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Abstract

Graph signal processing is an extension of classical signal processing to signals
that are defined over the vertex set of graphs. This type of signal processing
is necessary in applications where the data is best represented by a graph
(like in social networks) and when the amount of data is big. Usually a
graph is generated that represents the similarity of different data points and
then the typically sparse weight matrix can be used for efficient analysis.
One application of graph signal processing is clustering, where the aim is to
identify groups of similar data items. This is used for data analysis in several
fields ranging from biology over image processing to machine learning.

In this work we consider various clustering algorithms. We focus on signed
spectral clustering with sampling, which is an algorithm that modifies the
weight matrix of a given graph based on some sampled cluster labels and
then performs signed spectral clustering. In machine learning nomenclature
methods that are supported by sampled cluster labels are referred to as a
semi-supervised clustering.

At first, algorithms for graph learning are presented. They are used as
a pre-processing stage for graph-based clustering. Those algorithms are the
ε-neighborhood graph and the k-nearest neighborhood graph. Next, k-means
and spectral clustering, which are well known examples of unsupervised clus-
tering algorithms, are discussed and then we introduce an original method
that combines signed spectral clustering with sampling. In the last part
signed spectral clustering with sampling is compared to clustering by har-
monic functions and singular value projection in Monte-Carlo simulations.
Our numerical results show that signed spectral clustering with sampling
performs superior compared to existing algorithms.
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Kurzfassung

Die Graphsignalverarbeitung ist eine Erweiterung der klassischen Signalver-
arbeitung, bei der die Signale auf der Knotenmenge eines Graphen definiert
sind. Diese Art der Signalverarbeitung ist notwendig, wenn die Daten, wie
in einem sozialen Netzwerk, als Graph gegeben sind, oder wenn die Menge
der Daten sehr groß ist. Üblicherweise werden die Daten zuerst in einen
Graphen übergeführt, der die Ähnlichkeit der Datenpunkte repräsentiert.
Anschließend wird die üblicherweise spärlich besetzte Gewichtsmatrix ver-
wendet, um eine Analyse der Daten effizient durchzuführen. Eine Anwen-
dung der Graphsignalverarbeitung ist die Identifikation von Gruppen von
ähnlichen Datenpunkten. Dieses sogenannte Clustering wird zum Beispiel in
der Biologie, der Bildverarbeitung oder im maschinellen Lernen eingesetzt.

In dieser Arbeit beschäftigen wir uns mit Clustering-Algorithmen, wobei
der Fokus auf vorzeichenbehaftetem Spectral Clustering mit Abtastung liegt.
Dieser Algorithmus modifiziert die Gewichtsmatrix eines gegebenen Graphen
basierend auf der abgetasteten Cluster-Zugehörigkeit. Anschließend wird
vorzeichenbehaftetes Spectral Clustering auf die modifizierte Gewichtsma-
trix angewendet. Verfahren, bei denen die Cluster-Zugehörigkeit abgetastet
wird, wird in der Nomenklatur des maschinellen Lernens als semi-supervised
Clustering Algorithmus.

Zu Beginn werden die beiden Algorithmen ε-neighborhood Graph und k-
nearest neighborhood Graph zum Lernen von Graphen präsentiert. Danach
werden k-means und Spectral Clustering, als Beispiele für Clustering Algo-
rithmen ohne Abtastung diskutiert. Anschließend wird Spectral Clustering
zu vorzeichenbehaftetem Spectral Clustering mit Abtastung erweitert. Zum
Abschluss wird der erweiterte Algorithmus mittels Monte-Carlo Simulatio-
nen mit zwei anderen Clustering Algorithmen verglichen. Es zeigt sich, dass
der neue Algorithmus bessere Ergebnisse liefert als die beiden Vergleichsal-
gorithmen.
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1
Introduction

In applications with big and multidimensional datasets, like social networks,
recommendation systems or image processing, classical signal processing is
nor easily applicable. This is because the fundamental concepts, like fre-
quency analysis, downsampling and filtering, rely on a regular structure of
the time domain.

Graph signal processing (GSP) offers a promising approach to relax the
time domain to irregular domains [1]. Here, the data set is modeled by a
graph, i.e., every data point is represented by a node and a value, and nodes
with similar values are connected by edges. The assignment of values to each
node is referred to as a graph signal, which is a function from the node set
to the signal space [2]. The resulting graph can then be represented by its
weight matrix, which is typically sparse as every node is only connected to
a small number of other nodes relative to the total number of data points.
This sparsity is a very important property, as it enables the efficient imple-
mentation of matrix multiplications [3]. Nevertheless, there is the problem
that the aforementioned fundamental concepts require adaption to general.

A basic building block of GSP is the graph Laplacian. This is a ma-
trix that represents a difference operation on the graph and can be seen as
a discretization of differential operators [4]. A typical approach is then to
define the spectrum of the graph based on the eigendecomposition of the
Laplacian [5, 6]. This means that the graph Fourier transform (GFT) is a
transformation to the basis of eigenvectors of the Laplacian and every eigen-
vector represents one frequency component. Similar to filtering in classical
signal processing it is now possible to filter signals in the spectral domain by

9



10 CHAPTER 1. INTRODUCTION

multiplying the spectra and transforming the result to the graph domain by
an inverse GFT. Via the spectrum it is also possible to define translation,
modulation and dilation on graphs [1].

But before it is possible to apply those concepts to a graph, the graph
has to be generated (learned) from the data. In some applications like so-
cial networks or image processing, this is inherently given by the data, but
in others, like recommendation systems, there is a need for so called graph
learning methods. Two of the best known graph learning methods are the
ε-neighborhood graph and the k-nearest neighborhood graph (KNN), which
rely solely on the similarity of data values [7]. There are also other, more
complex methods that aim to generate a graph on which the data is smooth
in some sense, i.e., the values of a graph signal may not exhibit large changes
along edges. An example for those methods is total variation (TV) mini-
mization [8].

In the case that the graph is known and it is only possible to get access to
the values of a certain amount of nodes, classical signal processing would go
for equally spaced sampling and recover the signal by sinusoid interpolation,
which works perfectly for bandlimited signals. For graphs there is in general
no possibility to get equally spaced samples due to the complex structure of
the graph and so there exists the problem of sampling set selection and signal
recovery. For sampling set selection there is already research on the theoret-
ical limits for the reconstruction from noisy samples with random sampling
and experimentally designed sampling [9, 10, 11]. Those performance bounds
are all based on smooth graph signals, among which the bandlimited model
is easiest to be compared to classical signal processing. For a bandlimited
graph signal the spectrum obtained by the GFT is non-zero only in a certain
number of spectral components. This even allows the selection of a sampling
set that guarantees perfect reconstruction if the measured data is noise free
[12]. In the presence of noise or for other smoothness models, the meth-
ods can be designed efficiently in different ways. Possible approaches are to
greedily select nodes such that the mean squared error is minimized [13],
or to find a bipartition of the graph by maximum spanning trees [14]. The
problem of graph signal recovery is typically formulated as a mean squared
error minimization problem with the constraint that the signal has to fulfill
some smoothness criterion. Possible smoothness criteria can, for example,
be based on kernel functions [15] or the TV [16].

A concept of GSP that is very important in machine learning is cluster-
ing. The aim of clustering is to find groups of similar data points that are
highly connected to members of the same group but only loosely connected
to nodes from different clusters. The applications for clustering include com-
munity detection in social networks, anomaly detection in image processing,
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and phenetic clustering in biology. The clustering problem can be seen as a
special case of signal recovery as the labels of the clusters can be interpreted
as graph signal. Semi-supervised clustering, i.e., knowledge of some cluster
labels, is then equivalent to sampling of the associated graph signal. Well
known algorithms for unsupervised clustering are k-means [17] and spectral
clustering (SC) [18, 7] and for semi-supervised clustering there are, for ex-
ample, [19, 20, 21, 22, 23].

1.1 Contribution

This work aims to introduce some of the concepts of GSP in more detail,
give an overview of the process of detecting clusters in a set of data points,
and provide in-depth explanations of signed spectral clustering with sampling
(sSCs) [24]. sSCs is an extension of the work from [19], which makes use of
signed spectral clustering (sSC). The idea of [19] was to modify the weight
matrix of the graph depending on the similarity of the cluster labels for
every pair of samples; when both nodes have the same cluster label, the
corresponding entry in the weight matrix is set to 1 and if the labels are
different, it is set to 0. In sSCs this modification of the weight matrix is
extended such that for equal cluster labels the entry is set to wsim and for
different labels it is set to −wdis. This modification allows to not only reward
labeling samples from the same cluster equally, but also to reward labeling
samples from different clusters differently. The latter would not be possible
in the case of wdis = 0 from [19]. In an approach to find optimal values for
wsim and wdis we will also analyze the non-relaxed version of sSC, which is
a minimization of the signed ratio cut (sRC), and derive lower bounds for
those two values for which the labeling of samples is enforced to be consistent
to the sampled values.

In our experiments we will show that sSCs outperforms its predecessor
and also some other popular clustering algorithms, especially for low numbers
of samples. Then it will be used to analyze two different kinds of sampling
strategies, namely uniform node sampling and uniform edge sampling, and
finally its performance will be analyzed for varying wsim and wdis, where we
will see that the derived bounds are more conservative for the non-relaxed
case than it would be necessary for the relaxed case.
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1.2 Notation

Throughout this work we will use the following notation:

• scalars will be denoted by italic letters (N ∈ N, a ∈ R);

• vectors will be denoted by lowercase, boldface letters (x ∈ RN);

• matrices will be denoted by uppercase, boldface letters (A ∈ RN×M);

• the ith element of a vector x will be denoted by xi;

• the ith row and the jth column of a matrix A will be written as Ai:

and A:j, respectively;

• the ith element of the jth column of a matrix A will be written as Aij;

• sets and families of sets will be denoted by calligraphic letters or greek
letters (V , ε);

• the set difference of the sets A,B is A \ B = {a : a ∈ A ∧ a /∈ B}

Unless stated otherwise we will always use undirected, simple and self-
loop free graphs G = (V , E ,W ) with the vertex set V = {1, . . . , N}, the edge
set E , and the weight matrix W . An undirected graph is a graph for which
every edge is an unordered pair of vertices, i.e., E is a family of sets with
every edge ε ∈ E being ε ⊆ V and |ε| = 2. For the weight matrix this means
that it is symmetric and if and only if {i, j} ∈ E then Wij = Wji are non-zero.
For simple graphs every pair of nodes is at most connected by one edge. The
property of being self-loop free means that there exists no edge that connects
a node to itself; thus, the diagonal of the weight matrix must be zero. For
simplicity of notation we will use N = |V| and for subsets Vi ⊆ V it will be
Ni = |Vi|.
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Background

Before the introduction of the clustering algorithms we will cover some of
the basics of GSP in more detail to build a mathematical background. We
will start with the definition of balanced graphs to ease the understanding
of what it means that clusters exist in a graph, then we will introduce the
GSP concepts of graph signals, graph Laplacian, TV and GFT. Finally, as
central parts of SC and sSCs, the graph cut and the ratio cut (RC) will be
defined, both unsigned and signed.

