
Procedural Modelling of Park
Layouts

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Michael Vasiljevs, BSc.
Matrikelnummer 0727773

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: MSc. Martin Ilčík

Wien, 3 Mai, 2018
Michael Vasiljevs, Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Procedural Modelling of Park
Layouts

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Michael Vasiljevs, BSc.
Registration Number 0727773

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: MSc. Martin Ilčík

Vienna, 3rd May, 2018
Michael Vasiljevs, Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael Vasiljevs, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3 Mai, 2018
Michael Vasiljevs,

v

Acknowledgements

I would like to thank Martin Ilčík who was largely responsible for assisting me in the
development of the ideas described in this work, encouraging me to work on something
unique. Likewise, I would like to thank Michael Wimmer for giving feedback in extremely
quick times, making sure this thesis actually happens and showing an example of how
to work effectively in the academic setting. I would like to thank Pascal Poublan for
letting me use the vegetation models from his SketchUp extension in my ones. I would
like to thank the colleagues at Esri and Paul Guerrero for giving tips and encouraging
me to finish this work. I would like to thank my parents for the support and telling me
to either finish or to quit! And last but not least I would like to thank random cats on
the streets, who gave me the comfort when I was low-spirited.

vii

Kurzfassung

Die prozedurale Modellierung in der Computergrafik automatisiert die Generierung von
Inhalten. Dabei werden oft manuelle Methoden verwendet, wie bei Anwendungen wie
Maya. Grammatikbasierte Methoden ermöglichen die Beschreibung von Objekten auf
einer höheren Ebene, die Kodierung von Designentscheidungen in Rule-Dateien und die
Erzeugung von unendlichen Variationen durch Ändern der Parameter. Methoden zur
Synthese von Landschaften, Straßennetzwerken, Gebäuden und Vegetation wurden be-
schrieben. Im Kontext der Stadtgeneration kombiniert CityEngine einige dieser Techniken
zu einer kommerziellen Lösung, mit der eine gesamte Stadt auf einmal generiert werden
kann.
Im Kontext der Park-Synthese ist der Prozess in Layout-Generierung und Platzierung von
Objekten unterteilt. Ein Parklayout wird manuell erstellt und in den reservierten Bereich
eingefügt oder es wird eine Shape-Grammatik für die Gebäudesynthese verwendet. Im
ersten Fall könnte eine Änderung des Designs oder der Bereiche zu erheblichen Modifika-
tionen führen, die für den Benutzer erforderlich sind. Zurzeit ist die Schaffung von Parks
und Grünflächen in einer Stadt eher begrenzt und konzentriert sich hauptsächlich auf die
Vegetation.
Ziel der Arbeit war die Entwicklung einer Methode für die Parklayout- Synthese. Sie kann,
kombiniert mit grundlegenden Platzierungsmethoden, verwendet werden, um Parkmodelle
zu erstellen. Basierend auf der Analyse von realen Parks und 3D-Modellen haben wir
Muster abgeleitet, die in die Regeln unserer neuartigen Grammatik übersetzt wurden.
Insbesondere führten wir eine Regel für die Erzeugung gekrümmter Bereiche ein, die
unseres Wissens auf der Ebene in grammatikalischen Methoden noch nicht behandelt
wurde. Wir führen auch eine neuartige Möglichkeit ein, eine beliebige Teilmenge der
Grenze zu indizieren und auf dieser Grundlage eine zusätzliche Insettierungsoperation
bereitzustellen. In unserer Arbeit haben wir den Kontext von CityEngine als möglichen
Anwendungsfall betrachtet.

ix

Abstract

Procedural Modelling in Computer Graphics automates content generation, where com-
monly manual methods have been employed, as in using modelling applications like Maya.
Grammar-based methods allow to describe creation of objects at a higher level, encoding
design decisions in rule files and enabling generation of infinite variations by just altering
the parameters. Methods for the synthesis of landscapes, street networks, buildings,
and vegetation have been described. In the context of the city generation, CityEngine
combines some such techniques into a commercial solution that can be used to generate
the whole city at once.
In the context of park synthesis, the process is divided into layout generation and place-
ment of objects in it. Typically, a park layout is either created manually and inserted into
the reserved area, or a shape grammar designed for building synthesis is employed. In the
first case, a change to the design or the surrounding regions could result in considerable
modifications required of the user. At the present moment, generation of parks and green
spaces in a city is rather limited and mainly focused on vegetation placement.
The aim of our work was to design a method for park layout synthesis, which when
combined with basic placement methods could be used to create believable park models.
Based on the observation of real-life parks and 3D models of parks, we have derived a
number of patterns, which have been translated into the rules of our novel shape grammar.
In particular, we introduce a rule for creating curved regions, which, to our knowledge,
has not been addressed yet at this level in grammar-based methods. We also introduce a
novel way to index arbitrary subset of the boundary and provide an additional insetting
operation based on that. In our work we have considered the context of CityEngine as a
possible use case.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

List of Figures xv

List of Tables xviii

List of Algorithms xix

1 Introduction 1
1.1 Motivation . 1
1.2 System Overview . 3

2 Analysis of Existing Parks 5
2.1 About Parks . 5
2.2 Parks in CityEngine . 5
2.3 Park Layouts . 7
2.4 Distribution of Objects . 10

3 Related Work 11
3.1 Methods for Model Synthesis . 11
3.2 Grammars . 12
3.3 Layout Generation . 14
3.4 Object Placement . 15

4 Layout Generation 17
4.1 Definitions . 17
4.2 Grammar for Park Synthesis . 18
4.3 Grid Rule . 18
4.4 Cells Rule . 19
4.5 Rays Rule . 23

xiii

4.6 Boundary Insetting, Peel Rule . 24
4.7 Placement Rules . 27
4.8 Push Extrusion . 29

5 Indexing and Selection 31
5.1 Indexing . 31
5.2 Region Fitting . 38
5.3 Selection . 40

6 Placement 45
6.1 Scatter Rule . 46

7 Implementation 49
7.1 Layout Generation . 49
7.2 SketchUp Integration . 54

8 Results 57
8.1 Layouts . 57
8.2 Performance . 62
8.3 Comparison to Other Work . 63

9 Conclusion 65
9.1 Summary . 65
9.2 The Focus of the Tasks . 66
9.3 Future Work . 67

A Grammar Reference 69
A.1 Parameter Types . 69
A.2 Partitioning Rules . 69
A.3 Layout Boundary-based Placement Rules 74
A.4 Object Placement Rules . 76
A.5 Re-writing Rules . 77
A.6 Selection . 78
A.7 Selectors . 79

B Examples 83
B.1 Grid Park Variant 1 . 83
B.2 Grid Park Variant 2 . 83
B.3 Cells Park Variant 1 . 84
B.4 Cells Park Variant 2 . 85
B.5 Rays Park . 86

Bibliography 89

List of Figures

1.1 Park Generation Schematics. The input polygon (left) is first divided by
paths into zones in the layout generation step (middle). Then, vegetation and
various park objects are placed in the object placement step (right). 3

2.1 CityEngine CGA region partitioning rules: (a) split along x axis and
(b) split along x and then z axes, (c)splitArea along x axis, (d)shapeL,
(e)shapeU, (f)shapeO, (g) setback and (h)offset. 6

2.2 CityEngine parks created using the CGA rules (courtesy of Esri). 7
2.3 CityEngine Garden Scene. 7
2.4 Left: gardens of the Château de Villandry. Right: parks from the game

SimCity (2013) (courtesy of Steve Manx). 8
2.5 Grid-like parks . 8
2.6 Rays and Grid structural patterns found in rather complex real-life parks like

Schoenbrunn Gardens layout plan (left) and sattelite image (right) (courtesy
of Google maps). 9

2.7 Examples of Ray-like park layouts with a single primary centre. 9
2.8 Free-form parks have curves instead of straight edges as boundaries. 10
2.9 Trees are often placed into small regions of a park, which could be round (left)

or square (right) and are usually covered with mulch, courtesy of Buzzle.com
and WHE. 10

3.1 Procedural content creation process flowchart. 12
3.2 Left: an example of L-Systems rules and derivation. Given two rules and

an axiom shape, derivation allows generation of infinite number of sencentes
in this manner. Right: a tree generated with an L-System (courtesy of Ted
Wong, Bryn Mawr College). 13

3.3 Polygon Line split using two target points, Ulmer [Ulm05]. 14
3.4 Street graph generating methods could be applied to Park Modelling, Aliaga

et al. [AVB08] . 15
3.5 Park example using Edit Propagation, left: the initial layout, right: the result;

Guerrero et al. [GJWW14]. 16
3.6 Plant Ecosystems, Deussen et al. [DHL+98]. 16

xv

https://gardenerdy.com/how-to-grow-cherry-tree
https://www.whe.org/services-products/tree-trimming/tree-services-trimming/tree-trimming-pruning.html

4.1 Grid path construction uses vertical (left) and horizontal (middle) path regions,
which when combined, form a grid (right). 18

4.2 Left: desired Grid quarter ordering shown in blue, whereas the actual order
of regions that result from geometric operations can be different (for example,
in red). Right: even when a considerable chunk of a quarter is clipped away,
there is a high likelihood that the point (green) at the centre of the unclipped
version of the quarter is also found within the clipped quarter. 19

4.3 Free-form layouts. Left: a park between blocks of flats in Manhattan. Right:
cells layout created by smoothing out Voronoi cells. 20

4.4 Early approaches for creating park layouts with a single junction. (a) Intersec-
tion of paths spawned by random positions along the pairs of opposite sides
with a circular junction. (b) Based on Quarters created by Ellipses placed at
the corners. (c) Based on Quarters created by Bezier curves. (d) Similar to
(c), with a random permutation of control points. 20

4.5 Junctions in the Cells rule. Left: correctly created junction (the purple shape)
from the three vertices that resulted from shifting three neighbouring cells.
Middle: when two cell neighbour vertices are close enough to each other, they
may merge, collapsing the section; right: correct placement of junctions after
the section collapse. 21

4.6 Left: clipping before smoothing of boundary cells results in blobs; right:
desired outcome. 22

4.7 kNN -based junction connection – intersection is visible. 24
4.8 Rays path thinout: (a) the dense triangulation-based paths without thinout

(ratio 1), compare to (d) – the spanning tree of (a), i.e. a completely thinned
out path network (ratio 0); (b) a thinout with ratio 0.5 and (c) 0.2. 25

4.9 Special treatment of the path geometry in the Rays rule. Left: we cannot
simply create a union of paths sections and then subtract the junctions to get
the clipped regions since often occurring section overlaps result in merges of a
number of such input regions into the more complex polygons (dark blue),
as well as some holes (green). Right: Sizes of a junction (blue region) and
sections (green regions). Given a path width (ds) and an angle between path
sections (α), the junction diameter (dj) should be larger than that of the pink
region, dj > ds/2

sin(α/2) . 26
4.10 Peel rule intruded shape extensions. Left: extensions at corners reaching two

of the adjacent edges. Right: an extension between two intruded shapes that
share a vertex with an angle greather than 180◦. 26

4.11 Quarter hedges of a grid-like park layout appear to be ‘inset’ at a certain
distance from the boundary. 27

4.12 Left: boundary selection in bright red on the initial region, for example a grid
quarter. Middle: Peel rule generates light red region. Bright green selection
using a special labelling (Sec. 5.1.2), that takes into the consideration the
previous production. Right: Peel applied second time, resulting in a light
green region region that is isolated from the boundary.) 27

4.13 Left: Insert rule with three new shape instances. Inserted shapes are clipped
to the iregion subsequently (not shown). Right: Place rule with three new
shape instances. 28

5.1 Left: default indexing follows the actual order of edges in the geometry data.
Middle: a quad shape that has physical representation of 5-sided polygon
Right: logical representation of the shape in the middle, a quad. 31

5.2 Inherent amplification of numeric indexing can be demonstrated on the Peel
rule, where resulting number of indices will be 2n+ 2. 33

5.3 01-Indexing logical edge labelling on example application of the (left to right)
Peel, Grid and Cells rules. 34

5.4 Alternative 01-Indexing mode on the example of the Peel rule. Compare to
the left blue-shaded region on the Figure 5.3 left. 34

5.5 Example of the 01-indexing demonstrated by first applying the Grid rule (left),
and then the Peel rule (right) on the 0-subset of the boundary of each quarter. 34

5.6 Indexing continuity is broken by the inserted shape. Left: geometry sur-
rounded by one index gets the same index. Middle: how should indexing be
propagated when from both sides differ? Right: extending the index in the
direction of orientation. 36

5.7 Example case for reordering of indices. Left: physical geometry ordering in
iregion. Middle: geometry ordering after subtraction of, which could be a
vertical path shape in a Grid production, at the middle of the iregion. In the
bottom region incorrect orientation can be observed. Right: correct geometry
ordering after reordering of indices. 36

5.8 Directions, represented by points, are assigned an index within the range [0..3] 37
5.9 Left: naïve Shrinking does not handle edge events. Middle: correct reindexing

of shrunk polygon. Right: correct indices after multiple edge collapses at the
indexing boundary. 38

5.10 Recursive Grid application, left: without hint shapes, may result in non-quad
intermediate quarter shapes; right: works as expected with hint shapes . . . 39

5.11 The unclipped quarter in the example of a Grid production is used as the hint
shape. 40

5.12 Numerical selection of LE-labelled polygons on the range [0.5..1.5]. 41
5.13 Edge orientation selection. Left: the set of initially selected edges (red) is

often discontinuous. Right: a continuous range (red polyline) is computed
by looking for the largest continuous un-selected range (amber polyline) and
then subtracting from the boundary set. 42

6.1 Plants cover the ground region completely [DHL+98]. 45
6.2 Experimentation with object placement using non-procedural methods. The

park layout is inspired by the SimCity Large Park (see Figure 2.4 right). . . 46
6.3 Process of sample generation using the Scatter rule. 47

7.1 Polygon creation from half-open cells. Left: half-open edge construction.
Right: terminating edge (red) created between the vertices created by clipping
of the two half-open edges of the same cell. 52

7.2 Polygon placement. Left: B creates a hole within A, middle: A is cut from
the insertion point to the boundary, right: A is cut in half into A1 and A2
and B is inserted along the cut. 53

7.3 A derived shape may split the iregion which could be: left: An Intruded shape,
right: or an Inserted shape. 53

7.4 Polygon insetting. Left: individually intruded edges (orange) connected
junction polygons (brown). Right: ε-extension of a junction polygon. 54

8.1 Grid Layout variant 1 (Appendix B.1) – comparison of the generated park
with the photograph of the real-life park that has inspired it. 57

8.2 Various axiom region sizes applied to Grid Park variant 1. Left: the default
size is depicted on the Figure 8.1 left, compare to a large very region (middle)
and a very small (right) region. 58

8.3 Grid Park variant 1: distortion applied to the quad axiom region. 58
8.4 Grid Park variant 1: results with two variants of more complex axiom regions. 58
8.5 Fitting methods applied on the Grid Park example1: (a) Axis Aligned Bound-

ing Box (AABB), (b) Axis Aligned Corner fitting, (c) Oriented Bounding Box
(OBB), (d) Oriented Corners fitting, (e) Angle Thresholding. 59

8.6 Grid Layout variant 2 (Appendix B.2), the model and the layout of the real-life
park that has inspired it. 60

8.7 Shape Fitting plugin results: OBB (left) and Angle Thresholding (right). . . 60
8.8 Cells results. Top left: variant 1 (Appendix B.3), ithin a smoothed sub-region

. Top right and bottom: variant 2 (Appendix B.4), the use of symmetry in
cell samples in regions of various sizes. 61

8.9 Rays results (Appendix B.5), the side view (left) and the top view showing
the path structure (right). 62

List of Tables

8.1 Timing of park generation using four different rules given in miliseconds.
Rulefile for Grid park variant 1 was tested with (the second row) and without
grass samples. Two square testing regions were used, one sized 500 (small)
and another 2000 (large) units. 63

xviii

List of Algorithms

5.1 Calculation of the (logical) edge index based on the (logical) edge position
within the region. As a reference, Figure 5.8 shows index for each direction
of an edge that is represented by a point. 37

5.2 Combined shrinking and re-indexing. 38

xix

CHAPTER 1
Introduction

This work deals with modelling within the realm of Computer Graphics (CG). CG is
becoming increasingly utilised in various fields including, but not limited to entertainment,
architecture, urban planning and industrial product design.

The technical aspect of CG image synthesis roughly involves two processes – modelling
and rendering. Modelling deals with creation and placement of objects within a 3D scene,
whereas rendering involves generation of images that are perceptible to the human visual
system. It is entirely modelling that we would like to explore.

There are a number of ways to create, represent and store the objects for a 3D virtual
world. We consider two of them – inputting the geometrical elements manually or using
a program as a tool, i.e. writing a program to generate the geometry for you. The second
part opens various possibilities for the automatic generation of various kinds of models
on the computer. It is also called procedural modelling and is the area of interest of this
thesis.

A common way to handle a 3D object in space is a closed manifold surface model,
while other representations include voxel data and a point cloud. Moreover, we can also
describe a surface model using polynomial equations or mathematical functions. However,
the most standard way is to use a list of polygons that can be easily converted to triangles
for rendering. We will remain with the polygonal representation of models, in particular,
simple polygons with an arbitrary number of vertices, however the procedural system can
naturally be extended to handle instancing of objects based on any higher level format
that would make use of the modern hardware. However, not to lose the focus, we will
leave this out of scope of this work.

