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Kurzfassung

Mehr als einhundert Jahre sind seit der Entstehung von Quantenmechanik und allgemeiner
Relativitätstheorie vergangen und noch immer ist keine endgültige Theorie der Quantengravi-
tation in Aussicht, welche die beiden grundlegenden Pfeiler der modernen Physik miteinander
in Einklang bringen könnte. In den letzten Jahren hat sich jedoch das holographische Prinzip
als wichtiges Werkzeug für die Suche nach dieser Theorie herausgestellt. Das holographis-
che Prinzip besagt, dass jede Quantentheorie der Gravitation in D Raumzeitdimensionen
äquivalent zu einer Quantentheorie ohne Gravitation in (D � 1) Raumzeitdimensionen ist.
Damit ist es möglich, Eigenschaften der Quantengravitation mithilfe einer äquivalenten,
im Allgemeinen besser verstandenen Theorie zu erforschen. Obwohl es noch nicht geklärt
ist, ob das holographische Prinzip tatsächlich eine fundamentale Eigenschaft der Natur
darstellt, gibt es einige theoretische Modelle, in denen es realisiert ist. Zu diesen zählt die
AdS/CFT Korrespondenz, welche besagt, dass Quantengravitation in einer anti-de Sitter
(AdS) Raumzeit äquivalent zu einer konformen Quantenfeldtheorie (CFT) am Rand der
Raumzeit ist.

Diese Dissertation untersucht die AdS/CFT Korrespondenz für eine große Klasse zweidi-
mensionaler Gravitationstheorien, genannt Dilatongravitation, für welche die Korrespondenz
noch unzureichend verstanden ist. Dies rührt von den ungewöhnlichen Eigenschaften her,
welche eine passende Randtheorie aufweisen müsste; als möglicher Kandidat wurde erst vor
kurzem das Sachdev–Ye–Kitaev (SYK) Modell vorgeschlagen. Ein besseres Verständnis der
Korrespondenz in zwei Dimensionen ist entscheidend für die Untersuchung der Mikrozustände
vierdimensionaler, extremaler schwarzer Löcher im Zuge der near horizon holography.

Nach einer Einführung in das Thema zweidimensionaler Gravitationstheorien und deren
Formulierung als nichtlineare Eichtheorien in der Form von Poisson Sigma Modellen wird in
dieser Arbeit gezeigt, dass der konstante Dilatonsektor jeder Quantendilatongravitations-
theorie notwendigerweise trivial ist. Daraus folgt, dass eine holographische Korrespondenz
im Sinne der AdS/CFT nur im linearen Dilatonsektor möglich ist. Als Beispiel hierfür wird
das Jackiw–Teitelboim Modell untersucht. Es wird gezeigt, dass die asymptotische Dynamik
dieses Modells durch die Schwarzsche Wirkung bestimmt wird, die ein Kennzeichen des SYK
Modells ist. Schließlich werden verallgemeinerte Schwarzsche Wirkungen konstruiert, welche
die asymptotische Dynamik verallgemeinerter Jackiw–Teitelboim Modelle in der Anwesenheit
weiterer Felder wie Yang–Mills oder höherer Spins beschreiben.
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Abstract

Almost one hundred years after the formulation of quantum theory and general relativity,
a definitive framework for the unification of these theories is still not at hand. One of
the most fruitful approaches to the problem of quantum gravity that has emerged in the
past years is the holographic principle. This principle conjectures that a quantum theory
of gravity in D spacetime dimensions is equivalent to a theory without gravity in (D � 1)
spacetime dimensions. This opens up the possibility of understanding properties of quantum
gravity without detailed knowledge of the underlying fundamental theory. The AdS/CFT
correspondence, that relates quantum gravity in anti-de Sitter (AdS) space to a conformal
quantum field theory (CFT) on the boundary of AdS space, currently provides the best
developed example of the holographic principle.

This thesis studies the AdS/CFT correspondence for a class of two-dimensional theories
of gravity called two-dimensional dilaton gravity. The motivation for this is two-fold: First,
the AdS/CFT correspondence in two dimensions appears to be more subtle than its higher-
dimensional relatives. This is partly due to the elusive nature of its one-dimensional boundary
theory that appears to be related to the Sachdev–Ye–Kitaev (SYK) model, as was proposed
only recently. The second motivation for studying the AdS/CFT correspondence in two
dimensions derives from its close relation to near horizon holography of four-dimensional
extremal black holes that could provide a step towards a deeper understanding of their black
hole microstates.

Following a thorough introduction to two-dimensional dilaton gravity and its reformulation
as a non-linear gauge theory in the form of a Poisson sigma model, it is shown that
quantum dilaton gravity is trivial in its constant dilaton sector. A non-trivial holographic
correspondence is therefore only possible in the linear dilaton sector. As a particular example
the Jackiw–Teitelboim model is studied in close detail. It is shown that its asymptotic
dynamics are governed by the Schwarzian action that is a hallmark of the SYK model, thus
providing evidence for the above mentioned correspondence. Finally, certain generalizations
of the Jackiw–Teitelboim model are studied, by coupling it to further fields such as Yang–Mills
or higher spin fields. For these models, boundary actions governing the asymptotic dynamics
are derived in the form of generalized Schwarzian actions.
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Chapter One

Introduction

Como todos los hombres de la
Biblioteca, he viajado en mi
juventud; he peregrinado en busca
de un libro, acaso del catálogo de
catálogos. . . 1

“La Biblioteca de Babel”
Jorge Luis Borges

The laws of physics do not pertain to the world as we observe it; it is a place by far too
messy to be understood in all its details and interconnections. For instance, it is evident
to every child rolling marbles on the floor, as it was evident to Aristotle, that a moving
body returns to a state of rest, in complete contrast to the laws of Newton. Yet physics
has surpassed in precision any other method employed by man to gather knowledge about
their world. The insight that allowed physics to become so successful was to turn from the
perceived phenomena of the world to the underlying regularities.2 The way physics achieves
this is by abstraction, separation in dynamical system and background that can influence the
system but is not influenced itself, and symmetries.3

Symmetries and background structure (i). From the time of Newton until the begin-
ning of the twentieth century it was assumed that space and time are a universal background
structure for every physical system. It was furthermore observed, already by Galilei, that
every physical system is invariant under certain symmetry transformations : for instance, the
system behaves in the same way when moved to a different place or studied at a different
time. These symmetry transformations can be identified with the symmetry group of the
underlying background structure of space and time that is taken to be a geometric object. A

1Like all men of the Library, I have traveled in my youth; I have wandered in search of a book, perhaps
the catalogue of catalogues . . .

2In his Nobel prize lecture [9], Wigner called this “specification of the explainable [...] the greatest
discovery of physics so far”, that seems to have occurred sometime between Kepler and Newton.

3“It is only slightly overstating the case to say that physics is the study of symmetry.” Philip W.
Anderson [10]
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2 CHAPTER 1. INTRODUCTION

physical theory that describes a dynamical system placed on this background structure must
be compatible with these underlying symmetries.

Our conceptions of space and time have changed throughout history, and so have the
associated symmetries that we deem to be fundamental; starting from Aristotle’s geocentric
model over Newton’s absolute space and time whose symmetries are called the Galilei
group, under which Newtonian physics is invariant, to the unification of space and time in a
four-dimensional entity, Minkowski space, that is invariant under the Poincaré group.

Most triumphs of twentieth century physics came from the offspring of the marriage
of Poincaré invariance to quantum mechanics, in particular quantum field theory and the
resulting standard model of particle physics (that again is almost completely described by
the symmetries of its background structure, i.e., a fiber bundle over Minkowski space).

Yet in spite of these successes of quantum mechanics and Poincaré invariance just
mentioned, we know that this is not the full story. It was once again Einstein who overthrew
the underlying concept of space and time. In his theory of general relativity spacetime
ceases to be a mere background but becomes a dynamical system itself that interacts with
every other system in the universe. This interaction is gravity. When studying gravity the
distinction between background and dynamical system is thus more subtle, as everything
couples to gravity.

Almost immediately after the publication of his general theory of relativity Einstein
pointed out that it would require modifications due to quantum effects [11], and ever since
physicists have been trying to find this theory of quantum gravity. The reason for the
difficulty of this problem partly stems from the lack of a fixed background that is needed in
most approaches to quantum mechanics.

Symmetries and background structures (ii). Before continuing let us phrase the
discussion of the previous paragraphs about the relation between symmetries and background
structure, in a somewhat more mathematical language. Consider an arbitrary Lagrangian
n-form L(�,�0) on a spacetime manifold M that depends on a number of dynamical fields �
and further non-dynamical background structure �0. This background structure might come
in the form of a fixed spacetime metric, as is the case for non-gravitational theories.

Almost every physical theory can be written in a coordinate-independent, i.e., geometrical
way. More precisely, given a diffeomorphism f : M ! M the Lagrangian transforms as an
n-form under the diffeomorphism if one transforms both dynamical and non-dynamical fields

f⇤L(�,�0) = L(f⇤�, f⇤�0) (1.1)
up to a possible boundary term. This is nothing but the statement that one can choose
arbitrary coordinates on M to describe a physical theory; it might only be that �0 suggests a
particular set of natural coordinates. Of course, we have learned nothing new in this process.

More interesting is the case when one transforms the dynamical fields only but leaves the
background structure unchanged. A diffeomorphism s is called a symmetry if

s⇤L(�,�0) = L(s⇤�,�0) . (1.2)

If the Lagrangian L is diffeomorphism covariant in the sense of (1.1) for arbitrary f , choosing
f = s�1 and acting on (1.2) one finds

L(�,�0) = L(�, (s�1)⇤�0) , (1.3)
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again up to a possible boundary term. Thus, the spacetime symmetries of the dynamical
fields � are necessarily given by the diffeomorphisms that leave the background structure
invariant. For instance, in the case of field theory in Minkowski spacetime one finds that the
theory is invariant under the Poincaré group as the transformations that leave the Minkowski
metric, i.e., the background structure, invariant.

But what are the interesting symmetries in the case of gravity when the metric becomes
a dynamical variable? It turns out that by restricting one’s attention to spacetimes of a
certain asymptotic form, the boundary conditions themselves can be regarded as providing
some sort of background structure. The symmetries preserving this asymptotic form are
called the asymptotic symmetries of the gravitational theory. In this way one finds the
Bondi–Metzner–Sachs group (BMS) [12] as asymptotic symmetries of asymptotically flat
spacetimes, i.e., of spacetimes of an isolated source. This result came as quite a surprise
as it was expected that the asymptotic symmetries of asymptotically flat spacetimes would
reduce to the Poincaré group. Instead, the BMS group encompasses the Poincaré group and
contains an infinite number of additional symmetries, the supertranslations.

On the other hand, in the presence of a negative cosmological constant one finds that the
asymptotic symmetries of these asymptotically anti-de Sitter (AdS) spacetimes form the AdS
group [13,14]. The fact that the AdS group in D dimensions is the same as the conformal
group in D � 1 dimensions has very interesting consequences as we will see below.4

Black holes and holography. Black holes have turned out to be our guiding stars in
the long search for quantum gravity. An important clue for their relevance in this program
comes from the proposal of Bekenstein [15,16] that black holes have an entropy given by

SBH =
kBc3A

4G~
, (1.4)

where A is the area of the black hole’s horizon. According to Boltzmann’s formula

S = kB log⌦ (1.5)

the entropy of a macroscopic state is related to the number of microstates, ⌦, that are
compatible with it. The entropy formula (1.4) suggests therefore that a black hole, being a
macroscopic state, is made up of a huge number of (quantum mechanical) microstates. In
fact, this number is larger than for any other known object. Concurrently it was shown by
Hawking that black holes have a temperature TH and are therefore subject to the laws of
thermodynamics like any other macroscopic system in the universe [17, 18]. For a historical
overview of black hole thermodynamics, see for instance [8, 19].

This profound insight immediately led to another conundrum concerning the marriage of
quantum mechanics and gravity. A physical system of finite temperature necessarily loses
energy due to radiation: black holes evaporate. This has the puzzling consequence that
black holes apparently destroy information. After the black hole has vanished, the whole
information about the matter that originally collapsed into the black hole should be stored in
the Hawking radiation emitted from the black hole. However, Hawking radiation is thermal
and cannot accommodate enough information to achieve this [20].

4The author acknowledges thorough discussions with Friedrich Schöller on the point of view presented in
this paragraph.
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The Bekenstein–Hawking entropy (1.4) has another unusual feature: it is proportional
to the area of the horizon not the black hole’s volume, as one might have naïvely guessed.
It appears that information is not stored inside the black hole but on its surface. In an
attempt to solve the above mentioned information loss problem, this observation led ’t Hooft
to conjecture that every (quantum) gravitational system could have an effective description
in terms of a lower-dimensional ordinary quantum field theory [21]. Susskind called this idea
the holographic principle and suggested that it can be realized in string theory [22].

AdS/CFT correspondence. A concrete implementation of the holographic principle has
emerged in the form of the AdS/CFT correspondence [23–25]. This is a conjectured duality
between a gravitational theory on asymptotically anti-de Sitter space (AdS) and a conformal
quantum field theory (CFT) on its boundary. As was already mentioned above, the fact that
the symmetry groups of these two theories coincide can be regarded as a first hint for this
conjecture. However, the conjecture goes much further than just equating the symmetry
groups of the two theories. In its strongest version it states an exact duality between the
two theories, i.e., every observable on the gravity side has a corresponding quantity on the
CFT side and vice versa. While the AdS/CFT dictionary relating the respective observables
already contains a large number of entries (in fact an infinite number), we have not yet
arrived at a complete understanding of the correspondence.

The AdS/CFT correspondence has attracted a substantial amount of interest due to
the prospect that it can help to explain quantum gravity using well known techniques of
ordinary quantum field theories. In particular in regards to the above mentioned information
loss paradox, if the duality is correct, it shows that information loss cannot occur since the
boundary theory is known to be unitary.5

Holography in lower dimensions. The AdS/CFT correspondence has emerged as a
valuable tool to study quantum gravity. But many of its features are still not well-understood.
Since most conceptual issues arise independently of the number of dimensions it is a good
strategy to consider simpler models that allow to study, and ideally resolve, these issues. For
theories of gravity, this is usually achieved by studying theories of gravity in two or three
dimensions.

