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Abstract

Automatically detected electrocardiogram (ECG) features are used to calculate
risk parameters for patients with cardiovascular diseases. In this context, mice
are often used for experiments in terms of heart disease models. The anatomy
and physiology of humans are comparable to that of mice and gene manipulation
for varying the function of proteins is possible. This way, certain cardiovascular
disease patterns can be generated and treatments can be tested. Therefore, the
analysis of murine ECG signals is a topic of great interest for preclinical research.
In particular, automatic methods with little or no manual intervention are desir-
able. However, despite the high number of similarities between humans and mice,
there are two major differences. On the one hand, the heart rates of mice are mul-
tiple times higher than human heart rates. And on the other hand, the different
shapes of the action potentials and their consequences for the ECG morphology
make it difficult to use human ECG signal analysis algorithms for murine data.
The main differences occur in the QRS-offset representing the end of ventricu-
lar depolarization and the subsequent T-wave corresponding to the ventricular
repolarization. In murine ECG signals, there is no ST-interval, but a deflection
directly starting after the QRS-complex that precedes the T-wave. The feature is
called J-wave and does not occur in this form for humans. Thus, algorithms for
analysing human ECG signals provide wrong annotations for mice.

The aim of this master thesis was the implementation, evaluation, description,
and application of an algorithm for automatic feature annotation of murine ECG
signals. The algorithm is based on the AIT ECGsolver, which is used for the
ECG analysis for human data. The problem of the different T-wave morphology
is addressed by the implementation of a new feature detection for the QRS-offset
and the T-wave features. There were three task in the algorithm pipeline which
were solved by two different implemented methods. The performance of all 8 res-
ulting algorithm versions and a slightly adapted version of the AIT ECGsolver
was determined. The automatically annotated ECG features and the calculated
ECG intervals were evaluated against manually annotated recordings. Moreover,
the algorithm was applied to murine ECG signals from a preclinical study to in-
vestigate the influence of medical intervention of mice.

The developed murine algorithm performs better than the human algorithm. Both
the detection rates and the differences from the detected feature to their target
values provided by the manual annotations have been improved. A sensitivity up
to 91.6 % and a positive prediction up to 94.18 % can be achieved by different
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algorithm versions. However, there is still an overestimation of the QRS- and
the QT-interval durations and most of the T-offsets are detected too late in the
signal. In addition, it has been found that the detection of P-wave features offers
potential for improvement. The finding of the medical treatment analysis was a de-
creasing heart rate after the intervention. Other consequences could not be found.

In this thesis, the focus was more on the annotations of the QRS-offset and the
T-wave features due to the different T-wave characteristic. However, it turned out
that the localisation of the P-wave features also shows potential for improvement,
which can be addressed in future work. In addition, the algorithm should be
further tested with data that shows a clearly recognisable negative T-wave.
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Kurzfassung

Automatisch detektierte Elektrokardiogramm (EKG) Merkmale werden zur Berech-
nung von Risikoparametern für PatientInnen mit kardiovaskulären Krankheiten
verwendet. In diesem Zusammenhang werden Mäuse häufig für Experimente
verwendet. Die Anatomie und Physiologie von Menschen und Mäusen ist ver-
gleichbar und die Möglichkeit einer Genmanipulation zur Veränderung von Pro-
teinfunktionen ist gegeben. So können bestimmte kardiovaskuläre Krankheits-
bilder erzeugt und Behandlungen getestet werden. Daher ist die Analyse von
Mäuse-EKG-Signalen von großem Interesse für die präklinische Forschung. Vor
allem eine automatische Methode mit wenig oder keinem manuellen Eingreifen ist
wünschenswert. Allerdings gibt es trotz der vielen Gleichheiten zwischen Mensch
und Maus zwei wesentliche Unterschiede. Einerseits ist die Herzrate von Mäusen
um ein Vielfaches höher als bei Menschen. Andererseits machen es die unterschied-
lichen Aktionpotentialformen und ihre Auswirkung auf die EKG Form schwierig,
Algorithmen zur menschlichen EKG Analyse auf Mäuse EKGs anzuwenden. Der
Hauptunterschied liegt im QRS-Offset, das Ende der ventrikulären Depolarisa-
tion, und in der T-Welle, der ventrikulären Repolarisation. Bei Mäuse EKGs gibt
es kein ST-Intervall, sondern eine Ausprägung direkt nach dem QRS-Komplex,
die der T-Welle vorausgeht. Dieses Merkmal wird J-Welle genannt und kommt
in dieser Form bei Menschen nicht vor. Daher liefern menschliche EKG-Signal-
Analyse Algorithmen falsche Ergebnisse bei Mäusen.

Das Ziel dieser Diplomarbeit war die Implementierung, Evaluierung, Beschreibung
und Anwendung eines Algorithmus für die automatische Merkmalserkennung bei
Mäuse EKG Signalen. Der Algorithmus basiert auf dem AIT ECGsolver, der für
die Analyse von menschlichen EKG Daten verwendet wird. Das Problem der un-
terschiedlichen T-Wellen Form wird durch eine neue Merkmalssuche für den QRS-
Offset und die T-Wellen Merkmale behoben. Es gibt drei Schritte im Algorith-
mus, die durch zwei unterschiedlich implementierten Methoden gelöst werden. Die
Leistung der 8 resultierenden Versionen und des leicht adaptierten menschlichen
Analysealgorithmus wurden ermittelt. Die automatisch annotierten EKG Merk-
male und die berechneten EKG Intervalle wurden mit manuellen Annotationen
verglichen. Außerdem wurde der Algorithmus auf Mäuse-Daten aus einer preklin-
ischen Studie angewendet, um die Auswirkung von medikamentöser Behandlung
zu untersuchen.

Der entwickelte Algorithmus liefert bessere Ergebnisse als der menschliche. So-
wohl die Detektionsrate als auch die Differenzen zwischen den detektierten Merk-
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malen und den Sollwerten konnte verringert werden. Eine Sensitivität von bis
zu 91.6 % und ein positiver Vorhersagewert von bis zu 94.18 % können für ver-
schiedene Versionen erreicht werden. Allerdings gibt es immer noch eine Über-
schätzung des QRS- und des QT-Intervalls und viele der T-offsets werden zu spät
detektiert. Außerdem wurde festgestellt, dass die Erkennung der P-Wellen Merk-
male noch Potential für Verbesserung aufweist. Das Ergebnis der Verabreichung
eines Medikamentes war eine gesenkte Herzrate. Weitere Auswirkungen konnten
nicht festgestellt werden.

In dieser Arbeit lag der Schwerpunkt mehr auf den Annotationen des QRS-Offsets
und den T-Wellen-Features aufgrund der unterschiedlichen T-Wellen-Eigenschaften.
Es stellte sich jedoch heraus, dass die Lokalisierung der P-Wellen Merkmale auch
Potential zur Verbesserung aufweist, auf das in zukünftigen Arbeiten eingegangen
werden kann. Außerdem sollte der Algorithmus noch weiter getestet werden mit
Daten, die eine klar erkennbare negative T-Welle aufweisen.

x
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Note: Variables used within limited context are described at the relevant section
and are not listed here.

AP action potential

au arbitrary unit

AV atrioventricular

ECG electrocardiogram

FN false negative

FP false positive

FVB Friend leukaemia Virus B

HR heart rate

HRV heart rate variability

IQR interquartile range

KChIP2 Potassium Channel Interaction Protein 2

Pp positive prediction

PQ PQ-interval; time interval between P-offset and Q-onset

PR PR-interval; see PQ

QRS QRS-complex; time interval between Q-onset and S-offset

QT QT-interval; time interval between Q-onset and T-offset

QTC QTC-interval; heart rate corrected QT-interval

RR RR-interval; time interval between two R-peaks

SA sinoatrial

SCA sickle cell anaemia

SD standard deviation

Se sensitivity
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ST ST-interval; time interval between S-offset and T-onset

TN true negative

TP true positive

TRA trapezium’s area

u (membrane) voltage

UR resting membrane potential

V voltage

VAP ventricular action potential

VEGF-B Vascular Endothelial Growth Factor B

w moving window width

α level of significance
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Introduction |1
The introductory chapter explains the motivation and the goal of this thesis.
Furthermore, an overview of the structure of the work is given.

1.1. Motivation
Automatically detected features of the Electrocardiogram (ECG) are used to cal-
culate risk parameters for patients with heart diseases. ECG intervals, such as
the QT-interval, are used to detect and observe cardiac diseases. The analysis of
ECG signals and automatic determination of ECG parameters and features are
a topic of great interest for clinical and preclinical research, especially automatic
procedures with little to none manual intervention. The majority of preclinical
studies on murine ECG signals uses manually annotated recordings.

Mice have many similarities with human anatomy and physiology, including elec-
trocardiographic parallels. Thus, it is possible to translate results from mice
models to humans. Furthermore, the possibility of gene manipulation to influence
the function of proteins related to cardiac diseases and action potential genera-
tion exists for mice. Thus, genetically modified mice models are widely used for
experiments concerning heart diseases.

Besides the similarities, one major difference between human and murine ECG
signals is the heart rate. Heart rates of mice vary from 180 to 600 beats per
minute [1]. They are multiple times higher than human heart rates, which range
from 56 to 101 beats per minute [2]. Furthermore, electrocardiographic differences
in morphology make it difficult to use human ECG signal analysis algorithms for
murine data. For both species, the P-wave representing arterial depolarization
and the QRS-complex representing ventricular depolarization are clearly recog-
nizable in the ECG signal. The main difference in the morphology occurs in the
QRS-offset and the T-wave features. There is no ST-interval in murine ECG sig-
nals. The subsequent wave to the QRS-complex is called J-wave. It starts right
where the QRS-offset is located. The J-wave is followed by the T-wave. Depending
on the measured lead, the T-wave in humans and in mice is positive or negative [3].

As a result of the differences, algorithms for analysing human ECG signals provide
wrong annotations for mice. Especially for the QRS-offset and the T-wave, the
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1. Introduction

development of a specialised algorithm for the automatic detection of ECG fea-
tures such as R-peak, QRS-onset and -offset, T-wave and P-wave in ECG signals
of mice is relevant for medical applications and especially preclinical research.

1.2. Aim of the Thesis
The aim of this master thesis is the implementation, description, evaluation and
application of an algorithm for automatic feature annotation of murine ECG sig-
nals based on the AIT ECGsolver, an algorithm for human ECG signals developed
by Bachler et al. [4]. Relevant ECG intervals such as the QT interval should be
calculated automatically based on the annotations.
The automatically annotated ECG features and calculated ECG intervals are eval-
uated against manually labelled annotations. In this way, the performance of the
algorithm is determined. Moreover, the algorithm is applied to murine ECG sig-
nals from a preclinical study to investigate the influence of medical treatment on
mice.

1.3. Structure of the Thesis
This thesis is structured into six chapters. After the introductory part, Chapter
2 is dedicated to provide the necessary background knowledge. The anatomy
and physiology of the human and the mouse heart, general information about
ECG signals, the state of the art methods for ECG analysis and some selected
applications are presented. Chapter 3 describes the used data and the manual
annotations. Furthermore, it introduces the used ECG analysis methods as well
as the statistical methods for the evaluation. A detailed description of the imple-
mented algorithm for the analysis of murine ECG data is given in Chapter 4. The
results from the comparison between the manual and automatic annotations are
presented in Chapter 5 together with results from the comparison before and after
medical treatment of the mice. Chapter 6 provides the analysis and interpretation
of the findings in Chapter 5 and an outlook for future investigations.
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Background |2
In the following section, the anatomy and physiology of the human and murine
heart are described. Furthermore, the origin, lead placements and components of
the ECG are explained. In the last subsection, an overview of the state of the art
and applications of murine ECG analysis algorithms is given.

2.1. Heart
Differences in the anatomical structure and the functionality of a mammalian heart
exist, but are subtle [5]. Therefore, the human and mouse heart are explained at
the same time with remarks on the main characteristics and dissimilarities. If not
stated otherwise, the description of the human heart and general statements are
based on the book Biomedical Signals and Sensors I by Kaniusas [6].

2.1.1. Anatomy
The heart of both species consists of a left and right side separated by a muscular
wall, called the septum. Each side has two compartments, the atrium and the
ventricle. The atria and ventricles are separated by atrioventricular valves. They
are called tricuspid valve on the right side and mitral valve on the left side. The
semilunar valves are the interconnection between the ventricles and the attached
blood vessels. The valve between the right ventricle and the pulmonary artery is
called pulmonary valve. The aortic valve regulates the blood flow between the left
ventricle and the aorta. The inner tissue layer of the heart is called endocardium,
the outer layer epicardium. Figure 2.1 and Figure 2.2 show a schematic repres-
entation of the human and murine heart and the connected blood vessels.

The blood circulation driven by the heart can be subdivided into the pulmonary
and systemic circulation. The pulmonary circulation consists of the right part
of the heart including the right atrium, the tricuspid valve, the right ventricle,
the pulmonary valve and arteries, the capillaries and the veins in the pulmonary
system. Its purpose is the transport of blood with low oxygen and high carbon
dioxide concentration to the lungs for oxygenation. The left side of the heart
pumps oxygenated blood through the systemic circulation, which includes the left
atrium, the mitral valve, the left ventricle, the aortic valve, and the systemic
arteries, the capillaries and the veins.

3



2. Background

Figure 2.1.: Schematic representation and description of the human heart and the
connected blood vessels [7].

Figure 2.2.: Schematic representation and description of the murine heart and the
connected blood vessels (auricle means atrium) [8].
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2.1. Heart

The muscular structure of the heart is formed by two distinct cardiac muscles,
called myocardia. Both, atria and ventricles, are each built by one myocardium
leading to a functional separation. Furthermore ,the fibrous skeleton ensures the
electrical separation. Only special conducting tissue can electrically connect the
atrium and the ventricle.

The valves are composed of connective nonmuscular tissue. Pressure differences
govern their opening and closing. The structure of the valves and the connection
via tendious cords to the papillary muscles within the ventricles are responsible
for the unidirectional blood flow through the heart.

The main components of the electrical conduction system are called sinoatrial
node (SA node), atrioventricular node (AV node) and Bundle of His. All three
can act as pacemaker for the heart at different rates. The primary pacemaker
is the sinoatrial node. In humans, this collection of specialized cardiac muscle
cells, is located in the right atrium. In mice, the location is not in the atrium,
but in the Superior Vena Cava above the junction with the atrium [5]. The SA
node spontaneously generates action potentials, which spread through cells into
the right and left atrium. The AV node is the only conducting part between
atria and ventricles. It is in the region of the interatrial septum. The Bundle
of His transmits the action potential further through the fibrous skeleton to the
apex of the heart. Two branches along the interventricular septum are connected
to the ventricle walls through so called Purkinje fibers. The composition of the
connection from the AV node to the bundle branches seems to be maintained for
small mammals [5].

2.1.2. Physiology
The function of the heart is a composition of the mechanical pumping and the
electrical activation. In this section, the chronology of one heartbeat is given
without going into detail regarding the electrical conduction pathway (see Section
2.2.2).