13



14 CHAPTER 2. BACKGROUND

2.1 Balanced Graphs

The notion of balanced graphs comes from social balance. [25] described
this as ”a friend of my friend is my friend”, ”an enemy of my friend is my
enemy”, and ”an enemy of my enemy is my friend”. This means that if a
social graph is traversed on a cycle, there may be a transition from a friend
of the first node in the cycle to a foe of that node and in the end there must
be a transition, back to the friends of the first node. In between it is possible
that there are arbitrary many transitions from foe to friend and vice versa.
A cycle on a graph is a finite sequence of nodes, for which the first node and
the last node is equal and every successive pair of nodes is connected by an
edge. This leads to the definition of balanced graphs:

Definition 2.1.1 (balanced graph [26]). A graph G = (V , E ,W ) is said to
be balanced if for every cycle the number of edges with negative weights is
even.

With this definition, a balanced graph has exactly two clusters, which
means that edges between nodes in the same cluster have positive weights
and edges between nodes in different clusters have negative weights. This
rule for positive weights and negative weights can be defined for an arbitrary
k ∈ N as follows:

Definition 2.1.2 (k-clustering [27]). Let G = (V , E ,W ) be a signed graph
and k ∈ N. A k-clustering of G is a partitioning {V1, . . . ,Vk} of V with

• i, j ∈ Vm ⇒ Wij ≥ 0,

• i ∈ Vm ∧ j ∈ Vn ∧m 6= n⇒ Wij ≤ 0.

An example of a balanced graph with a cycle that traverses four edges
with negative weights is shown in Fig. 2.1

As it is very restrictive to allow only two clusters, [27] extended this
definition by simply allowing zero or at least two negative weights along a
cycle.

Definition 2.1.3 (weakly balanced graph [27]). A graph G = (V , E ,W ) is
said to be weakly balanced if there is no cycle that traverses exactly one edge
with negative weight.

A cycle in a weakly balanced graph is then allowed to stay either within
a cluster, thus, having only positive weights along its edges, or visit arbi-
trary many clusters that are different to the one where it started, for which
there must be at least two negative weights. Namely, the edge where the
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Figure 2.1: In this example of a balanced graph, the two clusters are repre-
sented by green and blue, solid lines have a positive weight whereas dashed
lines have a negative weight. The thick lines show a circle that visits every
cluster and traverses in total four edges with negative weight.

cycle leaves the cluster of the starting node and where it enters again. The
following theorem shows the existence of k-clusterings in weakly balanced
graphs.

Theorem 2.1.1 (clustering of balanced graphs [27]). For a graph G =
(V , E ,W ) a k-clustering for some k ∈ N exists if and only if G is weakly
balanced.

Proof. See [27].

To illustrate this result, Fig. 2.2 shows an example of a weakly balanced
graph with three clusters and how one additional edge can destroy the prop-
erty of being weakly balanced.
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(a) A weakly balanced graph with
three clusters.

(b) The same graph with one additional
negative edge. This edge destroys the
weak balance.

Figure 2.2: An example of a weakly balanced graph compared to a graph
that is not weakly balanced. The clusters are indicated by different colors,
solid lines represent edges with positive weights and dashed lines represent
edges with negative weights.

2.2 Graph Signals

In conventional signal processing, signals are defined over a time-domain
which can be, for example, R, Z, intervals in R or Z, or any cartesian product
thereof. Typically those signals are referred to as continuous-time signal or
discrete-time signal. The subject of graph signal processing are signals for
which the time-domain is extended to general graphs.

Definition 2.2.1 (graph signal). Let G = (V , E ,W ) be a graph with vertex
set V and edge set E. A graph signal over this graph is then a function

x(·) : V → RL

that assigns a vector of dimension L to every graph vertex.

As the number N of vertices is finite, the number of vector values is also
finite and so the graph signal can be represented by a vector xi with

xi = x(i) (2.1)

for every i ∈ V . Often it is useful to represent the complete graph signal in
terms of the matrix

X =

x
T
1
...

xTN

 ∈ RN×L. (2.2)

For L = 1 we write x instead of X.
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2.3 Graph Laplacian

In order to measure the smoothness of a graph signal, [1] defined the edge
derivative of a signal x with respect to the edge (i, j) at node i for an unsigned
graph G = (V , E ,W ) as

∂x

∂(i, j)

∣∣∣∣
i

=
√
Wij(xi − xj), (2.3)

which further defines the graph gradient1 at node i as

∇ix =

[
∂x

∂(i, 1)

∣∣∣∣
i

, . . . ,
∂x

∂(i, N)

∣∣∣∣
i

]
(2.4)

and the local variation ‖∇ix‖2 via

‖∇ix‖22 =
∑
j∈V

(
∂x

∂(i, 1)

∣∣∣∣
i

)2

=
∑
j∈V

Wij(xi − xj)2. (2.5)

As a measure of global smoothness [1] also defined the discrete p-Dirichlet
form of x as

Sp(x) =
1

p

∑
i∈V

‖∇ix‖p2. (2.6)

In the case of p = 2, for a symmetric W , this is

S2(x) =
1

2

∑
i∈V

∑
j∈V

Wij(xi − xj)2

=
∑
i,j∈V

1

2

(
Wijx

2
i +Wjix

2
j

)
−Wijxixj

=
∑
i,j∈V

Wij

(
x2i − xixj

)
=
∑
i∈V

(
x2i
∑
j∈V

Wij −
∑
j∈V

Wijxixj

)
=
∑
i,j∈V

xi(Dij −Wij)xj

= xT (D −W )x,

(2.7)

1Note that [1] defines this vector only for existing edges, but as the weight of a non-
existent edge is zero, the corresponding entry in the gradient vector is also zero and thus
it has no influence on later calculations.
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with the diagonal degree matrix D, Dii =
∑

j∈VWij [6, 5]. The matrix
L = D−W is called the graph Laplacian. The name Laplacian was chosen,
because for a long time it was believed that it converges to a continuous
Laplacian operator if the number of nodes goes to infinity, until finally [28]
provided a proof for that.

The most interesting property of the graph Laplacian is that it is positive
semi-definite. This can easily be seen because L is hermitian, has only non-
negative diagonal entries, and is diagonal dominant. Furthermore, a constant
vector corresponds to the eigenvalue 0 because

(L1)i = (D1−W1)i = Dii −
∑
j∈V

Wij = 0, (2.8)

for all i, 1 ≤ i ≤ N .
In some applications the graph Laplacian is used with different normal-

izations, namely the symmetrically normalized graph Laplacian L(sym) =
D−1/2LD−1/2 [18] and the random walk Laplacian L(rw) = D−1L [29]. Both
normalizations have only ones on their diagonal but there is still a difference
in the remaining parts. The symmetrically normalized Laplacian has off-
diagonal entries

L
(sym)
ij = − Wij√

DiiDjj

, (2.9)

which shows that it is symmetric, and the random walk Laplacian has off-
diagonal entries

L
(rw)
ij = −Wij

Dii

, (2.10)

which are the negative transition probabilities from node i to j in a random
walk.

2.3.1 Signed Graph Laplacian

Previously, the graph Laplacian was only defined for unsigned graphs, but
in Chapter 4 also algorithms that make use of negative edges are presented.
Thus, the graph Laplacian needs to be extended to signed graphs. One pos-
sible way to do this is given in [30], where the authors introduced the signed
graph Laplacian by means of graph drawing with antipodal proximity. They
extend the idea of Laplacian eigenmaps [31] to negative weights by imposing
that for a neighbor that is connected with a negative weight, the opposite
coordinate should be used when computing the mean of the neighbors. By
doing that they end up with the signed degree matrix

D̄ii =
∑
j∈V

|Wij| (2.11)



2.4. TOTAL VARIATION 19

and the signed Laplacian
L̄ = D̄ −W . (2.12)

With the same argument as for the Laplacian, the signed Laplacian can be
shown to be positive semi-definite and, according to [30], it is even positive-
definite if the graph is unbalanced. Also the quadratic form has a similar
form, when written as a sum

xT L̄x =
∑
i,j∈V

xiL̄ijxj

=
∑
i,j∈V

x2i |Wij| − xiWijxj

=
∑
i,j∈V

|Wij|(x2i − sign(Wij)xixj)

=
1

2

∑
i,j∈V

|Wij|(x2i − sign(Wij)xixj + (sign(Wij)xj)
2)

=
1

2

∑
i,j∈V

|Wij|(xi − sign(Wij)xj)
2,

(2.13)

which will be useful in Section 2.7.1.

2.4 Total Variation

Another outcome for a global measure of smoothness from (2.6) with p = 1
is the TV [1]

TV(x) = S1(x) =
∑
i∈V

‖∇ix‖2 =
∑
i∈V

√∑
j∈V

Wij(xi − xj)2. (2.14)

In image processing, this is known as the isotropic TV [32], which can be seen
as being l2 based. Another widely used modification thereof is the anisotropic
TV [32, 8], which is l1 based

TVl1
(x) =

∑
i∈V

∑
j∈V

Wij|xi − xj|. (2.15)

This measure has already been used in image processing in 1992 by [33]
for denoising purposes, but there was no link to GSP. This link can be
established by providing one graph node for every pixel in the image and
then connecting every node to its four direct neighbors in the interior of the
image, and to three, respectively, two neighbors at the boundary.