The AdS/CFT correspondence in three dimensions is one of the prime examples of
holography. Its roots can be traced back to the famous result by Brown and Henneaux [26]
who showed that the asymptotic symmetries of three-dimensional AdS space are enhanced
to an infinite-dimensional group, namely two copies of the Virasoro group. Again, these are
precisely the symmetries of two-dimensional CFTs. These theories are rather well-understood
due to the large number of available symmetries.

Einstein gravity in three dimensions has no propagating degrees of freedom, i.e., there
exist no gravitational waves. However, it came as quite a surprise when it was shown that
the theory has black hole solutions in AdS space, the so-called Bañados–Teitelboim–Zanelli
(BTZ) black holes [27, 28]. The derivation of the Bekenstein–Hawking entropy (1.4) for
these black holes from properties of the CFT on the boundary [29] by use of the Cardy
formula [30,31] is a great achievement of the AdS/CFT correspondence.

5Of course, it would still be necessary to show where precisely the usual argument in the gravitational
theory breaks down.
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But a number of puzzling features of the AdS3/CFT2 correspondence still remains. In
particular, the nature of the boundary theory is still elusive. It is known due to the result of
Brown and Henneaux, at least semi-classically, that the boundary theory is a two-dimensional
CFT but which one precisely is not clear. It has been shown that the asymptotic dynamics
of Einstein gravity in AdS3 reduces to Liouville theory [32] that, however, does not correctly
reproduce the Bekenstein–Hawking entropy [33, 34]. Furthermore, the partition function
of Einstein gravity on AdS3 does not produce sensible results unless further unknown
contributions are taken into account [35]. This would mean that Einstein gravity cannot be
consistently quantized but needs further matter fields, such as string theory would provide.

Given this status of the AdS/CFT correspondence in three dimensions one might hope
that holography in two dimensions could help to answer some of the questions. Unfortunately,
AdS2 holography is somewhat less understood and more subtle than its higher-dimensional
cousin. One immediate question is the nature of the boundary theory. Is it conformally
invariant quantum mechanics or is it one chiral half of a CFT? Scaling arguments show that
a truly conformal one-dimensional quantum theory necessarily has a vanishing Hamiltonian,
thus having no dynamics [36]. On the other hand, having one half of a two-dimensional
theory as a boundary theory is difficult to interpret. We will see below that recently another
contender for a boundary theory has emerged in the form of the Sachdev–Ye–Kitaev (SYK)
model.

Near horizon holography. There are two motivations why holography in two-dimensional
AdS space is interesting to consider. The first one was mentioned above: it can be regarded
as a toy model for the higher-dimensional case. This will be the point of view taken in this
thesis. But there is a second one pertaining to its relation to higher-dimensional black holes
that we want to mention.

In addition to its mass a black hole is also characterized by other conserved quantities
such as angular momentum J , electrical charges Q etc. A black hole with the smallest
possible mass that is compatible with a given set of charges J,Q, . . ., is called extremal black
hole.6 For a large number of these black holes one finds that the region near the horizon is of
the form AdS2 ⇥K where K is a compact space (for a comprehensive review of near horizon
geometries see [39]).The appearance of an AdS2 factor in the near horizon geometry of an
extremal black hole led to the hope that the AdS/CFT correspondence could be applied to
the (almost) realistic set-up of extremal Kerr black holes [40]. The symmetry algebra was
shown to be one copy of the Virasoro group thus suggesting a chiral half of a two-dimensional
CFT as boundary theory, and applying a chiral half of the Cardy formula indeed reproduces
the entropy of the extremal Kerr black hole.7 However, it was later shown that this dual
theory presumably does not exist, as it is only capable of describing the ground state but
not any non-trivial excitations [42–44]. This is well in line with an argument concerning the
near horizon region of extremal Reissner–Nordström black holes [45]. Also in that case it
was found that the set-up does not allow for any finite energy states. The reason for this can
be shown by the following argument: Let M be the mass of the black hole, Q its charge, and
`P =

p
G the Planck length. Then the energy above extremality is given by E = M � Q

`P
.

6Observations suggest that some black holes are very close to extremality [37], however the case is not
settled yet; cf. [38].

7This result is also reproduced by the attractor mechanism of [41].
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The near horizon or decoupling limit is controlled by the dimensionful parameter `P . Near
extremality, one finds the following relation between E, `P , and Hawking temperature TH

E = 2⇡3Q3`PT
2
H . (1.6)

It is not possible to have `P ! 0, i.e., to go to the decoupling limit while keeping TH and E
finite. For a thermodynamic description to be valid we would expect E � TH so that the
radiation of a Hawking quantum of energy TH does not drastically change the macrostate.
The thermodynamic description therefore breaks down if E is of the order of `�1P Q�3. This
can be regarded as the mass gap of the black hole between the ground state and the first
excited states. In the near horizon limit `P ! 0 all excitations are sent to infinity and the
only accessible state left is the ground state.

This suggests that in order to obtain any non-trivial dynamics one has to consider small
deviations from the near horizon limit.

The SYK model. Interest in AdS2 holography saw a recent rise due to the SYK model that
was introduced by Kitaev and discussed in more detail by Maldacena and Stanford [46,47].
The origins of this model go back to the original work [48] that was subsequently simplified
by Kitaev. The SYK model is a quantum mechanical model of N Majorana fermions having
a four-point interaction with random coupling constant. In the strong coupling, or similarly
IR, limit at large N the theory exhibits local conformal symmetry in one dimension, i.e.,
time reparametrization invariance, that is spontaneously broken to SL(2,R) by the ground
state. As always with spontaneous symmetry breaking, one expects Nambu–Goldstone
bosons to arise that however have zero action in the present case. In this strict conformal
limit the theory is not well-defined but shows a divergence in the four-point function. This
divergence can be lifted by considering a small deviation from the IR limit that gives rise
to a non-vanishing action for the Nambu–Goldstone bosons, the Schwarzian action. This
pattern of symmetry breaking and the Schwarzian action can be recovered from the gravity
side, as we will see in more detail in later chapters.8

The SYK model has attracted a lot of attention due to the fact that it is a strongly
coupled theory that is solvable at large N . Various extensions and generalizations have
been considered recently [49–70] that showed similar properties as the SYK model. One
motivation for considering other models with similar features is the presence of random
coupling constants in the original model. Since every observable requires an average over
these coupling constants, the SYK model is not a quantum mechanical model in the strict
sense as emphasized by [57]. This could pose some difficulties when studying subtle questions
about black holes and holography.

While the SYK model provides a strong motivation for reconsidering AdS2 holography
this thesis is mostly concerned with the gravity side of this possible correspondence. Only the
Schwarzian action, as somewhat of a promontory of the SYK model, will feature prominently.
Appendix D contains a discussion of the SYK model explaining how the Schwarzian action
arises from it.

8Note also that the requirement to treat the SYK model slightly away from the conformal limit is very
similar to the above considerations concerning triviality of the dynamics in the near horizon limit of extremal
black holes.
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Generalizations of AdS/CFT. The AdS/CFT correspondence is currently the most
developed realization of the holographic principle. However, if the holographic principle is
correct, it should apply also to more realistic set-ups given that the cosmological constant in
our universe is not negative. After all, in the end we want to understand our world, not only
some world that would be possible by the laws of physics. There have been attempts to apply
the holographic principle to de Sitter space [71] or asymptotically flat spacetimes [72–75].
In particular, in the latter case new interesting avenues have opened up in recent times
sparked by the work [76]. Therein it was shown that, after linking the two separate BMS
groups at past and future null infinity of four-dimensional asymptotically flat spacetimes,
this “diagonal” subgroup is a symmetry of the S-matrix.9 The associated Ward identity
is the well-known soft graviton theorem of Weinberg [77, 78]. These new ideas regarding
the asymptotic structure of asymptotically flat spacetimes, collectively dubbed the infrared
triangle, promise to lead to new insights concerning flat space holography. We will not
have much to say about these developments in this thesis but comment on some possible
extensions in the conclusions.

The aim of this thesis. This thesis aims to present a comprehensive discussion of AdS2

holography from a intrinsically two-dimensional perspective. We will see that the theory
has two sectors with very different properties: the constant dilaton sector and the linear
dilaton sector. We will show in full generality that the dynamics associated to the constant
dilaton sector are trivial. This is in line with the above mentioned results concerning the near
horizon region of extremal black holes but independent of a particular higher-dimensional
set-up or two-dimensional gravity model. In order to find non-trivial holography we will then
turn to the linear dilaton sector. We will first discuss the Jackiw–Teitelboim model [79,80]
from which we will derive the Schwarzian action that links this model to the SYK model, as
mentioned above. In a second step we study suitable generalizations of the Jackiw–Teitelboim
model by coupling the theory to Yang–Mills fields and fields of spin greater than two. We
will present generalizations of the Schwarzian action for these cases. Our results can be
regarded as mapping the space of theories in AdS2 that can have a boundary dual with
properties similar to the SYK model.

In all of this we find symmetry to be our guiding principle.

Structure of this thesis

This thesis is separated into two parts. In part I we collect necessary tools that we will need
for our journey to the boundary of AdS2 (or perhaps in search of the catalogue of catalogues).
Some of the material presented therein will not be used explicitly but will provide valuable
background information. Part II contains the original research of this thesis, heavily based
on the works [1, 2, 4]. Part III contains the appendix.

Chapter 2 This chapter deals with symplectic structures and their generalization, Poisson
structures. These will feature prominently throughout the thesis. The action of Lie
groups on symplectic structures and Poisson structures is discussed in some detail.

9A similar linking in three dimensions was presented in [5].
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Chapter 3 The concept of a two-dimensional theory of gravity requires some explanation.
We motivate and define a certain two-dimensional theory of gravity, called dilaton
gravity, and discuss its properties. A reformulation of dilaton gravity as a (non-linear)
gauge theory is presented.

Chapter 4 Since this thesis is concerned with gravity on AdS2 spacetimes we discuss these
in close detail. It is shown that some solutions have properties that allow for a black
hole interpretation. We show that hyperbolic geometry and knowledge of the coadjoint
orbits of the Virasoro group are helpful for understanding these spacetimes.

Chapter 5 This chapter is based on the original work [4]. We show that the constant
dilaton sector of any dilaton gravity theory in AdS2 is necessarily trivial. This is in line
with previous results but presented here without referring to any particular model. A
one-loop calculation establishes that the result remains true when quantum mechanical
effects are taken into account.

Chapter 6 This chapter is based on the original work [2] but is presented in a shortened
and restructured form. We discuss the JT model that is the simplest dilaton gravity
model with linear dilaton solutions in AdS2 in the second order formulation. An action
with a well-defined variational principle is presented. The symmetries of the JT model
are discussed and it is shown that the action reduces to the Schwarzian action, thus
establishing the relation to the SYK model as a possible boundary theory.

Chapter 7 This chapter is based on the original work [1]. The JT model is reformulated
as a gauge theory of the gauge group SL(2) along the lines presented in chapter 3
and it is shown how to obtain the Schwarzian action in this formulation. The gauge
theoretic formulation of the JT model lends itself to a straightforward generalization to
gauge groups having an SL(2,R) subgroup such as SL(2,R)⇥K with K an arbitrary
(compact) Lie group or SL(N,R). We construct and discuss generalizations of the
Schwarzian action for these actions.

Chapter 8 In this chapter we summarize our results and point out open lines of research.

Appendix A In this appendix a canonical analysis based on an ADM split for the second
order formulation of dilaton gravity is presented. The resulting Hamiltonian is used to
construct the canonical charges in section 3.5.

Appendix B One of the main protagonists of this thesis will be two-dimensional anti-de
Sitter space, AdS2. Here we collect various coordinate systems that will be used
throughout the thesis.

Appendix C This appendix is based on unpublished results that were obtained during work
leading up to [1]. We present a different way of constructing the generalized Schwarzian
actions of chapter 7 using the Iwasawa decomposition of elements of SL(N,R) that
shows interesting similarities to work in three dimensions.

Appendix D This appendix discusses aspects of the SYK model and its relation to the
Schwarzian action.



Part I

Tools for the Journey
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Chapter Two

Symplectic and Poisson Structures

We are going to start our collection of suitable tools for the second part of this thesis with an
introduction to symplectic geometry which can be regarded as a geometric reformulation of
the Hamiltonian picture of classical physics. This purely geometric point of view is the reason
for the formalism’s usefulness as it gets rid of particular parametrizations (or particular
coordinate systems on the symplectic manifold) that might be useful for some physical
systems but impeding for others.

In section 2.2 we will discuss Poisson geometry defined as manifolds that allow for the
construction of a Poisson bracket. Apart from being a natural generalization of symplectic
geometry, the main reason for discussing these manifolds is their appearance in a reformulation
of two-dimensional gravity that we will heavily use in the remainder of this thesis.

All systems physicists are usually interested in come with some symmetry. Thus it makes
sense to see how these symmetries interact with the geometric reformulation of classical
physics provided by symplectic geometry. This will be the topic of section 2.3.

Due to the rather mathematical content of this section it lends itself to a presentation
using definitions, theorems, and examples; proofs will be consistently omitted but attempts
on elucidating the content of some theorems will be made. This section is based on textbooks
[81–87] in which proofs and further material can be found.

2.1 Symplectic manifolds

Before defining the concept of symplectic manifolds let us make the following definition:

Definition 1 (Strong/weak nondegeneracy). A two-form ⌦ defined on a manifold M is
called weakly non-degenerate if the map

⌦[ : TpM ! T ⇤pM ⌦b(X)(Y ) = ⌦(X,Y ) 8X,Y 2 TpM (2.1)

is injective, i.e., ⌦[(X) = 0 implies X = 0.
If the map ⌦[ is injective and surjective thus defining an isomorphism between TpM and

T ⇤pM , the form is called strongly non-degenerate.

11
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Notice that for a finite dimensional manifold M weak and strong degeneracy are equivalent.
However, in some applications the manifold M will be infinite dimensional. In most of these
cases ⌦ is weakly non-degenerate only.

Using the above distinction between weak and strong non-degeneracy the definition of a
symplectic manifold is stated promptly:

Definition 2 (Symplectic manifold). A symplectic manifold is given by the pair (M,⌦)
where M is a manifold and ⌦ is a non-degenerate two-form on M that is closed

d⌦ = 0. (2.2)

If ⌦ is strongly non-degenerate, the pair is called strong symplectic manifold.

