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Abstract

This dissertation explores algorithmic solutions for some prominent agreement problems in the
field of distributed computing. Such problems are interesting as they are the basis for many
practical distributed systems. Agreement problems include clock synchronization, symmetry
breaking or solving coordination problems where participants with conflicting inputs have to
agree on a common output. Whereas most of the existing work studies systems where the failure
assumption is a crash of one or more participants, this thesis focuses on synchronous dynamic
networks with communication failures controlled by a message adversary. With the emergence
of wireless systems, ad-hoc networks and sensor networks, systems consisting of large possibly
unknown number of network nodes connected by undirected network links become ubiquitous.
Results include optimal solutions for the consensus problem, a gracefully degrading solution
for the more general k-set agreement problem, and lower bounds for the asymptotic consensus
problem. The thesis closes with relating synchronous systems subject message adversaries to
asynchronous systems with failure detectors, which inspired the use of a suitable definition of
message adversary simulations.
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Kurzfassung

Diese Dissertation erforscht algorithmische Lösungen für wichtige Konsensusprobleme in verteil-
ten Systemen. Diese Probleme sind besonders interessant, da sie die Basis für viele praktische
Anwendungen in verteilten Systeme darstellen. Beispiele sind Uhren synchronisation oder das
Lösen von Symmetrie- und Koordinationsproblemen bei denen Teilnehmer mit widersprüchlichen
Eingangswerten sich auf einen gemeinsamen Ausgangswert einigen müssen. Da die bereits existie-
rende Literatur hauptsächlich Fehlermodelle mit ausfallenden Teilnehmern studieren, beschäftigt
sich diese Arbeit mit synchronen dynamischen Netzwerken mit Kommunikationsfehlern, die
von einem Message Adversary kontrolliert werden. Mit dem vermehrten Auftreten von wireless
Systemen, ad-hoc Netzwerken und Sensornetzwerken werden Systeme, die aus einer großen
einer möglicherweise unbekannten Anzahl von Teilnehmern und über gerichtete, unzuverlässige
Datenverbindungen kommunizieren immer häufiger. Die Resultate umfassen optimale Lösungen
für das Consensus Problem, eine degradierende Lösunge für das allgemeinere k-set Agreement
Problem und untere Schranken für das Asymptotic Consensus Problem. Die Arbeit schließt mit
der Untersuchung einer Beziehung zwischen synchronen Systemen unter Message Adversaries
und asynchronen Systemen mit Fehlerdetektoren, die schlussendlich zu einer sinnvollen Definition
von Message Adversary-Simulation geführt hat.
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CHAPTER 1
Introduction

In this dissertation, we will explore agreement problems in directed dynamic networks. Agreement
problems in general are interesting as they are at the basis for many distributed systems, with
the most prominent example being clock synchronization. Other forms are needed for symmetry
breaking in deadlock scenarios or solving coordination problems in distributed systems, where
participants with possible conflicting inputs have to agree on a common output.

Directed dynamic networks (DDNs) abstract both asynchronous and synchronous systems via
so called time-varying graphs. This thesis is focused on exploring different avenues in lock-
step synchronous DDNs where processes execute their computation synchronously. Therefore,
the behavior of the system can be abstracted via communication closed rounds where every
round consist of a message sending, message receiving and a computation step. Whether a
process communicates with another process or not in a round is determinated by a directed
communication graph, which may change from round to round.

Commonly studied agreement problems are consensus, where every process has to decide on
the same output, k-set agreement, where the decisions are a set of at most k possible different
values, and asymptotic consensus, where the output values have to converge to a common limit.
These problems are well researched in systems with reliable communication and process crashes
as the sole failure type.

With the emergence of wireless systems, ad-hoc networks and sensor networks, this failure
assumption is not sufficient. In those systems, a typical failure is not a crash of some process but
rather communication loss between processes, which results in time varying communication or
joining and leaving of processes during runtime. Moreover, peculiarities of wireless communication
make communication between process asymmetrical. Hence, directed dynamic networks perfectly
model communication in such systems. Note that lock-step synchrony is trivially implemented
atop of synchronized clocks, which are easily implemented in such systems.

Moreover such systems are particularly in need of algorithms that solve distributed computing
problems like consensus or k-set agreement to compensate for the missing central control. Hence
models and algorithms for solving agreement problems in DDNs are important.

The formal entity that abstracts message loss in DDNs is called a message adversary (MA), and
solving any kind of agreement problem can be seen as a two player game between the algorithm
(and the algorithm designer) and the message adversary. Obviously, without any restriction of
the adversary, no non-trivial distributed computing problem can be solved: After all, it could
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Figure 1.1: The graphic depicts the trade-off between restricting the possible communication
graphs and the complexity of a solution algorithm. The dashed line represents the point where
finding a solution is impossible. The two graphs on either end symbolize the extreme cases of
possible communication graphs for a DDN with 3 process.

just prevent any communication in the system. In addition, more difficult distributed computing
problems usually require more severe restrictions of the adversary w.r.t. its ability to prevent
communication between processes. On the other hand, there is usually a trade-off between model
coverage and algorithmic complexity, as depicted in Figure 1. The model coverage quantifies
how well a MA captures the possible behaviors of a real model.

This thesis is structured along increasingly more complex types of message adversaries, and will
present results and approaches for solving different instances of agreement problems under these
MAs.

Outline of the thesis.

This thesis is based on the the following papers:

• M. Schwarz, K. Winkler, U. Schmid, M. Biely, P. Robinson. (2014). Brief announce-
ment: Gracefully degrading consensus and k-set agreement under dynamic link failures.
Proceedings of the Annual ACM Symposium on Principles of Distributed Computing. .
10.1145/2611462.2611506.

• M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler. Gracefully degrading
consensus and k-set agreement in directed dynamic networks. In Revised selected papers
Third International Conference on Networked Systems (NETYS’15), Springer LNCS 9466,
pages 109–124, Agadir, Morocco, 2015. Springer International Publishing.

• M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler. Gracefully degrading
consensus and k-set agreement in directed dynamic networks. Theoretical Computer
Science,volume 726, pages 41-77, 2018.

• M. Schwarz, K. Winkler, and U. Schmid. Fast consensus under eventually stabilizing
message adversaries. In Proceedings of the 17th International Conference on Distributed
Computing and Networking, ICDCN’16, pages 7:1-7:10, New York, NY, USA, 2016. ACM.
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• K. Winkler, M. Schwarz, and U. Schmid. Consensus in directed dynamic networks with
short-lived stability. CoRR, abs/1602.05852, 2016(submitted).

• M. Függer, T. Nowak, and M. Schwarz. Brief announcement: Lower bounds for asymptotic
consensus in dynamic networks. 31st International Symposium on Distributed Computing,
DISC 2017,pages 51:1-51:3, October 16-20, 2017, Vienna, Austria

• M. Függer, T. Nowak, and M. Schwarz. Tight Bounds for Asymptotic and Approximate
Consensus. ACM Symposium on Principles of Distributed Computing (PODC 2018).

• U. Schmid and M. Schwarz. On the strongest message adversary for consensus in directed
dynamic networks (submitted).

Most of the these papers have been written in close collaboration with my colleague Kyrill
Winkler. Although it is impossible to clearly identify a main author for every result, it is fair to
say that my main contributions (and hence the focus of this thesis) are on the algorithmic side,
whereas Kyrill’s main contributions (documented in his forthcoming thesis [107]) are mostly on
impossibility results.

To relate the different chapters easily to the corresponding paper we will start every chapter
with a quick explanation of the chapter structure and reference the paper on which it is based,
if possible.

Structure of the thesis.

• In Chapter 2, we start out with a detailed exploration of dynamic networks in general and
provide the formal definitions of a model for the DDNs considered in this thesis.

• In Chapter 3, we outline different instances of agreement problems and relations between
certain instances. We also define valency and contraction rates which are important tools
for arguing about the existence of algorithms.

• In Chapter 4, an overview of related work on both dynamic networks and agreement in
DDNs is presented. The publications are sorted according to certain subtopics for which
they are most relevant.

• After this prelude we study oblivious message adversaries in Chapter 5. This type of
message adversary chooses the communication pattern for each round from a set of
predefined graphs. We present results that precisely define the properties that allow to
solve two major instances of agreement problems and relate these problems to each other.

• In Chapter 6, we will take the step to non-oblivious message adversaries and we will
argue why this is reasonable via the simple yet important example of a two process DDN.
Under this type of message adversary we first focus on so called eventually stable message
adversaries. These MAs distinguish themselves from those presented in the previous
section in that some properties emerge at some unknown point in time during a run of
the system. The emerging properties always include guaranteed connections from a subset
of the processes to the whole system for a certain duration during a run, so-called stable
periods/intervals. We will start with non-optimal simple and memory efficient consensus
algorithms for MAs that guarantee relatively long periods of stability and then proceed to
more complex but optimal solutions for MAs with short stability intervals.
Moreover, we will show how to generalize adversaries and algorithmic techniques to solve
relaxed instances of agreement problems, namely k-set agreement.

3



• In Chapter 7, we explore how message adversaries in synchronous systems are connected
to failure detectors in asynchronous systems, and explore the concept of MA simulations
as a similar concept to related different MAs to each other. This relations will also yield a
class of strongest message adversaries equal to the established notion of weakest failure
detectors.
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CHAPTER 2
Directed dynamic networks

In this chapter, we will informally and formally introduce directed dynamic networks. We
give a short motivation why research in this area is necessary and present a comprehensive
framework to categorize different dynamic network models taken from [32]. The specific DDN
model introduced subsequently is based on [22,57,98,102,108]. Major parts of it will be included
in Kyrill Winklers thesis [107] as well, as both our results are founded on the same model.

Dynamic networks such as wireless sensor networks, mobile ad-hoc networks and vehicle area
networks, are becoming ubiquitous nowadays. The primary properties of such networks are
sets of participants (called processes in the sequel) that are a priori unknown and potentially
changing, time-varying connectivity between processes, and the absence of a central control.
Dynamic networks is an important and very active area of research [71].

Accurately modelling dynamic networks is challenging, for several reasons: First, process mobility,
process crashes/recoveries, deliberate joins/leaves, and peculiarities in the low-level system design
like duty-cycling (used to save energy in wireless sensor networks) make static communication
topologies, as typically used in classic network models, inadequate for dynamic networks. Certain
instances of dynamic networks, in particular, peer-to-peer networks [73] and inter-vehicle area
networks [52], even suffer from significant churn, i.e., a large number of processes that can
appear/disappear over time, possibly in the presence of faulty processes [10], and hence consist
of a potentially unbounded total number of participants over time. More classic applications
like mobile ad-hoc networks (MANETS) [67], wireless sensor networks [5, 109] and disaster
relief applications [74] typically consist of a bounded (but typically unknown) total number of
processes.

Second, communication in many dynamic networks, in particular, in wireless networks like
MANETS, is inherently broadcast: When a process transmits, then every other process within
its transmission range will observe this transmission — either by legitimately receiving the
message or as some form of interference. This creates quite irregular communication behavior,
such as capture effects and near-far problems [106], where certain (nearby) transmitters may
“lock” a receiver and thus prohibit the reception of messages from other senders. Consequently,
the “health” of a wireless link between two processes may vary heavily over time [34]. For low-
bandwidth wireless transceivers, an acceptable link quality usually even requires communication
scheduling [92] (e.g., time-slotted communication) for reducing the mutual interference. Overall,
this results in a frequently changing spatial distribution of pairs of nodes that can communicate
at a given point in time.
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As a consequence, many dynamic networks, in particular, wireless ones [33], are not adequately
modelled by means of bidirectional links. Fading and interference phenomenons [60,97], including
capture effects and near-far problems, are local effects that affect only the receiver of a wireless link:
Given that the sender, which is also the receiver of the reverse link, resides at a different location,
the two receivers are likely to experience very different levels of fading and interference [58].
This effect is even more pronounced in the case of time-slotted communication, where forward
and backward links are used at different times. Consequently, the existence of asymmetric
communication links cannot be ruled out in practice: According to [82], 80% of the links in a
typical wireless network are sometimes asymmetric.

Despite these facts, most of the dynamic network research we are aware of assumes bidirectional
links [69, 72]. The obvious advantage of this abstraction is simplicity of the algorithm design, as
strong communication guarantees obviously make this task easier. Moreover, it allows the re-use
of existing techniques for wireline networks, which naturally support bidirectional communication.
However, there are also major disadvantages of this convenient abstraction:

• First, for dynamic networks that operate in environments with unfavourable communication
conditions, like in disaster relief applications or, more generally, in settings with various
interferers and obstacles that severely inhibit communication, bidirectional links may
simply not be achievable. Implementing distributed services in such settings thus require
algorithms that do not need bidirectional links right from the outset.

• Second, the entire system needs to be engineered in such a way that bidirectional single-hop
communication can be provided within bounded time. This typically requires relatively
dense networks and/or processes that are equipped with powerful communication interfaces,
which incur significant cost when compared to sparser networks or/and cheaper or more
energy-saving communication devices.

• And last but not least, if directed single-hop communication was already sufficient to
reach some desired goal (say, reaching some destination process) via multi-hop messages,
waiting for guaranteed single-hop bidirectional communication would incur a potentially
significant, unnecessary delay. Obviously, in such settings, algorithmic solutions that do
not need bidirectional single-hop communication could be significantly faster.

2.1 Hierarchy and classification

The extensive research in the field of dynamic networks lead to a lot of interesting concepts
which have been defined by different researchers in different ways even though they are the same.

This inspired the authors of [32] to introduce a categorization of the different models and concepts
used in distributed systems. In the following paragraphs, which were already used in my Masters
thesis [100], we will cite large parts of their work to give an overview of the different categories
they identified, and later on make a connection to our model.

First, [32] distinguishes 3 main categories of existing networks, which are abstracted by different
models in distributed systems.

(a) The study of communication in highly dynamic networks, e.g., broadcasting and routing in
delay-tolerant networks. Such networks are characterized by highly dynamic communication
links between a fixed set of participants.
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(b) The exploitation of passive mobility, e.g., the opportunistic use of transportation networks.
Contrary to (a), in such systems, the participants are the dynamic element.

(c) The analysis of complex real-world networks, ranging from neuroscience or biology to
transportation systems or social networks, e.g., the characterization of the interaction
patterns emerging in a social network. This category is characterized by special emerging
properties during the execution of a system.

(a) Delay-tolerant networks

Such networks are highly dynamic and have more or less no infrastructure. Their key characteristic
is the absence of guaranteed communications routes between two participants at any time instant.
Examples are satellites, pedestrian and vehicular networks. These networks are often called
disruption-tolerant, challenged, or opportunistic networks. Even though connectivity assumptions
do not hold in general, different mechanisms are available, for example, to broadcast information.
Indeed a lot of research has been invested to find new techniques to solve more advanced problems
in such networks. This includes pro-active knowledge on the network schedule, delay-based
optimization, encounter-based choices, or even analytical and probabilistic strategies. In all
those models time is of crucial importance, thus most common graph concepts were extend by a
temporal vision.

(b) Opportunistic-mobility networks

Such networks exploit the delay-tolerant network created by mobile carriers equipped with
short-ranged-radio transmitters. These carriers are used for performing tasks possibly external
and extraneous to the carriers. Entities like code or information can move on the carrier network,
using the mobility of the carriers (sometimes called ferries). Examples are, as mentioned in [32],
Cabernet, deployed in taxis in the Boston area, which delivers messages and files to users in
cars, or UMas DieselNet deployed to 40 buses via WIFI nodes in Amherst. In this context,
ferries following deterministic periodic trajectories are of utmost interest. This includes public
transport, low earth orbiting satellites or security guard tours. Even though routing is the
central aspect here, some research has been done on algorithmic network exploration, i.e, for
creating a broadcast infrastructure. Again the time parameter plays an important role in the
concepts and the appertaining solutions.

(c) Real world complex networks

As stated in [32], the main problem is to define and formulate mathematical models that properly
abstract properties of real dynamic networks. A fundamental idea is to endow the edges with
some kind of temporal information. Thus, graph properties can be studied when nodes and
edges have temporal constraints. There are many different research papers listed in [32], which
used such a concept and established results in different areas of computer science. The authors
of [32] conclude that their investigations indicate that temporal concerns are an integral part of
recent research efforts in complex system and that the emerging concepts are near identical to
those in the field of communication networks.

7



Time-Varying Graphs

We will use the framework of [32] to formalize a basic, abstract model for real networks. It is
general enough to cover most existing models, which emerged independently in various areas of
computer science. The time-varying graph TV G = (V,E, T, ρ, ζ) is the core element of this
framework and is defined by the following parameters:

• V is the set of all available nodes in the system

• E is the set of all available unidirectional edges in the system

• T = R, which adds a time dimension to the system

• ρ is an indicator function defined on the cross product of E and T

• ζ is a measurement of the delay that different edges may induce

The basic graph, which is also called underlying graph, is defined by G = (V,E). G can be
seen as a footprint of the TV G. G ignores the time dimension, thus T , ρ and ζ are not relevant
for G. Later we will provide a more precise and formal definition. Important to notice is that
neither G nor TV G has to be connected; moreover, even if G is connected, it does not imply
any connectivity properties of TV G.

Naturally one can define a subgraph TV G′, which can be a subset of any part of the original
TV G, be it a graph containing only a node subset V ′ or even the set of all edges labeled by a
time subset T ′, for example T ′ = {1, 5, 7}.

Point of View

Until now we introduced a general model that can abstract a broad class of network problems.
Depending on the problem it can be important to analyze the evolution from different angles. [32]
defines 3 major points of view;

• view of a given relation (edges)

• view of an entity (nodes)

• the view of the global system (entire graph)

If one starts from an edge standpoint, the evolution is represented by the availability and latency
of each edge between two different entities. The availability is defined by I(e), which is the
union of all dates at which the edge is available, more precisely I(e) = {t ∈ T : ρ(e, t) = 1}.
The node point of view can be seen as a changing neighborhood per node. Each node thus
identifies the network by neighborhood relations or maybe even transitive neighborhood relations
over time.

The graph-centric evolution or the so called characteristic dates of TV G ( [32]) is a sequence of
snapshots of the dynamic network. It primarily corresponds to the appearance or disappearance
of edges in the system. Thus the evolution of TV G can be described by a sequence STV G of
graphs Gi = (V,Ei) where Ei is the set of edges with ρ(E, ti) = 1. Note that one can also give a
formal definition of G based on Gi namely, G =

⋃
Gi.
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Journey and Distance

A sequence J of couples {(e1, t1), (e2, t2)(e3, t3)...(ek, tk)} such that the edges e1, e2, e3....ek form
a path in G is called a journey in TV G if ρ(ei, ti) = 1 and ti+1 > ti + ζ(ei, ti) for all i 6 k. Let
us denote the starting and arrival date of J by departure(J) and arrival(J). The temporal
length can by defined by arrival(J) − departure(J). J∗TV G is the set of all journeys in TV G
and J∗u,v are all journeys starting in u and ending in v. If at least one journey in J∗u,v exists then
we say that u can reach v, which is represented by the notation u v.
The distance between nodes can be measured in two ways. Either by

• the already established temporal distance arrival(J)− departure(J)

• or the topological distance, which simply counts the hops from u to v in G

TV G classes

In this section, which is copied from [32] for the purpose of having a very precise definition of the
different classes, we discuss the impact of properties of TVGs on the feasibility and complexity
of distributed computing problems, reviewing and unifying existing work from the literature. In
particular, we identify a hierarchy of classes of TVGs based on temporal properties that are
formalized using the concepts presented in the previous section. These class-defining properties,
organized in an ascending partial order of assumptions (see Figure 2.1), from more specific to
more general, are important in that they imply necessary conditions and impossibility results for
distributed computations. Let us start with the simplest Class 1, i.e., the one with the weakest
assumption on the TV G.

Class 1 ∃u ∈ V : ∀v ∈ V, u v
That is, at least one node can reach all the others. This condition is necessary, for example, for
broadcast to be feasible from at least one node.

Class 2 ∃u ∈ V : ∀v ∈ V, v  u
That is, at least one node can be reached by all the others. This condition is necessary to be able
to compute a function whose input is spread over all the nodes, with at least one node capable
of generating the output. Any algorithm for which a terminal state may depend on all the nodes
initial states also falls in this category, such as leader election or counting the number of nodes.

Class 3 (Connectivity over time): ∀u, v ∈ V, u v
That is, every node can reach all the others; in other words, the TV G is connected in T . By
the same discussions as for Class 1 and Class 2, this condition is necessary to enable broadcast
from any node, to compute a function whose output is known by all the nodes, or to ensure that
every node has a chance to be elected.

These three basic classes were used e.g. in [29] to investigate how relations between TV G
properties and feasibility of algorithms could be formally established, based on a combination of
evolving graphs [54] and graph relabellings [75]. Variants of these classes can be found in recent
literature, e.g. in [61], where the assumption that connectivity over time eventually takes place
among a stable subset of the nodes is used to implement failure detectors in dynamic networks.

Class 4 (Round connectivity): ∀u, v ∈ V,∃J1 ∈ J∗(u,v), ∃J2 ∈ J∗(v,u) : arrival(J1) 6
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departure(J2)
That is, every node can reach all the others and be reached back afterwards. Such a condition may
be required e.g. for adding explicit termination to broadcast, election, or counting algorithms.

The classes defined so far are in general relevant in the case that the lifetime is finite and a limited
number of topologically changes are considered. When the lifetime is infinite, connectivity over
time is generally assumed on a regular basis, and more elaborate assumptions can be considered.

Class 5 (Recurrent connectivity): ∀u, v ∈ V,∀t ∈ T, ∃J ∈ J∗(u,v) : departure(J) > t
That is, at any point t in time, the temporal subgraph TV G[t,+∞) remains connected over time.
This class is implicitly considered in most works on delay-tolerant networks. It indeed represents
those DTNs where routing can always be achieved over time. This class was referred to as
eventually connected networks by Awerbuch and Even in [13], although the terminology was
also used with different meaning in the recent literature (which we mention in another definition
below). As discussed in Section 4.1, the fact that the underlying graph G = (V,E) is connected
does not imply that the TV G is connected in T , but how the snapshots Gi and thus STV G is
formed matters.

Such a condition on the connectivity of the TV G is, however, necessary to allow connec-
tivity during T and thus to perform any type of global computation. Therefore, the following
three classes explicitly assume that the underlying graph G is connected.

Class 6 (Recurrence of edges): ∀e ∈ E,∀t ∈ T, ∃t′ > t : ρ(e, t′) = 1 and G is con-
nected
That is, if an edge appears once, it appears infinitely often. Since the underlying graph G is
connected, Class 6 is a subclass of Class 5. Indeed, if all the edges of a connected graph appear
infinitely often, then there must exist, by transitivity, a journey between any pairs of nodes
infinitely often. In a context where connectivity is recurrently achieved, it becomes interesting to
look at problems where more specific properties of the journeys are involved, e.g. the possibility
to broadcast a piece of information in a shortest, foremost, or fastest manner . Interestingly,
these three declinations of the same problem have different requirements in terms of TV G
properties. It is, for example, possible to broadcast in a foremost fashion in Class 6, whereas
shortest and fastest broadcasts are not possible (for a explanation of the different broadcast
settings see [31]). Shortest broadcast becomes, however, possible if the recurrence of edges
is bounded in time, and the bound is known to the nodes, a property characterizing the next class:

Class 7 (Time-bounded recurrence of edges): ∀e ∈ E,∀t ∈ T, ∃t′ ∈ [t, t+ ∆), ρ(e, t′) = 1,
for some ∆ ∈ T and G is connected
Some implications of this class include a temporal diameter that is bounded by ∆Diam(G),
as well as the possibility for the nodes to wait a period of ∆ to discover all their neighbors
(if ∆ is known). The feasibility of shortest broadcast follows naturally by using a ∆-rounded
breadth-first strategy that minimizes the topological length of journeys.
A particular important type of bounded recurrence is the periodic case:

Class 8 (Periodicity of edges): ∀e ∈ E,∀t ∈ T, ∀k ∈ N, ρ(e, t) = ρ(e, t + kp), for some
p ∈ T and G is connected
The periodicity assumption holds in practice in many cases, including networks whose entities
are mobile with periodic movements (satellites, guards tour, subways, or buses). The periodic
assumption within a delay-tolerant network has been considered, among others, in the contexts of
network exploration and routing (see [32] for additional references). Periodicity enables also the
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construction of foremost broadcast trees that can be re-used (modulo p in time) for subsequent
broadcasts (whereas the more general classes of recurrence requires the use of a different tree for
every foremost broadcast). More generally, the point in exploiting TVG properties is to rely on
invariants that are generated by the dynamics (e.g. recurrent existence of journeys, periodic
optimality of a broadcast tree, etc.). In some works, particular assumptions on the network
dynamics are made to obtain invariants of a more classical nature. Below are some examples of
classes, formulated using the graph-centric point of view of (discrete-time) evolving graphs, i.e.,
where TV G = (G,STV G,N).

Class 9 (Constant connectivity): ∀Gi ∈ STV G, Gi is connected
Here, the dynamics of the network is not constrained as long as it remains connected in every
time step. Such a class was used, for example, in [83] to enable progression hypotheses on the
broadcast problem. This class was also considered in [70] for the problem of consensus.
Indeed, if the network is always connected, then at every time step there must exist an edge
between an informed node and a non-informed node, which allows to bound broadcast time by
n = |V | time steps (worst case scenario).

Class 10 (T-interval connectivity): ∀i ∈ N,∃T ∈ N, ∃G′ ⊆ G : VG′ = VG, G
′ is connected,

and ∀j ∈ [i, i+ T − 1), G′ ⊆ Gj
This class is a particular case of constant connectivity in which the same spanning connected
subgraph of the underlying graph G is available for any period of T consecutive time steps. It
was introduced in [68] to study problems such as counting, token dissemination, and computation
of functions whose input is spread over all the nodes (considering an adversarial edge schedule).
The authors show that computation could be sped up by a factor of T compared to the 1-interval
connected graphs, that is, graphs of Class 9.
Other classes of TVGs can be found in [93] , based on intermediate properties between constant
connectivity and connectivity over time. They include Class 11 and Class 12 below.

Class 11 (Eventual instant-connectivity): ∀i ∈ N,∃j ∈ N : j > i, Gj is connected.
In other words, there is always a time from which on the network is connected
This class was simply referred to as eventual connectivity in [62], but since the meaning is differ-
ent than that of Awerbuch and Even (connectivity over time), we renamed it to avoid ambiguities.

Class 12 (Eventual instant-routability): ∀u, v ∈ V,∀i ∈ N, ∃j ∈ N : j > i and a path
from u to v exists in Gj
That is, for any two nodes, there is always a future time step in which a path exists between
them. The difference to Class 11 is that these paths may occur at different times for different
pairs of nodes. Classes 11 and 12 were used in [93] to represent networks where routing protocols
for (connected) mobile ad-hoc networks eventually succeed if they tolerate transient faults. Most
of the works listed above strove to characterize the impact of various temporal properties on
problems or algorithms. A reverse approach was considered by Angluin et al. in the field
of population protocols [8, 9], where for a given assumption (that any pair of node interacts
infinitely often), they characterized all the problems that could be solved in this context. The
corresponding class is generally referred to as that of (complete) graph of interaction.

Class 13 (Complete graph of interaction): The underlying graph G = (V,E) is
complete, and ∀e ∈ E,∀t ∈ T, ∃t′ > t : ρ(e, t′) = 1
From a time-varying graph perspective, this class is the specific subset of Class 6, in which
the underlying graph G is complete. Various types of schedulers and assumptions have been
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Figure 2.1: Relations of inclusion between classes (from specific to general). Arrows represent
"stronger as": e.g., C10 is stronger as C9, i.e., C10 includes C9

subsequently considered in the field of population protocols, adding further constraints to Class
13 (e.g. weak fairness, strong fairness, bounded, or k-bounded schedulers) as well as interaction
graphs which might not be complete.

An interesting aspect of unifying these properties within the same formalism is the possibility to
see how they relate to one another, and to compare the associated solutions or algorithms. An
overview can be gained by looking at the classification shown in Figure 2.1, where basic relations
of inclusion between the above classes are reported. All inclusions represented by arrows are
strict: for each relation, the parent class (start point of an edge) contains some time-varying
graphs that are not in the child class (end point of an edge). Clearly, one should try to solve a
problem in the most general context possible. The right-most classes are so general that they
offer little properties to be exploited by an algorithm, but some intermediate classes, such as
Class 5, appear quite central in the hierarchy. This class indeed contains all the classes where
significant work was done. A problem solved in this class would therefore apply to virtually all
the contexts considered heretofore in the literature.

Such a classification may also be used to categorize problems themselves. As mentioned
above, shortest broadcast is not generally achievable in Class 6, whereas foremost broadcast is.
Similarly, it was shown in [30] that fastest broadcast is not feasible in Class 7, whereas shortest
broadcast can be achieved with some knowledge. Since Class7 ⊂ Class6,

foremostBcast � shortestBcast � fastestBcast,

defines a partial order on these problems according to topological requirements, where A � B
means that A is a less demanding problem than B.

2.2 Model

We consider a set Π = [n] = {1, . . . , n} of n > 2 processes with unique identifiers. We use pi ∈ Π
to actually denote the process with UIDs. For every pi ∈ Π, si denotes its local state, taken from
a potentially infinite state space, which includes an output variable yi and an input variable xi.
xi holds some fixed initial vi at the beginning of an execution. For some problems xi is initially
assigned to yi. In these cases xi is omitted from the problem statement and the algorithm
for simplicity and we assume that yi in round 0 equals xi. We assume a distributed, round-
based computational model in the spirit of the Heard-Of model [40]. Computation proceeds
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Figure 2.2

in communicate-closed rounds: In every round, each process sends its state to its outgoing
neighbors, receives messages from its incoming neighbors, and finally updates its state according
to a deterministic local algorithm, i.e., a transition function that maps the collection of incoming
messages to a new state. Rounds are communication closed in the sense that no process receives
messages in round r that are sent in a round different from r. Note that processes do not
know, without receiving explicit feedback in later rounds, which processes received their round r
broadcast. sri , r > 1, denotes the state of pi at the end of round r, s0

i denotes the initial state.

Failure assumption and adversaries

As our failure assumption we only consider message loss. Communication in a round is modeled
by a directed graph G = 〈V,E〉 with a node for each process. Since a process can obviously
communicate with itself instantaneously, every communication graph implicitly contains a self-
loop at each node. In the following, we use the product of two communication graphs G and
H, denoted G ◦ H, which is the directed graph with an edge from pi to pj if there exists pk
such that (pi, pk) and (pk, pj) are two edges in G and H, respectively. To fully model dynamic
networks, in which the topology may change continually and unpredictably, the communication
graph at each round is chosen arbitrarily by the so called adversary. The communication graph
at round r is denoted by Gr, and N t

j = Ini(r) = Ini(Gr) and Outi(r) = Outi(Gr) are the sets of
incoming and outgoing neighbors (in-neighbors and out-neighbors for short) of process pi in Gr.
Note that we will sloppily write (pi → pj) ∈ Gr to denote (pi → pj) ∈ Er, as well as pi ∈ Gr to
denote pi ∈ V = Π.

Figure 2.2 shows a sequence of communication graphs for a network of 5 processes, for rounds
1 to 3. Since every Gr can range arbitrarily from n isolated nodes to a fully connected graph,
there is no hope to solve any non-trivial agreement problem without restricting the power of
the adversary to drop messages1 to some extent. This is further complicated by the fact that
processes do not necessarily know n.

Let us fix an algorithm A; a configuration is a collection of n process states, one per process. We
assume that all processes have the same sets of initial states. Since processes are deterministic,
given some configuration C and some communication graph G, the algorithm A uniquely
determines a new configuration which we simply denote G.C if no confusion can arise. Then the
execution of A from the initial configuration C0 and with the communication pattern

(
Gr
)
r>1

1Even though the adversary can only affect communication in our model, it is also possible to model classic
send and/or receive omission process failures [87] (and thereby also crash failures): A process that is send/receive
omission faulty in round r has no outgoing/incoming edges to/from some other processes in Gr.
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is the sequence C0, G1, . . . , Cr−1, Gr, Cr, . . . of alternating configurations and communication
graphs such that for each round r, Cr = Gr.Cr−1.

Formally an adversary is an entity that generates a set of communication graph sequences based
on a network model. This set of infinite sequences is called communication patterns/sequences
in the network model. A particular sequence is admissible for an adversary if the sequence
is in the communication patterns. If we combine the communication patterns with an initial
configuration we get a set of executions denoted ENA . Finally, any configuration that occurs in
some execution with a communication pattern in some network model is said to be reachable
from C0 by A in the network model.

A message adversary is the combination of an adversary with a given network model.

Definition 1. Oblivious message adversary: For the oblivious message adversary the network
model N is defined by a non-empty set of communication graphs. The message adversary may
pick any on those graphs for each round.

The set of executions with communication patterns in N with the distance dist(E,E′) = 1/2θ,
where θ is the first index at which E and E′ differ, is a compact metric space (e.g., see [76]).

Definition 2. Non-Oblivious message adversary: For the non-oblivious message adversary, the
network modelM is defined by a (possible infinitely large) subset of all possible graph sequences.
The subset has to have finite description, as the algorithms usually know the message adversary
a priori.

