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Kurzfassung

Automatische Segmentierung der Beckenorgane spielt eine große Rolle bei der Behand-
lung von Prostatakrebs und hat hohe Ansprüche an die Genauigkeit der Ergebnisse.
Segmentierungsexperten arbeiten ständig daran, ihre Algorithmen zu verbessern, jedoch
ist die anatomische Variabilität der Organe und Strukturen oft ein Grund, warum diese
Algorithmen schlechte Ergebnisse produzieren. Deswegen ist ein Verständnis dafür, warum
dies in einem bestimmten Fall passiert, für die Verbesserung sehr wichtig. Segmentie-
rungsexperten vermuten, dass die Form und Größe von Organen eine große Auswirkung
auf das Ergebnis der Algorithmen haben, jedoch fehlen ihnen derzeit noch Möglichkeiten,
dies zu untersuchen und zu analysieren, da derzeitige Lösungen noch zu wenig Einblick
bieten.

Diese Arbeit beschäftigt sich mit dem Design und der Implementierung einer webba-
sierten Anwendung, die eine einfache Untersuchung und Analyse der Variabilität von
Formen der Organe ermöglicht, um Hypothesen über das Verhältnis von Formen zu den
entsprechenden Segmentierungsergebnissen aufzustellen. Außerdem wird eine neue Art
der komparativen Visualisierung von mehreren Organen mehrerer Patienten vorgestellt,
die einen genauen Vergleich von Formen ermöglicht. Die Anwendung wurde mit einem
Datensatz von Segmentierungen einer Kohorte von 17 Patienten getestet, wobei jedes
Segmentierungsnetz aus vier Organen und zwei Kontaktflächen besteht, deren Dreiecke
jeweils übereinstimmen. Die entwickelten Tools ermöglichen, fehlerhafte Segmentierungen
schnell zu erkennen und Hypothesen über die Beziehung der Variabilität von Organen zu
anatomischen Gegebenheiten und auch der Qualität der Segmentierung zu erstellen. Ob-
wohl der Ansatz der Arbeit nur auf Segmentierungen der Beckenorgane angewandt wurde,
kann er auch für andere Anwendungen erweitert werden, wie zum Beispiel den Vergleich
von Segmentierungsalgorithmen oder die Analyse von anatomischer Variabilität.
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Abstract

Automatic segmentation of pelvic organs plays a major role in prostate cancer treatment
and has high accuracy requirements. Segmentation experts are continuously working
on improving their algorithms. However, natural anatomical variability of organs and
structures is a common reason for which segmentation algorithms fail. Understanding why
an algorithm fails in a specific case is of major importance. Segmentation experts expect
that the shape and size of the organs can play an important role in the performance of
their algorithms, but current means of exploration and analysis are limited and do not
provide the necessary insight.

This thesis discusses the design and implementation of a web-based application allowing
for easy exploration and analysis of shape variability in order to generate hypotheses
about the relation between algorithm performance and shape of organs. A new way of
comparatively visualizing multiple organs of multiple patients is introduced for a detailed
shape comparison. The application was tested with segmentation meshes of a cohort of
17 patients, each consisting of four pelvic organs and two organ-interfaces, which are
labeled and have per-triangle correspondence. The proposed tools already allow users to
quickly identify mis-segmented organs and hypothesize about the relation of variability
to anatomical features as well as segmentation quality. The approach was applied on
pelvic organ segmentations, but it can be extended to other applications like comparison
of segmentation algorithms or analysis of anatomical variability in general.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Definition
Segmentation of pelvic organs plays a major role in prostate cancer treatment and has
high accuracy requirements. This is because it is used as input to radiotherapy, a common
carcinoma treatment, which uses a high irradiation dose that could also damage healthy
tissues, if the latter are not accurately segmented and preserved during the administration
of the radiation.

As manual segmentation is time consuming, automatic approaches are often preferred,
which can produce inaccurate results in some cases, due to the high variability in shape
and size of the organs [CLR11]. Therefore segmentation experts are continuously working
on improving their algorithms. Although evaluation of the outcome is often simple,
understanding why an algorithm fails in a specific case is a major problem [Rai+16].
Researchers working on the development of segmentation algorithms expect that the
shape and size of the organs may play an important role in the performance of their
algorithms. Therefore, it is interesting to explore the relation between the shape and size
of the pelvic organs with respect to the algorithm performance between patients.

The exploration of this relation is currently a challenge, as the existing means of analysis
are limited. Yet, the research area of Visual Analytics, which is “dedicated to the develop-
ment of tools that combine automated analysis techniques with interactive visualizations
for an effective analysis of heterogeneous data sets” [Lan+13], can be of great aid.

1.2 Aim of the Work
The aim of this thesis is to design and implement a tool for the visual exploration and
analysis of shape variability and its impact on segmentation results. By this, the following
research questions should be answered:
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1. Introduction

1. How can shape variability between organs be measured and visualized at a single-
and multi-organ basis? How does this variability affect the segmentation outcome
quality?

2. How can multiple segmentations of multiple organs be visualized comparatively,
with respect to each other?

1.2.1 Tasks and Challenges

In order to answer the previously formulated questions, the work can be split in the
following tasks, each having different challenges:

Shape variability of (more than) one organ

The scope of the thesis is at first, to provide a way to quantify the variability in the
shape of the different involved organs, i.e. prostate, bladder, rectum and seminal vesicles,
with adequate metrics. Then this variability has to be visualized. The challenge in the
visualization design is to effectively show the variability in the segmentation outcomes.
In this application we are dealing with different shapes of different organs, e.g. bladder
and rectum, as well as a high variability for each organ. Finally, functionality to analyze
shape variability at a single- and multi-organ-level has to be provided.

Comparative visualization of shapes of multiple organs as well as multiple
patients

Comparative visualization, even between two results, already poses some challenges in
design and requirements [Lan+13]. There are some approaches, which try to compare
more than two results, but they are all limited to a single organ, as it is described
in Chapter 3. The data set of this thesis covers the four mentioned organs and their
interfaces in a cohort of 17 patients. The main challenge here is dealing with multiple
organs across multiple patients and performing a comparison of the segmentation outcome
regarding also the interfaces between them, where avoiding occlusion is a challenging
topic. The task itself is to provide a visualization technique, which is able to display
multiple organ classes while still retaining the ability to analyze shape variability.

1.2.2 Requirements

As segmentation experts wish to compare a great number of patients, the tool supports
this by being compact and understandable and scalable to a larger number of organs
and patients. Due to the complexity and large amount of data in Visual Analytics, the
general structure of the application follows Schneiderman’s mantra “overview first, zoom
and filter, then details on demand” [Shn96]. To be able to explore and filter the data,
the user is provided with a common strategy in Visual Analytics, which is brushing and
highlighting in linked views. This further raises the need for high responsiveness and
interactive frame-rates of the application, at least during the selection.
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1.3. Methodological Approach & Contributions

1.3 Methodological Approach & Contributions
To fulfill the first task and in order to be able to compare different shapes, they are
represented by a shape descriptor, which extracts a number of features usable for further
analysis. For the easier exploration of the high-dimensional space of shape descriptors,
the distribution of shapes is visualized by using dimensionality reduction for the single-
and for the multi-organ variability exploration.

The second task is accomplished by showing an exploded view of all medians of organs.
This allows the user to have a summarized visual context of what the multitude of
selected organs looks like, as well as the interfaces. A detailed view highlighting local
variability of organs is needed to be able to visually compare different shapes. This is
done by encoding the local relative extent to the other shapes and showing the local
variance in the data.

The contribution of this thesis is the design and implementation of a web-based application,
which allows segmentation experts to explore and analyze the variability of shapes of
pelvic organs. This is achieved by showing the distribution in shape space and local
features. Our tools allow segmentation experts to generate new hypotheses about the
segmentation algorithms used. The approach of the exploded view, in conjunction with
the detailed encoding of features per organ, contributes to the area of comparative
visualization and shows a way to handle multiple objects at the same time, preserving
their global relation to each other.

1.4 Structure
In the following Chapter 2, a short introduction into the medical background of the
discussed organs is given, as well as some fundamentals about automatic segmentation.
Related work and other approaches of comparative visualization are discussed in Chapter 3.
In addition, different types of shape descriptors are compared with each other.

Chapter 4 deals with the design and implementation of the proposed tool. All techniques
used are discussed in detail and compared with other approaches, which were discarded
at the implementation phase.

The implemented parts of the visualization design are discussed in Chapter 5, along with
the software architecture and other implementation details. The resulting application is
then described from the view of segmentation experts in Chapter 6. Therefore, multiple
usage scenarios for each research question are proposed. In the last Chapter 7, advantages
and disadvantages of the implemented tool are discussed as well as improvements for
future work are proposed.
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CHAPTER 2
Clinical Background

2.1 Anatomy of the Pelvic Organs

Our application scenario is the segmentation of pelvic organs involved in radiotherapy
treatment of prostate cancer. There are three pelvic organs other than the prostate,
which are of interest, because of their adjacency to it: the bladder, the seminal vesicles,
and the rectum. The anatomy and relation of these organs to each other is shown in
Figure 2.1.

The bladder is the largest organ and has high variability, as it is a flexible organ, the
shape of which depends on its filling state. The prostate itself normally is not of high
shape variability, but has to be segmented best in this scope, because it is the main
target in radiotherapy processes. Posterior and between the prostate and the bladder are
the pair of seminal vesicles. They have a highly variable shape and their usually small
size makes them difficult to segment robustly. Posterior to the three mentioned organs
is the rectum, which is the last part of the alimentary canal and because it can also be
filled, it is of high shape variability, as shown in Figure 2.2.