Deoxygenated blood with low oxygen amount and high carbon dioxide enters the
right atrium via the Superior Vena Cava. The left atrium is filled with oxygenated
blood after the oxygen exchange in the lungs. The blood flows into the atrium
through the pulmonary vein. Both atrioventricular valves are closed. The SA node
initiates a heartbeat by generating an action potential which spreads through the
atrial myocardium. This stimulates the right and left atria to contract. Due to
the contraction, the atrial pressure exceeds the ventricular pressure, resulting in
the opening of the atrioventricular valves. Since the ventricular myocardium is
relaxed and the semilunar valves closed, the deoxygenated blood enters the right
ventricle and the oxygenated blood the left ventricle. The action potential propag-
ates to the AV node. A short time delay gives the atria time to eject the blood
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2. Background

into the ventricles. Then, the action potential is transmitted via the Bundle of
His to the Purkinje fibers in the ventricular walls. The contraction of both vent-
ricles increases the ventricular pressures. The semilunar valves open at the time
the ventricular pressure exceeds the pressure of the following arteries. Thus, the
blood is pressed from the heart into the arterial vessels. The ventricular pressure
does not decrease until the ventricular heart muscle begins to relax. The semilunar
valves close because of decreasing pressure in the ventricles. It is a mechanism
to avoid blood backflow into the ventricles. Both atria and ventricles are relaxed.
The valves are closed and both atria are filled with blood. The system is ready
for the next action potential created by the SA node.

The heart beat can be divided into two time intervals - systole and diastole.
Systole, or more precisely ventricular systole, is the time when both ventricles
contract, atrioventricular valves are closed, semilunar valves are open. Blood
enters into the arterial vessels and atria. The time period between closure of aortic
and mitral valve is called ventricular diastole, or simply diastole. The blood flows
through open atrioventricular valves into relaxed ventricles.

2.2. Electrocardiogram
The electrocardiogram is classified as electrical biosignal [6]. It represents the
electrical excitation of the myocardia and thus is an important signal for the heart
function. The general mechanism of the cell activation through an action potential,
the standard lead placements, the origin and its corresponding components of the
ECG are described in the following subsections.

2.2.1. Action Potential
This subsection is based on the explanation about action potential in the books
Biomedical Signals and Sensors I by Kaniusas [6] and Angewandte Biophysik by
Pfützner [9].

An action potential (AP) is a signal transporting physiological information within
the body and is triggered by temporal ionic flow across the membrane of excitable
cells, such as muscle and nerve cells. The intra- and extracellular areas of cell
membranes are filled with ions. The concentration of potassium K+ and anions is
higher inside, sodium Na+ and chloride Cl− are more common outside. Although
other ions are involved as well, these ions have a significant concentration and role
in the AP generation. Since the electric charges between the intra- and extracellu-
lar space are unbalanced, a membrane voltage u occurs. Normally the membrane
potential is in a resting stage of UR = −70 mV. The equilibrium is maintained by
flux through resting state ion channels. Local stimulation, such as artificial excita-
tions or outward local currents, yields increasing local u (see Figure 2.3). This may

6



2.2. Electrocardiogram

be the origin of an AP, if the depolarization of the membrane exceeds a threshold
of about −50 mV. According to an all-or-nothing-law, an AP is only triggered
when the threshold is reached. After the AP introduction, the ongoing depolariz-
ation causes more and more voltage-gated Na+ channels to open, which in return
increase the depolarization and the membrane voltage. Within the subthreshold
level, only resting state channels of K+ and Cl− ions are active. Voltage-gated
K+ channels react with a delay and reach their peak in conductance way after
Na+ channels. Towards the end of the depolarization, voltage-gated Na+ channels
become temporal inactive. The influx of positive Na+ ions is compensated by
the K+ efflux. After reaching the maximum of u = 40 mV, the voltage starts to
decrease and repolarization starts. It is mainly controlled by voltage-gated K+

channels. The outflow of K+ and inflow of Cl− ions overcompensate the inflow
of Na+ during depolarization and lead to hyperpolarization. The voltage u even
drops below the resting state UR until K+ conductance reaches its resting level.
Voltage u returns to the level of UR and the local AP is over.

Figure 2.3.: Schematic representation of the potential differences during
an action potential. Image is adapted from [10].

As mentioned before, outward local currents work as depolarization stimuli and
can trigger an AP. They are caused by the increased flow of positive Na+ ions
during local depolarization and negatively charged membrane potential in adja-
cent areas. This imbalance leads to the equalizing ionic current along inner and
outer membrane surface. The affected membrane part introduces another AP
after reaching the voltage threshold, which can be the origin of another AP. This
mechanism is responsible for the propagation of APs through axons. The refract-
ory period of the voltage-gated ion channels protects against overlaps of APs and
backpropagation. As a result, the spread in one direction is guaranteed.
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2.2.2. ECG origin
In the previous section, a general explanation of the generation and propagation of
an action potential was given. This knowledge is now applied to describe the origin
of an ECG. The section is based on the book Bioelectromagnetism by Malmivuo
and Plonsey [11].

Action potentials propagate through the heart via myocardic muscle cells. For
resting cells, the extracellular space is positively charged, for activated cells, it is
negatively charged. The charges in intracellular space are not considered. The
differences in the extracellular space generate a dipole, which is orientated from
negatively to positively charged areas. At a given time point, activation (depolar-
ization) and relaxation (repolarization) generate many of these dipoles, differing
in magnitude and direction. Each dipole can be represented by an electrical vec-
tor. Summing up all individual vectors, results in the mean electrical vector.
Resulting potential differences can be recorded by placing electrodes on the body
surface. However, potential differences only occur at the boundary between activ-
ated (depolarized) and relaxed (repolarized) heart regions and not at fully excited
or relaxed areas. Thus, the recurring waves and segments of the ECG are de-
termined by the propagation of depolarization and repolarization and their sign
depends on the spatial spread direction.
The depolarization of one cell leads to the excitation of the adjoining cells. The
resulting wave front propagates through the heart. The resulting dipole is oriented
in the direction of the depolarization propagation (from negatively to positively
charged extracellular space). Repolarization occurs as soon as the AP is over.
Since it is not triggered by surrounding cells, but dependent on the AP duration,
it is strictly spoken not a propagation phenomenon. However, the movement of the
boundary between still depolarized and repolarized areas is defined as propagation.
The AP duration depends on the heart region and is not the same for all cells. For
both humans and mice, the duration is shorter in epicardium than endocardium.
Thus, the repolarization phase moves from epicardium to endocardium. However,
since the propagation direction of the inward repolarization phase is opposite to
the outward depolarization wave, the sign of the resulting waves is equal.
The exact shape of the resulting waveform and its polarity depend on the place-
ment of the electrodes, which is discussed in Section 2.2.3. Furthermore, the
propagation pattern of depolarization and repolarization, which differs between
species, has a great influence. Section 2.2.4 is dedicated to target these differences
and their consequences.

2.2.3. Lead placement
There are several possible ways to position the recording electrodes on the body
surface. In this section, the measurement points of the standard 6-lead and 12-
lead ECG are briefly explained.
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For humans, the Einthoven leads I, II, III are measured using electrodes on the
right arm (R), the left arm (L) and the left foot (F) (see Figure 2.4 A). The
voltages V at the three standard limb leads are given by VI = φL − φR for lead
I, VII = φF − φR for lead II, VIII = φF − φL for lead III, with potential φ at
the corresponding electrodes. The leads are bipolar and lie in the frontal plane.
Goldberg augmented leads aVR, aVL, aVF are also lying in the frontal plane and
are measured at the same points. However, they are unipolar. The potentials
are measured between one limb electrode and the average of the remaining limb
electrodes (see Figure 2.4 C). The equations are given by VaV R = φR − φL+φF

2 ,
VaVL = φL − φR+φF

2 and VaVF = φF − φL+φR
2 . Together, Einthoven and Goldberg

leads define the standard six lead ECG in humans. [11]
In mice, the three limb electrodes are usually placed in the left and right armpit
and the left groin [12] (see Figure 2.4 B). Thus, an ECG with six leads can be
derived analogous to the human ECG. The schematic drawing of a human and
murine standard six lead ECG is shown in Figure 2.4 D,E.
The standard 12-lead ECG consists of the three Einthoven leads, the three Gold-
berg leads and the Wilson leads V1 - V6. The unipolar chest leads by Wilson
V1 - V6 are placed close to the heart on the left chest (see Figure 2.5). The six
leads are lying in the horizontal plane. Thus, the 12-lead ECG provides a 3D
representation of the electrical heart vector.

Figure 2.4.: Schematic illustration of the lead placements in human (A) and mouse
(B) and the Einthoven’s triangle (C). Schematic standard six lead
ECG signals of human (D) and mouse (E). Image is taken from [12].
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2. Background

Figure 2.5.: Schematic illustration of the lead placements for Wilson leads
V1 - V6 close to the heart on the left chest. Image is taken
from [13].

Another way of placing the leads are the orthogonal Frank leads X, Y, and Z.
The placement of the corresponding 7 electrodes can be seen in Figure 2.6. The
electrodes A, C, E, I, M are located on the horizontal level, electrode F is placed on
the left leg and electrode H on the back of the neck. The potential difference VX
is the right-to-left component derived by the electrodes A, C and I. By using the
electrodes on the horizontal level A, C, E, I and M, the front-to-back component
VZ can be determined. The head-to-foot component VY is derived by the neck
electrode H, the leg electrode F and the horizontal back electrode M.

Figure 2.6.: Schematic illustration of the lead placements for Frank leads
X, Y, and Z. Seven electrodes (A, C, E, I, M, H, F) are used
to derive the orthogonal leads. Image is taken from [14].
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2.2. Electrocardiogram

2.2.4. ECG components

Atria activation and relaxation hardly differs between human and mouse. How-
ever, the situation is rather different for activation and repolarization of ventricles
as can be seen in Table 2.1. Different shapes of ventricular action potentials (VAP)
cause clear dissimilarities between the two species. They manifest themselves in
the surface ECG morphology and have been extensively studied by, among others,
Danik et al. [15], Liu et al. [16], Kaese and Verheule [2], Boukens et al. [12, 17]
and Speerschneider and Thomsen [3]. Their results, along with those of Durrer et
al. [18] about the activation patterns for human hearts, are discussed below.
The schematic representation of the ECG signal and its features is given in Figure
2.7. The human ECG signal is shown in Figure 2.7a, the murine ECG represent-
ation is shown in Figure 2.7b. Table 2.1 provides an overview of the definition of
ECG components and the corresponding physiological source.

According to [3,17] the isoelectric line (also called the baseline) for mouse ECGs
is defined as the segment between the end of T-wave and the onset of the next
P-wave.

(a) human ECG (b) murine ECG

Figure 2.7.: Schematic representation of a human (a) and murine (b) ECG signal
and its features. Image (a) is modified from [19]. Image (b) was
creating using the data described in Section 3.1.
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Component Definition Source
Human Mouse

P-wave baseline intersection
marks start and end

depolarization of both atria

PR-
interval

from start of P-wave
to start of Q-wave

the electrical impulse travels from atria to
ventricles

QRS-
complex

from start of Q-wave
to end of S-wave

depolarization of both ventricles

ST-
segment

from end of S-wave to
start of T-wave

ventricles are nearly
uniformly excited

no segment on level of
baseline exists (see

J-wave)
J-wave from end of Q-wave

to start of T-wave
not existing (see

ST-segment)
early ventricular

repolarization
T-wave baseline intersection

marks start and end
repolarization of both ventricles

QT-
interval

start QRS-complex to
end of T-wave

complete ventricular
activation and

relaxation, generation
of ventricular beat

not exactly clear,
complete activation

and parts of
relaxation

Table 2.1.: An overview of ECG components, their definitions, and their physiolo-
gical source in humans and mice.

P-wave

In mice, the initial activation of atria takes place near the location of the SA
node and spreads over left and right atrium, as in humans [2]. It is not clear if
mice have the largest conduction pathway, called Bachmann’s bundle, between the
two atria [2]. However, the spread of activation is similar in humans. The atrial
depolarization towards the apex is called P-wave. The maximum of the P-wave is
reached when half of the atria are depolarized [6].

PR-interval

In murine ECG signals, a small deflection follows the P-wave. It was proposed by
Boukens et al. [12], that the deflection either represents the atrial repolarization
or emerges when leads L and R are positioned in a way that atria are not in
the middle. During the isoelectric part of the PR-interval (also called the PR-
segment), the atrial myocytes are fully depolarized. The AV node and bundle of
His conducts the impulse to the ventricles [2]. In humans, atrial repolarization
happens during the QRS-complex. Thus, it is not explicitly visible in the ECG
signal. Depending on the literature, the PR-interval is also called the PQ-interval.
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2.2. Electrocardiogram

QRS-complex

The similar activation pattern of the heart ends after the atrial activation. In
humans, ventricular depolarization starts in the interventricular septum on the
left ventricular side and then spread subsequently into the right ventricle [18].
The activation runs from apex to base [18]. The epicardial ventricular depolariz-
ation in mice starts either by clearly defined breakthroughs in the right ventricle
followed by propagation into the left ventricular part or in the left ventricular
apex with shortly following breakthroughs in the right ventricle [2]. In both cases,
the endocardium is earlier activated than the epicardium [16]. In mice, the inter-
ventricular septum is excited in the opposite direction as in humans, from base to
apex [2]. Even if the spread of the ventricular depolarization differs between the
two species, it corresponds for both to the QRS-complex with similar shapes.

ST-segment and J-wave

In 1968, Goldbarg and his colleagues were the first to describe and analyse the
murine ECG in [20]. They published the first detailed study of different electro-
cardiographic variables and the repolarization mechanism of mice. They already
documented the problem of not well-defined QT-intervals and were certain that
adding the J-wave to the QRS-complex duration would overestimate the complete
activation time.
Liu et al. [16] were the first to study the temporal and spatial distribution of
the ventricular depolarization and repolarization in vivo by means of monophasic
VAPs. The different shapes of VAPs and their consequences on the surface ECG
morphology have been extensively studied by Boukens et al. [12,17]. They isolated
the AP of ventricular myocytes of humans and mice and used them to determine
the body surface ECG under normal conditions in silico. Their results are illus-
trated in Figure 2.8. The left side of the figure shows the result for the human
heart, the right part corresponds to the mouse heart. The electrocardiogram in
part A is displayed without P-wave. The VAP for earliest ventricular activation
is represented by the continuous line. The dashed line represents the latest activ-
ation.
The ST-segment in humans is the phase when both ventricles are fully activated.
It is caused by the plateau phase in the VAP, which separates the depolarization
represented by the QRS-complex and repolarization [17]. After the upstroke in
the mouse, the VAP follows a fast downstroke and a plateau with lower voltage
than in humans. The different shape in VAP occurs in response to the different
magnitudes of ionic currents [16]. The lack of a distinct plateau phase leads to an
overlap of the depolarization and repolarization waveform in the ECG. A signific-
ant part of the repolarization happens even before the entire activation has been
completed. It starts already during the QRS-complex. According to Boukens et
al. [17], the end of the QRS-complex correlates with the end of ventricular activa-
tion measured by optical mapping technique only in leads III and aVF. The rapid
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initial repolarization is the source of the J-wave in murine ECG signals. Thus,
there is no distinct ST-segment on the level of the isoelectric line and the J-wave
follows immediately after the S-wave (see Figure 2.8 A). Lowering the voltage
level of the plateau in the VAP produces only a QRS-complex with smaller amp-
litude, but no J-wave [17]. Thus, the low plateau level is not the reason for the
appearance of the J-wave.

Figure 2.8.: Relationship between ECG without P-wave (A) and the ac-
tion potential in isolated ventricular myocytes (B) in humans
(left) and mice (right). In (B), the continuous line repres-
ents earliest ventricular activation, the dashed line represents
latest activation. Image is adapted from [12].