20 CHAPTER 2. BACKGROUND

2.5 Graph Fourier Transform

The most popular tool of signal processing is the Fourier transform, and for
real implementations especially the discrete Fourier transform (DFT). The
aim of such a transformation is to represent a given signal in a different basis,
which consists of orthogonal basis functions. In the Fourier transform, the
basis functions are sinusoids which carry information about the frequency.
For graphs, the concept of frequencies does not directly exist. The only
way to get a similar concept is to measure how fast the signal changes.
According to [1, 6] the eigenvectors of the graph Laplacian form a proper
orthogonal basis which also shows this kind of “frequency”. [1] also mentions
that with increasing eigenvalue, the corresponding eigenvectors exhibit more
rapid changes. This is illustrated in Fig. 2.3 for the second to the fifth
eigenvector of the graph Laplacian. The first eigenvector is skipped, because
it is constant and thus, it is not that informative anyway. It can be seen
that in the second eigenvector there is one transition from negative values to
positive values over the whole graph, whereas the fifth eigenvector already
shows one transition in the upper left part of the graph.

Given the eigendecomposition

L = V ΛV T , (2.16)

the GFT of an L-dimensional graph signal X ∈ RN×L is given by

X̂ = V TX (2.17)

and the inverse GFT is given by

X = V X̂. (2.18)

A special case of the GFT is obtained for the graph G = (V , E ,W ) with

E = {{N, 1}, {i, i+ 1} : 1 ≤ i < N} (2.19)

and W ∈ {0, 1}N×N . This graph has a circulant weight matrix and Laplacian
and thus the eigenvector matrix V corresponds to the DFT matrix. This
means, that for a signal on this graph the GFT is equivalent to the DFT.
Indeed, this reasoning can be extended to any cyclic graph.
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Figure 2.3: Second (a) to fifth (d) eigenvector of the graph Laplacian. The
graph was generated from the two-dimensional data points as a KNN with
five neighbors and Gaussian similarity with σx = 1 (cf. Chapter 3). The
eigenvectors are used as graph signal and their amplitude is displayed by
colors.

2.6 Graph Cut

In a graph with clusters it is typically the case that nodes in the same cluster
are highly connected whereas there are only few edges between distinct clus-
ters. Therefore it is desired to find a partitioning of the graph that results
in a small number of cut edges. The graph cut is a measure for this number
of cut edges for a weighted graph.

Definition 2.6.1 (graph cut). Let G = (V , E ,W ) be a weighted graph with
vertex set V, edge set E, and weight matrix W . The graph cut for a parti-
tioning {V1,V2} of V is defined as

γ(V1,V2) =
∑
i∈V1

∑
j∈V2

Wij.
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The minimum value of the graph cut is obtained when using (V1,V2) =
(V , ∅) or (V1,V2) = (∅,V), in those cases one of the sums is over the empty
set and so the resulting value is zero. This shows that it is not recommended
to use the graph cut as objective for a minimization problem without any
additional constraints.

Nevertheless, an interesting property of the graph cut can be obtained
for the vector x with

xi =

{
a, i ∈ V1,
−b, i ∈ V2.

(2.20)

This vector encodes the cluster label of node i into the sign of xi and from
(2.7) it can be seen that for this vector the quadratic form xTLx is equal to
the graph cut, up to a multiplicative constant:

xTLx =
1

2

∑
i,j∈V

Wij(xi − xj)2

=
1

2

∑
i,j∈V1

Wij(a− a)2

+
1

2

∑
i,j∈V2

Wij(b− b)2

+
∑
i∈V1

∑
j∈V2

Wij(a+ b)2

=(a+ b)2
∑
i∈V1

∑
j∈V2

Wij

=(a+ b)2γ(V1,V2).

(2.21)

2.6.1 Signed Cut

For signed graphs it is necessary to split the definition of the graph cut
because otherwise negative weights could compensate positive weights. The
sum of all positive edge weights in a cut will be denoted by

γ+(V1,V2) =
∑
i∈V1

∑
j∈V2

max{Wij, 0} (2.22)

and the sum of all intra-set edges with negative weights by

γ−(V1) = −
∑
i∈V1

∑
j∈V1

min{Wij, 0}. (2.23)

When minimizing those sums jointly it is favored to cut edges with negative
weights (thus, they do not appear within a set of the partitioning) and leave
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positive weights untouched (thus, they will not appear in the sum of positive
cuts).

2.7 Ratio Cut

The ratio cut (RC) was first proposed in [34] where it was used to find clusters
in VLSI designs which could be modeled in form of a graph G = (V , E ,W )
with vertex set V , edge set E , and weight matrix W . The idea of the RC
was that balanced graph cuts should be favored in the minimization. This
was achieved by normalizing the graph cut by the size of the partition sets.
The RC was defined for a partitioning {V1,V2} of V as

ρ2(V1,V2) =
γ(V1,V2)
N1N2

, (2.24)

where it can be seen that the extreme cases of (V1,V2) = (V , ∅) or (V1,V2) =
(∅,V) result in a division by zero and are thus no candidates for the minimum
RC. A more recent approach is to define the RC for a k-partitioning (cf. [7]),
so that it can be used for graphs with multiple clusters.

Definition 2.7.1 (ratio cut). Let G = (V , E ,W ) denote a graph with ver-
tex set V, edge set E and weight matrix W . The RC for a partitioning
{V1,V2, . . . ,Vk} of V is defined as

ρ(V1,V2, . . . ,Vk) =
k∑
i=1

γ(Vi,V \ Vi)
NNi

.

Note here that in the case of k = 2 the definitions of [7] and [34] are
equivalent. To show that consider the partitioning V1,V2, then

Nρ(V1,V2) =
γ(V1,V \ V1)

N1

+
γ(V2,V \ V2)

N2

=
γ(V1,V2)

N1

+
γ(V2,V1)

N2

=
N2γ(V1,V2) +N1γ(V2,V1)

N1N2

=
N2γ(V1,V2) +N1γ(V1,V2)

N1N2

=
Nγ(V1,V2)
N1N2

= Nρ2(V1,V2).

(2.25)
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By normalizing (2.21) and properly choosing a and b depending on N1

and N2, the Rayleigh-quotient becomes xTLx
xTx

∝ ρ(V1,V2) for vectors that are
defined according to (2.20). With (2.21) and xTx =

∑
i∈V x

2
i = N1a

2 +N2b
2

we get
xTLx

xTx
=

(a+ b)2

N1a2 +N2b2
γ(V1,V2). (2.26)

One choice for a and b was proposed by [35]

a =
N1

N
, b =

N2

N
(2.27)

and another one by [7]

a =

√
N2

N1

, b =

√
N1

N2

. (2.28)

With (2.26) the Rayleigh-quotient is xTLx
xTx

= ρ(V1,V2) and with (2.27) it is
xTLx
xTx

= Nρ(V1,V2). In the latter equation there is a multiplicative constant,
but most of the time the exact value of the RC is not of interest as it is used
as a objective function for minimization.

For the application of the RC in Section 4.2.1 it is required to derive an
upper bound for the RC among all graphs.

Theorem 2.7.1 (range of RC). For any graph G = (V , E ,W ) with W ∈
[0, wmax]

N×N , the RC of a k-partitioning is in the range [0, (k − 1)wmax].

Proof. Let G = (V , E ,W ) be a graph with all weights being in the range
[0, wmax] with wmax > 0 and V1, . . . ,Vk be a partitioning of the vertex set.
The RC cannot become negative as there are no negative elements in the sum.
Indeed 0 is the smallest possible RC, which is obtained by the graph with no
edges connecting distinct vertex sets of the partitioning. The maximum is
obtained, when all inter-set edges exist. and all have weight wmax. The RC
is then given by

ρ(V1, . . . ,Vk) =
k∑
i=1

γ(Vi,V \ Vi)
NNi

=
wmax

N

k∑
i=1

Ni(N −Ni)

Ni

=
wmax

N

k∑
i=1

(N −Ni)

= wmax(k − 1).

(2.29)
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2.7.1 Signed Ratio Cut

For signed graphs the convention is that positive edges connect similar nodes
and negative edges connect dissimilar nodes. The magnitude indicates the
level of similarity or dissimilarity, respectively. Directly minimizing the RC
on signed graphs favors to cut negative edges and put nodes that are con-
nected by positive edges into the same cluster. However, as there will be
a tight relation between the sRC and the signed Laplacian, the sRC was
defined by [30] as follows.

Definition 2.7.2 (Signed ratio cut). Let G = (V , E ,W ) be a signed graph
and V1, V2 be a partitioning of V, then the sRC is defined as

ρ̄(V1,V2) =
2γ+(V1,V2) + γ−(V1) + γ−(V2)

N1N2

. (2.30)

This definition penalizes cuts across edges with positive weights connect-
ing V1 and V2 and across edges with negative weights within V1 and within
V2. Thus, it becomes favorable to cut edges with negative weights. Similar
to the relation of the RC and the graph Laplacian, there is a relation between
the sRC and the signed graph Laplacian, i.e., for a vector

xv =

{
a, v ∈ V1,
−a, v ∈ V2,

(2.31)

with a ≥ 0, there is the relation

xT L̄x =
1

2

∑
i,j∈V

|Wij|(xi − sign(Wij)xj)
2 =

=− 1

2

∑
i,j∈V1

min{0,Wij}4a2

− 1

2

∑
i,j∈V2

min{0,Wij}4a2

+
∑
i∈V1

∑
j∈V2

max{0,Wij}4a2

=2a2
(
2γ+(V1,V2) + γ−(V1) + γ−(V2)

)
=2a2N1N2ρ̄(V1,V2).

(2.32)

With the choice

a =
1

2

(√
N1

N2

+

√
N2

N1

)
(2.33)
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from [30], this becomes a relation between the quadratic form of the signed
Laplacian and the sRC

xT L̄x =
1

2

(
N1

N2

+ 2 +
N2

N1

)
(2γ+(V1,V2) + γ−(V1) + γ−(V2))

=
N2

2N1N2

(2γ+(V1,V2) + γ−(V1) + γ−(V2))

=
1

2
ρ̄(V1,V2).

(2.34)

Such a relation would not be possible when using the RC, because with
negative weights, the RC can become negative but the signed graph Laplacian
is positive (semi-)definite.

Next the minimum and maximum values of the sRC will be analyzed.
Consider the partitioning {V1,V2} of V . The sRC is non-negative and so its
minimum is attained for the graph without edges with ρ̄(V1,V2) = 0. For
the upper bound first the case of an unsigned graph G = (V , E ,W ) with
W ∈ [0, w+

max]
N×N is considered. Again, the maximum is attained, when all

inter-cluster edges exist. Then,

ρ̄(V1,V2) =
2γ+(V1,V2) + γ−(V1) + γ−(V2)

N1N2

=
2wmaxN1N2

N1N2

= 2.