2.2 Prostate Cancer

Prostate cancer is the second most common type of cancer in males worldwide, accounting
for 15% of all newly diagnosed cancers [Fer+15] and the most common cancer in more
developed regions. The age is the dominant risk factor for developing invasive prostate
cancer, with a risk of 0.3% from birth to 49 years, but a risk of 12.9% from birth to
death [SMJ17]. Screening and detection is both based on the prostate-specific antigen
(PSA), which is the best predictor, as well as digital rectal examination (DRE), followed
by a diagnosis usually based on biopsy, but which is avoided if possible [Mot+17]. The
therapy of the scope, which is radiation therapy, is one of the three major curative
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2. Clinical Background

Figure 2.1: Male pelvic organs seen from right side [Gra18].

treatment options, besides radical prostatectomy and brachytherapy, and can be used at
all risk groups [Mot+17]. Radiotherapy is a therapeutic procedure, where tumors are
irradiated with a high dose, while the surrounding healthy tissue is preserved. Prior to
the treatment, a planning is performed to decide the radiation at each location of the
body. This is illustrated in Figure 2.3 and requires segmentation.

2.3 Automatic Segmentation of Pelvic Organs

In radiotherapy, segmentation of pelvic organs is used to determine boundaries within
which the radiation dose should be administered without harming healthy organ tissue.
Segmenting anatomic structures of the pelvis automatically is still challenging [CLR11]

6



2.3. Automatic Segmentation of Pelvic Organs

Figure 2.2: Comparison between a filled (left) and an empty rectum

because boundaries between soft tissues are hard to detect. Solutions to this problem
are generally model-based, because these approaches are very robust to noise and organ
deformations. Some examples are from Chen et al. [CLR11] or Pekar et al. [PMK04],
which all use a previously trained model, that is annealed to the optimal segmentation of
the data by an energy or cost function. The result is either landmark data or an organ
mesh, of which the latter is used in this work. An example is shown in Figure 2.4. The
segmentation data assumed in this thesis result from the algorithm of Schadewaldt et
al. [Sch+13] for segmentation of pelvic structures in CT images, which is based on the
algorithm of Ecabert et al. [Eca+11]. In this algorithm, illustrated in Figure 2.5, for each
structure to be segmented, an initial low resolution model is fitted and then adapted
to fulfill some boundary criteria, based on selected features. Then, the high resolution
model is initialized and further adapted. To speed this up, well segmented parts are
frozen.

Statistical shape models in general are built from aligned and annotated ground truth
data, of which the variability is modeled. In this context, Principal Component Analysis

7



2. Clinical Background

Figure 2.3: Radiotherapy planning: The top figure shows the field arrangement of the
radiation and the bottom one shows the isodose distribution in the tissue [Pal+08].

(PCA) is a tool to generate principal modes of deviation to the mean shape. The
parameters of the shape model then describe a shape by encoding the deviation to the
mean shape using the previously obtained modes [Coo+92].

Low contrast and bad image quality, e.g. noise induced by the motion of the organs, can
lead to far-from-perfect segmentation outcomes, as the algorithm generally relies too
much on the model in this case. In contrast to segmenting bones for example, where
model-based approaches are fast and accurate, this is a major issue in segmenting the
soft tissues discussed here.
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Prostate
Rectum
Seminal Vesicles

Bladder

Figure 2.4: Segmentation mesh of the relevant pelvic organs, labeled by color.
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2. Clinical Background

(a) Architecture of the segmentation framework. The engine is controlled
by the model and provides generic techniques for the automatic adaption
of a mesh model to images.

(b) Improvement of the segmentation accuracy over different steps in the pipeline, in which
different structures are adapted successively.

Figure 2.5: Architecture (a) and model adaption (b) of the algorithm of Ecabert et
al. [Eca+11].
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CHAPTER 3
Related Work

3.1 Shape Spaces & Descriptors

A shape is defined by a number of parameters, for example landmark data. Other
representations may be “implicit surfaces, CSG (constructive solid geometry), BSP (binary
space partitioning) trees, octrees, B-reps (boundary representations), free form surfaces,
etc.” [TV04] To be able to compare different shapes, they have to be converted into a
suitable vector space, a so-called shape space, which is mostly of reduced dimension. The
representation of a shape in this new space is determined by the shape descriptor [Tai12].
Different shape descriptors can be classified by their invariance to transformations of
the original shape or by their actual representation. Tangelder et al. [TV04] describe
three broad categories of shape matching methods: feature-based, graph-based, and
geometry-based. On the other hand, Kazmi et al. [KYZ13] provide a classification for 3D
shape descriptors into view-based, histogram-based, transform-based, graph-based and,
hybrid ones.

There is always a trade-off between shape descriptor complexity and efficiency, but Peura
et al. [PI97] showed that a combination of simple feature-based shape descriptors can
already produce good results for shape contours and should be preferred, if it is sufficient,
because of its understandability. The conclusion is, that the descriptor has to be suitable
for the data anyway, but should be as simple as possible. Zhang and Chen [ZC01]
developed an algorithm to extract global features such as volume, moments, and Fourier
transform coefficients efficiently.

In general, descriptors based on spatial maps distinguish very well, if details are not taken
into account [TV04], e.g. methods using spherical harmonics [KFR03] or 3D Zernike
moments [NK03]. The first approach is used in this thesis due to the high discriminative
power. An extension for higher robustness is provided by Liu et al. [Liu+04].
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3. Related Work

Shape descriptors are used for statistical shape analysis. Kendall’s theory of shape
space [Ken77] and Generalized Procrustes Analysis (GPA) as a tool for aligning shapes
for further multivariate analysis [Ken84; Goo91] have been used for years as a standard
for landmark data [ARS04]. To describe shape variability or mean shapes of landmark
data, PCA can be performed on the Procrustes coordinates [DM16; Ken94]. The goal is
to describe a mean shape and principal components, which are orthogonal to each other
and describe the decomposition of the highest variability in the data. It is also used to
develop point distribution models [Coo+92], which can be used in Active Shape Models
for segmentation [CT92]. PCA is also a useful tool to perform dimensionality reduction,
because a limitation to the first principal components always represents the selection of
maximum variability.

To compare similarity of shapes, a measure has to be defined. If the properties identity,
positivity, symmetry, and triangle inequality are fulfilled, it is a metric [TV04]. The
similarity of two feature vectors is quantified by their distance in shape space. Some
examples of metrics used in shape analysis are the Minkowski distance (especially
the Euclidean distance [ETA02]), Hausdorff distance [ABB95; HKR93] and Procrustes
distance [DM16].

3.2 Shape Space Visualization
There are several techniques for visualizing shape space and comparing shapes based
on their similarity. One of them is provided by Busking et al. [BBP10] with the shape
space scatterplot, shown in Figure 3.1, which is also used and extended by Kirschner
et al. [KBW11] for visualizing the underlying distribution of shapes, which is often not
Gaussian. This technique was then used by von Landesberger et al. [Lan+13] in a tool
for model selection and is basically a 2D projection of higher dimensional data. This
projection takes multiple dimensions in shape space into account, which are transformable
interactively and allows the user to explore global information about the population.
Busking et al. additionally provide a view in object space to visualize the reconstruction
error of a shape model.

Besides the global view and to analyze the relation of a single dimension in shape
space to the object space, Kirschner et al. [KBW11] show arrow glyphs and Busking et
al. [BBP10] provide the shape evolution view. The latter displays multiple projections of
reconstructed objects, which only differ in one dimension in shape space. While both
techniques are good for estimating properties of dimensions in shape space, they are not
suitable in the context of this work, as the main interest is to derive hypotheses from
shape similarity and not to understand shape space. They also have the limitation of
only dealing with one dimension at a time, which may not have a meaning, e.g. from the
output of PCA.

To overcome this limitation and show semantically useful projections of shape space,
Hermann et al. [HSK11] compute trait vectors to find the respective best separating
axes for a PCA plot, e.g. shown in Figure 3.2. They do this for example to differentiate
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3.2. Shape Space Visualization

Figure 3.1: Shape space scatter plot by Busking et al. [BBP10].

between two subfamilies in a dataset of rodent mandibles. The local impact of a trait
vector is visualized by mapping the distance to the mean shape with color on the resulting
shape in 3D. This approach could be used in this thesis for visualizing properties like the
filling state of the bladder or the rectum, but it requires prior knowledge, which is not
available in the dataset. Another approach for quantification and understanding shape
variation and covariances in shape data was later described by Hermann et al. [Her+14],
where the user can change the shape in specific areas and see other areas respond based on
the anatomic shape model. Other shape space navigation and visualization techniques are
discussed by Hermann and Klein in [HK15]. Hermann et al. also provide an interactive
technique for visualization of large deformations and variability, tackling artifacts and
low visual quality introduced by linear interpolation in the tangent space [Her+16].

Figure 3.2: Best separating axes for a differentiation based on a specific trait vec-
tor. [HSK11]
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3. Related Work

Klemm et al. [Kle+13] allow for exploration of lumbar spine shapes based on clustering
with multiple distance measures. For each cluster, a representative band is chosen for
a simplification reason, visible in Figure 3.3. They also extracted a lumbar spine canal
centerline in advance to avoid using the whole tetrahedral mesh of the input data.

Figure 3.3: Bands representing clusters of lumbar spine canal centerlines used by Klemm
et al. [Kle+13].

Torsney-Weir et al. [Tor+11] and Fröhler et al. [FMH16] provide methods to describe the
impact of parameters used in segmentation algorithms to the segmentation outcomes,
but do not offer comparative visualization of the results. Bergner et al. [Ber+13] propose
a tool for the visual exploration of the parameter space by interactive partitioning. In
addition to the parameter space analysis, Weissenböck et al. [Wei+16] also analyze the
segmentation outcomes as part of their segmentation pipeline. Raidou et al. [Rai+16]
proposed a Visual Analytics tool for the exploration of segmentation errors in a cohort
of pelvic organs, but they focus on the quality assessment of the segmentation outcomes,
without extending to the impact of the organ shape variability.