1.1 Motivation

Some of the first models were created by manually entering the vertices based on
measuring real-life model objects, for example, reproduction of the human hand at the

1

University of Utah in 1972 [Sit13]. Early CG sequences feature models that were often
created from a combination of primitives. In fact, before modelling applications became
commercially available, content creation was performed by programmers themselves,
so model generation would have been performed with statements of a general-purpose
programming language.

Development of increasingly affordable and capable graphics hardware enables mod-
elling applications to provide interactive visualisation while performing complex operations
in real time. Such a process allows for better productivity, a greater level of control and
ability to manipulate larger amount of content at the same time. However, arguably,
this also delays the adoption of procedural modelling pipelines – it is preferable, also for
economic reasons, to improve production iteratively rather than switching to a radically
new processes.

In the current generation of computer games, a player can navigate an entire city
in one continuous gameplay session. The amount of content in an AAA title has risen
considerably within the last two decades, and respectively, the teams responsible for
producing it have increased. On the other hand, current techniques already allow
generation of entire cities [Cit15] procedurally, so procedural modelling is expected to
be employed to replace the laborious part of creating – in this case the set models for
buildings and other objects – by hand.

The major advantage of procedural modelling is that once a design is specified, for
example in grammar, it is possible to create a number of variations of it automatically. It
is feasible to see an increasing rate of adoption of procedural content generation within
the next decade.

1.1.1 CityEngine Framework

The framework of procedural city-generation in CityEngine [Cit15] has been the primary
motivation for this thesis. It was the first, and still currently is the only solution of the
kind that is capable of generating a whole city model from the ground up using entirely
procedural techniques. As in a real city, modelling in CityEngine starts by partitioning a
given city area by a street network. First, major roads and highways are placed along
the landscape, partitioning it into polygonal faces called blocks. Then, blocks are split
into smaller regions by local streets – quarters. Quarters are further subdivided into lots,
where individual houses are placed. Building synthesis is performed using the CGA (CG
architecture) grammar, provided by the user in the textual form – similar to a script.
CGA is the core strength of CityEngine, and it can be used to produce other kinds of
objects, including parks. Our interest in CGA extends only to the application of the
grammar for generation of parks, and we will consider that in greater detail in Section 2.2.
The framework within CityEngine, however, is also of interest since it can supply axiom
shapes which become the starting polygons in our system.

Synthesis of buildings, streets, plants has been explored, but park generation has
largely been unexplored in the literature, yet parks play an integral role of a modern city,
and we wish to fill this gap by developing a method for procedural park synthesis.

2

1.2 System Overview

Figure 1.1: Park Generation Schematics. The input polygon (left) is first divided by
paths into zones in the layout generation step (middle). Then, vegetation and various
park objects are placed in the object placement step (right).

Following the idea of CityEngine of recursively partitioning a given area into the
smaller parts, where eventually houses are placed, our concept of park generation, likewise,
involves subdividing an input region into smaller regions. These ‘subregions’ correspond
to particular park areas – paths, lawn patches, flower beds – where objects, like trees,
plants, flower pots, are subsequently placed (see Figure 1.1). Hence, the park generator
is divided into two major components working in succession: layout generation and
object placement. The park generator was implemented as a SketchUp extension. The
front-end, or the presentation layer of the extension, utilises SketchUp GUI facilities to
allow the user to capture the input and to forward it to the standalone layout generator
library. The library returns the subdivided regions of the layout and object positions.
To allow a believable visualisation of the layout, regions are assigned colour and height.
Object positions are used to instantiate externally created 3D models. The result is
interactively rendered in the SketchUp viewport.

Layout generation is the core functionality of the system and is based on a CGA-
inspired ruleset that targets park-specific partitioning. In addition to encoding observed
park patterns into the rules, we introduce a novel way of partitioning based on indexing
and selection of the park boundary.

3

CHAPTER 2
Analysis of Existing Parks

The majority of real-life park designs were observed to follow regular patterns, which
include right angles, rectangular or triangular boundaries, circles – in both paths networks
and also partitioning inside the connected non-walkable green areas we call quarters.
Quarters are sometimes supplemented by more elaborate patterns (see Figure 2.4).
Sometimes, especially in modern parks, designs are based on curved forms of roughly the
same shape (see Figure 2.8).

Although, ideally, we want to generate parks that look like actual real-life parks, our
secondary goal is to create parks similar to what was observed in computer games. We
also try to follow the steps of forming an artificial park as close as possible (for instance,
see Figure 2.3).

2.1 About Parks

The design, planting and maintenance of complex park structures like carpet parks are
complex enough tasks in horticulture. Parks became public at the end of 18th century,
and the time before then they were mostly used for aristocratic recreation. As a result,
most of the design was following the tastes of the upper class [FW00]. It is interesting to
note that some parks were often open to the public to improve the development of the
lowest social classes.

2.2 Parks in CityEngine

A simple park could be created with CGA. Using CityEngine rules like split, setback,
offset, shape* and splitArea, rectangular partitioning of the lot shape could be
achieved (see Figure 2.1). On top of that, objects could be placed using the scatter
rule to create a city park (see Figure 2.2).

5

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.1: CityEngine CGA region partitioning rules: (a) split along x axis and
(b) split along x and then z axes, (c)splitArea along x axis, (d)shapeL, (e)shapeU,
(f)shapeO, (g) setback and (h)offset.

6

Figure 2.2: CityEngine parks created using the CGA rules (courtesy of Esri).

Figure 2.3: CityEngine Garden Scene.

Importing a manually generated layout, namely such created with a CAD or a Vector-
drawing application, allows a CityEngine user to create a more interesting park, where
the rules are used only for the object placement (see Figure 2.3).

2.3 Park Layouts

The overall schematic look of a park is determined by separation of park areas into paths
and quarters, which we call a structural pattern. In most of the parks that we have
observed, one of the three structural patterns has been noticed to either entirely shape
the layout or take the dominant part of the design. The patterns were named as Grid,
Rays and Cells, which are also eponymous to the names of the rules that implement
them (description of which follows in Chapter 4).

2.3.1 Grid Pattern

A large number of park layouts, especially those developed in France following the
Renaissance period, conform to, or, otherwise incorporate the Grid pattern into their
designs (see Figure 2.4 left).

7

Figure 2.4: Left: gardens of the Château de Villandry. Right: parks from the game
SimCity (2013) (courtesy of Steve Manx).

Figure 2.5: Grid-like parks

The foundation of the pattern is grid-like intersections of the two sets of paths, vertical
an horizontal, placed at regular intervals next to each other. Paths split the park area
into roughly rectangular quarter regions. The Grid pattern is applied to a quad region,
ideally having right angles. However, more complex regions could also be accepted when
using shape fitting (Sec. 5.2).

Grid-like park models are found in digital media, for instance, in city-building games
(see Figure 2.4 right, ignoring the path curvature). Grid parks can be nested, or used as
containers for smaller parks (see Figure 2.5).

2.3.2 Ray-like Partitioned Layouts

In addition to paths intersecting at right angles, a lot of the traditional parks can be
observed to have paths arranged diagonally, often connecting the centre junction and the
boundary corners (see Figure 2.7, Figure 2.6). To describe such designs, one can imagine
paths as ‘rays’ being ‘cast’ from a junction towards a set of points on the boundary.
Hence we describe such arrangement as the Rays pattern, although at the technical level

8

Figure 2.6: Rays and Grid structural patterns found in rather complex real-life parks like
Schoenbrunn Gardens layout plan (left) and sattelite image (right) (courtesy of Google
maps).

Figure 2.7: Examples of Ray-like park layouts with a single primary centre.

the rays are ‘cast’ the other way round. A single junction Grid layout can be represented
with Rays where paths are cast at the right angles. Rays-based layouts very often have a
circular centre, as can be seen in the Figure 2.7.

2.3.3 Curved Regions Layouts

Grid and Rays can model a large number of simple parks where normally, other then at
junctions, straight lines dominate. However, plenty of parks, especially those of the more
recent ‘modern’ designs, contain curved regions. Quarters, instead of having sharp angles,
appear to be more blob-like (see Figure 2.8). The layout of the CityEngine garden scene
example (see Figure 2.3), although manually created, is an example of this pattern.

9

Figure 2.8: Free-form parks have curves instead of straight edges as boundaries.

Figure 2.9: Trees are often placed into small regions of a park, which could be round
(left) or square (right) and are usually covered with mulch, courtesy of Buzzle.com and
WHE.

2.4 Distribution of Objects
The look of the park is shaped by vegetation as well as some artificial objects like benches,
fences, lampposts, growing pots and so on. Most often the plants are evenly distributed
into the given region, whereas the desired aesthetic effect is achieved by sculpting and
arranging the container regions, as is demonstrated in the garden scene in Figure 2.3.
A single plant instance of a tree or bush may be observed at the centre of a small
region, which is often a square or a circle, and a number of such regions could also be
aligned along a line (see Figure 2.9). As a result, we want to put more emphasis into
the placement of regions as a part of the partitioning process, as opposed to scattering,
which had been the predominant instrument in the previous work. When extending our
observation to the modelling of the artificial parks, we have noticed that in the garden
example (Figure 2.3, the layout, however, is not visible), some regions are split into two,
and a small tree region is inserted in the middle.

10

https://gardenerdy.com/how-to-grow-cherry-tree
https://www.whe.org/services-products/tree-trimming/tree-services-trimming/tree-trimming-pruning.html

CHAPTER 3
Related Work

The most significant mention of grammars is the use of split grammars for building
modelling [MWH+06] or the use of L-systems for road synthesis [PM01]. In this chapter,
we describe how we can apply grammar methods, in particular, shape grammars into the
context of park layout synthesis, supplemented by the means for scattering objects.

3.1 Methods for Model Synthesis
“Only the automatic rule derivation enables large-scale procedural mod-

elling.” [VAW+10]

A classical approach to modelling involves manual manipulation of geometric
elements, vertices and edges of a polygon or control points of a polynomial surface, using
GUI. The 3D modelling applications, like Autodesk Maya, have been improving the work
efficiency by enhancing the functionality for selection, manoeuvering and duplication of
such elements.

To avoid repetitions or to reuse collections of the meaningful model parts, known as
‘prefabs’, the modelling tasks can be automated by using a general-purpose imperative
programming language – for instance, Python scripting in Maya. The set of manipu-
lated geometric elements are treated as the program state that is sequentially altered
with geometric functions. A higher level system like GML offer more abstraction and
emulate state with function sequences, but remain Turing complete [Hav05]. Leblanc
at al. [LHP11] describe a way to generate the whole buildings including the facades,
interiors, fixtures utilising Constructive Solid Geometry (CSG), storing the state in a
component tree.

To simplify the process, instead of writing steps to generate a shape, we can create
a description of the scene. Formal grammars, as exemplified by L-Systems and the
CGA grammar, help us to achieve that. The description is encoded into a set of rules,
each rule describing how to transform one element into another. Application of a rule is

11

comparable to a refinement step in performing modelling traditionally. We will describe
grammars shortly in Section 3.2 in greater detail.

Rather than specifying design in grammar, more complex models could algorithmically
be constructed by first analysing meaningful patterns from a group of simpler models – to
retain the similar appearance while maintaining the continuity. This process is known as
example-based synthesis, was described by Merrell [MSK10] and is roughly divided into
two stages, analysis and synthesis. Such approach allows facilitating synthesis without the
prior programming experience. An accomplished designer then can focus on, for example,
modelling using the classical technique. Other methods, such as iWires [GSMCO09], use
the analysis step but allow the user interactively alter the model. On the other hand
Lipp et al. [LWW08] explored editing grammars visually by identifying instance locators.
Synthesis of grammars based on sketching has also been explored [NGDGA+16].

Analysis

Synthesis

Update/Edit

DatabaseInput Result

Figure 3.1: Procedural content creation process flowchart.

Considering all these methodologies, we can classify procedural modelling methods
according to the diagram on the Figure 3.1, which contains analysis, synthesis and edit
steps, and where intermediate results are stored in some form of a database. The primary
focus of this thesis is on synthesis using a novel and a rather simple shape grammar
targeting generation of park layouts, where the database is provided by a user in the form
of a textual rule file. In this report, we omit the analysis and the editing steps, although
region fitting (see Section 5.2), can be considered as a form of analysis. The editing
part mostly remains detached from procedural generation and can either be performed
manually on the input and output geometry, or considered a task for the future work.

3.2 Grammars

We have mentioned that the Grammar-based model synthesis is based on a description
of a scene with rules. An application of a rule is called a production and the process
consisting of multiple productions is called a derivation. A sequence of productions is
usually required to model an object. A rule describes how to perform a transformation
on an element. The elements can be string symbols, shapes in space, or nodes of a graph.
The derivation process terminates when no further productions are possible or, in some
cases like for example L-Systems, derivation needs to be explicitly terminated after a
given number of productions. The resulting elements are then translated into geometry.
Variations between two instances derived using the same rule sequences, when for example,

12

Figure 3.2: Left: an example of L-Systems rules and derivation. Given two rules and an
axiom shape, derivation allows generation of infinite number of sencentes in this manner.
Right: a tree generated with an L-System (courtesy of Ted Wong, Bryn Mawr College).

alternatives of the same design are demanded, can be achieved with parametrisation of
rules by random variables. Such productions are called stochastic.

Procedural modelling by means of grammars was introduced by L-Systems, which
operate by replacing symbols in a string, Figure 3.2. Starting with the axiom, the initial
set of symbols (b in the Figure 3.2 left), we keep replacing all of the symbols in the string
according the matching rule. Each rule contains a matching symbol and a list of symbols
that replace this symbol (see Figure 3.2 left, in the first rule symbol a gets replaced into
ab). All available symbols are listed in an alphabet. And at the end, we are left with
the symbols that can be either converted to geometry or to geometric operations, which
are called the terminal symbols.

Shape grammars operate on geometric shapes instead of symbols. The production
context of a shape cabe be important, which is then context sensitive. Hence, unlike
L-systems, parallel derivation often cannot occur. In their work Wonka et al. [WWSR03]
derived a two-grammar system to building models, one of which is used for the pro-
duction of symbols, and the other for replacement of these symbols with design-guided
geometry. A straightforward and effective system has been designed by Müller and
colleagues [MWH+06], which has seen been successfully employed in the industry in
the CityEngine [Cit15] application, where designs are encoded into the grammar. The
CGA was enhanced further by a number of papers, for example, Krecklau et al. [KPK10]
introduced better design encapsulation, and described custom geometric operations at
terminal symbols, for instance, curved surfaces. Ilcik et al. [IMAW15] described mixing
rules using layers within the context of facades. Schwarz and Müller [SM15] introduce
CGA++, where shapes can be accessed at any step of the derivation process, which is
also enchanced with the events. Besides modelling, grammars can be applied to other
fields like animation [IFPW10].

Representing rules with nodes allows for abstraction into a graph form. Such structure
allows better visualisation of the rule data, and also manipulation with graph-based
algorithms. Such representation is more intuitive and is also accessible to a broader user
group, without requiring the more technical knowledge of scripting. Patow [Pat12] applies

13

graph algorithms for verification, and graph rewriting for optimisation, for example, to
remove repetitions. For further abstraction, sub-graphs components can be abstracted
into the operator nodes. Silva et al. [SMBC13] extend the work of Patow, introducing
cycles into the graphs, which increases node density. Furthermore, semantic components
are introduced, which are functional components relating to, for instance, the architectural
objects.

3.3 Layout Generation

Figure 3.3: Polygon Line split using two target points, Ulmer [Ulm05].

Ulmer [Ulm05] facilitates simple partitioning of a target polygon based on a line
split and rectangle insertion along the split line (see Figure 3.3). CityEngine utilises
partitioning at three different levels: at the global level by the street network, splitting
of a block into parcels, and by using the CGA. Since a rough park layout consists of
a network of paths that partitions a region, where quarters are reduced to lawn areas,
the initial work on CityEngine by Parish and Müller [PM01] on the creation of street
graphs could be applied to the park modelling. This process is based on an extended
L-System and could be applied to generate certain classes of parks where narrow road-
like paths predominate. Moreover, the globalGoals function could direct generation to
target a particular path layout pattern. Methods splitting a block into parcels, for
instance, a recursive subdivision of the largest near-parallel edges, as also described
in the original CityEngine paper [PM01], was extended by Vanegas et al. [VKW+12],
employing hierarchical OBB-based and Skeleton-based splitting. In the context of parks,
parcel splitting methods could be employed for partitioning of flower-beds, for example,
as well as fitting of a simpler polygon into a more complex block in the latter case. The
CGA rules allow more sophisticated partitioning, for instance, arbitrary splitting along a
local axis and polygon offsetting, which can be used to create both paths and various
non-walkable regions of a quarter.

14

Example-based methods could also be adapted to synthesise park layouts. Yang
[YWVW13] uses elements of example-based synthesis and to select a block splitting
patterns from a template database into the regions between major roads. Based on layout
examples extracted from images, Aliaga et al. [AVB08], uses operations join, expand and
blend to synthesise new layouts, where the join operation of creating new segments is
based on probabilistic random walk decided by angle and rotation distribution. One of
the results from the Aliaga’s work may resemble a complex park layout (see Figure 3.4).