(2.35)

For a signed graph with W ∈ [w−max, w
+
max]

N×N and w−max < 0 < w+
max the

maximum is obtained for a partitioning V1, V2 when all inter-cluster edges
exist and have weight w+

max and all intra-cluster edges exist and have weight
w−max. For a graph without self-loops, this is

ρ̄(V1,V2) =
2γ+(V1,V2) + γ−(V1) + γ−(V2)

N1N2

=
2N1N2 +N1(N1 − 1) +N2(N2 − 1)

N1N2

= 2 +
N1 − 1

N2

+
N2 − 1

N1

,

(2.36)

which is in the range from 4
(
1− 1

N

)
, obtained for N1 = N2 = N

2
, to N ,

obtained for N1 = N − 1.



3

Graph Learning

For the application of graph based clustering methods like SC it is essential
to find a graph whose structure captures the similarity of the data. This
means that the M -dimensional graph signal x(·) : V → RM is required
to fulfill some smoothness criterion on the graph like being globally smooth,
bandlimited, or approximately bandlimited [10]. In practice, GSP techniques
are applied on huge data sets for which it is likely that graph learning with
such a constraint is computationally impractical. This leaves us with meth-
ods for which efficient algorithms exist. In this chapter, methods to measure
similarity of data and two methods for graph learning will be explained in
more detail, namely the ε-neighborhood graph and the KNN.
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3.1 Similarity Measure

Additionally to the existence of edges, also the weight can be used to encode
the similarity of nodes. In methods like [8], this is done automatically but
for methods like the ε-neighborhood graph and KNN, similarity measures
are required as a means to define the weights of the obtained graph. Those
similarity measures are typically designed such that their value decreases
when a certain distance increases. It is thus a prerequisite that the data is
from a metric space.

A very intuitive way to fulfill the requirement of decreasing similarity
with increasing distance is

s(x,y) = −d(x,y)2, (3.1)

where d(·, ·) is the metric defined for the data. This convention was used
in [36] with d(·, ·) being the Euclidean distance. The use of this similarity
measure for graph based algorithms is problematic, as the highest possible
similarity is 0, which usually is the weight of a non-existent edge, and basi-
cally there is no lower bound for the similarity. Thus, a non-existent edge
would need a weight of −∞ and so conventional linear algebra methods can-
not be applied.

A more convenient approach to measure similarity is Gaussian similarity

s(x,y) = e
− d(x,y)2

2σ2s , (3.2)

again with d(·, ·) being the metric defined for the data. This similarity mea-
sure has been widely used [18, 7, 37]. Compared to the first approach the
image of this function is better suited for graph weights, as it is in the inter-
val [0, 1]. Points that lie infinitely far apart are connected by an edge with
weight 0, i.e., they are not connected in the graph, and the closer points lie
together, the higher the weight will be.

In some applications it is not interesting how far points lie apart, but how
big the difference in orientation is. A similarity measure that addresses this
problem is cosine similarity

s(x,y) =
〈x,y〉
‖x‖‖y‖

, (3.3)

which has the prerequisite that the data must be from an inner product
space. This similarity measure is often used when comparing text documents
[38], where every document can be translated to vectors with each element
denoting the frequency of a single word (or phrase) [39]. It is 1 if x and y are
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perfectly aligned, 0 if orthogonal and −1 if they show in opposite directions.
The latter property can be useful for clustering techniques, as it is a measure
of dissimilarity.

There exist also more complicated approaches. E.g., [40] approximated
areas with similar colors in images by several Gaussian distributions and
represented the full image by a mixture of those Gaussians. The similarity of
two images was then measured in terms of the Kullback-Leibler divergence.
[41] measures similarity in music by calculating the spectrum of songs and
comparing those spectra by means of the Earth Mover’s Distance [42].

3.2 ε-Neighborhood Graph

Given a set of data points x1, . . . ,xN ∈ D, a similarity measure s(·, ·)
: D ×D → R, and the minimum similarity ε ∈ R, the ε-neighborhood graph
is defined as the graph G = (V , E ,W ) with vertices V = {1, . . . , N}, edge set
E and weight matrix W . The edge set is defined as

E = {{i, j} ⊆ V : i 6= j ∧ s(xi,xj) > ε}, (3.4)

which means that the edge {i, j} exists if it is no self-loop and the similarity
of xi and xj is larger than the prescribed minimum similarity ε. The weight
matrix is then

Wij =

{
s(xi,xj), (i, j) ∈ E ,
0, otherwise.

(3.5)

Here it should be noted that the graph need not be a weighted graph.
For an unweighted graph the weight matrix is simply W ∈ {0, 1}N×N with
Wij = 1 if (i, j) ∈ E and 0 otherwise. For this case it is not necessary
to specify the similarity measure, instead one could replace the condition
s(xi,xj) > ε in (3.4) by d(xi,xj) < ε.

In both cases, the value for ε has to be chosen carefully, as it can be used
to control the number of edges generated in the graph. For efficient GSP
methods it is necessary that the weight matrix is sparse and so the number
of edges must be small. In an attempt to keep the number of edges small,
one could first calculate the distribution of similarity values and then set ε
such that a certain number of edges exists. With this approach it is unlikely
that outliers are connected to the graph.
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3.3 k-nearest Neighborhood Graph

A simple way to come around the sparsity problem of the ε-neighborhood
graph is the KNN. The KNN is a graph that is generated from data points
x1, . . . ,xN ∈ D by connecting each point to its k ∈ N nearest neighbors.
I.e., for the graph G = (V , E ,W ) with vertices V = {1, . . . , N}, the edge set
is defined as

E = {{i, j} ⊆ V : ∃l ∈ N : 1 < l <= k + 1 ∧ j = p
(i)
l }, (3.6)

where p
(i)
l is an index permutation such that

s
(
x
p
(i)
l
,xi

)
≥ s
(
x
p
(i)
l+1
,xi

)
, (3.7)

i.e., it orders the points with decreasing similarity to xi. l = 1 is excluded
because p

(i)
l = i, which would generate a self-loop. The weight matrix for

the KNN is defined the same way as for the ε-neighborhood graph and it is
again possible to generate this graph in an unweighted manner by setting all
weights to 1 and replacing (3.7) by

d
(
x
p
(i)
l
,xi

)
≤ d

(
x
p
(i)
l+1
,xi

)
. (3.8)

The number of edges generated for the KNN is always in the interval

|E| =
[⌊

N

k + 1

⌋
k(k + 1)

2
, kN

]
. (3.9)

The upper bound of the interval corresponds to the case that for every node
k edges are generated without reusing the edges generated for other nodes.
The lower bound of the interval corresponds to reusing every edge.

In the literature there is another definition of the KNN, which is the
mutual k-nearest neighborhood graph (mKNN) [7]. For this graph, the edge
set is defined as

E = {{i, j} ⊆ V : ∃l1, l2 ∈ N : 1 < l1, l2 <= k+1∧j = p
(i)
l ∧i = p

(j)
l }. (3.10)

In this definition there is also the constraint i = p
(j)
l , which means that not

only j has to be among the k nearest neighbors of i but also i has to be
among the k nearest neighbors of j. This results in

|E| ∈
[
k,

⌈
N

k + 1

⌉
k(k + 1)

2

]
. (3.11)

Compared to the ε-neighborhood graph, it is relatively easy to control
the number of edges for the KNN without iterations by setting the value of
k appropriately.



4

Clustering Algorithms

A central element of GSP and machine learning is the detection of clusters
in data sets. The machine learning community differentiates between unsu-
pervised clustering, where no labeled training data is available, and semi-
supervised clustering, where labeled training data is partially available. In
signal processing jargon this would correspond to clustering without sam-
pling and clustering with sampling, respectively. In the GSP community,
there has already been research on the recovery of signals from sampled data
[9, 12, 43, 16] and also on the theoretical limits of signal recovery [10, 11].
In this chapter, the focus will be on the reconstruction of cluster labels by
means of sampling.
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Algorithm 1 k-means

input: data x1, . . . ,xN , tmax

1: initialize the cluster centers c
(0)
1 , . . . , c

(0)
K randomly, t = 0

2: repeat

3: estimate clusters X (t+1)
k from (4.1)

4: calculate new cluster centers c
(t+1)
k from (4.2)

5: t← t+ 1
6: until ∀k ∈ {1, . . . , K} : c

(t)
k = c

(t−1)
k ∨ t > tmax

output: cluster labels l with li = k if xi ∈ X (t+1)
k

4.1 Clustering without Sampling

4.1.1 k-Means

According to [44], k-means is a prototype method, which means that it at-
tempts to find points ck in the domain of the data that represent the centers
of each cluster. These cluster centers are referred to as prototypes. The input
data to k-means is a set of points x1, . . . ,xN ∈ RL. The algorithm starts
with random prototypes c

(0)
k and then iteratively estimates the clusters by

assigning every node to the cluster of the closest prototype

X (t+1)
k =

{
x ∈ {x1, . . . ,xN} : d

(
x, c

(t)
k

)
< d

(
x, c

(t)
l

)
for all l 6= k

}
(4.1)

for all k and recalculates the prototypes as the mean of all data points that
are assigned to this prototype, i.e.,

c
(t+1)
k =

1∣∣∣X (t+1)
k

∣∣∣
∑

x∈X (t+1)
k

x. (4.2)

The overall scheme is summarized in Algorithm 1.

4.1.2 Multidimensional Scaling

Classical multidimensional scaling (MDS) is a method for multivariate data
analysis that transforms a set of N data points yi ∈M from a metric space
(M, d (·, ·)) to the K-dimensional Euclidean space. The algorithm of MDS
depends on the metric d (·, ·) and is stated in [45] as listed in Algorithm 2.
It first calculates the pairwise distances in the original metric space and
puts them together in the matrix P (2) of squared proximities, then it sub-
tracts the row- and column-mean and adds the mean over the whole matrix
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Algorithm 2 multidimensional scaling (MDS)

input: data y1, . . . , yN , metric d(·, ·) on the data

1: Set up the matrix of squared proximities P
(2)
ij = d2(yi, yj)

2: Apply the double centering: C = −1
2
JP (2)J (with J = I − 1

N
11T )

3: Calculate the eigenvalue decomposition C = V ΛV −1

4: Let XT be the first K columns of V Λ
1
2

output: embedded coordinates X

to get the double centered matrix C. Finally, the Euclidean coordinates
x1, . . . ,xN ∈ are obtained as the rows of the first K eigenvectors weighted
with the square root of the corresponding eigenvalues. In the end the matrix
X = (x1, . . . ,xN) holds all Euclidean coordinates.

