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Kurzfassung

In modernen Gebäuden sorgt eine komplexe Haustechnik für die Bereitstellung ange-
messener Bedingungen. Zu den hierzu wesentlichsten Gewerken zählen Beleuchtung und
Verschattung sowie Heizungs-, Lüftungs- und Klimatechnik (HLK). Für einen effizienten
Betrieb dieser Anlagen sorgt eine Vielzahl an Gebäudeautomationstechnologien und Sys-
temen, die ihrerseits auf bestimmte Gewerke optimiert sind. Zusammen ergibt sich eine
durch starke Heterogenität geprägte Systemlandschaft. Um dennoch Interoperabilität
zwischen diesen zueinander inkompatiblen Technologien zu erreichen, wurden in der
Vergangenheit verschiedene Lösungsansätze zur Integration entwickelt. Hiervon zeichnete
sich die Einführung einer übergeordneten Abstraktionsschicht, die einen vereinheitlichten
Zugriff auf die verschiedenen Gebäudeautomationssysteme ermöglicht, als der geeignetste
Ansatz ab.

Diese Dissertation greift die beschriebene Situation auf und beschreibt ein Verfahren zur
Integration von Gebäudeautomationstechnologien, das gleichzeitig auch Informationen
über das Gebäude selbst berücksichtigt. Dazu wird ein Ansatz vorgestellt, der zwei
Integrationsebenen unterschiedlicher Komplexität und Ausdruckstärke umfasst. Um die
für diese abstrakten Darstellungen geeigneten Methoden zu finden, werden zunächst
aktuelle Sprachen zur Wissensdarstellung hinsichtlich ihrer Eignung untersucht. Infor-
mationsmodelle für ausgewählte Technologien werden mit Hilfe des Standards OPC
Unified Architecture (OPC UA) erstellt. An dieser Stelle wird auch eine Schnittstelle zur
Einbindung von Systemen der Industrieautomation geschaffen. Hieraus ergibt sich die
erste Integrationsebene.

Diese OPC UA-basierten, technologiespezifischen Informationsmodelle werden in einem
nächsten Schritt in einen umfassenden Gesamtkontext gesetzt, der Aspekte der Bau-
werksdatenmodellierung miteinbezieht. Diese holistische Sicht wird durch eine Ontologie,
die in der Web Ontology Language (OWL) verfasst ist, dargestellt. Die daraus resultie-
rende Wissensbasis repräsentiert nicht nur statisches Wissen über Gebäude und deren
Automationssysteme, sondern erlaubt auch Zugriff auf Laufzeitwerte der entsprechenden
Datenpunke. Damit ist die zweite Integrationsebene definiert. Für den Zugriff auf die
Wissensbasis wird eine semantische Abfragesprache verwendet.

Der Entwurf von Gebäudeautomationssystemen und die hierbei zu berücksichtigenden
Informationssicherheits-Maßnahmen bilden den Rahmen um die vorgestellten Integrati-
onsansätze. Es wird ein durchgängiges, teilautomatisiertes Verfahren für den Entwurf
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dieser Automationssysteme und der zwei darüber liegenden Integrationsebenen vorgestellt.
Die Anwendung dieses Verfahrens wird anhand repräsentativer Vertreter der jeweiligen
Ebene gezeigt. Da Informationssicherheit in integrierten Gebäudeautomationssystemen
eine essentielle Rolle spielt, werden dahingehend für die verwendeten Technologien OPC
UA und Web services (WSs) die zur Verfügung stehenden Möglichkeiten untersucht.
Schließlich werden Modelle zur Herstellung von Vertrauensbeziehungen zwischen den
beteiligten Komponenten evaluiert.



Abstract

Modern buildings are conditioned by a variety of building services. These mainly involve
lighting and shading as well as Heating, Ventilation and Air Conditioning (HVAC). To
assure an efficient operation of the services, the field of Building Automation Systems
(BASs) has established. These systems are nowadays characterised as a highly heteroge-
neous landscape of different standards and technologies. Each of these technologies in
use has its dedicated fields of applications in controlling building services. The resulting
heterogeneity leads to considerable interoperability issues between building automation
technologies. To address these issues, several approaches of integration have been devel-
oped in the past. The most promising way which has emerged was to provide a unified
abstraction layer on top of these mutually incompatible systems.

This thesis captures the current situation and presents an integration method for BASs
but also including information about the building itself. Therefore, an architecture of two
levels of comprehensiveness is chosen. To find the proper means to express the desired
abstractions, state-of-the-art knowledge representation languages are examined with
respect to their suitability towards creating unified views on the mentioned heterogeneous
information sources. Information models are created for selected representatives of build-
ing automation technologies by using OPC Unified Architecture (OPC UA). Additionally,
an interface to integrate technologies from industry automation is defined at this point.
This constitutes the first level of integration.

The OPC UA-based, technology-specific views are in the following raised to a bigger
context including aspects of Building Information Modelling (BIM). The resulting, holistic
view is established by a Web Ontology Language (OWL) ontology which does not only
regard static knowledge about buildings and their embedded automation systems but also
allows access to runtime values of datapoints in the BASs by a semantic query interface.
Hereby, the second level of integration is established.

As a frame around the developed integration methods, automation systems engineering
and security engineering are addressed. A workflow of semi-automated engineering
throughout the hierarchy of automation systems and the two integration levels is proposed.
The application of this workflow is shown by means of representative technologies from
every layer. Since security plays an essential role in integrated BASs, OPC UA and Web
service (WS) technologies are examined with regard to this aspect. Applicable models of
establishing trust in these environments are finally evaluated.
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CHAPTER 1
Introduction

1.1 Motivation
Building Automation Systems (BASs) have been continuously developed starting from
the end of the 19th century. Within this history, a very heterogeneous landscape of
standards, technologies and proprietary solutions has arisen. The solutions deployed
are each specialised on a distinct field of application (i.e., trade) in a building which
makes it often unavoidable to deploy more than one technology within an installation
of a single building. These subsystems cannot be considered functionally isolated as
it will be illustrated later by typical use cases. In order to allow interaction within
these heterogeneous systems, efforts must be undertaken to create interfaces allowing
information exchange across the borders of the subsystems. There exists a number of
possible solutions to achieve this so-called integration, addressed later in this thesis.

1.1.1 The historical development of building automation

The history of building automation and control systems began in the late 19th century.
Back then, it was common practice that the caretaker walked through the building
from time to time checking and noting the temperature in each room. When the first
automated heating control systems appeared on the market, the goal was to take over
the so-far manual operation of boilers and heat distribution. Increased comfort was
the main argument for the first BAS devices. According to contemporaneous product
advertisements, [1] these systems could maintain room temperature with an accuracy of
two degrees off the setpoint. The Johnson Controls “Automatic Temperature Control
System” is taken here as an example. Its main components were room thermostats and
actuators for valves and dampers interacting pneumatically. The valve actuators adjusted
the heat water or steam flow to the radiators, whereas the damper actuators set the
inlet of warm air to the rooms or the amount of combustion air to the furnace. Figure
1.1 shows an illustration of some Johnson components and a schema of their possible
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1. Introduction

Figure 1.1: Johnson system of temperature regulation [1]

application in building. The “Cumulator” in the right upper corner of the figure adds up
the heat demand from the thermostat and sets the combustion air damper at the furnace
accordingly. The compressed air necessary for the system to operate was provided by a
compressor working with the power of mains water.

Since the complexity of these early temperature control systems more and more increased,
the necessity arose to monitor and to manipulate all of a building’s control devices from
a single point. A single person could now overview the conditions in a facility and the
state of the installed systems. These pneumatic control centres from the 1960s were
soon replaced by ones with mixed pneumatic and electric operation. The actuators were
driven pneumatically by transducers where the feedback signalling from sensors and
the controller were replaced by electronic - but still analogue - components [2]. Digital
technology entered this domain in the 1970s, where mini-computers were used to control
building systems. Programmable, microcontroller-based devices, which were already in
use in the industry for process control (i.e., Programmable Logic Controllers (PLCs)),
found their way to the building control sector in the 1980s. This concept is still known
today under the name Direct Digital Control (DDC). These DDCs carry out dedicated
automation tasks like PID controllers or sequential control of their subsystems. Their
domain was the control of the building services Heating, Ventilation and Air Conditioning
(HVAC) - the major application in building automation for a long period. At the control
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1.1. Motivation

centers, also minicomputer-based solutions were introduced. They facilitated a central
management of events and failures, trend recording and evaluation with the goal to
optimise system operation. Initially motivated by the oil crisis in the 1970s, where
energy prices significantly climbed, proper use of energy in building operation became
a topic. This circumstance led to the development of Energy Management Systems
(EMSs). These software-based solutions had the main goal to preserve fuel by means of
optimal and demand-oriented system operation. The management of setpoints of the
underlying DDCs by following occupancy schedules or the optimised start and stop of
plants depending on indoor and outdoor conditions are still classic EMS tasks.

Soon, networked connections were established among DDCs and management stations
as a result of the new demands in communication relations. Especially the distributed
system architecture which evolved from centralised approaches requires efficient data
communication to bridge the distances between the spatially separated devices. Various
protocols which were already established in the business world found their application in
the HVAC sector. Attached Resource Computer Network (ARCNET), Ethernet and RS-
485 were the technologies which formed the first LANs dedicated to this field. With the
progress of IT technology, also building automation components became more powerful
and intelligent, both with regard to communication and processing power. Demand on
new components like on field devices or Human Machine Interfaces (HMIs) was satisfied
by industry automation parts. Modern controller devices are usually equipped with
IP connectivity which enables the use of standard IT infrastructure components like
Ethernet switches and wiring. This way, the integration of building automation networks
into the office and PC-based world is facilitated.

Modern BASs are heterogeneous networks composed of a multitude of different technolo-
gies and standards. In contrast to their historic predecessors, they fulfil a broad variety of
tasks in a building. Providing proper inside conditions by means of HVAC systems is still
a major requirement, but high effort is also put into providing visual comfort with the
help of lighting and shading applications. Today’s buildings are usually equipped with
safety-relevant applications like emergency lighting, fire alarm systems, extinguishing
systems and contaminant detection systems (e.g., for gas or carbon monoxide). Physical
access control in combination with intrusion detection as well as surveillance systems are
also relevant for functional buildings.

Each of the applications named above can be assigned to distinct areas of the three level
functional hierarchy of BAS. This model is defined in the DIN EN ISO 16484-2 [3]. An
illustration thereof can be found in Figure 1.2. At the lowest level of this pyramid-shaped
model, the field level sensors collect data and actuators interact with the physical process
when sensing, metering, switching and setting takes place. At the automation level
located in the middle of this three level hierarchy, data from the lower tier are processed,
control loops are executed and the resulting values are fed back to actuators. At the top
level, the management level of BAS, setpoints are defined, centrally accessible process
data are visualised and archived for trending and monitoring applications. At this point,
data originating from different automation network standards located at the lower two

3
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DDC
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Figure 1.2: Three level model of BASs, adapted from [4]

levels of a BAS are aggregated.

These top-level applications are usually subsumed by the term Building Management
Systems (BMSs). Sometimes, the term Building Energy Management Systems (BEMSs)
is used with a similar meaning [5]. This apparently reflects the fact that assuring energy
efficiency [6] is one of the major current goal of these applications. BMS/BEMSs can be
compared to Supervisory Control and Data Acquisition (SCADA) applications known
from factory automation due to a high overlap of functionalities. Central access is
provided to the operator via a Graphical User Interface (GUI) to most of the subsystems’
datapoints. Live values can be monitored and are also recorded for archiving. These
historical values can be used for accounting of energy consumption, long term error
detection and optimisation. Besides the manual adjustment of setpoints, time programs
(i.e., schedules) can be defined for repeating occupancy cycles of rooms and building
areas. A typical scheduler influences setpoints for temperature and air exchange rate in
accordance with office or work hours. In case of an error in one of the underlying systems,
the operator needs to be informed in order to take proper actions. This is achieved by
alarms (i.e., critical events) generated by the subsystems which are propagated to the
BMS and indicated to the operator.

One relatively new application for BMSs is the integration of meter points with the
help of smart meters capable of remote readout. Usual meter points in buildings and
factory plants accumulate the consumption of water, gas, electricity, compressed air or
heat. A segmentation of metering the consumption according to floor, building parts or
plant segments is usual practice. Today’s smart meters provide remote readout interfaces
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Router

DDC
DDCs

HMI panel

Control network A Control network B

Backbone network

Field devices Field devices

Management
station

  

Figure 1.3: Two-tier network architecture [12]

using various wired and wireless readout protocols like Meter Bus (M-Bus) [7] or the
ZigBee-Smart-Energy-Profile [8]. A BMS collecting the metering data is able to perform
analysis of consumption values like a comparison on weekly, monthly or seasonal basis.

Regarding the hierarchical depth of BASs, practice has shown that implementing a
3-tier functional architecture (according to ISO/DIS 16484-2 [3]) is appropriate only in
rare cases. Instead, the functionalities modern control devices are capable to result in
an architecture with two levels of networks. Figure 1.3 shows an example of such an
architecture. Typical field devices with control network connectivity (e.g., KNX [9] or
LonWorks [10]) like switching actuators, room temperature sensors or control panels
already implement automation level functionalities to be able to perform dedicated
control tasks like temperature regulation or lighting scene control. These low-bandwidth
control networks are sufficient for the typically small amounts of data (sensor readings or
control commands) to be exchanged between field devices. Cost-efficiency with regard to
the communication medium, easy wiring combined with supply lines and wire-saving bus
topologies also play a role. Often, one control network segment is limited to a building
floor or zone. These networks are interconnected via routers to a backbone network
of higher bandwidth. Here, IP over Ethernet is the usual network technology. Central
control, monitoring and diagnostics is hereby enabled. For nowadays DDCs, where the
Building Automation and Control Network (BACnet) [11] is a well-established technology,
an IP interface is standard. This allows to directly connect DDCs into the backbone
network while field devices are directly coupled to a DDC typically using standard signals
like 24V, Pt1000 or 0-10V.
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The challenge is to find a common software interface to these different network standards
which follow a different way of representing and transporting process data. The classical,
but not very convenient way to reach this goal is to integrate technology-specific interfaces
(i.e. drivers communicating with the underlying networks) in the management level
applications. The disadvantages of this approach are a lock-in to distinct technologies
and little flexibility for future extensions including new network standards.

Especially at the management level but at the lower levels of BAS as well, IP-technologies
are already in use. KNXnet/IP, BACnet/IP [11] and LonWorks/IP tunnelling may be
called in this context. This already existing IP infrastructure facilitates the use of Web
services (WSs) [13] as an approach to achieve the desired interoperability. Since WSs are
independent of any hardware platform or operating system, they provide a convenient
way to access runtime data in a common and unified way.

1.1.2 Integration approaches

Automation systems both in the industrial and the building domain follow a hierarchically
organised architecture. This circumstance was already recognised in the 1970s where
the first functional models were introduced with the aim to structure the increasingly
complex systems in production plants. A property of these early models was the strict
separation of single layers of a hierarchy with regard to functions and communication
networks. The result was a nowadays very common model, the automation pyramid. The
hierarchical order of the layers is also reflected by a number of characteristic properties
like the number and complexity of devices at a distinct layer, data throughput and
timing constraints. Each level of the automation pyramid has its dedicated functions
and networking. At the bottom margin of the pyramid the physical environment (i.e.,
the technical process) is situated whose properties are captured and influenced by the
devices of the field level. These sensors and actuators have connectivity by means
of analog standard signals (direct wiring) as well as narrow-band fieldbus networks.
Hereby, the data exchange between sensor/actuator systems and controllers located at
the following levels is enabled. At these process and cell levels, autonomous control tasks
are executed in controllers commonly known as PLCs, automation stations and industrial
PCs for Manufacturing Execution Systems (MESs). Their main tasks are scheduling
and dispatching of jobs. Ethernet-based communication is now dominating these levels
in form of various technologies which are partly also capable of real time. They are
subsumed by the term industrial Ethernet. Standard IP networking is established at all
the upper layers which cover tasks concerning shop floors, factories and cross-company
applications. The according applications are SCADA and Enterprise Resource Planning
(ERP) up to supply chain management. The functions which need to be realised at
these levels are basically scheduling, planning and monitoring - including data archiving.
Communications takes place via office IP infrastructure with a scale from locally limited
networks (LANs) up to Internet communication (WANs).

This original automation hierarchy models defined as a stack of four to six different
functional levels is not applicable to modern plants anymore. The wide-spread establish-
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1.1. Motivation

ment of Internet technologies resulted in a collapse to a two or three level architecture
consisting of a planning level on top, an intermediate one where control tasks are carried
out and the field level.

In order to allow information exchange across the borders of network and automation
technologies, translations (either unidirectional or bidirectional) between the respective
world models of protocols need to be defined. The basic semantics of the protocols used
in automation systems is rather similar: the exchange of datapoint values and issuing
control commands. However, different communication patterns are used like, e.g., client -
server, publish - subscribe or producer - consumer. A classic gateway device connects two
different network protocols at the application layer [14]. This - historically seen - early
solution leads to a number of disadvantages, especially in highly heterogeneous systems
with a high diversity in technologies. In the industry, this is called the “Inter-enterprise
Nightmare” [15]. Figure 1.4 shows the situation where point-to-point integration is carried
out. The subsystems illustrated on the lower level each use their own technology which
needs to be integrated into the high-level applications on top. In the worst case, pair-wise
integration with

(n
2
)
mappings is carried out. [16] This leads to multiple dependencies

resulting in poor maintainability and extensibility. Often, many different vendors are
involved creating custom made solutions using their proprietary technologies. A vendor
lock-in is often the case when architectures like these are set up.

An alternative, which appeared to overcome the disadvantages of the gateway approaches
is the concept of middlewares. The goal behind these developments was to provide a
homogenisation between communication and application as well as among applications.
First candidates were Common Object Request Broker Architecture (CORBA) [17]
and Microsoft Distributed Component Object Model (DCOM). Today, Web service-
based middleware dominates the field which is justified by this paradigm’s platform-
independency, flexibility and network-friendliness with regard to firewall configurations.
The state-of-the-art in integration by WSs will be discussed in Section 2.2 in more
detail. The principle of homogenisation by creating a unified model is shown in Figure
1.5. The unified information model on top reflects the information representation of
a middleware solution. An information model is a pattern consisting of objects and
relations which can be instantiated by information originating in a concrete reality. It shall
provide adequate expressiveness depending on the technologies to be integrated and the
intended environment of application. Therefore, it needs to cover distinct requirements on
semantics which can range from only a simple datapoint model to a comprehensive form
of knowledge representation. The information models at the bottom of the illustration
reflect the means how information is represented by automation technologies to be
integrated. Technologies in use in the field of automation follow individual approaches
which lead to individual mappings between their information models and the middleware
information model. Therefore, model transformations (TR1. . . TRn) need to be defined
which are usually a set of rules describing how entities from a distinct technology are
transferred to the unified information model. Depending on the formats involved in this
process, the rules can be written in a machine-readable form. Once defined, the rules can

7



1. Introduction

Figure 1.4: Inter-enterprise nightmare [15]

be executed automatically on arbitrary instantiations of both models. Machine-friendly
formats are, for example, XML-based description languages.

Integration can be seen in two dimensions with regard to the automation pyramid -
horizontal and vertical. Horizontal integration encompasses the interconnections at one
level which inherently leads to distinctions between the conditions at the different levels.
Contrary to upper levels where exclusively IP-based communication takes place, especially
at the field level a variety of different field bus systems can be found which differ in their
protocol stacks. This circumstance makes a large difference when an integration solution
like a middleware is designed. Vertical integration takes place across different levels of
the automation hierarchy. One major aspect is the interconnection of fieldbus networks
and IP-based networks. At the upper tiers, mainly the application layers need to be
concerned since network environments are fully IP-based. Therefore, interoperability up
to the network layer is already assured at these levels of the pyramid model. Here again,
middleware approaches come into play since they are a powerful and flexible method
for vertical integration. They therefore play an essential role within this work. The
progress of automation technology development and integration approaches up to the
newest trends can be traced by the following literature: [18], [19], [20].

As mentioned before, when introducing a middleware integration approach, the central
question is the way how information is represented at this newly established homogenisa-
tion layer. The unified model which is instantiated can be of arbitrary expressiveness,
depending on the requirements to the representation. In the following, these requirements
will be derived from the intended use cases to be realised on the basis of an integration
layer.

8
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1.2 Problem statement
Automation technologies have not only evolved in the building sector in the past decades
but also (and in a much more extensive and faster way) in other domains. The industrial
manufacturing domain is not imaginable without automation, Computer Aided Manufac-
turing (CAM) methods are state-of-the-art in most plants. Currently, the technological
development is further accelerated by the “Industry 4.0” doctrine by which information
and communication technologies are further pushed into production systems [20]. Also
the electrical energy supply sector is currently seized by the progress of automation and
IT systems. This concept, where power grids are overlaid by an IT infrastructure is called
smart grid [21], [22] and plays a crucial role when exploiting renewable energy sources
[23]. Electrical mobility is tightly related to intelligent grids since control systems are
necessary to coordinate the high loads which are put on the grids when charging vehicle
batteries.

All these domains are inter-related to each other and they already have points of
interactions where cross-domain data exchange takes place. It is expected that the
realisation of innovative use cases in the near future will require cross-domain interaction
of automation systems in a much higher degree. The main drivers for these expected
future use cases are optimised utilisation of existing systems like it is the case for smart
metering as well as energy savings by exploiting synergies which arise when interconnecting
domains. These developments are in the meanwhile even driven by official authorities
like the National Institute of Standards and Technology (NIST) with regard to smart
grid and BASs interaction [24]. In the following, a number of such use cases is sketched.

In the course of the optimisations towards minimal energy demand of buildings, in many
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cases interworking between different trades is required. It is normally the case that
in different trades, different technologies are applied. For example, primary plants for
provision and distribution of heat, cold and fresh air (HVAC) are often equipped with
BACnet controllers. Lighting and shading applications as well as room controlling often
base on KNX systems, whereas for the readout of meters counting electric energy, water
and gas demand, M-Bus is an often-used protocol.

A simple scenario where KNX and BACnet components need to interact is the determina-
tion of the overall fresh air, heat and cooling demand in a building in order to calculate
the setpoints for the HVAC primary plants. Information from presence detectors and
room controllers (i.e., room control) implemented in KNX networks needs to be collected
and passed to a network of BACnet controllers operating the primary equipment, such
as boilers, chillers and air handling units. By processing the demand requests from the
room controllers, fast reaction of the primary plant is assured. Also an intelligent shading
system can make use of such an integrated system. The state of shutters, lighting, heating
and cooling systems are coordinated such that least possible energy is consumed. Cooling
demand for preventing summer overheating is minimised by finding the proper trade-off
between shading and lighting. In order to minimise heating energy demand in winter,
maximum use of solar heat gains is made.

For Energy+ buildings (i.e., buildings which deliver more energy to the grid than they
consume) or - in the future - when even Energy+ city districts become reality, integration
of BASs into smart grids is a logical consequence. Energy providers will changes tariffs
for electricity (maybe also for gas, district heating or cooling) over daytime depending
on grid load or renewable energy supply. Smart meters play a central role in these
macro systems. They are used for data acquisition on energy consumption but also
the building-integrated production of renewable energy like solar heat or photovoltaics.
In such innovative buildings, energy buffers for heat and electric energy are deployed
which are integrated in the building’s plants. The utilisation of these buffers needs to be
coordinated with the current and expected energy demand and production as well as
with tariff information from the energy provider. M-Bus enabled smart meters act as
information source for current demand, production and tariffs which is processed by a
BEMS. The latter influences e.g., a BACnet heat pump controller depending on energy
price and current heat buffer level.

From these scenarios described above, the following requirement on the BAS can be
derived:

• Requirement 1: An infrastructure shall be created which integrates BAS tech-
nologies in a way that seamless information exchange is possible independent of
the automation technology.

Whenever industry appliances and buildings are located close by (which is often the case
at a company site), certain synergy effects arise, e.g., a potential for energy saving. This
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is especially the case if the actual production process is very energy intensive. Examples
for such processes can be found in the petrol, steel and paper industry. Scenarios where
synergy effects can be utilised are the use of waste heat for building conditioning and the
possibility to avoid load peaks in electrical energy demand. Also optimising the use of
in-house power plants supplying both the factory plant and buildings must be considered.
This opens an additional technology domain to be integrated into a management system
which performs such coordination tasks, namely the field of industrial automation. Like
in BASs, a number of well-established technologies exists in industrial automation which
have a focus on dedicated applications associated to a distinct section of the automation
hierarchy.

• Requirement 2: The infrastructure from Requirement 1 shall be extended such
that access to systems from both industrial and building automation domains is
enabled in a unified way.

For management applications, the spatial and topological locations of datapoints, plants
and devices are essential. In case of maintenance, troubleshooting or damage this
information facilitates an efficient workflow. Service personnel can quickly be sent to the
location of the defective part in order to perform the required actions. Also spatial or
topological correlation of failures can be evaluated to gain an indication of their cause.

• Requirement 3: The integration infrastructure shall comprise spatial and topo-
logical information associated with runtime and device information.

When extending the perspective from automation systems integration to a holistic view
on a building including detailed, full parametric information about the building itself and
its embedded automation systems, a new level of application scenarios can be realised.
In turn, the amount of information to be handled by such a system drastically increases
which makes - compared to classical manual exploring or browsing - new methods of
access necessary. This includes requesting information on arbitrary entities, either of
static or runtime character, and performing logical conjunctions as well as arithmetical
operations and filtering.

• Requirement 4: A way of representation shall be established with the capabilities
to map a holistic view of a site including building information and the embedded
automation systems. In order to cope with the expected large scale of information,
this representation shall also be able to process semantic queries.

When it comes to BASs design and engineering, a high amount of human contribution is
involved. Currently, this process includes manifold repetitive manual tasks due to a lack
of Machine-to-Machine (M2M) interfaces between the different phases of planning and
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engineering. Therefore, manual propagation of information is necessary throughout the
chain of used tools. This workflow is considered as error prone where in frequent cases
information is lost or misinterpreted. Additionally, this approach is inflexible to changes
on early design steps at a late design phase due to the required manual re-propagation
of these changes. Manual work during the design process needs therefore to be reduced
to a minimum by assuring that information is only entered once by the user during the
workflow and automatically reused wherever it is required.

• Requirement 5: A concept shall be defined which supports building automation
and integration engineering by avoiding manual information transitions between
the involved intermediate steps.

The today’s awareness about the need of inherently secure systems leads the principle of
“security by design”. Automation systems engineering therefore needs to regard, besides
functional aspects, also security considerations. This especially applies to the networks
and components on IP level which are this way easily accessible for potential attackers.
An even higher risk exists for integration platforms where aggregated information from
the subsystems is present.

• Requirement 6: For the integration infrastructure to be designed, state-of-the-
art security measures shall be deployed. This especially includes measures for
establishing trust relationships between the involved components.

1.3 Methodology

Integration by middleware may take place on different levels of the automation systems
hierarchy and may therefore handle various sources of information. In the base case, only
information from automation technologies is regarded. Depending on the use cases to
be realised, it is necessary to additionally include information about properties of the
system, the plant or the building right up to environmental conditions or user behaviour.
In other words, in a first step, heterogeneous building automation technologies are
integrated. In the following, this matter is called first level integration. In a second
step, this already homogenised information is put into an even larger context, which will
be named second level integration. This two-stepped integration approach affects the
requirements on the forms of knowledge representation used on each level. It needs to
be determined, which methods of knowledge representation are suitable to achieve both
levels of integration. Also, non-functional requirements like usability and tool support
are of relevance. Therefore, the question to be answered is:

Which state-of-the art technologies are applicable and provide the desired, tailored ex-
pressiveness for each level of integration? Moreover, how can a secure operation and an
efficient engineering workflow be assured?
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1.3.1 Modelling workflow

The processes of defining the required knowledge representations on the different levels
of integration require to follow distinct methodologies. The chosen workflow is mainly
taken from [25] and from the classic software engineering process which also follows the
described phases. In the Analysis phase, the stated requirements are examined in a first
step. The result is a fine-grained catalog of functional and non-functional attributes. An
essential point is also the study of preliminary and related work. The goal is to build
upon existing concepts in the highest-possible degree in the following. The Design phase
starts with defining the main modules of the knowledge representation to be created. In
this chosen top-down process, the main modules are refined and filled with the required
information entities. Hereby, an important aspect is to comply with existing naming
conventions from the domain. A usual approach is to first define the necessary terms and
then establish the relations between them. In the Implementation phase, the mapping of
the result from the design phase to the actual form of knowledge representation takes
place. Hereby, tool support is an important aspect. The final Evaluation phase determines
to which degree the developed knowledge representations meet the defined requirements.
Therefore, completeness is checked, i.e., it is revised if the required information is regarded
to enable the intended scenarios. In case of incompleteness, the missing entities are
complemented. In practice, an iterative process has proven most convenient here.

1.3.2 First level integration attributes

The requirements on first level integration middleware can be summed up by the following
properties:

• Design of a meaningful datapoint model including modelling concepts for data
encoding and engineering units

• Definition of an appropriate device model

• Development of a plant and building topology model

• Definition of a concept for runtime interaction with automation systems

• Provision of an interface to iteratively browse resources

1.3.3 Second level integration attributes

Middleware and integration solutions operating on building or plant-wide level (i.e.,
performing second level integration) aggregate a high amount of information from their
subsystems which is characterised highly eclectic (complex systems).

• Extension of the first level integration datapoint model towards holistic representa-
tions
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• Development of a concept for runtime interaction with the first level integration
middleware

• Definition of an automatic transformation process for information from first level
integration

• Ability to maintain a large amount of information, i.e. assure scalability

• Provision of an interface to perform semantic queries

• Capability to perform logical, algebraic and filter operations on the query results

1.3.4 Non-functional attributes

Independent from the individual requirements to the forms of information representation,
a number of general properties must be regarded:

• Correctness of the representation, regarding both syntax and semantics

• Efficiency in processing and reasoning

• Complexity of used mechanisms and the shape of the learning curve resulting
thereof

• Translatability to other formats to enable easy M2M interaction

• Security and access control mechanisms to assure confidential and authorised use
of the system

• Community and tool support

Therefore, different methods of knowledge representation need to be examined to find
the adequate formalism for each system level. The aim is also to rely on industry and IT
standards which are open, well supported and with a long expected lifetime. A unified
exchange format for configuration and engineering information is also required.