Obviously a network model N for an oblivious MA can also be defined as an non-oblivious MA.
This does not hold for the other direction however, as non-oblivious message adversaries allow
e.g. eventual properties like the one that some graph G must eventually occur,which can not be
defined as a simple set of graphs.

For convenience, we will sometimes just say that the communication sequences are generated by
message adversary mesAdv, meaning that the adversary generates graph sequences based on
model N/M and mesAdv is a simple label for the particular combination. In most cases, this
label will contain parameters related to the underlying network model. Furthermore, instead of
saying that some sequence is part of the communication patterns generated by the adversary
based on some network model, we will simply say the sequence is admissible under message
adversary mesAdv.

Complementing the traditional approach of partially ordering system models or unreliable failure
detectors [35] via their problem solving power (task implementability), the restricted nature of
our message adversaries allows us to employ a much simpler and direct way of relating MAs:
For a fixed system Π of n processes, we say that A is stronger than B if and only if A ⊇ B, i.e.,
if A can generate at least the communication graph sequences that can be generated by B. As a
consequence, an algorithm that works correctly under message adversary A will also work under
B ⊆ A. If A contains sequences not in B and B contains sequences not in A, then A and B are
incomparable. An example for two incomparable adversaries is the adversary that allows only
chains for each Gr and the adversary that allows only circles for each Gr.

We say that a problem is impossible under some adversary if there is no deterministic algorithm
that solves the problem for every admissible communication graph sequence. For example, every
problem that requires at least some communication among the processes is impossible under the
unrestricted message adversary, which may generate all possible graph sequences: The sequence
(Gr)∞r=1 where no Gr contains even a single edge is also admissible here.
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Note that every message adversary presented in this thesis introduces a DDN that falls in
between class 1 and 3 in Figure 2.1, as we never demand an all-to-all communication during an
execution but have some additional restrictions regarding the one-to-all communication property.

Finally, we will establish what it means for a process pi to influence some process pj , which is
central to later parts of this thesis. Note carefully that such an influence is always paired with
time: In the spirit of [15,72], for a given sequence (Gr)r>0 of communication graphs, we say that
process pi at the end of round r influences pj in round s, denoted as sri  ssj , if the state of
process pi at the end of round r could have affected the state of process pj at the end of round
s. Clearly, in our system model, this requires process pi to send a message in round r + 1 or
later that (directly or indirectly, via some message chain) reaches pj at the latest in round s, so
that it could affect its state ssj reached at the end of round s.

Formally, this is defined via the influence relation given in Definition 3.

Definition 3 (Influence relation). For a given run with sequence of communication graphs
(Gr)r>0, the influence relation is the smallest relation that satisfies the following conditions for
processes pi, pj , pk ∈ Π and rounds r, r′, r′′ > 0:

LOCALITY: sri  sr+1
i

NEIGHBOURHOOD: (pi → pj) ∈ Gr+1 ⇒ sri  sr+1
j

TRANSITIVITY: sri  sr
′
j and sr

′
j  sr

′′
k ⇒ sri  sr

′′
k
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CHAPTER 3
Agreement

A natural approach to build robust services despite the dynamic nature of dynamic networks is
to use distributed agreement to agree system-wide on (fundamental) parameters like schedules,
frequencies, operating modes etc. In particular, processes that actually need to communicate
directly with each other in some application shall agree on those parameters. In order to
guarantee this property, agreement algorithms are needed that are always safe. In this chapter
we list specific agreement problems for which we will present solutions in different models and
define the valency of a configuration which is used to argue about the impossibility of solving
certain problems in certain models. The chapter is based on the different problems stated
in [22,57,102,108]. Part of this section has been taken from the proposal of the FWF project
ADynNet [98], which supports this thesis.

In larger-scale dynamic networks, implementing agreement is challenging (and sometimes impos-
sible), for several reasons:

(a) Solving deterministic (always safe) agreement requires communication graphs that are
(eventually) well-connected system-wide. Network partitioning into multiple (partially
connected) components cannot be ruled out in dynamic networks, however.

(b) Processes in dynamic networks typically know their “communication-active” neighborhood
only. Consequently, they cannot be assumed to have a priori global information, like the
number of processes in the system. It is usually even impossible to acquire complete and
accurate local knowledge of the entire system at run-time, due to link/node unavailability,
network partitioning, insufficient local memory, etc.

(c) Termination times can be large and cannot necessarily be bounded a priori, which makes it
difficult for applications to (repeatedly) use consensus for (repeated) decision making: At
some given time, different processes could rely on decisions from very different instances of
repeated consensus.

Any instance of the collection of agreement problems considered in this thesis is solved in some
network model N/M if, in all executions admissible in N/M, three properties Agreement,
Validity and Termination hold. The exact definition of the three properties depends on the
specific instance of problem. In the rest of this chapter we will formalize them and provide some
tools used later on in our analysis.
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3.1 Problem definitions

3.1.1 Asymptotic consensus

We assume that the local state of process pi includes a variable yi that assumes values in
an Euclidean d-space Rd, and we let yri,E ∈ Rd denote the value of yi at the end of round r

in some execution E and define yr
E

=
(
yr1,E , . . . , y

r
n,E

)
. y0

i,E
is initialized to xi. We write

diam(A) = sup
x,y∈A

‖x− y‖ for the diameter of a set A ⊆ Rd and ∆(yr
E

) = diam{yr1,E , . . . , y
r
n,E
} for

the diameter of the set of values in round r of E .

Definition 4 (Asymptotic consensus). We say an algorithm solves the asymptotic consensus
problem in a network model N if the following holds for every execution E with a communication
pattern in N :

• Convergence. Each sequence
(
yri,E

)
r>0 converges.

• Agreement. If yri,E and yrj,E converge, then they have a common limit.

• Validity. If yri,E converges, then its limit is in the convex hull of the initial values
y0

1,E , . . . , y
0
n,E

.

Observe that the consensus function defined by y∗ : E ∈ (E , dist) 7→ y∗
E
∈ (Rd, ‖.‖), where y∗

E

denotes the common limit of the n sequences
(
yri,E

)
r>0, is a priori not continuous. And indeed,

there exist asymptotic consensus algorithms whose consensus functions are not continuous.

3.1.2 Approximate consensus

Alternatively, one may also consider the approximate consensus problem, in which convergence is
replaced by a decision in a finite number of rounds and where agreement should be achieved with
an arbitrarily small error tolerance (see, e.g., [77]). Formally, the local state of pi is augmented
with a variable di initialized to ⊥. Process pi is allowed to set di to some value v 6= ⊥ only once,
in which case we say that pi decides v. In addition to the initial values y0

i , processes initially
receive the error tolerance ε and an upper bound ∆ on the maximum distance of initial values.

Definition 5 (Approximate consensus). An algorithm solves approximate consensus in N , if
for a given ε > 0 and ∆, each execution E with a communication pattern in N with initial
diameter at most ∆ satisfies:

• Termination. Each process eventually decides.

• ε-Agreement. If processes pi and pj decide v and v′, then ‖v − v′‖6 ε.

• Validity. If process pi decides v, then v is in the convex hull of the initial values
y0

1,E , . . . , y
0
n,E

.

Asymptotic and approximate consensus are clearly closely related.
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3.1.3 Terminating exact consensus

To formally introduce exact agreement problems, we consider some finite value domain V with
⊥ 6= V , and say that pi starts with a initial value xi from the value domain and a value yi = ⊥.
pi has decided in round r (or state sri is decided) if yri = v 6= ⊥ in round r. If yr−1

i = ⊥ and
yri = v 6= ⊥, we say that pi decides in round r on v. Otherwise, it is (still) undecided. Note that,
in the context of the particular algorithms introduced in later sections, we will sometimes also
assign additional attributes to states.

Definition 6 (Consensus). An algorithm solves exact consensus in network model N/M if
in all its executions with communication graphs in N , the following properties hold in every
execution E:

• Termination. Each process eventually decides.

• Agreement. If processes pi and pj decide v and v′, then v = v′.

• Validity. If process pi decides v, then v is among the initial values x1, . . . , xn.

3.1.4 k-set agreement

For the k-set agreement problem [42], which is a relaxation of exact consensus, we assume that
both |V| > k and n > k to rule out trivial solutions:

Definition 7 (k-set agreement). Algorithm A solves k-set agreement, if the following properties
hold in every execution of A:

(Termination) Every process must eventually decide.

(k-Agreement) At most k different decision values are obtained system-wide in any execution.

(Validity) If process pi decides on v, then v is some pj’s initial value xj.

Clearly, consensus is the special case of 1-set agreement; set agreement is a short-hand for
n− 1-set agreement.

We call a consensus or k-set agreement algorithm universal, if it does not have any a priori
knowledge of the network (and hence of n). A k-set agreement algorithm is called k-universal, if
it is universal and does not even require a priori knowledge of k.

3.2 Valency

In this section, we define, based on [57], the notion of valency for a consensus algorithm. The
basic idea is that the valency of some configuration C is defined by the set of reachable limits
of yi from every admissible sequence going through C. We fix a consensus algorithm A that
solves d-dimensional consensus in a certain network model N with n > 2 processes. Let C be a
configuration reachable by A in N . Then we define the valency of C by

Y ∗N (C) = {y∗
E
∈ Rd : C occurs in E ∈ ENA } .
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If the algorithm A is clear from the context, we drop the index.

Let δN (C) = diam(Y ∗N (C)) be the diameter of the set of reachable limits starting from con-
figuration C. It is δN (Cr) → 0 in any execution E = G0, C1, G1, C2, . . . by Convergence and
Agreement. To study the speed of convergence, we introduce the contraction rate of algorithm A
in network model N as

sup
E∈ENA

lim sup
r→∞

r
√
δN (Cr) (3.1)

where E = C0, G1, C1, G2, . . . . In particular, any algorithm that guarantees δN (Cr) 6 αtδN (C0)
for all r > 0 has a contraction rate of at most α.

We obtain the following properties for subsets of network models:

Lemma 8. Let N ,N ′ be two network models with N ′ ⊆ N . If A is an algorithm that solves
consensus in N , then (i) it also solves consensus in N ′, (ii) for every configuration C reachable
by A in N ′, we have Y ∗N ′(C) ⊆ Y ∗N (C), (iii) δN ′(C) 6 δN (C), and (iv) the contraction rate in
N ′ is less or equal to the contraction rate in N .

Proof. Statements (i), (ii), and (iii) immediately follow from the definition of valency. It remains
to show statement (iv). From EN ′A ⊆ ENA and (iii), we deduce

sup
E∈EN′A

lim sup
r→∞

r
√
δN ′(Cr) 6 sup

E∈ENA
lim sup
r→∞

r
√
δN (Cr) ,

which concludes the proof.

We establish two branching properties of valency of configurations in execution trees.

Lemma 9. Let C be a configuration reachable by algorithm A in network model N . Then

Y ∗N (C) =
⋃
G∈N

Y ∗N (G.C) . (3.2)

Proof. First let y∗ ∈ Y ∗N (C). By definition of Y ∗N (C), there exists an execution E = C0, G1, C1, G2, . . .
in ENA and a t > 0 such that y∗ = y∗E and C = Cr. Set G = Gr+1. Hence we have Cr+1 = G.C.
But this shows that y∗ ∈ Y ∗N (G.C) since G.C occurs in execution E whose limit is y∗. This
shows inclusion of the left-hand side in the right-hand side.

Now let G ∈ N and y∗ ∈ Y ∗N (G.C). Then there is an execution E = C0, G1, C1, G2, . . . in ENA
and a r > 0 such that y∗ = y∗E and G.C = Cr. Since C is a reachable configuration, there
exists an execution E′ = C ′0, G′1, C ′1, G′2, . . . in ENA and an s > 0 such that C ′s = C. Then the
sequence

E′′ = C ′0, G′1, . . . , C ′s, G,Cr, Gr+1, . . .

is an execution in ENA with y∗E′′ = y∗E = y∗. Hence y∗ ∈ Y ∗N (C) because C occurs in E′′. This
shows inclusion of the right-hand side in the left-hand side and concludes the proof.

Lemma 10. Let C be a configuration reachable by algorithm A in network model N . Then
there exist G,H ∈ N such that

diam
(
Y ∗N (C)

)
= diam

(
Y ∗N (G.C) ∪ Y ∗N (H.C)

)
. (3.3)
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Proof. Set Y = Y ∗N (C), and YG = Y ∗N (G.C) for G ∈ N . By Lemma 9 it is Y =
⋃
G∈N YG, which

means that every sequence of pairs of points in Y whose distances converge to diam(Y ) includes
an infinite subsequence in some product YG × YH because there are only finitely many. Thus
diam(Y ) 6 diam(YG ∪ YH). The other inequality follows from YG ∪ YH ⊆ Y .

Two configurations C and C ′ are called indistinguishable for process i, denoted C ∼i C ′, if pi is
in the same state in C as in C ′.

As an immediate consequence of the above definition Adm our system model, we obtain:

Lemma 11. Let C and C ′ be two reachable configurations, and let G and G′ be communication
graphs from N . If some process pi has the same in-neighbors in G and G′ and if C ∼j C ′ for
each of pi’s in-neighbors pj, then G.C ∼i G′.C ′.

A process pi is said to be deaf in a communication graph G if pi has a unique in-neighbor in G,
namely pi itself. We are now in position to relate valencies of successor configurations.

Lemma 12. If the process pi has the same in-neighbors in two communication graphs G and G′ in
N , and if there exists a communication graph in N in which i is deaf, then Y ∗N (G.C)∩Y ∗N (G′.C) 6=
∅.

Proof. From Lemma 11, we have G.C ∼i G′.C.

Let Di be a communication graph in N in which the process pi is deaf. Then we consider an
execution E in which C occurs at the end of some round r0 − 1, G is the communication graph
at round r0, and from there on all communication graphs are equal to Di. Analogously, let E′
be an execution identical to E except that the communication graph at round r0 is G′ instead
of G. By inductive application of Lemma 11, we show that for all r > r0, we have Cr ∼i C ′r.
In particular, we obtain yri,E = yri,E′ . Thus y

∗
E

= y∗
E′
, which shows that Y ∗N (G.C) and Y ∗N (G′.C)

intersect.

From Lemma 12 we determined the valency of any initial configuration when the network model
contains certain communication graphs. If every process is deaf in some communication graph
of the network model N , then the next lemma shows that the diameter of the valency of any
initial configuration is equal to the diameter of the set of its initial values.

Lemma 13. If for every process pi, there is a communication graph in N in which pi is deaf,
then each initial configuration C0 satisfies δN (C0) = ∆(y0). In particular, there is an initial
configuration for which δN (C0) > 0.

Proof. Since Y ∗N (C0) is a subset of the convex hull of {y0
1, . . . , y

0
n} by the Validity property of

consensus and since the diameter of the convex hull of {y0
1, . . . , y

0
n} is equal to ∆(y0), we have

the inequality δN (C0) 6 ∆(y0).

To show the converse inequality, let pi and pj be two processes such that ‖y0
i − y0

j ‖ = ∆(y0).
Let E be the execution with initial configuration C0 and a constant communication graph in
which process pi is deaf. Now consider C0

(i), an initial configuration such that all initial values
are set to y0

i , and the execution E(i) from C0
(i) with the same communication pattern as in E.

By a repeated application of Lemma 11, we see that at each round r, we have Cr ∼i Cr(i). Hence,
y∗

E
= y∗E(i)

.
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From the Validity condition, we deduce that y∗(E(i)) = y0
i . It then follows that y0

i ∈ Y ∗N (C0).
By a similar argument, we see y0

j ∈ Y ∗N (C0). Hence

δN (C0) > ‖y0
i − y0

j ‖ = ∆(y0) ,

which concludes the proof.

3.3 Valency for 0/1-exact consensus

To show unsolvability of exact consensus in certain network models N/M, it is common to
assume that processes start with one dimensional input values 0 or 1. If every reachable decision
from some configuration is 0 the configuration is 0-valent. The analogue holds for 1. If a 0 and
a 1 decision is reachable from a configuration it is called bi valent. If we are not interested if it
is 0- or 1-valent, we simple call the valency uni valent.

Note that the previously defined general valency collapses to this specialized definition for exact
consensus if we demand that y∗

E
is either 0 or 1.
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CHAPTER 4
Related work

In this chapter we build on and extend the related work discussed in [22, 57, 98, 98, 100,102,108]
part of which will also be used in Kyrill Winklers thesis [107]. Note that [98] is the proposal of
the FWF project ADynNet, which has supported this thesis.

Dynamic networks have been studied intensively in research (see the overview by Kuhn and
Oshman [71] and the references therein). Early publications on this topic include [3], [14] or [62]
which also mention for the first time modeling a dynamic graph as a sequence of static graphs.
One aspect of dynamic networks that can be used to categorize research in this area is whether
the set of processes is assumed to be fixed or subject for change. Since it would even be difficult
to give a meaningful definition for some agreement problems i.e. k-set agreement in dynamic
networks with churn [63] and node mobility [104], we will only consider static (but of possibly
unknown number) processes in our evaluation of related work.

Besides work on peer-to-peer networks like [73], where the dynamicity of nodes is the primary
concern, different approaches for modeling dynamic connectivity have been proposed, both in
the networking context and in the context of classic distributed computing.

4.1 General dynamic network models

Two prominent models in the field of dynamic networks are the so-called LOCAL and CONGEST
model presented in [86]. The LOCAL model focuses on locality of executions and hence on
one important aspect which is the neighborhood of each process. Each process starts out only
knowing its neighborhood and only gradually learns of the rest of the system. The model
abstracts away other factors like limited message size or limited local computation space and
power. It furthermore assume synchronous communication. The CONGEST model places the
same restrictions on the communication graphs but also adds constrains on the bandwidth per
link. It hence is allows to explore time and message complexity bottlenecks in the system.

In [3], Afek, Gafni and Rosen introduce a model, where the nodes and communication links
of a network form a communication graph. Each edge represents an undirected link, which
in turn consists of a directed pair of links. Moreover edges have a bounded capacity and the
information sent on each link can be arbitrarily delayed. As it allows unbounded transmission
delays, this model can accurately abstract a dynamic network with a fixed set of processes.
Based on this model, [3] proposes algorithms to solve the end-to-end communication problem for
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different criteria. Assuming an upper bound on time a message is being held in the network, they
propose the slide protocol for solving the end-to-end communication problem. Furthermore they
extend the basic slide protocol with a known data dispersal component to optimize the message
complexity to O(n). Finally, they combine an algorithm designed for static network structures
(fixed processes and fixed communication channels) with the slide protocol to obtain a protocol,
that unlike most algorithms for dynamic networks, adequately improves to performance when
being run in a static network.

Kuhn, Moses and Oshman in [70] and Kuhn, Lynch and Oshman in [68] use network models
where communication graphs are organized in lock-step rounds. Furthermore both models
demand that each per round communication graph is connected. In the later case the connected
subgraph has to be the same for an interval of T rounds. As consensus is trivial in both scenarios
the authors focus on solving more complex agreement problems. In particular, they study,
coordinated consensus where the first and the last process must decide within a fixed number of
rounds apart. They also study problems like token dissemination and its performance. Especially
interesting for this thesis is a property called eventual connectedness. It means that two nodes
are connected at some point during the run (not necessarily direct, but via other nodes). This
assumption is also used in different ways in most recent publications about dynamic networks;
we will also use it in this thesis to guarantee termination of our algorithms.

The authors of [14] use a similar model. Again, the set of processes is fixed and the links can
dynamically crash or recover. This is modeled via a finite but unbound travel time per link
in conjunction with a synchronous model. Moreover, each node knows the state of all directly
connected links. The focus of this paper is the exploration of possible combinations of static
approaches with dynamic algorithms. Different approaches are assessed with respect to several
complexity measures like communication, space and time complexity. The main result is a
poly-log time, space and communication simulation of synchronous, static protocols on dynamic
asynchronous networks. To accomplish this, the authors combine the concept of sparse covers to
obtain an improved synchronizer protocol for static networks and the concept of local resets to
implement a local rollback technique. The result is a protocol that can simulate a static system
on a dynamic network.

The main points to gain from these papers, besides the already mentioned results, are that
static solutions can be seen as special cases of dynamic ones. Dynamic algorithms often lack
runtime, space or message complexity improvements when employed in networks with near-static
behavior, however. Moreover, one can conclude that assuming synchrony in a dynamic network
is not far fetched, as it can be achieved by some synchronizer algorithm in an asynchronous
network.

4.2 Round-by-round models

Rather than considering the possibility of unbounded/infinite delay on the transmission link,
Santoro and Widmayer in [96] focus on explicit communication failures and the resulting
consensus possibility/impossibility borders. The basic model is a synchronous system with
dynamic (”moving”) transmission failures. The message sending process is realized via a broadcast
from one process to all other processes in the system via point to point communication over a
fully connected network. The authors distinguish 3 types of failures: omission (message is never
delivered), corruption (message is delivered with different content), and addition (a message is
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delivered although no message was sent). The goal is to achieve agreement among a majority
of the processes (i.e., the system consists of n processes with initial value ∈ {0, 1} and at least
k > n

2 processes shall decide on the same value). They establish conditions on the number of
transmission failures that render this problem solvable/unsolvable. As we are using a similar
model with only omission failures, the result showing that consensus is impossible under the
assumption of n− 1 dynamic omission transmission failures is very important.

Gafnis work on "round-by-round fault detectors" in [59] has some similarity to the "heard-of"
model [40], which we will discuss subsequently. The main difference is that it focuses on process
failures instead of transmission failures. An oracle (a round-by-round fault detector) is used by
each process to obtain a set of processes from which it will not be able to receive any data in
the current round. Thus, the oracle abstracts away the actual reason for not receiving messages.
Moreover, the communication means are also abstracted away, in the sense that it does not
matter whether message passing or shared memory is used. Obviously, abstracting away the
failure source locally at the receiver via a set of faulty processes produced by the oracle has the
benefit that the processes do not have to worry about the reason for and the actual source of
the failure. On the down side, dedicated implementations of the oracle have to be provided for
every different network model, which may or may not be possible.

The "heard-of" model (abbreviated HO-model) published in [40] by Charron-Bost and Schiper is
a generalization of the model introduced in [19] and hence the model used in this thesis. The
processes are fixed and assumed to be fault-free and their execution progresses as a sequence
of lock-step synchronous rounds. It uses a slightly different approach with respect to failures
than [59], which also abstracts away the reason why messages are missing (sender crash, receiver
failure, etc.). The only information describing communication in each round is a set H(p, r),
which consists of all processes that have successfully sent a message to p in round r. Rounds
are communication-closed, so messages sent in some round r can only be received in the same
round r, and are disregarded and hence not included in any H(p, r) if received late. Thus, a run
is described by a set H(p, r) for each node, for every round r > 1, which is determined by the
adversary. To make different agreement problems solvable in the HO-model, different predicates
restricting the freedom of the adversary are usually required [40]. Note that there is also a
Byzantine extension of the HO-model [16]. Obviously, the HO-model is a suitable abstraction for
wireless communication, because every participant simply broadcasts its messages but only has
knowledge about received information. It is also a reasonable way to hide the different sources
of failures in the communication model and to handle different communication failures via the
HO-sets.

A model that is similar to the HO-model is the perception-based model by Biely, Schmid and
Weiss [23]. A sequence of perception matrices, the rows of which are the sets of messages received
by some processes, is used to express failures of processes and links. A hybrid failure model, which
supports different types of process an link failures, is used to restrict the possible perception
matrices in a round-by-round fashion. To circumvent the impossibility of transmission failures
established in [96], for example, a restriction to the number of transmission failures per process
for outgoing and incoming links can be applied. Since these failures are tied to each process on
a per round basis, agreement can be achieved in the presence of O(n2) transmission failures per
round. In [23] the authors discuss a suite of consensus algorithms under this model, ranging
from the oral messages (EIG) algorithm to the Phase Queen and the Phase King algorithms.
The lower bound results established in [23] make it clear that there is no hope to solve consensus
without quite strong connectivity guarantees. In particular, without some eventual stability
assumptions, the number of link failures per round has to be bounded for every process.
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4.3 Message adversaries

A central element in this thesis, namely, message adversaries, is most prominently featured
in Afek and Gafni [2], where they used them for relating problems solvable in wait-free read-
write shared memory systems to those solvable in message-passing systems, and in Raynal and
Stainer [94] where message adversaries are used to explore the relationship between round-based
models and failure detectors. In the latter, simulations between a message adversary and a failure
detector are used to prove the same computational power of the two models. Moreover, based
on this task equivalence, a hierarchical structure of message adversaries and failure detectors
has been developed.

An equivalent concept has already been used in [18] and [19], which study consensus and k-set
agreement under certain communication graph sequences: In [18], the goal was to solve k-set
agreement for graph sequences containing a stable skeleton graph as a subgraph per round.
In [19], the pivotal concept of vertex-stable strongly connected components has been introduced.
The goal is to solve consensus under the assumption that at some point during the execution
the information of a set of strongly connected processes can reach every process in the systems
albeit processes do not know when this will happen. These vertex-stable components form the
basis for most of the message adversaries studied in Section 6.

4.4 Asymptotic consensus

The problem of asymptotic consensus in dynamic networks has been extensively studied, see
e.g. [7, 24, 27, 43, 80]. The question of guaranteed convergence rates and decision times of the
corresponding approximate consensus problems, naturally arise in this context. Algorithms with
convergence times exponential in the number of processes have been proposed, e.g., in [27].

Olshevsky and Tsitsiklis [85], proposed an algorithm with polynomial convergence time in
bidirectional networks with certain stability assumptions on the occurring communication
graphs. The bounds on convergence times were later on refined in [81]. Chazelle [43] proposed
an averaging algorithm with polynomial convergence time, which works in any bidirectional
connected network model.

To speed up decision times, algorithms where processes set their output based on values also
received in previous round rather than just in the current round, have also been considered in
literature: Olshevsky [84] proposed a linear convergence time algorithm that uses messages from
two rounds, however, being restricted to fixed bidirectional communication graphs. In [110],
a linear decision time algorithm for a possibly non-bidirectional fixed topology was proposed.
It requires storing all received values. In previous work [38], Charron-Bost et al. proposed the
midpoint algorithm, which has constant decision time in non-split network models, and the
amortized midpoint algorithm with linear decision time in rooted network models. Non-split
means that each round of communication guarantees for every pair of process to receive a
message from a common process.

To the best of our knowledge, the only lower bound on convergence rate in dynamic networks
has been shown in [28]: the authors proved that the convergence rate of a specific averaging
algorithm in a non-split network model with n processes is at least 1− 1

n .

In the context of classical distributed computing failure scenarios, Dolev et al. [48] studied the
related approximate agreement problem: they considered fully-connected synchronous distributed
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systems with up to f Byzantine processes, and its asynchronous variant. The two presented
algorithms require n > 3f + 1 for the synchronous and n > 5f + 1 for the asynchronous
distributed system, the first of which is optimal in terms of resilience [55]. The latter result
was later on improved to n > 3f + 1 in [1]. Both papers also address the question of optimal
contraction rate in such systems. Since, however, in synchronous systems with n > 3f + 1, exact
consensus is solvable, which results in to a contraction rate of 0, the authors consider bounds
for round-by-round contraction rates. In [48], they show that the achieved round-by-round
contraction rate of 1

2 is actually tight for a certain class of algorithms that repeatedly set their
output to the image of a so-called ”cautious function” applied to the multiset of received values.
Lower bounds for arbitrary algorithms, however, remain an open problem. In higher dimensions,
Mendes et al. [79] proposed algorithms with a convergence time of d · dlog2

√
d∆
ε e under the

optimal resiliency condition n > f ·max{3, d+ 1}+ 1.

Fekete [53] also studied round-by-round contraction rates for several failure scenarios, again, all in
which exact consensus is solvable. He proved asymptotically tight lower bounds for synchronous
distributed systems in presence of crashes, omission, and Byzantine processes. The bounds hold
for approximate agreement algorithms that potentially take into account information from all
previous rounds.

4.5 Exact consensus

Early work [87] proposed a model with send and receive omission faults where sending or
receiving processes may lose messages. The authors provide a fast, e.g. early stopping, and
efficient algorithm which solves the ”generals problem”, a problem closely related to consensus.

In [96], Santoro and Widmayer introduced the moving omission failure model and proved that
n − 1 lost messages per round already make consensus unsolvable. [99] extended the moving
omission failure model by allowing up to n2 faults per round, albeit for restricted failure patterns:
If the number of send omission faults and receive omission faults per process and round remains
suitably bounded consensus is still solvable. Both papers also deal with both message omissions
and corruption.

Consensus under a model with round-by-round communication graphs has been studied by Biely,
Robinsion and Schmid in [19]. The set of processes is assumed to be fixed and communication
is modeled by a sequence of round graphs Gr, exactly as in the setting of message adversaries.
Instead of a stable skeleton, however, it is assumed that each round graph is at least weakly
connected and has at most one root component,i.e. a strongly connected component without
incoming edges. Moreover, eventually, the root component needs to be vertex-stable, i.e. consist
of the same process, for a certain number of consecutive rounds to guarantee termination. The
model can be placed between class 1 and 3 of the framework established in [32] (note that it is
strictly weaker than 3 and stronger than 1).

An algorithm for solving consensus in this model has been proposed which can detect vertex-
stable root components and determine their stability intervals. The idea is to optimistically "lock"
on D + 1-stable root components (D is an upper bound on the information propagation in a
strongly connected component) and to promote the locked on information among all processes in
the weakly connected component. If the vertex-stability of a root component holds for further D
rounds, the algorithm can safely decide, because it is guaranteed that the locked on information
has reached every process in the associated weakly connected component. Interestingly, for a
single process to terminate, a much smaller stable root interval is needed than for guaranteeing
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global termination. Actually the global termination time interval is twice as long (4D+ 1). Thus,
it is possible to have some decision in the network without the majority of the processes knowing.
We will see that we have a very similar problem for the k-set case, where some processes that
already made decisions but are "hidden" in different components could try to promote their own
values later, which would violate the agreement part.

Furthermore, [19] shows, via an impossibility result, that in a model with such weak assumptions,
consensus is impossible if no root is vertex stable for at least D rounds. Thus, building on D
stable intervals, as we are doing in this thesis, seems a reasonable starting point to solve different
agreement problems.

Coulouma et al. show in [46] that for oblivious message adversaries the exact consensus
problem and the broadcast problem are closely related. Furthermore they provide a formal
framework for oblivious message adversaries which allows a precise characterization of the
solvability/impossibility border. They show that each set of graphs can be sorted into subsets
called β-classes. This sorting is based on indistinguishability of graphs for subsets of processes
S where S is a so called source component of a graph in the β-class. Consensus can be solved
in a β-class if at least one process can reach every other process in each graph part of the
β-class, which then is called broadcastable. Hence, they provide an algorithm which solves exact
consensus if all β-classes are broadcastable on the one hand and on the other hand present an
impossibility result if at least one β-class is not broadcastable.

4.6 k-set agreement

The k-set agreement problem is a well known problem in distributed computing. Introduced
in [42], it has been studied under many different system models and failure assumptions [6]. Most
of these assumptions imply static models, typically involving a foreknown maximum number f
of faulty processes and bidirectional reliable communication links between processes.

For synchronous systems, where one assumes full connectivity, algorithms for this problem are
rather simple and mostly based on some upper bound on the required number of rounds, like
bfk + 1c. These upper bounds, which usually depend on the number of faulty processes in the
network, ensure sufficient information flow between correct processes.

Since k-set agreement is a relaxation of consensus, it has primarily been used to explore the
possibility/impossibility border of computability in asynchronous systems. In particular, [95]
or [26] establish impossibility results in the f-crash resilient asynchronous model via arguments
from algebraic topology. They prove that, for f > k, where f is the maximum number of crashed
processes, k-set agreement is impossible.

In [20], partially synchronous systems with weak synchrony requirements were provided which
allow a solution for k-set agreement. This is done via the so called generalized (n− k)-loneliness
failure detector. Furthermore they show that this failure detector is also a weakest failure
detector for anonymous systems. In an anonymous system unique identifiers are not available to
the process.

A model that comes close to dynamic networks as defined in this thesis is proposed in [91], where
general omission failures are assumed. Such failures include process crashes, send omission and
receive omission faults. Nevertheless the faults are bound to the processes and not to the links
between processes. Moreover, they do not use the standard distinction between correct and
faulty processes but use good and bad processes to define if k-set agreement is solvable. A good
process neither crashes nor commits receive omission failures.
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As already established in the introduction, static assumption are not suitable for modeling k-set
agreement in dynamic systems. A first step towards a more dynamic setting has been made
in [18], though. It considers k-set agreement in a model similar to the HO-model, where the
communication predicate guarantees a stable skeleton graph: Each round is represented by a
communication graph Gr, which consists of nodes (processes) and directed edges (p, q) modeling
round r communication between process p and g, i.e., when p ∈ H(q, r). The assumption of a
stable skeleton graph guarantees that

⋂
r>1G

r is non- empty, i.e., that there is a non-empty set
of edges, which are present in every round.