3.3 Comparative Visualization
Comparative visualization of local shape variation is currently one of the biggest challenges
in the research area of Visual Analytics, as well as visualizing uncertainty, in the form of
variability, of the data [Lan+13]. Uncertainty visualization regarding probability was
tackled by Reh et al. [Reh+13]. Even comparison of two shapes provides a lot of visual
complexity [Bus+11] and new methods for visualizing and comparing multiple subjects
are required.

Kim et al. [KCK17] describe four fundamental types of comparative visualization, i.e.
Juxtaposition, Superimposition, Interchangeable and Explicit Encoding, used in the
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3.3. Comparative Visualization

(a) Juxtaposition (b) Superimposition (c) Interchangeable (d) Explicit Encoding

Figure 3.4: The four fundamental approaches for comparative visualization of 3D data
sets described and illustrated by Kim et al. [KCK17]. This simplified illustration shows
the case of comparing just two data instances.

literature, as shown in Figure 3.4. They see hybrid approaches, which combine multiple
of these or switch between them, as the most promising for future work.

They state that Juxtaposition designs (Figure 3.4a), i.e. side-by-side views, are often used
as overview along other techniques for detailed comparison, like Keefe et al. did [Kee+09].
Because the data instances are displayed in different coordinate spaces, a common context
is missing by default. This is often provided by interactive techniques like linked camera
views or linked highlighting, of which examples are from Sauber et al. [STS06], Schmidt
et al. [Sch+14] and Haidacher et al. [HBG11].

Superimposition (Figure 3.4b), i.e. overlay, is the approach of displaying multiple data
instances in the same coordinate space, which induces a problem of occlusion. To overcome
this, the number of data is often reduced by filtering in advance and visual parameters
(e.g. color, opacity) are adjusted. Literature using Superimposition techniques mention
the limitation of data number [Bus+11; Ala+12] or show a limited number of volumes
by design [Smi+14]. Figure 3.5 shows an example of a Superimposition technique using
Weigle’s curvature glyphs [Ala+12; WT05].

In contrast to the two mentioned ones, the Interchangeable approach (Figure 3.4c) displays
different instances at different times in the same coordinate space, with the exception of a
semi-transparent transition between them. It can be considered as Superimposition over
time and hereby solves the occlusion problem, but is often not suitable, as a simultaneous
comparison is preferred. Applications range from displaying multiple data instances at
the same time using a visibility function, e.g. Phadke et al. [Pha+12] change size or
opacity, to showing uncertainty by animation, as proposed by Lundström et al. [Lun+07].

The Explicit Encoding approach (Figure 3.4d) is a solution for visualizing multiple data
instances simultaneously in the same coordinate space without occlusion, but does not
preserve all data. It derives and displays just one composite from the instances, e.g. just
the intersection or the difference. Busking et al. [Bus+11] for example, show distances
between surfaces directly. Other approaches show one object with additional information
coded in color for local quality assessment. For example, Geurts et al. [Geu+15] show
the locally best segmentation algorithm by coloring a region in the respective color.
Schmidt et al. [Sch+14] project a heat map according to error variances in the data to

15



3. Related Work

Figure 3.5: Superimposition technique used by Alabi et al. in [Ala+12] based on Weigle’s
technique [WT05].

highlight areas of bad reconstruction quality from point-clouds, shown in figure 3.6. Von
Landesberger et al. [LBB16] display clusters according to segmentation quality as well as
over- and under-segmentation based on color. An approach for comparative visualization
of 2D images is provided by Schmidt et al. [SGB13], in which the user is able to explore
the space of differences.

A suitable glyph-based approach for comparison of different stent configurations in
cerebral aneurysms was found by van Pelt et al. [Pel+14], using different types of glyphs
representing blood flow and safety indicators, also based on different zoom levels.

Image-centric cohort studies are a recent development in epidemiology, using MRI and
ultrasound imaging in its statistical analysis. Due to the growing complexity of the data,
tools of Visual Analytics are proposed to support exploration of the cohort data [Pre+15].
In prior to hypothesis generation, semantics have to be derived from the image data,
e.g. with segmentation, and analyzed. Different subgroups are created by brushing and
variable selection, which are typical tools of Visual Analytics. Klemm et al. [Kle+14]
presented a framework for cohort exploration and visualization using a lumbar spine data
set. They visualize different subgroups by Juxtaposition with linked camera views and
encode the distance from the group to the global mean shape with color. A dedicated
tool for visual subpopulation discovery and validation using subspace clustering was
proposed by Alemzadeh et al. [Ale+17]. Their approach also uses coordinated views with
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Figure 3.6: Explicit Encoding approach of Schmidt et al. [Sch+14] projecting a heat map
of error variances.

an overview of all subpopulations in Juxtaposition.
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CHAPTER 4
Visualization Design

In this chapter, all parts of the application are presented and linked to the tasks
described in Chapter 1, which were accomplished. Different visualization approaches and
alternatives are discussed in detail.

4.1 Application Overview
The application fulfills the two tasks mentioned in Section 1.2.1, dealing with shape
variability and comparative visualization. In order to quantify and analyze shape
variability, the required steps are shown in Figure 4.1. As the triangle mesh of the input
data includes no semantics about the shape by itself, some features have to be extracted
to be able to compare different shapes in the first step. This is done by using a shape
descriptor. To be able to explore the distribution of the organs and interfaces regarding
the features used, the resulting shape vectors are compared using a metric, as well as
prepared for visualization, in the second step. The shape vectors are presented to the
user in the third one, utilizing different two-dimensional visualization techniques. For
exploration and analysis, the user is able to select shapes interactively within linked
views and have the resulting selection comparatively visualized, which provides a link to
the second task. Regardless of dealing with one or more organs, the steps are the same,
but metrics, visualization, and other techniques are likely to be only suitable for one case,
as it will be discussed in Section 4.3.4.

Before the actual implementation of Task 2, we need to answer: What is actually visualized
and how? To reach the goal of effectively showing what the multiple organs and interfaces
of multiple patients look like and how they vary, there has to be some kind of shape at
first, which represents a cluster of segmentations. In addition, some indication of what
other shapes in this cluster may look like is needed. The visualization also has to show
variability, which means that some measures have to be defined to be displayed. Based
on these requirements, the steps of this task are created and shown in Figure 4.2. The
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Figure 4.1: Schematic overview of Task 1

organs representatives encoding

Step 1 Step 2

Overview vis. Variability vis.

Figure 4.2: Schematic overview of task 2

first step is to cluster all shapes based on which organ or interface they are of, find a
representative for each cluster, and show a rough overview of all clusters. The second
step is a more in-depth view of a cluster, coloring the representative based on if its extent
is lower or higher than the others at a specific point. Variance is encoded with glyphs
throughout the surface.

4.2 User Interface Description

The entire application is web-based. The main area of the User Interface is divided into
three sections, pictured in Figure 4.3. The first area on the top left shows all shapes of
the cohort data in a global distribution. On the bottom left, there is a section, which
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settings

multi-organ based

single-organ based

3D comparative
visualization

visualization

visualization

Figure 4.3: The three visualization sections of the UI of our proposed tool

shows the distribution and shape vectors per organ. Together they depict the approach to
solve the first task. A 3D-view on the right gives a representation of the current selection
of organs and visualizes them comparatively, which is the outcome of the second task.

Linking the different views and providing a common context was of high priority, thus
brushing in a view highlights the selection in all other views accordingly and updates the
3D-view. Throughout all views, the colors for each type of organ are the same for intuitive
orientation within the view. The color palette is taken from Color Brewer [Bre17].

4.3 Task 1: Shape Variability

As described in Section 4.1, this section deals with finding a suitable shape descriptor
and a metric for comparison. Dimensionality reduction techniques for dealing with one
and multiple organs as well as visualization approaches are discussed.

4.3.1 Shape Descriptors

The shapes of the input data in this work are defined by a triangle mesh in R3 with
point-to-point correspondences. A descriptor is suitable if it has invariance regarding
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translation and rotation, but not scale, as the size of the organs is also expected to influence
segmentation outcome. A fast yet precise method was using a spherical harmonics based
descriptor to gain rotation invariance. This is generally proven to be more accurate than
performing PCA-based alignment in advance, as described by Kazhdan et al. [KFR03].

Other shape descriptors taken into account were simple global features such as volume
or area, and shape distributions, but as they discriminate poorly between mostly similar
shapes [TV04], they were rejected. Local feature and graph based descriptors were
too inefficient to use and would have required preprocessing. An alternative regarding
discriminative performance to descriptors using spherical harmonics are 3D Zernike
Descriptors [NK03], but due to simplicity and the direct applicability to the mesh, the
former technique is used in this thesis.

Spherical harmonics are orthogonal functions, which are defined on a sphere, defined by
a frequency, or degree, l and an order m. Using a shape descriptor based on spherical
harmonics, a spherical function has to be defined in advance. The simplest approach is
to use the distance to the centroid, which initially arose questions, if it is suitable for
non-round organs, like the rectum. This is further discussed in Chapter 6. This sperical
function, defined by the angular coordinates θ and φ, can then be decomposed into its
complex harmonics Y m

l (θ, φ) as described in Equation 4.1.

f(θ, φ) =
∞∑
l=0

l∑
m=−l

almY
m
l (θ, φ) (4.1)

By restricting this decomposition to a specific frequency l, a rotation invariant represen-
tation can be obtained. The same properties are also valid when using real spherical
harmonics Ylm (Equations 4.2 and 4.3) instead of the complex ones [Mor+05], where l is
again the frequency, m the order and P |m|l the associated Legendre polynomials.