T-wave

For both species, the T-wave indicates the ventricular repolarization. Neverthe-
less, there are some major differences. Since the ST-segment in humans is a clear
boundary for depolarization and repolarization, the T-wave is a distinct deflection.
The last activation moment is detected in the left and right ventricular base [18].
Boukens et al. [17] stated that the last activated part in a mouse heart is the right
ventricular base, because the activation in the left ventricle is faster than in the
right ventricle. The origin of the murine T-wave is the difference in ventricular
repolarization between the left and right part. The exact direction of the repol-
arization gradient is from the right ventricular base to the right ventricular apex.
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2.2. Electrocardiogram

The sequence of relaxation is the opposite of activation [16]. The epicardium is
relaxed earlier than the endocardium and the repolarization goes from apex to
base [2]. As mentioned in [15], the low amplitude of the T-wave can be explained
by the weak electrical forces generated by the slow gradual time course for relaxa-
tion. According to Speerschneider and Thomsen [3], the T-wave has negative sign
for leads I, II, aVL, aVF. For lead II and aVR, it is a positive deflection.

QT-interval

J- and T-wave both belong to the repolarization of the ventricle in mice. The end
of right ventricular repolarization correspond to the J-wave offset [17]. The T-
wave offset coincide with the left ventricular repolarization [17]. However, neither
the QJ- nor the QT-interval correspond to the complete ventricular depolarization
and repolarization [3, 12, 15, 17]. Danik et al. [15] even reported that they could
not clearly define the QT-interval for most of their signals. It is recommended
by Boukens et al. [17] that the ventricular repolarization in mice is measured by
optical mapping or monophasic AP to get exact results, because the body surface
ECG is not sufficient. For humans, the QT-interval reflects the complete depol-
arization and repolarization phase of ventricles [6].

The QT-interval in humans depends on the heart rate. Thus, it can be corrected
according to Bazett [21] or other formulas [22]:

QTC = QT√
RR

. (2.1)

Mitchell et al. [23] modified Bazett’s formula (2.1) for the use in mice. They
developed a formula for heart rate-corrected QT-intervals based on their ECG
recordings of conscious FVB (Friend Virus B) mice. The approximate average
duration of an RR-interval in this strain of 100 ms was used as a normalisation
factor for the RR-intervals. The QT-intervals are plotted against the normalised
RR-intervals. Fitting the data to a linear curve by a linear least squared regression
analysis lead to a slope of 0.44. This means the QT-interval is approximately
proportional to the square root of the normalized RR-interval. The correction
formula derived by Mitchell et al. [23] is Bazett’s formula applied to the normalised
RR-interval:

QTC = QT√
(RR/100)

. (2.2)

However, according to [3, 12], a heart rate correction should not be done in an-
aesthetised mice. It would lead to erroneous corrections and introduce a system-
atic error in the measurement. Anaesthetics can change cardiac repolarization.
Speerschneider and Thomsen [3] used isoflurance as anaesthetic and documented
a reduced heart rate and QT-interval prolongation. Setting QTC in relation to
RR does not yield to a horizontal linear relationship. They concluded that the
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duration of repolarization did not depend on the heart rate in anaesthetized mice.
Boukens et al. [12] suggested the application of a disease-specific heart rate cor-
rection.

2.2.5. Electrophysiological parameters

An overview of some selected parameters of general physiology and cardiac elec-
trophysiology are provided in Table 2.2. The data is taken from [2]. The most
obvious differences are the lower body mass and heart weight of mice. This cor-
responds to a faster contraction rate and results in a higher heart rate than in
humans. However, not only the RR-interval is shortened, but also the PR-, QRS-
and QT-interval.

Human Mouse
Body mass (kg) 58-85 0.015-0.043
Heart weight (g) 261-366 0.12-0.17
Heart rate (beats/min) 56-101 500-724
RR interval(ms) 500-1070 80-120
PR interval (ms) 120-200 30-56
QRS duration (ms) 84-110 9-30
QT (ms) 385 29-109
QTC (ms) 398-430 30-124

Table 2.2.: Quantitative comparison of selected parameters concerning general
physiology and cardiac electrophysiology in humans and mice. Val-
ues are taken from [2].

The variations in the mouse data due to differences in strains of mice and different
applied anesthesia can be seen in Table 2.3. Mouse ECG intervals of 9 different
studies, chronologically ordered, are qualitatively compared.
Most of the mice strains used in the studies are laboratory mice of the species
Mus Musculus (house mouse). They are named according to their genotypes.
One of the most commonly used inbred strains is the C57 black, from which the
substrains C57Bl/6J and C57Bl/10 of the Jackson Laboratory are derived [24,25].
The albino strain FVB(/NJ) is also widely used. The full name is Friend Virus
B (NIH Jackson) due to a sensitivity to Friend leukemia virus B [26]. The Swiss
Webster mice are an albino outbred strain from the Rockefeller Institute [27]. The
genetic differences between the strains also cause anatomical and physiological
differences. The heart weight alone varies between 150 in FVB mice and 180 mg
in Swiss mice according to Doevendans et al. [5] and between 120 and 170 mg
according to Kaese et al. [2], who considered five different sources.
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The heart rates of Table 2.3 are in the same range, if the values are compared
independently of the mouse strain, but only based on the anesthesia used in the
study.

Author &
Year

Mouse
strain

n Anesth. Heart
rate

PR QRS QT

O’Bryant et al.
(1949) [28] Mus Musculus 40 None 635± 9 ∗ ∗ ∗

Lombard
(1952) [29]

White Mouse 10 Barbital 376±49 43 22±2† ∗

Richards et al. Newborn 10 None 286±57 60± 3 10± 0 80± 18
(1953) [30] Adult 10 None 632±51 38±

100
10± 4 35± 5

Giordano and
Nigro

(1957) [31]

White Mouse 20 Barbital 320−
640

30−40 10−30 20− 40

Goldbarg C57BL/10 18 Ether 322±99 46± 4 12± 2 83± 24
et al. (1968) SEC/1 15 Ether 354±66 39± 5 12± 3 83± 21

[20] F1 1005/L 18 Ether 340±71 41± 5 12± 2 96± 12
Mitchel FVB 5 NoneN 616±77 ∗ ∗ 54.9±4

et al. (1998) [23] FVB 6 Ketamine,
Xylazine

226 ∗ ∗ 99

Danik et al.
(2000) [15]

Swiss
Webster

13 Pentobarital
sodium

121±21 ∗ ∗ 22± 2

Boukens et al.
(2013) [17]

FVB/N,
wild-type,

129P2
Scn5a1798insd

16 Isoflurane 406±15 33.2±
1.8

8.4±
0.4

66±4.4

Merentie et al.
(2015) [32]

C57Bl/6J
young

73 Isoflurane 420±50 43.6±
3.2

10.8±
1.2

48.3±
5.7

C57Bl/6J
middle aged

34 Isoflurane 468±37 50.3±
16.5

10.8±
0.9

48.0±
4.0

C57Bl/6J old 40 Isoflurane 475±64 59.6±
23.9

11.3±
1.4

46.3±
5.8

Table 2.3.: Quantitative comparison of murine ECG intervals. This table is in-
spired by [20] and [1].
∗ Not assessed. †With T-wave. N Telemetry
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2.3. State of the Art of ECG Analysis in Mice
This sections purpose is to give an overview of the state of the art methods for
ECG-analysis, especially for murine data. The first part is about analysis al-
gorithms and methods for feature detection, whereas the second part is focused
on selected applications.

2.3.1. ECG analysis algorithm
Many analysis methods and programs for human ECGs have been developed in
the last decades. An overview and comparison of the most common methods for
QRS-complex detection can be found in Köhler et al. [33]. The described ap-
proaches include signal derivatives, digital filters, wavelets and neural networks.
After performing the QRS-complex detection, various methods to determine on-
set, offset, and peak of the P- and T-wave can be applied. One of the common
methods for the T-offset detection is using a threshold on the first derivative. This
method has been used by Laguna et al. [34] and McLaughlin et al. [35], among
others. McLaughlin and his colleges compared this approach with other methods
such as using a threshold for the T-wave amplitude and determining the inter-
section with the isoelectric level [35]. A description of the detection based on a
threshold for the first derivative was also given by Vazques-Seisdedos et al. [36].
They developed an alternative approach based on the calculation of a trapezium’s
area. For the detection of the T-wave peak, Christov and Simova [37] used special
“wings” functions, which can be applied regardless of the T-wave polarity. Many
methods to determine T-wave features can be adapted and also used for P-wave
detection. The described list of approaches is far from complete. However, some
of the mentioned methods are used for the developed algorithm and therefore de-
scribed in more detail in Section 4.2.
In addition to methods for individual features, there are also software packages
and programs that can annotate all common ECG features, such as the AIT ECG-
solver developed by Bachler et al. [4]. It is an automatic ECG analysis algorithm
for online and offline detection of the R-peak, the QRS-complex, the P- and T-
wave features. A detailed algorithm description will be given in Section 4.2 as it
is the basis for the murine algorithm. A verification against PhysioNet databases
resulted in a sensitivity of 98.2 % and a positive predictive value of 98.7 %.

Due to the differences in human and murine ECGs, there are not many automatic
analysis algorithms for mice. As a result, manual annotations by clinical experts
often are used to evaluate the murine ECG signal.
Chu et al. [38] developed a non-invasive ECG recording system for conscious mice
in 2001 (Mouse Specifics, Inc. [39]). The ECG recording device called ECGenie
works without anaesthesia, surgical device implantation or attached wires. In-
stead, three conductive paw-sized electrodes on a recording platform, on which the
conscious mouse can be placed, are used. The corresponding analysis algorithm
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called EzCG (previously e-MOUSE) determines the R-peak and the heart rate
by means of a peak detection algorithm. The 1st and 2nd derivatives together
with “if-then” queries are used to annotate the QRS-onset and -offset and the P-
peak. The T-wave is determined, with the biphasic a part included. The feature
detections are plotted for visual confirmation. Finally, the mean ECG interval
durations are calculated as well as the QTC-interval by Mitchell et al. [23].
In 2010, Galetin et al. [40] provided a guideline to use the PhysioToolkit for mur-
ine ECG analysis. The PhysioToolkit is an open source software developed by the
Massachusetts Institute of Technology and available at physionet.org under GNU
General Public License. It is designed for signal processing and analysis in hu-
mans with its main application in heart rate variability (HRV) analysis. Galetin
et al. described a way to manipulate the source code and the analysis pipeline
to deal with the increased heart rate of murine ECGs. Furthermore, they tested
different settings of the median filter for noise reduction and achieved up to 99.7 %
accuracy. According to Galetin et al., the PhysioToolkit is very flexible and can
be adapted for other species as well. However, the program application is limited
to HRV analysis. Other features, such as the P- and T-wave, are not annotated.
Five years later, Merentie et al. [32] developed a software specialized in mouse
ECG analysis. The program implemented in Matlab pays attention to the special
features of ECG signals from mice. Kubios HRV, the automatic QRS-detection
algorithm by Tarvainen et al. [41], is used for the R-peak annotation. The detec-
tion of the ECG waves onset and offset is performed on an averaged wave epoch
by the first derivative threshold method described in [36]. However, the algorithm
does not work fully automatic, since all annotations were visually confirmed by
specialists and corrected if necessary. Therefore, no statement can be made about
the accuracy of the program. Nonetheless, the adjusted Kubios HRV was used by
Naumenko et al. [42] for their studies in 2017.

2.3.2. Applications
There are numerous applications of ECG analysis. This also applies to the data
of mice. A few selected applications are presented in this subsection.

The specialized mouse ECG analysis algorithm by Merentie et al. [32] was used
to study the changes due to aging and the effects of selected drugs on C57Bl/6j
mice. The ECG parameters of three groups with different ages were compared.
Typical for middle-aged (14 months) and older (20-24 months) mice is an increase
in heart rate, P-wave and PQ-interval duration as well as a widening of the J-wave.
The QRS-complex width shows no major changes, only the R-wave amplitude is
reduced. The effects of pharmacological treatment with drugs affecting the con-
duction system, such as atropine, beta blocker metoprolol, and calcium-channel
blocker verapamil, are similar to those of humans. After the administration of
atropine, the heart rate increases and the PQ-interval duration decreases. A de-
creased heart rate and longer PQ-intervals are recorded after the treatment with
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metoprolol and verapamil. However, verapamil causes a slighter reduction of the
heart rate and a stronger increase in the PQ-interval duration.
Chu et al. [38] presented their findings in strain and gender differences in adult
mice ECG signals. Depending on the mouse strain, the heart rate is slightly in-
creased or decreased in female mice compared to male mice for C57BL/6 mice
and FVB/N mice, respectively. The ECG recording device and algorithm was
also used by other researches for their studies, such as Xing et al. [43]. They
investigated the genetic influence on ECG-interval durations and the heart rate in
aging mice. The ECG features of 8 male and 8 female representatives of 28 inbred
strains were recorded at three different ages. The findings revealed significant
age-related variations in the PR-interval, the QRS-complex, and the heart rate
among strains. However, the changes of ECG parameters not only depend on the
age and the race of the mouse, but also on its gender.

However, not only mouse-specific research issues, such as the comparison between
different age groups, mouse strains, and gender are studied. Already mentioned
was the study of the effects of pharmacological treatment with medication influ-
encing the cardiac activity. Additionally, modifications in the physiology, such as
the expression of genes and pathological changes, and their effects on the ECG
signal are examined.
The algorithm by Merentie et al. [32] was also used by Naumenko et al. [42] to
study the effects of the Vascular Endothelial Growth Factor B (VEGF-B), which
influences the myocardial metabolism, growth, and the heart’s stress response.
The changes in the electrical properties of the cardiac muscle cells also affect the
ECG signal. Especially the amplitudes of the R- and S-waves decrease and the
duration of ventricular depolarization and early repolarization is prolonged.
Gottlieb et al. [44] investigated the role of KChIP2 (Potassium Channel Interac-
tion Protein 2) in the circadian rhythm in the QT-interval of mice. KChIP2 is
an important subunit for the ventricular repolarization and is claimed to play a
role in ventricular arrhythmias, sudden cardiac deaths, and the circadian rhythm
in repolarization duration. Thus, the hypothesis was that there is no circadian
rhythm in the QT-interval in the absence of KChIP2. However, their findings
revealed that missing KChIP2 expression does not cause the cardiac rhythm in
QT-interval to vanish, since it is preserved in KCHIP2-deficient mice.
ECGenie, the non-invasive recording system by Chu et al. [38], was also used by
Bakeer et al. [45], who were dealing with the physiology of sickle cell anaemia
(SCA) mice. SCA is a blood disorder caused by a point mutation in the β-globin
gene. The consequence is a mutation of the oxygen-carrying protein haemoglobin
S in red blood cells, which leads to many unexplained sudden deaths and a higher
morbidity. The researchers around Bakeer used cardiac imaging, ECG recording,
cardiac histopathology, and molecular analysis to investigate the cardiac dysfunc-
tion in Berkeley SCA mouse models. Their electrocardiographic findings revealed
a prolongation of the QTC- and the QRS-interval. However, the ECG differences
occurred before the functional changes, suggesting that there is no causation.
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Data and Methods |3
This section is dedicated to give a description of the used data and an overview
of the manual annotations. Furthermore, the methods of human ECG analysis,
which are used and adapted in the murine ECG analysis algorithm, are described
together with statistical methods for the evaluation.