Moreover, [18] assumes that in each possible set of k + 1 nodes of the stable skeleton graph, two
nodes share the same parent node in every round. This "two-source" assumption guarantees that
the stable skeleton consists of at most k root components i.e., strongly connected component
with no incoming edges. An algorithm was proposed that can detect root components via
approximating the stable skeleton; since the approximation eventually stabilizes, so do the roots.
To solve k-set agreement, it is sufficient to guarantee a common decision among all members
of a root. This is possible, since all members of a root can exchange information (as the root
is strongly connected) and can reach all nodes in the associated weakly connected component.
In [17], the authors establish a framework for k-set agreement easy impossibility proofs. It can
be used to show impossibility results in different models via the same generic theorem, which
reduces k-set agreement to consensus in certain executions. Basically, it uses the concept of
restricted algorithms for relating executions of the whole system and executions of disconnected
components. The relation is based on indistinguishable runs for some processes. Essentially,
the executions considered assume k disconnected components. Since disconnected components
never hear from each other during the whole run, independent decisions can be forced in every
component. Obviously, to guarantee the k-agreement property, i.e., no more than k different
decisions, this requires to solve consensus within every component. The impossibility of k-set
agreement follows from showing that the restricted algorithm cannot solve consensus in at least
one component.

Regarding k-set agreement in dynamic networks, we are not aware of any previous work
except [103], where bidirectional links are assumed, and [18], where the existence of an underlying
static skeleton graph (a non-empty common intersection of the communication graphs of all
rounds) with at most k static source components was assumed. Note that this essentially implies
a directed dynamic network with a static core. By contrast, the algorithms presented in this
thesis and published in [22] allow the directed communication graphs to be fully dynamic.

4.7 Degrading consensus problems

Graceful degradation means that the algorithm tries to adapt to the current situation of the
system. In the case of k-set agreement, for example, one strives for as few different decisions as
possible, in the optimal case, just one. We are not aware of related work exploring gracefully
degrading consensus. However, there have been several attempts to weaken the semantics of
consensus, in order to cope with partitionable systems and excessive faults. Vaidya and Pradhan
introduced the notion of degradable agreement [105], where processes are allowed to also decide
on a (fixed) default value in case of excessive faults. The almost everywhere agreement problem
introduced by [51] allows a small linear fraction of processes to remain undecided. Aguilera
et. al. [4] considered quiescent consensus in partitionable systems, which requires processes
outside the majority partition not to terminate. None of these approaches is comparable to
gracefully degrading k-set agreement, however: On the one hand, we allow more different
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decisions, on the other hand, all correct processes are required to decide and every decision must
be the initial value of some process.

Ingram et. al. [65] presented an asynchronous leader election algorithm for dynamic systems,
where every component is guaranteed to elect a leader of its own. Whereas this behavior clearly
matches our definition of graceful degradation, contrary to decisions, leader assignments are
revocable and the algorithm of [65] is guaranteed to successfully elect a leader only once the
topology eventually stabilizes.

4.8 Other agreement problems

Agreement problems in dynamic networks with undirected communication graphs have been
studied in [12,45,72]. [12] provides fast randomized distributed algorithms that guarantee stable
almost-everywhere agreement with high probability. In [72] the authors focus on eventual,
simultaneous, and δ-coordinated consensus, as well as their relationship to other distributed
problems. In [45], an asymptotically optimal algorithm in respect to time complexity which
solves the regional consecutive leader election (RCLE) problem is presented.

In terms of the classes of [32], the model of [68] is in one of the strongest classes (Class 10) in
which every process is always reachable by every other process. They study problems like token
dissemination and show that calculating the size of the system is bound by O(n2) in their model.

The leader election problem in dynamic networks has been studied in [44,45], where the adversary
controls the mobility of nodes in a wireless ad-hoc network. This induces dynamic changes of
the (undirected) network graph in every round and requires any leader election algorithm to
take Ω(Dn) rounds in the worst case, where D is a bound on information propagation.
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CHAPTER 5
Oblivious message adversaries

The following section is based on [57] and explores oblivious message adversaries that are too
strong to allow a solution of exact consensus but weak enough for asymptotic consensus. We will
give tight bounds for the contraction rate for some of those message adversaries and furthermore
connect Coulouma et al.’s [46] framework used for exploring the impossibility/solvability border
for exact consensus in oblivious message adversaries to derive a general bound on contraction
rates.

In a previous paper [37], Charron-Bost et al. proved the following characterization of network
models in which asymptotic consensus is solvable which is based on the notion of a directed
spanning tree. A spanning tree is a cycle free graph where exactly one process has a path to
every other process in the graph.

Theorem 14 ([37, Theorem 5]). In any dimension d, the asymptotic consensus problem is
solvable in a network model N if and only if each graph in N has a rooted spanning tree.

For the proof of the sufficient condition, Charron-Bost et al. focused on convex combination
algorithms, where each process pi updates its variable yi to a value within the convex hull of
values yr−1

j it has just received. For the proof of the necessary condition, it is easy to show that
if even one graph is disconnected, by applying this graph forever, consensus is unsolvable.

If every graph in N has a rooted spanning tree, we call a network model rooted.

Furthermore, they showed in [37] that convex combination algorithms where processes update
their yi via a weighted average of the received values, with weights that only depend on the
currently received values, also solve asymptotic consensus in rooted network models. Such
algorithms are memoryless, require little computational overhead and, more importantly, have
the benefit of working in anonymous networks. Interestingly, their consensus function y∗ is
continuous.

Theorem 15. The consensus function of every convex combination algorithm that solves asymp-
totic consensus is continuous on the set of its executions.

Proof. Let (Es)s>0 be a sequence of executions that converges to E. By definition of the distance
dist(E,E′) on the execution space in Section 2, this in particular means that

∀r > 0 ∃sr ∀s > sr : y0
s = y0, y1

s = y1, . . . , yrs = yr (5.1)
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where yrs and yr denote yr
Es

and yr
E
, respectively.

Let ε > 0. By the definition of the limit y∗ of execution E, there exists some r such that

∀pi ∈ [n] : ‖yri − y∗‖ 6 ε/3 .

By (5.1), there is an sr such that

∀s > sr ∀pi ∈ [n] : ‖yis(t)− y∗‖ 6 ε/3 .

By the triangle inequality, this means

∀s > st ∀i, j ∈ [n] : ‖yis(t)− yjs(t)‖ 6 2ε/3 .

Because the algorithm is a convex combination algorithm, the limit y∗s lies in the convex hull of
the points y1

s(t), . . . , yns (t). That is,

∀s > st ∀i ∈ [n] : ‖yis(t)− y∗s‖ 6 2ε/3 .

Combining these inequalities gives

∀s > st : ‖y∗s − y∗‖ 6 ‖y∗s − yis(t)‖+ ‖yis(t)− y∗‖ 6
2ε
3 + ε

3 = ε

where i is any process. This proves lim
s→∞

y∗s = y∗ as required.

Observe that in the case A is a convex combination algorithm, the valency of a configuration C
is a compact set in Rd since the consensus function is continuous and the set of executions in
which C occurs is a compact set. The execution space is compact and thus the set of executions
containing C is closed. It follows that the latter is also compact.

In [46], Coulouma et al. characterized the network models in which exact consensus is solvable.
In [37], Charron-Bost et al. showed that asymptotic consensus is solvable in a significantly
broader class: it is solvable if and only if a network model is rooted. In the rest of this chapter
we aim to shed light on the deeper relation between these two problems by studying valencies
and convergence rates. The main results are a characterization of the topological structure
of valencies with respect to solvability of exact consensus (Theorem 25) and nontrivial lower
bounds on the contraction rates whenever exact consensus is not solvable (Theorem 27 and
Corollary 28).

We start with recalling some definitions from Coulouma et al. [46]. In the following, we denote
by R(G) the set of roots of a communication graph G, i.e., the set of processes that have a
directed path to all other a directed path to all other processes in G. For a set S ⊆ [n], let
InS(G) =

⋃
j∈S Inj(G). The set OutS(G) is defined analogously.

Definition 16 ([46, Definition 4.7]). Let N be a network model. Given G,H,K ∈ N , we define
GαN ,KH if InR(K)(G) = InR(K)(H). The relation α∗N is the transitive closure of the union of
relation αN ,K where K varies in N .

Definition 17 ([46, Definition 4.8]). Let N be a network model. We define the relation βN to
be the coarsest equivalence relation included in α∗N such that for all G,H holds:
(Closure Property) If GβNH, then there exists a non negative integer q and communication
graphs H0, . . . ,Hq ∈ N and K1, . . . ,Kq ∈ N such that

• (i) G = H0 and H = Hq

• (ii) ∀r ∈ [q] : HrβNG and KrβNG

• (iii) ∀r ∈ [q] : Hr−1αN ,KrHr
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Figure 5.1: The rooted communication graphs H0, H1, and H2 for n = 2

5.1 Tight bounds for asymptotic consensus

Lower Bound for n = 2

Next, be prove a lower bound of 1/3 on the contraction rate of algorithms that solve asymptotic
consensus in the network model of all rooted (and here also non-split) communication graphs
with two processes. Combined with Algorithm 1 which achieves this lower bound [38], we have
indeed identified a tight bound on the contraction rate for n = 2. Moreover, the algorithm also
shows that the lower bound is achieved by a simple convex combination algorithm.

Algorithm 1 Algorithm with contraction rate 1/3 for n = 2
Require:
1: yi ∈ R
Ensure:
2: send yi to other process and receive yj if pj ∈ Int

i

3: if yj was received then
4: yi ← yi/3 + 2yj/3
5: end if

A straightforward analysis of Algorithm 1 shows that its contraction rate is equal to 1/3.

Note that for n = 2, there are 3 possible rooted communication graphs that may occur, all of
which are non-split; see Figure 5.1: (i) H0 in which all messages are received, (ii) H1 in which
process 2 receives process 1’s message but not vice versa, and (iii) H2 in which process 1 receives
process 2’s message but not vice versa.

Theorem 18. The contraction rate of any asymptotic consensus algorithm for n = 2 processes
in a network model that includes the three graphs H0, H1, and H2 is greater or equal to 1/3.

Proof. We show the stronger statement that for every initial configuration C0 there is an
execution E = C0, G1, C1, G2, . . . starting from C0 such that

δN (Cr) > 1
3r · δN (C0) (5.2)

for all r > 0. This, applied to an initial configuration with δN (C0) > 0, which exists by
Lemma 13, then shows the theorem.

Note that it suffices to show (5.2) for the specific network model N ′ = {H0, H1, H2} because
δN (Cr) > δN ′(Cr) by Lemma 8 and δN ′(C0) = δN (C0) by Lemma 13 whenever N ⊇ N ′. We
hence suppose N = N ′ in the rest of the proof.

The proof is by inductive construction of an execution E = C0, G1, C1, G2, . . . whose configura-
tions Cr satisfy (5.2). Equation (5.2) is trivial for r = 0.

Now assume r > 0 and that Equation (5.2) holds for r. There are three possible successor
configurations of Cr, one for each of the communication graphs H0, H1, and H2 in N ′. Set
Cr+1
k = Hk.C

r. Further let Y = Y ∗N ′(Cr), and Yk = Y ∗N ′(C
r+1
k ).
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We will show that there is some k̂ ∈ {0, 1, 2} with diam(Yk̂) > diam(Y )/3. We then define
Gr+1 = Hk̂ and Cr+1 = Cr+1

k̂
. By the induction hypothesis, we then have

δN ′(Cr+1) > δN ′(Cr)/3 > δN ′(C0)/3r+1 , (5.3)

i.e., Equation (5.2) holds for r + 1.

Assume by contradiction that diam(Yk) < diam(Y )/3 for all k ∈ {0, 1, 2}. From Lemma 9 we
have Y = Y0 ∪ Y1 ∪ Y2. Noting that process 1 is deaf in H1 and process 2 has the same incoming
edges as in H0, and that process 2 is deaf in H2 and process 1 has the same incoming edges as
in H0, we obtain from Lemma 12 that

Y0 ∩ Y1 6= ∅ and Y0 ∩ Y2 6= ∅ . (5.4)

The sets Y0 and Y1 intersecting means

diam(Y0 ∪ Y1) 6 diam(Y0) + diam(Y1) < 2
3 diam(Y ) . (5.5)

Further, the sets Y0 ∪ Y1 and Y2 intersecting means

diam(Y ) = diam(Y0 ∪ Y1 ∪ Y2) 6 diam(Y0 ∪ Y1) + diam(Y2) < diam(Y ) , (5.6)

a contradiction. This concludes the proof.

Lower Bound for n > 3

In this subsection, we prove a lower bound of 1/2 on the contraction rate of asymptotic consensus
algorithms for n > 3 processes, in a network model that includes graphs derived from a
communication graph G where processes are made deaf in the derived graphs. As a special
case this includes the network model of all non-split communication graphs. Charron-Bost et
al. [38] presented the midpoint algorithm (given in Algorithm 2) for dimension d = 1, which has
a contraction rate 1/2 for non-split communication graphs. Together this shows tightness of our
lower bound in dimension one.

Algorithm 2 Midpoint algorithm
Require:
1: yi ∈ R
Ensure:
2: send yi to all processes in Outr

i and receive yj from all processes pj in Inr
i

3: mi ← min
{
yj | j ∈ Inr

i

}
4: Mi ← max

{
yj | j ∈ Inr

i

}
5: yi ← (mi +Mi)/2

One can apply the algorithm component wise in dimension d = 2 to show tightness of our lower
bound also there. Unfortunately, component wise application in dimension d > 3 does not yield
an asymptotic consensus algorithm [39].

We start with a lower bound proof for the network models that include certain deaf graphs.
Let G be an arbitrary communication graph. Consider a system with n > 3 processes, and
the n communication graphs F1, . . . , Fn where Fi is obtained by making pi deaf in G, i.e., by
removing all the edges towards pi except the self-loop (pi, pi): let deaf(G) = {F1, . . . , Fn} with
Fi = G \ {(pj , pi) : pj ∈ [n] \ {pi}}.
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Theorem 19. The contraction rate of any asymptotic consensus algorithm for n > 3 processes
in a network model that includes deaf(G) is greater or equal to 1/2.

Proof. We show the stronger statement that for every initial configuration C0 there is an
execution E = C0, G1, C1, G2, . . . starting at C0 such that

δN (Cr) > 1
2r δN (C0) (5.7)

for all r > 0. It suffices to show (5.7) for the specific network model N ′ = deaf(G) because
δN (Cr) > δN ′(Cr) by Lemma 8 and δN ′(C0) = δN (C0) by Lemma 13 whenever N ⊇ N ′. We
hence suppose N = N ′ in the rest of the proof. The proof is by inductive construction of an
execution E = C0, G1, C1, G2, . . . whose configurations Cr satisfy (5.7). This, applied to an
initial configuration with δN (C0) > 0, which exists by Lemma 13, then shows the theorem.

For r = 0 the inequality holds trivially.

Now let r be any positive integer and assume that Equation (5.7) holds for r. There are n
possible successor configurations based on the applicable communication graphs F1, . . . , Fn. We
denote Cr+1

k = Fk.C
r, for any process k. Further let Y = Y ∗N ′(Cr), and Yk = Y ∗N ′(C

r+1
k ).

We will show that there exists some process k̂ ∈ [n] such that

diam(Yk̂) > diam(Y )/2 . (5.8)

We then define Gr+1 = Fk̂ and Cr+1 = Cr+1
k̂

. By (5.8) and the induction hypothesis, we have

δN ′(Cr+1) > δN ′(Cr)
2 >

1
2r+1 δN ′(C

0) , (5.9)

i.e., Equation (5.7) holds for r + 1.

Assume by contradiction that diam(Yk) < diam(Y )/2 for all k ∈ [n]. Recall that process pi is
deaf in Fi and has the same in-neighbors in all the communication graphs Fj with pj 6= pi. Since
n > 3, for any pair of processes pi, pj we may select a process p` different from pi and pj such
that p` has the same in-neighbors in Fi as in Fj . Lemma 12 with the assumption that F` is in N
shows that for any pair of processes pi, pj , we have

Yi ∩ Yj 6= ∅ . (5.10)

By Lemma 10, there exist k, k′ ∈ [n] such that diam(Yk ∪ Yk′) = diam(Y ). In particular, we can
choose pi = pk and pj = pk′ , which implies that

diam(Y ) = diam(Yk ∪ Yk′) 6 diam(Yk) + diam(Yk′) < diam(Y ) (5.11)

which is a contradiction and concludes the proof.

Note that the network model deaf(Kn) is a subset of the network model that contains all non-split
communication graphs. Hence the lower bound holds and since Algorithm 2 is applicable the
claim of a tight bound follows. In fact it would even be sufficient to reduce deaf(G) to the
graphs Fi, Fj , Fl with pi, pj , p` ∈ [n].
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5.2 Relation between asymptotic consensus and exact
consensus and generalized bounds

We next show properties of subsets of the network model N that form βN -classes.

Lemma 20. Let N be a network model and let N ′ ⊆ N be a βN -class. Then Gα∗N ′H and
GβN ′H for all G,H ∈ N ′.

Proof. Let G,H ∈ N ′. Since GβNH, there is a q and H0, . . . ,Hq ∈ N and K1, . . . ,Kq ∈ N such
that (i) G = H0 and H = Hq (ii) HrβNG and KrβNG for all r ∈ [q], and (iii) Hr−1αN ,KrHr for
all r ∈ [q]. Condition (ii) implies H0, . . . ,Hq ∈ N ′ and K1, . . . ,Kq ∈ N ′ since they belong to
the same βN -class as G, i.e., N ′. Since all Hr are in N ′, condition (iii) can be strengthened to
Hr−1αN ′,KrHr for all r ∈ [q].

But this means that the pair (G,H) is in the transitive closure of the union of the relations
αN ′,K1 , . . . , αN ′,Kq , and thus in α∗N ′ . Hence α∗N ′ = N ′ ×N ′, i.e., the first part of the lemma.

To show the second part, define relation β̃ = N ′ × N ′, which, as we just proved, is included
in α∗N ′ . But it also satisfies the closure property in N ′. Since β̃ is the coarsest equivalence
relation on N ′, we thus have βN ′ = β̃ = N ′ ×N ′, i.e., the second part of the lemma.

Definition 21 ([46, Definition 4.5]). A network model N is called source-incompatible if⋂
G∈N

R(G) = ∅ .

The proof of Coulouma et al. [46] actually shows a stronger version of their theorem (they focus
on binary consensus), stated below:

Theorem 22 (Generalization of Theorem 4.10 in [46]). Let N be a network model. Exact
consensus is solvable in N if and only if each βN -class is not source-incompatible.

We start with showing a generalization of Lemma 12, which allows us to induce non-empty
intersection of valencies.

Lemma 23. Let C be a configuration of an asymptotic consensus algorithm A for N . For
all configurations C in an execution of A in N , and for all G,H,K ∈ N , if GαN ,KH then
Y ∗N (G.C) ∩ Y ∗N (H.C) 6= ∅.

Proof. By the definition of GαN ,KH it is InR(K)(G) = InR(K)(H). Hence, together with
Lemma 11, it follows that G.C ∼i H.C for all nodes i in R(K). We consider an execution E in
which C occurs at some t0 − 1, G is the communication graph at t0 and all following graphs are
equal to K. Analogously, let E′ be an execution identical to E except that the communication
graph at round t0 is H instead of G. By inductive application of Lemma 11, we show that for
all t > r0, we have Cr ∼i C ′r. In particular, we obtain yri,E = yri,E′ . Thus y

∗
E

= y∗
E′
, which shows

that Y ∗N (G.C) and Y ∗N (H.C) intersect.

We next establish that for network models in which exact consensus is not solvable, asymptotic
consensus algorithms must have initial configurations that can be extended to executions with
different limit outputs.
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Lemma 24. Let N be a network model in which exact consensus is not solvable. Then, for all
asymptotic consensus algorithms A, there exists an initial configuration C0 such that Y ∗N (C0) is
not a singleton.

More precisely, for every ∆ > 0, there exists an initial configuration C0 such that ∆
(
y0) 6 ∆

and δN (C0) > ∆/n.

Proof. We assume without loss of generality that d = 1. If not, we embed the initial values in
any 1-dimensional affine subspace.

Let N ′ ⊆ N be any source-incompatible βN -class, which exists by Theorem 22. Consider the
n+ 1 initial configurations C0

(k) where 0 6 k 6 n with initial values

y0
i,(k) =

{
∆ if i 6 k
0 if i > k .

For all these initial configurations, we have ∆
(
y0

(k)
)
6 ∆. Define a(k) = inf Y ∗N ′

(
C0

(k)
)
and

b(k) = supY ∗N ′
(
C0

(k)
)
. By Validity, Y ∗N ′

(
C0

(0)
)

= {0} and Y ∗N ′
(
C0

(n)
)

= {∆}, which means
a(0) = b(0) = 0 and a(n) = b(n) = ∆. There exists some k with 1 6 k 6 n such that
b(k−1) 6 b(k)−∆/n since otherwise 0 = b(0) > b(n)−∆ = 0. Because N ′ is source-incompatible,
for every process k, there exists a communication graph G(k) ∈ N ′ such that k 6∈ S

(
G(k)

)
. Since

C0
(k−1) ∼i C

0
(k) for all i ∈ S

(
G(k)

)
, choosing two executions with all communication graphs equal

to G(k) shows that Y ∗N ′
(
C0

(k−1)
)
∩ Y ∗N ′

(
C0

(k)
)
6= ∅, which implies a(k) 6 b(k − 1). Combining

both inequalities gives a(k) 6 b(k)−∆/n and shows that δN ′
(
C0

(k)
)

= b(k)− a(k) > ∆/n. We
hence choose the initial configuration C0 = C0

(k).

This shows δN (C0) > δN ′(C0) > ∆/n by Lemma 8 and concludes the proof.

This finally allows us to derive one of our main results of this section: a characterization of
network models in which exact consensus is solvable by the topological structure of valencies of
asymptotic consensus algorithms.

Theorem 25. Let N be a network model. Exact consensus is solvable in N if and only if there
exists an asymptotic consensus algorithm A for N such that Y ∗N ′,A(C0) is either a singleton or
disconnected for all network models N ′ ⊆ N and all initial configurations C0 of A.

Proof. (⇒): Assume that exact consensus is solvable in N , an let A′ be an algorithm that solves
exact consensus in N . Let A be the algorithm derived from A′ in that deciding is replaced
by setting its output variable to the decision value of A′ and not changing it anymore. Before
the decision of algorithm A′, algorithm A outputs its initial value. Then A is an asymptotic
consensus algorithm in N . Further, from Validity of exact consensus, for any initial configuration
C0, the valency Y ∗N ,A(C0) is a subset of the set of initial values in C0. As the set of initial values
of C0 is finite, so is Y ∗N ,A(C0) and, by Lemma 8, also Y ∗N ′,A(C0) for all N ′ ⊆ N . Since any finite
set is either a singleton or disconnected, the claim follows.

(⇐): We assume without loss of generality that d = 1. If not, we embed the initial values in any
1-dimensional affine subspace.

We proceed by means of contradiction. Assume that exact consensus is unsolvable in N .
We will show that for all asymptotic consensus algorithms A for N , there exists an initial
configurations C0 and a network model N ′ ⊆ N such that Y ∗N ′,A(C0) is a nontrivial interval.
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By Theorem 22, there is a source-incompatible βN -class. Choose N ′ to be equal to such a class.
We choose C0 via Lemma 24 such that Y ∗N ′(C0) is not a singleton.

To show that Y ∗N ′(C0) is connected, we assume to the contrary that it is not and derive a
contradiction. The set Y ∗N ′(C0) not being connected means the existence of some z 6∈ Y ∗N ′(C0)
such that

∃z1, z2 ∈ Y ∗N ′(C0) : z1 < z < z2 . (5.12)
We will inductively construct an execution E = C0, G1, C1, G2, . . . such that

∃z1, z2 ∈ Y ∗N ′(Cr) : z1 < z < z2 (5.13)

for all r > 0. Setting m(r) = inf Y ∗N ′(Cr) and M(r) = supY ∗N ′(Cr), we then have m(r) 6
z 6M(r) by (5.13) and M(r)−m(r) = δN ′(Cr)→ 0 by Convergence and Agreement. Hence
lim
r→∞

m(r) = lim
r→∞

M(r) = z, which means

lim
r→∞

Y ∗N ′(Cr) =
⋂
r>0

Y ∗N ′(Cr) = {z} ,

where the first equality follows from Lemma 9. In particular z ∈ Y ∗N ′(C0), which gives the
desired contradiction.

It thus suffices to construct execution E satisfying (5.13). Assume that (5.13) holds for a
given r > 0 and let z(r)

1 , z
(r)
2 ∈ Y ∗N ′(Cr) with z(r)

1 < z < z
(r)
2 . By Lemma 9, it follows that there

are communication graphs G,H ∈ N ′ with z(r)
1 ∈ Y ∗N ′(G.C) and z(r)

2 ∈ Y ∗N ′(H.C). By Lemma 20,
we have Gα∗N ′H. Thus there exists a chain G = H0, H1, . . . ,Hq = H ∈ N ′ and communication
graphs K1, . . . ,Kq ∈ N ′ such that Hs−1αN ′,KsHs for all s ∈ [q]. From Lemma 23 we thus know
that

Y ∗N ′(Hs−1.C) ∩ Y ∗N ′(Hs.C) 6= ∅ (5.14)
for all s ∈ [q]. Set f(s) = inf Y ∗N ′(Hs.C) and g(s) = supY ∗N ′(Hs.C) for s ∈ {0, . . . , q}, and

ŝ = min
{
s ∈ {0, . . . , q} | g(s) > z

}
.

Then f(0) 6 z
(r)
1 6 g(0) and f(q) 6 z

(r)
2 6 g(q). The quantity ŝ is well defined since

g(q) > z(r)
2 > z. We show f(ŝ) < z by distinguishing two cases:

1. ŝ = 0: Then f(ŝ) = f(0) 6 z(r)
1 < z.

2. ŝ > 1: Then, by (5.14) and the definition of ŝ, we have f(ŝ) 6 g(ŝ− 1) < z.

In both cases, we showed f(ŝ) < z < g(ŝ). Choosing Gr+1 = Hŝ and Cr+1 = Gr+1.Cr, we hence
proved (5.13) for r + 1. This concludes the proof.

We next introduce the α-diameter of a network model N , which we will then (cf. Theorem 27
and Corollary 28) show to be directly linked to a nontrivial lower bound on the contraction rate
in N if exact consensus is not solvable in N . Note, that in the case where exact consensus is
solvable in N , the optimal contraction rate always is 0, obtained by a reduction argument to
exact consensus.

Definition 26. Let N be a network model. The α-diameter of N is the smallest D > 1 such
that for all G,H ∈ N there exist communication graphs H0, . . . ,Hq ∈ N and K1, . . . ,Kq ∈ N
with q 6 D such that G = H0, H = Hq, and Hs−1αN ,KsHs for all s ∈ [q]. In case it does not
exists we set D =∞.
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Observe that, for the network model {H0, H1, H2} from Theorem 18, we obtain D = 2. Further,
for network model deaf(G), where G is an arbitrary communication graph G, we have D = 1.
The following theorem and corollary thus generalize Theorems 18 and 19 to arbitrary network
models in which exact consensus is not solvable.

Theorem 27. Let N be a network model in which exact consensus is not solvable. The
contraction rate of any asymptotic consensus algorithm in N is greater or equal to 1/(D + 1)
where D is the α-diameter of N .

Proof. We show the stronger statement that for every initial configuration C0 there is an
execution E = C0, G1, C1, G2, . . . starting at C0 such that

δN (Cr) > 1
(D + 1)r δN (C0) (5.15)

for all r > 0. This, applied to an initial configuration with δN (C0) > 0, which exists by
Lemma 24, then shows the theorem.

For the case D =∞, the above statement follows trivially. We hence suppose D <∞. The proof
is by inductive construction of an execution E = C0, G1, C1, G2, . . . whose configurations Cr
satisfy (5.15).

For r = 0 the inequality trivially holds.

Now let t be any non negative integer and assume that Equation (5.15) holds for t. By Lemma 10,
there exist G,H ∈ N such that diam

(
Y ∗N (Cr)

)
= diam

(
Y ∗N (G.Cr) ∪ Y ∗N (H.Cr)

)
. Because the

α-diameter of N is equal to D < ∞, there exist communication graphs H0, . . . ,Hq ∈ N and
K1, . . . ,Kq ∈ N with q 6 D such that G = H0, H = Hq, and Hs−1αN ,KsHs for all s ∈ [q].

Define Y = Y ∗N (Cr) and Ys = Y ∗N (Hs.C
r). We have diam(Y ) = diam(Y0∪Yq) by choice ofG = H0

andH = Hq. We show that there exists some s ∈ {0, . . . , q} such that diam(Ys) > diam(Y )/(q+1)
and then set Gr+1 = Hs and Cr+1 = Hs.C

r. Then, by the induction hypothesis, we have

δN (Cr+1) > δN (Cr)
q + 1 >

δN (Cr)
D + 1 >

1
(D + 1)r+1 δN (C0) , (5.16)

i.e., Equation (5.15) holds for r + 1.

Assume by contradiction that diam(Ys) < diam(Y )/(q + 1) for all s ∈ {0, . . . , q}. By Lemma 23,
we have Ys−1 ∩ Yr 6= ∅ for all s ∈ [q]. Inductively, we can easily prove

diam
( s⋃
u=0

Yu
)
<
s+ 1
q + 1 · diam(Y ) (5.17)

for all s ∈ {0, . . . , q}. In particular for s = q, which leads to diam(Y ) 6 diam(Y0∪Yq) < diam(Y ),
which is a contradiction and concludes the proof.

Direct application of Theorem 27 to a network model N in which exact consensus is not solvable
may yield a trivial bound of 0 in case its α-diameter is ∞. We can, however, use Lemma 8
to derive a strictly positive bound for any N in which exact consensus is not solvable: By
Theorem 22 and Lemma 20, any such network model N contains a source-incompatible βN -class,
which has a finite α-diameter.
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Corollary 28. Let N be a network model in which exact consensus is not solvable. The
contraction rate of any asymptotic consensus algorithm in N is greater or equal to 1/(D + 1)
where D is the smallest α-diameter of N ′ ⊆ N in which exact consensus is not solvable.

Proof. Set N ′ ⊆ N equal to the network model with the smallest α-diameter in which exact
consensus is not solvable. Applying Theorem 27 to N ′, and Lemma 8 (iv) to N ′ and N yields
the corollary.

5.3 Tight bounds for approximate consensus

In this section, we extend our lower bounds on the contraction rate of asymptotic consensus to
lower bounds on the decision time of approximate consensus. In particular, we show optimality
of the decision times of the algorithms of Charron-Bost et al. [38] of dlog3

∆
ε e for n = 2 and

dlog2
∆
ε e for n > 3.

We start with the case of two processes in Theorem 29. The proof is by reducing asymptotic
consensus to approximate consensus, arriving at a contradiction with Theorem 18 for too fast
approximate consensus algorithms.

Theorem 29. Let ∆ > 0 and ε > 0. In a network model of n = 2 processes that includes the
three communication graphs H0, H1, and H2, all approximate consensus algorithms have an
execution with initial diameter ∆(y0) 6 ∆ and decision time greater or equal to log3

∆
ε .

Proof. Assume to the contrary that algorithm A solves approximate consensus in some network
model N ⊇ {H0, H1, H2} that decides in t < log3

∆
ε rounds for all vectors of initial values y0

with ∆(y0) 6 ∆ and some ε > 0.

Choose any y0 with ∆(y0) = ∆. Define algorithm Ã by running algorithm A, updating y to
the processes’ decision values in round t, and then running Algorithm 1 with the initial values
yti = di from round t+ 1 on. Because Algorithm 1 is an asymptotic consensus algorithm and the
decision values yt of A satisfy the Validity condition of approximate consensus, algorithm Ã is
an asymptotic consensus algorithm.

Let C0 be an initial configuration of Ã with initial values y0. By the proof of Theorem 18,
namely (5.2), there is an execution E = C0, G1, C1, G2, . . . starting from C0 such that

δN (Ct) > 1
3t · δN (C0) . (5.18)

We obtain δN (C0) = ∆(y0) = ∆ by Lemma 13 and δN (Ct) 6 ∆(yt) 6 ε by Validity of
Algorithm 1 and ε-Agreement of algorithm A. But this means t > log3

∆
ε , a contradiction.

With a similar proof, but using (5.7) instead of (5.2), we also get the lower bound for approximate
consensus with n > 3 processes:

Theorem 30. Let ∆ > 0 and ε > 0. In a network model of n > 3 processes that includes the
communication graphs deaf(G), all approximate consensus algorithms have an execution with
initial diameter ∆(y(0)) 6 ∆ and decision time greater or equal to log2

∆
ε .

In case the network model does not include the graphs deaf(G), we obtain the following general
bound on the termination time:
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network model in which exact consensus is unsolvable
agents dimension non-split with deaf graphs ⊆ non-split ⊆ rooted
n = 2 d > 1 1

3
∗ 1

3
∗ 1

3
∗

n > 3 d ∈ {1, 2} 1
2
∗

[
1

D+1
∗
, 1

2

] [
1

D+1
∗
, n−1
√

1
2

]
d > 3

[
1
2
∗
, d
d+1

] [
1

D+1
∗
, d
d+1

] [
1

D+1
∗
, n−1
√

d
d+1

]
Table 5.1: Summary of lower and upper bounds on contraction rates if consensus is not solvable.
New lower bounds proved in this work are marked with a ∗. The three right columns distinguish
between the case the network model is (i) non-split and contains deaf(G) for some communication
graph G, (ii) is non-split, and (iii) is rooted.