Lipp [LSWW11] uses graph cut to merge multiple layouts coming from the CityEngine.
This and the layer-based method [IMAW15] could be used to merge multiple park patterns
into one. Sub-park rectangular regions could be merged at entrances by solving a set of
linear equations, as described in the example of game levels by Ma et al. [MVLS14].

Figure 3.4: Street graph generating methods could be applied to Park Modelling, Aliaga
et al. [AVB08]

3.4 Object Placement
Ulmer [Ulm05] developed a grammar targeting vegetation placement into three types
of objects: avenues, inner plots, and whole parks, including distributions and jittered
placement along lines and circles. Deussen et al. [DHL+98] simulated a vegetation
ecosystem, taking into account plant lifespans by pipelining Floyd-Steinberg algorithm
with Voronoi Diagram to create initial seed samples (see Figure 3.6). These were later
self thinned-out when simulating the growth process. Merrell et al. [MSL+11] tries to
encode design decisions based on functional and visual criteria, accessibility to people in
the context of furniture placement within the room layouts, which could be translated
into the placement of park furniture. Guerrero et al. [GJWW14] considers example-based
synthesis driven by an interactive user input in the context of object placement, based on

15

Figure 3.5: Park example using Edit Propagation, left: the initial layout, right: the
result; Guerrero et al. [GJWW14].

Figure 3.6: Plant Ecosystems, Deussen et al. [DHL+98].

geometric relationships or ‘poses’ between the placed instance and the region containing
it, to replicate the same placement in new regions. An example placement propagation
within a manually created park layout was given in see Figure 3.5.

Sampling is used for rendering, and surface remeshing, but is also ideally suited for
‘natural’ distribution of objects on a surface. Roughly speaking, sampling is a conversion
of a continuous distribution into a discrete and Cook [Coo86] mentions that merely
randomly ‘throwing a dart’ will sometimes produce two samples too close to each other,
and others would be too far apart, in other words, sampling a range of frequencies or white
noise. By sampling with a higher frequency or blue noise, only small jitter, or variations
of distances between samples, is allowed. Poisson distribution is based on placing samples
closely but at a minimum radius from each other. Such distribution suits the purpose
well since it was also observed in nature, for instance in the retinal photoreceptors
of animals’ eyes. The jittered grid method approximates Poisson distribution and is
considerably more efficient over the ‘naïve’ removal of collisions. Recently, more efficient
Poisson sampling methods have been described, for instance, a one based on grid data
structures [Bri07].

16

CHAPTER 4
Layout Generation

The overview (Sec. 1.2) mentions the separation of the park generation into the library
back-end and the host application front-end. The content of this chapter is limited to
the primary component of the back-end, the layout generator. The input of the layout
generator includes the rules file and the axiom region. It is optionally complemented
with a list of attributes provided by a user to override the ones stored in the rule file.
The output is a dense subdivision of the axiom region into subregions. The axiom region
needs to be a quad or mapped to a quad (see Section 5.2), and it geometrically limits all
of the layout synthesis.

4.1 Definitions

In the context of this text the terms shape, region and polygon refer to the same geometric
object – a simple planar polygon without holes, vertices of which are in R2 – with the
following differences. Shape, being part of the production system, besides geometry
also contains indexing, attributes and any additional meta-shapes (e.g. hint shapes,
Sec. 5.2.2). A region may refer to both a polygon and a shape but may be used outside
of the production context. The input region in a context of a single rule application we
call the iregion.

The structural rules partition the input shape entirely, producing two types of regions:
paths – where one can walk upon, and quarters – non-walkable regions, which are
disjoint. Path regions are furthermore divided into junctions and sections. A junction
can be replaced with a new shape, for instance, a primitive, forming a custom junction.
Sections join at junctions, and the two, in the case of the structural partitioning, can be
loosely thought of as nodes and edges of a graph. A section connects the boundary at
an entrance. A region type is identified by the type attribute and the rules are not
barred from overriding it.

17

4.2 Grammar for Park Synthesis
Our grammar is similar to the CGA with a much-simplified syntax (see Appendix A for
grammar reference). It does not allow multiple statements in a production and is mostly
not context sensitive. The rule statement consists of the rule name and parameters,
followed by a set of selector blocks. A selector block consists of a number selector
statements. During the derivation a single selector block corresponds to a set of shapes
with a single label. Variation is achieved by selectors that when matched, choose the
label for the derived shape. These could be stochastic, index-based, or a border selector.
The latter is matched when the derived shape touches the iregion boundary. Besides
insertion of primitives, we allow insertion of smoothed and/or shrunk iregion into itself.

The grammar is supplemented with global attributes and shape attributes. Shape
attributes are propagated to all descendant shapes. The attributes serve a similar function
as in CityEngine. Besides being accessible during production, attributes are retained in
the terminal shapes and could be used as semantic tagging of regions.

The system has the following rules for structural partitioning that results in quarters:
Grid, Cells and Rays. For boundary-based partitioning, Peel rule can be used. For object
placement Insert and Place rule can be used.

4.3 Grid Rule
Although it is possible to partition a park into a grid-like structure of paths using two
consecutive applications of the CGA split rule along x and y axes, the Grid rule aims to
achieve the whole operation within a single production, incorporating handling of custom
junctions. The most basic example of this can be seen in the Figure 4.4a. The two sets
of perpendicular path polygons form junctions when intersected (see Figure 4.1). Each of
these polygons is extended beyond the boundary for proper partitioning of non-standard
iregions – such cases are described Section 5.2. Path sections are produced by subtracting
the junction regions from the union of the paths (shown in red in the Figure 1.10c).
Quarter regions are created by subtracting the union of paths from the input region.

i = 0 1 n - 1
j = 0

1

m - 1

Figure 4.1: Grid path construction uses vertical (left) and horizontal (middle) path
regions, which when combined, form a grid (right).

18

4.3.1 Symmetry

Symmetry can be observed to be an integral part of grid-based designs. We allow only
2-by-2 symmetry of regions, in other words mirroring of content in the lower left quarter
region against the local y and x axes in the three other quarters. When more than
two quarters are specified, symmetry is simply extended using modulo-2 arithmetics.
Symmetry is achieved by setting the appropriate orientation and offset of the quarter
indexing (See Chapter 5, and in particular, Section 5.1.1).

4.3.2 Quarter Indices

Rule selectors allow targeting a particular Grid quarter with i and j indices along the
x and y axes correspondingly. However, the geometry library functions do not return
regions arranged in a grid pattern, and we assume the ordering is non-deterministic (see
Figure 4.2 left). Quarter indices are obtained by performing a spatial query at the centre
of the region (see Figure 4.2 right)using an R-tree [Gut84]. This results in O(n logn)
complexity, however, we are aware that a linear lookup method is possible since limits of
each quarter are well defined. Sometimes a part containing the centre point is clipped
away, for instance by the iregion boundary. In such a case the quarter is terminated,
resulting in grass-only content.

1 2 3 4

5 2 3 4

1 5

i

j

Figure 4.2: Left: desired Grid quarter ordering shown in blue, whereas the actual order
of regions that result from geometric operations can be different (for example, in red).
Right: even when a considerable chunk of a quarter is clipped away, there is a high
likelihood that the point (green) at the centre of the unclipped version of the quarter is
also found within the clipped quarter.

4.4 Cells Rule

The Cells rule aims to generate park and garden designs, which are dominated by regions
with curved boundaries (see Figure. 4.3 left).

Early on, we have experimented with the generation of curved regions in single-junction
parks by using ellipse functions (see Figure 4.4b), and Bezier curves (see Figure 4.4c and

19

Figure 4.3: Free-form layouts. Left: a park between blocks of flats in Manhattan. Right:
cells layout created by smoothing out Voronoi cells.

(a) (b) (c) (d)

Figure 4.4: Early approaches for creating park layouts with a single junction. (a) In-
tersection of paths spawned by random positions along the pairs of opposite sides with
a circular junction. (b) Based on Quarters created by Ellipses placed at the corners.
(c) Based on Quarters created by Bezier curves. (d) Similar to (c), with a random
permutation of control points.

see Figure 4.4d). The core problem, however, is to find a solution for multiple junctions,
while avoiding development of the grid pattern. In the end, Voronoi region partitioning
and subdivision-based smoothing have been selected, because of the simplicity and close
observed resemblance to some of the real-life designs (see Figure 4.3 right). Moreover,
Voronoi Diagrams had been employed in other layout generating algorithms, for instance,
those used in games (e.g. [Gam]).

20

Figure 4.5: Junctions in the Cells rule. Left: correctly created junction (the purple shape)
from the three vertices that resulted from shifting three neighbouring cells. Middle: when
two cell neighbour vertices are close enough to each other, they may merge, collapsing
the section; right: correct placement of junctions after the section collapse.

4.4.1 Cells Partitioning

Layout generation starts with the generation of 2D Poisson point samples (see Chapter 6).
The Voronoi diagram is then generated by using these samples as cell vertices. Each
resulting cell is shrunk by moving edges away from the cell boundary (see Section 4.4.2)
and then smoothed. The resulting regions form park quarters. To create ‘blocky’ quarters
with sharp corners, smoothing can be disabled. The space between the quarters is taken
by the path regions, as described next.

Path Creation Algorithm

1. Shrink each cell.

2. Each shifted edge of the shrunk quarter is paired with the twin edge of the neigh-
bouring quarter to create a path section.

3. Since a vertex is shared by a number of cells (usually three), shifted versions of the
same vertex from each cell are used to construct the junction (see Figure 4.5 left).

4.4.2 Cell Shrinking and Grassfire Transform

A naïve polygon shrinking algorithm moves each edge “inside” along the normal by a
given offset value t. The new intersections for each edge pair create new vertex positions.
Shrinking a polygon in such a way, however, may result in self-intersection (see Figure 5.9
left). This occurs when an edge event which is an edge collapse are not handled correctly,
in a process known as the wavefront propagation [AA96] and sometimes referred to as the
grassfire transform. When this happens, the two neighbouring edges ‘close in’ from both
sides, and should be merged into a single vertex. General methods for reliably solving

21

Figure 4.6: Left: clipping before smoothing of boundary cells results in blobs; right:
desired outcome.

this offsetting problem exist, but are rather involved, for instance, are based on tracking
collapse times of triangles in a priority queue (such as by Palfrader and Held [PH15]).

We derive a more simple method that is limited to handling edge events in a convex
polygon, which also tracks the existing indices in the process – it is considered in
Section 5.1.6. Since a number of edges may have collapsed, the respective path sections
are removed and the adjacent junctions are connected (see Figure 4.5 right, compare to
an almost collapsing section Figure 4.5 middle).

4.4.3 Smoothing

Since we deal with discrete geometry, a curve is approximated by a polyline with high
geometric detail. A polyline and a polygon can be smoothed, getting nearer to a curve,
where the number of edges rises and the sharpness of the angles is reduced. Since new
geometry is created, to preserve topology a group of edges can be abstracted under
a logical edge (see Section 5.1), that represented a single edge in the original polygon.
Preservation of topology is important, which is needed for subsequent construction of
path sections and junctions. The smoothing algorithm itself consists of simply mixing
each vertex with its neighbour’s average, v′ = mix(v, vprev+vnext

2 , weightv), where the
weight determines the sharpness of the result. Usually, a number of passes are performed
to achieve the desired results. We perform an adaptive smoothing, applying the algorithm
repeatedly until the magnitude of the longest edge is below a given threshold that is
determined by an attribute.

Since the outer cells of the Voronoi diagram are half-open, they need to be clipped
before smoothing. Clipping at the boundary results in blobs (see Figure 4.6 left, while
the look of the Figure 4.6 right is more desirable). We resort to using a region slightly
larger than the iregion to clip the outer cells before smoothing.

22

4.4.4 Symmetry

Sample distribution can be guided using symmetry against either x or y or both axes, and
this allows to create symmetrical regions. However, since Voronoi Diagram generation
and the subsequent smoothing is applied on the clipped samples instead of the quarters,
symmetry may not be perfectly reflected at such a boundary that is not symmetrical
itself.

4.5 Rays Rule

Rays rule implements the Rays pattern described in Section 2.3.2, where path placement
is compared to casting a ray, although the construction process differs a bit.

Partitioning starts with the creation of the path network. Path creation consists of
placement of junctions followed by the creation of sections between these junctions and
the boundary. In Rays rule paths are classified into two types, the entrance sections –
those that touch the boundary, and the inner sections – those connecting the junctions.

4.5.1 Junction Placement

Junction positions are generated by sampling the iregion Poisson distribution (Sec. 3.4).
This is contrasted to the Cells rule, where samples are used to generate quarters. In
addition to the Poisson radius, offset from the boundary is also specified, which determines
how far the envelope, containing all of the junctions, is from the boundary.

4.5.2 Outer Sections

Entrances are locations on the iregion boundary, and need to be specified using the
discrete selection (see Section 5.3.2). Each entrance is connected to the nearest junction.
R-tree is used to accelerate the search.

4.5.3 Inner Sections

Larger parks with the observed Rays pattern often have multiple junctions connected
with sections in some way. Junctions and inner sections can be viewed as nodes and
edges of a connected graph, which should be planar since we do not consider bridges.
Initially, we used a sequential merging solution to connect junctions in such a graph by
successively attaching a randomly selected one from the set of kNN -queried neighbour
junctions, keeping track of already connected ones. This graph, which is also a spanning
tree, however, may contain intersections between sections, meaning the graph will no
longer be planar (see Figure 4.7).

Instead, a more robust construction using Delaunay triangulation is performed,
which is the dual of the Voronoi Diagram. Simply using the triangulation graph, where
the connections are maximal, results in a park looking rather artificial, mesh-like (see
Figure 8.9). To improve this, we compute spanning tree using a standard algorithm

23

Figure 4.7: kNN -based junction connection – intersection is visible.

(Kruskal’s) and then randomly mix in few edges that are found in the maximal graph
but not in this tree (see Figure 4.8). The number of additional edges is specified by an
attribute in percent. The sequential merging of sections’ regions remains the same.

4.5.4 Junctions

The Rays rule employs circular junctions, which not only occur in real parks but are
particularly suitable since path sections meet at arbitrary angles. We need to consider
overlaps between path sections to avoid geometric errors (see Figure 4.9 left). Avoiding
overlaps places a number of design limits with respect to the path width, junction radius
and the angle between path sections (see Figure 4.9 right). However, to avoid excessively
large junctions, we found that limiting the angle is impractical since sharp angles occur
quite often. To resolve overlaps, even when sections touch each other at junctions, we
clip and accumulate them into an initially empty set of disjoint paths, Sd = ∅. Before a
new section si is added, the existing set is subtracted from it, s′i = si − Sd; Sd = Sd ∪ s′i.
Please note that geometric difference operator ‘−’ is used (see Section 7.1.3) instead of
set ‘\’ operator, since the path set is formed from a set of separate regions. An extension
to custom junctions (see Section 4.1) is a trivial task.

4.6 Boundary Insetting, Peel Rule

Rules described up until now partition a larger iregion into a number of smaller tile-like
regions. Such a region, a quarter, can be further partitioned at the more local level
by ‘insetting’ a part of the boundary into the region. Unlike Setback and collection of
corner-snapping Shape* rules of CityEngine, we would like to inset an arbitrary subset of
the boundary that is not necessary snapped to a vertex, for example, observe the hedges
of each park quarter in the Figure 4.11. Such inner offsetting using an arbitrary boundary
subset allows a more varied design and can be appealing to an eye.

24

(a) (b)

(c) (d)

Figure 4.8: Rays path thinout: (a) the dense triangulation-based paths without thinout
(ratio 1), compare to (d) – the spanning tree of (a), i.e. a completely thinned out path
network (ratio 0); (b) a thinout with ratio 0.5 and (c) 0.2.

4.6.1 Peel Rule

Peel rule is used to offset a selected subset of the boundary inwards, creating an intruded
shape (the light red shape in Figure 4.12 middle), which cuts into the iregion. The
remainder shape we call the substrate (the light blue shape in Figure 4.12 middle). The
boundary subset is supplied as a list of boundary selection intervals (Sec. 5.3). Multiple
shapes could result from a production.

Shape Extension

For a closer correspondence to the real-world designs, the intruded shape has been
extended in the following two cases. First, when boundary selection snaps at vertices
and an angle to an edge adjacent to the selection is less than 45◦, the intruded shape
is extended to meet such an edge, as shown in the Figure 4.10, left. Second, when two

25

α/2
dj/2

ds/2

Figure 4.9: Special treatment of the path geometry in the Rays rule. Left: we cannot
simply create a union of paths sections and then subtract the junctions to get the clipped
regions since often occurring section overlaps result in merges of a number of such input
regions into the more complex polygons (dark blue), as well as some holes (green). Right:
Sizes of a junction (blue region) and sections (green regions). Given a path width (ds)
and an angle between path sections (α), the junction diameter (dj) should be larger than
that of the pink region, dj > ds/2

sin(α/2) .

selection

intruded shape
extension

selection

extension
intruded shape

Figure 4.10: Peel rule intruded shape extensions. Left: extensions at corners reaching
two of the adjacent edges. Right: an extension between two intruded shapes that share a
vertex with an angle greather than 180◦.

intruded shapes meet at a vertex that forms an inner angle that is greater than 180◦, a
completing polygon is inserted (see Figure 4.10 right).