1.4 Structure of the work
In Chapter 1 of this thesis, the topic area of BASs is unrolled. A brief overview on
the historical development which lead to the nowadays’ heterogeneity of these systems
is given. The challenges resulting thereof are addressed and requirements on modern
installations are derived. The methodology how this thesis elaborates these requirements
is described in the following.

A comprehensive state-of-the-art analysis of topics relevant for this thesis is given in
Chapter 2. This includes mechanisms for knowledge representation and comparison of
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their key attributes. The resulting, most-suited integration technologies are described
subsequently. The following section is also dedicated to engineering support techniques.
The chapter closes with an overview on related scientific work.

The following three chapters address the problems stated in Chapter 1. First level integra-
tion concepts are demonstrated in Chapter 3 on a number of prominent representatives of
building automation technologies. This furthermore touches the smart grid and industrial
automation domains. In Chapter 4, the focus of integration is expanded to holistic
representations of buildings and their automation systems. Semantic Web technologies
are the method chosen therefor. Methods for facilitating the engineering processes in
the introduced multi-level infrastructure are another contribution of this thesis which is
presented in the first section of Chapter 5. Addressing security requirements in BASs
integration and establishing trust are the central topics of the second section of this
chapter.

In the final Chapter 6, the research question stated initially is picked up again and put
in contrast to the contributions of this thesis. The results are discussed and an outlook
to future work is given.

1.5 Contributions
This thesis has been carried out under the TU Vienna’s doctoral college of Environmental
Informatics. A number of research projects provided the context for the publications
written by the author. The most-related projects are “Web-based Communication in
Automation” (WebCom), “Information Modeling in Automation” (iModelA) and “Se-
cure and Semantic Web of Automation” (SeWoA), all funded by the Austrian Research
Promotion Agency. In the following, a selection of the most-relevant publications of the
author is given:

A. Fernbach, W. Granzer, and W. Kastner. Interoperability at the Management Level
of Building Automation Systems: A Case Study for BACnet and OPC UA. Proc. of
16th IEEE Conference on Emerging Technologies and Factory Automation (ETFA ’11),
Septempber 2011.

A. Fernbach, W. Granzer, W. Kastner, and P. Furtak. Mapping ETS4 Project Structure
to OPC UA using ETS4 XML Export. In KNX Scientific Conference, nov 2012.

A. Fernbach and W. Kastner. Certificate Management in OPC UA Applications: An
Evaluation of different Trust Models. In Proc. of 17th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA ’12), 2012.

A. Fernbach and W. Kastner. Information modelling in OPC UA. In Tagungsband
SPS/IPC/Drives, 2012.

A. Fernbach and W. Kastner. Integration of Smart Meters into Management Sys-
tems in Automation. In Proc. of the 10th IEEE International Workshop on Factory
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Communication Systems (WFCS 2014), 2014.

A. Fernbach, W. Kastner, S. Mätzler, and M. Wollschlaeger. An OPC UA Information
Model for Cross-Domain Vertical Integration in Automation Systems. In Proceedings of
the 19th IEEE Conference on Emerging Technologies and Factory Automation (ETFA’14),
2014.
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Pinkafeld, 2015.

A. Fernbach and W. Kastner. Gebäudemanagement durch wissensbasierte Systeme. In
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of building automation systems. at - Automatisierungstechnik, 65(9):630–640, September
2017.

16



CHAPTER 2
State-of-the-Art

2.1 Knowledge representation

In the history of knowledge representation, a wide range of formalisms has evolved. The
major goal in all cases was to fit the field of application it was intended for. In many,
but not all cases, a machine interpretable representation of reality (or a small part of
the world) is to be created. The formalisms vary in their expressive power and the way
logical inferences (i.e., the regulation on how conclusions are drawn) can be carried out.
A basic distinction can be made between logic-based languages and non-logic-based ones.
In the following, these two categories are sketched by their main representatives in an
order of their expressive power [26], [27]. Hereby, the goal is to examine these knowledge
representation languages with respect to their suitability to represent information from
the (building) automation domain. Also, the non-functional attributes introduced in
Section 1.3 play an important role in this course.

2.1.1 Non-logic-based modelling languages

One of the oldest forms of knowledge representation is the semantic network [26]. It uses
a graph notation consisting of vertices and directed edges to model relations between the
vertices. There are no formal restrictions on the structure of such a graph. Though, there
are a number of subtypes of semantic networks which actually have restrictions. This
very vague, general definition of semantics makes semantic networks in their basic form
suitable for intuitive visualisation of knowledge but unsuited for machine processing.

A special form of semantic networks are taxonomies where the semantics of specialisation
and inheritance is introduced. This way, hierarchically ordered relations can be realised
between entities. This allows to establish a categorisation of the entities of interest. This
is on one hand a powerful modelling concept but on the other hand - since it is the
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only allowed form of relation - a very strong limitation to the expressive power of this
modelling language.

An extension to this limited semantics is provided by thesauri. They allow additional
hierarchical and non-hierarchical relations between entities. These relations may express
similarity or associate acronyms and inverses. The ISO standard [28] defines such standard
relations between terms.

A topic map further increases the expressive power of thesauri by introducing additional
semantics to references. It aims at the integration of heterogeneous information resources
by means of a standardised solution. Its basic structure is laid down as an ISO/IEC
specification [29]. Also an XML syntax is defined [30]. However, no open query language
exists to access the information stored in a topic map. Some proprietary query languages
processors were developed yet, but without any considerable impact.

Frame-based models follow principles which are known from object oriented modelling.
Modelling concepts for classification, generalisation and specialisation, inheritance and
instantiation are provided. Class frames have a number of slots associated in order to
describe properties of the classes. Hierarchies of class frames reflect a generalisation
or specialisation relation. Instance frames are linked to class frames in order to reflect
their membership. Additionally, there are ways to include procedural information, i.e.,
statements to be executed when a slot value is changed.

From the perspective of expressive power, the previously defined requirements on first
order integration can be best fulfilled by candidates from non-logic-based modelling
languages. Frame-based models provide sufficient modelling power to define type hi-
erarchies of devices, datapoints and topological elements. Type-safety can be assured
when these types are instantiated in order to set up a representation of a real-life facility.
This supports the creation of syntactically correct instantiation. When following the
membership relations from instances back to the corresponding type definitions, valuable
meta-information can be gained about the instances. A number of Object Management
Group (OMG)1 standards exists which can be interpreted as frame-based modelling
languages. The Unified Modeling Language (UML) [31] class diagram is probably the
most popular one. Its notation is loosely based on logic, however there is no formal
specification in any logic-based form [27]. Another, yet outmoded one is Common Object
Request Broker Architecture (CORBA, also an OMG standard) [17] defining a simple
object model. Another object model comparable to the UML class diagram is defined by
the OPC Unified Architecture (OPC UA) specification [32]. It additionally provides a
predefined but extensible base model comprising a number of general-purpose types. The
Open Building Information Xchange (OBIX) [33] object model is even leaner compared
to OPC UA but similarly extensible. Both standards use an XML-based language to
describe information models. This allows easy, automated transition to other XML-based
description languages.

1https://www.omg.org
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Semantic correctness of knowledge representation in both OPC UA and OBIX can be
ensured by a proper design workflow when mappings from automation technologies
are created (cf. Section 1.3.1). These mappings are in many cases defined during a
standardisation process of community members. Recurring review cycles help to avoid
malicious mapping rules. This includes also automatically executed transformation scripts
(like Extensive Stylesheet Transformation (XSLT) [34]) which implement these rules.
Correct syntax of the XML documents used to describe the knowledge representation
can be ensured by automatically checking against XML Schema Definitions (XSDs) [35].

Since frame-based models have no formal semantics, logical reasoning is not applicable
here. However, computational complexity to access information on system implementing
these standards is low if efficient data structures are used for storage. A usual form to
do so is by using hash maps which have a time constant runtime complexity to access an
element denoted as O(1) [36].

The learning curve behind information modelling in OPC UA and OBIX has different
shapes since the complexity of the base information models defined by the standards
highly differs. OPC UA has a rather high-level base model with a great variety of built-in
types. The OBIX object model on the contrary is lean and easy to overview. This has also
influence on the modelling effort for the individual mappings. Obviously, a modelling goal
is easier to reach using a base model consisting of already advanced concepts compared
to building upon the very basic OBIX model. To support the designer, a number of
standard works exists in literature on modelling in both technologies, e.g., in [37] and [38].
Community support in form of online materials is mainly provided by the standardisation
bodies behind OPC UA and OBIX as well as some companies developing software in this
context.

With regard to accessing the desired information, a protocol is required which defines the
necessary procedures to read and modify data values or to execute functions. Additionally,
there is the necessity for security mechanisms to allow confidential, authenticated and
authorised communication. UML does not define any form of data access protocol
since the purpose of this modelling language solely lies in supporting software and
system engineering processes. CORBA, however, provides an abstract message protocol
called General Inter-ORB Protocol (GIOP). More precisely, its concrete incarnations
allow message transfer on various transport protocols including state-of-the-art security
mechanisms. Likewise, the data exchange protocol in OPC UA allows various options on
the underlying transport mechanisms and implements security by default. OBIX relies
on standard Web services (WSs) like HTTP or Constrained Application Protocol (CoAP)
[39] for data transport. To establish secure communication, state-of-the-art Web service
security protocols can be used.

Besides the technical properties of OPC UA which are perfectly tailored to automation
systems integration and middleware implementations, another aspect speaks for this
technology. By now, OPC UA is broadly accepted by the community in automation
which means there is tight cooperation between the involved organisations. This results
in a number of technology models which are ready to be reused and to build new
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solutions upon them. Additionally, support on tools and implementations is remarkable.
This significantly eases the scientific work on OPC UA prototypes compared to other
integration methods. These arguments partly also apply for the OBIX standard. Its
XML-based architecture assures good modelling tool support whereas implementations
can simply be built upon standard Web service Software Development Kits (SDKs).

2.1.2 Logic-based languages

The main characteristics of logic-based languages are their formal semantics, the thereof
resulting unambiguity and their comprehensibility for machines. Classical logic is a very
old form of knowledge representation. Its simplest form, the propositional logic has very
limited capabilities with regard to its expressiveness but is well suited for automated
processing. First-order logic is an extension to the two-stated (Boolean) variables a
propositional logic formula consists of. Here, predicates and functions on variables as well
as quantifiers are introduced which allow to make statements on variables and express
the range of validity of these statements. The disadvantages of pure first-order logic
formulas are their bad manageability for humans, especially with increasing complexity
of the knowledge representation and their general undecidability. This makes automated
reasoning in general impossible. A way to overcome these drawbacks is to introduce
restrictions on the classic first-order logic which derives new logic families.

Conceptual graphs are a logic-based form of semantic networks and frame-based models.
Their visual character facilitates human manageability. Nevertheless, they can be
interpreted as a restricted form of first-order logic and therefore enable logical reasoning.
There exists an interchange format for conceptual graphs which is one dialect of Common
Logic defined as an ISO standard [40]. These forms of knowledge representation were
superseded by a closely related logic family, the Description Logic. Languages from
this family are also decidable which makes efficient reasoning possible. Here, knowledge
representation is divided in two areas, a Terminological Box (TBox) and an Assertional
Box (ABox). The first one defines general domain knowledge (the so-called vocabulary)
in form of concepts and roles. Concepts are sets of entities which can be in binary
relations to each other, the roles. The ABox can be seen as a real-world description
in form of an instantiation of concepts from the TBox. They represent facts from the
domain of interest. The famous KL-ONE [41] was the first incarnation from the family
of description logic [42].

An important service provided by a description logic is to reason about the stored
knowledge. On the TBox, reasoning allows to decide Satisfiability (SAT), i.e., the absence
of contradictions and determine subsumption relations, i.e., whether one description is
more general than another. On assertions stated by the ABox, consistency checks are
performed and entailment is determined with respect to descriptions from the TBox.
So reasoning fulfils two purposes: to ascertain that a description logic-based knowledge
representation is meaningful and to infer knowledge which already implicitly exists, i.e.,
to make it explicit.
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Another powerful feature of description logics is that they allow queries. They formulate
concept descriptions (i.e., a class of objects, comparable to the TBox) which a query
processor takes as input. It performs instance tests determining if there are individuals
which are instances of the query. These queries can be used by applications as an interface
to a software system implementing a description logic-based knowledge representation.
The latter are called Knowledge-Based Systems (KBSs).

Description logics have reached a wide-ranged prevalence in the IT world in form of the
Semantic Web technologies [43] and especially the Web Ontology Language (OWL) [44].
As the name reveals, OWL is designed to describe content on the World Wide Web. The
term ontology originates in philosophy where it describes a field which aims at finding
a description of reality. A common definition reads as follows [27]: “An ontology is an
explicit specification of a shared conceptualization that holds in a particular context.”

Semantic Web technologies provide the desired powerful methods for knowledge repre-
sentation. Easy manageability for machines is achieved by their XML-based language.
This also facilitates easy transformation from and into other XML-based models like
OPC UA or OBIX defines. A big academic community promotes the design of OWL
ontologies [45] in various fields of application. A number of them exists describing
matters in medicine, biology, pharmacology, physics and chemistry.2 Two very mature
and well-supported open source implementations exist in this area: The ontology design
tool Protégé3 developed by a research group of the Stanford University and Apache
Jena4, a Semantic Web framework. The knowledge stored in the Jena knowledge base
can be accessed via the SPARQL Protocol and RDF Query Language (SPARQL) [46], a
query language in the sense like described before. Queries and their responses can be
transported by HTTP/HTTPS assuring easy integration and state-of-the-art security.
Access control mechanisms can be described by ontologies [47] and realised within the
knowledge base.

These properties make Semantic Web technologies a well-suited method for second
level integration of automation systems. The expressive power of OWL ontologies
allows to create comprehensive representations of automation systems, plant topologies,
building structure and properties as well as meaningful mapping of runtime data. The
scalability of the available knowledge base implementation makes it possible to instantiate
representations of large-scale facilities with thousands of datapoints and detailed plant
and building models. Structured access to the knowledge base is enabled via a SPARQL
endpoint also supporting filtering as well as arithmetical and logical operations on the
results. The required security and access control measures are assured.

In ontology design, there exists a state-of-the-art method to evaluate the requirements on
an ontology, namely the formulation of competency questions [48]. These formulations
reflect the requirements, i.e., it must be possible to answer them by using only the

2http://lov.okfn.org/ is an open repository for ontologies
3https://protege.stanford.edu/
4https://jena.apache.org/
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knowledge of the designed ontology. A semi-formal evaluation can be carried out when
competency questions are translated to a suitable query language like SPARQL. These
queries are fed to a query processor interfacing the respective knowledge base and the
results are checked if they contain the required entities.

Regarding the complexity of ontology design and the resulting learning curve, it can be
stated that a considerable amount of time needs to be invested to be able to perform
state-of-the-art ontology modelling. A basic understanding of description logic and the
functioning of reasoners is required. For the most widespread tools and frameworks
learning materials like literature and tutorials are broadly available. To have an overview
over the plethora of already existing ontologies is also beneficial since reuse of existing
work needs to be considered in the highest possible degree.

Efficiency in processing and reasoning on ontologies is evidently related to the algorithms
used to solve the problems behind. Besides executing inference rules which make implicitly
available information explicit, an OWL reasoner has to check the consistency of the
knowledge base. The operation behind that is resolving SAT, i.e., to determine if the
iteratively derived instances are a model of the TBox. SAT is an NP-complete problem.
The basic procedure for SAT solving is the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [49] which has a worst-case complexity of O(2n). Huge efforts have been made
over decades to improve performance of SAT solvers [50] which resulted in execution
times far away from the worst case [51]. Today’s OWL reasoners like Pellet [52] have an
acceptable performance for knowledge bases of a scale of some ten thousands of classes
[53]. On a standard PC, reasoning times for these instances are in the order of magnitude
of a minute.

In order to summarise this chapter, Table 2.1 gives a comparative overview on the
attributes and capabilities of the knowledge representation forms introduced above. It
does not only consider attributes of the considered description language but also properties
and features of state-of-the-art software implementations based on these technologies.
The previously defined requirements on the knowledge representation and on information
exchange are reflected by this table.
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2.2 Integration technologies

2.2.1 Motivation

Within the context of automation systems integration, OPC UA is one of the most
important standards supporting WSs. While OPC UA is already well-established in
industrial automation systems [54, 55], it gains importance within the building automation
domain. OBIX [33] and BACnet/Web Services (BACnet/WS) [56] are integration
standards dedicated to building automation systems. These standards can be used to
provide a generic view to management clients that need global access to the entire BAS.
In order to provide a common interface to different network technologies, integration
servers need to be deployed. Visualisation and trending software is a typical field of
application where access to process data from management level can be provided via
OPC UA, OBIX or BACnet/WS clients. Also, aggregation of alarms and events as
well as centralised access to parameters for manual intervention are applicable tasks.
BACnet/WS and OBIX follow similar approaches in information representation and
transport mechanisms. However, BACnet/WS is out of the focus of this thesis.

2.2.2 OPC Unified Architecture

As a result of the plethora of mutually incompatible standards in automation systems,
a standard named OLE for Process Control (OPC) was released in 1995. Its goal
was to make these different standards and technologies interoperable by means of data
representation and data transport. The association which published this standard was
called OPC Foundation. The principle behind OPC was that each vendor of network
components provides dedicated drivers which link the individual network protocols to
the OPC Application Program Interface (API). This way, data exchange across multiple
technologies is enabled via the uniform interfaces of OPC.

Not only the access to life process data (Data Access, OPC DA) was of interest to the
OPC Foundation, but also the handling of Alarms and Events (OPC A&E) and the
access to archived process data (Historical Data Access, OPC HDA). These three parts
together form the so-called classical OPC specifications.

Microsoft’s Component Object Model (COM) and Distributed Component Object Model
(DCOM)) were originally used as APIs in the OPC specification. First an advantage,
over time COM and DCOM turned out to have significant drawbacks regarding network
transparency, security mechanisms and clearly the lock-in to Microsoft Windows. These
drawbacks and the limited abilities of representing complex data led to the release of OPC
UA as a full replacement of the classical OPC specifications. This new standard combines
all the features of the previous specifications but replaces the data transport component
by WSs and TCP based protocols. Hereby, platform independence is achieved and the
implementation of a strong security concept was enabled. Another new component of
OPC UA is the so-called address space. Here, any kind of complex data can be modelled.
The OPC UA specification defines an abstract base model as well as a set of rules called
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Node 1

Attributes
NodeId: “1“
NodeClass: Object

References

Ref1:
-NodeId: “2“
-ServerURI: NULL
-Type: “has-parent“
-Direction: forward

Node 2

Attributes
NodeId: “2“
NodeClass: Object

References

Ref1:
-NodeId: “1“
-ServerURI: NULL
-Type: “has-parent“
-Direction: inverse

Figure 2.1: Concept of nodes and references [37]

meta model. This meta model follows an object-oriented approach like known from
modern programming languages. It allows to derive user-defined information models
from the predefined base model.

Information modelling

Contrary to classical OPC which only provides possibilities to represent plain process
data, OPC UA [32, 57] supports mechanisms to enrich data with specific semantics.
For example, in addition to the measurement value of a sensor an engineering unit and
information about the sensor status can be modeled, too. This form of meta data can be
interpreted by clients and used by applications to provide additional information related
to process data. OPC UA defines the following rules regarding information modelling:

• Information is modelled in form of nodes carrying attributes and references linking
the nodes (cf. Figure 2.1).

• Type hierarchies and inheritance are used as object-oriented principles.

• There is no distinction between the exposure of data and type information. The
latter is needed by clients to interpret the data which is accessed.

• Information is modelled in form of a network of full-meshed nodes. There is no
unique way to model information. Each use case requires a specific manner of
modelling.

• The base information model as part of the specification is extensible with regard to
defining subtypes of nodes and references between them.

• Information models only exist on OPC UA servers. Clients gain their knowledge
about how data is modelled by fetching that information from the server.
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The address space contains definitions for basic data types, references, for creating
variable types, object types, reference types, methods and further information entities.
The basic idea beneath the address space model is the concept of nodes and references (cf.
Figure 2.1). Nodes in OPC UA consist of attributes which give a description of the node
and references creating links between nodes. Some attributes are inherent in all node
classes, some are specific. Examples of common attributes are the NodeId for uniquely
identifying the node in the address space, the BrowseName which identifies a node when
browsing through the address space, and the DisplayName attribute containing the
name of the node to be displayed in a user interface. The entire list of attributes can be
found in Part 3 of [32].

The following built-in instance definition node classes are defined in OPC UA:

• Object node class: objects consist of variables, methods, and properties. They
are used to model devices or components of the technical process under control,
like a temperature controller or a motor controller.

• Variable node class: variables must always belong to another node (e.g., an
object). The Value attribute holds a physical value of a technical process (if
it is linked by a HasComponent reference) or provides meta information, i.e.
characteristics like an engineering unit for the superior node (when referenced by
HasProperty). In this case, a variable is called Property. Properties can neither
be of a complex type nor have any subtypes.

• Method node class: methods are always referenced to an object. They represent
functions that can be called by an OPC UA client (e.g., start and stop routines of
a motor controller object).

• View node class: in order to reduce the scope of a client accessing an information
model on a server, views can be used to make only parts of it visible. Depending
on the use case, only the relevant part of the whole model can be made visible to
the client.

The built-in type definition node classes are the following:

• ObjectType node class: specifies the type of an object. ObjectTypes can also
be complex or simple where the difference is whether they expose a structure of
other nodes beneath them or not. Complex ones can hold other objects, variables,
and methods. This allows the engineer to create models of technical devices that
reflect the entirety of the relevant device properties.

• DataType node class: defines the data type of the value attribute of a variable
or variable type. DataTypes are organized in a type hierarchy, with the abstract
BaseDataType on the top. Typical built-in DataTypes are Boolean, String
or Number. Subtypes of the abstract Number DataType are Integer, Float
and Double.
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• VariableType node class: used to define the type of a variable. There are simple
VariableTypes which only define the semantic and the data type to be used for
the value attribute, where complex variable types hold a structure of nodes which
enables structuring the variable type into subvalues.

• ReferenceType node class: used to specify reference types. References in OPC
UA derived from reference types are applied to create a link between two nodes.
There are both abstract ReferenceTypes and concrete ones. The idea is the
same as for DataTypes, namely to aggregate common attributes of subtypes
within an abstract supertype and generate a more structurised type hierarchy this
way. References can either be symmetric or asymmetric, depending on whether
they have the same semantic in both directions or not. The Symmetric attribute
of the ReferenceType indicates this property.

Interoperability between devices of different vendors requires a uniform representation of
data. In OPC UA, the idea is to define information models (i.e., data representations)
for different application domains. Vendors can use these models to expose data of their
applications or they can even extend them by their own domain-specific knowledge.
Clients do not have to distinguish between different vendors for their functionalities
since they all have the same base model exposing data in common. Displaying current
process data in a simple, generic user interface, access to historical data or event-driven
update of data exposed or signalisation belong to these basic functionalities. If a server
provides an information model with functionalities extending these basic ones, clients are
able to interpret this more complex data by gathering the additional semantic from the
information model. This way, advanced visualisation, more sophisticated computing or
automated integration into other systems can be done with data provided by an OPC
UA server.

The Base OPC UA Information Model is founded on the rules of the meta model. The
structure of this part is shown in detail in Figure 2.2. Here the additional specifications
known from the classical OPC standard like Alarms & Conditions (AC), Historical Access
(HA), Programs (Prog) and automation specific Data Access (DA) features are included.

Standards published by other organisations use these OPC UA information models and
build their own specific ones on top of it. The uppermost layer of information models is
formed by vendor specific extensions designed for particular applications using the OPC
UA Base, the OPC UA Information Models or other OPC UA based models.

Data transport

OPC UA defines a set of services to exchange data between servers and clients. Contrary
to the classic OPC specification, services in OPC UA are defined transport protocol and
platform independent which requires an abstract service description (cf. Part 4 of [32]).
OPC UA gets along with a very generic and reduced set of services. This is possible since
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DA AC HA Prog

OPC UA Base

Vendor specific Extensions

Specification of Information Models
of other Organisations 

IEC, EDDL, FDT, PLCOpen

OPC UA Information Model

OPC UA Basis

Figure 2.2: OPC UA layered architecture [37]

information is provided by the server address space. There is no need for specialised
methods for accessing different types of data or information.

The Discovery service set enables an OPC UA client to receive a list of online OPC
UA servers from a discovery server. To find the node holding the desired data in the
information model on the server, the client can directly access it using the NodeId
or it must browse to the target node starting at a dedicated node called Entry Point.
The Browse service is a representative of the View service set. Following the outgoing
references, the client reaches the destination node holding the desired information. This
is done in a recursive way by calling the Browse service for each node on this path.
It returns an array of references originating in the node and pointing to a target node.
Filtering mechanisms help to reduce the amount of data returned. When the requested
node is reached, it can be identified by its NodeId.

The Attribute Service Set provides access to the attributes of nodes which are uniquely
identified by the AttributeId and the NodeId. These are passed to the service
methods as parameters. The most essential services are the Read and Write service.
Depending on the desired kind of access, one of these is called by the client. This is
the most common use case to access data. Attributes of an array-type can be accessed
element-wise by passing an index argument to the service method. But it is also possible
to read or write the entire set or a range of elements of this attribute type as a composite.

2.2.3 Open Building Information Xchange

The OBIX specification [33] is published and maintained by the Organization for the
Advancement of Structured Information Standards (OASIS)5. The intention behind this
standard is to provide Web service-based access to embedded systems and to facilitate
Machine-to-Machine (M2M) communication over the World Wide Web (WWW). Hereby,
the domain and vendor specific low level protocols used so far in this area shall be
superseded. OBIX uses standard Web technologies like XML, JavaScript Object Notation

5https://www.oasis-open.org/
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Figure 2.3: OBIX object model [33]

(JSON), URIs for resource identification and data encoding and provides a number of
protocol binding options as data transport mechanisms.

Information modelling

For information representation, OBIX defines a simple but extensible object model.
Figure 2.3 shows an overview thereof. It defines a number of standard objects to model
datapoints of primitive types like bool, int, real, str and enum. Enrichment by
meta-information is achieved by additional attributes for the display name, value range or
physical units. References to other objects and lists allow to model complex and nested
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object types. In order to represent callable functions on the target system, the concept
of operations op is available. It provides parameters and return values.

OBIX allows the definition of object templates which are called contracts. They are
accessible by the client the same way objects are, but the relation between an object
and the contract it implements is modelled by the is attribute. Modelling of multiple
inheritance and type hierarchies is possible, too. The OBIX core contract library
defines a number of standard types, e.g., for representing engineering and temporal
units. The Points concept is used to model datapoints of systems or devices with
OBIX connectivity. Further mechanisms indispensable in automation systems are access
to historical data, alarming and subscriptions on value changes. The corresponding
OBIX concepts are History, Alarming and Watches. The following listing shows
an exemplary OBIX object representing a variable air volume box. Besides a name, a
URI (href) and a value (val of type real), it indicates multiple inheritance relations
to an hvac:temperature and an hvac:vav contract (hvac: is the notation for a
namespace prefix) by means of the is attribute. The sub-objects, i.e., XML elements in
the following lines, describe additional properties of this object. They are similarly built
like the superior object and include attributes for datatype, name, URI and value.

<r e a l name="VAV−101 " h r e f=" / T r e i t l s t r /Floor4 /Room22/VAV101/ " va l=" 21 .0 "
i s=" hvac :temperature ␣ hvac:vav ">
<r e a l name=" currentTemp " h r e f=" spaceTemp/ " va l=" 21 .0 " />
<r e a l name=" s e tpo i n t " h r e f=" s e tpo i n t / " va l=" 22 .0 " />
<bool name="heatCmd" h r e f="heatCmd/ " va l=" t rue " />
<enum name=" sensorType " va l="PT1000 " />

</ r e a l>

Data transport

For data exchange between OBIX servers and clients, four services are defined. The Read
service is used to transfer the state of objects from server to client. It takes the URI of
the object as an argument. By calling the Write service, modifications on objects in the
server address space can be performed. As arguments, the URI of the object and the new
state are passed. If the operation was successful, the server returns the modified object
to the client. The Invoke service is used to trigger operations on op objects. Besides
the URI of the op object, the input argument object needs to be passed to the service.
The server responds with the output object specified in the op object if successful or
with an err object otherwise. The delete request is defined to remove an object from
the server’s address space. The response includes an empty object if successful, or - if
not - an err object.

The concrete way of implementation of these service requests and responses are called
protocol bindings. They all follow the same semantics as described above but rely on
different underlying protocols. Currently, the following protocol bindings are defined for
OBIX:
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• Representational State Transfer (REST) bindings, which include both HTTP [58]
and CoAP [39] bindings

• Simple Object Access Protocol (SOAP) [59] bindings

• Websocket [60] bindings

Depending on the platforms in use (which determine the available device resources) and
the fields of application, each binding has its own advantages. The CoAP protocol,
for instance, is designed for resource-saving operation, whereas the Websocket protocol
is on one hand more resource-intensive but on the other hand facilitates event-based,
server-triggered communication as used for the OBIX Watch mechanism.

IT security measures like authentication, encryption, access control and user management
are not in scope of the OBIX specification. They are dependent of the protocol bindings in
use and the overall application context. Data integrity and confidentiality can be provided
by standard IT security protocols like the Transport Layer Security Protocol (TLS) [61]
or Datagram Transport Layer Security (DTLS) [62]. Access control can be realised by
the eXtensible Access Control Markup Language (XACML) [63]. This standard defines
how access policies can be formulated and hence describes an architecture of roles and
a model how to process access requests according to predefined rules. One middleware
integration approach providing an OBIX endpoint and also establishing XACML is the
IoTSys project described in [64].

2.3 Semantic Web and ontologies
Today, most of the content in the World Wide Web is designed to be human readable.
This makes it hard for machines to meaningfully interpret the information present on
the Web. They can essentially follow links from one resources to another but cannot
reliably recognise the semantics of resources and resources between them. One way to
improve machine processing of the Web is to make the machines smarter, i.e., put effort
in artificial intelligence development including natural language recognition and image
processing. These are hard problems to solve, but there is an easier way by making the
data on the Web more machine-friendly. Information can be represented in a standardised,
machine-readable format which allows easy interpreting the meaning of it. This leads to
the approach of the Semantic Web.