Theorem 31. Let ∆ > 0 and ε > 0. In a network model in which exact consensus is not
solvable, all approximate consensus algorithms have an execution with initial diameter ∆(y0) 6 ∆
and decision time greater or equal to logD+1

∆
εn , where D is the α-diameter of the network model.

Proof. Assume to the contrary that algorithm A solves approximate consensus in some network
model N in which exact consensus is not solvable and that decides in t < log3

∆
ε rounds for all

vectors of initial values y0 with ∆(y0) 6 ∆ and some ε > 0.

Define algorithm Ã by repeatedly running algorithm A, updating y to the processes’ decision
values in round kT , and then restarting A in round kt + 1 with the decision values from the
previous phase. Then, Ã is an asymptotic consensus algorithm.

Let C0 be an initial configuration of Ã with ∆
(
y0) 6 ∆ and δN (C0) > ∆/n By the proof of

Theorem 27, namely (5.15), there is an execution E = C0, G1, C1, G2, . . . starting from C0 such
that

δN (Ct) > 1
(D + 1)t · δN (C0) . (5.19)

It is δN (C0) 6 ∆(y0) 6 ∆/n and δN (Ct) 6 ∆(yt) 6 ε by ε-Agreement of algorithm A. But this
means t > logD+1

∆
εn , a contradiction.

From Theorem 31 and the fact that N ′ ⊆ N implies E ′ ⊆ E for the corresponding sets of
executions of algorithm A, we get:

Corollary 32. Let ∆ > 0 and ε > 0. In a network model in which exact consensus is not
solvable, all approximate consensus algorithms have an execution with initial diameter ∆(y0) 6 ∆
and decision time greater or equal to logD+1

∆
εn , where D is the smallest α-diameter of a network

model N ′ ⊆ N in which exact consensus is not solvable.

In conclusion, we summarize the results in this chapter in the Table 5.1.
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CHAPTER 6
Non-oblivious message adversaries

In the previous chapter, we used the precise characterization of the consensus solvability under
oblivious message adversaries developed by Coulouma et. al [46] for studying asymptotic and
approximate consensus. In this chapter, we focus our attention on solving exact consensus
under non-oblivious message adversaries. Obviously, the question arises why one would use the
relatively unexplored non-oblivious network models in dynamic networks at all.

6.1 From oblivious to non-oblivious message adversaries

We will show by means of three simple message adversaries, two oblivious and the other not, that
it makes sense to study non-oblivious message adversaries in combination with exact terminating
consensus besides simple research curiosity, for the sake of improving the assumption coverage.
This term describes how good a given network model captures the behavior of a actual distributed
system. A high assumption coverage implies that the restrictions of the network model hold in
most (ideally in all) runs of the real system.

The following three message adversaries are based on the simple and well studied 2 process
system.

Definition 33 (Impossible message adversary). Let the network model N with n = 2 contain
every possible graph G with the exception of the disconnected graph.

Definition 34 (Simple message adversary). Let the network model N with n = 2 contain every
possible graph G with the exception of the disconnected and the bidirectionally fully connected
graph.

Definition 35 (Complex message adversary). Under the network model M with n = 2 ev-
ery graph sequence is admissible with the exception of the sequence where the processes are
bidirectionally connected forever and the sequences that contains a disconnected graph.

Note that the third adversary is a non-oblivious adversary as it cannot be expressed by a set of
graphs. All adversaries contain only sequences without disconnected graphs. We know from [46]
that solving exact consensus under the first message adversary is impossible. The second and
third adversary, on the other hand, allow the simple Algorithm 3 for solving exact terminating
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consensus. In the first case a decision is achieved in round 2, in the second the decision time is
unbounded but finite. Note that the algorithm continuously sends messages even after deciding
on some value.

Algorithm 3 Simple consensus algorithm for 2 processes
init:

1: yi ← xi

In every round r > 1:
2: send yi to all processes in Outi(r) and receive yj from all processes pj in Ini(r)
3: if not yet decided then
4: if yi = yj or Ini(r) = ∅ then
5: decide yi

6: else
7: yi ← yj

8: end if
9: end if

Theorem 36. Algorithm 3 solves consensus in the simple and the complex message adversary.

Proof. For both message adversaries it holds that eventually some round r communication graph
Gr contains only one edge. In the following round r + 1 the algorithm will terminate, as both
processes have the same value yi = v and hence the guard in line 4 will be executed.

A more detailed exploration of the two process model with non-oblivious message adversaries
can be found in the Masters thesis of Daniel Pfleger [88].

Notice that the simple message adversary differs from the impossible message adversary in a
minimal way, as we remove only one of the three admissible graphs. The same is true for the
complex message adversary as we reduce all admissible sequences under the impossible message
adversary by exactly one sequence. Hence the message adversaries differ from the impossible
message adversary in the minimal way possible in the respective adversary types.

If we compare the number of admissible sequences of the simple and the complex message
adversary, we see that for the non-oblivious message adversary it is orders of magnitude larger
than for the oblivious message adversary. This implies that the assumption coverage of non-
oblivious message adversaries by far exceeds the coverage of oblivious adversaries. And indeed,
non-oblivious message adversaries allow for more diverse and complex network model restrictions:
Algorithms that work correctly under eventually stabilizing message adversaries are particularly
suitable for systems that suffer from uncoordinated boot-up sequences or systems that must
recover from massive transient faults. Network connectivity can be expected to improve over
time here, e.g., due to improving clock synchronization quality. Since it is usually difficult to
determine the time when such a system has reached normal operation mode, algorithms that
terminate only after a reasonably stable period has been reached are obviously advantageous.
Algorithms that work correctly under short-lived stable periods are particularly interesting, since
they have higher coverage and terminate earlier in systems where longer stable periods occur
only rarely or even not at all. Note that the occurrence of short-lived stability periods were
confirmed experimentally in the case of a prototype wireless sensor network [90].
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6.2 Vertex stability

As there are many conceivable approaches possible for defining non-oblivious adversaries, the
first step is to pick a set of restrictions and explore them more closely. As a basis we chose the
concept of vertex stability in combination with rooted graphs originally introduced in [19]. The
former is motivated by the fact that this restriction falls in between categories 1 and 3 outlined
in Section Section 2.1, which will be argued later, and that such adversaries are close to the class
of strongest adversaries where exact consensus is still solvable. The assumption of rooted graphs
makes sense as it is even a necessary condition for the weaker problem of asymptotic consensus
and has already been employed for solving asynchronous consensus in systems with initially
dead processes in the classic FLP paper [56]. The algorithms rely on a suitable constructed
clique, which is just a special case of a rooted component.

We will now define the cornerstones of the message adversaries used in the remaining thesis.
This part is mainly based on [22,102,108], and will also be used in Kyrill Winklers thesis [107].
Message adversaries based on different network models such as VSSC(d) (Definition 55) and
VSSC(k, d) (Definition 89) will be defined via the properties of the sequences of admissible
communication graphs. Informally, most of those will rest on the pivotal concept of source
components, which are strongly connected components in Gr without incoming edges from
processes outside the component. The graphs generated by our message adversaries will be
required to eventually guarantee source components that are vertex-stable, i.e., consist of the
same set of nodes (with possibly varying interconnect) during a sufficiently large number of
consecutive rounds. It will turn out that vertex-stability guarantees that eventually all members
receive information from each other.

Definition 37 (Source Component). A non-empty set of nodes S ⊆ V is called a round r
source component of Gr, if it is the set of vertices of a strongly connected component S of Gr
and ∀pi ∈ Gr, pj ∈ S : (pi → pj) ∈ Gr ⇒ pi ∈ S. We denote by sources(Gr) the set of all source
components of Gr, resp. the single source component of Gr, and by |S| the number of nodes in S.

By contracting strongly connected components (SCCs), it is easy to see that every weakly
connected directed simple graph G has at least one source component, see Lemma 38. Hence, if
G has k source components, it has at most k weakly connected components. Furthermore, if Gr
contains a single source only, contraction leads to a tree, so Gr must be weakly connected in this
case.

Lemma 38. Any directed graph G contains at least one and at most n source components
(isolated processes), which are all disjoint. If G contains a single source component S, then G is
weakly connected, and there is a directed (out-going) path from every pi ∈ S to every pj ∈ G.

Proof. We first show that every weakly connected directed simple graph G has at least one
source component. To see this, contract every SCC to a single vertex and remove all resulting
self-loops. The resulting graph G′ is a directed acyclic graph (DAG) (and of course still weakly
connected), and hence G′ has at least one vertex S (corresponding to some SCC in G) that has
no incoming edges. By construction, any such vertex S corresponds to a source component in
the original graph G. Since G has at least 1 and at most n weakly connected components, the
first statement of our lemma follows.

To prove the second statement, we use the observation that there is a directed path from u to v
in G if and only if there is a directed path from the vertex Cu (containing u) to the vertex Cv
(containing v) in the contracted graph G′. If there is only one source component in G, the above
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observations imply that there is exactly one vertex S in the contracted graph G′ that has no
incoming edges. Since G′ is connected, S has a directed path to every other vertex in G′, which
implies that every process pi ∈ S has a directed path to every vertex pj , as required.

We now introduce vertex-stable source components, abbreviated stable source components, as
source components that consist of the same set of nodes in every communication graph of a
sequence (Gr)r∈I . Note carefully that the interconnect topology of the nodes in S, i.e., the
source component S taken as a subgraph of Gr, as well as the outgoing edges to the remaining
nodes Π \ S in Gr, may be different in every round r in the sequence. The index set I of rounds
in (Gr)r∈I is usually an interval I = [a, b] of |I| = b − a + 1 consecutive rounds1 (we will call
(Gr)r∈I a consecutive graph sequence in this case), but can also be an arbitrary index set that is
ordered according to increasing round numbers. If a consecutive graph sequence is maximal wrt.
S being a stable source, we call S a maximal stable source.

Definition 39 (Stable source). We say that a sequence (Gr)r∈I has a stable source S, iff there
exists a source S (with possibly different interconnect topology) such that S ∈ sources(Gr) for all
r ∈ I. If I = [a, b] with |I| = b−a+ 1 is an interval of consecutive rounds a, a+ 1, . . . , b, (Gr)r∈I
is called a consecutive graph sequence. We call S a maximal stable source of a consecutive graph
sequence (Gr)br=a, iff S is a stable source of (Gr)br=a but neither of (Gr)br=a−1 nor (Gr)b+1

r=a.

We abbreviate I-vertex-stable source component as I-VSSC, and write |I|-VSSC if only the
length of I matters. Note carefully that we assume |I| = b− a+ 1 here, since I = [a, b] ranges
from the beginning of round a to the end of round b; hence, I = [r, r] is not empty but rather
represents round r.

If Gr contains only a unique source component we call it root component or shortly root.

Definition 40 (Root Component). A source component is called a root (component) R of graph
G, if | sources(G)| = 1. Furthermore a graph is called rooted if it contains a root component.

Finally, a graph sequence that contains a root with the same set of nodes contains a stable root.

Definition 41 (Stable root). We say that a sequence (Gr)r∈I has a stable rood R or is stable
rooted, R-stable rooted or shortly R-rooted sequence, if there exists a root component R s.t.
∀i, j ∈ I : sources(Gi) = sources(Gj) = {R}. We call R a maximal stable root of a consecutive
graph sequence (Gr)r∈I with I = [a, b], iff R is a root of (Gr)br=a but neither of (Gr)br=a−1 nor
(Gr)b+1

r=a.

We should like to clarify that while “rooted” describes a graph property, “R-rooted” describes a
property of a sequence of graphs. It is similar to I-VSSC but the focus here is on the sequence
and not on the source component and will make more sense in later chapters where the different
terms are used in their respective environments. Given two graphs G = 〈V,E〉, G′ = 〈V,E′〉 with
the same vertex-set V , let the compound graph G ◦ G′ := 〈V,E′′〉 where (pi, pj) ∈ E′′ if and only
if for some pk ∈ V : (pi, pk) ∈ E and (pk, pj) ∈ E′.

In order to extend the concept of information propagation in the network from the simple
influence relation in Definition 3, we use a notion of causal past: Intuitively, a process pj is
in pi’s causal past, denoted pj ∈ CPri (r′) if, before its round r computation starts, pi received

1In [19, 21], the term I-vertex-stable source component (I-VSSC, or alternatively d-VSSC) has been coined for
S being a stable source in (Gr)r∈I with I = [a, a + d− 1].
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information (either directly or transitively, via intermediate messages) that pj sent immediately
after it finished its round r′ computation (that is, during the communication at the beginning of
round r′ + 1 or later).

Definition 42 (Causal past). Given a sequence σ of communication graphs that contains rounds
a and b, the causal past of process pi from (the end of) round b down to (the end of) round a is
CPbi(a) = ∅ if a > b and CPbi(a) = Ini(Ga+1 ◦ · · · ◦ Gb) if a < b, where Inp(G) is the set of nodes
that have an outgoing edge to p in G.

A useful fact about the causal past is that in full-information protocols, where processes exchange
their entire state history in every round, we have pj ∈ CPri (s) if and only if, in its round r
computation (and hence thereafter), pi knows already the round s state of pj .

From the monotonic growth of CPbi(a) (recall the self-loops in every Gr), we can deduce the
following corollary:

Corollary 43. sai  sbj implies sai  sb
′
j for all b′ > b. Analogously, sai  sbj implies that

sa
′
i  sbj for all a′ 6 a.

To familiarize the reader with our notation, we conclude this section with some technical lemmas.
The first one describes the information propagation in a graph sequence containing an ordered
set G = {Gr1 , . . . ,Grn}, i 6= j ⇒ ri 6= rj , and i > j ⇒ ri > rj , of n distinct communication
graphs on the same vertex-set Π, where any G,G′ ∈ G are rooted but R(G) is not necessarily
the same as R(G′). As we have mentioned earlier, every G ∈ G contains a rooted spanning tree
and is therefore weakly connected. In essence, the lemma shows that, by the end of round rn,
each process p (except some root process of round rn) transitively received a message from some
process q that was sent after q was member of a root component of some graph of G.

Lemma 44. Let G = {Gr1 , . . . ,Grn} be an ordered set of rooted communication graphs on the
same vertex-set Π where |Π| = n > 1. Pick any mapping f : [1, n] 7→ Π s.t. f(i) ∈ R(Gri). Then
∀pi ∈ Π \ {f(n)} , ∃i ∈ [1, n− 1] : f(i) ∈ CPrn

i (ri).

Proof. Let S(i) = {pi ∈ Π | ∃j ∈ [1, i] : pi = f(j) ∨ f(j) ∈ CPri
i (rj)} be the set of nodes that, by

round ri, received the round rj-state, for some j 6 i, of f(j) or are equal to f(j). We show by
induction that |S(n)| > n.

The base |S(1)| > 1, follows because f(1) ∈ S(1).

For the step from i to i+ 1, we have the hypothesis |S(i)| > i. Since S(i) ⊆ S(i+ 1), we only
need to consider the case |S(i)| = i < n. Let pi = f(i+ 1). If pi /∈ S(i), the claim is immediate,
so assume pi ∈ S(i). As pi ∈ R(Gri+1), there is a path from pi to every pj ∈ Π in Gri+1 . Because
we assumed |S(i)| = i < n, there is some edge (pk, p`) on this path such that upk ∈ S(i) and
p` ∈ Π \ S(i). By construction of S(i) and Definition 42, p` ∈ S(i+ 1).

It remains to be shown that |S(n)| > n implies the lemma. By construction of S(i), S(n)\{f(n)}
contains only processes pi for which the claim holds directly or which satisfy pi = f(j) for some
j ∈ [1, n− 1]. In case of the latter, since we assume self-loops in every communication graph,
pi ∈ CPrn

i (rj) also holds.

The following lemma highlights the most important property of a I-VSSC. It guarantees to spread
information among its vertices if the interval I is large enough, as expressed in Corollary 47
below. To prove this, we need a few basic observations and lemmas. Our first observation is a
direct consequence of the definition of a strongly connected component.
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Observation 45. Let C denote the set of processes of a strongly connected component of some
graph G, and C ′ be any proper subset of C. Then, there exists a process pi ∈ C ′ s.t. (pi → pj) ∈ G
for some pj ∈ C \ C ′.

Based on influence and strongly connected components, we can show that a certain amount of
information propagation is guaranteed in any strongly connected component C that is vertex-
stable, i.e., whose vertex set remains the same, for a given number of rounds. The following
Lemma 46 shows that if the number of rounds of the interval of vertex stability |[a, b]| = b−a+ 1
matches the size of the component minus 1, then for all pi ∈ C, sa−1

i reaches every process of C
in round b at latest.

Lemma 46. Let C ⊆ Π with |C| > 1, let a ∈ N and let C form a SCC of Gr for all r ∈
[a+ 1, a+ |C| − 1]. Then, ∀pi, pj ∈ C, it holds that sai  sa+|C|−1

j .

Proof. For an arbitrary process pi in C, let P yi ⊆ C be the set of processes pj of C for which
sai  syj holds. Using induction on y > a + 1, we show that |P yi | > min{y − a + 1, |C|}; as
y − a+ 1 > |C| for y > a+ |C| − 1, this proves our lemma.

For the induction start y = a+ 1, as C with |C| > 1 is the vertex-set of a strongly connected
component in round a + 1, Observation 45 implies that pi has at least one neighbor such
that sai  sa+1

j . By LOCALITY, we also have sai  sa+1
i , hence |P a+1

i | > 2 = min{2, |C|}
as required. For the induction step, assume |P yi | > min{y − a + 1, |C|}, and consider two
cases: (i) If |P yi | < |C|, then the induction hypothesis implies y − a + 1 < |C|, i.e., y + 1 ∈ I.
By Observation 45, there is some process in P yi that has at least one neighbor p′j 6∈ P yi in
round y + 1, which, by NEIGHBOURHOOD and TRANSITIVITY, results in |P y+1

i | >
min{y+1−a+1, |C|} as required. (ii) If already |P yi | = |C|, then by LOCALITY |P y+1

i | > |P yi |,
so |P y+1

i | = |C| > min{y + 1− a+ 1, |C|} holds trivially.

Corollary 47 follows immediately from Lemma 46 and the fact that, by definition, VSSCs are
strongly connected components.

Corollary 47. For every I-vertex-stable source component S with |S| > 1 and I = [a, b], it
holds that ∀pi, pj ∈ S, ∀x, y ∈ I: y > x+ |S| − 2⇒ sx−1

i  syj .

Another important information propagation property relates to stable rooted sequences, where
the following lemma guarantees an upper bound of n− 1 rounds from the root to the rest of the
system:

Lemma 48. Let σ be a graph sequence containing a sequence S = (Gr1 , . . . ,Grn−1) of n − 1
not necessarily consecutive R-stable rooted communication graphs. Then, for all pi ∈ Π : R ⊆
CPrn−1

i (r0) with r1 − 1 = r0.

Proof. Pick an arbitrary process p ∈ Π, q ∈ R. We show by induction that, for ` ∈ [2, n − 1],
|CPrn−1

p (rn−`)| > ` or q ∈ CPrn−1
p (rn−`). For ` = 2, this follows directly from Definition 42

for p 6= q and p = q, respectively. For the induction step, we assume that the claim holds
for ` and show that it holds for ` + 1 as well. If the claim holds because q ∈ CPrn−1

p (rn−`),
by Corollary 43, we have q ∈ CPrn−1

p (rn−(`+1)). Thus, assume that q /∈ CPrn−1
p (rn−`) and

|CPrn−1
p (rn−`)| > `. If it holds that |CPrn−1

p (rn−`)| > `, we get |CPrn−1
p (rn−(`+1))| > ` + 1

immediately, so assume that |CPrn−1
p (rn−`)| = `. Since Grn−` is R-rooted, there is a path from q

to p in Grn−` , according to Lemma 38. Because q /∈ CPrn−1
p (rn−`), there is some process q′ on the
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Figure 6.1: Graph sequence with diameter 3, dynamic diameter 5 and network depth 6

path from q to p s.t. q′ /∈ CPrn−1
p (rn−`) but (q′ → p′) ∈ Grn−` for some p′ ∈ CPrn−1

p (rn−`). By
Definition 42, CPrn−1

p (rn−(`+1)) ⊇ CPrn−1
p (rn−`) ∪ {q′}. By the induction hypothesis, therefore

|CPrn−1
p (rn−(`+1))| > `+ 1.

In order to specify message adversaries that guarantee faster information propagation than
guaranteed by the previous lemmas, we introduce appropriate system parameters. Intuitively,
they ensure that the information from all nodes in some source component has reached all nodes
in the network or at least the processes in the source component if a stable component occurs.

Definition 49 (D-bounded I-VSSC). A I-VSSC S is D-bounded with dynamic source diameter
D, if ∀pi, pj ∈ S, ∀r, r′ ∈ I: r′ > r +D − 1⇒ sr−1

i  sr
′
j .

Corollary 47 revealed that every sufficiently long I-VSSC S guarantees D 6 |S|−1; all sufficiently
long VSSCs hence necessarily give D 6 n− 1. Choosing some D < n− 1 can be used to force
the message adversary to speed-up information propagation accordingly. For example, we show
in Section 6.2 that certain expander graph topologies ensure D = O(logn). Next we expand
this notion to the whole system.

Definition 50 (E-influencing I-VSSC). A I-VSSC S is E-influencing with dynamic network
depth E, if ∀pi ∈ S, ∀pj ∈ Π, ∀r, r′ ∈ I: r′ > r + E − 1⇒ sr−1

i  sr
′
j .

Analogous versions of Lemma 46 and Corollary 47 are easily established.

We will later show that processes need to know some estimate of D or E for solving consensus:
Without this knowledge, it is impossible to locally verify a necessary condition for solving
consensus, namely, the ability of some process to disseminate its initial value system-wide.

We note that, by definition, for |I| < D and |I| < E, an I-VSSC is vacuously D-bounded and
E-influencing. While it might be tempting to assume a connection between the graph diameter
and the dynamic source diameter, resp. the dynamic network depth, in general, these notions
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are independent of each other. To illustrate this, Figure 6.1 depicts an example where the graph
diameter is constant even though, due to p1, the dynamic source diameter and the dynamic
network depth are in the order of the number of vertices. It is straightforward to generalize this
example to n vertices.

To formalize information propagation from source components to the rest of the network in the
general case with more than a single source component per communication graph Gr, one has to
account for the fact that a process pj outside any source component could be reachable from
multiple source components. Intuitively speaking, this allows modelling dynamic networks that
do not “cleanly” partition. Similarly to Lemma 46, the following Lemma 51 shows that there is
a guaranteed information propagation from at least one process of the set of VSSCs to every
process in the system, provided all occurring source components are I-VSSCs with |I| > n− 1.

Lemma 51. Let n > 2 and R = {S1, S2...S`} be a set of ` > 1 I-VSSCs with I = [a+1, a+n−1]
such that, for any r ∈ I, every source component of Gr is in R. Then, for all pj ∈ Π, it holds
that ∃S ∈ R such that sai  sa+n−1

j for some pi ∈ S.

Proof. Let R′ =
⋃
S∈R S denote the set of processes of all VSSCs of R. First, we show an

analogue of Observation 45 for processes outside any source component of R: In every Gr, r ∈ I,
at least one process of Π \R′ has an incoming edge from a process contained in some S of R.
Suppose that this is not the case. Then, contracting the strongly connected components of
Gr yields at least one node, contracted entirely from nodes of Π \R′, with no incoming edges.
Hence, some source component of Gr consists entirely of nodes from Π \R′ and thus cannot be
in R. This contradicts the assumptions made on R.

Now, let PR(r) be the set of processes pj ∈ Π for which there exists some S ∈ R such that sai  srj
holds for some pi ∈ S. Using induction on r > a+ 1, we show that |PR(r)| > min{r − a+ 1, n};
as r − a+ 1 > n for r > a+ n− 1, this proves the lemma.

For the induction start r = a+ 1, LOCALITY implies that PR(a+ 1) contains all processes in
R′, in addition to at least one process of Π \R′, secured by our equivalent of Observation 45.
Hence, |PR(a + 1)| > 2 = min{2, n} as required. For the induction step, assume |PR(r)| >
min{r − a + 1, n}, and consider two cases: (i) If |PR(r)| < n, then the induction hypothesis
implies r − a + 1 < n, i.e., r + 1 ∈ I. Since R′ ⊆ PR(a + 1) ⊆ PR(r), there is at least
one process p′j /∈ PR(r) that must be contained in Π \ R′; thus, NEIGHBORHOOD and
TRANSITIVITY in conjunction with our equivalent of Observation 45 secure |PR(r + 1)| >
min{r + 1− a+ 1, n}. (ii) If already |PR(r)| = n, then |PR(r + 1)| > |PR(r)| by LOCALITY,
so |PR(r + 1)| = n > min{r + 1− a+ 1, n} holds trivially.

Again, we introduce a parameter H that allows a more fine-grained modelling of the information
propagation in a dynamic network than just assuming the worst case n−1 secured by Lemma 51.
For this purpose, Definition 52 generalizes Definition 50 from a single I-VSSC to a set R of
I-VSSCs. If |I| > H it guarantees that every process in the network receives a message from
some member of at least one I-VSSC of R within H rounds. Note carefully, though, that this
does not necessarily imply that there exists an H-influencing I-VSSC. In the special case where
R is a singleton set, however, the sole member of R is obviously a H-influencing VSSC.

Definition 52 (H-influencing set of I-VSSCs). A set R = {S1, S2...S`} of ` > 1 I-VSSCs with
I = [a, b] is H-influencing with dynamic network depth H if ∀pj ∈ Π ∃S ∈ R s.t. ∀r ∈ I: if
r > a+H − 1 then sa−1

i  srj for some pi ∈ S.
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An example for E-influencing I-VSSCs with E < n− 1: Expander topologies

We conclude this section with an example of a network topology that guarantees that all I-VSSCs
are E-influencing for some E that is much smaller than n− 1, which justifies why we introduced
this parameter (as well as D) explicitly in our model.2

An undirected graph G is an α-vertex expander if, for all sets R ⊂ V (G) of size 6 |V (G)|/2, it
holds that |N (R)|

|R| > α, where N (R) is the set of neighbors of R in G, i.e., those nodes in V (G)\R
that have a neighbor in R. (Explicit expander constructions can be found in [64].) As we need
an expander property for directed communication graphs, we consider, for a vertex/process set
R and a round r, both the set N r

+(R) of nodes outside of R that are reachable from R and the
set of nodes N r

−(R) that can reach R in r. Definition 53 ensures an expansion property both for
subsets R chosen from source components (property (a)) and other processes (properties (b),
(c)).

Definition 53 (Directed Expander Topology). There is a fixed constant α and a fixed set S
such that the following conditions hold for all sets R ⊆ V (Gr):

(a) If |R| 6 |S|/2 and R ⊆ S, then |N
r
+(R)∩S|
|R| > α and |N

r
−(R)∩S|
|R| > α.

(b) If |R| 6 n/2 and S ⊆ R, then |N
r
+(R)|
|R| > α.

(c) If |R| 6 n/2 and S ∩R = ∅, then |N
r
−(R)|
|R| > α.

The following Lemma 54 shows that (1) Definition 53 does not contradict the existence of a
single source component and that (2) these expander topologies guarantee that I-VSSCs are
both D-bounded with D = O(logn) and E-influencing with E = O(logn).

Lemma 54. There are sequences of graphs (Gr)r>0 with a single source component in every
Gr where Definition 53 holds and where, for any such run, every I-VSSC is D-bounded and
E-influencing with D = O(logn) and E = O(logn).

Proof. We will first argue that directed graphs with a single source component exist that satisfy
Definition 53. Consider the simple undirected graph Ū that is the union of an α-vertex expander
on some I-VSSC S with I = [a, b] and member set S, and an α-vertex expander on V (Gr). We
turn Ū into a directed graph by replacing every edge (pi, pj) ∈ E(Ū) with oriented directed edges
pi → pj and pj → pi. This guarantees Properties (a)-(c). In order to guarantee the existence
of exactly one source component, we drop all directed edges pointing to S from the remaining
graph, i.e., we remove all edges pi → pj where pi 6∈ S and pj ∈ S, which leaves Properties
(a)-(c) intact and makes the S from Definition 53 the single source component of the graph.
We stress that the actual topologies chosen by the adversary might be quite different from this
construction, which merely serves to show the existence of such graphs.

We also recall that our message adversaries like the one given in Definition 55 will rely on
I-vertex-stable source components, which only require that the set of vertices remains unchanged,
whereas the interconnect topology can change arbitrarily. Adding Definition 53 does of course
not change this fact.

We will first show that the “per round” expander topology stipulated by Definition 53 is strong
enough to guarantee that every sufficiently long VSSC is D-bounded with D = O(logn).

2An expander topology can be maintained in a dynamic network by using the protocol in [11].
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Let S be some I-VSSC with I = [a, b] and |I| = Ω(logn). For i > 1, let Pi ⊆ S be the
set of processes pj in S such that sa−1

i  sa+i−1
j , and P0 = {pi}. The result D = O(logn)

follows immediately from Lemma 46 if |S| ∈ O(logn), so assume that |S| ∈ Ω(logn) and
consider some process pi ∈ S. For round a, Property (a) yields |P1| > |P0|(1 + α). In
fact, for all i where |Pi| 6 |S|/2, we can apply Property (a) to get |Pi+1| > |Pi|(1 + α),
hence |Pi| > min{(1 + α)i, |S|/2}. Let ` be the smallest value such that (1 + α)` > |S|/2,
which guarantees that |P`| > |S|/2. That is, ` =

⌈
log(|S|/2)
log(1+α)

⌉
∈ O(logn). Now consider

any pj ∈ S and define Qi−1 ⊂ S as the set of nodes that causally influence the set Qi in
round a + i, for Q2`+1 = {pj}. Again, by Property (a), we get |Qi−1| > |Qi|(1 + α), so
|Q2k−i| > max{(1 +α)i, |S|/2}. From the definition of ` above, we thus have |Q`| > |S|/2. Since
P` ∩ Q` 6= ∅, it follows that every pi ∈ S influences every pj ∈ S within 2` ∈ O(logn) rounds.
While the above proof has been applied to the starting round x = a only, it is evident that it
carries over literally also for any x < s− 2`, which shows that S is indeed a D-bounded I-VSSC.

What remains to be shown is that S is also a E-influencing VSSC with E = O(logn). We
use Properties (b) and (c) similarly as in the above proof: For any round x ∈ [r, s − 2k′], we
know by (b) that any process pi ∈ S has influenced at least n/2 nodes by round x+ k′ where
k′ = dlog1+α(n/2)e ∈ O(logn) by arguing as for the Pi sets above. Now (c) allows us to reason
along the same lines as for the sets Qi−1 above. That is, any pj in round x+2k′ will be influenced
by at least n/2 nodes. Therefore, any pi will influence every pj ∈ Π by round x + 2k′, which
completes the proof.

This confirms that sequences of communication graphs with D < n− 1 and E < n− 1 indeed
exists and are compatible with message adversaries such as VSSC(d) stated in Definition 55
below.

6.3 A simple rooted message adversary

In this section, which is based on [22] and will also be presented in Kyrill Winklers thesis [107], we
will introduce a message adversary VSSCD,E(d) that allows to solve consensus for d > 2D+2E+2
in our model. First and foremost, it requires that every Gr is rooted, i.e., contains only a single
source component. Moreover, albeit the processes do not need to know n, they need a priori
knowledge of the dynamic source diameterD and the dynamic network depth E from Definition 49
and Definition 50. And finally, our message adversary must guarantee that, eventually, a d-VSSC
occurs. Interestingly, whereas VSSCD,E(d) allows to solve consensus for d > 2D+2E+2, it is too
strong for solving other standard problems in dynamic networks such as reliable broadcasting [22].

Since consensus is trivially impossible for an unrestricted message adversary, which may just
inhibit any communication in the system, it is natural to consider the question whether weakly
connected communication graphs Gr in every round r allow to solve consensus. However, it is
not difficult to see that this does not work, even when all Gr = G are the same, i.e., in a static
topology: Consider the case where G contains two source components S1 and S2; such a graph
obviously exists, cf. Lemma 38 below. If all processes in S1 start with initial value 0 and all
processes in S2 start with initial value 1, they must decide on their own initial value (by validity
and termination) and hence violate agreement. After all, no process in, say, S1 ever has an
incoming link from any process not in S1.

52



Therefore, we restrict our attention to message adversaries that guarantee a root component in
Gr for any round r. Figure 2.2 showed a sequence of graphs where this is the case.

Obviously, assuming a root component makes consensus solvable if the root component is static
(shown in detail in [18]). In this paper, we allow the root component to change throughout the
run, i.e., the (single) root component R of Gr might consist of a different set of processes in
every round r. However, results in [22] prove that a sufficiently long interval of vertex-stability
is indispensable for solving consensus in this setting. In the sequel, we will consider the message
adversary VSSCD,E(d) stated in Definition 55, which enforces the dynamic source diameter D
and the dynamic network depth E > D and is parametrized by some stability window duration
d > 0.

Definition 55 (Consensus message adversary VSSCD,E(d)). For d > 0, the message adversary
VSSCD,E(d) is the set of all sequences of communication graphs (Gr)r>0, where

(i) for every round r, Gr contains a root component,

(ii) all vertex-stable root components occurring in any (Gr)r>0 are D-bounded and E-influencing

(iii) for each (Gr)r>0, there exists some rST > 0 and an interval of rounds J = [rST , rST +d−1]
with a D-bounded and E-influencing J-vertex-stable root component.

