected events are a common problem for planning schedules in road transportation.
They cause risks in terms of the adherence to deadlines or other service agreements
and require fast decisions to be made by the operator or autonomous agent. Since the
schedule consists of synchronized trips that follow timely constraints, the delay of one
transportation can impact future transportations. Traditionally, with fixed schedules,
this risk was minimized by planning trips with relatively high time buffers and cascading
delays [Hal85, ZF10].

A number of external influences can disturb regular operations of logistics networks
and cause such delays. Aside from traffic congestion and technical breakdowns, the
weather has big influences on travel times, that sometimes cannot be predicted well.
The framework aims at providing tools for early incident detection by using implicit
information (i.e. event patterns) and explicit information (i.e. dedicated events) about
the environment and provide a generic mechanism for context-aware incident handling.

5.8.1 Classification of Delays

Types of delays may roughly be grouped by the scope and potential impact on the
schedule. This leads to the distinction of three essential cases:

• Single-Vehicle Delay: This form of delay concerns single vehicles and may be
caused by technical issues of the vehicle. The impact on the schedule of single-
vehicle delays is small. The transported shipments might miss their connection
transportation trips and vehicles might not be able to go on their next scheduled
trip.

• Single-Connection Delay: This form of delay is limited to single connections,
but has a bigger impact on future schedule, as multiple movements might be affected.
One major reason for single-connection delays is traffic congestion.

• Multi-Connection Delay: Finally, delays concerning multiple connections have
the biggest impact on the future schedule, as they affect the largest number of
movements and spread across wide geographical regions. Bad weather is one
example for such types of delays.

44

5.8. Subsystem for Unexpected Event Handling

In consideration of the classification provided above, the framework is capable of handling
incidents from each of the three types. They are grouped by ascending scope and expected
impact on the global network:

• Technical breakdown: Both minor and sever technical issues on vehicles are
handled by the framework. The breakdowns are signaled by dedicated Telematics
events, that can transmit detailed data about the technical state of the vehicle. In
practical terms, minor and sever issues could comply with changing a flat tire up
to requiring mobile mechanical service, but in both of the considered cases, the
vehicle is eventually able to recover and continue its service. Complete breakdowns
of long haul vehicles are extremely rare and for this reason have been excluded
from considerations regarding the handling of incidents5.

• Traffic congestion: Traffic delays are also considered by the framework. Depend-
ing on the duration, a congestion may not only have an immediate impact on the
current movements on the connection, but also delay planned movements from
the near future. In the model, congestions change the estimated travel time for
connections in the transportation network. The traffic data is fetched from Google
Distance Matrix API and propagated via the TravelTimeUpdate event. For
the evaluation, varying connection times have been simulated by the environment
simulator.

• Poor weather conditions: Unexpected changes in the weather cause similar
effects to traffic congestion, but are not restricted to single connections. These
events were modeled analogous to congestion, by modifying estimated travel times.
For weather warnings, the Weather Company Data for IBM Bluemix API service
was used.

Note: Traffic congestion in line haul can often be avoided by scheduling movements in
times of low traffic activity, such as at night, but is not always possible (e.g. for same-day
delivery). For this reason, according to the evaluated dataset, most of the recorded
movements happened after 6:00 pm.

5.8.2 Handling Delays in Transportation Networks

If a vehicle is delayed, two separate problems arise. One is concerned with the vehicle
itself, and the other one is concerned with the transported cargo. A delay becomes
problematic with regard to the vehicle, if it is scheduled for another trip in the near future
and is no longer able to perform it on time. Similarly, delays might cause shipments to
miss the scheduled connection trips. In both cases, rescheduling with varying degrees
of modifications to the existing schedule is required. The complete action and decision
sequence for incident handling is depicted in the diagram in Figure 5.7. It illustrates the

5The information was acquired in a series of interviews with coworkers from DB Schenker.

45

5. A Framework for Real-time Optimization of Freight Streams

Weather
Warning

for each
connection

next agent invocation

Figure 5.7: Action and decision sequence for handling unexpected delays of vehicles and
connections.

46

5.8. Subsystem for Unexpected Event Handling

process for context-aware incident handling and and extends the process of Ngai et al.
[NLW+12]. The sequence deals with both the vehicle and the shipment aspects of delays,
which can be done in parallel.

5.8.3 Rerouting Cargo

As it can be seen in the diagram, in some cases it is sufficient to delay subsequent
instructions in order to get back to the desired operational state of the transportation
network. However, certain branches of the decision process require a rerouting of cargo.
For example, if a movement is delayed and the loaded shipments can no longer reach its
connections, a search for alternative routes based on the existing schedule is conducted.
For this reason, a rerouting algorithm was implemented that considers all 2-hop rerouting
options for existing movements, preferring movements with earlier arrival dates.

4

1 2

3

6

c1,c2

b1,b2a

d1,d2

e1,e2

g1,g2

h

5
f1,f2

Figure 5.8: Available connections for rerouting cargo after a delay.

Scenario S1

a (0,5,8)
b1 (4,7,10)
b2 (12,15,2)
c1 (9,12,2)
d1 (6,7,8)
e1 (13,14,2)
f1 (8,10,8)
g1 (11,12,8)
h (10,12,10)

Scenario S2

a (0,5,8)
b1 (4,7,10)
b2 (12,15,2)
c1 (9,12,3)
d1 (6,7,8)
e1 (13,14,3)
f1 (8,10,8)
g1 (11,12,5)
h (10,12,10)

Scenario S3

a (0,5,8)
b1 (4,7,10)
b2 (12,15,0)
c1 (9,12,3)
d1 (6,7,3)
e1 (13,14,3)
f1 (8,10,3)
g1 (11,12,3)
h (10,12,10)

Table 5.2: Distinct shipment rerouting scenarios Pattern: (arrival, departure, unoccupied volume)

Example scenarios

Three scenarios have been chosen to illustrate the principles of the proposed rerouting
algorithm. Figure 5.8 provides a set of movements {a, bi, ci, di, ei, fi, gi, h | i ∈ {1, 2}}
through a subset of hubs in a transportation network. In all of the three scenarios
provided in Table 5.2, the originally planned route {a, b1} is not feasible, due to a delay

47

5. A Framework for Real-time Optimization of Freight Streams

during the first movement a. The notation for a movement in the scenarios corresponds
to the pattern (arrival, departure, unoccupied volume).

• Scenario S1: In this scenario, 8 volume units from movement a need to be rerouted.
For this, three options are available: The 1-hop route over hub 3 (3 unoccupied
volume units, arrival at t+ 14), the 2-hop route over hubs 4 and 5 (8 unoccupied
volume units, arrival at t+ 12), as well as a direct connection via b2 (2 unoccupied
volume units, arrival at t+ 15). In this case, because the 2-hop option offers enough
unoccupied volume and has the earliest arrival, the entire volume is rerouted via
that route.
Result: a(8)→ d1(8)→ f1(8)→ g1(8)

• Scenario S2: This scenario is similar to the first scenario, except that the unoc-
cupied volume for the 2-hop option is not sufficient to cover the full volume to
be rerouted, as the link with the minimum unoccupied volume g2 determines the
unoccupied volume for the entire route. For this reason, the remaining volume is
rerouted to the second fastest option via hub 3.

Result: a(8)→
c1(3)→ e1(3)
d1(5)→ f1(5)

→ g1(5)

• Scenario S3: Finally, the third scenario covers a case, where the alternative routes
do not offer enough unoccupied volume to cover the full volume to be rerouted. In
this case, the remaining volume is temporarily stored at the intermediate hub 2.

Result: a(8)→
c1(3)→ e1(3)
d1(3)→ f1(3)

→ g1(3)

48

CHAPTER 6
Dynamic Transshipment with

Time Constraints

In this chapter the second of two contributions, a mathematical optimization model
for building a dynamic vehicle schedule will be introduced. It extends the Dynamic
Transshipment Problem and additionally considers deadline penalties, loading gate
restrictions, and recalculations based on previous solutions. In detail, this includes models
for two separate optimization problems. The first optimization problem (Section 6.2)
determines the demand of trucks for each connection and time, given all transport orders.
The second optimization problem (Section 6.3) uses the output of the first model and
assigns vehicles to the demanded transportation routes. The result of a serial execution
of both models is a dynamic truck schedule.

6.1 Overview

The proposed optimization problem for optimizing freight streams implements a software
agent policy Πt(s, a), and will further be referred to as the routing policy. In particular,
this routing policy, where s denotes the compound state of the transportation network
and a denotes all instructions that are required to operate a transportation network (e.g.,
move vehicles, dispatch shipments to vehicles) optimizes costs with respect to a cost
parameter vector c. In the routing policy definition, s = {O,SH , ST , SC , c} comprises the
set of pending transport orders O, all hub states SH , vehicle states ST , and connection
states SC , as well as the cost parameter vector c. This vector c = (cd, ct, cs, cdl) provides
parameters for travel costs cd (per distance unit), turnover and storage costs ct and cs
(per weight unit), and deadline penalty costs cdl (per weight and time unit).

49

6. Dynamic Transshipment with Time Constraints

6.2 Dynamic Transshipment with Time Constraints in a
Finite Planning Horizon

The proposed problem definition resembles the Dynamic Transshipment Problem, intro-
duced by Herer and Tzur [HT01], where for each time period t, a deterministic demand
of order volumes is issued. The definition considers additional constraints: Each order, in
addition to specifying a dedicated pickup time, specifies a delivery date. If the calculated
route cannot adhere to the delivery date, penalties are charged. In addition, loading gate
restrictions need to assure that the amount of vehicles scheduled to simultaneously arrive
at a hub does not exceed the number of loading gates, thus avoiding waiting times for
terminal processing. For recalculations based on previous solutions, a means of providing
previous solutions as input is required. This also needs to consider the dynamism of the
setting, as trucks may already be on the road, instead of being a resource that is available
at a hub, as it was traditionally assumed for similar problem definitions [Khu15]. In the
next two sections, the optimization problem will be formally defined.

