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Abstract

A fundamental part of Model-Driven Engineering (MDE) is the use of models and operations.
Models represent information of a target system on varying levels of abstraction, while op-
erations allow performing actions on one or more models, including model validation, model
transformation, model merging, etc. In recent years, more and more such operations and lan-
guages to describe them were introduced to allow MDE to be applied to a wide spectrum of use
cases. Today, many advanced scenarios can be expressed by MDE and the use of new operation
languages.

In every non-trivial project, multiple operations have to be executed in particular order to
yield the final result. To orchestrate operations to so-called operation chain, tools and languages
have been developed and included to development environments that help in defining complex
operation chains and executing them whenever input models change.

In this thesis, existing tools and languages for model operation orchestration are analyzed
and compared against each other. Inspiration is taken from these tools and other domains, such
as Build Management and Workflow Management, to create a new tool for describing operation
chains, called Moola. Based on a feature list derived from real-life use cases, Moola is designed
and later implemented as domain-specific language (DSL) on top of Groovy. Finally, Moola is
evaluated against use cases taken from the ARTIST project.
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Kurzfassung

Ein zentraler Bestandteil der Model-getriebenen Software Entwicklung (MDE) ist der Einsatz
von Modellen und Operationen. Modelle representieren Informationen eines Systems auf ver-
schiedenen Abstraktionsniveaus, wohingegen Operationen das Ausführen von Aktionen auf Mo-
dellen erlauben. Solche Aktionen umfassen unter anderem das Validieren, Transformieren oder
Zusammenfügen von Modellen. In den letzten Jahren wurden viele solcher Operationen bzw.
Sprachen zur Beschreibung von Operationen veröffentlicht und erweitern somit das Spektrum,
auf welches MDE angewendet werden kann.

In jedem nicht-trivialen Projekt müssen mehrere Operationen in vordefinierter Reihenfolge
und unter Berücksichtigung vordefinierter Bedingungen ausgeführt werden, um das Endresult zu
erhalten. Zur Erstellung solcher Orchestrierungen wurden Sprachen und Tools entwickelt und
direkt in Entwicklungsumgebungen eingebettet. Dadurch können Operationsketten möglichst
einfach Erstellung und wiederholt ausgeführt werden, z.B. wenn ein Modell sich ändert.

Im Rahmen dieser Arbeit wurden verschiedene existierende Ansätze zur Beschreibung von
Orchestrierungen analysiert und miteinander verglichen. Basierend auf einer Feature-Liste, wel-
che von diesen Ansätzen und Anwendungsfällen extrahiert wurde, wurde ein neuer Ansatz
zur Beschreibung von Operationsketten entwickelt (Moola) und später als Domänenspezifische
Sprache (DSL) in Groovy implementiert. Abschließend wurde Moola mittels Anwedungsfällen,
die aus dem ARTIST-Projekt entnommen wurden, evaluiert.
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CHAPTER 1
Introduction

“Begin at the beginning,“ the King said gravely, “and
go on till you come to the end: then stop.“

— Lewis Carroll, Alice in Wonderland

Models are a core instrument in Software Engineering to describe static and dynamic aspects
of a system. Many modeling languages and frameworks have appeared in the past and provide
a big spectrum from which to choose. Undoubtedly, most developers know or have at least
heard of the Unified Modeling Language (UML) [62], which is of high popularity, although not
without criticism [2]. While modeling languages and tooling support grew more mature in recent
years, developers continue to use models primarily in early development phases and as part of
the documentation [22]. When strictly dividing models and code, extra effort has to be invested
to keep both in sync and prevent models from getting out-of-date, or worse, inconsistent with
the code base [68]. In such cases, models are often seen as additional work, as burden that need
attention without giving any, or only limited, benefit in return.

Model-Driven Engineering (MDE) [38, 66] suggests a different role for models in the de-
velopment cycle. Instead of using models only as upfront sketches of a system-to-be and later
as diagrams in the documentation, MDE promotes models to first-class citizens of the develop-
ment process. Giving them center stage comes with the need of introducing specific actions on
models, so-called model operations. These operations include validation, comparison, execu-
tion and transformation of models, eventually enabling MDE to either directly execute models
or use them as basis for code generation. To facilitate the task of working on models, a rich set
of domain-specific languages (DSL) [26] appeared in the past, allowing for an expressive way
to define model operations.

Using MDE or the more specific Model-Driven Software Development (MDSE) [72] in
practice typically requires the development of several models and model operations. Those
modeling artifacts are then combined to a workflow, in which the operations are executed on the
models in a specific order to yield the implementation of the system. Such operation chains, as
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these workflows are referred to in an MDSE context, bear resemblance to other workflows in
Software Development, e.g.

• An operation chain resembles a build process [70]. Each operation represents a build step.
Similar to build steps, operations may depend on each other and therefore require a certain
execution order. In case of errors, a build process typically stops execution and reports
the errors back to the user. This also applies to operation chains, in which unexpected
errors lead to the termination of the chain. Furthermore, build processes often consist
of tasks of varying nature. While the core of a build process typically is some form of
compiler call, other tasks are possible (e.g. copying files, running tests, etc). The same
applies to operation chains. While an operation chain mainly consist of model operations
(e.g. validation, comparison, merging, transformation, etc), other operations from outside
the immediate MDE world are possible (e.g. archiving files, calling external programs,
collecting user input, etc).

• An operation chain can be seen as orchestration [84] of operations. Orchestrations de-
scribe the arrangement of components and how the control and data flows between them.
Orchestrations therefore imperatively or declaratively describe how components interact.
In this analogy, operations take the place of components, each providing a single, well-
defined task on a set of input values and yielding a set of output values. The execution
order of operations can be derived by connecting input and output values or by explicitly
defining the control flow via designated keywords (in textual orchestration languages) or
structures (in graphical orchestration languages).

In general, the operation chain defines the steps needed to transform a set of input models
to the final outcome of the MDSE project. The final outcome can take various forms: it can
be a partial or full implementation of the system by using code generation or it can be a set of
executable models if model interpretation techniques are used.

During the development phase of an MDSE project, models and model operations are bound
to change frequently. To evaluate the impact of those changes on the final outcome, the operation
chain needs to be executed. In this thesis, I propose Moola, a domains-specific language (DSL)
[23] to describe and execute operation chains. Moola draws inspiration from build tools, from
orchestration languages and from existing approaches in the domain of operation orchestration.

1.1 Problem Statement

The development activities in MDSE projects focus around creating models and operations and
orchestrating them to operation chains. These chains typically consist of several operations
which may require to run in specific order, on specific constraints and for a specific number of
times. To evaluate the impact of changes to models and operations on the overall outcome, the
operation chain needs to be executed whenever modeling artifacts change. The developer has
several choices on how to execute the operation chain:

• Manual Execution: Many development environments allow direct execution of opera-
tions from within the environment. Developers can choose to run all operations of a chain
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one-by-one through the IDE. Depending on the size of the project, this may become im-
practical or infeasible at some point. It is not only cumbersome, but also error-prone, since
the developer needs to ensure that all operations run in the correct order. Furthermore, it
can be inefficient when it comes to resource utilization, since intermediate results have
to be persisted until they are needed. This requires serialization and deserialization of
models, which could otherwise be avoided.

• Using General-purpose Languages: Another option is to write code in a general-purpose
language that describes the orchestration chain and can easily be rerun whenever changes
occur. However, special attention has to be given to the design of the code to make it robust
to future changes. This may lead to a full-blown project around the operation chain itself,
including modularization, testing, build automation, etc. and may amount to considerable
additional work.

• Using Build or Workflow Tools: A widespread approach to write executable orchestra-
tion chains is to use build tools such as Ant1 or Gradle2. These tools expose powerful
extension mechanisms and allow the integrating of model operations to a workflow. The
strong resemblance of operation chains and build processes is exploited in such scenarios.
However, operation chains and build processes do diverge in some aspects: build steps
typically depend on each other and thereby form a directed, acyclic graph (DAG) [10].
The same cannot be said for operation chains, in which circular dependencies among op-
erations may exist. This results in some operation chains not being easily describable as
build process. Furthermore, build tools first need to be adopted to the MDE world by us-
ing their extension mechanism. If this is done properly, build tools can be used to describe
orchestration chains, as the Epsilon project [46] has shown with its Ant-based workflow
engine [45].

• Using Orchestration Languages: Another way to describe orchestration chains is to use
dedicated orchestration languages. These languages are tailored to the needs inherent to
the domain of operation orchestration and allow describing orchestration chains in the
vocabulary of the domain. With the increasing popularity of MDE, more and more or-
chestration languages have emerged. Existing solutions differ in implementation style,
modeling framework and language support and tooling integration. So far, none of the
existing approaches has gained wide-spread adoption in the industry.

In contrast to other software engineering activities, in which the usage of build tools is a
common occurrence, the MDE world has yet to find and widely adopt a way to describe oper-
ation chains. This thesis centers around the question on how to textually represented operation
chains and how they can be efficiently executed. Referring to this question, current build tools
and DSLs are compared and evaluated for their capabilities.

1http://ant.apache.org/
2http://gradle.org/
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1.2 Aim of Work

In this thesis, I propose Moola, a domains-specific language (DSL) [23] specifically designed
to describe operation chains. During the development of Moola, special attention was given to
performance and extensibility.

Orchestration chains typically consist of several operations which may require to run in
specific order, on specific constraints or for a specific number of times. To increase performance,
independent operations can be executed in parallel. Furthermore, intermediate results can be
passed in-memory, saving time that would otherwise be spent on serializing and deserializing
them.

Many different frameworks can be used to describe models and operations. In the Java
universe with its strong Eclipse community, the Eclipse Modeling Framework (EMF) [74] is
of great importance. Tools such as Acceleo3, MoDisco4 and ATL5 play a fundamental role for
MDE in Java. Moola’s plug-in system allows the integration of various modeling frameworks
and operation languages. To highlight this point, a sample plug-in for EMF was implemented,
which allows creating orchestration chains from the aforementioned tools.

A final point in the design of Moola has been the language markup and eco-system. DSLs
typically suffer from a number of disadvantages, such as developers reluctant to invest into
learning a new language with limited applicability and lacking tooling support [71]. To lower
the entry threshold, Moola was designed to reuse core elements of Java such as control flow
keywords, method calls, assignments, exception handling, etc. Additionally, an Eclipse plug-
in was developed, enabling syntax highlighting for Moola files and allowing developers to run
Moola from within the IDE.

All Moola artifacts can be found on GitHub (https://github.com/We-St/moola).

1.3 Methodological Approach

With the growing importance of DSLs, a number of patterns describing the process of developing
DSLs have emerged in recent years. These reach from traditional, top-down-based approaches
[53, 80, 81] to more agile, iterative approaches [85]. While all of them are based on a thorough
analysis of the problem domain, they differ in later phases of the development process. A well-
established, often-cited, top-down approach for developing DSLs was introduced by Mernik et
al. [53] and consists of the following phases:

1. Decision: The fundamental decision whether to develop a DSL or not needs to be an-
swered. Mernik et al. address organizations and companies in which this decision is
pending by listing several decision patterns. These patterns describe scenarios in which
DSLs have been successfully implemented in the past and may justify a decision in favor
of developing a DSL.

3https://eclipse.org/acceleo/
4https://eclipse.org/MoDisco/
5https://eclipse.org/atl/
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2. Analysis: During the analysis phase, a thorough understanding of the problem domain is
acquired and potential features of and requirements on the DSL are gathered. Different
technical artifacts can form the basis for this phase, including existing code in DSLs or
GPLs, documents, etc. The analysis and its result can vary in formality depending on the
analysis method used.

3. Design: Based on the features and requirements gathered in the analysis phase, a key
decision is made on how to develop the DSL. Mernik et al. distinguish two primary
options: language invention describes designing and implementing a DSL from scratch
whereas language exploitation describes extending or specializing an existing language
(GPL or DSL). Whichever option is chosen, the design phase then deals with creating
appropriate specifications for use during implementation.

4. Implementation: The language is constructed based on the previously agreed-upon de-
sign. Depending on which option is taken, different ways to implement the DSL are
possible, e.g. creating an interpreter or preprocessor, embedding the DSL in a (GPL) host
language, extending a compiler, etc. For executable DSLs, the implementation phase also
includes the creation or preparation of a suitable runtime environment.

5. Deployment: The DSL is shipped to the users, who are now able to apply the DSL to
the application domain. If the DSL is executable, deployment includes the provision of a
suitable runtime environment to the users.

While Visser [85] generally agrees on the development phases, he mentions maintenance
as additional phase to illustrate the importance of continuous support after the initial develop-
ment has finished. Furthermore, he suggests an iterative approach, where analysis, design and
implementation phases are performed in closer relationship to agile software development than
to classical top-down approaches. In such an iterative development process, each development
cycle delivers a small but stable version of the DSL. Over several cycles, the initial version in-
crementally grows more sophisticated until a mature state is reached and the application domain
is covered by the DSL to sufficient extent. The advantage of this approach is, as with other agile
approaches [65, 75], a more flexible development process, which allows adjusting requirements
and incorporating feedback of users early on to mitigate the impact of undesired developments.

In this work, an agile, iterative approach as suggested by Visser was used. Modifications
to Visser’s approach were made to account for the university environment in which Moola was
developed. Figure 1.1 depicts the development process used for Moola.

During the decision phase, reasons to use DSLs for describing operation chains were gath-
ered. Furthermore, the choice to add yet another DSL to a field dense with existing DSLs was
motivated. A thorough analysis of the problem domain followed. This included investigating
application scenarios and existing solutions for common notions and terminology. The result of
the analysis phase was a list of features and key requirements. The design phase dealt with the
question whether Moola should be a customization of an existing language or developed from
scratch. After the choice was made to build a new language, an implementation pattern was
selected, i.e. embedding in a host language, and an idea developed on how to naturally integrate
the domain terminology and notions to the host language. While the model of Mernik et al.
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Extending an existing language 
vs. new development.

For academic purposes only.

Figure 1.1: Development Phases for Moola.

suggests the creation of a specification as part of the design phase, a separate, follow-up specifi-
cation phase was used for Moola. This phase dealt with creating Moola’s syntax and semantics
in compliance with the previously gathered feature list and in accordance to the chosen imple-
mentation pattern. The result of the specification phase was a backlog, i.e. a list of prioritized
tasks needed to reach a mature state for Moola. During the implementation phase, a subset of
these tasks was realized. The deployment consisted of a release of Moola on an internal code
repository. After a brief evaluation, the backlog tasks were adjusted and, if necessary, reordered.
This implementation-deployment-evaluation-refinement cycle was performed several times until
a stable, mature version of Moola was implemented.
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1.4 Application Scenario

Figure 1.2 shows a non-trivial application scenario in form of an operation chain. This sce-
nario is referenced and gradually implemented throughout this work and shows how a system
implementation (Java code and SQL scripts) can be generated by applying a sequence of model
operations on a single input model. Outputs of one operation form the input for other operations,
hence dependencies between these operations exist, which force a certain execution order.

Validate
Model

else

Model valid

Generate
Java Code

Build Code

Ask User for
Credentials

Transform to
DB Model

Package
Code & SQL

Generate SQL

Commit
Model

else

Login Error
occured Show Error 

Summary

Other Error
occured

Loop should execute at 
most three times

User needs to specify
username and password

Figure 1.2: Application Scenario.

Starting from a domain model, which is first validated, the Java classes are generated and
built by calling the Java compiler. Simultaneously, the domain model is transformed to a
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database model, which in term is used to generate SQL scripts to create the database. After
all artifacts (Java code and SQL scripts) have been generated, they are packaged and copied to
a deploy folder. The final part of the orchestration chain is to commit the model to a version
control system. To do so, users first need to enter their credentials (username and password). If
the model cannot be committed due to login errors, users have two additional chances to enter
correct credentials. If they fail to do so or if any other errors occur, the error is displayed before
the operation chain terminates.

1.5 Structure of the Work

In chapter 2, background knowledge on MDE and DSLs is provided. Afterwards, Groovy’s fea-
tures for DSL development are introduced. Chapter 3 starts with a feature analysis of sample
operation chains and existing orchestration approaches. It then introduces the design mentality
behind Moola. It finishes with a language specification and a sample implementation of the ap-
plication scenario. Chapter 4 shows how Groovy’s features are used to implement the previously
introduced language specification. In chapter 5, Moola is evaluated for correctness and feature
completeness. It is then applied to real-life application scenarios taken from the ARTIST project
to test its applicability. Chapter 6 introduces other approaches in the domain of operation or-
chestration and compares them to Moola. Finally, chapter 7 summarizes this work and presents
areas for future work.
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CHAPTER 2
Background

“Not all those who wander are lost.“
— J. R. R. Tolkien, The Lord of the Rings

This chapter introduces the core concepts and methodologies used in this thesis. It starts off
with an introduction to model-driven engineering (MDE) and domain-specific languages (DSL)
and finishes on how Groovy can be used to develop DSLs.

2.1 Model-Driven Engineering

Model-driven engineering (MDE) [38] is a development methodology that puts models at the
core of the development process. Instead of having several representations (e.g. code, documen-
tation, models, etc.) of a single system independent from each other, MDE advocates the use of
models as foremost development artifacts. By focusing on models, other representations can be
automatically updated if changes occur. By the time MDE was adopted in practice, several sub
disciplines have emerged which apply the model-centric view on different development tasks.
Some of them are:

• MDSD [72]: Model-Driven Software Development focuses on creating executable soft-
ware systems by either generating code from models or by defining executable models as
input for model interpretation engines.

• MDRE [61]: Model-Driven Reverse Engineering can be used to analyze a given soft-
ware artifact (e.g. a legacy system). In contrast to MDSD, MDRE does not generate an
executable piece of software but rather generates knowledge of the analyzed system and
results in one or more models describing the system.