In a coordinate patch given by zI = (z1, ..., zD) on a finite-dimensional manifold the
symplectic two-form ⌦ can be written as

⌦ = ⌦IJ dzI ^ dzJ , (2.3)

where ⌦IJ is a regular antisymmetric matrix that obeys the closedness condition (2.2)

@K⌦IJ + @I⌦JK + @J⌦KI = 0. (2.4)

Since an antisymmetric matrix in odd dimensions necessarily contains a zero eigenvalue we
find that all (finite-dimensional) symplectic manifolds have to be even-dimensional, D = 2n.

Having defined a distinguished tensor on the manifold M some diffeomorphisms on M
will be special in the sense that they preserve the symplectic structure.

Definition 3 (Canonical transformation). If (M1,⌦1) and (M2,⌦2) are two symplectic
manifolds, a diffeomorphism ' : M1 ! M2 is called symplectic if its pull back preserves the
symplectic structure

'⇤⌦2 = ⌦1. (2.5)

If (M1,⌦2) = (M2,⌦2) then the condition

'⇤⌦ = ⌦ (2.6)

defines a subgroup of all diffeomorphisms of M called symplectomorphisms.
It is worthwhile to pause for a moment and compare the above definition of symplectic

manifolds with the familiar notion of a Riemannian manifold. On a superficial level both
structures appear to be quite similar: In both cases one is given a manifold M with a
distinguished non-degenerate element of the tangent space T ⇤M ⌦ T ⇤M , in the former case
an antisymmetric element that obeys (2.2) in the latter case a symmetric tensor. Interestingly,
this is about as far as the similarities go: We already saw above that even-dimensionality is
a necessary criterion for a manifold to be symplectic; on the other hand, any (paracompact)
manifold can be given the structure of a Riemannian manifold. Another necessary condition
on closed symplectic manifolds is non-vanishing of the second cohomology group H2(M) 6= 0.1

1This is actually quite easy to see: Any symplectic form ⌦ defines a natural volume element " by
" = ⌦n. Now assume that H

2(M) = 0. Then there must exist some ↵ such that ⌦ = d↵, which implies
" = d(↵^⌦n�1). The volume of any M would then be given by

R
M

" =
R
M

d(↵^⌦n�1) =
R
@M

↵^⌦n�1 = 0

where the last equality follows from the fact that M is closed. This is a contradiction. Thus, H2(M) 6= 0.
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Thus, not even the 2n-sphere (except n = 1) is a symplectic manifold. Loosely speaking,
symplectic manifolds are much rarer than Riemannian manifolds.

Let us finally state another important difference. While one can define interesting local
properties of Riemannian manifolds via curvature, all interesting properties of symplectic
manifolds must be necessarily of global origin, as the following, well-known theorem shows.

Theorem 1 (Darboux theorem). Let (M,⌦) be a strong symplectic manifold. Then in a
neighborhood of each point p 2 M , there is a local coordinate chart in which ⌦ is constant.

For a proof see any book on symplectic geometry, e.g., [84]. In contrast, in Riemannian
geometry a metric with non-vanishing curvature can be transformed to the unit metric at a
single point only.

From the above follows that, on a finite-dimensional manifold, there always exists a
coordinate system (q1, .., qn, p1, ..., pn) called canonical coordinates in which the symplectic
form is given by

⌦ = dqi ^ dpi. (2.7)

In equation (2.7) by using the conventional symbols (q, p) we already suggested a relation
of symplectic manifolds to physical systems. We will now turn to some examples that will
clarify the above concepts.

Example 1 (Two-dimensional symplectic manifolds). Any two-dimensional manifold is
symplectic, given that one can define a non-degenerate two-form ⌦ on it, since d⌦ = 0
trivially. Thus, the torus with coordinates (✓,') and ⌦ = d✓ ^ d' and the two-sphere with
coordinates (✓,') and the symplectic form given by the volume form ⌦ = � d(cos ✓) ^ d'
are symplectic.

Example 2 (Cotangent bundles). We will now come to the example that will provide the
relation of the above framework with the usual set-up in physics [85].

Consider a configuration manifold Q whose points describe all kinematically possible
states of a physical system. Assuming that the differential equations governing the evolution
of the system are of second-order, one can define a Lagrangian function, viewed as a function
on the tangent bundle L : TQ ! R that governs the dynamics of the system. However, it
turns out that it is the cotangent bundle T ⇤Q, i.e., the phase space of the system, that has
the structure of a symplectic manifold. This is due to the existence of the tautological or
canonical one-form ✓ on any cotangent bundle. From this form one can define the symplectic
structure as

⌦ = � d✓, (2.8)

where the minus sign is conventional, which is obviously closed and can be shown to be
non-degenerate.

More precisely, let ⇡ denote the canonical projection from the cotangent bundle to the
base manifold

⇡ : T ⇤Q ! Q (q,↵) 7! q , (2.9)

where (q,↵) 2 T ⇤Q (q 2 Q), and let ⇡⇤ : T (T ⇤Q) ! TQ be the push-forward (or differential)
of ⇡. Then the canonical one-form at a point (q,↵) 2 T ⇤Q is defined as

h✓(q,↵), wi = h↵,⇡⇤wi 8w 2 T (T ⇤Q), (2.10)
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where h·, ·i denotes the pairing between tangent and cotangent space on Q.
This definition is somewhat opaque. Thus, let us evaluate (2.10) for a finite-dimensional

manifold Q. Choosing coordinates (q1, ..., qn) in a coordinate chart U on Q and coordinates
(p1, ..., pn) for the cotangent space T ⇤q Q at point q 2 U , an element ↵ in the fiber ⇡�1(U)
has coordinates (q1, ..., qn; p1, .., pn) and can be written as ↵ = pi(dqi)q, where the subscript
denotes that the (dqi) belong to the tangent space at q. An arbitrary vector w 2 T (T ⇤q Q) is
therefore of the form

w = ui @

@qi
+ �i

@

@pi
(2.11)

with the push-forward of the projection acting as

⇡⇤ : w 7! ui @

@qi
. (2.12)

Plugging this into equation (2.10) we are left with

h✓(q,↵), ui @

@qi
+ �i

@

@pi
i = piu

jhdqi, @

@qj
i = piu

i, (2.13)

which implies that ✓(q,↵) = pi dqi. Consistently, we recover by (2.8) the symplectic two-form
in canonical coordinates (2.7).

We have seen in the last example that the natural arena for classical mechanics in the
phase space formulation is indeed provided by symplectic geometry. But up to this point we
have studied kinematics only. In order to study the evolution of physical quantities on the
symplectic manifold we introduce the concept of Hamiltonian vector fields.

Definition 4 (Hamiltonian vector field). A vector field XH on the symplectic manifold
(M,⌦) is called Hamiltonian if there exists a function H such that

iXH
⌦ ⌘ ⌦(XH , ·) = dH. (2.14)

Equivalently, the symplectic structure defines a map ⌦] : T ⇤M ! TM by

⌦(↵,�) = h↵,⌦]�i, 8↵,� 2 T ⇤M (2.15)

using which the Hamiltonian vector field can be written as

XH = ⌦] dH . (2.16)

The set of all Hamiltonian vector fields is denoted Ham(M).
A vector field X is called locally Hamiltonian if

d(iXH
⌦) = 0, (2.17)

since then, by the Poincaré lemma, there exists locally a function H such that iXH
⌦ = dH.
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Let us denote by 't the flow defined by a vector field X. Using Cartan’s magic formula
the Lie derivative £X acting on the symplectic form can be written as

£X⌦ = iX(d⌦) + d(iX⌦) . (2.18)

Using d⌦ = 0 and the above definition, this shows that the set of vector fields whose flows
leave the symplectic structure invariant

'⇤t⌦ = ⌦ (2.19)

is precisely given by locally Hamiltonian vector fields. Thus, all symplectomorphisms are
generated by Hamiltonian vector fields.

With the notion of Hamiltonian vector fields at our disposal we can write down Hamilton’s
equations in the concise form

ż = XH(z). (2.20)

It is important to stress that the Hamiltonian H generating the Hamiltonian vector field XH

is not necessarily the generator of time translations but can be any function on phase space.
Notice that while it is clear that there exists a Hamiltonian vector field XH for any choice of
H in finite dimensions, this is not guaranteed in the infinite-dimensional case. However, we
will with the physicist’s grace brush over these details.

As a final application of symplectic geometry let us define another important ingredient
of classical mechanics.

Definition 5 (Poisson bracket). Let f, g be two smooth functions on the symplectic manifold
(M,⌦), f, g : C1(M) ! R. Then the Poisson bracket at a point z 2 M is defined as

{f, g}(z) = ⌦(Xf (z), Xg(z)) (2.21)

where Xf and Xg are the Hamiltonian vector fields associated to f and g, respectively.

Note that the above definition is equivalent to

{f, g} = (iXf
⌦)(Xg) = df(Xg) = Xg[f ] (2.22)

where we used the defining equation for Hamiltonian vector fields (2.14) in the first step.
The Poisson bracket has a number of important properties. The most important is the

fact that it gives the functions defined on the phase space the structure of a Lie algebra.

Theorem 2 (Poisson algebra). The pair {C1(M), {·, ·}} defines an infinite-dimensional
Lie algebra called Poisson algebra.

The only non-trivial step in the proof of the above theorem is the verification of the
Jacobi identity which can be established using the fact

X{f,g} = �[Xf , Xg] . (2.23)

This can be proved by applying ⌦ to both sides and then using the above definitions for
Hamiltonian vector fields. In particular, closedness of ⌦ is crucially needed for the Jacobi
identity of the Poisson bracket.
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Equation (2.23) makes explicit the Lie algebra antihomomorphism f 7! Xf between
the Poisson algebra and the Lie algebra of Hamiltonian vector fields. The kernel of this
antihomomorphism consists of the functions that generate trivial dynamics, i.e., the constant
functions.

This ends our discussion of symplectic structures. We saw that the phase space of a
physical system is naturally endowed with a symplectic structure that can be used to elegantly
describe classical mechanics in geometrical terms. However, we saw in the beginning of
the section that the requirements on symplectic manifolds are actually quite restrictive. In
particular, if all one cares about is to obtain a Poisson bracket from the symplectic structure
by equation (2.21), then we might consider loosening the conditions on the symplectic
structure. We saw above that closedness of the symplectic structure translates to the Jacobi
identity for the Poisson bracket which is a property that we would not like to discard. But
the property of non-degeneracy can be loosened without sacrificing a well-defined Poisson
bracket. Consider, for instance, the two-tensor ! = dx ^ dy on R

3. This does not define
a symplectic structure as it is obviously degenerate. But let us make the following ad-hoc
construction: The Poisson bracket for functions f, g depending on x, y is calculated according
to the usual prescription (2.21). For functions of z only the associated Hamiltonian vector
field will be defined to be the zero vector field such that these functions have vanishing
Poisson bracket with every other function. This definition is extended to all functions by
requiring the Poisson bracket to obey the Leibniz identity. As can be easily checked, this
bracket satisfies all the requirements on a Poisson bracket, i.e., it is an antisymmetric, bilinear
derivation that obeys the Jacobi identity.

Thus, without sacrificing the Poisson bracket we can pass to a structure, called Poisson
structure, that still shows many of the interesting properties of a symplectic structure but
is more general. In particular, as we will see in later sections, Poisson structures have an
intimate relation to Lie algebras. We will explore Poisson structures in detail in the next
section.

2.2 Poisson manifolds

In the last section we saw that the fundamental object on a symplectic manifold is a closed
two-form. It turns out, similarly, that a Poisson manifold is defined by having a distinguished
contravariant, antisymmetric two-tensor.2

Definition 6 (Poisson manifold). A Poisson structure on a manifold M is a bilinear operation

{·, ·} : C1(M)⇥ C1(M) ! C1(M) (2.24)

that obeys the following properties

(1) antisymmetry
{f, g} = �{g, f}, (2.25)

(2) the Jacobi identity:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0, (2.26)
2This is sometimes called a bi-vector.
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(3) the Leibniz identity (derivation property):

{f, gh} = {f, g}h+ {f, h}g (2.27)

for all functions f, g, h 2 C1(M).
The pair (M, {·, ·}) defines a Poisson manifold.
Equivalently, one can define a Poisson manifold by specifying an antisymmetric tensor

field P 2 ^2TM on M such that

{f, g} = P (df, dg). (2.28)

for all f, g 2 C1(M). The tensor field P is called the Poisson tensor on M . The pair (M,P )
defines a Poisson manifold.

In a coordinate system (z1, ..., zn) definition (2.28) reads

{f, g} = P IJ @f

@zI
@g

@zJ
, (2.29)

where
P IJ = {zI , zJ}, (2.30)

is the expression for the Poisson tensor in local coordinates. Using definition (2.28), require-
ments (2.25) and (2.27) are automatically satisfied for an arbitrary antisymmetric tensor
field P IJ . The Jacobi identity (2.26) translates to the non-trivial equation

 IJK PLI@LP
JK ⌘ PLI@LP

JK + PLJ@LP
KI + PLK@LP

IJ = 0. (2.31)

In the symplectic case we saw that the Jacobi identity of the Poisson bracket is equivalent
to vanishing of the three-form d⌦. Similarly, one can formulate the requirement (2.31) on
the Poisson tensor geometrically by demanding vanishing of an antisymmetric, contravariant
three-tensor. An equivalent statement is that the Schouten bracket (a generalization of the
Lie bracket to antisymmetric, contravariant tensors) of the Poisson tensor with itself vanishes.
Since these concepts will not be used in the following we refer to, e.g., [83].

Note that the above definition says nothing about non-degeneracy of the Poisson tensor.
In fact, often not even the rank of P will be constant on M . On an odd-dimensional manifold
the Poisson tensor is necessarily degenerate since the rank of an antisymmetric matrix is
always even.

