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Abstract

Numerical limit analysis belongs to the field of computational plasticity and is mainly
used to predict load bearing capacities of engineering structures. In contrast to con-
ventional elastoplastic analysis methods, limit analysis exclusively focuses on the time
instant of structural collapse, and thus the whole load history up to this point doesn’t
need to be examined. Especially, finite-element-based limit analysis formulations have
evolved to powerful tools, able to solve complex large-scale problems efficiently and
robustly. Within this thesis, existing finite-element-based limit analysis formulations
are discussed in detail and, subsequently, systematically adapted and extended to be
applicable to orthotropic materials. The performance of the proposed formulations is
assessed by means of different engineering problems. The whole thesis addresses two
main tasks and thus has been organised into two parts accordingly.

The first part of the thesis is dedicated to the implementation of numerical limit ana-
lysis approaches for strength predictions of wood and wood-based products. Since wood
is undergoing a revival and has recaptured market shares in recent years, a reliable and
efficient strength prediction tool is urgently needed in timber engineering. However, due
to the intrinsic hierarchical structure of wood, a sophisticated and realistic numerical
description of its strength behaviour is only possible by means of multiscale consid-
erations. For this reason, numerical limit analysis formulations are proposed for two
different scales of observation, the annual ring scale and the clear wood scale. At each
scale, effective failure surfaces and distinct failure modes at various stress states could be
obtained, and a validation by means of biaxial tests at the clear wood scale has rendered
this numerical approach as a powerful tool providing sufficient and reliable information
to investigate failure mechanisms of wood at different scales. Furthermore, a compar-
ison between the proposed numerical method with two other computational methods,
the extended finite element method and an elastic limit approach in the framework of
continuum micromechanics, was performed, showing their strengths and weaknesses on
predicting wooden strengths. The numerical limit analysis approaches can, on the one
hand, capture basic characteristics of failure modes and the overall strength behaviours
correctly and, on the other hand, fulfil the requirement of simplicity and efficiency for
being applicable in engineering practice. To assess the applicability in engineering prob-
lems, the proposed numerical limit analysis approaches are implemented to predict the
load bearing capacity of wood-based products. According to a validation by means of
experimental results, this numerical method can provide reliable predictions on bend-
ing capacities of cross-laminated timber plates and allows for stochastic studies, taking
inhomogeneities and uncertainties of the material into account. In summary, numerical
limit analysis can be expected to play an important role for fast strength predictions of
wood and wood-based products in the future.

The second part of the thesis is dedicated to the development of new finite-element-
based upper bound formulations, allowing for an efficient description of localised fail-
ure mechanisms in combine with the consideration of orthotropic strength behaviours.
Adaptive mesh refinement is commonly used in numerical upper bound approaches
to handle localised failure mechanisms, which normally leads to the use of very fine
meshes in failure regions and thus requires high computational effort. Alternatively,
by introducing velocity discontinuities (as additional degrees of freedom) in discretised
structures and arranging them in a sensible way, localised failure mechanisms can be
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captured accurately and efficiently by velocity jumps across these discontinuities. To
guarantee a consistent orthotropic strength behaviour within solid elements and across
discontinuities, an algorithm is derived projecting the stress-based yield function into
a traction-based yield function with respect to the plane of plastic flow localisation.
Then, to automatically arrange velocity discontinuities in a sensible way, an adaptive
strategy is developed to iteratively introduce new velocity discontinuities and adjust
orientations of existing ones within the discretised structures. For selected examples,
the adaptively-arranged velocity discontinuities can play dominant roles in the result-
ing upper bound failure modes and thus the plastic strain-rate within solid elements is
reduced to a minimum, making adaptive mesh refinement for these examples obsolete.
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Introduction

Motivation

Limit analysis is a computational method widely applied to predict load bearing ca-
pacities of engineering structures exhibiting elastoplastic material response. Normally,
a complete elastoplastic analysis requires an iterative procedure considering the whole
loading history, which can become very expensive and difficult for certain problems.
Alternatively, belonging to a group known as direct method, limit analysis exclusively
focuses on the critical work rate at the time instant of structural collapse, when struc-
tures lose the capability to store any further external work as recoverable internal energy.
With a quite simple solution procedure and a small set of input parameters, limit ana-
lysis can provide robust and efficient predictions on collapse loads of structures in a
direct manner.

Based on the assumption of rigid and perfectly plastic material response, the funda-
mental problem of limit analysis can be stated as: Find the kinematically admissible
velocity field which minimises the external work rate over the set of all statically ad-
missible stress fields which maximise the internal dissipation rate. Unfortunately, the
resulting saddle-point problem can be solved exactly only for simple geometric and load-
ing situations as well as for simple material behaviours. For more complex situations,
the plastic flow compatibility in the static lower bound principal and the plastic ad-
missibility in the kinematic upper bound principle may be relaxed, providing lower and
upper bounds for the collapse load.

The first complete formulations of limit analysis theorems were established in the early-
1950s (Drucker et al., 1951, 1952, Hill, 1951), and their analytical solutions have been
applied to provide useful bounds for engineering problems, e.g. in soil mechanics (Chen,
2013) and concrete plasticity (Nielsen and Hoang, 2016). However, since analytical solu-
tions of limit analysis are normally limited to simple problems, starting from the early-
1970s (Anderheggen and Knöpfel, 1972, Lysmer, 1970, Maier et al., 1972), intensive
research efforts have been invested globally to implement limit analysis theorems into
well-developed numerical formulations for more general applications from simple two-
dimensional benchmark examples to complicated three-dimensional engineering prob-
lems. Thanks to the rapid evolution of computer technology and development in math-
ematical programming, the so-defined numerical limit analysis approaches have been
proven a reliable and efficient tool for strength prediction of materials and safety as-
sessment of structures used in engineering applications, e.g. in geotechnical engineering
(Martin and White, 2012, Sloan, 2013), masonry engineering (Milani et al., 2006a,b)
and concrete engineering (Domenico et al., 2014, Pisano et al., 2015).
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Due to developments and increasing applications of anisotropic engineering materials,
e.g. laminated and reinforced composites, the implementation of orthotropic yield func-
tions into numerical limit analysis formulations has been investigated in several previous
works (Capsoni et al., 2001a,b, Corradi et al., 2006, Li, 2011, Pisano et al., 2012, Pisano
and Fuschi, 2007). However, numerical limit analysis has never been applied to wood.
As a naturally-grown material, wood exhibits quite complex and variable mechanical
behaviours, which have restricted deeper understanding of the mechanical processes
within the material and more efficient utilisations in engineering applications. Espe-
cially with respect to the strength behaviours of wood, on the one hand, experimental
investigations are normally difficult as well as expensive, and on the other hand, none of
the existing numerical prediction tools is universally accepted by the wood community.

Since the strength behaviours of wood is strongly influenced by the underlying complex
hierarchical material system, a multiscale approach has been developed based on the
framework of micromechanics (Bader et al., 2010, Hofstetter et al., 2008, Lukacevic and
Füssl, 2016, Lukacevic et al., 2014b, 2017), where strength prediction tools are applied
to unit cell models representing the structural characteristics of wood at different scales
of observation. Subjected to this multiscale concept, the application of the conventional
finite element method at each length scale leads to very high computational cost and
probably to an unnecessarily high complexity of the overall model. For this reason,
taking benefit from its simplicity and efficiency, numerical limit analysis can serve as a
powerful alternative strength prediction tool for wood and wood-based products.

The performance of numerical limit analysis formulations heavily relies on the dis-
cretisation strategy and the mathematical programming method applied to solve the
underlying optimisation problem. For the discretisation of limit analysis formulations,
although several methods using high-order interpolation functions have been developed
during recent years, in order to get rigorous bounds, the finite-element-based method
is still the most robust and reliable one, using piecewise linear stress elements (Lyamin
and Sloan, 2002a, Makrodimopoulos and Martin, 2006) for lower bound calculations
and constant strain elements (Lyamin and Sloan, 2002b) or simplex strain elements
(Makrodimopoulos and Martin, 2007) for upper bound calculations. Regarding the un-
derlying optimisation problem, second-order cone programming is the state-of-the-art
algorithm which allows for the formulation of most commonly-used nonlinear yield func-
tions in their native form, as second-order cone constraints, and can provide robust and
efficient solutions for large scale problems.

Since plastic failure often occurs very localised, the application of adaptive mesh refine-
ment in numerical limit analysis approaches has been intensively investigated. However,
in such approaches, the heavily refined mesh in the critical plastic failure regions nor-
mally leads to a significant increase in number of elements and thus still demands very
high computational effort. For this reason, in numerical upper bound formulations
velocity discontinuities have been implemented, which allow velocity jumps across all
element interface as additional degrees of freedom measuring plastic failure. Velocity dis-
continuities have been proven powerful in overcoming locking effects and increasing the
quality of upper bound solutions when constant strain elements are used (Krabbenhøft
et al., 2005, Makrodimopoulos and Martin, 2008, Sloan and Kleeman, 1995), but their
capability in modelling localised failure mechanisms has rarely been investigated so far,
especially when orthotropic strength behaviours are considered. Since well-arranged ve-
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locity discontinuities play a dominant role in corresponding upper bound failure modes
according to Smith and Gilbert (2007) and Milani and Lourenço (2009), an efficient and
robust algorithm, which can arrange velocity discontinuities automatically into layouts
with good agreement to localised failure modes, will provide an alternative approach to
adaptive mesh refinement and prevent the use of fine meshes in numerical upper bound
calculations.

Research objectives and outline of the thesis

The main objective of this thesis has been the development of new finite-element-based
limit analysis approaches / concepts, serving as strength prediction tools with sufficient
efficiency and robustness to be applied to engineering problems. Accordingly, this thesis
has been structured into two parts, with them and the related tasks defined in the
following:

(a) Assessing the applicability of numerical limit analysis for strength predictions
of orthotropic materials and proposing a concept for the implementation of this
numerical method to wood and wood-based products.

• Implementing finite-element-based limit analysis formulations for strength
predictions of wood, considering the intrinsic hierarchical structure at differ-
ent scales of observation (Publication 1).

• Comparing the performance of the implemented numerical limit analysis ap-
proaches with two existing methods, the extended finite element method and
an elastic limit approach (Publication 2).

• Applying the new formulations to predict the load bearing capacity of cross-
laminated timber plates, considering strength variations and imperfections
in wooden boards using a stochastic approach (Publication 3).

(b) Developing an alternative strategy to the commonly-used adaptive mesh refine-
ment in numerical limit analysis approaches, allowing for more efficient description
of localised plastic failure mechanisms.

• Presenting a concept for a sensible arrangement of velocity discontinuities
in finite-element-based limit analysis formulations, including materials with
orthotropic strength behaviours (Publication 4).

• Developing a new algorithm for an automated implementation of velocity
discontinuities into a sensible arrangement (Publication 5).

These tasks were addressed in five peer-reviewed publications. In the following, the
outline of this thesis is summarised according to these publications.

Publication 1 aims at a new numerical method to understand failure mechanisms and
to predict strength behaviours of wood. By enriching finite-element-based limit analysis
formulations with orthotropic yield functions and periodic boundary conditions, the
numerical limit analysis approaches are applied for the first time to predict the strength
behaviours of clear wood. The intrinsic hierarchical material structure is considered
following a multiscale concept including two scales of observation, the annual ring scale
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exhibiting a periodic honeycomb-like structure and the clear wood scale represented by a
laminated annual ring structure. Numerical lower bound and upper bound calculations
are applied to determine effective failure surfaces and identify various failure modes at
different stress states, for earlywood and latewood unit cell models at the annual ring
scale and laminated unit cell models at the clear wood scale. Applying a multiscale
approach, material strength properties at the clear wood scale are defined according to
numerical results obtained at the annual ring scale. To validate the present numerical
limit analysis approaches, effective failure surfaces obtained at the clear wood scale are
compared with biaxial loading test results on Norway spruce clear wood.

In Publication 2, the numerical limit analysis are compared with the extended finite
element method and an elastic limit approach regarding their capacities for efficient
and reliable predictions on effective strength properties of clear wood. The extended
finite element method is powerful and allows for a very realistic description of strength-
governing processes, but its complexity and high computational effort prevent wide-
spread use in the engineering field. The elastic limit approach is efficient due to the
analytical solution basis and elegant since material properties of difference phases can be
linked across several scales of observation, but stress and strain averages over material
phases are perhaps not able to capture all failure-triggering processes. The numerical
limit analysis, comparable to the extended finite element method, can provide reliable
predictions on basic characteristics of failure modes and the overall strength behaviours,
and, like the elastic limit approach, exhibits high computational efficiency and robust-
ness allowing for rapid strength predictions within engineering design processes. Similar
to Publication 1, all these three methods are applied to the annual ring scale and the
clear wood scale, and their strength predictions are compared with each other as well
as with experimental results to evaluate their applicability to wood.

Publication 3 is dedicated to the application of three-dimensional finite-element-based
limit analysis formulations to solve engineering problems, i.e. the load-bearing capacities
of cross-laminated timber plates. Cross-laminated timber is an innovative wood product
with excellent in-plane and out-of-plane performances and earning global popularity in
timber engineering. It is well-known that, the orthotropic and inhomogeneous strength
properties of wooden boards have a strong influence on the load bearing capacities of
cross-laminated timber plates, especially when the complex wood fibre distributions due
to randomly occurring knots are considered. For this reason, combining recent advances
in numerical limit analysis and a knot reconstruction algorithm, the bending strength
of cross-laminated timber plates under concentrated loading is predicted using the nu-
merical limit analysis approaches, and the scatter of strength properties resulting from
the material’s homogeneities is investigated using a stochastic approach. For the latter,
data collected during the grading process of wooden boards is condensed into so-called
strength profiles for individual wooden boards, and the cross-laminated timber plates
are assembled using wooden boards with strength profiles randomly-chosen from the
database. Numerical results are compared to experimental observations, with respect
to magnitude as well as scatter of bending capacities of cross-laminated plates.

Publication 4 presents the implementation of sensibly-arranged velocity discontinuit-
ies in three-dimensional finite-element-based upper bound formulations for orthotropic
material strength behaviours. In the formulations, the description of the unknown
velocity field can be extended by introducing velocity discontinuities between finite ele-
ments as additional degrees of freedom. To allow orthotropic yield functions within
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finite elements as well as across velocity discontinuities, the concept of “projecting” the
stress-based orthotropic yield function onto a certain discontinuity is briefly presented,
giving a traction-based yield function which allows for a consistent description of the
material strength behaviour. Instead of mesh refinement, a concept of sensible arrange-
ment of velocity discontinuities is proposed, allowing for a more efficient and accurate
description of localised plastic failure modes. The present implementations are verified
by means of several selected examples under plane strain conditions.

Publication 5 focuses on an adaptive algorithm implementing velocity discontinuit-
ies into three-dimensional finite-element-based upper bound formulations, in order to
achieve more reliable and efficient numerical upper bound solutions. As outlined in Pub-
lication 4, velocity discontinuities can be very powerful if they are sensibly arranged.
To allow a general application of this approach, an adaptive algorithm is presented to
implement velocity discontinuities into the optimal layout by iteratively introducing
new and adjusting existing discontinuities according to possible planes of plastic flow
localisation determined at each strain-rate evaluation node. To guarantee consistent
strength behaviours throughout the whole discretised structure, traction-based yield
functions defining the plastic flow across discontinuities are derived from their stress-
based counterparts. This procedure is outlined in detail and the obtained traction-based
yield functions are verified numerically for orthotropic strength behaviours. By means
of three different examples, considering either isotropic or orthotropic strength beha-
viours, the performance of the proposed strategy is investigated, and upper bound
collapse loads as well as failure modes are compared to reference solutions.

Contribution of the author
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• Publication 1: Strength predictions of clear wood at multiple scales using nu-
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most of the manuscript.

• Publication 2: Comparison of unit cell-based computational methods for predict-
ing the strength of wood (Füssl et al., 2017)

The author contributed to a part of the numerical approaches, performed a part of
numerical calculations and data analysis, and prepared a part of the manuscript.

• Publication 3: Bending strength predictions of cross-laminated timber plates
subjected to concentrated loading using 3D finite-element-based limit analysis ap-
proaches (Li et al., 2018d)

The author contributed to the extension of the numerical approach and the de-
velopment of the stochastic approach, performed all numerical calculations and
most data analysis, and prepared most of the manuscript.
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locity discontinuities and orthotropic material strength behaviour (Li et al., 2018b)

The author contributed to the development of the new numerical upper bound
concept, performed all numerical calculations and data analysis, and prepared
most of the manuscript.

• Publication 5: An algorithm for adaptive introduction and arrangement of ve-
locity discontinuities within 3D finite-element-based upper bound limit analysis
approaches (Li et al., 2018a)

The author contributed to the development of the new adaptive strategy for up-
per bound calculations and the derivation of relevant algorithms, performed all
numerical calculations and data analysis, and prepared most of the manuscript.
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Abstract: This work aims at a new approach for understanding failure mechanisms and
predicting wood strengths, which are strongly influenced by the complex hierarchical
material system of wood. Thus, a mechanical concept, where different microstructural
characteristics are incorporated, appears to be necessary, based on the division of wood
into meaningful scales of observation. At each scale, effective strength properties are to
be determined and a multiscale approach needs to be applied, for which conventional
numerical methods appear to be inefficient. In this work, numerical limit analysis ap-
proaches are further developed and applied for the first time to wood, complementing
conventional methods successfully at certain scales of observation in a multiscale ‘dam-
age’ approach.

Limit analysis belongs to the group of direct plastic analysis methods, focusing exclus-
ively on the time instant of structural collapse, and delivering the ultimate strength.
Compared with conventional numerical approaches that have previously been applied
to wood, limit analysis approaches are much more stable and efficient.

In this work, orthotropic failure criteria and periodic boundary conditions are imple-
mented into both lower bound and upper bound numerical limit analysis formulations.
As numerical results, effective failure surfaces are obtained at both annual ring scale
and clear wood scale. A validation at clear wood scale indicates that this new approach

https://www.sciencedirect.com/science/article/pii/S0045794917311550
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is very promising.

Keywords: strength prediction of wood, numerical limit analysis approaches, different
length scales, orthotropic failure criteria, periodic boundary conditions.

1.1 Introduction

In recent years, wood, as a building material, has undergone a revival. This can be
attributed to its excellent mechanical and physical properties on one hand and the
fact that it is an environmentally sustainable material with a pleasant appearance on
the other hand. Also, due to continuous extensions and improvements in building
codes throughout Europe, allowing higher and more complex timber constructions, its
share of the building market is constantly increasing and the volume of consumption
is experiencing enormous growth rates. In the course of this, however, demands on
timber constructions are increasing constantly. In order to meet these demands and
allow the use of wood in complex applications, prediction tools for the mechanical
performance of wood are gaining importance. A wider repertoire of advanced prediction
tools should facilitate a better utilisation of wood and wood-based products, increasing
their competitiveness compared with other building materials. Especially for predicting
the ultimate strength of wood, very few reliable and promising methods exist so far. A
brief overview of some existing methods for predicting/modelling structural failure at
the wooden board level is given in the following.

1.1.1 Prediction tools for the ultimate strength of wood

The first group of approaches avoids the direct description of failure mechanisms and
instead uses so-called mean stress concepts (Masuda, 1988), where averaged stresses
over a finite small area are assumed to indicate failure. These areas can be adjusted to
typical features of wood, such as structural characteristics of wood fibres (Aicher et al.,
2002). Serrano and Gustafsson (2007), Sjödin and Serrano (2008) and Sjödin et al.
(2008) applied this approach in combination with findings of linear elastic fracture
mechanics. They investigated single and multiple dowel connections, where the size of
the finite area was governed by the fracture properties of the material. The suitability of
different area definitions, over which the stresses are averaged, and also the efficiency of
various failure criteria, were compared by Guindos (2011). Lukacevic and Füssl (2014)
presented a physically-based structural failure criterion, where it was assumed that in
wooden boards with knots, global failure can be related to a stress transfer mechanism,
which is identifiable by evaluating averaged stress fields in the vicinity of knots. Either
way, such models are mostly dependent on empirical parameters and the true failure
mechanisms cannot be identified. This can be overcome by directly modelling failure
processes.

The most sophisticated approaches for this are based on multi-surface plasticity/failure
criteria, as described in Mackenzie-Helnwein et al. (2003) and Schmidt and Kaliske
(2006). Thereby, orthotropic yield surfaces are defined describing the onset of plastic
deformation, whereas failure surfaces indicate stress states where cracks are to be ex-
pected. Cracking is normally modelled with so-called cohesive elements, including an
anisotropic traction separation law for wood. Applications of this model show promising
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results regarding the estimation of load carrying behaviour (Schmidt and Kaliske, 2007,
2009). Danielsson and Gustafsson (2014) also used a cohesive zone model based on
plasticity theory for parameter studies of a glued laminated timber beam with a hole.

These approaches work well for a homogeneous fibre orientation and if the location of
the crack path is known in advance. The weak point of these methods is the influence
on the failure mechanism by specifying the crack direction. As wood is a naturally
grown material, usually complex stress states prevail, especially in the presence of knots
and other defects, meaning that such an approach is difficult to apply. In such cases
additional strategies are required, like the approach in Jenkel and Kaliske (2014), where
cohesive interface elements are aligned with predetermined fibre directions around knots.

In recent years, Lukacevic and Füssl (2014, 2016), Lukacevic et al. (2014a, 2017) have
established the basis for a crack initiation and propagation criterion in the framework
of the extended finite element method (XFEM), which has been implemented into a
numerical simulation tool for wooden boards. The implementation of such an approach
poses two questions: (i) which stress states cause the initiation of a crack? and (ii)
what is the corresponding crack direction at the wooden board scale? These questions
can only be answered by looking deeper into the microscopic hierarchical structure of
wood, and taking several structural features at different length scales into account.
Therefore, to obtain reliable failure surfaces and reliable crack directions at the wooden
board scale, a multiscale ‘damage’ approach is pursued. For such an approach, failure
mechanisms at different length scales of wood need to be analysed numerically. Doing
this exclusively by applying the concept of multi-surface plasticity/failure criteria in
combination with XFEM, at each length scale, leads to very high computational cost
and probably to an unnecessarily high complexity of the overall model.

For this reason, an additional numerical method is to be introduced, namely numerical
limit analysis. This method, a so-called ‘direct method’, focuses exclusively on the time
instant of failure, and delivers lower and upper bounds for the ultimate strength of
the considered material structure. Compared with conventional numerical approaches,
where the complete load history has to be considered and, in order to predict correct
failure mechanisms, proper regularisation techniques must be used, the limit analysis
approach is much more stable and efficient. Moreover, it leads to rigorous bounds on
the material strength and, thus, gives a reliable error measure for the prediction. Thus,
this method can serve as a useful tool for complementing more complex numerical step-
by-step approaches by, for example, identifying critical failure regions in a preliminary
simulation procedure, as also suggested in Füssl et al. (2017), Pisano et al. (2015).

Of course, these advantages result from the strict limitations on which these formula-
tions are based, including: (i) the associated plastic flow rule and (ii) the rigid and
perfectly plastic (ductile) material behaviour. For wood, these two idealisations are not
entirely correct, but the first can be considered as an appropriate assumption, which is
made due to a lack of information about the non-associativity, and the second does not
exclude that good strength predictions are also possible for strain-softening structures.
In Denton and Morley (2000) it is stated: “A structure does not need to exhibit perfect
plasticity for the theoretical plastic collapse load based on the peak yield stress of each
component to be approached closely. Rather, it is necessary that, at the point when
a collapse mechanism forms under a particular loading, all those regions within the
structure which are undergoing straining lie very close to the peak yield stress which
they can achieve." Wood definitely has the ductile potential to ‘activate’ the strength of
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many points along a potential crack surface before brittle failure occurs. Nevertheless,
one might argue that this approach, mainly evolved from and applied in fields dealing
with very homogeneous (manmade) materials like steel, is not suitable for application
to wood, where failure is often induced by the largest defect (such as knots at the
wooden board scale, or cell wall imperfections at an observation scale below). With
regard to this, it might be mentioned that the prediction quality of concepts addressing
structural failure of a highly heterogeneous material depends on knowledge about the
local strength reduction due to defects. Thus, tools which are capable of analysing this
influence for a huge number of defect variations within an acceptable timeframe, like
numerical limit analysis, might be very useful for fracture models at the macroscopic
scale. For this reason, the numerical limit analysis approach seems to be an appropri-
ate method to make a comprehensive multiscale ‘damage’ framework for wood worth
pursuing.

1.1.2 Numerical limit analysis

Originally, the objective of limit analysis was the determination of the load bearing ca-
pacity of structures exhibiting elastoplastic material response. At collapse, the capacity
of structures to store any additional external work as recoverable energy is lost. Thus,
for a prescribed macroscopic velocity field and a prescribed macroscopic traction field on
the boundary, defining the loading situation, limit analysis concentrates on the critical
energy dissipation rate at failure of structures or, in this paper, of unit cells for micro-
structures. The problem may be stated as follows according to Ciria et al. (2008): Find
the kinematically admissible velocity field, which minimises the external energy over the
set of all statically admissible stress fields, which maximise the internal dissipated en-
ergy. Unfortunately, the resulting saddle-point problem can be solved exactly only for
simple geometric and loading situations, and for simple material behaviour. For more
complex situations, the plastic flow compatibility in the static lower bound principle
and the plastic admissibility in the kinematic upper bound principle may be relaxed,
providing lower and upper bounds for the load bearing capacity (effective strength) of
structures.

The first complete formulations of limit analysis theorems were established in the 1950s
by Drucker et al. (1951, 1952), Hill (1951), though analytical exact solutions (coincident
lower and upper bounds) were limited to very simple problems. Thanks to the rapid
evolution of computer technology and developments in mathematical programming,
the finite element method (FEM) has proven to be a powerful tool for implementing
limit analysis approach, from simple two-dimensional problems to complicated three-
dimensional applications. Therefore, more attention has been given to numerical limit
analysis formulations within past decades.

Early implementations of limit analysis using the finite element method in conjunction
with numerical optimisation were performed by Lysmer (1970) for the lower bound
problem, and by Maier et al. (1972) for the upper bound problem. In these works,
linear three-noded triangular elements were used for discretisation and the resulting op-
timisation problems could be solved by linear programming, provided that the adopted
failure criteria were linearised.

Many subsequent works can be found focusing on nonlinear optimisation and higher-
order triangular elements for the discretisation. Notable contributions with respect
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to the use of nonlinear programming have been given by Krabbenhøft and Damkilde
(2000), Lyamin and Sloan (2000, 2002a,b), enabling nonlinear failure criteria to be im-
plemented in their native form. However, local smoothing procedures for yield surfaces
with singularities, like the Tresca or Mohr-Coulomb critera, are necessary with this
approach.

In general, the efficiency of a numerical limit analysis method depends significantly on
the algorithms used for solving the associated optimisation problem. In later studies by
Makrodimopoulos and Martin (2006, 2007), Ciria et al. (2008), Portioli et al. (2014),
and in Füssl et al. (2008) for composite materials, second-order cone programming
(SOCP) has proven to be an excellent alternative method, with sufficient robustness
and efficiency to solve large-scale optimisation problems of limit analysis. This method
is also applicable to a wide variety of failure criteria, since many commonly-used yield
functions can be cast as second-order cones. Therefore, within this work, SOCP is
employed for the numerical limit analysis formulation.

1.1.3 Objective of the paper

The main objectives driven this work can be formulated as follows:

• The formulation of numerical limit analysis approaches so that they are applicable
to certain observation scales of wood. This requires the extension of conventional
FEM-based limit analysis formulations to incorporate orthotropic failure criteria
and periodic boundary conditions.

• The application of these formulations to selected microstructures at the annual
ring scale as well as the clear wood scale to demonstrate the applicability of the
numerical limit analysis method. Moreover, 2D strength data in terms of effective
failure surfaces are to be obtained, to show the potential and possible future
benefits of such an approach.

• Comparison of the numerically obtained effective failure surfaces at the clear wood
scale with experimental results from biaxial testing, to assess the accuracy and
capability of the proposed limit analysis concept with respect to the prediction of
wood strengths.

The paper is structured as follows. In the next two sections, classical lower bound
formulations (Section 2.1) and upper bound formulations (Section 2.2) are recapitulated
and the implementation of periodic boundary conditions, for unit cell considerations, as
well as orthotropic failure criteria, are presented. The application of these newly derived
formulations to wood unit cells at the annual ring scale, and the resulting failure modes
and effective failure surfaces, are presented in Section 3.1. Subsequently, in Section
3.2, effective failure surfaces at the clear wood scale are obtained and compared with
experimental results. Finally, a brief summary and concluding comments are given in
Section 4.



Publication 1 12

1.2 FEM formulation of limit analysis

The lower bound theorem is based on statically admissible stress fields, σ, satisfying the
equilibrium equations, the failure criterion and static boundary conditions, while the
upper bound theorem is based on kinematically admissible velocity fields, u̇, fulfilling
the compatibility equation, the associated plastic flow rule and kinematic boundary
conditions. Neither of them necessarily gives the exact load multiplier β∗ for structural
failure, but they provide a lower bound βLB and an upper bound βUB, fulfilling

βLB ≤ β∗ ≤ βUB. (1.1)

When the bracketing error, defined as the difference between βLB and βUB, is smaller
than the required accuracy of the prediction, a sufficient approximation of β∗ is ob-
tained, which represents a complete solution satisfying the equilibrium equation, the
compatibility equation, and the failure criterion with associated flow.

In this paper, both lower bound and upper bound formulations are developed in 2D
and applied to 2D unit cells representing microstructures of wood at different scales
of observation. Note that at each scale, the characteristic dimensions of the unit cells
in the 2D plane are much smaller than the dimension of the material in the out-of-
plane direction. Therefore, the plane strain condition is enforced in all of following
formulations.

1.2.1 Lower bound formulation

The lower bound theorem states that any load multiplier determined from a statically
admissible stress field which is in equilibrium with given external loads is not greater
than the exact collapse multiplier β∗. Therefore, for a given discretisation, the best lower
bound for the load multiplier, βLB, can be found through the following optimisation
problem:

βLB = max β
s.t. Lσσ + βh = 0 in V

Ltσ = βt on Γt
f(σ) ≤ 0 in V

(1.2)

where in the first constraint, enforcing equilibrium within the body V , Lσ denotes the
divergence operator and h the live body force vector. In the static boundary condi-
tions, Lt is the traction-stress operator depending on the outward normal vector n
of the loaded surface Γt and t represents the prescribed live traction forces. Plastic
admissibility, defined by the yield function f , is enforced by the third constraint.

For the discretisation of the stress field σ, triangular elements with three nodes are used,
in which the stress field is approximated with linear shape functions. Each element
has its own set of internal stress evaluation nodes, thus multiple nodes from adjacent
elements may share the same coordinates. At discontinuities between elements, the
continuity of normal and shear stress components is enforced. The discretised version
of the optimisation problem in Eq. (1.2), as well as its adaptations for periodic boundary
conditions and orthotropic failure criteria, are described step by step in the following.
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1.2.1.1 Equilibrium within elements

The discretised form of the internal equilibrium equation, first constraint in Eq. (1.2),
can be expressed for an element as follows:

LeσN
e
σq

e
σ + βhe = 0, ∀e ∈ {1, · · · , LE}, with (1.3)

Leσ =

(
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

)
∈ R2×3, and (1.4a)

he =

(
hex
hey

)
∈ R2, (1.4b)

denoting the divergence operator and the live body force vector for an element. In
this work, no dead or live body forces are taken into account, hence, he = 0. LE is
the total number of elements, Ne

σ ∈ R3×9 contains linear shape functions interpolating
between the nodal stresses qeσ ∈ R9, containing all three nodal stress vectors qe,iσ =
(qe,iσ,xx, q

e,i
σ,yy, q

e,i
σ,xy)ᵀ ∈ R3(∀i ∈ {1, 2, 3}) of an element.

1.2.1.2 Equilibrium between elements

Due to the approximation of the stress field within an element using linear shape func-
tions, continuity of the stress field between elements can be ensured by applying con-
straints to two node pairs of each discontinuity (between elements). Denoting an arbit-
rary discontinuity as dis with two pairs of adjacent stress nodes designated (1, 1′) and
(2, 2′), the constraints can be expressed as

(
Ldist 0 −Ldist 0

0 Ldist 0 −Ldist

)
qdis,1σ

qdis,2σ

qdis,1
′

σ

qdis,2
′

σ

 = 0, ∀dis ∈ {1, · · · , LD}, with (1.5)

Ldist =

(
cos θdis 0 sin θdis

0 sin θdis cos θdis

)
∈ R2×3 (1.6)

as the 2D rotation operator with θdis denoting the normal to dis and the x-axis of the
global coordinate system. qdis,iσ = (qdis,iσ,xx, q

dis,i
σ,yy , q

dis,i
σ,xy )ᵀ ∈ R3(∀i ∈ {1, 2, 1′, 2′}) are the

nodal stress vectors associated with the corresponding discontinuity, and LD is the total
number of discontinuities in the discretised body.

1.2.1.3 Periodic boundary conditions

Since we want to investigate unit cells of microstructures of wood, the conventional static
boundary conditions, appearing in the second constraint in Eq. (1.2), must be replaced
by periodic boundary conditions. Therefore, the relevant portion of the boundary ∂Ω
of each unit cell is divided into two parts, a positive part ∂Ω+ and a negative part
∂Ω− with corresponding nodes x+ ∈ ∂Ω+, x− ∈ ∂Ω−, associated outward normal
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vectors n+ = −n− and the relation ∂Ω+ ∪ ∂Ω− = ∂Ω. In the lower bound formulation,
periodicity of the stress field is then ensured by enforcing an anti-periodic traction field
through

t+ = −t−, (1.7)

where t+ are traction vectors associated with x+ and t− are traction vectors associated
with x−. It allows for a periodic succession of the unit cell, and leads to stress fields in
the unit cell representative of the whole material structure. Moreover, stress fluctuations
vanish by volume averaging of the stresses over the unit cell (abbreviated as UC in the
following equations) and a meaningful effective (macroscopic) stress state Σ can be
obtained as

Σ =
1

VUC

∫
VUC

σ(x)dV. (1.8)

The discretised form of the periodic traction constraint for one pair of corresponding
stress nodes reads(

Lpert −Lpert
)(qper,x

+

σ

qper,x
−

σ

)
= 0, ∀per ∈ {1, · · · , LP}, (1.9)

where LP is the number of node pairs for which the periodic boundary conditions are
defined, Lpert ∈ R2×3 is identical to the discontinuity operator Ldist , while qper,x

+

σ and
qper,x

−
σ are the nodal stress vectors for the corresponding node pairs.

It is then sufficient to apply the external loading through the traction at the surface
nodes x+. To define an arbitrary 2D effective loading state, the following two sets of
constraints, specifying the normal traction components in the x and y directions, are
necessary:

Tx+

n,x =
1

lx

LP∑ lperLB

2
lperᵀt,x qper,x

+

σ = βqt,x, ∀per ∈ {1, · · · , LP}

Tx+

n,y =
1

ly

LP∑ lperLB

2
lperᵀt,y qper,x

+

σ = βqt,y, ∀per ∈ {1, · · · , LP}

(1.10)

with (
qt,x
qt,y

)
= qt ∈ R2 and

(
lperᵀt,x

lperᵀt,y

)
= Lpert , (1.11)

where lpert,x ∈ R3 and lpert,y ∈ R3 are the vectors which map the stress vector qper,x
+

σ into

the surface traction components qper,x
+

t,x , qper,x
+

t,y of the node x+ in x and y directions.
lperLB is the element boundary length to which the corresponding node x+ belongs, lx and
ly are the total lengths of the boundaries in the x and y directions, and qt,x and qt,y
are prescribed loading components associated with the macroscopic tractions Tx+

n,x and
Tx+

n,y, respectively.

1.2.1.4 Failure criteria

At the wood cell level, both isotropic and anisotropic plastic behaviour of material
phases is encountered. Therefore, two failure criteria have been employed, the ortho-
tropic Tsai-Wu failure criterion (Tsai, 1965, Tsai and Wu, 1971), for pane strain reading

F1σx′x′ + F2σy′y′ + P11σ
2
x′x′ + P22σ

2
y′y′ + P66τ

2
x′y′ + 2P12σx′x′σy′y′ ≤ 1, (1.12)
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where Fi(∀i ∈ 1, 2) and Pij(∀i, j ∈ 1, 2, 3) denote strength parameters of the material,
and the von Mises isotropic failure criterion, for plane strain reading

(σxx − σyy)2 + 4τ2
xy ≤ 4k2, (1.13)

where k represents the yield strength of the material in pure shear. Note that for or-
thotropic materials, stress variables σ′ = (σx′x′ , σy′y′ , τx′y′)

ᵀ ∈ R3 in the yield function,
Eq. (1.12), are defined with respect to the local x′-y′ coordinate system in order to take
the local principal material orientation into consideration. For isotropic material, no
local principal material orientation is required, and the yield function, Eq. (1.13), can
be expressed in the global coordinates x and y. Since both yield functions, Eqs. (1.12)
and Eq. (1.13), are quadratic, they can be transformed into the general form,

Fᵀσ′ + σ′ᵀPσ′ ≤ 1, (1.14)

where P ∈ R3×3 and F ∈ R3 contain material strength parameters. These have the
form

F =

F1

F2

F6

 , P =

P11 P12 0
P21 P22 0
0 0 P66

 (1.15)

for the orthotropic Tsai-Wu failure criterion Eq. (1.12), and

F =

0
0
0

 , P =
1

4k2

 1 −1 0
−1 1 0
0 0 4

 (1.16)

for the von Mises failure criterion Eq. (1.13). Note that the latter failure criterion is
isotropic, and therefore the local stress vector is consistent with the global one σ′ = σ.
When the matrix P is symmetric and positive definite or semidefinite symmetric, it can
be decomposed as P = DᵀD with D ∈ R3×3. Then the general form of the failure
criterion, Eq. (1.14), can be reformulated into a linear constraint and a second-order
cone (SOC) constraint, as follows:

s = a + Bσ′

s ∈ C
(1.17)

with

a =
(
1 0 0 0 0

)ᵀ ∈ R5 and B =

−Fᵀ/2
D

Fᵀ/2

 ∈ R5×3. (1.18)

The definition of the cone set C and a brief introduction to SOCP is given in Appendix
A. Based on Eq. (1.17) and Eq. (1.18), the third set of constraints in Eq. (1.2) can now
be written in discretised form as

se,i = ae + Beq′e,iσ

se,i ∈ Ce,i

∀e ∈ {1, · · · , LE}

∀i ∈ {1, 2, 3}
(1.19)

with

q′e,iσ = Re
σq

e,i
σ , where Re

σ =

 (cos θe)2 (sin θe)2 −2 cos θe sin θe

(sin θe)2 (cos θe)2 2 cos θe sin θe

cos θe sin θe − cos θe sin θe (cos θe)2 − (sin θe)2

 ∈ R3×3.

(1.20)
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θe specifies the rotation of the local coordinate system with respect to the global one
and q′e,iσ ∈ R3 is the nodal stress vector with respect to the local coordinate system,
obtained through the tensorial rotation operator Re

σ.

1.2.1.5 Discretised lower bound optimisation problem

Assembling the coefficients of the constraints for the whole discretised body of Eq. (1.3)
in matrix Aeq

LB ∈ R2LE×9LE , of Eq. (1.5) in matrix Adis
LB ∈ R4LD×9LE , of Eq. (1.9) in

matrix Aper
LB ∈ R2LP×9LE , of Eq. (1.10) in matrix Bper

LB ∈ R2×9LE , and the SOC con-
straints according to Eq. (1.19), leads to the final form of the lower bound optimisation
problem:

βLB = max β
s.t. Aeq

LBqσ = 0
Adis
LBqσ = 0

Aper
LBqσ = 0

Bper
LBqσ = βqt

q′σ = Rσqσ
ssoc = asoc + Bsocq′σ
se,i ∈ Ce,i

(1.21)

with ∀e ∈ {1, · · · , LE}, ∀i ∈ {1, 2, 3}, Rσ ∈ R9LE×9LE , ssoc ∈ R15LE , asoc ∈ R15LE ,
and Bsoc ∈ R15LE×9LE . Furthermore, qσ ∈ R9LE and q′σ ∈ R9LE assemble all the
nodal stress vectors throughout the body with respect to the global and local coordinate
systems, respectively.

1.2.2 Upper bound formulation

The upper bound theorem states that any external load multiplier determined when
the internal work rate Wint under a kinematically admissible velocity field u̇ equals
the external work rate Wext, is not less than the exact load multiplier β∗. The rate of
internal work/dissipation for a body Ω reads

Wint(σ, u̇) =

∫
Ω
σᵀε̇(u̇)dV, (1.22)

where ε̇(u̇) ∈ R3 denotes the 2D strain rate field. The rate of external work provided
by body forces h and surface traction t is given by

Wext(u̇) =

∫
Ω

hᵀu̇dV +

∫
Γt

tᵀu̇dA, (1.23)

but no body force is considered within this work, thus, h = 0. Therefore, for the given
discretisation, the best upper bound load multiplier, βUB, can be found through the
following optimisation problem:

βUB = min Wint

s.t. ε̇ = Lu̇u̇ in V
ε̇ = λ̇ ∂f∂σ in V
u̇ = u̇0 on Γu
Wext(u̇) = 1 in V

(1.24)
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where Lu̇ ∈ R3×2 is the linear compatibility operator, linking the velocity field with
the strain rate field. The second constraint enforces associated plastic flow throughout
the whole body, with λ̇ as a nonnegative plastic multiplier specifying the magnitude of
plastic strain rate, and f denotes the yield function. The kinematic boundary condi-
tions prescribing the velocities u̇0 are represented by the third constraint, and the last
constraint simply normalises the external work rate.

The dual of the optimisation problem in Eq. (1.24) can be derived as, according to
Makrodimopoulos and Martin (2007),

βUB = max Wext

s.t.
∫

Ω(Lu̇u̇)ᵀσdV =
∫

Ω u̇ᵀβpdV in V
f(σ) ≤ 0 in V

(1.25)

in which p denotes the equivalent nodal loading arising from the (live) body forces
h and the surface tractions t. For the discretisation of the upper bound optimisa-
tion problem, 6-node triangular linear strain elements are used, which are capable of
providing very accurate results, as shown in Makrodimopoulos and Martin (2007, 2008).
Quadratic shape functions for the interpolation of the unknown velocity field are used
in Makrodimopoulos and Martin (2005a). According to Makrodimopoulos and Martin
(2005b), in the case of unstructured meshes, linear strain elements with no inter-element
velocity discontinuities show better performance than constant strain elements with ve-
locity discontinuities. If the vertices of the linear-strain elements are taken as flow-rule
enforcement points, the solutions obtained are strict upper bounds on the exact collapse
load, since the plastic flow rule is enforced to hold throughout the whole element. The
stress field in the dual problem has a linear variation of stress within each element.
The discretisation of the optimisation problems in Eqs. (1.24) and (1.25), and their
adaptations for periodic boundary conditions and orthotropic plasticity, are given in
the following sections.