• MDT [55]: Model-Driven Testing focuses on creating test cases from models. The fi-
nal outcome of a MDT project is a suite of test cases that can be used to validate the
implementation of a system.

9



In practice, many more sub disciplines exist and show the diversity of application areas for
MDE. Although the final outcome varies from one sub discipline to another, all of them put
models at the center of development activities. Aside from models, two other important types
of artifacts are present in most MDE projects: metamodels and transformations. To fully under-
stand the concepts behind MDE, an understanding of models, metamodels and transformations
is required.

Models

A model is a representation of a system or real-world object by focusing on relevant features at
a certain level of abstraction. A model, by definition, does not include all aspects in full detail,
but rather describes a subset of important details to highlight them. Although models do not
represent reality in full detail, their inherent reduction on relevant information allows viewing a
system or object in reduced complexity.

Mellor et al. [51] define a model as „a coherent set of formal elements describing something
(for example, a system, bank, phone, or train) built for some purpose that is amenable to a
particular form of analysis“. The authors later describe some applications of models such as
communication of ideas, completeness checking and transformation into implementations.

Kleppe et al. [42] define a model as „a description of a (part of) systems written in a well-
defined language. A well-defined language is a language with well-defined form (syntax), and
meaning (semantics), which is suitable for automated interpretation by a computer“.

Notable about both definitions is the mentioning of formal rules for models. While Mellor
speaks of formal elements, Kleppe’s definition is more concrete and requires a well-defined
language. Such formal rules on models can be achieved by using metamodels.

Metamodels

Models are an abstraction of one or more observed items. In Software Engineering, these items
are often systems-to-be, processes or some real-world objects. However, models can also de-
scribe other models. So-called metamodels define the elements that may exist in a model, how
they may be connected to each other and what the meaning of the elements and their relationship
is. By defining syntactical rules, a metamodel describes a possibly infinitely large set of models
that can be expressed to fulfill these rules. A model is said to conform to a metamodel if the
model complies to all syntactical rules defined by the metamodel. Just as models can be used to
describe other models, models can also be used to describe metamodels. Meta-metamodels such
as MOF1 and Ecore2 are used to define modeling language families and thereby help fostering
compatibility between metamodels [6].

Figure 2.1 illustrates the concepts of models, metamodels and meta-metamodels. The real-
world object to model is a car (level M0). The first level of modeling is represented by UML’s
class diagram to describe the real-world object and thereby capture information that is important
for the specific use case (level M1). The class diagram itself is described in the UML language

1http://www.omg.org/mof/
2https://eclipse.org/modeling/emf/
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<< instanceOf >>

<< instanceOf >>

Car

+ seats: Integer
+ color: Color

Figure 2.1: Abstraction levels from real-world (M0) to meta-metamodels (M3).

specification, which constitutes the metamodel. It describes the elements allowed (classes, at-
tributes, etc.) and how they might be interconnected (level M2). Finally, the metamodel is
described by a meta-metamodel, which in case of UML is MOF (level M3). It was shown in
practice that meta-metamodels can describe themselves, so no further levels are required.

The conforms to relationship between a model an its metamodel is an important part of MDE.
Since the metamodel governs which elements may occur in a model and how these elements may
be connected, a metamodel can be seen as type of the model [78]. This is especially important in
scenarios where models need to be replaced. If a new model conforms to the same metamodel
and therefore can be seen as having the same type as the old model, replacing the old model with
the new one is possible [73]. This idea can be extended to model subtyping [60], in analogy to
object subtyping used in object-oriented languages.

In recent years, efforts were made to capture the whole MDE methodology with all its ele-
ments and concepts in a model, thereby creating what is called a megamodel [20]. This shows
that MDE is capable of modeling complex software systems up to a recursive self-definition of
itself.

Transformations

MDE advocates the use of models as core artifacts in the development process. To reflect a
system in sufficient detail, typically several models of different nature are required. This can be
a mix of static and dynamic models form the same language family (such as UML) or models on
different levels of abstraction3. To yield the final outcome of the MDE project, operations need

3MDA uses models on several levels of abstraction and is introduced later in this chapter
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to be executed that take the models as input. In a typical project, several such operations are
required, transforming the models through intermediate steps to the overall outcome. A specific
type of operation that transforms one or more input models to one ore more output models is
called transformation. Transformations are a core element in the MDE world. They are defined
on metamodel level, meaning that metamodels are used to describe the expected inputs and
outputs of the transformation. After a transformation is defined and implemented, it can be
executed on any set of input models conforming to the corresponding metamodels, making it
easy to reuse the transformation in similar scenarios.

Model A Model B

Metamodel A Metamodel B
Transformation

Language

Meta-Metamodel

<< executedOn >> << resultsIn >>

<< conformsTo >> << conformsTo >>

<< conformsTo >> << conformsTo >>

<< conformsTo >>

<< conformsTo >>

Transformation T

<< definedOn >> << definedOn >>

Figure 2.2: Transformation definition and execution.

Figure 2.2 illustrates the principle of defining transformations on metamodels and executing
them on concrete models. Applying modeling concepts on transformations themselves, transfor-
mations can be seen as models, making it possible to define a metamodel for them. This leads to
transformation languages that may even depend on the same meta-metamodel as the input and
output metamodels, thus enabling the description of transformations with the means inherent to
the MDE world. Describing transformations with a metamodel and in doing so merging the con-
cepts of model and transformation in one entity has the advantage of allowing transformations
to act as inputs to other transformations or enabling transformations to generate transformations,
thus allowing for so-called higher-order transformations (HOT) [76].

Referring back to the type relation between a model and its metamodel, the signature of
a transformation can be defined similarly to function signatures in programming languages
[78]. The signature of a transformation T that takes exactly one input model conforming to
a metamodel M and yields a model conforming to a metamodel M ′ can be defined as function
T : M →M ′. This highlights the fact that the transformation T can be used on any model con-
forming to the input metamodel M and that T guarantees to deliver a model conforming to M ′.
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This allows for contravariance of input types and covariance of output types in transformations
and enables reasoning on type safety when combining transformations and other operations to
operation chains [31, 73].

Transformations exhibit their full potential when they are defined in an executable transfor-
mation language. By enabling developers to easily execute transformations, reusing them on
different input models in the same or in a different project becomes much more feasible. In
theory, any mapping between two metamodels can be seen as transformation. Describing such a
mapping can be done in many ways: a general-purpose language such as Java or Groovy or DSLs
with specific notions and concepts can be used [67]. Alternatively, the transformation itself can
be generated from an abstract representation of the mapping by using higher-order transforma-
tions [8]. In recent years, many DSLs have emerged that allow describing transformations in an
expressive way. Examples of such languages include QVT, ATL and Acceleo.

Model-Driven Architecture

One specific adoption of MDE in practice is model-driven architecture (MDA) [43]. MDA is a
trademark of OMG4, which realizes its vision of MDE by using OMG’s own standards, includ-
ing UML and MOF. MDA consists of a three-layered approach: at first, Platform Independent
Models (PIM) are defined, which describe the problem domain and solution without specify-
ing any implementation details. In a next step, implementation details are added to the PIMs,
thereby creating platform specific models (PSM). Since PSMs contain all relevant information
for implementing the system, a full or partial implementation of the system can be generated
from them. Figure 2.3 shows the basic concept of MDA in coarse detail: PIMs are defined first
and, by using transformations, refined to PSMs and later to code.

PIM T1 PSM T2 Code

Figure 2.3: From PIM over PSM to code

By introducing this structure, MDA claims to improve productivity, portability, interoper-
ability and maintainability [42]. Since the transformations from PIM to PSM and from PSM to
code can be reused, MDA advocates the shift from code-centric development to model-centric
development. In OMG’s vision, developers should focus on writing PIMs. After transformations
for a target platform are defined, these transformations can be easily reused in the context of new
projects, thus increasing the productivity of developers. The portability is increased by focusing
the development process on PIMs. Since they are platform independent by definition, they can
represent the starting point for generating the implementation of a system for various platforms.
If a system is targeted at multiple platforms, several PSMs can be generated out of the exist-
ing PIMs. If the target platforms exhibit limited communication features, the transformations
can not only generate PSMs, but also code bridges, thus increasing interoperability. Finally,

4http://www.omg.org/
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since PIMs are the starting point for any development (including changes to existing systems),
they represent a single-point of truth and can be directly used in the documentation to increase
maintainability. Evidence suggests that MDE at least partially fulfills these promises [35].

Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [74] is another adoption of MDE in practice and brings
the ideas and concepts of MDE to the Eclipse platform. It is defined around the Ecore (meta-)
metamodel and allows defining Ecore-conform models in various ways (e.g. as annotated Java
code, using UML diagrams, via XML schemas, etc). The Ecore metamodel can be seen as sub-
set of the class diagram specified by UML and allows for describing the static structure of a
system. An Ecore-conform model can then be used to generate Java code (interfaces, imple-
menting classes, etc), adapters and editors (for editing and displaying modeled classes)5. EMF
automatically adds several features to the generated code such as support for change notification
and an enhanced reflection API. Furthermore, EMF defines a default XMI serialization.

In recent years, an active community has gathered around EMF and Ecore, putting the latter
at the heart of many MDE tools. Transformation languages such as ATL and Acceleo operate
on Ecore-conform models. MDT/UML26 is an implementation of OMG’s UML standard using
Ecore, bringing UML models to the EMF world. Since MDT/UML2 was realized with Ecore,
any transformation language compatible with Ecore-conform models is automatically compati-
ble with models based on MDT/UML2. Similar projects exist for BPMN7, IMM8, etc.

Most of the aforementioned transformation languages are integrated to the Eclipse IDE via
its extensive plug-in system. This allows MDE developers to use a single platform to define
models and operations and later execute those operations to generate output. Although some of
these tools offer a CLI or are available as standalone libraries, others can only be executed in
the Eclipse context, i.e. when a running Eclipse workspace exists. This is especially true for
MoDisco. In case such Eclipse-only tools need to be orchestrated, the orchestration language
also needs to be able to run within the Eclipse context.

2.2 Domain-Specific Languages

A domain-specific language (DSL) [23] is a programming language tailored to a specific appli-
cation domain. While a DSL is limited in its field of use, it is designed to include constructs,
keywords and terminology of the problem domain and allows describing problems with the lan-
guage and vocabulary inherent to the problem domain. In contrast, general-purpose languages
(GPL) such as Java, C# or C++ can be applied to nearly any domain. Although they excel in ver-
satility, programs written in a general-purpose language are often verbose and need boilerplate
code in order to be applied to a specific domain.

5https://eclipse.org/modeling/emf/
6http://wiki.eclipse.org/MDT-UML2
7http://www.omg.org/cgi-bin/doc?bmi/2007-6-5
8http://www.omg.org/cgi-bin/doc?ab/2005-12-2
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The term domain-specific language is a recent invention. Languages for a specific field of
use have been implemented long before the term found widespread adoption. Some popular
domain-specific languages such as SQL for querying databases, HTML for describing websites
and CSS for styling websites are extensively used in practice.

When implemented and applied correctly, DSLs offer a number of advantages over GPLs.
Since DSLs are designed to describe problems in a certain domain on a certain level of abstrac-
tion, the syntax can be adjusted to the target audience, thereby demanding more or less program-
ming skills up to a level where even domain experts with limited programming skills can read
or even write code in the DSL. In doing so, DSLs help foster collaboration between developers
and domain experts [33]. Also, DSLs are typically defined on a high level of abstraction, hiding
some of the complexity of the underlying domain. This impacts DSL programs, which tend
to be more concise and readable than their GPL counterparts. An increase in productivity and
maintainability can be observed when writing DSL programs [27].

However, DSLs also come with some serious disadvantages. DSL development requires
knowledge in language design and the application domain. Therefore, creating new DSLs is a
non-trivial task. Furthermore, DSL development is linked to considerable up-front cost that only
repay themselves later and if the resulting DSL was designed and implemented correctly. The
DSL needs to be maintained and updated, e.g. when the understanding of the problem domain
grows or changes [27]. For all this reasons, developing a custom DSL is out of bounds for many
organizations. Even if a third-party DSL is used, some disadvantages remain. First, the right
DSL needs to be chosen. Secondly, independent of using a custom or third-party DSL, the users
need to be educated in the DSL itself and the associated tooling [81].

Research has shown that successfully adopting DSLs in practice relies on a number of fac-
tors: the usability and tooling support of the DSL, how easy the DSL can be learned and how
expressive the DSL is when it comes to describing problems in its problem domain [32]. Empir-
ical studies have shown that DSLs, when applied properly, can help reduce time-to-market [37]
and improve maintainability and extensibility [1].

The maturity of the field of DSL development expresses itself in a number of categories
DSLs can be divided into. In the following section, internal and external DSLs are introduced.
The discussion continues to (non-) executable DSLs and then introduces different language char-
acteristics such as programming paradigms and type systems.

Internal vs. External DSLs

DSLs can be divided into internal and external domain-specific languages. Internal DSLs, also
called embedded DSLs, sit on top of a host language. This reduces time and cost of DSL de-
velopment since tooling support for the host language already exists. This tooling support can
reach from development environments to compilers and finally to execution environments. Pro-
grams written in internal DSLs allow developers to include code of the host language, allowing
the DSL to reuse host language features and lower the entry burden for developers with existing
knowledge of the host language. The downside of embedded DSLs is the syntax limitations
imposed by the host language [47]. Although many general-purpose languages such as Groovy,
Scala and Ruby include specific features to allow internal DSL development, they come with a
set of syntactical constraints that cannot easily be bypassed [14]. External DSLs on the other
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hand do not rely on a host language and are therefore not limited by any syntax restrictions.
They can be designed to exactly reflect the problem domain and hence allow modeling problems
more expressively than internal DSLs can [23]. Several ways to implement external DSLs exist,
e.g. adopting/extending existing compilers, creating new compilers using compiler frameworks,
using preprocessors, etc. [25, 47].

Executable vs. Non-executable DSLs

DSLs can be executable or non-executable. An executable DSL comes with a suitable runtime
environment that allows running DSL programs. The task of developing such a DSL does not
only concern itself with the language itself, but includes the runtime environment for all targeted
platforms as well. In contrast to GPLs, DSLs do not need to be executable [53]. Non-executable
DSLs can be used as means of representing information and are applied in technical documents
like documentation and specifications. Since non-executable DSLs still have well-defined syntax
and semantics, tooling support for them can be implemented. An example for such a non-
executable DSL is JSON9, the JavaScript Object Notation. JSON is a data-exchange format
based on lists and name-value pairs, which can be used to describe plain objects e.g. in interface
definitions.

Language Characteristics

General-purpose and domain-specific languages alike exhibit certain characteristics by which
they can be distinguished and categorized. In the following, some of the more important lan-
guage characteristics for this work are introduced.

• Programming Paradigm: A programming paradigm describes the principles used in a
programming language that govern the structure of programs (static aspect) and how sin-
gle elements within a program interact (dynamic aspect). One programming language is
not limited to one programming paradigm but can support several at the same time.
A core distinction of programming languages is between imperative and declarative. An
imperative programming language explicitly describes control and data flow in a program.
In doing so, it specifies how a specific result should be reached. In contrast, declarative
programming languages are used to describe the desired result. They focus on what should
be achieved rather than how to do it.
Object-oriented programming (OOP) [11] is a widespread paradigm for many general-
purpose languages. Object-oriented languages use interacting objects as main design el-
ement and are typically imperative. Another important paradigm with widespread adop-
tion is functional programming (FP) [86]. It promotes functions to first-class citizens and
therefore allows higher-order functions (HOF). Functional languages are typically declar-
ative in nature. Logic programming (LP) [49] allows expressing facts and rules about
a system and relies on formal logic. As with FP, most languages using a logic-based
paradigm are declarative.

9http://www.json.org/
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Many widely used languages implement several paradigms. This is especially true for
object-oriented languages, which are mostly imperative, but also incorporate declarative
and functional aspects. Examples are Groovy, Java 8 (via streams) and C# (via Linq).

• Type System: A type system is used to guarantee a certain level of correctness within
a program. By assigning a type to constructs such as variables, parameters, methods,
functions and expressions, possible bugs can be found on type mismatch. Depending on
the time of type checking, two approaches are distinguished. Programming languages us-
ing static type checking check for type safety before execution, typically by the compiler
during compile time. In contrast, dynamic type checking is done at runtime. In prac-
tice, several languages exist that allow for both static and dynamic type checking. These
optionally-typed languages are dynamically-typed by default but allow parts or all of the
code to be statically checked.

Static and dynamic typing each have their advantages. Statically-typed code guarantees a
certain level of type safety at runtime. Due to the type information, compilers can opti-
mize the code to a greater extent than dynamically-typed languages allow. Furthermore,
the conceptual framework that types bestow on a program helps developers in under-
standing and maintaining code [30]. It also enables advanced tooling support since the
additional type information helps in navigation and syntax highlighting. Despite those ad-
vantages, statically-typed languages are of limited use when features like late binding or
runtime meta-programming are required. In such cases, dynamically- or optionally-typed
languages are more commonly applied.

The debate whether statically- or dynamically-typed languages provide advantages in de-
velopment time and maintainability is still ongoing [29,40] and has not produced sufficient
prove for either side.

• Concrete Syntax: DSLs can either be represented using a textual or a graphical syntax.
A textual syntax consists of keywords and language constructs that can be used to as-
semble a program in textual form, e.g. plain text. In contrast, a graphical syntax defines
visual elements and how they can be interconnected. The task of writing a program in a
graphical DSL transforms to modeling the problem in a visual editor, thereby conforming
to the rules of the graphical syntax, e.g. which elements are allowed and how they can be
interconnected.