Let us study some immediate consequences of the above definition. Since the Poisson
bracket is bilinear and obeys the Jacobi identity it follows immediately that the pair
(C1(M), {·, ·}) forms a Lie algebra. As a second point consider fixing a function f 2 C1(M).
Then {f, ·} defines a linear map from C1(M) ! C1(M) that obeys the Leibniz rule, i.e., it
defines a vector field on M . We can therefore define:

Definition 7 (Hamiltonian vector fields, Casimir functions). Consider a function H 2
C1(M). The vector field XH defined by

£XH
g = XH(g) = {g,H} 8g 2 C1(M) (2.32)
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is called the Hamiltonian vector field of the Hamiltonian function H. Equivalently, the
Poisson tensor P defines a map P ] : T ⇤M ! TM by

P (↵,�) = h↵, P ]�i, 8↵,� 2 T ⇤M, (2.33)

using which the Hamiltonian vector field can be written as

XH = P ] dH . (2.34)

In a coordinate system we would write for the components of XH

XI
H = P IJ@JH. (2.35)

A function C that has vanishing Poisson bracket with every other function

{C, f} = 0 8f 2 C1(M) (2.36)

and thus generates a zero Hamiltonian vector field is called Casimir function. These functions
generate the center of the Poisson algebra.

The set of Hamiltonian vector fields at a point p, Hamp(M), equipped with the commutator
defines a Lie subalgebra of the Lie algebra of tangent vectors. In fact, the map f 7! Xf of
C1(M) ! Hamp(M) is again a Lie algebra antihomomorphism

[Xf , Xg](h) = �X{f,g}(h) 8h 2 C1(M) (2.37)

as can be checked straightforwardly using the Jacobi identity. The dimension of the vector
space Hamp(M) at a point p 2 M is equal to the rank of P at this point.

The existence of Casimir functions is related to the fact that the Poisson tensor P is not
required to be non-degenerate. This is in contrast to the symplectic case where only constant
functions have vanishing Hamiltonian vector field. Below we will see that set of Casimir
functions can be used to define a foliation of the Poisson manifold into leaves on each of
which one has a well-defined symplectic structure. Before looking at two simple examples
of Poisson manifolds where we can study the above features, we want to make explicit the
relationship between Poisson structure and symplectic structures.

Symplectic structure and non-degenerate Poisson structures should coincide in their
definition of the Poisson bracket, i.e., equating (2.21) and (2.28) we find

P (df, dg) = ⌦(Xf , Xg) (2.38)

which, using the maps defined in (2.15) and (2.33), is equivalent to

hdf, P ] dgi = hdf,⌦] dgi (2.39)

which implies
⌦] = P ] . (2.40)

In a local coordinate system this is equivalent to the statement

P IJ = �⌦IJ (2.41)

where ⌦IJ is defined as ⌦IJ⌦JK = �IK . As expected, the inverse of a symplectic structure
defines a regular Poisson structure on a manifold, and vice versa given that the Poisson
structure is non-degenerate.

Analogous to symplectic manifolds we define:
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Definition 8 (Poisson (canonical) maps). Let (M1, P1) and (M2, P2) be Poisson manifolds
and ' : M1 ! M2 a smooth map. Then ' is called canonical or Poisson if

'⇤P1 = P2 . (2.42)

If (M1, P1) = (M2, P2) this defines the Poissonmorphisms of the manifold (cf. the
analogue statement (2.6) for symplectic manifolds). Analogous to the symplectic case one
can prove that the flow generated by a Hamiltonian vector fields leaves the Poisson structure
invariant. In particular, LXH

P = 0 if XH is a Hamiltonian vector field. The converse is, in
general, not true. There are more vector fields leaving the Poisson structure invariant than
Hamiltonian vector fields.3

Example 3 (Poisson structures on R
2). We choose as Poisson manifold M = R

2 with global
coordinates (x, y) and the antisymmetric tensor

P = @x ^ @y (2.43)

as our Poisson tensor. For the Poisson brackets of smooth functions f, g 2 C1(R2) we find
therefore

{f, g} =
@f

@x

@g

@y
� @g

@x

@f

@y
. (2.44)

This is, of course, nothing but the standard Poisson bracket of a point particle on the
configuration space R

2 under relabeling (x, y) ! (q, p). Consistently, we find that the
symplectic structure given by (2.40) is the canonical structure ⌦ = dq ^ dp.

The Hamiltonian vector field associated to the Hamiltonian function H 2 C1(R2) is
given by

⇠H = {·, H} = �@H
@x

@

@y
+
@H

@y

@

@x
. (2.45)

These vector fields span the entire tangent space since any vector field on R
2 can be written

in this way. The Casimir functions that generate trivial dynamics are given by the constant
functions H = const.

Example 4 (Poisson structure on R
3). Let us only marginally crank up the level of

sophistication and consider the manifold M = R
3 with global coordinates (x, y, z). This is

the example alluded to at the end of section 2.1. Since an odd-dimensional antisymmetric
matrix necessarily contains a zero eigenvalue the Poisson tensor will be singular. Choosing the
same Poisson tensor as in (2.43) we find the same Poisson brackets and the same Hamiltonian
vector fields (2.45) with H being replaced by an arbitrary function in C1(R3). However,
the set of Casimir functions is now given by arbitrary functions in z. There exists no
symplectic structure on this Poisson manifold since (2.40) yields a non-invertible matrix for
⌦IJ . However, planes of constant z, i.e., planes of constant Casimir functions, provide a
foliation of the Poisson manifold into slices on each of which one can define a symplectic
structure. This is called symplectic foliation and a generic feature of Poisson manifolds.

3This can be formulated as a cohomological problem. The space of all vector fields leaving the Poisson
structure invariant that do not derive from a Hamiltonian vector field is then called the first (Lichnerowicz–)
Poisson cohomology group. The zeroth cohomology group corresponds to the Casimir functions while the
second cohomology group encodes certain obstructions to quantization of the Poisson manifold. For further
details consult [82,83].
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Before describing the global properties of Poisson manifold, in particular its symplectic
foliation, we quote a theorem concerning the local structure of Poisson manifolds. For
symplectic manifolds the Darboux theorem showed that locally every symplectic manifold
looks the same, i.e., locally the symplectic form can be always brought into canonical form
(2.7). An analogue theorem in the case of Poisson manifold was proven by Weinstein [88].
The theorem states that given a point p 2 M on which the Poisson tensor has rank 2r
there exists a coordinate system centered on p in which the Poisson tensor splits into a
regular part of rank 2r and a part that has rank zero at the origin. Consequently, as in
the symplectic case locally every Poisson manifold looks the same apart from the rank of
the Poisson tensor that can vary. This local splitting of Poisson manifolds works even in
many infinite-dimensional applications, i.e., one finds that the Poisson manifolds splits in an
infinite-dimensional symplectic space and a finite-dimensional Poisson space.

The fact that Poisson manifolds have an almost trivial local structure implies that one
can define Darboux-like coordinates on P .

Theorem 3 (Darboux theorem for Poisson manifolds [83]). Let (M,P ) be a Poisson manifold
of dimension d and suppose that p is a point where the rank of P is locally constant [i.e.,
constant in a neighborhood of p] and equal to 2r. There exists a coordinate neighborhood U
of p with coordinates (q1, .., qr, p1, ..., pr, z1, ..., zs) with d = 2r + s such that on U

P =
@

@qi
^ @

@pi
. (2.46)

We will call coordinates in which the Poisson tensor takes this form (Casimir–) Darboux
coordinates.

We now turn to the symplectic foliation mentioned in example 4. There we saw that a
degenerate Poisson tensor becomes non-degenerate when restricted to certain subspaces of
the Poisson manifold called symplectic leaves. This is true for any Poisson manifold as the
following theorem shows.

Definition 9 (Symplectic leaves). Let (M,P ) be a Poisson manifold. Given a point p 2 M ,
a point p0 is said to be on the same symplectic leaf ⌃p if there exists an integral curve of a
Hamiltonian vector field connecting p and p0.

Theorem 4 (Symplectic foliation [83]). Every Poisson manifold (M,P ) is the disjoint union
of injectively immersed submanifolds4, whose tangent spaces are spanned by the Hamiltonian
vector fields of (M,P ). The Poisson structure, restricted to each of these submanifolds, yields
a Poisson structure of maximal rank (symplectic structure). This decomposition is called the
symplectic foliation of M and the immersed submanifolds are the symplectic leaves of M .

Instead of giving a proof we want to clarify the content of the theorem. We stated above
that the rank of the Poisson tensor at a point p is equal to the dimension of Hamp(M). Since
the commutator of two Hamiltonian vector fields yields another Hamiltonian vector field,

4A map f : M ! N is called immersion if the tangent map Tpf is injective at every point p 2 M . It
is an injective immersion if f is additional injective. Note that this is not the same as an embedding. As
examples think of the Klein bottle immersed in R

3 (that, however, can be embedded in R
4), or the lemniscate

injectively immersed in R
2.
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the Hamiltonian vector fields define an integrable submanifold (Frobenius’ theorem).5 If this
procedure is performed at every point p 2 M we obtain a foliation of M .6

What role do the Casimir functions play in the above construction as they have no
Hamiltonian vector field associated to them? It is easy to show that a Casimir function C is
constant on a symplectic leaf.

Theorem 5 (Symplectic leaves and Casimirs (I)). Let C be a Casimir function and ⌃ a
symplectic leaf. Then C is constant on ⌃.

This suggests that we can identify symplectic leaves by looking for the level-sets of all
Casimir functions of (M,P ), i.e., constant Casimir functions imply a non-degenerate Poisson
structure. As always, the situation is not that simple since there exist counter-examples to
this naïve expectation. Yet in most well-behaved cases (and these are the cases of interest
to us) the above expectation is true as stated in the following theorem that is quoted for
completeness.

Theorem 6 (Symplectic leaves and Casimirs (II) [83]). Let (M,P ) be a Poisson manifold of
dimension d, let U be a non-empty open subset of M and let f1, ..., fs 2 C1(U), satisfying:

(1) The rank of P is constant on U and is equal to d� s;

(2) The functions f1, ..., fs are Casimirs of the restriction of P to U ;

(3) For every point p 2 U , the differentials df1, .., dfs are independent.

Then the symplectic foliation of the restriction of P to U coincides with the foliation defined
on U by the map (f1, ..., fs) : M ! R

s.

In other words, under the above natural assumptions we can conclude that being on
surfaces of constant Casimir in M is equivalent to being on a symplectic leaf.

Before concluding this section on the general structure of Poisson manifolds we want to
discuss an example.

Example 5. Consider the manifold R
3 with global coordinates (x1, x2, x3) and Poisson

bracket given by
{xi, xj} = " k

ij xk, (2.47)

where " k
ij is the Levi–Civitá tensor on R

3. It is straightforward to check that this fulfills
all the requirements on a Poisson bracket. The Poisson tensor is degenerate since R

3 is
odd-dimensional. The rank of P is two everywhere except at the origin where its rank is zero.
At the origin the coordinates xi themselves are Casimir functions since they trivially commute
by vanishing of the Poisson tensor. Let us therefore focus on R

3 � {0}. It should be clear,
either by inspection or by solving the differential equations {xi, C(xk)} = {xi, xj}@jC = 0,

5As a reminder: Frobenius’ theorem is concerned with the higher dimensional analogue of finding the
integral curve of a vector field. Given a subbundle W of the tangent bundle TM of a manifold M , under
what condition can the tangent vectors be integrated to yield a submanifold such that its tangent space
coincides with the given subbundle W? A necessary and sufficient condition is that the elements of the W

involute, i.e., if X,Y 2 W then [X,Y ] 2 W (cf. eg. [89]).
6To account for a varying rank of the Poisson tensor over M one has to employ a generalized (singular)

version of Frobenius’ theorem. A proof for the general case can be found in [83].
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that any function C(r) of r2 =
P3

i=1 xixi is a Casimir. Since all prerequisites of theorem
6 are (trivially) met spheres of constant radius r = const provide the symplectic leaves
for (M,P ). We can verify this explicitly by going to Casimir–Darboux coordinates. If we
introduce spherical coordinates (r, ✓,'),then the only non-vanishing Poisson bracket will be

{r cos ✓,'} = 1 . (2.48)

For constant r we reproduce the Darboux coordinates on a two-sphere (cf. example 1).

The attentive reader certainly has noticed that example 5 contains a lot more structure
than we have actually used. Most importantly, the Poisson algebra (2.47) is related to the
Lie algebra so(3). This is not a coincidence! Any Lie algebra is naturally related to a Poisson
algebra with its coadjoint orbits determining the symplectic leaves of the Poisson manifold.
The beautiful theory of coadjoint orbits that we are going to develop in the next section
finds ample application in physics, as we will see in some of the following chapters.

2.3 Poisson structures and Lie groups

Recall the following facts about Lie groups.7 We are interested in a representation of a Lie
group G on a vector space V , i.e., a map ' : G⇥ V ! V, (g, v) 7! gv for g 2 G, v 2 V . The
pair (V,') is called a (real) representation of G on the (real) vector space V . Very often
the vector space V is endowed with more structure, e.g., an inner product in which case the
representation is called unitary if the inner product is invariant under the action of G.

A natural choice for a vector space V to define the representation is the Lie algebra g
of G. We can define the representation in the following way: for every element g 2 G one
can define an automorphism of the form cg = gxg�1, where x 2 G. The differential of cg at
the unit element of G defines an automorphism of the Lie algebra g, Adg 2 Aut(g). In other
words, for an element X 2 g we will have

X 7! Adg(X) =
d

dt

�
g exp(tX)g�1

�
t=0

. (2.49)

The adjoint representation of G is given by the homomorphism

Ad : G ! Aut(g), g 7! Adg (2.50)

The set of elements {Adg(X)|g 2 G} is called the adjoint orbit of G through X 2 g.
The differential of the map Ad : G ! Aut(g) at the identity element of G, defines a map

ad : g ! End(g)
ad : X 7! [ · , X], (2.51)

where [·, ·] is the Lie bracket defined on g. This yields the adjoint representation of the Lie
algebra g.

7For infinite-dimensional Lie groups, one usually assumes that the group manifold is a Fréchet manifold.
This allows to define concepts such as vector fields, tangent spaces, differential forms etc. We will not go into
the details of this construction.
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Another natural representation of the Lie group G and its Lie algebra g is associated
with the dual vector space of the Lie algebra, g⇤.8 Elements of the dual Lie algebra are
called (generalized) moments in this context, consistent with the use of the word in example
2. Denote the pairing between the Lie algebra and its dual by h·, ·i : g⇤ ⇥ g ! R. Then one
can define the coadjoint action Ad⇤ of G on g⇤ as

hAd⇤g(µ), Xi := hµ,Adg�1(X)i (2.52)

for all µ 2 g⇤, X 2 g. This defines the coadjoint representation of the Lie group G on g⇤, the
dual of its Lie algebra. Similarly, one can define the coadjoint action of the Lie algebra g,
ad⇤:g ! End(g⇤) for an element Y 2 g

had⇤Y (µ), Xi := �hµ, adY (X)i (2.53)

as the differential at the identity of (2.52). In general, the adjoint and coadjoint representation
of a Lie group will differ. If and only if the Lie algebra admits an invariant, non-degenerate
pairing, for instance in the form of a Cartan–Killing metric, g and g⇤ can be identified and
the representations coincide.