4.6.2 Inset-based Partitioning

We can use two or more applications of Peel to insert a shape. With the help of
labelling (refer to Sec. 5.1.2) we can locate the new boundary between the intruded
and the substrate shapes. For example, this can represent bush hedges (as shown in
Figure 4.11) in the park quarter (see Figure 4.12). Moreover, Peel operations based on
such propagated labelling can be combined to achieve a certain design, where the original
boundary selection is used as a guide.

26

Figure 4.11: Quarter hedges of a grid-like park layout appear to be ‘inset’ at a certain
distance from the boundary.

Figure 4.12: Left: boundary selection in bright red on the initial region, for example a
grid quarter. Middle: Peel rule generates light red region. Bright green selection using a
special labelling (Sec. 5.1.2), that takes into the consideration the previous production.
Right: Peel applied second time, resulting in a light green region region that is isolated
from the boundary.)

4.7 Placement Rules

Placement rules insert new shapes into the iregion. New shapes resulting from a Place
or an Insert rule production are treated as new entities, while in comparison, in custom
junctions, new shapes take the place of the default shapes that would still exist otherwise.

4.7.1 Insert Operator

All new shapes are specified with the insert operator. The insert operator is invoked
within the selector block and it is only evaluated if the rule accepts a new shape in the
given context. For instance, a placement rule requires a new shape, and respectively, the
insert operator, while in the junction block of the Grid a new shape is optional.

There are three basic built-in shapes that could be inserted - square, circle and

27

Boundary Selection

Inserted Shape
Offset Selection

Inserted Shape

Initial Selection

Figure 4.13: Left: Insert rule with three new shape instances. Inserted shapes are
clipped to the iregion subsequently (not shown). Right: Place rule with three new shape
instances.

rhombus. These are the shapes often observed in real-life park layout. The shape
operator takes two, x and y, parameters. When x 6= y, square and circle shapes become
rectangle and an ellipse respectively.

4.7.2 Insert Rule

Insert rule is used to insert new shapes along the iregion boundary. Two arguments
are given, the boundary subset selection (see Section 5.3.1), and the sample discrete
distribution. The boundary subset is mapped into the [0..1] range, which is then used to
distribute the samples over (see Section 5.3.2). A shape is inserted with its centre placed
at the sample position (see Figure 4.13 left). New shapes are then clipped against the
original input shape and the input shaped is clipped against all of the new shapes.

4.7.3 Place Rule

Whereas in the Insert rule new shapes are placed directly on the boundary, Place rule
inserts shapes in the middle of the input shape. Hence, an additional boundary offset
parameter is given. To accomplish such process, first, the Peel rule is applied to the
selected boundary subset. This results in an intruded shape with the propagated selection
– the green offset selection as shown in the Figure 4.13 right (propagation is the same
process as illustrated in the Figure 4.12 which is described in Section 5.1.2). Insert rule
is subsequently applied to the offset selection, which is then situated entirely within the
initial input shape. It is important to mention that both the intruded and the substrate
shapes are clipped against the new shapes.

28

Centre placement was considered as a separate step. To make the insertion more
robust for all cases, we avoid having to deduce the correct Peel and Insert parameters.
Instead, we split the input shape along the line which passes through the centroid, and
then a single new shape is inserted at the centroid of the input shape.

4.8 Push Extrusion
Regions could be extruded upwards into the 3D shapes by setting the elevation attribute.
Regions with the type attribute values of “bushes” or “border” have implicit elevation
values set, which still can be overridden. The extrusion, or a push operation, is performed
by the front-end. The order of pushes is important. Given two neighbouring regions with
different elevation values and materials, when the lower is pushed first, the higher region
side-face gets assigned the material of the lower region at the common edge boundary.
To solve this, we group all regions by height, storing them in a Ruby dictionary, and
push the regions starting from the highest in descending order.

29

CHAPTER 5
Indexing and Selection

Selection (Sec. 5.3) is used by rules to target a part of the iregion boundary. It is passed
to a rule as one of the arguments. Indexing (Sec. 5.1) describes how the boundary
is labelled in a way that is meaningful to the selection step. Indexing is propagated
at each derivation step. Grid rule requires a special region fitting (Sec. 5.2) step –
fitting a complex polygon to a simpler one, to enable correct path placement, and can be
considered as a sub-task of indexing.

0

1

2

3

4

0

1

2

3

4

0

1

2

3

Figure 5.1: Left: default indexing follows the actual order of edges in the geometry data.
Middle: a quad shape that has physical representation of 5-sided polygon Right: logical
representation of the shape in the middle, a quad.

5.1 Indexing
After introducing the indexing subsystem, we describe how to index an empty region
using detection (Sec. 5.1.3). Indexing propagation fills gaps in indexing when an
existing shape becomes fragmented (Sec. 5.1.4). A rule can also use indexing internally
for its means, as described in Section 5.1.6.

31

Indexing is numeric labelling of edges of the shape polygon. In a default context, it
coincides with the ‘physical’ sequence of edges in the data structure or the file. Indexing
starts with 0 and ends with n − 1 (n = ‖E‖ = ‖V ‖) (see Figure 5.1 left). We use
clockwise (CW) enumeration direction to follow the convention of Boost Geometry library
(Sec. 7.1.3), without the loss of generality to the counterclockwise direction. The main
problem with such one-to-one indexing is that it is tightly coupled with the geometry.
For example, more complex polygon (see Figure 5.1 middle) should be represented by a
quad, because the extra complexity in geometry that does not alter the perception of
the polygon and should be either ignored or discarded (see Figure 5.1 right, the violet
vertex from the centre image is not be counted). This detail is important in the field of
procedural modelling for the preservation of design. When a modification to the iregion
is performed, for instance, an external change to the street or block level (Sec. 1.1.1),
changes to the final look of the model should be minimised. The same applies to the
intermediate shapes within our system.

5.1.1 Logical Edges

We were often concerned only what a shape looks like roughly. The detail of the actual
geometry may be unnecessarily high, for instance when trying to approximate a curve.
We introduce the logical edge (LE), LE = {Ei, Ei+1, ...Ej}, an abstraction of physical
geometry to logical geometry that can be selected and manipulated by a rule. Henceforth,
physical edges of a polygon are grouped into LEs, which attempt to abstract fine geometric
detail into a set of meaningful structures. All indexing in our system is based on logical
edges. Logical edges allow to label groups of edges in a polygon arbitrarily. In practice,
however, the concept naturally fulfils the role of numeric labelling, where labels are given
by an LE index. Moreover, indices may be skipped, i.e. holes created, using empty LEs
where i = j. An example of this can be found after an edge collapse in Section 5.1.6.

5.1.2 Polygon Labelling and Problems

After review of various labelling representation we decided on ‘flat’ numerical labelling,
or indexing. By that we mean an association of a label with a single integer value. Such
representation has a few advantages:

Generic with respect to the production context. Labelling that applies to all par-
titioning rules, while preserving the same semantics where possible, is prefered.
Namely it should work equally well with the Peel or the Grid rules. As an alter-
native we considered using various categories of semantic labelling. This could be
based on proximity, for instance, closeness to the ‘path’ type regions. Or it could
be dependent on the current production context, such as label names peeled or
inner_quarter, and so on. This is obviously problematic when different rules
are mixed together, not to mention the difficulty of implementing such a system.

Orientation-independent. In contrast, CityEngine uses semantic labelling based on
directions allowing, for instance, to select the North-facing edges or the ‘front’ of

32

the polygon within the local transformation context. This is useful for building
modelling. Yet, even if the transformation contexts are perfectly synchronised,
this is not as useful for modelling of a park, where an element often follows the
boundary for an arbitrary extent.

Allowing numeric selection. Indexing allows selection using continuous numeric ranges.
For instance, [0, 0.5] refers to the first half of the shape’s first LE.

2

5

4

3 0

1

Figure 5.2: Inherent amplification of numeric indexing can be demonstrated on the Peel
rule, where resulting number of indices will be 2n+ 2.

The above mentioned points have prompted us to decide for numeric labelling based
on logical edges. However, even then, naïve enumeration of LEs has led to the explosion
of the index sets – in practice, this has turned out to be somewhat chaotic after a number
of productions. This problem can be exemplified by applying the Peel rule on more than
one LE, where its output shapes have higher geometric complexity (see Figure 5.2), which
is in turn accumulated with successive applications within the same locality. One solution
would have been to use sub-indexing. However, this would complicate the system even
further. As a result, a simpler indexing system was devised and is described next, which
we use by default.

01-Indexing

We define a ‘binary’ partition of the boundary into two LEs, inner and outer, the ‘01’-
indexing. The outer logical edge labelled with 0, containing edges spanned by vertices
that are found on the boundary of the parent shape. The inner LE is labelled with
1 and contains all the other edges (see Figure 5.3). The result is an indexable range
∈ {0, 1}, which allows for a continuous selection range of [0, 2), as discussed later in this
Chapter.

An alternative mode of 01-indexing, triggered by an attribute, defines outer edges as
those that contain the boundary vertex of a parent shape Figure 5.4. Such alternative
is useful in a context when a set of edges needs to be selected that does not touch the
boundary, for instance in a peel rule.

This ‘sufficiently minimal’ indexing mode is particularly suitable for the context of
park layouts since the majority of partitioning is observed to be relative to the boundary

33

1

1

1

0

1

1

1

1 0

0

1

0

1

1

1

0

1

0

1

1

1

0

0

Figure 5.3: 01-Indexing logical edge labelling on example application of the (left to right)
Peel, Grid and Cells rules.

0

1

0

0

Figure 5.4: Alternative 01-Indexing mode on the example of the Peel rule. Compare to
the left blue-shaded region on the Figure 5.3 left.

0

1

0
1

0

1

Figure 5.5: Example of the 01-indexing demonstrated by first applying the Grid rule
(left), and then the Peel rule (right) on the 0-subset of the boundary of each quarter.

of the container (the parent shape). It delivers enough expressiveness and is quite simple
at the same time. Anything smaller than that, for example, the unary indexing would
allow selection range of [0, 1), is not systematic enough to provide ordered results since

34

in park designs it is often important to distinguish between inner and outer boundaries.
Indexing of higher arity, for instance, 4-nary indexing, already accumulates unnecessary
complication with subsequent rule application.

All rules that alter geometry in our system produce 01-indexed shapes. Internally, a
rule may use arbitrary labelling, as long as the resulting shapes are 01-indexed. Offset-
partitioning shapes propagate (see an example on the Figure 5.5) instead of synthesising
new indexing. The exception is the newly inserted shapes, as described in Section 4.7,
where the inserted shape does not share any context with the target shapes, so the
propagation of the existing labelling is irrelevant. The axiom shape does not have to be
01-indexed. The user is responsible for indexing the axiom shape (see Section 5.1.3 below),
which can be arbitrary and is, of course, reflected in the productions. This is useful when
one wishes to determine the layout of the initial Grid production by supplying a shape
with four indices (see the end of the Section 5.2.2).

Important to note that our system does completely implement indexing because the
path shapes remain default indexed.

5.1.3 Indexing Detection

A user may wish to partition the axiom shape into k number of logical edges. For
automation of this, we resort to using geometry simplification techniques, which must
occur on the axiom shape as a separate sub-step. Moreover, the resulting k vertices can
be used used to construct a fitting polygon (Sec. 5.2). Previous work in this direction has
been explored by authors such as Leu and Chen [LC88]. They came up with a solution,
also described in Boxer at al. [BCMRC93], that looks at the set of 2 or 3 consecutive
edges, and if any vertices within this set differ by a significant enough distance from the
‘chord’, formed from the endpoints this set.

We choose to use a simpler metric based on angle of edges incident to a vertex,
although we have also considered growing-based and adaptive methods. The sharper
the angle, the more prominent is the vertex and hence should provide a better fit when
included. To simplify the polygon we select k vertices with the best metric, i.e. largest
angle, and from LEs between them. We call this method Angle Thresholding. Selected
vertices are sorted in the order of occurrence in the original polygon, in order to minimise
the possibility of self-intersections.

5.1.4 Indexing Propagation

01-Indexing consists of two continuous ranges, and when it cannot be applied, propa-
gation of parent indexing must occur on the derived shape(s). For example, when the
Insert rule is applied, new shapes ‘cut away’ parts of the input, splicing the boundary,
Figure 5.6. If the new geometry is surrounded by the same index, it is assigned this
index as well. The problem arises when the new geometry is surrounded by edges with
different indices after the insertion. Such boundary cases are labelled by extending the
label that occurs first in the indexing sequence, until the geometry with the other label
is met. Such simple strategy is preferable to covering edges from both endpoints that

35

i i

i

i j

?

i j

i

Figure 5.6: Indexing continuity is broken by the inserted shape. Left: geometry sur-
rounded by one index gets the same index. Middle: how should indexing be propagated
when from both sides differ? Right: extending the index in the direction of orientation.

0

1

2

3

0

1

2

3
0

1

2

3

0

1

2

3

0

1

2

3

Figure 5.7: Example case for reordering of indices. Left: physical geometry ordering in
iregion. Middle: geometry ordering after subtraction of, which could be a vertical path
shape in a Grid production, at the middle of the iregion. In the bottom region incorrect
orientation can be observed. Right: correct geometry ordering after reordering of indices.

meet in the middle of the new geometry at some prominent vertex (as mentioned in
Section 5.1.3) since that would result in fragmentation.

5.1.5 Reordering of Indices for Grid Quarters

Grid rule is dependent on the order of logical edges in the iregion for the orientation of
resulting shapes. Symmetry is also determined by the logical edge ordering (Sec. 4.3.1).
However, the geometric library does not guarantee the same ordering of elements in the
output, in other words, the ordering of results is non-deterministic (see Figure 5.7 left
and middle). Hence, iregion indices order needs to be synced to the output subregions,
where, in our example, the first LE is at the West of the region (see Figure 5.7 right).
Based on their positions within the region (logical) edges can be correctly re-adjusted
within the [0..3] indexing set by using the Algorithm 5.1. Afterwards the symmetry can
be enforced by further modification to the indexing.

36

Algorithm 5.1: Calculation of the (logical) edge index based on the (logical) edge
position within the region. As a reference, Figure 5.8 shows index for each direction
of an edge that is represented by a point.
// (logical) edge direction based on its (endpoint)

vertices
1 di ← vi+1 − vi
// compute angle. Arctan2 arguments are inverted.

2 α← atan2(di.y, di.x)
// scale to [-2.0, 2.0]

3 α← α ∗ 2.0/π
// round and convert to [0, 3] range

4 index = modulus(round(α+ 4), 4)

Figure 5.8: Directions, represented by points, are assigned an index within the range
[0..3]

5.1.6 Index Mapping: Shrinking Case Study

The Cells rule uses grassfire-based shrinking to create sections and junctions (Sec. 4.4.2)
and uses indexing internally to preserve geometric relationships between quarters and
path regions. When edge events occur, correct re-indexing or index propagation must be
performed to ensure the validity of the regions. We perform naïve shrinking and then
test for self-intersection to check if any edge events need to be resolved. The goal is to
merge multiple adjacent edge events, which we call event clusters, at once into a single
‘merged’ vertex. We observed that such cluster will result in a single intersection between
non-neighbouring edges that enclose it. Since we know the indices of the intersected edges,
we simply propagate them to the new edges formed at the intersection. The Algorithm 5.2
combines the two tasks, merging of clusters and re-indexing. When new correctly shrunk
polygon is constructed, either a non-event vertex or the cluster intersection is used for
each new vertex. The index map is created based on the cluster pair.

37

n
n

n

n

t = |n|

0

1

2

3

0 2

1

3

0

1

2

3

0

2

3

3

1
0

2

n-1

0

Figure 5.9: Left: naïve Shrinking does not handle edge events. Middle: correct reindexing
of shrunk polygon. Right: correct indices after multiple edge collapses at the indexing
boundary.

Algorithm 5.2: Combined shrinking and re-indexing.
Input: Self-intersecting naïvely shrunk polygon p
Result: Correctly shrunk polygon p′, index map m

1 begin compute the event cluster index set
Result: a list N of cluster events, storing surrounding cluster indices

2 Ie ← R-tree-indexing(Edges(p));
3 foreach e in Edges(p) do
4 eε ← shorten e by ε at both ends;
5 Ei ← find intersections of eε in Ie;
6 N ← N ∪ Ei;
7 end
8 end
9 foreach v in Vertices(shrunkPoly) do

10 if Index of v within a cluster n ∈ N then add only-once intersection from n as
a vertex to p′;

11 else add v to p′;
12 update indexing of m accordingly;
13 end

5.2 Region Fitting

The sole interest in this process arose because the Grid rule requires a quad region as
an input, otherwise, we cannot reliably construct a grid layout. A problem can occur
when the Grid rule is applied twice or more times consecutively, which can be caused
by the clipping to a custom junction or the iregion boundary. Hence, given an arbitrary
polygon, we need to perform shape or region fitting to match or fit it to a quad with
minimal distortion for a given use case. In our implementation the axiom region will
always require to be fitted by a user.

Such fitting may be performed by wrapping another shape around iregion, a rectangle
in our case, as discussed shortly in Section 5.2.1. For shapes that are ‘almost-quad’-like

38

we can form a fitting polygon from logical edge endpoints of the iregion with detected
indices (Sec. 5.1.3). In special case of nested Grid productions, the rule is able to create
a ‘shortcut’ by using unclipped quad region for such purposes (Sec. 5.2.2).