2.3 DSL Development in Groovy

Groovy is a language of choice for many DSL developers for its build-in features specifically
targetted at DSL development. It is an optionally-typed, general-purpose language for the JVM
and a superset of Java, meaning that any valid Java program is also a valid Groovy program and
that all features and libraries available for Java can also be used with Groovy. Like Java, Groovy
compiles to Java Byte Code and can therefore reference and be referenced from ordinary Java
code. Furthermore, it runs on a Java Virtual Machine much the same way as Java does and is
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therefore platform independent. Groovy was first mention in 200310 and finally released in 2007.
With the release of Grails11, a Groovy-based web development framework in 2008, Groovy
received widespread attention. As a comprehensive overview to Groovy is out of scope for this
thesis, interested readers are referred to [44]. In the remainder of this section, the concepts that
make Groovy a language of choice for DSL developers are introduced. Further details on DSL
development in Groovy can be found in [26].

Syntax

Since Java is a subset of Groovy, all keywords and constructs of Java retain their meaning in
Groovy. This especially means that any valid Java program can be compiled with the Groovy
compiler and later be executed on the JVM. Groovy relaxes the syntax of Java in several places
to give a certain degree of freedom to DSL developers. Some of the relevant relaxations for DSL
development are:

• No semicolons are required at the end of a statement.

• Methods with parameters can be called without parenthesis.

• No explicit return statement is required. Instead, the value of the last statement in a
method or closure is returned.

Developers writing Groovy code can decide whether to use any of these syntax relaxations
or to stick to the Java syntax, which is an equally valid way of writing Groovy code. When
developing domain-specific languages, these relaxations can be used to adjust the syntax of the
DSL to the target audience. Depending on the amount of relaxations used, DSLs can be tailored
to resemble natural languages rather than programming languages.

Listing 2.1: Syntax Relaxations.
i n t add ( i n t a , i n t b ) {

a + b // Value of last statement is returned.
}

def result = add 10 , 20 // No semicolon or parenthesis required.

In addition to calling methods without parenthesis, Groovy allows developers to omit dots
on method calls in certain situations. This allows for a fluent definition of code, which closely
resembles natural, written language.

Listing 2.2: Omitting Parenthesis and Dots.
// Regular calls by chaining methods.
get (position ) .of (king ) .on (chessboard )
move (king ) .to (right ) .by ( 1 ) .on (chessboard )

// Chaining methods and removing dots and parenthesis.
get position of king on chessboard
move king to right by 1 on chessboard

10http://radio-weblogs.com/0112098/2003/08/29.html
11https://grails.org/
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Groovy allows unwrapping a list of values to a list of variables in a single assignment. These
statements are called multiple assignments. Doing so will assign the first item of the list to the
first variable, the second item of the list to the second variable and so on. An example on how
to use multiple assignments is shown in Listing 2.3. Multiple assignments can be extended to
unwrap results of a method invocation, if the method returns a list of values.

Listing 2.3: Multiple Assignment.
def values = [ ’Winnie ’ , ’Pooh ’ , 7 ]
def (firstname , lastname , age ) = values

def (title , artist , price ) = getAlbum ( )
def getAlbum ( ) {

["Cool Album Title" , "Cool Artist" , 9 . 9 9 ]
}

Closures

Groovy introduces concepts from functional programming through closures. Conceptually, a
closure is comparable to an anonymous function that also captures the environment it was de-
fined in. This allows closures to access variables and methods of their defining scope. The name
originates from the idea of a lambda expressions „closing“ over the unbound variables to form
an executable piece of code.

Closures can be used in many places to define inline methods. Similar to regular methods,
closures can take parameters and return values. If no parameters are explicitly defined, Groovy
adds the it parameters implicitly to each closure. Listing 2.4 demonstrates the versatility of
closures.

Listing 2.4: Closures.
// Define an inline method for summing up objects.
def add = { a , b −> a + b }
def result = add 5 , 10

// Execute a closure on each element of a list.
def names = ["Donkey" , "Tigger" , "Piglet" , "Winnie" , "Rabbit" ]
names .each {

println "Hallo \$it" // "it" is defined implicitly.
}

Closures are a fundamental part for DSL development in Groovy. The reason for this is
the way Groovy resolves references to variables and methods within a closure, which is fully
customizable by the DSL developer. Groovy introduces three scoping references: this, owner
and delegate. This behaves like its equivalent in Java and references the object in which the
closure was defined. Owner is the same as this in most cases, but refers to the outer closure in
case several closures are nested. Delegate is the most interesting one from a DSL developer’s
point of view. By default, it holds the same value as this, but it is the only one of the three that can
be changed programmatically. When a closure is executed and a method call or variable access
is encountered, Groovy first tries to resolve the reference by looking at the object linked in the
this reference. In case the method or variable could not be found, Groovy refers to the owner
object and finally to the delegate. This so-called Resolve Strategy can be changed, allowing for a
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different order on the scope look-ups. This especially allows for a delegate-first strategy, which
enables developers to execute a closure on any object. Listing 2.5 demonstrates the default
resolve and delegate-first strategy.

Listing 2.5: Resolve Strategy.
def combine = {

firstname + lastname
}

def firstname = "Winnie"
def lastname = "Pooh"
combine ( ) // Results in "Winnie Pooh".

combine .delegate = new Person ( )
combine .resolveStrategy = Closure .DELEGATE_FIRST
combine ( ) // Results in "Christopher Robin".

c l a s s Person {
def firstname = "Christopher"
def lastname = "Robin"

}

If a method expects a closure as last parameter, it can be written as if the closure follows the
method call. This allows for a shorter and more concise syntax. Listing 2.6 shows several ways
of how to pass closures as parameters.

Listing 2.6: Closures as Parameters.
def names = ["Donkey" , "Tigger" , "Piglet" , "Winnie" , "Rabbit" ]

names .each ( {
print it // Closure as part of the parameter list.

} )

names .each ( ) {
print it // Closure trailing the parameter list.

}

names .each {
print it // Omitted parenthesis on method call.

}

Metaprogramming

One of the most powerful arrows in the quiver of a Groovy DSL developer is metaprogramming.
Metaprogramming is the task of writing programs that operate on program code as input data.
Such programs can read and manipulate external program code or their own code to change the
behavior of that code. Groovy applies metaprogramming by allowing programs to manipulate
their own code either at compile-time or at runtime. Depending on the phase in which metapro-
gramming is applied, Groovy distinguished between compile-time and runtime metaprogram-
ming. Typical metaprogramming activities include adding properties and methods to classes,
changing the behavior of existing methods or changing the inheritance hierarchy.
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Runtime Metaprogramming

Runtime metaprogramming refers to changing the behavior of classes and objects at runtime.
Similar to Java, each object in Groovy has a reference to its defining class. This class object
represents the class at runtime and provides the facilities for reflection in Java. It can be accessed
to read meta information on the class such as defined methods, properties, attributes, etc. The
access thereby is strictly read-only. Java does not support changing the behavior of a class
object at runtime. This behavior is the same in Groovy. However, in Groovy each object has
an additional reference to a so-called metaclass. The metaclass is, again, a representation of the
class at runtime. In constract to the class object, the metaclass can be changed at runtime and
therefore allows adding methods, changing existing methods, etc. Changing a metaclass will
affect all instances of the corresponding class. In general, the duality of class references can
be seen as this: the class object describes the class at compile time, while the metaclass object
defines the class at runtime. Listing 2.7 demonstrates how the metaclass of an object can be
manipulated to add a method at runtime.

Listing 2.7: Adding Methods to the Metaclass.
def obj = new Object ( )
obj .metaClass .sayHello = {

println "Hello!"
}
obj .sayHello ( )

To fully understand runtime metaprogramming in Groovy, the Groovy Metaobject Protocol
(MOP) requires a short introduction. The MOP defines the steps the Groovy runtime takes
in order to resolve calls to methods and properties. Since the process is the same for both
methods and properties, only the process of method look-ups is describe here. However, the
same principles apply for property look-ups.

When a method is invoked on an object, the Groovy runtime first looks at the metaclass. If
the method is not defined there, the class of the object is checked. Furthermore, the MOP defines
several places where the look-up process can be intercepted. One important way of intercepting
the look-up is by overriding the methodMissing method, which is defined for all Groovy classes.
If a method cannot be found in the metaclass or the class but the methodMissing is present, it
will be called instead. It receives name and arguments of the unresolvable method call and can
react at runtime. This allows developers to decide at runtime whether the object can handle the
method invocation or an exception should be thrown. If a method is not found at runtime, it
can be easily added in the methodMissing method. Creating methods dynamically is of special
interest in the Builder design pattern [15].

Compile-time Metaprogramming

As the name suggests, compile-time metaprogramming takes places during the compilation
phase. The aim of compile-time metaprogramming in Groovy is to change the behavior of
the program by changing the Java Byte Code that is produced during compilation. In contrast
to runtime metaprogramming, compile-time metaprogramming does not directly influence pro-
gram execution. All effects of compile-time metaprogramming are reflected in the Java Byte
Code and can be made visible by reverse engineering the class files.
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The Groovy compiler defines several phases that are executed consecutively to transform
Groovy source code to Java Byte Code. The phases, in order of their execution during compila-
tion, are

1. Initialization: The environment is prepared and source files are opened.

2. Parsing: The source code is parsed to a Concrete Syntax Tree (CST).

3. Conversion: The CST is converted to an Abstract Syntax Tree (AST).

4. Semantic Analysis: The source code is checked for consistency and validity that go be-
yond grammar checks.

5. Canonicalization: The remaining parts are added to the AST, which is complete after this
phase.

6. Instruction Selection: The instruction set for the compilation is chosen and the byte code
generated.

7. Output: The generated byte code is written to the corresponding files.

8. Finalization: The environment is cleaned up.

Two important data structures during compilation are mentioned above: Concrete Syntax
Tree (CST) and Abstract Syntax Tree (AST). Both are representations of the source code in
memory. While the CST closely resembles the structure of the source code, the AST is a more
abstract representation and therefore may not resemble the source code directly. By decoupling
concrete and abstract syntax and focusing later compilation phases on the AST, the complex-
ity behind having several identical programs with different markup can be reduced. Compiler
optimizations and checks (e.g. for type safety, unreachable code, etc.) are performed on the
AST.

The power behind Groovy’s compile-time metaprogramming lies in providing hooks to the
compilation process for certain phases. By exposing the AST of the program that is compiled,
Groovy allows Abstract Syntax Tree transformations, which in term allow changing the AST at
compile-time. This mechanism is a powerful way of manipulating the resulting Java Byte Code
and allows, to some extent, to bypass the syntax restrictions that are enforced by the Groovy
compiler. However, the Groovy compiler needs to be able to generate an AST in the first place.
If the source code violates core syntax rules, later compilation phases are not reached and AST
transformations can therefore not be applied.

AST transformations can be used to introduce new methods to classes or change the behavior
of existing methods. They represent a way to implement aspect-oriented programming (AOP)
[39] for Groovy code. Listing 2.8 shows a Groovy code snippet. Figure 2.4 shows a slightly
simplified version of the corresponding AST.

Listing 2.8: Example Code for AST.
def calc = { a , b , c −> a + b ∗ c }
def result = calc 2 , 4 , 10

When comparing the source code and the resulting AST, a clear resemblance can be deter-
mined. The AST consists of two declaration statements. The left side of both statements is

22



a variable. The right side is a closure on the first statement and its invocation on the second
statement.

Parameters

Code      <hidden for brevity>

<< Closure >> 

<< AST >> 

Name: "calc"

Type: Object

<< Variable >> 

<< Declaration >> 

Left

Right

Name: "a"

Type: Object

<< Parameter >> 

Name: "a"

Type: Object

<< Parameter >> 

Name: "a"

Type: Object

<< Parameter >> 

Receiver: this

Method: "calc"

<< MethodCall >> 

Name: "result"

Type: Object

<< Variable >> 

<< Declaration >> 

Left

Right

Arguments

Value: 2

Type: Object

<< Constant >> 

Value: 4

Type: Object

<< Constant >> 

Value: 10

Type: Object

<< Constant >> 

Figure 2.4: Simplified Abstract Syntax Tree for Listing 2.8.

As can be seen in Figure 2.4, the AST nodes have additional information attached to them.
Only the most relevant is included in the diagram. By using the information on the AST nodes,
an AST transformation developer can determine the receiver of the closure invocation, which
in the example is the this pointer. Since no concrete types were specified for variables and
parameters, the object type is assumed by Groovy. Remarkably, this is even true for constants.
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By exposing the AST to user-defined operations at compile-time, Groovy allows for a great
degree of freedom for DSL developers. In the example above, an AST transformation could
globally change the precedence of multiplication over addition by performing the adequate
changes on the AST. Aside from changing the behavior, AST nodes can be analyzed to ex-
tract information on control and data flow, detect unused code or code patterns known to be a
source of error.

Groovy Scripts

A Groovy file can hold executable Groovy code without the need to wrap it in a class and in
doing so can be used as script. When the script is run, Groovy automatically generates a class
with a main method and places the script code correctly inside. This is especially interesting for
DSL developers, since the boilerplate code required for defining an executable Groovy program
is removed.

Listing 2.9: Java code executing a Groovy script.
c l a s s GroovyExecutor {

p u b l i c BaseClass run (String dslText ) {
CompilerConfiguration cc = new CompilerConfiguration ( ) ;

// (1) Set base class for the script.
cc .setScriptBaseClass ( . . . ) ;

// (2) Add Abstract Syntax Tree transformations.
cc .addCompilationCustomizers ( . . . ) ;

// (3) Set default imports.
ImportCustomizer ic = new ImportCustomizer ( ) ;
ic .addImports ( . . . ) ;
cc .addCompilationCustomizers (ic ) ;

// (4) Establish bindings for variables.
Binding binding = new Binding ( ) ;
binding .setVariable ("a" , . . . ) ;

// (5) Define a ClassLoader for the script.
ClassLoader classloader = t h i s .getClass ( ) .getClassLoader ( ) ;

GroovyShell groovyShell = new GroovyShell (classloader , binding , cc ) ;
re turn (BaseClass ) groovyShell .evaluate (dslText ) ;

}

}

A Groovy script can be called from other languages. Listing 2.9 shows how a Groovy
script can be included in a Java program by using the GroovyShell12 class. GroovyShell allows
extensive configuration of the runtime environment of the script. In reference to the numbers in
the listen above, some of the supported configuration parameters are:

1. Script Base Class: This demonstrates how the base class for the script can be set. By
doing so, the this pointer inside the script will refer to a newly created instance of the base

12http://docs.groovy-lang.org/latest/html/api/groovy/lang/GroovyShell.html

24



class. This feature is especially important to DSL developers, since it helps define new
language keywords as methods and properties of the base class.

2. AST Transformations: Groovy exposes the Abstract Syntax Tree to developers for compile-
time metaprogramming. AST transformations can also be applied to scripts, which allows
DSL developers to bypass some syntax restrictions imposed by Groovy.

3. Default Imports: If Groovy or Java classes are used within the script, specific packages
can be imported by default.

4. Variable Bindings: If certain variables are used within the script, they can be bidirection-
ally bound to values from the calling program.

5. Class Loader: Groovy exposes the same ClassLoader mechanism that is used in Java.
An instance of a ClassLoader can be specified for the script, which can be used to load
classes in a custom way.

Since Groovy scripts do not require any boilerplate code and can be included in other pro-
grams, they are ideal candidates for hosting Groovy-based DSLs. An application exposing a
DSL interface to its users can require a certain Groovy script file to be present or ask for the path
to a file at runtime. The host application can be developed in any language that integrates with
Groovy.
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CHAPTER 3
Approach

“Two roads diverged in a wood, and I— I took the one
less traveled by, and that has made all the difference.“

— Robert Frost

A domain-specific language is made to capture the needs of a specific application domain.
A well-designed DSL allows developers to express problems from the problem domain with
terminology and notions from that domain. A key step in DSL development is selecting the
domain-specific notions to use and incorporating them to a DSL, since these notions have a
direct impact on developer productivity [53]. To find the relevant terminology, domain-specific
notions and features to incorporate to Moola, operation orchestration scenarios and existing
approaches were investigated. The findings of this analysis are introduced in this chapter and
are then used to derive a concept of how Moola can integrate the required features to its host
language, Groovy. Based on this concept, a language specification is developed and applied to
the canonical example.

3.1 Feature Analysis

A thorough understanding of the problem domain is required to develop a DSL. This was
achieved by taking real-world scenarios from the ARTIST project [4] and from the ATL Trans-
formation Zoo1. The scenarios were analyzed for common characteristics such as nature of
operations (e.g. validation, transformation), nature of interactions between operations, meta-
models used, tools and libraries involved, etc. Furthermore, existing approaches for operation
orchestration were analyzed and common features extracted. The result of this analysis was a
list of features that a newly created DSL needs to exhibit to be considered a viable alternative to
existing approaches. Figure 3.1 shows the outcome of the analysis phase as feature model [13].
A description of the features follows.

1http://www.eclipse.org/atl/atlTransformations/
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• Allow Common Control Flows: Operation chains typically consist of several operations.
These can occur in sequence or in parallel. Furthermore, some operations may be optional
or may be required to run more than once. A core requirement of any orchestration lan-
guage is the possibility to represent these common control flow scenarios. To achieve
this, two ways were analyzed. One approach is to include dedicated keywords to the lan-
guage that allows a developer to influence the control flow directly. This is common in
imperative programming languages such as Java or Groovy, which use keywords such as
if, while or for to control the order of statement execution. Alternatively, dependencies
between operations can be used to derive an execution order. This can be done by con-
struction a graph (or similar representation, e.g. a petri net [18]) and using well-known
algorithms such as topological sort [58] to derive an execution order.

• Support Diverse Operations: Typical operation chains apply more than one operation
on the input models, aside from loading and saving models. These operations may be
specific to the metamodel of the input models (e.g. validation or transformation) or may
be independent of the inner structure of a model (e.g. copying or moving models). An
orchestration language needs to account for the diversity of model operations by exposing
a mechanism to extend the current set of operations. This is especially important when
considering newly appearing transformation languages. A common way to provide such
an extension mechanism is by incorporating a plug-in system to the DSL.