Let µ 2 g⇤ be a moment. Then the set

Oµ = {Ad⇤g(µ)|8g 2 G} (2.54)

is called the coadjoint orbit of G through µ. The set of elements of G leaving µ invariant,
i.e.,

Gµ = {Ad⇤g(µ) = µ|8g 2 G} (2.55)

is called the stabilizer or little group of G at µ. A coadjoint orbit can also be defined
intrinsically as Oµ ' G/Gµ. The tangent space of the orbit Oµ consists of elements in g⇤.
In particular, one has

TµOµ = {ad⇤g(µ)}. (2.56)

Therefore, all elements �Xµ of the form �Xµ = ad⇤X(µ) for some X 2 g belong to the tangent
space; thus, an element of g fully specifies an element of TµOµ. Defining by

Tµ(Gµ) ' gµ = {ad⇤X(µ) = 0|X 2 g} (2.57)

the isotropy algebra, an element �⌫ 2 TµOµ specifies an element in g up to an element of gµ.
The tangent space Tµ is thus identified with the quotient Tµ(G/Gµ) ' g/gµ.

Let us study the coadjoint orbits of SO(3) as an instructive warm-up exercise.

Example 6 (Coadjoint orbits of SO(3)). The group SO(3) is the group of 3⇥ 3 orthogonal
matrices, i.e., A| = A�1, with determinant one. Its Lie algebra so(3) is the three-dimensional
vector space of antisymmetric 3⇥ 3 matrices which we can identify (using the Euler map)
with the vector space R

3 together with the bracket

[ti, tj ] = " k
ij tk . (2.58)

8Again, care has to be taken in the infinite-dimensional case since the dual of a Fréchet space is, in
general, not a Fréchet space. And again, being physicists we will brush over these details. For details see [81].
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of the generators ti. The Cartan-Killing form

hti, tji = �2�ij (2.59)

provides a non-degenerate metric on so(3) that can be used to identify the Lie algebra with
its dual g⇤. How does an element g 2 SO(3) act on an element in so(3)⇤ ' (R3)⇤ ' R

3? It
does so by rotation. Given an element (x1, x2, x3) 2 R

3 the orbit of the group is a sphere
of radius r2 = (x1)2 + (x2)2 + (x3)2. The coadjoint orbits of SO(3) are therefore spheres of
radius r in R

3, apart from the origin that is an orbit by itself as it does not transform under
rotations.

Example 7 (Coadjoint orbits of SL(2,R)). The group SL(2,R) is the group of 2⇥ 2 real
matrices of unit determinant

SL(2,R) 3 g =

✓
a b
c d

◆
ad� bc = 1, a, b, c, d 2 R. (2.60)

The Lie algebra sl(2,R) of SL(2,R) is the set of 2⇥ 2 real matrices of zero trace

sl(2,R) 3 X =

✓
a b
c �a

◆
a, b, c 2 R. (2.61)

By equation (2.49) the Lie group SL(2,R) acts on its algebra by conjugation X 7! Adg(X) =
gXg�1, thus defining the adjoint representation of the group on its algebra. Since sl(2,R)
is semi-simple there exists an invariant metric that provides an isomorphism between the
Lie algebra and its dual. The adjoint and coadjoint representations therefore coincide. All
matrices X 2 sl(2,R) related by SL(2,R)-conjugation lie on the same orbit. Since the
determinant of X is unchanged under conjugation the quantity

�C = (bc+ a2) (2.62)

is an orbit invariant. One can distinguish between the following surfaces of constant C in
sl(2,R):

• C < 0: one-sheeted hyperboloids given by a2 + bc = |C|;

• C > 0: the two connected components of the two-sheeted hyperboloid a2 + bc = �|C|;

• C = 0: the two connected components of the cone a2 = �bc without the origin;

• the origin a = b = c = 0.

The discussion of the coadjoint orbits of SO(3) should be compared with example 5. We
see that the coadjoint orbits of SO(3) coincide with the symplectic leaves of the Poisson
structure defined in that example. Furthermore, on every coadjoint orbit one finds a natural
symplectic structure. Of course, the Poisson structure in example 5 was chosen deliberately
so that its symplectic leaves coincide with the coadjoint orbits of the underlying Lie group.
It provides the first example of a so-called Lie–Poisson bracket which we are now going to
discuss.
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Definition 10 (Lie–Poisson or Kirillov–Kostant bracket). Let g⇤ be the dual of a Lie algebra
g and f, g 2 C1(g⇤). Then the Lie–Poisson or Kirillov–Kostant bracket on g⇤

{·, ·}LP : C1(g⇤)⇥ C1(g⇤) ! C1(g⇤) (2.63)

is defined as
{f, g}LP (µ) := hµ, [dµf, dµg]i (2.64)

for any µ 2 g⇤.

The defining equation for the Kirillov–Kostant bracket (2.64) might seem a bit opaque
at first sight, thus let us explain it in some detail. The pairing h·, ·i is the usual pairing
between the Lie algebra and its dual. The differential of f at the point µ 2 g⇤ dµf , sometimes
also written as �f

�µ in this context, is an element of the co-tangent space T ⇤µg
⇤ ' (g⇤)⇤. In

finite dimensions this can be identified with g; otherwise we can always define the functional
derivative as

lim
"!0

1

"
[F (µ+ "�µ)� F (µ)] =: h�µ, �F

�µ
i , (2.65)

i.e., �F
�µ is defined as an element of g; although some care has to be taken here in infinite

dimensions.
With the bracket (2.64) the pair (g⇤, {·, ·}LP ) defines a Poisson manifold. Properties

(1) and (3) of definition 6 are obvious from the antisymmetry of the Lie bracket and the
derivation property of dµ since dµ(fg) = dµfg + f dµg. The only non-trivial check concerns
the Jacobi identity.9

In order to get a better understanding we are going to evaluate the bracket in the case of
a finite-dimensional Lie algebra.

Example 8 (Lie–Poisson bracket for finite-dimensional Lie algebras [87]). Let [ta, tb] = f c
ab tc

be a finite-dimensional Lie algebra g with {t1, ..., tn} being a basis of the vector space. A
general element in g can then be written as q = qata. We can define a dual basis on g⇤ by
hta, tbi = ta(tb) = �ab . Any element of g⇤ can then be expressed as p = pata and the pa’s
serve as coordinates on g⇤. Choosing µ = pata we find

{f, g}(µ) = hpctc, [
@f

@pa
ta,

@g

@pb
tb]i = pc

@f

@pa

@g

@pb
f d
ab htc, tdi = f c

ab pc
@f

@pa

@g

@pb
(2.66)

Choosing the coordinate functions pa and pb for f and g, respectively, we find

{pa, pb} = f c
ab pc . (2.67)

We recover the Poisson bracket (2.47) of example 5 if we choose for f c
ab the structure

functions of so(3).
9Instead of just defining the Poisson bracket on g⇤ to be the Kirillov–Kostant bracket one can also derive

it by reduction. In example 2 of section 2.1 it was shown that there is a natural symplectic structure, and
therefore also a natural Poisson structure, on every cotangent bundle. In particular, there is a natural
Poisson structure on the cotangent bundle of a Lie group T

⇤
G. The quotient of the cotangent bundle by

the Lie group can be identified with g⇤, T ⇤
G/G ' (G ⇥ g⇤)/G ' g⇤. Thus, there is a natural projection

⇡ : T ⇤
G ! T

⇤
G/G and a unique Poisson structure on T

⇤
G/G ' g⇤ such that ⇡ is canonical. This defines

the Kirillov–Kostant bracket.
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Notice that this implies that any (finite-dimensional) linear Poisson tensor can be inter-
preted as the Kirillov–Kostant bracket of some Lie algebra. Vice versa any (finite-dimensional)
Lie algebra leads to a linear Kirillov–Kostant bracket via (2.67). Under suitable conditions,
including a definition what is meant by a linear Poisson structure, this is true even in the
infinite-dimensional case.

The Hamiltonian vector fields at a point µ 2 (g⇤, {·, ·}LG) corresponding to a Hamiltonian
function H 2 C1(g⇤) can be found using (2.32)

£XH
g(µ) = {g,H}LP (p) = hµ, [dµg, dµH]i = �hµ, addµH(dµg)i = had⇤dµH(µ), dµgi . (2.68)

Since we have £XH
g(µ) = hXH , dµgi by definition of the Lie derivative we find

XH = ad⇤dµH(µ) . (2.69)

As a last point we want to establish the equivalence between symplectic leaves of the
Kirillov–Kostant bracket and the coadjoint orbits of the Lie group G, that we saw in the
example of the Lie group SO(3).

Let Oµ denote the coadjoint orbit of G through µ 2 g⇤, explicitly given by Oµ = Ad⇤G(µ).
The tangent space of this orbit at µ is therefore TµOµ = ad⇤g(µ). Notice that any element
v 2 g can always be written as v = dµH by choosing an appropriate function H. Thus,
all vectors in ad⇤g(µ) can be obtained as Hamiltonian vectors. The tangent space TµOµ

is therefore spanned by all Hamiltonian vectors. But this is the defining property of a
symplectic leaf! We have therefore established.

Theorem 7 (Symplectic leaves are coadjoint orbits). The symplectic leaves of the Kirillov–
Kostant bracket {·, ·} on g⇤ coincide with the coadjoint orbits of G. This implies that all
finite-dimensional coadjoint orbits are of even dimension.

This theorem is remarkable in two ways. On one hand, it provides a very efficient way of
finding the symplectic leaves for a (possibly infinite-dimensional) Poisson manifold. This
problem is solved by giving the symplectic leaves a nice geometric interpretation. On the
other hand, it shows that coadjoint orbits, objects that we meet quite often in physics, come
with a natural non-degenerate Poisson structure, and thus a natural symplectic structure.

Theorem 8 (Kirillov–Kostant–Souriau symplectic structure). Let G be a Lie group and
let O 2 g⇤ be a coadjoint orbit. Then for any point µ 2 g⇤ and any two tangent vectors
�⌫X , �⌫Y 2 g⇤

⌦(µ)(�⌫X , �⌫Y ) = hµ, [X,Y ]i (2.70)

defines a symplectic structure. The symplectic structure is invariant under G.

We will return to the subject of coadjoint orbits in section 4.4 where we will discuss them
in the case of a particular infinite-dimensional group, and section 7.4 where we will discuss
the boundary action for certain two-dimensional theories of gravity.

This concludes our short review on symplectic geometry. Due to lack of space and
time we are unable to discuss further interesting issues such as moment maps or geometric
quantization of symplectic manifolds; consult references [84,85,87,90] for further details. We
will now turn to the discussion of two-dimensional gravity theories where we will see some of
the material of this chapter at work.



Chapter Three

Gravity in Two Dimensions

Constructing a theory of gravity in two dimensions is not as straightforward as it might
seem. In three dimensions the Einstein–Hilbert action yields a well-defined theory of gravity
that exhibits a surprisingly rich structure. In two dimensions this naïve approach does not
lead to a well-defined theory, as we will show in the following.

Consider the Einstein–Hilbert action with Gibbons–Hawking–York boundary term on a
pseudo-Riemannian manifold (M, g) in two dimensions

IEin =
1

16⇡G

Z

M

d2x
p
|g|R+

1

8⇡G

Z

@M

p
�K. (3.1)

Varying this action with respect to the metric ones finds

�IEin =
1

16⇡G

Z

M

d2x
p
|g| (Rab � 1

2
Rgab)�gab, (3.2)

due to the fact that Kab = �abK, where �ab is the induced metric on the one-dimensional
boundary. However, in two dimensions the Riemann tensor Rabcd is uniquely determined by
the Ricci scalar R

Rabcd =
R

2
(gacgbd � gadgbc) , (3.3)

and thus the Einstein tensor Gab = Rab � 1
2Rgab vanishes identically. Therefore, any

two-dimensional metric is a solution of the theory defined by the action principle (3.1).
Similarly, one can come to the same conclusion using the famous Gauss–Bonnet theorem.

The original theorem is, strictly speaking, true only for Riemannian manifolds [91] but there
exist various generalizations to pseudo-Riemannian manifolds [92, 93]. In the version of [93]:
Consider a region D of a two-dimensional space-time with Lorentzian metric bounded by a
piece-wise smooth boundary @D consisting of non-null smooth curves with exterior angles1
✓i, then

�
Z

@D
dsK � 1

2

Z

D
R+

X

i

✓i = 2⇡i . (3.4)

1Formulations of the theorem differ in the definition of the exterior angles, which influences the right-hand
side of the theorem. In this form of the theorem, angles can become imaginary that cancel the imaginary
contributions from the right-hand side.

27
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Thus, the Einstein–Hilbert action with Gibbons–Hawking–York boundary term can be
rewritten, in any region D, as a number that depends only on the boundary of D.

Although one might consider a theory of this type it is not expected to exhibit a rich
physical structure. Yet, the very point of examining gravity in two dimensions is the study
of phenomena such as singularities, black holes and their formation, Hawking radiation, and
holography which the Einstein–Hilbert action (3.1) is unable to capture. Since the appearance
of the above phenomena is largely independent of the precise form of the gravitational theory
one should turn to theories with more structure than (3.1).

The outline of this chapter is as follows: In section 3.1 we are going to define two-
dimensional dilaton gravity. We are going to show that various ways to obtain a two-
dimensional theory of gravity all lead to some sort of dilaton gravity which warrants its
study. In section 3.2 we are going to motivate a reformulation of dilaton gravity in first order
form as a particular kind of non-linear gauge theory called Poisson sigma model (PSM).
Section 3.3 studies properties of PSMs and shows the equivalence of dilaton gravity to a
certain subclass of these. In section 3.5 we are going to study the canonical charges of dilaton
gravity both in the PSM formulation and in the second order formulation.

Although we will be exclusively concerned with the Euclidean theory in the remaining
parts of this thesis, in this chapter we will treat metrics of both Lorentzian (� = �1) and
Euclidean (� = 1) signature.