We first establish some general properties of the graph sequences generated by VSSCD,E(d).

Lemma 56 (Properties of VSSCD,E(d)). In every sequence (Gr)r>0 of communication graphs
feasible for VSSCD,E(d),

(i) there is at least one process pi such that ∀pj ∈ Π: s0
i  sn(n−2)+1

j holds, where s0
i represents

pi’s initial state.

(ii) Conversely, for n > 2, the adversary can choose some sequence (Gr)r>0 where no process pi
is causally influenced by all other processes pj, i.e., @pi ∈ Π s.t. ∃y and ∀pj ∈ Π: s0

j  syi .

Proof. Definition 55 guarantees that there is (at most) one source component in every Gr,
r > 0. Since we have infinitely many graphs in (Gr)r>0 but only finitely many processes, there
is at least one process pi in the root component of Gr for infinitely many r. Let r1, r2, . . .
be this sequence of rounds. Moreover, let P0 = {pi}, and define for each i > 0 the set
Pi = Pi−1 ∪ {pj : ∃pc ∈ Pi−1 : pc ∈ N ri

j }.

Using induction, we will show that |Pk| > min{n, k + 1} for k > 0. Consequently, by the end of
round rn−1 at latest, pi will have causally influenced all processes in Π. Induction base k = 0:
|P0| > min{n, 1} = 1 follows immediately from P0 = {pi}. Induction step k → k + 1, k > 0:
First assume that already |Pk| = n > min{n, k + 1}; since |Pk+1| > |Pk| = n > min{n, k + 1},
we are done. Otherwise, consider round rk+1 and |Pk| < n: Since pi is in the root component of
Grk+1 , there is a path from pi to any process pj , in particular, to any process pj in Π \ Pk 6= ∅.
Let (p` → ±) be an edge on such a path, such that p` ∈ Pk and ± ∈ Π \ Pk. Clearly,
the existence of this edge implies that p` ∈ N

rk+1
m and thus ± ∈ Pk+1. Since this implies

|Pk+1| > |Pk|+ 1 > k + 1 + 1 = k + 2 = min{n, k + 2} by the induction hypothesis, we are done.

Finally, at most n(n− 2) + 1 rounds are needed until all processes pj have been influenced by
pi, i.e., rn−1 6 n(n− 2) + 1: A pigeonhole argument reveals that at least one process pi must
have been in the root component for n − 1 times after so many rounds. After all, if every pi
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appeared at most n− 2 times, we could fill up at most n(n− 2) rounds. By the above result,
this is enough to secure that some pi influenced every pj .

The converse statement (ii) follows directly from considering a static star, for example, i.e., a com-
munication graph where there is one central process pc, and for all r, Gr = 〈Π, {(pc → pj)|pj ∈ Π \ {pc}}〉.
Clearly, pc cannot be causally influenced by any other process, and for pj , pk 6= pj ∈ Π \ {pc}
and ∀x, y sxj  syk does not hold. On the other hand, this topology satisfies Definition 55, which
includes the requirement of at most one source component per round.

In the light of Lemma 56, it is interesting to relate the message adversary in Definition 55 to
the classification of [32]: It is apparent that VSSCD,E(d) belongs to a class that it is stronger
than the weakest class that requests one node that eventually reaches all others, but weaker
than the second-weakest class that requests one node that is reached by all. By contrast, models
like [68, 72] that assume bidirectionally connected graphs Gr in every round belong to the
strongest classes (Class 10) in [32].

In Theorem 57, we will examine the solvability of several broadcast problems [68] under the
message adversary VSSCD,E(d). It will turn out that none of these are implementable under our
assumptions—basically, because there is no guarantee of (eventual) bidirectional communication.
This is clearly in contrast to the usual strong bond between some of these problems and consensus
in traditional settings.

Theorem 57. The message adversary VSSCD,E(d) given in Definition 55, for any d, belongs to
a class that is between the weakest and second-weakest in [32]. Neither reliable broadcast, atomic
broadcast, nor causal-order broadcast can be implemented. Moreover, there is no algorithm
that solves counting, k-verification, k-token dissemination, all-to-all token dissemination, and
k-committee election.

Proof. We first consider reliable broadcast, which requires that when a correct process broadcasts
m, every correct process eventually delivers m. Suppose that the adversary chooses the com-
munication graphs ∀r : Gr = 〈{pi, pj , p`} , {(pi → pj), (pj → p`)}〉, which matches Definition 55.
Clearly, pj is a correct process in our model. Since pi never receives a message from pj , pi can
trivially never deliver a message that pj broadcasts.

For the token dissemination problems stated in [68], consider the same communication graphs
and assume that there is a token that only p` has. Since no other process ever receives a message
from p`, token dissemination is impossible.

For counting, k-verification, and k-committee election, we return to the static star round graph
Gr = 〈Π, {(pc → pj)|pj ∈ Π \ {pc}}〉 with central node pc considered in the proof of Lemma 56.
As the local history of any process is obviously independent of n here, it is impossible to solve
any of these problems.

6.3.1 A Consensus Algorithm for VSSCD,E(2D + 2E + 2)

In this section, we show that it is possible to solve consensus under the message adversary
VSSCD,E(2D + 2E + 2).

The underlying idea of our consensus algorithm is to use flooding to propagate the largest input
value to everyone. However, as Definition 55 does not guarantee bidirectional communication
between every pair of processes according to (ii) of Lemma 56, flooding is not sufficient: The
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largest input value could be hidden at a single process pi that never has outgoing edges. If such
a process pi would never accept smaller values, it is impossible to reach agreement (without
potentially violating validity). Thus, we have to find a way to force pi to accept also a smaller
value.

A well-known technique to do so is locking a candidate value. Obviously, we do not want any
process to lock its value, but rather some process(es) that will be able to impose their locked
value, i.e., can successfully flood the system. In addition, we may allow processes that have
successfully locked a value to decide only when they are sure that every other process has
accepted their value as well. According to Definition 52, both can be guaranteed when these
processes have been in a vertex stable root component long enough, which is guaranteed by
VSSCD,E(2D + 2E + 2).

The first major ingredient of our consensus algorithm is a network approximation algorithm,
which allows processes to detect their root component membership in (past) rounds. The core
of our consensus algorithm then exploits this knowledge for reaching agreement on locked values
and imposes the resulting value on all processes in the network. As we will see, the main
complication comes from the fact that a process can detect whether it has been part of the root
component of round r only with some latency.

Note that the following arguments and proofs are based on detecting source component and not
root components, as processes may never know if there exists more than one source component
in some graph Gr. Never the less the message adversary guarantees that every graph is rooted
hence every source can be assumed to be a root by the process and thus the following theorems
prove correctness of the algorithms.

The Local Network Approximation Algorithm

According to our system model, no process pi has any initial knowledge of the network. In order
to learn about VSSCs, for example, it hence needs to locally acquire such knowledge. Process
pi achieves this by means of Algorithm 4, which maintains a network estimate Ai in a local
variable.3 Ai is a graph that holds the local estimates of every communication graph Gr that
occurred so far, simply by labeling an edge (pi → pj) with the set of round numbers of every Gr
once pi received evidence that (pi → pj) was present in round r.

Initially, Ai consists of process pi only. In every round, every process pi broadcasts its current Ai
and fuses it with the network estimates received from its neighbors. In more detail, pi updates
Ai whenever pj ∈ N r

i , by adding (pj
{r}→ pi) if pj is pi’s neighbor for the first time, or by updating

the label of the edge (pj
U→ pi) to (pj

U∪{r}→ pi) (Line 5 and 7). Moreover, pi also receives Aj
from pj and uses this information to update its own knowledge: The loop in Line 11 ensures that
pi has an edge (p`

T∪T ′→ pi, ) for each (p`
T ′→ ±) in Aj , where T is the set of rounds previously

known to pi.

Given Ai, we use Ai|t with4 0 < t 6 r to denote the current estimate of Gt contained in Ai.

3We denote the value of a variable v of process pi at the end of its round r computation as vr
i ∈ sr

i ; we usually
suppress the superscript when it refers to the current round.

4To simplify the presentation, we have refrained from purging outdated information from the network
approximation graph. Actually, our consensus algorithm only queries InStableSource for intervals that span
at most the last 2E + 1 rounds, i.e., any older information could safely be removed from the approximation graph,
resulting in a message complexity that is polynomial in n.
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Formally, Ai|t is the graph induced by the set of edges

Ei|t =
{
e = (pk → p`) | ∃T, t ∈ T : (pk

T→ p`) ∈ Ai
}
.

As the information about pj ’s neighbors in Gt might take many rounds to reach some process
pi (if it ever arrives at pi), Ai|t may never be fully up-to-date, and as only reported edges are
added to the estimate (but not all reports need to reach pi), Ai|t will be an under-approximation
of Gt. For example, a process pi that does not have any incoming links from other processes,
throughout the entire run of the algorithm, cannot learn anything about the remaining network,
i.e., Ai will permanently be the singleton graph.

Algorithm 4 finally provides an externally callable function InStableSource(I), which will be
used by the core consensus consensus algorithm to find out whether the calling process pi was
member in an I-VSSC S and to query the set of all members of S. We will prove in Lemma 59
below that pi is a member of a I-VSSC if Ai|t is strongly connected and consists of the same
non-empty set S of processes for all t ∈ I. Informally, this is due to the fact that the members
of an I-VSSC will not be able to acquire knowledge of the topology outside S within I, as they
do not have incoming links from outside.

Algorithm 4 Local Network Approximation (Process pi)
Provides externally callable function InStableSource(I).

Variables and Initialization:
1: Ai := 〈Vi, Ei〉 initially ({pi} , ∅) // weighted digraph without multi-edges and loops

Emit round r messages:
2: send 〈Ai〉 to all current neighbors

Round r: computation:
3: for pj ∈ N r

i and pj sent message 〈Aj〉 in r do
4: if ∃ edge e = (pj

T→ pi) ∈ Ei then
5: replace e with (pj

T ′
→ pi) in Ei where T ′ ← T ∪ {r}

6: else
7: add e := (pj

{r}→ pi) to Ei

8: end if
9: Vi ← Vi ∪ Vj

10: end for
11: for every pair of nodes (pk, p`) ∈ Vi × Vi, pk 6= p` do
12: if T ′ =

⋃{
S | ∃pj ∈ N r

i : (pk
S→ p`) ∈ Ej

}
6= ∅ then

13: replace (pk
T→ p`) in Ei with (pk

T∪T ′
→ p`); add (pk

T ′
→ p`) if no such edge exists

14: end if
15: end for

Function:InStableSource(I)
16: Let Ai|t be induced graph of

{
(pk

T→ p`) ∈ Ei | t ∈ T
}

17: Let Ci|t be Ai|t if it is strongly connected, or the empty graph otherwise.
18: if ∀t1, t2 ∈ I : Ci := V (Ci|t1) = V (Ci|t2) 6= ∅ then
19: return Ci

20: else
21: return ∅
22: end if

We start our analysis of Algorithm 4 with Lemma 58, which shows that Ai|t under approximates
Gt in a way that consistently includes neighborhoods. Its proof uses the trivial invariant asserting
Ai|t = 〈{pi}, ∅〉 at the end of every round r < t.
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Lemma 58. If Ai|t contains (pk → p`) at the end of some round r, then (i) (pk → p`) ∈ Gt,
i.e., Ai|t ⊆ Gt, and (ii) Ai|t also contains (pm → p`) for every pm ∈ N t

` ⊆ Gt.

Proof. We first consider the case where r < t: At the end of round r, Ai|t is empty, i.e., there
are no edges in Ai|t. As the precondition of the Lemma’s statement is false, the statement is
true.

For the case where r > t, we proceed by induction on r:

Induction base r = t: If Ai|t contains (pk → p`) at the end of round r = t, it follows from
Aj |t = 〈{pj}, ∅〉 at the end of every round r < t, for every pj ∈ Π, that p` = pi, since pi is the
only processor that can have added this edge to its graph approximation. Clearly, it did so only
when pk ∈ N t

i , i.e., (pk → p`) ∈ Gt, and included also (pm → p`) for every pm ∈ N t
i on that

occasion. This confirms (i) and (ii).

Induction step r → r + 1, r > t: Assume, as our induction hypothesis, that (i) and (ii) hold for
any Aj |t at the end of round r, in particular, for every pj ∈ N r+1

i . If indeed (pk → p`) in Ai|t at
the end of round r + 1, it must be contained in the union of round r approximations

U = (Ai|t) ∪

 ⋃
pj∈N r+1

i

Aj |t


and hence in some Ak|t with k ∈ {i, j} at the end of round r. Note that the edges (labeled r+ 1)
added in round r + 1 to Ai are irrelevant for Ai|t here, since t < r + 1.

Consequently, by the induction hypothesis, (pk → p`) ∈ Gt, thereby confirming (i). As for (ii),
the induction hypothesis also implies that (pm → p`) is also in this Ak|t. Hence, every such edge
must be in U and hence in Ai|t at the end of round r + 1 as asserted.

The following Lemma 59 shows that locally detecting Ai|t to be strongly connected (in Line 17
of Algorithm 4) implies that pi is in the source component of round t. This result rests on the
fact that Ai|t under approximates Gt (Lemma 58.(i)), but does so in a way that never omits an
in-edge at any process pj ∈ Ai|t (Lemma 58.(ii)).

Lemma 59. If the graph Ci|t (Line 17) with t < r is non-empty in round r, then pi is member
of S, the source component of Gt.

Proof. For a contradiction, assume that Ci|t is non-empty (hence Ai|t is an SCC by Line 17),
but pi 6∈ S. Since pi is always included in any Ai by construction and Ai|t under approximates
Gt by Lemma 58.(i), this implies that Ai|t cannot be the source component of Gt. Rather, Ai|t
must contain some process pk that has an in-edge (pj → pk) in Gt that is not present in Ai|t.
As pk and hence some edge (pj

t→ pk) is contained in Ai|t, because it is an SCC, Lemma 58.(ii)
reveals that this is impossible.

From the definition of the function InStableSource(I) in Algorithm 4 and Lemma 59, we
get the following Corollary 60.

Corollary 60. If the function InStableSource(I) evaluates to S 6= ∅ at process pi in round
r, then ∀x ∈ I where x < r, it holds that pi is a member of S and S is the source component of
Gx.

57



The following Lemma 61 proves that, in a sufficiently long I = [a, b] with a I-vertex-stable
source component S, every member pi of S detects an SCC for round a (i.e., Ci|a 6= ∅) with a
latency of at most D rounds (i.e., at the end of round a+D). Informally speaking, together
with Lemma 59, it asserts that if there is an I-vertex-stable source component S for a sufficiently
long interval I, then a process pi observes Ci|a 6= ∅ from the end of round a+D on if and only
if pi ∈ S.

Lemma 61. Consider an interval of rounds I = [a, b], such that there is a D-bounded I-vertex-
stable source component S and assume |I| = b− a+ 1 > D. Then, from the end of round a+D
onwards, we have Ci|a = S, for every process in pi ∈ S.

Proof. Consider any pj ∈ S. At the beginning of round a+ 1, pj has an edge (pk
T→ pj) in its

approximation graph Aj with a ∈ T if and only if pk ∈ N a
j . Since processes always merge all

graph information from other processes into their own graph approximation, it follows from
the definition of a D-bounded I-vertex-stable source component (Definition 49) in conjunction
with the fact that a + 1 6 b − D + 1 that every pi ∈ S has these in-edges of pj in its graph
approximation by the end of round a+ 1 +D − 1. Since S is a vertex-stable source-component,
it is strongly connected without in-edges from processes outside S. Hence Ci|a = S from the
end of round a+D on, as asserted.

This immediately gives us the following Corollary 62, which ensures that in a sufficiently long
I-VSSC S, with I = [a, b] and member set S, every pi ∈ S detects its membership in the J-VSSC
S, J = [a, b−D] ⊆ I, with a latency of at most D rounds.

Corollary 62. Consider an interval of rounds I = [a, b], with |I| = b− a+ 1 > D, such that
there is a D-bounded vertex-stable source component S. Then, from the end of round b on, a
call to InStableSource([a, b−D]) returns S at every process in S.

Together, Corollary 60 and Corollary 62 reveal that InStableSource(.) precisely characterizes
the caller’s actual membership in the [a, b−D]-VSSC S in the communication graphs from the
end of round b on.

Core consensus algorithm for VSSCD,E(2D + 2E + 2)

As explained in Section 6.3.1, the core consensus algorithm stated in Algorithm 5 builds upon
the network approximation algorithm given as Algorithm 4: Relying on Corollary 60, every
process uses InStableSource provided by Algorithm 4 to detect whether it has been in
the vertex-stable source component of some past round(s). Since Corollary 62 reveals that
InStableSource has a latency of up to D 6 E rounds for reliably detecting that a process is
in the vertex-stable source component of some (interval of) rounds, our algorithm (conservatively)
looks back D rounds in the past when locking a value.

In more detail, Algorithm 5 proceeds as follows: Initially, no process has locked a value, that is,
lockedi = false and lockRoundi = 0. Processes try to detect whether they are privileged by
evaluating the condition in Line 16. When this condition is true in some round `, they lock the
current value (by setting lockedi = true and lockRound to the current round), unless lockedi
is already true. Note that our locking mechanism does not actually protect the value against
being overwritten by a larger value being also locked in `; it locks out only those values that
have older locks l < `.
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Algorithm 5 Solving Consensus; code for process pi
1: Simultaneously run Algorithm 4.

Variables and Initialization:
2: xi ∈ N, initially own input value
3: lockedi, decidedi ∈ {false,true} initially false
4: lockRoundi ∈ Z initially 0

Emit round r messages:
5: if decidedi then
6: send 〈decide, xi〉 to all neighbors
7: else
8: send 〈lockRoundi, xi〉 to all neighbors
9: end if

Round r computation:
10: if not decidedi then
11: if received 〈decide, xj〉 from any neighbor pj then
12: xi ← xj

13: decide on xi and set decidedi ← true

14: else // pi only received 〈lockj , xj〉 messages (if any):
15: (lockRoundi, xi)← max {(lockj , xj) | pj ∈ N r

i ∪ {pi}} // lexical order in max
16: if InStableSource([r −D − 1, r −D]) 6= ∅ then
17: if (not lockedi) then
18: lockedi ← true
19: lockRoundi ← r
20: else
21: if InStableSource([lockRoundi, lockRoundi + E]) 6= ∅ then
22: decide on xi and set decidedi ← true
23: end if
24: end if
25: else // InStableSource([r −D − 1, r −D]) returned ∅
26: lockedi ← false
27: end if
28: end if
29: end if

When the process pm that had the largest value in the source component of round ` detects that
it has been in a vertex-stable source component in all rounds ` to `+ E (Line 21), it can decide
on its current value. As all other processes in that source component must have had pm’s value
imposed on them, they can decide as well. After deciding, a process stops participating in the
flooding of locked values, but rather (Line 6) floods the network with 〈decide, x〉. At the point
when the stability window guaranteed by Definition 55 with d = 2D + 2E + 2 is large enough to
allow every process to receive this message, all processes will eventually decide.

Before we turn our attention to the correctness proof of Algorithm 5, we need to define how
the network approximation algorithm and the core consensus algorithm are combined to form a
joint algorithm in our computation model. Let m_apprr−1

i be the information to be broadcast
by the network approximation algorithm and m_cr−1

i the information to be broadcast by the
consensus algorithm in round r. Process pi actually performs the following steps in round r:

(i) At the beginning of round r, broadcast a message containing m_apprr−1
i and m_cr−1

i ,
which are both based on sr−1

i .

(ii) Receive all messages based on Gr.

(iii) At the end of round r,
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1. execute the computing step of the network approximation algorithm, usingm_apprr−1
j

from all messages received in (ii).
2. execute the computing step of the consensus algorithm, using m_cr−1

j from all
messages received in (ii).

Note carefully that this joint execution scheme implies that when InStableSource() is called
in the above step (iii.2) of the consensus algorithm, the network approximation algorithm is
already in the state srpi

reached at the end of round r, so Ai has already been updated with
the information received in round r. Consequently, according to Corollary 60 and Corollary 62,
a call to InStableSource(I) with I = [a, b −D] by pi in the computing step at the end of
round b (or a later round) returns S 6= ∅ precisely when a I-VSSC S containing pi existed.

Our correctness proof starts with the validity property of consensus according to Definition 6.

Lemma 63 (Validity). Every decision value is the input value of some process.

Proof. Processes decide either in Line 13 or in Line 22. When a process decides via the former
case, it has received a 〈decide, xj〉 message, which is sent by pj if and only if pj has decided
on xj in an earlier round. In order to prove validity, it is thus sufficient to show that processes
can only decide on some process’ input value when they decide in Line 22, where they decide
on their current estimate xi. Let the round of this decision be r. The estimate xi is either pi’s
initial value, or was updated in some round r′ 6 r in Line 15 from a value received by way of
one of its neighbors’ 〈lockRound, x〉 message. In order to send such a message, pj must have
had xj = x at the beginning of round r′, which in turn means that xj was either pj ’s initial
value, or pj has updated xj after receiving a message in some round r′′ < r. By repeating this
argument, we will eventually reach a process that sent its initial value, since no process can have
updated its decision estimate prior to the first round.

The following Lemma 64 states a number of properties maintained by our algorithm when the
first process pi has decided. Essentially, they say that there has been a vertex-stable source
component in the interval I = [` − D − 1, ` + E] centered around the lock round ` (but not
earlier), and asserts that all processes in that source component chose the same lock round `.

Lemma 64. Suppose that process pi decides in round r, no decisions occurred before r, and
` = lockRoundr−1

i , then

(i) pi is in the I-vertex-stable source component S with I = [`−D − 1, `+ E],

(ii) `+ E 6 r 6 `+ E +D,

(iii) S 6= S′, where S′ is the source component of G`−D−2, and

(iv) all processes in S executed Line 19 in round `, and no process in Π \ S can have executed
Line 19 in a round > `.

Proof. Item (i) follows since Line 16 has been continuously true since round ` and from
Lemma 59. As for item (ii), ` + E 6 r follows from the requirement of Line 21, while
r 6 ` + E + D follows from (i) and the fact that by Lemma 61 the requirement of Line 21
cannot be, for the first time, fulfilled strictly after round ` + E + D. From Lemma 61, it
also follows that if S = S′, then the condition in Line 16 would return true already in round
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` − 1, thus locking would occur already in round ` − 1. Since pi did not lock in round ` − 1,
(iii) must hold. Finally, from (i), (iii), and Lemma 61, it follows that every other process in
S also has InStableSource([` −D − 1, ` −D]) = true in round `. Moreover, due to (iii),
InStableSource([`−1−D−1, `−1−D]) = false in round `−1, which causes all the processes
in S (as well as those in Π \ S) to set locked to 0. Since InStableSource([`′ −D− 1, `′ −D])
cannot become true for any `′ > ` at a process pj ∈ Π \ S, as Cj |r = ∅ for any r ∈ I by
Corollary 60, (iv) also holds.

The following Lemma 65 asserts that if a process decides, then it has successfully imposed its
proposal value on all other processes.

Lemma 65 (Agreement). Suppose that process pi decides in Line 22 in round r and that no
other process has executed Line 22 before r. Then, for all pj, it holds that xr−1

j = xr−1
i .

Proof. Using items (i) and (iv) in Lemma 64, we can conclude that pi was in S, the vertex-stable
source component of rounds ` = lockRoundr−1

i to ` + E, and that all processes in it S have
locked in round `. Therefore, in the interval [`, ` + E], ` is the maximal value of lockRound.
More specifically, all processes pj in S have lockRoundj = `, whereas all processes pk in Π \ S
have lockRoundk < ` during these rounds by Lemma 64.(iv). Let pm ∈ S have the largest
proposal value x`m = xmax among all processes in S. Since pm is in S, there is a causal chain of
length at most E from pm to any pj ∈ Π. Note carefully that guaranteeing this property requires
item (ii) of Definition 55, as the first decision (in round r) need not occur in the eventually
guaranteed 2D + 2E + 2-VSSC but already in some earlier “spurious” VSSC.

Since no process executed Line 22 before round r, no process will send decide messages in
[`, `+ E]. Thus, all processes continue to execute the update rule of Line 15, which implies that
xmax will propagate along the aforementioned causal path to pj .

Theorem 66 (Consensus under VSSCD,E(2D + 2E + 2)). Let rST be the beginning of the
stability window guaranteed by the message adversary VSSCD,E(2D + 2E + 2) given in Defini-
tion 55. Then, Algorithm 5 in conjunction with Algorithm 4 solves consensus by the end of
round rST + 2D + 2E + 1.

Proof. Validity holds by Lemma 63. Considering Lemma 65, we immediately get agreement:
Since the first process pi that decides must do so via Line 22, there are no other proposal values
left in the system.

Observe that, so far, we have not used the liveness part of Definition 55. In fact, Algorithm 5
is always safe in the sense that agreement and validity are not violated, even if there is no
vertex-stable source component.

We now show the termination property. By Corollary 62, we know that every process in pi ∈ S
evaluates the predicate InStableSource([rST , rST + 1]) = true in round ` = rST +D + 1,
thus locking in that round. Furthermore, Definition 55 and Corollary 62 imply that at the latest
in round d = `+E +D every process pi ∈ S will evaluate the condition of Line 21 to true and
thus decide using Line 22. Thus, every such process pi will send out a message m = 〈decide, xi〉.
By Definition 52 and Definition 55, we know that every pj ∈ Π will receive a decide message at
the latest in round d + E = ` + D + 2E = rST + 2D + 2E + 1 and decide by the end of this
round.
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We conclude our considerations regarding consensus under our eventually stabilizing message
adversary VSSCD,E(d) by pointing out that the upper bound 2D + 2E + 2 and and the lower
bound E−1 of the stability interval d presented in [22] match up to a small constant factor. The
algorithms presented and mentioned in the following chapters will eventually close this gap.

6.4 Optimizing stability and rootedness

We will now follow up with an algorithm and a proof of optimality, which reduces the stability
from 2D + 2E + 2 to 2E + 1. Furthermore, we recognized that rootedness is not mandatory
for every graph in the sequence. Hence, we not only could improve the stability interval but
also learned that the necessary restriction for oblivious message adversaries (Theorem 12) is not
necessary in the non-oblivious case. The results were published in [102]. Note that parts of the
network definitions will also be included in Kyrill Winklers thesis [107].

Recall that the purpose of our stabilizing message adversary is to allow an unbounded (but finite)
initial period of “chaotic” behavior, where the communication graphs can be arbitrary: Unlike
for VSSCD,E(d), any Gr may be arbitrarily sparse and could contain several root components
here. Clearly, one cannot hope to solve consensus during this initial period in general. Eventually,
however, the adversary must start to generate suitably restricted communication graphs, which
should allow the design of algorithms that solve consensus. We will develop two instances in
this paper, and also relate those to the message adversary introduced in in the previous section
(published in [21]).

The simple message adversary ♦STABLEn,E defined in this section uses a straightforward means
for closing the initial period, which is well-known from eventual-type models in distributed
computing: In partially synchronous systems [50], for example, one assumes that speed and
communication delay bounds hold forever from some unknown stabilization time on. Analogously,
we assume that there is some unknown round rST , from which on the adversary must behave
“nicely” forever. Albeit the resulting message adversary is restricted in its behavior, it provides
easy comparability of the performance (in particular, of the termination times) of different
consensus algorithms. Moreover, in Section 6.4.2, we will show how to generalize ♦STABLEn,E to a
considerably stronger message adversary ♦STABLE′(E), which does not require such a restrictive
“forever after” property.

In order to define what “behaving nicely” actually means in the case of ♦STABLEn,E , we start
from a necessary condition for solving consensus in (Gr)∞r=rST

: The arguably most obvious
requirement here is information propagation from a non-empty set of processes to all processes
in the system. According to Lemma 48, this can be guaranteed when there is a sufficiently
long sub-sequence of communication graphs in (Gr)∞r=rST

with a stable root. Natural candidate
choices for feasible graphs would hence be the very same rooted graph G in all rounds r > rST ,
or the assumption that all Gr are strongly or even completely connected (and hence also rooted).
While simple, these choices would impose severe and unnecessary restrictions on our message
adversary, however, which are avoided by the following more general definition (that includes
these choices as special instances, and hence results in a stronger message adversary):

Definition 67. We say that (Gr)∞r=1 has a (unique) FAE-stable root R (“forever after, eventu-
ally”) starting at round rST > 1, iff R is (i) a maximal stable source of (Gr)∞r=rST

and (ii) a
maximal root of (Gr)∞r=r′, for some round r′ > rST .

♦STABILITY contains those communication graph sequences (Gr)∞r=1 that have a FAE-stable root
R.
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pi pj

pi pj

Rounds 1 to τ

pi pj

pi pj

Rounds τ + 1 to ∞

Figure 6.2: Two executions ε1 (top) and ε2 (bottom), indistinguishable for p until τ .

Note that the eventual rootedness of (Gr)∞r=rST
implied by ♦STABILITY allows the respective

round graphs Gr to be very sparse: For instance, each Gr of (Gr)∞r=rST
consisting of a chain with

the same head but varying body would satisfy the requirement for rootedness.

Whereas the properties guaranteed by ♦STABILITY will suffice to ensure liveness of the consensus
algorithm presented in this chapter, i.e., termination, it is not sufficient for also ensuring safety,
i.e., agreement. Consider for instance the top run (execution ε1) from Figure 6.2, where pi
is connected to q in a chain forever, which is feasible for ♦STABILITY. In any correct solution
algorithm, the head pi of this chain must eventually decide in some round τ on its initial value xi.
Now consider the execution ε2, depicted in the bottom of Figure 6.2, where pi is disconnected
until τ and xi 6= xj . Since ε2 is indistinguishable for pi from ε1 until τ , process pi will decide
xi at time τ . However, in ε2, a chain forms with head pj 6= pi forever after τ . Since pj is only
aware of its own input value xj , it can never make a safe decision in this execution.

This is why ♦STABLEn,E needs to combine ♦STABILITY with another message adversary STICKY(x)
that enables our solution algorithm to also ensure safety. The above example illustrates the
main problem that we face here: If we allow root components to remain common for too many
consecutive rounds in the initial period (before rST ), the members of such a source component
(which does not need to be single) cannot distinguish this from the situation where they are
belonging to the final FAE-stable root (after rST ). In the previous chapter this problem was
void since all communication graphs were assumed to be rooted. In the following Definition 68,
we require that every source that is common during a sequence of “significant” length x+ 1 is
already the FAE-stable root R. Again, in Section 6.4.2, we will present a significant relaxation of
this quite restrictive (but convenient) assumption.

Definition 68. STICKY(x) contains those communication graph sequences σ = (Gr)∞r=1, where
every source S that is stable for > x consecutive rounds in σ is the FAE-stable root R in σ.

What remains is to redefine the network depth such that it is not a property of vertex stable
sources but instead a property of rooted graphs.

Definition 69 (Dynamic network depth E). For all subsequences (Gr1 , . . . ,Gr1+E−1) ⊂ σ ∈
DEPTHn(E) of non necessarily consecutive R-rooted communication graphs, we have R ⊆
CPr1+E−1

i (r1 − 1) for every pi ∈ Π.

We are now ready to define our simple eventually stabilizing message adversary ♦STABLEn,E ,
which is the conjunction of the adversaries from Definition 67 and Definition 68, augmented
by the additional requirement to always guarantee a dynamic network depth E according to
Definition 69:

Definition 70. The message adversary ♦STABLEn,E =
STICKY(E) + ♦STABILITY contains those graph sequences of STICKY(E) ∩ ♦STABILITY that are
in DEPTHn(E).
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Note carefully that Definition 67 allows the coexistence of the FAE-stable root R with some
other source component S 6= R in communication graphs that occur before R becomes the root
(in round r′). However, according to Definition 68, S cannot be stable root for more than E
consecutive rounds in this case.

6.4.1 A fast consensus algorithm

We now present our consensus algorithm for the message adversary ♦STABLEn,E , which also
works correctly under the generalized ♦STABLE′(E) that will be introduced in Section 6.4.2. The
algorithm is based on the fact that, from the messages a node receives, it can reconstruct a
faithful under-approximation of (the relevant part of) the communication graph of every round,
albeit with delay E. Obviously, an algorithm similar to Algorithm 4 can be used for this purpose.

The algorithm stated in Figure 6.3 works as follows: Every process pi maintains an array Ai[r]
that holds the graph approximation of Gr, and a matrix locki[j][r] that holds the history of a
special value, the lock-value, for every known process q and every round r. Ami [r] and lockmi [j][r]
denote the content of the respective array entry at the end of round m as usual. The first entries
of these arrays are initialized to the singleton-graph A0

i [0] = ({pi}, {}) resp. to lock0
i [i][0] := xi,

the input value of pi, and to lock0
i [j][0] := ⊥ for every pj 6= pi. Note that locki[i][m− 1] can be

viewed as pi’s proposal value for round m. Every process broadcasts Am−1
i [r] and lockm−1

i [j][r]
in round m > 1, and updates Ami [r] and lockmi [j][r], by fusing the information contained in the
messages received in round m in a per-round fashion (as detailed below), before executing the
round m core computation (we will omit the attribute core in the sequel if no ambiguity arises)
of the algorithm. Note that the round m core computation for m ∈ {1, . . . , E} is empty.