6.2.1 System Model

According to the data model presented in the previous chapter, a number of static
and dynamic properties of the involved entities can be used as inputs for optimization.
Table 6.1 lists all variables and identifiers that have been used in the problem definition.
For a hub h ∈ H, this includes the storage capacity cap(h) and the number of loading
gates lg(h). Trucks are constrained by their overall capacity captr. Note that the problem
definition assumes a homogeneous fleet, i.e., the capacity of each truck is equal. The
two matrices Ka

t,h and Kd
t,h define a priori known truck movements, i.e., movements from

previous solutions. Each departure Kd
t′,h′ decrements the number of available trucks

Āt′,h′ at hub h′ at time t′ (with an analogous increment for each arrival Ka
t′,h′). This

distinction is made, since movements that are currently in transit only specify an arrival,
as the departure lies in the past. Similar to the classical Transshipment Problem, a
shipment matrix Mt,s,h1,h2 specifies the ordered volume between two hubs h1 and h2 at
each time t ∈ T , resembling all transport orders . This matrix encodes both the pickup
and delivery hub (as dimensions), as well as the pickup time (another dimension), and
the volume of a shipment (matrix value). However, there is an additional dimension
for s in M , the shipment. This is because of one fundamental modeling problem of a
multi-shipment scenario: Assuming that a shipment s1 specified 20 volume units to be
shipped from hub A to B and a second shipment s2, that specified 20 volume units from
B to A without the dimensional separation for the shipments, the optimal solution would
be to not make any movement at all, as the desired equilibrium state for supply and
demand would already be satisfied. The separate dimension prevents this behavior, but
adds computational complexity, especially for large dimension spaces, as it is the case for
shipments. As a countermeasure to reduce the amount of shipments, shipments with the
same origin, destination, as well as similar pickup and delivery times could be combined
into a single shipment. However, this would create larger atomic units for transportation,

50

6.2. Dynamic Transshipment with Time Constraints in a Finite Planning Horizon

which in turn influences the quality of the solution.

In addition to the shipment matrix, dl(s) specifies the deadline of a shipment. Missing
the deadline causes the deadline penalty cdl to be added to the costs for each additional
time unit. The time t ∈ T in the model is defined in discrete intervals, limited by the
planning horizon tmax, i.e., T = [0, .., tmax]. τ(h1, h2) defines the travel time from h1 to
h2, based on current and predicted travel times for each connection. Another constant
θ is used for the turnover time, combining unloading and loading. In order to leverage
existing movements from previous solutions, occ(t, h1, h2) specifies the occupied volume
for existing movements. If the occupied volume for a connection (t, h1, h2) does not equal
the capacity of all trucks scheduled for this connection, unoccupied volume from previous
solutions is available. Dispatching shipments to these movements will not require new
vehicles to be provisioned, thus improving vehicle utilization.

A solution of the problem consists of four decision matrices V̄ , V̄ H , Ā, and R̄ (as a
notational convention for easier distinction between input matrices and matrices that are
decision variables, decision matrices are marked with a top bar, e.g., V̄). The first matrix
V̄ specifies the volume flow of shipments through the network. It defines the amount of
shipped volume between each two hubs at each time t. This volume flow, together with
the volume from previous solutions results in the stored volume at each hub, denoted by
V̄ H
t,h. It also results in the number of trucks R̄t,h1,h2 required to ship the volume for each

connection and time. Finally, the number of available trucks Āt,h at each hub is a result
of R̄, Ka and Kd. The main output of a solution are the matrices V̄t,s,h1,h2 and R̄t,h.
Once a vehicle assignment for R̄ is found by the second optimization problem (discussed
in Section 6.3), all shipments defined in V̄ can be dispatched to their according vehicles.

6.2.2 Optimization Problem

The goal of the optimization problem is to minimize costs while processing the transport
orders. The objective function, depicted in Equation 6.1, minimizes the sum of all travel
costs and deadline penalties that become due for late shipments. The function µ(s, h1, h2)
(Equation 6.2) denotes the interval between the deadline dl(s) of a shipment s and
the planning horizon tmax. The travel time τ(h1, h2) between two hubs h1 and h2 is
subtracted from the deadline, since it is necessary to start a movement at dl(s)−τ(h1, h2)
in order to not miss the deadline. For each time step t > dl(s) where the shipment has
not arrived at the destination hub (i.e. V̄t,s,h1,h2 > 0,∀h1, h2 ∈ H), the penalty rate cdl
is added to the overall costs.

min
x∈Z+

∑
h1,h2∈H

∑
t∈T

τ(h1, h2) · R̄t,h1,h2 · ckm︸ ︷︷ ︸
travel costs

+
∑

h1,h2∈H

∑
s∈S

∑
t ∈µ(s,h1,h2)

min(1, V̄t,s,h1,h2) · cdl︸ ︷︷ ︸
deadline penalties

(6.1)

51

6. Dynamic Transshipment with Time Constraints

Table 6.1: Variable Description: Dynamic Transshipment Problem with Time
Constraints in a Finite Planning Horizon

Variable Name Description

H Set of hubs
lg(h) Number of loading gates at hub h
cap(h) Maximum storage capacity of hub h
S Set of shipments
Mt,s,h1,h2 Ordered movement volume for shipment s from origin h1 to

destination h2, starting at time t
Ka
t,h Initial number of arriving trucks at hub h for each time t

Kd
t,h Initial number of departing trucks for hub h for each time t

ckm Vehicle costs per km
cdl Costs for missed deadline per time unit after deadline
captr Capacity of a truck
dl(s) Deadline of a shipment s
τ(h1, h2) Travel time from hub h1 to hub h2
tmax Planning horizon (i.e. number of considered time steps)
T = [0, .., tmax] Discrete notion of time
αt(s) : S −→ T Initial arrival of shipment s
αh(s) : S −→ H Origin hub of shipment s
θ Turnover time (i.e. unloading and loading)
occ(t, h1, h2) Preoccupied volume from hub h1 to hub h2 at time t

V̄t,s,h1,h2 Shipped volume for shipment s at time t from hub h1 to hub
h2

V̄ H
t,h Stored shipment volume of hub h at time t
Āt,h Available trucks at hub h and time t
R̄t,h1,h2 Number of traveling trucks from hub h1 to hub h2 at time t
Variables below the horizontal rule are decision variables

µ(s, h1, h2) = [max(0, dl(s)− τ(h1, h2)), tmax] (6.2)

The decision variables V̄t,s,h1,h2 and R̄t,h1,h2 denote the transported volume and the
necessary number of vehicles. Equation 6.3 describes the relationship that needs to
be satisfied by both matrices. The first term aggregates the overall volume to be
shipped between two hubs h1 and h2 at time t. It consists of the shipped volume
from V̄ and the occupied volume occ(t, h1, h2). It is the volume of existing movements
(e.g., scheduled in previous optimization cycles). This helps to better utilize existing
movements before assigning additional vehicles to the route. The second term describes
the provisioned vehicle capacity. It determines the final number of vehicles that is
demanded for transporting the calculated volume from V̄ .

52

6.2. Dynamic Transshipment with Time Constraints in a Finite Planning Horizon

∀h1, h2 ∈ H, t ∈ T : ∑
s∈S

V̄t,s,h1,h2 + occ(t, h1, h2) ≤ R̄t,h1,h2 · captr (6.3)

Equation 6.4 ensures the correct flow of shipments through the transportation network.
Generally speaking, it ensures that for each hub, over time, the sum of incoming shipment
volume subtracted by the sum of outgoing shipment volume (i.e., the left member of
the equation) equals the supply and demand, defined in M (the right member of the
equation). This assures that for supply nodes, the balance of incoming and outgoing
volume equals the negative supply (as outgoing volume exceeds incoming volume), the
demand nodes volume balance equals the supply (as, according to M the demand of a
shipment always equals the supply) and the volume balance for intermediate hubs always
equals zero (i.e., incoming volume is the same as outgoing volume). Note that a node
can be a supply node, intermediate node and demand node for different shipments at the
same time.

∀h1 ∈ H, s ∈ S : ∑
h2∈H

∑
t∈T

V̄t,s,h1,h2 −
∑
h3∈H

∑
t∈T

V̄t,s,h3,h1

=
∑
h4∈H

∑
t∈T

Mt,s,h1,h4 −
∑
h5∈H

∑
t∈T

Mt,s,h5,h1

(6.4)

In Equation 6.5, the hub storage volume matrix V̄ H is defined. The stored volume V̄ H
t,h1

of
a hub h1 comprises the supply defined by

∑
h2∈H

∑
s∈SMt,s,h1,h2 , the incoming or existing

volume, denoted as balV (t, h) and defined in Equation 6.7, subtracted by the outgoing
volume

∑
h2∈H

∑
s∈S V̄t,s,h1,h2 . balV (t, h) is defined for three distinct cases. The first case

(t = 0) considers no additional volume. In the second case (t > 0 ∧ t − τ(h2, h1) < 0)
the volume of the previous time step is added. This case covers situations, where the
transport from h2 to h1 has not yet arrived (i.e., t − τ(h2, h1) < 0). The third case
(t > 0 ∧ τ(h2, h1) ≥ 0) additionally considers incoming volume from routes that departed
from h2 at τ(h2, h1).

∀h1 ∈ H, t ∈ T :
V H
t,h1 =

∑
h2∈H

∑
s∈S

Mt,s,h1,h2 − V̄t,s,h1,h2 + balV (t, h1) (6.5)

∀h1 ∈ H, t ∈ T :
Āt,h1 = Ka

t,h1 −
∑
h2∈H

R̄t,h1,h2 + balR(t, h1, h2) (6.6)

53

6. Dynamic Transshipment with Time Constraints

The number of available vehicles per hub are calculated in Equation 6.6. Similar to
Equation 6.5, it consists of three terms that represent initial vehicles (Ka), vehicles
from the last time step or from other hubs (balR) and outgoing vehicles

∑
h2∈H R̄t,h1,h2 .

Equation 6.8 is defined analogous to Equation 6.7, where φ(t, h1, h2) – Equation (6.9) –
denotes the difference between available vehicles from the previous time step Ā(t−1),h1

and predefined departures from Kd.

balV (t, h1) =


0 for t = 0
V̄ H

(t−1),h1
for t > 0 ∧ t− τ(h2, h1) < 0

V̄ H
(t−1),h1

+
∑
h2∈H,s∈S V̄t−τ(h2,h1),s,h2,h1 otherwise

(6.7)

balR(t, h1, h2) =


0 for t = 0
φ(t, h1, h2) for t > 0 ∧ t− τ(h2, h1) < 0
φ(t, h1, h2) + R̄t−τ(h2,h1),h2,h1 otherwise

(6.8)

φ(t, h1, h2) = Ā(t−1),h1 −K
d
t,h1,h2 (6.9)

Equations 6.10 and 6.11 restrict the flow of volume through the network by limiting hub
capacities cap(h) and the number of loading gates lg(h). Equation 6.10 ensures that the
hub capacity is exceeded at no time. The subsequent Equation 6.11 restricts the number
of departing trucks, i.e.,

∑
h2∈H R̄t−τ(h2,h1),h2,h1 , which simultaneously arrive at h1 to the

number of loading gates lg(h1) of h1.