3.1 Why dilaton gravity?

There are various ways to motivate more general gravitational theories in two dimensions.
Interestingly, most of these turn out to be equivalent to so-called generalized two-dimensional
dilaton gravity that includes a scalar field in addition to the metric. The action of this theory,
that will accompany us for the rest of this thesis, is given by

I = � �

16⇡G

Z

M

d2x
p
�g
⇣
XR� �U(X)(rX)2 � 2V (X)

⌘
. (3.5)

The scalar field X is called dilaton. The functions U(X), V (X) determine the specific model.
The equations of motion following from (3.5) are

�(UrµXr⌫X � 1
2gµ⌫U(rX)2)� gµ⌫V +rµr⌫X � gµ⌫r2X = 0 (3.6a)

R+ �
�
@XU(rX)2 + 2U r2X

�
� 2@XV = 0 . (3.6b)

At first sight the differential equations (3.6) look intimidating. However, we have a lot of
symmetries available in two dimensions that can be used to solve the system analytically.
Since this thesis is mostly concerned with a gauge-theoretic formulation of dilaton gravity, to
be introduced in the next section, we will not discuss the second order action in more details.

There is one important conclusion that can be drawn without calculation. Regardless of
the specific form, every dilaton gravity model has no local degrees of freedom. This follows
from a simple counting argument. The freedom to choose two coordinates, guaranteed by
the obvious diffeomorphism invariance of the action (3.5), allows to eliminate two of the
three components of the symmetric tensor field gµ⌫ . Together with the single degree of
freedom of the scalar field X, we thus obtain two off-shell degrees of freedom. Turning
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now to the equations of motion, the analogue of the Bianchi identities, stemming from the
diffeomorphism invariance of the theory, imposes two conditions on the system (3.6) that are
associated to two constraints thus leaving us with zero degrees of freedom on the constraint
surface.2 An ADM split of dilaton gravity in the second order formulation is performed
in appendix A. Despite having no propagating degrees of freedom the theory allows for
interesting phenomena, at least interesting enough, if you believe the biased author, to
warrant the read of the remaining parts of this thesis.

Dilaton gravity is an example of a scalar-tensor theory ; the prime example for such theories
is Jordan–Brans–Dicke theory in four dimensions [94].3 While the geometric properties of a
solution to a scalar-tensor theory are still governed by the metric [for instance, the (weak)
equivalence principle is still valid since there always exists a local reference frame in which
the metric is flat] the effective coupling strength of gravity is no longer given by Newton’s
constant G but by the combination X/G that can vary from place to place.4

Let us comment on a source of confusion regarding the form of the action (3.5). In a
higher-dimensional context, an action in which the Ricci scalar couples to a scalar throughp
�g X R as in (3.5) is said to be written in the Jordan frame. It can be transformed to the

Einstein frame by an X-dependent conformal transformation so that the coupling of the
Ricci scalar is given by

p
�g̃R̃ with

egµ⌫ = X�
2

D�2 gµ⌫ . (3.7)

Under such a transformation the Ricci scalar transforms as

eR = X
2

D�2

✓
R+ 2

D � 1

D � 2
gµ⌫rµr⌫ lnX � D � 1

D � 2
(r lnX)2

◆
, (3.8)

which yields the wanted result in higher dimensions. This transformation is not possible for
D = 2. Thus there exists no Einstein frame for dilaton gravity in two dimensions.

In the following we will list various ways to construct two-dimensional theories of gravity
and we will find that all of them reduce to a theory of the form (3.5). We will be brief on
the various points; more details can be found in, e.g., [99, 100].

Spherical reduction. Consider a D-dimensional manifold with metric g(D) that is spher-
ically symmetric, i.e., its isometry group contains an SO(D � 1) subgroup, the orbits of
which are (D � 2)-dimensional spheres. In a coordinate system adapted to this symmetry
the metric can be written as

ds2 = g(D)
µ⌫ dxµ dx⌫ = g(2)↵� (x

↵) dx↵ dx� + �2(x↵) d⌦2
(D�2) , (3.9)

where g(2)↵� is a two-dimensional metric, and d⌦2
(D�2) is the metric of the D � 2 sphere. Due

to spherical symmetry the metric component � depends on x↵ only. A straightforward
2Using the slogan that “the gauge always strikes twice” we see that the four free functions contained in

gµ⌫ , X are killed by the two diffeomorphisms.
3The two-dimensional counterpart of this theory corresponds to the choice U(X) = !X

�1
, V (X) = 0

in (3.5).
4Scalar tensor theories are thus more in line with Mach’s principle, which was the original motivation of

Brans and Dicke. Having said that, these theories are now under great strain due to the joint detection of
gravitational waves and light from the neutron star merger GW170817 [95–98].
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calculation allows to express the Ricci tensor of the D-dimensional metric in terms of the
Ricci tensor of the two-dimensional metric plus additional terms depending on the metric
component �. Introducing

� = ��1X
1

D�2 (3.10)

and regarding X as an independent scalar field of the theory, the D-dimensional Einstein–
Hilbert action becomes (3.5) with

U(X) / D � 3

D � 2

1

X
, V (X) / (D � 2)(D � 3)X

D�4
D�2 (3.11)

after a trivial integration over the D � 2 sphere. The constant � is a parameter of mass
dimension one that can be thought of as length scale of the compactification. Since the
s-wave sector of Einstein gravity has no local degrees of freedom (there are no gravitational
s-waves), spherical reduction necessarily leads to a theory without propagating degrees of
freedom, which is consistent with the above counting argument.

f(R) theories. We saw above that the Einstein–Hilbert action in two dimensions is too
naïve a guess for a theory of gravity. A natural generalization of (3.1) is to consider the class
of actions

I =
1

16⇡G

Z

M

d2x
p

|g|f(R) , (3.12)

where f is, in general, an arbitrary function of R. Define the quantity X = f 0(R) and assume
that this relation is invertible such that R = R(X). Introducing

V (X) = f(R(X))�R(X)X , (3.13)

the action (3.12) is equivalent to

I =
1

16⇡G

Z

M

d2x
p
|g|(XR� V (X)) (3.14)

upon integrating out the auxiliary field X, and thus to the generalized dilaton model (3.5). For
further discussions of two-dimensional actions of the form (3.12) and the issue of invertibility
of the relation X = f 0(R) see [101–103].

Gauge theory of Gravity. Despite numerous attempts Einstein gravity in four dimensions
cannot be formulated as gauge theory of the Poincaré group ISO(3, 1); on the contrary,
Einstein gravity in three dimensions allows for such a formulation. Similarly, gauging the two-
dimensional Poincaré or AdS group, ISO(1, 1) or SO(2, 1), respectively, yields well-defined,
non-trivial theories of two-dimensional gravity that have a second-order formulation falling
into the class of models (3.5). These models were among the first instances of theories of that
type [104–106]. Since large parts of this thesis deal with this formulation of two-dimensional
dilaton gravity we defer details to later chapters.
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String theory. The non-linear sigma model

I =
1

4⇡↵0

Z

M

d2�
⇣
@µX

I@⌫X
J(
p
�h gIJh

µ⌫ + ✏µ⌫BIJ) + ↵0
p
�hR(2)�

⌘
(3.15)

describes a string in a curved background geometry under the influence of a B-field. Here
hµ⌫ is a metric on the world-sheet parametrized by the coordinates �µ, XI are coordinates
on the D-dimensional target space ⌃ that is a (pseudo-) Riemannian manifold with metric
gIJ and two-form gauge field BIJ ; the Ricci scalar of the world sheet R(2) couples to the
dilaton �. The quantities gIJ , BIJ , and � are coupling constants from the point of view of
the world-sheet theory. The action (3.15) is conformal invariant only if the beta functions
associated with these coupling constants, that can be calculated perturbatively in ↵0, vanish.
As is well-known [107], it is possible to write down an effective action in the D-dimensional
target space that encodes the vanishing of these beta functions as equations of motion.
Setting the B-field to zero this target space action is given by

I =

Z

⌃
dDx

p
�ge�2�

✓
R+ 4(r�)2 + D � 26

3↵0

◆
. (3.16)

In the case of a two-dimensional target space D = 2 this becomes a model of the form (3.5)
under the identification X = e�2�. This model describes the Witten black hole that produces
to lowest order in ↵0 the target space geometry of the SL(2,R)/U(1) coset model [108].5 It is
also the (conformally transformed) gravity part of the Callan–Giddings–Harvey–Strominger
(CGHS) model that was seminal in the study of two-dimensional black hole evaporation [111].

This concludes our short tour of various approaches to two-dimensional theories of gravity.
A bestiarium of dilaton gravity theories can be found in [112, 113]. We turn now to the
gauge-theoretic formulation of dilaton gravity in which most of the original results of this
thesis will be developed.

3.2 Dilaton gravity as a gauge theory

The purpose of this section is to motivate a gauge-theoretic formulation of dilaton gravity.
In the same way as the Chern-Simons formulation of three-dimensional gravity [114, 115]
enriches and, in many cases, simplifies the discussion of Einstein gravity in three dimensions,
a reformulation of dilaton gravity as a topological quantum field theory is expected to do
the same. It turns out that two-dimensional dilaton gravity models can be regarded as
particular instances of so-called Poisson sigma models (PSMs) [116,117]. While we are going
to show their classical equivalence in the next section here we will try to motivate how these
models arise. Readers not interested in heuristics are welcome to skip to section 3.3 where
the classical equivalence of dilaton gravity and PSM models is shown explicitly.

5A solution for the target space geometry to all orders in ↵
0 was given in [109]. An action for this exact

string black hole was provided in [110].
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Gauge theories of gravity

Let us step back for a moment and remind ourselves what we mean by a gauge-theoretic
formulation of gravity. In the past there have been many attempts to formulate Einstein
gravity as a gauge theory. Naïvely one would expect that the theory can be written as the
gauge theory of the D-dimensional Poincaré group ISO(D� 1, 1) starting from the first-order
formulation of the theory. Indeed, taking the vielbein ea and the spin-connection !a

b one
can construct a gauge connection A as

A = eaPa +
1

2
!abJab . (3.17)

Here Pa and Jab are generators of the Poincaré algebra. Under a gauge transformation
��A = d�+ [A,�] with the parameter � = �aPa +

1
2�

abJab the components of the connection
transform as

��e
a = d�a + �abe

b ��!
ab = (d�ab + !a

c�
cb + !b

c�
ac) . (3.18)

On the other hand, under infinitesimal diffeomorphisms generated by the vector field ⇠
the fields ea and !a

b transform as

�⇠e
a = d(⇠ · ea) + ⇠ · dea �⇠!

ab = d(⇠ · !ab) + ⇠ · d!ab . (3.19)

At first glance this is very different from the transformation behavior given in (3.18). However,
setting �a = ⇠ · ea one sees that a gauge transformation of A becomes a combination of
diffeomorphisms and local Lorentz transformations if the torsion T a ⌘ dea + !a

b ^ eb

vanishes. Thus, if it is possible to construct a variational principle for A from which vanishing
torsion, T a = 0, follows, one would have established an on-shell equivalence between the two
symmetries (3.18) and (3.19). Yet, the crucial point is that it is impossible to construct a
gauge-invariant variational principle for the connection A with gauge group ISO(D � 1, 1)
unless D 6= 3. This is related to the fact that its Lie algebra iso(D � 1, 1) is not semi-simple
and thus does not come with a non-degenerate invariant metric.

The situation is very different in three dimensions where it is possible to write down the
Chern–Simons action

ICS =
kCS

2⇡

Z

M

hA ^ (dA+
2

3
[A,A])i (3.20)

for the gauge connection (3.17), where h· , ·i denotes the trace using the non-degenerate
invariant metric [114,115]. The decisive difference to the four-dimensional case is precisely the
existence of this metric.6 If in the Einstein–Hilbert action a positive or negative cosmological
constant is included, the gauge group changes to SO(3, 1) or SO(2, 2), respectively. The
coupling constant k is inversely proportional to Newton’s constant. Similar constructions are
also available in higher odd dimensions, see [121] for a pedagogic introduction into this topic.

After this longer digression let us return to two-dimensional dilaton gravity and try to
see what kind of gauge theory we expect. We saw already in the last chapter that two-
dimensional dilaton gravity in the second order formulation does not have any propagating

6Although iso(2, 1) is not semi-simple it is a double extension of the trivial Lie algebra by so(2, 1). It
is possible to show that double extensions allow for a non-degenerate invariant metric [118] (under mild
conditions presented in [119]). For a pedagogic exposition to double extensions, cf. e.g. [120].
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degrees of freedom; this should be true as well for its gauge-theoretic description if the
theories are supposed to be equivalent. This suggests that it will be described in terms of
a diffeomorphism invariant topological field theory, cf. [122] for an extensive review. As in
(3.17) we will assume that zweibein ea and spin connection !ab, having one independent
component only in two dimensions, are combined in a gauge connection A. In addition to
the connection we expect to have a scalar field that is related to the dilaton. In fact, we will
see that it is more convenient to consider a theory of more scalar fields, only one of which is
identified with the dilaton.

Since we want the whole geometric structure on the spacetime manifold M to be described
by the connection A, the action should have no explicit dependence on a metric on M.
According to the classification in [122] we are thus looking for a topological theory of Schwarz
type, that is constructed from scalar fields and a connection.

The simplest action one can construct that obeys these requirements is given by

S0 =
k

2⇡

Z

M

AI ^ dXI = � k

2⇡

Z

M

XIFI FI = dAI . (3.21)

Here we dropped a boundary term and assumed that I = 1, 2, . . . , D although in the case
relevant to gravity we will always have D = 3. In analogy to the Chern–Simons action (3.20)
we have introduced a coupling constant k. This action is called Abelian BF action [123]. It
is invariant under the gauge transformations

�0AI = d✏I , �0X
I = 0 . (3.22)

On first sight neither the action nor the gauge symmetries have anything to do with two-
dimensional dilaton gravity or diffeomorphism invariance. And indeed, they have not, apart
from the field content and the correct number of gauge symmetries (two diffeomorphism plus
one local Lorentz transformation for D = 3). In the three-dimensional case of Chern–Simons
theory this would correspond to having only the first term in (3.20), i.e., a sum of Abelian
Chern–Simons terms. We would like to add interactions to (3.21) that keep the field content
and the number of gauge symmetries but change the form of the latter such that the resulting
action is still gauge invariant. Luckily, this question can be systematically studied using
the tools of the BV/BRST formalism [124,125]. In the three dimensional case this process
singles out non-Abelian Chern–Simons theory (3.20) as the unique consistent deformation of
Abelian Chern–Simons theory [124]. Similarly, Yang–Mills theory in four dimensions is the
unique consistent deformation of an Abelian gauge theory [126]. In the following we want
to show starting from (3.21) that this process will lead us to Poisson sigma models [127] a
subclass of which will describe two-dimensional dilaton gravity.