Ylm(θ, φ) =
√

(2l + 1)(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)Nm(φ) (4.2)

where

Nm(φ) =


√

2 cos(mφ) (m > 0)
1 (m = 0)√

2 sin(|m|φ) (m < 0)
(4.3)

The descriptor itself consists of the L2-norm of the coefficients alm for each frequency,
which does not change when rotating the spherical function. Mathematical proof is
provided by Kazhdan et al. [KFR03]. Figure 4.4 shows the computation sequence of the
coefficients.
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Figure 4.4: Sequence of computing a rotation invariant descriptor based on spherical
harmonics [KFR03]. The decomposition into the harmonics and the frequency components
are shown for l = 0 on the left to l = 4 on the right.
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Performance

As computing the Legendre polynomials is computationally expensive at higher degrees,
this section covers the performance of different band limitations with respect to compu-
tation time and differentiation between shapes. Using the L2-distance as a measure, the
latter is improving when increasing the maximum frequency up to l = 7. It then starts
to decrease and some similar shapes are having high dissimilarity in the high frequencies,
which can be due to the sampling of the organ shapes. Figure 4.5 shows the computation
time for maximum frequencies 0-13, using the data-set of 17 patients, each consisting of
four organs and two interfaces, which results in 102 shape vectors.
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Figure 4.5: Computation time in seconds for the spherical harmonics based descriptor
with different maximum frequencies l ranging from 0-13. The performance was measured
within Google Chrome version 63 on a system with an Intel Core i7-2600k CPU and a
NVIDIA GTX 970 GPU.

Computing the Spherical Coefficients

In theory the spherical coefficients alm can be obtained by multiplying the spherical
function with the complex conjugate of a spherical harmonic and integrating over the
solid angle Ω, shown in Equation 4.4.

alm =
∫

Ω
f(θ, ϕ)Y m∗

l (θ, ϕ) dΩ =
∫ 2π

0
dϕ

∫ π

0
dθ sin θf(θ, ϕ)Y m∗

l (θ, ϕ). (4.4)

Using the average over the discrete data points as a solution of this integral provides
sufficient results in most cases, because the points are, for round organs, adequately
sampled on the unit sphere. Results of this computation distinguish well between organs
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as well as between features like size and roundness. If the points are unevenly distributed,
as in case of the rectum, some errors are not detected, because the dense areas outweigh
the sparse ones. In this case, a solution using the method of least squares provides
better results in finding outliers, but is not as good in differentiating between organs. In
Figure 4.6, a segmentation error is not detected by the average and located near normal
shapes, but is clearly visible when using the method of least squares, where it is displayed
far away from all the other shapes.

4.3.2 Similarity Measure

To compare different shapes, a metric has to be selected. Some of them are described
in Section 3.1. Kazhdan et al. [KFR03] propose to use the most common L2-difference
with the spherical harmonics, as one property thereof is, that the L2-difference of the
harmonic representation is a lower bound of the L2-difference over all orientations of
the spherical function. Both dimensionality reduction techniques described in the next
section are based on this metric. Using the L1-difference would result in more robustness
regarding outliers, but this is not actually a goal of this work.

4.3.3 Dimensionality Reduction

The result of the previous step is a high dimensional shape description vector, which
cannot be visualized directly and has to be converted into lower dimensional space.
When displaying the distribution of multidimensional data, the problem arises, how it is
projected into two- or three-dimensional space to get a meaningful representation. This
section deals with finding a suitable solution for reducing multiple classes at once and
separate. We investigated two commonly employed dimensionality reduction techniques,
because they are proven to produce good results in general for the respective tasks
and are fast in computation time. We choose also PCA as a representative of linear
dimensionality reduction techniques [MPH07] and t-Distributed Stochastic Neighbor
Embedding (t-SNE) as a representative of non-linear techniques [MH08].

Principal Component Analysis

PCA is a technique to represent data with orthogonal variables, i.e. principal components.
The application implements PCA based on Singular Value Decomposition (SVD) [Shl14].
The input data X is centered and standardized in advance. Y is the new representation
in PCA coordinates, transformed by a matrix P, which consists of the eigenvectors of
the covariance matrix C = X>X.

Y = XP (4.5)

For computation of the eigenvectors, the symmetric matrix C has to be diagonalized.

C = PDP> (4.6)
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(a) Segmentation error of a rectum, where only
the bottom part seems to be segmented correctly
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(c) Method of least squares

Figure 4.6: Comparison of the distributions using the average and the method of least
squares to compute the spherical coefficients. Dimensionality reduction was done using
PCA with projection on the first two principal components. The segmentation error is
highlighted to show the ability to detect outliers.
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Now P contains the eigenvectors and the diagonal matrix D contains the eigenvalues.
The following Equation 4.7 shows the matrix form of SVD.

X = UΣV> (4.7)

Constructing the covariance matrix from this, we get

X>X = VΣU>UΣV> = VΣ2V> (4.8)

because

U>U = I (4.9)

due to it being an orthogonal matrix. This shows that the right singular vectors, which
form the orthogonal matrix V, are the same as the eigenvectors, i.e. principal axes, P and
the eigenvalues D are related to the singular values Σ. Therefore the PCA decomposition
can be written as

Y = XV = UΣV>V = UΣ (4.10)

Because the principal components are ordered by variance, the dimensionality reduction,
which retains the maximum possible variance, can be obtained by only using the first L
principal axes in the transformation, which results in

YL = XVL (4.11)

PCA is only applicable to one organ at a time, as it does not discriminate well between
classes. For the task of reducing multiple classes in the dimensions simultaneously, a
dedicated technique such as t-SNE is more suitable.

t-Distributed Stochastic Neighbor Embedding

t-SNE is a dimensionality reduction technique described by van der Maaten [MH08],
which iteratively creates a matrix of pairwise similarities and maps similar shapes with
small distances and dissimilar shapes with large distances in two- or three-dimensional
space. The actual position has, in contrast to PCA, no meaning and can differ at different
runs. It outperforms other commonly used dimensionality reduction techniques on the
MNIST dataset, the Olivetti faces dataset and others described in the supplementary
material of van der Maaten and Hinton [MH08]. Figure 4.7 shows a comparison of PCA
and t-SNE on the MNIST dataset with t-SNE producing much better results [Ola14].
The benefit in contrast to PCA is the non-linearity, so clusters can be separated much
better, but the absolute position in the reduced space is abstract, so no properties can
be deduced from it.
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(a) Size-normalized examples from the MNIST
database. [Lec+98]

(b) PCA
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(c) t-SNE

Figure 4.7: Comparison of PCA and t-SNE performing on the MNIST dataset. Different
colors represent different digits.
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4.3.4 Visualization Strategy

This section deals with the visualization step of Task 1. While both mentioned dimensio-
nality reduction techniques support reducing to three dimensions, the usage of two for
visualization was preferred. As the last step is to enable selection, using three dimensional
visualization could have caused problems with interaction.

Visualization of Shape Vectors with Parallel Coordinate Plots

An intuitive way of displaying all shape vectors at once is the Parallel Coordinate Plot
(PCP) and provides insight into the actual values. In this context, it enables the user to
see which frequencies a shape is composed of and to compare them to frequencies of other
segmentations of this specific organ. The PCP in general shows axes for each dimension
of a vector space. Its elements are represented as continuous lines, crossing the axes at
the value in the particular dimension. What this means for this thesis is, that all shape
vectors of an organ or interface class are displayed as lines for comparison. Selection is
implemented by brushing on individual axes. Figure 4.8 shows a PCP for prostate shape
vectors, where a polyline represents a shape and the axes represent the frequency.
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Figure 4.8: PCP of all prostate shape vectors. Small values, e.g. of frequency one, are
abbreviated with SI prefixes.

Visualization of Organ Distributions with PCA Plots

Not only the values of shape vectors are of interest in this step of the first task, but also
the position within the distribution, especially to find outliers and to see clusters, which
are not easy to see in high dimensional space. It actually allows the user to quantify and
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compare distances with each other and relate position to shape features. Showing the
distribution of a single organ is realized by performing PCA, projecting the data to the
first two modes, and visualizing the resulting vectors in a two-dimensional scatter plot.
This shows the highest variance within the data when reducing the dimensionality, an
example is given in Figure 4.9.
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Figure 4.9: PCA plot of the prostate shape vectors shown in Figure 4.8, projected on the
first two principal components.

Visualization of the Whole Cohort with a t-SNE Plot

The main challenge in this task was to find a way to deal with multiple organs at once.
As discussed in Section 4.3.3, t-SNE produces good results when performing on multiple
classes of high-dimensional data and clustering them, especially as it was designed to be
used for visualization. The resulting vectors are again displayed in a two-dimensional
scatter plot, shown in Figure 4.10, and colored based on which organ or interface class
they belong to.

So far, Task 1 is achieved by computing shape vectors of the input data using a shape
descriptor based on spherical harmonics. The L2-difference is used as a similarity
measure in this shape space. The high-dimensional shape vectors are then reduced
in dimensionality to be used in the visualization strategies, using PCA on shapes per
organ type and t-SNE to process all shapes at once. The former is expected to reveal
mis-segmented organs well dealing with one class and the latter is able to deal with
multiple classes while still preserving local differences. To visualize the whole cohort,
the two-dimensional output of t-SNE is displayed in a plot. For each organ, the shape
vectors are directly visualized in a PCP as well as projected on the first two principal
components in a plot.
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Figure 4.10: t-SNE plot of the whole data-set. The colors show the organ or interface
class the shapes belong to. The relative size of the displayed organ shapes to each other
is preserved to see the impact of shape and size on the position in the plot.