∀h ∈ H, t ∈ T : cap(h) ≥ V̄ H
t,h (6.10)

∀h1 ∈ H, t ∈ T :

lg(h) ≥
{∑

h2∈H R̄t−τ(h2,h1),h2,h1 for t− τ(h2, h1) ≥ 0
0 otherwise

(6.11)

The model further assumes atomicity of transport orders, i.e., the volume of one transport
order cannot be split up and take separate routes, but has to traverse the network as a
whole. This constraint is defined in Equation 6.12.

∀t ∈ T, s ∈ S, h1, h2 ∈ H, :

V̄t,s,h1,h2 =
{∑

t′∈T
∑
h3,h4∈HMt′,s,h3,h4 for V̄t,s,h1,h2 ≥ 0

0 otherwise
(6.12)

54

6.3. Vehicle Assignment

The optimization model also considers a turnover time θ for shipments, as loading and
unloading requires time. For this reason, if a shipment arrives at an intermediate hub at
time t, it cannot immediately be transferred to the next hub, but has to be on standby
at the hub for the interval [t, t + θ]. This restriction is defined in Equation 6.13. The
same principle applies to waiting times for initially arriving shipments. Equation 6.14
assures that shipments are not being transferred for θ time steps after their initial arrival
at αt(s).

∀s ∈ S, t ∈ T , h1, h2 ∈ H :{∑
h3,h4∈H V̄t+τ(h1,h2)+θ,s,h3,h4 = 0 for V̄t,s,h1,h2 > 0
> otherwise

(6.13)

∀s ∈ S :
∑

h1,h2∈H

∑
t∈[αt(s),αt(s)+θ]

V̄t,s,h1,h2 = 0 (6.14)

6.3 Vehicle Assignment

Solutions for the model discussed in the previous section include four matrices that
describe the freight streams in the transportation network, most notably the resulting
matrix V̄ , which defines the routing for each shipment through the network and the
matrix R̄, which holds the required number of trucks for each connection and time step.
This matrix will serve as input for the second optimization problem proposed in the
thesis and discussed in this section.

6.3.1 System Model

In order to build a dynamic schedule, concrete vehicles need to be assigned to the demand
R̄, resulting from the first optimization problem. The optimization problem discussed
below provides a general approach and allows for an extension with additional constraints.
For example, a vehicle assignment might consider working shifts or round trip times for
human drivers, but could also define more loose constraints for an autonomous fleet.

Table 6.2 provides an overview of all variables used in the problem definition. The three
sets H, M and Tr represent the involved entities, where M denotes the movements
resulting from the solution of the Transshipment Problem and Tr denotes the set of all
trucks. Similar to the first problem definition, H represents all hubs in the network. The
lookup function h(tr) returns the home hub for each truck. Additional lookup functions
include αh(m) and ωh(m) for origin and arrival hubs of movements, as well as αt(m) and
ωt(m) for departure and arrival times. δ(m) denotes the number of required trucks for
the movement m.

Assigning vehicles to movements requires knowledge of which vehicle is available at which
hub at what time. In order to track a vehicle’s location in the network, the two decision

55

6. Dynamic Transshipment with Time Constraints

Table 6.2: Variable Description: Vehicle Assignment Problem

Variable Name Description

H Set of hubs
M Set of movements
Tr Set of trucks
h(tr) Home hub of truck tr
At,tr,h ∈ {0, 1} A priori known arrivals of truck tr at hub h and time t
Itd,ta,h1,h2,tr ∈ {0, 1} A priori known schedule for truck tr, with departure td at

hub h1 and arrival ta at hub h2
tmax Planning horizon (i.e. number of considered time steps)
T = [0, .., tmax] Discrete notion of time in steps
αt(m) Departure time of movement m
αh(m) Origin hub of movement m
ωt(m) Arrival time of movement m
ωh(m) Destination hub of movement m
δ(m) Demanded number of trucks for movement m

S̄t,tr,h ∈ {0, 1} Standby status for truck tr at hub h and time t
R̄tr,m ∈ {0, 1} Assignment for truck tr to movement m
Variables below the horizontal rule are decision variables

matrices S̄ and R̄ are required. A vehicle can either be available at a hub (S̄t,tr,h = 1),
or in transit (R̄tr,m = 1), but never both. S̄ and R̄ partly depend on the a priori known
schedule for vehicles, i.e. movements from previous solutions. Similar to the previous
problem definition, where arrivals and departures where separated, a distinction is made
for movements that are in transit and movements that are scheduled in the future. For
this reason, At,tr,h specifies the arrival of each truck at each hub and time for movements
in transit. Similarly, Itd,ta,h1,h2,tr is defined for future movements, additionally specifying
the departure time td and the origin hub h1.

6.3.2 Optimization Problem

The vehicle assignment problem attempts to find a mapping between vehicles and vehicle
demand in order to build a dynamic schedule for vehicles. The objective function depicted
in Equation 6.15 maximizes the standby time of trucks at their home hub. This is a
desirable solution property, as it enables an easier management of the vehicle fleet and
personnel [Gud12]. If round trip times are short, working schedules for drivers can be
planned more flexibly. However, the objective might be adapted for autonomous fleets.
The constraint defined in Equation 6.16 assures that the number of assignments equals
the number of required trucks for each movement.

56

6.3. Vehicle Assignment

max
x∈Z+

∑
t∈T

∑
tr∈Tr

∑
m∈M

S̄t,tr,t(h) (6.15)

∀m ∈M :
∑
tr∈Tr

R̄tr,m = δ(m) (6.16)

The standby status S̄t,tr,h ∈ {0, 1} of a truck tr is defined in Equation 6.17. It uses three
indicators: The status of the previous time step S̄t−1, the a priori schedule from previous
optimization cycles, comprising of scheduled arrivals A and movements I, and newly
scheduled movements R̄. The equation distinguishes between two cases, depending on
the value for t. Informally the term evaluated for t > 0 returns incoming movements
arriving at time t (denoted by σi), subtracted by outgoing movements leaving at time t
(denoted by σo). In the case of t = 0, there cannot be any incoming movements. There is
also no previous status S̄t−1.

∀tr ∈ Tr, h ∈ H, t ∈ T :
S̄t,tr,h = At,tr,h +

∑
m∈arr(t,h)

R̄tr,m −
∑

m∈dep(t,h)
R̄tr,m

+
{
σi(H,Pt, t, h, tr)− σo(H,Ft, t, h, tr) + S̄(t−1),tr,h for t > 0
−σo(H,T, t, h, tr) otherwise

(6.17)

The functions dep(t, h) (Equation 6.18), arr(t, h) (Equation 6.19) and dur(t) (Equa-
tion 6.20) are filters that return specific subsets of the set of all movements M . dep(t, h)
filters for all movements m that depart from hub h at time t. Similarly, arr(t, h) selects
all movements that arrive at hub h and time t. dur(t) returns all active movements m
(i.e., α(m) ≤ t ≤ ω(m)) at time t.

dep(t, h) = {m | m ∈M , αt(m) = t, αh(m) = h} (6.18)

arr(t, h) = {m | m ∈M , ωt(m) = t, ωh(m) = h} (6.19)

dur(t) = {m | m ∈M , αt(m) ≤ t, ωt(m) ≥ t} (6.20)

The function σi : {H}×{T}×H ×T ×Tr −→ {0, 1}, defined in Equation 6.21 indicates,
whether there is any known incoming movement (from the initial schedule Ī) to the
specified hub within the specified time interval. Analogous, the function σo indicates
outgoing movements within a specified time interval. For this purpose, the sets Pt0

57

6. Dynamic Transshipment with Time Constraints

(Equation 6.24) and Ft0 (Equation 6.25) are defined as all past and all future time steps,
relative to t0. Note that the invariant depicted in Equation 6.23 must hold. It ensures
that a vehicle is either in standby (only at a single hub), or on a movement (known or
calculated), but never more than one thing at the same time.

σi(H,T, t, h, tr) =
∑
o∈H

∑
d∈T

Id,t,o,h,tr (6.21)

σo(H,T, t, h, tr) =
∑
d∈H

∑
a∈T

It,a,h,d,tr (6.22)

∀t ∈ T, tr ∈ Tr :∑
m∈dur(t)

R̄tr,m +
∑
h∈H

(S̄t,tr,h + σi(H,Pt, t, h, tr) + σo(H,Ft, t, h, tr)) = 1 (6.23)

Pt0 = {t | t ∈ T , t < t0} (6.24)

Ft0 = {t | t ∈ T , t > t0} (6.25)

6.4 Conclusion
This chapter introduced an implementation of a routing policy Πt(s, a) based on math-
ematical optimization for creating dynamic vehicle schedules based on transportation
demand. Two mathematical models were used for scheduling the vehicles. The first model,
designed after the Transshipment Problem, allocates transportation volume to routes,
adding constraints for deadlines and turnover times and calculating the required number
of vehicles for each route. The second optimization model assigns concrete vehicles to
the provisioned volume, effectively building a dynamic vehicle schedule. In the next
chapter, this routing policy together with the underlaying framework and the subsystem
for incident handling will be evaluated. The evaluation will facilitate real-world data sets
for building a realistic setting and and assure the practicality of the chosen approach.

58

CHAPTER 7
Evaluation

In this chapter, we discuss the performance of our proposed freight stream optimization
framework. During the evaluation, we focus on two main aspects of the framework,
namely dynamic vehicle routing and automatic incident handling. Hence, our evaluation
will be two-fold. First, we focus on the performance of the routing policy Πt(s, a), which
is responsible for the dynamic dispatching of shipments and the routing of vehicles. We
test the performance by simulating two weeks of transportation activity and comparing
the resulting schedule to a fixed schedule. To this end, we facilitate data from the
Austrian logistics company DB Schenker, which provides us with detailed transportation
data, such as transport orders and movements, which are based on a fixed schedule.
With the simulations, we aim to show the superiority of dynamic scheduling compared
to a fixed schedule in terms of vehicle utilization, number of necessary movements, and
overall driven kilometers. For these particular experiments, we do not consider incidents,
such as vehicle breakdowns or traffic delay. Incident handling will be subject to the
second part of the evaluation, where we add unexpected events to our simulations to
test the subsystem for incident handling. Again, we base these simulations on the data
provided by DB Schenker and simulate different scenarios to observe implications on the
performance of our routing policy and framework.