By calculating the pairwise distances in the Euclidean space it can be seen
that they are equal to the distance in the original metric space if K = N .
With xi being the i-th row of V Λ we get that xTi xj is the ij-th entry of C
and so

‖xi − xj‖22 =xTi xi + xTj xj − 2xTi xj

=Cii + Cjj − 2Cij

=− 1

2
J i:P

(2)J :i −
1

2
J j:P

(2)J :j + J i:P
(2)J :j

=− 1

2

(
P

(2)
ii −

2

N
P

(2)
i: 1 +

1

N2
1TP (2)1

)
− 1

2

(
P

(2)
jj −

2

N
P

(2)
j: 1 +

1

N2
1TP (2)1

)
+

(
P

(2)
ij −

1

N
P

(2)
i: 1− 1

N
P

(2)
j: 1 +

1

N2
1TP (2)1

)
=P

(2)
ij = d

(
yi,yj

)2
.

(4.3)

Another observation is that the matrix J has rank N−1 and so there exist at
most N −1 linearly independent eigenvectors and so K ≤ N −1 is sufficient.
Applied to graphs, this means that if the pairwise distances on a graph define
a metric, the respective graph can perfectly be embedded in the (N − 1)-
dimensional euclidean space such that the Euclidean distance is equal to the
graph distance.

In step 4 of the algorithm the eigenvectors are weighted with the eigenval-
ues, which means that the respective entries in X are dominant. A heuristic
approach would be to only use the eigenvectors corresponding to the largest
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eigenvalues, as this keeps the error in the distance small. As the distances
between points in different clusters are high, they will be separated in the
embedded coordinates and thus, the clusters should be visible in X and
detectable with k-means.

4.1.3 Spectral Clustering

In the case that clusters cannot be separated into convex subsets of the
underlying space it is not possible to get a good performance with k-means
[44]. A very popular method that can also work for non-convex clusters is
SC. SC is a graph clustering algorithm, that in contrast to k-means cannot be
used directly for the clustering of a set of data-points. It has to be preceded
by a graph learning algorithm (cf. Chapter 3).

Derivation of the algorithm

The idea of SC is to minimize the RC of the graph, i.e., it aims to solve the
NP-hard combinatorial optimization problem

min
V1,...Vk

ρ(V1,V2, . . . ,Vk)

s.t.
k⋃
i=1

Vi = V ,

Vi ∩ Vj = ∅ for i 6= j.

(4.4)

As will be seen later, a relaxed solution to this problem is given by the
eigenvectors of the graph Laplacian. The space that is spanned by those
eigenvectors is called the Laplacian spectrum of the graph [6]. That explains
the name of this approach. The authors of [35] used the equivalence of the
RC and the Rayleigh quotient and derived a lower bound on the RC which
was given by the second smallest eigenvalue of the graph Laplacian. Based
on that they used a so-called ’spectral heuristic’ which is: If the eigenvalue
is a lower bound on the RC, the corresponding eigenvector must be close to
the optimum solution of x. Indeed as it is mentioned in [7], the eigenvector
corresponding to the second smallest eigenvalue is the solution to the relaxed
problem

min
x∈RN

xTLx

s.t. ‖x‖2 = 1,

xT1 = 0,

(4.5)
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Algorithm 3 spectral clustering (SC)

input: data x1, . . . ,xN

1: learn a graph G = (V , E ,W ) from the data

2: D ← diag
(∑

j∈VWij

)
, L←D −W

3: y ← eigenvector corresponding to the second smallest eigenvalue of L

4: l← sign(y)

output: l

which follows from the Rayleigh-Ritz theorem. [7] also discusses the relax-
ation of (4.4) for k ≥ 2

min
X∈RN×k

Tr
(
XTLX

)
,

s.t. XTX = I.
(4.6)

The solution is again given by the Rayleigh-Ritz theorem, i.e., X is the ma-
trix containing the k eigenvectors corresponding to the k smallest eigenvalues
of L.

The solutions of those relaxed problems do not yet give the solution to the
cluster assignment, they first have to be mapped to discrete cluster labels.
The way this problem is treated in SC in the two-dimensional space is that
the signs of the resulting vector x are used as cluster labels, whereas in the
case of k-clusters, the rows of X are interpreted as coordinates in Rk and
then k-means is run on this set of points to find a clustering. The overall
method is listed in Algorithm 3

In [18] the authors derived a performance bound for SC. Their result
shows that under certain assumptions the coordinates defined by the eigen-
vectors corresponding to the smallest k eigenvalues (the zero eigenvalue is
omitted) are centered around k orthogonal vectors r1, ..., rk that can thus
be interpreted as cluster centers. This result shows that the transformation
of the graph to its spectrum yields a space in which the clusters are well
separated.

Extensions to signed graphs

In [30, 46] SC was analyzed for graphs with negative edges. Such graphs
exist for example in social networks, where friends are connected by edges
with positive weights and foes by edges with negative weights. [46] explained
the effects of negative weights on the eigenvectors of the signed Laplacian
for the example of a spring-mass system, in which every mass is modeled by
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a node and the springs are modeled by edges, i.e., it is modeled by a linear
graph. Fig. 4.1a shows the first four eigenvectors of the signed Laplacian
of such a linear graph with all weights being equal to 1. It can be seen
that the eigenvectors represent different frequencies for the movement of the
masses and that all masses try to move close to its adjacent masses. Fig. 4.1b
shows the first four eigenvectors in the case that the system is disconnected
at the fourth link. Indeed it can be seen from those eigenvectors that the
two subsystems can move independently, as every eigenvector is zero on one
subsystem and non-zero on the other, and that the first non-zero frequency
corresponds to the second non-zero frequency of the system with 8 nodes. In
Fig. 4.1c again the system consists of two subsystems of masses and springs
with all edges having weight 1, but this time the subsystems are connected
by an edge with weight −1. For every frequency in this system, there is a
corresponding frequency in the system with all weights being 1 (Fig. 4.1a)
but the first half of nodes is mirrored about 0.

In the examples with two subgraphs that are either disconnected or con-
nected by an edge with negative weight, the effects of clusters on the eigen-
vectors can already be seen. For disconnected clusters it is already possible
that the eigenvector corresponding to the eigenvalue zero is non-constant,
but this is a special case that usually does not exist in reality. Opposite to
that, with negative edge weights, the constant vector is never in the spec-
trum of the signed Laplacian and so it is always sufficient to compute the
first eigenvector.

The application of SC to the signed Laplacian is denoted by sSC. With
(2.34) it can be seen that sSC is a relaxed version of the minimization of the
sRC. The sSC scheme is listed in Algorithm 4.

The extension of sSC to multiple clusters is not as straightforward as it
was for SC. Indeed, [25] showed that there is no encoding of the cluster labels
in a matrix X ∈ RN×K that minimizes the sRC. A way to solve this issue is
weighted kernel k-means.
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Figure 4.1: First four eigenvectors of the signed Laplacian of a linear graph
with 8 nodes and Wi,i+1 = 1 if i 6= 4.

Algorithm 4 signed spectral clustering (sSC)

input: signed graph G = (V , E ,W )

1: D̄ ← diag
(∑

j∈V |Wij|
)

, L̄← D̄ −W

2: if at least one negative edge then

3: y ← eigenvector corresponding to the smallest eigenvalue of L̄

4: else

5: y ← eigenvector corresponding to the second smallest eigenvalue of
L̄

6: end if

7: l← sign(y)

output: l
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4.2 Clustering with Sampling

In some scenarios it is possible to get access to the cluster labels of some nodes
in the graph. E.g., in semi-supervised learning training data for which the
cluster labels are known is provided to the algorithms. For real-life scenarios,
like in sociological studies, it is also possible to provide sampled data by doing
surveys. By providing this additional information (i.e., a subset of the cluster
labels) it can be expected that the performance of clustering algorithms that
make use of this information is better than the performance of algorithms
that do not use the information. Existing algorithms that make use of label
samples are [19, 23, 21, 20].:

• [19] is an extension of SC that modifies the weight matrix based on the
similarity of the sampled data.

• [23] adds additional constraints to the minimization of the RC, which
provides candidate solutions for clustering, from which the solution
with minimum RC is selected.

• [20] models the cluster labels by a graph signal x which has to be a
harmonic function. The unknown labels are then estimated by Lx = 0
with the constraint that the known labels have to appear in x.

• Contrary to the other approaches [21] samples the weight of the edges
and it is based on the concept of balanced graphs. For those the weight
matrix has low rank. The unknown edges are reconstructed by mini-
mizing the rank of a matrix with the constraint that the known edges
have to be the same.

In those algorithms, there are two types of sampling strategies: edge sampling
and node sampling. Edge sampling means, that an edge {i, j} is picked
randomly and the information that is returned from sampling is either +1 or
−1 depending on i and j being in the same cluster or in different clusters,
respectively. For node sampling, sampling M nodes means that a set S of
M distinct graph nodes is selected and every edge in S × S is sampled. As
the elements (i, j), with i, j ∈ S and i = j, do not provide any information,

there are M(M−1)
2

edges that could provide information. To get a comparison
of edge sampling and node sampling, the numbers of different pairs in edge-
sampling is always M(M−1)

2
.

4.2.1 Spectral Clustering with Sampling

The RC in SC penalizes the cut of edges with large positive weights and
favors to cut edges with small weights. The idea for the extension of SC in
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[19] is that between all sampled nodes edges will be added and their weight
will be set to a high value if they lie in the same cluster and to a low value
if they lie in different clusters. At the beginning the graph G = (V , E ,W ) is
built from the data as described in Section 4.1.3. The cluster labels will be
denoted by l and the sampling set is defined as S = {s1, s2, .., sM} ⊆ V and
S1 and S2 are the set of nodes sampled from the first and the second cluster,
respectively. We have S1 ∪ S2 = S and S1 ∩ S2 = ∅.