4.4 Task 2: Comparative Visualization

4.4.1 Displaying Shapes of Multiple Organs

Reviewing the common comparative visualization strategies of Section 3.3, Juxtaposition
is the only one suited for an overview of the organs. Because of the number of organs
and the different shapes, Encodings and Superimposition would have too much visual
information to be useful and an Interchangeable approach is by definition not usable
to display multiple instances at a time. Superimposition would be very cluttering as
the data have only point-to-point correspondence and no registration. Interchangeable
means animations, which have been proven to cause fatigue and also would require a lot
of time for a high number of patients. Explicit Encoding would require to find a design
that the user would be able to understand, decode, and link back to the initial organs,
which can be difficult and probably confusing. In order to compare these approaches
to the visualization design described subsequently, Juxtaposition, Superimposition, and
encoding of variance in color on the model were implemented in the application and
further discussed in Chapter 5.

The organs are displayed separately, but to preserve anatomical context, the positions
relative to each other are not changed (see Figure 4.11). They are just displayed with
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more spacing, hence the term exploded view is used subsequently. To further enhance the
perception of connected organs, they are visually connected by a line by the following
strategy: if two organs have a direct connection in the mesh through an interface, a line
is drawn, shown in Figure 4.12. If the respective interface is also selected, the connection
is shown between the organs and the interface. Disconnected components with respect to
the mesh are connected to a white dot, like the ones in Figure 4.13. The colors of the
circles surrounding each organ is based on the colors used in other parts of the application
to visually link the different views.

This exploded view is a simple visual representation of what the current selection looks
like, with the median shape of each organ being shown. To give an example, Figure 4.13
shows a different selection of rectums, bladders and seminal vesicles, than the one in
Figure 4.11. To compare local differences for each organ, a detail-on-demand view can
be obtained by clicking on the desired organ, which shows the same median shape with
two additional attributes described in the following section.

Prostate

Rectum

Seminal Vesicles

Interface

Interface

Bladder

Disconnection

Figure 4.11: Exploded view approach for displaying multiple organs and their interfaces,
preserving the connections in the mesh through the interfaces.

4.4.2 Visualizing the Median Shape with Variances

Visualizing the median shape with variances provides insight into a cohort of shapes
by showing the global median shape, and therefore an actually existing representative
instance. In addition, the per-triangle variances are visualized to show, how locally
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Prostate

Bladder

Seminal Vesicles

Figure 4.12: Exploded view: connections between organs without showing interfaces.

Rectum

Seminal Vesicles

Bladder

Figure 4.13: Exploded view: lines between disconnected organs.
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accurate the displayed mesh is and where areas of high shape variation are. The goal
is to understand, how shapes of a cohort actually look like, by pointing out areas of
similarity and spots of high variation. This provides, for example, a basis for comparing
different subsets of organ shapes.

In contrast to the previous section, the rotation of the organs is now relevant, as we
compare local differences and use properties, which are not rotation invariant. Therefore,
in order to calculate or show anything, the organs have to be rotated to match each other
in the best possible way. A common technique to do this is minimizing the weighted
sum of squared deviations, which is solved by the Kabsch algorithm [Kab76; Kab78].
This method is only possible because of the point-to-point correspondence and can be
easily implemented using SVD. Both shapes need to be free of translation first, then the
optimal rotation is obtained based on SVD of the cross-covariance matrix of the point
sets.

The variance in the position of a specific triangle is then calculated based on the L2
distance to the mean, with xi being the centers of a triangle over all patients and x being
the mean of all xi:

σ2
x = 1

n

n∑
i=1
‖xi − x‖2 (4.12)

An addition for providing more information about the distribution and what the selected
shapes may look like, is the visualization of outliers, which have to be detected in advance.
In this case, two approaches have to be distinguished. The first one is to take a global
distance measure like the one used in the t-SNE plot in Section 4.3.4 and the second one
is to take local features into account. In our case, the latter is preferred, as the variances
are also calculated locally and a global measure may favor other features, which are of
no interest in this view. An example would be an area of high frequencies affecting the
shape vector, but which is close to the median shape and therefore represents no outlier
regarding the general shape. Other features like size are recognized by both approaches.

The described technique is best suitable for a high number of mostly similar shapes. The
major drawback is, that the median shape can also be a local outlier and therefore is
not a good representative in this region. To take this into account, a solution was found,
which shows, how far the global median shape is from the local median at a specific area:
encoding the relative position to the other shapes in color. Although this is a limitation,
the median is still preferred over the mean shape, because it is, as described above, an
actually existing representative and the mean shape could be any shape, maybe even one
that would not be anatomically possible. Because the variance is based on the mean, we
also chose to add the possibility to calculate it based on the median instead. Another
limitation is, that the distribution of shapes is not clearly visible, as well as that local
details of only one shape are displayed.

To visualize the local position relative to the other shapes in addition to the local variance,
a two-dimensional color space was introduced. The measure for the local position is the
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difference in the numbers of shapes, which are inside and outside of the median shape.
A possible solution was using a bivariate complementary color scale [Rhe00], but this
can interfere with the brightness of shading in the 3D scene. Therefore another way of
introducing the second dimension was considered. The local position relative to the other
shapes is chosen to be encoded in color and the variance is encoded using glyphs. If the
median shape is in the middle of all other shapes, it is colored gray. Two complementary
colors are used to show, if it is rather in- or outside relative to all other shapes. The
further apart it is, the more saturated the color is. A schematic example of which colors
are used to encode which relative position is shown in Figure 4.14.

Figure 4.14: Illustration of encoding the relative position with complementary colors.
The further inside the shape is relative to the others, the more it changes to the color
green, the further outside, the more it changes to magenta. If it is in the center of all
shapes, it is gray. The dashed black shapes are not visible in the final visualization and
only show the relative position in this figure.

Glyphs are a way to add one or more data attributes to a visual representation, which
have to meet certain design criteria to be comprehensive [Bor+13]. The first idea was to
use line-based glyphs, which are perpendicular to the surface, and encode the variance
with length. Clearly visible in Figure 4.15, there was a perceptive problem with lines
parallel to the viewer direction. To overcome this, points on the surface are used. The
size was no option for encoding, because of the different triangle sizes in the data. Due
to scaling, encoding the size may result in too small points over the whole shape, if the
highest variance is in a small triangle. Suitable visual variables are color value, saturation,
fuzziness and transparency, with the latter being used in the final approach shown in
Figure 4.16.
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Figure 4.15: Line-based glyphs encoding the variance of the shapes. The colors show the
relative position to the other shapes and the semi-transparent shape is the largest in the
cohort.
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Figure 4.16: Point-based glyphs encoding the variance of the shapes. The colors show
the relative position to the other shapes and the semi-transparent shape is the largest in
the cohort.
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CHAPTER 5
Implementation

This chapter deals with the implementation of the visualization design described in
the previous chapter. The software architecture, used technologies as well as other
implemented parts are discussed.

5.1 Application Overview
The web-based application is implemented in Javascript, using the libraries D3.js [Bos17]
for the 2D visualizations and three.js [Cab17], which uses WebGL, for the 3D comparative
visualization. It is based on modular components, which interact through an event
handler, shown in Figure 5.1. After the selection of data, it is stored in a data-container.
Starting from here, the organs are extracted by an organ-selector for further processing.
The shape descriptor then computes a shape vector from the organ data, which is used
in the 2D visualizations, both single- and multi-organ-based. A so-called plot-renderer
manages the layout of the plots and delegates the visualization of the shape vector to
D3-renderers. The 3D visualization, namely a three-renderer, takes the organ mesh
as input. An example of the communication between these components is provided as
follows:

In each 2D visualization component, the user has the ability to make a selection, which
triggers an event a selection-handler in the data-container is subscribed to. This handler
computes an overall selection by taking all current selections into account and propagates
an event, that the selection has changed, to which all visualization components are
subscribed. The current implementation uses the union for combining selections over
components, because they can contain multiple organs, where an intersection of per-organ
selections would be empty. We considered using the intersection for combining selections
from the PCP and PCA plot per organ or for combining the selection from the t-SNE
plot with the combination of all others. We chose the union, as there is currently only
one selection possible in the scatterplots and this would restrict the user too much when
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notify single
selection change
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selection change
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ThreeRenderer

D3Renderer
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ShapeDescriptor

D3Renderer

visualize

shape vectors

organs organs
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notify overall
selection change

notify overall
selection change

post single
selection change

post single
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Figure 5.1: Diagram of the main components of the application and their interactions
with each other. Green components implement visualization techniques and interact with
the Document Object Model (DOM). Blue components are responsible of the application
logic and communication.
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5.2. Task 1: Shape Descriptor

using the intersection. Selection in the PCP is the only component, where multiple
selections are possible and combined by intersection. The overall selection of all axes
is then used in the selection-handler of the application. The current selection approach
already allows the user to be able to select most interesting subsets of shapes, so custom
combination rules, which would allow for every possible selection, were not implemented.

As cohort data can be complex and large, the application follows Schneiderman’s mantra
“overview first, zoom and filter, then details on demand” [Shn96]. The first view, the user
is presented to, is a complete overview of the distribution of all shapes as well as the
relative positions of organs to each other. Selections can be made in each 2D view, both
in the whole cohort and per organ. The selected shapes can then be examined in detail
in the 3D view, still showing the selected organs relative to each other at first, with the
ability to inspect local features on demand.

Decoupling and abstraction of components allows for easy extensibility and interchangea-
bility, e.g. with a different shape descriptor implementation or new type of visualization.
Although Javascript is not completely object-oriented, the implementation is based on
some principles like inheritance and polymorphism, as well as some object-oriented design
patters, e.g. a factory for creating visualization components based on the user settings.

5.2 Task 1: Shape Descriptor
The shape descriptor interface of the application only has one function with the shape as
parameter, namely getShapeVector(shape). The implementation, which is based
on real spherical harmonics and described in Section 4.3.1, translates the shape at first
to have its centroid at the origin of the coordinate system. The spherical coefficients are
then computed by a library from Archontis Politis [Pol16] based on numeric.js [Loi12]
and then stored in separate vectors for each frequency, i.e. the vector of frequency 0 has
1 coefficient and the vector of frequency l has 2l + 1 coefficients. The L2-norm of each
of these vectors is then stored in the resulting shape vector to have a rotation invariant
representation. The values basically show how much of a specific frequency the spherical
function consists of.