The Semantic Web can be seen as the next stage in the development of the World Wide
Web [65]. The organisation standing behind this technological trend is the World Wide
Web Consortium (W3C)6, a standardisation council which publishes and maintains the
specifications all well-known Web standards like HTML, XML or CSS. The Semantic
Web vision has its origin in the work of W3C founder Tim Berners Lee [43]. It follows
the idea that relations between the resources on the Web need to be established such that

6https://www.w3.org/
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Figure 2.4: Semantic Web stack [66]

they are put in an interpretable context resulting in a “giant global graph” (a term also
introduced by Berners Lee) of information. This way, data can easily be interchanged
between related but distributed resources. These links between resources need to have a
name to add a meaning to the relation and to allow distinction between different kinds
of relations. For instance, a link to a person’s Web page needs to be differentiated from
a link to a person’s work address. The way how these mechanisms behind the Semantic
Web are established needs to follow distinct rules to ensure interoperability between
machines browsing and processing the data exposed. A model needs to be defined
on which every participant agrees on. To this aim, a number of standards has been
published by the W3C. On one hand, formalisms with different expressiveness capable to
create representations of real-world things are defined. On the other hand, languages to
perform queries and updates to this distributed knowledge were created. The so-called
Semantic Web stack shown in Figure 2.4 illustrates a semantic hierarchy of these concepts.
Well-known principles for resource identification (Uniform/Internationalized Resource
Identifier - URI/IRI7 which are set up by Unicode characters) and data encoding (XML)
form the basis of it. The Resource Description Framework (RDF), the RDF Schema
(RDFS), and the OWL on top define the model of relationship between resources and the
format of data interchange. These layers of the Semantic Web stack which are relevant
for this work are described in the following sections.

2.3.1 Resource Description Framework

The RDF [67] is a model of subject-predicate-object (S-P-O) triples where the pred-
icate links the subject to the object via a binary relation. Predicates are also-called
properties which reflects their semantic of assigning a property to the subject. Figure
2.5 shows an example of an RDF triple where the statement ”Room123 contains

7An IRI is an URI using Unicode as an extended character set
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Room123 LightswitchXYZ
contains

Subject Predicate Object

Figure 2.5: RDF triple

LightswitchXYZ” is formulated. Subjects, predicates and objects can be IRIs identi-
fying entities in the world to describe. Objects can also be literals which have a datatype
(in RDF standard XSD types) assigned to, e.g., <”true”,xsd:boolean>. When either
subjects and objects or both are blank nodes, the statement expresses a relationship but
without identifying the involved resources.

In RDF, a set of statements, i.e., triples is called graph, where subjects and objects are ver-
tices and predicates are the edges linking them. Two or more triples can be linked to each
other by having the same IRI in their elements. The previous example triple ”Room123
contains LightswitchXYZ” can be linked to another triple ”LightswitchXYZ
hasValue <”true”,xsd:boolean>” resulting in a simple RDF graph. Resources
used in one triple need not be located in the same RDF document but can be distributed
over the WWW fulfilling the Semantic Web paradigm and leading to a Web of linked
data. A set of RDF graphs can this way be connected by one graph referencing resources
from other graphs.

As exchange formats, three so-called serialisations for RDF graphs exist. They are
logically equivalent but have different properties in automated processing and human
readability. The most human-friendly serialisation is the “Turtle family of RDF languages”
which in turn is the set of N-Triples, Turtle, TriG and N-Quads. In principle, all Turtle
family formats encode triples in a line-based subject-predicate-object form with various
extensions. Turtle reduces the verbosity of N-Triples by introducing shortcuts. TriG
extends Turtle by the ability to represent multiple graphs and also allows naming them.
N-Quads extends N-Triples towards expressing named graphs but keeping the verbosity
of N-Triples. RDF/XML was the first serialisation format defined providing an XML
syntax. Since XML is a well-established Web standard where parser implementations
exist in big variety, RDF/XML is a versatile M2M exchange format. The same holds for
the The JSON Data Interchange Format [68], [69] serialisation of RDF, the JSON-LD
syntax. JSON is, like XML, also a very common M2M exchange format, but because of
its compact syntax with much better human readability.

2.3.2 RDF Schema

The RDFS [70] provides a simple vocabulary for modelling data in RDF. This introduces
the term ontology which is defined as a formal model of the domain of interest. RDFS ex-
tends the limited set of built-in modelling capabilities of RDF. This way, more fine-grained
statements can be made about data in RDF. RDFS introduces mechanisms for classifica-

33



2. State-of-the-Art

tion, generalisation and specialisation of resources. The most important modelling con-
structs to this aim are rdfs:Resource, rdfs:Class, rdf:Property, rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf. Using these concepts, classes and hier-
archies of both resources and properties can be defined. Using the rdf:type property,
statements about the membership of data to classes can be made.

Another feature of RDFS is the ability to define constraints on the domain (rdfs:domain)
and the range (rdfs:range) of properties. The domain is the set of subjects a property
can be used on by definition whereas the range is the set of objects which subjects from
the domain can be linked to by the respective property.

RDFS this way allows to define models of low complexity on data to be modelled in
RDF. This introduces possibilities to perform consistency checks (i.e., to automatically
verify whether an RDFS model is fulfilled or violated by an RDF dataset) and logical
deductions (inferences) on data.

2.3.3 Web Ontology Language

Considering again the Semantic Web stack in Figure 2.4, the OWL [44] (the current
version is OWL 2) is the next upper layer over RDFS. This reflects the increased
expressive power compared to RDF and RDFS. Models in these languages show a limited
expressiveness which is in fact of practical relevance when representing a complex world.
To overcome these lacks, OWL refines the modelling capabilities mainly with regard to
properties. There is a distinction between properties between resources which are called
ObjectProperties and properties between resources and literals, called DataProperties.
For ObjectProperties, additional attributes are defined which are well known from
binary relations over sets, like symmetry, transitivity, reflexivity or transitiveness. Also
constraints on the existence (i.e., quantifiers) and the cardinality of ObjectProperties can
be stated. Other concepts known from set theory used in OWL are union, intersection,
complements and disjointness.

From a syntactical point of view, in OWL 2 there exist three different categories. Entities,
which are identified by IRIs, form the basic elements of an ontology. Classes, properties and
individuals (instances of classes) belong to this set of primitives. Expressions are logical
statements about entities. They describe Boolean connectives, set theoretical statements
and cardinality restrictions on properties. The axioms in an OWL 2 ontology state
assertions which are valid in the domain to be described. They include relations between
classes and properties (equivalence, disjointness, subset) or domain/range assertions on
ObjectProperties and DataProperties.

In order to provide adequate modelling capabilities - and as a consequence thereof also
reduced computational complexity - OWL 2 defines dialects with a reduced level of
expressiveness. The OWL Direct Semantics directly assigns meaning to the ontology
which results in a semantics equivalent to a description logic, provided that a few
restrictions are fulfilled. Therefore, this semantics is informally called OWL 2 DL. The
resulting description logic is a fragment of first order logic for which algorithms with
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reasonable runtime complexity exist. The complexity of OWL Direct Semantics is further
reduced by the three profiles defined in OWL 2: OWL 2 EL, OWL 2 QL, OWL 2 RL.
Adapted for different application scenarios, the reduced syntax of these profiles further
increases performance and scalability. OWL 2 RDF-Based Semantics, the counterpart
of OWL Direct Semantics, does not require any syntax restrictions and is therefore
informally called OWL 2 Full. A set of terms for mapping OWL 2 ontologies to RDF
graphs is specified under [71] as part of the W3C OWL 2 document suite.

2.3.4 Knowledge-based systems

When it comes to computer programs which solve problems by operating on an extensive
knowledge base, the term KBS has been evolved [72], [73]. KBSs originate in the field of
artificial intelligence with the intended goal to assist or even replace human experts in
the work on complex tasks. They were therefore often called expert systems.

A characteristic property of a KBS is the separation of knowledge representation about
the domain of interest and the knowledge processing. For knowledge representation an
appropriate language (e.g., RDF or OWL) needs to be chosen. The main processing tasks
in a KBS are logical inferences (also-called reasoning) and the answering of queries. This
separation makes KBSs flexible with respect to the knowledge domain since the processing
mechanisms are generic and independent on the knowledge base. Also modifications and
extensions on a KB can easily be accomplished. Openness for adoptions is in this sense a
key feature since knowledge is in most cases incomplete, containing errors and changing
over time. Logical inconsistencies can be detected by reasoners.

The vocabulary of a description logic-based knowledge base comprises three kinds of
elements: concept names, role names and individuals. In OWL jargon, concept names
conform to class names, and role names are called properties. Individuals are constants
representing a part of the domain to be described. Using constructors for concepts and
roles, more complex relations can be defined. These constructors include Boolean or
set-theoretical expressions, as well as quantifiers (universal or existential). The set of
available constructors differs depending on the description logic in use. In the TBox
of a knowledge base, terminological axioms are defined which state how concepts and
roles are related to each other. Two main kinds of axioms exist: definitions where a
concept is defined equal with an expression of concepts, and roles as well as general
concept inclusions (specialisations) which describe a subset relation between expressions
of concepts and roles. The ABox of a knowledge base is a set of concept membership
assertions, i.e., statements assigning individuals to concepts and roles. Therefore, the
ABox can also be seen as a set of facts which are known to be true in the domain of
interest.

Figure 2.6 shows these concepts by means of an example using the syntax usual in
literature. The TBox on the left side contains a simple type hierarchy consisting of
an eg:BuildingEquipment class and two subclasses thereof, eg:LightSwitch and
eg:TemperatureSensor. The subclass relations are expressed by the rdfs:sub-
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eg:BuildingEquipment

eg:LightSwitch

eg:TemperatureSensor

rdfs:subClassOf

rdf:type
eg:LightSwitchCeiling

eg:LightSwitchFloorLamp

eg:TempSensorOut

eg:TempSensorIn

rdfs:subClassOf

rdf:type

rdf:type

rdf:type

TBox ABox

Figure 2.6: Knowledge base example

ClassOf property. Each subclass as two associated instances eg:LightSwitchCei-
ling, eg:LightSwitchFloorLamp as well as eg:TempSensorOut and eg:Temp-
SensorIn. The rdf:type properties indicates the membership. Together with the
instances, they constitute the ABox of the knowledge base.

2.3.5 SPARQL Protocol and RDF Query Language

Typically, knowledge bases provide a way to access their triple store by means of a query
language. In the simplest case, such a query language defines subject-predicate-object
(SPO) queries which consist of triples where on each position either a resource name
(URI) or a variable (”?”) is specified. This way, search patterns are defined which are
matched against the graph as which the content of the triple store can be seen. The
SPO query ?subclasses rdfs:subClassOf eg:BuildingEquipment would for
example return all subclasses of the class eg:BuildingEquipment.

A query language which is defined in form of a W3C recommendation is SPARQL
[46]. The specification not solely covers the query language but also a protocol for
transportation of the result data. A number of different encodings for the query results
allows an adaptation to the receiving application. SPARQL can be seen as an extension
to SPO queries with additional features for data filtering, performing arithmetic and
Boolean operations on result data and string manipulations. Its syntax has similarities
with the database query language SQL. The following query returns all subclasses of the
class eg:BuildingEquipment and also the instances of these subclasses:

SELECT ?subclasses ?instances

WHERE {?subclasses rdfs:subClassOf eg:BuildingEquipment.
?instances rdf:type ?subclasses}
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The lines in the WHERE clause form a logical conjunction of statements where multiple
occurrences of one variable are always bound to the same value. Modifiers for optional
existence of patterns or unification of search results bring a high level of freedom. This
way, comprehensive graph search patterns can be created.

Considering the knowledge base example in Figure 2.6, this query would result in a dataset
including the classes eg:LightSwitch and eg:TemperatureSensor as well as
their associated instances eg:LightSwitchCeiling, eg:LightSwitchFloorLamp,
eg:TempSensorOut and eg:TempSensorIn.

In order to perform modifications on RDF triple stores, the so-called SPARQL Update
language provides means to insert and to delete data. Similar to the query language,
search patterns can be defined which define the location in the graph where items are
inserted or deleted.

The SPARQL protocol for RDF defines transport mechanisms for queries and result data
to SPARQL endpoints via HTTP services. Using HTTP GET, the query can be passed
as an argument of the endpoint’s URI. The HTTP POST service allows to include a
message body in the request which is especially necessary for SPARQL Update requests.
As formats for data encoding, there is the choice between XML, JSON or CSV/TSV or
RDF/XML in case a complete graph needs to be transferred.

2.4 Engineering support concepts
The design of building automation systems is a mainly manually carried-out process.
Different planning offices work on different trades (subdomains of Building Automation
Systems (BASs) like lighting, Heating, Ventilation and Air Conditioning (HVAC), primary
plants, room automation) using different technologies. Each technology provides its own
engineering tool or even manufacturer-specific engineering tools within one technology.

Efficiency in planning and engineering can be increased by a number of measures. One is
reducing error sources - especially at the interfaces between these trades. The planning
and engineering workflow can be improved by avoiding overlapping and multiply carried
out planning work and by the automatisation of repetitive manual work. This includes
clearing the deficiency of entering the same information recurrently in different phases
of the planning and engineering workflow. Also the use of libraries for standard design
patterns can save time-consuming manual work by just instantiating these templates for,
e.g., each office room. To overcome these current weaknesses, a number of ideas exists in
scientific literature as well as in the industry. These approaches are briefly described in
the following. The focus hereby lies on the building automation domain.

One key concept which can facilitate the engineering process of automation systems is
the use of libraries of templates for recurring use cases as well as repositories of devices.
One standard that goes in this direction on a rather abstract level is the VDI 3813-2 [74].
It defines hardware-independent functions of room control in form of function blocks
with informative character. The function blocks have inputs and outputs with associated,
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normative datatypes. By connecting these function blocks, the intended room control
can be realised. The datatypes of inputs and outputs to be connected hereby have to
be considered, i.e., only ports with identical datatypes are compatible. The defined
functions are grouped in the categories sensor functions, actuator functions, operator and
display functions and application functions. Examples for sensor and actuator functions
are brightness measurement and sunshade actuator, respectively. A function from the
operator and display category would be signal presence whereas constant-light control is
categorised as an application function.

Originating in the industrial automation domain, the Computer Aided Engineering
Exchange (CAEX) (IEC 62424) [75] is a meta model which is however rather flexible
regarding the domain specific models which can be created by it. The IEC 62424
defines four modelling elements: the Interface Library where flow of materials, energy or
information can be defined, the Role Library, which is used to describe functions, the
Unit Library to model system units and the Project Hierarchy element which is used to
structure a plant.

2.4.1 Building information modelling

To the aim to define a digital representation of a facility, its physical and functional
characteristics which is shared between the involved parties of a building life cycle, the
concept of Building Information Modelling (BIM) has evolved. It acts as an information
base throughout all phases of a building’s life starting during its design phase and
continuously growing in the following [76]. BIM encompasses all information generated
during and necessary for planning, bidding, construction, operation, refurbishment and
deconstruction. It does not only include geometrical (3D CAD) data but also physical
properties of the structure, parametric objects for Mechanical, Electrical and Plumbing
(MEP) installation as well as building services. It hereby facilitates the cooperation
between trades involved in a building’s life cycle. For facility management, BIM is
particularly beneficial. A Building Management System (BMS) which can make use of a
BIM can effectively put datapoints, alarms, events and associated hardware in a spatial
and topological context. Also visualisations which are augmented with state information
on building services can be generated automatically. This provides more comprehensive
information about the state of building services to the operator personnel and allows
them to react on incidents more effectively.

Besides the Industry Foundation Classes (IFC) [77], one popular open BIM standard in the
Architecture, Engineering and Construction (AEC) industry is the Green Building XML
(gbXML) schema [78]. It is designed as a unified data exchange format between CAD and
design tools and tools for energy analysis in order to establish interoperability. Leading
software products like AutoCAD Architecture and EnergyPlus from Autodesk or Bentley
Architecture and Bentley AECOsim Energy Simulator provide support for gbXML.
The schema defines a great variety of parameters concerning the building geometry, its
architecture and physical properties. Attributes are hierarchically organised and provide
attributes for sites, buildings, storeys, materials, rooms, surfaces and openings like doors
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and windows. Structural information is enriched with properties building physics, e.g.,
albedo, glaze, emittance and U-value. An XSD formalises and explains all available
parameters in gbXML and ensures compatibility between the different software tools.
The current version of the gbXML schema is 6.01 and has been released in November
2015.

2.4.2 Reference designation systems

The IEC 81346-1 [79] defines principles for structuring objects, i.e., components in plants
and buildings. Following these structures, ISO/TS 81346-3 [80] further defines rules how
to form reference designations in order to uniquely identify an object within a plant or a
building. This results in a systematic naming convention providing information about
an embedded object’s functionality, location and product related aspect. The benefits
of such a reference designation system are the easy identification of systems and their
parts and the use of a common language for aligning information about a whole plant
containing of an enclosing building structure and the technical equipment. A reference
designation describes one up to usually three of the previously called aspects. However,
there also exists the possibility to refer to user-defined aspects. Syntactically, each one is
signed by a prefix, “=” for the functional aspect, “-” for the product aspect and “+” for
the local aspect.

Product aspect

Local aspect

Functional 
aspect

Figure 2.7: Three aspects of an IEC 81346 object (adapted from [79])

Figure 2.7 illustrates these three aspects of a component. Standardised identification
letters following the prefixes are used to classify the intended application of an object.
The location can be signed by an individual systematic. Considering a motor (M01)
driving a pump (G01) of a cooling system (E03) located in room number 4 of building A,
the reference designation would look like the following: -E03-G01-M01+A+4 where the
hierarchical structure is represented in a top-down manner.
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2.5 Related scientific work

2.5.1 Integration by OPC UA and OBIX

A method how to integrate field devices of various technologies by means of OPC UA
is described in [81]. The introduced information models include both concepts for
proper runtime data interpretation as well as for tailored Graphical User Interface (GUI)
instantiation. The models are based on the the device integration technologies Electronic
Device Description Language (EDDL) and Field Device Tool (FDT). For the successor
of these technologies, called Field Device Integration (FDI) [82], in the meanwhile an
OPC UA companion specification exists.

Another publication from the field of industrial automation [55] combines the information
models of ISA-88 [83] and ISA-95 [84] and defines a mapping to OPC UA. The goal is to
facilitate the integration of production systems to the Manufacturing Execution Systems
(MESs) and Enterprise Resource Planning (ERP) levels. From the efforts undertaken in
this direction, another OPC UA companion specification arose [85]. A further publication
from this field [86] proposes an approach of an OPC UA interface to ISA-88 control
models in the context of the Programmable Logic Controllers (PLCs) programming
languages defined in the IEC 61131-3 [87].

Also for warehouse and logistics systems integration, OPC UA has already been considered
[54]. An attempt presented in [88] aims at bridging OPC UA and Semantic Web
technologies in the domain of industrial automation. This two-stepped approach uses
OPC UA to access diagnosis data from sensors placed in a production line and integrates
it into a semantic access layer. This middleware contains device and interface descriptions
modelled in OWL which allows to perform reasoning and executing SPARQL queries on
the provided information.

Also like in practice, OBIX has a low appearance in academia. One integration approach
using OBIX is presented in [89], where a mapping of the KNX interworking model is cre-
ated. This includes a representation of the KNX datapoint model, group communication
services and a way for discovering KNX devices. An implementation of an OBIX Web
service gateway shows the feasibility of the concepts presented. In [90], [91], [92] and
[93], a multi-protocol gateway approach for building automation technologies is proposed,
where OBIX is used as an application protocol of the resulting IPv6 [94] Web service
endpoint. Additionally, protocol bindings of OBIX to the Efficient XML Interchange
(EXI) [95] and the CoAP [39] are defined in this work, which were later included into the
OBIX specification. Also addressing Web service communication of Internet of Things
(IoT) [96] devices in building automation, the work presented in [97] refers to OBIX as a
suitable protocol in this field. In [98], the proposed building monitoring platform uses
OBIX as one way to access monitoring data collected from various sources. Additionally
to live datapoint values, also historical access is provided and alarms are propagated via
the OBIX interface.
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2.5.2 Integration by Semantic Web technologies

An approach of modelling device descriptions from the building automation domain by
means of ontologies is presented in [99]. The goal is to create a device repository where
devices can be retrieved and selected according to the intended usage. The model behind
this repository comprises a multi-layered ontology covering a wide range of abstraction
levels. The four layers are constituted like the following: generic building automation
functions and interfaces, platform-specific properties like controller hardware, datapoint
type definitions and manufacturer-specific device descriptions. An RDF triples store is
filled with the designed model and a set of instances of concrete devices. Via SPARQL
queries, the user is enabled to retrieve devices depending on their properties. The
device repository can be seen as an assistance during system engineering where based
on requirement specifications device selection including interoperability management
is considerably facilitated. However, due to its focus on engineering, no runtime data
integration is considered by this approach.

The work in [100] further enhances the device description ontology from [99]. For reflecting
the building structure where devices are embedded in, the data model of the IFC building
information BIM (i.e., the building structure) is used partly. For modelling functional
aspects, concepts defined in the VDI 3813 [74] are used. A design template ontology is
introduced which reflects the fact that many design patterns reoccur not only in one
installation but also in general in this field. Having a set of these predefined design
patterns available is a prerequisite to self-commissioning of devices. An ontology for
data access, i.e., to access runtime data is also provided conceptually but the way how
live data can be retrieved from automation components remains unclear, however. An
approach which operates on a similar information base but aims on a different goal is
presented in [101]. The authors use a knowledge base on building automation systems and
building information models to reason on fault propagation in this context. Therefore,
this knowledge is enriched with causal relations between components and datapoints in
such a system. These causalities can be automatically derived from a set of defined rules.
Two models of fault propagation are described by the authors following these causalities
either in forward or (indirectly) in backwards direction. However, it is still an open issue
to integrate additional quantitative methods such that the proposed approach is able to
produce reliable outputs.

Another work which is solely dedicated to a mapping of IFC to the ontology domain is
presented in [102]. In the meanwhile, the resulting ontology from this work, the so-called
IfcOWL ontology, is of considerable size (around 20.000 axioms). It is maintained by the
buildingSMART Organisation8 which is also responsible for the IFC standard. IfcOWL
has evolved to a buildingSMART candidate standard which can be seen as a status before
becoming an international standard. The very mature open source project BIMserver9

also provides support for IfcOWL.

8https://www.buildingsmart.org
9http://bimserver.org/
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The Smart Appliances REFerence (SAREF) ontology10 [103] has a focus on devices and
their functions and has a modular architecture. It also defines services which can be
provided by devices and are discoverable by others. Also energy aspects are considered.
It sets up the basis for a number of other ontologies like the Brick ontology [104]. This
“schema for metadata in buildings” encompasses devices (equipment), locations and
datapoints. This way, a building topology equipped with automation systems and their
datapoints can be modelled. Automation systems can be composed of various subsystems.
It is also possible to express control flows from one device to another and media flows like
air or liquids in duct systems. On the project homepage11, the authors not only provide
the ontology but also a number of example instances representing existing buildings. In
[105], an ontology is defined which aims at establishing a generic application model for
building automation systems. A function block model is created covering most common
applications. Additionally to the operation phase, also engineering is considered by this
approach.

In literature, there exists a number of knowledge-driven approaches for building energy
management which base on ontologies. In these works, rather lean ontologies are used for
modelling the building and automation system equipment context. Often, inference rules
are used to trigger the required actions depending on the current state of the systems. In
[106], the DogOnt ontology [107] is used where different ways of instantiating a knowledge
base are presented. The manual way requires an expert to transfer information from CAD
drawings and planning documents to the knowledge-based domain. In a semi-automatic
way, 2D-CAD drawings are interpreted by an algorithm which then instantiates the
knowledge base accordingly. Another semi-automatic procedure uses data-mining on
energy consumption values to classify consumers, to instantiate the corresponding OWL
classes and for generating SWRL rules. [108] follows a manual procedure of instantiating
an ontology covering equipment, functions, datapoints and architectural aspects. The
resulting knowledge base is embedded into an architecture also comprising a monitoring
system for datapoint values and components with analysis and decision functionalities.
Inference rules are used to describe the context and causal relations of control actions. In
[109], an ontology is defined which aims at structuring the information sources involved
in building monitoring. This includes indoor and environmental conditions, control
systems, energy flows and inhabitant’s behaviour. Utilising this ontology is proposed to
facilitate the realisation of multiple applications like facility management and diagnostics
by providing a unified description of the underlying services. A more thorough elaboration
of this topic is given in [110]. A research project on a modular building management
platform with interfaces for multiple protocols for data acquisition and processing tools
is described in [98].

In [111], an approach to establish semantic interfaces between components in factory
automation systems is introduced. The authors use OWL to describe these interfaces
and SPARQL queries to make them accessible for an overlying orchestration engine. An

10https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
11http://brickschema.org/
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ontology reflects the required domain knowledge about the equipment, the product to be
produced and the production process.

A publication which concerns formal verification of ontological models is presented in
[112]. The work focuses on ontology-based descriptions of field devices which shall be
checked for consistency of the modelling, completeness with regard to the specification
and correctness within constraints given by the domain of interest. Under the open-
world-assumption which is inherent to ontologies and the use of standard OWL reasoners,
the latter two attributes are impossible to be validated. To this aim, so-called integrity
constraints are defined which circumvent the open-world-assumption. Hereby, a validator
consisting of an OWL reasoner operating on these constraints is able to perform the
desired checks.

2.5.3 Engineering support

A research project where building information models and Semantic Web technologies
are used to support the refurbishment of buildings towards energy efficiency is called
SEMERGY [113]. Besides building information, multiple further information sources
are gathered, like preferences of the building owner, climate data, legal constraints
and available subsidies. This information is mapped to a knowledge base and further
processed by a reasoner. As an output, the user gets a suggestion on the most suitable
refurbishment solution.

An example from the factory automation domain regarding model-driven engineering
is presented in [114]. Taking UML models as an input, a code generator creates the
structure of IEC 61131-3 software projects which are common in PLC programming. A
point of criticism is the still unsolved issue of automatically back-propagating changes on
the code to the UML model. In [115], an OPC UA server is used to manage engineering
information provided in the CAEX format. Clients are enabled to create instances on the
server following the plant structure defined in CAEX. This process image is intended to
be used for monitoring purposes. Additionally, a visualisation interface is automatically
generated thereof.

The work presented in [116] also builds upon the CAEX standard and aims to establish
interoperability between Computer Aided Engineering (CAE) systems of different building
automation technologies used in the HVAC or lighting trade. Therefore, it uses the CAEX
model and defines a mapping to the building automation domain. This unified engineering
format enables the use of a technology-independent engineering tool to supersede the
current situation of almost each technology having its own tool.

In [117], an automated design approach for control applications based on IEC 61499
[118] is presented. Therefore, ontological representations of the plant to be controlled as
well as an IEC 61499 function block ontology is designed. A set of rules, written in an
extension of SWRL [119], is used to perform a transformation from these two ontological
representations to a control application program in form of an OWL knowledge base.

43



2. State-of-the-Art

The work in [120] initially describes the device ontology used in [99]. The paper further
introduces a set of SWRL rules to deduct interoperability between devices regarding the
communication medium, functional profiles and I/O semantics. This approach is further
proceeded by the interoperability evaluation model presented in [121]. Here, a multi-level
hierarchy model is defined which organises different levels of interoperability between
automation devices. This model is applied on a dataset of LonWorks devices showing
that the search space for automated engineering approaches is drastically reduced.

In [122], [123] and [124], an automated design process comprising three phases of different
abstraction is illustrated. For this purpose, a requirement ontology is designed and
utilised which allows to describe room-based engineering patterns, highly abstract VDI
3813-2 Functional Blocks (FBs) down to technology-specific functional profiles. The
transitions between the design phases are sketched to be carried out automatically by
means of generative programming and evolutionary algorithms. For the final mapping
of the detailed design to specific automation devices, SPARQL queries are issued to
an OWL-based semantic device repository. [125] also addresses the ontology-based
automated design concept and additionally describes the evolutionary approaches for
solution synthesis in detail. Quantitative results of the evolutionary optimisation process
are provided as an evaluation of the work. [126] summarises the publications from these
fields and elaborates the whole workflow in detail. The resulting prototype of a building
automation design tool is also published on the Web12.

The work in [127] describes a simple three-level ontology with increasing level of abstrac-
tion including functional descriptions, profiles and device descriptions. It is instantiated
by a “generator” (generative programming) using a Domain Specific Language (DSL) as
a specification. A knowledge-based device repository contains abstract device information
which can be automatically matched with the generated abstract instance. Here, multiple
degrees of freedom occur which are handled by evolutionary algorithms. An ontology
which aims at facilitating the automated deployment of IoT devices is proposed in [128].
It bases on well-established vocabularies like defined in the Semantic Sensor Network
Ontology [129].

In [130], an ontology-based specification is used to automatically interconnect services (e.g.,
corresponding to a light switch an the according actuator) in a smart home application.
These services come as OSGi13 bundles with well-defined interfaces. These interfaces are
mapped to OWL constructs which provide the necessary semantic description in order
to enable the automated matching. [131] also concerns the automatic configuration in
the context of smart homes but by building upon multi-agent systems. A number of
these agents is defined where each one manages a distinct functionality. Depending on
the intended use case, the available building services - i.e., the output of a discovery
mechanism - are utilised.

A semi-automated datapoint mapping from BMSs to energy management systems is
12http://www.auteras.de/
13https://www.osgi.org/
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presented in [132]. The approach used therefore is matching textual labels stored in
a dictionary of terms from the building automation domain. A linguistic similarity
computation method is applied on these dictionary entries. This way, a matching of terms
from the BMS to terms of the energy management system is achieved which corresponds
to the desired datapoint mapping.

An attempt to reduce the engineering effort for field device development is made in
[133]. A rapid-prototyping method is proposed which bases on a generic device model
which is configurable by means of an XML file. This configuration has a modular
setup and is aligned to standardised device profiles. A tool chain is developed which
semi-automatically generates device configurations based on these profiles.

A thorough survey on the most common system and device modelling approaches covering
their whole life cycle is given in [134]. It includes a quantitative comparison of the coverage
of information requirements on components during the phases of a systems life. Also, the
different requirements between the application domains in focus, i.e., building automation,
factory automation and sensor Web, are regarded.
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CHAPTER 3
First level integration using OPC

Unified Architecture

This chapter is based on the contributions of the author to the following publications:

A. Fernbach, W. Granzer, and W. Kastner, “Interoperability at the Management Level
of Building Automation Systems: A Case Study for BACnet and OPC UA,” Proc. of
16th IEEE Conference on Emerging Technologies and Factory Automation (ETFA ’11),
Septempber 2011.

A. Fernbach, W. Granzer, W. Kastner, and P. Furtak, “Mapping ETS4 Project Structure
to OPC UA using ETS4 XML Export,” KNX Scientific Conference, Nov. 2012.