Figure 5.10: Recursive Grid application, left: without hint shapes, may result in non-quad
intermediate quarter shapes; right: works as expected with hint shapes

5.2.1 Bounding Boxes based Fitting

City blocks as well as parks often resemble a rectangle. Moreover, paths of the grid-like
parks usually meet at the right angles. We were motivated by the work of Vanegas et
al. [VKW+12] who used the minimal oriented rectangle to find split-lines in recursive
partitioning of a region, and some affinity to the Grid splitting using paths strips can be
found. We tried using Axis Aligned Bounding Box (AABB) and Oriented Bounding Box
(OBB) to enclose the entire input polygon. AABB is the smallest rectangle containing
the input that is aligned to x and y coordinate axes. It is trivially computed using
the minimum and the maximum of the shape coordinates in the Euclidian plane. The
OBB is obtained by rotating the input polygon and looking for the minimal AABB. The
implementation that we used, of the rotating callipers algorithm, probes each edge of
the convex hull of the shape. It was first described by Shamos [Sha78]. The OBB is
the minimal area rectangle that contains the entire input polygon. The AABB does not
work so well for diagonally aligned shapes, while the OBB is independent of the shape
orientation and provides better fitting.

We introduce the box corners method, which casts rays from the centre of a bounding
box to each of the corners, and the resulting intersections with the shape edges make up
the fitting quad vertices. We tried box corners fitting with both AABB and OBB.

5.2.2 Hint Shapes

Besides using the Bounding Box as a reference of paths construction in a Grid production,
even a more appropriate way to fix this would be to add a hint shape quad, which is
the quarter region, before the rule clips it against the neighbouring junctions and the

39

unclipped quarter

clipped quarter

input region

Grid partitioning

Figure 5.11: The unclipped quarter in the example of a Grid production is used as the
hint shape.

iregion during the same production step (see Figure 5.11). Figure 5.10 shows an example
generated with the same rule-set with and without the hint shapes.

Generally, this operation is rule-specific, and a given rule is trusted to do the best
decision with all the necessary information at hand. Internally, a rule, if possible, should
provide a hint shape, which should be the best fit according to the rule’s judgement, since
it is aware how the region is distorted. This is preferable to other region fitting methods,
which may or may not produce desired results since they act without the knowledge of the
production context. The process of adding hint shapes can be thought of as a higher level
“semantic indexing”. The hint shape is stored as a child shape within the given region.

Hint shapes were only employed for the Grid rule and are not propagated by any other
rules, in other words, it is currently only useful for nested Grid productions. Unaware
of the prior production history, the Grid rule searches for the quad to be used as the
reference for path construction, in the following order: a) hint shape, if available b) logical
edges, if k = 4 (which coincides with the physical polygon when n = k = 4) c) Oriented
minimum Bounding Box (OBB). Further work is required to explore the usefulness of
hint shapes for other rules.

5.3 Selection

The goal of selection is to specify a subset of the boundary to be passed to a rule.
Selection can be of two types – we either want to select continuous intervals or discrete
values. For instance, the Peel rule operates on continuous selection, while if we want to
insert objects along the boundary, we use the discrete type. Selection of both types can
be specified in various units.

5.3.1 Selection of Ranges

A polygon boundary indexed with the logical edges can be mapped to the interval [0, k].
For example, [0, 1] refers to the first logical edge. The continuous unit of selection is

40

called a range, [a, b] ∈ R2, where a < b, Imin ≤ a and b ≤ Imax. The master range,
[Imin, Imax], is dependent on the selection mode.

Every selection mode is always evaluated into the physical range [Imin, Imax] = [0, n]
internally. Physical ranges, however, cannot be supplied by the user because they are too
volatile with respect to the changes in geometry. Doing so would also cause confusion of
whether to address the boundary by the length or the number of elements.

Numerical Selection

A range in the plain numerical form references the logical edge extent (Sec. 5.1.1). For
example, the value [0.5, 1.5] selects a continuous range that includes the second half of
LE0 and the first half of LE1 (see Figure 5.12).

0

1

2

3

1

1

1

1 0

0

1

1

1

0

Figure 5.12: Numerical selection of LE-labelled polygons on the range [0.5..1.5].

Edge Orientation Selection

The edge orientation selection mode looks for a sequence of edges that are oriented
within the angles specified in the master range [θmin, θmax] in degrees. Angle applies only
to the most local transformation context, in other words the history of rotations is taken
into the account. A naïve version of the algorithm simply returns an edge list that meets
the normal orientation condition (see Figure 5.13 left). However, the goal is to obtain a
single continuous edge range. Although a growing algorithm has been tested, trying out
on a number of shapes it turned out that complement of the largest continuous range not
in the selection produces the desired results (see Figure 5.13 right).

5.3.2 Selection of Samples

Discrete selection is another name for directed boundary sampling.

41

Figure 5.13: Edge orientation selection. Left: the set of initially selected edges (red) is
often discontinuous. Right: a continuous range (red polyline) is computed by looking for
the largest continuous un-selected range (amber polyline) and then subtracting from the
boundary set.

Boundary Locations

Boundary locations are used to place one or multiple objects along the subset of the
boundary represented by a polyline. It is specified as an expression that is evaluated as
to list of locations along the given polyline within the range [0, 1]. An expression can be
the following:

1. A list of real values within the range [0, 1]

2. A distribution of line-samples, specified by start and, optionally, end offsets, and
frequency of items. The frequency of items is given by the distance between them
or the number of items.

3. A vertex-counting value. For instance [1, 3] would select the second and the fourth
vertex. It is also possible to specify a position between the vertices, where [0.8, 1.2]
refers to two positions 1/5 of an edge length away from the second vertex in the
two of its adjacent edges.

Shape Placement Discrete Selection

As the name suggests, this kind of selection is used by the Place rule. Shapes placement
occurs along a subset of the boundary, which we parametrise to the interval [0, 1].
Positions can be either explicitly given, e.g. [0.1, 0.5, 0.9], or encoded using a ‘line placed’
formula. The formula consists of the start offset, distribution parameters and, optionally,
the end offset. If no end offset is specified, it is equal to the start offset. To clarify, the
end offset is counted from the end of the range. Distribution is specified with either
the number of samples or the distance between the samples. The distance is given in
the parametric space of the context within the range [0, 1]. The distance is the desired
distance, since we cannot set the exact distance, unless the length is a multiple of it.
The distance is used to compute the number of samples, we fit as many samples as we

42

can, plus if the remainder is greater than d/2, we add another sample, making the actual
distance smaller. Alternatively, if it is less than d/2 nothing is added making the actual
distance slightly larger than desired.

Entrance Placement Discrete Selection

The Rays rule uses a slightly different discrete selection syntax to specify the boundary
points that are used as positions for the park entrances. Samples are simply specified
as a list of parameters. Parameters can either be mapped to the whole length of the
boundary, or correspond to the physical indexing. The latter is the only exception to the
rule of referencing the actual geometry, because in the Rays rule it is often desirable to
specify vertex positions directly, especially with respect to the initial axiom shape.

43

CHAPTER 6
Placement

Figure 6.1: Plants cover the ground region completely [DHL+98].

The look of the rendered park is made up out of a composition of the objects placed
in the final regions (those that correspond to the terminal shapes). Most of the visible
entities are vegetation, including trees, grasses, and plants of other sizes and varieties. In
a city park, it is also common to find artificial objects like benches, lamp-posts and so on.
When emulating a real-life park, the vegetation should cover the regions completely, as
demonstrated in the Figure 6.1, since the topsoil layer is usually not visible behind the
dense cover of grasses. Because sampling of individual grass threads greatly impedes the
performance of both the generation and the visualisation (though tile-based sampling
would improve performance a bit), we limit to an illustrative representation of the lawn
made of a dark-green coloured region.

To supplement the layout generation process, the core functionality of placement
consists of uniform scattering of samples within a 2D region. We tried jittered grid-based
sampling (see Figure 6.2), but ended up employing the Poisson distribution (Sec. 3.4),
due the more ‘natural’ appearance of its samples, using the Bridson method [Bri07]. In

45

Figure 6.2: Experimentation with object placement using non-procedural methods. The
park layout is inspired by the SimCity Large Park (see Figure 2.4 right).

addition, since having a tree in the middle of a region is such a frequent detail in parks
(see Figure 2.9), we included an option for placing an object in the centre, corresponding
to the centre of mass, a centroid, of the polygon. Since indexing of paths has not been
pursued, except for the centre placement, we omit placement within the paths.

6.1 Scatter Rule

Placement of objects was implemented in the Scatter rule, which accepts either a
keyword CENTRE or the distribution parameters. These parameters can either include a
distribution radius (as described in Section 3.4) or a desired number of samples to
be distributed, followed by an optional offset from the border. Offset is the same as the
radius, if it is not given.

To compute the samples, first, the offset shape is computed using the offset parameter
t, Figure 6.3. Then, the AABB rectangle is obtained where the samples are actually
placed into. Finally, the samples outside of the offset polygon are clipped.

6.1.1 Guessing Radius from the Number of Samples

As mentioned in Section 3.4, the radius specifies the minimum distance between any
two samples. Very often, a user wishes to distribute a fixed number of plants within the
region. We are currently not aware of a solution that would reliably deliver a distribution
radius given the number of samples. Our solution results in rather sparse distributions,
which uses the formula 1

2
√
w · h/Ns for getting the radius given a number of samples

Ns and the dimensions (width and height) of the AABB. In other words, the radius
corresponds to the circle that is inscribed in the square that has the average sample area
of the AABB region. A better method would take into account the areas in the corners
of such square that is not occupied by the circle.

46

input region offset shape AABB

samplessamples clippedresult

Figure 6.3: Process of sample generation using the Scatter rule.

When symmetry is used (see Section 4.4.4) for junction sampling in Cells and Rays
rules, the sampling is performed within the subregions and is simply mirrored.

47

CHAPTER 7
Implementation

The implementation consists of three parts which can loosely be connected to the MVC
pattern [KP88]: The SketchUp UI or the View, the main Controller Ruby script and a
Layout Generator loader, the functionality of which can be attributed to a Model. The
View and the Controller form the front-end, and the LG library – the back-end. The task
of the front-end is to accept the user input and to forward it to the back-end. The axiom
region is specified by selecting the face using the host application viewpoint UI. The
C++ codebase uses Boost libraries, which are largely header-based, resulting in fewer
link dependencies. Using Boost versions of STL containers for data structures helped to
solve the incompatibilities between different versions of compiler toolsets.

7.1 Layout Generation
The Layout Generator, i.e. the back-end, is written in C++ and built as a shared library,
designed to be independently loaded by any client (i.e. the calling code). The library
accepts input geometry, a rule file, supplemented by a list of additional attributes. Park
synthesis consists of three steps: rule file parsing, optionally the parameter or attribute
update, and generation. Furthermore, the latter involves a combination of indexing,
partitioning and sampling sub-steps. During the parsing step, rules (Sec. 7.1.1) and
attributes (Sec. 7.1.2) are loaded from a text file into the two separate data structures. If
an error occurs at this step, the generation may not proceed, and the client has to report
this error to the user (for instance as a UI message) so that the rule file may be corrected
and re-parsed. The generation step uses the rule data structure to perform productions,
referencing the attributes in the process. Upon termination, the generator returns a list
of attributed labelled shapes and sample positions. Once the rule file is parsed, attribute
update and generation (with an updated set of parameters) steps can occur an arbitrary
number of times. For instance, the interleaved calls to these two operations would be
required to allow an interactive visualisation – if one wanted to change the path width in
real time, for instance.

49

7.1.1 Rule Parsing

We have simplified the CGA grammar considerably in order to derive our shape grammar,
for instance, we allow only a single rule application in a statement.

Implementation of a recursive descent parser in the Boost Spirit library was used
for reading in the rules from the textual form. Using C++ operator overloading, Spirit
allows to closely follow the EBNF (Extended Backus-Naur Form) syntax in code.

Since a rule statement in the rule file maps to a single rule application, such is stored
as an operation object. The rule data structure is a dictionary of operations, indexed by
a string – the match label. The flat_map implementation of a hash table from the Boost
Container library was used as a dictionary, which is a variant of the unordered_map of
STL. From the performance point of view, the hash table has many advantages over the
tree-based implementations, when cache-based memory architectures are taken into the
account. Besides the technical aspects of the modern hardware architectures (which is
outside of the scope of this text), the dictionary has an advantage of having on average
constant lookup time. Since insertion is conducted only once – during parsing, the lookup
time occurring during production has a decisive factor in performance.

7.1.2 Attributes

An Attribute can be evaluated to a numeric or a string value. Similarly to rules,
attributes are also stored in a hash table, which is justified by high access and update
frequency in comparison to insertion. It is implemented as a hierarchical tagged union
type based on the Boost variant, which allows to easily add modifiers and attach
additional sub-types. Using modifiers, a numeric value can be tagged as relative and
stochastic. A stochastic value consists of a distribution type modifier and two subtypes
of a numeric type, lower, and upper, denoting the distribution range. The string value
allows to reference another attribute by storing its name, which results in the final value
resolving at runtime.

A relative attribute stores 100% as the value 1, but values of over 100% are possible.
The purpose of a relative attribute is to scale distances and regions with relation to,
in most cases, the axiom region by using the 1/4 of its perimeter as the magnitude,
or the 100% value. In an ideal case we wish to use a side length of a square shape
as the magnitude during the design, or, alternatively the mean quad edge length. Our
presumption is that the user will avoid supplying a ‘winding’ boundary polygon with a
high perimeter/area ratio, to avoid a possible content upscaling.

7.1.3 Geometric Operations and Partitioning

Boost Geometry library is employed for the 2D Boolean operations. Although the
library by default largely uses the rational number arithmetic, numerical errors for some
operations are common, for instance, the Boolean union on touching polygons produces
invalid results. We use ε-areas, for instance extending the relevant subset of the boundary,
to mitigate the numerical errors.

50

Partitioning into Regions

While working on the partitioning system, we observed that algebraic operations often
do not directly translate into the implementation, and we give a brief account on this.
Given two regions a and b, in the implementation context we write the union of them as
a+ b, the difference as a− b. We used brackets to enforce the order of the operations
applied, for instance in a+ (b− c) difference occurs before the union.

For all three structural region partitioning methods (Grid, Cells, and Rays) the input
region is subdivided into three types of regions: quarters, path junctions and path sections,
as already described in Section 2.3. We discovered that for the Grid and Cells rules,
in order to avoid numerical geometric errors, the optimal order of operations is when
the path sections and junctions are computed first. The quarters (Rq) are subsequently
created by subtracting the paths (junctions Rj, sections Rs) from the iregion (Ri):

Rq = Ri − (Rj + Rs)

For the Cells rule, since quarters (that are derived from cells) are initially known,
and the path sections, as opposed to the junctions, are rather trivially computed – we
have attempted the following order of operations:

Rj = Ri − (Rq + Rs)

However, the above stated and other attempted arrangements of boolean operations
with the Boost Geometry library result in non-manifold complex polygons either as an
intermediate product or the end result, and this makes the result is unusable in both
cases.

Starting with the version 1.5.8, Boost Geometry supports multipolygons, allowing
polygons to be grouped for operations. For instance, a union of paths in Grid layout can
be achieved with a union of two groups containing vertical and horizontal strips. Before
that, we used the incremental path union – starting by combining two perpendicular path
regions nearest to a boundary (for example the leftmost horizontal and uppermost vertical)
and proceeding with other regions away from the boundary. We also know that a more
efficient solution recursively merges polygon pairs is possible, but multipolygon-capable
operations alleviate the need for that.

Grid Partitioning

A hole will occur when a custom junction (Rjc) does not contain the default junction
(Rjd) entirely, Rjd −Rjc 6= ∅, during a Grid rule production (Sec. 4.3). To avoid these
holes custom and default junctions are unioned, R′j = Rjc + Rjd. Moreover, to avoid
neighbour overlaps in custom junction, each one is limited by a quad Rjmax that extends
slightly less than the halfway to the next junction, R′′j = R′j −Rjmax.

51

Figure 7.1: Polygon creation from half-open cells. Left: half-open edge construction.
Right: terminating edge (red) created between the vertices created by clipping of the
two half-open edges of the same cell.

Cells Partitioning

Boost Polygon library is used to generate Voronoi diagrams (VDs). The library uses
the half-edge [McG] data structure to store geometry data, with vertices oriented Counter-
Clockwise (CCW), so conversion and mapping to CW orientation of Boost Geometry
have been performed. We take advantage of the linear access time to neighbouring edges
and vertices in the half-edge based container during the creation of path regions.

It is important to note that outer cells are half-open since a Voronoi diagram spans
the whole plane and a single such cell has two half-infinite edges – rays, each of which
has two cells that share it. Moreover, the direction of the ray is not given, however, a
library example uses direction as the vector from the source vertex to the midpoint of the
line segment spanned by the centres [Syd12] of the the ray’s cells (see Figure 7.1 left).
Half-open regions are converted into a polygon by cutting the ray. The endpoints of
clipped rays are joined with a ‘terminating’ edge (see Figure 7.1 right).

Cell shrinking and, optionally, smoothing results in two opposite or twin edges moving
away from each other and forming a path section. Each pair of edges is only accessed
once by marking the already visited edges. Similarly, a path junction is formed by the
vertices that are originally at the same position within the neighbouring cells are that
are subsequently shifted away from each other in a shrunk and/or smoothed region.