3.1. Data
The used dataset is provided by the clinical partner LMU, University Clinic Mu-
nich. It consists of 26 ECG recordings with Frank leads X, Y, and Z (see Section
2.2.3), which were acquired with LabChart [46] at a sampling rate of 1000 Hz.
The recordings were taken from 13 laboratory mice under isoflurane 1.5% anes-
thesia, 2 recordings per animal. The first recording was taken before the medical
intervention with Atenolol 5mg/kg and the second recording afterwards.
For the algorithm development process, the dataset has been divided into 2 sub-
sets. The development subset consists of the first 14 recordings (7 mice) and was
used for planning the detection criterion and testing feasibility of the algorithm.
The remaining 12 recordings (6 mice) were used as control subset to verify the
independence of the algorithm from the development subset and to test its cor-
rectness.

3.2. Manual Annotations
The manual annotations are used as target values for the evaluation of the auto-
matic murine ECG analysis algorithm. The AIT MurineECGAnnotator (MEGA),
a Matlab based annotation software, was used to annotate the ECG features manu-
ally. After labelling the onset and offset manually, the peak of the corresponding
wave is annotated automatically.
The procedure of the manual annotation for one lead is illustrated in Figure 3.1.
The basis for the target value was provided by a medical partner at LMU. Over-
all, he annotated about 465 heart beats with at least one heart beat in each lead
(except lead Z in one file which is excluded from the evaluation). Based on this
template (Figure 3.1 A), approximately 10 seconds in each lead were annotated by
4 different non-clinical experts (Figure 3.1 B). The intervals were choosen individu-
ally, either split in two intervals of 5 seconds or in one 10 seconds lasting interval.
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Each interval contains at least one annotation of the medical expert (Figure 3.1 C).

Figure 3.1.: Illustration of the manual annotation procedure. A medical expert
labelled the features of some individually chosen heart beats in every
ECG recording (A, red labels). Based on this template, 4 non-clinical
experts annotated approximately 10 seconds in each lead (B, blue la-
bels), either split into two 5 seconds or one 10 seconds lasting interval.
Each interval contains at least one annotation of the medical expert
(C).
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3.3. Methods for ECG Signal Processing
In this section, different methods used in the process of ECG annotation are
presented, especially with focus on those methods, which are used for the murine
ECG analysis. At the beginning, methods for clustering are explained. Then, an
overview of the processing algorithm AIT ECGsolver, which acts as basis for the
developed algorithm, is given and an alternative method to determine the T-offset
is presented. The implementation of the developed algorithm was performed in
Matlab R2015b.

3.3.1. Clustering
There exist various methods to partition a given data set into clusters. The goal
of all methods is to gather similar objects in a cluster. For that, both the intra-
cluster similarity and the inter-cluster dissimilarity should be as high as possible.
All methods make use of a distance measure. An overview of some distance meas-
ures is given in Table 3.1. The most commonly used is the Euclidean distance or
the squared Euclidean distance. But there are others as well, such as the Mahalan-
obis distance, the City block distance (L1 distance), the Minkowsky distance, and
the correlation distance, which are all implemented in Matlab [47].

Distance Definition

Euclidean distance d(x, y) =
√∑n

j=1(xj − yj)2

Mahalanobis distance d(x, y) =
√

(x− y)T · Cov(x, y) · (x− y)

City block distance d(x, y) = ∑n
j=1 |xj − yj|

Minkowsky distance d(x, y) = p

√∑n
j=1 |xj − yj|p

Correlation distance
d(x, y) = 1− (x−x)(y−y)√

(x−x)·(x−x)T
√

(y−y)·(y−y)T

with x = 1
n

∑n
j=1 xj and y = 1

n

∑n
j=1 yj

Table 3.1.: An overview of selected distance measures implemented in Matlab for
two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn).

kMeans algorithm

An easy and often used clustering algorithm is the kMeans algorithm [48], which is
already implemented in Matlab [49]. The default distance measure is the squared

23



3. Data and Methods

Euclidean metric. The partition method divides a given data set into k clusters in
such a way that the distance between two objects of the same cluster is as short
as possible and the distance between two objects of different clusters is as large
as possible. This is done by iteratively calculating the cluster centroids (centres)
and the distance between the objects and the centroids. The objects are assigned
to the centroids, to which the distance is minimal. Then the new centroids are
calculated by taking the mean value of all assigned objects. This is done until the
centroids do not change anymore or a certain termination criterion is fulfilled.
There are different methods for choosing the initial values for the cluster centroids.
The standard kMeans Algorithm by Lloyd [48] uses randomly chosen initial values
for the cluster centroids. Since their choice can influence and even alter the res-
ult, Arthur and Vassilvitskii [50] proposed a specific way of choosing the seeding
points. According to them, the so called kMeans++ algorithm improves the speed
and the accuracy of the performance.
Apart from the dependency of the initial centroids, the disadvantages of the
kMeans algorithm are the need of a predefined given number of clusters k and
the sensitivity to outliers since the mean value is used for the centroid calculation.

Hierarchical clustering

A second method for partitioning, which is implemented in Matlab [51] as well, is
the hierarchical clustering. The fundamental principle of this method is to create
a cluster tree, also called dendrogram. Therefore, two single data objects which
are close to each other are linked and a new object is formed. The so formed
clusters are further linked to larger ones. In this way, a binary and hierarchical
tree is formed, until all objects are linked to one large cluster. [52]
The real partitioning takes place when the dendrogram is cut into clusters. This
can be done either at an arbitrary point to ensure a fixed number of clusters or by
taking natural grouping into account. The natural grouping is measured by the
inconsistency coefficient, which sets the height of the currently observed link in
relation to the height of neighbouring links at lower levels. It is calculated by the
difference between the currently observed link height and the mean link height,
normalized by the standard deviation. High inconsistency coefficients indicate
the linkage of two cluster, which are far apart. Low inconsistency coefficients
indicate close clusters. The dendrogram can be partitioned by a threshold for the
inconsistency coefficients. This flexibility of the final cluster number is a major
advantage of the hierarchical clustering. However, the method is not able to
recover from misclassification. [53]

3.3.2. AIT ECGsolver
The AIT ECGsolver is an automatic human ECG signal processing algorithm
introduced by Bachler et al. [4] in 2013. It is the basis for the murine ECG
analysis algorithm developed in this work and therefore explained in more detail.
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An overview is given in Figure 3.2, which serves as guideline for the following
explanation.

Figure 3.2.: Overview of the processing algorithm AIT ECGsolver.
Image taken from [4].

R-peaks

Due to the usually clearly recognizable morphology of the R-peak, a combination
of amplitude and first derivative of the signal is compared to a certain threshold.
For that, a “feature signal” is continuously calculated in the following way:
• Calculate the first derivative Dt of the signal St:

Dt = St − St−1. (3.1)

• Calculate the amplitude SAt of St and DAt of Dt within a moving window
with w = 60 ms:

SAt = max(S(t−w)...t)−min(S(t−w)...t) (3.2)
DAt = max(D(t−w)...t)−min(D(t−w)...t). (3.3)

• Calculate Ct as a combination of SAt and DAt:
Ct = SA2

t ·DAt (3.4)

• Derive the feature signal FSt within a moving window with w = 100 ms:
FSt = max(C(t−w)...t). (3.5)

• The threshold is the mean value of the last 2 seconds of FSt:

Tht = 1
w
·

t∑
k=t−w

FSk. (3.6)

If the feature signal exceeds the threshold FSt > Tht, than the signal part is a
possible QRS complex. Statistic characteristics are used to avoid the detection of
artefacts.
If all criteria are met, the R-peak is located at the maximum with the highest
amplitude to its neighbouring minima.
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Template calculation

The R-peaks are classified and assigned to the cluster with the highest correla-
tion. The representative object of each cluster is the template, which is built by
averaging the signal parts around the R-peaks within this cluster. The templates
reduce the noise in the signal and are used for the detection of all subsequent ECG
features.
The method is similar to a kMeans clustering, which is used for the offline ver-
sion of the algorithm. Although, it should be mentioned that the kMeans al-
gorithm used in the AIT ECGsolver is slightly modified concerning the initial
values to make the clustering result reproducible and independent of the initial
cluster centroids. For the online version, the procedure is adapted to build the
clusters in real time. A newly detected R-peak is compared to the clusters of the
already detected R-peaks and classified according to its correlation.

QRS on- and offset

The QRS on- and offset are the preceding and the succeeding points of the R-peak.
They are detected using the amplitude and the first derivative of the signal. The
QRS-onset is annotated in an interval of 150 ms before the R-peak and with a
moving window w = 30 ms as follows:

• Calculate amplitude TAt of the template Tt and TDAt of its first derivative
T ′t = Tt − Tt−1 within the moving window w:

TAt = max(T(t−w)...t)−min(T(t−w)...t) (3.7)
TDAt = max(T ′(t−w)...t)−min(T ′(t−w)...t) (3.8)

• Calculate threshold for TAt and TDAt with specified constants c1 and c2:

TT = c1 · (max(TAt)−min(TAt)) +min(TAt) (3.9)
TD = c2 · (max(TDAt)−min(TDAt)) +min(TDAt) (3.10)

• The QRS-onset is annotated at the point nearest to the R-peak, where
TAt < TT and TDAt < TD is fulfilled.

The annotation of the QRS-offset is performed similar, except for a larger interval
after the R-peak and a moving window w twice as long.

T-wave features

The T-peak is the next feature in the ECG signal which is annotated after
the QRS-offset. It is detected by using a method introduced by Christov and
Simova [37], which is independent of the T-wave polarity and uses special “wings”
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functions. Between the last detected QRS-offset and the template end, the “wings”
function is calculated with w = 40 ms in the following way:

W1t = Tt−w − Tt

W2t = Tt − Tt+w

Wt = W1t ·W2t

(3.11)

Examples for “wings” functions of a positive (A) and a negative (B) T-wave are
illustrated in Figure 3.3. In both cases, it can be seen, that the peak of the T-
wave corresponds to the minimum of the “wings” function. Thus, the minimum’s
location is used as starting point for the search in the original signal for a local
minimum or maximum, depending on the polarity.

Figure 3.3.: Top: Human T-waves with different polarities: (A) positive T-wave,
(B) negative T-wave. Bottom: Their corresponding “wings” function.
Image is taken from [4].

A geometric method, which presupposed the annotation of the T-peak and the
QRS-offset, is used for T-onset and T-offset detection. It is illustrated in Figure
3.4 for the T-onset detection. For the signal, the connection line g between QRS-
offset and T-wave is calculated as well as the longest line n, which is perpendicular
to g and intersects g and the signal (see Figure 3.4 A). The intersection point of
n with the signal is the location of the wave onset. The calculation of n can be
simplified by subtracting g from the signal and finding its minimum (see Figure
3.4 B). The T-offset detection uses the geometric method with a straight line g
connecting the T-peak and the end of the template.

P-wave features

The P-wave and the T-wave have a similar morphology. The two main dissim-
ilarities are the lower amplitudes and the strictly positive polarity. Therefore, a
slightly adapted “wings” function calculation is used for the P-peak annotation
and the geometric method with adjusted observation intervals for the onset and
offset detection of the P-wave.
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Figure 3.4.: Geometric method to detect the location of the T-onset in a human
ECG signal. (A) Original signal with connecting line g between QRS-
offset and T-peak and the longest line n perpendicular to g which
intersects g and the signal. (B) Simplification by subtracting g from
the signal and finding the minimum. Image is taken from [4].

3.3.3. Trapezium Area (TRA) method

The Trapezium’s Area (TRA) method, to detect the T-wave end point location
of monophasic T-waves, was introduced by Vazquez-Seisdedos et al. [36] in 2011.
They proposed their new algorithm as an alternative to the commonly used ap-
proach based on thresholding the first derivative. They claim that the TRA
method is more robust under noisy conditions and achieves a better accuracy and
repeatability than the standard method.
The requirement for the T-wave end detection by the TRA method is the success-
ful detection of the R-peak and the T-peak. It works for both monophasic T-wave
polarities, positive and negative, and can be adapted to other wave morphologies,
such as biphasic.
As can be seen in Figure 3.5, the approach is based on the calculation of the
trapezium’s area spanned by three fixed vertices and one moving vertex. The
point with the highest absolute derivative after the T-peak is named (xm, ym).
The reference point (xr, yr) is beyond the T-offset on the TP isoelectric segment.
Between these two points, the vertex (xi, yi) is moving along the signal. At each
position of the mobile vertex, the trapezium’s area A is calculated:

A = 0.5 · (ym − yi) · (2xr − xi − xm). (3.12)

The maximum area is produced for the mobile vertex located at the offset of the
T-wave. Thus, the xi corresponding to the maximum area is identified as the
T-wave end point.
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Figure 3.5.: Graphical illustration of T-offset detection with TRA
method for monophasic T-waves. The trapezium’s area
is maximal for the mobile vertex located at the T-wave
end point. Image is taken from [36].

3.4. Statistical Methods
The following subsections provide an overview of the used statistical methods and
tools to evaluate the murine algorithm results. First, the parameter calculation
for the detection rate is explained. Then, the boxplot is described, followed by
the Bland-Altman plot. Finally, an overview of the used statistical tests is given.

3.4.1. Detection rate
For two classes of data, the quantitative evaluation between actual and target val-
ues includes the identification of the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) predictions. The values can be formulated
by means of the 2x2 confusion matrix, also called contingency table, as shown in
Table 3.2. The TP and TN correspond to the correct classifications as positive or
negative. Is the actual classification negative, but the prediction is positive, then
it is counted as FP. It is the type I error of a test, where the result is wrongly
positive. A negative prediction, which should be positive according to the ground
truth, is counted as FN. The FN is the type II error, where the test wrongly gives
a negative decision, although it should have been positive.
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predicted
positive negative total

actual
positive TP FN pos. ground

truth
negative FP TN neg. ground

truth
total pos.

classified
neg.

classified
number of all

samples

Table 3.2.: Confusion matrix for a dataset with two classes to evaluate the values
for TP, FN, FP, TN.

The values are used to determine two detection rate parameters for the classific-
ation. The sensitivity (Se) is the true positive rate:

Se = TP

TP + FN
(3.13)

The positive prediction (Pp) is the precision:

Pp = TP

TP + FP
(3.14)

The sensitivity measures which proportion of actually positive classification is also
tested positive. The precision is a measure for how many of the positive classified
samples are actually positive.

3.4.2. Boxplot

Normally distributed data is displayed as mean ± standard deviation (SD). Data
which is not normally distributed is displayed as median and interquartile range
(IQR). The median of values (xi)i=1,...,N is defined as the middle element of the
(ascending) sorted values and is also called second quartile. The difference between
the third (Q3) and the first (Q1) quartile is defined as IQR and contains 50 % of
the data. The other half of the data is above Q3 and below Q1, 25 % on each side.
The median and the IQR can be visualised by means of a boxplot. It is a graphical
visualisation of data distributions. The data within the IQR range are displayed
as a box. Above Q3 and below Q1, the box is extended by so called whiskers,
which have a length of 1.5 · IQR. Outliers are plotted as individual data points.
The boxplot of a randomly generated data set is shown in Figure 3.6.
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Figure 3.6.: Example for a boxplot based on two randomly generated
data sets. The IQR, which is 50 % of the data, is displayed
in the blue box. The red line in the box marks the median.
The whiskers have a length of 1.5 · IQR and outliers are
plotted as individual red data points.