In the core computation of some round τ , pi will eventually decide on the maximum locki[j][a]
value for all pj ∈ R, where R is a stable root of some sequence (Gr)a+E

r=a but not of (Gr)a+E−1
r=a−1 ,

as detected locally in Aτi [∗]. Note carefully that τ may be different for processes other than pi.

Two mechanisms are central to the algorithm for accomplishing this: First, any process pi that,
in its round m computation, locally detects a root component R in Ampi

[m− E] will “lock” it,
i.e., assign the maximum value of lockmi [j][m− E] for any pj ∈ R to lockmi [i][m]. Second, if
process pi detects in round τ that a graph sequence had a stable root R′ for at least E+ 1 rounds
in its graph approximation, starting in round a, pi will decide, i.e., set yi to the maximum of
lockτi [j][a] among all pj ∈ R′.

Informally, the reason why this algorithm works is the following: From detecting an R-rooted
sequence of length > E + 1, pi can infer, by the STICKY(E) property of our message adversary,
that the entire system is about to lock pi’s decision value. Moreover, by exploiting the information
propagation guarantee given by Lemma 48, we can be sure that, after pi’s decision in round
τ , every other process pj decides (in some round τ ′ > τ) on the very same value: Under
♦STABLEn,E , it decides because the root that triggered the decision of pi is the FAE-stable root;
under ♦STABLE′(E), pj decides on the same value because it will never assign a value different
from locki[i][τ ] to lockj [x][τ ′′] for any τ ′′ > τ ′ and any known process x. Finally, termination
is guaranteed since every pi will eventually find an R-rooted sequence of duration at least E + 1
because of ♦STABILITY resp. ♦STABILITY′.

Graph approximation and lock maintenance

Our algorithm relies on a simple mechanism for maintaining the graph approximation Ai[r] and
the array of lock values locki[j][r] at every process pi already used in Algorithm 4: In every
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start of round m > E + 1 computation end of round m computation

c1:
Check if A[m− E] contains exactly one root R such that
for every pj ∈ R there is a round m′ > m− E s.t.
there is an outgoing edge from pj in A[m′].

b1:
Find a round a such that R is a maximal stable root of (A[r])br=a
and (m− E) ∈ [a, b]. Set lock[i][m] to the maximum lock[q][a]
of all processes pj ∈ R.

c2:
Does there exist a R′ rooted sequence (A[r])b′r=a′ with b′ − a′ + 1 > E?

c3:
For every process pj of R′, is there some round γ > b′ s.t.
there is an outgoing edge from pj in A[γ]?

b3:
If not yet decided, find a round a′′ s.t. R′ is maximum stable root of (A[r])b′′r=a′′ and
[a′, b′] ⊆ [a′′, b′′] and decide on the maximum lock[j][a′′] of all processes pj ∈ R′.

no

yes

no

yes

no

yes

Figure 6.3: Round m > E + 1 core computation step of our consensus algorithm for process pi.
A[r] = Ami [r] denotes pi’s round m view of Gr provided by the network approximation algorithm.
lock[j][r] denotes lockmi [j][r], where lock[i][m] represents pi’s proposal value for the next round
m+ 1. Note that c1 and c2 are only relevant if |R| = 1 and |R′| = 1, respectively, as the graph
approximation may not yet know the outgoing edges at the time the root is detected.

round, each process pi broadcasts its current Ai[∗] and locki[∗][∗] and updates all entries with
new information possibly obtained in the received approximations from other processes. In
more detail, an edge (pj → pk) will be present in Ami [r] at the end of round m > r if either
pi = pk and pi received a message from pj in round r, or if pi received Ar

′′
` [r] for m > r′′ > r

from some process p` and (pj → pk) ∈ Ar
′′
` [r]. Similarly, lockmi [j][r] for r < m is updated to

lockk[j][r] 6= ⊥ whenever such an entry is received from any process pk; the entry lockmi [j][m]
for the current round m is initialized to locki[i][m] := locki[i][m − 1] for pj = pi and to
locki[j][m] := ⊥ for every pj 6= pi.

Note carefully that we again assume that the round m computation of the approximation
algorithm is executed before the round m core computing step at every process. Therefore, the
round m approximation Ami [∗] is already available before the core computing step of round m at
process pi is executed. Note that we assume that, instead of accessing information provide by
Algorithm 4 via a dedicated function, the algorithm in Figure 6.3 accesses the approximation
Ari [∗] directly. We also drop the index from the approximation in the algorithm of process pi
as it obviously accesses its own approximation. Furthermore, the full-information approach of
the above implementation incurs sending and storing a large amount of redundant information.
Comments related to a more efficient implementation are provided in Section 6.4.2.

The crucial property guaranteed by our graph approximation is again that processes under-
approximate the actual communication graph, i.e., that they do not fabricate edges in their
approximation. Using our notion of causal past, it is not difficult to prove the following assertion
about edges that are guaranteed to exist in the graph approximation:
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Lemma 71. For Algorithm 4 it holds that: srj  sr
′
i holds for r′ > r ⇔ there exists a process

pk s.t. (pj → pk) ∈ Ar
′
i [r′′] for some r′′ ∈ (r, r′].

Proof. “⇒”-direction: If pi = pj , the claim trivially holds because Gr contains the self-loop
(pi → pi). For pi 6= pj , since we assume srj  sr

′
i , by Definition 42, there exists a round r′′ > r,

such that ∃sr′′k  sr
′
i with (pj → pk) ∈ Gr′′ . Therefore, pi must have received the round r′′ state

of pk and hence learned about the edge (pj → pk), by round r′ via line 5,line 7 or line 13. In
other words, (pj → pk) ∈ Ar

′
p [r′′], as claimed.

“⇐”-direction: Holds by Lemma 58.

We now present a more abstract view on this mechanism of approximating the communication
graph. First, we answer which state information a process needs in order to reliably detect which
roots are present in the actual communication graph.

Lemma 72. Let R ∈ sources(Gr) and let there be some process pi and round r′ such that
R ⊆ CPr′pi

(r). For Algorithm 4 it holds that R ∈ sources(Ar′i [r]). Furthermore, there exists a
process pk s.t. (pj → pk) ∈ Ar

′
i [r′′] for some r < r′′ 6 r′.

Proof. Since R ⊆ CPr′pi
(r), according to Corollary 43, by the end of round r′, pi has received

the round r state srj of all processes pj ∈ R. In particular, pi has received all round r in-edges
of every process pj . Hence, R is a strongly connected component of Ar′i [r] and there are no
processes pk ∈ Π \R s.t. (pk → pj) ∈ Ar

′
i [r]. But then, R ∈ sources(Ar′i [r]), as asserted. The

presence of (pj → pk) in Ar′i [r′′] follows directly from Lemma 71.

We conclude our considerations regarding the graph approximation by looking at what is sufficient
from an algorithmic point of view for a process pi to faithfully determine the root components
in some communication graph. In the case where a root component R ∈ sources(Gr) has size
|R| > 1, we note that as soon as a process pi knows, in some round r′, at least one in-edge
(pk → pj) ∈ Ar

′
i [r] for each pj ∈ R, then pi knows srj and hence all in-edges of pj . Consequently,

it can reliably deduce that indeed R ∈ sources(Gr).

In the case where |R| = |{pj}| = 1, if pi has no edge (pk → pj) ∈ Ar
′
i [r], this is not sufficient for

concluding that {pj} ∈ sources(Gr): Process pi seeing no in-edge to a process pj in the local
graph approximation Ar′i [r] happens naturally if sr−1

pj
 sr

′
pi

and srpj
6 sr

′
pi
, i.e., when the last

message pi received from pj was sent at the beginning of round r. In order to overcome this
issue, process pi must somehow ascertain that it already received the state srj of process pj in
round r. In particular, process pi can deduce this directly from its graph approximation as soon
as it observed some outgoing edge from pj in a round strictly after r.

Let us state this more formally in the following lemma.

Lemma 73. Let R ∈ sources(Ar′i [r]) for r′ > r, and let, for all processes pj ∈ R, there be a
process pk and a round r′′ ∈ (r, r′], such that (pj → pk) ∈ Ar

′
i [r′′]. Then, R ∈ sources(Gr), and

R ⊆ CPr′i (r).

Proof. By contradiction. Assume that R ∈ sources(Ar′i [r]), ∀pj ∈ R ∃pk ∈ Π, r′′ ∈ (r, r′] : (pj →
pk) ∈ Ar′i [r′′] and R /∈ sources(Gr). Because of the latter, there exist some processes pj ∈ R and
p` /∈ R with (p` → pj) ∈ Gr. By the presence of the edge (pj → pk) in Ar′i [r′′] and Corollary 71,
we have R ⊆ CPr′i (r). But then, by the assumption that (p` → pj) ∈ Gr, it must also hold that
(p` → pj) ∈ Ar

′
i [r]. This, however, contradicts that R ∈ sources(Ar′i [r]).
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Finally, the way how the lock arrays are maintained by our algorithm implies the following
simple results:

Corollary 74. If r′ > r, then srpj
 sr

′
pi

implies that also lockr
′
i [j][r′′] = lockr

′′
j [j][r′′] for all

rounds r′′ 6 r.

Lemma 75. Let m be a round reached by process pi in the execution. Then, lockmi [i][r] 6= ⊥
for all 0 6 r 6 m.

Proof. Since lock0
i [i][0] = xp, it follows from the update rule locki[i][m] := locki[i][m− 1] that

locki[i][m] 6= ⊥ for all reached rounds m, provided that the core algorithm never assigns ⊥ in
b1. Since the latter can only assign the maximum of locki[j][a] for all pj ∈ R from some earlier
round a 6 m− E < m, the statement of our lemma follows from a trivial induction based on
Corollary 74, provided we can guarantee saj  smi . The latter follows immediately from c1 in
conjunction with Lemma 73, however.

Correctness proof

Before proving the correctness of the algorithm given in Figure 6.3 (Theorem 79 below), we
first establish two technical lemmas: Lemma 76 reveals that our algorithm terminates for every
message adversary MAT that guarantees certain properties (without guaranteeing agreement,
though). The complementary Lemma 78 shows that our algorithm ensures agreement (without
guaranteeing termination, though) for every message adversary MAA that guarantees certain
other properties. Theorem 79 will then follow from the fact that ♦STABLEn,E ⊆ MAT ∩ MAA.

Lemma 76. The algorithm terminates by the end of round τ under any message adversary
MAT that guarantees σ ∈ DEPTHn(E) and if for every σ ∈ MAT, there is an R-rooted sequence
(Gr)βr=α ∈ σ with β − α+ 1 > E.

Proof. We show that if process pi has not decided before round τ , it will do so in round
τ . By round τ , every process pi ∈ Π received sβj for all pj ∈ R by the assumption that
R ⊆ CPτi (β). Hence, by Lemma 72 and Lemma 73, for every pi ∈ Π, it holds that R is the root
of sources(Aτi [β]). Furthermore, by Corollary 43, R is in fact the root of sources(Aτi [r]) for
any r ∈ [α, β]. Therefore, process p will pass the check c2 in round τ .

In addition, by the assumption that R ⊆ CPτi (β) and Lemma 72, for every pj ∈ R, there exists
a round β′ ∈ (β, τ ], s.t. (pj → pk) ∈ Aτi [β′] for some process pk. Therefore, process p will pass
the check c3 in round τ and decide.

Lemma 78 below shows that, under message adversaries that guarantee a EC(E + 1)-stable root
according to Definition 77, the algorithm from Figure 6.3 satisfies agreement.

Definition 77. We say that a graph sequence (Gr)α+d
r=α has a EC(x+ 1)-stable source (“embedded

x + 1-consecutive stable source”) R, if (i) (Gr)α+d
r=α has a stable source R and (ii) (Gr)α′+xr=α′ ⊆

(Gr)α+d
r=α has a root R.

Lemma 78. Let MAA be a message adversary that guarantees, for every σ ∈ MAA that σ ∈
DEPTHn(E) and that the first subsequence (Gr)βr=α ⊆ σ with a maximum stable source R and
β − α+ 1 > E has a EC(E + 1)-stable source. Under MAA, if two or more processes decide in our
algorithm, then they decide on the same value 6= ⊥.
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Proof. Let α′ and β′, with β′ − α′ + 1 > E, delimit the maximal period where R is root, as
predicted by Definition 77.

Setting λ = maxpj∈R lockαj [j][α], we show that if an arbitrary process p decides in round τ , it
decides on λ and λ 6= ⊥. Assume that pi decides in some round τ . It follows from c2 and c3
that pi detects in round τ that R′ is the root of (Aτi [r])b

′
r=a′ with b′ − a′ + 1 > E, and that, for

every pj ∈ R′, there is a round γ > b′ where there is an edge (pj , pk) in Aτpi
[γ] for some process

pk ∈ Π. By Lemma 73, we have that R′ ∈ sources(Gr) for all r ∈ [a′, b′], and R′ ⊆ CPτi (b′).
Thus, Corollary 74 in conjunction with Lemma 75 confirm that indeed λ 6= ⊥. We distinguish
two cases:

Case 1. [a′, b′] ⊆ [α, β]: From the definition of MAA, in combination with the fact that b′−a′+1 > E,
it follows that R′ = R: if this was not the case, then either (Gr)βr=α would not be the first
sequence of its kind or (Gr)β

′

r=α′ would not be R-rooted.

By b3, pi will decide on the maximum of locki[j][a′′], where a′′ is a round such that (Aτi [r])b′′r=a′′
has a maximum stable source R, [a′′, b′′] ⊇ [a′, b′], and pj ∈ R. Hence, since R ⊆ CPτi (b′) and
α < b′, it follows from Corollary 43 that R ⊆ CPτp(α). Thus, by Lemma 72, we have a′′ = α.
According to Corollary 43 in conjunction with Corollary 74, it follows that pi indeed decides on
λ.

Case 2. [a′, b′] * [α, β]: First, observe that a′ > β′: If a′ 6 β′ then, because (Gr)βr=α is the first
sequence of its kind, we have that a′ > α. Thus, since Gβ′ is R-rooted, R′ = R, and hence
[a′, b′] * [α, β] is a contradiction to the assumption that R is maximal stable in (Gr)βr=α.

It follows from this observation and b3 that pi decides on the maximum value of locki[j][a′′] for
pj ∈ R′, where a′′ > β′. Thus, to conclude our proof, it suffices to show that lockri [i][r] = λ for
all rounds r > β′ and all processes pi ∈ Π.

Since (Gr)β
′

r=β′−E is R-rooted, it follows from Definition 69 and Lemma 72 that in round β′ every
process pi sets lockβ

′

i [i][β′] to λ via b1. Moreover, if a process assigns a value to locki[i][m]
during some round m ∈ (β′, β′ +E] via b1 later on, it follows from the rootedness of (Gr)β

′

r=β′−E
and Lemma 73 that the assigned value is also λ.

For ` > β′ + E, we show by induction on ` that λ is assigned to locki[i][m] (if there is any
assignment at all), in round m, for all m ∈ [β′, `] and all processes p. The induction basis is
` = β′+E, for which the claim has been established already. For the induction step, assume that
the claim holds for the interval [β′, `] and all p. If no process pi changes its lock value in b1 during
the core round ` + 1 computation, i.e., lock`i [i][`] = lock`+1

i [i][` + 1], then the claim follows
immediately from the induction hypothesis. Thus, assume that λ = lock`i [i][`] 6= lock`+1

i [i][`+1].
This means that pi has successfully passed c1 and hence, by Lemma 73, that there is a root
R′′ ∈ sources(G`+1−E) with R′′ ⊆ CP`+1

i (`+ 1− E). If R′′ = R is a maximal stable source of
(Gr)βr=α, by Corollary 43, it follows from the definition of λ and Corollary 74 that pi assigns
lock`+1

i [i][` + 1] := λ. Therefore, assume that this is not the case, i.e., R′′ 6= R. Still, R′′

must be a maximal stable source in (Gr)β
′′

r=α′′ for some α′′ > β′ with α′′ 6 ` + 1 − E. By the
induction hypothesis, lock`+1−E

j [j][r] = λ for every process pj of R′′ and round r ∈ [β′, `] and so,
in particular, lock`+1−E

j [j][α′′] = λ. It follows from Corollary 74 and R′′ ⊆ CP`+1
i (`+ 1− E)

that for all processes q ∈ R′′, we have lock`+1
i [j][α′′] = λ. Therefore, since, by b1, pi chooses

its new value for lock`+1
i [i][` + 1] as the maximum of the entries lock`+1

i [j][α′′], it assigns
lock`+1

i [i][`+ 1] := λ.
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Theorem 79. The algorithm from Figure 6.3 solves consensus by round r′ + 2E under message
adversary ♦STABLEn,E.

Proof. According to b3, a process p can decide only on a value in lockmp [i][∗] in some round m.
By Lemma 75, this value must be 6= ⊥. Since lockj [j][0] is initialized to xj for any process pj ,
and the only assignments 6= ⊥ to any lockj entry are lockk entries of other processes, validity
follows.

For agreement, recall that STICKY(E) guarantees that the first sequence (Gr)r∈I with a stable
source R and |I| > E must be the FAE-stable root. Hence, agreement follows from Lemma 78.

For termination, recall that ♦STABILITY guarantees the existence of some round r′ > rST
such that (Gr)∞r=r′ is R-rooted. This implies that the sequence (Gr)r′+Er=r′ is R-rooted and, by
Definition 69, R ⊆ CPr′+2E

p (r′ + E). Lemma 76 thus implies termination by round r′ + 2E.

6.4.2 Generalized stabilizing message adversary

The simple message adversary introduced in at the start of Section 6.4 may be criticized due
to the fact that the first source component R that is common in at least E + 1 consecutive
rounds must already be the FAE-stable root that persists forever after. In this section, we will
considerably relax this assumption, which is convenient for analysis and comparison purposes
but usually unrealistic in practice [89].

In the following Definition 80, we start with a significantly relaxed variant ♦STABILITY′(x) of
♦STABILITY from Definition 67: Instead of requesting an infinitely stable FAE-stable root R,
we only require R to be (i) a EC(x + 1)-stable source that starts at rST and becomes single
at r′ > rST , and (ii) to re-appear as a root in at least E not necessarily consecutive later
round graphs Gr1 , . . . ,GrE . Note that, according to Definition 69, the latter condition ensures
R ⊆ CPrE

p (r′ + x) for all pi ∈ Π if ♦STABILITY′(x) ⊆ DEPTHn(E).

Definition 80. Every communication graph sequence σ ∈ ♦STABILITY′(x) contains a subse-
quence (Gr)α+d

r=α, which has a EC(x+ 1)-stable source R; let rST = α be its starting round and
r′ = α′ be the time when it becomes single. Furthermore, there are at least E, not necessarily
consecutive, R-rooted round graphs Gr1 , . . . ,GrE with r′ + x < r1 < · · · < rE in σ.

Moreover, we relax the STICKY(x) condition in Definition 68 accordingly: We only require that
the first source component R that is common for at least x+ 1 consecutive rounds in a graph
sequence σ = (Gr)∞r=1 is a EC(x+ 1)-stable source:

Definition 81. For every σ ∈ STICKY′(x), it holds that the earliest subsequence in σ with a
maximal stable source R in at least x + 1 consecutive rounds actually has a EC(x + 1)-stable
source.

Combining these two definitions results in the following strong version of our stabilizing message
adversary.

Definition 82. The strong stabilizing message adversary ♦STABLE′(E) = STICKY′(E)+♦STABILITY′(E)
contains all graph sequences in STICKY′(E) ∩ ♦STABILITY′(E) that guarantee a dynamic network
depth of E.
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Note carefully that the very first EC(E + 1)-stable source R′ occurring in σ ∈ ♦STABLE′(E) need
not be the EC(E + 1)-stable source R guaranteed by Definition 80.

The following Lemma 83 shows that the message adversary ♦STABLE′(E) is indeed weaker than
♦STABLEn,E . This is not only favorable in terms of model coverage, but also ensures that an
algorithm designed for ♦STABLE′(E) works under ♦STABLEn,E as well.

Lemma 83. ♦STABLEn,E ⊆ ♦STABLE′(E)

Proof. Pick any graph sequence σ ∈ ♦STABLEn,E . Since σ ∈ ♦STABILITY, there exists a round
r′ > rST such that (Gr)∞r=r′ is R-rooted. But then (Gr)r′+Er=r′ is also R-rooted and there is a set of
E additional communication graphs S =

{
Gr′+E+1, . . . ,Gr′+2E

}
such that every Gr ∈ S is also

R-rooted. Hence, σ satisfies ♦STABILITY′(E).

Furthermore, σ satisfies STICKY(E). Thus, for the first sequence (Gr)a+E
r=a with stable source

R, R must already be the FAE-stable root and hence (Gr)∞r=r′ is R-rooted for some r′ > a.
Consequently, R is a EC(x+ 1)-stable source starting at a. Hence, σ satisfies STICKY′(E).

The following Theorem 84 shows that the algorithm from Figure 6.3 also solves consensus under
the stronger message adversary ♦STABLE′(E):

Theorem 84. For a graph sequence σ ∈ ♦STABLE′(E), let Gr1 , . . . ,GrE with r1 > r′ +E denote
the E re-appearances of the EC(E + 1)-stable source R guaranteed by ♦STABILITY′ according to
Definition 80. Then, the algorithm from Figure 6.3 correctly terminates by the end of round
τ = rE.

Proof. The proof of validity in Theorem 79 is not affected by changing the message adversary.

For the agreement condition, recall that STICKY′(E) guarantees that the first sequence (Gr)r∈I
with stable source R in E + 1 consecutive rounds has a EC(E + 1)-stable source. Hence, we can
again apply Lemma 78 to prove that the algorithm satisfies agreement.

For the termination condition, recall that for any sequence σ ∈ ♦STABILITY′(E) it is guaranteed
that there exists some round r′ s.t. (Gr)r′+Er=r′ is R-rooted. Furthermore, σ contains at least E
not necessarily subsequent R-rooted communication graphs after r′ + E. The latter implies,
by Definition 69, that R ⊆ CPτp(r′ + E) for every process p ∈ Π. Hence, we can again apply
Lemma 76, which shows that the algorithm indeed terminates by round τ .

By contrast, the Algorithm 7 from Section 6.6 does not work under ♦STABLE′(E). Under an
appropriate adversary, this algorithm ensures graceful degradation from consensus to general
k-set agreement. This does not allow the algorithm to adapt to the comparably shorter and
weaker stability periods of ♦STABLE′(E), however. In more detail, VSRC(n, 4E) requires a four
times longer period of consecutive stability than ♦STABILITY′(E). The adversarial restriction
MAJINF(k) that enables k-agreement under partitions in Section 6.6 for k > 1, on the other hand,
is very weak and thus requires quite involved algorithmic solutions. Nevertheless, despite its
weakness, it is not comparable to STICKY′(E).
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6.5 Minimal stability for rooted graphs

In this section, which is based on [108], we consider a slightly different message adversaries
than in the previous section. We already stated in Section 6.2 that E 6 n − 1 by an analog
proof to Lemma 46. The following liveness property, eventual stability, ensures that eventually
every graph sequence σ has a R-rooted subsequence σ′ ⊆ σ of length x. Herein, Σ denotes the
unrestricted message adversary, i.e., the set of all communication graph sequences. Again, parts
of the model will also be presented in Kyrill Winklers thesis [107].

Definition 85. ♦GOODn(x) := {σ ∈ Σ | Πσ = [1, n] ∧ ∃R ⊆ Πσ : some σ′ ⊆ σ with |σ′| > x is
R-rooted }.

For finite x, ♦GOODn(x) alone is insufficient for solving consensus: Arbitrarily long sequences of
graphs that are not rooted before the stability phase occurs can fool any consensus algorithm
to make wrong decisions. For this reason, we introduce a safety property in the form of the
message adversary that generates only rooted graphs.

Definition 86. ROOTEDn := {σ ∈ Σ | Πσ = [1, n]∧ every Gr of σ is rooted }.

The short-lived eventually stabilizing message adversary ♦STABLEn,E(E + 1) used throughout
this section adheres to the dynamic network depth E, guarantees that every Gr is rooted and
that every sequence has a subsequence of at least x = E + 1 consecutive communication graphs
with a stable root component. Since processes are aware under which message adversary they
are executing, they have common a priori knowledge of the dynamic network depth E and the
duration of the stability phase x. Moreover, depending on the variant actually used, they have
some knowledge regarding the system size n.

Definition 87. We call ♦STABLEn,E(x) = ROOTEDn ∩ ♦GOODn(x) ∩ DEPTHn(E) the eventually
stabilizing message adversary with stability period x. For some fixed E, we consider the following
generalizations:

• ♦STABLE<∞,E(x) =
⋃
n∈N\{0,1} ♦STABLEn,E(x)

• ♦STABLE6N,E(x) =
⋃N
n=2 ♦STABLEn,E(x)

We observe that ♦GOODn(x) ⊇ ♦GOODn(E) for any 1 6 x 6 E, hence it follows that ♦STABLEn,E(x) ⊇
♦STABLEn,E(E).

Impossibility Results and Lower Bounds

Even though processes know the dynamic network depth E, for very short stability periods,
this is not enough for solving consensus. Theorem 88 shows that consensus is impossible under
♦STABLE<∞,E(2E − 1). That is, if processes do not have access to an upper bound N on the
number of processes, solving consensus is impossible if the period x of eventual stability is shorter
than 2E: Here, processes can never be sure whether a stable root component occurred for at
least E rounds, albeit detecting such a stable root component is necessary to satisfy validity.

Theorem 88. Under ♦STABLE<∞,E(x) consensus is impossible for 0 < x < 2E.
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Figure 6.4: Example sequences where process pE+1 and pE+2 can not distinguish if they are in
σ or σ′ until round τ and both sequences, by a suitable choice of initial values, eventually have
different valencies. A dotted edge represents and edge which is in Gi if and only if it is not in
Gi−1. We assume that there are self-loops and there is an edge from every process depicted in
the graph to every process not depicted in the graph.

Proof. As we have ♦GOODn(x) ⊂ ♦GOODn(x′) for x > x′, it suffices to show that consensus is
impossible under message adversary MA = ♦STABLE<∞,E(2E − 1).

Pick any E ∈ N and suppose some algorithm Alg solves consensus under MA. Let n, resp. n′,
denote the number of nodes in any communication graph of σ, resp. σ′ from Figure 6.4. We
provide two admissible executions ε, ε′ based on σ, resp. σ′, of Alg where ε pE+1∼ ε′. We show
that pE+1 decides 0 in ε and hence in ε′, whereas process pn decides 1 in ε′.

Let C0 be the initial configuration with input values xi = 0 if i ∈ [1, E + 2] and xi = 1 otherwise.

Consider execution ε = 〈C0, σ〉 with σ from Figure 6.4, where a dotted edge exists only in
every second graph of the sequence, and all processes not depicted have an in-edge from every
depicted process. σ ∈ MA, since it guarantees eventual stability for 2E − 1 rounds, adheres to
the dynamic network depth E and in every round the communication graph is rooted. By the
assumed correctness of Alg, there is a finite round τ̂ by which every process has decided in ε;
let τ = max{τ̂ , 2E}. The decision must be 0 because pE+1 only ever saw processes that knew of
input value 0. This is indistinguishable for pE+1 from the execution where all processes did start
with input 0, which, according to the validity property of consensus, implies a decision on 0.

Now, consider the execution ε′ = 〈C0, σ′〉 with σ′ from Figure 6.4 and n′ > τ + E + 3. Again,
σ′ ∈ MA, since (Gr)∞r=τ+1 is pn′-rooted. In every round r 6 τ , p ∈ {pE+1, pE+2} have the same
view in ε and ε′: This is immediately obvious for 1 6 r 6 E − 1. For E 6 r 6 2E − 1, the view
of p1 is different, but this difference is not revealed to p by the end of round 2E − 1. Finally, in
rounds 2E 6 r 6 τ , the processes {pE+1, pE+2} hear only from each other in both executions,
hence maintain ε pE+1∼ ε′.

Consequently, by round τ , pE+1 has decided 0 also in ε′. Yet, by construction of ε′, pn′ never
saw a process that had an input value different from 1. By validity and an analogous argument
as above, pn′ must hence decide 1 in ε′ here, which violates agreement and hence provides the
required contradiction.

This improves the result from [102] and shows that even if every round contains exactly one
source component, without knowledge of n the algorithm from the previous section can not be
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significantly improved. Our paper [108] provides an algorithm that includes n and thus reduces
the interval stability needed to solve consensus even further.

Summary of results on consensus under non-oblivious message adversaries

In the last three sections, we solved consensus under different adversaries by very different
algorithmic techniques. We conclude this focus on consensus with a brief comparison of the
different approaches. First, note that the network model used in Section 6.3.1 is a subset of
both the model in Section 6.4 and Section 6.5, which implies that the solution in Section 6.3.1 is
somewhat redundant. For the algorithm in Section 6.3.1, the adversary has to guarantee the
largest stability interval coupled with rootedness in every graph. On the plus side, the algorithm
is rather simple and, in comparison to the other two, the only one which is memory-efficient. In
Section 6.4, we reduced the amount of stability needed and furthermore weakened the rooted per
round restriction. This comes at the cost of unbounded memory needed in worst case scenarios.
In Section 6.5, the unbounded memory demand is the same as in Section 6.4 but the stability is
reduced to a minimum. On the other hand, we need a upper bound on n and rootedness per
round.

This shows that depending on the requirements of the system one can optimize for different
criteria in the non-oblivious message adversary setting: We provided optimal solutions for
stability and rootedness. In the next section, we will expand on weakening the rootedness
restriction even further, which will come with its own trade offs.

6.6 From consensus to k-set agreement

In this section (which is based on [22]), we will explore an even stronger message adversary than
in Section 6.4, albeit with the aim to solve k-set agreement: The constraint to generate only
one decision value gets relaxed to k 6 n. In turn, k is also a parameter related to the message
adversary, i.e., one that relaxes the constraints on the network model.

Definition 89 below defines the generic message adversary VSSCD,H(k, d), which allows at most
k VSSCs per round and guarantees a common window of vertex stability of duration at least d
rounds. Note that it involves both the dynamic source diameter D and the dynamic network
depth H according to Definition 49 and Definition 52 (that have to be enforced by the message
adversary).

Definition 89 (Message adversary VSSCD,H(k, d)). For k > 0, d > 0, the message adversary
VSSCD,H(k, d) is the set of all sequences of communication graphs (Gr)r>0, where

(i) for every round r, Gr contains at most k source components,

(ii) all vertex-stable source components occurring in any (Gr)r>0 are D-bounded,

(iii) for each (Gr)r>0, there exists some rST > 0 and an interval of rounds J = [rST , rST +d−1]
with a H-influencing set of 1 6 ` 6 k D-bounded J-vertex-stable source components
S1, . . . , S`.

Note that the message adversary VSSCD,H(k, 1) guarantees at most k VSSCs in every Gr, r > 0.
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For k = 1, we can relate VSSCD,H(k, d) and VSSCD,E(d) given in Definition 55. First,
VSSCD,H(1, d) differs from VSSCD,E(d) in that item (iii) rests on H-influencing VSSCs (Defini-
tion 52) rather than on E-influencing ones (Definition 49). Therefore, every run that is feasible
w.r.t. item (iii) of VSSCD,E(d) for E := H is also feasible w.r.t. item (iii) of VSSCD,H(1, d).
Second, item (ii) of VSSCD,E(d) is also more demanding than item (ii) of VSSCD,H(1, d) as
it requires all VSSCs to be both D-bounded and E-influencing. Consequently, it follows that
VSSCD,H(d) = VSSCD,H(1, d).

Note that, despite this relation, [22] shows that VSSCD,H(k, d) is not sufficient to solve k-set
agreement.

6.6.1 Algorithms for k-Set Agreement

In this subsection, we will provide a message adversary MAJINF(k) (Definition 95) that is suffi-
ciently weak for solving k-set agreement if combined with VSSCD,H(n, 3D +H) (Definition 89).
Although we can of course not claim that it is a strongest one in terms of problem solvability
(we did not even define what this means), we have some intuitions that it is not too far from the
solvability/impossibility border.

Set agreement

To illustrate some of the ideas that will be used in our message adversary for general k-set
agreement, we start with the simple case of n − 1-set agreement (also called set agreement)
first. A straightforward way to achieve this is to just forbid n different decisions obtained in
source components consisting of a single process. Achieving this is easy under the Σn−1-influence
message adversary given in Definition 90, the name of which has been inspired by the Σn−1
failure detector [25].

Definition 90 (Σn−1-influence message adversary). The message adversary Σn−1-MAJ is the
set of all sequences of communication graphs (Gr)r>0 that satisfy the following: if each process
pi ∈ Π becomes a single-node source component during a non-empty set of Intervals Xi, then any
selection {I1, . . . , In} with Ii ∈ Xi for 1 6 i 6 n, contains two distinct Ii = [a, b] and Ij = [a′, b′]
such that sbi  sa

′
j .

It is easy to devise a set agreement algorithm that works correctly in a dynamic network under
Definition 90, provided (a bound on) n is known: In Algorithm 6, process pi maintains a proposal
value vi, initially xi, and a decision value yi, initially ⊥, which are broadcast in every round. If
pi receives no message from any other process in a round, it decides by setting yi = vi. If pi
receives a message from some pj that has already decided (yj 6= ⊥), it sets yi = yj . Otherwise,
it updates vi to the maximum of vi and all received values vj . At the end of round n, a process
that has not yet decided sets yi := vi, and all processes terminate.