7.1 Performance of Routing Policy

To test the performance of the proposed routing policy, we analyze the available data
from DB Schenker and derive simulations of transportation activity. To that end, we
built an event simulator that is capable of mimicking certain aspects of the environment,
i.e., the transportation network, by issuing according events. This includes incoming
transport orders, parcel entry and exit scans, vehicle docking and undocking, as well as
GPS signals and other telemetric data from vehicles in transit. We refer to Figure 5.4
in Chapter 5 for the detailed event model that describes the framework’s view on the

59

7. Evaluation

Table 7.1: Overview of the Datasets, each Covering a Week of Network Activity

|O| Ow |M | Mut ow* mw* o
m*

Set Q1 10468 2183t 643 36% (1, 7263, 210) (1, 19267, 3425) (1, 105, 13)
Set Q4 9440 2053t 549 39% (1, 10180, 218) (1, 167444, 3741) (1, 144, 14)
* ... (min, max, avg)

environment. The data from DB Schenker does not include all data considered in our
environment model, but is limited to transport orders, entry and exit scans as well as
planned departures and arrivals of vehicles.

7.1.1 Transportation Data

In detail, the dataset consists of LTL transportation records from eleven Austrian branches
during a timespan of two weeks, one in Q1 and one in Q4 of 2015. Each week comprises
between 60,000 and 70,000 production orders, i.e. orders for loading and unloading cargo
and vehicle movements, and approximately 10,000 transport orders. We use this data
to reveal freight streams, vehicle movements, and activity patterns in this section. For
international orders in the dataset, which account for 60% of all recorded orders, we
only consider the Austrian part of the transportation and adapt origins and destinations
accordingly. Regarding capacity constraints of vehicles, the weight, and dimensions of
shipments need to be considered. Unfortunately, the dataset does not include reliable
information about cargo dimensions, which poses a challenge for comparing the results.
In this section we explain, how we mitigated this problem by deriving weight-based
capacity constraints from the data.

Data Characteristics

Table 7.1 lists the main characteristics for both datasets Set Q1 and Set Q4. In the table,
|O| and Ow refer to the number of transport orders and the overall weight of transport
orders, |M | refers to the number of vehicle movements, ow and mw are the minimum,
maximum, and average transport order weights and transported weight per movement
in kilogram, and o

m provides the same metric for orders per movement. Mut refers to
the average utilization per movement under the same assumptions that we used for the
simulations. Overall, the data shows seasonal fluctuations of the transported weight (6%
gap) and number of movements (15% gap). The utilization of vehicles varies between
36% and 39%, i.e., typical vehicles were loaded at 36-39% to their capacity.

60

7.1. Performance of Routing Policy

Order Volume by Time of Issuance (tons)
Order Volume by Time of Processing (tons)

20

40

60

80

100

120

140

160

180

200

220

240

260

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 31
0100 02 03 04 05 06

Timeline (6h intervals)

W
eig

ht
in
to
ns

Figure 7.1: Timeline of Incoming vs. Processed Order Volume (Set Q4)

Transportation Demand

Figure 7.1 illustrates the pattern in which orders arrive in the system. Each data point
in the graphic corresponds to the volume of 3h intervals within a work week – starting
on Sunday with orders from the previous week – recorded in November of 2015 (Set Q4).
Note that despite the word volume, in logistics, this term refers to weight in tons [Gud07].
The timeline shows that the number of incoming orders declines steadily throughout the
week and more than 99.5% of orders are issued before Friday. The timeline also reveals
the pattern in which these orders are processed, i.e., loaded and moved. Due to the fixed
schedule, this pattern is very regular and has its peeks after rush hours, in order to avoid
heavy traffic. Figures 7.2 a and 7.2 b provide a more detailed view into the distribution
of order volumes to the eleven nodes in the network. Each graphic depicts the turnover
volume of a dataset and breaks down the volume into incoming and outgoing volumes per
node. The figures show the typical imbalances between incoming and outgoing transport
volume, originating from the fact that some cities are dominant in production, whereas
other cities are consumption-dominant. This fact has big implications on the utilization
of vehicles, as they tend to have highly utilized trips to consumer destinations, but less
utilized or even empty return journeys [Chr16]. Planning circular trips with multiple
destinations is a possible solution to mitigate this problem.

Simulation Parameters and Assumptions

To compensate for missing data in the datasets, as well as computational resource
limitations, we require further assumptions and restrictions in certain aspects, which we
describe in the following.

61

7. Evaluation

3

(a) Set Q1

3

(b) Set Q4

Figure 7.2: Turnover Volume: Incoming and Outgoing Volume per Hub

Adaptions to the model. Although being mostly homogeneous, DB Schenker does
not solely operate its own vehicle fleet, but partly uses external trucking companies for
shipping its cargo. This allows the company to schedule movements in one direction
without scheduling a return trip, leaving the burden of finding a lucrative return trip
to the trucking company. For the proposed optimization model, this would result in a
negative number of vehicles available at a hub. For this reason, and to make results more
comparable, we use a relaxed version of the mathematical model for transshipment for
the simulations, where we allow negative values in the decision matrix At,h.

Capacity of Vehicles. Considering so-called bulky freight, defining the maximal
capacity of vehicles solely by weight is incomplete. However, data about the dimensions
of shipments is not consistently available in the data. We therefore infer the capacity
of vehicles from the datasets, based on shipment weight. In particular, the maximum
vehicle capacity is inferred by observing the transported order weight per movement.
The dataset shows a noticeable drop of production orders for freight that is over 9500 kg.
With input from domain experts, we add a 10% safety margin, resulting in a weight-based
vehicle capacity of 8550 kg. Note that the average transported weight recorded in the
dataset was approximately 3500 kg. We apply this capacity constraint to all vehicles
equally, as the optimization model considers a homogeneous fleet.

Simulation Environment

All framework components were implemented in Java 8 and Kotlin 1.0 and were executed
in a Windows 10 Pro x64 environment (CPU: Intel Core i5-3570K @ 4.10GHz, Main
Memory: 16GB). The CPLEX Solver for solving instances of the two mathematical
optimization problems for computing a dynamic schedule was hosted on IBM DOCloud1.

1https://www.ibm.com/us-en/marketplace/decision-optimization-cloud

62

https://www.ibm.com/us-en/marketplace/decision-optimization-cloud

7.1. Performance of Routing Policy

Our usage plan offered a shared VM pool with 6 CPU-cores and 28GB of main memory
and had an execution time limit of 60 minutes.

Usage Limits of DOCloud and Model Complexity. In preparatory experiments,
we observed that the DOCloud solver never returned the optimal result for instances of
the dynamic transshipment problem, which calculates freight streams and determines the
number of vehicles per connection and time unit. For larger problem instances, such as the
ones we used during the simulations, the solver did not return any result within the one
hour time limit. For this reason, some measures for reducing the problem complexity were
necessary. Since our dynamic transshipment model considers arbitrary predetermined
routes (as a method for including previous routing results into current computations),
we were able to assume arbitrary fractions of the fixed schedule to be predetermined
in the dynamic transshipment instance, which improved the runtime of the solver. In
a number of preparatory experiments and the help of logistics experts, we determined
a suitable number for the fraction, assuming 65% of all movements from the dataset
as predetermined for the simulations. The planning horizon, another complexity factor
for scheduling, was set to 48 hours for the experiments, as we noticed an exponential
correlation between the planning horizon and the runtime of problem instances.

7.1.2 Simulation Execution

During a simulation, the simulator issues transport orders according to the issue date
in the dataset to a reference implementation of the framework for optimizing freight
streams, introduced in Chapter 5. In fixed 24-hour cycles, the framework invokes the
optimization agent to plan the schedule for the next 48 hours, based on the current
network state and all incoming orders. The planning horizon of the last invocation is
shortened to 24 hours, to stay within the limits of a work week. The first invocation run
is executed on Sunday 12pm simulated time, using orders from the previous week. Note
that typically, such calculations would be done in the previous week, such that there was
enough lead time for employees to plan their shifts. However, we assume no lead-time in
our simulations, since incidents are not considered, leading to deterministic simulations –
i.e., a network snapshot prediction results in the exact same state than the actual state,
without deviations. Starting from the first invocation, the optimization agent is invoked
once every 24 hours and five times in total. In the following, we present the results of
the simulations.

Results

The optimization agent was invoked five times per simulation, resulting in five problem
instances for transshipment and vehicle allocation, i.e., the two optimization problems
specified in the routing policy. Table 7.2 lists the results of both simulations for each
individual invocation and aggregates the overall performance in the last two rows. In the
table, Ow refers to the transport order weight in tons, |M |B and |M |D are the number
of movements for the baseline and the dynamic routing policy solution, |Mut| refers

63

7. Evaluation

Table 7.2: Simulation Results for Q1 and Q4, Assuming no Incidents

Ow |M |B |M |D Mut distB distD gap

Inv1 633 136 96 73.2% 34239 23318 3.08%
640 125 87 81.7% 31890 19329 2.55%

Inv2 525 140 98 59.6% 36240 27513 5.67%
458 113 84 60.6% 29170 19003 6.17%

Inv3 456 139 107 47.3% 34788 32680 12.91%
473 128 108 48.6% 31982 21585 14.24%

Inv4 390 136 122 35.5% 34464 31267 22.77%
348 117 118 32.8% 29310 27156 6.21%

Inv5 180 92 186 9.7% 24244 29546 38.15%
134 66 146 10.2% 14446 24794 29.08%

Overall 2183 643 630 38.5% 163975 144324 16,51%
2053 549 543 42.1% 136798 111867 11,65%

Format: B ... Baseline Schedule, D ... Dynamic Schedule

to the vehicle utilization. distB and distD further denote the total amount of driven
kilometers for both schedules and gap describes the solution quality of the solution found
by the CPLEX solver for the dynamic transshipment problem. It is the relative distance
to the computed lower bound of the given problem instance. Our routing policy, in
combination with 65% of predetermined movements from the fixed schedule showed
significant improvements when compared to the fixed schedule from the data. Overall,
we were able to reduce the number of movements from 643 to 630 and from 550 to 543,
marking an improvement of 2% for Set Q1 and 2.3% for Set Q4. This improved the
utilization of vehicles by 2.5 and 3.1 percentage points respectively. More importantly,
the dynamic schedule resulted in a drastic reduction of driven kilometers by 11.9% and
19.3%, respectively.