3.4.3. Bland-Altman plot
The difference plot introduced by Bland and Altman [54] compares the differences
between two methods, such as the results produced by an automatic algorithm
and manual labelling. Bland-Altman plots are used to determine the occurrence
of systematic errors and trends in the differences. The average of both methods
are plotted on the x-axis, the differences on the y-axis:

x = automatic+manual

2 (3.15)

y = automatic−manual (3.16)

In addition to the data, the arithmetic mean µ of the differences and the boundary
of µ± 1.96 SD are shown by means of dashed lines. Examples for Bland-Altman
plots for randomly generated data are shown in Figure 3.7. The data points are
normally distributed and rounded to integers. Creating the Bland-Altman plot
from values separated by an equidistant gap, the data points build clusters. Due
to their overlap, the interpretation becomes more difficult (see Figure 3.7 A). This
problem can be solved by adding a small independent random value to all the
data points (called jittering). The data points are better visible due to the small
disturbance (see Figure 3.7 B).

A good method is characterised by having a mean close to 0 for the differences to
the actual values. Furthermore, there should be no correlation between differences
and averages, which is called a trend, and the deviation of the mean should be
constant and small over the entire range.
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Figure 3.7.: Examples for Bland-Altman plots based on randomly
generated data, which is normally distributed. The differ-
ences of the data points are plotted against their average
with (B) and without (A) jittering. The mean µ (red line)
and the boundary of µ ± 1.96 SD (green and blue line)
are shown.

3.4.4. Statistical tests
To compare two paired datasets, the paired t-test is used. The requirements for
using the test are normal distribution and equal variances for the differences of
the data values. The Kolmogorov-Smirnov test is used to test for normal distri-
bution. The equality of variances is tested with a two-sample F-test. Since the
requirements are fulfilled for the resulting data in Section 5, no other statistical
test have to be used.
The null hypothesis testing for a statistical tests is done with the p-value. It is
the probability of receiving a same or more extreme result as in the sample data,
under the condition that the null hypothesis is valid. A small p-value corresponds
to a high significance. Therefore, the null hypothesis of the statistical test can be
rejected, if the p-value is below a predefined level of significance α. If not stated
otherwise, α is set to 5% in the Sections 5 and 6. For a p-value below 0.001, the
result is considered as highly significant.

32



Murine ECG analysis algorithm |4
This chapter provides a detailed description of the algorithm implemented in Mat-
lab for the automatic detection of the ECG components for murine data. The
explanation is divided into the signal preprocessing and the feature detection part.

An overview of the algorithm is given in Figure 4.1. The algorithm for human
ECG analysis by Bachler et al. [4], which is described in Section 3.3.2, is referred
to as “human algorithm”.
The first step in the workflow is the signal preprocessing, which is described in
more detail in subsection 4.1. The signal is then divided into parts of 5 minutes
to stabilise the template generation. The R-peak is clearly recognisable in the
ECG signal, due to its high amplitude and steep slope. Thus, the R-peak is the
first feature to be detected by the human algorithm. The information about the
R-peak’s location is used to determine the onset of the QRS-complex again by
the human algorithm. Due to the different morphology of a murine ECG signal
compared to a human one concerning the J-wave and the T-wave, the QRS-offset
and the T-wave features cannot be identified correctly by the human algorithm.
Therefore, a new detection algorithm for these features was implemented special-
ised for mouse ECGs. The developed algorithm and the handling of the J-wave
and the T-wave are described in Section 4.2. Afterwards, the P-wave features are
detected by means of the annotations of the R-peaks, QRS-onsets, and T-offsets
by the human algorithm. The last step in the ECG analysis workflow, which is
performed on the whole ECG signal, is the calculation of the ECG intervals PR-,
RR-, QRS-, QT-interval and the heart rate corrected QT-interval by Mitchell et
al. [23].

Figure 4.1.: Overview of the processing algorithm for murine ECG signals.
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4.1. Signal Preprocessing
Before the ECG features are detected, the signal has to be processed with different
filters to reduce artefacts and noise. Furthermore, the sampling rate has to be
adjusted when using a human ECG analysis algorithm, due to the different heart
rates between humans and mice.

4.1.1. Sampling Rate
The original sampling rate of the recorded murine ECG signals was 1000 Hz. Since
the human algorithm was designed to handle ECG signals with human heart rates,
many feature annotations are missing or wrong (see Figure 4.2 A). To overcome
this problem, the sampling rate used by the algorithm is divided by factor 4.
As already mentioned, the heart rate of mice vary from 180 to 600 beats per
minute (bpm) according to [1]. The division leads to heart rates corresponding
to humans (45 to 150 bpm). These are values, which can be handled by the used
parts of the human algorithm without further adjustments (see Figure 4.2 B).
Opposed to Figure 4.2 A, the R-peaks are detected correctly.

Figure 4.2.: Murine ECG signal analysed by human algorithm without sampling
rate correction (A) and with sampling rate divided by factor 4 (B).
Red labels correspond to QRS-complex, magenta labels to P-wave
features, and black labels to T-wave features.

4.1.2. Filtering
A highpass filter is applied to the murine ECG signal to reduce respiration arte-
facts. A Butterworth bandpass filter is used for the R-peak detection only. For
the other features, the filter is not applied, since sharp edges, which are necessary
for accurate feature recognition, are over-smoothed.
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4.2. Feature detection
The successful R-peak localisation is a requirement for the detection of the J- and
the T-wave. As the workflow in Figure 4.1 shows, the QRS-onset detection is
performed before the search for the QRS-offset and the T-wave features as well.
This is not necessary and their order could be inverted, since the QRS-offset and
the T-wave detection is independent of the QRS-onset location.

As explained in the section about the ECG components, Section 2.2.4, the T-wave
morphology differs between humans and mice. Unfortunately, not all signal parts
show the behaviour illustrated in Figure 2.7b with a clear distinguishable negative
T-wave following the J-wave. An overview of the different existing ECG morpho-
logies of the data set can be found in Appendix A.1. It should be mentioned that
although the murine T-wave can have a positive or a negative shape, as stated in
Speerschneider and Thomsen [3], the T-wave of the used data set is always neg-
ative. Thus, the J-wave is assumed to be positive and the T-wave to be negative
for the development of the analysis algorithm. However, since the implemented
methods can theoretically handle both monophasic behaviours (positive and neg-
ative T-wave), only minor adaptions in the algorithm would be necessary.

Due to the sometimes missing distinguishable T-waves in the ECG signal on the
one hand and the missing discrimination between J- and T-wave in the manual
annotations of the clinical expert on the other hand, the features of the J- and
the T-wave are not annotated separately. The two waves are considered as one
combined wave, which is referred to as T-wave in the following. Therefore, the
definition of the T-wave features is different to Boukens et al. [17], and Speer-
schneider and Thomsen [3]. A visualisation of the T-wave feature definition in
this thesis is shown in Figure 4.3. The important part of the T-wave is the wave
offset, since it is used for the calculation of the QT-interval, which serves as ECG
parameter. Depending on the existence of a clearly recognisable T-wave, there are
two different definitions of the T-offset. If a negative deflection exists, the point,
where the signal returns to the isoelectric line, is identified as the T-offset (see
Figure 4.3 A). If the negative part is missing, the offset of the actual J-wave is
taken (see Figure 4.3 B). The T-onset is identified as the actual J-onset, which is
defined as the point in the middle of the upward slope between the S-wave and
the actual J-peak. This point also coincide with the QRS-offset, due to the lack
of an ST-segment. The actual J-peak is defined as the T-peak, since it is more
prominent than the actual T-peak with its often lower amplitude. The peak is
the least important feature for the ECG analysis.
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Figure 4.3.: Definition of the T-wave features (marked with blue dots) in the mur-
ine algorithm illustrated in two different cluster templates. The T-
onset and T-peak are defined as the actual J-onset and the actual
J-peak, respectively. The T-offset is either identified as the actual
J-offset (A) or the actual T-offset (B), depending on the existence of
a clear negative deflected T-wave.

The workflow of the murine algorithm is illustrated in Figure 4.4 and will be
explained in detail in the following subsections. Generally, it can be divided into
the analysis of a created cluster template and the analysis for each heart beat in
the original signal, where the corresponding cluster information is used as reference
point.
The 5 minutes long signal is further divided into parts of 10 seconds. This signal
division results in a lower number of considered heart beats, which allows a more
accurate clustering. To avoid missing annotations at the beginning or the end of
a heart beat due to a lack of signal information, the signal after the previous and
before the following R-peak are added to the 10 seconds. Both the template and
the original signal analysis are performed for these signal sections.

Figure 4.4.: Overview of the new feature detection for murine ECG sig-
nals.
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4.2.1. Template analysis

The first step in the detection of the QRS-offset and the T-wave features is the
creation and analysis of a template. The usage of a template for the identification
of ECG features was also used in the human algorithm, since a template contains
less noise than the original signal (see Section 3.3.2). As visualised in the workflow
of the template analysis in Figure 4.5, three steps were solved by different methods,
namely the clustering and the detection of the T-peak and the T-offset.

Figure 4.5.: Overview of the workflow for the template analysis.

Clustering

The clustering was one of three tasks, which was solved by different methods to
compare their results. Independent of the clustering procedure, the signal inform-
ation used by the method is limited to 100 ms before and after the R-peaks to
ensure the classification according to the shape of the QRS-complex.

The kMeans clustering from the offline human algorithm was taken as first method.
The predefined number of clusters was set to 3, the same as for human ECGs. If
a certain number of different ECG morphologies is expected, then a fixed number
of clusters makes sense. Since this is not the case for the murine ECG analysis,
another option is to use a method with a variable cluster number. Thus, the hier-
archical clustering was implemented as second clustering method. As described in
Section 3.3.1, Matlab provides preimplemented functions for hierarchical cluster-
ing. The inconsistency coefficient of each linkage in the dendrogram is calculated.
Depending on their quantity, the threshold for cutting the tree into clusters is
determined. If there are more than three different inconsistency coefficients, the
threshold is chosen just below the second highest value. If there are less, a value
just below the highest coefficient is chosen. This decision rule should ensure the
building of clusters with a strong enough natural linkage.
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Cluster template creation

The procedure of generating the cluster templates is illustrated in Figure 4.6.
Based on the cluster assignment of each heart beat in the observed signal part
(see Figure 4.6 A), the cluster templates are created (see Figure 4.6 B). A template
is calculated by the median of the cluster member’s ECG signal (see Figure 4.6 C).
Since the information before the R-peaks is irrelevant for the T-wave detection,
only the signal parts after the R-peaks are stored as template. For each cluster
template, reference points for the QRS-offset and the features of the T-wave are
determined, which will be explained in the following subsections.

Figure 4.6.: Illustration of the cluster template creation. The heart beats of the
observed signal part (A) are grouped into 3 clusters by the kMeans
algorithm. Each cluster template (B) consists of the median signal of
its cluster members (C).

38



4.2. Feature detection

Cluster template analysis - T-onset

The QRS-offset and the T-onset can be treated simultaneously due to their equi-
valence. An overview of the steps is given in Figure 4.7. The signal part after
the R-peak is examined for a distinctive minimum. The prominence of the min-
imum, which is the local amplitude with respect to the surrounding extrema, is
used as decision feature. A minimum is defined as prominent, if it has the highest
prominence and the next highest prominence does not exceed 80% of it. If such a
minimum exists, it serves as reference point for the T-onset and the QRS-offset in
the template. If the search for a distinctive minimum or the detection of the other
features fails, only the QRS-offset is determined by means of the TRA method.

Figure 4.7.: Overview of the search for the T-onset and QRS-offset reference point
in the template. The steps are performed for each cluster.

Cluster template analysis - T-peak

The search interval for the T-peak is defined as a 100 ms window after the T-onset
reference point. For a missing T-onset, the search for the T-peak is not started.
Two different methods are implemented for the feature detection as can be seen
in Figure 4.8. The first way of checking for T-peaks is using “wings” functions
described by the Equations 3.11 in Section 3.3.2.
The only difference to the human algorithm is the adaptation of the moving win-
dow width w from the originally 40 ms to 10 ms. This modification guarantees a
more sensitive representation of W1t and W2t. Otherwise important information
would be ignored.
The second possibility uses a similar approach as in the search for the T-onset.

39



4. Murine ECG analysis algorithm

The search interval is checked for a prominent maximum, which is again defined by
the highest prominence. This time, the ratio between second highest prominence
and highest prominence must not exceed 90%.

Figure 4.8.: Overview of the search for the T-peak reference point in the tem-
plate. The steps are performed for each cluster, for which a T-onset
is detected.

Cluster template analysis - T-offset

Not only the T-peak annotation can be performed by two different methods. Also
for the determination of the offset of the T-wave, two different procedures are im-
plemented (see Figure 4.9). The first possibility is the geometric method described
in Section 3.3.2. It is applied to the signal beginning with the T-peak until the
template end.
The TRA method, which is described in Section 3.3.3, is the second option to
locate the T-offset. The used signal information is limited to the signal part from
the T-onset to the template end. The point with the highest derivative xm is
expected at one of the next declining slopes after the T-peak. Since oscillations
of the signal between T-wave and P-wave can influence the location of this point
and falsely move the offset search to later parts of the signal, the search interval
for xm is restricted to the first half of the signal starting with the T-peak. The
reference point xr beyond the T-offset on the isoelectric segment is identified as
the template end. After specifying the vertices of the trapezium, its area is cal-
culated according to Equation 3.12. In contrast to the graphical illustration in
Figure 3.5, the area can have more than one maximum. The T-offset reference
point is defined as the first local maximum.
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Figure 4.9.: Overview of the search for the T-offset reference point in the template.
The steps are performed for each cluster, for which T-onset and -peak
are detected.

Regardless of the used procedure, the TRA method is applied and extended to
identify the clear distinct negative T-wave deflection. Further properties of the
trapezium’s area are used to determine a biphasic T-wave morphology. An over-
view of the T-offset correction is given in Figure 4.10. Three cases, how the signal
and the corresponding trapezium’s area can look like, are distinguished. In two
of them, the T-offset will not be changed.

• Signal oscillation - no correction
The first case is that the biphasic behaviour cannot be detected accurately,
because the signal is oscillating after the TRA-detected T-offset. The os-
cillation is reflected in the corresponding area by more than one prominent
maximum. Prominent for the correction step means that the prominence
of the maximum exceeds a predefined threshold. To avoid a shifted feature
detection, the T-offset is not changed in this case (see Figure 4.11).

• No negative deflection - no correction
In the second case the number of prominent area maxima is limited to one,
which means the signal is likely to decline after the T-peak. If the T-offset
is located above the baseline or the signal does not show an upward slope
after the TRA-detected T-offset, the reference point stays unchanged again
(see Figure 4.12).

• Negative deflection - T-offset correction
In the third case there also exist at most one prominent maximum. However,
the signal shows the characteristic negative deflection of an actual T-wave.
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The T-offset is located in a negative valley, if the baseline exceeds the T-offset
and the signal is ascending again afterwards. Upward slopes are reflected in
the trapezium’s area by a decrease. Thus, if the area falls below a certain
threshold, there is a negative deflection after the T-peak. A normalisation of
the signal, with the R-peak mapped to 1 and the template end to 0, allows a
predefined and fixed threshold. The minimum of the trapezium’s area after
the previously TRA-detected T-offset is identified as the end of the negative
deflection. The corresponding point in the template signal is labelled as
corrected T-offset (see Figure 4.13).

This TRA-based correction step for the negative T-wave part is applied independ-
ently of the selected T-offset determination method and can also be switched off.
Then, the reference point for the T-offset is only based on either the geometric
method or the basic TRA method.