1.2.2.1 Compatibility between velocity and strain-rate field

One basic assumption of limit analysis is that all changes in geometry of the body
occurring during collapse are negligible, thus, the compatibility between the velocity
field and the strain rate field can be expressed by the following linear relation:

qeε̇ = Ae
UBqeu̇ ∀e ∈ {1, · · · , UE}, (1.26)

where the vector qeu̇ ∈ R12 contains all six nodal velocity vectors qe,iu̇ = (qe,iu̇,x, q
e,i
u̇,y) ∈ R2

(∀i ∈ {1, · · · , 6}) of the element, the vector qeε̇ ∈ R9 contains three nodal strain vectors
qe,iε̇ ∈ R3(∀i ∈ {1, 2, 3}) at the vertex nodes of the element, and

Ae
UB = Neᵀ

σ Leu̇
ᵀNe

u̇ ∈ R9×12 ∀e ∈ {1, · · · , UE} (1.27)

with

Leu̇ =

(
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

)
∈ R2×3, (1.28)

where Ne
σ ∈ R3×9 contains the linear shape functions for the stress field, Ne

u̇ ∈ R2×12

is the quadratic interpolation matrix for the velocity field, and UE is the total number
of elements in the upper bound formulation.
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1.2.2.2 Periodic boundary conditions

In contrast to the lower bound formulation, where an anti-periodic traction field is
enforced over the boundary of the unit cell, in the upper bound formulation a peri-
odic velocity field must be ensured. Therefore, the kinematic boundary condition in
Eq. (1.24) should be replaced by the following relation:

u̇+ = u̇− + Ė(x+ − x−), (1.29)

with u̇+ as the velocity vector at the surface node x+, associated with the surface
part ∂Ω+, and u̇− as the velocity vector at the surface node x−, associated with the
opposite surface part ∂Ω−. Ė denotes the effective/macrosopic strain rate tensor of the
considered unit cell, and is linked to the microscopic strain rate field as follows:

Ė =
1

VUC

∫
VUC

ε̇(x)dV. (1.30)

Considering the periodic boundary conditions, Eqs. (1.7) and (1.29), the rate of external
energy dissipation, Eq. (1.23), can be written as,

Wext =

∫
∂Ω+

u̇+ᵀt+dS +

∫
∂Ω−

u̇−ᵀt−dS

=

∫
∂Ω+

u̇+ᵀt+ + (u̇+ − Ėl)ᵀ(−t+)dS =

∫
∂Ω+

(Ėl)ᵀt+dS

(1.31)

where l defines the distance between corresponding node pairs (x+ − x−).

After discretization, the periodic constraint in Eq. (1.29) reads

Lperu̇ qperu̇ = Ėperlper ∀per ∈ {1, · · · , UP}, (1.32)

where UP is the number of node pairs to which periodic boundary conditions are ap-
plied, Ėper ∈ R2×2 is again the effective strain rate tensor of the unit cell, lper ∈ R2 is
the separation of the node pair per, while qperu̇ = [qper,x

+

u̇ ,qper,x
−

u̇ ]ᵀ ∈ R4 contains
the nodal velocity vectors to which periodic boundary conditions are applied, and
Lperu̇ = [I,−I] ∈ R2×4 is the operator linking velocity pairs, with I ∈ R2×2 as the
identity matrix.

In the dual form of the optimisation problem, see Eq. (1.25), the periodic boundary
constraints appear in the following expression:

UE∑
e=1

Ae

3
(Leu̇N

e
u̇q

e
u̇)ᵀNe

σq
e
σ =

UP∑
per=1

(Lperu̇ qperu̇ )ᵀqperp , (1.33)

where Ae is the area of the triangle element e, and qperp = [qper,x
+

p ,qper,x
−

p ]ᵀ ∈ R4 is the
equivalent nodal loading vector for the node pair x+ and x−.

1.2.2.3 Plastic flow rule

It has been discussed by Makrodimopoulos (2010) that, when the yield function can be
cast as a SOC, the set of admissible plastic strains (satisfying the associated flow rule
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constraint) has the shape of the dual cone. As a result, the plastic flow constraint in
Eq. (1.24) can be reformulated into the form of a SOC as,

e ∈ C ∗, (1.34)

where C ∗ is the dual cone of C , which is defined in Eq. (1.17).

In order to obtain a strict upper bound, both the primal and dual formulations of the
upper bound problem are required to be strictly feasible, and, therefore, the constraint
of the duality gap,

eᵀs = 0 (1.35)

is required to be satisfied throughout the whole body, according to Andersen et al.
(2003).

Considering Eq. (1.17), the duality gap constraint in Eq. (1.35) can be expressed as

eᵀs = eᵀa + eᵀBσ′ = 0, (1.36)

in which the vector a corresponds to the yield stress and the vector e is related to
the rate of the plastic multiplier λ̇. Therefore, the internal energy dissipation can be
expressed as

Wint =

∫
Ω

eᵀadΩ =

∫
Ω
ε̇pᵀσdΩ, (1.37)

leading together with Eq. (1.36) to

ε̇p = −Bᵀe, (1.38)

as the transformation of the strain rate ε̇p into the form of a SOC. Since the yield
function in Eq. (1.17) is defined with respect to the local material coordinate system,
the plastic strain rate in Eq. (1.38) is also locally defined.

The discretised formulation of the second constraint for the plastic flow rule in Eq. (1.24)
can now be expressed as

q′e,iε̇ = −Beᵀee,i

ee,i ∈ C ∗e,i

e ∈ {1, · · · , UE} and i = {1, 2, 3} (1.39)

with
q′e,iε̇ = Re

ε̇q
e,i
ε̇ e ∈ {1, · · · , UE} and i ∈ {1, 2, 3} (1.40)

as the nodal strain rate tensor with respect to the local coordinate system. The nodal
strain transformation matrix Re

ε̇ is the same as the nodal stress transformation matrix
Re
σ in Eq. (1.20).

1.2.2.4 Discretised upper bound optimisation problem

Assembling the coefficients of the compatibility constraints of Eq. (1.26) for the whole
discretised body in matrix Acom

UB ∈ R9UE×2UN , with UN denoting the total number
of velocity evaluation nodes in the upper bound formulation, the periodic boundary
conditions of Eq. (1.32) in matrices Aper

UB ∈ RUP×2UN and ĖUBlUB ∈ RUP , and the
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plastic flow rule constraints of Eq. (1.39) by means of vector Bsocᵀ ∈ R3UE , the primal
version of the upper bound optimisation problem, Eq. (1.24), reads in discretised form:

βUB = min Wint

s.t. Acom
UB qu̇ = qε̇

Aper
UBqu̇ = ĖUBlUB

q′ε̇ = Rε̇qε̇
q′ε̇ = −Bsocᵀesoc

ee,i ∈ C ∗e,i

(1.41)

where e ∈ {1, · · · , UE} and i ∈ {1, 2, 3}. The vectors qu̇ ∈ R2UE , qε̇ ∈ R3UE , and
q′ε̇ ∈ R3UE denote the assembled vectors of the nodal velocities, the nodal strain rates
related to the global coordinate system and the nodal strain rates related to the local
coordinate system, respectively.

Introducing the definition
x̂e =

{
Ae

3 xe
}
e=1,··· ,UE (1.42)

where xe represents an arbitrary position vector of the element e, the dual version of
the optimisation problem Eq. (1.41) can be derived from Eq. (1.25), reading

βUB = max Wext

s.t. Acom
UB

ᵀq̂σ = Aper
UB

ᵀ
qp

ŝ = â + Bsocq̂′σ
q̂′σ = Rσq̂σ
ŝe,i ∈ Ce,i

(1.43)

where e ∈ {1, · · · , UE} and i ∈ {1, · · · , 6}.
The objective functions in the primal upper bound formulation Eq. (1.41) and the dual
upper bound formulation Eq. (1.43), respectively, can be defined as follows:

Wint = (âsoc)ᵀesoc and (1.44a)

Wext = (ĖUBlUB)ᵀqp (1.44b)

representing the rates of internal dissipation and external work, respectively.

1.3 Application to wood

An increasingly used and promising mechanistic approach is the so-called multiscale
description of material behavior, based on the framework of micromechanics, where a
material is modelled at different scales of observation (Ghosh et al., 2001, Hautefeuille
et al., 2012, Michel et al., 1999, Saavedra Flores et al., 2016b). In recent years, such a
model has been developed for wood in Bader et al. (2011), Hofstetter et al. (2005, 2007,
2008), Lukacevic and Füssl (2016), Lukacevic et al. (2014b, 2017) and is currently in
elaboration at the IMWS, Vienna University of Technology. Until now, this approach
has mainly been developed for the prediction of effective elastic material properties. The
extension to strength predictions represents the next big challenge, and the limit analysis
formulations presented above are expected to play a major role in this development.
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Figure 1.1: The considered hierarchical structure of wood: The clear wood scale (left)
and the annual ring scale (right), where earlywood and latewood unit cells are extracted
from the honeycomb-like structure.

In this paper, the limit analysis formulations have been applied to selected observation
scales as illustrated in Figure 1.1. It shows a flawless (without knots and other defects)
wooden log at the macroscopic scale with the adopted cylindrical coordinate system for
the longitudinal (L), radial (R) and tangential (T ) directions, taking into account the
orthotropy of wood at this scale. The layered structure of earlywood and latewood,
so-called annual rings, represents the next scale of observation. On a closer look at
these layers, a repetitive honeycomb-like structure is revealed, and the morphological
characteristics of which have been extensively described by, inter alia, in Fengel and
Wegener (1983), Gloimüller et al. (2012), Kollmann (1951). A simplified idealisation
of this significantly repetitive structure is illustrated in Figure 1.1, denoted as annual
ring scale. This structure can be suitably represented by two unit cells, shown on the
right side of Figure 1.1. Failure behaviours of these cells strongly influence the failure
modes at all higher observation scales. For this reason, the main focus of this paper
will be to analyse failure modes of these cell structures by means of numerical limit
analysis. This is explained in more detail in the following subsections. According to
the multiscale approach used in Lukacevic et al. (2014a), Milani et al. (2006a,b), failure
stress states and corresponding failure modes at the annual ring scale are obtained,
which serve as input to the next higher scale of observation, the clear wood scale.
Due to the fact that the clear wood structure also exhibits repetitiveness, it is also
approximated by unit cells with periodic boundary conditions. Then, the resulting
effective failure surfaces are compared with existing experimental data from biaxial-
testing published in Eberhardsteiner (1995), as verification for the presented numerical
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limit analysis method. In this reference, the biaxial tests were performed on clear wood
specimens made of Norway spruce clear wood, thus in this work all unit cell geometries
and strength parameters are determined with respect to this wood species.

All computations presented in the following were performed on a Linux desktop machine,
with an AMD Phenom(tm) II X6 1090T CPU (6 cores) and 8GB of RAM. While Abaqus
was used for the mesh generation and the illustration of results, all other pre- and post-
processing tasks as well as the assembly of SOCP optimisation problems were carried out
by self-written codes in Fortran. Special focus was laid on sparse matrix manipulations
to ensure high efficiency with respect to the variable count and the computational effort.
The SOCP optimisation problems themselves were solved by the commercial solver
MOSEK ApS (2017), which is based on the conic interior-point algorithm developed by
Andersen et al. (2003).

1.3.1 Application of limit analysis at the annual ring scale

In the following, the presented limit analysis formulations are applied to the two spruce
unit cells illustrated in Figure 1.1, representing two different types of wood cell at the
annual ring scale. The overall mechanical behaviour of each unit cell is dominated by
two different material layers, the middle lamella and the cell wall layer. The middle
lamella is nearly free of cellulose, and thus exhibits isotropic behaviour. In contrast,
the cell wall layer, dominated by S2 cell wall material, mainly consists of cellulose
microfibrils aligning in a certain dominant direction, and thus exhibits significantly
anisotropic behaviour as discussed by Gindl et al. (2004), Gloimüller et al. (2012),
Kollmann (1951), Salmen and Burgert (2009). The anisotropic material phase of wood
has great similarity with fibre-reinforced composites, and thus it can be appropriately
described by an orthotropic Tsai-Wu failure criterion.

The exact geometries of earlywood and latewood cells are adopted from Lukacevic et al.
(2014b), where they were chosen according to microscopy images and values found in
the literature for spruce. The earlywood unit cell is discretised with 25 196 triangular
elements and the latewood unit cell with 25 022. This discretisation and the local
material directions (r and t) in the cell wall layer are shown schematically for the
earlywood unit cell in Figure 1.2. To all elements in a certain cell wall layer section, as
shown in Figure 1.2, the same local coordinate system is assigned. In these sections the
global stresses definition (σRR, σTT , τRT )ᵀ is replaced by the local ones (σrr, σtt, τrt)

ᵀ.

Strength parameters assigned to these two material layers are determined on the basis
of values found in Bader et al. (2010), Lukacevic et al. (2014b), Schwiedrzik et al.
(2016). For the orthotropic Tsai-Wu failure criterion (Eq. (1.15)), describing the plastic
behaviour of the cell wall, the adopted parameters are:

F1 = 0 MPa−1 F2 = 0 MPa−1

P11 = 4.444× 10−5 MPa−2 P22 = 1.778× 10−4 MPa−2

P66 = 5.408× 10−4 MPa−2 P12 = 0 MPa−2

(1.45)

A value of k = 14.3 MPa is used for the von Mises failure criterion (as shown in
Eq. (1.16)) assigned to the middle lamella. The corresponding failure surfaces are
plotted in Figure 1.3, with respect to the local coordinates (r and t).
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Figure 1.2: Local material directions in the cell wall layer of an earlywood cell and the
corresponding discretisation of such a cell.
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Figure 1.3: Constitutive failure surfaces assigned to (a) the cell wall layers and (b) the
middle lamella.

The lower bound formulation, Eq. (1.21), and the dual upper bound formulation,
Eq. (1.43), are applied to these wood unit cell models, delivering effective strengths
and failure mechanisms under various loading situations. A lower bound result and
an upper bound result for the earlywood unit cell under tangential tensile loading are
illustrated in Figure 1.4. The required computing time for each of these two simulations
was below 2 min. In Figure 1.4, dark and light grey areas indicate the cell wall and the
middle lamella, respectively, and the red coloured areas indicate plastic failure. Since in
the lower bound formulation only the stress field is considered, no deformation is avail-
able from the primal optimisation problem and thus none is displayed in Figure 1.4a.
The deformed shape in Figure 1.4b represents the nodal velocity field obtained from
the upper bound calculation, whereas the black outline shows the undeformed shape.

The corresponding effective stress states, in this case effective tensile stress states in the
T -direction, are ΣLB = [0.0, 2.43, 0.0]ᵀ from the lower bound and ΣUB = [0.0, 2.47, 0.0]ᵀ
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Figure 1.4: Illustrative (a) lower bound failure region with the threshold of the objective
function value [−3 × 10−2 : 0] and (b) upper bound failure region with the threshold
[−2× 10−4 : 0] (red-coloured areas) for the earlywood unit cell under prescribed tensile
loading in the T direction.

from the upper bound analysis. The resulting normalised bracketing error, defined as
(ΣUB

T − ΣLB
T )/ΣUB

T + ΣLB
T ) = 0.81%, is very small. Also taking into account the

good agreement between the plastic failure zones of the lower and upper bound results
(see Figure 1.4), the first numerical example using this approach can be regarded as
promising.

1.3.1.1 Determination of effective failure surfaces

By applying various loading situations (surface tractions in the lower bound formula-
tion and material flow through the boundaries in the upper bound formulation), lower
and upper bounds for different effective stress states Σ and the corresponding failure
mechanisms are obtained. Each individual effective stress state represents one point on
the effective failure surface of the wood unit cell under consideration.

For the earlywood unit cell, 116 individual lower bound simulations with a total com-
puting time of 171.2 min and 54 upper bound simulations with 71.2 min computing time
were carried out. The resulting lower and upper bounds of the effective failure surface
is shown in Figure 1.5a. The corresponding lower and upper bound for the latewood
unit cell is displayed in Figure 1.5b, obtained from 116 and 69 lower and upper bound
simulations with computing times of 237.4 min and 144.3 min, respectively.

For each unit cell, the lower and upper bound results lead to an almost identical shape
and orientation of the effective failure surface. Moreover, for most regions of the failure
surface the bracketing error is tolerably small. The general difference in the magnitude
of the obtained effective strengths in the RT -plane between the earlywood and latewood



Publication 1 25

−8 −6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

ΣRR [MPa]

Σ
T
T

[M
P

a
]

lower bound
upper bound

(a)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

ΣRR [MPa]

Σ
T
T

[M
P

a]

lower bound
upper bound

(b)

Figure 1.5: Lower and upper bound effective failure surfaces of (a) the earlywood unit
cell and (b) the latewood unit cell.

unit cells seems to be realistic, though unfortunately, no experimental data exists at
this scale of observation which could be used for validation.
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1.3.1.2 Failure mechanisms of wood cells

Next, the failure mechanisms associated with various effective stress states are analysed,
and transitions between failure modes are discussed. For this evaluation it is sufficient
to focus on upper bound results, since the lower and upper bound analysis provide
similar failure modes under similar loading situations, as is shown by the illustrative
example in Figure 1.4.

1.3.1.3 Earlywood

In Figure 1.6, the effective upper bound failure surface of the earlywood unit cell is
plotted once again, including a black velocity vector at each stress point, pointing in
the direction of the corresponding effective plastic strain rate. It is interesting to note
that the associated plastic flow behaviour (normality) of the underlying cell wall layers
remains well preserved at this next higher scale of observation. Considering the shape
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Figure 1.6: The effective upper bound failure surface for the earlywood unit cell, in-
cluding velocity vectors, pointing in the direction of the related effective plastic strain
rate, and dashed curves dividing the failure surface into 6 parts.

of the effective failure surface and the directions of the effective plastic flow vectors,
the effective failure surface can be divided into six parts with smoothly pronounced
curvature, connected by more sharply curved transition regions. These six surface parts
are indicated in Figure 1.6 by dashed curves with circled numbers, and based thereon
are selected stress points (red circles), for which the corresponding failure modes are
shown in Figure 1.7. To each surface part, a certain collapse mechanism with a distinct
failure mode can be assigned. Noting that there are qualitatively similar mechanisms in
opposite tension and compression regions, the number of strongly differing mechanisms
reduces to three. The identification of mechanisms and modes will be discussed in the
following (the referenced mechanisms can be found in Figure 1.7):

1. Failure mechanisms associated with surface parts 1○ and 4○ are mainly affected
by loading in the T -direction, as can be clearly seen in mechanisms (a) and (d),
respectively. Failure is characterised by two plastic hinges in each of the four
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(a) V̇R : V̇L = 1 : −7 (b) V̇R : V̇L = 1 : −2 (c) V̇R : V̇L = 1 : 3
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(d) V̇R : V̇L = −1 : 7 (e) V̇R : V̇L = −1 : 2 (f) V̇R : V̇L = −1 : −3

Figure 1.7: Selected failure mechanisms of the earlywood unit cell obtained from the
upper bound analysis. Failure modes corresponding to effective stress states marked
with red circles in Figure 1.6. Anti-periodic velocity conditions are applied and the
velocity field is not constant over each boundary surface indicated as dash line. The
loading condition is prescribed as the ratio between V̇R and V̇L, denoting the area-
averaged velocities in R and T direction over the corresponding boundary surfaces,
which are equivalent to the macroscopic strain rate ĖRR and ĖLL (in Eq. (1.30)),
respectively.

wooden cell webs running in the R-direction. Plastification takes place in the
middle lamella as well as the cell wall layers. In addition, the middle lamella region
in between these two hinges is also plastified, allowing the occurring kinematics.

2. In contrast, failure mechanisms (b) and (e) associated with surface parts 2○ and



Publication 1 28

5○ are mainly characterised by the loading in the R-direction. Strongly delineated
failure regions are initiated in the cell wall layer, and then, penetrating through
the middle lamella layer in the T -direction. The majority of energy is dissipated in
the stronger cell wall material, leading to the significantly higher effective strength
in the R-direction.

3. The biaxial character of the loading can be identified in failure mechanisms (c) and
(f), associated with surface parts 3○ and 6○. The main plastification occurs in the
middle lamella, including small shear failure surfaces running in the R-direction,
accompanied by locally demarcated failure through the cell wall layers.

1.3.1.4 Latewood

In Figure 1.8 the effective upper bound failure surface of the latewood unit cell is plotted
once again, also including the directions of the effective plastic strain rates. Similar
to the results from the earlywood unit cell, the effective plastic flow vectors for the
latewood unit cell reflects the underlying associated flow rule used in the limit analysis.
Again, the failure surface can be divided into six parts with different characteristics.
The corresponding three independent failure mechanisms are described in the following
(the referenced failure mechanisms can be found in Figure 1.9):

1. Failure mechanisms (a) and (d), associated with surface parts 1○ and 4○ are
characterised by thin shear bands running diagonally through the middle lamella
together with plastic hinges in the cell wall layer. Macroscopic cracks can be
expected to run diagonally through the latewood cell structure, as indicated by
the shear bands.

2. The similar looking mechanisms (b) and (e) are linked to surface parts 2○ and
5○. The difference, compared with the other failure mechanisms, becomes obvious
when taking directions of effective/macroscopic plastic strain rates into account,
which align almost horizontally. Thus, failure in the R-direction through the
latewood can be expected, including distinct initiation of failure regions in the
cell wall layer.

3. The third clearly different mode, seen in failure mechanisms (c) and (f), is asso-
ciated with surface parts 3○ and 6○. Plastification is dominated by shear failure
regions, which extend in a vertical direction through the entire cell wall.

1.3.2 Application of limit analysis at clear wood scale

The next higher observation scale, the clear wood scale (see Figure 1.1), also exhibits a
repetitive structure, consisting of homogeneous earlywood and latewood layers. Thus,
this structure can also be represented by a unit cell with appropriate periodic boundary
conditions. At this observation scale, we focus attention on the LR-plane, as illustrated
in Figure 1.1, because experimental data from biaxial tests are available in this plane
by Eberhardsteiner (1995). The unit cell at this scale is defined as a layered laminated
structure with earlywood and latewood layers aligning in the same orientation, as shown
in Figure 1.10. Following the above-mentioned experiments, five different principal
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Figure 1.8: The effective upper bound failure surface for the latewood unit cell, including
black lines at every stress point, pointing into the direction of the related effective plastic
strain rate.

material orientations with respect to principal effective stresses Σ1 and Σ2, defined by
the angle α, are investigated numerically.

It has been discussed by Eberhardsteiner (1995), and Mackenzie-Helnwein et al. (2003)
that the anisotropic strength of clear wood can be approximated by the orthotropic
Tsai-Wu failure criterion. Therefore, this criterion is assigned to both the earlywood
and latewood layers. Following the idea of upscaling, strength parameters should be
determined by results from the previous scale of observation, the annual ring scale.

In this paper, the LR-plane is considered at the clear wood scale, while the RT -plane
is considered at the annual ring scale. As a result, at the current scale, only effective
strengths in the R direction can be used from the limit analysis simulations at the
previous scale (Section 1.3.1). For earlywood and latewood strengths in the L-direction,
experimentally obtained values from Gindl and Teischinger (2002), Sinn et al. (2001)
are employed.

Accordingly, the following Tsai-Wu strength parameters are assigned to the earlywood
layer:

F1 = −0.0116 MPa−1 F2 = 0 MPa−1

P11 = 5.0× 10−4 MPa−2 P22 = 3.38× 10−2 MPa−2

P12 = 0 MPa−2

(1.46)



Publication 1 30

(a) V̇R : V̇L = 1 : −1.6 (b) V̇R : V̇L = 1 : 0 (c) V̇R : V̇L = −1 : 10
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(d) V̇R : V̇L = −1 : 1.6 (e) V̇R : V̇L = −1 : 0 (f) V̇R : V̇L = 1 : −10

Figure 1.9: Selected failure mechanisms of the latewood unit cell obtained from upper
bound simulations. Failure modes belonging to the effective stress states marked with
red circles in Figure 1.8. Anti-periodic velocity conditions are applied and the velocity
field is not constant over each boundary surface indicated as dash line. The loading
condition is prescribed as the ratio between V̇R and V̇L, denoting the area-averaged
velocities in R and T direction over the corresponding boundary surfaces, which are
equivalent to the macroscopic strain rate ĖRR and ĖLL (in Eq. (1.30)), respectively.

and to the latewood layer:

F1 = −0.0093 MPa−1 F2 = 0 MPa−1

P11 = 1.0× 10−4 MPa−2 P22 = 4.70× 10−3 MPa−2

P12 = 0 MPa−2

(1.47)
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Figure 1.10: Representative unit cell for the clear wood scale, consisting of homogeneous
earlywood and latewood layers. Five different annual ring orientations, defined by the
angle α have been investigated.

With respect to the shear strength in the LR-plane, no experimental data, separately
for the earlywood and latewood, could be found. Thus, two different approaches were
used to estimate suitable values. First, the overall shear strength of clear wood, given in
Gindl and Teischinger (2002), is simply assigned to both layers. Second, the clear wood
shear strength is linearly scaled based on the considered densities of the earlywood and
latewood materials. The resulting Tsai-Wu parameters are listed below:

First approach:
P66 = 1.35× 10−2 MPa−2 for both earlywood and latewood layers

Second approach:
P66 = 2.44× 10−2 MPa−2 for earlywood layer
P66 = 3.70× 10−3 MPa−2 for latewood layer

(1.48)

1.3.2.1 Determination of effective failure surfaces

The lower bound formulation, Eq. (1.21), and the dual upper bound formulation,
Eq. (1.43), are now applied to the clear wood unit cell models defined in Figure 1.10,
delivering effective failure stresses and failure mechanisms under various loading situ-
ations. Failure modes obtained from upper bound analysis for three different loading
conditions, are shown in Figure 1.11 to illustrate typical patterns of the failure regions
and the plastic flow mechanisms. From the corresponding deformation fields, the peri-
odic velocity boundary conditions can be identified very well. However, at this scale
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of observation, failure modes are not the main focus and they will not be discussed in
detail.

LR

(a) (b) (c)

Figure 1.11: Illustrative failure mechanisms of the clear wood unit cell obtained from
upper bound simulations for 3 different effective loading ratios Ė1/Ė2: (a) 1.0, (b) -0.8,
and (c) -1.0.

Subsequently, similar to the previous scale, numerous loading situations are applied to
the clear wood unit cell. The number of simulations and the corresponding (very low)
computing times are given in Table 1.1.

unit cell 1 2 3 4 5
number of elements 450 806 622 582 490

number of load situations/simulations 860 660 852 860 860
total computing time [min] 57.7 54.1 74.7 73.1 67.6

Table 1.1: Simulation program at the clear wood scale.

Finally, the effective failure surfaces obtained for the five different annual ring orienta-
tions are compared with the experimentally obtained failure stress states for clear wood
that were presented in Eberhardsteiner (1995). The result is plotted in Figure 1.12.
The numerical limit analysis results agree very well with the experimental results, qual-
itatively as well as quantitatively. The numerical results tend to overestimate the ex-
perimental ones, which is in accordance with the fact that limit analysis is based on an
ideal perfectly plastic response of the material, rather than a brittle one. Nevertheless,
the results provide meaningful predictions of the clear wood strength, also showing that
wood must have some ductile potential, even under tension-dominated loading.

1.4 Summary and conclusions

This work shows the first-time application of numerical limit analysis formulations to
microstructures of wood. With respect to the three objectives specified in Section 1,
the main findings can be summarised as follows:

• The orthotropic Tsai-Wu failure criterion was formulated as a second-order cone
constraint, and thus, easily incorporated into numerical limit analysis formulations
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that use SOCP. To the authors’ knowledge, this failure criterion has not previously
been combined for with periodic boundary conditions, as anti-periodic traction
fields and periodic velocity fields. These were successfully enforced in lower bound
and upper bound formulations, respectively.

• The new limit analysis formulations were successfully applied to unit cells at the
annual ring scale and the clear wood scale. Through variation of the applied
loading conditions, effective failure surfaces in the macroscopic stress space were
obtained very stably and efficiently at both observation scales. For all simulations
the small difference between the lower and upper bound results (the bracketing
error) was highly satisfactory.

• The comparison between numerically-obtained effective failure surfaces at the
clear wood scale and experimental results from biaxial testing of Norway spruce
clear wood showed very good agreement, confirming the proposed method as very
promising.

Based on these results it can be concluded that, due to its efficiency and simplicity
and good prediction quality, the presented limit analysis concept should be able to
play an important role in the strength prediction of wood and wood-based products.
Future work is being devoted to the extension of this presented approach to the third
dimension, as well as applications to the next higher scales of observation, such as
the scales of the wooden board and the wood-based product (Hochreiner et al., 2013,
2014). With efficient and stable strength estimates of wooden boards, also stochastic
considerations as proposed in Füssl et al. (2016), Kandler et al. (2015a) for elasticity, it
should be possible to attempt predictions of the effective strength properties of wood-
based products. Even if it is not used to access directly the load bearing capacity of
wood, limit analysis seems to be a very well suited method for providing preliminary
information on failure mechanisms, for example as input to brittle failure simulations
This could finally provide a conservative design strength for a certain knot group, as it
is done in Jenkel and Kaliske (2014) for example. Therein, elastoplastic finite element
calculations are performed (which could be replaced by more efficient limit analysis
calculations) to gain information about failure zones around/between knots, and this
information is used to define the location of cohesive elements, subsequently delivering
“brittle” strength estimates. Moreover, to obtain an initial strength evaluation of a
defect, or for the identification of critical defects, limit analysis simulations would be
sufficient. In parallel, Füssl et al. (2017) have compared the results of the proposed
limit analysis concept with results from XFEM simulatioins and with elastic limit states
obtained in the framework of continuum micromechanics in Füssl et al. (2017), showing a
very promising and efficient performance of limit analysis with respect to the prediction
of failure mechanisms.

1.A Second-order cone programming

The definition of the cone set C is that,

∀x ∈ C and λ ≥ 0 ⇐⇒ λx ∈ C (1.49)
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and then its dual cone C ∗ can be defined as,

xᵀy ≥ 0, ∀x ∈ C ⇐⇒ y ∈ C ∗ (1.50)

where x ∈ Rn and y ∈ Rn. If C = C ∗ holds, the cone is considered as self-dual.

The most common second-order cones is the quadratic cone C ,

C = {x : x1 ≥ ‖x2:d‖, x1 ≥ 0} (1.51)

and the rotated quadratic cone,

C = {x : 2x1x2 ≥ ‖x3:d‖, x1 ≥ 0, x2 ≥ 0} (1.52)

where xm:n = [xm . . . xn]ᵀ ∈ Rn−m, and both the two second-order cones are self-dual.

Then the optimization problem of the second-order cone programming (SOCP) can be
expressed as

min cᵀx
s.t. Ax = b

x ∈ C
(1.53)

where b ∈ Rm, c ∈ Rn, A ∈ Rm×n and C is the second-order cone.

The dual optimization problem is

max bᵀz
s.t. Aᵀz + y = c

y ∈ C ∗.
(1.54)

where z ∈ Rm and C ∗ is the dual cone of C .

SOCP can be regarded as a generalization of classical linear programming where the
linear constraints are supplemented by specialised nonlinear constraints in the form of
the cone constraints. The resulting optimization problem can be solved efficiently with
primal-dual algorithms based on the interior-point method.

1.B Matrix representation of the limit analysis formulation

To solve the optimization problem, it is very convenient and efficient to use the com-
mercial SOCP solver MOSEK. Therefore, the optimization formulation has to be refor-
mulated in the matrix form suitable for input to MOSEK.

For the lower bound problem, the SOCP formulation in Eq. (1.21) is transformed into

max β

s.t.



LE × 9 + LE × 9 + LE × 15 + 1

LE × 2 Aeq
LB

... 0
... 0

... 0

LD × 4 Adis
LB

... 0
... 0

... 0

LP × 2 Aper
LB

... 0
... 0

... 0

1 bperᵀx
... 0

... 0
... −ft,x

1 bperᵀy
... 0

... 0
... −ft,y

LE × 9 −R
... I

... 0
... 0

LE × 15 0
... −Bsoc

... I
... 0




qσ
q′σ
ssoc

β

 =



0
0
0
0
0
0

asoc


(1.55)
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in which the objective function is the load multiplier β.

Similarly, the upper bound optimization can be derived as the primal form,

min Wint

s.t.



UN × 2 + UE × 9 + UE × 15

UE × 9 Aeq
UB

ᵀ ... Rᵀ
σ

... 0

UE × 15 0
... 0

... −I

UE × 9 0
... −I

... Bsocᵀ

UP × 2 −Aper
UB

... 0
... 0


 qu̇
−q′ε̇
esoc

 =


0
−esoc

0

ĖUBlUB

 (1.56)

and the dual form,

max Wext

s.t.


UE × 9 + UE × 15 + UE × 9 + UP × 2

UN × 2 Aeq
UB

... 0
... 0

... −Aper
UB

ᵀ

UE × 9 Rσ
... 0

... −I
... 0

UE × 15 0
... −I

... Bsoc
... 0




qσ
ssoc

q′σ
qp

 =

 0
0

asoc

 (1.57)

from Eq. (1.41) and Eq. (1.43) respectively. The duality is clear comparing to the
definitions in Eq. (1.53) and Eq. (1.54).
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Figure 1.12: Comparison of numerically-obtained lower and upper bound effective fail-
ure surfaces of clear wood with experimentally-obtained failure stress states in Eber-
hardsteiner (1995) for Norway spruce clear wood. Blue curves are obtained with the first
approach and green curves with the second approach for the choice of shear strengths
(see Eq. (1.48)).
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Abstract: Wood, as a naturally-grown material, exhibits a highly anisotropic and
inhomogeneous material structure, with a complex wood fibre distribution influenced
by randomly occurring knots. Thus, for the prediction of effective strength properties
of wood, advanced computational tools are required, which are able to predict as well
as consider multidimensional strength information at different scales of observation.

Within this work, three such computational methods will be presented: an extended
finite element approach able to describe strong strain-softening and, thus, reproduce
brittle failure modes accurately; a newly-developed limit analysis approach, exclusively
describing ductile failure; and an elastic limit approach based on continuum micromech-
anics. All three methods are applied to earlywood and latewood unit cells and to clear
wood, finally yielding effective failure surfaces for a range of multidimensional stress
states. These failure surfaces are compared with each other and with experimental
results from biaxial tests. Based on these comparisons, the strengths and weaknesses
of the three computational methods are discussed, and their applicability to wood is
evaluated.

The extended finite element method is a powerful technique that allows for a very
realistic description of strength-governing processes. Nevertheless, its complexity and
high computational effort prevent widespread use in the engineering field. The plastic

https://www.sciencedirect.com/science/article/pii/S0141029617307253
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limit analysis and elastic limit approaches, however, show good predictive performance
compared with the extended finite element method, coupled with excellent efficiency
and stability. In this study it is found that together, the latter two approaches are able
to enclose the experimentally-obtained failure regions for clear wood almost perfectly,
while also delivering new insights with respect to the ductile failure potential of wood.

The conclusion can be drawn that there exist promising computational methods that
are capable of delivering reliable multidimensional strength information for wood and,
subsequently, will enable effective strength predictions for wooden boards and wood-
based products. Finally, this work is intended as a contribution to performance-based
optimisation of wooden structures, a necessity for wood to become competitive with
respect to other building materials.

Keywords: Wood, Strength, XFEM, Limit Analysis, Elastic Limit Estimates.

2.1 Introduction

Traditionally, wood as a structural building material has mainly been used in rural
areas for one- or two-storey residential buildings or simple halls and stables. Due to the
relatively small dimensions of such buildings and the fact that each structural element
only appears in a small number, it has not been necessary to exploit the full mech-
anical potential of wood. Simple design rules combined with practical experience and
considerably oversized components have together met all requirements.

In recent years, this situation has changed dramatically. The excellent mechanical and
physical properties of wood, combined with the general trend of growing environmental
awareness, have put timber structures into the focus of private as well as public building
developers – not just to realise small buildings, but to use wooden building elements for
highly sophisticated engineering structures. There has already been a nine-storey tower
built in London and a 12-storey wooden building is under construction in Bergen, Nor-
way. A 24-storey wooden skyscraper will be completed in Vienna in 2018, which, with
a height of 84 m, will be the tallest wooden skyscraper in the world. Another wooden
tower, comprising 35 storeys, is planned in Paris, aimed at addressing the French cap-
ital’s housing challenges in a sustainable, creative and environmentally-friendly manner.
Meanwhile, a 34-storey wooden apartment block could be built in Stockholm by 2023
if the planning authorities have their way.

Such projects could, or respectively can, only be realised by the strong initiative of
individual responsible authorities, and all of these developers struggle to justify their
wooden buildings on economic grounds. Indeed, it is only possible for timber struc-
tures to be cost-competitive with steel or concrete structures under ideal planning and
executing conditions. A major reason for this is the aforementioned traditional ori-
gin of timber constructions, the associated simple design practice, and the resulting
conservative dimensioning of wooden structural elements.

This has been the motivation for the present work, which aims at the development and
assessment of new computational methods enabling better predictions of the mechanical
behaviour of wood. Based on such methods, the great mechanical potential of the ‘raw’
wooden material should be much better utilised. In this context, simple wooden boards,
obtained in sawmills by cutting of logs, are considered as ‘raw’ material. For use in
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construction, these wooden boards are typically assembled into wood-based products
like glued-laminated timber (GLT) or cross-laminated timber (CLT). The basic steps of
this procedure are shown in Figure 2.1, together with the principal material directions of
the flawless wood. The tubular structure of the wooden cells proceeds in the L-direction

L2

L1

L3

L5

pith

clear wood

pith

R

L

L
T

gluing

sawmill

L4

T

R

knot

sortingknot group

log board

product

Figure 2.1: Basic steps in wood processing. Wooden boards are obtained in sawmills by
cutting logs. These boards are sorted and rated according to characteristics like knots
and fibre deviations, before they are glued together to create products (like the CLT
board shown).

(longitudinal fibre direction), the R-direction denotes the radial direction with respect
to the central pith, and the T -direction describes the tangent direction to the circular
annual rings. These directions of the flawless wood, which is subsequently referred to
as clear wood, are disturbed by randomly occurring knots, forcing the fibres to deviate
from the global longitudinal direction. Such knots or knot groups, as illustrated in
Figure 2.1, introduce large fluctuations of wooden board properties, and in general board
sections with knots exhibit poorer mechanical behaviour than clear wood sections. For
this reason, knot-related characteristics are commonly used for sorting and classifying
wooden boards. The more accurately this classification procedure works, the more
efficiently wooden boards can be used in wood-based products.

Unfortunately, only empirically derived relationships between knot characteristics and
certain board properties have been developed and used in the field so far. These do
not show very good prediction quality, especially when it comes to strength properties.
This is why a growing amount of effort is being put into the development of numer-
ical simulation methods able to describe the influence of knots and knot groups on the
effective behaviour of the associated wooden board section. These simulations need
to model knots as well as the fibre distribution around them, as shown schematically
in Figure 2.2. Suddenly, timber design, which has historically been concerned mostly
with beam-like structures, and thus 1D design concepts, has to deal with complex 3D
stress and strain fields arising in the vicinity of knots. These stress distributions around
knots are often responsible for the initiation of cracks or plastified material zones, and
therefore have to be taken into account accurately. This is only possible when a de-
tailed characterisation of the multidimensional strength behaviour of the considered
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Figure 2.2: Fibre distribution around a knot, illustrated in the (a) longitudinal-radial (L-
R) plane and (b) longitudinal-tangential (L-T ) plane, introducing a variety of different
3D stress states into the clear wood.

clear wood is available. This is actually never the case, because the enormous experi-
mental programme that would be required is hardly feasible. Furthermore, it would be
virtually impossible to determine experimentally the influence of density fluctuations,
different moisture contents, and the different characteristics of several wooden species
on the multidimensional strength behaviour.

For this reason, the present work focuses on a new approach for determining 2D and 3D
strength information for clear wood. Since failure and plastification is strongly influ-
enced by the complex material system of wood, exhibiting cellular and layered structures
on different length scales, a conceptual framework in which these different microstruc-
tural characteristics are incorporated appears to be necessary. Since the strength be-
haviour of the individual components of the wood material can be assumed to be far
less complex than that of the overall material system, linking microstructural charac-
teristics to each other and to the macroscopic behaviour, respectively, ultimately leads
to a significant reduction of the independent unknown material properties. Moreover,
the influence of microstructural changes on the macroscopic behaviour can be identified
easily, without performing additional experiments.

Thus, the division of wood into meaningful levels of observation is the first objective
of the present work. At each level, failure modes and failure stress states (strength
properties) are determined using various computational methods, and the obtained
information is transferred – and serves as input – to the next higher level of observation.
For this so-called upscaling, a numerical approach based on the extended finite element
method has been presented in previous papers of two of the authors (Lukacevic and
Füssl, 2016, Lukacevic et al., 2014b). This approach is able to describe failure (even
cracking mechanisms) of wood very accurately. For a comprehensive description of the
strength behaviour over several levels of observation, however, this method alone seems
likely to be insufficient and inefficient. Therefore, within the present work, a plastic
limit analysis approach is developed and applied to wood at two levels of observation,
contributing successfully to the overall multiscale concept for the prediction of strength
properties and failure mechanisms. Moreover, both of these numerical methods are
compared with an analytical approach based on continuum micromechanics, originally
presented by one of the authors in Hofstetter et al. (2008), delivering elastic limit stresses
for given loading states. These stresses refer to ultimate strength in the case of brittle
failure, and to elastic limit stresses in the case of ductile failure. Since the extended
finite element method is used to describe brittle failure accurately, and limit analysis
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is ideally suited for predicting ultimate strength in the case of ductile failure modes,
a comprehensive set of complementary methods is available to address the described
challenge.

In summary, the objectives of the present work can be formulated as follows:

• Subdividing clear wood into appropriate observation scales and specifying repres-
entative unit cells to which the extended finite element method (XFEM), limit
analysis (LA) and elastic limit (EL) approaches can be applied.

• Deriving an appropriate LA formulation which is applicable to a unit cell-type
homogenisation procedure, similar to the concepts already proposed in Frances-
cato and Pastor (1997), Füssl et al. (2008), Pastor et al. (2010), and applying all
three methods to the same clear wood material.