PSMs from non-linear deformation theory

We are now interested in the following problem. Can we add interaction terms S1 to the
action S0 and simultaneously deform the gauge symmetry to � = �0 + �1 such that the
resulting action S = S0 + S1 is gauge-invariant �S = 0 and the gauge symmetries close as an
algebra? We require that the resulting action be diffeomorphism invariant and local in the
fields. Obviously, we are not interested in trivial deformations that can be obtained by local
redefinitions of the fields. The general principles of this construction will be explained using
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the example at hand; the interested reader is referred to [124,125], conventions follow [128].
Detailed introductions to the BV formalism can be found in [129,130].

Let us start by determining the field content, including ghosts and antifields, for the BF
action (3.21). For every gauge parameter ✏I we introduce a Grassmann-odd ghost field of
ghost number one. Together with the original fields AI , XI we thus have

gh(AI) = 0 gh(XI) = 0 gh(CI) = 1 (3.23)

deg(AI) = 1 deg(XI) = 0 deg(CI) = 0 , (3.24)

with deg denoting form degree and gh denoting ghost number. The Grassmann parity of a
field is even (odd) for ghost number even (odd). Antifields are now introduced according to

gh(⇤AI) = �1 gh(⇤XI) = �1 gh(⇤CI) = �2 (3.25)

deg(⇤AI) = 1 deg(⇤XI) = 2 deg(⇤CI) = 2 . (3.26)

The antibracket between two functionals F,G of the fields is defined as

(F,G) =
F
 

@

@�

!

@G

@ ⇤�
� (�1)deg� F

 

@

@ ⇤�

!

@G

@�
(3.27)

where � and ⇤� collectively denote fields and antifields, respectively. The classical master
equation for the Abelian BF action

(S(0), S(0)) = 0 (3.28)

has the solution

S(0) = S0 +
k

2⇡

Z

M

⇤AI ^ dCI =
k

2⇡

Z

M

�
AI ^ dXI + ⇤AI ^ dCI

�
. (3.29)

This equation holds the full information of the gauge-invariance of the original action S0. In
particular, BV transformations are now defined by

s(0)F = (F, S(0)) . (3.30)

From this we find

s(0)AI = dCI s(0)XI = 0 s(0)CI = 0 (3.31)

s(0) ⇤AI = dXI s(0) ⇤CI = � dAI s(0) ⇤CI = d ⇤AI , (3.32)

which reproduces the gauge transformations (3.22) under the replacement CI ! ✏I . It is
clear from these transformations that (s(0))2 = 0.

We are now looking for a deformation of this action, i.e., introducing a deformation
parameter g we will study an action of the form

S = S(0) + gS(1) + g2S(2) + . . . , (3.33)

that will generate a BV transformation

sF = (F, S) = (F, S(0)) + g(F, S(1)) +O(g2) = s(0)F + gs(1)F +O(g2) . (3.34)
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The deformed action itself has to satisfy

sS = (S, S) (3.35)

in order to be invariant under the BV transformations.
We can solve this order by order in g

(S, S) = (S(0), S(0)) + 2g(S(1), S(0)) + g2[(S(1), S(1)) + 2(S(2), S(0))] +O(g3) . (3.36)

The first term in the series is the classical master equation for the action S(0) which is solved
by (3.29). By our general requirements S(1) has to be local and diffeomorphism invariant,
thus we have s(0)S(1) = s(0)

R
L(1) = 0 from the second term. From this we find that s(0)L(1)

has to vanish up to a possible boundary term

s(0)L(1) + da(1) = 0 , (3.37)

where a(1) is a one-form. Acting on (3.37) repeatedly with s(0) and using (s(0))2 = s d+ds = 0
one is led to the set of descent equations

s(0)a(1) + da(0) = 0 s(0)a(0) = 0 , (3.38)

with a(0) a zero-form. We can solve this system from the bottom up. The term a(0) is a
form of degree zero and ghost number two. The only diffeomorphism invariant term, up to
s(0)-exact terms that solves equation (3.38) must be built from the XI , CI as

a(0) = �1

2
P IJ(X)CI CJ P IJ = �P JI , (3.39)

where P IJ(X) is an arbitrary function of XI . The antisymmetry follows from the anti-
commuting nature of the ghosts CI . The next term a(1) in the series is then given by

a(1) =
1

2
@KP IJ ⇤AKCICJ + P IJAICJ , (3.40)

from which we are finally able to determine L(1) and thus, up to s(0)-exact terms S(1). The
resulting action S = S(0) + S(1) is given by

S =
k

2⇡

Z

M

h
AI ^ dXI + ⇤AI ^ dCI �

1

4
@K@MP IJ ⇤AK ^ ⇤AM CICJ

� @KP IJ(⇤AK ^AICJ +
1

2
⇤CKCICJ) + P IJ(⇤XICJ +

1

2
AI ^AJ)

i
, (3.41)

where g was absorbed in P IJ . Now consider the terms proportional to g2 in (3.36). The
second term leads to a set of equation identical to (3.38) and, consequently, to solutions of
the same form. This means that S(2) can be reabsorbed by changing S(1) ! S(1) + gS(2).
Similarly, one can redefine S(1) such that S(i) = 0, i � 2. The only remaining condition is
then

(S(1), S(1)) = 0 . (3.42)
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A straightforward, though tedious, calculation shows that this is equivalent to the condition

 IJK P IL@LP
JK = 0 . (3.43)

Notice that this is identical to (2.31) that is, together with antisymmetry, the defining
condition of a Poisson tensor. In a moment we will see that, indeed, the quantity P IJ allows
for such an interpretation.

The action (3.41) together with condition (3.43) on P IJ is thus the most general consistent
deformation of the Abelian BF action (3.21). Setting the antifields to zero we arrive at the
action

IPSM =
k

2⇡

Z

M

✓
AI ^ dXI +

1

2
P IJAI ^AJ

◆
. (3.44)

This action is called Poisson sigma model (PSM). Based on the arguments put forth in the
previous section we expect a subclass of PSMs to be equivalent to dilaton gravity; we will
show this explicitly in 3.4 in a straightforward calculation. The next section is concerned
with a detailed investigation of (3.44) to get acquainted with our new-found fellow that will
accompany us for the rest of this thesis.

3.3 Properties of PSMs

The end of last section saw our new companion (3.44) arising as a ghostly deformation of
the Abelian BF action (3.21). Here, we want to provide a different interpretation for the
action (3.44), in particular we want to emphasize the fact that it is a sigma model.

Let M be a two-dimensional manifold called worldsheet or base space with coordinates
xµ and ⌃ a D-dimensional manifold called target space with coordinates XI . We will take
the latter as dynamical fields of the theory, i.e., we have a map from the worldsheet to the
target space: xµ 7! XI(xµ). If both M and ⌃ are (pseudo-)Riemannian manifolds with
metric �µ⌫ and gIJ , respectively, one can define the well-known Polyakov action

IP =

Z

M

d2x
p

|�|�µ⌫@µXI@⌫X
JgIJ , (3.45)

which was encountered above as the starting point for string theory.
For our purposes we do not assume that M and ⌃ come equipped with a metric, rather ⌃ is

taken to be a Poisson manifold (⌃, P ) with Poisson tensor P = 1
2P

IJ @
@XI ^ @

@XJ ⌘ 1
2P

IJ@I^@J .
Without further structure, i.e., without introducing a metric on the world-sheet, we are not
able to construct a theory that is invariant under target space diffeomorphisms from P IJ and
XI alone. The need for further structure can be bypassed by introducing an additional field
A = AI dXI that is both a one-form on the worldsheet and the pullback of a section of T ⇤⌃ by
the map X(x). In particular, we have A = AI dXI = AIµ dxµ ^ dXI = AIµ@⌫XI dxµ ^ dx⌫ .
We can use the field A to saturate the indices on P , so that we obtain the action (3.44).7

Since the time of their inception in [116,117] PSM models have garnered great interest in
the mathematical physics community. Even more so after their connection to Kontsevich’s

7In the following we assume that ⌃ ' R
D which is the case relevant to our applications. For topologically

non-trivial target spaces various issues concerning global well-definedness of gauge transformations and
equations of motion arise; cf. [131,132] for discussions on this point.
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formality theorem [133] was shown in [134]. The work of Kontsevich is concerned with
deformation quantization of arbitrary Poisson manifolds. Deformation quantization is
a formalization of the concept of quantization in the following sense: given a Poisson
manifold (M,P ) one is looking for an associative product ⇤ (the “star product”) such that
for f, g 2 C1(M) one has

f ⇤ g = fg +
i~

2
{f, g}+O(~2) . (3.46)

The classical algebra of observables C1(M) is deformed to a non-commutative “quantum
algebra” of observables; focusing on observables it is therefore related to the Heisenberg picture
of quantum mechanics.8 Kontsevich proved that such a star product can be constructed
perturbatively in ~ for every Poisson manifold. In [134] it was shown that this perturbation
series corresponds to the perturbative expansion of the path integral of the PSM model on a
disk, having (M,P ) as a target space. The formula for the star product (3.46) is therefore
written as

(f ⇤ g)(x) =
Z

X(1)=x
DX DAf(X(0)) g(X(1))e

i

~ IPSM[X,A], (3.47)

where 0, 1,1 are points on the boundary of the disk. Depending on one’s definition of
holography, this can be regarded as one of the few examples of a precise holographic
correspondence in the sense that it relates a two-dimensional theory (PSM model) to a one-
dimensional theory (quantum mechanics defined by the Poisson manifold) on its boundary.
Unfortunately, the boundary conditions used in this derivation are not pertinent to the cases
we are interested in since they would translate into a singular metric on the boundary. It
would certainly be interesting to find a connection between the developments in part II of
this thesis and the result (3.47).

The equations of motion that follow from the PSM action (3.44) are

dXI + P IJAJ = 0 (3.48a)

dAI +
1

2
@IP

JKAJ ^AK = 0 . (3.48b)

Notice that the need for P IJ to obey the defining property of a Poisson tensor (3.43) follows
also as a consistency condition from the equations of motion (3.48). Applying d to (3.48a)
and inserting both (3.48a) and (3.48b) yields

1

2

�
 IJK PLK@LP

JI
�
AJ ^AK = 0, (3.49)

which can be satisfied for generic AJ only if the quantity in parenthesis vanishes.

Symmetries of the PSM model

The action (3.44) is invariant under the non-linear gauge transformations

��X
I = P IJ�J , (3.50a)

��AI = � d�I � @IP
JKAJ�K (3.50b)

8It is debatable whether deformation quantization indeed corresponds to our physicists’ notion of
quantization [135]. For instance, the perturbation series (3.46) is only formal.
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up to the boundary term

��I = � k

2⇡

Z

M

d(�I dX
I) . (3.51)

The transformations (3.50) form a generating set of all gauge symmetries of the action
(3.44) in the sense of [136], i.e., every other gauge symmetry can be obtained from these by
a (possibly field-dependent) choice of gauge parameter �I . Notice that the transformations
(3.50a) do not form an algebra since

[��1 , ��2 ]X
I = P IJ([�1,�2])J (3.52a)

[��1 , ��2 ]AI = � d([�1,�2])I � @IP
MLAM ([�1,�2])L (3.52b)

� @I@LP
JK(�1)J(�2)K

�
dXL + PLMAM

�
,

where
([�1,�2])I = @IP

JK(�1)J(�2)K (3.53)

due to the presence of the last term in (3.52b). The generating set is therefore said to define
an open algebra.9

Let us now discuss the other symmetries of the action (3.44) to see how they are related
to the gauge transformations generated by (3.50).

Target space diffeomorphisms. The PSM action is clearly invariant under target space
diffeomorphisms XI 7! X̃I(XK) if the Poisson tensor P IJ transforms as a contravariant
two-tensor. However, the Poisson tensor is not a dynamical field of the theory but considered
to be part of the background structure. Consequently, the target-space diffeomorphisms
that leave this background structure invariant ought to be symmetries of the model (cf.
the discussion in the introduction). Before discussing the PSM model (3.44) let us look
at the slightly simpler sigma model (3.45) in the light of the above. This expression is
clearly invariant under diffeomorphisms of the target space. However, the target space
metric gIJ is not a dynamical field; as was said above, it is supposed to be viewed as a
coupling constant from the point of view of the two-dimensional theory. Thus, not all of the
target space diffeomorphisms will correspond to symmetries but only those that leave the
metric gIJ invariant. We can show this explicitly by doing an infinitesimal field redefinition
XI ! XI + vI , that would correspond to a target-space diffeomorphism. Since gIJ can in
general depend on XI one has

�⇠IP =

Z

M

d2x
p
|�|�µ⌫

�
gKJ@Iv

K + gIK@Jv
K + vK@KgIJ

�
@µX

I@⌫X
J (3.54)

=

Z

M

d2x
p
|�|�µ⌫@µXI@⌫X

J(rIvJ +rJvI) , (3.55)

where one recognizes the Killing equation for the metric gIJ written in terms of the compatible
connection rI . Thus, the target-space diffeomorphism v will generate a symmetry only if it
leaves gIJ , i.e., the background structure, invariant. Choosing gIJ = ⌘IJ one recovers the
global Poincaré invariance of string theory.

9It is worth stressing that the full set of gauge transformations of any theory always forms a Lie algebra
even if the generating set fails to do so, as is the case here.
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With this in mind let us return to the PSM action (3.44). Again, not every target space
diffeomorphism XI ! XI +vI is a symmetry of the theory; only those that leave the Poisson
tensor invariant. This is what we are going to show in the following.