Theorem 91 (Correctness Algorithm 6). Algorithm 6 solves n− 1-set agreement in a dynamic
network under message adversary Σn−1-MAJ given in Definition 90.

Proof. Termination (after n rounds) and also validity are obvious, so it only remains to show
n− 1-agreement. Assume, w.l.o.g., that the processes p1, p2, . . . are ordered according to their
initial values xp1 6 xp2 6 . . . , and let Rk be the set of different values (in yi or, if still yi = ⊥,
in vi) present in the system at the beginning of round k > 1; R1 is the set of initial values.

74



Algorithm 6 Set agreement algorithm for message adversary Σn−1-MAJ.
Set agreement algorithm, code for process pi:

1: vi := xi ∈ V // initial value
2: yi := ⊥

Emit round r messages:
3: send 〈vi, yi〉 to all

Receive round r messages:
4: receive 〈vj , yj〉 from all current neighbors

Round r: computation:
5: vi := max{vi, vj : pj ∈ Ni}
6: if ∃j : (yj 6= ⊥) ∧ (yi = ⊥) then
7: yi := yj

8: end if
9: if (Ni = ∅) ∧ (yi = ⊥) then
10: yi := vi

11: end if
12: if (r = n) ∧ (yi = ⊥) then
13: yi := vi; terminate
14: end if

Obviously, R1 ⊇ R2 ⊇ . . . , and since n− 1-agreement is fulfilled if |Rn+1| < n, we only need to
consider the case where all xi are different.

Consider process p1: If p1 gets a message from some other process pj in round 1, x1 6∈ R2 as (i)
p1 does not decide on its own value and sets v1 > vj > xj > x1 and (ii) no process that receives
a message containing x1 from p1 takes on this value. Hence, n− 1-set agreement will be achieved
in this case. Otherwise, p1 does not get any message in round 1 and hence decides on x1.

Proceeding inductively, assume that p` ∈ P i−1 = {p1, . . . , pi−1} has decided on x` by round
k 6 `, and received only messages from processes with smaller index in rounds 1, . . . , k − 1 and
no message in round k. Now consider process pi: If pi gets a message from some process pj with
j > i in some round k 6 i, with minimal k, before it decides, then xi 6∈ Rk+1 as (i) pi does not
decide on its own value and sets vi > vj > xj > xi, (ii) pi did not send its value to any process in
P i−1 before their decisions, and (iii) no process with index larger than i that receives a message
containing xi from pi takes on this value. Hence, n− 1-set agreement will be achieved in this
case. Otherwise, if pi gets a message from some process p` ∈ P i−1 in round i, it will decide on
p`’s decision value x` and hence also cause xi 6∈ Ri+1. In the only remaining case, pi does not
get any message in round i and hence decides on xi, which completes the inductive construction
of P i = {p1, . . . , pi} for i < n.

Now consider pn in round n in the above construction of Pn: Definition 90 prohibits the only
case where n − 1-agreement could possibly be violated, namely, when pn also decides on xn:
During the first n rounds, we would have obtained n single-node source components no two of
which influence each other in this case. Thus, we cannot extend the inductive construction of P i
to i = n, as the resulting execution would be infeasible.

A message adversary for general k-set agreement

Whereas the set agreement solution introduced in the previous subsection is simple, it is apparent
that Definition 90 is quite demanding. In particular, it requires explicit knowledge of (a bound
on) n. We will now provide a message adversary MAJINF(k) (Definition 95), which is sufficient
for general k-set agreement if combined with VSSCD,H(k, 3D +H) (Definition 89) and even
with VSSCD,H(n, 3D +H).

To avoid non-terminating (i.e., forever undecided) executions as predicted results in [22], we
require the stable interval constraint guaranteed by the message adversary VSSCD,H(n, 3D +H)

75



round
0 10 20 30 40 50 60 70 80 90

stabilityR1

R4

R2

R6

R3

R5

Figure 6.5: VSSCs influencing each other in a run, for k = 2. Time progresses from left to right;
all gray rectangles are stable for more than 2D rounds, white rectangles are stable between
D + 1 and 2D rounds. Snaked arrows represent majority influence, thin arrows represent (weak)
influence. At most two gray rectangles may exist that are not majority-influenced by any other
gray rectangles.

to hold. The parameter D, which can always be safely set to D = n− 1 according to Lemma 46,
allows to adapt the message adversary to the actual dynamic source diameter guaranteed in
the VSSCs of a given dynamic network. Note that, since D > 0, rounds where no message is
received are not forbidden here (in contrast to Definition 90).

In order to also circumvent executions violating the k-agreement property established in [22], we
introduce the majority influence constraint guaranteed by the message adversary MAJINF(k)
given in Definition 95 below. Like Definition 90 for set agreement, it guarantees some (minimal)
information flow between sufficiently long-lasting vertex-stable source components that exist at
different times. As visualized in Figure 6.5, it implies that the information available in any such
I-VSSC, with |I| > 2D, originates in at most k “initial” J-VSSCs, where |J | > 2D. Thereby, it
enhances the very limited information propagation that could occur in our model solely under
VSSCD,H(k, 3D +H), which is too strong for solving k-agreement.

Formally, given some run ρ, we denote by Vd the set of all pairs (S, I) where S is an I-vertex-
stable-source components with |I| > d in ρ; note that Vd ⊆ V1 for every d > 1.

Definition 92 (Causal Influence Sets). Let (S, I) ∈ V1 with I = [a, b], (S′, I ′) ∈ V1 with
I ′ = [a′, b′], and let a′ > b. The causal influence set of (S, I) and (S′, I ′) is CS((S, I), (S′, I ′)) :={
pj ∈ S′ | ∃pi ∈ S : sbi  sa

′
j

}
.

The majority influence between S and S′ guarantees that S influences a set of nodes in S′,
which is greater than any set influenced by VSSCs not already known by the processes in S
(and greater than or equal to any set influenced by VSSCs already known by the processes in
S). Majority influence is hence a very natural way to discriminate between strong and weak
influence between VSSCs.

Definition 93 (Majority influence). Let I = [a, b] and I ′ = [a′, b′]. For (S, I) ∈ V2D+1
and (S′, I ′) ∈ V2D+1, we say that (S, I) exercises a majority influence on (S′, I ′), denoted
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(S, I)↪→m(S′, I ′) with ↪→m ⊆ V2
2D+1, if and only if for all (S′′, I ′′) ∈ VD+1 with CS((S′′, I ′′), (S, I)) =

∅ it holds that |CS((S, I), (S′, I ′))| > |CS((S′′, I ′′), (S′, I ′))| and for all (S′′, I ′′) ∈ VD+1 with
CS((S′′, I ′′), (S, I)) 6= ∅ it holds that |CS((S, I), (S′, I ′))| > |CS((S′′, I ′′), (S′, I ′))|.

The relation ↪→m has the following properties:

Lemma 94 (Properties ↪→m). The majority influence relation is antisymmetric, acyclic and
intransitive.

Proof. Let S, S′, and S′′ be three different VSSCs stable in the intervals I = [a, b], I ′ = [a′, b′],
and I ′′ = [a′′, b′′], respectively. W.l.o.g. assume (S, I)↪→m(S′, I ′). This implies that b < a′

by the influence definition. Hence a < b′ which implies that (S′, I ′)↪→m(S, I) does not hold.
This proves that majority influence is antisymmetric and, by a transitive application of this
argument, acyclicity. To prove intransitivity, observe that (S, I)↪→m(S′, I ′) and (S′, I ′)↪→m(S′′, I ′′)
would imply CS((S, I), (S′′, I ′′)) > CS((S′, I ′), (S′′, I ′′)) if (S, I)↪→m(S′′, I ′′) also held, since no
process in S can be influenced by any process in S′. This contradicts CS((S′, I ′), (S′′, I ′′)) >
CS((S, I), (S′′, I ′′)) required by (S′, I ′)↪→m(S′′, I ′′), however.

With these preparations, we are now ready to specify a message adversary MAJINF(k) given in
Definition 95.

Definition 95 (k-majority influence message adversary). The message adversary MAJINF(k)
is the set of all sequences of communication graphs (Gr)r>0, where in every run there is a set
K ⊆ V2D+1 with |K| 6 k s.t. ∀(S, I) ∈ V2D+1 \K ∃(S′, I ′) ∈ V2D+1 with (S′, I ′)↪→m(S, I).

Informally, Definition 95 ensures that all but at most k “initial” I-VSSCs with |I| > 2D + 1
are majority-influenced by some earlier I ′-VSSCs with |I ′| > 2D + 1 (see Figure 6.5). Note
carefully, though, that Definition 95 does not prohibit partitioning of the system in more than k
simultaneous VSSCs.

We conclude this section with some straightforward stronger assumptions, which also imply
Definition 95 and can hence be handled by the algorithm introduced in Section 6.6.1:

(i) Replacing majority influence in Definition 93 by majority intersection |S ∩ S′| > |S′′ ∩ S′|,
which is obviously the strongest form of influence.

(ii) Requiring |S ∩ S′| > |S′|/2, i.e., a majority intersection with respect to the number of
processes in S′. This could be interpreted as a changing VSSC, in the sense of “S′ is the
result of changing a minority of processes in S”. Although this restricts the rate of growth
of VSSCs in a run, it would apply, for example, in case of random graphs where the giant
component has formed [49,66].

Gracefully degrading consensus/k-set agreement

In this section, we provide a k-set agreement algorithm and prove that it works correctly under
the message adversary VSSCD,H(n, 3D +H)+MAJINF(k), i.e., the conjunction of Definition 89
and Definition 95. Note that the algorithm needs to know D, but neither n nor H. It consists of
a “generic” k-set agreement algorithm, which relies on the network approximation algorithm of
Section 6.3.1 for locally detecting vertex-stable source components and a function GetLock that
extracts candidate decision values from history information. Our implementation of GetLock uses
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a vector-clock-like mechanism for maintaining “causally consistent” history information, which can
be guaranteed to lead to proper candidate values thanks to VSSCD,H(n, 3D +H) +MAJINF(k).

In sharp contrast to classic k-set agreement algorithms, the algorithm is k-universal, i.e., the
parameter k does not appear in its code. Rather, the number of system-wide decision values
is determined by the number of (certain) 2D + 1-VSSCs occurring in the particular run. As a
consequence, if the network partitions into k weakly connected components, for example,5 all
processes in a component obtain the same decision value. On the other hand, if the network
remains well-connected, the algorithm guarantees a unique decision value system-wide.

Properties. Our algorithm is in fact not only k-universal but even worst-case k-optimal, in
the sense that (i) it provides at most k decisions system-wide in all runs that are feasible
for VSSCD,H(n, 3D +H) + MAJINF(k), and (ii) that there is at least one feasible run under
VSSCD,H(n, 3D +H) + MAJINF(k) where no correct k-set agreement can guarantee less than
k decisions. (i) will be proved in Section 6.6.1, and (ii) follows immediately from the fact that a
run consisting of k isolated partitions is also feasible for VSSCD,H(n, 3D +H) + MAJINF(k).
Our algorithm can hence indeed be viewed as a consensus algorithm that degrades gracefully to
k-set agreement, for some k determined by the actual network properties.

Network approximation. Like the consensus algorithm in Section 6.3.1, our k-set agreement
algorithm consists of two reasonably independent parts, the network approximation algorithm
Algorithm 4 and the k-set agreement core algorithm given in Algorithm 7. As in Section 6.3.1,
we assume that the complete round r computing step of the network approximation algorithm is
executed just before the round r computing step of the k-set algorithm, and that the round r
message of the former is piggybacked on the round r message of the latter. Recall that this
implies that the round r computing step of the k-set core algorithm, which terminates round r,
can already access the result of the round r computation of the network approximation algorithm,
i.e., its state at the end of round r.

Core algorithm. The general idea of our core k-set agreement algorithm in Algorithm 7 is to
generate new decision values only at members of 2D+ 1-VSSCs, and to disseminate those values
throughout the remaining network. Using the network approximation Ai, our algorithm causes
process pi to make a transition from the initially undecided state to a locked state when it detects
some minimal “stability of its surroundings”, namely, its membership in some D + 1-VSSC
D rounds in the past (Line 19). Note that the latency of D rounds is inevitable here, since
information propagation within a D + 1-VSSC may take up to D rounds since it is D-bounded,
as guaranteed by item (ii) in Definition 89. If process pi, while in the locked state, observes
some period of stability that is sufficient for locally inferring a consistent view among all VSSC
members (which occurs when the D + 1-VSSC has actually extended to a 2D + 1-VSSC), pi can
safely make a transition to the decided state (Line 26). The decision value is then broadcast in
all subsequent rounds, and adopted by any not-yet decided process in the system that receives
it later on (Line 9). Note that VSSCD,H(n, 3D +H) (Definition 89) guarantees that this will
eventually happen.

Since locking is done optimistically, however, it may also happen that the D + 1-VSSC does not
extend to a 2D + 1-VSSC (or, even worse, is not recognized to have done so by some members)
later on. In this case, pi makes a transition from the locked state back to the undecided state

5It is important to note that the network properties required by our algorithm to reach k decision values need
not involve k isolated partitions: Obviously, k isolated partitions in the communication graph also imply k source
components, but k source components do not imply a partitioning of the communication graph into k weakly
connected components - one process may still be connected to several components.
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Algorithm 7 k-universal k-set agreement algorithm, code for process pi
Variables and Initialization:

1: histi[∗][∗] := ∅ /* histi[j][r] holds pi’s estimate of the locks learned by pj in round r */
2: histi[i][0] := {({pi} , xi, 0)} /* virtual first lock (V (S) := {pi} , v := xi, τcreate := 0) at pi */
3: ` := ⊥ // most recent lock round, ⊥ if none
4: decisioni := ⊥ // pi’s decision, ⊥ if undecided

Emit round r messages:
5: send 〈 histi, decisioni〉 to all neighbors

Receive round r messages:
6: for all pj in pi’s neighborhood N r

i , receive 〈 histj , decisionj〉
Round r computation:

7: if decisioni = ⊥ then
8: if received any message m containing m.decision 6= ⊥ then
9: decide m.decision and set decisioni := m.decision
10: else

// update histi with histj received from neighbors
11: for pj ∈ N r

i , where pj sent histj do
12: hist′i := histi // remember current history
13: for all non-empty entries histj [x][r′] of histj , x 6= i do
14: histi[x][r′] := histi[x][r′] ∪ histj [x][r′]
15: end for

// locally add all newly learned locks:
16: histi[i] := histi \ hist′i
17: end for

// perform state transitions (undecided, locked, decided):
18: mySource := InStableSource([r − 2D, r −D])
19: if ` = ⊥ and mySource 6= ∅ then
20: ` := r − 2D
21: lock := GetLock(mySource, `)
22: histi[i][r] := histi[i][r] ∪ lock // create new lock
23: else if ` 6= ⊥ and mySource = ∅ then
24: ` := ⊥ // release unsuccessful lock
25: else if ` 6= ⊥ and InStableSource([`, `+ 2D]) 6= ∅ then
26: decide lock.v and set decisioni := lock.v
27: end if
28: end if
29: end if

FUNC GetLock(S, r′)
30: Let R be the multiset

⋃
pj∈R,r′′6r′ histi[j][r′′]

Let mfrq(R) be the set of the most frequent elements in R
31: Let mfrqlatest(R) := {x ∈ mfrq(R) | ∀y 6= x ∈ mfrq(R) : x.τcreate > y.τcreate}
32: if |mfrqlatest(R)| = 1 then
33: Let v be s.v of the single element s ∈ mfrqlatest(R)
34: newLock := (R, v, r)
35: else
36: newLock := (R,maxs∈R {s.v} , r) // deterministic choice
37: end if
38: return newLock

(Line 24). Unfortunately, this possibility has severe consequences: Mechanisms are required
that, despite possibly inconsistently perceived unsuccessful locks, ensure both (a) an identical
decision value among all members of a 2D + 1-VSSC who successfully detect this 2D + 1-VSSC
and thus reach the decided state, and (b) no more than k different decision values originating
from different 2D + 1-VSSCs.

Both goals are accomplished by a particular selection of the decision values (using function
GetLock), which ultimately relies on an intricate utilization the network properties guaranteed
by our message adversary VSSCD,H(n, 3D +H) +MAJINF(k) (Definition 89 and Definition 95):
Our algorithm uses a suitable lock history data structure for this purpose, which is continuously
exchanged and updated among all reachable processes. It is used to store sets of locks L =
(S, v, τcreate), which are created by every process that enters the locked state: S is the vertex-set
of the detected D + 1-VSSC, v is a certain proposal value (determined as explained below), and
τcreate is the round when the lock is created.
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Maintaining history. In more detail, the lock history at process pi consists of an array histi[j][r]
that holds pi’s (under)approximation of the locks process pj got to know in round r. It is
maintained using the following simple update rules:

(i) Local lock creation: Apart from the single virtual lock ({pi} , xi, 0) created initially by pi in
Line 2 (which guarantees a non-empty lock history right from the beginning), all regular
locks created upon pi’s transition from the undecided to the locked state are computed by
the function GetLock in Line 21. Any lock locally created at pi in round r (that is, in the
round r computing step of the core k-set agreement algorithm that terminates round r) is
of course put into histi[i][r].

(ii) Remote lock learning: Since all processes exchange their lock histories, pi may learn about
some lock L created by process px in round r′ from the lock history histj [x][r′] received
from some pj later on. In this case, L is just added to histi[x][r′] (Line 14).

(iii) Local lock learning: In order to ensure that the lock histories of all members of a 2D + 1-
VSSC are eventually consistent, which will ensure identical decision values, every newly
learned remote lock L ∈ histi[x][r′] obtained in (ii) is also added to histi[i][r].

Note that the update rules (i)+(ii) resemble the ones of vector clocks [78].

Clearly, histi[i][r′] will always be accurate for current and past rounds r′ 6 r, while histi[j][r′]
may not always be up-to date, i.e., may lack some locks that are present in histj [j][r′]. Nev-
ertheless, if pi and pj are members of the same I-VSSC S with I = [r − 2D, r], Definition 49
ensures that pi and pj have consistent histories histi[j][r′] and histj [i][r′] at latest by (the end
of) round r′ +D, for any r′ ∈ [r − 2D, r −D]. Hence, if pi creates a new lock L when it detects,
in its round r computing step, that it was part of a D+ 1-VSSC that was stable from r− 2D to
r −D, it is ascertained that any other member pj will have locally learned the same lock L in
the same round r, provided that the D + 1-VSSC in fact extended to a 2D + 1-VSSC.

Consistent decisions. The resulting consistency of the histories is finally exploited by the
function GetLock(S, `), which computes (the value of) a new local lock (Line 21) created in
round r. As its input parameters, it is provided with the members S of the detected D+ 1-VSSC
and its starting round ` = r − 2D. GetLock first determines a multiset R, which contains all
locks locally known to the members pj ∈ S by round r−2D (Line 30). Note that the multiplicity
of some lock L = (S′, v, r′) in R is just the number of members of S who got to know L by round
r − 2D, which is just |CS(S′, S)| according to Definition 92. In order to determine a proper
value for the new lock to be computed by GetLock, we exploit the fact that MAJINF(k) (given
in Definition 95) ensures majority influence according to Definition 93: If the set mfrqlatest(R),
containing the most frequent locks in R with the same maximal lock creation round, contains a
single lock L only, its value L.v is used. Note that the restriction to the maximal lock creation
date automatically filters unwanted, outdated locks that have merely been disseminated in
preceding 2D + 1-VSSCs, see (1) below. Otherwise, i.e., if mfrqlatest(R) contains multiple
candidate locks, a consistent deterministic choice, namely, the maximum among all lock values
in R, is used (Line 36). As a consequence, at most k different decision values will be generated
system-wide.

Given the various mechanisms employed in our algorithm and their complex interplay, the
question about a more light-weight alternative solution that omits some of these mechanisms
might arise. We will proceed with some informal arguments that support the necessity of some of
the pillars of our solution, namely, (1) the preference of most recently created locks in GetLock,
(2) the creation of a new lock at every transition to the locked state, and finally (3) the usage of
an a priori unbounded data structure histi. Although these arguments are also “embedded” in
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the correctness proof in the following section, they do not immediately leap to the eye and are
hence provided explicitly here.

(1) The preference of most recently created lock in GetLock, which is done by selecting the set
mfrqlatest(R) in Line 32, defeats the inevitable “amplification” of the number of processes
that got to know some “old” lock: All members of a 2D + 1-VSSC have finally learned
all “old” locks that were only known to some of its members at the starting round of the
VSSC initially. In terms of multiplicity in R, this would falsely make any such old lock a
preferable alternative to the most recently created lock.

(2) Instead of creating new locks at every newly detected D+ 1-VSSC, it might seem sufficient
to simply update the creation time of an old lock that (dominantly) influences a newly
detected VSSC. This is not the case, however: Consider a hypothesized algorithm where
new locks are only generated if no suitable old locks can be found in the current history,
and assume a run where two VSSCs with vertex sets S1 = {p1, p2} and S3 = {p1, p2}
that are both stable for D + 1 rounds and two source components S2 = {p1, p3} and
S4 = {p1, p3} that are stable for 2D + 1 rounds are formed. Let these VSSCs be such
that Si is formed before Sj if i < j and let there be no influence among the processes of
{p1, p2, p3}, apart from their influence on each other when they are members of the same
VSSC. First, let the processes of S1 lock on some old lock L′. Then, assume that the
processes of S2 lock on some lock6 L 6= L′, a lock not known in S1. Since S3 = {p1, p2}, if
S3 is sufficiently well connected, p1 might lock on L′ in S3, because L′ is known to both
p1 and p2 while L is known merely to p1 at the start of S3. Subsequently, this results in
the situation in S4 where there is neither a clear majority (L′ and L are known to both
members of S4) nor a clear most recently adopted lock (for p1, it seems that L′ is the most
recent lock, while for p3, it seems that L is more recent). Consequently, in S4, it is not
clear whether to lock on L.v or on L′.v. Nevertheless, the processes of S4 should be able
to determine that they must lock on L and not on L′, since S2↪→mS4 holds in our example:
|CS(S1, S2)| = 1, |CS(S1, S4)| = 2, |CS(S2, S4)| = 2 and |CS(S3, S4)| = 1. We can therefore
conclude that merely adopting old locks is insufficient.

(3) Since the stabilization round rST , as implied by Definition 89, may be delayed arbitrarily,
an unbounded number of 2D + 1-VSSCs can occur before rST . Since any of those might
produce a critical lock, in the sense of exercising a majority influence upon some later
2D + 1-VSSC, no such lock can safely be deleted from histi of any pi after bounded time.

Correctness Proof

In this final subsection, we will prove the following Theorem 96:

Theorem 96. Algorithm 7 solves k-universal k-set agreement in a dynamic network under the
message adversary VSSCD,H(n, 3D +H)+MAJINF(k), which is the conjunction of Definition 89
and Definition 95.

The proof consists of a sequence of technical lemmas, which will allow us to establish all the
properties of k-set agreement. First, validity according to Definition 7 is straightforward to
see, as only the values of locks are ever considered as decisions (Line 26). Values of locks, on
the other hand, are initialized to the initial value of a process (Line 2) and later on always
have values of previous locks assigned to them (Line 34 and Line 36). Note that the claimed
k-universality is obvious, as the code of the algorithm does not involve k.

6This could occur, e.g., because L is known to p3 and has a more recent creation time than L′
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To establish termination, we start with Lemma 97, Lemma 98 and Lemma 99 that are related
to setting locks at all members of vertex stable source components.

Lemma 97. Apart from processes adopting a decision sent by another process, only processes
part of a vertex stable source component with interval length greater than D (resp. 2D) lock
(resp. decide).

Proof. The if-statement in Line 19 (resp. Line 25) is evaluated to true only if InStableSource
detects a stable member set S in some interval I of length D+1 (resp. of length 2D+1) or larger,
which implies by Corollary 60 that S is indeed a I-VSSC with |I| = D+1 (resp. |I| = 2D+1).

Lemma 98. All processes part of a I-VSSC S with I = [a, b] and |I| > 2D, which did not start
already before a, lock, i.e. set ` := a, in round a+ 2D.

Proof. Because S isD-bounded by Definition 89, Corollary 62 guarantees that InStableSource(a, a+
D) returns S from round a+ 2D (of the k-set-algorithm) on, and that it cannot have done so
already in round a + 2D − 1. Hence, ` = ⊥ in round a + 2D, the if-statement in Line 19 is
entered and ` := a is set in Line 21.

Lemma 99. All processes part of a I-VSSC S with I = [a, b] and |I| > 3D, which did not start
already before a, have decided by round a+ 3D.

Proof. It follows from Lemma 98 that all members of the VSSC S set ` := a in round a+ 2D.
As the VSSC remains stable also in rounds a+ 2D, . . . , a+ 3D, Line 24 will not be executed in
these rounds, thus ` = a remains unchanged. Consequently, due to Corollary 62, the if-statement
in Line 25 will evaluate to true at the latest in round `+ 3D = a+ 3D, causing all the processes
to decide via Line 26 by round a+ 3D as asserted.

Lemma 100. The algorithm eventually terminates at all processes.

Proof. Pick any process pj . If pj is part of a source component during the stable interval,
guaranteed by Definition 89, Lemma 99 ensures termination by rST + 3D at the latest. Thus,
we assume pj is not part of a source component during the stable interval. From Definition 52,
it follows that there exists a causal chain of length at most H to pj from some member pi of a
VSSC after its termination. Therefore, it must receive the decide message and decide via Line 9
by rST + 3D +H at latest.

Although we now know that all members of a VSSC that is vertex stable for at least 3D rounds
will decide, we did not prove anything about their decision values yet. In the sequel, we will
prove that they decide on the same value.

Lemma 101. Given some I-VSSC S with I = [a, b] and b > a+D, in all rounds x ∈ [a+D, b]
it holds that ∀pi, pj ∈ S :

⋃
r′6a histi[j][r′] =

⋃
r′6a histj [j][r′]

Proof. Because S is D-bounded, a message from round a has reached every member of S by
round a+D. Moreover, no message sent by a process not in S during I can reach a member of
S during I because S is a source component. Therefore, since histi is sent by each process pi
in every round (Line 5) and pi adds only newly learned entries to histi (Line 22 and Line 16),
all these updates of histi during I, regarding any round r′ 6 a, occur at the latest in round
a+D.
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Lemma 102. All processes of a I-VSSC S of V2D+1 with I = [a, b] adopt the same lock (and
hence decide the same).

Proof. Such a lock is created by pi ∈ S in round a+ 2D, when it recognizes S as having been
vertex-stable for D + 1 rounds according to Lemma 98. As the lock (value) is computed based
on histi present in round a+ 2D, which is consistent among all VSSC members by Lemma 101,
the lemma follows.

Finally, we show that, given that the system satisfies Definition 95, there will be at most k
decision values in any run of Algorithm 7, which proves k-agreement: Since there are at most k
VSSCs of V2D+1 that are not majority-influenced by other VSSCs, it remains to show that any
majority-influenced VSSC decides the same as the VSSC it is majority-influenced by. In order
to do so, we will first establish a key property of our central data structure histi.

Lemma 103. Given I-VSSC S with, I = [a, b], and I ′-VSSC R′, I ′ = [a′, b′], where |I| > 2D
and |I ′| > 1, let L be a lock known to all members of S by b, i.e., for all pi ∈ S it holds that, by
the end of round b, L ∈

⋃
r′6b histi[i][r′]. For any process pj ∈ S′, it holds that if there exists

some pi ∈ S, s.t. sbi  sa
′
j , then L ∈

⋃
r′6a′ histj [j][r′].

Proof. Assume there exists a pi ∈ S s.t. sbi  sa
′
j but L /∈

⋃
r′6a′ histj [j][r′]. The definition of

sbi  sa
′
j implies that there exists a causal chain from pi to pj that ends before pj becomes a part

of S′. Since processes send their own history in every round according to Line 5, every message
in this causal chain consisted of a hist containing L and thus pj put L into its histj [j][r] via
Line 14 if

⋃
r′6r histj [j][r′] did not already contain L.

Lemma 104. Given I-VSSC S ∈ V2D+1, I = [a, b], and I ′-VSSC S′ ∈ V2D+1, I ′ = [a′, b′],
assume that the processes of S created the (same) lock L when locking. If (S, I)↪→m(S′, I ′), then
the processes in S′ will choose a lock L′ where L.v = L′.v (and hence decide the same as the
processes in S).

Proof. From the definition of ↪→m (Definition 93), it follows that no I ′′-VSSC of VD+1 has a larger
influence set on S′ than S. By Lemma 97, this implies that no lock that was generated by some I ′′-
VSSC in VD+1 can be known to more members of S′ than the lock L generated by S. Since process
pi puts only newly learned locks into histi (Line 22 and Line 16), by Lemma 103, this means
that in round a′ no “bad” lock Lb is present in more elements of R =

⋃
pi∈RI′ ,r

′6a′ histi[i][r′]
than L. We now show that L.τcreate > Lb.τcreate for all Lb occurring in as many elements of R
as L with Lb 6= L. Obviously, the only locks Lb that could occur in as many elements of R as L
are locks that have been in histi of some pi ∈ S at the beginning of round a already. Since for
any such Lb, L was created after Lb, by Line 34 and Line 36, we have that L.τcreate > Lb.τcreate,
as claimed. Because in round a′ + 2D, at all processes pi, pj of S′, Lemma 101 implies that⋃
r′6a′ histi[j][r′] =

⋃
r′6a′ histj [i][r′], when locking in round a′ + 2D according to Lemma 98,

every pi of S′ will find L as the unique most common lock in the elements of R with maximal
τcreate. This leads to the evaluation of the if-statement in Line 32 to true and to the creation of
a new lock L′, where L′.v = L.v in Line 34, as asserted.

This completes the proof of Theorem 96.
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CHAPTER 7
Model reductions

In this section, we introduce ways to relate different models to each other in terms of problem
solvability power. Algorithmic reductions allow to employ already existing algorithms or
impossibility results in models where previously no such results were known. Especially successful
are message adversary simulations to related different message adversaries to each other and to
provide solutions algorithm for certain problems. These results were published in [22,101].

7.1 Failure detector reductions

A convenient way to characterize consensus and k-set solvability in distributed systems where
processes are (usually) subject to crash failures are failure detectors [36]. Well-known results
for message passing systems where a majority of processes may crash are the weakest failure
detector (Σ,Ω) (defined below) for consensus [47], and the necessary failure detector Σk (Σ = Σ1)
for k-set agreement [25]. Note that, whereas the weakest failure detector for k-set agreement
in message passing systems is still unknown, there are failure detectors like Lk [20] that are
sufficiently strong for this purpose. These results imply that, from any solution that solves
consensus resp. k-set agreement, it must be possible to implement Σ and Ω resp. Σk. Conversely,
if Σ and Ω can be implemented in some system, then there are well-known algorithms for solving
consensus in this system.

In this section based on [22], we follow the example of [94] and explore the relation between
our message adversaries and the above failure detectors. It is important to note, though, that
both VSSCD,E(d) and VSSCD,H(n, d) + MAJINF(k) are inherently incompatible with time-free
failure detectors, as they involve explicit timing information, namely, the duration of the stability
window. By contrast, the specifications of Ω, Σ and Σk are time-free, in the sense that they only
involve eventual properties for liveness. Therefore, we will consider only the eventually-forever
variants VSSCD,E(∞) and VSSCD,H(n,∞) + MAJINF(k) of our message adversaries in the
comparison below.

7.1.1 Failure detector basics

We recall that a crash failure means that a faulty process may stop to perform any computation
step after some point during an execution, possibly in a way that causes only a subset of the
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processes to receive the message of the last broadcast. Given the time domain T of some system
where processes are prone to crashes, for some given run, the function F : T → 2Π that maps
each t ∈ T to the processes that are crashed by t is called the failure pattern of the run. Processes
in the set C = Π \

⋃
t∈T F (t) are called correct.

In the case of a synchronous model with lock-step rounds, T = N. Let AMPn,x denote the
asynchronous message passing model where up to x out of the overall n = |Π| processes may
crash; x = n− 1 characterizes the wait-free model. In AMPn,x, messages are delivered after a
finite but unbounded time and processes do not operate in lock-step, hence T = R.

A failure detector is an oracle that can be queried by any process. Formally, a history H with
range R is a function H : Π× T → R. A failure detector D with range R maps a non-empty
set of histories with range R to each failure pattern.

Two important failure detectors for consensus are Σ and Ω.

Definition 105. The eventual leader failure detector Ω has range Π. For each failure pattern
F , for every history H ∈ Ω(F ), there is a time t ∈ T and a correct process pj s.t. for every
process pi for every t′ > t, H(pi, t′) = pj.

Definition 106. The quorum failure detector Σ has range 2Π. For each failure pattern F ,
for every H ∈ Σ(F ), two properties hold: (1) for every t, t′ ∈ T and pi, pj ∈ Π we have
H(pi, t) ∩H(pj , t′) 6= ∅ and (2) there is a time t ∈ T s.t. for every process pi, for every t′ > t,
H(pi, t′) ⊆ Π \

⋃
t∈T F (t).