• Comparing the effective strength predictions obtained at the different levels of
observation, and evaluating the three methods with respect to their capabilities
and efficiency.

• Performance assessment of the three methods with respect to their application to
wood, by means of comparisons with experimental results at the clear wood scale.

The paper is structured as follows. In Section 2, the three methods of choice are
briefly presented, and the necessary extensions of conventional LA formulations, to be
applicable to unit cells of wood microstructures, are given in more detail. Furthermore,
an attempt is made to discuss and clarify the fundamental differences between the
three methods. Section 3 describes the considered wood species, its microstructure,
and the observation scales and representative unit cells derived therefrom. The model
geometries and input parameters for all methods are given, and the calculation program
is specified. In Section 4, the results of all methods are presented, compared with each
other and discussed. Moreover, the results from all three methods at the clear wood
scale are plotted against experimental results obtained from biaxial testing. Finally,
concluding remarks and a short statement on future work are given in Section 5.

2.2 Methods and theory

The failure behaviour of wood is quite complex, being strongly dependent on the type
of loading and the level of consideration (observation scale). The majority of the models
in the scientific literature focus on the wooden board scale (as illustrated in Figure 2.2),
describing the failure behaviour of clear wood and the influence of knots. At this scale,
under pressure-dominated stress states, wood behaves in a very ductile manner and
strain hardening may even occur. Under tensile- and shear-dominated stress states,
a rather brittle failure behaviour can be observed, but with a fracture toughness that
can be very different dependent on the wooden structure considered. A brief overview
of some existing methods for predicting/modelling structural behaviour at the wooden
board level is given in the following.

The first group of approaches avoids any direct description of failure mechanisms, and
instead uses mean stress concepts (Landelius, 1989, Masuda, 1988), where averaged
stresses over a small finite volume are assumed to indicate failure. These volumes
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can be adjusted to typical features of wood, such as structural characteristics of wood
fibres (Aicher et al., 2002). In Serrano and Gustafsson (2007), Sjödin and Serrano
(2008), Sjödin et al. (2008) this approach was applied in combination with findings of
linear elastic fracture mechanics. The suitability of different volume definitions, over
which the stresses are averaged, and also the effectiveness of various failure criteria,
was compared in Guindos (2011). A physically-based structural failure criterion was
presented in Lukacevic and Füssl (2014), Lukacevic et al. (2014a), where it was assumed
that in wooden boards with knots, global failure can be related to a stress transfer
mechanism, which is identifiable by evaluating averaged stress fields in the vicinity
of knots. Models based on mean stress concepts are mostly dependent on empirical
parameters, and the true failure mechanisms cannot be mapped. This can be overcome
by directly modelling failure processes.

The most sophisticated approaches for this are based on multi-surface yield/failure
criteria, as described in Mackenzie-Helnwein et al. (2003). In these approaches, or-
thotropic yield surfaces are defined to describe the onset of ductile failure, whereas
orthotropic crack failure surfaces indicate stress states under which cracks are to be ex-
pected. Cracking is normally modelled with cohesive elements, including an anisotropic
traction separation law for wood. Applications of this model show promising results re-
garding the estimation of load-carrying behaviour (Schmidt and Kaliske, 2007, 2009). A
cohesive zone model based on plasticity theory has also been used for parametric studies
of a glued-laminated timber beam with a hole (Danielsson and Gustafsson, 2014).

These approaches work well for a uniform fibre orientation and if the location of the
crack path is known in advance. However, due to knots and the fibre deviations around
them, as described in Section 1, complex stress states usually prevail, and such an ap-
proach becomes impossible to apply. Thus, to be able to assign reliable failure surfaces
and corresponding crack directions to clear wood at the wooden board scale, a multiscale
approach is pursued. For such an approach, failure mechanisms at different observa-
tion scales need to be analysed. This is done here by using three different promising
computational methods. The basic characteristics of each method are described in the
following, and are qualitatively shown in Figure 2.3. The type of structural response
that can be described by each method, in terms of relationships between the effective
stress tensor Σ and the effective strain tensor E, is illustrated in Figure 2.3(a), where
Ceff denotes the effective elastic stiffness tensor. Figure 2.3(b) shows the corresponding
relationships between microscopic stresses σ(xi) and microscopic strains ε(xi), for a
material point i of the considered structure. The values given therein denote strength
and stiffness values of the wood microstructure (see Figure 2.6), which will be explained
in detail in Section 3.

The most obvious way to deal with this complex problem, with respect to morphological
as well as material behaviour aspects, is to apply the conventional 2D or 3D finite
element method. This has been done by the authors recently, see Lukacevic et al.
(2014b). Therein, XFEM was applied successfully to representative wood unit cells,
delivering effective stress states which cause the initiation of a crack, and simultaneously
giving the corresponding effective crack direction. This method is again applied in
the present work, leading now to effective strength predictions at two different scales
of observation. Nevertheless, even if XFEM, especially in combination with multi-
surface plasticity criteria, is a powerful tool allowing for a very realistic description of
complex failure mechanisms, its high computational cost and the overall complexity of
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Figure 2.3: Characteristics and qualitative representation of the three methods con-
sidered: (a) effective/macroscopic stress-strain response and (b) microscopic stress-
strain relationships.

the approach make its use within a multiscale approach rather tedious.

For this reason, additional focus is given to the numerical LA approach and its applic-
ability to microstructures of wood. This method exclusively concentrates on the time
instant of failure, and delivers lower and upper bounds for the ultimate strength of the
considered material structure. Compared with conventional finite element approaches,
where the complete load history has to be considered and, in order to predict the correct
failure mechanisms, proper regularisation techniques must be used, the LA approach is
much more stable and efficient. Moreover, it leads to rigorous bounds on the material
strength, and thus gives a reliable error measure for the prediction. The completely dif-
ferent nature of this so-called direct method, compared with XFEM, becomes obvious
in Figure 2.3.

Of course, the efficiency of LA results from the strict assumptions on which this method
is based. These include an associated plastic flow rule and ideal plastic (ductile) be-
haviour of the considered material. Although these two assumptions are not entirely
correct for wood, the first is generally made due to a lack of information about the
non-associativity, while the second does not exclude the possibility that good strength
predictions can also be obtained for strain-softening structures. In Denton and Mor-
ley (2000) it is stated: “A structure does not need to exhibit perfect plasticity for the
theoretical plastic collapse load based on the peak yield stress of each component to be
approached closely. Rather, it is necessary that, at the point when a collapse mechan-
ism forms under a particular loading, all those regions within the structure which are
undergoing straining lie very close to the peak yield stress which they can achieve."
Wood certainly has the ductile potential to ‘activate’ the strength of many points along
a potential crack surface before brittle failure occurs. It therefore seems that LA could
be an appropriate method for determining effective strengths, at least for pressure- and
shear-dominated loading states.
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The EL approach has been chosen as third method. It is based on continuum mi-
cromechanical homogenisation schemes (Suquet, 1997, Zaoui, 2002) characterised by
linearly averaging stress and strain fields of material phases to obtain the effective
stiffness tensor of the corresponding material system. Higher-order strain averages,
in combination with an appropriate failure criterion for the failure-pertinent material
phase, can then be used to predict effective strengths. These strengths refer to elastic
limit states in case of ductile failure, but represent ultimate strengths in the case of
brittle failure. For this reason, the EL approach ideally complements the LA approach,
and thus an effective multiscale approach delivering comprehensive failure information
for clear wood seems to be possible.

The adopted formulations of the three different computational methods, which are sub-
sequently applied to the wood microstructures, are presented in the following subsec-
tions.

2.2.1 Extended finite element method (XFEM)

The XFEM, first introduced in Belytschko and Black (1999) and based on the partition
of unity method proposed in Melenk and Babuška (1996), allows, through targeted
enrichment of the approximation possibilities of the displacement field, the description
of singularities and weak or strong discontinuities of the considered field quantity. A
field u(x), in our case a displacement field, can thereby be approximated by

u(x) ≈
NN∑
i=1

Nu,i(x)

qu,i +
NG∑
j=1

Gj(x) qenr,ij

 , (2.1)

where NN is the number of nodes of the finite element mesh, Nu,i represents the
conventional element interpolation functions obeying the partition-of-unity property,∑NNE

i=1 Ni = 1, with NNE as the number of nodes of an element, qu,i is the displacement
vector, and qenr,ij contains the additional degrees of freedom of node i, representing
the amplitude of the jth extension function Gj(x). NG is the number of extension
functions.

In this work the basic XFEM capability of a commercial finite element package was
used, wherein the so-called level set method (Gravouil et al., 2002, Moës et al., 2002,
Osher and Sethian, 1988) is applied to describe the location and geometry of discrete
moving cracks. Two level set functions (φ and ψ), which are two almost-orthogonal
signed distance functions, are sufficient to describe arbitrary material interfaces and
cracks by using conventional finite element interpolation functions:

φ ≈
NN∑
i=1

Ni φi and ψ ≈
NN∑
i=1

Ni ψi, (2.2)

where φ describes the crack surface in a 3D body and ψ is used to describe the crack
front. By combining these two level set functions, an arbitrary evolving crack can be
described implicitly as follows (cf. Figure 2.4):{

for all x ∈ crack surface, φ(x) = 0 and ψ(x) < 0
for all x ∈ crack tip, φ(x) = 0 and ψ(x) = 0

(2.3)
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φ = 0 ... crack surface

n+
φ

n+
ψ

ψ = 0 ... surface orthogonal to crack

intersection of φ = 0 and ψ = 0 ... crack tip

detail of arbitrary body with crack

Figure 2.4: Representation of the two iso-zero level sets φ and ψ defining crack geometry
and location in the XFEM approach.

Commonly, within the XFEM, singularities caused by crack tips are modelled with ex-
tension functions derived in the framework of linear elastic fracture mechanics (Belytschko
and Black, 1999). For elements that are completely cut by a crack, the corresponding
nodes are enriched by sign or Heaviside functions. In the present work, for describing
cracks (strong discontinuities) only the modified Heaviside function (Moës et al., 2002)
is used, thus

Gj(x) = H(φ(x)) =

{
−1 : φ(x) < 0

1 : φ(x) ≥ 0
. (2.4)

The simulation of moving cracks is performed using the phantom node method de-
veloped in Song et al. (2006) and based on an approach shown in Hansbo and Hansbo
(2004). Phantom nodes are superimposed on the original nodes, which are completely
tied to the corresponding original nodes for uncut elements. If the element becomes
fully cracked, it is represented by two superimposed elements with a combination of
phantom and original nodes, which are no longer constrained to each other. The beha-
viour of the cracked surfaces can now be described by the same methods that are used
for cohesive joint elements. The element-by-element propagation of a crack has been
successfully used in Song et al. (2006) for several simulations of crack propagation, with
only minor mesh dependency. They also noted that, although the crack speed might be
overestimated by the element-by-element propagation of a crack, its propagation path
is usually in reasonable agreement with experiments.

After crack initiation, perfect brittle damage evolution is assumed, meaning that the
transferable stresses drop almost immediately to zero (the displacement from crack
initiation to stress-free crack surfaces is set to 10−5 mm, see Figure 2.3(b)). To permit
subsequent stress transfer over crack surfaces, a node-to-surface contact formulation
with finite sliding is used for fully cracked elements.
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2.2.2 Limit analysis (LA)

As opposed to conventional finite element methods, XFEM included, LA is a ‘direct
method’, focusing only on the moment of impending plastic collapse. All deformation up
to this point is assumed to be of the same order of magnitude as the elastic deformation,
so that the influence of geometry changes on the collapse load can be neglected. In
the state of impending plastic collapse, all elastic strain rates in the considered body
vanish and it behaves like a rigid–plastic rather than an elastic–plastic body. For this
reason, only the strength behaviour of each material phase is required, and the need to
specify deformation properties (which are often difficult to determine) can be avoided.
This argument was first presented by Drucker et al. (1951), together with the first
complete formulations of both the lower bound and upper bound theorems of limit
analysis (Drucker et al., 1952), which can be stated informally as follows (Lubliner,
1990): “The loads that are in equilibrium with a stress field that nowhere violates the
yield criterion do not exceed the collapse loads, while the loads that do positive work on
a kinematically admissible velocity field at a rate equal to the total plastic dissipation
are at least equal to the collapse loads." The required key assumption behind these two
theorems is the principle of maximum plastic dissipation, which requires a perfectly
plastic material with a convex yield surface and associated plastic flow (normality of
incremental plastic strain rates to the yield surface). If the loads resulting from the
two theorems are equal to each other, then the true collapse load has been determined.
If not, rigorous lower and upper bounds on the exact solution are provided, giving an
immediate error indication for the result. Design approaches based on limit analysis
represent very efficient methods with a reliability that is often sufficient for many civil
and mechanical engineering problems such as structural design and safety assessment,
and geotechnical capacity calculations.

In the following, numerical formulations of the bound theorems suitable for application
to 2D wood microstructures will be presented.

2.2.2.1 Numerical upper bound formulation

An intuitive statement of the upper bound theorem could read: The considered material
structure will collapse under a given loading if an admissible velocity field can be found
forming a failure mechanism dissipating less power than the rate of work of the given
loading. A velocity field is considered to be admissible when it obeys, in every point of
the material structure, the associated flow rule

ε̇ = λ̇
∂f

∂σ
with λ̇ ≥ 0. (2.5)

Here f denotes a convex yield function specified in terms of the Cauchy stress tensor
σ, λ̇ is the plastic multiplier and ε̇ represents the strain rate tensor, which is classically
linked to the velocity vector u̇, reading

ε̇ij =
1

2
(u̇i,j + u̇j,i) = Lu̇, (2.6)

where Lu ∈ R3×2 (in 2D) denotes the common differential operator mapping deforma-
tions onto strains. In the present work, we are only considering yield functions f that
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can be written down in the following general quadratic form:

f = Fᵀσ + σᵀPσ ≤ 1, (2.7)

where F ∈ R3 and P ∈ R3×3 (in 2D) contain coefficients linked to the strength paramet-
ers of the considered material phase. When the symmetric matrix P is positive definite
or semidefinite, the solution set of Equation (2.7) is an ellipsoid, with the square roots
of the eigenvalues of P giving the semi-axis lengths. It can then be decomposed as
P = DᵀD with D ∈ R3×3, and Equation (2.7) can be reformulated into an affine
transformation and a cone constraint:

s = a + Bσ

s ∈ C
(2.8)

with

a =
(
1 0 0 0 0

)ᵀ ∈ R5 and B =

−Fᵀ/2
D

Fᵀ/2

 ∈ R5×3, (2.9)

and C denoting a second-order cone1.

Considering Equation (2.8) and following the derivations in Makrodimopoulos (2010),
the flow rule in Equation (2.5) may alternatively be written as

ε̇ = λ̇
∂f

∂σ
= −Bᵀy, (2.13)

where y ∈ R5 contains terms related to the strain rates.

Finally, in accordance with Makrodimopoulos (2010), the upper bound optimisation
problem takes the form

minWint =
∫
V aᵀy dV

s.t. Bᵀy + Luu̇ = 0 in V
y ∈ C? in V
qᵀu̇ = 1

(2.14)

where C? is the dual cone to C and q is the vector of equivalent nodal loads arising from
the surface tractions t. In this work, since we want to apply the formulation to a unit

1 A set C is called a cone if ∀x ∈ C and λ ≥ 0, λx ∈ C. Examples of such cones are

• the nonnegative orthant
C = R+ = {x : x ≥ 0} , (2.10)

• the second-order (or ice-cream) cone

C =

x ∈ Rm :

√√√√ m∑
i=2

x2i ≤ x1, x1 ≥ 0

 , (2.11)

• and the rotated quadratic cone

C =

{
x ∈ Rm :

m∑
i=3

x2i ≤ 2x1x2, x1 ≥ 0, x2 ≥ 0

}
. (2.12)
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cell, the last line in Equation (2.14), scaling the external work rate to 1, is replaced by
periodic boundary conditions formulated in terms of the surface velocities, reading

u̇+ = u̇− + Ė(x+ − x−) on Ω, (2.15)

where u̇+ is the velocity vector at the surface node x+, associated with the surface part
∂Ω+, and u̇− is the velocity vector at the surface node x−, associated with the opposite
surface part ∂Ω−. The pairs of opposite surfaces ∂Ω− and ∂Ω+ are given in Figure 2.6,
for the unit cell at the clear wood scale as well as for the two unit cells at the annual
ring scale. Ė denotes the effective/macroscopic strain rate tensor of the considered unit
cell, and is linked to the microscopic strain rate field as follows:

Ė =
1

V

∫
V
ε̇(x)dV. (2.16)

Since the vector y, and thus the internal work rate in Equation (2.14) can be written
explicitly only for selected yield criteria, the dual form of the optimisation problem in
Equation (2.14) is considered subsequently, reading

maxWext =
∫
∂Ω+ u̇+ᵀt+dS +

∫
∂Ω− u̇−ᵀt−dS =

∫
∂Ω+(Ė(x+ − x−))ᵀt+dS

s.t. Lᵀ
uσdV − (t+ − t−)dΩ = 0 in V

s = a + Bσ in V
s ∈ C in V

(2.17)

where the dual variables σ represent stress-like quantities, dV the associated volume
on which σ acts, and dΩ the surface part relevant to either t+ or t−.

The finite element discretisation for the upper bound problem uses the triangular ele-
ments depicted in Figure 2.5 (left side). Quadratic shape functions are used to approx-
imate the velocity field, as proposed in Makrodimopoulos and Martin (2005a), resulting
in a linear variation of strain rate within the element. If the vertices of the element
are used to enforce the flow rule and evaluate the plastic dissipation, the solutions ob-
tained are strict upper bounds on the exact collapse load (Makrodimopoulos and Martin,
2005b, 2007). In the case of unstructured meshes, these linear strain rate elements typ-
ically show better performance than the often-used constant strain rate elements with
velocity discontinuities (Makrodimopoulos and Martin, 2005b, 2007).

Finally, the discretised form of the dual upper bound optimisation problem in Equation
(2.17) can be solved efficiently by an interior point method. In this work, the algorithm
outlined in Andersen et al. (2003), which has been implemented in the optimisation
software MOSEK ApS (2017), was used.

2.2.2.2 Numerical lower bound formulation

An intuitive statement of the lower bound theorem could read: A body will not collapse
under a certain loading if an admissible stress field can be found that is in equilibrium
with a loading greater than the considered loading. A stress field is considered to be
admissible when it does not violate the yield criterion, according to Equation (2.7) or
(2.8), at any point of the material structure.
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Figure 2.5: Finite elements used in the upper and lower bound LA formulations.

The optimal lower bound solution can be found by solving the following optimisation
problem:

max α
s.t. Lσσ = 0 in V

t+ + t− = Lt(σ
+ + σ−) = 0 on Ω

1
Ω+

∫
Ω+ Ltσ

+dS = αt+ on Ω+

s = a + Bσ in V
s ∈ C in V

(2.18)

In the first constraint, which enforces equilibrium within the body V , Lσ denotes the
divergence operator. The second constraint represents the static periodic boundary con-
ditions, necessary when applying this formulation to unit cells, with t+ as the traction
at the surface node x+, associated with the surface part ∂Ω+, and t− as the traction
at the surface node x−, associated with the opposite surface part ∂Ω−. The matrix
Lt depends on the outward normal vector n of the surface Ω and connects the stresses
σ+ and σ− at the surface to the corresponding tractions. Finally, through T the ef-
fective traction loading at the surface of the considered unit cell is specified, which is
self-equilibrating due to the simultaneously enforced periodic boundary conditions.

To obtain a discretised version of the lower bound optimisation problem in Equation
(2.18), the stress field is approximated by a piecewise linear variation using triangular
finite elements as shown in Figure 2.5 (middle). Each element has its own set of three
internal stress evaluation nodes, thus multiple nodes from adjacent elements may share
the same coordinates. At the resulting stress discontinuities between elements, only the
continuity of normal and shear stress components needs to be enforced; a jump in the
stress component parallel to the discontinuity is allowed (as illustrated in Figure 2.5,
right side).

Finally, the discretised form of the lower bound optimisation problem can be solved in a
similar way to the dual upper bound problem, using the optimisation software MOSEK
ApS (2017).

2.2.3 Elastic limit (EL) approach

Unlike the XFEM and LA approaches described before, the EL approach used within
this work is solely based on linking the effective stiffness properties of the considered



Publication 2 50

(loaded) material with the stiffness properties of the underlying material phases. There-
fore, depending on the observation scale, either continuum micromechanical schemes
(Zaoui, 2002) or analytical solutions for unit cell structures (Suquet, 1987) are em-
ployed. Finally, effective stress states of the loaded material structure can be directly
related to microscopic strains in an arbitrary material phase. Under the assumption
that failure of a certain material phase is responsible for failure of the whole mater-
ial structure, critical strain states in such a phase can be identified and, subsequently,
effective failure stress states of the whole material structure are obtained.

2.2.3.1 Continuum micromechanics

Within the framework of continuum micromechanics, a material is seen as a micro-
heterogeneous body filling a macro-homogeneous representative volume element (RVE)
at different scales of observation. The microstructure within such an RVE can be
described by so-called material phases, representing quasi-homogeneous subdomains
with known physical characteristics such as volume fractions, characteristic shapes, and
mechanical properties. The size of the inhomogeneities defined by the material phases
has to be significantly smaller than the characteristic length of the RVE, and the size
of the RVE again has to be smaller than the characteristic dimension of the structure
built up by the material, or the RVE representing the next higher scale of observation,
respectively. In such a way multiscale homogenisation schemes are set up.

In continuum micromechanics, the effective stiffness Ceff of an RVE can be linked to
its microstructure according to Benveniste (1987), Zaoui (2002), based on the solutions
in Eshelby (1957), Laws (1977), as follows (Hofstetter et al., 2008):

Ceff =
∑N

i=1 fici : Ai with

Ai =
[
I + P0

i : (ci −C0)
]−1

:

{∑N
j=1 fj

[
I + P0

j : (cj −C0)
]−1
}−1

,
(2.19)

where ci and fi denote the elastic stiffness and the volume fraction of phase i of
total N material phases, respectively, Ai is the concentration tensor of phase i and
I is the fourth-order identity tensor. Ceff relates effective/macroscopic RVE-related
stresses Σ to corresponding strains E, while ci relates (average) phase stresses σi =
(1/Vi)

∫
Vi
σ(x)dV to (average) phase strains εi = (1/Vi)

∫
Vi
ε(x)dV . x is the location

vector for positions inside the RVE, σ(x) and ε(x) are the stress and strain fields inside
the material phases, and Vi is the volume of phase domain i inside the considered RVE.
The fourth-order tensor P0

i accounts for the characteristic shape of phase i in a matrix
with stiffness C0. The choice of this stiffness describes the interactions between phases.
If C0 describes one of the phase stiffnesses, a material with a contiguous matrix with
inclusions is represented and Equation (2.19) renders the Mori-Tanaka scheme (Benven-
iste, 1987), while for C0 = Ceff , a dispersed arrangement of the phases is represented
and Equation (2.19) reflects the self-consistent scheme.

2.2.3.2 Unit cell homogenisation

If the material microstructure is characterised by the spatial variation of physical quant-
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ities which can be represented by a combination of local fluctuations at the level of the
elementary cell and a spatial repetition of this elementary cell, a unit cell homogenisa-
tion scheme may be employed. The honeycomb structure inherent to wood, presented
later, represents such a material microstructure, which can be built up/approximated
using identical basic repetitive units. Moreover, the length of these cells is two orders of
magnitude larger than their cross-sectional dimensions, justifying the assumption of an
infinite extension of the unit cells in the longitudinal direction (i.e., conditions of plane
strain). Thus, the unit cell homogenisation methods proposed in Böhm (2004), Suquet
(1987) can be applied.

Thereby, the unit cell is subjected to periodic, symmetry, or antisymmetry displacement
boundary conditions such that the spatial averages of the corresponding microscopic
strains ε(x) are equal to the macroscopic strains E related to the cellular material.
Linking these macroscopic strains to the spatial average of the periodic microstresses
they induce, i.e., to the macroscopic stresses Σ, yields the homogenised effective stiffness
Ceff of the cellular material. The effective stiffness expressions, as functions of the unit
cell characteristics, and the original application of this method to wood can be found in
Hofstetter et al. (2007). In contrast to continuum micromechanics, potential plate-like
bending and shear deformations of the cell walls, building up the material structure,
can be taken into account with this homogenisation method.

2.2.3.3 Elastic Limit estimates

Both of the described methods, continuum micromechanics as well as unit cell homogen-
isation, can be used, either alone or in combination, to determine the effective stiffness
Ceff of a material structure as a function of its microstructural characteristics.

Let us now assume that the intensity of shear loading of the weakest phase is respons-
ible for failure (an elastic limit state) of our considered material structure. Then, we
would need an appropriate stress or strain measure for this material phase and a cor-
responding failure criterion. In Suquet (1997) such a strain measure is proposed, in
fact, quadratic strain averages (second-order moments) ¯̄εdi are assumed to appropriately
represent (failure-causing) local strain peaks in a material phase i, reading

¯̄εdi =

√
1

Vi

∫
Vi

1

2
εd(x) : εd(x)dV , (2.20)

where εd(x) denotes the deviatoric strain field, defined as εd(x) = ε − (tr ε(x)/3)I.
According to Hill’s lemma (Hill, 1951), the following relationship between microscopic
and macroscopic quantities, representing the energy density E , is valid:

E =
1

Vi

∫
Vi

1

2
ε(x) : ci : ε(x)dV =

1

2
E : Ceff : E, (2.21)

where ci = 3kiJ+ 2µiK is the isotropic stiffness of material phase i, with bulk modulus
ki and shear modulus µi, and with J and K = I−J being the volumetric and deviatoric
parts of the fourth-order identity tensor I. With ∂ci/∂µi = 2K, the derivatives of
expressions (2.21) with respect to the shear modulus µw of the weakest phase (with a
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volume content of fw) read

∂E
∂µw

= 2fw(¯̄εdw)2 =
1

2
E :

∂Ceff

∂µw
: E, (2.22)

finally providing an expression for the quadratic strain average of the weakest phase as
a function of the effective stiffness and the effective strain, reading

¯̄εdw =

√
1

4fw
E :

∂Ceff

∂µi
: E. (2.23)

In turn, the effective strain is related to the effective stress according to Σ = Ceff : E.
With an appropriate failure criterion for the weakest phase of the considered material
structure,

Fw(¯̄εdw) = 0, (2.24)

effective elastic limit stress states ΣEL and, subsequently, an effective failure criterion
F (ΣEL) = 0 can be obtained.

2.3 Material

2.3.1 Morphology

The most common wood species used in engineering constructions is spruce, thus, it
is a very well investigated material with a large body of experimental data about its
microstructural characteristics and the properties of its constituents. For this work,
the composition of spruce wood was taken from Hofstetter et al. (2005), in which a
comprehensive micromechanical model for the elasticity of wood is presented, and many
references to experimental data for the wooden microstructure are given. Those data
and similar models were also used in further works, e.g., in Hofstetter et al. (2007),
presenting an improved micromechanical model for the elasticity of wood, in Hofstetter
et al. (2008), proposing an extension to obtain elastic limit states of wood, and in Bader
et al. (2010, 2011), including a poromechanical approach in the micromechanical model.

Based on the underlying data of these models, appropriate observation scales have
been defined in the present work, tailored for predicting the effective strength of clear
wood based on its microstructural characteristics. The highest observation scale in this
multiscale approach, illustrated in Figure 2.6, represents the clear wood scale, consisting
of earlywood and latewood layers with a typical thickness between 0.3 and 3.5 mm.
Considering the stem cross-section of a tree, the earlywood and latewood layers form a
pattern of concentric circles around the pith, known as growth rings. T indicates the
tangential direction and R the radial direction with respect to these growth rings, while
L shows the longitudinal direction (stem direction).

At the next scale of observation in Figure 2.6, the annual ring scale, the earlywood
and latewood layers consist of periodically arranged honeycomb cells, and thus they
can be appropriately represented by unit cells. For both the earlywood and latewood
layers, two different unit cells have been defined. The less complex ones (upper cells in
Figure 2.6) are used within the analytical EL approach, while the ones consisting of two
different layers (lower cells in Figure 2.6) serve as the basis for the numerical (XFEM
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Figure 2.6: Definition of unit cells used for the numerical approaches (XFEM, LA) and
the analytical approach (EL) at annual ring scale and clear wood scale for the considered
spruce wood (experimentally investigated in Eberhardsteiner (2002)). The 3D unit cells
for the XFEM and EL approaches were obtained by simple extrusion of the 2D cross
sections shown.

and LA) calculations. Both unit cell types represent the same kind of earlywood and
latewood layer, only a different representation of the cell wall has been used, accounting
for the possibilities of the particular computational method. In reality, the cell wall
consists of five different layers (often referred to as the middle lamella, P, S1, S2, and
S3 layers). The volumes of the P, S1 and S3 layers are very small compared with the
S2 layer and the middle lamella. For this reason, only two layers are distinguished in
the unit cell for the numerical approaches: the middle lamella (ml) and a homogenised
layer (sl) representing all S layers and the P layer. The analytical unit cell for the EL
approach is completely homogeneous, merging the properties of all five layers into one
cell wall material (cw).

Each cell wall layer is itself made up of a non-cellulosic matrix (termed polymer network,
pn) in which cellulosic fibres (cf) are embedded, extending spirally at an angle MFA
(micro fibril angle) towards the cell axis. The volume contents of these different material
phases, at the different observation scales, can be found in Table 2.1.

The parameters defining the geometries of the unit cells in Figure 2.6 are given in
Table 2.2.

2.3.2 Mechanical behaviour

To obtain the effective elastic behaviour at the cell wall scale (cf. Figure 2.6, right side),
Equation (2.19) was applied, with C0 as the isotropic stiffness of the polymer network
cpn, and c1 as the anisotropic stiffness of the cellulosic fibres ccf . The stiffness tensors
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cell wall scale unit cells

middle lamella (ml) S-layers (sl) EW LW

numerical approaches
fpn = 0.9 fpn = 0.6 fml = 0.36 fml = 0.23

fcf = 0.1 fcf = 0.4 fsl = 0.64 fsl = 0.77

unit cells annual ring scale

EW LW EW LW

all approaches
fpn = 0.71 fpn = 0.67 fcw = 0.24 fcw = 0.61

fcf = 0.29 fcf = 0.33 flu = 0.76 flu = 0.39

Table 2.1: Volume content of different material phases at different scales of observation
for a typical spruce wood as investigated in Eberhardsteiner (2002) and modelled in
Hofstetter et al. (2005). EW = earlywood, LW = latewood. Indices are explained in
Figure 2.6.

shape of unit cells cell wall geometry

lR [µm] lT [µm] α [◦] β [◦] tml [µm] tsl [µm]

‘numerical’ unit cell
EW 34 33 8.0 3.5 1.5 1.5

LW 26 33 8.0 3.0 2.0 4.7

lT /lR [−] α [◦] tcw/lR [−]

‘analytical’ unit cell
EW 0.97 8.0 0.13

LW 1.27 8.0 0.43

Table 2.2: Parameters defining the geometry and dimensions of the earlywood (EW)
and latewood (LW) unit cells illustrated in Figure 2.6, for a typical spruce wood as
investigated in Eberhardsteiner (2002) and modelled in Hofstetter et al. (2005).



Publication 2 55

cpn and ccf were calculated according to the model in Bader et al. (2010), yielding

ccf =


16779 5626 2390

16779 2390
113123

7532
sym. 7532

11153

 and (2.25)

cpn =


4011 1496 1496

4011 1496
4011

2515
sym. 2515

2515

 [MPa] . (2.26)

The cellulosic fibres are modelled as cylindrical inclusions, defined through the concen-
tration tensor P0

cf , which can be found in Zaoui (2002). The volume content of the
cellulosic fibre phase fcf is given in Table 2.1. The resulting effective cell wall layer
stiffnesses define the elastic behaviour of the wood unit cells at the annual ring scale,
and thus serve as input to the XFEM simulations as well as to the unit cell homogen-
isation within the EL approach. No elastic material properties are required for the LA
approaches.

The strength behaviour assigned to the wood cell structures is explained in the following.
In the course of the EL approach in Bader et al. (2010), lignin is assumed to be the
weakest phase in the wood material structure, failing in shear once a certain threshold
is achieved (Zimmermann et al., 1994). Thus, an appropriate failure criterion for use in
Equation (2.24) reads

Fw(¯̄εdw) =̂ Flignin(¯̄εdlignin) = (2µlignin ¯̄εdlignin)2 − (τlignin)2, (2.27)

where τlignin denotes the lignin shear strength, assumed to be 14.3 MPa according to
Bader et al. (2010), Lukacevic et al. (2014b). Since it can be assumed that failure
of the middle lamella is primarily caused by failure of its main constituent lignin, the
shear strength of lignin (and the Von Mises-type failure criterion in Equation (2.27))
was also assigned to the middle lamella of the unit cells for the numerical approaches,
τml ≈ τlignin = 14.3 MPa (see also Table 2.3).

middle lamella (ml) S-layers (sl)

τml [MPa] σsl‖ [MPa] σsl⊥ [MPa] τ sl‖⊥ = τ sl‖L [MPa] σslL [MPa]

XFEM 14.3 75 ∞ 43 175

Limit Analysis 14.3 75 150 / ∞ 43 -

Elastic Limit τml ≈ τlignin = 14.3 ∞ ∞ ∞ ∞

Table 2.3: Strength values assigned to middle lamella and S-layers of the earlywood
and latewood unit cells, for the three different methods. Normal failure stresses σsl

represent absolute values, valid for compression as well as tension. Indices are explained
in Figure 2.6.

In contrast to the EL approach, for the numerical approaches the strength behaviour
of the explicitly modelled S-layer also needs to be defined. This layer resembles a
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unidirectional fibre-reinforced composite, a material for which several failure criteria
have been developed. Following Puck’s failure criterion (Puck and Schürmann, 2002),
which identifies fibre failure and inter-fibre failure in a unidirectional composite, the
following three criteria have been assigned to the S-layers, indicating crack initiation
within the XFEM approach (Lukacevic et al., 2014b),

fsl,1(σ) ≤ σL

σslL
, (2.28)

fsl,2(σ) ≤
σ‖
σsl‖

, and (2.29)

fsl,3(σ) ≤
(
τ‖⊥
τ sl‖⊥

)2

+

(
τ‖L
τ sl‖L

)2

. (2.30)

Equation (2.28) describes Mode I fibre failure in L-direction, whereas Equations (2.29)
and (2.30) both describe inter-fiber failure, leading to a fracture plane with its normal
pointing toward the local ‖-direction (see Figure 2.6 for definitions of the symbols ‖
and ⊥, which respectively denote the local parallel and perpendicular directions in the
‘numerical’ unit cell). The corresponding tensile and shear strength values were chosen
in the same way as in Lukacevic et al. (2014b), and are given in Table 2.3.

For strength definition in the LA approach, two different strategies were followed. On
one hand, the in-plane failure criteria as used in the XFEM approach, Equations (2.29)
to (2.30), were assigned to the S-layers, and on the other hand, a single 2D anisotropic
Tsai-Wu yield criterion (Tsai and Wu, 1971) was used, reading

fsl,TW (σ) =
σ2
⊥

(σsl⊥)2
+

σ2
‖

(σsl‖ )2
+

τ2
‖⊥

(τ sl‖⊥)2
≤ 1. (2.31)

Both sets of failure criteria gave almost identical results, but due to the slightly lower
numerical effort of the Tsai-Wu criterion, it is used for all LA simulations presented in
this paper. All the criteria from Equations (2.29) to (2.31) can be cast in a general
quadratic form according to Equation (2.7), and thus can be expressed as second-order
cone constraints, as required for the LA optimisation problems in Equations (2.17) and
(2.18).

For the annual ring scale, no experimentally-obtained strength values are available for
assessing the computational results. For this reason, all three of the selected methods
were also used to obtain effective strength values at the clear wood scale. No extension
of the EL approach was necessary to achieve this; only the geometry of the wood unit
cell was changed to represent a mean value of earlywood and latewood and, in this
manner, directly give approximate failure estimates for clear wood. In accordance with
Table 2.2, the parameters defining the ‘analytical’ unit cell geometry for the clear wood
yield lT /lR = 1.12, α = 8.0◦, and tcw/lR = 0.28. This geometry was adapted to comply
with the mean mass density, ρCW = 0.53 g/cm3, of the investigated clear wood material.
The mass densities represented by the wood unit cells at the annual ring scale are 0.35
g/cm3 for earlywood and 0.90 g/cm3 for latewood, with a mean mass density of the cell
wall material of 1.45 g/cm3.

For the numerical approaches at the clear wood scale, a simple unit cell was used as
shown in Figure 2.6 (left side). For these analyses, focus was laid on the L-R plane, the
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plane for which experimental biaxial testing results are available. At this scale, both
annual ring types (earlywood and latewood) are modelled as homogeneous materials,
with properties obtained from the modelling results from the scale below. The effective
strength values obtained from the 3D XFEM simulations of the earlywood and latewood
unit cells can be used to define multiple 3D Tsai-Wu failure surfaces, describing the
failure behaviour of the annual rings at the clear wood scale. Thus, instead of the failure
criteria (2.28) to (2.30) within the XFEM approach, multiple Tsai-Wu failure surfaces
indicate crack initiation within the annual rings at clear wood scale. All the parameters
defining these failure criteria and the corresponding definitions of crack directions can be
found in Lukacevic et al. (2014b). In the LA approach at clear wood scale, the strength
behaviour of each annual ring type is described by a single 2D Tsai-Wu failure surface,
defined through the strength values given in Table 2.4. The radial strengths σR for the

earlywood (EW)

failure criterion σEWL,ten [MPa] σEWL,comp [MPa] σEWR [MPa] τEWLR [MPa]

XFEM mult. Tsai Wu (60.0) (35.4) (5.3) (8.6)

Limit Analysis Tsai Wu 60.0 35.4 5.3 8.6

Elastic Limit Von Mises τlignin = 14.3

latewood (LW)

failure criterion σLWL,ten [MPa] σLWL,comp [MPa] σLWR [MPa] τLWLR [MPa]

XFEM mult. Tsai Wu (126.0) (58.0) (13.0) (8.6)

Limit Analysis Tsai Wu 126.0 58.0 13.0 8.6

Elastic Limit Von Mises τlignin = 14.3

Table 2.4: Strength values for earlywood and latewood layers at the clear wood scale,
for the three different methods. σEWR is valid for tension (ten) as well as compression
(comp). Indices are explained in Figure 2.6.

earlywood and latewood were taken from the 2D LA calculations for the respective unit
cells at the annual ring scale. Since these calculations delivered no strength properties in
the L-direction, those values were taken from the multi-surface failure criteria obtained
by XFEM. That is the reason why the XFEM values in Table 2.4 are in parentheses,
because they describe points of the multi-surface but are not directly linked to Tsai-Wu
failure surface parameters. Again, the 2D Tsai-Wu failure criterion in Equation (2.31)
can be cast in a general quadratic form according to Equation (2.7), and thus, the upper
and lower bound LA formulations (Equations (2.17) and (2.18)) can also be applied at
the clear wood scale.

Finally, each of the three methods described in Section 2.2 delivers predictions of ef-
fective strength for two different scales of observation: the annual ring scale and the
clear wood scale. Selected results from all these computations will be presented in the
following section.
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2.4 Calculations and results

When the strength parameters as described in the previous section were chosen, par-
ticular attention was paid to ensure that the results of the different methods remain
comparable, meaning that all three methods still describe the same wooden material.
Differences in computational results can then be primarily attributed to the respective
method, and a valid performance assessment with respect to wood may be issued. In the
following section, selected computational results from all three methods are presented
and compared with each other, giving insights into their predictive qualities.

By varying the effective (macroscopic) loading situation applied to the unit cell under
consideration, either the honeycomb unit cell at the annual ring scale or the layered unit
cell at the clear wood scale (see Figure 2.6), effective failure surfaces F (Σ) for those
unit cells can be obtained. Within the XFEM approach, loading is applied through
a prescribed displacement field, fulfilling periodicity, at the boundary of the relevant
unit cell. The maximum attainable reaction force at the boundary, for a certain load
situation, defines the corresponding effective failure stress state ΣXFEM . Within the
upper bound LA approach, the effective strain rate tensor Ė in Equation (2.17) is
varied and effective failure stress states ΣUB are obtained by taking the mean value of
the microscopic stresses of the optimal solution. The lower bound LA approach leads to
different failure stress states ΣLB through variation of the effective traction T+ applied
in Equation (2.18). Finally, using the EL approach, effective elastic limit stress states
ΣEL can easily be obtained as described in the last paragraph of Section 2.2.3.

2.4.1 Annual ring scale

In Figure 2.7 the effective failure surfaces obtained for earlywood in the R-T plane are
shown, together with selected failure modes obtained with upper bound LA and XFEM.
The XFEM failure surface consists of six Tsai-Wu criteria fitted to the numerically-
obtained effective stress states ΣXFEM . The detailed procedure and definition of the
failure surfaces shown here can be found in Lukacevic et al. (2014b). LA provides both
lower and upper bound envelopes for the effective strength, with both surfaces based on
86 calculations2. Despite the fairly complex structural characteristics of the unit cell,
the achieved bound gaps, defined as the difference between the lower and upper bounds,
are very small. For the majority of the loading states this gap is less than 1.5%, and
even the worst value is just 3.6%.

As would be expected according to the nature and characteristics of the various meth-
ods (see Figure 2.3), the LA results enclose the results of the XFEM approach. This
difference is larger in tension-dominated regions, because there, the difference between
brittle (XFEM) and ductile (LA) failure becomes obvious. Nevertheless, compared with
the EL approach, the LA method seems to capture the basic failure characteristics quite
well and shows a qualitatively similar effective failure behaviour to that delivered by the
XFEM approach. A good agreement is also revealed by comparing the related failure
modes of LA and XFEM in Figure 2.7. At this point, it is thus shown for the first time
that the application of LA approaches to wood might be reasonable, and taking their
great efficiency into account, even very promising. The same cannot be said of the EL

2 A detailed presentation of all the LA results is beyond the scope of this paper, but is going to be
provided in an additional publication.
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ā

b ca

Σ
T

[M
Pa

]

ΣR [MPa]

XFEM
LA (UB,LB)
EL

b̄ c̄ā
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Figure 2.7: Effective failure surfaces for earlywood in the R-T plane, obtained with the
three different methods, and selected failure modes obtained with upper bound LA (a,
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Publication 2 60

estimates for earlywood, which differ strongly from the XFEM and LA results. The cell
wall running in the R-direction is only slightly inclined, and therefore, structural failure
is only achieved when the normal failure stress of the cellulosic fibre-rich S-layers (cf.
Table 2.1) is exceeded, and not simply when the lignin-rich middle lamella fails. Since
the EL approach used here considers lignin failure as the indication for structural failure,
the elastic limit states highly underestimate the strength in the R-direction. A com-
pletely different picture emerges in the T -direction, where bending and shear loading of
the cell wall is predominant, and thus, shear failure of the lignin-rich phases contributes
the majority of the dissipated energy at structural failure. In this case, the quadratic
strain averages, according to Equations (2.20) and (2.23), probably cannot represent the
high strain concentrations at the corners of the wooden cell sufficiently, leading to an
overestimation of the strength in this direction. To compensate for these weaknesses, a
second effective strain indicating cellulosic fibre failure could be implemented, or higher
order effective strain estimates could be envisaged.