Figure 4.10.: Overview of the T-offset correction step based on the TRA method.
This step is optional and can be switched off.
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Figure 4.11.: Illustration of an oscillating signal and the corresponding trapezium’s
area. The cluster template with an oscillating signal after the T-peak
(A). The trapezium’s area with the threshold (red horizontal line)
and the starting point for the area calculation xm (blue vertical line)
(B). The corresponding reference points for the annotations of R-
peak (red) and the T-wave features (black) (C).
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Figure 4.12.: Illustration of a signal without a negative T-wave deflection and the
corresponding trapezium’s area. Cluster template without a clear
negative T-wave deflection (A). Trapezium’s area with the threshold
(red horizontal line) and the starting point for the area calculation
xm (blue vertical line) (B). Corresponding reference points for the
annotations of R-peak (red) and the T-wave features (black) iden-
tified by means of the TRA method (C) and the geometric method
(D).
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Figure 4.13.: Illustration of a signal with a negative T-wave deflection and the cor-
responding trapezium’s area. The cluster template with a clear neg-
ative T-wave deflection (A). The trapezium’s area with the threshold
(red horizontal line) and the starting point for the area calculation
xm (blue vertical line) (B). The corresponding reference points for
the annotations of R-peak (red) and the T-wave features (black) (C).
The T-offset is annotated twice, the first label corresponds to the ac-
tual J-wave endpoint (black), the second annotation is the corrected
T-offset (magenta).
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4.2.2. Original signal analysis
The clusters and the corresponding reference points are used for the analysis of
each heart beat in the original signal. Depending on the features, some decision
rules for the exact location are applied. An overview of the original signal analysis
is given in Figure 4.14 and will be explained in the following subsection.

Figure 4.14.: Overview of the workflow for the analysis in the original
signal for each heartbeat.

The first feature, which is detected, is the T-peak. Its location is used for the
determination of the remaining features. Only if the order of all features makes
sense, they are stored. If this is not the case or no reference point for the T-peak
exists, it is tried to annotate at least the QRS-offset as the slope offset of the
QRS-complex determined by the TRA method.

T-peak

The exact location of the T-peak in the original signal is identified as the local
maximum around the reference point given by the cluster template T-peak.
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T-offset

The detection of the T-offset depends on the T-wave morphology and the activ-
ation of the T-offset correction step. For a T-wave with negative deflection after
the actual J-wave and an active T-offset correction, the intersection of the original
signal with the baseline is calculated. In this context, the baseline is defined as
median of the signal between the actual J-offset to the end of the heart beat sig-
nal. The intersection after the previously TRA-detected T-offset at the end of the
negative T-wave deflection is identified as the corrected T-offset. Otherwise, the
closest local minimum of the reference point determined by either the geometric
method or the basic TRA method is annotated as T-offset.

T-onset

The T-onset is located in the middle of the upward slope between the minimum
following the QRS-complex and the T-peak. First, the search for the closest local
minimum around its cluster reference point locates the negative deflection after
the QRS-complex. Then, there are two ways of getting the exact location in the
upward slope. The first way is defining the middle point of the upward slope
between the local minimum and the T-peak as T-onset. Another possible option
is the calculation of the intersection point of the baseline with the original signal,
which is not implemented.

QRS-offset

There are two possibilities for the reference point of the QRS-offset. It can coincide
with the cluster T-onset, then the location of QRS-offset and T-onset matches. Or
it can be determined by searching the slope offset of the QRS-complex, then the
closest local minimum is identified as QRS-offset. This is also the case, if no other
reference point was found in the cluster template. Then, only the QRS-offset is
annotated in the new feature detection.
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Results |5
Chapter 5 contains the results of the verification for all 26 ECG signals and the
comparison of ECG data before and after medical treatment. The ECG feature
annotations and the calculated ECG intervals produced by the different versions of
the automatic ECG analysis algorithm are compared to the manual annotations,
which are explained in Section 3.2. The applied statistical methods are introduced
in Section 3.4.

As mentioned in Section 4.2, there are three task which are solved by two differ-
ent implemented methods. Building all possible combinations results in 23 = 8
different algorithm versions. They are indicated by a three-digit code which is
explained in Table 5.1. The first digit is 0 for using the kMeans clustering and 1
for using the hierarchical clustering. The second digit is 0 for using the prominent
maximum approach to determine the T-peak and 1 for applying the wings func-
tion method. The third digit is 0 for the geometric T-offset determination and 1
for the T-offset annotation by means of the TRA method. The option of T-offset
correction in the murine algorithm is turned off (see Section 6.1.3).

1st digit 2nd digit 3rd digit
Task: Clustering T-peak determination T-offset determination
Code: 0 1 0 1 0 1

Method: kMeans hierarchical
clustering

prominent
maximum

wings
function

geometric TRA

Table 5.1.: The three-digit code for the 8 different versions of the algorithm. Each
digit (0 or 1) represents a task in the algorithm pipeline.

The annotations generated by an algorithm are called “automatic”. For the human
algorithm they are referred to as “human”, for the murine algorithm as “mouse”
or “murine” annotations. The manually labelled annotations are referred to as
“manual” annotations.

5.1. Automatic vs manual results
The manual results are compared to the detections produced by the automatic
murine ECG analysis algorithm and the human ECG analysis algorithm based on
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the AIT ECGSolver [4]. To allow a comparison to the murine results, the sampling
rate correction step described in Section 4.1.1 and the same filtering methods
described in Section 4.1.2 are performed before using the human algorithm.
First, the annotations of the ECG features R-peak, QRS-onset, QRS-offset, T-
peak, T-onset, T-offset, P-peak, P-onset and P-offset are studied. Then, the
calculated ECG intervals, i.e. the RR-interval, the PQ-interval, the QRS-interval,
the QT-intervals, and the QTC-interval, are analysed.

5.1.1. ECG feature annotations
In this section, the results produced by the human algorithm and the 8 differ-
ent versions of the murine algorithm are considered separately. First the human
annotations are compared to the manual labelling, followed by the comparison
between murine and manual annotations.
An automatic annotation is counted as correct (TP), if it exists together with
its manual counterpart in the corresponding heart beat. In this comparison, no
consideration is given to how far apart they are from each other. FP annotations
are classified by a missing labelling in the manual annotations and an existing one
in the automatic set. The class of FN is characterised by a missing automatic
and an existing manual annotation. There are two reasons for preferring this
all-or-none principle for the TP definition over using only automatic annotations,
which are within a predefined interval around their target values. On the one
hand, all automatic annotations should be analysed, since they are the final result
of the algorithm. And on the other hand, it allows an unaltered analysis of the
differences between the actual and the target annotations. The arbitrary defini-
tion of an interval boundary for correct annotations would influence the statistical
parameters and decrease the actual values for the differences. Therefore, not only
the sensitivity and positive prediction values are used to analyse the algorithm
performance, but also the differences are an important parameter.

Human algorithm

The values for TP, FP, FN, sensitivity and positive predictive for the human
algorithm are displayed in Table 5.2 for each ECG feature and in total. Fur-
thermore, the table contains the median difference and the corresponding IQR
in ms for each feature. The sensitivity for R-peak, QRS-onset and QRS-offset is
98.52 %, the positive prediction is 97.86 % for R-peak and QRS-onset and 97.8 %
for QRS-offset. The average values for the T-features for sensitivity and positive
prediction are 55.86 % and 95.94 %, for the P-features they are 72.8 % and 82.17 %.
The values for the differences reveal a delay of 14 to 60 ms for the QRS-offset and
the T-feature annotations. For the R-peak, the QRS-onset and the P-features, the
median is in the range of -2 to 0 ms and the IQR is at most [-4,1]. The differences
between the human algorithm and the manual annotations for each feature are
shown in a boxplot in Figure 5.1.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

all features 24817 2101 16691 59.79 92.19
R-peak 4796 105 72 98.52 97.86 0 [0,0]

QRS-onset 4796 105 72 98.52 97.86 -2 [-4,0]
QRS-offset 4793 108 72 98.52 97.8 14 [9,17]

T-peak 1458 101 3352 30.31 93.52 38 [28,52]
T-onset 1059 24 3750 22.02 97.78 26 [19,34]
T-offset 1458 101 3353 30.31 93.52 60 [48,75]
P-peak 2153 519 2006 51.77 80.58 0 [0,0]
P-onset 2153 519 2006 51.77 80.58 0 [-2,1]
P-offset 2151 519 2008 51.72 80.56 -1 [-3,1]

Table 5.2.: Performance values of all ECG features detected by the human al-
gorithm compared to the manual annotations.

Figure 5.1.: Boxplot of the differences (ms) between the annotations determined
by the human algorithm and the manual annotations for all ECG
features.
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Murine algorithm

The 8 different existing murine algorithm versions are compared in Table 5.3
considering the overall values for TP, FP, FN, sensitivity and positive prediction.
The version 110 has the highest sensitivity with 96.1 %, followed by version 111
with 95.94 %, version 010 with 95.65 % and version 011 95.61 %. The remaining
versions have a sensitivity below 95.5 %. Comparing the positive prediction values,
version 000 is the best with 94.18 %, followed by version 100 with 94.08 % and 010
with 94.07 %. The other versions have values below 94.0 %.

Versions TP FP FN Se [%] Pp [%]
000 39534 2442 1974 95.24 94.18
001 39486 2888 2022 95.13 93.18
010 39704 2502 1804 95.65 94.07
011 39686 2972 1822 95.61 93.03
100 39576 2490 1932 95.35 94.08
101 39615 2901 1893 95.44 93.18
110 39890 2634 1618 96.1 93.81
111 39821 2994 1687 95.94 93.01

Table 5.3.: Comparison of sensitivity and precision between the results of the 8
different murine versions and the manual annotations for all features.

Taking a closer look at the values for the single features reveals the composition of
the total values (see Tables 5.4 and 5.5, Appendix 5.3). The values for the R-peak
and the QRS-onset are the same for all automatic algorithms. Thus, they are only
shown once in Table 5.2. The values for the QRS-offset are at least in the same
range. The differences to the target values are decreased by the murine algorithm
from 14 ms for the human algorithm to 0 ms. In the most cases, the number of
FN annotations is higher for features of the T-wave than for the P-wave. For the
FP values, the relation is reversed with a higher contribution of the P-features
to the overall FP number. For most of the versions using the geometric T-offset
detection method (3rd digit is 0), the values for sensitivity and positive prediction
for the P-features are higher than for their TRA-using counterpart (3rd digit is
1). Since the remaining values are the same, the versions with the geometric
method have overall higher values for those two parameters. The only exception
is the version pair 100 and 101. For these two, the sensitivity of the P-features
is higher for version 101. However, the differences in the T-offset annotations
are lower for versions using the TRA-method, which is reflected in the boxplot of
the T-offset differences for all version in Figure 5.2 A. A small difference can also
be recognised for the P-onset differences (see Figure 5.2 B). Apart from the two
features, no other significant differences between the versions can be recognised.
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Figure 5.2.: Boxplot of the T-offset (A) and P-onset (B) differences (ms) between
predicted locations and their target values for all versions including
the human algorithm.
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The following Tables 5.4 and 5.5 contain the performance values of each feature for
the algorithm versions 100 and 101. Version 101 was chosen as example, because
it is the default setting of the algorithm, as will be explained in Section 6.1.5. The
second example, Version 100, represents the counterpart of version 101 regarding
the T-offset detection method. As mentioned earlier, the main difference between
the two methods is the T-offset difference. The median difference for version 100
is 6 ms, for version 101 it is 1 ms. The information about all the versions can
be found in the Appendix A.2.1. There are also boxplots for each version that
represent the differences between the predicted and the target values.
The detected features of version 100 and 101 compared to the manual annotations
are shown in Figure 5.3 A and B. In 5.4, the human and the manual annotations
are shown together for the same example.

Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4793 108 72 98.52 97.8 0 [0,1]
T-peak 4485 127 325 93.24 97.25 0 [0,0]
T-onset 4484 128 325 93.24 97.22 0 [-1,1]
T-offset 4486 126 325 93.24 97.27 6 [2,12]
P-peak 3912 597 247 94.06 86.76 0 [0,0]
P-onset 3911 597 248 94.04 86.76 0 [-3,1]
P-offset 3912 597 247 94.06 86.76 -1 [-4,0]

Table 5.4.: Performance values of all ECG features detected by the murine al-
gorithm version 100 compared to the manual annotations.

Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4793 108 72 98.52 97.8 0 [0,1]
T-peak 4485 127 325 93.24 97.25 0 [0,0]
T-onset 4484 128 325 93.24 97.22 0 [-1,1]
T-offset 4486 126 325 93.24 97.27 1 [-2,6]
P-peak 3925 734 234 94.37 84.25 0 [0,0]
P-onset 3924 734 235 94.35 84.24 -1 [-4,1]
P-offset 3925 734 234 94.37 84.25 -1 [-4,0]

Table 5.5.: Performance values of all ECG features detected by the murine al-
gorithm version 101 compared to the manual annotations.
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Figure 5.3.: Murine ECG signal analysed by the murine algorithm version 100 (A)
and version 101 (B). Red coloured labels correspond to QRS-complex,
magenta to P-wave features, and black to T-wave features. The as-
terisk stands for wave peaks, the right- and left-pointing triangles for
beginning and endpoint. The green circles mark the actual locations
according to the manual labelling. The main differences are marked
with black arrows.
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Figure 5.4.: Murine ECG signal analysed by the human algorithm. Red coloured
labels correspond to QRS-complex, magenta to P-wave features, and
black to T-wave features. The asterisk stands for wave peaks, the
right- and left-pointing triangles for beginning and endpoint. The
green circles mark the actual locations according to the manual la-
belling.

5.1.2. ECG intervals

The ECG intervals are calculated automatically based on the ECG feature an-
notations. The RR-, the PQ-, the QRS-, the QT-intervals, and the QTC-intervals
are determined by the same calculation algorithm independent of the annotation
extraction. It should be mentioned that the duration of the computed RR-interval
is limited to the interval between 100 and 330 ms, which corresponds to a heart
rate between 180 and 600 bpm. For the QTC-interval, the heart rate corrected
formula by Mitchell [23] is used.

The median and the IQR for all calculated ECG interval durations based on the
manual and all automatic algorithms are listed in Table 5.6. The ECG interval
durations based on the annotations produced by the manual labelling and the
automatic algorithm versions human, 101 and 100 are shown in the boxplots in
Figure 5.5. The boxplots containing all versions are provided in the Appendix
A.2.2. Due to the identical R-peak detection in all the automatic algorithms, the
Bland-Altman plot for the RR-interval is only plotted for the human algorithm in
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Figure 5.6. The Bland-Altman plots for the QRS-, the PQ-, and the QT-interval
of human, version 100 and version 101 are given in the Figures 5.8 - 5.9.
The median duration for the manual RR-interval is 162 ms, for the QRS-complex
11 ms and for the PQ-interval 41 ms. For the QT-interval the median value of
the duration is 21 ms, for the heart rate corrected QTC-interval it is 16.6 ms.
For the automatic algorithms, the RR-intervals do not show any differences to the
manual results. This can also be observed in the corresponding boxplot (see Figure
5.5 A) and in the Bland-Altman plot, where the data points are located within
a compact band around 0 ms (see Figure 5.6). The PQ-interval is also assessed
quite good. The medians of all versions are the same, just the IQRs differ by a
maximum of 3 ms. The point cloud in the Bland-Altman plots (see Figure 5.7) is
centered around 0 ms. The QRS- and the QT-interval are generally overestimated,
independent of the automatic algorithm version. The Bland-Altman plots of both
intervals show also a trend towards overestimation for larger interval averages (see
Figures 5.8 and 5.9). However, it is noticeable that the QT-interval is generally
overestimated more than the QRS-interval. In the plots for the QT-interval, the
differences between the two murine versions are recognisable. The point cloud for
version 100 is shifted towards the positive difference values more than for version
101. Furthermore, the data points of version 100 show a second smaller cluster in
the right upper corner. This qualitative behaviour can also be observed for other
pairs of versions, which differ only in the T-offset detection method. Thus, the
overestimation of the QT- and also the QTC-interval is worse for versions with
the geometric T-offset detection. The comparison to the human algorithm shows
an improvement in the overestimation for both the QRS- and the QT-interval.