A. Fernbach and W. Kastner, “Integration of Smart Meters into Management Systems in
Automation,” Proc. of the 10th IEEE International Workshop on Factory Communication
Systems (WFCS 2014), May 2014.

A. Fernbach, W. Kastner, S. Mätzler, and M. Wollschlaeger, “An OPC UA Information
Model for Cross-Domain Vertical Integration in Automation Systems,” Proc. IEEE 19th
Conference on Emerging Technologies Factory Automation (ETFA’14), Sep. 2014.

The work presented in this chapter has been carried out in the context of the research
projects “Web-based Communication in Automation” (WebCom) and “Information
Modeling in Automation” (iModelA) funded by the Austrian Research Promotion Agency.

The development of proper concepts to provide interoperability between different network
standards in Building Automation Systems (BASs) is a highly estimated field of research.
Since IP based networks are commonly used at the management level of today’s BASs,
one promising way of communication at this level is the use of Web services (WSs)
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Figure 3.1: Building automation system integration by OPC UA

[13]. WSs have the advantage that they provide platform- and programming language
independence. Based on the exchange of messages, WSs follow the Service Oriented
Architecture (SOA) paradigm. This enables devices to exchange data independently from
the underlying network technologies. Within this context, OPC Unified Architecture
(OPC UA) is one of the most important standards supporting WSs. While OPC UA
is already well-established in industrial automation systems [54, 55], it slowly gains
importance within the building automation domain. The integration standards Open
Building Information Xchange (OBIX) [33] and BACnet/Web Services (BACnet/WS)
[11] follow a similar intention than OPC UA. Although they are dedicated to the building
automation domain, they are even less widespread in this area than OPC UA.

OPC UA emerged as one of the most promising ways to create a unified view on the
underlying process data including meta information as well. So as to know how process
information is represented and addressed in a certain automation network, OPC UA
information models need to be defined. Instances of those models can be used to provide a
generic view to management clients which need global access an entire building automation
installation. However, to be able to expose live datapoint values this way, interfaces to
the underlying technologies are required.

In this thesis, information modelling in OPC UA is the chosen method of knowledge rep-
resentation for first level integration. Therefore, the following sections present approaches
how representatives of the most common building automation technologies, i.e., BACnet,
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KNX and Meter Bus (M-Bus) can be integrated into the management level by means
of OPC UA. A possible BAS architecture where integration by OPC UA is realised is
shown in Figure 3.1. It represents a typical situation where multiple technologies are
deployed. An IP-based backbone network interconnects the various components and
fieldbus networks. The BACnet devices in this example natively have IP connectivity
whereas a KNX bus is integrated via a KNXnet/IP router. This allows the corresponding
OPC UA servers to access data from these device on IP level. For the integration of the
M-Bus installation, the OPC UA server directly interfaces the bus via an intermediate
protocol converter (e.g., M-Bus to EIA RS-232).

In order to provide the necessary technical background, the chosen representatives are
briefly introduced in the following Section 3.1. Subsequently, the first level integration
approaches of these technologies are described: M-Bus (Section 3.2), followed by KNX
(Section 3.3) and BACnet (Section 3.4). Expanding the focus to the industrial automation,
the last Section 3.5 presents a common information model creating a unified view on
systems consisting of technologies from both domains. To keep the big picture in mind,
it is once again pointed to Figure 1.5 which illustrates the context of the technology
mappings carried out here.

3.1 State-of-the-art building automation technologies

3.1.1 Meter Bus

The M-Bus [135] is a widespread communication protocol, especially in European coun-
tries, which enables the remote readout of smart meters in consumer and industry
applications. It has been laid down as a part of the European standard EN 13757 [7],
[136]. Smart meters are used to measure the consumption of electricity, gas, heat and
water, to mention a few examples [137]. The M-Bus Usergroup1, which publishes and
maintains the standard, mentions further applications like alarm systems, lighting and
heating controlling. The protocol can be seen as a fieldbus with a typical bandwidth of
300 to 14400 bps. For communication media either a two-wired twisted pair line (also
providing link power) or radio communication can be used. The master-slave communi-
cation paradigm applied in M-Bus ensures central media allocation. Metering devices
act as M-Bus slaves, whereas an M-Bus master collects information from the meters and
supports superior applications with it. The network topology is very flexible - star, ring
and bus arrangements are supported. Besides the physical layer of the OSI model, M-Bus
defines the data link, the network and the application layer. However, only the data
representations defined by the application layer are relevant for this thesis. Therefore, an
introduction into these parts of the application layer is given in the following.

Besides the data send command, there exists a number of ways a master can control
and configure a slave (i.e., application reset, set baudrate, synchronize
action). The way how meter data is represented in M-Bus is reflected by the slaves’

1http://www.m-bus.com
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Figure 3.2: M-Bus variable data structure in reply direction

responds to a data send command. There are two types of reply frames wherewith a
slave can answer a master’s request, either by a Fixed Data Structure or by a Variable
Data Structure frame. Since data transported by a Fixed Data Structure frame can be
seen as a simplified form of the Variable Data Structure, only the latter is described here.
Besides that, the Fixed Data Structure frame type is not recommended for implementation
anymore.

The Variable Data Structure APDU is shown in Figure 3.2. It consists of a Fixed
Data Header, Variable Data Blocks (Records), and optional manufacturer specific data
preceded by a Manufacturer Data Header (MDH). The Fixed Data Header, shown in
Figure 3.3, contains static information about the metering device like an identification
number, a manufacturer code, version information as well as status information informing
about the device application. The Configuration field is intended for security extensions
like the declaration of different modes of encryption and message signing.

Ident. Nr. Manufr. Version Medium Access No. Status Configuration
4 Byte 2 Byte 1 Byte 1 Byte 1 Byte 1 Byte 2 Byte

Figure 3.3: M-Bus fixed data header

The payload containing actual meter readings, their encoding, type and length is en-
capsulated in data records. Besides the current value, a data record can contain up
to nine historical values which must be all of the same function. Possible functions
are Instantaneous value, Maximum value, Minimum value, Value during
error state. An arbitrary number of records forms the second field of the APDU
shown in Figure 3.2. The structure of an M-Bus data record is illustrated in Figure 3.4.
It consists of a Data Record Header (DRH) followed by the Data field. The header in
turn is split up into a Data Information Block (DIB) and a Value Information Block
(VIB). The DIB describes the function of the whole record, the length and encoding of
the data field and gives information about the tariff assigned to each (historical) value.
The engineering unit for each reading combined with a multiplier is encapsulated in the
VIB.

DIF DIFE VIF VIFE Data
1 Byte 0-10 Byte 1 Byte 0-10 Byte 0-N Byte

DIB VIB
DRH

Figure 3.4: Structure of an M-Bus data record
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3.1.2 KNX

KNX [9] is a widespread standard in Home and Building Automation (HBA) systems.
Developed and maintained by the KNX Association, it is also published as the ISO/IEC
14543-3-x family from 2007. It covers the majority of applications in HBA but finds a
special use in room control, lighting and shading applications. The protocol defined by
the KNX standard can be seen located at the field level of the automation hierarchy. The
physical layer defines four different options of communication media and is characterised
by narrow-bandwidth-communication. Available options are a twisted pair line (KNX
TP), radio frequency communication (KNX RF), powerline communication (KNX PL)
and also over IP-based networks (KNX IP) as a virtual medium. On top of the physical
layer, the KNX standard defines a data link layer, network layer, transport layer and
application layer.

The interworking model of KNX relies on a model of Functional Blocks (FBs). They give
an abstract description of the behaviour of the devices. Correct interfacing between FBs is
enabled by the definition of datapoint types (DPTs). In KNX, datapoints are also-called
Group Objects (GOs) or Communication Objects (COs). COs have a Data Point Type
(DPT) associated which provides the necessary semantic, i.e., metainformation to correctly
interpret the meaning of a CO value. A DPT definition includes a datatype, the range of
the CO value, the encoding and, if applicable, an engineering unit. Standard DPTs are
defined for a wide range of Boolean, integer, and floating point values, as well as for a
number of compound types. By the logical connection of COs of multiple devices being
functionally compatible to each other (e.g., a dimmer and a light actuator) the desired
distributed functionality of a KNX application is achieved. This logical connection is
established by a group addressing scheme establishing a multicast communication group.
Figure 3.5 shows a KNX interworking example between a light switch and a switching
actuator. When the user pushes the button (1), the signal change (2) is processed by the
user application (3) which updates the associated GO3 (4). This update is propagated
to the KNX protocol stack (5) which looks up the associated group address 2/8/1 from
the association table (6). This results in calling the GroupValue_Write service and the
network stack sending an L_Data frame over the network (7). The protocol stack of the
addressed device(s) recognises the destination address of the data frame in its association
table (8) and looks up the associated GO (9). The change of state of the GO value
is indicated to the user application of the switching actuator (10) which performs the
desired action of driving the relay accordingly (12) and finally illuminating the lamp (13).

For the configuration of KNX devices, a number of different modes is available. The
configuration phase encompasses the assignments of group addresses, i.e., the binding
of devices, parametrisation of the user application and application program download.
These features are variously supported by the different configuration modes. The System
Mode (S-Mode) is the most comprehensive and flexible one and is based on the vendor-
independent Engineering Tool Software (ETS) which is developed and published by the
KNX Association. It also allows bus monitoring for diagnostics. Group address assigning
can also be achieved by means of using the E-Mode (Easy-Mode). Depending on which
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Figure 3.5: KNX interaction [138]

procedure the KNX device supports, this is an on-device configuration procedure via
push buttons (PB-Mode), setting tag values on corresponding devices to identical values
(LTE-mode) or using a special handheld device (Controller-Mode) to manage the binding.

3.1.3 Building Automation and Control Networks

The Building Automation and Control Network (BACnet) protocol was developed by the
American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)
and was standardized in 1995. Continuous maintenance and development are applied
since then. Initially designed for the use at the management and automation level of
the three tier automation hierarchy, nowadays BACnet has found a use in all kinds of
building automation applications. The current standard is BACnet 2016 [56] which is also
laid down as ISO 16484-5:2016 [11]. The network architecture encompasses a physical,
a data link, a network, and an application layer of the ISO/OSI model whereas only
the latter two layers are specified in the standard. To provide interoperability at the
data link layer, five so-called network options describing the physical and the data link
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layer are defined: Ethernet [139], Attached Resource Computer Network (ARCNET)
[140], Master-Slave/Token Passing (MS/TP), Point-To-Point (PTP), and LonTalk [10].
Two normative annexes of the standard specify the transmission of BACnet messages
over IP (BACnet/IP) and also by the use of ZigBee [141] as a wireless network option.
The network layer provides two services for data transfer to the application layer, the N-
UNITDATA.request and the N-UNITDATA.indication primitives. They represent
an unacknowledged connectionless form of data transfer. The request is called by the
application to initiate a data transfer, the indication informs the application about a
reception of data.

With respect to the work presented, the application model is the most relevant part
of the standard. As illustrated in Figure 3.6, it defines the Application Process as the
part of the application which processes the information and handles the exchange of
data between two peer applications. The application process in turn is divided into two
parts: the Application Program and the Application Entity which is already part of the
application layer. The former as well as the Application Program Interface (API) lying
between the Application Program and the Application Entity are not specified by the
standard. The BACnet User Element, which forms one half of the Application Entity,
implements the service procedure portion of each application service. The other part is
the BACnet Application Service Entity (ASE). It represents a collection of five classes of
services: Alarm and Event, File Access, Object Access, Remote Device Management, and
Virtual Terminal which are responsible for information exchange between the application
processes.

To allow remote devices to access process data, an object-oriented, network-visible
representation of the stored data has been specified by BACnet. Up to now, 61 different
BACnet object types are defined within the current BACnet standard. They differ in the
composition of their so-called BACnet properties which can be seen as datapoints i.e., the
logical representation of the process data of the technical process under control. Each
property has a unique identifier referred to as Property_Identifier, a designated
property type, and a conformance code attribute. The conformance code defines the
access permissions of a property and specifies whether a property must be present or
not. Possible values are Readable (R), Writable (W), and Optionally present (O). Figure
3.7 gives an example of such an object type definition. Vendors of BACnet devices
are free to define their own proprietary object types (referred to as nonstandard object
types) – even the definition of proprietary property types is possible. However, there are
three mandatory properties that must be defined for each BACnet object: Object_-
Identifier, Object_Name, and Object_Type. The former two properties must be
unique within a BACnet device. Since a BACnet object is always dedicated to exactly
one device, these properties can be used to reference a BACnet object within the device.

Available BACnet object types as well as the included properties are mostly generic ones.
For example, BACnet defines generic object types such as the BACnet Binary Out-
put Object Type and the BACnet Analog Input Object Type. It is within
the responsibility of the application program to map the functionality of a dedicated
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Figure 3.6: Model of a BACnet application process [56]

Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R

Object_Name CharacterString R

Object_Type BACnetObjectType R

Present_Value REAL W

Progress_Value REAL R

Resolution REAL O

Binary_Present_Value BACnetBinaryPV O

Output_Type BACnetLightingOutputType R

Lighting_Command BACnetLightingCommand W

Figure 3.7: BACnet object type definition [11]

application to certain BACnet objects. However, in the past few years, a considerable
number of application specific objects have been defined, as for example to encapsulate
basic lighting application properties. The definition of this BACnet Lighting Output
Object is partly shown in Figure 3.7.

Every BACnet device holds exactly one special object called Device Object. The
Device Object provides basic information about the BACnet device like vendor
information, firmware and protocol version, and local time and date. Additionally, its
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Object_Identifier and Object_Name must be unique within the whole BACnet
network and so it can be used to identify the device in the network.

In addition to the representation of process data, the standard defines different communi-
cation services. Two important object access services are the ReadProperty and the
WriteProperty services for getting and setting the value of a property. The Read-
Property service takes the Object_Identifier, the Property_Identifier and
optionally the Property_Array_Index of the property that has to be read as ar-
guments. If succeeded, the service response of a ReadProperty contains the input
arguments of the request and the value of the property to be read. The WriteProperty
service, on the other hand, takes the Object_Identifier, the Property_Iden-
tifier, the Property_Array_Index as well as the Property_Value and the
corresponding Priority of the property that has to be written as arguments. Success
is indicated to the client by sending a positive confirmation response.

In order to discover BACnet networks and to find specific devices, the unconfirmed
Who-Is and Who-Has services are available. If one device broadcasts an unrestricted
Who-Is to the network2, every device (including the sender) responds with an I-Am
service carrying the network address and the Object_Identifier of the respective
Device_Object. By reading the Object_List of the Device_Object of every
device that responded, all objects within the network can be determined. In case one
BACnet device wants to discover the address information of the device holding an object
from which the Object_Name or the Object_Identifier is known, it broadcasts a
Who-Has service. The device that finds the requested object in its database returns an
I-Have service. This response carries the address of the device together with the Device
Object_Identifier as well as the Object_Identifier and the Object_Name of
the requested object.

3.2 Integration of M-Bus smart meters

Since in the meanwhile modern buildings and production facilities are not imaginable
without smart meters any more [142], [143], it is obvious to include resource consumption
information delivered by these devices into management applications in the same manner
than this is done for functional process data. The benefits arising thereof are improved
monitoring and trending of these properties a technical process has. This facilitates the
identification of optimisation potential, the detection of faulty conditions and is assumed
to increase consumers’ awareness on resource consumption [144].

To this aim, an OPC UA representation for the M-Bus application model is created.
Hereby, a common standard for smart meter read out can be integrated into building
management applications. An OPC UA server for M-Bus must be equipped with a

2The Who-Is can also be used to search for devices where the corresponding device ID is within a
specific range. However, if the lower and upper bound of this range is set to the minimum and maximum
Object_Id, all devices respond.
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respective communication interface and a driver for application-level interaction with
smart meters. It processes a client’s access to its address space and propagates the
requests to the target technology. Alternatively, the server can buffer an image of
the meter data. This is especially recommendable if the target technology has limited
resources, which is often the case for M-Bus devices. This way, the number of requests
to these low bandwidth and often battery-powered components is reduced.

3.2.1 Mapping the M-Bus application model to OPC UA

In the following, an OPC UA representation of the M-Bus application model is presented.
Therefore, a type model is defined in a first step. Figure 3.8 shows the type hierarchy for
the definition of an OPC UA information model for M-Bus which is based on modelling
concepts defined in the OPC UA for Devices (DI) specification [145]. The information
model defined in this companion specification facilitates finding OPC UA representations
of automation technologies with a device-centric view. It defines a DeviceType Object-
Type (a subtype of the BaseObjectType and the TopologyElementType) with a
predefined set of properties (including a SerialNumber, a Manufacturer property
and revision information) each device model instance may encompass. These prop-
erty instance declarations all have the so-called ModelingRule Optional. This means,
properties with this ModelingRule may optionally be present for each instance of this
ObjectType. As a subtype of the DeviceType, a new OPC UA ObjectType is defined,
the M-BusMeteringDeviceType. It inherits all the properties of its supertype (which
are only shown in Figure 3.8 for the DeviceType) and also defines additional Medium
and Status properties. This set of properties is dedicated to reflect static information
about an M-Bus metering device. The mapping of information from the Fixed Data
Header of the M-Bus APDU to the M-BusMeteringDeviceType is defined in Figure
3.9. However, some of the properties of the OPC UA model do not have an M-Bus
equivalent. So they can be omitted. This is in compliance with the DI specification.

The actual meter readings of the M-Bus device which are the content of Variable
Data Blocks (i.e., the records) are mapped to another OPC UA ObjectType, the M-
BusDataRecordType as illustrated in Figure 3.8. The M-BusDataRecordType has
a property Function and a variable Reading. The Function property reflects the
Function Field of the DIB in a Variable Data Block.

The Reading variable InstanceDeclaration is of the AnalogItemType which is taken
from the Data Access [146] part of the OPC UA specification. Its EngineeringUnit
property which is part of the definition of this VariableType represents the Unit field of
the M-Bus VIB. EURange is another mandatory property of the AnalogItemType. It
defines the value range of this variable under normal operation. In this model, EURange
reflects the length and encoding given by the M-Bus DIB. In order to enrich this model
with tariff information, the Reading variable is extended by an additional Tariff
property. The Tariff field of the M-Bus DIB is mapped to this property. Since an M-Bus
compliant meter can provide access to up to nine historical values encapsulated in one
record, concepts from the OPC UA Historical Access specification (OPC UA Part 11)
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Figure 3.8: OPC UA ObjectType definitions for M-Bus

57



3. First level integration using OPC Unified Architecture

M-Bus APDU field OPC UA Property
Identification Number SerialNumber

Manufacturer Manufacturer
Version DeviceRevision
Medium Medium
Status Status

Figure 3.9: Mapping of M-Bus fixed data header

could be included in this information model. However, this is out of focus of the current
version of the M-Bus representation.

Returning to the M-BusMeteringDeviceType definition in Figure 3.8, it can be seen
that an instance of this type can have arbitrary many instances of the M-BusDataRecord
type. This is achieved by using the OptionalPlaceholderModellingRule. Hereby, the
fact is reflected that an M-Bus device can provide multiple readings like the daily and the
cumulated consumption of the media under measurement or even other medium-specific
physical quantities.

3.2.2 Instantiating the M-Bus/OPC UA object types

Figure 3.10 shows an exemplary instance of the M-BusMeteringDeviceType. It
represents a real-world Siemens WFM21 M-Bus heat meter including the data it provides.
Corresponding to the type definition in Figure 3.8, an M-Bus metering devices has
a number of static attributes (i.e., properties) and naturally delivers measurement
values including status information. Contrary to the type definition, the instance in
Figure 3.10 is provided with concrete values. The WFM21 delivers, besides others,
the measurement values of the cumulated energy and the cumulated volume of heating
water. Therefore, the HeatMeter object references two objects representing M-Bus
data records, the CumulatedEnergy object and the CumulatedVolume object. The
Function properties of both records are set to CurrentValue. The heat meter in
this example is also capable of delivering minimum, maximum and average values which
is disregarded here, however. The value attribute of the Reading variables is set to
the actual readings calculated from the M-Bus Data and the Multiplier field of the
VIB. Accordingly, the EngineeringUnits and EURange property values are set, too.
The CumulatedEnergy record of the WFM21 also delivers tariff information. This is
regarded in this model instance by the optionally instantiable Tariff property, whose
value attribute is set to Tariff1.
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PropertyType:RevisionCounter
Value=Null

PropertyType:SerialNumber
Value=356413

PropertyType:Model
Value=“WFM21“

PropertyType:Manufacturer
Value=Siemens

PropertyType:DeviceRevision
Value=1.2

PropertyType:DeviceManual
Value=Null

PropertyType:HardwareRevision
Value=Null

PropertyType:SoftwareRevision
Value=Null

M-BusMeteringDeviceType:
HeatMeter

PropertyType:Medium
Value=„Heat meter“

MultiStateDiscreteType:Status
Value=„No Error“

PropertyType:EnumStrings
Value= „No Error“, „Busy“,...

M-BusDataRecordType:
CumulatedEnergy

PropertyType:Tariff
Value=Tariff1

PropertyType:Function
Value=CurrentValue

PropertyType:EngineeringUnits
Value=kWh

AnalogItemType:Reading
Value=234098.234

M-BusDataRecordType:
CumulatedVolume

PropertyType:Function
Value=CurrentValue

PropertyType:EngineeringUnits
Value=m3

AnalogItemType:Reading
Value=98329.673

PropertyType:EURange
Value={0, 99999.999} 

PropertyType:EURange
Value={0, 99999.999} 

PropertyType:EURange
Value={0, 99999.999} 

Figure 3.10: Instantiation of an exemplary M-Bus representation
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3.3 Integration of KNX
By now, first steps towards OPC UA information models for KNX have already been
made [147]. This preliminary work will be enhanced by integrating meta information
into the existing model. Since an information model only gives a description about the
general scheme how KNX process data (i.e., KNX function blocks, group addresses) are
represented and accessible, it cannot state anything about the actual configuration of
a distinct installation. Therefore, the types defined in a KNX/OPC UA information
model need to be instantiated in a way such that they map the actual configuration of
the target KNX network. Therefore, the XML export functionality of the ETS4 is used
to transfer the configuration data of a distinct KNX installation to an OPC UA server.

Since the interworking model of KNX is based on FBs, a way had to be found to map
these KNX FBs to OPC UA. FBs are defined by the KNX specification and give an
abstract description of the behaviour of KNX devices. They consist of different datapoints
for input data, output data and parameters. Each datapoint in KNX has a well-defined
datapoint type (DPT) to ensure that data can be exchanged between different FBs in
an unambiguous way. In order to achieve the requested functionality, a KNX device
implements distinct FBs. To reach the desired distributed control functionality, e.g.,
by binding a KNX dimmer to a KNX dimming actuator, datapoints belonging to the
respective FBs are logically linked by assigning them so-called group addresses.

The preliminary work about the information model for KNX mainly addresses the plain
data representation of the standard. It describes a schema how KNX data types can be
defined by OPC UA structured data types. The datapoints of KNX FBs are mapped to
user defined OPC UA variable types which get the regarding data types assigned to their
Datatype attribute. KNX FBs are mapped to OPC UA complex object types which
reference the variables defined before, in order to finally create a representation of KNX
FBs in OPC UA.

Also the different ways of addressing datapoints in KNX are covered by this model.
Therefore, various kinds of variable types are defined which are used to carry the different
types of addresses used in KNX. These address variables are assigned to the particular
datapoints by the user-defined reference type HasKNXAddress. Figure 3.11 shows an
example of three FBs describing a dimming application. The OPC UA complex object
types are instantiated to complex objects to represent live data in a KNX installation. In
this example, two dimmers are logically linked to a dimming actuator. For clarity, this
is only shown for the SwitchOnOff datapoints which get the DimmingGroup1 group
address of the value “1/1/0” assigned. Further it can be seen that the OnOffAction
parameter of Dimmer2 FB is addressed by the individual address of the device, an object
ID and a property ID. This is modelled by the Dimmer2Object5Property6 variable.

3.3.1 ETS4 project structure

In previous versions of the ETS, different views on a KNX installation project were
already available. This allowed the user to organise the devices and datapoints of a KNX
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Figure 3.11: KNX functional blocks and addressing datapoints in OPC UA [147]

installation by different criteria. For device configuration absolutely necessary views
are the Device view and the Group Address view where the parametrisation of KNX
devices takes place and group addresses are assigned. The Topology view which can also
be considered relevant for device configuration shows a hierarchical structure of devices
organised by their individual addresses. This reflects the network topology scheme of
a KNX network consisting of Areas, Lines and Device addresses. Another view which
was already available in the ETS3 is the Buildings view. Here, the physical structure of
buildings is represented by a hierarchy of sub-elements like floors, corridors and rooms
which in turn can have KNX devices associated. This allows an assignment of network
components to different locations of a building.

A feature which is new to the ETS4 is the Trades view. This view emphasises the
functional affiliation of KNX devices. It allows to distinguish between different trades
like lighting, Heating, Ventilation and Air Conditioning (HVAC) or safety applications
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Figure 3.12: Project structure in the ETS4
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Figure 3.13: Adapted OPC UA model for KNX

and lets these trade and sub-trade nodes expose devices whose functionally refer to them.
Figure 3.12 shows the structure of a project in ETS4 with the different views described
before. In the Trades view, for example, two representatives are visible: HVAC and
Lighting.

3.3.2 Mapping the ETS4 project structure to OPC UA

Vendors of KNX devices implementing the application programs of their products need
to follow the interworking model of KNX which is based on FBs. However, the ETS does
not use this concept of KNX FBs. Instead, it uses a different model where the KNX
device models available in the ETS product catalogue include a set of so-called COs
specific for each device. These COs can be seen as a representation of the datapoints of
FBs the respective devices implement. Like datapoints in KNX the COs have a distinct
datatype to assure type safety. Also binding of two or more COs to each other is done
by the assignment of a group address.
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In order to be able to use the XML export data of the ETS4 to configure an OPC
UA server, the previous KNX information model needs to be adapted. Figure 3.13
exemplarily shows the instances of two OPC UA object types standing for dimmer and
dimming actuator devices. Using HasComponent references, they now expose the COs
defined by the device model from the ETS catalog. The model of a universal dimmer
device for example includes, among others, a Dimming On / Off, a Dimming and a
Value CO. In this adapted information model, OPC UA variables are used to represent
these COs (like in the previous model to map the datapoints of FBs). When defining
the corresponding variable types, the attributes specific for this OPC UA node class
need to be set. The BrowseName, the DisplayName and the DataType attributes, to
name a few, are defined following the same method like presented in the precedent work
[147]. Figure 3.13 shows a part of the group address binding necessary for a dimming
application. The respective COs (e.g. the Dimming, Dimming unit A CO of the
dimmer and Dimming CO of the dimming actuator) are both linked to a group address
variable using a HasKNXAddress reference and hereby bound to the group address
0/0/1.

The meta information included into an ETS4 KNX installation project is not only useful
at configuration time but also for management applications supervising a live KNX
installation. For example, it can be integrated into a Building Management System
(BMS) and hereby support the operator by providing additional information about the
BAS under control. One key feature of OPC UA is enhancing process data by its
semantics. This shall be utilised here such that also the meta information provided by
the ETS4 is mapped to OPC UA.

In the following, a way is introduced how this mapping is performed for each of the views
in the ETS4 containing valuable semantics for a management application in a BAS. The
focus is set on the Buildings view, the Trades view, the Topology view and the Group
Address view.

One benefit which arises from the integration of meta information from the single ETS4
views into a holistic KNX model is that every time the KNX configuration is changed
via the ETS4 this information is available via XML export and therefore can be used to
keep a management level application using this model synchronised (cf. Section 3.4.3).
The ETS4 is the central configuration tool for KNX devices and consequently it is easy
to keep the actual configuration of the physical devices and the configuration of an ETS4
project aligned. The only constraint to retain configuration data consistency is that no
changes may be made using the E-Mode.

Group Addresses view

In this view, the organisation of main groups, middle groups and sub groups defined in the
ETS4 project is shown. Group addresses in KNX are triples composed of the addresses of
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Figure 3.14: ETS4 group address view in OPC UA - object type definition

the hierarchical groups in the form main group/middle group/sub group3. The
mapping to OPC UA works similar like in the topology view. Complex object types (shown
in Figure 3.14), the MainGroupType and the MiddleGroupType, each referencing a
variable InstanceDeclaration are defined. These KNXPrimitiveAddressType variables
are used to carry the address component of the respective group. The definition of the
MainGroupType also consists of a MiddleGroupType InstanceDeclaration whereas
the MiddleGroupType exposes an InstanceDeclaration of a KNXGroupAddressType
variable [147]. This variable does not only get the address value of the sub group assigned
but the complete group address triple. The reason for that is that the group address
value needed for addressing COs can hereby be read by an OPC UA client in one step.
Otherwise it needed to browse to the other two address variables as well to gain the whole
address information. This would significantly increase the response time of a management
client. An instance example of this group address model is depicted in Figure 3.15.

3In KNX there also exists a two-level addressing scheme which is not considered in this work. However,
the mapping to this information model works analogously
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Figure 3.15: ETS4 group address view in OPC UA - example of instances

Topology view

The location of a KNX device in the Topology view reflects its individual address, which
is a triple consisting of an Area field, a Line field and a DeviceID. So, each single
component of an individual address carries one part of the address information needed
to uniquely identify a KNX device in the network. In the OPC UA information model
(cf. Figure 3.16), this is taken into account by defining complex object types for each
component. The KNXAreaType as well as the KNXLineType reference an Address
variable of the type KNXPrimitiveAddressType [147]. To express the fact that
addresses can have changeable values, the OPC UA built-in HasComponent reference
types are used to link the variables to the object types. HasComponent reference
types in OPC UA are contrary to the built-in HasProperty reference types used for
referencing data variables. For a deeper understanding of this concept, confer to [32]
Part 3.

In order to model the hierarchy of the three address components of a KNX individual
address, the definition of the KNXAreaType object type references a KNXLineType
InstanceDecalaration whereas the KNXLineType object type definition references a
KNXDeviceType InstanceDeclaration. As before, Organizes reference types are taken
to link these nodes. An example how this part of the information model can be instantiated
is shown in Figure 3.17. It illustrates an area (Area1) exposing two lines, Line1 and
Line2, where each line contains one KNX device. Hence, the Dimmer device has the
individual address 1.1.1 and the DimmingActuator is addressed by 1.1.2.
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Figure 3.16: ETS4 topology view in OPC UA - object type definition

Buildings view

Modern BMSs provide a live process image of datapoints of KNX installations as well as
a view on data originating from other network technologies. Having the physical location
of a KNX device and its corresponding datapoints available in this live view has several
benefits. It facilitates the visualisation of datapoints in a graphical model of a building
and can help to improve the usability of a BMS. Especially, it enables the assignment of
alarms or events triggered somewhere in the network to a distinct location in a building
in a very easy way. Consider, for example, an alarm indicating a lamp has failed. By
following the references from the datapoint which triggered the alarm to the building
part entity a precise order can be issued to the facility manager to replace the lamp.