The same procedure has been applied to the latewood unit cell, and the resulting ef-
fective failure surfaces are shown in Figure 2.8. Again, the obtained gaps between
the LA lower and upper bounds are very small, giving reliable strength estimates for
ductile failure. Due to the greater thickness of the latewood cell walls, a larger differ-
ence between ductile and brittle failure estimates could be expected, which is indeed
reflected by comparing the effective failure surfaces obtained from LA and XFEM. Also,
the related failure modes do not show such distinct correlations as for the earlywood
cell. Nevertheless, the basic shape and orientation of the failure surfaces are still in
good agreement. Since the overall volume of solid material in the latewood cell is sig-
nificantly greater, high strain and stress concentrations in corner regions as well as the
strengthening effect of cellulosic fibres play a minor role. For this reason, the effective
failure surface obtained with the EL approach fits well into the overall result, predicting
structural failure in between brittle and ductile failure, as its characteristics (cf. Figure
2.3) would suggest.

While the results at this observation level seem to be reliable, and give useful insights
into the possibilities of the presented methods, they cannot be verified on the basis of
experimental data. For this reason, the proposed methods have also been applied to the
next higher observation scale, the clear wood scale, as described in Section 3.2. These
results are presented in the following section.

2.4.2 Clear wood scale

To the knowledge of the authors, the only comprehensive experimental data set for
multiaxial failure stress states of spruce wood can be found in Eberhardsteiner (2002),
wherein different biaxial loading states in the L-R plane were applied to clear wood
samples. To utilise these experimental results, the proposed computational methods
have been used to obtain effective failure surfaces F (Σ) for the same loading states
as produced within biaxial testing. The rather complex test specimen and the load
application mechanism are shown in Figure 2.9(a). Only clear wood without any growth
irregularities and with linear and parallel annual rings was used for the specimens.
The loading was applied under displacement control, and the biaxial strength of the
sample was assumed to be reached as soon as a peak reaction force in one of the two
directions could be identified. Both very brittle as well as ductile failure mechanisms
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Figure 2.9: (a) Test specimen and load application mechanism for biaxial strength tests
in Eberhardsteiner (2002), and (b) clear wood unit cell as used in the XFEM and LA
approaches, showing layers of earlywood (EW) and latewood (LW).

were observed, but little hardening, so the experimental failure stress states plotted in
Figure 2.10 (circular markers) approximately represent ultimate failure loads, regardless
of their nature of failure.

The corresponding unit cell for the numerical approaches, obeying periodic boundary
conditions, is schematically illustrated in Figure 2.9(b). When using the LA approach,
this unit cell was discretised with about 700 triangular elements as described in Sec-
tion 2.2.2, and around 800 different loading situations were applied to finally obtain the
effective failure surfaces shown in Figure 2.10 (solid and dashed black lines)3. Again, the
bound gap is satisfactorily small and a visually noticeable difference is only present for
grain angles α between 7.5◦ and 30◦. Together with the small amount of computational
effort, which was about 1 hour of computing time per failure surface on a commercial
PC with four CPUs, the LA approach represents a remarkably efficient and stable tool
for obtaining rigorous effective strength information (for ductile failure).

In contrast, the XFEM calculations at this observation scale have proven to be rather
difficult. The homogeneous structure of the unit cell (Figure 2.9(b)) and the resulting
smooth stress and strain fields make it difficult to identify a distinct point for crack
initiation. Additionally, the hard boundary between earlywood and latewood can cause
numerical problems, but its proper consideration is essential to obtain reasonable results.
The way in which these problems can be tackled, and how 3D multi-surface failure
criteria can be achieved in a similar manner to that proposed in Lukacevic et al. (2014b)
for one observation scale below, will be presented in a subsequent work. The effective
failure stress states obtained with XFEM shown in Figure 2.10 (bold crosses) represent
selected results of this work for the considered L-R space. Even if not enough results
could be obtained to define clear effective failure surfaces, they allow for a qualitative
comparison with the other computational methods and the experimental data.

A very satisfactory result is that all methods, without any empirical calibration, are
able to predict the correct magnitude and orientation of the experimentally-obtained
effective strength regions. The LA results almost perfectly form an outer envelope
to these regions. Since no significant hardening effects were encountered during the

3 Illustrative failure modes and a detailed presentation of all the LA results is beyond the scope of
this paper, but is going to be provided in an additional publication.
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experiments, linear-elastic perfectly-plastic failure should lead to the highest effective
strength, which exactly corresponds to the underlying assumptions of LA. By means
of the LA results, the interpretation of the experimental results can now be extended.
As it was stated before, in Section 2.2: ‘A structure does not need to exhibit perfect
plasticity for the theoretical plastic collapse load based on the peak yield stress of each
component to be approached closely. Rather, it is necessary that, at the point when
a collapse mechanism forms under a particular loading, all those regions within the
structure which are undergoing straining lie very close to the peak yield stress which they
can achieve.’ This statement may help explain the large fluctuation of the experimental
strength values in tension-dominated regions. Even if the structural response of wood
is known to be quite brittle under tensile loading, it seems that the microstructure
of wood has a high capacity to redistribute stresses before ultimate failure. For this
reason, the failure loads can (and do) reach values that would be expected for purely
ductile failure. This supports the previously made assumption that wood has the ductile
potential to ‘activate’ the strength of many points along a potential crack surface before
brittle failure occurs. To what extent this potential can be exploited depends on how
homogeneous and defect-free the considered specimen is. The natural variation of such
defects may then introduce the experimentally-observed scatter of effective strengths.

The effective failure stress states obtained from XFEM are in good agreement with
this argument, because they tend to reproduce the lowest strengths achieved in the
experiments, and also deliver a larger scatter compared with the LA results. This
corresponds well to the nature of brittle failure, where complex discrete cracks trigger
the failure load and slightly different crack paths can lead to significantly different
effective strength estimates.

Interestingly, the EL estimates deliver a very good inner envelope of the experimental
results, and justify their name at this scale of observation. Since the underlying wood
unit cell is chosen according to the mean mass density of the investigated clear wood, the
strong underestimation of the earlywood strength in the R-direction (see Figure 2.7) is
not observed at this scale. However, it is not accounted for that failure probably occurs
mainly in the earlywood, the weaker phase at the clear wood scale, which would again
lead to very low strength predictions. Nevertheless, even taking into account these
weaknesses, the EL approach has the potential to be an ideally complementary method
to the LA approach. And as Figure 2.10 demonstrates, together they could be highly
effective tools for predicting the effective strength of wood under multidimensional stress
states.

2.5 Conclusions

To assess the predictive capabilities of material models and computational approaches
is almost impossible without an appropriate set of experimental data for validation.
Even then, calibration parameters may shadow potential weaknesses, or inconsistencies
may be traced back to the wrong origin. This has motivated the present work, in which
three different computational methods have been applied to the same problem: the
prediction of effective wooden strength behaviour. An extended finite element method
(XFEM) approach able to reproduce brittle failure modes accurately, a newly-developed
limit analysis (LA) approach capturing ductile failure modes, and an elastic limit (EL)
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approach based on continuum micromechanics, have all been applied to representative
earlywood and latewood unit cells as well as clear wood structures. At both scales of
observation (annual ring scale and clear wood scale) the geometric models and input
parameters to all approaches have been chosen in a consistent way, to make sure that
differences appearing in the results can mainly be assigned to the methods themselves.

Based on the results obtained, the three computational methods can be generally eval-
uated as follows:

• The XFEM approach is by far the most extensive with respect to computational
effort and algorithmic implementation. This is not surprising, since this method
includes the largest description flexibility, and thus has the potential to reproduce
the processes in nature most realistically. It will not, however, be available for
quick engineering estimates or for the build-up of material databases for wood
species or products in the near future. Nevertheless, as a tool to gain knowledge
of the mechanical behaviour of wood, and to serve as a reference for other wood-
related models, it is of very great value.

• The LA approach has been successfully applied to wooden unit cell structures at
both annual ring scale and clear wood scale. The necessary periodic boundary
conditions, as well as anisotropic strength behaviour of certain material phases,
were taken into account appropriately. Compared with XFEM, basic characterist-
ics of failure modes and the overall strength behaviour could be captured correctly,
both qualitatively and quantitatively. Along with the observed computational ef-
ficiency and numerical stability, these results render the LA approach as a very
promising tool for this kind of application in the future.

• The continuum micromechanical basis of the EL approach makes it unbeatable
with respect to efficiency and the elegance with which material properties of dif-
ferent phases can be linked across several scales of observation. However, when it
comes to strength estimates, stress and strain averages over material phases (even
if they are consistent with energy considerations) are perhaps not able to capture
all failure-triggering processes. In particular, morphological aspects causing high
stress or strain gradients may lead to prediction inaccuracies. Nevertheless, the
potential of this method is undisputed and due to its efficiency it may become
invaluable for rapid strength predictions within engineering design processes.

With respect to wood, a combination of the LA and EL approaches could evolve to an
effective bundle of complementary methods, delivering ‘inner’ and ‘outer’ predictions
for the natural scatter of wooden strengths. In wood products where brittle failure is
prevented by reinforcements, and thus, the ductile potential of wood can be substantially
activated, LA approaches may even be able to deliver reliable strength estimates on their
own. Finally, reliable 2D and 3D strength information for wooden boards as well as
wood-based products could be obtained in an efficient way, which would subsequently
help to exploit their full potential in modern engineering structures.

Future work will be devoted to the extension of the LA approach to 3D, and its applic-
ation to wooden boards and wood-based engineering products. Particularly important
topics in this respect are layered wooden structures, as discussed in Gaff et al. (2015),
and cross-laminated timber plates in Hochreiner et al. (2013). Preliminary 3D results
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agree very well with the 2D results presented within this work, and thus strengthen
the statements made. Moreover, stochastic aspects as described in Füssl et al. (2016),
Kandler et al. (2015a), very relevant in layered wood-based products, will be taken into
account in future works.
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Abstract: Cross-laminated timber (CLT) is an innovative wood product with increas-
ing utilisations. It is well-known that, the orthotropic and inhomogeneous strength
properties of wooden boards have a strong influence on the load bearing capacity of
CLT plates, especially when the complex wood fibre distribution due to randomly oc-
curring knots is considered. Thus, high safety factors are used in current standards
and a generally-accepted numerical tool for the strength prediction of CLT plates is
still not available. In this paper, we combine recent advances in 3D numerical limit
analysis and a knot reconstruction algorithm, where not only the bending strength of
CLT plates under concentrated loading is estimated using the numerical approach, but
also the scatter of strength properties resulting from the material’s inhomogeneities is
investigated using the stochastic approach. For the latter, data collected during the
grading process of wooden boards is condensed into so-called strength profiles for single
wooden boards. The limit analysis approach then allows a time efficient simulation of
a large number of randomly assembled CLT plates. The comparison of the resulting
strength predictions to experiments shows good agreement with respect to both the
mean load bearing capacity and the statistical scatter of strength.

Keywords: cross-laminated timber, orthotropic and inhomogeneous strength proper-
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ties, 3D limit analysis, knot reconstruction algorithm, stochastic approach, strength
profiles.

3.1 Introduction

Wood is undergoing a revival and recapturing market shares from other building mater-
ials, reflected in an enormous growth rate of the overall volume consumption. Beside its
excellent mechanical and physical properties, wood is well-known as an environment-
ally sustainable material with a pleasant appearance, and thus, particularly suitable for
residential buildings, office buildings, school buildings, and related buildings. The main
reasons for this upswing are continuous improvements in building codes throughout
Europe on the one hand and the development and application of innovative wood-based
products on the other hand.

One of the most aspiring products is cross-laminated timber (CLT), which is a plate-like
composite consisting of an odd number of layers with wooden boards placed side-by-side
in each layer and stacked crosswise. The basic idea of CLT was developed in Austria
and Germany in the early 1990s. From the early 2000s, this innovative wood product
has driven global interest and intensive research efforts have been carried out starting
from Central Europe and spreading over the world. The utilisation of CLT panels
in constructions has sharply increased during the last decade, particularly in mid-rise
and high-rise buildings in both Europe and North America. This achievement can be
attributed to its outstanding properties regarding in- and out-of-plane bearing capacity,
degree of prefabrication, seismic performance, fire resistance, sound insulation, as well
as to its environmentally sustainable characteristics (Brandner et al., 2016, Gagnon and
Pirvu, 2011).

Despite the increasing demand, the current utilisation of wood-based products with
respect to their mechanical properties is far away from their real potential according to
Füssl et al. (2012), because dimensioning practice and many existing design rules are
still based on empirical observations / background.

Regarding CLT, as reviewed by Hochreiner et al. (2013) and Brandner et al. (2016), a
large number of research has been performed on a wide range of topics, but particularly
for strength, those research is either limited to the evaluation of failure modes on the
surface of CLT elements or only considers the mechanical behaviour within the elastic
regime. For this reason, no design method for CLT has been universally accepted
at this moment, which is a drawback for the ongoing CLT standardisation (Brandner
et al., 2016). For example, the Eurocode 5 (EN 1995-1-1, 2003) design concept for CLT
elements is based on the first violation of either bending or rolling shear strength, and
the mechanical behaviour beyond the elastic regime is not considered, leaving room for
a better utilisation of the material. This could be achieved by efficient and reliable
computational methods, providing more information about the mechanical behaviour,
especially with respect to failure mechanisms and realistic collapse loads. The main
difficulty for the implementation of such computational methods for CLT is inherited
from its raw material wood, which, as a typical naturally-grown material, exhibits a
very complex hierarchical structure and a significant variety in macroscopic mechanical
properties.

However, the application of computational methods to determine the strength of wooden
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elements is a rapidly growing area of research and many contributions can be found in
the near past. The first group of approaches uses the mean stress concept, where av-
eraged stresses over a finite small area are assumed to indicate failure instead of the
direct description of failure mechanism (Aicher et al., 2002, Masuda, 1988, Serrano
and Gustafsson, 2007, Sjödin and Serrano, 2008, Sjödin et al., 2008). More sophistic-
ated approaches are based on so-called multi-surface plasticity/failure criteria, where
stress states leading to cracks are determined by orthotropic yield surfaces (Mackenzie-
Helnwein et al., 2003, Schmidt and Kaliske, 2006). An extension of this approach is
the implementation of cohesive zone models to simulate the crack propagation in wood
(Schmidt and Kaliske, 2007, 2009). The assumption of a homogeneous fibre orientation
is required for such methods, which is normally unrealistic for wood, especially in the
presence of knots and other defects. Thus, in recent years, two of the authors (Lukacevic
and Füssl, 2016, Lukacevic et al., 2014b, 2017) have established the basis for a crack
initiation and propagation criterion in the framework of the eXtended Finite Element
Method (XFEM). Since microscopic failure mechanisms have significant influence on
the macroscopic failure behaviour of wood, in these works, the concepts of plastic fail-
ure criteria as well as crack initiation criteria were applied to several length scales to
finally obtain a multi-surface failure criterion for wood at the macroscale. With such
implementations, a realistic numerical description of failure mechanisms within wooden
boards seems to be possible in the near future.

For CLT, because of its laminated structure with wooden lamellas exhibiting variable
mechanical properties aligned in an orthogonal manner, numerical modelling becomes
even more difficult. Saavedra Flores et. al introduced a promising numerical approach
based on a multiscale concept using different homogenisation schemes predicting the
stiffness behaviour (Hristov et al., 2017, Saavedra Flores et al., 2016b, 2015) and the
rolling shear failure behaviour (Saavedra Flores et al., 2016a). However, their work
mainly focuses on stiffness properties and only specific failure mechanism, rolling shear
failure, has been studied, and each layer of the CLT plate is defined as homogeneous
with no variations between wooden boards. To the authors’ knowledge, a numerical
approach regarding failure behaviour of CLT with non-homogeneous strength properties
of lamellas hasn’t been proposed yet.

Additionally, as stated by Hochreiner et al. (2014), the strength properties of wooden
boards have a strong influence on the load bearing capacity of CLT, which has rarely
been studied in previous research, neither experimentally nor numerically. The variety
in mechanical properties between wooden boards can be partly attributed to the vary-
ing clear wood properties, e.g. density and moisture content, and more importantly
to the presence of knots and fibre deviations around them. As stated by Johansson
(2003), in most destructive bending or tension tests, failure is caused either by knots
themselves or by cut fibres due to local slope of grain in their vicinities. Lukacevic
and Füssl (2014) presented a physically-based structural failure criterion, where it was
assumed that in wooden boards with knots, global failure can be related to a stress
transfer mechanism, which is identifiable by evaluating averaged stress fields in the
vicinity of knots. Complemented by a knot reconstruction algorithm (Kandler et al.,
2016a, Lukacevic and Füssl, 2014, Lukacevic et al., 2015), mechanical properties can
be predicted for wooden board sections containing knots by using so-called indicating
properties (Lukacevic et al., 2015), which are originally used during the strength grad-
ing process of such boards. By dividing wooden boards into a reasonable number of
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clear wood and knot sections, which are able to represent the distribution of mechan-
ical properties, the global performance of wood-based products can be estimated based
on a stochastic approach, as successfully implemented for stiffness estimates of glued
laminated timber (GLT) beams by Kandler and Füssl (2017), Kandler et al. (2015a,b).
Since the main focus of this work is on strength properties, a similar stochastic approach
can be applied to estimate the load bearing capacity of CLT by using above-mentioned
strength profiles of wooden boards. For this purpose, comprehensive numerical calcu-
lations are required, which must be able to consider highly orthotropic and non-linear
material behaviour.

Recently, the numerial limit analysis has been implemented by Li et al. (2018c) for
strength estimates of wood, providing promising results at different length scales and
exhibiting higher time efficiency and a simpler solution procedure compared to conven-
tional finite element based approaches according to Füssl et al. (2017). This numerical
approach has been widely used as a powerful prediction tool for load bearing capa-
cities and failure mechanisms of various structures, e.g. reinforced-concrete structures
(Domenico et al., 2014), composite laminates (Limam et al., 2011, Pisano et al., 2013)
and masonry structures (Milani, 2010, Milani and Bucchi, 2010, Milani et al., 2010), in
which calculations exhibit high time efficiency and promising performance. Considering
these features, the numerical limit analysis is expected to be a suitable alternative tool
to estimate the load bearing capacity, especially of CLT, where less brittle and more
ductile failure mechanisms are observed in general.

Originally, the objective of limit analysis was the determination of the load bearing ca-
pacity of structures exhibiting elastoplastic material response. At collapse, the capacity
of structures to store any additional external work as recoverable energy is lost and
limit analysis concentrates on the critical energy dissipation rate at structural failure.
The problem may be stated as follows: Find the kinematically admissible velocity field,
which minimises the external energy over the set of all statically admissible stress fields,
which maximise the internal dissipated energy according to Ciria et al. (2008). Unfor-
tunately, the so-obtained saddle-point problem can be solved exactly only for simple
geometric and loading situations, and for simple material behaviour. For more complex
situations, the plastic flow compatibility in the static lower bound principle and the
plastic admissibility in the kinematic upper bound principle may be relaxed, providing
lower and upper bounds for the load bearing capacity (effective strength) of structures.

The first complete formulations of both lower bound and upper bound theorems were
established by Drucker et al. (1951, 1952) as well as Hill (1951), and an early imple-
mentation of the finite element method and the optimisation theory into limit analysis
was done by Lysmer (1970) for the lower bound problem, and by Anderheggen and
Knöpfel (1972) and Maier et al. (1972) for the upper bound problem. In these works,
linear three-noded triangular elements were used for discretisation and the underlying
optimisation problem could be solved by linear programming, provided that the used
failure criteria were linearised.

Thanks to the rapid evolution of computer technology and the development in math-
ematical programming, more attention has been drawn to numerical limit analysis for-
mulations within past decades. Notable contributions with respect to the non-linear
programming have been given in Krabbenhøft and Damkilde (2000), Lyamin and Sloan
(2000, 2002a,b), enabling non-linear failure criteria being formulated in their native
form. However, local smoothing of yield surfaces with singularities, like the Tresca or
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Mohr-Coulomb critera, were necessary.

In general, the efficiency of the numerical limit analysis method significantly depends
on the algorithms for solving the associated optimisation problem. In later studies by
Makrodimopoulos and Martin (2006, 2007), Ciria et al. (2008), Füssl et al. (2008), and
Portioli et al. (2014), the second-order cone programming (SOCP) has been proven to
be an excellent alternative method, with sufficient robustness and efficiency to solve
large-scale optimisation problems of limit analysis. This method is also applicable to
a large variety of failure criteria, since many commonly-used failure functions can be
cast as second-order cones. Therefore, within this work, the SOCP is employed for the
proposed numerical limit analysis formulations.

The main objective of this work has been to develop and apply 3D numerical limit
analysis formulations to determine the bearing capacity of CLT plates (under bending)
and, additionally, considering the strength property variations within wooden lamellas
according to several grading classes, which in reality are caused by knots and fibre
deviations. In Section 3.2, the complete 3D numerical limit analysis formulations are
introduced for both the lower bound and the upper bound approaches. As a validation,
these formulations are applied to CLT plate bending tests of three different grading
classes to obtain strength estimates in Section 3.3.1. Then, this numerical method is
combined with a stochastic approach for the CLT plate bending capacity using strength
profiles in Section 3.3.2. Finally, a brief conclusion is given in Section 3.4.

3.2 Numerical limit analysis formulations

Limit analysis is based on a plastic bounding theorem requiring the assumptions of
perfectly rigid plasticity and pure ductile failure. The main objective is to determine
the collapse load multiplier β and corresponding failure modes for a given load situ-
ation under certain boundary conditions. The procedure can be briefly summarised
as follows: Finding the statically admissible stress field maximising the external load
and the kinematically admissible velocity field minimising the internal plastic energy
dissipation delivers a lower bound βLB and an upper bound βUB of the exact collapse
load multiplier β∗, respectively. The computational error can be easily estimated as

err(%) = (βUB − βLB) · 100/(βUB + βLB) (3.1)

In this section, both 3D lower bound and upper bound formulations are introduced in
discretised form. More detailed derivations and expressions can be found in related
publications from the authors (Li et al., 2018a,c).

3.2.1 Lower bound formulation

The lower bound optimisation problem is looking for the maximum external load while
the stress field satisfies internal equilibrium, the static boundary conditions, and the
plastic failure criteria. It can be formulated as

βLB = max β
s.t. divσ = g in Ω

σ · n = βt on Γbc

f(σ) ≤ 0 in Ω

(3.2)
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where Ω refers to the volume of the structure with Γ = ∂Ω as the boundary surface,
σ ∈ R3×3 represents the Cauchy stress field, div is the divergence operator for stress
tensors, g ∈ R3 is the body force field, n ∈ R3 is the outward normal vector on the
surface part Γbc ⊂ Γ where a boundary surface traction field t ∈ R3 is prescribed, and
f(σ) ≤ 0 indicates the plastic yield function.

For the discretisation of this lower bound formulation, tetrahedron elements with 4
internal stress evaluation nodes (at the 4 vertices) are used. The stress field σ is
interpolated within each tetrahedron element using linear shape functions N el,i

σ , and the
nodal stress vector is expressed in Voigt notation qel,iσ ∈ R6 (∀el ∈ {1, · · · , LE} and i ∈
{1, · · · , 4}) with LE as the total number of elements in the lower bound problem. In the
discretised structure, the traction field t is enforced to be continuous between elements,
but jumps in the stress field σ are allowed across element interfaces. Thus, all elements
have their own internal stress evaluation nodes and, at adjacent nodes, stress evaluation
nodes from different elements are allowed to share the same position.

3.2.1.1 Equilibrium within elements

The first constraint in Eq. (3.2) represents the internal equilibrium within each element
el, which can be formulated in discretised form as

4∑
i=1

LσN
el,i
σ qel,iσ = qelg , ∀e ∈ {1, · · · , LE} (3.3)

where Lσ ∈ R3×6 represents the divergence operator for the stress vector in Voigt
notation and qelg ∈ R3 denotes the elemental body force vector.

3.2.1.2 Equilibrium between elements

To enforce continuity of the traction field between elements the following additional
constraint is applied:

Ldet qde,iσ − Ldet qde,i
′

σ = 0, ∀de ∈ {1, · · · , LDE} and i ∈ {1, · · · , 3} (3.4)

where qde,iσ ∈ R6 is the nodal stress vector for each pair of the 3-noded triangular
interfaces de, with i and i′ indicating the nodal pairs. LDE is the total number of
element interfaces in the lower bound problem and Ldet ∈ R3×6 represents the stress-
traction operator based on the normal vector nde ∈ R3 for each element interface de,
pointing from the node i to the node i′.

3.2.1.3 Static boundary conditions

The traction field on the boundary surface part Γbc is prescribed through the second
constraint in the optimisation problem Eq. (3.2). In the discretised form this constraint
is applied to the triangular boundary surfaces, denoted as be, on Γbc, reading

Lbet qbe,iσ = βqbe,it , ∀be ∈ {1, · · · , LBE} and i ∈ {1, · · · , 3} (3.5)

where LBE is the total number of triangular surfaces on Γbc, qbe,iσ is the nodal stress
vector of the triangular surface, qbe,it is the surface traction vector, and Lbet is the
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stress-traction operator for each boundary element based on the corresponding outward
normal vector nbe on Γbebc ⊂ Γbc.

3.2.1.4 Plastic failure criteria

In the lower bound formulation, the plastic failure criteria are applied at each stress
evaluation node to determine the plastic failure state. In this work, the yield function
is expressed in a general form as

qel,iσ,loc = Rel
σ qel,iσ

f(qel,iσ,loc, k
el
σ ) = qel,iσ,loc

ᵀ
Pel
σ qel,iσ,loc + Felᵀ

σ qel,iσ,loc − 1 ≤ 0

, ∀el ∈ {1, · · · , LE} and i ∈ {1, · · · , 4}

(3.6)

where qel,iσ,loc ∈ R6 is the nodal local stress vector with respect to the principal material
orientation in the element el, Rel

σ ∈ R6×6 is the transformation matrix for stress vectors
from the global coordinate basis (x − y − z) into the material local coordinate basis
(x′−y′−z′)elmat for each element. The matrices Pel

σ ∈ R6×6 and Fel
σ ∈ R6 are determined

by the type of yield function and the material strength parameters applied to the element
el.

As shown in Eq. (3.2), the nonlinearity of the lower bound optimisation problem is
attributed to the nonlinear yield function f(σ) ≤ 0. Thus, this nonlinear optimisation
problem can be solved efficiently using second-order cone programming (SOCP) as
long as the yield function Eq. (3.6) can be formulated as a second-order cone (SOC)
constraint, reading

sel,iσ = aelσ + Bel
σRel

σ qel,iσ

sel,iσ ∈ C

, ∀el ∈ {1, · · · , LE} and i ∈ {1, · · · , 4} (3.7)

where sel,iσ ∈ R8 represents the SOC expression of the yield function. aelσ ∈ R8 and
Bel
σ ∈ R8×6 are determined from Pel

σ and Fel
σ .

3.2.1.5 Discretised lower bound optimisation problem

Assembling above constraints, the lower bound optimisation problem Eq. (3.2) can be
written in discretised form as

βLB = max β
s.t. Amat

σ qσ = qg

Adis
t qσ = 0

Abc
t qσ = βqt

sσ = aσ + BσRσqσ

sσ ∈ C

(3.8)
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where qσ ∈ R24LE contains all nodal stress vectors throughout the whole structure,
qg ∈ R3LE is the assembled body force vector for all elements, qt ∈ R9LBE is the as-
sembled boundary traction vector, sσ ∈ R32LE is the assembled vector for SOC expres-
sions of yield functions at all stress evaluation nodes, aσ ∈ R32LE and Bσ ∈ R32LE×24LE

are assembled matrices containing material strength parameters from Eq. (3.7). Amat
σ ∈

R3LE×24LE , Adis
t ∈ R9LDE×24LE , Abc

t ∈ R9LBE×24LE and Rσ ∈ R24LE×24LE are as-
sembled throughout the whole structure from Eqs. (3.3), (3.4), (3.5) and (3.7), respect-
ively.

3.2.2 Upper bound formulation

Based on the theorem, the objective of upper bound calculations is looking for the
failure mechanism for which the corresponding kinematically admissible velocity field
u̇ ∈ R3 leads to the lowest internal energy dissipation rate Wint.

In this work, as is introduced in Li et al. (2018a,b), velocity jumps ∆u̇ ∈ R3 are allowed
only across prescribed discontinuities Γdis, consisting of a surface Γ+

dis with the related
velocity field u̇+

dis and a surface Γ−dis with the related velocity field u̇−dis. Such velocity
jumps ∆u̇ = (u̇+

dis − u̇−dis) represent additional degrees of freedom for the plastic flow,
locally at Γdis. Then, the internal energy dissipation rate Wint is composed of the
plastic energy dissipation rate in the continuum body Ω and the dissipation rate due to
interface failure across the prescribed discontinuities Γdis, giving

Wint =

∫
Ω
dmatp (ε̇)dV +

∫
Γdis

ddisp (µ̇)dA (3.9)

with the plastic dissipation functions as

dmatp = sup
σ∈F

σᵀε̇, F = {σ|f(σ) ≤ 0} in Ω

ddisp = sup
t∈D

tᵀµ̇, D = {t|f(t) ≤ 0} on Γdis

(3.10)

where µ̇ ∈ R3 is the local plastic flow related to the velocity-jump field ∆u̇ at Γdis,
f(σ) ≤ 0 and f(t) ≤ 0 are the stress-based yield function for Ω and the traction-based
yield function for Γdis, respectively.

Then, the primal upper bound optimisation problem can be formulated as

min Wint

s.t. ε̇ = Lu̇u̇ in Ω

u̇ = u̇bc on Γbc

ε̇ = λ̇σ∂f(σ)/∂σ in Ω

µ̇ = λ̇t∂f(t)/∂t on Γdis

(3.11)

in which the four constraints are related to compatibility, kinematic boundary condi-
tions, and associated plastic flow both in Ω as well as at Γdis. In the first constraint,
Lu̇ ∈ R6×3 denotes the linear compatibility operator mapping the velocity field u̇ onto
the strain-rate field ε̇. In the second constraint, u̇bc refers to the prescribed velocity
boundary conditions at the boundary surface part Γbc ⊂ Γ. In the last two constraints,
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λ̇σ and λ̇t are the plastic multipliers determining the magnitude of plastic flow within
the continuum material Ω and at the prescribed velocity discontinuity Γdis, respectively.

The upper bound optimisation problem in Eq. (3.11) can also be formulated in a,
mathematically equivalent, dual form, in which the objective function becomes the
external work rate Wext, reading

Wext =

∫
Ω

u̇ᵀg0dV +

∫
Γbc

u̇ᵀβtbcdA (3.12)

consisting of the work done by a constant body force field g0 in Ω and the boundary
surface traction field tbc on Γbc. The complete dual upper bound problem can then be
formulated as follows

max Wext

s.t.
∫

Ω ε̇
ᵀσdV +

∫
Γdis

µ̇ᵀtdA =
∫

Ω u̇ᵀg0dV +
∫

Γbc
u̇ᵀβtbcdA in Ω

f(σ) ≤ 0 in Ω

f(t) ≤ 0 on Γdis

(3.13)

where the first constraint refers to the weak form of equilibrium, related to Eq. (3.9) and
Eq. (3.12), the second and the third constraints represent the stress-based and traction-
based yield functions for the continuum material Ω and the velocity discontinuities Γdis,
respectively.

In the following, only this dual optimisation problem is discretised and solved, but
complete expressions of discretised primal and dual upper bound formulations can
be found in Li et al. (2018a,b). For the discretisation linear strain tetrahedron ele-
ments are used with 10 velocity evaluation nodes (4 vertice and 6 middle nodes) and
4 strain-rate evaluation nodes (at the 4 vertices). The velocity field u̇ is approxim-
ated using 3D quadratic shape functions N el,i

u̇ for interpolation between the nodal
velocities qel,iu̇ ∈ R3 (∀el ∈ {1, · · · , UE} and i ∈ {1, · · · , 10}) with UE as the total
number of elements; the strain-rate field ε̇ is approximated using 3D linear shape
functions N el,j

ε̇ for the interpolation between the nodal strain-rate vectors qel,iε̇ ∈ R6

(∀el ∈ {1, · · · , UE} and j ∈ {1, · · · , 4}).
On the boundary surface part Γbc, each boundary surface element be contains 6 velocity
evaluation nodes (3 vertice and 3 middle nodes). The velocity field u̇ is approximated
using 2D quadratic shape functions N̄ be,i

u̇ for interpolation between the nodal velocity
vectors qbe,iu̇ ∈ R3 (∀be ∈ {1, · · · , UBE} and i ∈ {1, · · · , 6}) within Γbebc ⊂ Γbc, where
UBE is the total number of 6-noded boundary elements on Γbc.

In the discretised upper bound formulation, the strain-rate field ε̇ varies linearly within
each element and is allowed to be discontinuous between elements; velocity jumps ∆u̇
are allowed only across prescribed velocity discontinuities Γdis.

At Γdis, each triangular discontinuity element de contains 6 velocity evaluation nodes
(3 vertice and 3 middle nodes), where 2D quadratic shape functions N̄de,i

u̇ are used
to interpolate between 6 pairs of nodal velocity vectors qde+,ju̇ and qde−,ju̇ (∀de ∈
{1, · · · , UDE} and i ∈ {1, · · · , 6}) with UDE as the total number of discontinuity ele-
ments on Γdis. To guarantee consistence of plastic flow throughout the whole structure,
it is straightforward to enforce the localised plastic flow µ̇ to be linear at each discon-
tinuity element Γdedis ⊂ Γde, where 3 internal evaluation nodes (at the 3 vertices) are used
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to interpolate the localised plastic flow µ̇ using 2D linear shape functions N̄de,i
µ̇ to inter-

polate between the nodal plastic flow vectors qde,jµ̇ ∈ R3 (∀de ∈ {1, · · · , UDE} and j ∈
{1, · · · , 3}).

3.2.2.1 Weak equilibrium

Strictly speaking, as stated by Makrodimopoulos (2010), the upper bound problem is
based on the kinematic theorem, in which only the velocity field u̇ and the strain-rate
field ε̇ are to be considered. Thus, the forces appearing in the upper bound formu-
lations, partly due to exploiting duality, not necessarily represent physically accurate
interpretable quantities. They can rather be interpreted as stress-like quantities σ̂el and
traction-like quantities t̂de, defined as follows

σ̂el =
4∑
i=1

∫
Ωel N

el,i
ε̇ σdV∫

Ωel N
el,i
ε̇ dV

, ∀el ∈ {1, · · · , UE} (3.14a)

t̂de =

3∑
j=1

∫
Γdedis

N̄de,j
µ̇ tdA∫

Γdedis
N̄de,j
µ̇ dA

, ∀de ∈ {1, · · · , UDE} (3.14b)

where both evaluation nodes and shape functions are shared with the strain-rate field
ε̇ in each solid element Ωel ⊂ Ω and the localised plastic flow µ̇ at each discontinuity
element Γdedis, respectively.

The internal energy dissipation rate Eq. (3.9), consisting of the plastic dissipation in
both the material as well as at the interface, can then be discretised as follows

Wint =
UE∑
el=1

∫
Ωel
ε̇ᵀσ̂eldV +

UDE∑
de=1

∫
Γdedis

µ̇ᵀt̂dedA

=
UE∑
el=1

4∑
i=1

4∑
j=1

qel,iᵀε̇ q̂el,jσ

∫
Ωel

N el,i
ε̇ N el,j

ε̇ dV +
UDE∑
de=1

3∑
k=1

3∑
l=1

qde,kᵀµ̇ q̂de,lt

∫
Γdedis

N̄de,k
µ̇ N̄de,l

µ̇ dV

(3.15)

where q̂el,iσ ∈ R6 denotes the nodal stress-like vector in Ωel and q̂de,it ∈ R3 the nodal
traction-like vector at Γdedis.

The compatibility constraint for each solid element in Ωel in discretised form reads

4∑
i=1

Nel,i
ε̇ qel,iε̇ = Lu̇

10∑
j=1

Nel,j
u̇ qel,ju̇ , ∀el ∈ {1, · · · , UE} (3.16)

indicating the relation between the nodal strain-rate vectors qel,iε̇ and the nodal velocity
vectors qel,ju̇ ; the compatibility constraint for each discontinuity element at Γdedis reads

3∑
i=1

qde,iµ̇ =
6∑
j=1

(qde+,ju̇ − qde−,ju̇ ), ∀de ∈ {1, · · · , UDE} (3.17)

indicating the relation between the nodal localised plastic flow vector qde,iµ̇ and the pairs
of nodal velocity vectors qde+,ju̇ and qde−,ju̇ .
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In this work, the body force is not considered, giving g = 0. According to Eq. (3.12),
the discretised form of the external work rate can then be expressed as

Wext =

UBE∑
be=1

∫
Γbebc

u̇ᵀβtbcdA

=
UBE∑
be=1

6∑
i=1

nt∑
j=1

βqbe,iᵀu̇ qbe,jtbc

∫
Γbebc

N̄ be,i
u̇ N̄ be,j

tbc
dA

(3.18)

where the nodal traction vectors qbe,itbc
are prescribed at nt evaluation nodes at each

boundary surface element on Γbebc, interpolated by the 2D shape functions N̄ be,j
tbc

for the
traction field tbc. Note that, since the boundary traction field tbc is prescribed directly
to each evaluation node on Γp, qbe,itbc

can be expressed directly in the exact form.

3.2.2.2 Plastic yield function

The dual upper bound problem Eq. (3.13) consists of the stress-based yield functions
f(σ) ≤ 0 for the continuum material Ω and the traction-based yield functions f(t) ≤ 0
for the prescribed velocity discontinuities Γdis. In order to guarantee consistent strength
behaviour throughout the whole structure, an algorithm has been introduced by the
authors to project the stress-based yield function f(σ) ≤ 0 onto a locally equivalent
traction-based yield function f(t) ≤ 0 with respect to Γdis (Li et al., 2018a,b).

Since both the stress-like quantities σ̂el and the traction-like quantities t̂de are interpol-
ated linearly within corresponding elements, it is sufficient to evaluate yield functions
only at vertices of the elements. As introduced in Eq. (3.7), both yield functions can
be formulated in SOC form, giving

ŝel,iσ = âelσ + B̂el
σRel

σ q̂el,iσ

ŝel,iσ ∈ C

, ∀el ∈ {1, · · · , UE} and i ∈ {1, · · · , 4} (3.19a)

ŝde,jt = âdet + B̂de
t Rde

t q̂de,jt

ŝde,jt ∈ C

, ∀de ∈ {1, · · · , UDE} and j ∈ {1, · · · , 3} (3.19b)

where Rde
t represents the transformation matrix for traction vectors from the global

coordinate basis (x − y − z) to the local coordinate basis (x′ − y′ − z′)dedis for velocity
discontinuities, ŝel,iσ ∈ R8 and ŝd,it ∈ R5 are the SOC expressions of the yield functions,
âel,iσ ∈ R8, B̂el,i

σ ∈ R8×6 and âd,it ∈ R5, B̂d,i
t ∈ R5×3 contain material strength paramet-

ers. In Eq. (3.19), the yield functions are formulated in terms of the weighted averaged
expressions according to Eq. (3.14). As stated by Makrodimopoulos (2010), only when
the material strength properties are constant within each element, the weighted aver-
aged quantities equal the exact nodal quantities and all hat symbols can be ignored in
Eqs. (3.15), (3.14) and (3.19).



Publication 3 78

3.2.2.3 Assembly

Finally, the discretised formulation of the dual upper bound optimisation problem, Eq.
(3.13), can be formulated as

max Wext

s.t. Amat
UB

ᵀ
q̂matσ + Adis

UBq̂dist = βAbc
UBqbct

ŝmatσ = âmatσ + B̂mat
σ Rmat

σ q̂matσ

ŝmatσ ∈ C

ŝdist = âdist + B̂dis
t Rdis

t q̂dist

ŝdist ∈ C

(3.20)

where Amat
UB ∈ R3UN×24UE and Adis

UB ∈ R3UN×9UD are assembled from Eqs. (3.15),
(3.16) and (3.17) with UN as the total number of velocity evaluation nodes; qbct ∈ R3UN

and Abc
UB ∈ R3UN×3ntUBC are assembled from Eq. (3.18); ŝmatσ ∈ R32UE , âmatσ ∈ R32UE ,

B̂mat
σ ∈ R32UE×24UE , Rmat

σ ∈ R24UE×24UE and ŝdist ∈ R15UD, âdist ∈ R15UD, B̂dis
t ∈

R15UD×9UD, Rdis
t ∈ R9UD×9UD are assembled from Eq. (3.19); q̂matσ ∈ R24UE and

q̂dist ∈ R9UD are the assembly of weighted average vectors for nodal stress vectors in Ω
and nodal traction vectors on Γdis, respectively.

3.3 Application to CLT plates

In this section, the proposed numerical limit analysis formulations are applied to estim-
ate the bending bearing capacities of CLT plates. The CLT plates are implemented as
layer laminated structures consisting of wooden boards aligned parallely in each layer
and perpendicularly over adjacent layers. For each wooden board, anisotropic failure
behaviour is considered using the Tsai-Wu failure criterion. All CLT plates are discret-
ised by above-mentioned tetrahedron elements. Strength parameters are prescribed for
each element, by which, the distribution of strength properties along wooden boards
can be considered easily by prescribed strength profiles.

3.3.1 CLT plate bending test

The first task is applying the numerical method to estimate the CLT plate bending
capacity for several grading classes and comparing the numerical results with exper-
imental observations from Hochreiner et al. (2014). In the experimental setup, CLT
plates were assembled using wooden boards from 3 different strength classes (C18, C24,
and C35) according to the European code EN338, where each plate consisted of wooden
boards from the same strength class. Each CLT plate exhibits a 3 layered structure with
dimensions of 1500 × 1500 × 57 mm and each layer consisted of 15 parallelly-aligned
wooden boards with a dimension of 1500× 100× 19 mm.