In Figure 7.3a and Figure 7.3b, we demonstrate the difference between the static and the
dynamic schedule with 65% predetermined movements. The plots represent the amount
of movements in three-hour intervals during both simulations and visualize temporal
distribution characteristics. The dynamic schedule operates less periodic and distributes
the movements more equally on the timeline. The graphic also shows that the majority
of movements are scheduled for Friday in both simulations. In principal, we have two
explanations for this observation. First, the last planning horizon for I5 was shorter
(24 instead of 48 hours), leaving fewer possibilities to place movements. Secondly, the
amount of predetermined movements on Friday was smaller compared to other weekdays
– e.g. 34% and 49% less than on Wednesday – which left more possibilities for the policy
to set different times of the day, effectively spreading out the movements. On average,
we recorded a shipment turnover rate of 1.62. Only 24.3% of all shipments required two
or more turnovers, 12.8% three or more.

64

7.1. Performance of Routing Policy

10

20

30

40

50

60

70

80

90

100

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00
01 02 03 04 05 06

Nu
m
be
ro

fv
eh
icl
es

Timeline (6h intervals)

Baseline
Fixed Schedule (65%)
Dynamic Schedule

(a) Resulting Dynamic Schedule for Set Q1

10

20

30

40

50

60

70

80

90

100

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00
01 02 03 04 05 06

Nu
m
be
ro

fv
eh
icl
es

Timeline (6h intervals)

Baseline
Fixed Schedule (65%)
Dynamic Schedule

(b) Resulting Dynamic Schedule for Set Q4

Figure 7.3: Comparison of Baseline Schedule and Dynamic Schedule with 65% Predetermined
Routes

The maximum number of recorded turnovers was six (1% of all shipments). For shipments
that required turnovers, the average duration from first loading to last offloading was
14.2 hours.

7.1.3 Solution Characteristics

Some of the solution characteristics require further explanations. For example, the
utilization on Monday is much higher than the utilization at the end of the week. The
decline in utilization can be explained by the balance of available vehicles per hub. We
initialize the network with a certain number of vehicles per hub. During simulations,
vehicles start to concentrate at consumer hubs and return trips to producer hubs become
less lucrative. However, this phenomenon does not explain the particularly high solution
gaps of Inv5. Note that the gap always was recorded for Dynamic transshipment, while
Vehicle Allocation always found the optimal result.

65

7. Evaluation

Figure 7.4: Intermediate Solution Gap for Dynamic Transshipment (Inv1-5)

Non-optimal solutions

Our optimization model for dynamic transshipment has two separate tasks. It finds routes
for shipments through the network of hubs and determines the required number of vehicles
accordingly. Therefore, for the 65% of movements that are predetermined, it only involves
assigning shipments to the movements. One way of determining the solution quality is by
looking at the utilization of predetermined versus newly allocated movements. For the
given solutions, we found that the average utilization of predetermined movements was
23% better than newly created movements. This is intuitive, since assigning shipments to
predetermined movements comes at no additional cost. Since the results from Table 7.2
indicate a growing solution gap for consecutive invocations of Inv1-5, we reconstructed
the gaps from intermediate solutions found by the solver and reconstructed the solution
convergence patterns. The results can be seen in Figure 7.4. The graphic depicts gaps
from intermediate solutions for all invocations Inv1-5. It shows that for all cases, no
better solution was found after 35 minutes and that Inv5 started with a drastically worse
initial solution.

Even though both Inv5 problem instances were considerably smaller than the other
instances in the number of transport orders and movements, paradoxically, the solution
gap was higher and vehicle utilization lower. A brief investigation identifies a possible link
between the reduced planning horizon of 24 hours and the solution quality. When running
the same problem instances Inv5 with a regular planning horizon of 48 hours, solution gaps
improved very drastically by 35.8 and 27.1 percentage points, making the gaps comparable
to Inv1. Although we did not further investigate this topic, one theory is plausible:
Shipments that require transportation over multiple hubs introduce temporal order
constraints on some movements. The theory argues that it is easier to find assignments
that fulfill these constraints in an extended period of time rather than needing to “squeeze”
a valid combination of movements within a 24 hour planning horizon. However, showing
that this property actually holds would require more systematic evaluations.

66

7.2. Performance of Incident Handling

7.1.4 Section Summary

In this section of the evaluation, we performed two simulations based on two separate
transportation data sets, simulating two weeks of transportation activity. In both
simulations, our dynamic vehicle routing policy was able to improve the utilization of
vehicles and reduce the number of required vehicles, as well as total kilometers driven.
With the large gaps in our solutions, we pointed out a weakness of our approach and
discussed possible solutions. In the next section, we evaluate the performance of our
subsystem for incident handling.

7.2 Performance of Incident Handling
We use the two dynamic schedules computed in the previous experiments and simulate
incidents to test the subsystem for incident handling. For each incident class, namely
single-vehicle, single-connection and multi-connection incidents, we simulate 10,000
instances with different delay times and measure implications to the schedule. We classify
the result of each individual incident as No Action, Postponement or Rerouting, depending
on the action that was taken by the subsystem. We assume that changes to the schedule
are undesirable, which is why No Action is the most desirable and Rerouting the least
desirable action.

7.2.1 Assumptions

Due to the lack of detailed data regarding traffic delays after incidents on Austrian roads,
we base our assumptions on delay models from the literature, as well as input from
domain experts. For example, Kwon et al. [KMV06] study the delays after incidents such
as special events, lane closures, weather, and congestions on urban freeways. Their data is
based on measurements from an interstate highway in a densely populated area and serves
as an approximation for delays on the Austrian autobahn, which is the main type of road
for LTL inter-hub transportation. In their study, the authors find that for the measured
road section, incidents (i.e., accidents from other traffic participants), precipitation and
congestion account for 13.3%, 1.6%, 47.4% of the total delays respectively. Other factors
for delays include special events and ramp metering which our model would consider as
multi-connection and single-connection delays. Note that for events known in advance,
the scheduler would assume longer travel times between hubs and consider it in the
dynamic schedule. In the following, we elaborate on the different types of delays we
consider in our system and disclose experiment assumptions.

Single-Vehicle Delay. Want et al. [WCB05] study the duration of vehicle breakdowns
on roads in the United Kingdom. Based on 1080 incident records, the authors determine
a mean breakdown delay of 50 minutes for heavy goods vehicles (arithmetic mean).
In addition, none of their recorded incidents lasted longer than 120 minutes. In our
simulations, we approximate these values and consider two experiments, testing incidents
with a duration of 0-1 hours and 1-2 hours, respectively. For better comparability with

67

7. Evaluation

the other two delay types, we perform three additional experiments with 2-3 hours, 3-4
hours and 4-5 hours of delay time. The selection of vehicles for which we simulate a
breakdown is uniformly random and does not consider maintenance cycles or vehicle age
as possible factors.

Single-Connection Delay. In our experiments, we model traffic congestion delays
depending on the time of the day with peek traffic from 5am to 10am in the morning and
from 3pm to 8pm in the afternoon [KMV06]. A different study [Bov98] on waiting times
on roads suggests that for Austrian roads in particular, in 95.5% of all cases the delay
does not exceed one hour, while 1.5% of all cases last longer than three hours. In our
simulations, we perform five different experiments, testing connection delays between 0-5
hours in one-hour increments. Preparatory experiments showed that a uniformly random
selection of routes had almost no effect on the schedule, since in total, there exist 121
routes. This means that on average, a route will be traveled only six times during one
week. Therefore, we filtered for the 20 most heavily used routes. Note that we model
connections unidirectionally, i.e., travel times between two hubs can differ, depending on
the travel direction.

Multi-Connection Delay. Goodwin et al. study the impact of bad weather conditions
on traffic delay [Goo02]. We base the connection delays in our experiments on their
findings. In particular, we select two different speed reduction factors for rain and for
snow, for which the authors found the driving speed to be reduced by 10% and 36%
respectively. In the experiments, we increase the travel time for connections according to
these factors. We model bad weather conditions by setting delay times for all connections
that lead to or originate from a randomly selected hub.

7.2.2 Simulations

For each experiment and time unit, we simulate 10,000 incidents and record the outcome
based on what action was taken. The schedules are taken from the two simulations,
calculated by our routing policy.

Results

Table 7.3 summarizes the results from single vehicle and single connection incidents, i.e.,
all scenarios where the delay is not relative to the travel time of connections. The first
column includes SV (single-vehicle) and SC (single-connection) to refer to the incident
type and an interval that describes the simulated delay in minutes. The results show that
the duration of the delay has a significant impact on the outcome. Note that according
to the sources cited above, all real-world records of single vehicle incidents would lie
within SV [0-60] and SV [60-120] and 95.5% of single connection incidents would lie
within SC [0-60]. The results indicate that despite the potential effect on more vehicles
from single-connection rather than single-vehicle incidents, delays from congestion have
less influence on the schedule than vehicle breakdowns. This is due to the fact that most

68

7.2. Performance of Incident Handling

Table 7.3: Results from Handling 10,000 Single-Vehicle and Single-Connection Incidents

Scenario No Action Postponement Rerouting
SV [0-60] 7811 (78.11%) 1969 (19.69%) 220 (2.20%)
SV [60-120] 4819 (48.19%) 4805 (48.05%) 376 (3.76%)
SV [120-180] 3654 (36.54%) 5815 (58.15%) 531 (5.31%)
SV [180-240] 2941 (29.41%) 6411 (64.11%) 648 (6.48%)
SV [240-300] 2567 (25.67%) 6519 (65.19%) 914 (9.14%)
SC [0-60] 9911 (99.11%) 89 (00.89%) 0 (0.00%)
SC [60-120] 9580 (94.31%) 523 (05.14%) 54 (0.53%)
SC [120-180] 8642 (82.2 %) 1442 (13.71%) 429 (4.08%)
SC [180-240] 7475 (66.42%) 2943 (26.15%) 835 (7.42%)
SC [240-300] 6292 (49.99%) 5304 (42.14%) 990 (7.86%)