Figure 3.18 shows the definition of OPC UA object types representing the hierarchy of
entities in a building. A building in the Buildings view of the ETS4 can consist of building
parts, stairways, floors, rooms, corridors and cabinets. In the model in Figure 3.18, this
is reflected by the definition of a BuildingType object type which is a subtype of the
built-in FolderType. InstanceDeclarations4 of object types referring to these parts of

4When instantiating an ObjectType node in OPC UA which exposes InstanceDeclarations the latter
are also instantiated, depending on the ModellingRule
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Figure 3.17: ETS4 topology view in OPC UA - example of instances

a building are linked to the BuildingType using Organizes reference types. In the
context of folders in OPC UA whose main purpose is to organise the address space it
is common to use the Organizes reference type. The [Optional] labels within the
InstanceDeclarations denote ModellingRules. They reflect the fact that all the building
part entities can optionally be present.

The BuildingPartType is modeled as a subtype of the BuildingType which is
indicated by the HasSubtype reference type. Thus, all the InstanceDeclarations ref-
erenced by the BuildingType object type are inherited to its subtype. This follows
from the definition of the OPC UA address space and is not shown in this illustration for
reasons of clarity. The FloorType, following the schema of the ETS4 project structure,
references a RoomType, a CorridorType and a CabinetType InstanceDeclaration.
Reaching the lowest level of this hierarchy of building part entities, the definitions of
the StairwayType, the RoomType, the CorridorType and the CabinetType each
reference a KNXDeviceType InstanceDeclaration. Like in an ETS4 project, these are
the locations where KNX devices are allowed to be present.

Figure 3.19 shows a practical example where the types defined before are instantiated.
It reflects a site consisting of two buildings, BuildingA and BuildingB. The former
exposes a Floor4 which in turn has a Room1 where a dimmable lighting is installed.
Therefore, a KNX Dimmer and a DimmingActuator are placed. The COs implemented
by the devices are shown on the right side of this figure.
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Figure 3.18: ETS4 buildings view in OPC UA - object type definition
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Figure 3.19: ETS4 buildings view in OPC UA - example of instances
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Figure 3.20: ETS4 trades view in OPC UA - object type definition

Trades view

A conceivable use case for a building management application implementing this trade
model is the trade-based aggregation of energy consumption data. It is straightforward
to filter data belonging to a distinct trade by traversing the references from the trade of
interest down to the associated KNX devices. Subsequently, the datapoints representing
the energy consumption data are read from the selected devices.

Including the schema from the Trades view of the ETS4 into the proposed information
model is done similarly like for the Buildings view. An object type definition also be-
ing a subtype of the OPC UA FolderType is introduced like shown in Figure 3.20:
the TradeType object type. By using Organizes reference types, a TradeType In-
stanceDeclaration and a KNXDeviceType InstanceDeclaration are linked to the superior
type. This recursive definition of the TradeType results from the fact that a trade in
the ETS4 can expose a hierarchy of sub trades of an arbitrary depth.

Figure 3.21 exemplarily shows how this model can be instantiated. The Lighting trade
consists of two devices, a dimmer and a dimming actuator. The HVAC trade in turn
exposes a RoomTemperatureController.

3.3.3 Instantiating KNX/OPC UA object types

Compared to other building automation standards, KNX has the advantage that in
S-Mode all the necessary configuration is done with the standard engineering tool ETS.
Thus, the whole configuration data of KNX projects is available in ETS. Since the release
of ETS4, the whole project configuration can even be exported as XML files. These files
give a complete description of the whole KNX installation parameterised in an ETS4
project. This includes not only the configuration of the KNX devices and group addresses
but also meta information of the KNX installation like the network topology and the
building structure.
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Figure 3.21: ETS4 trades view in OPC UA - example of instances

The XML export functionality of ETS4 shall be used to provide an easy mechanism
to configure KNX/OPC UA servers in a fully automated way. In other words, the
KNX/OPC UA servers import the XML description exported by ETS4 which is then
used to instantiate the corresponding OPC UA types defined by the KNX information
model. Using this mechanism, the full ETS4 project structure is available in OPC UA
and thus available by OPC UA clients.

In order to clarify the transfer of ETS4 data to OPC UA, a simple ETS4 project has
been created which will be used as an example in the following. A screenshot of this
project is shown in Figure 3.22. The following XML listings as well as the final model in
Figure 3.23 correspond to this ETS4 project.

The XML file named “0.xml” which is generated when exporting an ETS4 project is
basically organised in four different elements, which are identified the by associated tags:
<Topology>, <Buildings>, <GroupAddresses> and <Trades> which in turn
consist of sub-elements corresponding to the entities present in a distinct view. These
elements contain attributes specific for the respective ETS4 view which will be mapped
to the value attributes of the OPC UA objects and variables to be instantiated thereof.
In the following, the mapping will be described for every XML element representing a
view. Excerpts of the relevant parts of these elements are listed, too.

A mapping strategy which applies to all the elements is that the value of the NodeId
of the resulting OPC UA object is set to the ID value of the respective element. The
ID values in the XML file are unique and hereby an unambiguous mapping to OPC
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Figure 3.22: ETS4 project

UA nodes is achieved. The way how the references need to be set can be gained from
the hierarchical order in which the XML elements are organised. This order results in
Organizes reference types pointing from the super element to the sub element.

The <Topoplogy> element like seen in the listing below exposes a hierarchy of Ar-
eas, Lines and DevicesInstances represented by an Id, an Address, a Name
and several other attributes which are not considered in this model. The Name at-
tributes are assigned to the BrowseName and to the DisplayName attributes of the
instances of AreaType, LineType and DeviceType OPC UA object types. The
Address attributes of the XML elements are transferred to the value attributes of the
Address variables referenced by the latter object types introduced in Section 3.3.2.
This can be seen in the topology branch of the model in Figure 3.23. In the XML
data a DeviceInstance organises a set of references to COs in the form of elements
labeled ComObjectInstanceRef. By a RefId attribute (for the first ComObjectIn-
stanceRef element it has the value M-0001_A-9067-03-202B_O-0_R-205) the
logical connection to the description of the respective CO is made. The description of
each CO is located in separate XML files. In here, all the parameters related to a CO
are laid down, for example the name, the priority and the flag values. Having these
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Figure 3.23: KNX dimmer device and its associated physical location, trade, topological
location and group addresses

data available, an assignment of the ComObjectInstanceRef to the OPC UA variable
representing the CO can be made. In this example, the ComObjectInstanceRef with
the ID M-0001_A-9067-03-202B_O-0_R-205 corresponds to the Dimming On /
Off, Dimming unit A CO of the dimmer device in Figure 3.23.

Each ComObjectInstanceRef exposes a Connectors element which organises the
references to the associated group addresses. The group addresses are linked to the CO
using the GroupAddressRefId attribute.
<Topology>
<Area Id="P-032A-0_A-0" Name="Area1" Address="0" CompletionStatus=

"Undefined">
<Line Id="P-032A-0_L-0" Name="Line1" Address="0" ...>
<DeviceInstance Id="P-032A-0_DI-1" Name="Dimmer" ...

Address="1" ...>
<ComObjectInstanceRefs>
<ComObjectInstanceRef RefId=

"M-0001_A-9067-03-202B_O-0_R-205" IsActive="1">
<Connectors>
<Send GroupAddressRefId="P-032A-0_GA-2" />
</Connectors>

</ComObjectInstanceRef>
.
.
.

The value (P-032A-0_GA-2) of this GroupAddressRefId appears again at the Id
attribute of the lower GroupAddress element in the following listing. Here, the section
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of the XML data dedicated to the Group Addresses view is shown. It is structured into
two nested GroupRange elements where the inner one contains the actual GroupAd-
dress elements. This hierarchy matches the segmentation of KNX group addresses in
main groups, middle groups and sub groups. The outer GroupRange element stands for
a main group, the inner one represents a middle group and the GroupAddress elements
map the sub group. Like proposed for the previous view elements, the Name attributes
of the XML elements are transferred to the BrowseName and to the DisplayName
attributes of the OPC UA object instances derived thereof. The Address field of the
GroupAddress elements is mapped to the sub group field of the value attribute of the
KNXGroupAddress OPC UA variables of this model. The value of main group and the
middle group component follows from the location of the GroupAddress element in
the hierarchical XML description. The result of this mapping can be seen in the right
branch in Figure 3.23.

<GroupAddresses>
<GroupRanges>
<GroupRange Id="P-032A-0_GR-1" Name="Main Group" RangeStart="1"
RangeEnd="2047">
<GroupRange Id="P-032A-0_GR-2" Name="Light A" RangeStart="1"

RangeEnd="255">
<GroupAddress Id="P-032A-0_GA-1" Address="1" Name=

"Light A Brighter / Darker" />
<GroupAddress Id="P-032A-0_GA-2" Address="2" Name=

"Light A On / Off" />
.
.
.

In the Buildings element of the XML export file the content of the ETS4 Buildings
view is represented. The levels of the BuildingPart elements correspond to the levels
where the entities are located in the ETS4 project. Each XML element contains of an
Id, a Name and a Type attribute. The Type attribute declares the type of the element,
for example Building or Floor like seen in the listing below. The bottom level XML
element, the DeviceInstanceRef is used to reference the devices located in a distinct
building part entity. In the Topology element, where the devices are defined, each
device gets a DeviceInstance Id assigned. Its value is used to identify a device. In
this example, the dimmer device with the ID P-032A-0_DI-1 (indicated by the RefId
field) is located in Room1 of Floor4 in BuildingA, like illustrated in Figure 3.23.
<Buildings>
<BuildingPart Id="P-032A-0_BP-0" Name="BuildingA"

Type="Building" ...>
<BuildingPart Id="P-032A-0_BP-1" Name="Floor4" Type="Floor" ...>
<BuildingPart Id="P-032A-0_BP-2" Name="Room1" Type="Room" ...>
<DeviceInstanceRef RefId="P-032A-0_DI-1" />
<DeviceInstanceRef RefId="P-032A-0_DI-5" />

.

.

.
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The XML view element which is still remaining is the Trades element like listed
below. The attribute of the Trade element relevant for this information model is
the Name. It is again mapped to the BrowseName and to the DisplayName of the
resulting OPC UA objects, which can be seen at the trades branch in Figure 3.23.
The DeviceInstanceRef elements declare the KNX devices assigned to a distinct
trade. The dimmer device (RefId=“P-032A-0_DI-1”) mentioned before is part of
the Lighting trade which is also reflected in the OPC UA model.

<Trades>
<Trade Id="P-032A-0_T-0" Name="Lighting"

CompletionStatus="Undefined">
<DeviceInstanceRef RefId="P-032A-0_DI-1" />
<DeviceInstanceRef RefId="P-032A-0_DI-2" />

</Trade>
<Trades>

3.3.4 Proof of concept

To show the practical feasibility an existing commercial building management server
implementation, the so-called Voyager BMS Server developed by the company NETx-
Automation5 has been prototypically extended. Among other features, this product
implements an OPC UA server and connectivity to KNXnet/IP interfaces. Hereby it
allows to integrate KNX installations by means of OPC UA. Within the research project
“iModelA”, an importer module for ETS4 project data has been developed. It takes a
“.knproj” export file containing the information about a KNX ETS4 project. The file is
extracted, its XML content is processed. Following the mapping scheme of KNX project
information to an OPC UA address space like introduced before, the respective instances
are created in the OPC UA servers address space. The resulting address space exactly
corresponds to the information of the originating ETS4 project. This allows an OPC UA
client exploring the server to have the same view on the KNX installation as defined in
the ETS4 project - naturally including the runtime values of the KNX datapoints.

3.4 Integration of BACnet

In order to realise the integration of BACnet, OPC UA servers need to be included into
the hierarchical communication infrastructure of building automation networks. They
are used to collect data from different BACnet controllers to expose a live process image
to e.g., an overlying BMS. The latter encompasses an OPC UA client which connects to
this OPC UA server. The client can be either in the same network or even at a remote
location. In this case, the firewall of the router must be configured properly such that it
passes the connection requests of the OPC UA client to the network.

5https://www.netxautomation.com/netx/en/products/server/bms-server
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3.4.1 Mapping the BACnet application model to OPC UA

In order to enable OPC UA clients to access a building automation network via an
OPC UA server, a meaningful representation of its application model must be defined
and instantiated on the OPC UA server. This representation is realised in form of an
OPC UA information model which follows a detailed mapping of information entities
from the technology to be integrated (i.e., in this case the BACnet application model)
to OPC UA nodes. A significant resemblance in BACnet and OPC UA facilitates this
intention: both standards follow an object oriented approach. However, the modelling
concepts in OPC UA are more advanced than in BACnet since, e.g., the latter does not
support inheritance. Thus, defining a type hierarchy is not possible in BACnet. Another
similarity exists in addressing the objects reflecting process data. In BACnet, objects
have an Object_Identifier, properties have a Property_Identifier. In OPC
UA, nodes are referenced by their NodeId. A mapping of these two addressing schemes
is presented in Section 3.4.2. Furthermore, the concepts of services used to access data
are similar in both standards. Access services to read and write exist in both worlds.
Alarm and event handling are also defined which allow, for example, the monitoring of
process variables and triggering of an event or an alarm if a change of values happens or
a threshold is exceeded.

Due to the flexible modelling capabilities of OPC UA, the BACnet application model
can mapped to the OPC UA object model in a relatively straight-forward way. The
chosen approach is to transform BACnet objects to OPC UA complex objects. BACnet
properties as members of BACnet objects are in turn mapped to OPC UA variables
referenced by the corresponding OPC UA objects. In order to instantiate an entity in
OPC UA, a type describing its structure has to be defined before. This needs to be done
for the objects, variables, and references.

Since the value attribute of a variable is of a particular data type, the first step is to
define a data type hierarchy that represents the available BACnet data types. Some of
these BACnet data types can directly be mapped to the built-in OPC UA data types. For
instance, the BACnet property type REAL (e.g., used by the property Present_Value
of a BACnet Lighting Output Object type) can be modelled as the OPC UA
Float data type. However, there are also complex BACnet property types that cannot
be represented by built-in OPC UA primitive data types. Two examples thereof are the
BACnetObjectIdentifier and the BACnetObjectType. However, the OPC UA
base model defines the data type Structure intended to represent complex data types.
These BACnet data types are modelled as subtypes of the OPC UA Structure data
type. An exemplary part of this definition is shown in Figure 3.24.

All user-defined BACnet data types are subtypes of the user-defined abstract data type
BACnetPropertyDatatype which is inherited from the OPC UA built-in data type
Structure. For each user-defined structured data type, at least one encoding has to be
defined that is used by clients to correctly interpret the user-defined data structure. In the
proposed model, DefaultBinary encoding is chosen for all user-defined data types. For
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Figure 3.24: BACnet datatype definition
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Figure 3.25: BACnet reference type definition
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every encoding, a description of the type (represented by a DataTypeDescription-
Type node) exists which in turn is a component of the BACnetPropertyDictionary.
Within this user-defined dictionary, the entire encoding is described in XML format. For
the BACnet property type BACnetObjectIdentifier, according to Part 3 of [32] the
XML representation looks as follows:
<StructuredType Name="BACnetObjectIdentifier">
<Field Name="ObjectType" TypeName="Bit" Length="10">
</Field>
<Field Name="InstanceNumber" TypeName="Bit" Length="22">
</Field>
</StructuredType>

After having defined the BACnet data types, the BACnet properties have to be represented
in OPC UA. To achieve this, user-defined OPC UA variable types are defined that are used
for the instance declarations of the BACnet properties. Each of these BACnet specific user-
defined variable types is a subtype of the abstract user-defined BACnetPropertyType
variable type. This abstract variable type contains the user-defined OPC UA property
BACnetPropertyID which represents the BACnet Property_Identifier. This
attribute is unique for each BACnet property. A selection of these variable type definitions
is shown in Figure 3.26. To create individual OPC UA variable types, the corresponding
attributes of the new variable type have to be set. The DataType attribute is set to the
corresponding user-defined OPC UA data type as described before. The AccessLevel
informs the OPC UA client about access permissions to the particular variable. In
this information model, the access permission facet of the conformance code in BACnet
properties is mapped to the AccessLevel attribute each OPC UA variable type
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has. Possible values are Readable and Writeable. The variable type definitions in
Figure 3.26 reflect this circumstance. Examples for further attributes to be set are the
BrowseName and the DisplayName which are both set to the human-readable name
of the BACnet property defined in the standard. To assign the variables representing
BACnet properties to OPC UA objects, references are used. To express the special
semantics of these references, the new reference type HasBACnetProperty is defined.
This reference type is inherited from the hierarchical type HasComponent as illustrated
in Figure 3.25.

Now having all the necessary components available, the BACnet object types can be
modelled in OPC UA. All BACnet object types are represented by user-defined OPC
UA complex object types that are all subtypes of the abstract user-defined BACnetOb-
jectType. This object type contains the BACnet properties Object_Identifier,
Object_Name, and Object_Type which are common to all BACnet objects. The
assignment of the variables that represent the BACnet properties to the corresponding
object type is done by using the HasBACnetProperty reference mentioned before. To
model the part of the conformance code of BACnet properties that specifies whether a
property must be present or not, an OPC UA ModellingRule is defined for each variable.
In this information model, only the Mandatory and Optional ModellingRules are
used. The former forces the particular variable to be instantiated, the latter leaves only
an option for that.

Inherited from the abstract BACnetObjectType, all BACnet object types that are
specified in the standard can be represented in OPC UA. Figure 3.27 shows an example
how the BACnet Device Object type and the BACnet Lighting Output Object
type are defined using this concept. As shown in this figure, only the object specific
variables are defined – the common ones are inherited from the supertype. As it is
common in OPC UA, the HasSubtype reference is used to model the relation between
sub- and supertype. An example of how meta information can be modelled is also shown
in Figure 3.27 in form of the EngineeringUnit node referenced from the Power
variable. To model the assignment of a unit to the value of a variable, the UPC UA
built-in reference HasProperty is taken.

3.4.2 Instantiating and addressing of BACnet objects in OPC UA

After having presented how BACnet object and property types are modelled in OPC
UA, it must be specified how instances of these types are represented by the OPC UA
server and how the BACnet address information is mapped to OPC UA. In BACnet, each
BACnet object is dedicated to exactly one BACnet device – BACnet objects are therefore
never distributed across more than one BACnet device. Therefore, it is reasonable to use
a device-centric view. Each BACnet device is represented as an OPC UA object instance
of the user-defined object type BACnetDeviceType which in turn is a subtype of the
standard OPC UA BaseObjectType (cf. Figure 3.27). The corresponding BACnet
objects are assigned to the OPC UA object by using the user-defined HasBACnetObject
reference which is a subtype of the standard OPC UA HasComponent reference type
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Figure 3.27: BACnet object type definition

(cf. Figure 3.25). Figure 3.28 shows an example how a BACnet device that contains a
BACnet Device Object and a BACnet Lighting Output Object is modelled.

What is still remaining is how the BACnet properties can be addressed. BACnet properties
are addressed by the Property_Identifier which is unique within the object. In
the proposed information model, this can be done by reading the BACnetPropertyID
property that is dedicated to each BACnet variable definition. To address the BACnet
object, the Object_Identifier which is unique within the device is used. The
Object_Identifier can be determined by the reading the value of the Object_-
Identifier variable that is mandatory for each BACnet object. Finally, to address
the device itself, the BACnet Device_Id or the Device_Name which are both unique
within the whole BACnet network can be used. To determine the BACnet Device_Id
within the OPC UA model, the value of the Object_Identifier variable of the
Device Object has to be read – to determine the Device_Name, the value of the
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Figure 3.28: Instantiation of a BACnet device
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Object_Name variable of the Device Object has to be retrieved. As a result, the
combination of the value of the BACnetPropertyID property, the value of the OPC UA
Object_Identifier variable, and the value of the Object_Identifier variable
of the Device Object (or the value of the Object_Name variable of the Device
Object) is used to address a BACnet property in the presented OPC UA model.

Figure 3.28 illustrates an instantiation of a BACnet Lighting Output Object. Con-
sider, for example, an OPC UA client browses to the Present_Value variable of the
BACnet Lighting Output Object and intends to read the value of it. To read
its current value, the OPC UA server needs to invoke the BACnet ReadProperty
service. To send this request, the BACnet address information has to be determined.
First, the Property_Identifier is retrieved by reading the BACnetPropertyID
property of the Present_Value variable (in the proposed example 85). Afterwards,
the value of the Object_Identifier variable is read (in the given example 1). Then,
the Device_Id is determined by reading the Object_Identifier variable of the
Device Object (in the proposed example 29054). Using the combination of these
values, the OPC UA server is able to send the ReadProperty request to the BACnet
device. After having received the response, the OPC UA server is able to forward the
present value to the OPC UA client.

3.4.3 Proof of concept

In the context of the research project “Web-based Communication in Automation (Web-
Com)”6 an OPC UA framework called Comet has been developed by the project partner
HB-Softsolution7. Among other software modules, it contains a Software Development
Kit (SDK) for implementing Java based OPC UA servers. This server SDK is functionally
separated into two parts: one is the core OPC UA server which is based on the OPC UA
Java stack released by the OPC foundation. This core server loads the standard OPC
UA information model plus any user-defined information model out of one or more XML
files. This way the configuration part is completely isolated from the implementation’s
source code. As a result, the server’s information model can be changed and extended
even during runtime. The second part of the server module consists of a driver framework
which allows to implement interfaces to particular network technologies that can be
loaded into the core server. These drivers are responsible for interacting on protocol level
with the targeted networking technologies. Depending on these technologies, the stack
implementations can freely be chosen. The driver framework only provides an API for
read and write methods which have to be implemented individually.

To evaluate the developed information model for BACnet, a proof of concept imple-
mentation was created. The implementation uses the Comet framework to implement
an OPC UA for BACnet/IP networks. The driver implementation for the required
interface to the BACnet/IP network is based on the open source BACnet4J stack8. It is

6http://www.webcom-eu.org/
7http://www.hb-softsolution.com/
8https://github.com/infiniteautomation/BACnet4J
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Figure 3.29: OPC UA Model Designer

a performant implementation of the BACnet/IP protocol supporting all BACnet services
defined in the standard and the majority of objects. Emulating a BACnet device (i.e.,
creating a BACnet server) by instantiating local BACnet objects is also suitable for this
implementation.

Another important software module of the Comet framework is the OPC UA Model
Designer which is used to implement the developed BACnet information model. As an
editing tool, it can be used to generate OPC UA information models and extend existing
ones. It provides a Graphical User Interface (GUI) that supports the user in applying
definitions of data types, variable types, reference types, and object types. Furthermore,
instances can be derived from these type definitions in a very comfortable way. The
hierarchical structure of the resulting information model is expressed by a tree view.
A screenshot in Figure 3.29 shows the definition of the BACnet Lighting Output
Object (without completeness of properties) embedded in its type hierarchy.

The information model created by the Comet Model Designer is finally exported in
XML format which conforms to the XML Schema Definition (XSD) issued by the OPC
Foundation [148]. This XML file can be opened again by the model designer for further
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editing or it can be used as input for the Comet OPC UA Server.

To show the feasibility of the developed information model, an instance of a real-world
BACnet controller was modelled within the Comet Model Designer. This BACnet
controller is used to control a (HVAC) test installation within a laboratory setup. The
resulting OPC UA model of this BACnet controller is loaded into the Comet OPC UA
server. Tests have proven that it is possible to control the HVAC test installation using
a standard OPC UA client (UaExpert from Unified Automation9) connected to the
BACnet/OPC UA server.

3.5 Integration of building and industrial automation
domains

Bridging the two domains of building and industrial automation systems at their man-
agement levels is a topic hardly regarded so far. Nevertheless, cross-domain integration
promises significant benefits in terms of resource consumption and costs optimisation
where systems of both worlds encounter each other. To this aim, this section presents an
OPC UA information modelling framework providing a holistic information base for both
domains. This facilitates the implementation of cross-domain management applications
also in the context of smart grids with the potential goals to coordinate the reuse of
waste energy, to avoid peak loads and to predict energy demand.

In the past, OPC UA models have been defined to integrate automation system within
a distinct domain, whether building or industrial automation. Going one step further,
the same can be done when creating a common view on these two different domains.
A scenario where this is applicable appears when considering a factory plant with an
associated office building nearby. Normally, when a distinct size is exceeded, functional
buildings are highly automated. In the industry, automation systems are also very common
nowadays. By integrating the automation technologies of both domains into one unified
management system, several benefits arise. Based on a condensed information base, cross-
domain optimisation tasks become possible regarding the overall resource consumption,
for example. In times where an increasing awareness on resource consumption and
sustainability is established, this is an important goal to be met. Beyond that, peak
load avoidance and resource demand prediction are applications where a cross-domain
integration model can act as a basis, too. Both are requirements for a future smart grid
roll-out. These goals can be achieved when a comprehensive management application
(like a rule-based system, which is out-of-focus here) can be put on top of this cross-
domain integration approach. It hereby gains unified access to the underlying automation
networks. The integration layer acts as a well-structured source for process data and as
an enabler to realise the mentioned use case. In the management application, predefined
rules can be processed by an inference engine to derive optimised control decisions as
well as demand predictions based on the information provided by this model.

9https://www.unified-automation.com/products/development-tools/uaexpert.html

83



3. First level integration using OPC Unified Architecture

In a preliminary publication where the author contributed[149], a comparison of different
methods for integration has been carried out. This resulted in an information modelling
approach based on OPC UA. First steps towards a modelling framework with the goal
to address cross-domain management application has finally been introduced. These
concepts are refined here where the focus lies on the description of the two-tier modelling
approach. This included information models dedicated to distinct automation technologies
on the one hand and on the other hand a cross-domain data aggregation model. The
results of an empirical evaluation by means of a prototype implementation are shown in
the last section of this chapter.

3.5.1 Cross-domain scenarios

The methodology applied in this work starts with an exploration of representative use
cases with a resource-saving background using information from both industrial and
BASs.

Energy efficiency in production plants is a topic getting little attention, yet. In many cases,
e.g., in heavy industry plants, cooling water is disposed without considering its residual
thermal energy. The fictive “Company XY” which will be taken as an example here
processes steel in rolling mills. A huge amount of heat needs to be purged from the rollers
to prevent them from overheating. Nearby the factory building, there is an office building
housing the company’s administration. This building needs to be heated in winter and
air-conditioned during summer time. It is obvious that waste energy from the rolling
mill, if available, can potentially be used for supplying the heating of the administration
building and also the air conditioning system by using an absorption chiller. Besides the
physical infrastructure necessary to transport hot water from the plant to the office build-
ing and distributing it properly to the consumers, HVAC automation networks and the
control systems in the factory plant must negotiate the waste energy exchange in some way.

Not only when it comes to smart grid integration [150], [151] peak-load avoidance is a
remarkable topic. It is also an effective way to save energy costs [152]. When consid-
ering building automation and the factory automation systems in a holistic way, peak
loads in the factory plant can be compensated by reducing power of the HVAC system.
The electricity intake of an air conditioning system for a medium-sized building can
be remarkable. The huge thermal capacity of such a building will almost completely
absorb a short-term break in cooling supply. Like in the previous scenario, informa-
tion exchange must take place between the two domains - factory and building automation.

Inferences about the current operating condition of equipment can be drawn by monitor-
ing their power consumption. This method, which is called condition monitoring, allows,
for example, the in-time detection of bearing wear-outs or failed light bulbs. Ideally,
failures are indicated to the facility manager or the plant operator which are then enabled
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to trigger countermeasures like issuing maintenance personnel.

From these use case scenarios, requirements with respect to information necessary to
enable the realisation of these use cases are derived. This is done by evaluating the
following two questions:

• Which information might be exchanged between building and industrial automation
systems?

• Which information is common to both domains?

As a result of this process, the following pieces of information originating in both domains
are necessary to achieve the proposed functionality:

• Measurement values of electricity consumption, heat consumption or dissipation
• Pre-processed status information about the operating conditions of equipment
• Setpoints to feed control decisions back to the automation networks
• Topological information of buildings and plants to uniquely locate equipment

3.5.2 Two-tiered OPC UA information model

The modelling approach shown here shall provide a holistic view on cross-domain automa-
tion systems. As a result of this use case analysis, not only functional information needs
to be represented, but also a topological description of the physical properties and the
equipment deployed is necessary. The resulting topology model scales from a fine-grained
device oriented view to an abstract exposition of aggregated information dedicated to
distinct use cases. This reflects the intended use of this information model in a two-tier
OPC UA server hierarchy. The lower level OPC UA servers integrate distinct automation
technologies from a specific domain, whereas the upper level OPC UA aggregation server
integrates the information from the underlying ones and provides the desired abstract,
domain-independent view.

Topological model

This part of the information model has already been introduced in [149]. Figure 3.30
shows the definition. It basically follows the ISO 16484-3 [153]. Therefore, and also
because it is quite self-explaining we will not go into it very deeply. However, important
characteristics of it are the connection points for the device oriented technology models
based on the DI specification [145] on the one hand and for the aggregation model on
the other hand. So to speak, the topological model is the central element, the common
denominator of the two tiers of the model. It contains TopologyElementType In-
stanceDeclarations referenced by each topological object. The TopologyElementType
ObjectType is defined in the DI specification. It represents the “basic information compo-
nents for all configurable elements in a device topology”. This includes, most important, a
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Figure 3.30: Topological model

ParameterSet and a MethodSet object, an object to group parameters and methods
by their semantic and a locking mechanism for synchronisation purposes. Moreover,
the TopologyElementType is the super type of DeviceType and the BlockType
ObjectTypes also defined in the DI specification. This means for the proposed topology
information model that the TopologyElementType InstanceDeclaration acts as a
placeholder for DeviceType and BlockType InstanceDeclarations. This circumstance
is later used when integrating automation technology models (based on the DeviceType)
and the aggregation model (based on the BlockType) into the topological model.

Technology models

In the meanwhile, a number of so-called Companion Standards for OPC UA exist, e.g.,
the already mentioned DI, the OPC UA Information Model for IEC 61131-3 [154] (OPC
UA Information Model for IEC 61131-3 (PLCopen)) or the OPC UA Information Model
for BACnet [56] which has currently the status of a release candidate. These additional
specifications built upon the OPC UA base information model aim at vertical integration
of automation technologies as an approach to overcome the well-known interoperability
issue.