As shown in Figure 3.1a, the CLT plate was mounted on a vertically oriented steel frame
and a concentrated loading was applied horizontally. Against the loading direction,
the plate was supported by 4 pre-assembled tubes on the loaded front surface as line
constraints, shown in Figure 3.1b. The loading was applied by a hydraulic punch device
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(a) (b) (c)

Figure 3.1: Illustration of the experimental set-up: (a) vertically oriented supporting
steel frame with horizontal loading; (b) four pre-assembled tubes as the supporting
structure on loaded front surface of CLT plates; (c) hydraulic punch device as the
concentrated loading on the center of loaded back surface (Hochreiner et al., 2014).

on the centre of the loaded surface with a square loaded area of 200× 200 mm, shown
in Figure 3.1c.

In this way, 8 CLT specimens were tested for each of the 3 strength classes (C18, C24,
and C35) and the influence of the wooden board strength properties on the CLT plate
load bearing capacities were discussed by Hochreiner et al. (2014).
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Figure 3.2: Numerical implementation of the CLT plate bending test as: (a) dimensions
of the numerical model according to the experiment set-up with the blue square as
loading region and the blue dash line as line constrints; (b) assembly of the wooden
boards and the prescribed boundary conditions; (c) example of model discretisation.

Dimensions of the numerical models for the CLT plates, shown in Figure 3.2a, are
defined according to the experimental setup. Boundary conditions are defined as a
concentrated loading on the top surface and the line constraints on the bottom as shown
in Figure 3.2b. Each CLT plate is discretised using approximately 40, 000 tetrahedral
elements (see Figure 3.2c for an example). An orthotropic Tsai-Wu yield function is
applied to each element with respect to the local coordinate basis determined from the
alignment of the corresponding wooden board.

As a validation, the numerical approaches are expected to provide reliable estimates
on the load bearing capacities of CLT plates compared to experimental results. For
this purpose, the differences in strength properties between the strength classes have



Publication 3 80

strength class strength properties (N/mm2)
ft,0 ft,90 fc,0 fc,90 fτ

C18 11 0.4 18 2.2 3.4
C24 14 0.4 21 2.5 4
C35 21 0.4 25 2.8 4

Table 3.1: Strength properties for different strength classes of wooden boards according
to European Code EN338, including tension parallel ft,0, tension perpendicular ft,90,
compression parallel fc,0, compression perpendicular fc,90 and Shear fτ .

to be considered, and it is straightforward to determine strength parameters according
to EN338 as shown in Table (3.1). Note that, these code strength values represent the
characteristic 5%-fractile-strengths, but for the comparison with experimental results it
is more meaningful to use mean strength values, which can be determined from charac-
teristic values as introduced by Jenkel et al. (2015). Then, the strength parameters for
the Tsai-Wu yield function Eq. (3.6) can be determined by

Fσ,1 =
1

ft,0
− 1

fc,0
, Fσ,2 = Fσ,3 =

1

ft,90
− 1

fc,90
,

Pσ,11 =
1

ft,0fc,0
, Pσ,22 = Pσ,33 =

1

ft,90fc,90
,

Pσ,55 =
1

(fτ/3)2
, and Pσ,44 = Pσ,66 =

1

fτ
2 ,

(3.21)

where the material is considered as transversely isotropic, such that the strength values
are identical in radial (R) and tangential direction (T ), and the rolling shear strength
is considered as one-third of the shear strength value in Table (3.1). As a result of
using strength values obtained from codes, in the perpendicular-to-grain directions, the
tensile strength ft,90 is much smaller than the compressive strength fc,90. In addition,
the definition of the failure criterion with the components of Eq. (3.21) leads to an
ellipsoidal failure surface, where the intersections of the ellipsoid with the coordinate axis
conform with the chosen strength values. But the transformation of the failure surface
towards the perpendicular-to-grain compressive stress region leads to unrealistically high
maximum strength values in the parallel-to-grain direction, which are much larger than
the desired, chosen strength values, in this direction. Thus, interaction parameters for
the Tsai-Wu yield function (Pσ,12, Pσ,23 and Pσ,13) are determined by an optimisation
algorithm, which introduces rotations to the failure surface without violating the normal
and shear strengths in Table 3.1.

With the proposed numerical limit analysis approach, the bending bearing capacities of
CLT plates are estimated for all three strength classes and the results are compared to
the experimental data. In the experiments, 8 CLT plates were tested for each strength
class, and the collapse load from each test is plotted in Figure 3.3 with black crosses.
Due to the uncertainty of the wooden board strength properties, the collapse loads from
experiments for each strength class are distributed with certain scatter as discussed by
Hochreiner et al. (2014). In numerical calculations, where constant strength paramet-
ers are used for wooden boards from the same strength class, the numerical results
are plotted as blue lines in Figure 3.3, indicating one collapse load for each strength
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Figure 3.3: Numerical and experimental ultimate bending capacity of CLT plates using
wooden boards from different strength classes.

class. Small bound gaps between lower bound and upper bound results are observed
for each strength configuration, which indicates small computational errors, which can
be determined according to Eq. (3.1) as 1.39% for C18, 1.43% for C24 and 0.83% for
C35, suggesting an accurate approximation of the exact solution. Regarding the col-
lapse load, the numerical results (blue lines) are close to the mean of the scatter of the
experimental data points (black crosses) for the strength class C35, but the numerical
calculations tend to overestimate the collapse load for the other 2 strength classes, C18
and C24. Since limit analysis considers only ductile failure, this agrees well with the
experimental observation in Hochreiner et al. (2014) that, the structural collapse in CLT
plates of C35 is dominated by ductile rolling shear failure but brittle failure mechanisms
also play an important role in the weaker CLT plates of C18 and C24.

x

y

z

(a) (b)

Figure 3.4: Illustrative example for numerical upper bound results using wooden boards
from strength class C24 as: (a) the velocity field in the y direction; (b) the failure mode
with a threshold of [−0.00024,−0.00016,−0.00008, 0].

Beside the collapse load, a velocity field and an effective failure mode are obtained from
each upper bound calculation, with illustrative examples for strength class C24, shown
in Figures 3.4a and 3.4b, respectively. In the failure mode of Figure 3.4b, the velocity
field at the point of structural failure is plotted on the deformed plate, and the failure
region is marked by colours (from yellow to red) with red colours indicating the most
critical failure.
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(a) C18 (b) C24 (c) C35

Figure 3.5: Comparison of upper bound failure modes observed on the
loaded surface (y+ surface in Figure 3.4a) for strength classes: (a)
C18 with a threshold [−0.00042,−0.00028,−0.00014, 0]; (b) C24 with
a threshold [−0.00024,−0.00016,−0.00008, 0]; (c) C35 with a threshold
[−0.0002,−0.00013,−0.00006, 0].

The failure modes of CLT plates for different strength classes are compared in Figure 3.5,
showing the loaded surface (y+ surface in Figure 3.4a). For all 3 strength classes, the
plastic failure is initiated at the red region mainly due to kink-bending failure, and
propagates sequentially through the orange and yellow regions due to a mixed mode of
compressive and in-plane shear failures. In comparison, the failure region of the C18
plate is more localised, and in opposite, is more dispersed for the C35 plate. This agrees
well with the experimental observation in Hochreiner et al. (2014), that, at structural
collapse, the failure region only covers 40% of the total plate width for C18 and 76%
for C35. The reason for this behaviour is that, by using stronger wooden boards,
higher tensile loads can be carried in grain direction and the rolling shear strength is
reached first in the middle layer close to the interface between other layers. Thus, the
propagation of rolling shear failure in the middle layer leads to a stress redistribution
and more wooden boards are activated to carry the bending load.
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Figure 3.6: Comparison of the rolling shear stress fields in the middle layer of CLT
plates for two differernt strength classes.

To verify this hypothesis, the shear stress fields σyz on the interface between the middle
layer and the top layer of CLT plates, considered as the rolling shear stress field for
the middle layer, are compared in Figure 3.6 for C18 and C35. It can be noticed
that high rolling shear stress regions cover larger areas of the surface of the CLT plate
with stronger wooden boards, i.e. of the higher grading class, which agrees well with
above-mentioned experimental observations and conclusions.

Beside reliable estimates, the time efficiency of the numerical method is also remarkable.
With a mesh of 40, 000 tetrahedral elements, the total CPU time for each approximation
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is around 40 min, including a lower bound and an upper bound calculation. Taking
advantage of the high time efficiency, this numerical method provides the basis for a
stochastic approach targeting a closer look into the failure mechanism of CLT plates
with the consideration of property varieties and inhomogeneities of wooden boards by
simulating a large number of models.

3.3.2 Application using strength profiles

To study the impact of inhomogeneities, in our case of knots, on the bending strength of
CLT plates, we use a database of so-called strength profiles of real wooden boards. For
this database, a total of 350 Norway spruce boards of strength grades LS15 (T14) and
LS22 (T22) were, first, virtually reconstructed and, then, by using so-called indicating
properties section-wise evaluated to obtain strength profiles of the longitudinal strength
component for each board. The respective procedure is described in detail in Kandler
et al. (2017) and summarised subsequently.

All boards were inspected using a tracheid effect-based laser scanning device, resulting in
grid-like fibre orientation information available on all four board surfaces. In addition,
photographs of the cross sections on both ends of the board allow for an estimation
of pith locations. The fully automated approach described in Kandler et al. (2016a)
is used to obtain a geometrical description of the knot morphology. Therein, fibre
angle measurements are used to estimate knot areas on the board’s surfaces. This
information in combination with the pith location is used to fit rotationally symmetric
cones representing knots into the board. Here, the reconstruction error is minimised
by employing a so-called simulated-annealing optimisation scheme, which reduces the
difference between actual knot areas and knot areas obtained from intersecting the
reconstructed cones with the board. Figure 3.7a-e shows the results for an exemplary
board. In Figure 3.7c, all recognised knots are displayed, whereas in Figure 3.7d only
the significant knot groups according to a modified version of the criterion presented in
Kandler et al. (2016b) are shown. Here, significance is defined by using a size measure
for the knots. Knots with a visible knot area above the 70%-quantile are considered
to be large knots and, thus, to have a significant influence on the board’s mechanical
behaviour. In addition, the mutual distance between adjacent large knots is checked
and those with longitudinal distances below 200mm are grouped together. All other
(small) knots are now disregarded unless they lie in close vicinity of larger knots, defined
as a maximum distance of 100mm. The reason for this approach is that small knots
are considered to be of small mechanical significance if by themselves, but they might
have an influence on sections, where interacting multiple knots lead to variations in
fiber deviations and, thus, influences on failure mechanisms. The board is now divided
into so-called knot sections, with maximum lengths of 300mm, and interjacent clear-
wood sections without knots. Each knot section is then subjected to a set of indicating
properties, which are based on a study presented in Lukacevic et al. (2015) and are
combinations of the following parameters:

• knot area ratio (KAR), which is the ratio of the projected knot areas to the
cross-section area,

• knot area, which refers to the visible knot areas on the board’s surfaces,
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Figure 3.7: From board to strength profiles. (a) For a regular board, (b) based on
laser scanning data (c) the knot fitting algorithm (Kandler et al., 2016a) automatically
reconstructs the 3D knot geometry. (d) After the regrouping procedure has been applied,
only the most important knot groups are retained in the model (Kandler et al., 2016b).
These knot groups, displayed in (e), are investigated using indicating properties (IPs).
In (f), different strength profiles according to IPs 1 to 4 are displayed. (modified from
Kandler et al. (2017))
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• weighted knot area, further distinguishes between knot areas on top/bottom and
left/right surfaces,

• knot volume,

• interface areas, between knots and surrounding clear-wood, and

• Foley area ratio (FAR), which, in analogy to the KAR value, describes the ratio
of the projected fiber deviation area to the cross section area.

These parameters were combined to a total of four indicating properties:

1. IP1: KAR, weighted knot area, knot volume, interface areas, FAR

2. IP2: KAR, knot area, knot volume, interface

3. IP3: KAR

4. IP4: KAR, knot area, knot volume

For the clear-wood sections, the longitudinal tensile strength is computed following the
approach in Hackspiel et al. (2014), which is based on scaling experimentally obtained
strength values according to density-dependent results obtained by a micromechanical
model for elastic behavior. The resulting strength profiles for the exemplary wooden
board can be seen in Figure 3.7f. Such profiles of alternating defect-free and knot
sections are referred to as weak zone models and are in accordance to Fink et al. (2015),
Källsner (1994), Källsner et al. (1997).

The database of strength profiles provides the basis for a stochastic study on how wooden
board properties influence the overall CLT capacities. In the experiments (Hochreiner
et al., 2014), wooden boards were graded into the bending-based strength classes, C18,
C24, and C35, defined in EN 338 (2009); for the strength profile database, wooden
boards were graded into the tensile-based strength classes, LS15 and LS22, defined in
EN 14081-4 (2009). As mentioned in Bacher and Krzosek (2014), by comparing the
tensile strengths, the strength classes LS15 and LS22 can be considered as equivalent
to C24 and C35, respectively. Thus, the application of numerical limit analysis using
existing strength profiles to obtain CLT bending capacity estimates can also be validated
using the experimental results for C24 and C35 shown in Figure 3.3.

In this work, the strength profile group IP4 is used in the calculations, as it has been
proven to be reliable for strength estimates in Kandler et al. (2017). From the strength
profile database, both densities and longitudinal tensile strengths are available for knot
sections and clear wood sections. In order to define the Tsai-Wu failure surfaces, all
strength parameters have to be determined as shown in Eq. (3.21) which requires more
strength components beside the longitudinal tensile strengths. For each clear wood
section, all 9 strength components (ft,L, ft,R, ft,T , fc,L, fc,R, fc,T , fτ,LR, fτ,RT and fτ,LT )
are determined by its density according to the strength-density correlation discussed in
Hackspiel et al. (2014). For knot sections, no reliable data for strength properties is
available due to the lack of knowledge about failure mechanisms in the vicinity of knots,
thus, in this work, the strength components are determined by the longitudinal tensile
strengths using similar correlations as applied for the clear wood sections.
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For each grading class, data for a total of 140 individual boards was available. During the
assembly of the CLT plate models, for each simulation run, unique boards were randomly
chosen from the database according to the studied grading class. The single boards
were then divided into several knot and clear-wood sections with assigned strength
parameters determined by the board’s strength profile information. By re-running the
random board selection process, for both strength classes, a big number of different
CLT plates can be assembled using wooden boards with different strength profiles, and
their failure behaviour under bending can be predicted using numerical limit analysis.
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Figure 3.8: Comparison of numerical and experimental collapse loads of CLT plates
under bending load using wooden boards from different strength classes (the red marked
points denote the results of the exemplary CLT boards of Figures 3.10 and 3.12).

type C24(LS15) C35(LS22)
x̄ s COV x̄ s COV

experiment 63.64 13.82 0.2172 90.37 6.93 0.0767
limit

analysis 71.17 6.02 0.0846 89.59 6.21 0.0693

Table 3.2: Resulting mean value x̄ [kN], standard deviation s [kN] and coefficient of
variation COV for both experimental and numerical results corresponding to different
strength classes.

For each of the two strength classes, LS15 and LS22, 50 CLT plate models were gen-
erated. The collapse loads of all CLT plates from numerical limit analysis calculations
are plotted in Figure (3.8) compared with the experimental results for strength classes
C24 and C35. For strength class C35, the scatter for numerically-obtained collapse
loads matches well to the experimental data points and the mean value x̄ as well as
the standard deviation s for both numerical and experimental results agree well to each
other shown in Table (3.2), indicating that the numerical estimates are reliable for this
strength class in a stochastic manner. For the strength class C24, the scatter for the
numerical results covers about 75% of the distribution of experiment data points in the
higher end with higher mean value x̄ for the numerical estimates. For an explanation
it can be referred to the discussion in Section (3.3.1), that the numerical limit analysis
is able to predict the ductile failure mechanisms of the CLT plates, as the dominant
failure for C35, but leads to an overestimation of collapse loads when brittle failure
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mechanisms cannot be ignored, as for C24. Since failure mechanisms of CLT plates for
C24 can be considered as a mixed mode of ductile and brittle responses, in Table (3.2),
the standard deviation s is higher for experimental results than for numerical results
where only ductile response is considered.

Assessing all failure modes from the comprehensive numerical upper bound limit ana-
lysis calculations for both strength classes, basically two categories of failure modes are
identified and the impact of wooden board strength profiles is discussed in the following.
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Figure 3.9: Selected upper bound results for the localised failure mode plotted as: (a)
the longitudinal tensile strength profiles assigned in the 3-layer CLT plate; (b) the failure
mode of this plat as the coloured region and the velocity field as the deformation; (c)
the exploded view for strength profiles; (d) the exploded view for the failure mode from
top; (e) the exploded view for the failure mode from bottom.

The first category is identified mainly in CLT plates for strength class C24, for which a
selected example from one upper bound calculation is illustrated in Figure (3.9). The
strength profiles, indicated by the longitudinal tensile strength, are illustrated for the
whole plate in Figure (3.9a) and for each layer in the exploded view Figure (3.9c), where
weaker clear wood sections and a higher number of knot sections are present. The failure
mode of the plate is plotted in Figure (3.9b), and, in order to have a complete image of
failure pattern over the whole plate, exploded views from top and bottom are shown in
Figure (3.9d) and Figure (3.9e), respectively. It is observed that the dominant failure
locates in the top layer, especially on the top surface (the loaded surface). The selected
failure mode on the top surface is plotted in Figure 3.10a, where a localised plastic failure
mechanism is observed. When the loading is applied, plastic failure is initiated due to
the local instabilities around the loaded region (marked by the blue square) known as the
kink-bending failure on the top wooden board layer as shown in the sectional view 1○.
Then the failure propagates through wooden boards perpendicularly mainly due to the
longitudinal compressive failure, as shown in the sectional view 2○, leading to the final
structural collapse. In order to discuss the impact of wooden board inhomogeneities on
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Figure 3.10: Illustration of the identified dominant failure mechanisms from the selected
localised fialure mode as: (a) the failure mode observed on the loaded surface (blue
square indicates loaded region) as well as 2 view cuts 1○ and 2○ with zone-in views for
the kink-bending failure and the longitudinal compressive failure, respectively; (b) the
longitudinal tensile strength profiles assigned to wooden boards in the upper layer and
the identified failure pattern (grey curves) according to the failure mode.

the failure mode, the longitudinal tensile strength profiles are plotted and the failure
mechanism identified in Figure 3.10a are indicated by grey curves in Figure 3.10b. It
is obvious that, after the kink-bending failure initiated around the loaded region, the
longitudinal compressive failure always propagates through wooden boards in the weak
zones, normally knot sections, without plastic failure in surrounding clear wood sections.
In this case, the failure mechanisms are mainly determined by the distributions of the
knot sections leading to an insufficient utilisation of the strength properties of clear
wood sections since they are not activated to carry loads during structural collapse.

The second category of failure modes is identified in CLT plates with stronger wooden
boards, in this case from strength class C35, for which strength profiles of a selected
example are plotted for the whole plate in Figure (3.11a) and for each layer in Fig-
ure (3.11c). Since less knot sections are present, the localised failure cannot propagate
through the whole plate and dispersed failure mechanisms are observed as shown in Fig-
ure (3.11b) as well as in the exploded views Figure (3.11d) and Figure (3.11e), where
the dominant failure is still observed on the top surface shown in Figure (3.12a). Com-
pared to the first category, the main difference is that, instead of the localised failure
region perpendicular to the wooden board orientation, the dispersed failure mechanism
is observed in this case with the tip of the failure region aligning parallel to the wooden
boards. This difference is attributed to the rolling shear failure in the middle layer prior
to the structural collapse, shown in the view cut 1○ and 2○, which results in the stress
redistribution in the top layer. Plotting failure patterns, identified in Figure 3.12a as
grey curves in the strength profiles Figure 3.12b, the failure mechanisms of the CLT
plate can be summarised in sequence as: 1) the plastic failure is initiated due to the
kink-bending failure and propagates through the knot sections of wooden boards; 2)
further propagation of the localised longitudinal compressive failure is interrupted due
to the presence of strong clear wood sections; 3) the rolling shear failure occurs in the
middle layer; 4) the strong wooden boards are activated to carry the load whose bending
failure leads to the structural collapse.

The dominant failure mechanisms in above numerically-obtained failure modes are the
longitudinal compressive failure, for the first category, and the rolling shear failure as
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Figure 3.11: Selected upper bound results for the dispersed failure mode plotted as:
(a) the longitudinal tensile strength profiles assigned in the 3-layer CLT plate; (b) the
failure mode of this plat as the coloured region and the velocity field as the deformation;
(c) the exploded view for strength profiles; (d) the exploded view for the failure mode
from top; (e) the exploded view for the failure mode from bottom.

well as the bending failure, for the second category, which agrees to the experimental
observations in Hochreiner et al. (2013). Additionally, similar conclusions can be drawn
as mentioned in the experimental study of Hochreiner et al. (2014) that, by using
stronger wooden boards in CLT plates, the increase in bending capacity is achieved not
only because of the higher strength properties of wooden boards, but, more importantly,
related to a more efficient utilisation, as more wooden boards are involved to carry the
load.

3.4 Summary and conclusions

In this paper, 3D numerical limit analysis formulations were implemented for strength
estimates of CLT plates for which, to the authors’ knowledge, no sophisticated numer-
ical method is available in timber engineering. In this method, the anisotropic Tsai-Wu
failure criterion was employed to measure the material failure behaviour in wooden
boards with respect to the local principal material orientations, and the strength para-
meters were determined from either code values in Eurocode 5 or a strength profile
database. By using code values, the main focus was laid on the validation of the numer-
ical method using experimental results and the influence of wooden board strengths on
the CLT plate bending capacities; by using strength profiles, the main focus was laid
on the impact of section-wise varying strength values, caused by inhomogeneities like
knots, on the CLT plate failure mechanisms. Based on the obtained results, the main
finding of this work can be summarised as:



Publication 3 90

11 2 2

x

z

(a)

79.51

61.80

42.28
33.23
23.97
14.72

88.76

70.24

51.73

ft,L

(b)

Figure 3.12: Illustration of the identified dominant failure mechanisms from the selected
dispersed failure mode as: (a) the failure mode observed on the loaded surface (blue
square indicates loaded region) as well as 2 view cuts 1○ and 2○ with zone-in views for
the kink-bending failure and the longitudinal compressive failure, respectively; (b) the
longitudinal tensile strength profiles assigned to wooden boards in the upper layer and
the identified failure pattern (red curves) according to the failure mode.

• A validation of the numerical limit analysis approaches has been introduced using
strength values from Eurocode 5 for 3 different strength classes, C18, C24, and
C35, as input parameters, and good agreement between numerical and experi-
mental results are observed. The dominant advantages of this numerical method
rely on the small computational error, indicated by the small bound gap, and the
high time efficiency over the conventional finite element method.

• By using a strength profile database, CLT plates are assembled using wooden
boards with arbitrarily-assigned strength profiles, resulting in section-wise vary-
ing numerical strength estimates. Performing comprehensive calculations, the
numerical upper bound calculations are able to provide reliable strength estim-
ates with similar scatter as found in experimental results for strength classes C24
and C35. Distinct failure modes are obtained for each calculation with arbitrary
combinations of strength profiles.

• Due to the high time efficiency of this numerical method, the influence from
section-wise varying strength values, caused by inhomogeneities in wooden boards,
on the overall CLT plate capacities can be studied in a stochastic approach using a
strength profile database. The numerically-obtained failure modes agree well with
experimental observations that, 1) when weaker wooden boards (e.g. C24) are
used, the failure mechanisms are more localised and propagate through weak links
of wooden boards (normally knot sections) and both brittle and ductile responses
can be observed at the point of structural collapse; 2) when stronger wooden
boards (e.g. C35) are used, the rolling shear failure in the middle layer plays an
important role and more wooden boards are activated to carry the bending load
and the structural collapse is dominated by ductile response.

Accordingly, one can conclude that, the presented numerical limit analysis is a useful
tool to fill the gap in timber engineering for efficient and reliable estimates on CLT
plate bending capacities and structural failure mechanisms in which inhomogeneities
and strength variants in wooden boards can be considered in a stochastic approach.
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Future work is devoted to more sophisticated stochastic studies on the impact of inhomo-
geneities on the overall strength of CLT plates and the corresponding failure modes. The
results are expected to provide more information about CLT plate failure mechanisms
and serve as reference for the ongoing development of the wooden board grading process
as well as the standardisation of CLT products. Additionally, for further study on the
strength profiles, the presented numerical method will be applied for strength estimates
of knot sections to predict failure mechanisms in vicinities of knots and surrounding
fibre deviations.
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Abstract: Numerical limit analysis allows for fast estimates of the collapse load of
structures exhibiting ideal plastic material behaviour. In numerical upper bound for-
mulations, the description of the unknown velocity field can be extended by introducing
velocity discontinuities between finite elements. Through these additional degrees of
freedom, localised failure modes may be approximated more accurately and better up-
per bounds can be obtained. In existing formulations, such discontinuities are typically
introduced between all elements and the description is restricted to isotropic failure
behaviour. In this work, a general 3D upper bound formulation is briefly proposed, al-
lowing the consideration of both isotropic and orthotropic yield functions within finite
elements as well as at velocity discontinuities. The concept of “projecting" a stress-based
orthotropic yield function onto a certain discontinuity is presented, giving a traction-
based yield function which allows for a consistent description of the material strength
behaviour across the interface. The formulation is verified by means of two classical
examples, the rigid strip footing and the block with asymmetric holes. Furthermore,
based on the computation of potential orientations of plastic flow localisation, a simple
concept for a sensible arrangement of velocity discontinuities is proposed. It is shown
that this concept performs very well for isotropic as well as anisotropic material strength
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behaviour. A feature of the present work is that, velocity jumps are allowed only across
the prescribed finite element interfaces determined from the sensible discontinuity ar-
rangement. Good upper bounds similar to those in existing works are obtained with far
fewer degrees of freedom.

Keywords: numerical upper bound formulations, localised failure modes, traction-
based yield function, sensible arrangement of velocity discontinuities, orthotropic ma-
terial strength behaviour.

4.1 Introduction

4.1.1 Numerical limit analysis

The main objective of limit analysis is the determination of load bearing capacities
of structures exhibiting elastoplastic material response. To achieve this, limit analysis
concentrates on the critical energy dissipation rate at the time instant of structural fail-
ure, and the basic task can be expressed as follows: Find the kinematically admissible
velocity field which minimises energy dissipation over the set of all statically admissible
stress fields which maximise the dissipated energy (Ciria et al., 2008). Statically admiss-
ible stress fields are required to be in equilibrium, fulfil the static boundary conditions,
and obey a plastic yield criterion at each point of the body. Kinematically admissible
velocity fields are subject to compatibility, the kinematic boundary conditions, and fulfil
an associated plastic flow rule at each point of the body. Unfortunately, the so-defined
saddle-point problem can be solved only for simple geometric and loading situations as
well as for simple material behaviours. For more complex situations, the plastic flow
compatibility in the so-called static principle or the static equilibrium in the so-called
kinematic principle may be relaxed, providing lower and upper bounds on the exact
load bearing capacity of a structure according to the bounding theorems by Drucker
et al. (1951, 1952).

However, for complex problems, the application of these bounding theorems (in the
context of limit analysis) in an analytical way is very limited and often not possible.
Thus, finite-element-based formulations were first introduced in the 1970s (Anderheggen
and Knöpfel, 1972, Belytschko and Hodge, 1970, Lysmer, 1970, Maier et al., 1972), and
gained popularity from then on. The computational efficiency and accuracy of such nu-
merical formulations strongly depend on the mathematical programming method used
to solve the underlying optimisation problems. At the early stage, the limit analysis
theorems were formulated as linear optimisation problems, by linearising the applied
plastic yield functions. At the turn of the millennium, Lyamin and Sloan (2002a,b)
proposed more general lower and upper bound formulations allowing for nonlinear yield
functions, which were solved using nonlinear programming concepts. However, local
smoothing was required for yield functions with singularities, e.g. the Mohr-Coulomb
yield function. Subsequently, during the past two decades, second-order cone program-
ming (SOCP) has been proven to be an excellent alternative method by Makrodimo-
poulos and Martin (2006, 2007) and Ciria and Peraire (2004) for cohesive-frictional
materials and Füssl et al. (2008) for composite materials, with sufficient robustness and
efficiency to solve large-scale nonlinear optimisation problems of numerical limit ana-
lysis. Such implementations allow the applications of many different yield functions in
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their native form, since most of the commonly-used yield functions can be formulated as
second-order cones. In this work, SOCP is employed to solve the nonlinear optimisation
problems arising from the presented limit analysis formulations.

The efficiency and accuracy of such formulations is also strongly influenced by the
chosen finite elements and related shape functions. In order to obtain rigorous up-
per bound solutions, for example, the associated plastic flow rule must be satisfied
throughout the whole body. Basically, this can be achieved by using constant strain
triangular elements, which are often combined with velocity discontinuities between ele-
ment boundaries (Bottero et al., 1980, Lyamin and Sloan, 2002b, Sloan and Kleeman,
1995). To improve the quality of upper bound solutions, the use of higher order inter-
polation functions is desired. Makrodimopoulos and Martin (2007) have shown that the
associated plastic flow rule can also be enforced throughout the whole body by using
linear strain triangular elements, leading to a better performance than constant strain
elements even without discontinuities. As a further development, the meshless method
has been implemented for numerical upper bound approaches in Le et al. (2010a), Liu
and Zhao (2013), Yu et al. (2016). However, in such implementations with high order
shape functions, it is difficult to guarantee both compatibility and satisfaction of the
associated plastic flow rule throughout each element.

Additionally or as an alternative to the use of high order elements, velocity discontinu-
ities can be implemented in upper bound formulations to increase their effectiveness.
In Chen et al. (2003), Milani and Lourenço (2009), for example, rigid elements were
used and plastic dissipation was only allowed between finite elements. Such approaches
are highly dependent on the mesh and even adaptive mesh refinement cannot fully
compensate for this issue. An approach without using classical finite elements is the
so-called discontinuity layout optimisation (DLO), where velocity discontinuities are
determined by using a truss layout optimisation algorithm based on a prescribed grid
(Hawksbee et al., 2013, Smith and Gilbert, 2007). This approach performs well for 2D
problems, but the determination of complex failure mechanisms in 3D bodies requires
a fine grid and large computational effort.

For this reason, to the authors’ opinion, the most promising approach so far to obtain
rigorous upper bound solutions still seems to be the use of solid finite elements with or
without velocity discontinuities. In Krabbenhøft et al. (2005) zero-thickness interface
elements between constant strain elements are introduced, which perform very well for a
large number of applications. Another development can be found in Makrodimopoulos
and Martin (2008), where velocity discontinuities are implemented between linear strain
elements. In order to increase the efficiency of the upper bound formulations, adaptive
mesh refinement was introduced by Ciria and Peraire (2004), Ciria et al. (2008), Martin
(2011) However, a targeted arrangement of discontinuities, as will be proposed in this
work, has not been introduced until now.

4.1.2 Objective of the paper

In several previous works, e.g. in Füssl et al. (2017), Li et al. (2018c), anisotropic
yield functions have been implemented in numerical upper bound formulations. To the
authors’ knowledge, the combination of anisotropic yield functions and velocity discon-
tinuities has not previously been presented, although it could significantly improve the
capability of upper bound approaches in handling localised plastic failure for anisotropic
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materials like wood or fibre reinforced composites. In particular, it is beneficial if the
alignment of discontinuities is tuned to the direction of localised plastic failure.

Thus, the main objectives of this work can be introduced as follows:

1. The formulation of 3D numerical upper bound approaches with anisotropic yield
functions, quadratic shape functions for the velocity fields, and velocity discon-
tinuities.

2. To allow for a consistent description of plastic failure also across velocity discon-
tinuities, the derivation of a traction-based yield function which is in accordance
with the stress-based yield function assigned to the solid finite elements / bulk
material.

3. Implementation of an initial concept for a sensible introduction and arrangement
of velocity discontinuities only in failure regions.

According to these objectives, the paper is structured as follower. A quite general nu-
merical upper bound approach is briefly proposed in Section 4.2, able to consider plastic
energy dissipation in both finite elements and discontinuities obeying an anisotropic fail-
ure criterion. Furthermore, the process for obtaining the required traction-based yield
function for the discontinuities is described. A verification of the implemented upper
bound formulations by means of well-known examples can be found in Section 4.3, as
well as a discussion about the performance of velocity discontinuities. Finally, a brief
summary and concluding comments are given in Section 4.4.

4.2 Upper bound approaches

The upper bound theorem focuses exclusively on the kinematically admissible velocity
field u̇ = (u̇x, u̇y, u̇z)

ᵀ ∈ R3, and by minimising the internal plastic energy dissipation
rate Wint, which has to be equal to the work rate of the external loads Wext, the result-
ing failure state provides an upper bound for the exact collapse load. A kinematically
admissible velocity field u̇ has to satisfy compatibility, the associated plastic flow rule,
and the kinematic boundary conditions at each point of the considered body. Addi-
tionally, a velocity-jump field ∆u̇ = (∆u̇x,∆u̇y,∆u̇z)

ᵀ ∈ R3 is introduced, describing
localised interface plastic failure across a prescribed interior surface.

The internal energy dissipation rate Wint is composed of a part referring to material
failure in the continuum body Ω and a part related to the energy dissipation at interior
surfaces Γdis, and reads

Wint =

∫
Ω
dmatp (ε̇)dV +

∫
Γdis

ddisp (∆u̇)dA (4.1)

with the plastic dissipation functions

dmatp = sup
σ∈F

σᵀε̇, F = {σ|f(σ) ≤ 0} in Ω

ddisp = sup
t∈D

tᵀ∆u̇, D = {t|f(t) ≤ 0} on Γdis
(4.2)



Publication 4 96

where ε̇ = (ε̇xx, ε̇yy, ε̇zz, ε̇xy, ε̇yz, ε̇xz)
ᵀ ∈ R6 represents the plastic strain-rate field, σ =

(σxx, σyy, σzz, τxy, τyz, τxz)
ᵀ ∈ R6 the stress field and t = (tx, ty, tz)

ᵀ ∈ R3 the surface
traction field. f(σ) ≤ 0 and f(t) ≤ 0 denote the stress-based yield function for Ω and
the traction-based yield function for Γdis, respectively.

The upper bound theorem can be formulated as a nonlinear optimisation problem,
reading

min Wint

s.t. ε̇ = divu̇ in Ω

u̇ = u̇b on Γ

ε̇ = λ̇σ∂f(σ)/∂σ in Ω

∆u̇ = λ̇t∂f(t)/∂t on Γdis

(4.3)

in which the constraints enforce compatibility between the velocities and the plastic
strain-rates, the kinematic boundary conditions, and the associated plastic flow rule
both in the continuum Ω and at the interior surfaces Γdis. In the second constraint,
u̇b refers to the prescribed velocity boundary conditions defined over the whole surface
Γ = ∂Ω of the continuum body. In the last two constraints, λ̇σ and λ̇t are plastic
multipliers determining the magnitude of plastic flow within the continuum and at the
discontinuities, respectively. Note that, these two associated plastic flow constraint in
Eq. (4.3) are valid only when the yield function is differentiable everywhere. If singular
apex points exist, additional technology is required, and the use of SOCP in this work
ensures that such points are handled naturally.

As shown in Makrodimopoulos and Martin (2007), using the duality of nonlinear pro-
gramming, a mathematically equivalent optimisation problem to Eq. (4.3) can be for-
mulated, reading

max Wext

s.t.
∫

Ω(divu̇)ᵀσdV +
∫

Γdis ∆u̇ᵀtdA =
∫

Ω u̇ᵀβgdV +
∫

Γ u̇ᵀβtdA in Ω

f(σ) ≤ 0 in Ω

f(t) ≤ 0 on Γdis

(4.4)

in which the first constraint represents weak equilibrium of the dissipated energy, and
the objective function is related to the external work rate given as

Wext =

∫
Ω

u̇ᵀβgdV +

∫
Γ

u̇ᵀβtdA (4.5)

where β denotes a load multiplier applied to the surface traction field t and the pre-
scribed body force field g ∈ R3.

For the discretisation of the upper bound optimisation problem, tetrahedral linear-
strain simplex elements are used, as introduced for 2D upper bound problem under
plane strain conditions in Makrodimopoulos and Martin (2007, 2008) and for 3D upper
bound problem in Martin and Makrodimopoulos (2008). Thus, the velocity field is
approximated using quadratic interpolation functions and the plastic strain-rate field is
described by linear shape functions. Worth mentioning is that each finite element has
its own strain-rate evaluation nodes, which means that adjacent nodes from different
elements share the same coordinates but can have different strain-rate states. The exact
representation of this approximation is given in Makrodimopoulos and Martin (2008).
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In this work, to assess the capability of the discontinuity arrangement, velocity jumps
are allowed only across particularly prescribed finite element interfaces determined by
the arrangement, on which adjacent elements have their own velocity evaluation nodes.

Finally, as introduced in detail by the authors in Li et al. (2018c), the discretised
formulation of the dual upper bound optimisation problem, Eq. (4.4), can be written
as

max Wext

s.t. Amat
UB

ᵀ
q̂σ + Adisᵀ

UB q̂dist = βAbc
UBq̂bct

ŝmat,iσ = âmat,iσ + Bmat
σ Rmat

ε̇ q̂mat,iσ

ŝmat,iσ ∈ C

ŝdis,jt = âdis,jt + Bdis
t Rdis

t q̂dis,jt

ŝdis,jt ∈ C

(4.6)

with the matrices AUB obtained by applying the linear compatibility operator to the
related shape functions of the velocity (or the velocity jump), within the finite elements
(mat), at the discontinuities between elements (dis), and at the boundary (bc). The
vectors q̂σ, q̂dist , and q̂bct collect all nodal degrees of freedom related to stress-like quant-
ities and surface tractions. Note that, for arbitrary vector x, the symbol x̂ =

∫
Ωe

xdV
refers to the volume-integrated quantity over each element. The remaining constraints
represent a second-order cone formulation of a general quadratic yield function for both
the solid material (mat) and the discontinuities (dis), with i and j ranging from 1 to
the number of stress and traction evaluation nodes, respectively. Thereby, the matrices
â and B contain strength parameters and the matrices R represent transformation op-
erators, rotating the stress tensor into the principal material direction and the surface
traction vector into the direction of the corresponding discontinuity. The external work
rate in discretised form can be written as

Wext =
UBC∑
bc=1

6∑
i=1

βqbc,iᵀu̇,locq̂
bc,i
t,loc (4.7)

where UBC denotes the number of 6-noded boundary surface triangular elements with
a prescribed local traction field q̂bct,loc and qbcu̇,loc represents the related velocity degrees
of freedom.

In previous upper bound formulations Krabbenhøft et al. (2005), Makrodimopoulos
and Martin (2008), Sloan and Kleeman (1995) only isotropic yield functions based on
shear failure mechanisms, e.g. the von Mises or the Mohr-Coulomb yield function,
were considered, leading to a straightforward definition of failure at the discontinuities
between elements. On the contrary, in the upper bound formulation Eq. (4.6) the quite
general orthotropic yield function according to Tsai-Wu can be implemented, reading

qi
ᵀ
Pqi + (

1

2
F+ᵀqi)2 − (1− 1

2
F−ᵀqi)2 ≤ 0 (4.8)

with i as the evaluation point of q either for the stress field (with subscript σ) in the
element or for the traction field (with subscript t) at a discontinuity. The vectors F+,
F−, and the matrix P are related to the terms in Eq. (4.6) as follower:

a =

(
1
0

)
and B =

−1
2F−ᵀ

D
1
2F+ᵀ

 (4.9)
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where D is the decomposed product of P = DᵀD. Note that, the matrix dimensions
are F+

σ ∈ R6, F−σ ∈ R6, Pσ ∈ R6×6, Dσ ∈ R6×6 for the stress-based yield function and
F+
t ∈ R3, F−t ∈ R3, Pt ∈ R3×3, Dt ∈ R3×3 for the traction-based yield function.

In the above, it is assumed that there exists a traction-based yield function for the
discontinuities which can also be formulated as second-order cone. Additionally, it needs
to be consistent with the stress-based Tsai-Wu criterion to allow for the description of a
homogeneous strength distribution within a body. Since a surface traction state within
a discontinuity cannot directly be related to a unique 3D stress state at a material point,
the derivation of such a traction-based yield function is not straightforward. However,
according to Wu and Cervera (2014), we can assume a 3D plastic strain-rate state to be
localised with respect to a certain discontinuity if the following constraints are satisfied,
for orthotropic yield functions which are differentiable everywhere (e.g. Tsai-Wu yield
function):

Λdismm(σdisloc) = ε̇mm/λ̇σ = ∂f(σdisloc , strength par.)/∂σ
dis
mm = 0

Λdispp (σdisloc) = ε̇pp/λ̇σ = ∂f(σdisloc , strength par.)/∂σ
dis
pp = 0

Λdismp(σ
dis
loc) = ε̇mp/λ̇σ = ∂f(σdisloc , strength par.)/∂τ

dis
mp = 0

(4.10)

where σdisloc denotes a 3D stress state at a discontinuity with the local coordinate basis
(n −m − p) with the normal vector of the discontinuity pointing in n-direction. Note
that, each of the constraints in Eq. (4.10) can be formulated as a function of the local
stress field σdisloc . By reformulating Eq. (4.10) using the definition of the Cauchy stress
tensor, giving tdisn = σdisnn , tdism = τdisnm, tdisp = τdisnp , the three remaining stress tensor
components σdismm, σdispp , and τdismp can be expressed as functions, hereafter referred to as
Ldis, of tdisn , tdism , tdisp , and certain strength parameters, reading

σdismm = Ldismm(tdisloc , strength par.)

σdispp = Ldispp (tdisloc , strength par.)

σdismp = Ldismp(t
dis
loc , strength par.)

(4.11)

Therefrom, a relationship between the local stress field and the local traction field on
Γdis, σdisloc = Ldist tdisloc , under the condition of plastic strain localisation, can be derived.
Finally, by making use of this relationship, it is possible to “project" the stress-based
formulation of the Tsai-Wu yield function f(σdisloc) ≤ 0 onto a discontinuity, delivering
a consistent traction-based yield function f(tdisloc) ≤ 0.

The main focus of this work is the performance assessment of this approach and to
point out how such an approach could be utilised for future concepts of numerical limit
analysis. For this reason, in the next section, several numerical examples are presented
and discussed in detail.