To give an example, Figure 5.2 shows the shape vector representations of a sphere, a
cube, and a tetrahedron, with the sphere only having one frequency and the cube having
values for every even l, because the corresponding harmonics are, like the cube, centrally
symmetric, which does not apply to harmonics, where l is uneven. The coefficients of
l = 2 are also zero, again because of the symmetry properties of a cube. It is also
visible, that the coefficients for l = 3 are high in the tetrahedron and the cube consists
mainly of harmonics of the fourth degree, which shows how values for different frequency
components represent specific geometrical shapes. When changing the size of the shapes,
the values scale accordingly, but they do not change when the shape is rotated, due to
the rotation invariance. For further understanding of the symmetry properties and to see,
why the mentioned geometrical shapes consist of specific spherical harmonics, Figure 5.3
is provided, showing the spherical harmonics up to frequency l = 4.
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Figure 5.2: Values of the shape vectors of a sphere, a cube and a tetrahedron. It is
easily recognizable how different frequencies describe different geometries and symmetry
properties.

5.3 Task 1: Dimensionality Reduction and 2D
Visualization

The designed 2D visualizations are based on D3.js. Each of these visualization compo-
nents, despite showing very different plots, is abstracted to the same steps to allow for
interchangeability:

1. Plot initialization: the visual elements of the component are initialized by first
setting the correct <div> element, where they should be placed and then calling
the dedicated function.

2. Data initialization: set the raw data, i.e. shape vectors, and perform dimensionality
reduction or any other data conversion

3. Drawing: determine colors and visualize the resulting data as points or lines, for
example. This step also implements the selection of elements.

In case of t-SNE, the raw data is not processed at once, since the technique is based
on approximation and requires some steps to be repeated often, which would take some
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5.4. Task 2: Comparative Visualization

Figure 5.3: The real spherical harmonics up to frequency four, green is showing regions
where they are positive and red where they are negative. The extent indicates the value
in this direction. These values are also encoded in color on the sphere. [Dif17]

time. To still be responsive and show progress, the current positions of the shapes in
the distribution are continuously refreshed by performing the drawing step every few
runs. The computation is done using the library tSNEJS [Kar16]. PCA was implemented
based on numeric.js.

5.4 Task 2: Comparative Visualization

An abstract ThreeRenderer provides basic functionality of visualization approach, all
done in Three.js, and implements a pipeline, in which organs are visualized. This is a
small framework for the implementation of comparative visualization approaches and is
structured as follows:

1. initRenderer() - Creates all DOM elements and sets the dimensions. It also
creates a basic scene with some lights and provides functionality for resizing and
click listeners. The renderer-specific user-settings are also initialized and displayed
here in this step. They are created in a function called createSettings(),
which is called at this point and allows for different implementations or extension
of settings in subtypes.

43



5. Implementation

2. loadOrgans(organs) - Loads all organs, which have to be visualized in an
internal map with the organ label as key.

3. alignOrgans() - Aligns all organs, so that their centroids are at the origin of
the scene. Based on this, the position of organs can be adjusted easily afterwards.

4. onOrgansLoaded() - This is a function for subtypes of ThreeRenderer to pro-
vide any functionality, which needs to be implemented at this step and requires the
organs to be loaded, e.g. creation and alignment of meshes including computation
of their colors.

5. initCameraSettings() - This function adds a camera with controls to the
scene. To be customizable, the camera is created in a separate function, called
createCamera(), which returns a basic THREE.PerspectiveCamera, but can
be overridden to change the camera type without losing camera controls.

6. onPreRender() - In this function, any functionality, which is still missing and
needs the camera to be initialized, can be implemented by subtypes before the
scene is rendered in the next function. An example would be a comparison of organ
contours, which was considered in the visualization design, but then discarded.

7. render() - The final step, where the scene is rendered.

There are four comparative visualization approaches implemented: Juxtaposition, Supe-
rimposition, encoding of variance in color on an organ of the reference model, and the
approach described in Section 4.4.1. These are compared in Figure 5.4. Juxtaposition is
implemented by just providing different positions for each organ, aligned on a grid. This
is technically not exactly juxtaposition, as the organs are in the same coordinate space,
but for comparison to the other techniques, it is sufficient, if there is no interaction with
the view. Superimposition is just provided in a basic approach, displaying all organs semi-
transparently at the same position. So the corresponding ThreeRenderer is tweaking
with the material settings and also applying rotation with the Kabsch algorithm [Kab76;
Kab78] to all organs to be of minimum overall variance. This algorithm is also used in
the proposed visualization design of this thesis and described in Section 4.4.2. It was
implemented using numeric.js [Loi12]. Because WebGL produces artifacts when using
the back-facing sides of polygons in transparent objects, only the front-facing sides are
used in the superimposition approach.

The last two approaches do not directly visualize all shapes at once, so different meshes
were created in the function onOrgansLoaded(). The additional calculations of
variance and relative position, and the creation of glyphs are added in the provided
function before the scene is rendered. Using the framework provided with our application,
it is easily extensible with future visualization approaches.

The major limitation of the current implementation is that the comparative visualization
has no support for selection within the pipeline and so it is completely reset when the
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5.4. Task 2: Comparative Visualization

(a) Juxtaposition (b) Superimposition

(c) Variance encoded in color on
the organ of the model

(d) Median shape with relative
position encoded in color and va-
riance encoded in glyphs

Figure 5.4: Comparison of three rectums visualized by the four implemented approaches
of comparative visualization based on the described sequence in Section 5.4.
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5. Implementation

selection changes. While this is interactive with the data set described in this thesis, using
a higher number of patients may slow down the application during selection. Nevertheless,
this can still be implemented in the abstract ThreeRenderer class without having to
change all approaches, as in this case there are just parts of the pipeline, which are called
again.
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CHAPTER 6
Results

This chapter covers usage scenarios, which are enabled by implementing the two tasks
described previously. All of them are performed with a data set of segmentations of pelvic
organs, represented as triangle-meshes, from 17 different patients. The segmentations
are produced using the algorithm by Schadewaldt et al. [Sch+13] and they include the
following organs: prostate, bladder, rectum, and seminal vesicles. All meshes have point-
to-point correspondence as well as organs and interfaces between bladder and prostate
and between prostate and seminal vesicles labeled. To analyze the data, the application
supports a number of settings, which are provided for each scenario and explained as
follows:

1. Organ/Interface Selection: With this setting, the user is able to select the organs
and the interfaces to process. Because we wanted to take all six classes of the data into
account and see how they look like, they are all selected in each scenario.

2. Maximum Frequency of the Spherical Harmonics Descriptor: Determines,
to which frequency l the spherical harmonics are computed for the spherical function
and therefore determines the length of the shape vectors. As described in Section 4.3.1,
the analysis works best with a maximum l of seven and because the computation time is
not very high for the amount of data, it is also used in this chapter.

3. Spherical Coefficient Computation Strategy: As described in Section 4.3.1,
the spherical coefficients can be computed by using the average of coefficients of all
sampled points of the spherical function or by using the method of least squares. The
former is better for evenly spread out data points with respect to a sphere and the latter
is better for elongated objects as well as describing errors in the data.
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1
4

2

3

5

Figure 6.1: Screenshot of the final application with annotations referring to the settings.

1

Figure 6.2: Close-up of the settings regarding organ/interface selection.
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2

3

Figure 6.3: Close-up of the settings regarding spherical harmonics and comparative
visualization type.

5

Figure 6.4: Close-up of the t-SNE settings.

4. Visualization Technique: The application has implemented the comparative
visualization technique described in Section 4.4.1, which is used in all scenarios of
this chapter. For just displaying the mesh of one segmentation or using another view,
some other techniques, like Juxtaposition and Superimposition, were also implemented
and are accessible through this setting. Each technique also has specific settings. The
technique used in these scenarios, for example, allows the user to change the glyph type
or using the median shape for computation of the local per-triangle variances, which was
described in Section 4.4.2. In this chapter, the settings of the mentioned technique are
set to display the point-based glyphs and to not compute the variances based on the
median shape, but on the mean.

5. t-SNE Settings: As t-SNE is a parametrized dimensionality reduction technique,
which has to be optimized for each data set, its parameters are changeable through the
application. Perplexity is about the number of close neighbors of each point in the data,
epsilon is the learning rate and the number of steps is needed to limit the approximation.
Further information and insight about the parameters is provided by Wattenberg et
al. [WVJ16].
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6. Results

6.1 Exploration of All Organs

Figure 6.5 shows all organs of the data set. The selected ones are grouped with the wrong
clusters. At further examination in the exploded view, the reason becomes apparent, as
they look more like their surrounding organs, than the other ones of their type. Starting
from left to right, for example, there is a rectum within the cluster of bladders, probably
because of the size. The bladder in the cluster of prostates has an unusual shape, as
bladders are typically smoother. It fits in this cluster because of similar size and the
slightly increased higher frequencies due to the bumps, which are also present in some
prostates. The next step would be to look for a reason, why this bladder has this specific
shape. Moving to the right, there are two bladders within the cluster of rectums, which
are the only two with an elongated shape and therefore they are more similar to rectums.
The prostate, which is located at the bottom, is of normal shape and still misclassified.
This is where the shape descriptor can be improved. There is probably a problem with
interfaces, which amplifies higher frequencies. There are also two prostates located close
to the seminal vesicles. The left one partially has the shape of the segmented seminal
vesicles looking from the bottom. Both of them are probably positioned here because
of the flat shape and the inaccuracies caused by the interfaces. On the right are two
rectums where the segmentation algorithm failed and a pair of seminal vesicles, which
are slightly off the others but still similar.