• Allow Reusing Operations: Many operations are general in a way they can be reused in
different operation chains. Such operations should be defined and implemented only once,
but later included wherever needed. To support this, an import mechanism for existing
operations is required.

• Hide Operation Details, Expose Execution Errors: From an orchestration developers’
point of view, any operation in a chain can be viewed as black box. Although the source
code of the operation might be available to the orchestration developer, a clearly defined
interface should be all that is required to invoke the operation. This interface includes a
description of the inputs and outputs, as well as a list of possible errors that might occur
during operation execution. While the operation internals are hidden during execution, all
errors should be exposed to the caller and either allow the orchestration developer to react
on them by including error control structures, or be displayed to the user to support easier
troubleshooting.

• Provide Early Feedback About Chain Validity: The execution of operation chains can
take up considerable amounts of time depending on the number and complexity of op-
erations involved. In case runtime errors occur in a later stage of an operation chain, the
chain needs to be re-executed after the problematic code was corrected. To avoid unneces-
sary runtime errors and through this, speed up development, static analysis on the validity
of an operation chain should be supported, e.g. by using a type system or analyze the
execution graph of the operation chain before running it. A type system can help avoid
runtime errors by making sure input and output types of operations are compatible with
the respective operation definition. Furthermore, misspelled operation and model names
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can be detected. Additionally or alternatively, if the operation chain is present as a graph,
performance bottlenecks can be determined and certain characteristics (such as reachabil-
ity of all operations) evaluated [79]. When problems are encountered, feedback can be
given to the user without any operation being executed.

• Allow Embedding in Other Processes: Operation chains may be executed within the
context of other processes (e.g. as part of a bigger build or in the context of integrated
development environments). One way to achieve this is by providing a CLI to the DSL that
can be called from any process. By using this approach, a process can indirectly include
operation chain execution by running the CLI command and spawning a new operating
system process. In contrast, the DSL can exhibit an API that allows direct embedding
to processes sitting on the same technology stack as the DSL without spawning a new
process just for the operation chain execution. This allows for easier in-memory exchange
of complex data between host and child processes, which can be used to either pass data
(e.g. models) or status information (log messages).

• (optional) Optimize for Performance: When using an MDE approach, execution of oper-
ation chains is a frequent activity comparable to running a build on conventional software
projects. To limit the amount of time spent waiting on results, operation chains should
incorporate the following features: parallel execution allows independent operations to
run at the same time. Operations are independent if there is no specific order in which the
operations need to be executed. Such an order is naturally given if one operation operates
on the direct or indirect output of another operation. In-memory model passing allows
passing models between operations without the need to save them to disk. Especially for
intermediate results, saving models is unnecessary and should be avoided.

• (optional) Allow User Interaction: During the execution of operation chains, feedback
needs to be provided to the user to show the progress and current state of the execution.
In several scenarios, user input can be gathered to change the course of execution (e.g.
which operation to perform) or specify settings (e.g. location for model saving).

3.2 Integrating Operation Orchestration to Groovy

To integrate the concepts of model operation orchestration to Groovy while enabling the previ-
ously listed features, the similarities between Groovy and operation chains are first highlighted.
Operation chains have a control flow defining the order of operation execution. They have a data
flow describing how values are passed from one operation to another. In case an operation fails,
an alternate operation may be executed or the whole chain aborted, so a way to handle errors is
required. In a Groovy script, the control flow and error handling is explicitly defined by using
keywords. The data flow can be derived by following variable usage in e.g. assignments and
function calls.

Since Groovy has mechanisms to describe control and data flows and error handling within
a script and operation chains require similar mechanisms, it is a natural step to try and reuse
the keywords and structures of Groovy. This lowers the entry threshold for developers new to
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Moola, but familiar with Groovy or Java. To seamlessly integrate the concepts of model-driven
engineering to Groovy scripts and thereby reuse the existing Groovy keywords, the first-class
citizens of MDE, models and operations, need to be mapped to Groovy concepts appropriately.
Table 3.1 shows how Moola maps concepts from MDE to Groovy language constructs.

Moola Groovy Correlation

Model Type Class Serves as blueprint for data.
Model Variable Represents data for the execution. Can be typed.
Operation Function Expects certain input values and returns certain

output values. Can be typed. Throws exceptions
in case of errors.

Table 3.1: Mapping Between MDE and Groovy concepts.

A model type defines the inner structure of a model. A process accessing a valid model of
some model type can rely on certain guarantees the model type imposes on the inner structure of
the model, such as existing elements and connections between elements. Hence the model type
can be seen as a MDE counterpart to what a class is in object-oriented programming.

A model represents the data of the operation chain. It conforms to a model type and serves
as input and output of operations. A model typically resides on disc or in memory and needs
to be made available to the operation chain by means of a pointer to were the actual data is
located. Such pointers to data are represented through variables and properties in object-oriented
programming languages such as Groovy.

An operation performs an action on one or more input values and yields one or more output
values. Both input and output values may be models, or any other type of data, e.g. strings,
numbers, etc. Typical operations include validation (which checks the conformity of a model
against its model type and returns a boolean value), transformation (which takes one or more
input models and yields one or more output models of possibly different model types), etc.
Furthermore, an operation may fail and inform its caller on the cause of the failure. A counterpart
to the notion of operation is a function in object-oriented programming. A function operates on
input and yields output values. These values can be model references, thereby relying on the
mapping between model and variable. In case of error, a function may throw an exception.

To tie the approach together, operation chain developers needs to take the following steps to
implement an operation chain:

1. Define Model Types, Models and Operations: Developers need to specify which model
types they intend to use. Similarly to classes, these can later be used to type variables, i.e.
models, and input and output values for operations. Developers then need to define which
models are going to be used and where to retrieve them from, e.g. from a file. All models
will be made available to the orchestration code via Groovy variables. Finally, developers
need to define the operations they want to use and their interface, i.e. the type of input and
output values. All operations will be made available to the orchestration code as Groovy
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functions. Special keywords are introduced in Moola to define model types, models and
operations.

2. Orchestrate Operations: Developers can use standard Groovy control and error handling
keywords to create the operation chain. Additional keywords are introduced for situations
in which Groovy does not provide native structures for, e.g. parallel execution. Models
are made available via variable references, operations are made available as functions.
This allows developers to use Groovy and Java knowledge and best-practices to create the
operation chain.

Two-Phase Execution

Moola, like Gradle, operates in a two-phase approach. In the configuration phase, the Moola
script is parsed and all artifacts (metamodels, models, operations) are collected. This includes
reading files, applying plug-ins and resolving operations imported from other Moola scripts. The
gathered information is then used to type-check the orchestration code. Since the artifacts are
not directly used in the configuration phase, their order of appearance in the Moola script is not
relevant. Developers can choose to group artifacts by type (e.g. all models before all operations),
by task (e.g. all models and operations of one specific task together) or any other form. After the
configuration phase has collected all artifacts and the orchestration code passed type checking,
the execution phase runs the orchestration code.

This two phase approach has several advantages. Each artifact can be checked for validity
(e.g. if all required information is supplied, if the specified files exist, etc.). All artifacts com-
bined can be used to check the validity of the orchestration code. In doing so, common errors
can be eliminated without the need to execute any operation or execute any parts of the orches-
tration code. Errors that can be avoided this way include type mismatches, misspelled model
and operation names, missing files, etc.

Classification of Moola

Reusing the Groovy keywords for control flow and error handling places Moola in the class
of imperative languages, since the order of operations is explicitly defined. In contrast, the
developers of Gradle, which also uses Groovy as host language, choose not to reuse the control
flow structures and go for a declarative approach. By sitting on top of Groovy, Moola inherits the
full power of Groovy’s functional programming capabilities. Since Moola reuses many aspects
of Groovy’s concrete syntax, it uses a textual syntax to describe operation chains.

Groovy is optionally-typed, meaning that developers can choose to include type declarations.
Moola, on the other hand, is a strongly-typed language in which classes and model types can be
used alike to type variables, models and operation input and output values.

3.3 Language Specification

An important property of any domain-specific language is the tuning of the syntax to allow
for expressive problem solving in the application domain. This section will introduce Moola’s
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syntax and explain the semantics of the language constructs.

Syntax

The syntax of Moola is described in the following using EBNF. To make the grammar easier to
read, the standard EBNF syntax is slightly altered. This includes using the regular expression
operations ? (option), + (repetition with minimum 1) and * (repetition with minimum 0) instead
of the standard EBNF operations. Non-terminal symbols are written in angled brackets, terminal
symbols are written in single quotes (’) and bold. The .. operator describes sequences, e.g.
’a’..’z’ refers to all lowercase letters from a (inclusive) to z (inclusive). Since Moola’s syntax
sits on top of Groovy’s syntax, non-terminal symbols starting with groovy- refer to Groovy
language constructs and their original meaning in Groovy and are, for the sake of scope, not
elaborated in detail in this grammar.

〈program〉 ::= ( 〈include〉 | 〈plugins〉 | 〈definition〉 )* 〈run〉?;

〈include〉 ::= ’from’ 〈path〉 ’include’ 〈operation-list〉+;

〈path〉 ::= 〈groovy-g-string〉;

〈operation-list〉 ::= 〈operation-name〉 ( ’,’ 〈operation-name〉 )+;

〈plugins〉 ::= ’plugins’ 〈plugin-list〉;

〈plugin-list〉 ::= 〈plugin-name〉 ( ’,’ 〈plugin-name〉 )*;

〈plugin-name〉 ::= ” ( 〈alphanum〉 | ’_’ )+ ”;

〈alphanum〉 ::= ’a’..’z’ | ’A’..’Z’ | ’0’..’9’;

〈definition〉 ::= 〈modeltypes〉 | 〈model〉 | 〈operation〉;

〈modeltypes〉 ::= ’modeltypes (’ 〈modeltype-list〉* ’)’;

〈modeltype-list〉 ::= 〈modeltype-def 〉 ( ’,’ 〈modeltype-def 〉 )+;

〈modeltype-def 〉 ::= 〈modeltype-name〉 ’:’ 〈path〉;

〈modeltype-name〉 ::= ’A’..’Z’ ( 〈alphanum〉 | ’_’ )+;

〈model〉 ::= ’model’ 〈model-name〉 ’{’ 〈model-details〉 ’}’;

〈model-name〉 ::= ( 〈alphanum〉 | ’_’ )+;

〈model-details〉 ::= 〈groovy-statements〉+;

〈operation〉 ::= ’operation’ 〈operation-name〉 〈operation-params〉? 〈operation-settings〉?;
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〈operation-name〉 ::= ( 〈alphanum〉 | ’_’ )+;

〈operation-params〉 ::= ’(’ 〈groovy-named-params〉 ’)’;

〈operation-settings〉 ::= ’{’ ( 〈groovy-statement〉 | 〈expects〉 | 〈returns〉 )+ ’}’;

〈expects〉 ::= ’expects’ 〈param-def 〉 ( ’,’ 〈param-def 〉 )+;

〈returns〉 ::= ’returns’ 〈param-def 〉 ( ’,’ 〈param-def 〉 )+;

〈param-def 〉 ::= 〈model-name〉 ’:’ ( 〈modeltype-name〉 | 〈groovy-class〉 );

〈run〉 ::= ’run {’ 〈orchestration-code〉 ’}’

〈orchestration-code〉 ::= ( 〈groovy-statement〉 | 〈parallel〉 | 〈await〉 )*;

〈parallel〉 ::= ( 〈groovy-variable〉 ’=’ | ’await’ )? ’parallel (’ 〈closure-list〉 ’)’;

〈closure-list〉 ::= 〈groovy-closure〉 ( ’,’ 〈groovy-closure〉 )+;

〈await〉 ::= ’await’ 〈groovy-variable〉;

Semantics

To tailor Groovy to the domain of model operation orchestration, several new keywords and
language constructs are introduced. Their syntactical outline and where they can be placed
within a Moola script can be taken from the EBNF of the previous section. In this section, their
meaning and how they map to the aforementioned requirements is explained.

• modeltypes This keyword allows the definition of model types. Each model type consists
of a name and a path to a metamodel. In subsequent parts of the Moola script, model types
are used to type models as well as input and output parameters of operations. Through the
model type mechanism, strong typing is supported in Moola and rich checks for validity
can be applied to Moola scripts before their execution. A model type can be used inter-
changeably with a Groovy class inside a Moola script (and is, indeed, transformed to an
internal class as will be shown in Chapter 4).

• model The model keyword allows to define models, which will be made available to the
orchestration code later on. The model definition includes the corresponding model type
and a place to load the model from, typically some file on the disc or some other resource.

• operation A model operation can be implemented using various underlying techniques.
For example, domain-specific languages exist for various model-centered operations such
as transformations, validations, etc. Other operations may include calling third-party pro-
grams (e.g. the Java compiler) or programs written in a general-purpose language (e.g.
Java). The means to implement operations are manifold. To include such operations
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of varying underlying implementation in an orchestration chain, an operation definition
is needed. It describes which inputs an operation expects, which outputs it returns and
which other settings need to be applied to successfully execute it. In Moola, the operation
keyword is used to describe an operation and make it available to the orchestration code.

• expects, returns These two keywords can only occur in an operation definition and are
used to describe the operation’s interface. The expects keyword describes the input values,
while returns describes the output values. Each input and output value definition consists
of a name and type. All valid Groovy types can be used, including primitive types and
classes. If the operation receives or yields models, model types can be used to specify
their type.

• from .. include .. Before model operations can be orchestrated to an operation chain, the
interface of the operation must be known to Moola. Also, any details on how to invoke
an operation (e.g. settings) need to be specified before a call to the operation can be
successful. This can happen through either writing an operation definition directly in the
orchestration file via the operation keyword, or by including an orchestration definition
from another Moola file. Through this mechanism, operations can be defined in one file
and included in several operation chains. This allows reusing operations and makes the
task of including an operation to an operation chain easier, since a Moola file describing a
certain operation can be added to the implementation of the operation.

• plugins A plugin is a set of operation types that can be made available to an operation
chain. After the plugins keyword, a list of plugins can be specified. When an operation is
defined, the type of the operation needs to be specified. This operation type defines which
underlying language was used to implement the operation and therefore governs which
settings must be specified in order to call the operation. Furthermore, input and output
model types depend on the operation type, although this may vary or even be dynamic
depending on the operation implementation.

• parallel The parallel keyword integrates concurrent execution of one or more operations
directly into Moola. It expects a list of Groovy closures, which will be called concurrently
via separate threads. When called, parallel returns a promise object. The main thread
continues execution without waiting on the parallel threads to finish. If the main thread
should be blocked until all parallel threads have finished, the await keyword can be used
on the promise returned by parallel. More details on concurrency and how locking and
error handling are implemented in Moola can be found in Chapter 4.

• await This keyword expects the promise returned by an invocation of parallel as first
argument. It then blocks the current thread until all child threads started by the specific
parallel invocation have finished execution. If an exception occurs in one of the child
threads, await will throw the same exception, making it possible to react on exceptions in
child threads. If more than one child threads fail due to an exception, a specific exception
will be thrown indicating multiple errors. Since await blocks the current thread, it can be
used within parallel to allow for nested concurrent execution.
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• run The run keyword is followed by the run closure and marks the part of the Moola script
responsible for the orchestration code. All defined models are available as variables within
the run closure. Similarly, all defined or imported operations are available as functions
within the run closure. Since Moola in an imperative programming language, the run
closure is executed top-down, one statement at a time (except for concurrent execution via
parallel). Any valid Groovy code can be used within the run closure to orchestrate the
operations, including Groovy’s built-in functions and functional programming concepts.

Aside from the newly introduced keywords, all Groovy keywords retain their meaning. This
is especially important for the control flow keywords (if, switch, while, for) and error handling
keywords (try, catch, finally).

An Implementation of the Canonical Example

Summarizing the syntax and semantics of Moola, Listing 3.1 shows one possible orchestration
for the canonical example (Figure 1.2) introduced in Chapter 1. It includes several other files via
the from-include keyword pair, which themselves contain the operation definitions. One such file
is shown in Listing 3.2, which contains the model operations for the SQL part of the canonical
example.

Listing 3.1: Orchestration of the Canonical Example.

from "./java" i n c l u d e GEN_JAVA , BUILD_JAVA
from "./sql" i n c l u d e GEN_DB_MODEL , GEN_SQL
from "./misc" i n c l u d e PACKAGE
from "./repo" i n c l u d e COMMIT

p l u g i n s "EMF"

// ---------- Model Types and Models ---------- //

modeltypes (
Uml : "http://www.eclipse.org/uml2/5.0.0/UML" ,
DbModel : "../meta/dbmodel.ecore"

)

model domainModel (
type : Uml ,
path : "./models/domain.uml"

)

// ---------- Orchestration ------------------- //

run {
i f ( !VALIDATE ( domainModel ) ) {
error "Domain model is not valid."
e x i t

}

await p a r a l l e l ( {
GEN_JAVA ( domainModel , "./build/java" )
BUILD_JAVA ( "./build/java" )
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} , {
sqlModel = GEN_DB_MODEL ( domainModel )
GEN_SQL ( sqlModel , "./build/sql" )

} )

zipPath = PACKAGE ( "./build/java/**/*.class" , "./build/sql" )

errorCount = 0
whi le ( errorCount < 3 ) {

t r y {
username = ask "Username: "
password = ask "Password: "

COMMIT ( username , password , zipPath )
} catch ( AuthenticationError ex ) {
info "Username/Password incorrect, please try again."
errorCount++

} catch ( Exception ex ) {
error ex
e x i t

}
}

}

Listing 3.2: SQL Operation Definitions of the Canonical Example.

p l u g i n s "EMF"

// ---------- Model Types ---------- //

modeltypes (
Uml : "http://www.eclipse.org/uml2/5.0.0/UML" ,
DbModel : "../meta/dbmodel.ecore"

)

// ---------- Operations ----------- //

o p e r a t i o n GEN_DB_MODEL ( type : "ATL/EMFTVM" ) {
e x p e c t s input : Uml
r e t u r n s output : DbModel
path = "."
module = "SqlToDBModel"

}

o p e r a t i o n GEN_SQL ( type : "Acceleo" ) {
e x p e c t s input : DbModel , path : S t r i n g
project = "GenSQL"
main = "GenSQL.common.Generate"

}

The Moola script in Listing 3.1 starts with importing all required operations from other
Moola files. It then registers the EMF plug-in, which is needed to gain access to the operation
types of the EMF world and some standard operations (such as VALIDATE in this example).
Afterwards, the model types UML and DBModel are defined by specifying the locations of their
corresponding metamodels. In the case of the UML model type, a namespace is provided which
is used to resolve the metamodel. The DBModel model type on the other hand directly points to
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the file holding the metamodel in the Ecore format. The model type definitions are followed by
the definition of the only used model, domainModel, through specifying its model type and file
location. The orchestration code within the run closure orchestrates the operations by mainly
using standard Groovy keywords (if, while and try ... catch ...) and await and parallel for
concurrent execution. As was described previously in this chapter, all imported operations are
available as functions within the orchestration code and can be called accordingly. Similarly, all
defined models are available as variables and can be used as such.