Rays Partitioning

The R-tree data structure is used to find the nearest junction for each entrance. Path
sections can intersect near junctions for a sharp enough angle and we create a set of
disjoint clipped path sections around a junction, as described in Section 4.5.4.

52

A

B

A

B

A2
A1

B
C

Figure 7.2: Polygon placement. Left: B creates a hole within A, middle: A is cut from
the insertion point to the boundary, right: A is cut in half into A1 and A2 and B is
inserted along the cut.

substrate
shape

intruded
shape

inserted
shape

Figure 7.3: A derived shape may split the iregion which could be: left: An Intruded
shape, right: or an Inserted shape.

7.1.4 Polygon Placement

Placement of a polygon within another, a usually larger polygon is implemented in Insert
and Place rules. Overlapping two polygons means a certain area of the park is occupied
twice, which may result in overlapping of placed objects. This must be avoided.

Subtracting one from another, as shown in the Figure 7.2 left, when B is entirely
surrounded by A, is possible when polygons with holes are permitted. We decided to
avoid holes since this considerably complicates all of the algorithms, including the object
placement.

As a result, A has to be cut to allow insertion of B. Making a cut half the way
through A and then subtracting B, Figure 7.2 middle, would have been possible, but the
Geometry library lacks the support for weakly simple polygons, moreover, because such
a polygon is not injective, it cannot be used in algorithms employing ε-areas.

A better solution, exemplified with a Garden Scene (see Figure 2.3), is to split A into
two sub-polygons, A1 and A2, and then subtract the B from both of them, Figure 7.2
right. This insertion method requires that B touches the boundary of both A1 and A2.
This precondition is guaranteed if the split line of A goes through the centre of B, point
C (and centre of B is in B, which we assume to be in most cases). The Place rule satisfies
this, since B is inserted at the split line. In the case of the Insert rule, the problem does
not occur, since instead of the split line we use the boundary. The case where polygons
are concave may result in a polygon split (Sec. 7.1.5).

53

Q

ε

Figure 7.4: Polygon insetting. Left: individually intruded edges (orange) connected
junction polygons (brown). Right: ε-extension of a junction polygon.

7.1.5 Special Cases for Region Placement

Normally, the Peel and Place rules should produce only a single substrate shape. However,
an intruded (Figure 7.3 left) or inserted (Figure 7.3 right) region can fragment the iregion,
when it touches the boundary at another location other than where it is inserted. In
such circumstance we can either clip the shape – allowing the fragmentation to occur, or
to discard the shape, terminating the production for the local branch of the ‘offending’
shape.

7.1.6 Border Subset Intrusion

Boundary subset intrusion is creation of the polygon between a subset of a boundary,
represented by a polyline, and the inset (offset with a negative t, see also Section 4.4.2)
instance of it. It is generated by intruding each edge of this polyline and then joining
them. Joining polygons are inserted at angles greater or equal to 180◦ (see Figure 7.4
left). Joining polygons are extended by ε-value along the inset boundary (see Figure 7.4
right).

A logical edge index tracking version of intrude was implemented. However, this was
not used in the final implementation since 01-indexing requires only to discern between
the boundary and non-boundary cases (Sec. 5.1.2).

7.1.7 Polygon Fixing

Extra vertices may appear in the results of a geometry operation. These are either an
‘unessential’ vertex that lies within an ε-distance to the edge spanned by its neighbours (the
violet vertex in the Figure 5.1 middle), or a vertex within an ε-distance to another vertex.
These are often caused by numerical errors. Since such rather inconsiderable changes to
geometry do not alter the look of the layout, they are discarded in a post-processing step
after a rule production.

7.2 SketchUp Integration

Trimble SketchUp is a lightweight 3D modelling application that is popular with, among
others, architects, landscape architects, engineers, and interior designers. We appreciated

54

the simplicity of SketchUp from the point of view of a novice user, for instance when
compared to Maya. The decision to work with this application was determined by a
presence of a preconfigured and extensible library of components or model prefabs, and
materials, also because of a lightweight scripting interface.

SketchUp allows augmenting its functionality with extensions or plugins, written
in the Ruby programming language. The Park Generator SketchUp plugin has been
created, which loads the layout generator shared library using the Ruby C API. The
plugin gets the input from the user and forwards it to the layout generator library. This
includes the input region, the rule file and a number of additional attributes that a user
can set in the front-end window UI. A JavaScript callback is used to update values in the
Ruby interpreter. After generation, materials are assigned and then intrusion (push/pull)
is performed, as described below in Section 4.8. A SketchUp attribute dictionary (different
to the Ruby language dictionary) is used to store shape attributes. The final step of
generation involves instancing of SketchUp components from the list of samples.

A user first selects a rule file, and once it is parsed successfully, the generate option
becomes available. When syntax errors are encountered, an error message is displayed
and the user has to edit the rule file and click on the “update” button. To pass the input
region, the user selects a previously created polygon face in the SketchUp viewport and
presses the “generate” button in the UI Window to allow for production to start. When
completed, the park model(s) are subsequently displayed in the same viewport. The
original input region is deleted to avoid the overlap of surfaces. The ‘undo’ operation
can be used to revert the entire park generation task, replacing the park model with the
original park region.

7.2.1 Shape Fitting Plugin

Shape fitting methods described in Section 5.2 were implemented in a separate SketchUp
plugin. The advantage of a separate plugin for region fitting is in being able to manually
tweak the fitted shape to suit user’s needs before the park generation step is invoked.
This is possible since the fitted shape is linked with the source shape bidirectionally by
tracking the SketchUp entityID in an attribute dictionary.

55

CHAPTER 8
Results

8.1 Layouts

Generation of layouts was the major goal of this work and in this section we look at
layouts produced by Grid, Cells and Rays rules, since they define the design of the park.

8.1.1 Grid Parks

Regular partitioning of the Grid layout is straightforward to implement and delivers
believable park models (see Figure 8.1). The Grid rule scales really well (see Figure 8.2).
The rule requires a quad as either an input or a hint shape, which can be distorted (see
Figure 8.3) but it loses to some degree its ‘regular’ quality.

Figure 8.1: Grid Layout variant 1 (Appendix B.1) – comparison of the generated park
with the photograph of the real-life park that has inspired it.

57

Figure 8.2: Various axiom region sizes applied to Grid Park variant 1. Left: the default
size is depicted on the Figure 8.1 left, compare to a large very region (middle) and a very
small (right) region.

Figure 8.3: Grid Park variant 1: distortion applied to the quad axiom region.

Figure 8.4: Grid Park variant 1: results with two variants of more complex axiom regions.

Fitting Methods

Distortion to the input quad region is directly reflected in the output (see Figure 8.3).
Results with various shape fitting methods, implemented in the Shape Fitting plugin, can
be seen in Figure 8.7. A generic threshold-based method (Sec. 5.1.3) fails to consistently
produce a rectangle-looking quad (with corners close to 90 degrees), and even then,
distortions (see Figure 8.7e) make it an unsuitable method when working with Grid
designs. Box-based methods are more suitable for fitting Grid layouts. OBB (see
Figure 8.5a) is able to fit the content slightly better than AABB (see Figure 8.5b), but

58

(a) (b)

(c) (d)

(e)

Figure 8.5: Fitting methods applied on the Grid Park example1: (a) Axis Aligned
Bounding Box (AABB), (b) Axis Aligned Corner fitting, (c) Oriented Bounding Box
(OBB), (d) Oriented Corners fitting, (e) Angle Thresholding.

both result in more consistent looking layouts over other methods, since they do not
produce distortions, even if large areas within a Box fall outside of the iregion. The
Corners methods still produce some distortion. Since the OBB Corners method (see
Figure 8.5d) produces the least distortion while fitting the most content, this method
could potentially be used for more flexible Grid designs.

59

Figure 8.6: Grid Layout variant 2 (Appendix B.2), the model and the layout of the
real-life park that has inspired it.

Issues

Besides perceptual issues, higher distortion in fitted shapes translates to ‘parallel’ path
sections getting oriented at greater angles to each other, which leads to intersections
between section ‘tails’ outside of the iregion (Sec. 4.3), which sabotages the production.

Figure 8.7: Shape Fitting plugin results: OBB (left) and Angle Thresholding (right).

60

Figure 8.8: Cells results. Top left: variant 1 (Appendix B.3), ithin a smoothed sub-region
. Top right and bottom: variant 2 (Appendix B.4), the use of symmetry in cell samples
in regions of various sizes.

8.1.2 Cells Parks

Modern parks featuring curved regions vary greatly, yet Cells manages to capture a
subset of real-life free-form park designs (see Figure 8.8). For example, concave regions,
as observed in the CityEngine garden scene (see Figure 2.3), are not possible and regions
may appear somewhat blob-like. Nevertheless, we have shown a novel way to construct
parks using the procedural techniques, which also allows to incorporate symmetry (see
Figure 8.8).

Issues

Samples placed further than a given distance from the iregion corner had resulted in
a hole (see Figure 8.8 bottom right). Paths may become too small and the quarters
can be too close to each other (consider the paths shown in the Figure 8.8 left). This
results from extending and smoothing cells at the boundary to avoid holes and blob-like
appearance. This could be avoided with improved boundary clipping and smoothing
methods, merging of quarters or larger path sizes.

A number of samples can be specified instead of the sample radius, although this does
result in a sparse sample distribution, and may result in odd-looking parks. Sampling
issues also concern Rays parks.

61

8.1.3 Rays Parks

Figure 8.9: Rays results (Appendix B.5), the side view (left) and the top view showing
the path structure (right).

Rays rule works the best for one or two junctions. Two issues have been encountered
with Rays. Firstly, the best method for specifying entrance location was sought, for
instance, it becomes problematic to target park corners with a high number of vertices on
the boundary. The second issue is connecting junctions in a manner that would resemble
real-life parks. The Delaunay method produces a planar graph, but with a large number
of junctions, the ‘artificial’ triangular look becomes rather prominent (see Figure 8.9
right). Random removal of edges (see Section 4.5.3) as a quick solution produces better
results (for instance, see Figure 4.8b). However, these are still not sufficiently realistic.
Finally, a problem of maximal distribution for a given number of samples is also shared
with the Cells rule.

8.1.4 Scattering

Sample-based object scattering works well for trees. For smaller objects, like grass plants,
the algorithm is a performance bottleneck. This could be improved by resorting to
a completely random scattering, ignoring the collisions, or, stitching of tiles with the
precomputed patches of samples.

8.2 Performance
We have tested three stages of synthesis in SketchUp 2016 – parsing, generation and
instancing. The timings are available on the Table 8.1. The test machine had an AMD
A8-5600K APU 3600 Mhz CPU with 4 Logical Processors, observed to be running at
around 3800 Mhz during the timing process, and 8GB of system memory clocked at
about 1866 Mhz.

Parsing includes the generator object creation and destruction, and reading in the
textual rulefile into a data structure. It can be seen that the parsing stage is very efficient,
which mostly relies on the external Spirit library. Nonetheless, the performance gain
could be attributed to lower cache pressure because of the smaller code size. Longer
times for the Rays park is reflected in the rulefile size.

62

The generation stage corresponds to the actual production process, which takes almost
two orders of magnitude longer and includes all layout geometry processing. It can be
noticed that the Grid variant 1 (Appendix B.1) and the Rays examples are much slower
for a larger region. This is because sampling is used to distribute the grass objects in
the Grid park and also since the number of junctions in the Rays park is not fixed, but
dependent on the radius, meaning a larger region size will create more junctions and
hence more content. Here a quadratic increase in timing can be observed between the
smaller and the larger regions, and since the area is 16 times greater, more content needs
to be generated. In comparison, the Cells variant 2 (Appendix B.2) uses a fixed number
of cells, and the smaller difference in times can be attributed to the tree placement. A
generally higher timing for the generation step, as exemplified by the larger Rays park,
shows that our implementation has some potential for optimisation.

The SketchUp instancing stage includes the creation of SketchUp shapes, material
assignment, volume extruding and instancing of objects. It is considerably slower, partly
because a script is used for execution instead of native code. This stage also accounts for
the overhead of interfacing with SketchUp and instancing of more complex geometric
objects. We did not time the actual rendering time.

Rule Parsing Generation Instancing
small large small large

Grid 1 0.19 12.98 72.29 926.68 1937.45
Grid 1 (no grass) 0.20 10.73 10.52 598.91 619.74

Grid 2 0.29 14.10 14.15 364.54 328.29
Cells 2 0.18 19.06 32.07 749.95 984.63
Rays 0.65 10.31 182.09 213.51 2049.20

Table 8.1: Timing of park generation using four different rules given in miliseconds.
Rulefile for Grid park variant 1 was tested with (the second row) and without grass
samples. Two square testing regions were used, one sized 500 (small) and another 2000
(large) units.

8.3 Comparison to Other Work

CityEngine [PM01], [MWH+06] is only able of modelling grid-like parks without the
custom junctions. This, however, requires two steps for split-based partitioning along
x and y. Moreover, the extended L-system could be modified to perform productions
for both grid-like and ray-like designs. On the other hand, CityEngine and CGA lack
support for curved regions. Besides Krecklau [KPK10], we did not find any procedural
modelling methods dealing with curved regions, and even then, the operations occur
at the terminal shapes. Modelling of parks requires creation of regions with curved
boundaries early on within the derivation.

63

Ulmer’s work on VegeZones [Ulm05], concentrated on object placement as the main
element of park design assisted with a single partitioning operation based on an edge split.
Our method, on the other hand, focuses on partitioning supplemented with an elementary
placement functionality. Also, selection in VegeZones is based on physical geometry,
while our indexing methods are independent of underlying geometry, for instance, capable
of handling curves in the discrete form. Comparing to Guerrero’s use of features in
placement [GJWW14], we have a more limited set of features, constrained only to the
position along the boundary and the distance from the boundary. We are not able to mix
multiple placements within the same polygon unless we modify the production system to
allow it. Likewise, in contrast to the CGA, our system is incapable of multiple region
productions within the same context, or within the same space.

64

CHAPTER 9
Conclusion

In the beginning, we have put forth the following goals for this thesis:

1. Create a grammar system for park layout generation.

2. Distribute of objects within the individual regions.

3. Fitting of a quad to a region of higher complexity,

We have covered all of these topics, as described in the previous chapters. How-
ever, further work is required to either complete our implementation for commercial
exploitation.

9.1 Summary
In this work, we have developed a CGA-like textual grammar system for park generation,
based on the three observed park layout patterns.

Layout generation has been the primary focus of this work. We have analysed a
number of parks and abstracted an overall look of each park into one of the three patterns
for partitioning of regions – Grid, Cells and Rays. Based on these rules, our system
allows structural partitioning into Grid-like layouts with custom junctions by a single
production, layouts consisting of regions with curved boundaries and layouts with regions
partitioned by ray-like path arrangements. We have introduced region insetting along an
arbitrary length around the region boundary, the functionality that was also used for
insertion of new regions within an existing one. To support this method, we have derived
a novel edge labelling system called 01-indexing, based on the concept of edge groups
into so-called logical edges. In order to provide a framework for placing paths within a
Grid-like layout, we looked into region fitting methods, for instance, using a minimal
rectangle to wrap around the input region or, otherwise, unclipped production artefacts
as hint shapes.

65

We also looked at object placement, which we used to complement the layout gen-
eration to construct parks. For example, we can evenly distribute vegetation within a
region or place a tree at a region’s centre.

9.2 The Focus of the Tasks

Following CityEngine, we have chosen to use textual rules as input. However, we are
aware that recently there was an interest in graph-based representation in both research
([SMBC13]) and commercial environments (SideFX Houdini [Hou15]). Our system could
be modified to accommodate any such alternative rule representation with minimal effort.
We have chosen not to extend CGA, but rather to create a CGA-influenced novel simpler
grammar, that targets generation of parks.

We resorted to using simple polygons, even though employing polygons with holes
would remove the necessity to split the target shape when inserting a new shape. This
representation, however, leads to problems when considering inner ‘hole’ regions in a
multitude of geometry algorithms. Likewise, not to overcomplicate our methods, we did
not use parametric boundaries, like curves, in our regions, instead utilising polylines
abstracted in logical edges.

We have implemented our work around the SketchUp application, which allows us to
easily supply the input, assign materials, instantiate park objects, elevate regions and to
display the results. In addition to the main Layout Generator plugin, we have also made
available plugins for region fitting and object placement, which could be used as separate
steps when necessary.

Side issues, like interactive editing, rendering of vegetation, optimisation of our
derivation system and multiprocessing were left out since these topics have been explored
by others already. In practical terms, it would have been more beneficial to focus only on
the implementation of the park partitioning patterns and leave methods like sampling,
placement, rule productions, polygon smoothing to other external subsystems.

9.2.1 Incomplete Features

Implementation for some parts of our system remains incomplete. The 01-indexing
has not been extended to paths, meaning we cannot reliably place objects on them.
Instead of using a single timestamp-based seed for all random number generation, the
implementation should allow controlling a collection of seed values mapped to the input
regions, like in CityEngine. Junctions in the Rays rule are currently limited to circles, and
the Cells rule are left with the default junctions. For the Rays rule, indexing detection
should be employed for the park corner selection by using ‘logical vertices’ instead of the
actual vertices.

66

9.3 Future Work

9.3.1 Grammar

Our grammar could benefit from a number of the CGA features. Conditional operators
would allow emulating loops by terminating the recursive calls, thus reducing the number
of redundant statements, created by copying and pasting, (consider an example in
Appendix B.5). Arithmetic operators would further enhance the expressions.