6.2 Per-Organ Exploration

More detailed analysis than just global similarity of shapes can be done in the per-organ
section of the application. If not stated otherwise, all results in this section are obtained
by limiting the frequency in the calculation of the spherical harmonics to seven and
using the method of least squares for computing the spherical coefficients. Figure 6.6
and Figure 6.7 show the exploration of all rectums in the data set. The vertical direction
in the PCA plot corresponds to the size. There are two outliers visible, in the PCA plot
as well as in the PCP, which are due to segmentation errors. The other shapes are close
to each other. After a selection of similar shapes, like in Figure 6.8, local shape analysis
can be done in the comparative visualization part of the application.

The axes in the PCA plot of bladders in Figure 6.9 roughly correspond to size and
roundness. There are no segmentations, where the algorithm failed completely, like with
the rectums, so the distribution depends solely on the variability in shape. The PCP in
Figure 6.10 shows two vectors with higher values at high frequencies, which correspond
to very flat shapes. Selection shows, that these two vectors are also outliers in the PCA
plot as well as the t-SNE plot, where they are grouped with vectors of rectums due to
similar size and roundness.

According to the data, segmentations of seminal vesicles have low variability in shape
and mainly differ in size. The PCA plot in Figure 6.11 shows this by a very dense cluster
and the PCP in Figure 6.12 shows a bundle of similar values across most vectors. The
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Figure 6.6: PCA plot of all rectums in the data set: Visible are two outliers, which
correspond to segmentation errors.

outliers correspond partially to obvious segmentation errors, which become visible in
the 3D-view, but one of them seems to be accurately segmented. Their values in the
high-frequency coefficients are also similar to the ones of the segmentation errors in the
rectums. Also noticeable was, that within these outliers, the zero order coefficients do
not correctly encode the size of the shape, which raises the question, if the descriptor is
actually suitable for this type of shape.

The segmentation algorithm should perform best on the prostate, as it is prioritized for
accuracy for the radiotherapy process. There is only a small difference in size and more
in the high frequencies, although it may look different in the PCP of Figure 6.14 due to
scaling to the outliers. One of them is completely deformed and probably results from a
bad segmentation and the other one looks flattened at the side of the bladder. Looking
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Figure 6.9: PCA plot of all badders in the data set: The plot shows the distribution well,
based on the features size and roundness.

at the whole segmentation mesh of the patient, this is probably caused by the bladder,
which is filled and pushes against the prostate. The mis-segmented prostates are also
easily seen in the PCA plot in Figure 6.13.

While exploring interfaces, the PCP in Figure 6.15 clearly shows, that the spherical
harmonics descriptor of this thesis is not applicable here, as there are no features of the
shapes, which correspond to specific values in the shape vectors. For example, the values
of frequency zero range from 10 to 27,000 while the shapes are not showing remarkable
differences in size. Also for some shapes, the values are abnormally high at each degree,
even by a factor of 103 compared to regular organs. For comparing interfaces with each
other, a different descriptor is required and subject for future work.

6.3 Comparative Visualization

As already mentioned, the exploded view is useful for comparing different organs and their
relative positions to each other. The detailed view is for comparing different segmentations
of an organ type to create hypotheses about their shapes and the algorithm performance.
This section discusses some hypotheses, which were derived from looking at the data in
the comparative visualization part of the application. All images and hypotheses in this
section are based on selections of representative segmentations, which do not result from
a failure of the algorithm.
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Figure 6.11: PCA plot of all seminal vesicles in the data set: Most of the shapes are
similar, with some outliers being caused by the segmentation algorithm as well as by
the shape descriptor. The bottom right shape is probably not suitable for the shape
descriptor, as it would correctly belong somewhere closer to the dense cluster.

Looking at the colors on the median shape as well as at the biggest shape of the rectums
in Figure 6.16, the high variability in bending and size of the rectums becomes obvious.
The triangle positions on the top have a higher variance than the ones in the middle and
bottom, which may result from the top being affected more by the filling state. The area
of lowest variance is on the back side, probably because of the spine, which is located
right there and restricts enlargement in this direction.

As shown in Figure 6.17, the per-triangle variance of the bladders progresses from the
tip having the lowest value to the interface with the prostate having the highest value.
A hypothesis on this is, that the variance is related to the segmentation quality. The
findings of Raidou et al. [Rai+16] show, that the distance of the segmentation to the
ground truth data increases from the interface to the tip. Combining these findings with
the observed variance would mean, that an area, where the segmentation is accurate,
correctly reflects the variability of the bladders and that an area of high segmentation
error is of lower per-triangle variance. An explanation could be, that areas of high error
are more similar to the reference model than the actual organ and therefore do not reflect
the variability.

All areas of the prostates are of similar variance, which results from the size differences.
The high frequencies mentioned in the previous section are not noticeable in the variance,
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Figure 6.13: PCA plot of all prostates in the data set: The cluster of similar prostates
shows that one dimension is encoding the size. Two outliers are visible. This is an
example of where the shape descriptor performs very well.

if enough shapes are selected. The variance increases with proximity to the interface
with the seminal vesicles, i.e. from front to back, but is still under 10 %.

6.4 Exploration based on Different Properties

Limiting the frequency in the calculation of the spherical harmonics to lower orders,
e.g. zero or one, the variability in terms of size or elongation is expected to be better
visible in the PCA and t-SNE plots, but shows bad results. Looking at the bladders
in the PCA plot in Figure 6.19, the axes have far less meaning than in Figure 6.9,
although the PCP in Figure 6.10 shows, that the size is encoded well with frequency zero.
With maximum frequency one, segmentation errors can sometimes still be distinguished,
shown in Figure 6.20, but, as expected, far worse than the previous results using higher
frequencies.
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Figure 6.15: Parallel Coordinate Plot showing the shape vectors of interfaces between
bladder and prostate, which have extremely high values for each frequency. To abbreviate
large numbers, SI prefixes are used.

Setting the coefficient computation strategy to average, the descriptor depicts features
better on the prostates and bladders and is not effective on the other organs and interfaces,
as already mentioned in Section 4.3.1. The t-SNE plot in Figure 4.10, which uses the
average, generally shows better separated clusters than the one in Figure 6.5, which
uses the method of least squares. The axes of PCA plots of the bladders and prostates
group similar shapes better, but do not show outliers as well, which is similar to the
comparison of PCA plots of rectums in Figure 4.6. The difference is, that the latter does
not show an improvement in grouping similar segmentations together due to the different
shape of the organ. In the t-SNE visualization there are also normal rectums near to the
cluster of seminal vesicles using the average, but the erroneous segmentations are not
separated. This is a further example of the average performing badly on shapes, which
are not uniformly sampled with respect to a sphere.

Using the median shape in the variance computation instead of the mean, the minimum
variance is lower and the maximum is higher, but the areas of low and high variance are
not significantly different. Due to the extended range, it is probably better to see some
differences in specific parts of the organ, but when the median has an unusual shape,
using the mean has higher robustness.
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Figure 6.16: Comparative visualization of 15 rectums with low variance at the back side,
which is the green area in the middle, and high variance on the top due to the filling
state of some rectums. The semi-transparent shape is the biggest rectum of the selection
to show the possible extent the organ can have.
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Figure 6.17: Comparative visualization of 17 bladders showing a difference in variance
between the tip on the top right and the interface on the bottom left, which is probably
related to segmentation accuracy. The semi-transparent shape is the biggest bladder of
the selection to show the possible extent the organ can have.

6.5 Critical Review

As already mentioned, the shape descriptor cannot handle flat meshes like the interfaces,
as the spherical function is based on the distance to the centroid. A solution to this
problem could be using another spherical function to describe the mesh or use another
shape descriptor in general. For interfaces, a combination of simple global features [PI97;
ZC01] could be sufficient.

The approach of comparative visualization fulfills Task 2 completely, yet there are some
refinements and additions, which could be useful, e.g. a small axis-indicator to see the
camera orientation in the detailed view. It is now only possible to select one organ for
a detailed analysis. Sometimes a selection of two or more organs would make sense in
terms of comparing variances. The user could quickly see which organs are of higher
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Figure 6.18: Comparative visualization of 15 prostates. The semi-transparent shape is
the biggest prostate of the selection to show the possible extent the organ can have.

variability in some areas than others instead of comparing the values after looking them
up on the scales provided with the views. To allow for better comparison in the exploded
view, a way to rotate individual organs or all at once could be introduced, as currently
they are all seen only from one direction. Other interaction methods with the organs
could also be included to improve organ exploration.

A drawback of the variance computation is, that the variance is different for specific
areas, if two shapes, which are not spheres, have the same shape and only differ in size.
To account for this, a setting could be introduced, which changes the variance calculation
to take the shape into account. If d is the Euclidean distance from a triangle x of the
mean mesh to the center, then the variance of the data at this triangle can be normalized
to be

σ2
xnorm

= 1
n

n∑
i=1

∥∥∥xi
d
− x

d

∥∥∥2
= 1
d2n

n∑
i=1
‖xi − x‖2 = 1

d2σ
2
x (6.1)

The point-based glyph design solves some perceptive issues of the line-based one, but it
is sometimes hard to see small differences in the variance. Areas with small triangles
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Figure 6.19: PCA plot of all bladders in the data set with the shape vector limited to
the first two frequencies: The axes do not correspond to the features size and elongation.

also have more points, which means it is brighter overall and may seem to have higher
variance compared to areas with large triangles. The color scale to show the relative
position is suitable for its purpose and works well in combination with the glyphs, but
an extensive evaluation would be needed to quantify this.

The results of the dimensionality reduction done before the two dimensional visualization
are good, considering that the detection of outliers is easy and shape features are encoded
well in the positions. PCA is also known to perform well on natural datasets [MPH07],
besides Sammon mapping [Sam69] and multilayer autoencoders. While t-SNE produces
good results, finding suitable parameters requires experience and some trial and error.
To overcome this problem, an implementation of Sammon mapping, Locally Linear
Embedding (LLE) [RS00], or other non-linear dimensionality reduction techniques should
be considered in the context of visualizing all organs simultaneously.