Table 7.4: Results from Handling 10,000 Multi-Connection Incidents

Scenario No Action Postponement Rerouting
MC 10% [0-60] 8868 (77.08%) 1477 (12.83%) 1159 (10.07%)
MC 10% [60-120] 8112 (49.73%) 4628 (28.37%) 3571 (21.89%)
MC 10% [120-180] 8484 (38.77%) 7502 (34.28%) 5895 (26.94%)
MC 10% [180-240] 9257 (32.63%) 10838 (38.20%) 8273 (29.16%)
MC 10% [240-300] 10343 (29.03%) 14506 (40.72%) 10768 (30.23%)
MC 36% [0-60] 8785 (75.77%) 1174 (10.12%) 1635 (14.10%)
MC 36% [60-120] 7821 (47.65%) 3526 (21.48%) 5063 (30.85%)
MC 36% [120-180] 7937 (35.45%) 5979 (26.70%) 8473 (37.84%)
MC 36% [180-240] 8682 (30.42%) 8312 (29.12%) 11541 (40.44%)
MC 36% [240-300] 9403 (26.51%) 10718 (30.22%) 15342 (43.26%)

movements are scheduled outside from rush hours. On the other hand, the probability
of a broken down truck increases with the number of trucks on the road and is highest
during the five recorded peeks in the two schedules. For a delay of up to 60 minutes, 2.2%
of all single-vehicle incidents required rerouting, while only 0.53% of all single-connection
incidents on the 20 most active routes required rerouting. This number increased to
3.76% and 4.08% for delays between 60 and 120 minutes.

Table 7.4 depicts the results from multi-connection incidents due to precipitation. We
simulate ten different scenarios with durations between 0 to 300 minutes – i.e. the
duration of the weather condition – and travel time delays of 10% (simulating rainy
weather) and 36% (simulating snowy weather) for the selected connections during that
time period. The results show that all of our simulated multi-connection delays affecting
one randomly selected hub had substantially larger impacts on the schedule than other
types of delay. Even for short periods of precipitation, 10.07% (rain) and 14.10% (snow)
of all incidents required rerouting. For snowfall scenarios that lasted longer than two

69

7. Evaluation

hours, rerouting was necessary in the majority of incidents (37.84% - 43.26%). Averaged
over all five scenarios, an increase of travel time by 26 percentage points (from 10%
to 36%) led to an increase of 28.92 percentage points of cases that required rerouting.
Overall the findings show, that multi connection incidents have larger implications on
the schedule than other types of delays. However, to put things in perspective, during
the 10,000 simulated incidents, 11,504 and 11,595 movements were affected, i.e. 1.15 and
1.16 vehicles per incident. In the simulated worst-case scenario MC 36% [240-300], on
average 3.5 vehicles were affected per incident.

7.2.3 Section Summary

In this section, we evaluated our subsystem for incident handling by classifying outcomes
according to their impact on the schedule. We distinguished three outcomes and found
that the majority of single-vehicle and single-connection incidents could be averted without
any further action or by postponing subsequent movements. For multi-connection delays
due to bad weather conditions, we noticed an increase in incidents that required rerouting.
However, even for the worst case scenario, on average only 3.5 vehicles were affected by
an incident.

7.3 Weaknesses and Open Issues
During the evaluation, we identified a number of shortcomings, most of which concern
the design and complexity of our routing policy and consequences thereof.

7.3.1 Solution Quality

The large gaps in the quality of solutions are an issue that needs to be addressed for
computing schedules. While our solutions improved the real-world data baseline, the
quality of our solutions in terms of the gap to the theoretical optimum stayed behind
comparable results from the literature (Noham and Tzur: 0.08% with 10 nodes [NT14],
Rais et al.: 3.33 % with 14 nodes [RAC14], see Chapter 3). We explain this performance
difference with the choice of CPLEX – i.e., a general problem solver – instead of a
dedicated algorithm, optimized for one variant of the transshipment problem. Such
an implementation would be limited in terms of requirement changes and additional
constraints. It is important to note that, so far, there exist no efficient algorithm for
solving the variant of the dynamic transshipment problem we defined in Chapter 6.

7.3.2 Scalability

The transshipment problem has been shown to be NP-hard [HT01], which poses a
large scalability issue. While we performed no systematic experiments, a number of
observations during preparatory experiments give rise to the assumption that there exist
exponential runtime correlations for some of the problem dimensions. For example, we
measured an exponential growth of runtime behavior for small instances, when increasing

70

7.4. Evaluation Summary

the time dimension T ; e.g., when increasing the planning horizon from ten to eleven
hours, the runtime roughly doubled. The same was true for increasing the number of
hubs |H| in our model. This problem could be mitigated by not allowing all possible
combinations of connections between hubs, i.e., by omitting direct links between hubs
that are never used.

One possible way to combine the benefits of both CPLEX and domain-specific algorithms
would be the application of single-solution-based meta-heuristics [Tal09] based on initial
solutions from the CPLEX solver. In this scenario, the CPLEX solver would serve as a
construction heuristic, i.e., a mechanism for finding a “good” initial solution, which would
then be improved by a problem-specific neighborhood search algorithm. This heuristic
could improve on systematic weaknesses of CPLEX solutions and improve results.

7.4 Evaluation Summary
In this chapter, both our approach for dynamic vehicle routing and our subsystem for
incident handling were evaluated. By using real-world data from DB Schenker, we
evaluated our routing policy, consisting of two mathematical optimization models. The
results show that by replacing a fixed schedule with a dynamic schedule with 65%
predetermined routes, we were able to improve the utilization of vehicles by 2.5% and
3.1%, reducing the number of movements by 2% and 2.3% and more drastically reducing
the number of total kilometers driven by 11.9% and 19.3%. During the simulations,
we were able to identify shortcomings, regarding our mathematical optimization model
in terms of its complexity and according solution qualities resulting from invocations.
For example, the overall recorded gap to optimal solutions of dynamic transshipment
instances were 16.51% and 11.65%. Although the results of dynamic vehicle routing
improved the performance metrics in comparison to the baseline, even more performance
gains would be possible by further closing the gap to optimal solutions. For example, we
found that narrowing the planning horizon of Inv5 to 24 hours had a big impact on the
gap, compared to a 48 hour calculation.

In a second evaluation, we tested the performance of our incident handling, based on the
schedules from the first experiments. This evaluation brought insights not only into the
resolving mechanism of incidents, but at the same time revealed stability characteristics
against incidents regarding the schedule incidents, since the outcome of incident handling
not only depends on the mechanism, but also on the underlaying schedule.

71

CHAPTER 8
Conclusions

In the last chapter of this thesis, we summarize our approach and our findings, present
our vision for future work and finally conclude with a few closing remarks.

8.1 Summary

In this thesis, we presented a technical solution for improving the efficiency of LTL
logistics by automating some aspects of operational decision making using rich, real-time
information. First, we identified a posing problem in road logistics. Scarce information
sharing between systems and companies and inflexible, long-term planning leads to
inefficient schedules, a low utilization of vehicles and a large fraction of empty journeys.
To solve this problem, we identified requirements and refined our assumptions by con-
ducting a survey on related work, as well as state of the art developments and future
trends in logistics, e.g., real-time tracking, autonomous and anticipatory logistics, and au-
tonomous driving. Considering architectural guidelines for real-time decision support and
autonomous decision systems, we designed a framework for collecting heterogeneous data
from IoT devices in the context of logistics networks. The framework uses a number of
sensors and services to maintain an information-rich digital image of the environment as a
basis for routing and scheduling decisions. In a subsequent step, we used this information
from the framework for optimizing freight streams by applying standard OR methods to
the problem. In particular, we introduced a methodology for computing dynamic vehicle
schedules on demand, based on incoming transport orders and the current state of the
network in a level of detail that has previously not been achieved and which makes the
approach suitable for autonomous decision making in day-to-day operations. To that
end, we formally defined two mathematical optimization problems for a variant of the
transshipment problem and vehicle routing which – executed sequentially – build a full
vehicle schedule based on dynamic demand. In detail, we defined Dynamic Transshipment
with Time Constraints in a Finite Planning Horizon, which optimizes freight streams

73

8. Conclusions

based on incoming transport orders and existing vehicle movements, considering various
constraints on delivery times, capacities of vehicles, loading terminals and hubs. Based
on these solutions, which represent a certain demand of vehicles per connection and time
unit, we defined a second optimization problem called Vehicle Assignment that takes a list
of available vehicles and assigns them to the demanded movements, effectively forming a
full vehicle schedule. In addition to this short-term planning mechanism, we introduced
a mechanism for autonomously detecting and resolving unexpected incidents such as
vehicle breakdowns or traffic congestions that cause delays and cannot be foreseen by
the scheduler. For evaluating both the framework, including the subsystem for incident
handling, and the optimization models, we developed a simulation application, that
simulates relevant aspects of the environment including parcel scans, loading terminal
sensors, vehicle telemetry, weather information, and traffic information. Based on detailed
LTL transportation data from an Austrian logistics company, we evaluated our approach
for freight stream optimization. The results of our evaluation suggest that the dynamic
schedule – initialized with 65% of the original schedule for faster computation – improved
the static schedule employed by the company in all measured performance metrics. In
two separate experiments, we were able to improve the utilization of vehicles by 2.5
and 3.1 percentage points, reduce the number of movements by 2% and 2.3% and more
drastically reduce the number of total kilometers driven by 11.9% and 19.3%. In a
second set of experiments, we tested the resulting schedules with unforeseen incidents.
We simulated vehicle breakdowns, traffic delays and bad weather conditions and found
that all tested scenarios impacted the computed schedule only in minor ways. Most of
the time, less than two vehicles were affected by a delay and the worst case affected 3.5
vehicles on average, indicating reasonable measures for incident handling, as well as a
robust schedule. Finally, with large solution gaps and scalability issues, we identified
weaknesses of our approach and discussed potential solutions, which we discuss in the
following section.