9.3.2 Layout Generation

Some designs could be achieved by adding the curved paths functionality for the Grid
and Rays layouts (such as shown in Figure 2.4). Better methods for connection of
junctions with inner sections would allow the creation of more realistic looking Rays
layouts. Although we used soothed Voronoi cells, generation of the quarters for the Cells
rule is open to any other methods. Moreover, extending our method by using other
smoothing algorithms and combining of regions, would improve the expressiveness of the
Cells rule.

9.3.3 Indexing

A better region fitting method would combine Bounding and Inscribed maximum rect-
angles. Perhaps complex polygons could be split into subpolygons, in the manner, a
block is split into lots in CityEngine, where a set of smaller neighbouring parks could be
generated. Use of hint shapes should be considered other rules besides Grid.

9.3.4 Object Placement

It should be possible to generate a denser nearly maximal distribution given the number
of samples, instead of the radius.

67

APPENDIX A
Grammar Reference

A.1 Parameter Types

A.1.1 Numeric Type

An expression of the numeric type can be used to store either a floating point value,
a real random range or an integer random range (Sec. A.1.2). This expression allows
representation of both real and integer numbers within the same type, and, most
importantly, permits stochastic evaluation within both the real and the integer ranges.

A.1.2 Random Range

Real random range evaluates to a randomly selected real number from the [min_value,max_value]
range at evaluation time using the uniform distribution.

ru (min_value . . max_value)

Integer random range evaluates to a randomly selected integer number from the
[min_value,max_value] range at evaluation time using the uniform distribution.
Can be thought of as throwing a dice within the given range.

r i (min_value . . max_value)

A.2 Partitioning Rules

A.2.1 Grid

Partition an input region into quarters using a regular grid.

g r id (idx_x , idx_y)
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

69

• idx_x, idx_y (integer)
The number of cell subdivisions along x and y axes. For instance, grid(2, ri(1..3))
can produce cell arrangements 2× 1, 2× 2, or 2× 3.

• QuarterSel, SectionSel, JunctionSel (sellabel)
Label selector statements for the quarter, path section and path junction regions
accordingly. In the Grid rule (only) the cell index can be used to assign a label to
a particular grid quarter based on the quarter position in the grid.

Example

Park - -> gr id (2 , 2)
{ Quarter1 }
{ ParkPath }
{ i (" b u i l t i n : rhombus " , %22) ParkCentreLarge }

Quarter1 - -> gr id (2 , 2)
{ Quarter2 }
{ ParkPath }
{ i (" b u i l t i n : square " , %14) ParkCentreSmall }

ParkCentreLarge - -> s c a t t e r (CENTRE)
{ ParkCentreLarge_wfountain : " Fountain1Marble " }

ParkCentreSmall - -> s c a t t e r (CENTRE)
{ ParkCentreSmall_wtree : "3 dast_banana_tree " }

A.2.2 Cells

Partition input region into more natural looking “cell-like” quarters that resemble
biological cells. Voronoi Diagram partitioning method is used.

Sample radius determines centre of a cell:

c e l l s (Rradius)
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

Alternatively, a number of samples can be requested, and best matching radius will
be guessed (currently not optimal):

c e l l s (number_of_samples)
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

70

With an optional smoothing parameter:

c e l l s (. . . , M(smoothing_factor))
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

Symmetry parameter is added at the end and is also optional:

c e l l s (. . . , S (symmetry_id))
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

• radius (real)
The minimum distance between any two path junctions; larger radius means fewer
junctions. Alternatively, number_of_samples can be used:

• number_of_samples (integer)
Specify an actual number of junctions to place within the region. The algorithm
tries to guess the most appropriate radius. However, the actual radius is usually
less than the ideal one for the given number of samples would be.

• smoothing_factor (real)
How much should the cells be smoothed. Smoothing reduces cell size.

• symmetry_id (integer)
Valid values are 0: no symmetry 1: x symmetry 2: y symmetry 3: x and y symmetry
(which is also bitwise AND of 1 and 2).

• QuarterSel, SectionSel, JunctionSel (sellabel)
Label selector statements, see the Grid rule (Sec. A.2.1).

Example

path_width = %3
Park - -> c e l l s (R110 , M(0 . 5))
{ border : QuarterOuter | e l s e : QuarterInner }
{ PathSect ion }
{ PathJunction }

QuarterInner - -> s c a t t e r (CENTRE)
{ QuarterInner_wtree : "3 dast_banana_tree " }

71

A.2.3 Rays

Partition input region using straight path segments in the manner of ‘rays’. Delaunay
Triangulation is used (related to Voronoi Diagram, which is its dual).

Entrances (boundary intersections) are determined by the list of boundary parameters
or selections. Junction placement (ray intersections) is determined by sample distribution
radius:

rays (boundary_se lect ions , Rradius)
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

Alternatively, a number of samples can be specified, and the algorithm tries to guess
the sample radius:

rays (boundary_se lect ions , number_of_samples)
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

Optionally, minimal offset from junctions to the boundary can be provided:

rays (boundary_se lect ions , . . . , o f f s e t)
{ QuarterSe l } { Se c t i onSe l } { Junct ionSe l }

• boundary_selections (list)
List of parameter values within the range [0..1]. For example, [0, 0.25, 0.5, 0.75] will
place entrances at the corners of a square.

• radius (real), number_of_samples (integer)
Same as for the Cells rule (Sec. A.2.2) with the difference that here the junctions
are placed instead of the quarters.

• offset (real)
The minimum distance from the boundary for a junction centre.

• QuarterSel, SectionSel, JunctionSel (sellabel)
Label selector statements, see the Grid rule (Sec. A.2.1).

Example

path_width = %5
rays_inner_graph_thinout = 0
Park - -> rays ([0 , 0 . 2 , 0 . 5 , 0 . 8] , R230 , 75)

72

{ border : QuarterOuter | e l s e : QuarterInner }
{ PathSect ion }
{ PathJunction }

QuarterOuter - -> s c a t t e r (CENTRE)
{ QuarterInner_wtree : "3 dast_banana_tree " }

A.2.4 Peel

‘Intrude’ a subset of the boundary inwards of the input region.

pee l (boundary_select ion , o f f s e t)
{ Int rudedSe l } { Subs t ra t eSe l }

• boundary_selection (selrange)
A subset of the input region boundary, specified as one of the selection range types
(Sec. A.6.1).

• offset (real)
How much to peel or intrude.

• IntrudedSel, SubstrateSel (sellabel)
Label selector statements (Sec.A.7.1) for the intruded and the substrate regions
accordingly. The intruded region is the newly created region, and the substrate
region occupies the remaining space of the input region.

Example

Park - -> gr id (2 , 2)
{ Quarter }
{ ParkPath }
{ Junct ion }

Quarter - -> pee l ([0 , 1] , %25)
{ IntrudedBoundary } { QuarterSubstrate }

QuarterSubstrate - -> pee l ([1 , 2] , %25)
{ IntrudedInner } { QuarterSubstrate2 }

73

IntrudedBoundary - -> s c a t t e r (R60)
{ IntrudedBoundary_wnettle : "3 dast_banana_tree " }

IntrudedInner - -> s c a t t e r (R30)
{ IntrudedBoundary_wnettle : " nett le_bush " }

A.3 Layout Boundary-based Placement Rules

A.3.1 Insert

Insert a new shape at the boundary.

i n s e r t (va lu e_se l e c t i on)
{ Inse r t edShapeSe l } { Subs t ra t eSe l }

• value_selection (float list)
Insert locations parametrised along the input region boundary length.

• InsertedShapeSel (sellabel)
Label selector statement (Sec.A.7.1) for the inserted shape. It contains the insert
operator (Sec. A.7.4)that should supply the shape that is being inserted.

• SubstrateSel (sellabel)
Label selector statement (Sec.A.7.1) for the and the remaining part of the input
region.

Example

Park - -> gr id (2 , 2)
{ Quarter }
{ ParkPath }
{ Junct ion }

Quarter - -> i n s e r t ([0 . 5])
{ i (" b u i l t i n : square " , %45) TreeRegion }
{ QuarterSubstrate }

74

TreeRegion - -> s c a t t e r (CENTRE)
{ TreeRegion_wtree : "3 dast_banana_tree " }

A.3.2 Place

Inserts new shapes. Because new shapes cannot be placed in the middle of the polygon
the input region needs to be the subdivided along the line where the new shapes are
inserted. Placement occurs at an offset distance from the boundary or at the centre of a
given region when single argument “CENTRE” is given.

p lace (boundary_select ion , o f f s e t , l o c a t i o n s)
{ Int rudedSe l } { Inse r t edShapeSe l }
{ Subs t ra t eSe l }

p lace (CENTRE)
{ Int rudedSe l } { Inse r t edShapeSe l }

When only a single argument “CENTRE” is given object is placed at the centre of
the region.

• boundary_selection (selrange), offset (real)
See the Peel rule (Sec. A.2.4).

• locations (sel_line_samples)
Where to place inserted shapes. Either a list of floating numbers a repeat expression.

• InsertedShapeSel (sellabel)
Specifies the new shapes, see the Insert rule (Sec. A.3.1).

• IntrudedSel, SubstrateSel (sellabel)
Label selector statements for remaining shapes, see the Peel rule (Sec. A.2.4).

Example

Park - -> gr id (2 , 2)
{ Quarter }
{ ParkPath }
{ Junct ion }

Quarter - -> p lace ([0 , 1] , ru(%20 . . %40) , 0 . 1 : n4 : 0 . 1)

75

{ IntrudedBoundary }
{ i (" b u i l t i n : c i r c l e " , 25) TreeRegion}
{ QuarterSubstrate }

TreeRegion - -> s c a t t e r (CENTRE)
{ TreeRegion_wtree : "3 dast_banana_tree " }

A.4 Object Placement Rules

A.4.1 Scatter

Scatters objects within the input region.

s c a t t e r (Rradius , o f f s e t)
{ RegionSel }

s c a t t e r (number_of_samples , o f f s e t)
{ RegionSel }

Place an object at the centre of the input region:

s c a t t e r (CENTRE)
{ RegionSel }

• radius (real), number_of_samples (integer)
Same as for the Cells rule (Sec. A.2.2), but for the sample positions instead of the
cell vertices.

• offset (real)
Same as for the Rays rule (Sec. A.2.3), but for the sample positions instead of the
junctions.

• RegionSel (sellabel)
Label selector statement (Sec.A.7.1), allowing to re-write the input region label to
avoid infinite recursive calls.

Example

76

Park - -> s e l e c t { s e t (type , " quarte r ") Quarter }
Quarter - -> pee l (ea [85 , 9 5] , %33)
{ Region1 }
{ Substrate }

Substrate - -> pee l (ea [8 5 , 9 5] , %33)
{ Region2 }
{ Region1 }

Region1 - -> s c a t t e r (R30)
{ Region1_wnettle : " nett le_bush " }

Region2 - -> s c a t t e r (CENTRE)
{ Region2_wtree : "3 dast_banana_tree " }

A.5 Re-writing Rules

A.5.1 Select

Re-write incoming geometry to a different set of labels.

s e l e c t { RegionSel }

• RegionSel (sellabel)
Label selector list (Sec. A.7.1), rewriting the shapes to the new label(s) when
evaluated.

No geometry is modified. The purpose of this rule is to remove redundancy of
repeating the same operations on one label in different selector blocks. Rule application
makes even more sense when selector expression lists are longer, or when the same label
is assigned in a number of different rules.

Example

InputLabel - -> p lace (CENTRE)
{ 50%: Border1 | e l s e : Border2 }
{ i (" c i r c l e " , 10) In s e r t ed }
{ 50%: Border1 | e l s e : Border2 }

can be simplified to:

InputLabel - -> p lace (CENTRE)
{ Border } { i (" c i r c l e " , 10) In s e r t ed } { Border }

Border - -> s e l e c t { 50%: Border1 | e l s e : Border2 }

77

A.6 Selection

A.6.1 Ranged Selection

Ranged selection references a subset of the boundary parametrised by either logical edges
or a set of edges matching a given orientation (edge orientation).

[lower , upper]

• lower, upper – Selection range. Values can be specified as a double, percent,
Random Range or a named attribute.

– Numeric selection, corresponding to the logical edge range.

– Edge orientation selection, corresponding to a range of angles, in degrees,
resulting in a selection of a continuous set of edges bounded by these angles.

Examples

Numeric selection:

extend_corners = 0
Park - -> c e l l s (R110 , M(0 . 5))
{ border : QuarterOuter | e l s e : QuarterInner }
{ PathSect ion }
{ PathJunction }

QuarterOuter - -> pee l ([1 . 2 5 , 1 . 7 5] , %35)
{ 50%: PlantRegion1 | e l s e : PlantRegion2 }
{ GrassRegion }

PlantRegion1 - -> s c a t t e r (R30)
{ Region1_wnettle : " nett le_bush " }
PlantRegion2 - -> s c a t t e r (R20)
{ Region2_wtree : "3 dast_grass00 " }

Edge Orientation selection:

78

extend_corners = 0
Park - -> s e l e c t { s e t (type , " quarte r ") Quarter }
Quarter - -> pee l (ea [70 , 110] ea [- 120 , - 6 0] , %35)
{ 50%: PlantRegion1 | e l s e : PlantRegion2 }
{ GrassRegion }

PlantRegion1 - -> s c a t t e r (R30)
{ Region1_wnettle : " nett le_bush " }
PlantRegion2 - -> s c a t t e r (R20)
{ Region2_wtree : "3 dast_grass00 " }

A.7 Selectors

A.7.1 Label Selector Statement

{ LabelExpr1 | LabelExpr2 | . . . LabelExprN }

LabelExpr1, LabelExpr2, ...LabelExprN
Label expressions (Sec. A.7.2). For each produced shape one of the label expression is
chosen and evaluated to a label that the current shape is assigned. Selection criteria
are determined by match conditions (Sec. A.7.3). More than one may match, but only
the first matching one is selected. The last selector (LabelExprN) is expected to be a
plain/default selector – otherwise, the rule application may fail.
A.7.2 Label Expression

Evaluates to a label when the condition matches.
A plain selector expression is simply a label, and it always matches:

Label

Alternatively, label selection may be limited to a particular condition:

MatchCondition : Label

Additional attribute modifications or shape insertion can be requested before the
label:

MatchCondition : OperatorExpress ion Label

• MatchCondition
Match condition (Sec. A.7.3).

79

• Label (label)
The label that is assigned to a derived shape when the match condition (Sec. A.7.3)
evaluates to true.

• OperatorExpression
Optional selector operator expression (Sec. A.7.4).

A.7.3 Match Conditions

Border Keyword

Regions that are touching a boundary at an edge are selected (however, regions sharing
a vertex with iregion boundary are not!).

border

Index Match

idx (x_expr , y_expr)

• x_expr, y_expr
Evaluates to Grid index. Optionally prefixed with “!” which negates the meaning.
Can be either:

– idx (integer)
A single integer index.

– odd (string)
Evaluates to a range of all odd index values. Even indices are evaluated with
“!odd”.

Example. Checkerboard pattern:

{ idx (odd , odd) : LabelWhite |
idx (! odd , ! odd) : LabelWhite | LabelBlack }

Stochastic Match

percent %

A selector is chosen with a probability of percent value. For instance “50%” would
accept the label roughly half of the time.
Example. Select Label2 half of the time, and Label1 and Label3 equally quarter of the
time each:

{ 25%: Label1 | 50%: Label2 | e l s e : Label3 }

80

Default Match Keyword

e l s e

Default match condition always matches (the keyword it can also be omitted).
A.7.4 Selector Operators

Insert Operator

Insert operator creates new geometry. Depending on the rule it is either ignored (e.g. in
the Peel rule), optional (junction selector statement of the Grid rule) or required (the
Insert and Place rules).

i (geometry_path)

i (geometry_path , r1)

i (geometry_path , r1 , r2)

• r1, r2 (real)
The first and the second parameters to the geometry.

• geometry_path (quoted_string)
A string that specifies the new geometry to be inserted, which can be either:

– “builtin:<primitive_shape>” – a predefined shape based on primitives
where <primitive_shape> is either circle, square or rhombus. r1 is the
size of the shape. If r2 is not specified, r1 is used in its place; in such a case,
the circle becomes an ellipse, and the square – a rectangle.

– “iregion:shrink” – iregion is shrunk by r1 and used as the inserted
shape.

– “iregion:smoothen” – iregion is shrunk by r1 (see above) and then
smoothed with r2 weight; if r1 is not given value 0.5 is used.

Examples. Insert a circle with the radius 15% of the input region (provided rule
accepts shape insertion) into a shape labelled InsertedCircle:

{ i (" b u i l t i n : c i r c l e " , %15) I n s e r t e dC i r c l e }

And rhombus 20 units wide and 15 units high:

i (" b u i l t i n : rhombus " , 20 , 15)

81

Set Operator

Creates a new attribute or changes a propagated attribute that is inherited from the rule
input shape. For instance, the “type” attribute is assigned using this operator.

s e t (attribute_name , a t t r ibute_va lue)

• attribute_name (string)
The attribute name.

• attribute_value (real, integer, string, quoted_string)
The attribute value. When the string is not quoted, another attribute is referenced
using this string value as the name.