For every finite graph there exists a maximum weight wmax > 0 such that
Wi,j ∈ [0, wmax]. In the following it will be assumed that wmax = 1, which can
always be obtained by rescaling the weights. Such a rescaling does not change
the result of SC as it only scales the eigenvalues but not the corresponding
eigenvectors and also it does not change the order of eigenvalues. It is now
possible to modify the weights according to the similarity of the samples
or by their dissimilarity. In the work of [19] the weights between similar
nodes were set to a high value and between dissimilar nodes it was set to
zero. This can be done by duplicating W and modifying the edges between
sampled nodes as

W̃ij =


Wij, i, j /∈ S,
wsim, i, j ∈ S1 or i, j ∈ S2,
0, otherwise.

(4.7)

The resulting similarity graph G̃ =
(
V , Ẽ , W̃

)
is a graph with non-negative

edges and can be used as input to SC. It can already be expected that for
large wsim SC will yield a better clustering for Gsim than for G. This has
three reasons

• New edges are generated;

• edges between dissimilar nodes are deleted;

• high weights make cutting more expensive.

Consider the case of two clusters shown in Fig. 4.2. In this graph SCs would
not modify any edges and clearly the minimum cut is obtained when the
graph is cut by a vertical line in the middle. As the size of the resulting
clusters is equal this is also the minimum RC. This shows that the two
sampled nodes would get the same label. Consequently, correct labeling of
the sampled nodes can not be enforced via this approach.

As a means to penalize this false labeling of sampled nodes we proposed
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1

2

Figure 4.2: An example of a graph for which spectral clustering with sampling
(SCs) would result in falsely labeled sampled nodes. The colors indicate the
original clusters and the nodes with numbers indicate samples with their
corresponding label. The weights of the edges are all one.

Algorithm 5 signed spectral clustering with sampling (sSCs)

input: data x1, . . . ,xN , sampling set S, wsim, wdis

1: learn the graph G = (V , E ,W ) from the data

2: W dis
sim ←W

3: modify the entries of W dis
sim according to (4.8)

4: run sSC on Ĝ =
(
V , Ê , Ŵ

)
output: cluster labels l resulting from sSC

to include negative weights for dissimilar nodes [24]. With the modification

Ŵij =


Wij, i, j /∈ S,
wsim, i, j ∈ S1 or i, j ∈ S2,
−wdis, otherwise.

(4.8)

with wdis > 0 we can prevent SC from cutting those edges. Obviously, the

resulting graph Ĝ =
(
V , Ê , Ŵ

)
is a signed graph. Hence, we use sSC, the

algorithm for sSCs herby obtained is listed in Algorithm 5. While it was still
possible that all samples end up in the same cluster with wdis = 0 without
any penalty it is now favorable to separate samples from different clusters.

For this modification, a bound for wsim and wdis can be derived. This will
be done in two steps, first Lemma 4.2.1 and Lemma 4.2.2 present an upper
bound for the case that all samples have been labeled correctly and a lower
bound for the case that at least one sampled node has been labeled falsely,
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then, in Theorem 4.2.1, the two lemmas will be joined to give a criteria,
when the choice of wsim and wdis yields consistent clustering results for the
sampled nodes.

Lemma 4.2.1 (maximum sRC with correct labeling). For any graph the
sRC with the modified weight matrix and all nodes being labeled correctly is

ρ̄(V1,V2) ≤ 2.

Proof. Assuming that all nodes have been labeled correctly, there are no
edges with negative weights within either V1 or V2. Thus, they do not con-
tribute anything to the sRC and so it is equivalent to calculate the sRC for the
unsigned graph, where all negative weights have been removed. According
to (2.35) the bound ρ̄(V1,V2) ≤ 2 holds.

Lemma 4.2.2 (minimum sRC with falsely labeled nodes). For any graph the
sRC with the modified weight matrix and at least one falsely labeled sample
is

ρ̄(V1,V2) ≥ min
i∈{1,2}

{
2wsim(Mi − 1) + wdisM3−i

N2

4

}
as long as

wdis >
2wsim

max{M1,M2}
.

Proof. The minimum possible sRC among all graphs with at least one falsely
labeled sample is obtained when there are no edges in the graph except
those that were generated from sampling. The initial graph with no edges
is sufficient for the minimum, as it has no edges that can increase the sRC
and there is no graph that could result in a smaller sRC, although there are
graphs that result in the same value, e.g., consider a graph with both clusters
being disconnected.

A lower bound for the sRCcan be obtained by finding an upper bound for
the denominator and a lower bound for the numerator. For the denominator
we get with V1 + V2 = V , N2

4
≥ N1N2 and for the numerator we proceed as

follows:
Let Mij be the number of sampled nodes from cluster i that end up in

cluster j after clustering. With Mii +Mij = Mi the numerator of the sRC is
f (·) : R2 → R

f (M11,M22) =2γ+(V1,V2) + γ−(V1) + γ−(V2)
=2wsim(M11M12 +M22M21) + wdisM21M11 + wdisM12M22

=2wsim(M11(M1 −M11) +M22(M2 −M22))

+ wdisM11(M2 −M22) + wdisM22(M1 −M11).

(4.9)
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The minimum sRC with at least one falsely labeled node is obtained by
minimizing f (·) on the set {0, . . . ,M1} × {0, . . . ,M2} \ {(0, 0) ∪ (M1,M2)}.
(0, 0) has to be excluded here because it corresponds to the case that all
nodes are put in the wrong cluster, but this is again a correct clustering by
exchanging the labels of the clusters. The cases of all nodes being placed
in the same cluster can also be excluded, because in the case M1 ≤ M2,
wdis >

2wsim
M2

and so

f (0,M2) = f (M1, 0) = wdisM1M2

= M2wdis + (M1 − 1)M2wdis

> M2wdis + 2(M1 − 1)wsim = f (M1 − 1,M2).

(4.10)

For M2 ≤M1 the righthand side would be replaced by f (M1,M2 − 1), which
shows that the minimum can never be obtained if all sampled nodes are put
into the same cluster.

With the constraint 0 < M11 < M1, the minimum for (4.9) is obtained
as 2wsim(M1 − 1) + wdisM2 at M11 = M1 − 1 and M22 = M2. Vice versa,
for 0 < M22 < M2 the minimum is obtained as 2wsim(M2 − 1) + wdisM1

at M11 = M1 and M22 = M2 − 1. To get the minimum on {0, . . . ,M1} ×
{0, . . . ,M2} \ {(0, 0)∪ (M1,M2)∪ (0,M2)∪ (M1, 0)} it is only left to take the
minimum over those two cases.

By imposing that a partitioning with all sampled nodes being labeled
correctly has to be better in terms of sRC than one with at least one falsely
labeled node, we get

Theorem 4.2.1 (consistent labeling with sRC). Minimizing the sRC yields
consistent labels for the sampled nodes when

N2

2
< min

i∈{1,2}
{2wsim(Mi − 1) + wdisM3−i}

and

wdis > min
i∈{1,2}

{
2wsim
Mi

}
.

Proof. Let {Vc1,Vc2} and {Vf1 ,V
f
2 } denote the partitioning with all sampled

nodes being correctly labeled and at least one node falsely labeled, respec-

tively. From Lemma 4.2.2 we know ρ̄
(
Vf1 ,V

f
2

)
≥ min

i∈{1,2}

{
2wsim(Mi−1)+wdisM3−i

N2

4

}
.

By choosing wsim and wdis such that N2

2
≤ min

i∈{1,2}
{2wsim(Mi − 1) + wdisM3−i},

Lemma 4.2.1 implies that

ρ̄(Vc1,Vc2) < ρ̄
(
Vf1 ,V

f
2

)
. (4.11)
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Figure 4.3: The admissible region from Theorem 4.2.1 is given by the hatched
area (, assuming that M1 < M2). The blue lines correspond to equality in
the first constraint of Theorem 4.2.1 and represent the cases of i = 1 (dark
blue) and i = 2 (light blue) and the red line corresponds to equality in the
second constraint.

is true for any graph, and hence correctly labeled sample nodes are always
favorable compared to falsely labeled samples.

There is no explicit solution for either wsim or wdis without further con-
straints. One idea is to choose wsim and wdis based on the admissible region
which is illustrated in Fig. 4.3. It can be seen that the admissible region is
bounded by three lines and so there are three points that could be interesting
for the minimization of wsim + wdis, namely the points where wsim = 0, the
point where the two blue lines intersect, or the point where the dark blue
line and the red line intersect.

4.2.2 Low Rank Reconstruction of Adjacency Matrix

For (weakly) balanced graphs, the clustering is directly visible in the adja-
cency matrix as all intra-cluster edges have positive weights and all inter-
cluster edges have negative weights. In [21] the authors presented a method
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that aims to reconstruct this adjacency matrix from the adjacency ma-
trix of an observed subgraph. In this approach the underlying graph G =
(V , E∗,W ∗) is assumed to be fully connected and its weight matrix is defined
as

W ∗
ij =

{
1, i and j are in the same cluster,

−1, i and j are in different clusters.
(4.12)

Note here, that the main diagonal of the weight matrix is non-zero and thus,
the graph has self-loops. This is a necessary prerequisite for the algorithm
and can easily be obtained for every graph by setting the weights of the
self-loops to one. The sampled weight matrix is then defined as

Wij =

{
W ∗
ij, (i, j) ∈ E ,

0, otherwise,
(4.13)

where E is the set of observed edges and G = (V , E ,W ) is the observed
graph. This definition of the observed graph is equivalent to the modified
graph in sSCs with wsim = wdis = 1, when the original graph has no edges.
But contrary to SCs and sSCs, this approach samples the edge weights and
not the cluster labels.

For the reconstruction of W ∗ from W [21] distinguishes between two
types of methods, the local method and the global method. The local method
predicts the unknown entries of W ∗ by means of a measure of imbalance
µ(·) : RN×N → R+

0 which is positive if it is applied to the weight matrix of a
balanced graph and zero otherwise. The predicted entries are then given by

Ŵij = sign
(
µ
(
W−(i,j)

)
− µ

(
W+(i,j)

))
, (4.14)

where W−(i,j) and W+(i,j) are duplicates of W with the ij-th entry set to
−1 and 1, respectively. Intuitively, this means that it measures which graph
is more unbalanced and then it decides for the other.