Aside from operations, several standard functions are available in the orchestration code to
cover common aspects of operation chain development. These include functions for printing text
to the console on various severity levels (verbose, info, warn, error), prompting users to provide
input (ask) and stopping the current execution (exit).

3.4 Relation to Activity Diagrams

Activity diagrams [24] are a general-purpose notation to describe workflows within a system [17,
19] and were shown to be effective in, although not universally applicable to, various domains,
including business process modeling [63]. The resemblance of operation chains and other types
of software development workflows was already noted in Chapter 1. It thus follows that general
workflow notations, such as activity diagrams, can also be applied to the domain of MDE and
be used to describe operation chains [83].

The canonical example in Figure 1.2 and its implementation in Moola in Listing 3.1 indi-
cate a relation between activity diagrams and Moola programs. Such a mapping from activity
diagrams to a programming language called Esteral was shown to exist [7]. In this section, a
similar mapping from activity diagrams to Moola is presented by demonstrating how the most
important elements and control flow patterns of activity diagrams can be expressed in Moola.

Activity Diagram Element Moola Equivalent

Activity Model operation as function call in run closure

Initial state Beginning of run closure

Final state End of run closure, exit function

Table 3.2: Activity diagram elements and their Moola equivalent.

Table 3.2 shows three core elements in every activity diagram and how they relate to Moola.
An activity in an activity diagram is a model operation in Moola. Referring back to the map-
ping of MDE and Moola in Table 3.1, model operations are present as functions within the run
closure. Start and end states of an activity diagram are explicitly marked by elements. These
are implicitly defined by the beginning respectively the end of the run closure in Moola. Ad-
ditionally, the orchestration of Moola can exit from anywhere using the globally available exit
function. Table 3.2 shows that activity diagram elements relate to concepts in and around the
run closure, which intuitively makes sense, since activity diagrams describe workflows, which
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map to the orchestration code of operation chains, which itself fully resides in the run closure.
Other Moola code deals with setting up the model operations and execution environment and is
therefore not reflected when using a workflow-centered notation like activity diagrams.

Control Flow Pattern Activity Diagram Moola Code

Sequence A B

A
cond

B
else

A

B

A

cond

else

A

A ( )
B ( )

Choice

A B

A
cond

B
else

A

B

A

cond

else

A

i f (cond ) {
A ( )

} e l s e {
B ( )

}

Parallel Split

A B

A
cond

B
else

A

B

A

cond

else

A

p a r a l l e l ( {
A ( )

} , {
B ( )

} )

Synchronization

A B

A
cond

B
else

A

B

A

cond

else

A

await . . .
A ( )

Iteration

A B

A
cond

B
else

A

B

A

cond

else

A
whi le (cond ) {
A ( )

}

Table 3.3: Control flow patterns and their representation in activity diagrams and Moola code.

Table 3.3 shows common control flow patterns and how they can be modeled in activity
diagrams using decisions, splits and joins, and one way to write them in Moola. Other Moola
implementations are feasible, e.g. Moola’s switch statement could be used instead of the pro-
posed if statement for choices, a for loop can be used instead of while for iterations. Looking
at the Moola code in Table 3.3 highlights the aspired similarity to Java and Groovy, which is
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achieved by re-using keywords from these languages in Moola.
Aside from describing the control flow, activity diagrams can also model the object flow

between activities. Object flows can be used to explicitly describe data exchange in an activity
diagram. In Moola, passing data into model operations and receiving data from model operations
is implemented by using function parameters respectively function return values of the operation
function in the run closure. Like Java and Groovy, Moola has several variable scopes that control
the visibility of variables. The top-most scope, i.e. the global scope, can be used to exchange
data between any (even independent) operations and can thus be used to implement any object
flow that can be modeled in activity diagrams.
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CHAPTER 4
Implementation

“I love deadlines. I like the whooshing sound they make
as they fly by.“

— Douglas Adams

Embedding a DSL on top of a host language can be realized in different ways. Groovy
has concepts for DSL development integrated as core parts of the language. In Chapter 2, rel-
evant mechanisms were introduced to provide a conceptual framework on DSL development in
Groovy. After describing Moola’s approach on how to incorporate the terminology and domain-
specific notions of model operation orchestration to Groovy in the previous chapter, this chapter
introduces the implementation details of Moola and how the eleven new keywords are realized.

One of the most important bits of code in DSL development is the definition of a proper
Groovy script base class. An instance of the base class is used as this pointer within the Groovy
script and is therefore called when e.g. a variable cannot be resolved. In this case, the instance of
the base class will be searched for a property of the variable name. Similarly, if a method cannot
be resolved in the Groovy script, the instance of the base class is searched for a method with that
name. By adding a method to the base class, a keyword-like structure can be introduced to the
DSL. Listings 4.1 and 4.2 show this concept on an excerpt of the ScriptBase1 class of Moola.

Listing 4.1: Excerpt of the base class for Moola.
import groovy .lang .Script

c l a s s ScriptBase ex tends Script {

void modeltypes (values ) {
// ...

}

void model (args ) {
// ...

1https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/phases/config/ScriptBase.groovy
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}

void operation (args , @DelegatesTo (Operation ) configClosure ) {
// ...

}

}

Listing 4.2: Calling the newly added keywords from within the script.
// Calling the base class methods implicitly.
modeltypes ( . . . )
model ( . . . )
o p e r a t i o n ( . . . )

// Or explicitely via the this pointer.
this . modeltypes ( . . . )
this . model ( . . . )
this . o p e r a t i o n ( . . . )

As the listings show, the methods of the script base class can be called from within the script
by either calling them with or without the this pointer. By adding syntax highlighting to the
editor and using the methods without this pointer, keyword-like structures can be introduced.
These can be used to manipulate the state of the instance of the base class or execute certain
functions directly.

Keyword Defined On

modeltypes ScriptBase
model ScriptBase
operation ScriptBase
expects Operation
returns Operation
plugins ScriptBase
from ScriptBase
include OperationImporter
run ScriptBase
parallel ExecutionContext
await ExecutionContext

Table 4.1: Keywords and the classes they are defined on.

This also shows the importance of a properly defined script base class. Aside from abstract
syntax tree (AST) transformations, nearly all interactions between the Groovy script holding
the DSL code and the process executing the code (e.g. CLI or other JVM process) happen
over the script base class. Table 4.1 shows all eleven Moola keywords and the classes they are
defined on as methods. Most keywords are defined on the ScriptBase. Two more, expects and
returns are used to set up an operation and are therefore defined on the Operation class. Lastly,
two keywords are used to facilitate parallel execution and are defined on a special class called
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ExecutionContext. In the remainder of this chapter, details are described on how all keywords
are implemented.

4.1 Model Types

Model types allow users to specify which metamodels are used in the operation chain. Once
a model type is defined, it can be used to type models and operations (inputs and outputs) and
works similarly to traditional Groovy classes and interfaces when typing is concerned. Like
most keywords, the modeltypes keyword is a method on Moola’s ScriptBase class. It accepts
a dictionary of key-value pairs, which in Groovy can be passed in a named-parameter style of
syntax. Listing 4.3 shows how the keyword can be used.

Listing 4.3: Defining model types.
modeltypes (
Uml : "path/to/a/metamodel/file" ,
SysML : "other/path/to/metamodel/file" ,
. . .

)

To allow using model types similarly to Groovy classes, an AST transformation is used on
the modeltypes keyword that creates a real Groovy class for every dictionary item. After Groovy
has parsed the Groovy script holding the DSL code and has generated the preliminary AST, a
transformation checks the AST for model type definitions and adds nodes to the AST that define
a Groovy class for every definition it encounters. The AST transformation is illustrated in Figure
4.1. The code can be found in the GenerateModelClassesTransformer2 class.

The AST transformation checks for MapEntry items in the argument list of the modeltypes
method call and adds a ClassNode for every map entry it finds. This creates inline Groovy
classes in the script, which can be used to type variables and methods. From a programming
point of view, these classes are identical to other Groovy classes, which means that they can be
used just as any other class, e.g. in definitions, cast expressions, etc.

4.2 Models

Models are a first-class citizens of any MDE-related activity. In Moola, a model is defined using
the corresponding model keyword and later made available to the orchestration code as variable.
An example model definition can be seen in Listing 4.4.

Listing 4.4: Defining a model.
// Call with name as parameter.
model ( name : "domainModel" , type : Uml , path : "path/to/model/here" )

// Call with name in front of parameter list.
model domainModel ( type : Uml , path : "path/to/model/here" )

The model keyword is, again, implemented as method on the ScriptBase class. It expects
a named-parameter list (similar to the modeltypes keyword). Mandatory items are name, type

2https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/dsl/ast/GenerateModelClassesTransformer.groovy
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Key: "UML"

Value: "path/..."

<< MapEntry >> 

Key: "SysML"

Value: "other/path/..."

<< MapEntry >> 

Name: "UML"

<< ClassNode >> 

Name: "SysML"

<< ClassNode >> 

<< AST >> 

Added by  AST 
transformation

<< Block >> 

Statements

Receiver: this

Method: "modeltypes"

<< MethodCall >> 

Arguments

Figure 4.1: AST before and after applying the transformation.

and path. The type parameter takes a model type (or any other Groovy class) and is used for
typing the model. Since the model keyword defines exactly one model, a more intuitive notation
can be used by pulling the model name in front of the parameter list. This syntax is achieved
by an AST transformation. Figure 4.2 depicts the syntax trees for the two alternatives to use
the model keyword. The left AST is constructed when the name parameters is written in front
of the parameter list. The parser interprets the model name („domainModel“ in our example)
as method call and parses an according syntax tree. From the parsers point of view, the model
method is called with the return value of the „domainModel“ method call. In comparison, when
the name is specified within the parameter list, it is also included in the arguments of the model
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method call.
Although the left AST is valid in terms of Groovy syntax, it cannot be executed since no

method of the given name, e.g. „domainModel“, exists. To allow the notation of a prefixed
model name, an AST transformation is required. Whenever Moola encounters an AST having a
method call as first argument of the model keyword, this method call is removed and the name
of the method is passed along the other parameters into the model keyword. This basically
transforms an AST as seen in the left of Figure 4.2 to one as seen in the right of same figure.
The code of this transformation can be found in the ModelNameTransformation3 class.

Receiver: this

Method: "domainModel"

<< MethodCall >> 

Arguments

Receiver: this

Method: "model"

<< MethodCall >> 

Arguments

Key: "type"

Value: UML

<< MapEntry >> 

Key: "path"

Value: "path/to/..."

<< MapEntry >> 

<< AST >> 

<< Block >> 

Statements

Receiver: this

Method: "model"

<< MethodCall >> 

Arguments

Key: name

Value: "domainModel"

<< MapEntry >> 

Key: "type"

Value: UML

<< MapEntry >> 

Key: "path"

Value: "path/to/..."

<< MapEntry >> 

<< AST >> 

<< Block >> 

Statements

AST

Transformation

"domainModel" incorrectly 
parsed as method call.

Figure 4.2: (left) AST when the name is prefixed. (right) AST when the name is included in the
parameters. Since the left AST is not executable by Moola, a transformation is used to convert
it to the right one.

4.3 Operations

The operation keyword can be used to define model operations. Similarly to modeltypes and
model, it is defined as method on the ScriptBase. As with model definitions, an operation defi-
nition can hold the name of the operation either directly in the parameter list or in front of it. In

3https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/dsl/ast/ModelNameTransformation.groovy

45



the latter case, an AST transformation similar to the one used with the model keyword is used to
form an AST that Moola can execute. The OperationNameTransformation4 class holds the code
for this AST transformation. Listing 4.5 shows two ways of how to use the operation keyword.
The second call to operation not only places the operation name in front of the parameter list,
but also pulls the (configuration) closure parameter out of the parameter list. As described in
Chapter 2, the last parameter of any method call can be placed after the call if it is a Groovy
closure.

Listing 4.5: Defining an operation.
// Call with name and closure as parameters.
o p e r a t i o n ( name : "COMMIT" , type : "Commit" , {

e x p e c t s input : Uml , message : S t r i n g
r e t u r n s success : Boolean
timeout = 30000

} )

// Call with name in front of parameter list and trailing closure.
o p e r a t i o n COMMIT ( type : "Commit" ) {

e x p e c t s input : Uml , message : S t r i n g
r e t u r n s success : Boolean
timeout = 30000

}

Two more Moola keywords can be used when defining an operation: expects and returns.
These two keywords define the input and output parameters of the operation respectively. In
contrast to previously mentioned keywords, the expects and returns keywords are defined as
methods on the Operation5 class. The closure specified as parameter to the operation keyword
is not executed on the (topmost) Groovy script scope, but rather on the scope of an operation
instance. To put it in another way, the this pointer within the closure points to an instance of
an operation rather than to an instance of the ScriptBase. By doing so, the two keywords can
manipulate the state of the operation they are defined on. A named-parameters list is used to
specify the names and types of inputs and outputs. Any Groovy class (and therefore also model
types) can be used as value. To safe on boilerplate syntax, the parenthesis around the parameters
for the expects and returns method calls can be omitted.

An important parameter of an operation definition is the type. It defines the behavior of the
operation when it is executed. When Moola encounters an operation definition, it searches the
OperationRegistry6 of the current Moola process for the provided type. Each type is realized
by a subclass of the Operation class. Moola creates a new instance of the found class and
runs the configuration closure in the context of this new instance. In doing so, the closure has
direct access to the operation and can manipulate internal values, such as inputs and outputs.
Furthermore, it can access any properties or call any methods that are definied on the Operation
class or the specific subclass of the chosen operation type. In Listing 4.5, this is done to set the
timeout property. The timeout is specific to the Commit operation and is an integer property on
the given subclass of Operation.

4https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/dsl/ast/OperationNameTransformation.groovy
5https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/dsl/core/Operation.groovy
6https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/dsl/core/impl/OperationRegistry.java
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During the execution phase, all defined or imported operations are made available to the
orchestration code as methods. To give operations a prominent outline in the orchestration code,
the Moola style guide recommends writing operation names in all upper case letters.

4.4 Plug-ins

The Moola core language provides the capabilities to orchestrate operations from any MDE
framework. The type of action performed by an operation depends on the operation type speci-
fied in the operation definition. These types can be registered to the current Moola process via
plug-ins. Listing 4.6 shows how several plug-ins can be added in one statement.

Listing 4.6: Adding plug-ins.
p l u g i n s "EMF" , "File" , "SVN"

The plugins keyword is a method on the ScriptBase that expects a variable number of String
parameters. It searches the registered plug-ins for the names provided and adds the correspond-
ing plug-ins to the current Moola process.

4.5 From ... Include ...

A Moola file typically holds four distinct elements: modeltype definitions, model definitions,
operation definitions and the orchestration code. Operation definitions create an instance of an
operation type by specifying input and output types and settings. To allow reusing operation
definitions in various Moola files, the from and include keywords can be used. These allow
importing existing operation definitions from other Moola files to the current one. Listing 4.7
shows how to use the from ... include ... keyword pair.

Listing 4.7: Including operations from other files.
from "./path/to/file" i n c l u d e SOME_OPERATION , OTHER_OPERATION

The included operations can be used in the orchestration code like any locally defined opera-
tion. The from keyword is implemented as method on the ScriptBase, which returns an instance
of OperationImporter7, which defines an include method. Listing 4.8 shows the usage of the
from-include keyword pair if the parenthesis are not omitted.

Listing 4.8: From-Include with parenthesis.
from ("./path/to/file" ) . i n c l u d e (SOME_OPERATION , OTHER_OPERATION )

As last step to realize the from-include keyword pair, an AST transformation is required to
process the parameters of the include method call. When parsing the Groovy scripts of Listing
4.7 or 4.8 (both lead to the same AST), the parameters are understood to be variables. This is
correct from a compiler’s point of view, however for Moola, the parameters refer to the names of
the operation definitions and should be therefore considered as strings. The AST transformation
therefore takes each occurance of a variable inside the include method call’s parameter list and
replaces it with a String constant.

7https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/phases/config/OperationImporter.groovy
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Listing 4.9: From-Include from the user’s and the compiler’s point of view.
// Import as defined by the user.
from "./path/to/file" i n c l u d e SOME_OPERATION , OTHER_OPERATION

// Import rewritten with parenthesis and dots.
from ("./path/to/file" ) . i n c l u d e (SOME_OPERATION , OTHER_OPERATION )

// Actually executed import after AST transformation.
from ("./path/to/file" ) . i n c l u d e ("SOME_OPERATION" , "OTHER_OPERATION" )

Listing 4.9 shows the usage of from-include as suggested with omitting dots and parenthesis,
the call after adding both, and the resulting call after the AST transformation is applied. Figure
4.3 illustrates the AST transformation.