Version RR (ms) QRS (ms) PQ (ms) QT (ms) QTC (ms)
manual 162 [151,179] 11 [9,12] 41 [39,45] 21 [19,24] 16.6 [15,18.5]

000 162 [151,179] 13 [11,17] 41 [37,47] 30 [25,38] 23.2 [19.5,28.5]
001 162 [151,179] 13 [11,17] 41 [37,47] 25 [21,31] 19.6 [16.3,23.4]
010 162 [151,179] 13 [11,17] 41 [37,47] 30 [25,38] 23.2 [19.6,29]
011 162 [151,179] 13 [11,17] 41 [37,47] 25 [21,31] 19.6 [16.4,23.5]
100 162 [151,179] 13 [11,17] 41 [37,47] 30 [25,38] 23.2 [19.6,28.6]
101 162 [151,179] 13 [11,17] 41 [37,47] 25 [21,30] 19.5 [16.3,23.1]
110 162 [151,179] 13 [11,17] 41 [37,47] 30 [25,39] 23.3 [19.7,29.1]
111 162 [151,179] 13 [11,17] 41 [37,47] 25 [21,30] 19.5 [16.3,23.3]

human 162 [151,179] 26 [22,30] 41 [36,47] 82 [69,99] 65.4 [56.7,78.2]

Table 5.6.: Comparison of the ECG interval durations [ms] based on the annota-
tions produced by all the automatic algorithms and the manual la-
belling.
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Figure 5.5.: Boxplots of the ECG interval durations (ms) based on the annota-
tions produced by the manual labelling and the automatic algorithm
versions human, 101 and 100.

Figure 5.6.: Bland-Altman plot and boxplot of the PQ-interval differences (ms)
for the algorithm version human. The plots for the other murine
algorithm versions look the same.
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Figure 5.7.: Bland-Altman plot and boxplot of the PQ-interval differences (ms)
for the algorithm versions human (A), 100 (B) and 101 (C).
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Figure 5.8.: Bland-Altman plot and boxplot of the QRS-interval differences (ms)
for the algorithm versions human (A), 100 (B) and 101 (C).
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Figure 5.9.: Bland-Altman plot and boxplot of the QT-interval differences (ms)
for the algorithm versions human (A), 110 (B) and 111 (C).
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5.2. Comparison development and reference subset
The dataset for the evaluation has been divided into a development subset of
14 recordings and a reference subset of 12 recordings. The differences between
automatic and manual annotations are calculated for both subsets separately.
The values for the versions 100 and 101 are shown in the Tables 5.7 and 5.8 in
form of median and IQR in ms.
There are no great differences between the development and the reference subset.
The differences for the RR-interval are very similar with a median difference of 0
ms for the development and -0.002 ms for the reference subset. The same is true
for the PQ and the QT-interval, although they are in some cases even a bit better
for the reference subset, e.g. the QT-interval median difference for version 101 is
5.75 ms for the development and 5.59 ms for the reference subset. The difference
between automatic and manual QRS- and the QTC-interval is always higher for
the reference subset, but not so much. For example, the QRS-interval median
difference for version 100 and 101 is 3.55 ms and 5.22 ms for the development and
the reference subset, respectively.

Interval development (ms) reference (ms)

RR 0 [-0.0571,0.00144] -0.00242 [-0.015,0]

QRS 3.55 [2.15,5.99] 5.22 [3.68,5.51]

PQ 0.514 [-1.63,3.27] -0.915 [-1.18,1.03]

QT 12.3 [9.09,15.9] 12.8 [7.16,15.7]

QTC 8.73 [6.4,12.5] 10.2 [5.83,12.3]

Table 5.7.: Comparison of the ECG interval durations (ms) between the develop-
ment and the reference subset for version 100.

Interval development (ms) reference (ms)

RR 0 [-0.0571,0.00144] -0.00242 [-0.015,0]

QRS 3.55 [2.15,5.99] 5.22 [3.68,5.51]

PQ 0.925 [-1.47,4.62] -0.522 [-1.18,1.73]

QT 5.75 [3.89,8.33] 5.59 [1.91,7.53]

QTC 3.79 [2.68,5.33] 4.47 [1.54,5.8]

Table 5.8.: Comparison of the ECG interval durations (ms) between the develop-
ment and the reference subset for version 101.

62



5.3. Comparison before and after medical treatment

5.3. Comparison before and after medical treatment
The provided dataset was initially used to analyse the changes in the ECG signals
due to medical treatment. The first recording of each mouse was taken before,
the second one was taken after the medical intervention with Atenolol 5mg/kg.
Therefore, the ECG intervals are not only analysed overall, but also in terms of
the changes caused by the medical treatment.
The comparison of the ECG intervals before and after the medication for the ver-
sions 100 and 101 is shown in Table 5.9 and 5.10, respectively. The mean values
µ ± their standard deviations are displayed together with the p-value. For both
annotations, the duration of the RR-interval afterwards is very significantly in-
creased (p-value <0.001). This corresponds to a decrease in the heart rate. The
QTC-interval for the manual and the automatic annotations is significantly de-
creases (p-value <0.05). The boxplots of the RR-, the PQ-, the QRS- and the
QT-interval durations for version 111 before and after medication are shown in
the Figures 5.10 and 5.11.

Interval manual µ (SD) (ms) automatic µ (SD) (ms)
before after P-value before after P-value

RR 158 (21.3) 179 (27.8) <0.001 158 (21.3) 179 (27.1) <0.001
QRS 10.9 (1.47) 10.9 (1.72) 0.87 15.1 (2.46) 15.2 (2.92) 0.98
PQ 42.1 (6.01) 42.6 (4.7) 0.47 42.4 (5.76) 42.8 (3.47) 0.70
QT 21.6 (1.92) 21.9 (2.12) 0.49 33.5 (4.69) 33.7 (5.46) 0.87

QTC 17.3 (1.65) 16.4 (1.45) 0.02 26.4 (3.65) 25.3 (3.28) 0.25

Table 5.9.: Comparison of the ECG interval durations (ms) before and after the
medical treatment for version 100.

Interval manual µ (SD) (ms) automatic µ (SD) (ms)
before after P-value before after P-value

RR 158 (21.3) 179 (27.8) <0.001 158 (21.3) 179 (27.1) <0.001
QRS 10.9 (1.47) 10.9 (1.72) 0.87 15.1 (2.46) 15.2 (2.92) 0.98
PQ 42.1 (6.01) 42.6 (4.7) 0.47 44.1 (7.38) 43.5 (3.68) 0.73
QT 21.6 (1.92) 21.9 (2.12) 0.49 27 (3.72) 26.9 (3.71) 0.85

QTC 17.3 (1.65) 16.4 (1.45) 0.02 21.4 (2.9) 20.1 (2.21) 0.08

Table 5.10.: Comparison of the ECG interval durations (ms) before and after the
medical treatment for version 101.
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Figure 5.10.: Boxplots of the version 101 and manual RR- and QT-interval dura-
tions for the medical treatment.
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5.3. Comparison before and after medical treatment

Figure 5.11.: Boxplots of the version 101 and manual PQ- and QRS-interval dur-
ations for the medical treatment.
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Discussion |6
In Chapter 6 the results presented in the previous chapter are interpreted and
analysed. First, the differences between automatic and manual results are dis-
cussed. Since the interval calculation is based on the feature annotations, they
are analysed together. Furthermore, a default setting proposal is provided to chose
one of the 8 different implementations. Then, the calculated ECG intervals are
compared to data taken from the literature. And finally, the results before and
after the medical treatment of the mice are interpreted.

6.1. Automatic vs. manual results
The subjects of discussion in the following subsection are the differences between
automatic and manual annotations and their consequences for the ECG interval
calculations. The interpretation is based on the tables and figures provided in
Section 5.1 and the Appendix A.2. At the end, a suggestion for the default setting
of the algorithm is given.

6.1.1. R-peaks and RR-intervals

The results of the human algorithm, which are equal to the automatic results, are
very convincing. If the R-peak is detected, the difference of the majority to the
manual labelling is less than 1 ms for all versions. It is not perfectly detected,
because signal shapes with a double peak such as illustrated in Figure A.3 (top,
right) can lead to a detection on either the first or the second peak. The missing 72
R-peaks are all in one lead in one mouse, where the P-wave was wrongly detected
as R-peak. This increases not only the FN but also the FP number. The R-peak
is the basis for all other feature detections. As a result, the 72 heart beats are
not recognised correctly in the other features either. The number of FP is higher
than 72 which indicates misclassifications in more than one lead and mouse.
Due to the exact location of the R-waves, the RR-intervals are also well predicted.
The average duration between two R-peaks of about 160 ms corresponds to a heart
rate of 375 bpm. However, the clusters in the Bland-Altman plot in Figure 5.6
and the boxplot of the interval durations indicate that the 13 mice of the study
had different heat rates.
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6.1.2. QRS-complex
The QRS-complex duration is based on the QRS-onset and -offset location. The
QRS-onset detection of the human algorithm is reused in the murine algorithm.
The detection rate is the same as for the R-peaks, but the beginning of the QRS-
complex is generally detected too soon. The actual location is closer to the R-peak,
often located at the beginning or in a slightly negative deflection before the R-
peak. The mouse annotations are rather detected at the preceding edge (see Figure
5.3 B, lead Z). Thus, the IQR is slightly shifted towards negative differences.
The human algorithm detects a “QRS-offset”, but the annotation is far too late.
In regard to that, the new feature detection of the QRS-offset has been definitely
successful. Positioning the index at the middle point of the upward slope is not
correct for all ECG morphologies, such as the signal template shown in Figure A.3
(left, top). For these cases, the manual annotations are positioned at the minimum
in the negative valley. And in some cases, the QRS-offset and the T-wave are still
located too late in the signal. Thus, the location is still a little bit overestimated,
but only by a fraction compared to before.
The premature QRS-onset and the late QRS-offset positions lead to an extended
QRS-interval. The comparison of the Bland-Altman plots (see Figure 5.8) for the
human and the mouse results shows that the shape of the point cloud has changed.
Without the new feature detection, the point clouds have a more elongated shape
and the range on the y-axis is wider. For the murine algorithm, the points are
more accumulated around the median. Thus, the wrong elongation of the interval
is weakened by the new QRS-offset detection. Anyway, there is still a strong trend
towards overestimation of longer QRS-complexes.

6.1.3. T-wave features and QT-interval
Similar to the QRS-offset, the quality of the T-wave features can be increased by
using the new feature detection. In the human algorithm, the median location
of many annotations is between 26 and 60 ms too late, if they are detected at
all. Many annotations are missing, because the criteria for a successful detection
are not fulfilled. This leads to a high number of FN annotations. With the ad-
apted algorithm, the number of TPs can be increased, and at the same time the
distance to the target values is reduced. Since the T-onset and the QRS-offset
are treated simultaneously, they have the same shift to the right compared to the
manual annotations. The reason is explained in Subsection 6.1.2. Their FP and
especially the FN numbers differ due to the case when the T-wave features are not
annotated, but the slope of the QRS-complex is. Thus, there are more T-onset
than QRS-offset annotations missing, which also influences the sensitivity and the
positive prediction. At this point, it should be mentioned that the number of FP
counts should be the same for all three T-wave features due to their automatic
all-or-none annotation. Since this is not the case, it is assumed that single an-
notations have been forgotten or intentionally not annotated during the manual
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labelling.
The T-peak is the first of the two features, for which two detection methods
were implemented. Both approaches achieve comparable differences to the actual
annotations, but the detection rate differs. For the prominent maximum more
T-peaks are detected, resulting in a higher FP value and a lower FN value. For
the wings function, less T-peaks are detected and the relationship is vice versa.
This suggests, that the wings function criteria are more strict than the condition
of a prominent maximum.
The second step, where a choice between two alternatives can be made, is the
T-offset detection. The application of either the geometric or the TRA method
shows one major change. At constant detection rate, the difference to the actual
location is smaller for the TRA method. By using the first local maximum of
the trapeziums area instead of the global maximum, the TRA-detected T-offset
is closer to the T-peak. This corresponds to the manual annotations. Since the
definition of the T-wave endpoint is still a topic of discussion on its own, the
results depend on the given target values. For a different dataset with a clearly
recognisable negative T-wave deflection, the results would be different. For this
reason, the T-offset correction step has been implemented, but not used. Since
already the geometric method shows a delay in the T-offset location, the gap
between the target values and the predicted locations would diverge even further
for an activated T-offset correction.
The intervals from QRS-onset to T-offset for manual and automatic annotations
are different. The trend is clearly towards an overestimation of the interval dur-
ation, especially for large averages of the two QT-intervals. The statement about
the shape of the data point clouds in the Bland-Altman plots of the QRS-intervals
is also valid for the QT-intervals. The larger difference to the actual T-offset for
the versions with the geometric T-offset annotation is reflected in the Bland-
Altman plot by a cluster (see Figure 5.9 B), which is located in the upper right
corner. The higher average and the positive differences indicate a wrongly de-
tected QT-interval elongation. The QTC-interval is not further analysed, since
its informative value for murine data is subject to ongoing discussion [3, 12] (see
Section 6.2). However, the results can be explained as a consequence of the RR-
and the QT-intervals behaviour.

6.1.4. P-wave features and PQ-interval
The determination methods for the P-wave features have remained unchanged for
the murine algorithm. Only the input has changed, since the P-wave features
depend on the T-offset and the QRS-onset. The different numbers of FP and FN
detections compared to the input features are the result of omitted P-waves in the
manual labelling. If the P-wave was not clearly recognisable, it was skipped. Es-
pecially the high FP value indicates, that many P-waves which are automatically
detected are not distinguishable for the user’s eyes and should not be annotated.
Comparing the results between the versions using the geometric and the TRA-
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based method as T-offset determination, a difference in the detection rate for the
P-wave features is shown. Overall, the geometric method shows slightly higher
TP values than the TRA-method. One possible explanation is that the delayed
detected T-offset does not fulfill some criteria in the P-wave analysis. Therefore,
the features of the P-wave will not be annotated, which leads to lower FP values.
The P-peaks, which are correctly detected, are annotated quite accurately. Both
the onset and the offset tend to be located too early on average with many out-
liers in both directions. The detection method is designed to analyse monophasic
P-wave characteristics. However, the P-waves in the murine dataset sometimes
show a biphasic characteristic, which leads to premature feature annotations.
Both features for the PQ-interval calculation are generally located too early in
the signal. Since the P-onset and the QRS-onset are both shifted in the same
direction, the overall influence on the interval duration is minimal. The median of
the differences is close to 0 for all versions. The data points in the Bland-Altman
plots (see Figure 5.7) are accumulated around an average which corresponds to
the median of the interval duration.