The global method is based on the rank of W ∗. ForK ≤ 2, rank(W ∗) = 1
and otherwise rank(W ∗) = K. This is because rows, whose index is in the
same cluster, are equal (thus, there are at most K linearly independent rows)
and for K > 2 it is possible to construct K linearly independent eigenvectors.
For K = 2 the rows whose indices are in the second cluster are the inverse to
the rows with indices in the first cluster. With this knowledge the authors
formalized the problem as an NP-hard minimization problem

min
X∈RN×N

rank(X)

s.t. Xij = W ∗
ij, ∀(i, j) ∈ E ,

Xij ∈ {−1, 1},∀(i, j) /∈ E

(4.15)
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Algorithm 6 Sign prediction via singular value projection [21]

input: weight matrix W of the observed graph, rank k, tolerance ε, max
iteration tmax, step size η

1: Initialize X(0) ← 0 and t← 0

2: repeat

3: X̂
(t)
←X(t) − η

(
P
(
X(t)

)
−W

)
4: [U ,Σ,V ]← top k results of the singular value decomposition of X̂

(t)

5: X(t+1) ← UΣV T

6: t← t+ 1

7: until
∥∥∥P
(
X(t)

)
−W

∥∥∥2
F
≤ ε ∨ t > tmax

8: X̄ ← sign
(
X(t)

)
output: X̄

for which it is possible to formulate conditions for perfect recovery when
sampling the edges uniformly. Such a recovery condition is given by [21,
Theorem 18], where a lower bound on the number of samples is prescribed
such that W ∗ can be recovered perfectly with a certain probability. As an
attempt to reduce the complexity the singular value projection

min
X∈RN×N

‖P (X)‖2F

s.t. rank(X) ≤ k,
(4.16)

with P (·) : RN×N → RN×N being the projection operator

P (X)ij =

{
Xij, (i, j) ∈ E ,
0, otherwise,

(4.17)

was proposed. The procedure solving (4.16) is listed in Algorithm 6.
In their experiments [21] showed that the performance of the global

method is better compared to the local method, both in terms of cluster-
ing performance and in computation time.
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5
Numerical Experiments

In the numerical experiments, we compare the performance of sSCs to that of
the global approach, singular value projection (SVP) of [21], and clustering
by harmonic functions (HFC) [20]. Afterwards, we study different types of
sampling and configurations for wsim and wdis in sSCs: first, the influence of
different sample sizes M and degrading parameters in the data models will
be studied for node- and edge sampling, second, the effect of node- and edge
sampling on sSCs will be compared for fixed parameters in the data models
and fixed number of samples; third, the bound from Theorem 4.2.1 will be
analyzed for cases when it is met with equality and cases where it is not
fulfilled. With the last analysis, a configuration for sSCs will be obtained
beyond which no further improvement can be expected. The metric that is
used for comparison is the number of incorrectly labeled nodes Nerr and the
data models are a two moon model (TMM), random cluster graphs (RCGs),
a spiral model (SM), and a concentric circle model (CCM) (cf. Section 5.1).

Although it would be possible to use larger values for wsim and wdis
we restrict to the choices 0 and 1 (as this was already the case when SCs
was presented in [19]). Only in the experiments where the bounds will be
analyzed, the sampling values will be allowed to become larger.

Throughout the experiments we will generate all graphs with N = 1000
nodes.

47
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5.1 Data Models

In the experiments we used three model, namely TMM, SM and CCM, for
which the data and the cluster labels were drawn from a random distribution
and then a graph was formed by KNN with 5 neighbors. In the fourth model,
RCG, the graph was generated by randomly creating edges. Fig. 5.1 shows
one realization of each model in which the cluster labels were encoded by
different colors. Since there is no position information in RCG, a graph
drawing algorithm MDS from (Algorithm 2 with the graph metric being the
minimum number of hops) had to be used.

The idea of TMM (and also SM and CCM) is that the support of each
cluster should be a non-convex region. For TMM these regions are formed
by two half circles where the end of of the first cluster is in the center of the
second cluster and vice versa. The data points xi for this model are generated
by performing the following steps independently for every i ∈ {1, . . . , N}:

• Draw a cluster label li ∈ {1, 2} with both values being equally likely.

• Draw the angle φi from a uniform distribution φi ∼ U([0, π]).

• Generate Gaussian noise ni ∼ N
(

0, σ
2

2
I
)

.

The resulting data point is then

xi =

[
3
2
− li + cos(φi)

(2li − 3) sin(φi)

]
+ ni. (5.1)

For SM the first three steps are the same, except that the orientation
φi is drawn uniformly from φi ∼ U([0, 2π]). The data points for this model
are then generated such that the clusters form interlacing spirals, which is
accomplished by

xi =

(
φi
π

+ 1

)[
cos(φi + (li − 1)π)
sin(φi + (li − 1)π)

]
+ ni. (5.2)

In CCM the clusters are arranged as concentric circles by drawing li, φi
and ni the same way as for SM. The data xi is constructed as

xi = li

[
cos(φi)
sin(φi)

]
+ ni. (5.3)

For RCG the graph G = (V , E ,W ) is generated such that the two clusters
have exactly the same size and between any pair of two nodes vi, vj ∈ V an
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Figure 5.1: Examples for clustered data models: (a) TMM, (b) RCG, (c) SM
and (d) CCM.

edge exists with probability

P{{i, j} ∈ E} =


0, i = j,

p0, i, j ∈ C1 ∨ i, j ∈ C2,
p1, otherwise,

(5.4)

with C1 and C2 being the two clusters, p0 being the intra-cluster probability
and p1 the inter-cluster probability.

5.2 Comparison of Clustering Algorithms

In the first experiment, the performance of SVP and sSCs with wdis = 1 and
wdis = 0 is studied for edge sampling with varying M and. The results of
this experiment are shown in Fig. 5.2 in terms of the empirical cumulative
distribution function (ECDF) of Nerr. It can be seen that for M = 100 all al-
gorithms and configurations perform very well, but as the number of samples
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decreases, also the performance decreases. For M = 2, SVP completely fails,
as Nerr is close to N

2
which is only as good as a random guess, but sSCs still

yields good results in many cases. The bad performance for SVP is because
it is required that for any node at least one sampled edge ends at this node,
so that it has a chance to put the node into the correct cluster. If there is
no such edge the result would be a pure guess. In the case of M = 2, only
2 edges are sampled and so this condition cannot be fulfilled. On the other
hand, sSCs takes the structure of the graph into account and also inherits
the performance from SC, which means that it would still work even without
any samples. It can further be observed that wdis = 1 yields better results
than wdis = 0 in the case of M = 10, which was already expected due to the
construction of sSCs. Also, when looking at the examples in Fig. 5.1 it can
be seen that the clusters in TMM can already be separated with relatively
good quality by cutting with a horizontal line, for CCM a good cut would be
a circle with radius 1.5 only for SM it is not possible to find such a simple
shape. This simplicity of the cut shape is reflected in the clustering results,
as the performance deteriorates when going from TMM to CCM and from
CCM to SM.

As it was seen above, SVP cannot compete with sSCs at least for the
test problems for a low number of samples and also it is computationally
very complex. Thus, it will not be considered anymore in the following
experiments.

The next experiment analyzes the performance of sSCs for different noise
variances in the data and for different inter-cluster edge probabilities. The
results of this experiment are shown in Fig. 5.3 using box-plots. For TMM
and RCG, both configurations of sSCs work almost equally well. The be-
havior that Nerr increases with increasing σ and p1 is expected because those
two parameters control the separability of the clusters. In SM and CCM
there is a major difference in the performance, i.e., there are cases for which
wdis = 1 still works but wdis = 0 completely fails. This confirms that the
extension of SCs to sSCs was a good choice. Also it can be observed that for
all models there is a point at which the performance of clustering first starts
to degrade. This point is σ = 0.3 for the geometric models and p1 = 0.02
for RCG. Hence, in all other experiments we will use σ = 0.3 and p1 = 0.02
since here clustering is challenging but still possible reasonably well.

We next compare sSCs to HFC for the case of node sampling. Whereas
sSCs performs better than HFC for TMM and RCG, it performs worse for
SM and CCM. This can be seen in Fig. 5.4 in the ECDF of Nerr for different
values of M and also in Fig. 5.5 in the box-plot of Nerr for different values of
σ and pinter. But in all cases where HFC performs better, the median of Nerr

is larger than 250, which means that one fourth of all nodes has been labeled
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falsely and so the clustering result is too bad to be considered as useful. In
the cases, where the results are satisfactory sSCs performs better than HFC
and for RCG it can even be seen that HFC completely fails. To illustrate this
behavior, Fig. 5.6 shows the estimated cluster labels for RCG and CCM. In
both cases the same graph with the same sampling points has been fed into
HFC and sSCs with wdis = 1. For RCG, HFC only assigns the nodes that
were sampled from the second cluster to this cluster and all the others to the
first cluster, whereas sSCs puts most of the nodes into the correct cluster.
The failure of HFC can be explained as follows: If a sample is only loosely
connected to the graph, it has only minor influence on the clustering result,
whereas heavily connected samples have a big impact. If all samples from one
cluster are loosely connected, they will be the only nodes that are assigned
to this cluster. For CCM the argument is different: here it may happen that
all samples from the inner cluster were taken from the upper half and all
samples from the outer cluster were taken from the lower half. sSCs then
favors to cut along a straight line in the middle of the graph to minimize the
number of cut edges. On the other hand HFC assigns all nodes to the cluster
of the sampled nodes for which their connection is strongest. In the given
example, this is a bigger portion of the inner cluster and a smaller portion
of the outer cluster than for sSCs. Thus, HFC has a better performance in
this case.