8.2 Future Work
To improve our contributions and to address some of its weaknesses, we outline a list of
directions for further research. In addition to the shortcomings we discussed in Chapter 7,
we identified several points of improvement:

• Single-Solution-Based Meta-Heuristics: By combining the benefits of CPLEX
as a generic problem solver for declarative problem definitions with a single-solution-
based meta-heuristic – e.g. local neighborhood search or similar – the large solution
gaps could be mitigated. This requires a deeper analysis of solution characteristics,
such as systematic weaknesses from CPLEX solutions and the development of an
algorithm that improves on these weaknesses to improve solution quality.

74

8.3. Closing Remarks

• Dimensional Data: We tested our framework with weight-based capacity con-
straints. The integration of dimensional data, both in the test data, as well as in
the optimization models could further improve the quality and confidence in our
solution and provide a more detailed description about the shipped cargo.

• Homogeneous fleet: While the property holds for the tested transportation
network, in general, logistics companies operate multiple vehicle types with dif-
ferent capacities and other attributes. By extending the optimization model to
support multiple classes of vehicles, this problem could be addressed and the uti-
lization of resources could further be improved by using smaller vehicles for smaller
transportations.

• Stochastic Future State Prediction: In general, our optimization agent does
not calculate vehicle schedules directly based on the current state of the network,
but derives a future state from the network state to give operators some lead time
with the dynamic schedule. Currently, state prediction mechanisms for calculating
schedules are based on a deterministic mechanism that assumes no delays or similar
incidents that change the state in unexpected ways. By using a stochastic network
prediction, one could account for such incidents when predicting the future state.

8.3 Closing Remarks
For thousands of years, it was sufficient for merchants to rely on experience and intuition
for transporting their goods. This has changed. In 2016, the world trade volume was
15,000 Billion USD [wto17] and in Europe alone, goods in the order of 2,200 Billion
tonne-kilometers were transported, 75% of which on roads [Eur16]. In this thesis, we have
demonstrated in a small example, how a modern toolset of different technologies, from
IoT sensors, event-based application architectures, knowledge extraction from continuous
data streams to methods for declarative problem solving can help us to make better
decisions, leading to more efficient and sustainable transportation.

75

Acronyms

CEP Complex Event Processing. 5, 6, 11, 19, 20, 33, 36

DBMS Database Management System. 12

DSMS Data Stream Management System. 12

DSS Decision Support System. 6, 13, 14, 19, 20, 23, 25

ELR Empty Load Ratio. 19, 20

EPC Electronic Product Code. 2, 3, 11, 17, 18

FTL Full truckload. 7

FZI Forschungszentrum Informatik. 17

IaaS Infrastructure as a Service. 14

ICT Information and Communications Technology. 4, 9

IoT Internet of Things. 1, 3–7, 9–11, 14, 18, 20, 25, 28, 30, 73, 75

LTL Less than truckload. 7, 8, 23, 60, 67, 73, 74

OPL Optimization Programming Language. 40

OR Operations Research. 6, 9, 15, 16, 19, 73

PaaS Platform as a Service. 14

RFID Radio Frequency Identification. 2, 5, 10, 11, 17–19

SaaS Software as a Service. 14

TSP Traveling Salesman Problem. 20

URI Uniform Resource Identifier. 11

77

Bibliography

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:
A survey. Computer networks, 54(15):2787–2805, 2010.

[Bov98] Salomon Ilan Bovy, Piet H L. Congestion in europe: Measurements, spatial
patterns, policies. Transportation Planning and Traffic Engineering Report,
1998.

[BSG08] Nabil Belgasmi, Lamjed Ben Saïd, and Khaled Ghédira. Genetic opti-
mization of the multi-location transshipment problem with limited storage
capacity. In ECAI, pages 563–567, 2008.

[CBM+13] Cristina Cabanillas, Anne Baumgrass, Jan Mendling, Patricia Rogetzer, and
Bruno Bellovoda. Towards the enhancement of business process monitoring
for complex logistics chains. In International Conference on Business
Process Management, pages 305–317. Springer, 2013.

[CDCMB14] Cristina Cabanillas, Claudio Di Ciccio, Jan Mendling, and Anne Baum-
grass. Predictive task monitoring for business processes. In International
Conference on Business Process Management, pages 424–432. Springer,
2014.

[CGP09] Teodor Gabriel Crainic, Michel Gendreau, and Jean-Yves Potvin. Intelligent
freight-transportation systems: Assessment and the contribution of oper-
ations research. Transportation Research Part C: Emerging Technologies,
17(6):541–557, 2009.

[Chr16] Martin Christopher. Logistics & supply chain management. Pearson Higher
Ed, 2016.

[CM12] Gianpaolo Cugola and Alessandro Margara. Processing flows of information:
From data stream to complex event processing. ACM Computing Surveys
(CSUR), 44(3):15, 2012.

[Dav15] R Davies. Industry 4.0: Digitalisation for productivity and growth. European
Parliamentary Research Service, Briefing, 2015.

79

[DDKS15] Wolfgang Domschke, Andreas Drexl, Robert Klein, and Armin Scholl.
Einführung in Operations Research. Springer-Verlag, 2015.

[DHS07] Dursun Delen, Bill C Hardgrave, and Ramesh Sharda. Rfid for better supply-
chain management through enhanced information visibility. Production and
Operations Management, 16(5):613–624, 2007.

[DXHL14] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A
survey. IEEE Transactions on Industrial Informatics, 10(4):2233–2243,
2014.

[EB09] Michael Eckert and François Bry. Complex event processing (cep).
Informatik-Spektrum, 32(2):163–167, 2009.

[ec211] Roadmap to a single european transport area – towards a competitive and
resource efficient transport system. Technical report, European Commission,
2011.

[EH08] Banu Yetkin Ekren and Sunderesh S Heragu. Simulation based optimization
of multi-location transshipment problem with capacitated transportation.
In 2008 Winter Simulation Conference, pages 2632–2638. IEEE, 2008.

[EN10] Opher Etzion and Peter Niblett. Event Processing in Action. Manning
Publications Co., 2010.

[Eur13] statistical office of the European Union Eurostat. Modal split of inland
freight transport, 2013 (tkm), 2013.

[Eur14] statistical office of the European Union Eurostat. Share of empty journeys
in the total journeys by type of operation, 2014 (

[Eur16] statistical office of the European Union Eurostat. Freight transport statistics,
2016.

[FFFM13] Zohar Feldman, Fabiana Fournier, Rod Franklin, and Andreas Metzger.
Proactive event processing in action: a case study on the proactive man-
agement of transport processes (industry article). In Proceedings of the 7th
ACM international conference on Distributed event-based systems, pages
97–106. ACM, 2013.

[Gia09] George A Giannopoulos. Towards a european its for freight transport and
logistics: results of current eu funded research and prospects for the future.
European Transport Research Review, 1(4):147–161, 2009.

[Goo02] Lynette C Goodwin. Weather impacts on arterial traffic flow. Mitretek
systems inc, 2002.

80

[Goo05] R Goodman. Whatever you call it, just don’t think of last-mile logistics,
last. Global Logistics & Supply Chain Strategies, 9(12), 2005.

[Gud07] Timm Gudehus. Dynamische Disposition: Strategien zur optimalen
Auftrags-und Bestandsdisposition. Springer-Verlag, 2007.

[Gud12] Timm Gudehus. Logistik 2: Netzwerke, Systeme und Lieferketten. Springer-
Verlag, 2012.

[Gud13] Timm Gudehus. Logistik: Grundlagen-Strategien-Anwendungen. Springer-
Verlag, 2013.

[GVdVV11] Roel Gevaers, Eddy Van de Voorde, and Thierry Vanelslander. Character-
istics and typology of last-mile logistics from an innovation perspective in
an urban context. City Distribution and Urban Freight Transport: Multiple
Perspectives, Edward Elgar Publishing, pages 56–71, 2011.

[Hal85] Randolph W Hall. Vehicle scheduling at a transportation terminal with
random delay en route. Transportation Science, 19(3):308–320, 1985.

[HRR00] Traci J Hess, Loren Paul Rees, and Terry R Rakes. Using autonomous
software agents to create next generation of decision support systems.
Decision Sciences, 31(1):1, 2000.

[HS14] Zhi-Hua Hu and Zhao-Han Sheng. A decision support system for public lo-
gistics information service management and optimization. Decision Support
Systems, 59:219–229, 2014.

[HT00] Bruce Hoppe and Éva Tardos. The quickest transshipment problem. Math-
ematics of Operations Research, 25(1):36–62, 2000.

[HT01] Yale T Herer and Michal Tzur. The dynamic transshipment problem. Naval
Research Logistics (NRL), 48(5):386–408, 2001.

[HZLQ15] Qian Hao, Furen Zhang, Zeling Liu, and Lele Qin. Design of chemical
industrial park integrated information management platform based on
cloud computing and iot (the internet of things) technologies. International
Journal of Smart Home, 9(4):35–46, 2015.

[JBWL06] Reiner Jedermann, Christian Behrens, Detmar Westphal, and Walter Lang.
Applying autonomous sensor systems in logistics—combining sensor net-
works, rfids and software agents. Sensors and Actuators A: Physical,
132(1):370–375, 2006.

[JCL+08] Reiner Jedermann, Luis Javier Antúnez Congil, Martin Lorenz, Jan D
Gehrke, Walter Lang, and Otthein Herzog. Dynamic decision making on
embedded platforms in transport logistics–a case study. In Dynamics in
Logistics, pages 191–198. Springer, 2008.

81

[Khu15] Archana Khurana. Variants of transshipment problem. European Transport
Research Review, 7(2):1–19, 2015.

[KK16] Andreas Kliem and Odej Kao. Cooperative device cloud: A resource man-
agement framework for the internet of things. In Connectivity Frameworks
for Smart Devices, pages 147–186. Springer, 2016.

[KMV06] Jaimyoung Kwon, Michael Mauch, and Pravin Varaiya. Components of
congestion: Delay from incidents, special events, lane closures, weather,
potential ramp metering gain, and excess demand. Transportation Research
Record: Journal of the Transportation Research Board, (1959):84–91, 2006.

[Kra08] R van Kranenburg. The internet of things: A critique of ambient technology
and the all-seeing network of rfid. Institute of Network Cultures, 2008.

[Kü13] Markus Kückelhaus. Low-cost sensor technology - a dhl perspective on
implications and use cases for the logistics industry. Technical report, DHL
Customer Solutions & Innovation in Cooperation with Fraunhofer IFF,
2013.