Receiver

Method: "include"

<< MethodCall >> 

Arguments

AST

Transformation

Receiver: this

Method: "from"

<< MethodCall >> 

Return Value

Arguments

Name: "OTHER_OP..."

<< Variable >> 

Type: Object

Name: "SOME_OP..."

<< Variable >> 

Type: Object

Name: "./path/to/file"

<< Constant >> 

Type: String

Receiver

Method: "include"

<< MethodCall >> 

Arguments

Receiver: this

Method: "from"

<< MethodCall >> 

Return Value

Arguments

Value: "OTHER_OP..."

<< Constant >> 

Type: String

Value: "SOME_OP..."

<< Constant >> 

Type: String

Name: "./path/to/file"

<< Constant >> 

Type: String

Figure 4.3: AST transformation for the from-include keyword pair.

4.6 Orchestration Code

The code describing the orchestration is specified via the run keyword. This keyword is imple-
mented as method on the ScriptBase and expects a closure as only argument. Listing 4.10 shows
the outline of how to use the keyword.
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Listing 4.10: Specifying the orchestration code.
run {
// Orchestration code here.

}

The closure passed to the run keyword is called run closure and can access models and op-
erations as variables and functions respectively. It can use standard Groovy code to orchestrate
the operations (which are present as regular Groovy functions). The run closure is not exe-
cuted in the topmost Groovy script scope, but rather in a specific ExecutionContext8. How this
ExecutionContext is constructed and used for type checking is explained later in this chapter.

4.7 Parallel Execution

The run closure can use arbitrary Groovy code to orchestrate operations. This especially in-
cludes control flow structures such as if, for, while, switch, try ... catch ..., etc. To achieve
concurrent execution of code, Groovy relies on threads. Since parallel execution of operations is
a common requirement in operation chains, Moola introduces the keywords parallel and await.
Both are realized as methods on the ExecutionContext (since an instance of this class is the this
pointer within the run closure). Listing 4.11 demonstrates the usage of parallel and await.

Listing 4.11: Using parallel and await.
run {
// Start several threads and deferred wait.
promise = p a r a l l e l ( {

. . .
} , {

. . .
} )
await promise

// Immediately wait on all threads to finish.
await p a r a l l e l ( {

. . .
} , {

. . .
} )

}

The parallel keyword takes a list of Groovy closures and returns a promise [48]. Each
closure is executed in a separate thread and has access to the models and operations just as any
other place within the run closure. The await keyword takes the promise returned by a parallel
invocation and blocks the current thread until all threads started by parallel have finished. It can
be used to defer waiting for the threads if several parallel keywords are used, e.g. in a loop. If
the current thread should be blocked directly at the parallel call, the call can be prefixed with
await.

8https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/phases/exec/ExecutionContext.groovy

49



Exception Handling

Since each thread has its own execution path, exceptions raised in a thread do not pervade to
the main thread. The default behavior of Groovy is to print unhandled thread exceptions to
system error and stop execution of the thread. Since the parallel keyword starts a new thread for
each provided closure, exceptions would not be passed to the main thread. To circumvent this,
exception handlers are attached to all threads. If any thread raises an exception, await raises
the same one. If multiple exceptions occur, await raises a ParallelExecutionException9. Listing
4.12 shows how await can be used to handle exceptions that occured during parallel execution.

Listing 4.12: Exception handling with parallel and await.
run {

promise = p a r a l l e l ( {
throw new RuntimeException ( )

} , {
. . .

} )

t r y {
await promise // Forwards exceptions from within parallel.

} ca tch (RuntimeException e ) {
. . .

}
}

Concurrency Control and Deadlock Prevention

Since, through parallel, several threads may be active at the same point in time and some of them
may access the same variables, valid concurrent access to shared values needs to be ensured. In
Moola, a pessimistic locking strategy is applied [21]. The locking is done on operation level.
Developers of an operation can choose which inputs they want to lock by using the standard
Groovy synchronized keyword. Similarly, the synchronized keyword can be used anywhere
in the orchestration code to prevent concurrent access, although this approach is discouraged.
Since the manipulation of values should be done within operations, operation-level locking is
sufficient.

Although this strategy prevents concurrent access issues, it opens the door to deadlocks [57].
For a deadlock to occur, four conditions identified by Coffman [36] need to be fulfilled:

• Mutual Exclusion: The resources cannot be shared between the threads, but are fully
claimed by one thread.

• Hold and Wait: A thread holding a lock for a resource continues to hold the lock while
waiting for additional locks on other resources.

• No Preemption: The lock on a resource can only be released by the thread holding the
lock. Releasing a lock cannot be initiated by other threads.

9https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/phases/exec/ParallelExecutionException.groovy
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• Circular Wait: A cycle of threads exists, in which each thread waits on resources locked
by another thread.

In Moola, a deadlock prevention strategy [16] is used. Deadlock prevention refers to the
action of ensuring one of the above conditions to always be false in the system, thus preventing a
deadlock from occurring. Moola achieves deadlock prevention by introducing a total order over
the resources to always invalidate the Circular Wait condition. By introducing an order over
the resources, all threads are forced to lock the resources in the same sequence, thus preventing
them from forming a cycle of dependent threads.

Moola realizes this total order through the LockFactory10 class. Instead of locking the input
values directly, a thread can request the locks for all its resources via the LockFactory class.
A list of locks is returned, which the thread needs to acquire in the order it receives from the
LockFactory.getLocks call. The LockFactory ensures the same order of locks over all calls in-
dependent of which thread executes the call, thus creating a total order of all resources over all
threads. If the orchestration code needs to lock certain resources directly within the run closure,
the LockFactory class also needs to be called. Although orchestration code can access the Lock-
Factory, the behavior is discouraged since all actions on models and other resources should be
performed through operations.

4.8 Type Checking

The first step on how typing is achieved in Moola was already introduced when describing the
modeltypes keyword. Each model type definition leads to the creation of an inline Groovy class,
which can be used to type models and operation in- and outputs. Before type checking works in
Moola scripts, a final step needs to be taken: unrolling multi-assignments.

Unrolling Multi-Assignments

In Moola, a model operation can return more than one value. In Groovy on the other hand, each
function has either no return value (void) or exactly one. When a list is returned from a Groovy
function, a multi-assignment syntax can be used to achieve the impression of multiple return
values. Listing 4.13 shows a function return a list of values and how a call to this function can
use a multi-assignment syntax to assign the list to individual variables.

Listing 4.13: Multi-Assignment syntax in Groovy.
def multiReturn ( ) {

return ["value" , 1 , 4 2 . 0 ]
}

// Call with untyped variables.
def (a , b , c ) = multiReturn ( )
println a // "value"
println b // 1
println c // 42.0

10https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/dsl/core/LockFactory.groovy
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// Call with typed variables.
S t r i n g s ; Integer i ; Float f

(s , i , f ) = multiReturn ( )
println s // "value"
println i // 1
println f // 42.0

When adding type checking to Moola, a return type has to be given to all methods so that
Groovy can detect type mismatches on method calls. If no concrete type is specified by using
the def keyword, Groovy will assume a return value of type Object. When returning several
values of different types (which may not even share a common base class aside from Object),
the only allowed return value is List<Object>. This, however, leads to typing problems, since
a list of objects cannot be multi-assigned to several variables of concrete types. In fact, Groovy
completely disallows multi-assignments when type checking is activated and raises a compile-
time error when a multi-assignment is found.

Since it is a common trait for model operations to return more than one result, Moola cir-
cumvents this issue by adding an AST transformation that replaces all multi-assignments with
regular assignments when the right side of the multi-assignment is an operation call. Listing
4.14 shows the call to an operation and how it is translated by the AST transformation.

Listing 4.14: Unrolled multi-assignments in Moola.
o p e r a t i o n X ( ) {

r e t u r n s x : Str ing , y : Integer
}

run {
S t r i n g a ; Integer b // (1)

// Call to operation using multi-assignment.
(a , b ) = X ( )

// Replaced by AST transformation with:
OperationResult temp = X ( )
a = temp .value ( 0 ) as S t r i n g // (2)
b = temp .value ( 1 ) as Integer // (2)

}

Instead of returning a List<Object> from operations, an instance of the OperationResult
class is returned. This class allows accessing the concrete result values via a method call. The
mutli-assignment is then replaced with a separate assignment for each returned value. The two
important parts are marked with (1) and (2) in Listing 4.14. At position (1), the orchestration
developer specifies the variables (and their types) used to store the return values. At position
(2), each return value is cast to the type specified in the orchestration definition. When a type
mismatch occurs between operation definition and variable declaration, a type error is raised by
the type checker. Listing 4.15 shows such a situation. The operation defines two String return
values, but the variables used to store the results are defined with type Integer.

Listing 4.15: Mismatch in operation definition and variable declaration.
o p e r a t i o n X ( ) {

r e t u r n s x : Str ing , y : S t r i n g
}
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run {
Integer a ; Integer b

// Call to operation using multi-assignment.
(a , b ) = X ( )

// Replaced by AST transformation with:
OperationResult temp = X ( )
a = temp .value ( 0 ) as S t r i n g // Type Error: Cannot assign value of type String

↪→to variable of type Integer.
b = temp .value ( 1 ) as S t r i n g

}

The AST transformation unrolls the multi-assignments before the type checker becomes ac-
tive. Since the types of the return values need to be known to Moola to unroll multi-assignments,
only calls to operations with a properly defined return value can be replaced. All other multi-
assignments are ignored by the AST transformation and will cause the Groovy process to stop.

4.9 Plug-ins for Moola

Until this point, this chapter described how Moola was implemented as a domain-specific lan-
guage on top of Groovy. However, to apply Moola to a real-world scenario, it also needs to
understand and be able to execute model operations. Since the tools and languages used to im-
plement model operations are manifold, Moola exposes a plug-in mechanism that allows plug-in
developers to implement custom operation types. Two plug-ins were implemented in the course
of this work: the standard plug-in11 defines framework-agnostic operation types that may be
useful in any operation chain (e.g. executing command-line tools). The EMF plug-in12 defines
operation types for working with MoDisco, Acceleo and ATL.

Listing 4.16: Definition of Moola’s standard plug-in.

c l a s s StandardPlugin ex tends Plugin {

String getName ( ) {
re turn "Moola Standard Plugin"

}

String getVersion ( ) {
re turn "0.0.1"

}

void applyTo (Process process ) {
process .operationRegistry .register ("Exec" , ExecOperation )

}

}

11https://github.com/We-St/moola/tree/master/org.moola.core/src/main/groovy/org/moola/plugin/standard
12https://github.com/We-St/moola/tree/master/org.moola.emf
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To create a plug-in, a subclass of the Plugin13 class needs to be defined. Listing 4.16 shows
the StandardPlugin14 class, which registers the ExecOperation15 under the name „Exec“ to any
Moola process. The ExecOperation does no require any input and does not deliver any output,
but defines a command setting which can be used to specify a command that should be executed.
Listing 4.17 shows how it can be used.

Listing 4.17: Using the ExecOperation.

// Defining a new ExecOperation.
o p e r a t i o n PING_SERVER ( type : "Exec" ) {
command = "ping 192.168.0.1"

}

// Calling the operation from within the run closure.
run {
PING_SERVER ( )

}

The standard plug-in is availble to all Moola scripts by default. Other plug-ins, e.g. the EMF
plug-in, need to be registered to the PluginRegistry16. Since there is no automatic detection of
available plug-ins, this needs to be done by the caller of Moola’s API (e.g. the Moola Eclipse
plug-in in case of the EMF plug-in).

Any class defining a new operation type must itself be derived from the Operation17 class.
The concrete implementations of ExecOperation and the operation types for the EMF plug-in
are omitted for brevity, but can be found in the respective plug-in source folders on GitHub.

4.10 Moola Eclipse Plug-in

To provide a better developer experience when writing operation chains in Moola, direct inte-
gration to target IDEs is beneficial. Since part of this thesis focused on orchestrating tools from
the Eclipse Modeling Framework, integration to Eclipse seemed most natural. The two features
chosen for the integration are:

• Syntax highlighting for Moola scripts provides visual feedback while reading and writing
operation chains.

• Script execution enables running Moola scripts from within Eclipse. This allows devel-
opers to work without loosing the context of the IDE and further enables Moola scripts to
run from within the Eclipse workspace. Since no new JVM process is started for Moola,
operations can access the Eclipse workspace, which is necessary for certain tools (i.e.
MoDisco) to run correctly.

13https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/plugin/Plugin.groovy
14https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/plugin/standard/StandardPlugin.groovy
15https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/plugin/standard/ExecOperation.groovy
16https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/plugin/PluginRegistry.groovy
17https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/dsl/core/Operation.groovy
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Listing 4.18 shows the relevant parts of MoolaKeywordHighlighter18 class used for adding
the keywords to the Eclipse syntax highlighter.

Listing 4.18: Adding syntax highlighting for Moola.

p u b l i c c l a s s MoolaKeywordHighlighter implements IHighlightingExtender {

p u b l i c List<String> getAdditionalGroovyKeywords ( ) {
re turn Arrays .asList (
"modeltypes" , "model" , "operation" , "expects" , "returns" ,
"run" , "parallel" , "await" , "plugins" , "include" , "from"

) ;
}

. . .
}

Relying on a host language for creating a DSL does not only allow for a rapid development
process, but also allows for reusing host language infrastructure. In the case of Groovy, the
IHighlightingExtender19 can be used to add syntax highlighting with minimal effort.

Listing 4.19 shows an excerpt on how an embedded Moola process is started from within
Eclipse. The full code can be found in the RunHandler20 class.

Listing 4.19: Start embedded Moola process.

p u b l i c c l a s s RunHandler ex tends AbstractHandler {

@Override
p u b l i c Object execute (ExecutionEvent event ) {

t r y {
t h i s .showConsole (event ) ;
t h i s .clearConsole ( ) ;

IFile file = t h i s .getSelectedFile (event ) ;
String moolaPath = file .getLocation ( ) .toPortableString ( ) ;
String projectName = file .getProject ( ) .getName ( ) ;
String projectPath = file .getProject ( ) .getLocation ( ) .toPortableString ( ) ;
OutputStream outStream = console .newMessageStream ( ) ;

Runnable runnable = new MoolaRunner (moolaPath , projectPath , projectName ,
↪→outStream ) ;

Thread thread = new Thread (runnable ) ;
thread .start ( ) ;

} catch (Exception e ) {
throw new RuntimeException (e ) ;

}
re turn n u l l ;

}

. . .
}

18https://github.com/We-St/moola/blob/master/org.moola.eclipse/src/org/moola/eclipse/highlighting/MoolaKeywordHighlighter.java
19org.codehaus.groovy.eclipse.editor.highlighting.IHighlightingExtender.java
20https://github.com/We-St/moola/blob/master/org.moola.eclipse/src/org/moola/eclipse/commands/RunHandler.java
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The event handler first shows the default Eclipse console so Moola can interact with it. It
then uses Moola’s API to execute the Moola script in a separate thread to not block the Eclipse
user interface.
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CHAPTER 5
Evaluation

“I don’t want to achieve immortality through my work. I
want to achieve it through not dying.“

— Woody Allen

The result of this work, Moola, is an executable orchestration language for model operations.
Shaw et al. [69] define several ways on how such tools can be properly evaluated. In a first step,
by means of what Shaw calls Evaluation, Moola’s implementation is checked against the feature
list defined in Chapter 3. In a second approach, called Example by Shaw et al., Moola is applied
to real-world scenarios to prove its applicability. The scenarios are taken from the ARTIST
project [4]. Furthermore, the term correctness is defined for tools that allow the orchestration
of model operations and applied to Moola. Finally, the threats to validity of this thesis are
introduced and briefly discussed.

5.1 Feature Completeness

One of the earliest activities in designing and implementing Moola was extracting a list of fea-
tures from real live scenarios and existing operation orchestration languages. This list of features
and explanations for each individual feature can be found in Chapter 3. In this section, the im-
plementation of Moola is evaluated for feature completeness, i.e. which features are present in
Moola and how they are realized.

• Allow Common Control Flows: Moola uses Groovy keywords to specify the control
flow within the orchestration code. These are if and switch for conditions, for and while
for iterations and try, catch and finally for exception handling. To account for parallel
execution, the await and parallel keywords were introduced in Moola. These keywords
allow describing operation chains of all required control flow variants.
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• Support Diverse Operations: The core of Moola was designed without any specific
MDE framework in mind. The only requirement to run Moola is an installation of Groovy
and a corresponding JVM. To add MDE frameworks and operation languages, Moola
introduces a plug-in system. Any operation language can be included by deriving from
the Operation class, thereby creating an operation type that can be used in Moola scripts to
define operations of that operation language. A proof-of-concept plug-in for EMF-based
models and operations was implemented as part of this work.

• Allow Reusing Operations: If operations are reused in the same or other projects, the
operation definition is likely to remain the same. To only define the interface for an op-
eration once, Moola introduces the from and include keyword pair, which can be used to
import operation definitions from other Moola files.

• Hide Operation Details, Expose Execution Errors: The implementation details of an
operation are not relevant for the orchestration, thus a black-box view on operations can
be applied as orchestration developer. This is supported in Moola by solely relying on
operation definitions. These can either be supplied by the developer who implemented the
operation, or by the orchestration developer, and describe the interface required to invoke
the operation. No other information about the operation is required in order to include it
in an operation chain.