4.3 Numerical results

In this section, numerical results obtained using the proposed upper bound formula-
tion with selectively activated velocity discontinuities are discussed. Two benchmark
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problems, with isotropic yield functions, are used for basic verification of the presented
approaches. By means of further examples it is demonstrated that orthotropic plastic
failure can also be handled appropriately. Moreover, it will be shown that through the
introduction of velocity discontinuities across properly-arranged prescribed interfaces,
high-quality upper bound results can be obtained with relatively coarse meshes and,
thus, very efficiently. Note that, for convenience, the upper bound results obtained us-
ing formulations, with and without velocity discontinuities are referred to as continuous
and discontinuous upper bound results, respectively.

All computations presented in the following were performed on a Linux desktop ma-
chine, with an AMD Phenom(tm) II X6 1090T CPU (6 cores) and 8GB of RAM. The
commercial software package Abaqus was used for mesh generation, but all other pre-
and post-processing tasks as well as the assembly of the SOCP optimisation problems
were carried out by self-written codes in Fortran. The SOCP optimisation problems
themselves were solved using the commercial software MOSEK ApS (2017), which is
based on the conic interior-point algorithm described in Andersen et al. (2003).

4.3.1 Rigid strip footing

The rigid strip footing problem, as illustrated in Figure 4.1a, with a weightless purely
cohesive material is a common benchmark for limit analysis approaches. Under the
assumption of material failure according to Tresca, τ ≤ c, the ultimate load can be
obtained by the classical Prandtl solution N ref

c = Plim/c = 2+π Prandtl (1920), where
Nc is the bearing capacity factor, Plim the collapse load limit, τ the principal shear
stress, and c the coefficient of cohesion. Under plane strain conditions, the Tresca yield
function is identical to the von Mises yield function

√
J2 ≤ c, with J2 as the second

deviatoric stress invariant.

Using the yield function formulation according to Eq. (4.8), the von Mises criterion is
defined through

Pmat
σ =

1

3c2



1 −0.5 −0.5 0 0 0

−0.5 1 −0.5 0 0 0

−0.5 −0.5 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3


Fmat,+
σ = Fmat,−

σ = 0 (4.12)

A consistent traction-based yield function is easily obtained (Makrodimopoulos and
Martin, 2008) by applying the shear strength as the tangential strength at discontinu-
ities, giving

Pdis
t =

1

c2

0 0 0

0 1 0

0 0 1

 Fdis,+
t = Fdis,−

t = 0 (4.13)

The geometric boundary conditions and loading are given in Figure 4.1a, and an example
3D representation of the model is plotted in Figure 4.1b with respect to the global
coordinate basis (x − y − z) and an illustrative discretisation using 419 tetrahedron
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Figure 4.1: Rigid strip footing benchmark example. (a) Geometry and boundary con-
ditions; (b) example 3D model and illustrative discretisation with 419 elements; (c) the
prescribed interfaces for velocity jumps according to Prandtl’s failure mechanism (445
elements).

elements. By applying symmetric boundary conditions at the z− and z+ boundary
surfaces, plane strain conditions are enforced. Thus, in the following, all results will
be plotted in the x− y plane only. The rough footing interface condition is applied by
setting the velocities in the x direction to zero for all nodes in the footing region.
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Figure 4.2: Numerical upper bound results for the rigid strip footing problem. (a)
Load limit factor Nc, obtained using continuous and discontinuous velocity fields, as a
function of DOF; (b) upper bound failure mode using discontinuities and 445 elements
(range of plotted yield function values (robjv)[−3× 10−8 : 0]); (c) upper bound failure
mode using continuous velocity field with 31 081 elements (robjv [−5× 10−9 : 0]).

The obtained numerical upper bound results for different fineness of discretisation or
degrees of freedom (DOF) are plotted in Figure 4.2a. The black curve represents the
results for continuous velocity fields, and shows a clear convergence behaviour. Measur-
ing the difference between the upper bound results and the analytical reference N ref

c , as
diff(%) = (Nub

c −N ref
c ) ∗ 100/(Nub

c +N ref
c ), a diff of 12.92 % (2 790 DOF) for point a

and 0.95 % for point c with 188 685 DOF are obtained. The corresponding CPU times
are 2.09 min versus 41.85 min.

In the next step, partitions are introduced into the model according to Prandtl’s failure
mechanism (Prandtl, 1920), see Figure 4.1c, to allow velocity jumps across prescribed
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discontinuities. Since velocity jumps are only allowed through these prescribed inter-
faces, the number of DOF is not increased significantly. The blue curve in Figure 4.2a
shows the related results, again for different numbers of DOF. A diff of 1.60 % is
obtained for point b (3 147 DOF) and 0.13 % for point d (196 077 DOF), with corres-
ponding CPU times of 0.56 min and 41.62 min.

With a minimum difference of below 1 % for the obtained best upper bounds compared
to the analytical solution, the proposed formulations withstand this basic verification
and can be assessed as performing well. Especially when velocity discontinuities are
introduced, very good upper bounds can be obtained even with coarse meshes (see
point b and the related failure mechanism in Figure 4.2b). Of course, this is only
possible if the failure mechanism is known in advance and, thus, does not yet represent
added value for general calculations. However, the potential of velocity discontinuities
to capture very localised failure is evidently huge and, sensibly used, can greatly increase
computational efficiency.

4.3.2 Block with asymmetric holes

The block with asymmetric holes under tensile loading is a commonly-used benchmark
for so-called direct methods (e.g. limit analysis and shakedown analysis) first studied by
Zouain et al. (2002), as illustrated in Figure 4.3a. Later on, this problem was studied
by Makrodimopoulos and Martin (2007) using an upper bound formulation with a
continuous quadratic velocity field and the plane strain Mohr-Coulomb yield function
was applied to the material. Their results are used for verification and as reference
solution in the following. Moreover, the benefit of using sensibly-arranged velocity
discontinuities is further discussed, and a simple strategy to find such arrangements
based on preliminary upper bound results is proposed. Geometry, material properties,
and boundary conditions (Figure 4.3a) are assigned as in Makrodimopoulos and Martin
(2007). The model is built by 3D finite elements with the global coordinate basis
(x− y − z), similarly to Figure 4.1b, and again symmetric boundary conditions at the
z− and z+ boundary surfaces are applied.

4.3.2.1 Mohr-Coulomb failure criterion

In Makrodimopoulos and Martin (2007), the Mohr-Coulomb yield function was used
with a friction angle φ = 30°. For our example, the equivalent Drucker-Prager yield
function,

√
J2 ≤ A−BI1, is assigned to the material, defined by inserting

Pmat
σ = 1

3A2



1 −0.5 −0.5 0 0 0

−0.5 1 −0.5 0 0 0

−0.5 −0.5 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3


Fmat,+
σ = 0 Fmat,−

σ = 1
A2



2AB

2AB

2AB

0

0

0


(4.14)
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into Eq. (4.8), with the strength parameters A = 0.8321c and B = 0.1601. For the
consistent traction-based yield function these terms read

Pdis
t =

1

c2

− tan2 φ 0 0

0 1 0

0 0 1

 Fdis,+
t = 0 Fdis,−

t =
1

c2

2c tanφ

0

0

 (4.15)
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Figure 4.3: Block with asymmetric holes using the Drucker-Prager failure criterion.
(a) Geometry and boundary conditions; (b) upper bound failure mode (519 elements,
robjv [−5 · 10−6 : 0]); (c) and (d) potential orientations of plastic strain localisation; (e)
prescribed discontinuities based on (c) and (d).

In the previous example, it was shown that velocity discontinuities can improve the
upper bound significantly if they are appropriately arranged with respect to potential
failure surfaces. For this reason, subsequently, the following strategy is pursued. Based
on an upper bound calculation with a continuous velocity field and a relatively coarse
mesh, as shown in Figure 4.3b, potential discontinuity directions, where plastic failure
could localise, are computed at each integration point where plastic flow takes place
according to Eq. (4.10). The resulting orientations are plotted in Figure 4.3c and
Figure 4.3d. With respect to the x axis the mean orientations, obtained by taking
the volume average over all orientations, are approximately θ̄1 = −60° and θ̄2 = 60°,
as would be expected from the underlying failure criterion. Next, according to these
average directions of possible localised plastic failure, and by referring to the points
with maximum plastic strain-rates, the partitions (blue lines) shown in Figure 4.3e are
implemented into the model. Finally, the model is re-meshed and velocity discontinuities
are introduced along the partitions.

This procedure was applied to several models with different level of mesh refinement
(DOF) and compared to calculations performed without such discontinuities. The ob-
tained upper bounds for the limit load factor Nc are plotted in Figure 4.4a. Based on
the upper bound result with only 3 327 DOF (point a), velocity discontinuities were
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Figure 4.4: Numerical upper bound results for the block with asymmetric holes example
using the Drucker-Prager yield function. (a) Load limit factor Nc, obtained using con-
tinuous and discontinuous velocity fields, as a function of DOF; upper bound results
(robjv [−1·10−4 : 0]) (b) with discontinuities using 504 elements and (c) with continuous
velocity field using 34 875 elements.

introduced into the model, leading to a strong improvement of the upper bound (point
b) by adding only 585 DOF. The failure mechanism associated with point b is shown
in Figure 4.4b. To achieve a similarly good upper bound result and related localised
failure mechanism without the introduction of discontinuities, the mesh needed to be
refined significantly, as shown in Figure 4.4c as the associated failure mechanism to
point c. The CPU time required to obtain point c and the mechanism in Figure 4.4c
was 37.87 min, whereas point b with the mechanism shown in Figure 4.4b only took
0.38 min. Although an adaptive mesh refinement would probably be more efficient than
the uniform mesh refinement performed, the performance of sensibly-arranged discon-
tinuities, even in a coarsely discretised model, is excellent. Comparing the upper bound
result of point b (Nc = 1.062) to the best result in Makrodimopoulos and Martin (2007)
(Nc = 1.063) there is almost no difference. However, the upper bound initiated by point
b was obtained with 3 912 DOF compared to 79 955 DOF in the reference.

In the following, this approach is extended to orthotropic material behaviour, using the
Tsai-Wu criterion as the indicator for plastic failure.
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4.3.2.2 Tsai-Wu failure criterion

The strength parameters used for the example correspond to the typical orthotropic
material spruce wood and are taken from Dorn (2012), leading to

Pmat
σ =



2.434e-4 0 0 0 0 0
0 6.588e-2 0 0 0 0
0 0 6.588e-2 0 0 0
0 0 0 1.181e-2 0 0
0 0 0 0 2.973e-2 0
0 0 0 0 0 1.181e-2

MPa−2

Fmat,+
σ = Fmat,−

σ =
(
−6.573e-3 8.564e-2 8.564e-2 0 0 0

)ᵀ
MPa−1

(4.16)
inserted into the general yield function in Eq. (4.8), defined with respect to the local
coordinate basis (L − T − R). Due to the orthotropic characteristics, the consistent
traction-based yield function is highly dependent on the orientation of the discontinuity
at which it describes plastic failure. Thus, for each introduced discontinuity, a different
set of strength parameters had to be computed, determined by the “projection" proced-
ure introduced at the end of Section 4.2. Then, the equivalence between the material
strength within elements and the strength behaviour at discontinuities is guaranteed.

In the following, this orthotropic strength behaviour is assigned to the block with asym-
metric holes, for two different material orientations, to assess the capability of the
presented approach in handling anisotropic strength behaviour.

Material orientation 1

In the first case, the longitudinal orientation L of the material is identical to the y-
direction, as indicated in Figure 4.5a. Moreover, the local material coordinate basis
(L − T − R) is defined with L and T as the in-plane axes and R as the out-of-plane
axis.

The preliminary upper bound calculation, based on which the arrangement of discon-
tinuities will be defined, is carried out using a coarse mesh with 519 elements. The
corresponding failure mechanism is displayed in Figure 4.5b, and the computed orient-
ations of potential discontinuities are shown in Figures 4.5c and 4.5d. Averaging over
these orientations results in two mean angle values of θ̄1 = −84° and θ̄2 = 84°with
respect to the x-axis. According to these mean angles and starting from the points of
highest plastic strain-rate (present at the boundaries of the holes), the velocity discon-
tinuities shown in Figure 4.5e are implemented into the model. Subsequently the model
is re-meshed and a further upper bound calculation is performed.

The numerical upper bounds on the collapse load for different levels of mesh refinement
(DOF) with and without discontinuities are plotted in Figure 4.6. Again, the intro-
duction of velocity discontinuities improves the upper bound significantly, while hardly
increasing the DOF. In contrast to the isotropic case before, plastic failure also occurs
in the solid finite elements between discontinuities (Figure 4.6b), indicating that the
orientation or arrangement of discontinuities could be improved. This can also be seen
by looking at the plastic regions in Figure 4.6c, which do not exactly match the defin-
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Figure 4.5: Block with asymmetric holes using the Tsai-Wu orthotropic failure criterion.
(a) Geometry, boundary conditions, and the principal material orientation indicated by
the blue arrow; (b) upper bound result using 519 elements (robjv [−1.5 · 10−6 : 0]); (c)
and (d) potential orientations of plastic strain localisation; (e) prescribed discontinuities
based on (c) and (d).
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Figure 4.6: Numerical upper bound results for the block with asymmetric holes with the
principal material direction as defined in Figure 4.5a. (a) Collapse load using continuous
and discontinuous velocity fields as a function of DOF; upper bound failure mode (robjv
[−9 · 10−6 : 0]) using (b) discontinuities within a coarse mesh (486 elements) and (c) a
continuous velocity field with a fine mesh (38 537 elements).
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ition of discontinuities above. It seems that the arrangement of discontinuities does
not necessarily have to be ideal in order to achieve considerable improvement in the
numerical upper bound results.

Material orientation 2

In the second case, the local material orientation basis (L− T −R) is rotated by 30°in
the x − y plane, as indicated in Figure 4.7a. Again, based on an efficient preliminary
upper bound calculation (Figure 4.7b), possible orientations of discontinuities are com-
puted, resulting in mean angles of θ̄1 = ±80° and θ̄2 = −58°. The introduced velocity
discontinuities are shown in Figure 4.7e.
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Figure 4.7: Block with asymmetric holes using the Tsai-Wu orthotropic failure criterion.
(a) Geometry, boundary conditions, and the principal material orientation indicated by
the blue arrow; (b) upper bound result using 519 elements (robjv [−3 · 10−6 : 0]); (c)
and (d) potential orientations of plastic strain localisation; (e) prescribed discontinuities
based on (c) and (d).

As before, all numerical upper bounds are plotted in Figure 4.8, showing the strong
performance increase achieved by the selectively introduced discontinuities. Interest-
ingly, the intensity of localisation of plastic failure is slightly different comparing the
approaches with (Figure 4.8b) and without (Figure 4.8c) discontinuities. It seems that
with discontinuities the real failure mechanism can be better represented, since the main
plastic failure direction is well aligned with the principal material direction (wood fibre
direction) as expected.

4.3.3 Shear test on block

The last example is used to assess the capability of this upper bound formulation regard-
ing localised shear failure in orthotropic materials. The setup of the model is shown in
Figure 4.9a and is designed to represent a characteristic as well as often critical loading
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Figure 4.8: Numerical upper bound results for the block with asymmetric holes with the
principal material direction as defined in Figure 4.7a. (a) Collapse load using continuous
and discontinuous velocity fields as a function of DOF; upper bound failure mode (robjv
[−2 · 10−5 : 0]) using (b) discontinuities within a coarse mesh (524 elements) and (c) a
continuous velocity field with a fine mesh (34 875 elements).

state in wood-based products, like glued-laminated timber and cross-laminated timber.
As in the previous examples, the boundary conditions are chosen so as to represent
plane strain conditions, and the Tsai-Wu failure criterion with strength parameters
representing spruce wood is assigned to the material.

Again, based on a preliminary upper bound calculation using a very coarse mesh (Fig-
ure 4.9c1), the orientations of possible discontinuities are determined (Figure 4.9c2)
and, based on that information, velocity discontinuities are implemented into the model
(Figure 4.9c3). The result obtained with this discontinuity arrangement is shown in Fig-
ure 4.9d1, where the dominant plastic failure appears within the solid elements between
the introduced discontinuities but not at the discontinuities themselves, and, thus, the
potential of the velocity discontinuities has not been activated sufficiently. For this
reason, a second iteration was carried out, again computing the orientations of possible
discontinuities in all plastic regions (Figure 4.9d2). Based on that information a revised
discontinuity pattern was implemented as shown in Figure 4.9d3. The corresponding
failure mechanism is displayed in Figure 4.10b and it can be seen that, now, localised
failure occurs exclusively at the last-introduced discontinuity. The related upper bound
(point b in Figure 4.10a) is very good in comparison to the preliminary model without
discontinuities (point a) but uses a similar number of DOF. Moreover, the failure mech-
anism agrees well with that obtained using a very fine mesh and no discontinuities
(Figure 4.10c).

4.4 Summary and conclusions

In this work, a 3D numerical upper bound formulation using a quadratic approximation
of the velocity field and allowing for the implementation of orthotropic yield functions
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Figure 4.9: Block under shear loading. (a) Geometry, boundary conditions and the
principal material orientation indicated by the blue arrow; (b) illustrative 3D model
with 222 finite elements; (c) and (d) two iteration steps for the definition of the discon-
tinuities, with (c1) and (d1) as the upper bound result (robjv [−2 · 10−9 : 0]), (c2) and
(d2) as the potential orientations of plastic strain localisation, and (c3) and (d3) as the
prescribed discontinuities based on (c2) and (d2).
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Figure 4.10: Numerical upper bound results for the block under shear loading (a) Col-
lapse load using continuous and discontinuous velocity fields as a function of DOF; upper
bound failure mode (robjv [−4 ·10−9 : 0]) using (b) discontinuities within a coarse mesh
(242 elements) and (c) a continuous velocity field with a fine mesh (32 062 elements).

has been briefly proposed. Furthermore, the implementation of velocity discontinuities
into this formulation has been presented, along with the concept of how to derive the
necessary traction-based yield functions which guarantees a consistent description of the
material strength behaviour across discontinuities. Based on that formulation, compat-
ibility as well as the associated plastic flow rule are fulfilled throughout the whole body
and, thus, rigorous upper bounds are obtained.

The formulation has been verified by means of two classical examples, the rigid strip
footing and the block with asymmetric holes. Subsequently, based on preliminary upper
bound calculations with very coarse meshes, the orientation of potential slip lines where
very localised plastic flow may occur could be determined. Based on that informa-
tion, sensibly-arranged velocity discontinuities were incorporated into the finite element
models. In that way, upper bounds could be improved significantly with essentially no
increase of degrees of freedom.

It has also been shown that this concept works very well when assigning orthotropic
failure behaviour to the material. If the first introduction of discontinuities does not
improve the upper bound significantly, which means that most of the plastic dissipation
still takes place in solid elements, a second iteration step can improve the situation,
as shown by means of the shear test on a block. This may represent an important
finding for future developments, which could lead to a general algorithm for an adaptive
introduction and re-arrangement of velocity discontinuities, as an efficient alternative to
existing adaptive mesh refinement strategies. Especially for laminated structures and
orthotropic materials, where plastic failure often occurs in very localised mechanism, as
shown for wood at the microscale in Lukacevic and Füssl (2016), Lukacevic et al. (2014b)
and at the product scale in Hochreiner et al. (2013, 2014), such an approach could have
great value. Moreover, the efficiency of numerical limit analysis in combination with the
accuracy of the extended finite element formulations presented in Lukacevic and Füssl
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(2016), Lukacevic et al. (2014b) could lead to more flexible engineering design tools, in
which the focus can be switched between accuracy and efficiency as needed.
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Abstract: This paper presents a new adaptive strategy to efficiently exploit velo-
city discontinuities in 3D finite-element-based upper bound limit analysis formulations.
Based on an initial upper bound result, obtained with a conventional approach without
velocity discontinuities, possible planes of plastic flow localisation are determined at
each strain-rate evaluation node and, subsequently, this information is used to sequen-
tially introduce discontinuities into the considered discretised structure. During a few
iterations, by means of introducing new and adjusting existing discontinuities, an op-
timal velocity discontinuity layout is obtained. For the general 3D case, the geometry
of this layout is defined by the well-known level-set method, standardly used to define
the geometry of cracks in extended finite element method.

To make this method also applicable for orthotropic strength behaviours, traction-
based yield functions defining the plastic flow across discontinuities are derived form
their stress-based counterparts. This procedure is outlined in detail and the obtained
traction-based yield functions are verified numerically, to guarantee a consistent strength
behaviour throughout the whole discretised structure.

By means of three different examples, including isotropic as well as orthotropic yield
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functions, the performance of the proposed strategy is investigated and upper bound
results as well as failure modes are compared to reference solutions. The proposed ap-
proach delivered reliable upper bounds for each example and the majority of plastic flow
takes place across the sensibly-arranged discontinuities. For this reason, very good upper
bounds can be obtained with a quite coarse finite element mesh and only few introduced
velocity discontinuities. This represents an attractive alternative to commonly-used ad-
aptive mesh refinement strategies, where often a huge amount of degrees of freedom
needs to be added to capture localised failure.

Keywords: adaptive strategy, velocity discontinuities, upper bound limit analysis,
level-set method, orthotropic strength behaviours, localised failure.

5.1 Introduction

Limit analysis has been proven as a powerful computational method for strength pre-
dictions of a wide range of materials used in practical engineering areas, such as soil,
masonry, and composite materials (Chen, 2013, Füssl et al., 2008, Milani et al., 2006a,
2010, Nielsen and Hoang, 2016, Sloan, 2013). Originally, the main objective of limit
analysis has been determining the ultimate load a structure, exhibiting elastoplastic
material response, can resist without structural collapse. Since structures lose the
capability to store further external work as recoverable internal energy at structural
collapse, limit analysis exclusively focuses on the time instant when the critical plastic
dissipation rate is achieved.

This problem can be stated as: Find the kinematically admissible velocity field which
minimises the energy dissipation rate over the set of all statically admissible stress fields
which maximise the dissipated energy, according to Ciria et al. (2008). Based on the
assumptions of small deformations, perfectly plastic material behaviour, and associated
plastic flow, the plastic bounding theorems by Drucker et al. (1951, 1952) are normally
employed, leading to a lower and an upper bound of the collapse load multiplier. The
lower bound theorem states that, the highest load supported by a statically admissible
stress field, which satisfies equilibrium, the static boundary condition, and a plastic
yield criterion, is an optimal lower bound on the exact collapse load. In contrast, the
upper bound theorem states that, when the velocity field is kinematically admissible by
satisfying compatibility, the kinematic boundary conditions and an associated plastic
flow rule, the lowest load determined by equating the external work rate to the internal
plastic dissipation rate is an optimal upper bound on the exact collapse load. Note that
this paper mainly focuses on the upper bound problem.

Since analytical solutions of limit analysis are normally limited to simple problems,
the limit analysis theorems have been successfully implemented in numerical formula-
tions since the early 70s and excellent practical capabilities have been achieved in such
numerical approaches, from simple two-dimensional (2D) benchmark examples to com-
plicated three-dimensional (3D) problems. Time efficiency and solution quality of these
approaches have also benefited from the rapid development of mathematical program-
ming methods used to solve the underlying optimisation problems.

In early implementations, during the last three decades of the 20th Century, these op-
timisation problems were solved using linear programming methods by linearising the
applied plastic yield functions, as can be found in Anderheggen and Knöpfel (1972),
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Belytschko and Hodge (1970), Lysmer (1970), Maier et al. (1972), Sloan (1988, 1989),
Sloan and Kleeman (1995). Lyamin and Sloan (2002a,b) and Krabbenhøft and Damkilde
(2003) were the pioneers who used nonlinear programming methods to solve numerical
limit analysis formulations with nonlinear yield functions formulated in their native
form. However, since such implementations require differentiability of the yield sur-
faces, local smoothening procedures are often necessary. Alternatively, as proposed by
Makrodimopoulos and Martin (2006, 2007), Ciria and Peraire (2004), and Krabbenhøft
et al. (2007), second-order cone programming (SOCP) has been proven to be a robust
and efficient method to solve large-scale nonlinear optimisation problems of numerical
limit analysis, allowing most commonly-used yield functions to be formulated in their
native form. Also in this work SOCP is employed, since all used yield functions can be
formulated as second-order cones, including the isotropic von Mises yield function, the
Drucker-Prager yield function, as well as the orthotropic Tsai-Wu yield function.

On the other hand, the performance of numerical limit analysis formulations also heavily
depends on the discretisation method and the related shape functions. Since rigorous
upper bound solutions require the associated plastic flow rule being satisfied at each
point of the structures, it is straightforward to use constant strain elements (Bottero
et al., 1980, Ciria and Peraire, 2004, Lyamin and Sloan, 2002b, Sloan, 1989, 2013).
To achieve a higher quality of upper bound solutions, the simplex strain element using
linear shape functions for the strain-rate field has been introduced by Makrodimopoulos
and Martin (2007), Martin and Makrodimopoulos (2008). In their implementations,
associated plastic flow can still be guaranteed within each element since the strain-
rate is linear and the associated plastic flow rule is evaluated at all vertices. From the
numerical point of view, further performance improvements can be expected by using
higher order interpolation functions. For this purpose, several different implementations
were developed using the element-free Galerkin method by Le et al. (2009, 2010b), the
radial point interpolation meshless method by Liu and Zhao (2013), Yu et al. (2016),
and the smoothed finite element method by Le et al. (2010c), Nguyen-Xuan and Liu
(2015). However, in such implementations, it is difficult to guarantee both compatibility
and satisfaction of the associated plastic flow rule in each point of the structure, thus,
the so-obtained numerical upper bounds are not necessarily rigorous.

Beside using higher order interpolation functions, velocity discontinuities can be imple-
mented into numerical limit analysis formulations, adding additional degrees of freedom
to the discretised structure. In an early implementation by Sloan and Kleeman (1995),
velocity discontinuities were introduced in finite-element-based upper bound formula-
tions where linear velocity jumps were allowed between constant strain elements in-
troduced in Sloan (1989). As a development of this approach, zero-thickness interface
elements were introduced by Krabbenhøft et al. (2005), allowing the use of general yield
criteria. In a contribution by Makrodimopoulos and Martin (2008), velocity discontinu-
ities were introduced between simplex strain elements, defined in Makrodimopoulos and
Martin (2007), allowing both linear and quadratic velocity jumps, showing a robust and
efficient performance for a large number of applications.

Alternative approaches of numerical upper bound formulations were proposed by Chen
et al. (2003) and Milani et al. (2006a,b, 2010), where all solid elements are considered as
rigid and plastic failure is only possible across velocity discontinuities between elements.
Such implementations exhibit good performance for certain engineering problems, e.g.
in masonry engineering, but the strong dependence of the solution quality on the finite
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element mesh restricts its application, and even adaptive mesh refinement cannot fully
compensate this drawback. For this reason, a sequential linear programming method
was applied by Milani and Lourenço (2009), to iteratively adapt the finite element mesh.
This approach is able to increase the efficiency of velocity discontinuities, but so far it
has been proposed only for 2D problems and the original mesh has to be fine enough
to provide a sufficient number of velocity discontinuities, since no additional velocity
discontinuity can be introduced during the adaptive iterations. Another interesting
approach is the so-called discontinuity layout optimisation, presented by Smith and
Gilbert (2007) for 2D and Hawksbee et al. (2013) for 3D problems. Thereby, velocity
discontinuities are determined by using a truss layout optimisation algorithm based on
a prescribed grid. Although this approach performs well for 2D problems, the determ-
ination of complex failure mechanisms in 3D solid bodies requires a very fine grid and
large computational effort.

For this reason, in the author’s opinion, the most promising approach so far to obtain
rigorous upper bounds seems to be the use of solid finite elements with or without
velocity discontinuities. Due to the fact that plastic failure often occurs very localised,
adaptive mesh refinement has been intensively investigated in Borges et al. (2001), Ciria
and Peraire (2004), Ciria et al. (2008), Martin (2011), Muñoz et al. (2009), Nguyen-
Xuan and Liu (2015), Nguyen-Xuan et al. (2017). However, such strategies normally
lead to very fine meshes in failure regions and, thus, increase the number of degrees of
freedom and computational effort significantly.

Recently, an alternative approach has been presented by the authors (Li et al., 2018b),
where finite-element-based upper bound formulations with sensibly-arranged velocity
discontinuities have been proven reliable and efficient, without the need of intensive mesh
refinement in failure regions. Additionally, although the implementation of orthotropic
yield functions in numerical upper bound formulations has been presented in several
publications (Capsoni et al., 2001a,b, Füssl et al., 2017, Li, 2011, Li et al., 2018c,d),
to the authors’ knowledge, the combination of orthotropic yield functions and velocity
discontinuities was presented by the authors in Li et al. (2018b) for the first time. In
order to apply this approach to more general problems, in this paper, a comprehensive
introduction on the numerical implementations as well as an adaptive introduction
and adjustment strategy on the sensible arrangement of velocity discontinuities will be
presented.

Thus, the main objectives of this work can be introduced as follows:

1. The implementation of orthotropic yield functions and velocity discontinuities in
3D finite-element-based upper bound formulations, using simplex strain elements
with the plastic flow measured by both the linear strain-rates within solid elements
and linear velocity-jumps only across sensibly-arranged velocity discontinuities.

2. The derivation of traction-based yield functions for the velocity discontinuities,
taking both their orientation and the orthotropic stress-based yield function as-
signed to the solid elements into account, in order to guarantee consistent ortho-
tropic strength behaviour throughout the whole discretised structure.

3. The implementation of an adaptive approach to introduce and adjust velocity
discontinuities in an efficient and meaningful way at regions where very localised
plastic failure can be expected.
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With respect to these objectives, the paper is structured as follows: In Section 5.2,
upper bound formulations considering orthotropic strength behaviour and velocity dis-
continuities are introduced analytically. In these formulations, the traction-based yield
function applied to velocity discontinuities are guaranteed to represent similar ortho-
tropic strength behaviour as the stress-based yield function applied to solid elements by
means of a projection algorithm introduced in Section 5.3. The formulation of associ-
ated plastic flow rule both in continuum and across velocity discontinuities are presented
in Section 5.4. Then, in Section 5.5, upper bound formulations are given in discretised
form, using simplex strain elements and linear velocity discontinuities. The algorithm
for introduction and adjustment of velocity discontinuities is presented in Section 5.6.
A verification of these implementations by means of two commonly-used benchmark
examples under plane strain conditions and a 3D example can be found in Section 5.7.
Finally, a brief summary and concluding comments are given in Section 5.8.

5.2 Kinematic theorem

Upper bound calculations exclusively focus on the kinematically admissible velocity
field u̇ = (u̇x, u̇y, u̇z)

ᵀ ∈ R3 at the time instant of structural collapse, and search for
the failure mechanism leading to the minimum internal plastic energy dissipation rate
Wint, which must equal to the external work rate Wext. Thereby, a velocity field u̇ is
considered to be kinematically admissible when it fulfills compatibility, the plastic flow
rule, and the kinematic boundary conditions at each point of the considered structure.

In this work, to be able to consider very localised plastic failure mechanisms more
easily, the velocity field u̇ is not enforced to be continuous, rather velocity-jumps ∆u̇ =
(∆u̇x,∆u̇y,∆u̇z)

ᵀ ∈ R3 are allowed across prescribed discontinuities Γdis. These consist
of one part denoted as Γ+

dis with the related velocity field u̇+
dis and an opposite part Γ−dis

with the related velocity field u̇−dis. Then, diffused plastic failure is measured by the
plastic strain-rate field ε̇ = (ε̇xx, ε̇yy, ε̇zz, 2ε̇xy, 2ε̇yz, 2ε̇xz)

ᵀ ∈ R6 (in Voigt notation) in
the continuum Ω and very localised plastic failure is measured by the velocity-jump
field ∆u̇ = u̇+

dis − u̇−dis at certain discontinuities Γdis.

The plastic dissipation functions for these two failure mechanisms can be expressed as

dmat(ε̇) = sup
σ∈F

σᵀε̇, F = {σ|fmat(σ) ≤ 0} in Ω

ddis(∆u̇) = sup
t∈D

tᵀ∆u̇, D = {t|fdis(t) ≤ 0} on Γdis

(5.1)

where σ = (σxx, σyy, σzz, σxy, σyz, σxz)
ᵀ ∈ R6 denotes the stress field, t = (tx, ty, tz)

ᵀ ∈
R3 represents the surface traction field, fmat(σ) ≤ 0 is a stress-based yield function
assigned to the continuum Ω, and fdis(t) ≤ 0 is a traction-based yield function (de-
pending on fmat(σ) ≤ 0) assigned to the velocity discontinuities Γdis. Consequently,
the internal energy dissipation rate Wint over the whole structure reads

Wint =

∫
Ω
dmat(ε̇)dV +

∫
Γdis

ddis(∆u̇)dA =

∫
Ω
ε̇ᵀσdV +

∫
Γdis

∆u̇ᵀtdA (5.2)

consisting of the rate of plastic energy dissipated within the continuum as well as at
discontinuities.
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The upper bound problem can then be formulated as a nonlinear optimisation problem,
reading

min Wint

s.t. ε̇ = Lε̇u̇ in Ω

∆u̇ = L∆u̇u̇dis on Γdis

u̇ = u̇bc on Γ

ε̇ = λ̇mat∂fmat(σ)/∂σ in Ω

∆u̇ = λ̇dis∂fdis(t)/∂t on Γdis

(5.3)

where u̇dis = (u̇+
dis, u̇

−
dis)

ᵀ ∈ R6 contains the velocity fields of both surfaces of a discon-
tinuity Γdis, and

Lε̇ =



∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

∂/∂y 0 ∂/∂z

∂/∂x ∂/∂z 0

0 ∂/∂y ∂/∂x


∈ R6×3 and L∆u̇ =

(
I −I

)
∈ R3×6 (5.4)

are the compatibility operators for the continuum Ω and the discontinuities Γdis, re-
spectively.

Through the first constraint of the upper bound formulation in Eq. (5.3) compatibility
between the velocity field u̇ and the strain-rate field ε̇ is enforced at each point of the
continuum Ω; the second constraint enforces compatibility between the velocity-jump
field ∆u̇ and the velocity field u̇ across each discontinuity Γdis; the third constraint
represents the kinematic boundary conditions, prescribing a velocity field u̇bc on the
surface Γ = ∂Ω. The last two constraints ensure associated plastic flow in Ω as well
as across Γdis, where λ̇mat and λ̇dis denote the corresponding plastic multiplier rates,
determining the magnitude of plastic flow.

According to duality in nonlinear programming, the primal form of the upper bound
problem in Eq. (5.3) can also be formulated in dual form, reading

max Wext

s.t.
∫

Ω ε̇
ᵀσdV +

∫
Γdis

µ̇ᵀtdA =
∫

Ω u̇ᵀβgudV +
∫

Ω u̇ᵀgfdV +
∫

Γu
u̇ᵀβtudA+

∫
Γf

u̇ᵀtfdA

fmat(σ) ≤ 0 in Ω

f(t)dis ≤ 0 on Γdis

(5.5)

where the first constraint represents a weak form of equilibrium for the whole structure,
with β as an unknown collapse limit load multiplier. The objective function becomes
the maximum external work rate in the dual formulation, which can be written as

Wext =

∫
Ω

u̇ᵀβgudV +

∫
Γu

u̇ᵀβtudA+

∫
Ω

u̇ᵀgfdV +

∫
Γf

u̇ᵀtfdA (5.6)

containing contributions from the unknown body force field gu = (gu,x, gu,y, gu,z)
ᵀ ∈ R3

and the fixed body force field gf = (gf,x, gf,y, gf,z)
ᵀ ∈ R3 in the continuum Ω, as well

as from the unknown traction field tu on the boundary surface part Γu and the fixed
traction field tf on the boundary surface part Γf , with Γ = Γu ∩ Γf .
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5.3 Traction-based plastic yield function

As discussed in several publications (Krabbenhøft et al., 2005, Makrodimopoulos and
Martin, 2008, Sloan and Kleeman, 1995), the implementation of velocity discontinuities
in finite-element-based upper bound formulations can significantly improve the quality
of upper bound results and locking phenomena can often be avoided. The number
of unknown variables, however, is greatly increased and, thus, a higher computational
effort is required.

In existing finite-element-based upper bound formulations with velocity discontinuities
exclusively shear-failure-based isotropic yield functions fmat(σ) ≤ 0 (e.g. the von Mises
yield function, the Mohr-Coulomb yield function and the Drucker-Prager yield function)
are assigned to the continuum Ω. In this case, the formulation of an equivalent strength
behaviour at discontinuities (between finite elements) is straightforward and leads to a
function fdis(σm, τ) ≤ 0 depending on the normal stress σm and the shear stress τ at the
discontinuity. Thus, this failure criterion can easily be linked to and expressed in terms
of the traction forces acting at the discontinuity, giving a function fdis(t) ≤ 0. However,
this is only possible for shear-failure-based strength criteria and becomes much more
complicated for other types of failure criteria, like e.g. orthotropic strength behaviour.

For this reason, in this section an algorithm is proposed which allows the projection of a
quite general stress-based yield function fmat(σ) ≤ 0 onto an equivalent traction-based
yield function fdis(t) ≤ 0 with respect to a certain velocity discontinuity Γdis. In this
way a consistent strength behaviour throughout a structure with discontinuities can be
achieved.

5.3.1 Projection algorithm

As stress-based yield function for the continuum Ω the following differentiable quadratic
form will be considered, formulated with respect to the local coordinate basis of the
material (x′ − y′ − z′)mat:

fmat(σ
mat
loc ) = σmatᵀloc Pmat

σ σmatloc + (1
2Fmat,+ᵀ

σ σmatloc )2 − (1− 1
2Fmat,−ᵀ

σ σmatloc )2 ≤ 0, in Ω (5.7)

where σmatloc = Rmat
σ σ represents a stress state with respect to the local coordinate

basis of the material, and the matrices Pmat
σ ∈ R6×6, Fmat,+

σ ∈ R6 and Fmat,−
σ ∈ R6

determine the type of yield function as well as strength parameters. Of course, when
the special case of an isotropic yield function is considered, the introduction of a local
coordinate basis for the material is not necessary and σmatloc = σ.

The transformation matrix for stress vectors from the global coordinate basis (x−y−z)
to the material local coordinate basis (x′ − y′ − z′)mat reads

Rmat
σ =

nmat2x′x nmat2x′y nmat2x′z 2nmatx′x n
mat
x′y 2nmatx′y n

mat
x′z 2nmatx′x n

mat
x′z

nmat2y′x nmat2y′y nmat2y′z 2nmaty′x n
mat
y′y 2nmaty′y n

mat
y′z 2nmaty′x n

mat
y′z

nmat2z′x nmat2z′y nmat2z′z 2nmatz′x n
mat
z′y 2nmatz′y n

mat
z′z 2nmatz′x n

mat
z′z

nmatx′x n
mat
y′x nmatx′y n

mat
y′y nmatx′z n

mat
y′z nmatx′y n

mat
y′x + nmatx′x n

mat
y′y nmatx′y n

mat
y′z + nmatx′z n

mat
y′y nmatx′x n

mat
y′z + nmaty′x n

mat
x′z

nmaty′x n
mat
z′x nmaty′y n

mat
z′y nmaty′z n

mat
z′z nmaty′x n

mat
z′y + nmatz′x n

mat
y′y nmaty′z n

mat
z′y + nmaty′y n

mat
z′z nmaty′x n

mat
z′z + nmatz′x n

mat
y′z

nmatx′x n
mat
z′x nmatx′y n

mat
z′y nmatx′z n

mat
z′z nmatx′x n

mat
z′y + nmatx′y n

mat
z′x nmatx′y n

mat
z′z + nmatx′z n

mat
z′y nmatx′z n

mat
z′x + nmatx′x n

mat
z′z


(5.8)
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with nmatx′ = (nmatx′x , n
mat
x′y , n

mat
x′z )ᵀ ∈ R3, nmaty′ = (nmaty′x , n

mat
y′y , n

mat
y′z )ᵀ ∈ R3 and nmatz′ =

(nmatz′x , n
mat
z′y , n

mat
z′z )ᵀ ∈ R3 as the three normal vectors of the material local coordinate

basis.

In order to derive a traction-based yield function for velocity discontinuities based on
Eq. (5.7), the first step is the transformation of this yield function from the material
local coordinate basis (x′ − y′ − z′)mat into the discontinuity local coordinate basis
(n−m− p)dis, reading

fmat(σ
dis
loc) = σdisᵀloc Pdis

σ σ
dis
dis+(

1

2
Fdis,+ᵀ
σ σdisloc)

2−(1− 1

2
Fdis,−ᵀ
σ σdisloc)

2 ≤ 0, on Γdis (5.9)

where σdisloc = Rdis
σ σ denotes a local stress state at the discontinuity with respect

to the discontinuity local coordinate basis. Rdis
σ is the related transformation mat-

rix equally defined as the matrix in Eq. (5.8), with ndisn = (ndisnx , n
dis
ny , n

dis
nz )ᵀ ∈ R3,

ndism = (ndismx, n
dis
my, n

dis
mz)

ᵀ ∈ R3 and ndisp = (ndispx , n
dis
py , n

dis
pz )ᵀ ∈ R3 as the normal vectors

of the local coordinate basis (n−m− p)dis (with ndisn as the out of plane normal vector
and ndism and ndisp as the in plane normal vectors). According to these definitions, σmatloc

(Eq. (5.7)) and σdisloc (Eq. (5.9)) are connected as follows: σmatloc = Rmat
σ (Rdis

σ )−1σdisloc .
The yield function matrices in Eq. (5.9) can then be determined as

Pdis
σ = (Rmat

σ (Rdis
σ )−1)ᵀPmat

σ (Rmat
σ (Rdis

σ )−1) ∈ R6×6

Fdis,+
σ = (Rmat

σ (Rdis
σ )−1)ᵀFmat,+

σ ∈ R6

Fdis,−
σ = (Rmat

σ (Rdis
σ )−1)ᵀFmat,−

σ ∈ R6

(5.10)

Next, the local stress field at discontinuities σdisloc is linked to the corresponding traction
field tdisloc simply by

tdisloc = Ldisσ σ
dis
loc , on Γdis (5.11)

with

Ldisσ =

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 ∈ R3×6 (5.12)

as the projection operator. Thereby, the local traction field is obtained by tdisloc = Rdis
t t,

with the transformation matrix

Rdis
t =

n
dis
nx ndisny ndisnz

ndismx ndismy ndismz

ndispx ndispy ndispz

 ∈ R3×3 (5.13)

According to Eq. (5.11), it is obvious that, from a critical stress state, the corresponding
critical traction forces at a discontinuity can easily be evaluated. However, the reverse
way, evaluating whether a traction force state is critical or not with respect to the stress-
based yield function in Eq. (5.9), is not possible without further conditions, because the
local traction field tdisloc only defines three stress components (σdisnn , σdisnm, σdisnp ) of the
related local 3D stress state. For this reason, three additional constraints are needed to
ensure that the finally derived traction-based yield function fdis(t) ≤ 0 is only triggered
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for traction force states which in any case lead to plastic failure. This can be achieved
by adding the following three constraints:

ε̇dismm = Λdismm(σdisloc) = λ̇disε̇ ∂fmat(σ
dis
loc)/∂σ

dis
mm = 0

ε̇dispp = Λdispp (σdisloc) = λ̇disε̇ ∂fmat(σ
dis
loc)/∂σ

dis
pp = 0

ε̇dismp = Λdismp(σ
dis
loc) = λ̇disε̇ ∂fmat(σ

dis
loc)/∂σ

dis
mp = 0

(5.14)

enforcing the plastic strain-rate field ε̇disloc to be localised with respect to the discontinuity
Γdis ((n −m − p)dis), as introduced by Wu and Cervera (2014). Thereby, Λdismm, Λdispp
and Λdismp represent the partial derivative expressions of the yield function Eq. (5.9) with
respect to the three stress components σdismm, σdispp and σdismp, irrelevant to the interface
plane of Γdis.