In order to show the integration of BASs to the proposed cross-domain approach, again
KNX is taken as a prominent technology representative. Since this cross-domain modelling
framework based on the DI standard [145], this is also a prerequisite for the technology
information models of the two domains to be integrated. To be precise, this restriction is
a result of the use of the TopologyElementType as a linking element for technology-
specific models in the topological model described in the previous section. Therefore, the
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Figure 3.31: OPC UA information model for a KNX switching actuator (refined)

87



3. First level integration using OPC Unified Architecture

device view of OPC UA information model for KNX presented in Section 3.3, is redefined
in a way such that it builds upon the device model of the DI specification. The resulting
model of an OPC UA ObjectType definition for a KNX switching actuator is shown in
Figure 3.31. The introduced type hierarchy starts with an abstract KNXDeviceType,
which is a subtype of the DI DeviceType. The Property KNXDeviceAddress models
the physical address of the KNX device. As a child of the KNXDeviceType, a concrete
KNXSwitchingActuatorType is defined. As required by the DI model, it references a
ParameterSet InstanceDeclaration to group the devices’ COs. TwoStateDiscrete-
Type and AnalogItemType VariableTypes as defined in the OPC UA Specification
Part 8: Data Access [146] are taken to model the actual COs. In order to express
a categorisation in InputCOs and OutputCOs, the concept of FunctionalGroups,
which is also taken from the DI specification is used.

As a representative of an information model for an industrial automation standard,
the PLCopen information model, also based on DI and therefore compatible with the
topological model, shall be mentioned in this context. It exposes configuration data
as well as runtime data (variables of an IEC 61131-3 PLC program) via OPC UA. It
therefore allows to make relevant information of an IEC 61131-3 compliant PLC accessible
via OPC UA. This will be shown later in one of the cross-domain model instances and
also used in the course of the empirical evaluation.

Aggregation model

The information aggregation part of this cross-domain model is designed to specifically
expose datapoints necessary to realise the use cases previously stated. This is in contrast
to the designation of the similarly named OPC UA Specification Part 13: Aggregates
[155] which defines an information model for exposing pre-processed historical data.
Interpolated and averaged data, extreme values and results of statistical calculations can
be integrated using the meta model of this part of the UA specification.

For the aggregation model defined in this work however, types from the DI specifica-
tion are used as a foundation for the new types introduced here. The definition is
illustrated in Figure 3.32. Inherited from the BlockType, which is a subtype of the al-
ready familiar TopologyElementType, the ConsumptionMonitoringBlockType,
the WasteEnergyMonitoringBlockType, the RunControlBlockType, and the
ConditionMonitoringBlockType are defined. In order to improve structuring, the
AggregationBlockType is introduced. Instances of this type are intended to be finally
integrated into the topology model. The AggregationBlockType further references
use case specific BlockTypes as its Components whereas the OptionalPlaceholder
ModellingRule expresses a cardinality of zero to arbitrary many possible instances of each
BlockType. The RevisionCounter Property each of the five ObjectTypes introduced
here have in common is inherited from the definition of the BlockType.

The ConsumptionMonitoringBlockType and the WasteEnergyMonitoring-
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Figure 3.32: Aggregation model
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BlockType indeed have the same properties but clearly differ in their semantics. The
former BlockType describes the consumption of energy of a distinct carrier indicated by
the Medium Property, whereas the latter does the same for emitted energy. The Param-
eterSets will be filled with actual datapoints when the BlockTypes are instantiated.

The ConditionMonitoringBlockType differs in one aspect from the other Block-
Types. In the ParameterSet InstanceDeclaration of this BlockType an InstanceDec-
laration of a Status variable is already present. This MultiStateDiscreteType
InstanceDeclaration, defined in OPC UA Part 8: Data Access [146] uses a Mandatory-
Placeholder ModellingRule. This means that the ParameterSet of an instance of
this BlockType must have at least one Status variable. The MultiStateDiscrete-
Type requires an EnumStrings Property defining the different values a variable of this
type may have. Examples for possible values are Normal, Critical, and Failed. It
is task of the aggregation server to classify the analog value under observation (like the
current consumption of a lighting) by comparison to predefined thresholds.

In order to allow a superior layer (e.g., a Knowledge-Based System (KBS)) to feed back
the results of its control decisions, setpoints from underlying automation systems shall be
exposed by the RunControlBlockType in this information model. Its ParameterSet
object shall be taken to reference analogue setpoints for temperature values, e.g., or
binary and multistate values for representing run levels of machines.

The information model in Figure 3.33 exemplarily illustrates the instantiation of elements
from the aggregation model as well as from the topological model. Therefore, the term
topo-aggregation model is introduced. The topological elements describe the structure
of a company site, CompanyXY, including an office and a factory building. The office
building has several floors, where two of them are shown in this figure. The second
floor includes a conference room where a KNX lighting application is deployed (not
visible in the aggregation model). The companies factory building houses a rolling
mill consisting of a number of rollers (one of them is shown in this figure). Several
AggregationBlockType instances are referenced by elements of the topological model.
For clearance, the actual datapoints exposed by the aggregation blocks are not shown in
this model. The mapping of datapoints from technology models to the topo-aggregation
model is illustrated in the following section.

The OfficeBuldingMonitoring aggregation block provides sub-blocks which aggre-
gate metering data for heat and electricity consumption of the office building as well as
setpoints for the HVAC system. For a more fine-grained monitoring of the energy con-
sumption of a distinct floor, aggregation blocks can be applied for a specific floor or even
a room, like shown for the Floor2Monitoring and the ConferenceRoomLightMon-
itoring blocks. Metering data at building and floor levels can be gained, for example,
from smart meters. The ConferenceRoomLightMonitoring block provides besides
information about the electricity consumption also condition monitoring information
gained from measurement values of a KNX light switching actuator. At the production
plant branch of the topological model hierarchy, FactoryBuildingMonitoring and
Roller1Monitoring aggregation blocks are instantiated. The former fulfills the same
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Figure 3.33: Topo-aggregation model instance

purpose as the OfficeBuldingMonitoring. The Roller1Monitoring block not
only provides condition monitoring and electricity consumption information about the
electrical drives of the roller but also informs about the amount of waste heat available
originating in its cooling system.

Model transformation

As previously described, the modelling approach presented in this cross-domain integration
approach bases on a two-layered abstraction. The upper layer (the topo-aggregation
model) has already been discussed in the previous section. The lower layer is constituted
of technology specific OPC UA information model instances on the one hand, for example
the one for KNX and IEC 61131-3, and on the other hand it includes instances of the
topological model. Therefore, this lower layer is called topo-technological model. The
transition of datapoints from the topo-technological model to the topo-aggregation level
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is defined by the following rules:

• Rule 1 : The ParameterSet of instances of the MeteringBlockType, the
WasteEnergyBlockType and the RunControlBlockType directly reference
variables from technology models using a HasComponent reference

• Rule 2 : The ConditionMonitoringBlockType ParameterSet has one or
more status variables of the MultistateDiscreteType. No direct mapping
of datapoints originating in a technology model takes place here. Instead, the
values of these multistate variables are calculated by the aggregation server. Analog
values exposed by technology models are classified by comparison against predefined
thresholds. Possible results of these calculations can be, e.g., Normal, Critical
and Failed.

The application of these rules is exemplarily shown in Figure 3.34 for a KNX BAS as well as
in Figure 3.35 for an IEC 61131-3 model. Right-hand in Figure 3.34, a topo-technological
model of the conference room in the fourth floor equipped with a KNX switching actuator
is presented. The runtime datapoints (actually, the COs) of this device are exposed
beyond the ParameterSet object. They include two binary setpoints, Output 1,
Switching and Output 2, Switching of the TwoStateDiscreteType. Their
TrueState and FalseState properties provide the meaning of the two binary states,
namely in this case "On" and "Off". A FunctionalGroup object categorises the
two setpoints as InputCOs. The Output 1, CurrentIntensityValue and the
Output 2, CurrentIntensityValue act as OutputCOs. They provide feedback
of each light circuits’ electricity consumption. KNX devices with this feature already
exist on the market10. EngineeringUnit properties inform about the unit of these
physical quantities.

In the red-boxed part (the topo-aggregation model) of Figure 3.34, the Conference-
RoomLightMonitoring aggregation block is shown in detail. The ParameterSet
of the ConditionMonitoring sub block exposes two multistate variables, Cir-
cuit1Status and Circuit2Status. According to Rule 2, the values of these vari-
ables are calculated by the aggregation server classifying the values of the Output 1,
CurrentIntensityValue and the Output 2, CurrentIntensityValue analog
items of the KNX switching actuator model. Concerning the ElectricityConsump-
tion block type, information aggregation is performed by applying Rule 1. Its Parame-
terSet object is linked to the two current consumption variables of the KNX switching
actuator model by HasComponent references and therefore provides direct access to
these measurement data at aggregation level.

Analogously to the previous model transformation example, Figure 3.35 in its blue-boxed
part shows the OPC UA information model of an IEC 61131-3 compliant PLC. In this
example, PLC1 is dedicated to control (parts of) Roller1 of our RollingMill and is

10GIRA http://www4.gira.com
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Figure 3.35: Datapoint transition in an industrial automation model
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therefore referenced by the according topology items. Besides some static information,
the OPC UA server running on the PLC provides access to a number of global variables
of its IEC 61131-3 program (indicated by the GlobalVars functional group). In
this case, the CoolingWaterTemperature, the CoolingWaterFlowrate, and the
PowerMotor1 are exposed. The topo-aggregation model in Figure 3.35 consists of
an Roller1Monitoring aggregation block referenced by the Roller1 object. The
status information (Motor1Status) provided by the ConditionMonitoring block
is calculated based on the value of PowerMotor1 using Rule 2. Depending on deviation
from a predefined normal value, failures in this drive and the attached mechanics
can be detected. The WasteHeat block is intended to expose information about the
amount of waste heat currently available by the roller’s cooling water. Therefore, the
ParameterSet of this block references the CoolingWaterTemperature and the
CoolingWaterFlowrate variables of the PLC’s information model. By this means,
these physical quantities including engineering units are transformed to aggregation level.
An OPC UA client operating at the top level of a cross-domain automation system can
easily derive the amount of waste energy available and is enabled to base its control
decisions on heat distribution upon this information.

3.5.3 Proof of concept

In this section, a prototypical, distributed implementation of the model approach described
in the previous sections is presented. The two-tiered model hierarchy is also reflected by
the OPC UA server hierarchy of the prototype. As presented in Figure 3.36, a server
architecture divided into two layers is set up. The lower layer servers integrate the
components of the underlying automation networks by instantiating the respective topo-
technological models. The aggregation server on top concentrates relevant information
from the sub servers and instantiates the topo-aggregation model.

For the factory automation domain, a Fischertechnik11 tool machine acts as a target
model located at TU Dresden. Its fieldbus devices are connected to an isNet Lite by
ifak system12. The isNet Lite is a general-purpose Ethernet-gateway which is capable of
integrating a number of fieldbus protocols. This is enabled by a modular design allowing
to connect up to five different fieldbus modules to the isNet Lite. In this setup, a Profibus
DP module (isNet DP) is used to integrate a number of Profibus devices. The integration
platform runs an OPC UA server which is able to expose datapoints of the underlying
field devices to superior applications. The OPC UA information model the isNet Lite
implements is compliant to the OPC UA for IEC 61131-3 specification.

At TU Vienna, a process model emulating a central air conditioning system common
in functional buildings is set up. It consists of a variety of field devices necessary to
measure and influence the air flow, like fans, pumps and flaps as well as sensors for
temperature and humidity positioned in the air flow. This process model also includes a

11www.fischertechnik.de
12www.ifak-system.com
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Figure 3.36: Two-tier server architecture

test chamber where the conditioned air is fed in. The sensors and actuators are connected
to a Siemens PXC100 BACnet controller. Via a dedicated I/O module, this controller
is also able to integrate M-Bus metering devices by mapping the meter readings to the
BACnet application layer, i.e., BACnet objects. In our setup, we have a heat meter whose
cumulated energy datapoint is mapped to a BACnet Analog Input object. For lighting
control, a simple KNX installation consisting of several switches, dimming sensors and
actuators is deployed.

By means of an OPC UA server which is based on the Java server SDK offered by HB-
Softsolution13, these three technologies are accessible via OPC UA. The respective OPC
UA technology models and driver interfaces for the server have already been introduced
in the previous Sections 3.2, 3.4. One additional OPC UA server in this setup dedicated
to the building automation domain has been implemented by NETxAutomation14. This
server is currently able to integrate KNX, M-Bus and several other building automation
technologies. For the implementation of the OPC UA aggregation server at the top level

13www.hb-softsolution
14www.netxautomation.com
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Figure 3.37: OPC UA client view
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of this hierarchy, the Java Server SDK from HB-Softsolution was taken. In order to
connect to the underlying OPC UA technology servers, the aggregation server needs to be
equipped with a client interface. The address space of the server part holds instances of
the introduced topo-aggregation model. It heavily depends on the actual use case and the
current application which datapoints of the technology models are desired for aggregation
and further, via which aggregation block they should be made accessible. Therefore, this
needs to be decided individually in each case. In a first step, the required BlockType
instances are loaded into the aggregation server address space. This is facilitated by using
a GUI-based OPC UA modelling editor called ModelDesigner which is also provided
by HB-Softsolution. It generates an XML output representing the information model
which can be loaded by the aggregation server during runtime. In a second step, the
model transformation introduced in Section 3.5.2 is put into practice. Instances of both
technology specific OPC UA models and the aggregation model present in the address
spaces of the technology servers and the aggregation server are logically linked. Like
shown in the model transformation section, references fulfilling this purpose need to be
instantiated. For this purpose, a graphical tool for configuring the aggregation server was
developed. Via its GUI it allows the user to enter the NodeIds of the respective nodes of
the aggregation and the target technology model. This results in an according reference
across both respective servers to be created. However, not only direct references like
necessary to apply transformation Rule 1 (defined in Section 3.5.2) are possible. Also
arithmetical and logical calculations as well as condition checks can be executed on the
originating value. Hereby, the implementation of transformation Rule 2 is supported
by the aggregation server as well. Furthermore, even more complex operations can be
carried out by loading external JavaScript files containing the desired instructions.

Figure 3.37 shows the address space of the aggregation server exposed to an OPC UA
client. This screenshot was taken from UAExpert, a freeware client software of Unified
Automation15. It can be seen that the topo-aggregation model instance proposed in
Figure 3.33 was implemented for this prototype. Going into detail of the Roller1 object,
the Roller1Monitoring aggregation object groups a number of blocks. One of them,
the WasteHeat block exposes two variables via its ParameterSet, the CoolingWa-
terFlowrate and the CoolingWaterTemperature. These two datapoints originate
in the IEC 61131-3-compliant address space of the isNet Lite. This shows the application
of model transformation Rule 1. Rule 2 is applied concerning the Status variable of the
ConditionMonitoring block. Its multi-state value is calculated by the aggregation
server based on the power consumption value of the roller drive, which is made accessible
via the ElectricityConsumption block.

3.6 Results

To the aim of first level integration, OPC UA information models have been presented
for the prominent building automation technologies KNX, BACnet and also for M-Bus

15www.unified-automation
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to cover the integration of smart meters. The KNX information model also includes
meta information about the physical location of a KNX device, the associated trade as
well as the network topology. In order to enable an OPC UA server to reflect the actual
configuration of a live KNX installation, a method has been introduced to automatically
import the ETS4 XML export data into an OPC UA server. To extend interoperability
to systems from the domain of industrial automation, an OPC UA information model
for bridging the fields of building and industrial automation systems has been defined.
Starting from the previously defined automation technology mappings to OPC UA and a
basic topological model describing buildings and plants, transformation rules towards
this cross-domain aggregation model have been defined. Following the requirements
derived from representative use cases, the application of these transformation rules is
shown by means of integrating datapoints from OPC UA information models for KNX
and IEC 61131-3 into the cross-domain model. In order to show principle practical
operation, prototypical implementations were described for BACnet, KNX and cross-
domain integration.
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CHAPTER 4
Second level integration into

knowledge-based systems

This chapter is based on the contributions of the author to the following publications:

A. Fernbach, W. Granzer, and W. Kastner,“Knowledge Based Building and Energy
Management,” Tagungsband der e-nova 2015, Forschungs- und Studienzentrum Pinkafeld,
Nov. 2015.

A. Fernbach, I. Pelesic, and W. Kastner, “Linked Data for Building Management,” Proc.
of the 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2016),
Oct. 2016.

A. Fernbach and W. Kastner, “Gebäudemanagement durch wissensbasierte Systeme,”
Kommunikation und Bildverarbeitung in der Automation: Ausgewählte Beiträge der
Jahreskolloquien KommA und BVAu 2016 Zum 10jährigen Jubiläum des InIT - Institut
Für Industrielle Informationstechnik, ser. Technologien für die intelligente Automation.
Springer Vieweg, 2017, pp. 97–106.

The work presented in this chapter has been carried out in the context of the research
project “Secure and Semantic Web of Automation” (SeWoA) funded by the Austrian
Research Promotion Agency.

4.1 Introduction
In the life cycle of buildings, plenty of different disciplines and companies are involved.
Therefore, a unified information base for the whole building and its components and
technical equipment is highly beneficial. One approach aiming at this goal is Building
Information Modelling (BIM). There exist standards mostly focusing on architectural and
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building physical properties, like the Green Building XML (gbXML) schema [78] or the
Industry Foundation Classes (IFC) [77]. A further improvement would be to include a
description of the technical equipment and building automation components as well, and
to make the resulting model accessible in a unified way. This chapter aims at a holistic
knowledge base for buildings providing views on static building and automation systems
configuration as well as runtime information, i.e., access to live values of datapoint
originating in the building automation systems. This includes sensor values, setpoints,
calculated or aggregated values as well as time series of historical values.

By the future establishment of the Internet of Things (IoT) [96] in this area with numerous
IPv6-based end devices, the degree of automation and the resulting complexity will further
raise. Besides highly efficient control and maintenance strategies, use case scenarios like
demand side management, load shifting, and energy feedback are future goals of Building
Management Systems (BMSs). To this aim, not only building-inherent information
sources for energy demand predictions but also external information concerning forecasts
for weather conditions and the production of renewable energy sources (e.g., solar or
wind) as well as current energy market prices need to be taken into account. For reaching
the ambitious goals regarding energy savings and smart consumption of renewable energy
within the context of smart grids, a further interoperability problem needs to be solved.

Ontologies, i.e., the patterns behind a knowledge base, suite well for describing buildings
and their components. There is already previous work done in this field like [107]
and [156]. [157] provides a broad overview on existing ontologies from the domain.
Besides the sophisticated modelling capabilities of ontologies, a knowledge base supports
also an easily accessible semantic query (SPARQL Protocol and RDF Query Language
(SPARQL)) interface which enables access to all building related information relevant
for the whole building lifecycle. Application scenarios enabled by this approach are
for example predictive maintenance, energy management and optimisation. A future
application might be an intelligent control system taking the knowledge base as an
information source to found its decisions on control strategies on it.

The integration attempt proposed in this thesis encompasses two main levels: the first
level integration, i.e., creating a technology-independent and abstract integration layer
unifying access to the plethora of different (legacy) automation systems operating a
modern building has already been presented in Chapter 3. This shall further include
upcoming IoT devices. OPC Unified Architecture (OPC UA) was utilised for legacy
systems integration whereas for IoT devices, Open Building Information Xchange (OBIX)
will provide the necessary semantic interfaces. The collected information from the
subsystems is concentrated in a Knowledge-Based System (KBS). This is denoted as
second level integration. By definition, such a system is in turn set up by two components:
an ontology which is a description logic-like model (a schema in the Terminological
Box (TBox) of the KBS) of the universe of automation systems, building geometry and
physics, user behaviour and external conditions. This ontology mainly builds upon the
Think-Home open vocabulary [156] and extends it by a comprehensive device model and
also access control mechanisms for each datapoint. The second component of the KBS is
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constituted of the actual individuals (the instances or the Assertional Box (ABox) of a
KBS) representing the actual building, its environment and the automation equipment.
A process for an automated generation of these individuals from OPC UA and OBIX
information models, which are written in XML, by means of an Extensive Stylesheet
Transformation (XSLT) [34] will be elaborated in Chapter 5.2. Since the OBIX and OPC
UA information models can also be automatically instantiated by parsing engineering
tool data or by running discovery procedures on building automation networks [158], a
fully automated engineering chain throughout the integration layer and the KBS will be
created.

As already mentioned, there exists a query language for knowledge bases called SPARQL.
Via this interface, semantic queries can be executed. To illustrate the capabilities of
SPARQL, examples for possible queries include but are clearly not limited to:

• Are every switching and dimming actuators of a distinct floor in “off” state?

• Which lamps in a building have exceeded a distinct operating time?

• Which lamps in a building are broken?

• How many rooms of a building are occupied?

• Which unoccupied rooms at the southern or western front of the building have
their shutters in “down” position?

The SPARQL interface answers with boolean values or with the respective positive
instances. On the other hand, it is also possible to update property values in the KBS
by SPARQL statements:

• Perform a “central full open” to all shades of a distinct building part.

• Reset all cycle counters exceeding a distinct value.

• Activate or deactivate, respectively, proper electricity consumers for demand side
management or flexibility trading purposes.

The changes made in the KBS shall be propagated via the first level integration layer to
the underlying automation networks in order to update actual datapoint values.

4.2 Ontology modelling
Information entities in a knowledge base are inherently put in relation to each other in a
matter that it correlates to the reality it is intended to describe. It is represented in form
of a graph built on a system of subject-predicate-object relations. Subject and objects
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are entities whereas predicates constitute the type of relations among them. Additionally,
typed entities, and also restrictions on relations like a domain and a range as well as
cardinalities are supported. Semantic Web concepts are used to address (HTTP URIs), to
structure (Resource Description Framework (RDF) and SPARQL) and to cross-reference
(also using HTTP URIs) other resources on the Web. This fulfils the principles defined
in the concept of linked data [159].

The “SeWoA" ontology, which is developed within this chapter mainly bases on the
ThinkHome ontology [156]. ThinkHome in turn combines and extends a number of
independent, pre-existent ontologies. For realisation of the previously defined uses
cases, two parts of ThinkHome are most relevant, the “architecture and building physics
ontology” and the “energy and resources ontology”. The former provides geometrical
and structural information about a building, the materials in use and their physical
properties. In [156], a transformation scheme from gbXML to this ontology is already
described. The defined XSL transformation process encompasses both the model level
and the instance level. By this transformation scheme, an automated mapping from
the gbXML model to ontology concepts (TBox) as well as building up the according
instances (ABox) from gbXML files representing actual architectural projects. The
“energy and resources” ontology describes the technical equipment of a building like
Heating, Ventilation and Air Conditioning (HVAC) as well as lighting applications, the
control systems, i.e., the building automation components based on different technologies
including a fine-grained state model to describe the physical state of the devices underlying
processes and quantities. Within this chapter, the device model has been extended to
expose the most-widespread used field devices in a building like lighting and shading
actuators, brightness and temperature sensors, presence detectors and air quality sensors.
The device and datapoint semantics, i.e., the underlying physical quantity, engineering
units and value ranges, included in the knowledge base are gathered from OBIX and OPC
UA information models from the first level integration layer. These models can not only
be exposed by integration servers providing unified access to legacy building automation
resources. The integration of OPC UA-enabled components or IoT devices natively
hosting an OBIX server is also an option. The ontological representations of these devices
include meta information about the energy consumption for energy management purposes
and also properties for counting operating hours and cycles. By these means, predictive
maintenance measures of e.g., lamps, shutters and valves are enabled.

In order to realise a flexible, consistent and fine-grained access control concept it appeared
most convenient to implement the necessary mechanisms within the KBS. To this aim,
the Social Semantic SPARQL Security for Access Control (Social Semantic SPARQL
Security for Access Control (S4AC)) [47] vocabulary has been integrated into the SeWoA
ontology and properties representing live values of building automation resources have
been enriched with concepts defined in S4AC. The S4AC is based on Access Conditions
formulated as SPARQL ASK queries. If such a query evaluates as true, the access
condition is said to be verified. The so-called Access Evaluation Context models the
relation between resources and requesting users. By Access Tagging Rules the link
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Figure 4.1: SeWoA ontology instance

between Access Conditions, Access Evaluation Contexts and privileges (read, update,
delete, create, append) is established. A tag set defines the names of RDF graphs which
are concerned by the Access Conditions. Having these concepts integrated into the
SeWoA ontology, it is possible to define access policies of arbitrary complexity which
scale from single datapoints to any named RDF (sub-)graph.

Figure 4.1 shows a snippet of an Web Ontology Language (OWL) model of an office
room equipped with a number of room automation components. OWL concepts are
denoted by yellowish circle symbols, whereas OWL individuals are illustrated by purple
diamonds inside the boxes. The Office1 individual is an instance of the Office con-
cept. This office room shown here is part of the 3rdFloor which in turn is embedded
in a larger building context. For simplicity reasons, the overlaying hierarchy is not
shown in this figure. The individuals representing sensors for temperature, air quality,
occupancy and brightness (KNXTempertureSensor1, KNXCO2Sensor1, KNXHumid-
itySensor1, DimmerLamp1, KNXOccupancySensor1, KNXBrightnessSensor1)
are associated with the Office1 individual by hasSensor object properties. In order to
differentiate the semantics, devices like the dimmer lamp and the shade are referenced by
isIn object properties. The Shade1 individual and its object properties are expanded
for clearance in this figure. On one hand, the shade is linked to a KNXShadeController
instance which in turn has KNX as a building automation network type. The physical
state of the Shade1 is represented by LouvresState1 and the ShadeState1 individ-
uals. For maintenance purposes, a cycle counter has been added, too. The actual value
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of the distinct states is encapsulated in individuals of the OWL class State-Value like
the entity at the very bottom of Figure 4.1. In a first version of the SeWoA ontology,
which was published in [160], the URIs of the individuals of these State-Value classes
encode all the parameters necessary to uniquely identify a node (in this case, a variable
node) in the address space of a first level integration resource. By this measure, the
logical link between the KBS instances representing actual datapoints and the underlying
values in the integration technology (OPC UA, OBIX or other Web service protocols) is
established. Address encodings defined here encompass paths to OPC UA variable nodes,
contracts on an OBIX server or Constrained Application Protocol (CoAP) resource
locators to devices that are natively addressable by restful Web services (WSs). Via this
referencing mechanism, the datapoint individuals in the knowledge base have a link to
physical networks and components in a building’s installation which a KBS can process.
SPARQL queries and updates on the knowledge base can hereby deliver live values from
the underlying field devices and automation components and allow to influence setpoints
or every other writable variable.

The reference designation system defined in IEC 81346 is used in a further development of
the ontology, published in [161]. Hereby, convergence is achieved in both static information
model domains: BIM and automation systems configuration. This is essential for the
following automated knowledge base instantiation which is described by means of the
following example.

We consider a temperature sensor located in room number 22 of the fourth floor of
building DE. The resulting reference designation of this sensor is -BT04+DE+04+22
where -BT04 describes the product aspect of being a temperature sensor and +DE+04+22
the location aspect. Provided that in the devices’ OBIX contract as well as in the gbXML
model the same building topology naming scheme is used, the temperature sensor can
be automatically associated to the respective room, floor and building. This principle
is illustrated in the ontology snippet shown in Figure 4.2 where the yellowish circles
denote OWL classes and the purple diamonds indicate OWL instances. The instances
are organised in a hierarchical way with a building individual on the top. The fourth
floor of this building contains a room labelled DE0422. The temperature sensor instance
labeled -BT04+DE+04+22 is assigned to this room via a IsIn reference. A textual
description of the device instance (e.g., “Room Temperature Sensor”) can be given as an
OWL annotation.

Like already introduced in initial version of the SeWoA ontology, the goal of this knowledge
base concept for building management is not only to consolidate static building information
but also runtime data from the automation systems deployed in a building. In Figure
4.2 the -BT04+DE+04+22 temperature sensor exposes a state TemperatureState4
and a value TemperatureStateValue4 (an ontology design concept defined in [162]).
Analogously, the lighting -EA02+DE+04+22 has a state OnOffState02 and a value
OnOffStateValue02. The state value individuals are kept up to date with the actual
sensor or actuator values during runtime.

The logical connection between the state value representation in the knowledge base and
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Figure 4.2: Building and device ontology instance aligned by IEC 81346 reference
designations

the actual datapoint in the underlying automation system is in the extended version of
the ontology realised by an annotation with the corresponding datapoint address. In
detail, a data property carrying the the datapoint address is referenced by the state
value individuals. This alteration has been done for flexibility reasons to decouple the
datapoint address, which might change sometime from the state values’ URI. In the
following example, this concept is shown for the already introduced temperature sensor
and the lighting -EA02+DE+04+22 located in the same room. In order to demonstrate
the mapping from two integration standards used in the building automation domain,
this process is illustrated by means of the temperature sensor assumed to have an OBIX
interface and the lighting being integrated via OPC UA. At the moment, there do not
exist general mapping schemes from OBIX contracts and OPC UA object types to
the OWL knowledge base representation because of the high diversity in automation
components where each type needs to be treated individually. Nevertheless, for a number
of further field devices (among others, a presence detector, an air quality meter and a
sunblind actuator), a mapping from OBIX and OPC UA to OWL has been defined.

The following listing shows an OBIX object of a temperature sensor:

<obj name="-BT04+DE+04+22" href="/hvac/Sensors/TemperatureSensor04"
displayName="RoomTemperature">
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<real name="value" href="value" val="24.23"
unit="obix:units/celsius"/>

</obj>

It contains the name of the object, the destination of the resource (href) and a human
readable display name. Besides the current measurement value, also the engineering
unit is provided. The corresponding knowledge base individual in RDF/XML notation
representing a state value (i.e., a datapoint object) looks like the following:

<owl:NamedIndividual rdf:about="&SeWoA;TemperatureStateValue4">
<rdf:type rdf:resource="&SeWoA;TemperatureStateValue"/>
<SeWoA:realStateValue rdf:datatype="&xsd;float">24.23f

</SeWoA:realStateValue>
<SeWoA:hasOBIXAddress rdf:datatype="&xsd;string">

http://128.130.56.51:8080/hvac/Sensors/
TemperatureSensor04</SeWoA:hasOBIXAddress>

<SeWoA:hasNativeUnit rdf:datatype="&xsd;unitEnum">Celsius
</SeWoA:hasNativeUnit>

</owl:NamedIndividual>

Like shown in Figure 4.2, this TemperatureStateValue4 individual is embedded in
the context of another individual (-BT04+DE+04+22) standing for the physical temper-
ature sensor. The state value individual shown in the above listing provides, besides type
information, all the attributes exposed by the OBIX object. The present datapoint value is
exposed by the SeWoA:realStateValue element. Via the SeWoA:hasOBIXAddress
element containing the URL of the OBIX object, the link from to the knowledge base
individual to the associated live OBIX datapoint is realised.