Example. Change path width to a third for any further productions on QuarterLabel:

{ s e t (path_width , %33.3) QuarterLabel }

82

APPENDIX B
Examples

B.1 Grid Park Variant 1

path_width = %14

Park - -> gr id (2 , 2)
{ s e t (path_width_even , 1) InnerPathsRegion }
{ s e t (e l eva t i on , 4) PathOuter }
{ s e t (e l eva t i on , 4) Junct ion1 }

InnerPathsRegion - -> gr id (2 , 2)
{ TreeBed }
{ s e t (var iant , 2) s e t (e l eva t i on , 2) PathInner }
{ s e t (var iant , 2) Junct ion2 }

TreeBed - -> p lace (CENTRE)
{ s e t (type , " border ") Boundary }
{ i (" i r e g i o n : shr ink " , %6) s e t (type , " quarte r ") GrassQuarter }

GrassQuarter - -> s c a t t e r (R30) { TreeQuarter : "3 dast_grass00 " }
TreeQuarter - -> s c a t t e r (CENTRE) { "3 dast_banana_tree " }

B.2 Grid Park Variant 2

bush_width = %8
bush_of f se t = %20
centre_tree_bed_width = ru(%7 . . %14)
centre_r = ru(%10 . . %24)

83

Park - -> gr id (2 , 2)
{ TopQuarter }
{ ParkPath }
{ i (" b u i l t i n : rhombus " , centre_r) ParkCentre }

TopQuarter - -> p lace ([0 . 1 , 0 . 9] , %10, [0 . 1 , 0 . 4 , 0 . 6 , 0 . 9])
{ PlantsQuarterBorder }
{ i (" b u i l t i n : c i r c l e " , %5) BoundaryPlantsRegion }
{ PlantsQuarter Inner }

PlantsQuarter Inner - -> pee l ([0 . 3 , 0 . 7] , bush_of f se t)
{ InnerBushQuarter }
{ InnerGrassQuarter }

InnerBushQuarter - -> pee l ([1 , 2] , bush_width)
{ s e t (type , " bushes ") BushRegion }
{ CentreGrassRegion }

InnerGrassQuarter - -> p lace (CENTRE)
{ TreeQuarter1 }
{ i (" b u i l t i n : c i r c l e " , centre_tree_bed_width)

s e t (type , " loam ") QuarterTreeRegion }
{ TreeQuarter2 }

// add ob j e c t s
// founta in
ParkCentre - -> s c a t t e r (CENTRE)

{ ParkCentreWithFountain : " Fountain1Marble " }

// t r e e
QuarterTreeRegion - -> s c a t t e r (CENTRE)

{ QuarterTreeRegionWithTree : "3 dast_banana_tree " }

// bush p lant s
BoundaryPlantsRegion - -> s c a t t e r (CENTRE)

{ BoundaryPlantsRegionWithPlants : " nett le_bush " }

B.3 Cells Park Variant 1

path_width = %3
gra s s_e l eva t i on = 5
border_width = 5

84

Park - -> p lace (CENTRE)
{ Outer1}
{ i (" i r e g i o n : smoothen " , %3, 0 . 7) s e t (type , " quarte r ")

SmoothCentre }
{ Outer1 }

Outer1 - -> s e l e c t { s e t (type , " path ") PathOuter }

SmoothCentre - -> c e l l s (9 , M(0 . 5) , S (0))
{ QuarterRegion } { PathSect ion } { PathJunction }

QuarterRegion - -> p lace (CENTRE)
{ Border1 }
{ i (" i r e g i o n : shr ink " , border_width) s e t (type , " quarte r ")

s e t (e l eva t i on , g ra s s_e l eva t i on) QuarterRegion }
{ Border1 }

Border1 - -> s e l e c t { s e t (type , " border ") BorderRegion }

QuarterRegion - -> s e l e c t { 50%: TreeRegion | GrassRegionEmtpy }

TreeRegion - -> s c a t t e r (R80) {
QuarterTreeRegionWithTree : "3 dast_banana_tree " }

B.4 Cells Park Variant 2

path_width = %3
gra s s_e l eva t i on = 5
border_width = 5

Park - -> c e l l s (9 , M(0 . 5) , S (3))
{ QuarterRegion }
{ PathSect ion }
{ PathJunction }

QuarterRegion - -> p lace (CENTRE)
{ Border1 }
{ i (" i r e g i o n : shr ink " , border_width)

s e t (type , " quarte r ") s e t (e l eva t i on , g ra s s_e l eva t i on)
GrassRegion }

{ Border1 }

85

Border1 - -> s e l e c t
{ s e t (type , " border ") QBorder }

GrassRegion - -> s e l e c t
{ 50%: TreeRegion | GrassRegionEmpty }

TreeRegion - -> s c a t t e r (R80)
{ TreeRegionWithTree : "3 dast_banana_tree " }

B.5 Rays Park

clipping_mode = 1
path_width = 70
rays_inner_graph_thinout = 0
rays_remove_path_overlaps = 1
se l ec t i on_inte rna l_min ima l = 1

Park - -> rays (
[0 , 0 . 2 , 0 . 5 , 0 . 8]
, R300
, 125
)
{ border : Quarter1 | e l s e : QuarterInner }
{ Path1 }
{ Junct ion1 }

//
// junc t i on s
//

// at a junc t i on cent r e e i t h e r a founta in or a t r e e
Junct ion1 - -> s e l e c t { 75%: Junct ionTree | Junct ionFountain }

JunctionFountain - -> s c a t t e r (CENTRE) { j f : " Fountain1Marble " }

Junct ionTree - -> p lace (CENTRE)
{ JunctionPath }
{ i (" i r e g i o n : shr ink " , %25) JunctionTree1 }

Junct ionTree1 - -> p lace (CENTRE)
{ s e t (type , " border ") JunctionPath1 }
{ i (" i r e g i o n : shr ink " , %6) s e t (type , " quarte r ")

s e t (e l eva t i on , 2) Junct ionTreeQuarter }

86

Junct ionTreeQuarter - -> s c a t t e r (CENTRE) { j t : "3 dast_banana_tree " }

//
// quar t e r s
//

// outer (boundary - touching)
Quarter1 - -> pee l ([1 , 2] , 80) {

BushQOuter} { QuarterBoundary }

// outer boundary
QuarterBoundary - -> p lace ([0 . 1 , 0 . 9] , 80 , [0 . 1 , 0 . 4 , 0 . 6 , 0 . 9])

{ Quarter2A }
{ i (" b u i l t i n : c i r c l e " , 20) BoundaryPlantsRegion}
{ Quarter2B }

// outer p lant s
BoundaryPlantsRegion - -> s c a t t e r (CENTRE) {

BoundaryPlantsRegionWithPlants : " nett le_bush " }

BushQOuter - -> pee l ([1 , 2] , 19)
{ s e t (type , " bushes ") BushQ2Outer} { Quarter3 }

Quarter3 - -> p lace ([1 , 2] , 30 , [0 . 1 , 0 . 4 , 0 . 6 , 0 . 9])
{ Quarter3A }
{ i (" b u i l t i n : c i r c l e " , 16) BoundaryPlantsRegion}
{ Quarter3B }

// two va r i a t i o n s f o r inner r e g i on s
QuarterInner - -> s e l e c t { 50%: QuarterInner1 | QuarterInner2 }

QuarterInner1 - -> pee l ([0 , 1] , 50)
{ BushQInner } { Grass }

BushQInner - -> pee l ([0 , 1] , 30)
{ BushQ2Inner } { s e t (e l eva t i on , 24) Bushes }

BushQ2Inner - -> pee l ([0 , 1] , 20)
{ BushQ3Inner } { s e t (e l eva t i on , 16) Bushes }

BushQ3Inner - -> pee l ([0 , 1] , 10) { Q4Inner }
{ s e t (e l eva t i on , 8) Bushes }

Q4Inner - -> s e l e c t { Grass }

QuarterInner2 - -> pee l ([0 , 1] , 60) { BushQ1Inner2 } { Grass }

87

BushQ1Inner2 - -> pee l ([0 , 1] , 50) { BushQ2Inner2 } { Bushes }
BushQ2Inner2 - -> pee l ([0 , 1] , 40) { BushQ3Inner2 } { Grass }
BushQ3Inner2 - -> pee l ([0 , 1] , 30) { BushQ4Inner2 } { Bushes }
BushQ4Inner2 - -> pee l ([0 , 1] , 20) { BushQ5Inner2 } { Grass }
BushQ5Inner2 - -> pee l ([0 , 1] , 10) { BushQ6Inner2 } { Bushes }
BushQ6Inner2 - -> s e l e c t { Grass }

// materal a t t r i b u t e ass ignment
Grass - -> s e l e c t { s e t (type , " quarte r ") QuarterGrass }
Bushes - -> s e l e c t { s e t (type , " bushes ") QuarterBushes }

88

Bibliography

[AA96] Oswin Aichholzer and Franz Aurenhammer. Straight skeletons for general
polygonal figures in the plane. In Proceedings of the Second Annual
International Conference on Computing and Combinatorics, COCOON
’96, pages 117–126, London, UK, UK, 1996. Springer-Verlag.

[AVB08] Daniel G. Aliaga, Carlos A. Vanegas, and Bedřich Beneš. Interactive
example-based urban layout synthesis. ACM Trans. Graph., 27(5):160:1–
160:10, December 2008.

[BCMRC93] Laurence Boxer, Chun-Shi Chang, Russ Miller, and Andrew Rau-Chaplin.
Polygonal approximation by boundary reduction. Pattern Recognition
Letters, 14(2):111 – 119, 1993.

[Bri07] Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. In
ACM SIGGRAPH 2007 Sketches, SIGGRAPH ’07, New York, NY, USA,
2007. ACM.

[Cit15] Esri cityengine, 2015.

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans.
Graph., 5(1):51–72, January 1986.

[DHL+98] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomír Měch, Matt
Pharr, and Przemyslaw Prusinkiewicz. Realistic modeling and rendering
of plant ecosystems. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pages
275–286, New York, NY, USA, 1998. ACM.

[FW00] Ken Fieldhouse and Jan Woudstra. The Regeneration of Public Parks.
Taylor & Francis, first edition, 2000.

[Gam] Sir, you are being hunted. http://www.big-robot.com/2012/03/12/sir-
you-are-being-hunted/. Accessed: 2016-12-20.

[GJWW14] Paul Guerrero, Stefan Jeschke, Michael Wimmer, and Peter Wonka. Edit
propagation using geometric relationship functions. ACM Transactions
on Graphics, 33(2):15:1–15:15, March 2014.

89

[GSMCO09] Ran Gal, Olga Sorkine, Niloy Mitra, and Daniel Cohen-Or. iWires: An
analyze-and-edit approach to shape manipulation. ACM Transactions on
Graphics (proceedings of ACM SIGGRAPH), 28(3):33:1–33:10, 2009.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial search-
ing. SIGMOD Rec., 14(2):47–57, June 1984.

[Hav05] Sven Havemann. Generative Mesh Modeling. PhD thesis, Braunschweig
University of Technology, Nov 2005.

[Hou15] Houdini, side effects software, 2015.

[IFPW10] Martin Ilčík, Stefan Fiedler, Werner Purgathofer, and Michael Wimmer.
Procedural skeletons: Kinematic extensions to CGA-shape grammars. In
Proceedings of the Spring Conference on Computer Graphics 2010, pages
177–184. Comenius University, Bratislava, May 2010.

[IMAW15] Martin Ilčík, Przemyslaw Musialski, Thomas Auzinger, and Michael Wim-
mer. Layer-based procedural design of facades. Computer Graphics Forum,
34(2):2015.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J. Object Oriented
Program., 1(3):26–49, August 1988.

[KPK10] Lars Krecklau, Darko Pavic, and Leif Kobbelt. Generalized use of non-
terminal symbols for procedural modeling. Computer Graphics Forum,
29(8):2291–2303, 2010.

[LC88] Jia-Guu Leu and Limin Chen. Polygonal approximation of 2-D shapes
through boundary merging. Pattern Recognition Letters, 7(4):231 – 238,
1988.

[LHP11] Luc Leblanc, Jocelyn Houle, and Pierre Poulin. Component-based model-
ing of complete buildings. In Graphics Interface 2011, pages 87–94, May
2011.

[LSWW11] Markus Lipp, Daniel Scherzer, Peter Wonka, and Michael Wimmer. In-
teractive modeling of city layouts using layers of procedural content.
Computer Graphics Forum (Proceedings EG 2011), 30(2):345–354, April
2011.

[LWW08] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive visual
editing of grammars for procedural architecture. In ACM SIGGRAPH
2008 Papers, SIGGRAPH ’08, pages 102:1–102:10, New York, NY, USA,
2008. ACM.

90

[McG] Max McGuire. The half-edge data structure. http://www.flipcode.
com/archives/The_Half-Edge_Data_Structure.shtml. (Ac-
cessed on 07/01/2017).

[MSK10] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-generated
residential building layouts. ACM Trans. Graph., 29(6):181:1–181:12,
December 2010.

[MSL+11] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen
Koltun. Interactive furniture layout using interior design guidelines. ACM
Trans. Graph., 30(4):87:1–87:10, July 2011.

[MVLS14] Chongyang Ma, Nicholas Vining, Sylvain Lefebvre, and Alla Sheffer. Game
level layout from design specification. In Eurographics 2014, pages 95–104,
2014.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. In ACM SIGGRAPH 2006
Papers, SIGGRAPH ’06, pages 614–623, New York, NY, USA, 2006. ACM.

[NGDGA+16] Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedřich Beneš,
and Adrien Bousseau. Interactive sketching of urban procedural models.
ACM Transactions on Graphics (SIGGRAPH Conference Proceedings),
2016.

[Pat12] Gustavo Patow. User-friendly graph editing for procedural modeling
of buildings. Computer Graphics and Applications, IEEE, 32(2):66–75,
March 2012.

[PH15] Peter Palfrader and Martin Held. Computing mitered offset curves based
on straight skeletons. Computer-Aided Design and Applications, 12(4):414–
424, 2015.

[PM01] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In
Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’01, pages 301–308, New York, NY,
USA, 2001. ACM.

[Sha78] Michael Ian Shamos. Computational geometry. PhD thesis, Yale University,
1978.

[Sit13] Tom Sito. Moving Innovation: A History of Computer Animation. MIT
Press, 2013.

[SM15] Michael Schwarz and Pascal Müller. Advanced procedural modeling
of architecture. ACM Transactions on Graphics, 34(4 (Proceedings of
SIGGRAPH 2015)):107:1–107:12, August 2015.

91

http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml
http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

[SMBC13] Pedro Silva, Pascal Müller, Rafael Bidarra, and Antonio Coelho. Node-
based shape grammar representation and editing. In Proceedings of PCG
2013 - Workshop on Procedural Content Generation for Games, Chania,
Crete, Greece, may 2013.

[Syd12] Andrii Sydorchuk. Voronoi basic tutorial. http://www.boost.
org/doc/libs/1_63_0/libs/polygon/doc/voronoi_basic_
tutorial.htm, 2012. (Accessed on 07/01/2017).

[Ulm05] Andreas Ulmer. Modeling and rendering of plant ecosystems in urban
environments. Master’s thesis, ETH Zürich, 5 2005.

[VAW+10] Carlos A. Vanegas, Daniel G. Aliaga, Peter Wonka, Pascal Müller, Paul
Waddell, and Benjamin Watson. Modeling the appearance and behaviour
of urban spaces. Computer Graphics Forum, 29(1):25–42, 2010.

[VKW+12] Carlos A. Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G.
Aliaga, and Pascal Müller. Procedural generation of parcels in urban
modeling. Comp. Graph. Forum, 31(2pt3):681–690, May 2012.

[WWSR03] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky.
Instant architecture. ACM Trans. Graph., 22(3):669–677, July 2003.

[YWVW13] Yong-Liang Yang, Jun Wang, Etienne Vouga, and Peter Wonka. Urban
pattern: Layout design by hierarchical domain splitting. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH Asia 2013), 32:Article No.
xx, 2013.

92

http://www.boost.org/doc/libs/1_63_0/libs/polygon/doc/voronoi_basic_tutorial.htm
http://www.boost.org/doc/libs/1_63_0/libs/polygon/doc/voronoi_basic_tutorial.htm
http://www.boost.org/doc/libs/1_63_0/libs/polygon/doc/voronoi_basic_tutorial.htm

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	System Overview

	Analysis of Existing Parks
	About Parks
	Parks in CityEngine
	Park Layouts
	Distribution of Objects

	Related Work
	Methods for Model Synthesis
	Grammars
	Layout Generation
	Object Placement

	Layout Generation
	Definitions
	Grammar for Park Synthesis
	Grid Rule
	Cells Rule
	Rays Rule
	Boundary Insetting, Peel Rule
	Placement Rules
	Push Extrusion

	Indexing and Selection
	Indexing
	Region Fitting
	Selection

	Placement
	Scatter Rule

	Implementation
	Layout Generation
	SketchUp Integration

	Results
	Layouts
	Performance
	Comparison to Other Work

	Conclusion
	Summary
	The Focus of the Tasks
	Future Work

	Grammar Reference
	Parameter Types
	Partitioning Rules
	Layout Boundary-based Placement Rules
	Object Placement Rules
	Re-writing Rules
	Selection
	Selectors

	Examples
	Grid Park Variant 1
	Grid Park Variant 2
	Cells Park Variant 1
	Cells Park Variant 2
	Rays Park

	Bibliography