Substituting the stress components σdisnn , σdisnm and σdisnp in Eq. (5.14) with the local
traction components tdisn , tdism and tdisp according to Eqs. (5.11) and (5.12), the remaining
stress components can be expressed as functions L of the local traction vector tdisloc ,
reading

σdismm = Ldismm(tdisloc)

σdispp = Ldispp (tdisloc)

σdismp = Ldismp(t
dis
loc)

(5.15)

Now, each local traction force state tdisloc can be linked to a unique 3D local stress state
σdisloc , reading

σdisloc = Ldist tdisloc , on Γdis (5.16)

where Ldist ∈ R6×3 represents the projection operator determined from Eqs. (5.11) and
(5.15) with respect to Γdis.

Finally, by inserting Eq. (5.16) into Eq. (5.9), the stress-based yield function fmat(σdisloc) ≤
0 in Ω can be projected onto a traction-based yield function fdis(t

dis
loc) ≤ 0 locally on

Γdis, which reads

fmat(σ
dis
loc ) = σdisᵀloc Pdisσ σdisdis + (

1

2
Fdis,+ᵀ
σ σdisloc )2 − (1− 1

2
Fdis,−ᵀ
σ σdisloc )2 (5.17a)

= (Ldist tdisloc )ᵀPdisσ (Ldist tdisloc ) + (
1

2
Fdis,+ᵀ
σ (Ldist tdisloc ))2 − (1− 1

2
Fdis,−ᵀ
σ (Ldist tdisloc ))2 (5.17b)

= tdisᵀloc Pdist tdisloc + (
1

2
Fdis,+ᵀ
t tdisloc )2 − (1− 1

2
Fdis,−ᵀ
t tdisloc )2 = fdis(t

dis
loc ) (5.17c)

where Pdis
t = Ldisᵀt Pdis

σ Ldist ∈ R3×3, Fdis,+
t = Ldisᵀt Fdis,+

σ ∈ R3 and Fdis,−
t = Ldisᵀt Fdis,−

σ ∈
R3 are the matrices containing strength parameters for the traction-based yield func-
tion.

5.3.2 Numerical verification

In the following, the presented transition (Eq. (5.17)) from a stress-based yield function
into a traction-based yield function is numerically verified. Assuming the material local
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coordinate basis as identical to the global coordinate basis, arbitrary Tsai-Wu strength
parameters for the stress-based yield function (Eq. (5.7)) are chosen as

Fmat
σ =



0.0750

0.7500

0.1905

0

0

0


Pmat
σ =



0.0250 0 0 0 0 0

0 0.2500 0 0 0 0

0 0 0.0476 0 0 0

0 0 0 0.1111 0 0

0 0 0 0 0.2500 0

0 0 0 0 0 0.0400


(5.18)

Then, a set of failure stress states σi (i ∈ {1, · · · , nf}) with respect to the global
coordinate basis (x−y−z) can be determined by inserting the parameters in Eq. (5.18)
into the general form of the yield function in Eq. (5.7), where nf represents the number
of selected failure stress states.

Considering two different and arbitrarily selected planes (discontinuities) Γ1 and Γ2

defined by their normal vectors

n1 = (0.1826, 0.9129, 0.3651)ᵀ for Γ1

n2 = (−0.8018, 0.5345,−0.2673)ᵀ for Γ2

(5.19)

two sets of local traction force states tdis,iσ,1 and tdis,iσ,2 (i ∈ {1, · · · , nσ}) can be determined
as

tdis,iσ,j = Ldisσ Rdis
σ,jσ

i ∀i ∈ {1, · · · , nσ} and j ∈ {1, 2} (5.20)

with respect to their local coordinate bases (n−m− p)1 and (n−m− p)2, respectively.
In Eq. (5.20), Ldisσ denotes the operator projecting the stress state into the traction
force state defined in Eq. (5.12), and Rdis

σ,1 and Rdis
σ,2 are the transformation matrices

similar to Eq. (5.8) based on the axial normal vectors nn,1 = (0.1826, 0.9129, 0.3651)ᵀ,
nm,1 = (−0.9806, 0.1961, 0.0000)ᵀ, np,1 = (−0.0716,−0.3581, 0.9309)ᵀ for (n − m −
p)1 and nn,2 = (−0.8018, 0.5345,−0.2673)ᵀ, nm,2 = (0.5547, 0.8321, 0.0000)ᵀ, np,2 =
(0.2224,−0.1483,−0.9636)ᵀ for (n−m− p)2, respectively.

Although all failure stress states σi naturally lie on a continuous surface, as defined
through the stress-based yield function in Eq. (5.7), the corresponding traction force
failure stress states tdis,iσ,1 and tdis,iσ,2 , obtained through Eq. (5.20) are not necessarily
located on such. They rather represent point clouds whose shapes heavily depend on
the orientation of the planes Γ1 and Γ2, as illustrated in Figure 5.1. However, a clear
ellipsoidal outer envelope can be observed, meaning that every traction force state lying
outside this envelope is for sure related to a failure stress state according to Eq. (5.7).

According to Eq. (5.17), the stress-based yield function using the strength parameters
in Eq. (5.18) can be projected into the traction-based yield functions with respect to the
local coordinate basis (n−m− p)1 and (n−m− p)2 for which the strength parameters
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Figure 5.1: Local traction point clouds determined by projecting the set of global failure
stress state σi into two sets of local traction states (a) tdis,iloc,1 on the plane Γ1 with respect
to (n − m − p)1 and (b) tdis,iloc,2 on the plane Γ2 with respect to (n − m − p)2 where
(i ∈ {1, · · · , nf}).

are determined as

Fdis
t,1 =

 0.4584

0.1290

−0.1012

 Pdis
t,1 =

 0.1515 0.0424 −0.0485

0.0424 0.0780 −0.0111

−0.0485 −0.0111 0.1488

 for Γ1 (5.21a)

Fdis
t,2 =

 0.0899

0.0791

−0.0020

 Pdis
t,2 =

 0.0296 0.0260 −0.0037

0.0260 0.0782 −0.0033

−0.0037 −0.0033 0.0356

 for Γ2 (5.21b)

Inserting these strength parameters into the general form of the traction-based yield
function in Eq. (5.17c) leads to yield functions for the two planes Γ1 and Γ2, respectively.

For each plane, a set of traction force failure states tdis,it,j (i ∈ {1, · · · , nt} and j ∈
{1, · · · , 2}) is evaluated and plotted in Figure 5.2 as red point cloud (nt is the number
of selected failure traction states based on the traction-based yield function), where the
blue point cloud is identical to Figure 5.1. It can be seen that, for each example plane,
the red point cloud spans a continuous surface identical to the outer envelope of the blue
point cloud. This proves that the presented traction-based yield function in Eq. (5.17c)
represents a suitable criterion to indicate wether a traction force state at a discontinuity
should exhibit plastic deformation or not. Of course, there are plenty of traction force
states which could lead to failure but do not violate the traction-based yield function.
In these cases plastic deformation takes place in the adjacent solid finite elements, and
the upper bound theorem itself will never be violated. Thus, to exploit the performance
of discontinuities in this kind of formulation, they should be aligned according to planes
where strain localisation takes place. This requires an adaptive implementation, which
will be presented and discussed in Section 6.
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Figure 5.2: Verification of the projection in Eq. (5.17) by means of two example planes
(a) Γ1 and (b) Γ2, where the blue point clouds indicate all possible traction states,
tdis,iσ,1 and tdis,iσ,2 , related to the yield stress states σi determined by the stress-based yield
function with the parameters in Eq. (5.18) (i ∈ {1, · · · , nσ}). The red point clouds
indicate the yield traction states tdis,jt,1 and tdis,jt,2 according to the traction-based yield
function with the parameters in Eq. (5.21) (j ∈ {1, · · · , nt}).

5.4 Associated plastic flow rule

In both the primal and dual form of the upper bound problem in Eqs. (5.3) and (5.5), all
nonlinear constraints are related to the yield functions and their associated plastic flow
rule. As stated by Makrodimopoulos and Martin (2007) and Ciria et al. (2008), for 3D
problems, most commonly used failure criteria are smooth and can be formulated into
second-order cone constraints (e.g. the von Mises failure criterion, the Drucker-Prager
failure criterion and the Tsai-Wu failure criterion), thus, the nonlinear optimisation
problems in Eqs. (5.3) and (5.5) can be solved efficiently by using SOCP. The widely-
used 3D Mohr-Coulomb failure criterion is non-smooth and, thus, cannot be formulated
into a second-order cone. Using semidefinite programming instead of second-order cone
programming, as introduced by Martin and Makrodimopoulos (2008) and Krabbenhøft
et al. (2008), this problem can be overcome. In the following, only formulations of
smooth yield functions and their associated plastic flow rule are considered and their
reformulation as second-order cone constraints is described.

Associated plastic flow rule in the continuum

In the continuum Ω the plastic flow is measured by the strain-rate field and the associ-
ated plastic flow rule reads

ε̇matloc = λ̇matε̇ ∂fmat(σ
mat
loc )/∂σmatloc (5.22)

where ε̇matloc represents the strain-rate field with respect to the material local coordinate
basis (x′ − y′ − z′)mat and λ̇matloc is the corresponding plastic multiplier rate.

If the stress-based yield functions can be formulated according to Eq. (5.7) and the
parametric matrix Pmat

σ is either positive definite or positive semidefinite, so that it
can be decomposed as Pmat

σ = Dmatᵀ
σ Dmat

σ with Dmat
σ ∈ R6×6, the yield function
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fmat(σ
mat
loc ) ≤ 0 can be reformulated as

smatσ = amatσ + Bmat
σ σmatloc

smatσ ∈ C
(5.23)

where smatσ ∈ R8 is the second-order cone expression of the stress-based yield function
Eq. (5.7), C refers to the quadratic cone, and the parametric matrices are composed as
follows

amatσ =

(
1

0

)
∈ R8 and Bmat

σ =

−
1
2Fmat,−ᵀ

σ

Dmat
σ

1
2Fmat,+ᵀ

σ

 ∈ R8×6 (5.24)

according to the definition of second-order cones (Eq. (5.60)).

As applied by Makrodimopoulos and Martin (2007) and Li et al. (2018c), if the yield
function can be formulated as second-order cone constraint (Eq. (5.23)), the corres-
ponding associated plastic flow rule Eq. (5.22) can be formulated as

ε̇matloc = −Bmatᵀ
σ ėmatε̇

ėmatε̇ ∈ C ∗
(5.25)

where ėmatε̇ ∈ R8 represents the second-order cone expression of the associated plastic
flow rule and C ∗ is the dual cone of the primal quadratic cone C of Eq. (5.23).

Associated plastic flow rule at velocity discontinuities

As introduced in Section 5.2, velocity-jumps ∆u̇ are employed in the primal upper
bound problem Eq. (5.3) as additional degrees of freedom beside the strain-rate field ε̇
measuring the localised plastic flow. At velocity discontinuities Γdis plastic flow occurs
when the traction-based yield function according to Eq. (5.17c) is violated. Then, a
velocity jump field between the surfaces Γ+

dis and Γ−dis appears, given by

∆u̇disloc = λ̇disloc∂fdis(t
dis
loc)/∂tdisloc (5.26)

where ∆u̇disloc = Rdis
∆u̇∆u̇ is the local velocity discontinuity field with respect to (n−m−

p)dis, Rdis
∆u̇ = Rdis

t is the transformation matrix with similar definition as in Eq. (5.13),
and λ̇disloc denotes the corresponding plastic multiplier rate.

As indicated in Eq. (5.17), the traction-based yield function exhibits a similar structure
as the stress-based yield function and, thus, can also be formulated as second-order cone
constraint, reading

sdist = adist + Bdis
t tdisloc

sdist ∈ C

(5.27)

where sdist ∈ R5 is the second-order cone expression of the traction-based yield function
Eq. (5.17c) and the parametric matrices are composed as follows

adist =

(
1

0

)
∈ R5 and Bdis

t =

−
1
2Fdis,−ᵀ

t

Ddis
t

1
2Fdis,+ᵀ

t

 ∈ R5×3 (5.28)
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with Ddis
t ∈ R3×3 as the decomposed matrix of Pdis

t = Ddisᵀ
t Ddis

t .

Furthermore, similar to Eq. (5.25), the associated plastic flow rule at Γdis can be for-
mulated as the dual cone constraint of Eq. (5.27), reading

∆u̇disloc = −Bdisᵀ
t ėdis∆u̇

ėdis∆u̇ ∈ C ∗
(5.29)

where ėdis∆u̇ ∈ R5 is the second-order cone expression of Eq. (5.26).

5.5 Finite-element-based upper bound formulation

In this work, 10-noded simplex strain tetrahedral elements are used for discretisa-
tion, which are capable of providing more accurate upper bound results compared to
the often used 4-noded (constant strain rate) elements (Makrodimopoulos and Mar-
tin, 2007, Martin and Makrodimopoulos, 2008). In each element el, the strain-rate
field ε̇ is obtained through interpolation between nodal strain-rate vectors qel,iε̇ =

(qel,iε̇,xx, q
el,i
ε̇,yy, q

el,i
ε̇,zz, q

el,i
ε̇,xy, q

el,i
ε̇,yz, q

el,i
ε̇,xz)

ᵀ ∈ R6 at 4 evaluation nodes (4 vertices) using 3D
linear interpolation functions N el,i

ε̇ (x) (∀el ∈ {1, · · · , UE} and i ∈ {1, · · · , 4}) and
the velocity field u̇ is obtained through interpolation between nodal velocity vectors
qel,ju̇ = (qel,ju̇,x , q

el,j
u̇,y , q

el,j
u̇,z )ᵀ ∈ R3 at 10 evaluation nodes (4 vertices and 6 edge middle

nodes) using 3D quadratic interpolation functions N el,j
u̇ (x) (∀el ∈ {1, · · · , UE} and j ∈

{1, · · · , 10}) with UE as the total number of elements in the upper bound problem.
Here, x = (xx, xy, xz)

ᵀ ∈ R3 represents an arbitrary position vector inside each ele-
ment. In the discretised structure, the strain-rate field ε̇ is piecewise linear within each
element and allowed to be discontinuous between elements, thus, each element has its
own internal strain-rate evaluation nodes but adjacent nodes from different elements
can share the same coordinate.

Consequently, each boundary surface of an element be is triangular with 6 velocity eval-
uation nodes (3 vertices and 3 edge middle nodes), and the velocity field u̇ is obtained
through interpolation between nodal velocity vectors qbe,ku̇ using 2D quadratic interpol-
ation functions N̄ be,k

u̇ (x) (∀be ∈ {1, · · · , UBE} and k ∈ {1, · · · , 6}) with UBE as the
total number of 6-noded boundary elements on Γ.

As mentioned above, velocity jumps ∆u̇ are only allowed at prescribed discontinu-
ities Γdis, where each surface pair Γ+

dis and Γ−dis has its own set of internal velo-
city evaluation nodes with different nodal velocity vectors qde+,iu̇ and qde−,ju̇ (∀de ∈
{1, · · · , UDE} and i, j ∈ {1, · · · , 6}). Each triangular surface at a discontinuity de,
located on the interface part Γdedis ⊂ Γdis, has 6 velocity evaluation nodes with corres-
ponding 2D quadratic interpolation functions N̄de,i

u̇ (x). Here UDE represents the total
number of velocity discontinuity elements on Γdis.

5.5.1 Primal formulations

The discretised form of each constraint in the primal upper bound problem (Eq. (5.3))
is introduced in the following.
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Compatibility within elements

Based on the assumptions of small strains and straight element edges, all changes in
geometry of the considered structure during collapse are negligible, and the discretised
form of the first constraint in Eq. (5.3) can be written as

4∑
i=1

N el,i
ε̇ (x)qel,iε̇ = Lε̇

10∑
j=1

N el,j
u̇ (x)qel,ju̇ , ∀el ∈ {1, · · · , UE} (5.30)

enforcing compatibility between the velocity field and the strain-rate field within each
solid element Ωel ⊂ Ω.

Compatibility across velocity discontinuities

Since the strain-rate field ε̇ is linear within each solid element Ωel, to guarantee con-
sistency of plastic flow, it is straightforward to enforce the velocity jump ∆u̇ to be
linear across each velocity discontinuity Γdedis, where ∆u̇ is obtained through inter-
polation between the nodal velocity jumps qde,i∆u̇ = (qde,i∆u̇,x, q

de,i
∆u̇,y, q

de,i
∆u̇,z)

ᵀ ∈ R3 at 3
evaluation nodes (3 vertices) using 2D linear interpolation functions N̄de,i

∆u̇ (x) (∀de ∈
{1, · · · , UDE} and i ∈ {1, · · · , 3}).
Then, the second constraint in Eq. (5.3) reads in discretised form as follows:

3∑
i=1

N̄de,i
∆u̇ (x)qde,i∆u̇ =

6∑
j=1

L∆u̇N̄
de,j
u̇ (x)qde,ju̇ , ∀de ∈ {1, · · · , UDE} (5.31)

with L∆u̇ as defined in Eq. (5.4) and qde,ju̇ = (qde+,ju̇ ,qde−,ju̇ )ᵀ ∈ R3×6 is a vector con-
taining each pair of nodal velocities across the discontinuity Γdis. Additional constraints
are applied reading

L∆u̇q
de,4
u̇ =

1

2
(L∆u̇q

de,1
u̇ + L∆u̇q

de,2
u̇ )

L∆u̇q
de,5
u̇ =

1

2
(L∆u̇q

de,2
u̇ + L∆u̇q

de,3
u̇ )

L∆u̇q
de,6
u̇ =

1

2
(L∆u̇q

de,1
u̇ + L∆u̇q

de,3
u̇ )

, ∀de ∈ {1, · · · , UDE} (5.32)

in order to enforce a linear velocity jump distribution across each discontinuity.

Kinematic boundary conditions

The kinematic boundary conditions are applied as

qbe,iu̇ = qbe,iu̇bc
, ∀be ∈ {1, · · · , UBE} and i ∈ {1, · · · , 6} (5.33)

where qbe,iu̇bc
is the prescribed nodal velocity vector at each velocity evaluation node on

the boundary surface Γ.
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Associated plastic flow rule

In each solid element Ωel, the associated plastic flow rule is enforced at each strain-rate
evaluation node, using the discretised form derived from Eq. (5.25), reading

Rel
ε̇ qel,iε̇ = −Bel

σ
ᵀ
ėel,iε̇

ėel,iε̇ ∈ C ∗
, ∀el ∈ {1, · · · , UE} and i ∈ {1, · · · , 4} (5.34)

in which qel,iε̇,loc is the local nodal strain-rate vector determined from the transformation
matrix Rel

ε̇ with similar shape as Eq. (5.8) based on the axial normal vectors nelx′ , nely′ ,
nelz′ of the material local coordinate basis (x′ − y′ − z′)elmat of the element, ėel,iε̇ ∈ R8 is
the nodal vector for the associated plastic flow rule Eq. (5.22) in the second-order cone
expression and Bel

σ ∈ R8×6 is the parametric matrix defined in Eq. (5.24). Note that,
in this paper the strength behaviours are considered as constant within one element.

Similarly, across each velocity discontinuity Γdedis, the discretised associated plastic flow
rule is derived from Eq. (5.29), reading

Rde
∆u̇q

de,i
∆u̇ = −Bde

t
ᵀ
ėde,i∆u̇

ėde,i∆u̇ ∈ C ∗
, ∀de ∈ {1, · · · , UDE} and i ∈ {1, · · · , 3} (5.35)

where qde,i∆u̇,loc ∈ R3 is the local nodal velocity-jump vector, Rde
∆u̇ is the transformation

matrix, defined similar as in Eq. (5.13), from the global coordinate basis (x−y−z) into
the local coordinate basis (n−m−p)dedis for Γdedis, ėde∆u̇ is the nodal second-order expression
of the associated plastic flow rule Eq. (5.26) and Bde

t ∈ R5×3 is the parametric matrix
defined in Eq. (5.29).

Internal dissipation rate

Inserting Eqs. (5.30) and (5.31), the internal plastic dissipation rate Eq. (5.2) can be
formulated numerically as

Wint =
UE∑
el=1

∫
Ωel
ε̇elᵀσeldV +

UDE∑
de=1

∫
Γdedis

∆u̇deᵀloc tdelocdA

=

UE∑
el=1

∫
Ωel

(Lε̇

10∑
i=1

N el,i
u̇ (x)qel,iu̇ )ᵀ(

4∑
j=1

N el,j
ε̇ (x)qel,jσ )dV

+
UDE∑
de=1

∫
Γdedis

(L∆u̇

6∑
i=1

N̄de,i
u̇ (x)qde,iu̇ )ᵀ(

3∑
j=1

N̄de,j
∆u̇ (x)q̂de,jt )dA

=

UE∑
el=1

10∑
i=1

4∑
j=1

qel,iᵀu̇ Gel,i,j
ε̇ q̂el,jσ +

UDE∑
de=1

6∑
i=1

3∑
j=1

qde,iᵀu̇ Ḡde,i,j
∆u̇ q̂de,jt

(5.36)
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where the numerical integration operators over each solid element Ωel and discontinuity
Γdedis are defined as

Gel,i,j
ε̇ =

∫
Ωel

Lᵀ
ε̇N

el,i
u̇ (x)N el,j

ε̇ (x)dV ∈ R3×6

Ḡde,k,l
∆u̇ =

∫
Γdedis

Lᵀ
∆u̇N̄

de,k
u̇ (x)N̄de,l

∆u̇ (x)dA ∈ R6×3

(5.37)

with ∀el ∈ {1, · · · , UE}, ∀de ∈ {1, · · · , UDE}, i ∈ {1, · · · , 10}, j ∈ {1, · · · , 4}, k ∈
{1, · · · , 6} and l ∈ {1, · · · , 3}.
As stated by Makrodimopoulos (2010), since the upper bound problem is based on
the kinematic theorem the stress field σel in each solid element Ωel and the traction
field tdeloc at each discontinuity Γdedis can not be numerically interpolated. Instead, nodal
weighted-average stress and traction vectors are obtained, reading

q̂el,iσ =

∫
Ωel

N el,i
ε̇ (x)σeldV/

∫
Ωel

N el,i
ε̇ (x)dV, ∀el ∈ {1, · · · , UE} and i ∈ {1, · · · , 4}

q̂de,jt,loc =

∫
Γdedis

N̄de,j
∆u̇ (x)tdelocdA/

∫
Γdedis

N̄de,j
∆u̇ (x)dA, ∀de ∈ {1, · · · , UDE} and j ∈ {1, · · · , 3}

(5.38)

at the strain-rate evaluation nodes, with the interpolation function for the strain-rate
N el,i
ε̇ (x) and the traction evaluation nodes with the interpolation function for velocity-

jump N̄de,j
∆u̇ (x), respectively.

Assembly

Assembling above constraints, the primal upper bound problem Eq. (5.3) in discretised
form reads

min Wint

s.t. Acom
ε̇ qu̇ = qε̇

Acom
∆u̇ qu̇ = q∆u̇

Alin
∆u̇qu̇ = 0

qu̇ = qu̇bc

Rel
ε̇ qel,iε̇ = −Bel

σ
ᵀ
ėel,iε̇

ėel,iε̇ ∈ C ∗

Rde
∆u̇q

de,j
∆u̇ = −Bdeᵀ

t ėde,j∆u̇

ėde,j∆u̇ ∈ C ∗

(5.39)

with el ∈ {1, · · · , UE}, de ∈ {1, · · · , UDE}, i ∈ {1, · · · , 4} and j ∈ {1, · · · , 3}. In
the formulation Eq. (5.39), q∆u̇ ∈ R3UN , qε̇ ∈ R24UE and q∆u̇ ∈ R9UDE are the
assembly of all nodal velocity vectors, nodal strain-rate vectors and nodal velocity-
jump vectors over the whole structure with respect to the global coordinate basis (x−
y − z). Here, UN is the total number of velocity evaluation nodes in the upper bound
formulations. The assembled matrices are introduced as the compatibility operator in
solid elements Acom

ε̇ ∈ R24UE×3UN from Eq. (5.30), the compatibility operator on
velocity discontinuities Acom

∆u̇ ∈ R9UDE×3UN from Eq. (5.31), the operator enforcing
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linear velocity jumps across velocity discontinuities Alin
∆u̇ ∈ R9UDE×3UN from Eq. (5.32)

and the prescribed kinematic boundary conditions qu̇bc ∈ R3UN from Eq. (5.33).

5.5.2 Dual formulations

The dual upper bound problem Eq. (5.5) is based on the stress field σ and is math-
ematically equivalent to the primal problem Eq. (5.3). As mentioned above, in the
finite-element-based formulations, the numerical interpolation and integration can only
be directly applied to the velocity field and the strain-rate field, thus, in the dual formu-
lations the stress field and the traction field are interpolated using the nodal weighted-
average vectors defined in Eq. (5.38) at evaluation nodes for the strain-rate field and
the velocity field, respectively.

External work rate

The external work rate Eq. (5.6) in discretised form reads

Wext =
UN∑
i=1

(qiᵀu̇ βqipu + qiᵀu̇ qipf ) (5.40)

where qiu̇ is the nodal velocity field, qipu = (qipu,x, q
i
pu,y, q

i
pu,z)

ᵀ ∈ R3 is the unknown
nodal force at each velocity evaluation node determined from the unknown body force
field gu in Ω and the unknown traction field tu on Γu, and qipf = (qipf ,x, q

i
pf ,y

, qipf ,z)
ᵀ ∈

R3 is the fixed nodal force determined from the fixed body force field gf in Ω and the
fixed traction field tf on Γf .

Weak form of equilibrium

The weak form of equilibrium refers to the equality between the total internal energy
dissipation rate and the total work rate done by external loads. Considering Eqs. (5.36)
and (5.40), the discretised form can be expressed as

UE∑
el=1

10∑
i=1

4∑
j=1

qel,iᵀu̇ Gel,i,j
ε̇ q̂el,jσ +

UDE∑
de=1

6∑
i=1

3∑
j=1

qde,iᵀu̇ Ḡde,i,j
∆u̇ q̂de,jt =

UN∑
i=1

qiᵀu̇ (βqipu + qipf ) (5.41)

where it is obvious that the velocity vector at both sides can be eliminated in the
assembly.

Plastic yield function

Since in the discretised formulations the stress field and the traction field are obtained
as weighted-average vectors defined in Eq. (5.38), the second-order cone expressions of
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yield functions Eqs. (5.23) and (5.27) are formulated as

ŝel,iσ = aelσ + Bel
σRel

σ q̂el,iσ

ŝel,iσ ∈ C

, ∀el ∈ {1, · · · , UE} and i ∈ {1, · · · , 4} (5.42a)

ŝde,jt = adet + Bde
t Rde

t q̂de,jt

ŝde,jt ∈ C

, ∀de ∈ {1, · · · , UD} and j ∈ {1, · · · , 3} (5.42b)

where Rel
σ = Rel

ε̇ , Rde
t = Rde

∆u̇, and ŝel,iσ ∈ R8 and ŝde,jt ∈ R5 are the weighted-average
vectors for the second-order cone expressions of the stress-based and traction-based
yield functions, respectively.

Assembly

The discretised formulation of the dual upper bound problem Eq. (5.5) can be expressed
as

max Wext

s.t. Gε̇q̂σ + Ḡ∆u̇q̂t + Alinᵀ
∆u̇ r = βqpu + qpf

ŝel,iσ = aelσ + Bel
σRel

σ q̂el,iσ

ŝel,iσ ∈ C

ŝde,jt = adet + Bde
t Rde

t q̂de,jt

ŝde,jt ∈ C

(5.43)

with el ∈ {1, · · · , UE}, de ∈ {1, · · · , UDE}, i ∈ {1, · · · , 4} and j ∈ {1, · · · , 3}. In
the dual upper bound formulation Eq. (5.43), q̂σ ∈ R24UE and q̂t ∈ R9UDE are the
assembly of the nodal weighted-average stress vectors in all solid element Ωel and the
nodal weighted-average traction vectors at all discontinuities Γdedis, qpu ∈ R3UN and
qpf ∈ R3UN are the assembly of unknown and fixed nodal force vectors at all velocity
evaluation nodes, and Gε̇ ∈ R3UN×24UE and Ḡ∆u̇ ∈ R3UN×9UDE are the assembled
matrices for integration operators from Eq. (5.37). The auxiliary term Alinᵀ

∆u̇ r in the
first constraint is derived from the third constraint of the primal assembled formulation
Eq. (5.39) due to the duality and is vanished in the internal energy expression Eq. (5.41)
since A∆u̇qu̇ = 0 where r ∈ R3UN is an auxiliary vector.

5.6 Adaptive arrangement of the velocity discontinuity

In existing finite-element-based upper bound approaches, velocity discontinuities are
often introduced between all finite elements with their orientation only depending on the
finite element mesh. However, in most cases significant velocity jumps occur only at very
few discontinuities, in regions where very localised plastic failure modes can be identified
(Ciria et al., 2008, Krabbenhøft et al., 2005, Makrodimopoulos and Martin, 2008, Sloan
and Kleeman, 1995). Thus, in many parts of a discretised body the additional degrees
of freedom introduced by discontinuities are not well invested and, additionally, an in
general arbitrary orientation of discontinuities prevents them to capture localised plastic



Publication 5 130

flow efficiently. Subsequently, strong mesh refinements are necessary to further improve
upper bound results, even if adaptive mesh refinement strategies are used.

However, as shown by the authors in Li et al. (2018b), if discontinuities are only in-
troduced in regions with large plastic flow and arranged/oriented in view of potential
directions of plastic flow localisation, very good upper bounds can be obtained (even for
orthotropic material strength behaviour) using relatively coarse finite element meshes.
In this way, only as many as useful discontinuities are implemented and, due to a sens-
ibly arrangement, they are on average much better utilised.

Naturally, the performance of this approach relies heavily on the algorithm for the
adaptive introduction and adjustment of velocity discontinuities, and its applicability
to arbitrary problems. Such an algorithm will be proposed within the next sections.

5.6.1 Determination of planes of plastic flow localisation

As introduced in Section 5.3, plastic flow (a velocity jump) across a discontinuity will
only happen when the strain-rate localisation conditions in Eq. (5.14) are fulfilled. Thus,
these conditions can also be used to find a meaningful orientation of a discontinuity.
The task of a related algorithm can be formulated as: for a given strain-rate state
find the critical plane on which the two tangential components and the in-plane shear
component of the local strain-rate vector equal zero. In particular, for a given 3D strain-
rate state ε̇ = (ε̇xx, ε̇yy, ε̇zz, 2ε̇xy, 2ε̇yz, 2ε̇xz)

ᵀ ∈ R6 the critical plane Γcrit on which the
local strain-rate state reads ε̇crit = (ε̇nn, 0, 0, 2ε̇nm, 0, 2ε̇np)

ᵀ ∈ R6 with respect to the
local coordinate basis (n−m− p)crit needs to be found.

The strain-rate state can be represented by three Mohr’s circles based on the three
principal strain-rates ε̇1, ε̇2 and ε̇3 (ε̇1 ≥ ε̇2 ≥ ε̇3). Denoting the eigenvectors of the the
strain-rate tensor as v1 ∈ R3, v2 ∈ R3 and v3 ∈ R3, the transformation matrix from
the global coordinate basis (x − y − z) into the principal coordinate basis (1 − 2 − 3)
reads Rv = (v1,v2,v3)ᵀ ∈ R3×3.

The corresponding strain-rate invariants then read

İ1 = ε̇1 + ε̇2 + ε̇3 = ε̇nn (5.44a)

İ2 = ε̇1ε̇2 + ε̇2ε̇3 + ε̇1ε̇3 = −ε̇2
nm − ε̇2

np (5.44b)

İ3 = ε̇1ε̇2ε̇3 = 0 (5.44c)

Eqs. (5.44b) and (5.44c) are only ever met when the following conditions are satisfied

ε̇1 ≥ 0 and ε̇2 = 0 and ε̇3 ≤ 0 (5.45)

That means, if strain-rate states can be found fulfilling Eq. (5.45), ideal orientations for
a discontinuity can be easily calculated at which plastic flow will happen very localised,
as will be shown in the following.

The Mohr’s circles for the strain-rate state ε̇ are plotted in Figure 5.3 as C1 for the
2− 3 plane, C2 for the 1− 3 plane and C3 for the 1− 2 plane. According to Eq. (5.45)
(since ε̇1 ≥ 0) the vertical axis must form a tangent to C1 and C3 and C2 must intersect
with the vertical axis since ε̇1 ≥ 0 and ε̇3 ≤ 0. Note that, in a 3D coordinate basis
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ε̇

C2

γ̇/2

C3

C1 2θcrit

−2θcrit

Figure 5.3: Mohr’s circles for the given strain-rate state ε̇ and the two critical ori-
entations ±θcrit in the 1 − 3 plane, where the tangential strain-rate components equal
zero.

an arbitrary plane intersects with two coordinate planes if it passes through the origin
(0, 0, 0). Thus, the critical plane Γcrit for the strain-rate state ε̇ can be determined
from its two intersecting lines with different coordinate planes along with the tangential
strain-rate component equals zero.

By means of Mohr’s circles in Figure 5.3, since both C1 and C3 conform to the vertical
axis, the first intersecting line runs parallel to axis 2 and its orientation is given by the
normal vector nline,1(123) = (0, 1, 0)ᵀ ∈ R3 with respect to the principal coordinate basis
(1−2−3); since C2 intersects with the vertical axis, the second intersecting line can be
determined in the 1 − 3 plane. Introducing θcrit as the angle between the intersecting
line and axis 1 in the 1−3 plane, based on the strain-rate transformation Eq. (5.8), the
tangential strain-rate component along this line can be expressed as

ε̇1(cos(θcrit))
2 + ε̇3(cos(θcrit))

2 = 0 (5.46)

resulting in
θcrit = ±atan(

√
−ε̇1/ε̇3) (5.47)

Thus, the second intersecting line can be determined in the 1−3 plane and exhibits two
possibilities, with the normal vectors reading nline,2±(123) = (cos(θcrit), 0,± sin(θcrit))

ᵀ ∈
R3. Obviously, these two lines coincide with each other if ε̇1 > 0, ε̇3 = 0 then nline,2+

(123) =

nline,2−(123) = (0, 0, 1)ᵀ and ε̇1 = 0, ε̇3 < 0 then nline,2+
(123) = nline,2−(123) = (1, 0, 0)ᵀ.

Finally, the out-of-plane normal vectors for the two possible critical planes, with respect
to the global coordinate basis (x− y − z), are determined as

nsurf,±(xyz) = R−1
v nsurf,±(123) = R−1

v (nline,1(123) × nline,2±(123) ) ∈ R3 (5.48)

where nsurf,±(123) ∈ R3 represent the normal vectors for the critical planes with respect
to the principal coordinate basis (1− 2− 3) and Rv is the transformation matrix from
(x− y − z) to (1− 2− 3).
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5.6.2 Adaptive introduction and adjustment of velocity discontinuit-
ies

Based on the determination of critical planes, where localised plastic failure will occur,
an adaptive strategy for the introduction and adjustment of velocity discontinuities
Γdis is presented in the following. The procedure of this adaptive strategy is roughly
illustrated in the flowchart Figure 5.4.

Problem definition.

Step 1: Generation of the geomet-
rical model and definition of bound-
ary conditions and strength beha-
viour.

Step 2: Discretisation of the struc-
ture and performance of numerical
upper bound calculation.

Step 3: Evaluation of upper bound
results.

4ub < tol?

Iter. step 1: Determination of pos-
sible orientations of velocity discon-
tinuities at each strain rate evalu-
ation node, based on upper bound
results of Step 3.

Iter. step 2: Introduction of
new discontinuities and adjustment
of old ones, based on the results in
Step 3 and the information gener-
ated in Iter. step 1.

Final upper bound result achieved.

no

yes

Figure 5.4: Flowchart introducing the adaptive strategy, where in each iteration the
introduction and adjustment of velocity discontinuity (Iter. step 1-2) are based on
the upper bound calculations (Step 2-3).

At first, an upper bound calculation without any velocity discontinuity using a relat-
ively coarse mesh is performed. Based on this result, at each strain rate evaluation node
(of the solid elements) the normal vectors nsurf,+(xyz) , nsurf,−(xyz) , indicating the two possible
critical planes of plastic flow localisation, are determined. Then, the node with the
highest plastic multiplier rate serves as starting point for the first introduced discon-
tinuity. From the two possible orientations, nsurf,+(xyz) and nsurf,−(xyz) , the one is selected
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which points into the region with higher plastic multiplier rates. All subsequent dis-
continuities are introduced in a repetitive sequence, starting always at the previous end
node of the last introduced discontinuity and oriented along the critical plane with the
lower deviation angle to the existing discontinuity. As will be introduced in the fol-
lowing, the length of each discontinuity is of the same magnitude as the characteristic
mesh size and defined by a straight line for problems under plane strain conditions and
as an interior surface cutting through the corresponding solid element for 3D problems,
respectively. In the first iteration, since a quite coarse mesh is used, the so-obtained
layout for the velocity discontinuities is normally not able to capture localised failure
sufficiently, and thus, adjustments through further iterations are needed, as sketched in
Figure 5.4.

In every further iteration, the structure is discretised again, taking the introduced dis-
continuities into account. The improvement in the upper bound result is measured by
4ub(%) = (βiUB − βi−1

UB )/βi−1
UB × 100, as the percentage reduction of the collapse load

multiplier from the previous iteration βi−1
UB to the current iteration βiUB. As soon as the

discontinuity layout is sufficiently arranged with respect to the appearing failure mode,
only small improvements will be obtained from further iterations, and the iteration is
ended as soon as 4ub is smaller than the prescribed threshold value tol.

In the following, the introduction of discontinuities is explained in more detail, separ-
ately for the plane strain case and the general 3D case.

Plane strain case

The first method is applied for problems under plane strain conditions, in which the
introduction of discontinuities can be defined by lines on a 2D plane. Thereby, the y
axis represents the out-of-plane direction and, then, if the conditions in Eq. (5.45) are
satisfied, one principal axis coincides with the y axis and the principal strain rates ε̇1,
ε̇3 can be found in the x− z plane.

Based on an upper bound calculation, the plastic multiplier rate λ̇mat and the two nor-
mal vectors nsurf,±(xyz) according to Eq. (5.48), defining the critical discontinuities Γcrit, are
determined at each strain rate evaluation node. Through linear interpolation between
the plastic multiplier rates and nearest neighbour interpolation between the normal vec-
tors, the fields λ̇mat(x̂) and nsurf,±(xyz) (x̂) are defined, where x̂ refers to an arbitrary node
in the x− z plane.

The subsequent determination of discontinuities is demonstrated in Figure 5.5, where
the abandoned critical planes are plotted as dashed lines and the dot-dashed curves
indicate contours of the plastic multiplier rate field. As illustrated in Figure 5.5a, the
starting point of the first discontinuity is automatically chosen as the boundary node
x̂0 with the highest plastic multiplier rate λ̇mat(x̂0). The end point x̂1 is defined by
the characteristic length of the mesh and the orientation given by the normal vectors
nsurf,±(xyz) (x̂0), where the orientation is selected leading to the higher plastic multiplier rate
at the end point. Any further discontinuity always starts a the end node of the previous
one x̂i−1 and the normal vector nsurf,i(xyz) is determined as the one with the smaller angle

to the previous normal vector, indicated as θ̂1 < θ̂2 in Figure 5.5a, where i ∈ {2, · · · , np}
and np is the total number of introduced discontinuities in this iteration. This sequence
of introducing discontinuities is terminated as soon as the end node of the last line x̂i
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λ̇1

θ̂2
θ̂1

x̂1

x̂2

λ̇3

λ̇4

λ̇6

λ̇5

λ̇2

x̂0
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x̂np

x̂np−1
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x̂np
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(c)

Figure 5.5: Illustrative example for the introduction of velocity discontinuities under
plane strain conditions. (a) First and second discontinuity; (b) the last discontinuity in
an iteration step in case it intersects with the boundary of the structure; (c) the last
discontinuity of an iteration step in case it intersects with an existing discontinuity.

intersects with either the boundary of the 2D plane, as shown in Figure 5.5b, or an
existing discontinuity, as shown in Figure 5.5c.

General 3D case

Instead of lines, as for the plane strain case, in 3D, discontinuities are determined and
defined through surfaces. Thus, a slightly different approach is required to introduce
them into a 3D body. For this reason, piecewise planar surfaces are introduced, which
cut through the tetrahedral elements. To track the evolution of surfaces, the level-
set method is employed (Moës et al., 2002, Osher and Sethian, 1988). Thereby, for
each element, which is cut by a surface, all nodes have nonzero φ-values, such that
φ(x) = 0 clearly defines the partition surface. Analogously to the plane strain case, first,
the element with the highest plastic multiplier rate λ̇mat(x̂0) on one of the boundary
surfaces is chosen as the starting point of the partitioning algorithm. A first partition
(in this element) with the normal vector nsurf ,1

(xyz) is determined from the two possibilities

nsurf ,±
(xyz) (x̂0), where the one is selected leading to end nodes on the interface of the

adjacent element with higher plastic multiplier rate.