We denote by AMPn,n−1[fd : D] the AMPn,n−1 model where processes have access to failure
detector D. We use AMPn,n−1 = AMPn,n−1[fd : ∅] to denote the absence of any failure
detector. The combination (Σ,Ω) of Σ and Ω is of particular importance, because it is the
weakest failure detector for consensus [47] in AMPn,n−1, in the following sense: First, there is an
algorithm that uses (Σ,Ω) for solving consensus. Second, let D be a failure detector s.t. consensus
is solvable under AMPn,n−1[fd : D]. Then, there is an algorithm A for AMPn,n−1[fd : D]
that, for each failure pattern F , produces an output, denoted out(pi, t) for process pi at time t,
s.t. setting H(pi, t) := out(pi, t) defines a valid history H of (Σ,Ω).

In order to relate such failure detector models to our message adversaries, which model dynamic
link failures, we use the simple observation that the externally visible effect of a process crash
can be expressed in our setting: Since correct processes in asynchronous message passing systems
perform an infinite number of steps, we can assume that they send an infinite number of (possibly
empty) messages that are eventually received by all correct processes. As in [94], we hence
assume that the correct (= non-crashing) processes in the simulated AMP are the strongly
correct processes. Informally, a strongly correct process is able to disseminate its state to all
other processes infinitely often.

Hence, we can define correct resp. faulty processes in our directed dynamic network model as
follows:

Definition 107. Given an infinite sequence of communication graphs σ, process pi is faulty in
a run with σ if there is a round r s.t., for some process pj, for all r′ > r: sri 6 sr

′
j .

Let C(σ) =
{
pi ∈ Π | ∀pj ∈ Π,∀r ∈ N,∃r′ > r : sri  sr

′
j

}
denote the strongly correct (= non-

faulty) processes in any run with σ.

If a given process influences just one strongly correct process infinitely often, it would transitively
influence all processes in the system, hence would also be strongly correct. Therefore, in order
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not to be strongly correct, a faulty process must not influence any strongly correct process
infinitely often. We can hence define failure patterns as follows:

Definition 108 (Failure Pattern). The failure pattern associated with communication graph
sequence σ is a function Fσ : N→ 2Π s.t. pi ∈ Fσ(r) if, and only if, for all processes pj ∈ C(σ),
for all r′ > r: sri 6 sr

′
j .

Hence, F (r) ⊆ F (r+ 1) and, for any σ of VSSCD,E(∞), C(σ) 6= ∅ as the (infinitely vertex-stable)
source component S must satisfy S = C(σ) 6= ∅.

We denote by SMPn[adv : MA] the synchronous message passing model with n processes
where message loss is controlled by the adversary MA. In order to demonstrate how to relate
this model to a crash failure model, we introduce the message adversary CRASH(x), which
guarantees that at least n− x processes reach every other process infinitely often.

Definition 109. For x < n, we define CRASH(x) as the set of those communication graph
sequences σ where |C(σ)| > n− x.

Using a full-information protocol, we can transform a run of a synchronous model with the
message adversary CRASH(x) for x < n/2 to a run in asynchronous message passing with
crashes:

Corollary 110. For x < n/2, any run with graph sequence σ of SMPn[adv : CRASH(x)] can
be transformed to a run in AMPn,x[fd : ∅], which is indistinguishable for all simulated processes.

Proof. Every process pi executes a simulator, which invokes the steps of the simulated process as
follows: The simulator keeps track of all messages sent by the simulated process so far, and adds
this history to every simulation message it sends. Consequently, any message sent by a strongly
correct process in the run under CRASH(x) is eventually delivered to all other processes. To
ensure that this is also true for all the messages sent by not strongly correct processes, a process
pi that has sent message (m, i, j) to pj in its last simulated step is allowed to take its next
simulated step only if (m, i, j) is already known to (the simulator of) at least n− x processes.
If this never becomes true, the simulated pi does not execute further steps, i.e., is deliberately
“crashed” by the simulation. Since x < n/2, there is always at least one strongly correct process
among the n− x processes that know (m, i, j), which eventually disseminates this message to all
processes in the system as needed.

Hence, it only remains to prove that the resulting simulation is consistent, i.e., that the simulated
(non-atomic) send and receive operations are linearizable: Let tj be the time (round) when
the simulated process pj is about to make the step where (m, i, j) is processed, with tj =∞ if
this is never the case (the simulator at pj never comes to know this message). Moreover, let
t′i be the time when the simulated process pi is about to perform the next step after having
sent (m, i, j), with t′i =∞ if it never executes this next step (because it is “crashed”). Now, the
send operation of (m, i, j) is linearized to tsend = minpj∈Π{tj , t′i} (we assume here that (m, i, .) is
actually broadcast in the simulated process pi’s computing step); if tsend =∞, it is linearized to
some arbitrary time tsend = tx after any (unsuccessful) receiver of (m, i, .) (including pj) that is
not crashed by the simulation has performed its next step. The reception of (m, i, j) is linearized
at the time tj if tj <∞, or else at time tsend.

Since this linearization ensures the proper send-receive order, every run of this simulation in
SMPn[adv : CRASH(x)] is indeed indistinguishable for all processes from a run in AMPn,x[fd :
∅].
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7.1.2 Relation to consensus

We are now ready to explore the relation of our consensus message adversary VSSCD,E(∞) to Σ
and Ω: It will turn out that Ω can be implemented under VSSCD,E(∞), but Σ cannot.

In fact, Ω can even be implemented atop of the strictly stronger message adversary VSSC-PARTD,E(∞),
under which consensus is impossible:

Definition 111. VSSC-PARTD,E(∞) contains those graph sequences where, for some round
rST , there is D-bounded, E-influencing I-VSSC with I = [rST ,∞)

Put differently, VSSC-PARTD,E(∞) allows partitioning of the communication graph into multiple
connected components for an arbitrary, finite number of rounds until some unique VSSC remains
forever. Perhaps not surprisingly, this is insufficient to solve consensus:

Lemma 112. Consensus is impossible under the message adversary VSSC-PARTD,E(∞).

Proof. For simplicity, we will restrict our attention to the case n = 2; extending the proof for
arbitrary n is straightforward. Suppose some algorithm A solves consensus under this adversary.
By termination and validity, there is some round τ where A lets pi decide xi in a run ε starting
from some initial configuration C0 with the graph sequence σ = (pi → pj)r>0. Similarly, in
the run ε′ that also starts from C0 using σ′ = (pi ← pj)r>0, A will eventually let pj decide xj .
Now consider the run ε′′ also starting from C0 with sequence σ′′ = (pi pj)τr=1(pi ← pj)r>τ ,
where (pi pj)τr=1 means that no message is successfully delivered in either direction in the first
τ rounds. Clearly, until round τ , pi will have exactly the same view in the run ε and in the run
ε′, denoted ε ∼pi ε

′′, thus pi decides xi in the run ε′′. Similarly, ε′ ∼pj ε
′′ until τ , so pj decides

xj in this run. Because σ, σ′, σ′′ ∈ VSSC-PARTD,E(∞), this contradicts the assumption that A
solves consensus under this message adversary.

However, the following lemma shows that VSSC-PARTD,E(∞) allows implementing Ω.

Lemma 113. SMPn[adv : VSSC-PARTD,E(∞)] allows to implement AMPn,n−1[fd : Ω].

Proof. Consider an algorithm that outputs, at process pi, the process with the largest identifier
in the source component that was detected E rounds ago, or itself if no such source component
was detected. Clearly, this output is in the range of Ω. Furthermore, since VSSC-PARTD,E(∞)
guarantees that eventually some D-bounded, E-influencing source component S remains the
only VSSC forever, S will be eventually detected by every process pi forever, and its member
with the largest identifier will be written to the output of pi eventually forever as well. By
Definition 107, no processes of S is faulty, hence the specification of Ω is satisfied.

To simulate AMP with process crashes, exactly the same simulation as in [94, Sec.4.2] is used:
Analogous to the simulation used in the proof of Corollary 110, a simulated process is only
allowed to take its next step if all the messages sent in the previous step are already known by the
simulator of the current output of Ω, which (eventually) will be a strongly correct process.

Finally, since all sequences of VSSCD,E(∞) are contained in VSSC-PARTD,E(∞), it follows that
Ω can indeed also be implemented under VSSCD,E(∞).

We will now turn our attention to Σ: The following theorem shows that Σ cannot be implemented
atop of VSSCD,E(∞).
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Lemma 114. SMPn[adv : VSSCD,E(∞)] does not allow to implement AMPn,n−1[fd : Σ].

Proof. Again, we will prove our lemma for n = 2 for simplicity, as it is straightforward to
generalize the proof for arbitrary n. Suppose that, for all rounds r and any processes pi,
some algorithm A computes out(pi, r) s.t. for any admissible failure pattern F , out ∈ Σ(F ).
Consider the graph sequence σ = (pi → pj)r>1. Clearly, the failure pattern associated with
σ is Fσ(r) = {pj}. Hence, in the run ε starting from some initial configuration C0 with
sequence σ, there is some round r′ s.t. out(pi, r) = {pi} for any r > r′ by Definition 106.
Let σ′ = (pi → pj)r

′
r=1(pi ← pj)r>r′ . By similar arguments as above, in the run ε′ that

starts from C0 with sequence σ′, there is a round r′′ such that out(pj , r) = {pj} for any
r > r′′. Finally, for σ′′ = (pi → pj)r

′
r=1(pi ← pj)r

′′
r=r′+1(pi ↔ pj)r>r′′ , let ε′′ denote the run

starting from C0 with graph sequence σ′′. Until round r′, ε′′ ∼pi ε, hence, as shown above,
out(pi, r′) = {pi} in ε′′. Similarly, until round r′′, ε′′ ∼pj ε

′ and hence out(pj , r′′) = {pj} in ε′′.
Clearly, σ, σ′, σ′′ ∈ VSSCD,E(∞) and Fσ′′(r) = {}, that is, no process is faulty in σ′′. However,
in ε′′, out(pi, r′) ∩ out(pj , r′′) = ∅, a contradiction to Definition 106.

The above result may come as a surprise, since the proof of the necessity of Σk for k-set agreement
(hence the necessity of Σ = Σ1 for consensus) developed by Raynal et. al. [25] only relies on the
availability of a correct k-set agreement algorithm. However, their reduction proof works only
in AMPn,n−1, i.e., crash-prone asynchronous message passing systems: It relies crucially on
the fact that there is no safety violation (i.e., a decision on a value that eventually leads to a
violation of k-agreement) in any prefix of a run. This is not the case in SMPn, however, as
processes may decide after a certain number of rounds also if no message is received. Hence, we
cannot reuse their proof in our setting.

Taken together, Lemmas 112, 113, and 114 allow us to conclude the following:

(i) Since VSSCD,E(∞) (not to speak of VSSCD,E(d), which is not compatible with failure
detector specifications) does not allow to implement (Σ,Ω), we cannot derive consen-
sus algorithms from (Σ,Ω)-based solutions. And indeed, our consensus algorithms are
algorithmically very different.

(ii) The message adversaries SOURCE and QUORUM considered in [94], which allow to
implement (Σ,Ω), are equivalent to VSSCD,E(∞) in terms of consensus solvability, but
strictly weaker in terms of sequence inclusion, i.e., (SOURCE,QUORUM) ⊂ VSSCD,E(∞).

7.1.3 Relation to k-set agreement

We start with the definitions of generalized failure detectors for the k-set agreement setting in
crash-prone asynchronous message passing systems, using the notation introduced in Section 7.1.1.

Definition 115. The range of the failure detector Ωk is all k-subsets of 2Π. For each failure
pattern F , for every history H ∈ Ωk(F ), there ∃LD = {q1, . . . , qk} ∈ 2Π and t ∈ T such that
LD ∩ C 6= ∅ and for all t′ > t, pi ∈ C : H(pi, t′) = LD.

Definition 116. The failure detector Σk has range 2Π. For each failure pattern F , for every
H ∈ Σk(F ), two properties must hold: (1) for every t, t′ ∈ T and S ∈ Π with |S| = k + 1,
∃pi, pj ∈ S : H(pi, t) ∩H(pj , t′) 6= ∅, (2) there is a time t ∈ T s.t. for every process pi, for every
t′ > t: H(pi, t′) ⊆ C.
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k-set agreement in our lock-step round model with link failures allows non-temporary partitioning,
which in turn makes it impossible to use the definition of crashed and correct processes from the
previous section: In a partitioned system, every process pi has at least one process pj such that
∀r′ > r : sri  sr

′
j , but no pi usually reaches all pj ∈ Π here. Definition 107 hence implies that

there is no correct process in this setting. Hence, we employ the following generalized definition:

Definition 117. Given a infinite graph sequence σ, let a minimal source set S in σ be a set of
processes with the property that ∀pj ∈ Π, ∀r > 0 there exists pi ∈ S, r′ > r such that sri  sr

′
j .

The set of weakly correct processes WC(σ) of a sequence σ is the union of all minimal source
sets S in σ.

This definition is a quite natural extension of correct processes in a model, which allows
perpetual partitioning of the system. In particular, it is not difficult to show that WC(σ) 6= ∅
for σ ∈ VSSCD,H(n,∞) +MAJINF (k):

Lemma 118. For every σ ∈ VSSCD,H(n,∞) +MAJINF (k), it holds that WC(σ) 6= ∅.

Proof. By Definition 89, for any σ ∈ VSSCD,H(n,∞), there is some non-empty, H-influencing
set of D-bounded VSSCs S1, . . . S` from some round onward in σ. According to Definition 117,⋃`
i=1 Si ⊆ WC.

Based on this definition of weakly correct processes, it is possible to generalize some of our
consensus-related results (obtained for Σ and Ω). First, we show that Σk cannot be implemented,
since VSSCD,H(n,∞) +MAJINF (k) allows the system to partition into k isolated components.

Lemma 119. Σk cannot be implemented under VSSCD,H(n,∞) +MAJINF (k).

Proof. For k = 1, we can rely on Lemma 114, as every σ ∈ VSSCD,E(∞) is also admissible in
VSSCD,H(n,∞) +MAJINF (1). Hence, Σ1 = Σ cannot be implemented in VSSCD,H(n,∞) +
MAJINF (1).

The impossibility can be expanded to k > 1 by choosing some σ that (i) perpetually partitions
the system into k components P̃ = {P1, . . . , Pk} that each have a single source component and
consist of the same processes throughout the run, and (ii) demands eventually a vertex stable
source component in every partition forever. Pick an arbitrary partition P ∈ P̃ . If |P | > 1,
such a sequence does not allow to implement Σ in P (e.g., the message adversary could emulate
the graph sequence used in Lemma 114 in P ). We hence know that ∃p, p′ ∈ P and ∃r, r′ such
that out(p, r) ∩ out(p′, r′) = ∅. Furthermore, and irrespective of |P |, as for every pi ∈ P , it is
indistinguishable whether any pj ∈ P̃ \ P is faulty in σ or not, pi has to assume that every
process pj ∈ P̃ \ P is faulty. Hence, for every pi ∈ P , we must eventually have out(pi, ri) ⊆ P
for some sufficiently large ri.

We now construct a set S of k + 1 processes that violates Definition 116: fix some P ∈ P̃
with |P | > 1 and add the two processes p, p′ ∈ P , as described above, to S. For every
partition Pj ∈ P̃ \ P , add one process pi from Pj to S. Since there exist r, r′ such that
out(p, r)∩out(p′, r′) = ∅, and ∀Pj ∈ P̃ \P,∀pi ∈ Pj ,∃ri : out(pi, ri) ⊆ Pi and, by the construction
of S, we have that ∀pi, pj ∈ S, ∃ri, rj such that out(pi, ri) ∩ out(pj , rj) = ∅. This set S clearly
violates Definition 116, as required.

As for Ωk, we note that Lemma 113 reveals also that Ω1 = Ω can be implemented under
VSSC-PARTD,E(∞). By contrast, however, Ωk it is not implementable under VSSCD,H(n,∞) +
MAJINF (k) for k > 1:
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Lemma 120. For k > 1, Ωk cannot be implemented under VSSCD,H(n,∞) +MAJINF (k).

Proof. We show the claim for k = 2 and n = 3 as it is straight-forward to derive the general case
from this. We show that supposing some algorithm could implement Ωk under the adversary
leads to a contradiction. The following graph sequences (a)–(e) are all admissible sequences
under VSSCD,H(k,∞) (we assume that nodes not depicted are isolated):

(a) (p3 ← p1 → p2)r>0

(b) (p3 ← p2 → p1)r>0

(c) (p2 ← p3 → p1)r>0

(d) (p1 → p2)r>0

(e) (p1 → p3)r>0

Let εa, . . . , εe be the runs resulting from the above sequences applied to the same initial
configuration. By Definition 117 and Definition 115, LD has to include p1 in εa, p2 in εb, and p3
in εc. By Definition 115, in εd, because εa ∼p1 εd and εc ∼p3 εd in all rounds, for some t > 0,
for all t′ > t, out(p1, t

′) = {p1, p3}. A similar argument shows that in εe, for some t > 0, for all
t′ > t, out(p1, t

′) = {p1, p2}, because εa ∼p1 εe and εb ∼p2 εe. The indistinguishability εd ∼p1 εe
provides the required contradiction, as for some t > 0, for all t′ > t, out(p1, t

′) should be the
same in εd and εe.

We conclude that the necessary and sufficient conditions for consensus and k-set agreement
message adversaries in dynamic networks are not identical to the conditions in failure detectors.

7.2 Message adversary reductions

The lemmas in the previous section showed that AMPn,n−1[fd : Σ,Ω] cannot be simulated atop
of SMPn[adv : MA] with some message adversary MA that allows to solve consensus. Even
though failure detectors cannot hence be used directly to find a strongest message adversary, the
concept of comparing models with different restrictions in terms of their computational power is
nevertheless attractive. This idea was already used in [41] to structure communication predicates
in the HO model, albeit the “general translations” introduced for this purpose suffered from
the fact that one would need to solve repeated consensus. The results below, which remove this
constraint can be found in [101].

7.2.1 The heard-of-model

The HO model consists of a non-empty set Π = {p1, . . . , pn} of n processes with unique ids, and
a set of messages M , which includes a null placeholder indicating the empty message. Each
process p ∈ Π consists of the following components: a set of states denoted by statesp, a subset
initp of initial states, for each positive integer r ∈ N∗, called round number, a message sending
function Srp mapping states p×Π to a unique (possibly null) message mp, and a state-transition
function T rp mapping statesp and partial vectors (indexed by Π) zp of elements of M to statesp.
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The collection of the pairs of message sending function and state-transition function of the
processes for every round r > 0 is called an algorithm on Π.

Computations in the HO model are composed of infinitely many rounds, which are communication-
closed layers in the sense that any message sent in a round can be received only at that round. In
each round r, process p first applies Srp to the current state sr−1

p ∈ statesp, emits the “messages”
to be sent to each process, and then, for a subset HO(p, r) of Π (indicating the processes which
p hears of), applies T rp to its current state and the partial vector of incoming messages whose
support is HO(p, r) to compute srp.

A communication predicate P is defined to be a predicate over heard-of collections, that is a
Boolean function over the collections of subsets of Π indexed by Π× N∗:

P : (2Π)Π×N∗ ⇒ {true, false}

Rather than directly using communication predicates for describing our message adversaries,
however, we will exploit the fact that ∪p∈ΠHO(p, r) = Gr. Consequently, we again can stick
to the admissible graph sequences of a given MA and our standard model introduced at the
beginning, and silently assume that they are translated to the according communication predicate.

7.2.2 Message adversary simulation

Our equivalent of a failure detector simulation is a message adversary simulation of MA M
atop of M ′, using a suitable simulation algorithm A running in SMPn[adv : M ′] that emulates
SMPn[adv : M ]. Note that A may also depend on the algorithm A that is to be run in
SMPn[adv : M ] here. If such a simulation exists, for every A, then M ′ and M have the same
computational power, i.e., M ′ allows a solution for every problem where M allows a solution.
We will now describe the details of our MA simulation, using the HO model as a basis.

Consider the HO model corresponding to SMPn[adv : M ′], and let A be a still to-be-defined
algorithm that maintains a variable NewHOp ⊆ Π at every process p. For some positive
integer k, let the macro-round ρ > 1 for process p be the sequence of the k consecutive rounds
r1 = k(ρ − 1) + 1, . . . , rk = kρ. Note that k = k(p, ρ) may be different for different (receiver)
processes p and macro rounds ρ here. We say that A emulates (macro-)rounds ρ ∈ {1, 2, . . . } of
SMPn[adv : M ], if, in any run of the latter, the value of NewHO(ρ)

p computed at the end of
macro-round ρ satisfies:

(E1) q ∈ NewHO(ρ)
p iff sr1−1

q  srk
p , i.e., if there exist an integer l in {1, ..., k} , a chain of

l + 1 processes p0, p1, ..., pl from p0 = q to pl = p, and a subsequence of l increasing
round numbers r1, ..., rl in macro-round ρ such that, for any index i, 1 6 i 6 l, we have
pi−1 ∈ HO(pi, ri).

(E2) The collection NewHO(ρ)
p for all p ∈ Π, ρ > 0 satisfies M .

Clearly, the purpose of (E1) and (E2) is to guarantee well-defined and correct emulations,
respectively.

Implementing the above emulation, i.e., the emulation algorithm A, is trivial: Let mr
p→q represent

the message sent by p to q in round r in SMPn[adv : M ′], and m
(ρ)
p→q the message sent in

macro-round ρ in the simulated SMPn[adv : M ]. A just piggy-backs m(ρ)
p→q on message mj

p→q,
for every (ρ− 1)k + 1 6 j 6 ρk, and delivers m(ρ)

p→q in z(ρ)
q in macro-round ρ, along with putting
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q into NewHO(ρ)
p , when some mj

p→q has been successfully received. Unfortunately, however,
this emulation is too restrictive for our purpose.

Our next step will hence be to define a more abstract simulation of SMPn[adv : M ], by relaxing
(E1) in a way that still guarantees well-defined simulations. We recall that, by definition,
q ∈ HO(p, r) iff mr

q→p ∈ zrp, and that mr
q→p = Srq (sr−1

q , p). The former is of course equivalent to
q ∈ HO(p, r) iff m′ ∈ zrp and m′ = mr

q→p. Now consider the following relaxed variant of (E1),
where we replace the requirement of p having received the message mr

q→p by the requirement of
q having attempted to send mr

q→p:

(E1’) q ∈ NewHO(ρ)
p , iff there exists at least one j, (ρ − 1)k + 1 6 j 6 ρk, for which p has

acquired local knowledge of m′ with m′ = Sjq(sj−1
q , p).

We say that A simulates (macro-)rounds ρ > 0 of SMPn[adv : M ], if, in any run of the latter,
the value of NewHO(ρ)

p computed at the end of macro-round ρ satisfies (E1’) and (E2). At the
first glance, (E1’) appears to be equal to (E1), as it has the same outcome in the case where a
chain of messages from q to p as specified in (E1) exists. However, the essential difference is
played out in the case where such a chain does not exist: Sometimes, it may be possible for the
simulation algorithm A at process p to locally simulate the execution of A at process q, and
hence to locally compute m′ without actual communication!

Using this type of message adversary simulations, in conjunction with the fact that every
communication predicate can be viewed as a message adversary, we will prove in Lemma 122
below that consensus solvability and the ability to simulate the communication predicate
SP_UNIF introduced in [41] are equivalent.

Definition 121. Let SP_UNIF be the communication predicate where for all p, q, r : HO(p, r) =
HO(q, r).

Lemma 122. The following assertions are equivalent:

(1) For any set of initial values V , there is an algorithm A that solves consensus in SMPn[adv :
M ′].

(2) M ′ allows to simulate SMPn[adv : SP_UNIF ] in the execution of every algorithm A.

Proof. The direction (2) → (1) follows from the fact that [41] provided a (trivial) algorithm
A that solves multi-valued consensus. We can hence plug-in A in (2) to obtain a consensus
algorithm in SMPn[adv : M ′].

To show the direction (1) → (2), let A be an algorithm that solves multi-valued consensus
in SMPn[adv : M ′], and consider an arbitrary algorithm A to be executed in SMPn[adv :
SP_UNIF ]. We design an algorithm B based on A and A, which allows to simulate SMPn[adv :
SP_UNIF ] in the execution of A.

To simulate the first macro-round ρ = 1, B first executes A on every process until consensus
is solved. More specifically, p starts A with the local input value xp = state

(0)
p , where state(0)

p

denotes algorithm A’s initial state. Let v be the common decision value, and v.id = ` for v =
state

(0)
` . When A terminates at process p, B sets NewHO(1)

p := {v.id}. By validity, v is indeed
the initial state state(0)

` of some process ` ∈ Π, and by agreement, NewHO(1)
p = NewHO

(1)
q for

every p, q ∈ Π.
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Now, assuming inductively that every process p knows state(ρ−1)
` and state

(ρ−1)
p (as well as

A), B at p can also locally compute the message m(ρ)
`→` = S

(ρ)
` (state(ρ−1)

` , `) and m
(ρ)
`→p =

S
(ρ)
` (state(ρ−1)

` , p) sent by ` in macro round ρ. Moreover, B sets the message vector z(ρ)
`

of the messages “received” by the simulated algorithm A for process ` to z
(ρ)
` = {m(ρ)

`→`}
and z

(ρ)
p = {m(ρ)

`→p} , from where it can locally compute state(ρ)
` = T

(ρ)
` (state(ρ−1)

` , z
(ρ)
` ) and

state
(ρ)
p = T

(ρ)
p (state(ρ−1)

p , z
(ρ)
p ). Finally, p sets NewHO(ρ)

p = {`} accordingly.

By construction, (E1’) clearly holds. Moreover, since agreement securesNewHO(1)
p = NewHO

(1)
q ,

which in turn leads to NewHO(ρ)
p = NewHO

(ρ)
q for every ρ > 1 due to the identical local compu-

tations at p and q, B indeed simulates SMPn[adv : SP_UNIF ], which confirms also (E2).

With these preparations, we will now define and discuss our notion of a strongest message
adversary:

Definition 123 (Strongest message adversary). A message adversary M is a strongest message
adversary for some problem P, if for every M ′ for which P is solvable in SMPn[adv : M ′],
there exists an algorithm A that allows to simulate SMPn[adv : M ] in the execution of every
algorithm A that solves P.

A property that follows directly from Definition 123 is:

Corollary 124. If a strongest message adversary for multi-valued consensus allows to solve
some problem P, it holds that every message adversary that allows to solve multi-valued consensus
also allows to solve P.

By Lemma 122, SP_UNIF is a strongest message adversary for multi-valued consensus. Even
more, as the simulation algorithm A used in the proof of Lemma 122 actually simulates the
message adversary STAR ⊂ SP_UNIF , where HO(p, r) = HO(q, s) for every r, s > 0 and
every p, q ∈ Π, it reveals that STAR is also a strongest message adversary for multi-valued
consensus.

Since every other message adversary that contains STAR is also a strongest message adversary
by definition, we finally obtain the following Corollary 125:

Corollary 125 (Class of strongest message adversaries for consensus). Let STAR be the message
adversary that consist of all sequences of all possible perpetual stars. Every message adversary
that includes STAR is a strongest message adversary for multi-valued consensus.

Examples for such message adversaries are (SOURCE,QUORUM), VSSCD,E(∞) and SP_UNIF .

Interestingly, the findings above can be easily be adopted for k-set agreement as well: The
same simulation algorithm B as used in the proof of Lemma 122 can be used to simulate k
perpetual stars atop of a message adversary M ′ that allows to solve k-set agreement: As any
k-set agreement algorithm A guarantees at most k different decision values, B indeed allows to
simulate at most k perpetual stars with the k decisions as the centers. Hence:

Corollary 126 (Class of strongest message adversaries for k-set agreement). Every message
adversary that contains all sequences of all possible perpetual k-stars is a strongest message
adversary for k-set agreement.

An example for a strongest message adversary for k-set agreement is the message adversary
VSSCD,H(n,∞) +MAJINF (k) introduced in [22].
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7.3 Consequences of our Results

The results of Section 7.1, in particular, Lemma 114, reveal the following facts:

(i) Since VSSCD,E(∞) does not allow to implement Σ, we cannot hope to run Σ,Ω-based
consensus algorithms on top if it.

(ii) The message adversary (SOURCE,QUORUM) considered in [94], VSSCD,E(∞) and
SP_UINF are all incomparable in terms of graph sequence inclusion, even though
they all belong to the class of strongest message adversaries.

(ii) There are message adversaries like the one introduced in [102], which (unlike VSSCD,E(∞))
do not even guarantee a single strongly correct process in some runs. Implementing Σ
subject to Definition 106 atop of such message adversaries is trivially impossible, as its
specification becomes void.

On the other hand, the results of Section 7.2.2, in particular, Lemma 122, reveals that it is
possible to simulate the message adversary SP_UNIF atop of any message adversary (hence
also VSSCD,E(∞)) that allows to solve multi-valued consensus. However, it is trivial to simulate
Σ,Ω in AMP in SMPn[adv : SP_UNIF ]: Initially, process p outputs p as the leader and Π
as the quorum. At the end of round 1, both the leader and the quorum is set to NewHO(p, r).
Therefore, we seem to have arrived at a contradiction of Lemma 114!

This seemingly paradoxical result is traceable to the fact that the set NewHO(p, r) provided
by the simulation of SP_UNIF need not contain a strongly correct process! Indeed, recall
that the infinite repetition of G can also be achieved by letting every process p in the system
locally simulate the behavior of some `’s algorithm. This is possible, since p knows both `’s
deterministic algorithm and its initial state, from the star graph G in round 1.

Hence, it finally turns out that the impossibility of implementing Σ established in Lemma 114
depends crucially on the assumption to consider strongly correct processes as correct in the
simulated AMP. In principle, it might be possible to implement Σ (and also Ω) atop of any
message adversary that allows to solve consensus if a weaker alternative of Definition 107 of
correct processes in AMP was used: For `, it would essentially be sufficient if it managed to
disseminate its initial state to all processes in the system once. Quite obviously, though, such a
definition of a correct process would severely affect the semantics of failure detectors and hence
the wealth of known results.

In addition, the principal ability to simulate Σ,Ω atop of the simulated system SMPn[adv :
SP_UNIF ] is not very useful in practice, as it hinges on the availability of a consensus algorithm
for the bottom-level message adversary M ′. Consequently, this possibility does not open up
a viable alternative to the development of consensus algorithms tailored to specific message
adversaries like the ones introduced in [102,108].

Overall, it turns out that strongest message adversaries according to Definition 123 do not have
much discriminating power, as essentially all message adversaries known to us that allow to solve
consensus are strongest according to Corollary 125. Finding a better definition of a strongest
message adversary is a topic of future research. Note, however, that naive ideas like one that
(i) admits a solution algorithm and (ii) is maximal w.r.t. its set of admissible graph sequences
it may generate do not easily work out: Given that the latter set is usually uncountable, as
admissible graph sequences are infinite, it is not clear whether (ii) is well-defined in general.
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CHAPTER 8
Conclusion and outlook

In this thesis we studied various agreement problems in directed dynamic networks under different
message adversaries.

For oblivious message adversaries it was possible to provide tight bounds on the contraction rate
of asymptotic consensus in the setting of non-split graphs for dimensions 1 and 2 as well as to
provide a relation to exact terminating consensus. For higher dimensions the lower bounds hold
but algorithms to reach this bounds are still missing. The core idea to achieve this results comes
from studying valency diameters along executions in relation to contraction rates. Furthermore
we obtained a general lower bound of 1/(D+ 1) for any network model in which exact consensus
is not solvable; here D denotes the newly introduced α diameter of the network model. We
established a connection between the topological structure of valencies and the solvability of exact
consensus, and finally, extended our bounds to lower bounds on termination times of approximate
consensus algorithms in arbitrary network models. Furthermore, the novel definition of valency
for asymptotic consensus will hopefully also be useful in other areas at it is a generalization of
the very simple definition used until now.

For non-oblivious message adversaries, we focused on exact terminating consensus and vertex
stability of source components, as it is one of the most general assumption used in the field.
We showed that memory efficiency, stability intervals and rootedness can be balanced to tailor
algorithms to different demands. Furthermore, we could show that stability intervals can be
reduced below two times the network depth if and only if an upper bound of n is known. If one
can guarantee longer intervals of source stability, one can relax the safety constraint of rooted-
ness. Moreover, we made a significant step towards determining the solvability/impossibility
border of general k-set agreement in our model: We provided results, which led us to the first
gracefully degrading consensus/k-universal k-set agreement algorithm under a fairly strong
message adversary proposed so far.

Our results are complemented by relating our message adversaries to failure detectors and a proof
of the fact that weakest resp. necessary failure detectors for consensus resp. k-set agreement
cannot be implemented under our message adversaries. We also defined a suitable notion
of message adversary simulation, which led to a alternative definition of strongest message
adversaries.
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Outlook

For oblivious message adversaries, we believe that the study of valencies is an interesting
vehicle to approach several open questions: In future work, we plan to close the remaining gaps
illustrated in Table 5.1. Especially interesting are improvements in regards to the more general
rooted graphs instead of non-split graphs. Moreover, we aim to find simple exact consensus
algorithms for general network models, based on an in-depth understanding of how valencies
change over executions. Another line of inquiry is how the new definition of valency can provide
lower bounds under different failure scenarios, for example crashes failures.

Furthermore, in the area of non-oblivious message adversaries, we are especially interested in
a necessary and sufficient property similar to [46], which allows to a priori check whereas an
arbitrary non-oblivious message adversary allows a solution for consensus or k-set agreement or
not.
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