To which extent errors are forwarded to the orchestration code depends on the imple-
mentation of the operation types. Concretely, each operation is defined as subclass of
Operation. When an operation is called from within the orchestration code, the corre-
sponding execute method of the Operation subclass is called. Any error thrown in this
method is forwarded to the orchestration, thus allowing for more or less details depending
on the implementation of the operation type. Furthermore, this enables different levels of
exception details and behavior in error cases, since the implementation of operation types
can consider settings to behave differently in certain scenarios.

• Provide Early Feedback About Chain Validity: Chain validation is implemented in
Moola via Groovy’s static type checking. Groovy code can be statically type checked
by adding specific annotations and AST transformations to the Groovy code. To enable
static typing, model types are used to type both models and in- and outputs of operations.
Model types are transformed into real Groovy classes via an AST transformation. Multi-
assignments are supported for operation invocations by applying an AST transformation
which unrolls them. This allows Moola to evaluate the operation chain before a single
operation was executed.

Another form of early feedback can be derived from analyzing the call graph of an oper-
ation chain. A call graph [28] is a directed graph, which illustrates how indiviual parts of
a program interact and can be used to determine unreachable code or gain knowledge on
the impact of code changes. Due to limited scope of this work, this opportunity was not
further investigated, but can be exploited in a future work.
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• Allow Embedding in Other Processes: Moola is available as executable JAR file, which
allows running Moola script via the command line through the regular groovy command.
The first parameter indicates the location of the Moola script.

The JAR file also contains the Launcher1 class, which allows other JVM processes to
embed Moola via a simple-to-use API. The Moola Eclipse plug-in illustrates how the API
can be used to run Moola in the context of another process, in this case Eclipse.

• (optional) Optimize for Performance: To speed up the execution of operation chains,
Moola allows for concurrent execution of operations via the await and parallel keywords.
Furthermore, all models are passed in-memory between operations. To write a model to
disc, the orchestration developer needs to explicitly invoke the save command. By relying
on in-memory data flow, expensive file access can be avoided.

• (optional) Allow User Interaction: Moola scripts use regular Groovy code and can access
Groovy’s runtime environment, including standard in- and output. This allows Moola to
print feedback to the console as well as retrieve user input from the console. The later
was included in the orchestration code via the ask command, which allows orchestration
developers to print a string and pause execution until the user types a response.

Although not included in this work, more complex forms of user interactions are imagin-
able, including rich graphical user interfaces, e.g. via JavaFX2.

5.2 ARTIST Scenarios

An EU Integrated Project for legacy software migration called ARTIST [77] was jointly devel-
oped at the Vienna University of Technology and other research institutions. ARTIST stands
for „Advanced software-based seRvice provisioning and migraTIon of legacy SofTware“ and
applies model-driven engineering to migrate legacy software. In the following section, three
scenarios from the ARTIST project are described and implemented via Moola. The scenarios
are illustrated in Figure 5.1.

Java to UML Profile

The first scenario shows a simple operation chain extracting a code model from a Java library
and converting it to an UML profile. The two operations are sequentially applied and are imple-
mented with two different underlying tools (MoDisco and ATL). Listing 5.1 shows a version of
the orchestration in Moola. The code first applies the EMF plug-in and then defines two model
types. Operation definitions for the two operations follow. While the MoDisco operation can
be used as-is, the ATL operation receives specific in- and outputs as well as certain settings val-
ues, which need to be defined in the operation definition. The orchestration code then calls the
operations in sequence.

1https://github.com/We-St/moola/blob/master/org.moola.core/src/main/groovy/org/moola/Launcher.java
2http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
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<< MoDisco >>
JavaCode2
CodeModel
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Transformation
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UML Profile

Patched 
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Figure 5.1: a) Java code to UML profile. b) Different implementations are generated in parallel.
c) A patch transformation is applied to multiple UML profiles.

The concrete implementation of the Code to UML operation takes several input and produces
several output models. These were left out in Listing 5.1 for a better understanding of the core
operation chain. The places where models were left out for bevity are indicated with ... in the
Moola code.

Listing 5.1: Moola script for ARTIST scenario a).
p l u g i n s "EMF"

modeltypes (
Umlmm : "http://www.eclipse.org/uml2/5.0.0/UML" ,
Jmm : "http://www.eclipse.org/MoDisco/Java/0.2.incubation/java"

)

// Operations

o p e r a t i o n DISCOVER_JAVA ( type : "MoDisco" ) { }

o p e r a t i o n CODE_TO_UML ( type : "ATL" ) {
e x p e c t s cm : Jmm , . . .
r e t u r n s up : Umlmm , . . .

path "CodeModel2UMLProfile.atl"
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option "supportUML2Stereotypes" , "true"
option "allowInterModelReferences" , "true"
library "javaLibrary" , "javaLibrary.asm"
library "profileLibrary" , "profileLibrary.asm"

}

// Orchestration

run {
Jmm codeModel = DISCOVER_JAVA ( "<< Project in Eclipse >>" )
( umlProfile , . . . ) = CODE_TO_UML ( codeModel , . . . )
save umlProfile

}

Parallel Implementation Generation

The second ARTIST scenario demonstrates how a single domain model is used to generate two
separate implementations of a system. The domain model describes a system which may run
on different platforms. The two platforms in question are Google’s App Engine, for which the
implementation needs to be based on the Objectify Library, and any other JVM platform, in
which case the implementation is based on standard Java objects with corresponding getters and
setters.

Figure 5.1b) depicts the operation chain. A single domain model is the starting point for
both implementations. Before the code can be generated, the domain model is transformed to
two different models, which themselves include the relevant information for the code genera-
tion. Since the two platforms only share the domain model as origin, all steps leading to the
final implementations can be executed in parallel. The domain model is transformed with two
different operations, both implemented on EMFTVM. The code is then generated using Acceleo.
The same Acceleo operation can be used on both execution paths to yield the implementations.
Listing 5.2 shows the orchestration chain implemented with Moola.

Listing 5.2: Moola script for ARTIST scenario b).
from "./emftvm/operations.moola" i n c l u d e SIMPLE_GETSET , OBJECTIFY_GETSET
from "./acceleo/operations.moola" i n c l u d e GEN_CODE
p l u g i n s "EMF"

modeltypes (
Umlmm : "http://www.eclipse.org/uml2/5.0.0/UML"

)

// Model

model domainModel ( type : Umlmm , path : "./model/domainModel.uml" )

// Orchestration

run {
await p a r a l l e l ( {
Umlmm simpleModel = SIMPLE_GETSET ( domainModel , . . . )
GEN_CODE ( simpleModel )

} , {
Umlmm objectifyModel = OBJECTIFY_GETSET ( domainModel , . . . )
GEN_CODE ( objectifyModel )
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} )
}

Listing 5.2 shows the main Moola script for ARTIST scenario b). The operation definitions
are imported from other Moola scripts. The only model is defined and used in the orchestration
code in both execution paths to first generate more detailed models. These, in term, are then used
as parameter to the same Acceleo operation to generate the code. The two EMFTVM operations
take more than one model as input, which are again left out for better readability. Corresponding
places are marked with ... in the Moola code.

Patching Multiple UML Profiles

The last ARTIST scenario applies a patch transformation on a list of UML profiles. Listing 5.3
shows the corresponding Moola script.

Listing 5.3: Moola script for the last ARTIST scenario.
p l u g i n s "EMF"

modeltypes (
Umlmm : "http://www.eclipse.org/uml2/5.0.0/UML"

)

// Models

model petProfile ( type : Umlmm , path : "./models/petProfile.uml" )
model storeProfile ( type : Umlmm , path : "./models/storeProfile.uml" )
model userProfile ( type : Umlmm , path : "./models/userProfile.uml" )

// Operation

o p e r a t i o n PATCH_TRANSFORM ( type : "ATL/EMFTVM" ) {
e x p e c t s ucd : Umlmm
r e t u r n s patchedUCD : Umlmm

path = "."
module = "CASE01PatchTransformationAddEnumeration"

}

// Orchestration

run {
// In case all profiles are defined as models.
[ petProfile , storeProfile , userProfile ] . each { m −>
patched = PATCH_TRANSFORM ( m , . . . )
save patched , m .path

}

// In case all files in a system should be processed.
files ( "./models/*.uml" ) .each ( file −>

i f ( ! file .canRead ( ) ) {
re turn

}
Umlmm m = load path : file .path , type : Umlmm
patched = PATCH_TRANSFORM ( m , . . . )
save patched , file .path

}
}

62



In this example, several models and the patch operation are defined. The orchestration
code shows two different ways on how to apply the transformation to all models, depending
on whether the models are defined within the Moola script or not. The first approach uses
Groovy’s built-in list operator to create a list of all known models. A closure is then applied to
each element of the list, which executes the transformation and saves the model.

Alternatively, if the models are not known at the time when the orchestration code is written,
the files command can be used to get a list of files matching a certain path. The files command
returns a list of java.io.File3 instances and can be used to load the models stored at that location.
Additionally, checks can be added to ensure that a corrupt file does not stop the execution.

Both approaches for the orchestration code run the patch process one model at a time. To
perform the tasks consecutively, parallel can be used within the closures.

5.3 Correctness

The predominant metric for determining Moola’s fitness for use in industrial-wide settings is
correctness. In the context of this thesis, correctness of a tool for model operation orchestration
is defined as yielding semantically identical results as to when the same sequence of operations
is executed manually step-by-step. This definition of correctness deliberately ignores incorrect
implementations of operations, since the purpose of a tool for model operation orchestration is
on a higher level of abstraction and independent of implementation details of operations. In con-
trast, correctness of operations, especially transformations, can be determined on its own [52].
Furthermore, the definition deliberately ignores incorrect modeling of the operation chain within
the tool, since the interest does not lie in correctly deriving and implementing an orchestration
for particular use cases. As with other workflows, a single operation chain may or may not be
correct [79]. A tool for operation orchestration is correct when it adheres to the above definition.

Listing 5.4: Parallel execution may lead to different operation sequences.
// Model and operation definitions...

run {
A ( )

await p a r a l l e l ( {
B ( )
C ( )

} , {
D ( )

} )

E ( )
}

The definition of correctness given in this thesis relates the outcome of an invocation of an
operation chain via an orchestration tool to the outcome of the sequence of operations if called
sequentially by hand. This effectively expresses that an orchestration tool is considered correct
if the sequence of operations it executes yields an identical result as to when the operations are

3https://docs.oracle.com/javase/8/docs/api/java/io/File.html
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executed manually. Since next to all tools for operation orchestration support parallel execution,
they can yield different sequences of operations whenever executed. To derive a valid sequence
of operations that reflect the concurrent execution of an operation chain, simultaneously executed
operations must run in isolation and hence must not influence each other. A similar discussion
exists in the domain of database transactions [5].

Listing 5.4 shows an operation chain in Moola that uses await and parallel. Through the
concurrent execution of operations B, C and D, executing this Moola script may yield a different
sequence of operations every time it is called. If isolation is guaranteed, any execution of this
script will be equivalent to one of the following sequences:

• A > B > C > D > E

• A > B > D > C > E

• A > D > B > C > E

Operations A and E are outside the concurrent execution and will therefore always be first
respectively last. Operation B will always be executed prior to C, but operation D might oc-
cur anywhere between A and E. To restate the definition of correctness, a tool for operation
orchestration is considered to be correct when the result it yields is semantically identical to the
manual execution of the operation sequence that yielded that result.

Correctness of Moola

The language core of Moola allows connecting operation implementations independent of any
underlying framework. Specific operation languages can be connected to Moola via operation
definitions, which in term use the API of the corresponding framework to invoke an operation
(see section 4.3 for details). The correctness of Moola is thus depending on the correct behavior
of the APIs used to call operations and the in-memory handling of data between operation invo-
cations. If the operation language API behaves the same as when calling the operation manually
(e.g. via a CLI, IDE integration, etc.), Moola’s correctness can be inferred by looking at side-
effect freeness and operation isolation, since Moola guarantees to modify in-memory data only
through code explicitly stated in the run closure.

Operations in Moola are per convention side-effect free. Side-effect freeness [34] refers
to the fact that a function does not modify values outside its scope. Moola operations must
only operate on their input values (which they are allowed to change) to yield output values,
any changes to the environment must not occur. Moola further guarantees isolation of model
operations by using a pessimistic locking strategy (see section 4.7 for details). Operations using
at least one common input cannot run in parallel, since Moola requires an exclusive lock for all
input values before starting an operation. Operations which do not share any common input are,
by definition, isolated from each other due to Moola’s side-effect free execution of operations.
Executing such operations in any order is bound to yield the same result.

Through isolation, any execution of a Moola script can be represented as sequence of oper-
ations. Since the APIs used to call the individual operations are expected to behave the same as
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when called manually, Moola adheres to the correctness definition given in the beginning of this
section.

Correctness of Moola’s EMF plug-in

The correctness of Moola depends on the correct implementation of operation types, especially
in conjunction with calling the API of the underlying framework to invoke operations and read-
ing and writing models. Along with the core implementation of Moola, a EMF plug-in was
provided that allows calling EMF operations such as MoDisco, ATL and Acceleo.

Moola’s EMF plug-in holds models by using EMF’s Resource class 4. The API for reading
and writing these models, alongside the API for invoking individual operations was empirically
tested for correctness on all ARTIST scenarios and the case study. Since implementing checks
for semantical identity for models is out of scope of this thesis, the resulting files were compared
for byte-wise equality. Since EMF resources are completely described by the serialized content
of a corresponding resource file, two files with identical content contain identical models. This
yielded the confirmation that for all examined operation chains, the execution via Moola’s EMF
plug-in and the manual execution of the corresponding sequence of operations yielded files with
identical content, thus providing empirical evidence that Moola’s EMF plug-in adheres to the
definition of correctness stated before.

5.4 Threats to Validity

The approach used to derive Moola’s requirements and yield its implementation was driven by
several real-life scenarios. The process was influenced by several assumptions, which are bound
to follow when using a limited scope of observation. In this section, three assumptions are
presented and their impact on Moola and the validity of this work are discussed.

• Assumption 1: The examined use cases form a representational set within MDE.
The bulk of requirements for Moola was derived from a small set of real-life use cases
taken from the ARTIST project and established over various discussions with different
developers. Further requirements were derived by looking at the ATL Transformation
Zoo5 and examples used to justify requirements of other tools in the domain of model
operation orchestration. The examined use cases and scenarios are just a small subset of
possibly operation chains and may not constitute a representational picture of the MDE
world in general. This threat was mitigated as best as possible by drawing use cases from
different works [45, 59, 77] and by incorporating extensibility as core feature of Moola
(see section 4.4 describing Moola’s plug-in system for details).

• Assumption 2: Operations can be called without side-effects.
A convention for implementing Moola operations is their side-effect freeness. This prop-
erty is required to guarantee that operations do not influence each other during parallel

4org.eclipse.emf.ecore.resource.Resource
5https://www.eclipse.org/atl/atlTransformations/
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execution. Side-effect freeness was stated as convention, because a comprehensive imple-
mentation of such a mechanism for object-oriented programming languages is a research
topic on its own [64] and was deemed out of scope for this work. Especially when dealing
with modeling frameworks and their APIs, no guarantees can be given on how operations
are executed internally and if side-effects occur. In the case of EMF, the isolation of op-
erations was empirically tested and therefore might change with future releases of EMF.
If certain operations cannot be invoked without side-effects, these operations need to be
manually locked or are not allowed to occur in concurrent executions. Moola provides
means for orchestration developers to describe orchestrations containing such operations,
although side-effect-related issues may only surface sporadically and might be hard to
debug.

• Assumption 3: Tools for describing operation chains are necessary.
MDE has a stable community of developers, as can be seen by looking at popular imple-
mentations such as EMF and the hundreds of thousands of downloads6 it has. The mani-
fold suggestions of tools for operation orchestration combined with the reluctant adoption
of these tools in practice might indicate no need for orchestration tools at all. A core
assumption of this work was that developers can benefit from describing their operation
chains via specific tools. This assumption is presented without proof, and might justify
investigations into this phenomenon as part of a future work.

6http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/keplersr2
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CHAPTER 6
Related Work

„What day is it?“
„It’s today,“ squeaked Piglet.
„My favorite day“, said Pooh.

— A. A. Milne

The orchestration of model operations has been a field of extensive research in past years
and has led to a number of tools and orchestration languages. While some of them were cre-
ated only for academic purpose and were not published for immediate use, others have been in
development and maintenance for several years. In this chapter, several orchestration languages
are introduced and compared to Moola. The main criteria for the comparison is based on the
list of features introduced in Chapter 3. Additional information such as last stable release, target
platform, etc. are added if available.

Table 6.1 shows the result of the comparison. Since the chosen orchestration languages
may have been built for a different audience than Moola or with a different set of features and
methodologies in mind, the comparison favors Moola in the sense that the mentioned criteria
formed the starting point for Moola’s design and implementation. A comparison of orchestra-
tion languages based on different criteria can be found in [50]. The remainder of this chapter
discusses the different orchestration languages in greater detail and how they compare to Moola.
Later in this chapter, interesting approaches from outside the immediate domain of operation
orchestration are introduced.

Unified Transformation Representation (UTR)

A model-based approach to graphically describe operation chains is the Unified Transformation
Representation (UTR) [82]. It specifically targets transformations and introduces three aspects
of them: implementation, specification and execution. While the implementation describes the
underlying source code, the specification describes the high-level behavior of a transformation
including expectations on input and guarantees on output models. Finally, the execution repre-
sents a transformation that is applied to concrete models during the execution of the operation
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chain. The approach is based on the assumption that a transformation can be seen as black box
when the specification is formulated precisely. Hence, the specification is an implementation-
independent description of the transformation. The approach allows modeling data flow between
transformations when the input and output model types match. The UTR supports different roles
participating in the MDD process such as the Transformation Developer, the Transformation
Specifier and the Transformation Assembler. While the Transformation Specifier describes the
behavior of a transformation on a high level, the Transformation Developer creates the con-
crete implementation conforming to the specification. The developer can thereby choose any
transformation tool. The Transformation Assembler finally chooses specifications to fulfill the
requirements and orchestrates them to an operation chain. UTR further supports the definition of
model types. Instead of just relying on the meta-model to describe the input and output models
of a transformation, UTR can specify local transformation requirements via constraints. This
allows to further restrict the number of valid input and output models of a transformation.