Like for OBIX, the OPC UA specification defines an XML Schema Definition (XSD)
for an XML format in which OPC UA information models can be saved. Usually, OPC
UA modelling tools export information models in XML files of this format. OPC UA
servers can load such XML files and instantiate their address spaces which are then
exposed to OPC UA clients accordingly. In the following, an excerpt of such an XML
representation describing an OPC UA variable node is shown. Variable nodes are used
in OPC UA to model datapoints. Besides a BrowseName attribute, which is set to the
reference designation of the lighting -EA02+DE+04+22, there is also a human-readable
localised DisplayName attribute reading LightOnOffState. The actual value is of
type Boolean and currently set to false.

<Node i:type="VariableNode">
<NodeId>
<Identifier>ns=3;i=325433</Identifier>

</NodeId>
<NodeClass>Variable_2</NodeClass>
<BrowseName>
<NamespaceIndex>5</NamespaceIndex>
<Name>-EA02+DE+04+2</Name>

</BrowseName>
<DisplayName>
<Locale>en</Locale>
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<Text>LightOnOffState</Text>
</DisplayName>
...
<Value>
<Value>
<Boolean>False</Boolean>

</Value>
</Value>
...
</Node>

The XML fragment describing the OWL individual resulting from the previous OPC UA
variable node is shown in the following:
<owl:NamedIndividual rdf:about="&SeWoA;OnOffStateValue2">
<rdf:type rdf:resource="&SeWoA;OnOffStateValue"/>
<SeWoA:realStateValue rdf:datatype="&SeWoA;OnOffStateValueEnum">Off

</SeWoA:realStateValue>
<SeWoA:hasOPCUAAddress rdf:datatype="&SeWoA;OPCUAAddress">ServerURL=

"opc://localhost:4840" NamespaceURI=www.auto.tuwien.ac.at
IdentifierType= Numeric Identifier=325433
</SeWoA:hasOPCUAAddress>

</owl:NamedIndividual>

Analogously to its temperature sensor datapoint sibling, this OnOffStateValue2
datapoint individual is also referenced by a device individual (-EA02+DE+04+22) rep-
resenting the actual lighting. Besides the type information and the actual state value,
there is an XML element containing the address information necessary to access the
associated OPC UA variable node. It can be seen as a container for a network-wide
node address consisting of the server URL, and the OPC UA NodeId consisting of the
NamespaceURI, the IdentifierType and the numeric Identifier itself.

4.3 A Semantic Web integration platform

4.3.1 Architecture

For a prototypical implementation of the knowledge base, the Java based open source
Semantic Web framework Apache Jena1 has been chosen as a basis. The prototype’s
architecture, like already mentioned, can be seen on top of the automation pyramid in
Figure 4.3. As a test environment for this prototype, Zolertia2 IoT devices as well as an
OBIX server running the integration middleware IoTSys3 has been used. The Apache Jena
framework provides an RDF triple store, which is instantiated by means of the previously
generated XML files, the output of the XSLT. It also comes with a SPARQL endpoint
which allows executing semantic queries and updates on the RDF triple store. The RDF
triple store holds a knowledge representation of the building topology and the automation
systems configuration. Additionally to this static information, it shall also incorporate

1https://jena.apache.org/
2http://www.zolertia.com
3https://github.com/mjung85/iotsys
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a live image of the underlying automation systems datapoints. This is achieved by an
OPC UA as well as an OBIX client module which communicate with the triple store
via an Application Program Interface (API). Via their network interfaces they establish
connections to the underlying OBIX and OPC UA resources. More precisely, OPC UA
and OBIX client modules register subscriptions on underlying datapoints corresponding
to the knowledge base individuals instantiated in the triple store. The data properties in
the RDF triple store and the underlying datapoints are mutually synchronised, either via
the integration servers (OBIX and OPC UA) or by directly interacting with IoT-enabled
devices. Figure 4.4 illustrates the interaction of the semantic BMS with an underlying
OBIX resource, i.e., data synchronisation in upwards and downwards direction. The
OBIX or OPC UA addresses necessary to access the correct resources are gained from the
hasOBIXAddress or from the hasOPCUAAddress properties of the respective OWL
individuals. After an initialisation phase, where the building knowledge base creates an
OBIX watch object on the OBIX server, it registers all OBIX objects corresponding to
OWL individuals for change-of-value observation by calling a WatchIn operation. In this
example, this is only shown for the OBIX TemperatureSensor04 object corresponding
to the -BT04+DE+04+22 OWL individual. The OBIX device acknowledges the WatchIn
request by a WatchOut object containing the current value of the respective OBIX object.
From now on, the building knowledge base continuously polls for value changes. If this is
the case, the OBIX client gets informed and updates the value of the hasNativeValue
data property of the datapoint individual via the API of the triple store. Value buffering
achieved this way is necessary for performance reasons with respect to SPARQL queries
traversing a huge number of datapoint individuals for their value. Otherwise, if the
current values would have to be requested from the OBIX and OPC UA resources when
the query is issued, a considerable load in the underlying building automation network
would be the result. This would in these cases lead to an unreasonable response time of
the query.

This SPARQL query delivers all simple (switched) lamps which exceeded an operating
hours count of 1000h:
SELECT ?lamp ?hours
WHERE {

?lamp rdf:type sewoa:SimpleLamp.
?lamp sewoa:hasOperatingHours ?operatinghours.
?operatinghours time:hours ?hours
FILTER(?hours > 1000)
}
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Figure 4.3: Knowledge-based BMS architecture

The following update statement (in SPARQL, this is done via DELETE and INSERT
requests) causes a “central fully open” to all shades of a building:
DELETE { ?value sewoa:realStateValue ?datavalue }
INSERT { ?value sewoa:realStateValue "100" }
WHERE {

?shade rdf:type sewoa:Shade.
?shade sewoa:hasState ?state.
?state rdf:type sewoa:ShadeState.
?state sewoa:hasStateValue ?value.
?value sewoa:realStateValue ?datavalue.
}

4.3.2 Runtime Interaction

In Figure 4.4, two exemplary SPARQL queries are shown. The first one requests for all
temperature sensors with a reading greater than 20.0 degrees. The query returns the
-BT04+DE+04+22 individual and the buffered value of its associated data property. It
is also possible to update states of the automation components by means of SPARQL
queries which is shown in the following query in the same figure. The meaning of this
query is to perform a central-off to all lights in the fourth floor DE04. Such a write access
is realised using the SPARQL Update language by first removing the respective data
properties by a DELETE statement followed by an INSERT statement which creates
new data properties with the new false value. For every updated individual, the event
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listener of the RDF triple store API triggers the OBIX client to send write requests
containing the new value to the regarding OBIX objects on the underlying resource.

4.4 Results
In this chapter, an approach for second level integration of BIM and automation tech-
nology data into a BMS has been shown. A concept of a holistic knowledge base
encompassing building information, automation systems and live process values was
introduced. Moreover, a workflow of aligning information originating from different
sources, namely topological building models (BIM) and automation systems OBIX or
OPC UA interfaces using the IEC 81346 reference designation system has been shown.
This information transformation process has been realised by means of an XSLT which
has been empirically evaluated for a limited set of entities. In order to show runtime
interworking of this automatically instantiated knowledge base with actual automation
components, an Apache Jena-based prototype equipped with OBIX and OPC UA client
functionality has been implemented. An open source project named OpenKB4BMS4

including both the transformation stylesheets and the knowledge base implementation
has been published on GitHub. It can already be concluded that a ontology-based KBS
in combination with a pervasive information flow down to the field level of automation
systems and building information allows the realisation of use cases that would not be
possible with a conventional approach. The plus of the concept introduced is the high
flexibility provided by a SPARQL interface.

4https://github.com/afernbach/openKB4BMS
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Figure 4.4: Runtime interaction of a building knowledge base with an OBIX device
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CHAPTER 5
Building automation systems and

security engineering

This chapter is based on the contributions of the author to the following publication:

A. Fernbach and W. Kastner, “Semi-automated engineering in building automation
systems and management integration,” 26th IEEE International Symposium on Industrial
Electronics (ISIE), Jun. 2017.

A. Fernbach and W. Kastner, “Certificate Management in OPC UA Applications: An
Evaluation of different Trust Models,” Proc. of 17th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA ’12), Sep. 2012.

The work presented in this chapter has been carried out in the context of the research
projects “Web-based Communication in Automation” (WebCom), “Secure and Semantic
Web of Automation” (SeWoA) and “Kognitive Regelstrategieoptimierung zur Energieef-
fizienzsteigerung in Gebäuden (KORE)” funded by the Austrian Research Promotion
Agency.

5.1 Introduction

Building planning as well as automation systems engineering involve numerous disciplines
participating in a many-phase process. However, the information transitions between
these different phases are mostly carried out manually which results in multiple sources
of errors. Additionally, information which is already present is repeatedly manually
re-entered during the whole workflow. This especially applies for Building Automation
System (BAS) engineering where on the other hand the majority of necessary information
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is already generated during the planning phase. To address this issue, the first section of
this chapter proposes a workflow of semi-automatable engineering for BASs, and also
first level and second level integration. This workflow is presented by means case studies
on representative technologies from the respective levels.

In automation systems integration, where networks are interlinked to the office and IT
infrastructure and even opened to the World Wide Web, strong security measures are
required. OPC Unified Architecture (OPC UA) provides a powerful and inherent security
model. The same applies for HTTPS-based [163] Web service communication of Open
Building Information Xchange (OBIX) servers and SPARQL Protocol and RDF Query
Language (SPARQL) endpoints. These mechanisms in both technologies rely on software
certificates. In an integrated automation system, where OPC UA and Web services (WSs)
are applied, also a strategy must be defined how to manage these certificates, i.e., an
organised way of distribution, validation and revocation needs to be found. In general,
there exist different concepts of how to achieve this goal. Moreover, there are various,
in some cases platform dependent frameworks available which assist the developer in
implementing a suitable concept. To this aim, the second part of this chapter gives an
overview of these concepts and frameworks and discusses their positive and negative
aspects depending on the structure of different environments in which OPC UA and Web
service applications shall be embedded.

5.2 Semi-automated engineering based on planning data

Today’s lifecycle of a building normally starts with following consecutive phases involving
a considerable number of different disciplines:

• Strategic planning

• Preliminary studies

• Project planning

• Construction bidding

• Realisation

• Operation, including maintenance and retrofitting

The information flow between these different phases is usually not carried out in a
consistent way leading to information loss and misinterpretations finally resulting in
severe problems and delays during the realisation phase. Initial requirements to the
building physics and building services are fulfilled incompletely and thus construction
and integrator companies are confronted with long lists of deficiencies.
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In this context, one of the most affected trade is the integrators of technical building
equipment. The information flow from building services planning to automation sys-
tems engineering involves extensive manual information transfer processes. Automation
systems planning data needs to be interpreted by the engineers and technology spe-
cific engineering tool projects for device and system configuration need to be set up
accordingly. These tasks involve repetitive and tedious steps which are error prone and
time consuming. Additionally, many planning offices and integrator companies use their
individual designation systems for automation systems and components which often
provide only low expressiveness and therefore involve the danger of ambiguous systems
description. This is again an error source during planning and engineering. It also
exacerbates vendor independence and later third-party integration of example for data
monitoring applications.

The goal of this section is to describe a process of continuous and machine readable
information flow from building services planning to automation system engineering and
also management gateway integration. Planning information shall be - as far as possible
- entered once and reused during the whole workflow.

There have already been published concepts addressing this question. The most elab-
orated concepts in this field are [126] and [164]. They describe a multi-tiered method
of automated design. Main attention is turned on fieldbus and automation systems
but these approaches have a weak focus on the integration level. There exists also a
commercial tool providing a data exchange interface between CAD programs and the
KNX engineering tool Engineering Tool Software (ETS). This so-called “ETS APP
PROJECTDATAEXCHANGE” from IT Gesellschaft für Informationstechnik mbH1 also
by its nature focuses on the field and automation level.

The general information flow of planning a building and its automation system components
to the engineering at automation level and integration level is shown in Figure 5.1. The
orange-colored arrows indicate the application of models, i.e., the patterns behind the
instances generated during this workflow. Models in this application field can be Building
Information Modellings (BIMs), standards defining designation systems for buildings
(like EN ISO 4157 [165]), technical equipment (IEC 81346-1 [79]) or technology-specific
application models like for KNX or OPC UA. During the planning and engineering
process of a building, the actual problem is formulated and instantiated applying these
models at multiple states of the overall progress.

In the beginning, when the building owner, architects, civil engineers and building
automation engineers carry out the planning phase the use of tools supporting BIM
standards like Green Building XML (gbXML) and designation systems like EN ISO 4157
and IEC 81346 reduces error sources and improves the maintainability and reliability of
produced planning data. Examples for such tools are the widespread products AutoCAD
Architecture and Eplan Electric. The resulting planning data, which can be seen as a
holistic building information model, includes structural and geometrical information of

1http://www.it-gmbh.de/
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Figure 5.1: Engineering workflow

the building as well as structured information about the technical equipment. The goal
is to include as much as possible of the information needed in following engineering
phases already at this point. This is the prerequisite for implementing (semi-)automated
technology mapping processes when it comes to automation systems engineering.

The pyramid-shaped object on the right side of Figure 5.1 shows the typical structure
of building automation systems. As already familiar, field devices based on KNX or
LonWorks interact with the physical processes in the building. BACnet [11] devices
are usually used at automation and management level. Multi-protocol integration and
gateway interaction is also located at the management level on top of this pyramid model.

The planning information previously generated (i.e., the holistic information model)
constitutes the information source for the next step, namely for mapping abstract
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building services to specific application models of building automation technologies. This
process is normally understood as automation systems engineering. Planning data is
manually processed and put into technology-specific and in most cases (except KNX
which uses the ETS) vendor-specific engineering tools. This process is carried out on
multiple layers of automation systems. Initially for field and automation technologies
but later or even in parallel when it comes to Supervisory Control and Data Acquisition
(SCADA) or Building Management System (BMS) integration or middleware engineering
on top level of automation systems. However, parts of this process can be automated
utilising information from properly structured planning data.

Figure 5.2 shows this technology mapping process in detail. It takes planning information
consisting of structural building information and automation systems description using
the IEC 81346 reference designation system. Hereby, following aspects are included
regarding automation equipment:

• Location

• Function
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• Product ID (order number)

The location aspect shares a common designation system with the building information
model and, therefore, a unique assignment of automation equipment to a topological
building element is assured. The KNX ETS technology mapping (engineering) relies on
the product aspect and the location aspect, whereas the functional aspect is optional.
In an ETS project, KNX devices are uniquely identified by their order number. This
allows to add KNX devices according to the list of IEC 81346 reference designations
to an ETS project in a straight forward manner. In a next step, the building view
in the ETS is instantiated with building topology defined in the BIM. Following the
shared building designation system, KNX devices are assigned to their intended building
topology elements. This results in an ETS project skeleton which can be automatically
generated. The ETS App Application Program Interface (API) allows to interact with
the ETS via third-party applications providing this information to the ETS. Still, there
are parts of the engineering process that need to be carried out manually. On one
hand, proper configuration of devices by setting their parameter requires information
which is not available by the proposed planning data. Moreover, the definition of
functional relationships on the level of datapoints which is achieved by the definition of
communication groups is not automatable using this concept since the designation systems
in use do not support behavioural modelling. AutomationML2 might be considered to
fill this gap. This group communication engineering is therefore a remaining manual
step which is in practical ETS project engineering carried out by assigning shared group
addresses to the intended communication partners.

In order to instantiate a first level integration middleware based on, e.g., OPC UA,
additional information is needed from the KNX ETS project. The planning information
does not include a device model giving a description of the set of datapoints a device
exposes. Also the datapoints’ semantics is missing, i.e., the datatype, engineering unit
and value range. However, this information is contained in the device model of the ETS.
The datapoint types where the ETS device model refers to are exactly defined in the KNX
System Specification. They include the desired meta information like datatype, encoding,
unit and range. In Figure 5.2, this information flow is illustrated by the upwards-heading
arrow from the ETS symbol to the integration technology mapping symbol. Additionally
to that, also the group address scheme assigned to a KNX installation needs to transferred
to such a gateway. Like a native KNX device, it needs the address information to be
able to properly access KNX datapoints in the network.

Hereby, the necessary information to instantiate an OPC UA-based middleware is
available. The topological structure can be directly gained from the BIM which is in
a further step linked to the device-related information. The result can be formalized
following the standardised OPC UA XML Schema Definition (XSD) and loaded as an
XML configuration file into the middleware implementation.

2AutomationML association, https://www.automationml.org
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This engineering process concept is illustrated in the following by an example. A model of
a building is assumed to have four floors whereas the fourth floor contains two rooms, an
office room and a meeting room. This topological elements are labelled using a designation
system like the following: Building DE, fourth floor 04, office 23 and meeting room 22.
This results in the unique designations +DE+04+23 for the office and +DE+04+22 for
the meeting room, respectively.

The gbXML code snippet for the office room is:
<Space id="+DE+04+23" conditionType="HeatedAndCooled">

<Name>Office</Name>
...

and for the meeting room:
<Space id="+DE+04+22" conditionType="HeatedAndCooled">

<Name>Meeting Room</Name>
...

The office is equipped with a switching actuator assigned with the IEC 81346 reference
designation:
=EA=KF03-5WG1562-2AB31+DE+04+23

The functional aspect of this device is declared with the hierarchical descriptor =EA=KF03
standing for a controller device being part of a lighting system. This is followed by the
product aspect -5WG1562-2AB31 representing the ETS order number of the device.
+DE+04+23 denotes the local aspect which conforms to the label of the room where the
switching actuator is located. Analogously to that, a temperature controller is denoted
with:
=EP=KF01-5WG1253-2AB_3+DE+04+22

where =EP=KF01 indicates the functionality of a controller device as part of a heating
system. -5WG1253-2AB_3 stands for the order number of the device and +DE+04+22
for the local aspect.

5.2.1 Engineering of a KNX ETS project

Following the workflow concept described in the previous section, the information from
the exemplary building model and from the device designations is taken - with respect
to the possible degree - to generate an ETS project skeleton. The screenshot in Figure
5.3 shows a snippet of the resulting ETS project configuration. The ETS Buildings view
exposes the hierarchical building topology of the building +DE with the fourth floor
+DE+04 and the two rooms +DE+04+22 and +DE+04+23. The strings representing
the human readable names of the topological objects (4th Floor, Meeting Room,
Office) are taken from the gbXML building model. Beyond these two room elements,
the respective KNX devices are instantiated. This assignment is achieved by the order
number given by the device designations.

121



5. Building automation systems and security engineering

Figure 5.3: ETS project

Additionally to the Buildings view, the ETS provides a perspective called Trades where
devices can be arranged according to their functionality. This view is used to reflect
the functional aspect denoted by the devices’ reference designation system. Hence, two
trades are instantiated, =EA for lighting and =EP for heating. Then, the exemplary KNX
devices are assigned to these items.

5.2.2 Engineering of first level integration

The following phase of automation systems engineering aims at instantiating a first
level integration middleware providing Web service access to the underlying installation.
The focus lies on integration by means of OPC UA using the upcoming KNX Web
service specification, where the author contributed. Therefore, it differs a little from the
previously introduced KNX OPC UA information models. In Section 6.1.2, an overview
of this OPC UA representation will be given. Like for the ETS engineering process,
already existing information is processed and used to create OPC UA instances. This also
includes information derived from the previously generated ETS project. The resulting
OPC UA instance which is compliant to the KNX WS specification is shown in Figure
5.4. The Root object is the entry point for an OPC UA client exploring the address
space of a server. A real OPC UA server exposes a number of folders (containing e.g.,
ObjectTypes, VariableTypes, ReferenceTypes) at this point which are not shown in
this figure except for the Objects folder. The set of instance nodes of a server are
grouped beyond this item. The orange-colored hierarchy of ViewType objects reflects
the building topology. It terminates with the two example rooms DE+04+23++Office
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and DE+04+22++Meeting Room. Via Organizes ReferenceTypes, two Objects repre-
senting KNX devices KNXTemperatureController and KNXSwitchingActuator
are linked. These two device objects can be additionally browsed via the DeviceSet
object which is required by the OPC UA for Devices (DI) companion standard. The
KNX WS specification includes this device model as already mentioned. For simplicity,
only the switching actuator device shows part of its address space. The ParameterSet
object exposes a binary datapoint variable SwitchingValue which is enriched with
datapoint semantics about the encoding (TrueState and FalseState properties) and
the originating KNX datapoint type (KNXDatapointType). As examples for static
device information, three properties informing about the serial number, revision and
manufacturer are displayed. The information necessary for instantiating the devices,
their static properties and the datapoints originates from the ETS project. One aspect
which is not visible in the OPC UA representation are the group addresses which are
required for runtime interaction between the KNX WS gateway and the KNX network.
They are also taken from the ETS project and saved internally in the gateway.

5.2.3 Engineering of second level integration

When this semi-automated engineering concept is extended to second level integration,
the next step is to automatically generate the Knowledge-Based System (KBS)’s Termi-
nological Box (TBox) and Assertional Box (ABox). Therefore, the origins of relevant
information must be identified first. In order to create a holistic representation on this
level, information from two domains need to be fed into the knowledge base and put into
relation, the domain of BIM and the domain of building automation systems.

The BIM domain delivers the structural and topological information about a building,
its orientation and its physical properties. A method how to transform a gbXML file
into a Web Ontology Language (OWL) model is already treated by [162]. Therefore,
the focus of this section lies on defining a process to transfer information regarding
automation components and devices into the KBS. Information is organised by three
different levels, the meta model level, the models level and the instances level, which
are shown in Figure 5.5. On the bottom level, the meta models of OPC UA and
OBIX on the source side and the OWL schema on the target side are situated. For
all three standards, XSD interpretations exist. The XML schemas of the integration
technologies, OPC UA and OBIX define basic datatypes, variable types and object types.
So to speak, the fundamental building blocks of OPC UA and OBIX information model
are constituted by these meta models. The OWL XML schema describes all available
modelling entities like Classes, ObjectProperties, Datatypes, DataProperties and basic
OWL axioms. Since the XSDs are defined and published by standardisation bodies (OPC
Foundation, Organization for the Advancement of Structured Information Standards
(OASIS) and World Wide Web Consortium (W3C)) and therefore they can be seen static,
no actual transformation takes place at this level.

The Models tier on the mid level of this hierarchy encompasses - speaking for OBIX
and OPC UA - technology specific information models like KNX. These information
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Figure 5.4: OPC UA instance of KNX installation
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Figure 5.5: Model hierarchy

models describe how distinct devices like a dimming actuator or a shade controller
expose their datapoints. On OWL side, the corresponding concepts or classes including
ObjectProperties and DataProperties are defined. These modelling constructs set up the
KBS’s TBox. So, the Models tier contains patterns to be instantiated when it comes to a
concrete building automation installation. This applies for both integration technologies
and OWL. Transformation rules were defined to automatically generate the TBox of
a KBS from OBIX and OPC UA information models. The Instances level is situated
on the top of this model hierarchy. Regarding integration technologies, OPC UA and
OBIX representations of concrete automation system devices and live process data - i.e.,
instances of the previously defined information models - are located here. In practice,
these instances are exposed by OPC UA or OBIX servers’ address spaces and accessible
by according clients. Analogously, like illustrated on the right (KBS) side of this figure,
individuals derived from OWL concepts which are defined in the underlying Models tier
are instantiated here. They form the ABox of a KBS. The ABox hereby represents the
automation equipment and its process data in form of a Resource Description Framework
(RDF) triple store. For the Instances level, also a transformation method exists. Its goal
is to enable an automated setup of the KBS’s ABox by the information gained from the
OPC UA and OBIX instances. The transformation processes at the Models level and
at the Instances level are implemented in form of XSL transformations. The fact that
there exist XML encodings for OBIX, OPC UA as well as for OWL suggests Extensive
Stylesheet Transformation (XSLT) [34] as the method of choice. In this work, the Saxon
XSLT and XQuery Processor3 were used for XML schema and XSLT processing.

The two major tasks of such an XSLT are on one hand to amalgamate information from a
BIM and automation technology in order to embed devices and datapoints into a building
topology, and on the other hand to include address information in the resulting knowledge
base individuals in order to make them transparent for physical access to live process
data. In the following, this procedure is described in more detail. As shown in Figure

3https://sourceforge.net/projects/saxon/
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5.6, the transformation process is divided into two branches which are in correspondence
to the two levels of the model hierarchy mentioned before. The lower branch outlines the
XSLT from OBIX and OPC UA information models to the KBS’s TBox. First, the source
XML documents are validated against their XSDs (i.e., meta models) to ensure their
syntactical correctness. Then, the actual transformation takes place. XSLT stylesheets
have been defined for this purpose. The result documents are validated against the
OWL XML schema. On Instances level, the transformation works analogously to the
Models level. After validation against the OWL XML schema, the resulting OWL XML
document containing the ABoxes are appended to the TBox OWL XML files generated
before which results in OWL XML files containing the desired SeWoA knowledge base.

Figure 5.7 shows the overall concept and information flows including BIM, building
automation systems configuration and runtime communication. Generally in this figure,
information flow regarding configuration is illustrated by blue, curved arrows whereas
the yellow, straight arrows represent runtime communication flow. The hierarchy of
automation system components, also known as the automation pyramid, is illustrated
in form of a large triangle. At the bottom of this hierarchy, there are on one hand
Internet of Things (IoT) devices and on the other hand in form of a second, inner triangle,
automation components of legacy building automation technologies like KNX, LonWorks
and BACnet. A first level integration server on top of these legacy systems provides
unified, technology-independent access by means of OBIX or OPC UA. Contrary to
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that, IoT automation devices natively provide Representational State Transfer (REST)
interfaces like OBIX. The building knowledge base located on top of this hierarchy
exchanges runtime information with the underlying systems via these OBIX or OPC UA
interfaces, respectively. A SPARQL endpoint allows to apply semantic queries on the
knowledge base.

The blue, curved arrows in the left part of Figure 5.7 show the information flow regarding
static configuration. The central point is the XSLT following the transformation process
described previously. Its output is transferred into the RDF triple store of the building
knowledge base. The XSLT operates on Models and Instances level in order to provide not
only an image of the actual building and its technical equipment to the knowledge base
but also type information and type hierarchies which are essential for semantic reasoning
on the knowledge base. Depending on which technology is in use, on model level OBIX,
OPC UA and gbXML information models are taken as an input. The topology and other
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information regarding the actual building under consideration are taken from a gbXML
file. OBIX or OPC UA XML files reflecting the automation systems configuration, i.e.,
the automation systems instances, are taken from the respective integration servers
(OBIX or OPC UA) or native IoT devices. This is illustrated in Figure 5.7 by the blue,
curved arrow originating in the automation pyramid where OBIX an OPC UA devices are
located. The IEC 81346 symbol overlaying the OBIX, OPC UA and the gbXML instances
emphasises that both information sources must follow a common naming convention
defined by this standard. Provided that this naming convention is taken into account,
the XSLT is able to align the information gathered from BIM and automation systems
engineering resulting in an embedding of the automation components in the building
topology like shown in Figure 4.2.

5.3 Security infrastructure for integration technologies

Contrary to the classic OPC specifications, security is mandatory in OPC UA [32]. This
should avoid bad experiences like made in the past with respect to developers of OPC
products relying on the security mechanisms of the operating systems the OPC application
runs on top of. This resulted in many systems being insecure and vulnerable. The security
measures of OPC UA are unbundled of the operating system, so the developers of OPC
UA products have almost full control over the security level of an application running
in a distinct environment. For Web servers, the preferred use of HTTPS instead of
HTTP communication is also usual practice today. The same should be the case when
integrating Web service-based communication in automation systems.

OPC UA provides a very flexible security model that can be adapted to the desired use
case. Also the Transport Layer Security Protocol (TLS), [61] which provides the security
mechanisms of HTTPS, defines a variety of security profiles called cipher suites. There
are different requirements on security, dependability and performance depending on the
system in which these applications are embedded. In practice, the scale of the system,
i.e., the number of OPC UA or Web service components installed as well as the human
and financial resources available have an influence on the question, which approach leads
to the optimal solution. The challenge is to find a trade-off between these requirements
for each distinct environment. This circumstance is elaborated by comparing different
ways of setting up such a secure infrastructure. Therefore, an introduction into the
security architecture of OPC UA and TLS is given first. In OPC UA, communication
between servers and clients is based on a session on top of a Secure Channel. TLS also
establishes a session where an HTTP connection is set up on top. For both procedures,
digital certificates are necessary. This leads to the question of how to establish trust
relationships between these applications. Section 5.3.2 is dedicated to this topic. In the
following Section 5.3.5, various software frameworks aiming at this target are presented.
The chapter ends with a discussion (Section 5.3.6) where several methods of managing
certificates based on different models of trust are briefly compared and evaluated.
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Figure 5.8: OPC UA security architecture ([32] Part 2)

5.3.1 Security architecture in OPC UA and Web services

Secure connections between an OPC UA client and a server are based on a three-layer
architecture. This is shown in Figure 5.8. Connections established by the transport
layer of the OSI Reference Model are based on server and client sockets. Here it is taken
care of error detection and error recovery to achieve a reliable connection between the
communication partners.

Based on this socket connection, a secure channel is opened by the communication layer
of the OPC UA protocol stack. The communication layer is responsible for exchanging
data in a secure way. Therefore, multiple security features are fulfilled: Data integrity is
guaranteed by digitally signing the content transmitted. Data confidentiality is assured by
encryption of data. In order to identify other applications and grant access, authentication
and authorisation mechanisms are applied. For this purpose, ITU4 X.509 certificates
[166] are used. The same is an option for users instead of password-based authentication
and authorisation.

The application layer on top of this architecture provides services for transmitting data,
calling methods and exchanging configuration data between server and client in a session.
Within a session, communication partners like users and certain products have to be
authenticated and authorised. These tasks are managed by the OPC UA session services
defined in the OPC UA specification Part 4 [32].