To ensure a continuous surface, the next partition is introduced in the current element
following the algorithm demonstrated in Figure 5.6, where the blue surface indicates the
determined partition surface in the adjacent element with end nodes marked in blue.
Thus, three of the four φ-values (φi1, φi2, φi3) for the current element are already prede-
termined by the neighbouring element and only the last one (φi4) has to be calculated.
The partition with the normal vector nsurf ,i

(xyz) , as the one with the smallest angle to the

normal vector nsurf ,i−1
(xyz) of the partition in the adjacent element, is chosen out of the

two possible normal vectors nsurf ,±
(xyz) (x̂i−1) and the resulting fourth φ-value is calculated.
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Figure 5.6: Two examples of an element i (green) with a possible partition/discontinuity
and normal vector nsurf ,i

(xyz) (red), which is adjacent to an element i − 1 with already

determined partition/discontinuity surface and normal vector nsurf ,i−1
(xyz) (blue), obtained

in a previous step of the algorithm. The partition surface is tracked by using the level-set
method, where the iso-zero level set φ(x) = 0 defines the surface location.

It can also be noticed that the resulting iso-zero level set, and, therefore, the partition
surface, inside a tetrahedron is either a triangle or a quadrilateral.

This step is then repeated until no more partitioning candidates are found, which means
that the piecewise planar partition has reached a boundary surface on all sides and the
model can be separated into two parts, where all nodal φ-values on one side of the
partition have the same sign. The resulting iso-zero level set surface, which is built
up of planar triangles and quadrilaterals, is then used to partition the model. Next,
the partitioned model is re-meshed with a similar mesh size as the original version and
the simulation is rerun with velocity discontinuities introduced between the two model
parts.

5.7 Numerical results

In this section, the performance of the proposed upper bound formulations with adaptive
introduction of velocity discontinuities is assessed by means of several examples. Two of-
ten used benchmark problems (under the plane strain condition) with isotropic strength
behaviour are discussed and the results are compared with reference solutions, provid-
ing a basic verification of the proposed approach. Subsequently, these two examples are
extended by orthotropic strength behaviour, showing that both the traction-based yield
functions as well as the adaptive arrangement of velocity discontinuities also work for
such cases. Finally, the full potential of the presented approach is shown by means of
an example 3D problem.

It should be noted that the main goal of this section is to assess the performance of the
adaptive arrangement of velocity discontinuities with respect to reliability and efficiency
whereas the chosen examples themselves have no special significance. Thus, focus is laid
on comparisons between upper bound results with velocity discontinuities (referred to
as discontinuous upper bound results) and reference solutions obtained without any
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discontinuities (referred to as continuous upper bound results).

The computations were performed on a Linux desktop machine with an AMD FX(tm)-
8350 processor (8 cores) and 16 GB of RAM. All pre- and post-processing tasks as well
as the assembly of SOCP optimisation problems were carried out by self-written codes
in Fortran. The mesh generation and introduction of velocity discontinuities into the
discretised structure were done by the commercial software package ABAQUS controlled
via self-written Python scripts. The SOCP optimisation problems themselves were
solved using the commercial software MOSEK ApS (2017), which is based on the conic
interior-point algorithm described in Andersen et al. (2002). The adaptive approach
introduced in Section 5.6 runs fully automated, realised by only a Python script for the
plane strain problems and in combination with a Matlab script for general 3D problems.

5.7.1 Block with thin symmetric notches

In this benchmark problem, double-sided uniform tensile load is applied on a square
block with zero-thickness symmetric notches under plane strain conditions. This ex-
ample has already been extensively studied in Christiansen and Andersen (1999), Chris-
tiansen and Pedersen (2001), Ciria et al. (2008), Krabbenhøft and Damkilde (2003),
Makrodimopoulos and Martin (2006), Nguyen-Xuan and Liu (2015), Nguyen-Xuan
et al. (2017), where very good lower as well as upper bound predictions could be
obtained. An exact solution is not available for the collapse limit load multiplier β,
thus, the solutions obtained based on Richardson extrapolation (Christiansen and An-
dersen, 1999, Christiansen and Pedersen, 2001) are considered as reference value β∗,
with the difference between the obtained results and this reference value measured by
err(%) = (β − β∗)/β∗ × 100.

For the upper bound calculation, only a quarter of the square is considered, with geo-
metry and boundary conditions as shown in Figure 5.7a. L is the length of each side, a
is the length of the notch, and p refers to the uniform tensile loading. Note that, in this
paper all calculations are carried out by 3D finite-element-based upper bound formula-
tions. An example mesh with 592 tetrahedral elements is shown in Figure 5.7b. The
plane strain condition is enforced with respect to the x−y plane by applying symmetric
boundary conditions on the z− and z+ boundary surfaces. Thus, in the following, all
results will be plotted only in the x− y plane.

p

L

L

a

x

y

(a)

z x

y

(b)

Figure 5.7: Example square block with symmetric notches under uniform tensile loading:
(a) geometry and boundary conditions; (b) example discretisation with 592 tetrahedron
elements.
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Isotropic strength behaviour is defined using the von Mises yield function
√
J2 ≤ c,

with J2 as the second deviatoric stress invariant and c as the coefficient of cohesion.
With respect to the general form of yield function in Eq. (5.7), the von Mises criterion
is recovered by

Pmat
σ =

1

3c2



1 −0.5 −0.5 0 0 0

−0.5 1 −0.5 0 0 0

−0.5 −0.5 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3


Fmat,+
σ = Fmat,−

σ = 0 (5.49)

The traction-based yield function for velocity discontinuities is determined using the
projection algorithm introduced in Section 5.3 and is, because of the isotropic strength
behaviour, independent on the orientation of the discontinuities. The matrices according
to Eq. (5.17c) then read

Pdis
t =

1

c2

0 0 0

0 1 0

0 0 1

 Fdis,+
t = Fdis,−

t = 0 (5.50)

By means of an example with a notch length of a = L/2, the performance of the adaptive
introduction and arrangement of discontinuities is shown in the following. Thereby, in
each iteration the improvement of the upper bound and the related failure mechanism
is discussed. An upper bound value of λ∗ = 1.1316 according to Christiansen and
Pedersen (2001) is chosen as reference.

Initial step In an initial step, an upper bound calculation is performed using a relat-
ively coarse mesh and no velocity discontinuities, as shown in Figure 5.8a1. The
resulting failure mode (deformed configuration and plastic multiplier rate field)
is plotted in Figure 5.8b1, where it can be observed that plastic failure is very
dominant in regions close to the notch tip as well as at the corner between the
loaded surface and the symmetric surface. In general, due to the coarse mesh in
combination with the continuous velocity field, the plastic failure is distributed
over several elements and no obvious failure/slip lines can be identified. However,
based on that results, according to the algorithm presented in Section 5.6, a first
layout of velocity discontinuities is determined. The CPU time for this iteration
step was 12.8 s.

First iteration A first layout of velocity discontinuities is introduced into the struc-
ture as a sequence of partitions as shown in Figure 5.8a2. After re-meshing, the
failure mode in Figure 5.8b2 is obtained, showing significant interface shear failure
across the introduced discontinuities and, simultaneously, a reduction of plastic
dissipation within adjacent elements, especially within those close to the notch
tip. Since the characteristic length of the introduced discontinuities is of the same
size as the characteristic initial mesh size, the fineness of discretisation remains
almost the same, and only a minor amount of degrees of freedom is added through
the velocity discontinuities. From the initial step to this first iteration, the total
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(a1) UE = 395, UDE = 0 (b1) β = 1.2532 (err = 10.7%)

(a2) UE = 431, UDE = 16 (b2) β = 1.1518 (err = 1.8%)

(a3) UE = 425, UDE = 22 (b3) β = 1.1455 (err = 1.2%)

(a4) UE = 421, UDE = 22 (b4) β = 1.1454 (err = 1.2%)

Figure 5.8: Example notched block under uniform tensile loading with a = L/2. The
adaptive introduction of velocity discontinuities through three iteration steps. (a1)-
(a4) The initial mesh and the meshes for each iteration with the introduced velocity
discontinuities in blue; (b1)-(b4) the related upper bound failure modes with the plastic
multiplier rate λ̇matε̇ distribution plotted in the range [0 : 3.7× 10−1]).
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number of degrees of freedom increases slightly from 2646 to 2985 but leads to an
improvement of the upper bound from 10.7 % error to 1.8 % error. However, very
high dissipation within elements can still be observed in the right bottom corner
(Figure 5.8b2), suggesting further introduction of discontinuities. The CPU time
for this iteration was 16.3 s.

Second iteration A second iteration of the presented algorithm leads to the intro-
duction of additional discontinuities in the right bottom corner, as illustrated in
Figure 5.8a3. Finally, only small plastic dissipation is observed within elements
and the dominant failure takes place at the introduced discontinuities. A fur-
ther improvement of the collapse load multiplier from β = 1.1518 to β = 1.1455
is achieved, resulting in an error with respect to the reference solution of only
err = 1.2%. The CPU time of this iteration was 18.7 s.

Third iteration In a third iteration the velocity discontinuities in the bottom right
corner are slightly adjusted, see Figure 5.8a4, which doesn’t significantly change
the result, indicating that the velocity discontinuities are already well arranged
and further iterations wouldn’t improve the upper bound significantly. The CPU
time for this last iteration was 20.0 s.

This adaptive approach runs fully automated with the iteration sequence controlled by
a self-written Python code, based on the strategy outlined in Figure 5.4. The total CPU
time for this example was 74.7 s.

Additionally, also for two other notch lengths very good results were obtained: for
a = L/3, β = 0.9361 with err = 1.3% (β∗ = 0.9241) obtained after three iterations
with a CPU time of 82.8 s, and for a = 2L/3, β = 1.4024 with err = 1.4% (β∗ = 1.3833)
obtained after three iterations in a CPU time of 92.4 s. The corresponding failure modes
are plotted in Figure 5.9, again showing almost no plastic dissipation within elements.

(a) a = L/3 (b) a = 2L/3

Figure 5.9: Example notched block under uniform tensile loading. (a) a = L/3 with
UE = 581, UDE = 22 and λ̇matε̇ in the range [0 : 0.0045]; (b) a = 2L/3 with UE = 578,
UDE = 24 and λ̇matε̇ in the range [0 : 6.2× 10−3].

The obtained failure modes of the presented three examples agree very well to the ones
obtained in Christiansen and Pedersen (2001), Ciria et al. (2008), Nguyen-Xuan and
Liu (2015), Nguyen-Xuan et al. (2017). However, in the referenced works adaptive
mesh refinement is extensively used, leading to a large increase in degrees of freedom.
Although the proposed results are slightly less accurate than some references (error
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between 1 to 2 %), due to the quite rough discretisation and few iteration steps these
upper bounds could be obtained very efficient.

5.7.2 Block with symmetric rectangular holes

As second benchmark example the square block with symmetric rectangular holes un-
der uniform load is considered. This example has also been investigated in Ciria and
Peraire (2004), Nguyen-Xuan and Liu (2015), where numerical limit analysis formula-
tions with adaptive mesh refinement led to reliable and very good results. However,
in these references only purely cohesive material behaviour under uniform tensile load
has been considered. A more interesting problem is the failure behaviour of the block
under uniform compressive load with cohesive frictional strength behaviour, as stated
in Makrodimopoulos and Martin (2008).
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L 2
3
L 1
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Figure 5.10: Example square block with symmetric rectangular holes under uniform
compressive loading. (a) Geometry and boundary conditions; (b) Exemplary mesh
with 618 tetrahedron elements.

The considered geometry and boundary conditions are plotted in Figure 5.10a, and an
exemplary 3D mesh of the model with 618 tetrahedral elements is shown in Figure 5.10b,
where symmetric boundary conditions are prescribed on the z− and z+ boundary sur-
faces. A cohesive frictional strength behaviour is defined through the Drucker-Prager
yield function

√
J2 = A−BI1, with I1 as the first stress invariant. Since the Drucker-

Prager yield function and the Mohr-Coulomb yield function are equivalent to each other
under plane strain conditions, the strength parameters are determined for two different
friction angles φ, reading

A = c B = 0 for φ = 0°

A = 0.8321c B = 0.1601 for φ = 30°
(5.51)

For φ = 0° the Drucker-Prager yield function reduces to the von Mises yield function
and the strength parameters according to Eq. (5.49) and Eq. (5.7), respectively, are



Publication 5 141

used. For φ = 30° the matrices defining the yield functions become

Pmat
σ = 1

3A2



1 −0.5 −0.5 0 0 0

−0.5 1 −0.5 0 0 0

−0.5 −0.5 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3


Fmat,+
σ = 0 Fmat,−

σ = B
A



1

1

1

0

0

0


(5.52)

for the stress-based yield function according to Eq. (5.7) and

Pdis
t =

(1− 12B2)

A2

0 0 0

0 1 0

0 0 1

 Fdis,+
t = 0 Fdis,−

t =
B

A

1

0

0

 (5.53)

for the traction-based yield function according to Eq. (5.17c).

(a1) UE = 192, UDE = 0 (b1) β = 1.4265

(a2) UE = 204, UDE = 10 (b2) β = 1.3432

Figure 5.11: Example block with symmetric rectangular holes under uniform compress-
ive loading, considering purely cohesive strength behaviour. (a1) Discretised structure
for the initial calculation; (a2) discretised structure with velocity discontinuities (blue),
determined through three iterations; (b1) and (b2) related failure modes with λ̇matε̇

plotted in the range [0 : 1.05× 10−2].

For this example, in the following only the upper bound results of the initial step and
of the last iteration are discussed. For purely cohesive strength behaviour, φ = 0°,
an initial calculation is performed using a mesh with only 192 elements, as plotted in
Figure 5.11a1. The corresponding failure mode is shown in Figure 5.11b1, where two
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separated regions with high plastic dissipation can be identified. Based on that initial
result, after three iterations and the introduction of 10 discontinuities a final layout
of velocity discontinuities was obtained, shown in Figure 5.11a2. The total number of
degrees of freedom increased from 1344 to 1509. The final failure mode, illustrated in
Figure 5.11b2, again shows that plastic dissipation can be captured very localised by
the introduced discontinuities. During the three iterations, the upper bound collapse
multiplier β reduced from 1.4265 to 1.3432 and the total CPU time was 58.3 s.

(a1) UE = 192, UDE = 0 (b1) β = 2.2214

(a2) UE = 204, UDE = 12 (b2) β = 2.0754

Figure 5.12: Example block with symmetric rectangular holes under uniform compress-
ive loading, considering cohesive-frictional strength behaviour, φ = 30°. (a1) Discretised
structure for the initial calculation; (a2) discretised structure with velocity discontinuit-
ies (blue), determined through four iterations; (b1) and (b2) related failure modes with
λ̇matε̇ plotted in the range [0 : 1.1× 10−2].

For cohesive-frictional strength behaviour, φ = 30°, the discretised structures and the
corresponding results are shown in Figure 5.12. Again, through the introduction of only
a few velocity discontinuities the very localised failure could be captured appropriately.
Since cohesive-frictional strength behaviour is considered, not only shear failure but also
normal velocity jumps across discontinuities can be observed. In this way, the upper
bound collapse multiplier β was improved from 2.2214 to 2.0754, at a total CPU time
of 69.3 s.

Since no exact solution is available for this problem, the collapse load multiplier β ob-
tained from our calculations are compared with those available in references listed in
Table 5.1. Note that for this example, when purely cohesive strength behaviour is con-
sidered, φ = 0°, the collapse limit load multipliers β obtained from uniform tensile load
(Ciria et al., 2008, Nguyen-Xuan and Liu, 2015) and compressive load (Makrodimo-
poulos and Martin (2008) and present work) are equivalent to each other. Table 5.1
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Authors LB/UB UE β (φ = 0°) β (φ = 30°)

Ciria et al. (2008) LB 4788 1.3219 -
UB 4788 1.3342 -

Makrodimopoulos and Martin (2008)
LB 34000 1.3221 2.0605
UB 4788 1.3290 2.0840
UB 34000 1.3260 2.0705

Nguyen-Xuan and Liu (2015) UB 4208 1.3247 -
present UB 204 1.3432 2.0754

Table 5.1: Comparison of obtained (present) collapse limit load multiplier β with ref-
erence solutions, including the number of elements (UE).

shows that the present upper bound approach is able to provide quite good strength pre-
dictions by using much less elements compared to the reference solutions, even though
3D tetrahedral elements are used in our calculation versus 2D triangular elements used
in references.

5.7.3 Examples with orthotropic strength behaviours

In the following, the performance of the presented approach including orthotropic
strength behaviour is assessed by means of the two examples above. Therefore, a Tsai-
Wu yield function is assigned to the material, defined by inserting

Pmat
σ =



P11 P12 P13 0 0 0

P12 P22 P23 0 0 0

P13 P23 P33 0 0 0

0 0 0 P44 0 0

0 0 0 0 P55 0

0 0 0 0 0 P66


Fmat,+
σ = Fmat,−

σ =



F1

F2

F3

0

0

0


(5.54)

into the general stress-based yield function in Eq. 5.7.

The strength parameters are chosen in a way that they represent the behaviour of Nor-
way spruce clear wood, a classical orthotropic material, as introduced in Dorn (2012),
giving

Pmat
σ =



0.0002 0 0 0 0 0

0 0.0659 0 0 0 0

0 0 0.0659 0 0 0

0 0 0 0.0473 0 0

0 0 0 0 0.1189 0

0 0 0 0 0 0.0473


Fmat,+
σ = Fmat,−

σ =



−0.0066

0.0856

0.0856

0

0

0


(5.55)

with respect to the material local coordinate basis (L − R − T ). The traction-based
yield function for each velocity discontinuity is determined according to the projection
algorithm introduced in Section 5.3.

Firstly, the example illustrated in Figure 5.7a with a notch length of a = L/2 is invest-
igated. The arbitrary chosen longitudinal direction L is defined in Figure 5.13a1, also
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L

−60◦

(a1) UE = 216, UDE = 0 (b1) β = 2.3705

(a2) UE = 264, UDE = 8 (b2) β = 2.0785

Figure 5.13: Example block with symmetric notches (a = L/2) under uniform tensile
loading considering orthotropic strength behaviour. (a1) Discretised structure for the
initial calculation and the prescribed longitudinal direction L (blue arrow); (a2) discret-
ised structure with velocity discontinuities (blue), determined through two iterations;
(b1) and (b2) related failure modes with λ̇matε̇ plotted in the range [0 : 4× 10−2].

showing the mesh for the initial calculation. The corresponding failure mode is given
in Figure 5.13b1, showing a concentration of plastic dissipation rate around the notch
tip, but no distinct failure surface / slip line can be identified. In the course of two
iterations 8 velocity discontinuities were introduced (see Figure 5.13a2), almost parallel
to the longitudinal direction L, increasing the total number of degrees of freedom from
1521 to 1857 and the number of elements from 216 to 264. The final failure mechanism
is shown in Figure 5.13b2, where almost all plastic failure occurs across discontinuit-
ies. Through the whole iteration process, the upper bound collapse load multiplier β
decreases from 2.3705 to 2.0785, within a CPU time of 47.5 s.

Since neither an exact solution nor a reference value is available for this example, the
obtained upper bounds are compared to a solution without velocity discontinuities but
with a very fine mesh consisting of 55571 tetrahedral elements, shown in Figure 5.15a.
Additionally, the 3D lower bound formulations proposed by the authors in Li et al.
(2018d) was applied to enclose the exact collapse load multiplier β∗, giving

1.7855 < β∗ < 2.0878 (5.56)

The total CUP time for the upper bound as well as lower bound calculation with the
fine mesh were 10.6 min and 18.6 min, respectively. The upper bound obtained with
velocity discontinuities, β = 2.0785, can thus be considered as reliable, since it is located
within the bound gap given in Eq. (5.56). It is even slightly better than the upper bound
obtained using the very fine mesh.
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−30◦L

(a1) UE = 192, UDE = 0 (b1) β = 5.9887

(a2) UE = 175, UDE = 10 (b2) β = 5.7742

Figure 5.14: Example block with symmetric rectangular holes under uniform compress-
ive loading considering orthotropic strength behaviour. (a1) Discretised structure for
the initial calculation and the prescribed longitudinal direction L (blue arrow); (a2)
discretised structure with velocity discontinuities (blue), determined through three iter-
ations; (b1) and (b2) related failure modes with λ̇matε̇ plotted in the range [0 : 6×10−2].

Secondly, the orthotropic strength behaviour is applied to the example defined in Fig-
ure 5.10a, with the longitudinal direction L defined in Figure 5.14a1. The discontinuity
layout shown in Figure 5.14a2 was obtained after three iterations, the introduction of
10 discontinuities, and an increase of the total number of degrees of freedom from 1344
to 1383. The collapse load multiplier decreased from 5.9887 to 5.7742 within a CPU
time of 71.8 s. Note that, in this example, the number of elements even decreases from
192 to 175, being an output of the proposed algorithm without any manual influence.

Again, the result is compared to upper and lower bounds obtained with an approach
without velocity discontinuities but a very fine mesh with 56894 tetrahedral elements,
as displayed in Figure 5.15b, giving

5.6681 < β∗ < 5.7981 (5.57)

in a CPU time of 12.5 min and 24.0 min, respectively. Also for this example, the upper
bound obtained with a discontinuous velocity field and a very rough mesh represents
a reliable solution and the best upper bound. Comparing the failure modes of these
two approaches, Figure 5.15b versus Figure 5.14b2, it becomes obvious that velocity
discontinuities can only unfold their full potential if there is really localised failure, as
in the lower right part of this example. In case of distributed plastic collapse, as in
the upper left region of this example, discontinuities are, clearly, not able to take over
plastic dissipation. Thus, there is still plastic dissipation within solid elements after
the last iteration, as can be seen in Figure 5.14b2. Nevertheless, both examples show
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(a) UE = 55571, β = 2.0878 (b) UE = 56894, β = 5.7981

Figure 5.15: Upper bound failure modes for the two examples with orthotropic strength
behaviour using a fine mesh and no velocity discontinuities. (a) block with symmetric
notches under uniform tensile loading with λ̇matε̇ plotted in the range [0 : 0.0015]; (b)
Block with symmetric rectangular holes under uniform compressive loading with λ̇matε̇

plotted in the range [0 : 1× 10−3].

that the presented approach works also very reliable and efficient for problems with
orthotropic strength behaviour.

5.7.4 3D cylinder with central circular notch

As final example a 3D cylinder with central circular notch is considered, applying the
algorithm presented for the general 3D case instead of the plane strain case. Thus, the
introduced discontinuities not necessarily form a plane surface.

y
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u̇n = 0
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H 2

60◦

Figure 5.16: Example cylinder (H = D) with central circular notch under uniform
tensile loading p, and 60° slice used for upper bound calculations.

The geometry and boundary conditions are defined in Figure 5.16. For the upper bound
calculation, a 60° slice of the upper-half of the cylinder is considered. Cohesive-frictional
isotropic strength behaviour is assigned using the Drucker-Prager yield function accord-
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ing to Eq. (5.52), with the parameters A = 0.9219c and B = 0.1118. Again, according
to the projection algorithm in Section 5.3, the traction-based yield function for the
strength behaviour across velocity discontinuities is determined according to Eq. (5.53),
which is identical for all orientations due to the isotropic strength behaviour.

(a1) UE = 923, UDE = 0 (b1) β = 1.1184

(a2) UE = 995, UDE = 56 (b2) β = 1.0565

Figure 5.17: Example cylinder with central circular notch under uniform tensile loading,
considering cohesive-frictional isotropic strength behaviour. (a1) Discretised structure
used in the initial calculation; (a2) discretised structure with velocity discontinuities
(blue); (b1) and (b2) related failure modes with λ̇matε̇ plotted in the range [1 × 10−6 :
3.3× 10−3].

Similar to the previous examples, an initial upper bound calculation is performed using
a coarse mesh with 923 tetrahedral elements, as shown in Figure 5.17a1. The cor-
responding failure mode is displayed in Figure 5.17b1, leading to an upper bound of
the collapse load multiplier of β = 1.1184. A very high plastic dissipation rate can
be observed around the notch tip, but a distinct localised failure region can hardly be
identified.

Based on this initial result, the algorithm proposed in Section 5.6 for the general 3D case
was applied, making use of the level-set method as illustrated in Figure 5.6 to define the
geometry of discontinuities to be introduced. By applying this algorithm, a sequence
of continuous discontinuities, plotted in Figure 5.18a, are determined, cutting through
the tetrahedral elements. Since the so-obtained discontinuities are either triangular or
quadrilateral plane surfaces in various sizes, it is not ideal to use the resulting surface
directly for re-meshing the whole structure. For this reason, the Face from mesh
feature in ABAQUS/CAE is used for smoothing, resulting in the surface shown in
Figure 5.18b. Since this smoothed surface can be discretised using triangular elements
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(a) (b)

Figure 5.18: Example cylinder with central circular notch under uniform tensile load-
ing. (a) Continuous partitions cutting through tetrahedral elements defined by the
level-set method introduced in Figure 5.6; (b) resulting smooth surface determined
from the piecewise plane partition surfaces using the Face from mesh feature in
ABAQUS/CAE.

of uniform size, it is guaranteed that the new mesh created for the next iteration is
balanced and of similar mesh size as the initial mesh. Performing only one iteration, 56
discontinuities were introduced and the structure was re-meshed with 995 tetrahedral
elements, as shown in Figure 5.17a2. The total number of degrees of freedom is 5190.

(a) (b)

Figure 5.19: Example cylinder with central circular notch under uniform tensile loading.
(a) Fine mesh with 88798 tetrahedral elements and without velocity discontinuities,
and (b) the corresponding continuous upper bound failure mode with the collapse load
multiplier β = 1.0547.

Finally, a distinct plastic flow across the introduced velocity discontinuities is obtained
(Figure 5.17b2), and the plastic dissipation rate within the solid elements around the
notch tip is reduced significantly. A continuous upper bound calculation with 88798
tetrahedral elements (379593 degrees of freedom) was performed to obtain a reference
solution. The mesh as well as the corresponding failure mode is shown in Figure 5.19a
and Figure 5.19b, respectively. The failure modes agree very well and the collapse load
multiplier of the discontinuous upper bound approach, β = 1.0565, is only slightly larger
than the one of the continuous approach, β = 1.0547. However, the total CPU time of
the continuous approach was 131.7 min, whereas the discontinuous approach only took
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131.0 s. 41.0 s for the initial upper bound calculation, 44.1 s for the introduction of
velocity discontinuities, and 45.9 s for the discontinuous upper bound calculation.

Note that, in the discontinuous failure mode in Figure 5.17b2, the high plastic dis-
sipation rate (red and orange regions) within tetrahedral elements beneath velocity
discontinuities indicates a mixed mode of shear and tensile failure which is rather dis-
persed, as also observed in the continuous failure mode in Figure 5.19b. It is also worth
mentioning that, in this paper, only one iteration is used for the introduction of velocity
discontinuities for general 3D problems and no further adjustment is included. This is
because the introduction of velocity discontinuities is based on the framework of the
level-set method, and the adjustment of an introduced discontinuity as well as the inter-
section between a new discontinuity with an existing one has not yet been implemented
and is considered as a difficulty to be overcome in future work.

5.8 Summary and conclusions

In this paper, a new implementation of finite-element-based upper bound formulations
including the possibility to consider orthotropic strength behaviour is proposed, where
velocity discontinuities are introduced iteratively in a sensibly way based on an adaptive
introduction and adjustment algorithm.

With respect to the objectives specified in Section 5.1, the main findings of this paper
can be summarised as follows:

1. Finite-element-based upper bound formulations have been implemented taking
orthotropic strength behaviour into account and allowing velocity-jumps across
sensibly-arranged discontinuities. In the discretised dual upper bound formula-
tion, both the used stress-based yield functions assigned to solid elements and the
related traction-based yield functions, describing plastic failure across velocity
discontinuities, could be formulated in the form of second-order cone constraints.
Thus, the resulting optimisation problems could be solved efficiently by SOCP.
The obtained velocity discontinuity layouts were able to capture localised fail-
ure modes very efficiently and the obtained upper bounds agree very well with
reference solutions or values obtained without discontinuities but a very fine dis-
cretisation. In this way, plastic dissipation within solid elements could be reduced
significantly, making any kind of adaptive mesh refinement in failure regions ob-
solete.

2. The required projection of an orthotropic stress-based yield function into a locally-
equivalent traction-based yield function, with respect to the orientation of an
arbitrary plane, could be shown successfully and is described in detail. This al-
gorithm has been verified numerically, showing that the failure surface in the
traction basis represents a perfect envelope to the critical traction point cloud
determined from critical stress states on the corresponding plane. Thus, under
the assumption that plastic strain localisation with respect to a plane can oc-
cur, consistent strength behaviour throughout the whole discretised body can be
guaranteed.

3. An adaptive algorithm has been implemented to iteratively introduce and arrange
velocity discontinuities. At each iteration, based on the plastic multiplier rate in
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each strain-rate evaluation node, two critical orientations of plastic strain-rate
localisation are determined. Starting from the node with the highest plastic mul-
tiplier rate, a sequence of line segments for the plane strain case and plane surfaces
for the general 3D case is then generated, defining the velocity discontinuities to
introduce. The so-obtained discontinuity layouts played a dominant role in the
final failure mode at all investigated examples, and reliable upper bounds were
obtained using relatively coarse meshes and only a limited number of velocity
discontinuities.

The present approach provides an alternative method to the commonly-used numerical
upper bound approaches with adaptive mesh refinement. Especially for problems where
plastic failure through the body occur very localised, efficient and good upper bound
solutions can be expected with a minimum number of degrees of freedom. This also ap-
plies to materials exhibiting orthotropic strength behaviour, which can be of great value
for practical applications, since plastic failure in laminated structures and orthotropic
materials often takes place very localised. An example would be wood at the microscale
(Lukacevic and Füssl, 2016, Lukacevic et al., 2014b) as well as at the product scale
(Hochreiner et al., 2013, 2014).

Note that the main goal of this paper has been to propose this new concept as a
further development of existing numerical upper bound formulations. The capabilities
of this new approach have been assessed by means of several examples, showing high
efficiency with respect to computational cost and good solution qualities. However,
it is also necessary to mention that several difficulties needs to be overcome in future
work. Firstly, for general 3D problems, velocity discontinuities are introduced in the
discretised structures as partitions cutting through tetrahedron elements determined by
means of the level-set method introduced in Section 5.6. When a set of partitions have
been determined in the first iteration, the adjustment of existing partitions and the
introduction of additional partitions in further iterations would require more advanced
and comprehensive algorithms, such as the multiphase level set method, which have
not yet implemented in the present approach. Secondly, for the algorithm introduced
in Section 5.6, critical orientations can only be determined from the strain-rate states
satisfying the condition in Eq. (5.45), derived from the assumption of strain localisation
formulated in Eq. (5.14. This condition is fulfilled for shear-based yield functions, such
as von Mises or Drucker-Prager, but seems to be too strict for other yield functions,
such as the Tsai-Wu orthotropic yield function. Thus, a further development of the
present algorithms is still necessary to allow a feasible and stable application for any
engineering problem.

5.A Second-order cone programming

The definition of the cone set C is that,

∀x ∈ C and λ ≥ 0 ⇐⇒ λx ∈ C (5.58)

and then its dual cone C ∗ can be defined as,

xᵀy ≥ 0, ∀x ∈ C ⇐⇒ y ∈ C ∗ (5.59)
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where x ∈ Rn and y ∈ Rn. If C = C ∗ holds, the cone is considered as self-dual.

The most common second-order cones is the quadratic cone C ,

C = {x : x1 ≥ ‖x2:d‖, x1 ≥ 0} (5.60)

and the rotated quadratic cone,

C = {x : 2x1x2 ≥ ‖x3:d‖, x1 ≥ 0, x2 ≥ 0} (5.61)

where xm:n = [xm . . . xn]ᵀ ∈ Rn−m, and both the two second-order cones are self-dual.

Then the optimization problem of the second-order cone programming (SOCP) can be
expressed as

min cᵀx
s.t. Ax = b

x ∈ C
(5.62)

where b ∈ Rm, c ∈ Rn, A ∈ Rm×n and C is the second-order cone.

The dual optimization problem is

max bᵀz
s.t. Aᵀz + y = c

y ∈ C ∗.
(5.63)

where z ∈ Rm and C ∗ is the dual cone of C .

SOCP can be regarded as a generalization of classical linear programming where the
linear constraints are supplemented by specialised nonlinear constraints in the form of
the cone constraints. The resulting optimization problem can be solved efficiently with
primal-dual algorithms based on the interior-point method.
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Conclusions and outlook

The first part of this thesis is dedicated to a pioneer study on the application of numerical
limit analysis approaches for strength predictions of wood and wood-based products and
the assessment of their performances. The contributions of this part can be summarised
as follows:

• The efficient and promising performance of the proposed numerical limit analysis
approaches for strength predictions of clear wood has been assessed and compared
with other computational methods. Due to its satisfying capabilities, this numer-
ical tool can potentially play an important role in investigating failure mechanisms
of wood at different scales of observation.

• Numerical limit analysis has been found to be an efficient and reliable tool for
stochastic studies on load bearing capacities of cross-laminated timber plates, to
compensate the intrinsic uncertainties (e.g. strength variations in clear wood) and
imperfections (e.g. knots and wood fibre deviations) of the material. This new
numerical tool can be expected to provide fast and promising strength predictions,
serving as reference for the ongoing development of the wooden board grading
process as well as the standardisation of cross-laminated timber products.

• Finite-element-based limit analysis formulations have been implemented through
self-written code in Fortran and the interface between the Fortran code and the
commercial finite element software ABAQUS has been built up. Thus, the present
numerical limit analysis approaches can easily be applied for rapid strength pre-
dictions of materials and safety assessments of structures in engineering practice.

Specific and detailed conclusions on the main findings of this part of research work
have been drawn in the related publications, and in the following a brief summary is
presented with respect to the publications.

In Publication 1, numerical limit analysis approaches were applied for the first time
to microstructures of wood. Both orthotropic failure criteria and periodic boundary
conditions were implemented into two-dimensional finite-element-based limit analysis
formulations under plane strain conditions. Periodic boundary conditions were imple-
mented as anti-periodic traction fields and periodic velocity fields in lower bound and
upper bound formulations, respectively. The orthotropic Tsai-Wu yield function was re-
formulated as a second-order cone constraint and, thus, large-scale optimisation prob-
lems could be solved efficiently using second-order cone programming. The proposed
limit analysis approaches were successfully applied to unit cell models at the annual
ring scale and the clear wood scale. Effective failure surfaces as well as failure modes
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were obtained very efficiently and robustly at both scales, and only small differences
between lower bound and upper bound results were obtained for all calculations. A
basic validation was performed by comparing the numerically obtained effective failure
surfaces at the clear wood scale with the experimental results from biaxial testing of
Norway spruce clear wood.

In Publication 2, in order to compare the predictive capabilities, the proposed numer-
ical limit analysis and two other computational methods, the extended finite element
method and an elastic limit approach, were applied to the same problem: the predic-
tion of effective wooden strength behaviours. All these three methods were applied to
the same unit cell models at both the annual ring scale and the clear wood scale, and
similar input strength parameters were chosen in a consistent way. The extended finite
element method is the most powerful method, delivering a very realistic description of
strength-governing processes, but widespread use of this method in the engineering field
is still restricted due to its demand for a complex solution procedure and high compu-
tational effort. Due to the continuum micromechanical basis and analytical solution
procedure, the elastic limit approach exhibited unbeatable advantage with respect to
time efficiency as well as the elegance with which material properties of different phases
can be linked across several observation scales, but it is difficult to capture all failure-
triggering processes due to stress and strain averages over material phases. The present
numerical limit analysis approach is able to correctly capture basic characteristics of
failure modes and the overall strength behaviours compared to the extended finite ele-
ment method, and exhibits sufficient computational efficiency and numerical stability
compared to the elastic limit approach. Thus, this new computational method can be
expected to serve as a promising tool for rapid strength predictions and the build-up of
material databases for wood and wood-based products within timber engineering design
processes in the future.

In Publication 3, based on numerical limit analysis and a stochastic approach, a
new computational concept was developed to fill the gap in timber engineering for
efficient and reliable predictions on load bearing capacities of cross-laminated timber
plates. For this purpose, the orthotropic Tsai-Wu yield function was implemented in
three-dimensional finite-element-based limit analysis formulations to indicate plastic
failure within wooden boards, and the strength parameters were determined from either
code values in Eurocode 5 or a strength profile database. By using strength values for
three different strength classes according to Eurocode 5, a validation using experimental
results rendered the numerical limit analysis approaches as a promising tool with small
computational error and high time efficiency with respect to the prediction of cross-
laminated timber plate bending capacities. By using a strength profile database, cross-
laminated plate models were assembled using wooden boards with arbitrarily-assigned
strength profiles, resulting in section-wise varying strength properties within each plate.
Performing comprehensive calculations, numerical upper bound calculations were able
to provide reliable strength predictions in a stochastic manner with similar scatter as
found in experimental results for strength classes C24 and C35. Distinct failure modes
were obtained from each calculation with an arbitrary combination of strength profiles,
providing a valuable basis to study structural failure mechanisms of cross-laminated
timber plates.

The second part of the thesis mainly focuses on the development simpler and more
efficient numerical upper bound approaches, as compared to commonly-used adaptive
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mesh refinement, to capture localised plastic failure mechanisms. The contributions of
this part can be summarised as follows:

• A combination of orthotropic yield functions and velocity discontinuities have been
implemented for the first time in finite-element-based upper bound formulations.
A concept for a sensible arrangement of velocity discontinuities has been presented,
allowing for an efficient description of localised plastic failure modes.

• An adaptive strategy has been developed to efficiently arrange velocity discon-
tinuities in a sensible way with respect to localised failure modes. The interface
failure across so-determined velocity discontinuities plays a dominant role in all
obtained structural failure modes. All required algorithms have been implemented
through self-written code either in Fortran or in Python, which are compatible
with the Fortran code for numerical limit analysis formulations and allow for an
automated determination of velocity discontinuities.

In the following, the main findings are briefly summarised with respect to the related
publications:

In Publication 4, velocity discontinuities, allowing for linear velocity jumps, were
implemented into three-dimensional finite-element-based upper bound formulations,
discretised using simplex strain elements. A concept of how to derive the necessary
traction-based yield function has been briefly introduced which guarantees a consistent
description of the orthotropic material strength behaviours across discontinuities and
within solid elements. Accordingly, compatibility as well as the associated plastic flow
rule are fulfilled throughout the whole body and, thus, rigorous upper bound solutions
are obtained. Additionally, a simple concept has been presented to manually determine
sensible arrangements of velocity discontinuities for given problems based on prelimin-
ary upper bound calculations using a very coarse mesh and a continuous velocity field.
In this way, significantly better upper bound solutions were obtained with almost no
increase in degrees of freedom, since it is sufficient to allow velocity jumps only across
sensibly-arranged velocity discontinuities.

In Publication 5, an automated determination of velocity discontinuities has been
introduced as a further development of the numerical approach presented in Publica-
tion 4. For this purpose, an adaptive algorithm has been implemented to iteratively
introduce and arrange velocity discontinuities into the optimal layout. In each iteration,
possible planes of plastic flow localisation were determined at each strain-rate evaluation
node using numerical upper bound results from the previous iteration. For the plane
strain case, velocity discontinuities were introduced into the discretised structures as a
sequence of line segments. For the general three-dimensional case, discontinuities were
introduced as plane surfaces cutting through tetrahedral elements based on a level-set
method. To guarantee a consistent strength behaviour throughout the whole discretised
body, the required algorithm projecting the orthotropic stress-based yield function into
a locally-equivalent traction-based yield function, with respect to the orientation of each
velocity discontinuity, was introduced in detail and verified numerically. By means of
selected examples, the adaptively-arranged velocity discontinuities were able to capture
localised failure modes very efficient and so-obtained upper bound results agreed very
well to reference solutions, either employed from literature or obtained without dis-
continuities but a very fine discretisation. In this way, plastic dissipation within solid
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elements could be reduced significantly and localised failure mechanisms are mainly
measured by velocity discontinuities, making any kind of adaptive mesh refinement in
failure region obsolete.

Perspectives and future research studies

In this thesis, a rigorous study on the implementation of numerical limit analysis ap-
proaches and the assessment of their strength prediction capabilities have been presen-
ted. Although the tasks originally proposed have been largely accomplished, following
tasks can be recommended as potential developments or applications of proposed nu-
merical approaches for future research.

• For strength predictions of wood, the strengths and weaknesses of three compu-
tational methods have been discussed in Publication 2. Taking benefit from the
efficiency, a combination of the numerical limit analysis and the elastic limit ap-
proach could evolve to an effective bundle of complementary methods, delivering
‘inner’ and ‘outer’ predictions for the natural scatter of wooden strength. Another
possibility might be a combination of the efficiency of the numerical upper bound
and the accuracy of the extended finite element method leading to more flexible
engineering design tools, in which the focus can be switched between accuracy
and efficiency as needed.

• The numerical limit analysis approaches have been proven a promising prediction
tool for load bearing capacities of cross-laminated timber plates in Publication
3. The scatter of experimentally-observed bending capacities has been properly
captured using strength profiles in individual wooden boards. In a next step,
potential research effort could be invested for more sophisticated stochastic stud-
ies on the impact of inhomogeneities on the overall strengths of cross-laminated
timber plates and the corresponding failure modes. The results would be of great
value for a deeper understanding of the structural failure mechanisms and more
efficient utilisations of wooden boards in cross-laminated timber plates.

• The strength behaviours of wooden boards is strongly influenced by knots and
the surrounding fibre deviations. A more sophisticated and realistic strength pre-
diction for knot sections by means of computational methods would be desirable.
However, according to previous research work, the application of conventional
finite element methods tends to be very difficult due to the present of arbitrarily-
oriented knots and the complex distributed fibres around them. Due to the effi-
ciency and simplicity of the numerical limit analysis approaches proposed in this
thesis, this numerical method is expected to deliver rapid strength predictions of
knot sections and provide useful information to complement more sophisticated
computational methods.

• In Publication 4 and 5, a numerical upper bound approach with adaptively-
arranged velocity discontinuities has been presented. The performance of this
new numerical approach is satisfying with respect to efficiency and simplicity.
However, several difficulties are worth mentioning in this approach and expected
to be overcome in future work. First, for general three-dimensional problems, the
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introduction of velocity discontinuities into the discretised structure is based on
the level-set method. When a first set of discontinuities has been determined,
the introduction of new discontinuities and adjustment of existing ones in fur-
ther iterations would require more advanced and comprehensive algorithms, such
as the multiphase level set method, which have not yet implemented. Second,
the ‘projection’ algorithm determining the traction-based yield functions for ve-
locity discontinuities and the algorithm determining potential planes of plastic
flow localisation are based on a strain localisation assumption which seems to be
too strict for some yield functions. Thus, in future work, more generally feasible
algorithms are expected to be developed from current ones for more flexible and
stable applications.
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