While UTR is a convenient way to orchestrate model transformations, it differs from Moola
in several ways. While it supports sequences and parallel execution, it does not support condition
execution and iterations. It further restricts the available operations to be transformation. The
data flow in UTR is limited to models and does not allow for other types of values, e.g. strings or
numeric values. UTR saves all intermediate models to the file system in order for the developer
to inspect them if necessary. While this helps during development and for troubleshooting, it
also slows down execution. In Moola, developers can choose which intermediate models to
save. Finally, UTR exists as Eclipse Plug-in and cannot be called outside the Eclipse context.
Moola offers both a CLI and an API and can be called from within Eclipse as well as stand-alone
process. No source code or plug-in of UTR could be found.

Wires*

A language for orchestrating ATL transformations is Wires* [59]. Wires* provides a graphical
editor to describe the orchestration as model and can directly execute the orchestration by utiliz-
ing an execution engine. The graphical notation of Wires* allows describing the flow of models
between transformations and explicitly supports the composition of transformations to reusable
modules. Wires* supports sequences, conditions and iterations. Although parallel execution can
be modeled, the execution engine executes transformations one after the other. Furthermore,
Wires* supports persisting intermediate models if the user wants to use them outside of the or-
chestration or temporary models if they are only passed between transformations. The Wires*
markup consists of model and transformation nodes and explicitly adds control flow structures,
e.g. for conditional routing. Introducing dedicated structures for the control flow also has the
side effect of needing so-called Identity Transformations. These special transformations do not
alter the input models but rather forward them directly as outputs. Since a condition (called De-
cision Node in the markup) in Wires* can only have exactly two branches (a true-branch and a
false-branch), Identity Transformations can be used to model empty else-branches. Another kind
of special transformations are so-called Generic Transformations, which allow for higher-order
transformations (HOT). This enables Wires* to orchestrate transformations that themselves were
outputted by other transformations during the execution of the operation chain. Wires* can be
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called from within Eclipse as well as via an API and can therefore be embedded in other JVM
processes.

Differences between Wires* and Moola include: Wires* only offers support for the orches-
tration of ATL transformation, which also excludes user interactions from being part of the or-
chestration chain. Moola is designed to integrate with different orchestration languages and also
allows for adding other types of operations to the orchestration. While Wires* relies on a graph-
ical markup and adds control flow structures explicitly, Moola mainly relies on regular Groovy
code to describe the orchestration. Wires* does not statically check (i.e. at compile time) if the
inputs and outputs of successive transformation match in terms of meta-models. However, this
is mentioned as goal for future releases.

All intermediate results (i.e. models produced by a transformation and consumed by another
one) during an execution of Wires* are kept in-memory by default and are therefore temporary.
To persist such artifacts, a corresponding action has to be modeled in the markup. This interest-
ing approach was adopted in Moola, where all intermediate models are temporary and need to
be persisted explicitly by the orchestration developer.

MCC

The MDA Control Center (MCC) [41] is an environment to orchestrate model operations, espe-
cially transformations. The basis forms a taxonomy of transformations, in which seven types of
transformations are determined. MCC then introduces executable units that can be used to ac-
count for the various types of transformations defined in the taxonomy and a scripting language
to orchestrate the executable units. The authors account for sequential, parallel and conditional
execution in the scripting language. The approach was implemented as Eclipse Plug-in. The
concrete implementations of the transformations can be realized using any transformation lan-
guage and can then be plugged into the transformation environment using Eclipse extension
points.

While MCC relies on a custom scripting language, Moola is implemented as Groovy DSL,
allowing users to include any Groovy code if it is beneficial to the orchestration. As with Moola,
MCC uses type checking to determine valid orchestration based on the transformation interfaces.
Since the scripting language does not include loops, no iterations can be described with MCC.
Furthermore, MCC relies on Eclipse’s plug-in system to specify the implementations for the
transformations. This requires MCC to run within the Eclipse context. All transformations need
to exist as Eclipse plug-in in order to be integrated to an operation chain.

Epsilon

An advanced approach for describing operation chains can be found in the Epsilon language
family [45]. This project contains domain-specific languages for describing various model op-
erations. Examples are the Epsilon Transformation Language(ETL) to describe model trans-
formations, the Epsilon Validation Language (EVL) to describe model validation constraints
etc. Furthermore, the Epsilon project introduces an ANT-based workflow language to describe
operation chains. By utilizing ANT, many powerful features are available to orchestration de-
velopers. These include calling Java code from within the operation chain, executing external
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commands (e.g. command line tools), include ANT tasks of third-party vendors, use ANT’s API
or CLI to execute operation chains, etc. Especially the active ANT community with its many
open source and freely available libraries and extensions is a valuable asset. Extra precautions
have been taken by Epsilon developers to allow in-memory data flow between tasks. Special
transaction tasks allow for atomic operations on models. Accompanied by a comprehensive on-
and offline documentation, Epsilon offers a viable solution for describing operation chains.

Although ANT adds considerable power to the approach taken on by the Epsilon team, it
has a severe impact on the syntax of the work flow markup. The XML-based syntax is directly
exposed to the orchestration developer and verbose especially when dealing with longer orches-
tration chains. While iterations are not supported natively, they can be added via third-party
ANT plug-ins. Moola supports defining model types on metamodel level. This allows for type
checking before any operation is executed. The Epsilon approach does not include any static
validation of the operation chain beyond pure syntax checks.

Gradle

A Groovy-based DSL for build automation is Gradle [3], which allows developers to specify
build tasks and dependencies between them. Since Gradle is built as Groovy DSL, it allows for
Java and Groovy code within the build script, including calls to library functions. A powerful
plug-in system allows customizing and extending Gradle in various ways. Combined with an
active community, Gradle is a popular choice for build automation on the JVM.

The driving data structure behind Gradle is the so-called dependency graph. When a new
Gradle process is started, it operates in two phases. The first phase, the configuration phase,
scans the Gradle script and builds the dependency graph based on the task definitions. The
dependency graph is a directed, acyclic graph (DAG), in which tasks are represented as vertices
and dependencies between tasks as directed edges. The dependency graph is subsequently used
in the execution phase to derive the order of task execution. Tasks are executed in sequence if
they directly or indirectly depend on each other. Tasks without any dependency relation can be
executed in parallel. Each task definition can supply further information impacting the order of
execution, e.g. tasks can be skipped if certain criteria apply or certain files did not change since
the last run.

Since Gradle heavily relies on the dependency graph during execution and the dependency
graph cannot contain any cycles, iterations in the build chain cannot be implemented. While
conditions for single tasks are possible, excluding larger parts of the build chain is only possible
by repeatedly excluding single tasks. If a task fails during execution, subsequent tasks depending
on the failed task are not executed (except Finalizer tasks). However, Gradle will not stop the
build process when a failed task is encountered, but will run as many tasks as possible and print
an error summary to facilitate troubleshooting. While data flow between tasks is possible, task
definitions do not contain an interface description of the expected inputs and outputs, therefore
not allowing Gradle to apply Groovy’s static type checking to validate the build before executing
it.

Although Gradle cannot be used for describing orchestration chains for the aforementioned
limitations, it was a major source of inspiration for Moola. The two-phase approach of Gradle
was adopted in Moola to first parse Moola scripts and build an internal representation of the
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orchestration chain. After validation of the chain, the execution follows. Moola’s syntax for
defining operations was strongly influenced by Gradle’s task definitions. The pre- and post-
actions possible on Gradle tasks inspired the same behavior on Moola operations.

Other Approaches

The Transformation Composition Modeling Framework [56] allows the orchestration of trans-
formations based on UML2 activity diagrams. Remarkable on this approach is the explicit
consideration of transformations requiring user interaction. The execution of the orchestration
pauses while feedback of a user is required and resumes once the feedback was collected. Since
Moola is set on top of Groovy, custom Java and Groovy code can be integrated to the operation
chain. This especially encompasses code to interact with the user, e.g. showing the progress of
the execution and asking the user for input.

An interesting approach for defining model transformations is RubyTL [12]. Although not
meant for describing operation orchestrations, the approach is interesting from an implemen-
tation point of view. The authors used the features built into Ruby to create a domain-specific
language that allows defining transformations in a short and concise way. RubyTL is a rule-based
language allowing for declarative and imperative style definitions of rules. The declarative syn-
tax allows users to specify what a rule should be doing without specifying how it should be done.
This allows for short markup in standard use cases. In more complex scenarios, users can define
rules by using ordinary Ruby code and specify exactly how a transformation should be executed.
During runtime, RubyTL can automatically derive the order in which rules have to be executed.
Since RubyTL is set on top of Ruby, it allows users to include transformation-wide services, e.g.
for tracing. Finally, RubyTL is built with extensibility in mind. It uses a rich plug-in system to
allow users to modify any part of RubyTL.

The domain of business process modeling comes with a rich set of workflow tools. Espe-
cially BPEL [87] and its related graphical notation BPMN [9] are worth noting. BPEL is an
XML-based language for describing business processes. Building blocks in BPEL are tasks,
that are implemented by standalone web services. It introduces control flow constructs for con-
ditional and parallel execution, iterations and exception handling. BPEL aims to describe com-
plex business tasks by orchestrating standalone services. Since these services may not be under
immediate control of the orchestration developer, but may be provided by a third party, BPEL
focuses on a strict black box view on services. Implementation details are neither required nor
desired in the orchestration. To aid the developer in creating BPEL scripts, BPMN was intro-
duced. BPMN provides a graphical notation for work flows and can be converted to either BPEL
or any other workflow language (e.g. XPDL).
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CHAPTER 7
Conclusion & Future Work

“This book was written using 100% recycled words.“
— Terry Pratchett, Wyrd Sisters

Conclusion

In this work, a new orchestration language for model operations, Moola, was proposed. Based
on a set of features drawn from real-world use case scenarios and existing orchestration lan-
guages, syntax and semantics for Moola were derived. A natural mapping between the domain
of model operation orchestration and Groovy’s built-in capabilities as scripting languages was
developed and later implemented as Groovy DSL. Aside from the core orchestration language,
which is independent of any concrete MDE framework, a Moola plug-in was developed to allow
the orchestration of EMF-based models. The implementation was completed by an Eclipse plug-
in featuring syntax highlighting for Moola scripts and the execution of Moola scripts from within
Eclipse. The implementation was explained in great detail, focusing on how keywords of Moola
were realized with Groovy’s DSL features, including the abstract syntax tree transformations
allowing Moola to bend Groovy’s syntax limitations to an extend not possible without manipu-
lation the AST. Moola was then evaluated for feature-completeness and compared to alternative
orchestration languages. The source code of Moola was released under the MIT license and is
available for download and modification under https://github.com/We-St/moola.

Future Work

While Moola is fully functional when it comes to the previously defined features, several open
topics for future work can be conceived. In Chapter 2, the relationship between model and
metamodel was introduced as resembling data and its type [78]. Moola uses this relation to
type models as well as define interfaces for operations. The interface definition of an operation
consists of the expected input and guaranteed output types of that operation and are implemented

73

https://github.com/We-St/moola


in Moola by means of an AST transformation. The transformation creates real Groovy classes
for each metamodel used. This allows Moola to use Groovy’s type checking system to ensure
the validity of an orchestration chain before its execution. Using metamodels directly as model
types has the disadvantage of being too unspecific in certain scenarios. If an operation sets
certain requirements on its input, a more concrete model type could be derived by defining
constraints, effectively allowing only a subset of models conforming to the metamodel. Such
constraints could be defined in addition to the metamodel on model type level. Alternatively
or additionally, constraints could be added to the operation definition to implement design-by-
contract [54], thereby reducing the number of allowed input and output models.

Another extension of the type checking mechanism is accounting for relationships between
metamodels. In the current implementation of Moola, each metamodel leads to the definition
of a model type Groovy class. If a metamodel is a specification or generalization of another
metamodel, this should lead to a hierarchy of these Groovy classes, thus allowing for substitution
of models in operation invocations. Furthermore, two metamodels might overlap in a way that
a model can conform to both simultaneously. In this case, Groovy’s implicit cast capabilities
could be used to seamlessly transform the model from one model type to another, thus enabling
the model to be used as input to operations which are defined on different, but compatible, model
types. These possible relations between metamodels are not reflected in the current version of
Moola.

Moola is capable of including higher-order transformations (HOT) [76] in an orchestration.
When an operation produces another operation, i.e. a transformation, as output and writes it to
the file system, later parts of a Moola script can reference these files as implementation of a new
operation. Since this feature is a side-effect of the current implementation and was not included
in the feature list, thorough tests are still needed to determine which conditions need to apply
for Moola to support HOTs.

A more practical line of work is the extension of Moola for other MDE frameworks and
languages. The core of Moola was implemented without the need for a specific environment
other than the JVM and without a particular MDE framework in mind. A proof-of-concept
plug-in for working with EMF-based models was part of this work, including operation types
for MoDisco, Acceleo and ATL. More languages and other MDE frameworks can be included
using Moola’s plug-in system.
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APPENDIX A
Moola Style Guide

To enable a consistent use of Moola, some style recommendations are expressed here that were
derived after using Moola to describe several operation chains. This guide uses must, should,
their negated forms must not and should not and may as defined in RFC 21191. This guide only
covers Moola-specific style recommendations. More extensive and general code guidelines for
Groovy and Groovy DSLs can be found in the official Groovy style guide2.

Naming

• Files holding Moola code should be marked by using the file extension .moola. If better
editor support follows from revealing Moola’s Groovy nature, files may use .moola.groovy.
Moola files holding operation definitions should be located as close to the operation im-
plementation as possible, preferably in the same directory, having the same name (aside
from the file extension) as the operation implementation’s main file, if such a file exists.
The Moola file holding the orchestration code should be located in the project’s main
directory or a sub directory specifically allocated for holding the orchestration artifacts.

• Model Types relate to Groovy classes and should thus be named with upper camel case.
Abbreviations, such as UML, should be converted to lower case with an upper case first
character, e.g. Uml.

• Models are present as variables in the orchestration code and should therefore be named
with lower camel case. Since most variables in the orchestration code are expected to be
models of some sorts, name pre- or suffixes should not be used. Abbreviations should be
handled similarly to naming model types.

1https://tools.ietf.org/html/rfc2119
2http://groovy-lang.org/style-guide.html
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• Operations are the central point of reference and should thus be made clearly visible when
observing the orchestration code. Their names should be written in CONST_CASE, with
underscores to separate name parts.

Listing A.1: Do.
modeltypes (SomeType : "..." )
modeltypes (Uml : "..." )

model someName ( . . . )

o p e r a t i o n SOME_NAME ( . . . )

Listing A.2: Don’t.
modeltypes (someType : "..." )
modeltypes (UML : "..." )

model SomeName ( . . . )
model SOME_NAME ( . . . )
model intSomeName ( . . . )

o p e r a t i o n someName ( . . . )
o p e r a t i o n SomeName ( . . . )

Control flow

Moola uses Groovy’s control flow keywords (if, switch, while, for). Additionally, await and par-
allel were introduced. There should be exactly one space before and after the condition of these
statements. Control flow keywords may be used in the beginning of one-line statements. Multi-
line statements must use curly braces to indicate the scope of the statement. Code belonging to
a parallel statement may be indented by at most one level to show its connection to parallel.

Listing A.3: Do.
i f (cond ) F ( )

whi le (cond ) {
F ( )

}

p a r a l l e l ( {
F ( )

} , {
G ( )

} )

Listing A.4: Don’t.
i f (cond )
F ( )

whi le (cond ) {
F ( )

}

p a r a l l e l ( {
F ( )

} , {
G ( )

} )

Calling operations

Calling a model operation corresponds to calling a function in Moola’s run closure. Operation
definitions do not support optional parameters or a variable number of parameters. Correspond-
ing Groovy features therefore must not be used in conjunction with model operations.

Model operations in Moola can return zero, one or more return values. If a return value
is not required, the value should be assigned to “_“ (underscore), to indicate no further usage.
Orchestration code must not use “_“ (underscore) as parameter to a function call or on the right
side of an assignment. It is strictly meant for write-only purposes.
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Listing A.5: Do.
res , _ = OP (param1 , param2 )
NEXT_OP (res )

Listing A.6: Don’t.
res , unused = OP (param1 , param2 )
NEXT_OP (res )

res , _ = OP (param1 , param2 )
NEXT_OP (_ )

next = _
NEXT_OP (next )

Groovy has powerful built-in functional programming support. Closures were extensively
used during the development of Moola and to implement operation chains. These functional
aspects may be used in the orchestration code as partly shown in Listing 5.3, which uses each to
apply certain operations to a list of models. More advanced functional aspects, such as currying,
are supported and may be used by developers to improve readability of Moola scripts.

Listing A.7: Using currying for recurring params.
model const1 ( type : T , path : "..." )
model const2 ( type : T , path : "..." )

// OP takes three parameters, the latter two will always stay the same.
o p e r a t i o n OP ( type : "..." ) {

e x p e c t s dynamic : Str ing , const1 : T , const2 : T
r e t u r n s result : S t r i n g

}

run {
// Bind the last two parameters of OP to always be const1 and const2.
BOUND_OP = { d : S t r i n g −> OP (d ) } .rcurry (const1 , const2 )

// BOUND_OP can now be invoked with only one param.
BOUND_OP ("dynamic value 1" )
BOUND_OP ("dynamic value 2" )

}

Listing A.7 shows how currying can be applied to operations. Other concepts, such as memo-
ization, functional composition, etc. may be used when writing orchestration code. The primary
reason for using any such concept should be to increase readability or performance.
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