The TLS protocol has its roots in the commonly known Secure Socket Layer Protocol
(SSL), which was released in 1994 by Netscape [167], [168]. In the end of the nineties,
an adoption took place by the IETF TLS working group which resulted in the new
protocol name “Transport Layer Security”. The current version is TLS 1.2 which is
briefly described in the following. Figure 5.9 shows the TLS architecture embedded in the
context of the OSI Reference Model. It is located at the Session Layer (Layer 5) on top of

4International Telecomunication Union, www.itu.int
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Figure 5.9: TLS architecture (adapted from [169])

the connection-orient communication of TCP/IP. It works as a transparent intermediate
layer to application layer protocols like HTTP which allows its easy adaption.

TLS consists of two sub layers where the protocols from the upper layer (TLS Handshake
Protocol, TLS Change Cipher Spec. Protocol, TLS Alert Protocol, TLS Application
Data Protocol) are used for control purposes and the TLS record protocol at the lower
layer. The latter handles the secure communication when the connection is established
by assuring Data confidentiality and Data integrity. Authentication of communication
partners is realised by the TLS Handshake Protocol using asymmetrical public key
cryptography. For this purpose, like in OPC UA, in most cases X.509 certificates are
used. However, also Pretty Good Privacy (PGP) keys [170] are supported. The TLS
Application Data Protocol interlinks the data stream from the overlying application
protocol with the TLS record protocol.

5.3.2 Certificate management

There exist different rules describing which entity creates certificates and how they are
validated. These sets of rules constitute various trust models which are presented in the
following. A digital certificate is an electronic document basically containing a Public Key
(for deeper information about public key cryptography cf. [171]) and identity information
about the owner of the certificate. A digital signature applied by a trusted third party,
the Certification Authority (CA) or by the owner itself (self-signed certificates) is used
to bind these two attributes together. This way, every other entity can check if the
integrity of the certificate is preserved. Other attributes which are also included in a
digital certificate are a serial number, a version field, the issuer of the certificate (the
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CA or the owner) and the validity period. There may be also a field to be filled in with
further information. The public key of a public/private key pair bound to the owner of
the certificate is used for example for message encryption between a client and a server.

There must be found a way of organising the creation, distribution, validation and
revocation of certificates. Some technical and organisational infrastructure is necessary
to achieve this goal. Neither the OPC UA standard nor TLS define how such an
infrastructure should look like. However, there exist some general concepts how to
implement such an infrastructure.

The following section introduces these concepts where each of them is suitable for a
different application scenario.

5.3.3 Trust models

Trust between End Entities (EEs) is achieved by either trusting in their associated certifi-
cates or trusting in a third party (trusted third party) that has previously authenticated
the other entity. This is reflected in the different trust models introduced in the following.

A trust model can be organised in two ways, hierarchical by using one or more CAs or
user-centric (decentralised) by applying the models of Direct Trust or Web of Trust.

• A Web of Trust gets along without any CA as a trusted third party. It only consists
of EEs which make their own decision of whom to trust or not. This principle is
applied in PGP and its open source siblings OpenPGP and GnuPG. This model
does not scale well, since every EE needs to store a certificate of each EE it trusts.
Also finding a trust path from one EE to another EE in big sets can consume a lot
of computational power.

• The Direct Trust Model does not need any trusted third party, either. There are
individual trust relations between the EEs. These trust relations have to be set
individually for each EE. Therefore it does not scale well for big projects, either.
This model is a very labour intensive one because usually the certificate distribution
must be done manually (out-of-band). This method is only suitable for small
environments but unreliable and inefficient for large scales.

• In a Public Key Infrastructure (PKI) there is one CA or even more CAs as trusted
third parties in a hierarchy of inheritance which are organised like shown in Figure
5.10. A hierarchical organisation of CAs also results in a trust hierarchy, where a
sub CA always trusts its super CA. Sub CAs can be assigned to particular units of
an enterprise. This model scales well for big projects.
Another way of organising CAs is a full-meshed architecture, which is a convenient
approach if there is a lot of communication between different units of an enterprise.
This way, trust paths are kept short since there is a direct relationship between the
CAs instead of going up to the common root and back down the other branch. On
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the other hand, path discovery may be more difficult since there may be multiple
choices.

Each way of structuring a PKI has its advantages and disadvantages. A pro for
a single CA is that it is easy to maintain. On the other hand, it has limiting
effects on the size of the organisation. A multiple CA architecture scales well for
big organisations but this advantage has to be bought by an administrative effort
multiplied by the numbers of CAs present within the system.

Root CA

CA 3CA 2CA 1

EE 1 EE 2 EE 3 EE 4

Figure 5.10: Hierarchical trust model [37]

5.3.4 Public key infrastructure

Concluding the different aspects of the particular trust models it can be claimed that
a PKI is the most suitable one for the majority of automation systems integration
applications using OPC UA or WSs. The direct trust model is only applicable for very
small organisations and the Web of Trust does not scale well, either. Therefore, a closer
look at the structure of a PKI is taken. A PKI consists of the following entities which
are illustrated in Figure 5.11:

• An EE can be either an OPC UA product, an OPC UA user or a Web service
component. It requests and uses the certificates issued by the CA.

• The CA is the trusted third party in a PKI. It generates documents based on the
identity of end entities and the CA’s private key. These documents are issued as
certificates to other end entities.

• A Registration Authority (RA) is not an essential but optional component of a
PKI. It performs tasks on behalf of the CA like verifying the identity of an EE and
checking, if an EE is allowed to have a certificate, have its certificate renewed or
revoked. After this verification, the RA forwards the EE’s request to the CA.
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• The Validation Authority (VA) has the purpose of validating certificates that EEs
provide to it and returns the result of this calculation to the EEs. The validation
process is performed by verifying the signature, checking the validity period and if
the certificate has not been revoked. It must also be examined, if the usage of the
certificate is within the specified purpose.

In a PKI, there exists a so-called certificate lifecycle. Figure 5.11 shows the different
entities in a PKI and how they interact within a certificate lifecycle. It starts with
the request of certificates by the EEs (1). After verification of the request by the RA,
the request is propagated to the CA (2). The next step is to distribute the certificates
among the EEs that issued the request (3). Now, the EEs (OPC UA applications, OPC
UA users or Web service-enabled devices) can take the certificates for authorising and
authenticating themselves or for message encryption (4). The communication partner
requests a validity check by the VA (5) which in turn contacts the CA (6). Since there is a
limited period of time in which certificates are valid, they need to be renewed or updated
in case they are expired. If necessary, certificates can also be revoked. This is the case if
e.g., the private key associated to the certificate is compromised or the certificate is not
needed anymore. The usual approaches of setting up a PKI that manages the certificates
lifecycle mainly differ in the methods of distribution and revocation.

There are the following ways of distributing certificates issued by a CA among the
requesting EEs:

• Out-of-band: This method is performed manually by transporting the certificates
on a storage medium (e.g., disk, USB-stick) to the EE or transferring it by email
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to the target entity. Here it is imported into a local repository. This approach is
an easy solution for small environments but does not scale well for big ones since it
is labour intensive and unreliable because of the human component involved.

• Certificates can also be published in a central, well known, public repository like
a Lightweight Directory Access Protocol (LDAP) [172] server. This can be seen
as a Web server which provides access to a database containing certificates. The
database content is controlled by a CA. This approach provides automatic download
of certificates which makes it to a reliable solution. On the other hand, a single
server is always in danger to be confronted with Denial of Service (DoS) attacks.
Additional network traffic on an extra channel is also caused following this approach.

• In-band distribution means that an application-specific communication protocol
is used for exchanging certificates. This way, no additional channel or protocol
is necessary. Secure/Multipurpose Internet Mail Extensions (S/MIME), TLS (cf.
[173]) or even services from OPC UA can be used for this purpose.

For certificate revocation, there also exist multiple choices:

• Following the offline approach so-called Certificate Revocation Lists (CRL) are
downloaded by the EEs from public, well-known locations like LDAP, FTP, HTTP
servers at certain intervals. A CRL contains information about all the revoked
certificates of a trust domain. It is signed by the CA that publishes the list. A
CRL always reflects the past. It cannot provide any information about the current
validity of a certificate. The currentness of a CRL depends on the update intervals,
which are determined as a trade-off between network load and the desire of having
an up-to-date CRL.

• The other choice is using online mechanisms to check if a certificate is valid. EEs
connect to a service provider every time they use a certificate and thereby have their
validity checked. A common way to achieve this is by using the Online Certificate
Status Protocol (OCSP) [174]. It can provide real-time information, depending
on the source of information the OCSP server relies on. Contrary to CRLs, also
positive information can be disseminated about the validity of a certificate, i.e. an
OCSP server can explicitly declare a certificate valid.

5.3.5 Applicable PKI frameworks for OPC UA and Web services

There is a variety of proprietary and open-source PKI frameworks available today, like
OpenSSL5, Microsoft Windows Server6, OpenXPKI7, VeriSign Managed PKI Services8.

5http://www.openssl.org/
6http://www.windowsserver.com/
7http://www.openxpki.org/
8http://www.verisigninc.com/
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Most popular OPC UA Software Development Kits (SDKs) published by the OPC
foundation and the diverse software products based on these SDKs are written in .NET,
Java and ANSI C. Therefore, a small summary of which framework can be used to operate
OPC UA products in a trusted environment depending on the programming language
and other criteria will be given.

The OPC Foundation released two tools that also can be used to manage OPC UA
applications and certificates, the UA Configuration Tool and the UA Certificate Generator.
Since there already exists a Whitepaper [175] giving a description of these tools and a
guideline about the administrative procedures that lead to a secure environment for OPC
UA applications, there is no further discussion about these tools in this work.

Windows Server, .NET

A Windows based PKI is a convenient commercial solution available for a reasonable
price. Many enterprises use a Windows environment anyway, so it is only about using
additional features of Windows Server and the client operating systems. The Windows
ActiveDirectory Certificate Services exist since Windows NT 4.0 and can therefore be
considered as very mature.

Windows Server machines act as the CAs in a PKI. RAs can be set up by also Windows
based Internet Information Services (IIS) Web servers. This allows Web Enrolment, i.e.
an automatic way of certificate dissemination among the EEs. User identity information
is also gathered by an IIS server and verified by using ActiveDirectory. LDAP services
are also available via ActiveDirectory.

A step by step guideline of how to setup a Windows based PKI is provided by Microsoft
TechNet [176].

VAs are represented by the local Windows Certificate Stores of each machine, which
provide an abstract, unified way to access certificates. OPC UA applications based on
.NET must implement routines to access certificates from the certificate store. An article
which describes how to deal with certificates in .NET applications and also containing
example code can be found at the Microsoft documentation website [177].

OpenSSL

OpenSSL is an open source toolkit written in C. It implements the Secure Sockets Layer
and the Transport Layer Security protocols as well as a general purpose cryptography
library. It is released under an Apache-like licence. Supported platforms are UNIX-like
operating systems and Windows.

Besides the C libraries supporting cryptographic services, OpenSSL also provides a
command-line program called openssl with all the functionalities necessary for managing
a PKI. For this purpose, the toolkit must be installed on every machine of the environment.
Issuing certificate requests, the generation of RSA keys and X.509 certificates as well as
commands to revoke certificates and to generate a CRL are the main features of this tool.
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All these steps can be performed in a manual way where the administrator acts as the
CA and the RA. This approach is suitable for small environments. In order to handle
certificate management in bigger projects, script based execution of these operations is
recommendable. Further information containing a step-by-step instruction of how to set
up a PKI with OpenSSL can be found at the Symantec webpage [178].

OpenXPKI

OpenXPKI is an open source software implementation targeting from small installations
to enterprise-level (large-scale) PKIs. It is designed for Unix-like operating systems and
is released under an Apache licence. The key features of OpenXPKI are the support of
multiple CA instances on a single application instance in order to set up a trust hierarchy
and the capability of full automatic CA rollover. This way, continuous operation of the
PKI is assured without administrator intervention, in case one CA certificate expires
and another CA has to take over. High flexibility is achieved by an XML-file controlled
workflow engine that allows extending the basic PKI operations.

An OpenXPKI installation can act as a CA, a RA or an EE, depending of its configuration.
Certificates, private keys and revocation information are stored in a database system that
can be chosen out of the most popular ones like MySQL and Oracle. Documentation for
developers is provided on the project Webpage [179].

This solution will mainly be applicable for large scale installations because it causes quite
an effort to set up and configure an OpenXPKI based PKI. This work is best done by
professional developers. The complexity of this framework is a result of its high flexibility
and modular design.

Java

There is a powerful security API delivered with the Java SDK. It also includes classes
(java.security) related to PKI applications. Their functionalities encompass support
for X.509 certificates, CRLs and PKIX-compliant [180] certification path building and
validation [181]. Classes that provide a key store (a secure repository for cryptographic
keys) and a certificate store are also available. This makes the Java security API mainly
interesting for the use in EEs of a PKI.

Additionally, there is a command-line program named keytool which can be used for
creating and managing key stores. The main features of this tool are:

• Create public/private key pairs and self-signed certificates

• Display, import and export X.509 certificates stored as files

• Issue PKCS#10 [182] (a standardised message format) certificate requests to be
sent to CAs

• Import certificate replies obtained from the CAs as responses to certificate requests

136



5.3. Security infrastructure for integration technologies

• Designate public key certificates as trusted

More details about this tool and the Java security API can be found in the Java SE
documentation available at the Oracle Website [181].

5.3.6 Discussion

The question about the best-suited model for a given application is a hard one to find an
explicit answer on. Moreover, the development of proper security metrics which would
provide methods for quantitative comparison of different approaches is still an ongoing
field of research [183]. The likelihood is high that it is not possible to find metrics for
every security aspect. The decision on the particular trust model implementation does
not only depend on hard facts like size, structure and the equipment already in use but
is also based on personal taste. One may prefer the use of free software where it is often
more effort to set up a working system. Also hiring external experts for this purpose
may be necessary. Another one favours commercial software which is usually bought
as an out-of-the-box product including support. This again results in less effort for the
internal personnel.

However, there are several criteria that may lead the decision which solution to apply to
a distinct direction:

The budget available has a limiting influence on this choice. A single CA PKI is naturally
cheaper since there is less maintenance effort compared to the multiple amount of effort
caused by a hierarchical or a full-meshed architecture. Higher maintenance effort results
in higher personnel costs. For small applications also the direct trust model can be
feasible. This represents the cheapest solution since there is no extra security-related
equipment necessary.

The availability of human resources has a similar effect on the decision upon a trust model.
For small organisations, a single CA architecture or also the direct trust model will be
sufficient. This can be seen from two perspectives: little human resources operating a
small set of machines in a trusted environment issue little requests for certificates. This
keeps on the other side the infrastructure small, i.e., the equipment to manage these
requests and the personnel maintaining the equipment. The opposite applies to large
scales, which will result in an architecture with multiple CAs. The decision whether to
deploy a hierarchy of CAs or a mesh of CAs depends on other criteria.

Dependability may be a goal to achieve in case danger threatens humans or material if
some equipment is not available caused by a faulty trust infrastructure. In a single CA
or hierarchical CA architecture, there is always a single point of failure: The single CA
or the root CA, respectively. On the contrary in a meshed architecture no fail of the
whole PKI takes place if one CA is compromised or out of service. Only the users or EEs
are affected which have a trust relationship to the respective CA. Recovery is also easier
since a new certificate only needs to be distributed among these few affected EEs.
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Figure 5.12: Two-tier automation network establishing a hybrid trust model

It is finally convenient to map the structure of the organisation to the model of trust. This
will mostly be applicable if it is already clear that a single CA architecture or the direct
trust model will not fulfil the requirements because a distinct size of the organisation
is already exceeded. If a hierarchical structure is inherent with the organisation, i.e.,
there is mainly communication between sub units and super units, then the trust
relationship should be organised this way. On the other hand, if there is also considerable
communication between units on the same level, the meshed PKI architecture is probably
the right choice.

An idea, how trust relations can be organised in a real-world automation system is given
in Figure 5.12. It illustrates a two-tiered automation hierarchy consisting of a field
level and a backbone level, where data from the lower tier is aggregated and a common
interface to management and enterprise applications is provided.

In this example, OPC UA and Web service-enabled devices are deployed at both tiers of
the automation system. An OPC UA server is located at the backbone level to enable
standardised and uniform access to process data of the lower level, like shown in the right
part of Figure 5.12. A KBS also located at the backbone level makes a holistic view on
the integrated systems available via a SPARQL endpoint. To reflect the current trend
leading to use WSs all down to the field level, the setup also contains a network of Web
service-enabled field devices in the left lower part of the figure.
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The trust model used in this example follows a hybrid approach. The OPC UA server,
the Web service-enabled field devices as well as the knowledge base (the EEs) are part of
PKIs and receive their certificates from different CAs. There is one CA for each group of
devices: one for the Web service-enabled field devices, one for the OPC UA server and
the SPARQL endpoint of the knowledge base, and one for the management workstations,
i.e., the OPC UA and Web service clients. This way, a separation between these groups
regarding certificate management is achieved. This provides on one hand a distinct level
of dependability and keeps on the other hand the number of EEs per CA limited. In
order not to lose dependability gained by the multiple CA approach, there is no single
root CA in this system but trust between the CAs is established by implementing a
full-meshed architecture. Yet, a compromise is made with respect to scalability of the
number of CAs since the number of trust relationships between CAs grows polynomially.

5.4 Results
In the first section of this chapter, a concept for semi-automated information processing in
building automation engineering has been proposed. It defines an approach of a consistent
workflow from building and automation system planning information to the engineering
tool of the popular building automation standard KNX. Furthermore, this concept is
pursued for first level and second level integration platforms. A way to automatically
instantiate an OPC UA-based middleware on this planning data and additional device
and datapoint semantics from the KNX application model was shown. In a final step,
a transformation of this information to a KBS realising second level integration was
elaborated.

The second section of this chapter presents different methods of certificate management
(trust models) in OPC UA and Web service applications. As a reason of the limited
scalability of the Web of Trust and the Direct Trust Model, for medium and large scale
environments the PKI evaluated as the most convenient approach of managing certificates.
Nevertheless, the Direct Trust Model can be an option for low-scale automation system
in which a very limited number of OPC UA or Web service devices are installed. The
choice between the presented PKI frameworks on one hand depends on the operating
system preferred or already in use in the environment, respectively. There are frameworks
available for Windows, Unix-like platforms as well as the platform-independent Java
security API. On the other hand, different features provided by the distinct frameworks
have an influence on this decision. Finally, the structure of the control network where
OPC UA and Web service applications are installed, the resources available and the
requirements on dependability affect the strategy of managing certificates.
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CHAPTER 6
Conclusion and outlook

6.1 Results

The starting point of this thesis was the definition of problems arising when it comes
to integration in the highly heterogeneous landscape of modern Building Automation
System (BAS). The central question to be answered was:

Which state-of-the art technologies are applicable and provide the desired, tailored ex-
pressiveness for each level of integration? Moreover, how can a secure operation and an
efficient engineering workflow be assured?

6.1.1 Contributions in relation to the research question

A first step towards answering this question was done in Chapter 1 where an analysis of
existing knowledge representation languages has been carried out. This analysis resulted
in a number of integration technology candidates which in principle fulfill the requirements
on their expressive power with regard to the defined first level and second level integration
intentions. One of these candidates, i.e., OPC Unified Architecture (OPC UA) for first
level integration and the Semantic Web technologies Web Ontology Language (OWL)
and SPARQL Protocol and RDF Query Language (SPARQL) for second level integration
are instrumentalised in the following Chapters 3 and 4 to create concrete information
representations suitable for these two levels. Finally, engineering and security aspects
were addressed in Chapter 5. Hereby, the following defined requirements were taken into
account:

• Requirement 1: An infrastructure shall be created which integrates BAS technolo-
gies in a way that seamless information exchange is possible independent of the
automation technology.
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OPC UA information models have been introduced in order to integrate the
building automation technologies Meter Bus (M-Bus) (Section 3.2), KNX (Section
3.3) and Building Automation and Control Network (BACnet) (Section 3.4) into
a homogenised layer of information representation. This layer constitutes the
proposed first level integration. At the time of publication, the mappings presented
had and still have a high degree of novelty. In literature, no comparable approaches
with the focus on building automation integration exist.

• Requirement 2: The infrastructure from Requirement 1 shall be extended such
that access to systems from both industrial and building automation domains is
enabled in a unified way.
OPC UA information models dedicated to use cases bridging the domains building
automation and factory automation have been defined in Section 3.5. This includes
an architecture of integration servers allowing to seamlessly access information
from automation systems of both domains. The idea of cross-domain integration by
means of OPC UA has not been taken up by the community so far and therefore
no methods exist comparable to the ones presented in this work.

• Requirement 3: The integration infrastructure shall comprise spatial and topolog-
ical information associated with runtime and device information.
The defined OPC UA information models for KNX (Section 3.3) and especially
the cross-domain models in Section 3.5 explicitly include perspectives representing
topological information on buildings and plants. An association between these
topological models and datapoints of the underlying processes is established. The
modelling approaches in currently existing in literature mainly focus on a device-
centric view. One work which also regards topological aspects is [184] where a
meta model towards a Web service representation of KNX systems is introduced.
However, this publication has been published several years after the author’s ones
regarding this topic.

• Requirement 4: A way of representation shall be established with the capabilities
to map a holistic view of a site including building information and the embedded
automation systems. In order to cope with the expected large scale of information,
this representation shall also be able to process semantic queries.
In order to realise this second level integration where automation systems integration
together with building information models are lifted into a common context, OWL
ontologies have been defined, partly by the extension of existing ones (Section
4.2). The novelty of the resulting holistic building knowledge base is the seamless
integration of runtime data from the underlying first level integration layer. A
SPARQL endpoint allows to issue comprehensive queries to the knowledge base.
In literature, a variety of building automation ontologies exist. However, the
unique feature of the second level approach is the integration of runtime data by
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establishing a logical link between the state value instances in the knowledge base
and actual datapoints in the underlying automation systems.

• Requirement 5: A concept shall be defined which supports building automation
and integration engineering by avoiding manual information transitions between the
involved intermediate steps.

Several approaches facilitating the engineering of automation systems as well as
automatising the instantiation of integration services are proposed in this thesis.
In Section 3.3.3, a method is sketched which allows to automatically instantiate
an OPC UA server’s address space using the information provided by a KNX
engineering project. A refinement of this attempt is presented in Section 5.2 which
is dedicated to semi-automated engineering procedures at multiple levels of the
automation hierarchy. This encompasses field device engineering by means of
a case study on KNX (cf. Section 5.2.1) and automated first level integration
(cf. Section 5.2.2), i.e., OPC UA-based middleware engineering. Finally, an
approach of automatically instantiating the knowledge base described in Section
4.2 using information available in the first level integration layer is described. This
transformation process is described in detail in Section 5.2.3. As the analysis of
related scientific work showed, a considerable number of publications on engineering
support exists. Their main focus is on field device engineering where far-advanced
approaches have been developed. The novelty of the engineering workflow introduced
in this thesis is that it encompasses field devices and the two proposed integration
layers. Information defined once is reused throughout the whole process.

• Requirement 6: For the integration infrastructure to be designed, state-of-the-
art security measures shall be deployed. This especially includes measures for
establishing trust relationships between the involved components.

All integration standards used in this work allow to realise standard security features
like data confidentiality and integrity as well as device and user authentication
by using public key cryptography. These mechanisms base on X.509 certificates
which additionally provide the preliminaries to establish trust by means of a Public
Key Infrastructure (PKI). As alternatives to a PKI, other state-of-the-art trust
models are addressed in a discussion about their applicability in BASs integration
in Section 5.3. The differentiation to related work in this field is the strong focus
of this section on the context of an integration infrastructure like proposed in the
previous chapters of this work. Special circumstances like the hierarchical system
architecture and the different roles of integration components resulting thereof are
regarded.
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6.1.2 Contribution to standardisation activities: OPC UA in the
KNX Web service specification

In order to close the gap between KNX installations and the IT world by using Web
services (WSs), the KNX Association1 started an initiative which aimed at developing
the so-called KNX WS specification. In the course of these activities, a standardised Web
service interface was defined for KNX installations. It allows communication between
KNX and management IT systems by a gateway implementing this interface. This section
focuses on the OPC UA part of this KNX WSs specification which was mainly developed
by the author. However, the big picture of this specification is presented in [184].

The general approach of this KNX WS gateway concept is to expose the necessary pieces
of information inherent in a KNX network to local or remote client devices using Web
service technologies. This information includes

• Building topology,

• Device model (properties, meta information),

• Live datapoints, i.e., the process image of the underlying KNX installation.

It is further enriched with semantics including a type system and physical units. It is
intended to gain this information from the KNX Engineering Tool Software (ETS) in a
mostly automated way. To this aim, ETS projects which in most cases exclusively contain
the complete engineering information of a KNX installation are extracted. An exception
thereof are KNX devices which rely on vendor-specific ETS plugins for configuration.
The concepts of the KNX WS specification are very closely related to the way how
information about a KNX installation is represented in the ETS.

The KNX WS specification defines an abstract tag vocabulary-based meta model with
the ability to express the information mentioned above. It is independent of an actual
technology implemented by an actual KNX WS gateway. In a second step, transformation
rules from this meta model to the information models of the most common integration
technologies OPC UA, Open Building Information Xchange (OBIX) and BACnet/Web
Services (BACnet/WS) models are defined. By this way, the KNX WS specification
stays highly maintainable and extensible since changes only have to be applied to the tag
vocabulary which are automatically propagated to the derived Web service technologies
by the defined transformation rules.

For the OPC UA incarnation of the KNX WS meta model, the topological aspect of
the KNX information model is reflected by an arbitrary deep hierarchy of the built-in
ObjectType FolderType. By means of such a structure of folders, it is possible to
reflect a building layout consisting of floors, rooms and stairways. For the device and
datapoint aspects of a KNX installation, it is drawn on already published high-level OPC

1https://www.knx.org
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Figure 6.1: OPC UA KNX device model

UA information models. The already mentioned OPC UA for Devices (DI) specification
provides a very detailed concept for modelling field devices and is therefore well-suited for
the KNX device model. Figure 6.1 shows the abstract type definition of a KNXDevice-
Type which is a subtype of the abstract DeviceType defined in the DI specification.
It therefore inherits its structure from its supertype which is extended by KNX-specific
properties. The properties on the left branch of the KNXDeviceType definition provide
static information about the device like a serial number, hardware or software revision or
manufacturer information. The IndividualAddress Property is an extension to the
DeviceType and reflects the physical, i.e., individual address of a KNX device. The
ParameterSet Object on the right side exposes the actual datapoints of the device.
Their number and types naturally vary for each concrete KNX device for which this
abstract definition provides the necessary freedom. A KNXDatapointType property in-
forms about the underlying KNX Data Point Types (DPTs). The OutputDatapoints
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Figure 6.2: Datapoint example - AnalogItem
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Output1, Switching

TwoStateDiscreteType:
Output1, Switching

Attributes
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Figure 6.3: Datapoint example - TwostateDiscreteItem

and InputDatapoints Objects assign an I/O direction to the datapoints.

In order to model the semantics of KNX datapoints defined in their according type
definition (KNX DPTs), the OPC UA Data Access model [146] is used. It defines a
number of general purpose VariableTypes for modelling analogue and discrete data-
points. Besides the actual value, additional semantics like datatype, access level, unit
and value range are provided. The Figures 6.2 and 6.3 show instance examples of a
CurrentIntensityValue and a switching value Output1, Switching datapoint.
When instantiating a concrete KNX device, DataItems like shown in these examples are
inserted beyond the ParameterSet Object of the KNXDeviceType.

Figure 6.4 shows the runtime interaction between the gateway and an OPC UA client.
When a client wants to read the current value of Node attribute (e.g., the current value
of a datapoint), it issues a Read service call to the KNX OPC UA gateway. The gateway
internally determines if the attribute to read is a KNX datapoint or statically defined
value in the OPC UA server’s address space (e.g., a DisplayName or a Description).
If the read access regards a KNX datapoint, the gateway resolves the request to an
internally stored KNX group address and puts a Group Value Read request to the KNX
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Group Value Response(s)

Content:
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Figure 6.4: Read transaction

network. After the KNX network has responded, the gateway can return the OPC UA
read response containing the DataValue and additional diagnostic information to the
client. This diagnostic information contains a time stamp, status information about the
gateway or error codes in case the request did not success.

6.2 Open issues

6.2.1 First level integration

Regarding the mapping of the M-Bus application model to OPC UA, there are still
open issues that need to be elaborated in the course of future work. One is the service
mapping between M-Bus and OPC UA. Also the inclusion of historical measurement
values provided by M-Bus into the OPC UA information model needs to be discussed. The
OPC UA Historical Access specification is considered to have appropriate mechanisms
to address this problem. Another feature of M-Bus enabling master devices to apply
configuration changes on meters has been unattended, yet. Regarding this manner, it
needs to be discussed if this is a reasonable use case for management applications or if
collecting metering data is sufficient. In order to evaluate the feasibility of the concepts
introduced by this modelling approach, a prototype needs to be implemented. One way
for physical interaction with the bus is the use of stock M-Bus to EIA RS-232 converters.

Another issue regards the homogenisation of the presented OPC UA information models
for KNX. The resulting representation should combine the introduced topological models
on one hand and also base its device model completely on the DI specification. Also
standardisation activities towards an OPC UA companion specification for KNX could be
considered. This should be done in alignment with the OPC UA companion specification
for BACnet currently under development.
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6.2.2 Second level integration

Future work on the presented second level integration by a Knowledge-Based System
(KBS) could additionally consider the temporal aspect of runtime data by means of adding
time stamps to the datapoint model. Furthermore, it is imaginable, as shown in [185], to
represent time series of data within the knowledge base which would be valuable for use
cases regarding diagnostics. Another challenge is to wrap the complexity of SPARQL
queries and hereby increase usability for non-experts. Natural language-to-SPARQL
transformations like introduced in [186] could be a suitable method to this. To this aim,
also open source implementations exist2.

6.2.3 Building automation systems and security engineering

The presented semi-automated KNX engineering attempt also has one drawback, namely
the remaining manual interaction part during ETS project engineering. This issue might
be overcome by integrating the ideas from [126] at this point of the workflow. Also the
implementation of prototypes performing the proposed automated engineering processes
is still pending. Utilising the present engineering information, another future capability is
the automated generation of visualisations at Supervisory Control and Data Acquisition
(SCADA) level. To this aim, the current workflow needs to be extended towards user
interface markup languages like defined by the World Wide Web Consortium (W3C) or
available for Java applications.

Since security engineering in automation systems integration is a very practice-related
topic, experiences made by companies operating in this field could be taken into account
to approve the results of the discussion carried out. A quantitative survey evaluating the
feedback given by automation systems integrators and end-users could give more insight
into this topic.

2https://github.com/nmvijay/freya
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