[Kü14] Markus Kückelhaus. Logistics trend radar 2014. Technical report, DHL
Customer Solutions & Innovation, 2014.

[Kü16] Markus Kückelhaus. Logistics trend radar 2016. Technical report, DHL
Customer Solutions & Innovation, 2016.

[LAP09] Rim Larbi, Gulgun Alpan, and Bernard Penz. Scheduling transshipment
operations in a multiple inbound and outbound door crossdock. In Com-
puters & Industrial Engineering, 2009. CIE 2009. International Conference
on, pages 227–232. IEEE, 2009.

[LSD+15] Wolfgang Lueghammer, Wolfgang Schwarzbauer, Maria Dieplinger, Sebas-
tian Kummer, Vogelauer Christian, Reinhard MOser, and Can Tihanyi.
Industrie 4.0 und ihre auswirkungen auf die transportwirtschaft und lo-
gistik. Technical report, Bundesministerium für Verkehr, Innovation und
Technologie, 2015.

[LSSW11] Guoqiong Liao, William Wei Song, Lei Shu, and Changxuan Wan. Using
real-time event stream framework to develop rfid-based retailer supermarket
systems. In Information Systems Development, pages 429–440. Springer,
2011.

[LW01] Hau L Lee and Seungjin Whang. Winning the last mile of e-commerce.
MIT Sloan Management Review, 42(4):54, 2001.

[MBC15] James Macaulay, Lauren Buckalew, and Gina Chung. Internet of things in
logistics - a collaborative report by dhl and cisco on implications and use

82

cases for the logistics industry. Technical report, DHL Customer Solutions
& Innovation in Cooperation with Cisco, 2015.

[MD16] Ahmed Musa and Al-Amin Abba Dabo. A review of rfid in supply chain
management: 2000–2015. Global Journal of Flexible Systems Management,
pages 1–40, 2016.

[Mei11] Stephan Meisel. Anticipatory optimization for dynamic decision making,
volume 51. Springer Science & Business Media, 2011.

[MGYA14] Ahmed Musa, Angappa Gunasekaran, Yahaya Yusuf, and Abdelrahman
Abdelazim. Embedded devices for supply chain applications: Towards hard-
ware integration of disparate technologies. Expert Systems with Applications,
41(1):137–155, 2014.

[MKRW10] Lothar März, Wilfried Krug, Oliver Rose, and Gerald Weigert. Simulation
und Optimierung in Produktion und Logistik: Praxisorientierter Leitfaden
mit Fallbeispielen. Springer-Verlag, 2010.

[MTZ16] Raef Mousheimish, Yehia Taher, and Karine Zeitouni. Automatic learning
of predictive rules for complex event processing: doctoral symposium. In
Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems, pages 414–417. ACM, 2016.

[NLW+12] EWT Ngai, TKP Leung, YH Wong, MCM Lee, PYF Chai, and YS Choi.
Design and development of a context-aware decision support system for real-
time accident handling in logistics. Decision Support Systems, 52(4):816–827,
2012.

[NOV15] Thomas Nebel, Jörg Ohnemus, and Steffen Viete. Industrie 4.0: Digitale
(r)evolution der wirtschaft. Technical report, Zentrum für Europäische
Wirtschaftsforschung GmbH, 2015.

[NT14] Reut Noham and Michal Tzur. The single and multi-item transshipment
problem with fixed transshipment costs. Naval Research Logistics (NRL),
61(8):637–664, 2014.

[Nwa96] Hyacinth S Nwana. Software agents: An overview. The knowledge engi-
neering review, 11(03):205–244, 1996.

[PGM12] Victor Pillac, Christelle Guéret, and Andrés L Medaglia. An event-driven
optimization framework for dynamic vehicle routing. Decision Support
Systems, 54(1):414–423, 2012.

[Pin15] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer,
2015.

83

[RAC14] Abdur Rais, F Alvelos, and Maria Sameiro Carvalho. New mixed integer-
programming model for the pickup-and-delivery problem with transship-
ment. European Journal of Operational Research, 235(3):530–539, 2014.

[RSN16] Mikko Rinne, Monika Solanki, and Esko Nuutila. Rfid-based logistics
monitoring with semantics-driven event processing. In Proceedings of the
10th ACM international conference on distributed and event-based systems,
pages 238–245. ACM, 2016.

[SAB07] Edmund W Schuster, Stuart J Allen, and David L Brock. Global RFID:
the value of the EPCglobal network for supply chain management. Springer
Science & Business Media, 2007.

[SADP10] Aysegul Sarac, Nabil Absi, and Stéphane Dauzère-Pérès. A literature
review on the impact of rfid technologies on supply chain management.
International Journal of Production Economics, 128(1):77–95, 2010.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[Sch12] Arne Schuldt. Multiagent coordination enabling autonomous logistics.
KI-Künstliche Intelligenz, 26(1):91–94, 2012.

[Sch16] DB Schenker. Key figures about db schenker ag austria, 2016.

[SGFW10] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelfflé.
Vision and challenges for realising the internet of things. Cluster of European
Research Projects on the Internet of Things, European Commision, 2010.

[SHG+10] Arne Schuldt, Karl Hribernik, Jan D Gehrke, Klaus-Dieter Thoben, and
Otthein Herzog. Cloud computing for autonomous control in logistics. In
GI Jahrestagung (1), pages 305–310, 2010.

[Tal09] El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74.
John Wiley & Sons, 2009.

[VdHW08] Wiebe Van der Hoek and Michael Wooldridge. Multi-agent systems. Foun-
dations of Artificial Intelligence, 3:887–928, 2008.

[VKAB+11] Rob Van Kranenburg, Erin Anzelmo, Alessandro Bassi, Dan Caprio, Sean
Dodson, and Matt Ratto. The internet of things. A critique of ambient
technology and the all-seeing network of RFID, Network Notebooks, 2, 2011.

[VLK07] John K Visich, Suhong Li, and Basheer M Khumawala. Enhancing product
recovery value in closed-loop supply chains with rfid. Journal of Managerial
Issues, pages 436–452, 2007.

84

[WB12] Thomas Will and Thorsten Blecker. Rfid-driven process modifications in
container logistics: Soa as a solution approach. International Journal of
Logistics Research and Applications, 15(2):71–86, 2012.

[WCB05] WenQun Wang, Haibo Chen, and MARGARET C Bell. Vehicle breakdown
duration modelling. Journal of Transportation and Statistics, 8(1):75–84,
2005.

[WH07] Katja Windt and Michael Hülsmann. Changing paradigms in logis-
tics—understanding the shift from conventional control to autonomous
cooperation and control. In Understanding autonomous cooperation and
control in logistics, pages 1–16. Springer, 2007.

[WN13] Michael Watson and Derek Nelson. Managerial analytics: An applied guide
to principles, methods, tools, and best practices. Pearson Education, 2013.

[WNLY06] Nien-Chu Wu, MA Nystrom, Tyng-Ruu Lin, and Hsiao-Cheng Yu. Chal-
lenges to global rfid adoption. Technovation, 26(12):1317–1323, 2006.

[wto17] World trade statistical review. Technical report, World Trade Organization,
2017.

[WWB15] S Wischmann, L Wangler, and A Botthof. Industrie 4.0: Volks-und be-
triebswirtschaftliche faktoren für den standort deutschland. Berlin: BMWi,
2015.

[Yee15] Pang Mei Yee. Omni channel logistics - a dhl perspective on implications
and use cases for the logistics industry. Technical report, DHL Customer
Solutions & Innovation, 2015.

[ZF10] Zeyan Zhang and Miguel Andres Figliozzi. A survey of china’s logistics
industry and the impacts of transport delays on importers and exporters.
Transport Reviews, 30(2):179–194, 2010.

85

87

Appendix

Algorithm .1: Procedure to Predict the Future Network State
Data: Current snapshot of the network s0; Time of prediction tp

Result: Predicted snapshot of the network stp , pending movements pending

1 stp ← s0;

2 instructions← instructions from s0;

3 instructions← instructions.filter(λi . i.state 6= complete);

4 events, pending ← ∅;

5 foreach i in instructions do
6 if i type MOVE then
7 undock ← UNDOCK event for i.truck, i.origin;

8 undock.timeStamp ← i.execution;

/* Departures and arrivals have been omitted */

9 dock ← DOCK for i.truck, i.destination;

10 dock.timeStamp ← i.completion;

11 add undock, dock to events;

12 if i.execution < tp and i.completion > tp then
13 add i to pending;

14 end

15 end

16 if i type DISPATCH then
17 exit ← CARGO_EXIT for i.cargo, i.hub;

18 exit.timeStamp ← i.execution;

19 entry ← CARGO_ENTRY for i.cargo, i.movement.hub;

20 entry.timeStamp ← i.movement.completion;

21 add exit, entry to events;

22 end

/* Analogous for COLLECT and DELIVER */

23 sort events by timestamp;

24 events← events.filter(λe . e.timestamp < tp);

25 foreach e in events do
26 h ← lookup handler for e;

27 stp ← h.handle(stp , e);

28 end

29 end

88

	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodology and Approach
	Structure of the Thesis

	Background and Foundations
	Less than Truckload Shipping
	Industry 4.0
	The Internet of Things in Logistics
	Radio Frequency Identification
	Complex Event Processing
	Decision Support Systems
	Cloud Computing
	Operations Research

	Related Work
	The Internet of Things for Real-time Data Capturing in Logistics
	Event-driven Architectures and Event Processing
	Autonomous Control and Decision Support
	The Transshipment Problem
	FZI ProveIT

	Methodology
	Properties of the Considered Transportation Network
	Event Load Estimation
	Architectural Guidelines
	Software Agents

	A Framework for Real-time Optimization of Freight Streams
	Architectural Overview
	Data Model
	Event Model
	Event Processing
	A Software Agent for Dynamic Vehicle Routing
	Instruction Model
	Future State Prediction
	Subsystem for Unexpected Event Handling

	Dynamic Transshipment with Time Constraints
	Overview
	Dynamic Transshipment with Time Constraints in a Finite Planning Horizon
	Vehicle Assignment
	Conclusion

	Evaluation
	Performance of Routing Policy
	Performance of Incident Handling
	Weaknesses and Open Issues
	Evaluation Summary

	Conclusions
	Summary
	Future Work
	Closing Remarks

	Acronyms
	Bibliography
	Appendix