Because segmentation experts also wish to compare a higher number of patients, the
scalability of the approach may be important. The current implementation provides
interactive frame-rates using all 17 patients of the dataset. Each segmentation mesh,
consisting of all organs, has 11606 triangles. The calculation of relative position and
variance in the comparative visualization has to be optimized when using a higher
number of patients, as it would slow down the selection process. The calculation of shape
vectors, which is computationally demanding, as well as the dimensionality reduction
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Figure 6.20: PCA plot of all rectums in the data set with the shape vector limited to
the first two frequencies: The two outliers are on the outside of the cluster, but still not
as easy to distinguish than with the use of higher frequencies, because these show the
highest difference to normal shapes.

are performed before the visualization and therefore do not affect interaction. The high
number of runs in t-SNE blocks the usability at the beginning, as it still takes some
time to finish while all other components are ready. Table 6.1 shows the performance of
visualization techniques and other parts of the application with respect to the number of
patients within Google Chrome version 63 on a system with an Intel Core i7-2600k CPU
and a NVIDIA GTX 970 GPU.

Table 6.1: Computation time for specific tasks in [ms] measured within Google Chrome
version 63 on a system with an Intel Core i7-2600k CPU and a NVIDIA GTX 970 GPU.

patients PCA PCP t-SNE 3D overview 3D detail shape vectors

17 13 14 2958 462 603 3257
80 14 16 34111 1197 971 19495
160 16 20 117963 4412 1504 41233
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6.6 Evaluation
An informal evaluation was conducted with a senior scientist at Philips Healthcare Best
and professor at the Medical Image Analysis Group at TU Eindhoven, The Netherlands,
Prof. dr. ir. Marcel Breeuwer. He has experience in the field of segmentation of more than
25 years and already knew the data set. The purpose was to illustrate the functionality
and some initial results, which can be achieved using the proposed visual tool. The usage
scenarios described in this thesis were presented remotely to the evaluator, who mentioned
that the tool is easy to understand and easy to learn. It provides valuable insight into
shape variability and segmentation errors. However, for relating segmentation errors
to image quality, e.g. scan artifacts, the original image data should also be accessible
through the application, with contours showing the segmentation. To see the actual size
of the displayed shapes, a scale should also be implemented. The feedback also includes,
that the glyph design encoding the variance, is a discrete representation of continuous
values and should therefore be randomly sampled. In the current approach, the model
has too much influence on the visual perception of the variance, as one dot per triangle
is shown. As for the 2D visualization, the colors of unselected shape representations
are not always clearly visible and sometimes, it is hard to distinguish between different
organ types. All in all, the framework was regarded very positively, but a more detailed
evaluation would need to be conducted in the future.
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CHAPTER 7
Conclusion

7.1 Summary

This thesis deals with a visual analytics approach for comparing segmentations of multiple
organs over a cohort of multiple patients. This is done in order to develop hypotheses about
how algorithms used for automatic segmentation of pelvic organs work in specific cases
and what the corresponding segmentation results look like. The automatic segmentation
is part of the planning phase in radiotherapy, a common prostate cancer treatment using
a high irradiation dose to control malignant cells. As the variability in shape and size of
the organs is expected to influence the segmentation outcome quality, its exploration is
of high interest.

The first task addressed in this work was to measure and visualize shape variability at
a single- and multi-organ basis, which was done by using a shape descriptor based on
spherical harmonics and the L2 distance as similarity measure. This ensured a rotation
invariant comparison of shapes while still taking the size into account. The distribution
of shapes was further visualized to explore similarities and find mis-segmented shapes,
by performing dimensionality reduction and showing the results in plots. The techniques
employed in this thesis are PCA - performed on each organ separately - and t-SNE - to be
used on all organs at once - , each producing good results. In order to be useful, the latter
still needs experience in finding the right parameters, so other techniques like Sammon
mapping [Sam69] or LLE [RS00] could be considered as replacement. In addition to the
shape space visualization, the shape vectors resulting from the shape descriptor were
displayed in a PCP to be able to compare the actual amount of frequencies the shapes
consist of. The combination of these plots with interactive selection enables the user to
explore the whole cohort based on general shape similarity and different features like size.

To be able to visualize the selection in 3D and actually show what the shapes look
like, the problem of visualizing multiple segmentations of multiple organs comparatively,
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with respect to each other, was dealt with in the second task of this thesis. Current
comparative visualization techniques are limited to only one class of shape, which is the
main difference to our approach. It starts by showing an exploded view of representative
organs, visually preserving the relative positions and connections. Local shape analysis
is further provided by showing shape variances and distribution on demand, encoded in
point based glyphs and color.

The tools implemented in this thesis allowed us to quickly identify mis-segmented
shapes and explore the data-set based on different properties. Using the comparative
visualization technique, some hypotheses about the relation of local segmentation variance
and segmentation quality could be made, as well as an exploration of how anatomical
relations affect shape variability in different areas.

The contribution of this thesis is the design and implementation of a web-based application,
which implements the described tasks and allows segmentation experts to understand
the results of their algorithms. It is different from previous work in terms of dealing with
multiple organs as well as combining shape space exploration with a shape variability
analysis of a cohort in 3D. We also propose a way to comparatively visualize multiple
organs of multiple patients with the implemented visualization design.

7.2 Limitations and Future Work

The presented work has a lot of advantages, namely the interactive visual exploration of
shape variability with simple detection of outliers as well as the intuitive way of analyzing
local per-triangle variances in the comparative view. However, a number of limitations
and directions for future work has been revealed.

The most significant weakness of the implementation is the shape descriptor, which
deals best with sphere-like organs, but produces poor results with flat shapes as well
as interfaces, when it comes to comparing different shape features. It is still sufficient
for detection of outliers regardless of the organ shape. An improvement of the current
application would be finding a suitable shape descriptor, depending on the organ class,
or improving the implemented descriptor based on spherical harmonics. We propose
the approach of Liu et al. [Liu+04] as an improvement in the robustness of spherical
harmonics based descriptors, which could enhance the behavior in areas of the interfaces,
where the mesh has holes, as well as in flat organs.

The visualization design is lacking possibilities for interacting with the organs in the
exploded view, as it shows them from only one direction and allows the user to select
only a single organ for detailed analysis. Selecting multiple organs at once would allow
the user to see a comparison of general shape variability between different organs, for
example by using the same color or brightness scale for all of them. Implementing an
interaction type to be able to rotate organs in the exploded view would allow the user to
see more areas and views of an organ before selection, which may be useful for picking
organs of interest.
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7.2. Limitations and Future Work

Scalability of the approach is only partially fulfilled, as the interaction would suffer from
the slow computation of variances and relative positions in the comparative visualization.
This can be solved by a more efficient implementation, because the actual calculation is
not computationally demanding.

The next step of understanding segmentation outcomes is to relate the shape variability,
which is discussed in this thesis, to actual segmentation outcome quality, which e.g. is
discussed by Raidou in [Rai+16]. The examined datasets also include error metrics, for
example the distance to the ground truth data, to quantify the segmentation quality.
Future work could find a way to analyze the reason behind good or bad quality based on
shape variability or features, or even relate per-triangle error variances to shape variances.
These relations could provide further insight in how segmentation algorithms work and
how to improve them.

The approach of this work could also be used in other applications, where an exploration
and analysis of shape features and shape variability is needed, for example the exploration
of anatomical variability not only with respect to pelvic organs. It can also be used or
extended for comparison of the variability in the outcomes from different parametrizations
of segmentation algorithms or different segmentation algorithms in general and would
even allow this on multiple patients at once.
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Glossary

brachytherapy is a part of cancer treatment, in which the malignant tissues are
irradiated by implanting permanent radioactive seeds into the prostate. It is an
option for patients with low-risk disease and selected cases with intermediate-risk
disease [Mot+17]. 6

digital rectal examination in men, is a type of physical examination of the prostate,
where the doctor uses his finger, which he inserts into the rectum, to check pelvic
structures. 5

prostate-specific antigen is a protein, which is produced in the prostate by normal
and malignant cells. For screening purposes regarding prostate cancer, a blood test
is made, which determines the level of the prostate specific antigen. 5

radical prostatectomy is an option of prostate cancer treatment, where the prostate
itself and some surrounding tissue is removed. It is usually performed on younger
patients with life expectancy of more than 10 years. 6

radiotherapy is a part of cancer treatment, which uses ionizing radiation to control
malignant cells. The patient is exposed to external beams from multiple angles,
which intersect at the tumor location to preserve healthy tissues and concentrate
on the malignant ones. 1, 5, 6, 52, 63

segmentation in this context, is the process of dividing a medical image into meaningful
parts (e.g. organs). xi, xiii, 1–3, 5–10, 12, 15, 16, 20, 21, 24, 25, 47–49, 51, 52, 54,
56, 58–61, 63–65, 68, 69
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Acronyms

DOM Document Object Model. 40, 43, 68

DRE digital rectal examination. 5, Glossary: digital rectal examination

GPA Generalized Procrustes Analysis. 12

LLE Locally Linear Embedding. 61, 63

PCA Principal Component Analysis. 7, 12, 21, 25–30, 39, 43, 49, 51–55, 59–61, 63, 68,
69

PCP Parallel Coordinate Plot. 27, 29, 30, 39, 41, 49, 51–56, 63, 68, 69

PSA prostate-specific antigen. 5, Glossary: prostate-specific antigen

SVD Singular Value Decomposition. 26, 32, 34

t-SNE t-Distributed Stochastic Neighbor Embedding. 26–31, 34, 39, 43, 48–50, 59–61,
63, 68, 69
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