6.1.5. Default setting for murine algorithm
The 8 different implemented versions of the algorithm are labelled with a three-
digit code, as shown in Table 5.1. Each digit corresponds to a task that can be
solved with two approaches. This code is also used to run the murine algorithm
and activate the desired methods. After analysing the results of all versions in
terms of detection rate and accuracy of ECG feature annotations and the duration
of the ECG intervals, the default setting for the algorithm version is proposed.
For each digit, the preferred method is chosen. The methods are analysed in the
reverse digit order because of their impact on the results.
The T-offset determination is the task symbolised by the 3rd digit. It influences
both the T-features, as discussed in the Subsection 6.1.3, and the P-features, as
discussed in the Subsection 6.1.4. The optimal method decreases the differences
between the target values and increases the TP values at the same time com-
pared to alternative approaches. Unfortunately, both methods fulfill only one of
those two requirements. The TRA-method decreases the differences, but results
in higher TP numbers. The geometric method decreases the number of TPs, but
have higher values for the differences. However, the focus of this thesis was more
on the correct detection of the T-wave features and therefore the TRA-method
is favoured over the geometric method. That offers an other additional advant-
age. The basis for further analysis in the T-offset correction is the TRA-detected
T-offset, independent of which method is used to determine the initial T-offset.
For an activated correction step, only one function needs to be called, since the
T-offset detection and correction based on the TRA-method are implemented to-
gether. Thus, the 3rd digit of the default setting is 1. This reduces the candidates
for the “best” version to 4.
The 2nd digit represents the T-peak determination. The exact location of the T-

70



6.2. Comparison to literature

peak is not very important, since it is often neglected for further ECG parameter
calculations. And the differences to the target values are similar for both methods
anyway. However, even though the T-peak location is not of great interest, its
existence is. As stated in Section 4.2.1, the T-wave analysis is only continued if
a T-peak could be located. Instead of limiting the T-peak search, which would
also reduce the possibility to distinguish between correct and incorrect T-wave
features, an advanced correction step based on all three T-features is preferable.
As discussed in the Subsection 6.1.3, the wings function is more strict in its de-
tection than the prominent maximum approach. Thus, the prominent maximums
approach with digit 0 is chosen.
The task expressed by the 1st digit is the clustering. The two different clustering
methods have no noticeable influence on neither the detection rate nor the dis-
tance to the target values. Hence, the version with the highest number of TP is
selected from the last two. The analysis results in a default setting of 101 for the
applied version. It should be mentioned that the requirements and therefore the
“best” version can vary from dataset to dataset.

6.2. Comparison to literature
Data found in the literature is summarised in Table 2.3. It is used for the compar-
ison with the ECG intervals of the murine algorithm version 101 (see Table 5.6).
It was already mentioned in Section 2.2.5 that the different study configurations
make it difficult to compare the data. The used anaesthesia influences the heart’s
electrical activity and therefore the duration of ECG intervals, as stated by Danik
et al. [15]. The ECG signals of the used dataset were recorded under the influence
of isoflurane. According to Speerschneider and Thomsen [3], isoflurane reduces
the heart rate and prolongs the QT-interval. Therefore, the calculated intervals
based on the annotations of version 111 are only compared to the last two stud-
ies [17, 32] in Table 2.3.

The average heart rate of the two studies is around 442 bpm. The calculation of
the average heart rate for all 26 recordings results in a lower heart rate of around
370 bpm. However, the 26 recordings also contain those 13 signals which have a
lower heart rate due to the medical treatment. Considering only the 13 recordings
before the intervention, the heart rate increases slightly to an average of around
380 bpm. The cluster in the RR-interval Bland-Altman plot indicate higher heart
rates for single individuals.
The remaining intervals are not significantly influenced by the medication. Thus,
the results of the entire dataset are used for further analysis. The mean QRS-
complex of 15 ms ± 6.09 SD and the median of 13 ms with an IQR of [11,17] are
exceeding the values from the literature data of 8.4 to 11.3 ms. The opposite is the
case for the QT-interval. The median algorithm duration of 19.5 ms with an IQR
of [16.3,23.1] and the mean of 26.7 ms ± 8.61 SD is below the 46.3 to 66 ms interval
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suggested by the literature. The reason for that could be the default setting of
the algorithm, which ignores a negative deflection after the J-wave. Thus, the
QT interval is shortened. The median duration of the algorithm determined PR-
interval is 41 ms with an IQR of [37,47] and the mean is 43.6 ms ± 11.7 SD.
Thus, the PR-interval is located in the interval of 33.2 to 59.6 ms indicated by the
literature.
The QTC-interval is calculated according to the formula 2.2 by Mitchell et al. [23].
In the studies of Speerschneider and Thomsen [3] and Boukens et al. [12], it is
discussed whether the formula is an adequate heart rate correction of the QT-
interval. They suggested to not use the formula for anaesthetised mice due to
the varying heart rates. Therefore, the QTC-interval is not further analysed or
compared to reference values.

6.3. Comparison development and reference subset
The comparison by means of the differences between automatic and manual results
shows no big differences for the two subsets. Since the development subset was
used for the algorithm planning, larger values for the reference subset would mean
overfitting occurred. For some features, the values for the development subset
are lower compared to the reference subset, but not much. There are even some
features, for which the differences for the reference subset are lower. Generally,
the values for the differences does not show a trend towards overfitting.

6.4. Comparison before and after medical treatment
The betablocker Atenolol binds specific to β1-receptors and is used for the treat-
ment of hypertension. Its main consequences for the ECG intervals are a reduced
heart rate, which corresponds to an increased duration between two R-peaks, and
the elongation of the QT-interval [55]. This changes were also observed for animal
models. Ruppert et al. [56] analysed the influence of reference compounds such
as Atenolol on the cardiac electrophysiology of guinea pigs. Unfortunately, no
study could be found on mice. The data in Table 5.9 and 5.10 suggests that the
reduction of the heart rate also applies to mice. Both the manual and the auto-
matic results show a highly significant increase in the RR-interval duration. In
contrast, an increase in the QT-interval duration is not noticeable in our dataset.
The increase for the QTC-interval is only significant for the manual but not for
the murine results. Since the RR-intervals have the same values for the mean and
SD, this is a consequence of the QT-interval values.
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In conclusion, an algorithm for the automatic ECG feature detection specialised
for mouse data was implemented and evaluated. The foundation for the mur-
ine algorithm was the AIT ECGsolver, which was developed for human ECG
signal analysis. The QRS-offset and T-wave feature determination methods are
exchanged or adapted to fit the different ECG morphology. After determining
the features, the ECG intervals are calculated automatically. Three algorithm
steps were solved by two different methods. The resulting versions were compared
to each other and to manually labelled feature annotations, which served as tar-
get values. Generally, the developed algorithm performed better than the human
algorithm. The major weaknesses of the non-specialized analysis regarding the
different T-wave shape have been eliminated. There is still room for some im-
provements, but the tendency of the results is promising.

During the evaluation it turned out that the annotation of the P-wave features
still shows potential for improvement. Since the wave shape does not differ so
much from human signals, the focus was more on the adaptation for QRS-offset
and T-wave features. However, the sensitivity and the positive prediction of the
algorithm could be improved, if the detection rate for the last determination step
is more adapted to the wave shape in murine ECG signals. This could be a task
for future work. Additionally, a lead correction after processing one complete
ECG signal with more than two leads could be added. The number of correct
annotations could be improved by using the information of all leads. Missing or
wrong detected features could be located and rechecked with the additional data.

Furthermore, the algorithm should be tested with murine data showing a clear
recognisable negative T-wave. A correction step to detect the T-offset at the end
of such a negative deflection is already implemented. Unfortunately, there was
no possibility to test the extension due to the ECG morphology of the used data-
set and the manual annotations, which did not distinguish between J- and T-wave.

It would also be interesting to implement an algorithm, which is capable of de-
ciding the best methods to apply for the currently analysed dataset on its own.
A possibility could be to use a semi-automatic approach. By manually labelling a
few features at the start of the signal, the users enter some reference points and the
algorithm learns from them. Then, the further analysis is applied automatically,
which can be extended to an analysis in real time.
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Appendix |A
A.1. ECG morphologies of data set
Different ECG leads produce different shapes of the ECG signal, as already men-
tioned in section 2.2.4 in connection with the polarity of a distinct T-wave. How-
ever, the ECG morphology in the used data set also varies within the leads.
Examples for different characteristics in the three leads X, Y, and Z are shown in
the Figures A.1, A.2 and A.3, respectively.

Figure A.1.: Two examples for the different ECG morphology in lead X.

Figure A.2.: Two examples for the different ECG morphology in lead Y.
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Figure A.3.: Three examples for the different ECG morphology in lead Z.

A.2. Comparison automatic and manual results
In this section, additional data for the comparison of the manual and the automatic
results is provided. The main results of the comparison are shown in Section 5.1
and discussed in Section 6.1.

A.2.1. ECG feature annotations
The values for TP, FP, FN, sensitivity and positive prediction for 6 of the 8
algorithm versions are displayed in the Tables A.1 to A.6 together with the median
and the IQR of the differences to the target values. The tables for version 110
and 111 are shown in Section 5.1 (in the Tables )A.7 and A.8). The corresponding
boxplots for all 8 versions illustrating the differences in ms for all ECG features
to their target values are given in the Figures A.4 to A.11.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4784 108 81 98.34 97.79 0 [0,1]
T-peak 4478 138 332 93.1 97.01 0 [0,0]
T-onset 4477 139 332 93.1 96.99 0 [-1,1]
T-offset 4479 137 332 93.1 97.03 6 [2,12]
P-peak 3908 570 251 93.96 87.27 0 [0,0]
P-onset 3908 570 251 93.96 87.27 0 [-3,1]
P-offset 3908 570 251 93.96 87.27 -1 [-4,0]

Table A.1.: Performance values of all ECG features detected by the murine al-
gorithm version 000 compared to the manual annotations.

Figure A.4.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 000 and the manual annotations for
all ECG features.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4784 108 81 98.34 97.79 0 [0,1]
T-peak 4478 138 332 93.1 97.01 0 [0,0]
T-onset 4477 139 332 93.1 96.99 0 [-1,1]
T-offset 4479 137 332 93.1 97.03 1 [-2,6]
P-peak 3892 719 267 93.58 84.41 0 [0,0]
P-onset 3892 719 267 93.58 84.41 -1 [-4,1]
P-offset 3892 718 267 93.58 84.43 -1 [-4,0]

Table A.2.: Performance values of all ECG features detected by the murine al-
gorithm version 001 compared to the manual annotations.

Figure A.5.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 001 and the manual annotations for
all ECG features.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4783 108 82 98.31 97.79 0 [0,1]
T-peak 4538 158 272 94.35 96.64 0 [0,0]
T-onset 4537 159 272 94.34 96.61 0 [-1,1]
T-offset 4539 157 272 94.35 96.66 6 [2,12]
P-peak 3905 570 254 93.89 87.26 0 [0,0]
P-onset 3905 570 254 93.89 87.26 0 [-3,1]
P-offset 3905 570 254 93.89 87.26 -1 [-4,0]

Table A.3.: Performance values of all ECG features detected by the murine al-
gorithm version 010 compared to the manual annotations.

Figure A.6.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 010 and the manual annotations for
all ECG features.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4783 108 82 98.31 97.79 0 [0,1]
T-peak 4538 158 272 94.35 96.64 0 [0,0]
T-onset 4537 159 272 94.34 96.61 0 [-1,1]
T-offset 4539 157 272 94.35 96.66 1 [-2,6]
P-peak 3899 727 260 93.75 84.28 0 [0,0]
P-onset 3899 727 260 93.75 84.28 -1 [-4,1]
P-offset 3899 726 260 93.75 84.3 -1 [-4,0]

Table A.4.: Performance values of all ECG features detected by the murine al-
gorithm version 011 compared to the manual annotations.

Figure A.7.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 011 and the manual annotations for
all ECG features.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4793 108 72 98.52 97.8 0 [0,1]
T-peak 4485 127 325 93.24 97.25 0 [0,0]
T-onset 4484 128 325 93.24 97.22 0 [-1,1]
T-offset 4486 126 325 93.24 97.27 6 [2,12]
P-peak 3912 597 247 94.06 86.76 0 [0,0]
P-onset 3911 597 248 94.04 86.76 0 [-3,1]
P-offset 3912 597 247 94.06 86.76 -1 [-4,0]

Table A.5.: Performance values of all ECG features detected by the murine al-
gorithm version 100 compared to the manual annotations.

Figure A.8.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 100 and the manual annotations for
all ECG features.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4793 108 72 98.52 97.8 0 [0,1]
T-peak 4485 127 325 93.24 97.25 0 [0,0]
T-onset 4484 128 325 93.24 97.22 0 [-1,1]
T-offset 4486 126 325 93.24 97.27 1 [-2,6]
P-peak 3925 734 234 94.37 84.25 0 [0,0]
P-onset 3924 734 235 94.35 84.24 -1 [-4,1]
P-offset 3925 734 234 94.37 84.25 -1 [-4,0]

Table A.6.: Performance values of all ECG features detected by the murine al-
gorithm version 101 compared to the manual annotations.

Figure A.9.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 101 and the manual annotations for
all ECG features.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4792 108 73 98.5 97.8 0 [0,1]
T-peak 4566 153 244 94.93 96.76 0 [0,0]
T-onset 4565 154 244 94.93 96.74 0 [-1,1]
T-offset 4567 152 244 94.93 96.78 6 [2,13]
P-peak 3936 619 223 94.64 86.41 0 [0,0]
P-onset 3935 619 224 94.61 86.41 0 [-3,1]
P-offset 3936 619 223 94.64 86.41 -1 [-4,0]

Table A.7.: Performance values of all ECG features detected by the murine al-
gorithm version 110 compared to the manual annotations.

Figure A.10.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 110 and the manual annotations for
all ECG features.
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Features TP FP FN Se
[%]

Pp
[%]

Differences
(ms)

QRS-offset 4792 108 73 98.5 97.8 0 [0,1]
T-peak 4566 153 244 94.93 96.76 0 [0,0]
T-onset 4565 154 244 94.93 96.74 0 [-1,1]
T-offset 4567 152 244 94.93 96.78 1 [-2,6]
P-peak 3913 739 246 94.09 84.11 0 [0,0]
P-onset 3912 739 247 94.06 84.11 -1 [-4,1]
P-offset 3913 739 246 94.09 84.11 -1 [-4,0]

Table A.8.: Performance values of all ECG features detected by the murine al-
gorithm version 111 compared to the manual annotations.

Figure A.11.: Boxplots of the differences (ms) between the annotations determined
by the murine algorithm version 111 and the manual annotations for
all ECG features.
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A.2.2. ECG intervals
The QRS-, the PQ-, and the QT-interval duration based on the annotations pro-
duced by all automatic algorithm versions and the manual labelling are shown in
the boxplots in the Figures A.12 - A.14. Since the RR-intervals are very similar
for all the annotation methods, the corresponding boxplot is not shown.

Figure A.12.: Boxplots of the QRS-interval durations (ms) based on the annota-
tions produced by the manual labelling and all the automatic al-
gorithm versions.

Figure A.13.: Boxplots of the PQ-interval durations (ms) based on the annotations
produced by the manual labelling and all the automatic algorithm
versions.
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Figure A.14.: Boxplots of the QT-interval durations (ms) based on the annotations
produced by the manual labelling and all the automatic algorithm
versions.
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