In the previous experiments it was seen that sSCs with wdis = 1 performs
better than wdis = 0. The reason for this can be found in the clustering
of the sampled nodes. Fig. 5.7 shows the ECDF of the number of falsely
labeled samples Nerr,sample relative to the total number of samples in percent,

Nerr,rel =
Nerr,sample

M
· 100 %. It can be seen that wdis = 0 performs worse than

wdis = 1. With wdis = 0, it happens more frequently that sampled nodes are
all put together in the same cluster and thus also many of the other nodes
are clustered incorrectly. This is because wdis = 0 does not put any penalty
on having all samples in the same cluster.
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(c) Results for SM
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Figure 5.2: Comparison of SVP and sSCs with wdis = 0 and wdis = 1 in terms
of the ECDF of Nerr for M ∈ {2, 10, 100} and edge sampling. The graphs
were generated with N = 1000, 5 neighbors in KNN, σs = 1 in the similarity
measure, σ = 0.3 for the noise in TMM, SM and CCM, and pintra = 0.05 and
pinter = 0.02 in RCG.
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Figure 5.3: Comparison of sSCs with wdis = 0 and wdis = 1 as a box-plot of
Nerr for M = 10 and edge sampling over varying σ for the noise in TMM,
SM and CCM and varying pinter in RCG. The graphs were generated with
N = 1000, 5 neighbors in KNN, σs = 1 in the similarity measure, and
pintra = 0.05 in RCG.
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(c) Results for SM
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Figure 5.4: Comparison of HFC and sSCs with wdis = 0 and wdis = 1 in terms
of the ECDF of Nerr for M ∈ {2, 10, 100} and node sampling. The graphs
were generated with N = 1000, 5 neighbors in KNN, σs = 1 in the similarity
measure, σ = 0.3 for the noise in TMM, SM and CCM, and pintra = 0.05 and
pinter = 0.02 in RCG.
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Figure 5.5: Comparison of HFC and sSCs with wdis = 0 and wdis = 1 as a
box-plot of Nerr for M = 10 and node sampling over varying σ for the noise in
TMM, SM and CCM and varying pinter in RCG. The graphs were generated
with N = 1000, 5 neighbors in KNN, and pintra = 0.05 in RCG.
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Figure 5.6: Clustering results from HFC (left) and sSCs with wdis = 1 (right)
for RCG (top) and CCM (bottom). The graphs were generated with N =
1000, 5 neighbors in KNN, σs = 1 in the similarity measure, σ = 0.3 for the
noise in CCM, and pintra = 0.05 and pinter = 0.02 in RCG.
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Figure 5.7: Comparison of HFC and sSCs with wdis = 0 and wdis = 1 in
terms of the ECDF of the number of falsely labeled samples relative to the
total number of samples for M ∈ {2, 10, 100} and node sampling. The graphs
were generated with N = 1000, 5 neighbors in KNN, σs = 1 in the similarity
measure, σ = 0.3 for the noise in TMM, SM and CCM, and pintra = 0.05 and
pinter = 0.02 in RCG.
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5.3 Performance of Different Sampling Strategies

As it could have already been expected, the performance is different for
node sampling and edge sampling. Fig. 5.8 shows the results of sSCs when
used in combination with node sampling and edge sampling. It can be seen
that the performance of edge sampling is better than that of node sampling
for all models except RCG. The performance advantage of edge sampling
is due to the facts that with node sampling not all generated edges give
additional information. For example, when three nodes are sampled, three
bits of information are generated, from which only two are not redundant: if
the first node is in the same cluster as node two, and node two is in the same
cluster as node three, the information about node one and three is implicitly
given. For edge sampling it is very likely that three edges are connected to
different nodes and so all three edges carry non-redundant information. For
RCG this effect is only minor for wdis = 0, because the number of edges
in the graph is already very big and so positive edges do not carry a lot of
information. For wdis = 1 it is even the opposite because with node sampling
there is a minimum amount of M − 1 negative edges if at least one node
is sampled from a different cluster than the others. This minimum number
of negative weights does not exist for edge sampling. Thus, the amount of
edges that do carry important information is bigger for node sampling.
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Figure 5.8: Comparison of node sampling and edge sampling for sSCs with
wdis = 0 and wdis = 1 in terms of the ECDF for M = 10. The graphs were
generated with N = 1000, 5 neighbors in KNN, σs = 1 in the similarity
measure, σ = 0.3 for the noise in TMM, SM and CCM, and pintra = 0.05 and
pinter = 0.02 in RCG.
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5.4 Analysis of Weight Bounds

For the case of wdis = 0 the bound in Theorem 4.2.1 is

wsim ≥
N2

4min{M1,M2}
,

but as Mi is unknown before runtime, the approximation Mi ≈ M
2

will be
used and so for N = 1000 and M = 10 the bound is wsim ≥ 50000. As
this bound was derived for the worst case of an unconnected graph versus
a fully connected graph, it is expected to be very conservative. Thus, the
performance of sSCs with wdis = 0 was analyzed for five values that are
logarithmically spaced from 1 to 50000. The results of those simulations are
shown in Fig. 5.9. It can be seen that in the case of TMM and RCG the
performance of wsim = 1 is already good and there is not much space left for
improvement, but for SM and CCM this is not the case and it can be seen
that the performance improves significantly. Only for wsim > 15 there is no
further improvement.

When wdis ≥ 0 is allowed, the whole admissible region from Fig. 4.3 can be
analyzed. Again, the exact values of Mi are unknown and thus we use Mi ≈
M
2

. We will first study the special case wsim = wdis and afterwards investigate
distinct weight values along the straight line separating the admissible region
from the inadmissible region.

With wsim = wdis = w and Mi ≈ M
2

for i ∈ {1, 2}, the bound from
Theorem 4.2.1 reads

w >
N2

2 min
i∈{1,2}

{2(Mi − 1) +M3−i}
≈ N2

3M − 2
(5.5)

which is fulfilled by w = 38463 for N = 1000 and M = 10. Fig. 5.10 shows
the results for logarithmically spaced values in the range from 1 to 38463.
It can be observed that for TMM and RCG there are only minor changes
in performance that are due to random fluctuations. Also for CCM there is
only little space left for improvement when using edge sampling, but for node
sampling there is an obvious increase in performance when w > 1 (although
the overall performance here is already rather bad which renders it useless
for clustering). The biggest performance increase occurs for SM with edge
sampling, where w = 1 gives acceptable clustering results, but a value of
w ≥ 14 results in very good clustering performance.

Also, when choosing wsim and wdis along the boundary between the ad-
missible region and the inadmissible region, a difference between the con-
figurations can be identified. When either wsim or wdis is close to zero the
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performance is worse than when their distance to zero is in the same order of
magnitude, which is similar to the former experiments. But also if only one
of them is allowed to be non-zero, it makes a difference which of these two
values is chosen for that. In general, the case wdis > 0 performs better than
the case wsim > 0. This is because the unmodified weight matrix already
contains positive values and so negative weights can have a greater impact
on the performance. Such a behavior can also be expected as wdis = 0 lies
in the inadmissible region of Fig. 4.3.

Overall, the results of this experiment suggest that for sSCs it is advan-
tageous to choose both wsim and wdis greater than one and also both in
the same order of magnitude. A good performance for the examples consid-
ered can already be obtained for wsim = wdis = 14 without any substantial
performance gains when increasing the values.
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(c) Results for SM
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Figure 5.9: Comparison of different values for wsim with wdis = 0 for sSCs in
terms of ECDF for M = 10. The graphs were generated with N = 1000, 5
neighbors in KNN, σs = 1 in the similarity measure, σ = 0.3 for the noise in
TMM, SM and CCM, and pintra = 0.05 and pinter = 0.02 in RCG.
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(c) Results for SM

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Nerr

E
C
D
F

(d) Results for CCM

node sampling edge sampling
wsim = wdis = 1 wsim = wdis = 14
wsim = wdis = 196 wsim = wdis = 2746
wsim = wdis = 38463

Figure 5.10: Comparison of different values for wsim and wdis with wsim =
wdis for sSCs in terms of ECDF for M = 10. The graphs were generated with
N = 1000, 5 neighbors in KNN, σs = 1 in the similarity measure, σ = 0.3
for the noise in TMM, SM and CCM, and pintra = 0.05 and pinter = 0.02 in
RCG. Comparison of (2) for different wsim.
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(a) Results for TMM

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Nerr

E
C
D
F

(b) Results for RCG

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Nerr

E
C
D
F

(c) Results for SM

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Nerr

E
C
D
F

(d) Results for CCM
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Figure 5.11: Comparison of different values for wsim and wdis along the line
that separates the admissible region from the inadmissible region in the case
that M1 = M2 for sSCs in terms of ECDF for M = 10. The graphs were
generated with N = 1000, 5 neighbors in KNN, σs = 1 in the similarity
measure, σ = 0.3 for the noise in TMM, SM and CCM, and pintra = 0.05 and
pinter = 0.02 in RCG.



6

Conclusions and Outlook

6.1 Conclusions

In this work we gave a short introduction to some GSP concepts with a
focus on those that are required for graph-based SC. We then introduced the
work on sSC, which modifies the weight matrix of a graph according to the
similarity of sampled cluster labels, to include sampling in SC. This work was
then extended to sSCs to also incorporate dissimilarity information. For the
last modification we derived analytic results to find optimal values for the
modifications of the weight matrix. To also get a different view on clustering,
we introduced MDS and SVP.

In the experiments sSCs was tested against sSC, SVP and HFC. We
concluded that sSCs is superior to the other algorithms. Then we analyzed
the performance of node sampling against edge sampling which showed the
expected behavior that edge sampling performs better than node sampling.
In the last experiments we analyzed our theoretical bounds for the optimum
values in sSCs and could see that the derived bounds are rather conservative
when applied to graphs with clusters.
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6.2 Outlook

Although our approach seems very promising, there are still open questions
and results that could be improved further:

• sSCs makes use of sSC, which can only be used for two clusters. In
reality the data often has multiple clusters. Thus, sSCs needs to be
extended to this case.

• For bounds for wsim and wdis we made use of graphs without any edges
and fully connected graphs, which obviously do not have any cluster
structure. It may be possible to derive tighter bounds for certain classes
of graphs with cluster structure.

• In the comparison of edge sampling and node sampling, there was a
lot of redundant information in node sampling. This leaves the open
question of how many edges and nodes need to be sampled in the
different strategies to get comparable results.

• The idea of using negative values to encode dissimilarity information
seems to be promising and so one could also try to incorporate this
information to signal recovery by TV minimization.
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Acronyms

CCM concentric circle model
CDF cumulative distribution function
DFT discrete Fourier transform
ECDF empirical cumulative distribution function
GFT graph Fourier transform
GSP graph signal processing
HFC clustering by harmonic functions
KNN k-nearest neighborhood graph
MDS multidimensional scaling
mKNN mutual k-nearest neighborhood graph
RC ratio cut
RCG random cluster graph
SC spectral clustering
SCs spectral clustering with sampling
SM spiral model
sRC signed ratio cut
sSC signed spectral clustering
sSCs signed spectral clustering with sampling
SVP singular value projection
TMM two moon model
TV total variation
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