We are going to perform a target space diffeomorphism that acts only on the dynamical
fields. In particular, we have

XI ! XI + vI AI ! AI � vK@KAI �AK@Iv
K = AI �AK@Iv

K , (3.56)

where vI(XK) should be regarded as a vector on target space. The last equality follows from
the fact that the AI ’s do not have an explicit dependence on XI . Under this target space
diffeomorphism the action transforms as

�vI =
k

4⇡

Z

M

�
vK@KP IJAI ^AJ � P IJ@Iv

K AK ^AJ � P IJ@Jv
K AI ^AK

�
(3.57)

=
k

4⇡

Z

M

LvP
IJ AI ^AJ . (3.58)

In order to be a symmetry the target space diffeomorphism has to obey

£vP
IJ = 0 , (3.59)

that is, it has to generate a canonical transformation leaving the Poisson structure invariant.
For symplectic structures a vector field generates a canonical transformation if and only if it
is a Hamiltonian vector field [we showed this around equation (2.18)]. In the case of Poisson
manifolds the set of vector fields obeying condition (3.59) is in general larger than the set of
Hamiltonian vector fields as we argued below definition 8.

However, in the following it will be enough to consider vector fields of the form

vI = P IJ�J , (3.60)

with �J a one-form on the target space that obeys @I�J � @J�I = 0. Since we assume
that the target space is topologically trivial every �J can be written as �J = @JH for some
function H on target space. Equation (3.60) yields then precisely the Hamiltonian vector
fields (2.34) on the target space. Using this fact, we can rewrite the transformation (3.56) of
AI and XI under target space diffeomorphisms as

�vX
I = P IJ�J (3.61a)

�vAI = �AJ@IP
JK�K �AJP

JK@I�K

= �AJ@IP
JK � dXK@K�I + @K�I

�
dXK + P JKAK

�

= � d�I � @IP
JKAJ�K + @K�I

�
dXK + PKJAJ

�
, (3.61b)

where @I�J = @I@JH = @J�I was used in the third line. These transformations are of the
same form as the gauge transformations (3.50) up to a term proportional to the equation
of motion (3.48a). Forgetting about this term for a moment the difference between the
transformations (3.61) and (3.50) lies in the parameter �I . While in the latter case �I is
defined on the worldsheet M, �I = �I(x), it is defined as a one-form on the target space in
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the former case via �I = @IH(XK). Thus, it depends on the base space coordinates only
implicitly via the map XK : �I = �I(XK(x)).

Now, what about the last term in (3.61b)? This term corresponds to a so-called trivial
gauge transformation according to the terminology of [136]. Consider a gauge transformation
of an arbitrary field �i, of the form

�µ�i(x) =

Z
d2x0µij(x, x

0)
�I

��j(x0)
(3.62)

where �I/��i denotes the Euler-Lagrange derivative of S with respect to �i and µij is an
arbitrary (possibly field-dependent) parameter that is (graded) antisymmetric. It is easy
to see that this transformation is always a symmetry regardless of the specific form of µij .
These symmetries exist for any action and act trivial on the space of solutions and therefore
carry no relevant physical information about the theory, hence the name. Furthermore, it
is possible to show that any transformation of the fields that vanishes on-shell is a trivial
gauge transformation in the sense of (3.62) (cf. Theorem 3.1 in [136]).

To summarize, we have shown that target space diffeomorphism generated by Hamiltonian
vector fields are symmetries that can be treated for the non-linear gauge transformations
(3.50) up to trivial gauge transformations.

Base manifold diffeomorphisms. Let us now turn to the other important symmetry of
the Poisson sigma model which is diffeomorphism invariance on the base manifold M. Under
a diffeomorphism generated by ⇠µ the fields transform as

�⇠X
I = £⇠X

I = ⇠ · dXI , (3.63)
�⇠AI = £⇠AI = d(⇠ ·AI) + ⇠ · dAI . (3.64)

The first term in the second equations suggests that one should set �I = �⇠ · AI . Indeed,
using this substitution one finds

�⇠X
I = P IJ�J + ⇠ · (dXI + P IJAJ), (3.65a)

�⇠AI = � d�I � @IP
JKAJ�K + ⇠ ·

✓
dAI +

1

2
@IP

JKAJ ^AK

◆
. (3.65b)

The terms in brackets are recognized as the equations of motion of the PSM model (3.48).
These terms therefore generate only trivial gauge transformations in the sense of (3.62) due
to the theorem mentioned under that equation.

Thus, diffeomorphisms on the world-sheet are equivalent to the non-linear gauge transfor-
mation (3.50) up to trivial gauge transformations. In the next section 3.4 we will provide the
map between PSMs and two-dimensional theories of gravity. Relation (3.65) will allow us to
treat diffeomorphism invariance of these theories for the easier to handle gauge invariance of
PSM models.

Casimir functions

Before turning to this map let us add one more, general remark on PSM models. We saw in
section 2.2 that generic Poisson tensors have a non-trivial kernel which implies the existence



3.4. POISSON SIGMA MODELS AND DILATON GRAVITY 41

of conserved Casimir functions. Let us examine this statement in the context of PSM models.
Suppose C(XK) is a Casimir function on the target space. By the defining equation (2.36)
this function has to satisfy

0 = {C, f} = @IC@Jf{XI , XJ} = @IC@JfP
IJ 8f(XK) 2 C1(⌃) . (3.66)

from which follows
P IJ@IC = 0 , (3.67)

i.e., @IC is in the kernel of P IJ . The equations of motion of the PSM model (3.48) then
imply that

dC = @IC dXI = �P IJAJ@IC = 0 . (3.68)

Thus, Casimir functions are conserved quantities for the system. The gauge transformations
(3.50) leave C invariant

��C = ��X
I@IC = P IJ�J@IC = 0 . (3.69)

The dynamics governed by a PSM model take place on surfaces of constant Casimir and
therefore if the requirements of theorem 6 are met, on a symplectic leaf of the target space ⌃.

The simple local structure of Poisson manifolds, explained in more detail in section 2.2,
can be used to simplify the solution of PSM models. More precisely, theorem 3 asserts the
existence of Casimir–Darboux coordinates. Suppose that the Poisson tensor is of rank 2r,
denote the coordinates by XI = (Xi, P↵, Q↵) where ↵ = 1, . . . , r and i = r + 1, . . . D and
the corresponding components of the fields AI = (Ai, AP

↵ , A
Q
↵ ). Since the PSM action is

target space covariant we can write it in the form

I(CD)
PSM

=
k

2⇡

Z

M

�
AI ^ dXI +AQ

↵ ^AP
↵

�
. (3.70)

The equations of motion show that the Xi are conserved and are therefore identified with the
Casimir functions. The gauge fields Ai are not determined by the equations of motion and,
consequently, can be set to zero by the gauge transformations (3.50). While this coordinate
system is useful in many contexts, in the applications we have in mind in which the target
space is (the dual of) a Lie algebra, the coordinates associated to that structure will better
suit our purpose.

3.4 Poisson sigma models and dilaton gravity

In this section we want to explicitly provide the map between PSM models and dilaton
gravity in its first order formulation.

To this end, choose a three-dimensional target space D = 3 and denote the coordinates
by XI = (Xa, X), a = 0, 1. Furthermore, choose a Poisson tensor of the form

P ab = V✏ab P aX = �✏abX
b , (3.71)

with V given by

V = ��U(X)

2
XcXc � 2V (X) . (3.72)
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The map between the gravitational variables, zweibein ea and spin connection !a
b ⌘ ! ✏ab,

is given by
AI = (ea,!) (3.73)

and we assume the existence of a tangent space metric ⌘ab of Euclidean (� = 1) or Lorentzian
(� = �1) signature. Under this map the PSM action (3.44) becomes

I =
k

2⇡

Z

M

�
Xa(dea + �✏ab! ^ eb) +X d! + ✏V(XcXc, X)

�
� k

2⇡

Z

M

d(eaX
a+!X), (3.74)

where we introduced the volume form

✏ =
1

2
✏abe

a ^ eb . (3.75)

This is the action of 2d dilaton gravity in a first order formulation up to a boundary term
that will be discarded in the following.

As discussed in section 3.2 the symmetries of this action are local Lorentz transformations
(3.18) and diffeomorphisms (3.19). According to the discussion in the previous section these
symmetries of the gravitational theory get mapped to the non-linear gauge symmetries of
the PSM model (3.50). We have therefore succeeded in providing a reformulation of dilaton
gravity as a (somewhat non-standard) gauge theory.

Since the target space is three-dimensional the antisymmetric Poisson tensor P IJ cannot
be of full rank. This implies the existence of at least one Casimir function, that we can
determine explicitly. The equation of motion (3.48a) becomes

dXa + V✏abeb + �✏abX
b! = 0 (3.76)

dX + �✏abX
aeb = 0 (3.77)

for the Poisson tensor (3.71). Multiplying the first equation by eQXa, where Q is, at the
moment, an arbitrary function and using the second equation one obtains

eQ d

✓
XaXa

2

◆
+ eQ

✓
XaXa

2
U(X) + �2V (X)

◆
dX = 0 . (3.78)

Defining the functions

Q :=

Z X

dX̃ U(X̃) +Q0 w(X) = �� 2
Z X

dX̃ eQ(X̃) V (X̃) + w0 (3.79)

equation (3.78) can be rewritten as

dC ⌘ d
�
eQXaXa � w(X)

�
= 0 . (3.80)

It can be checked that @IC thus defined is in the kernel of P IJ and therefore a Casimir
function. Notice that (3.80) in fact defines a two parameter family of Casimir functions since
C is conserved for any choice of Q0 or w0.
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Relation to the second order theory

Let us end this section by making the connection to the second order formulation explicit.
To achieve this, one has to eliminate the auxiliary fields Xa and the spin connection ! in
terms of their own equations of motion. They are

dea + �✏ab! ^ eb + ✏@aV = 0 , (3.81a)

dX + �Xa✏abe
b = 0 . (3.81b)

One notices from the first equation and (3.72) that the connection ! has non-zero torsion if
U(X) 6= 0. It is convenient to introduce a connection !̃

!̃ ⌘ �! + @cVec (3.82)

for which the first equation of (3.81) implies vanishing torsion. The action expressed in
terms of this quantity reads

I =
k

2⇡

Z

M

⇣
Xa(dea + ✏ab!̃ ^ eb)+�X d!̃ + ✏V + �@cV(dX + �Xa✏abe

b) ^ ec
⌘

� k

2⇡

Z

M

d(�X@cVec) .
(3.83)

Imposing the equations of motion (3.81) the first and fourth term in (3.83) vanishes and one
can express

Xa = �✏abrbX . (3.84)

For the torsionless connection we find

d!̃ = �
R

2
✏ (3.85)

such that the final form of the action is

I =
k

4⇡

Z

M

d2x
p
�g
⇣
XR� �U(X)(rX)2 � 2V (X)

⌘
, (3.86)

which coincides with (3.5) when the overall sign for Euclidean and Lorentzian theories is
introduced by hand and the coupling constant is related to Newton’s constant as

k

2⇡
⌘ 1

8⇡G
. (3.87)

This establishes the equivalence of PSM models of the form (3.71) and two-dimensional
dilaton gravity theories up to boundary terms.

Solution sectors of dilaton gravity

The equations of motion of dilaton gravity (3.48) with Poisson tensor (3.71) allow for two
distinct sets of solution called linear dilaton solutions and constant dilaton vacua. The
former are generic solutions that exist for any well-defined dilaton gravity model. The latter
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are defined by the condition that the dilaton field is on-shell constant X = X̄. Since the
zweibeine ea are required to be linearly independent, as is apt for a gravity interpretation,
the equations of motion imply that the auxiliary fields have to vanish

X = X̄ Xa = 0 . (3.88)

Due to the form of the Poisson tensor (3.71) for gravity models this is equivalent to the
condition that the Poisson tensor vanishes on-shell. Constant dilaton vacua have necessarily
constant curvature. This is also obvious from the second order equations (3.6). Constant
dilaton solutions are not generic solutions, in the sense that not every dilaton model allows
for these solution. More precisely, constant dilaton solutions are available for models where
V (X) = 0 has a solution X = X̄.

In section 5 we will discuss constant dilaton solutions and their asymptotic structure in
some detail.

Coupling to (non)-Abelian Gauge fields. Supergravity. The PSM formulation
of dilaton gravity makes the coupling to non-Abelian gauge fields of a gauge group G
straightforward.10 Instead of a three-dimensional target space one extends the target space
by the dimension of G with additional coordinates Z↵ and gauge fields A↵. The Poisson
tensor obtains new entries of the form

P↵� = f↵��Z
� . (3.89)

with f↵�� being the structure functions of the Lie algebra of G. The potential V can be
extended to depend on the Casimir elements of G. We will consider more concrete examples
of this kind in chapter 7.

As another possible generalization one can consider supersymmetric extensions of dilaton
gravity in the PSM formulation. In this approach the target space obtains additional
fermionic directions with the Poisson tensor subject to a graded version of the Jacobi identity.
These models will not be discussed in the following. The interested reader is referred to the
original works [137,138] and the review article [99].

3.5 He do the charges in different voices

In this section we want to further explore the structure of dilaton gravity theories in the
PSM formulation. The main result is a derivation of the canonical charges of the theory
which will allow us to determine the asymptotic symmetry algebra in later sections.

There are many approaches to define charges for gauge theories including Hamiltonian
methods [139], cohomological methods [140, 141], boundary counter-terms [142, 143], and
covariant phase space methods [144–146]. We will first construct the charges for the PSM
model using covariant phase space methods. These charges will be one of our main tools
in the following chapters. However, for completion we will also add a calculation of the
canonical charges in the second order formulation using Hamiltonian methods.

10Notice that this does not destroy the topological nature of the model, since these fields do not propagate
in two dimensions.
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Covariant Phase space method

Our starting point is an n-dimensional spacetime M with Lagrangian n-form L(�) depending
on the fields � and their derivatives up to a finite order. We denote by F the collection of
all kinematically allowed field configurations on M that is assumed to have the structure
of a Banach manifold. Note that a choice of field space F also includes the specification of
boundary conditions for the fields �. Now let �(�) be an arbitrarily parametrized curve of
field configurations on F , let �(� = 0) = �0 and define

��0 ⌘ d�(�)

d�
|�=0 . (3.90)

This equation defines a tangent vector ��0 at the field configuration �0. We will sometimes
write ��A with contravariant abstract index A in order to emphasize that a variation can be
viewed as tangent vector in field space F .

Varying the action, and hence the Lagrangian, with respect to the fields � produces

�L = E(�) ��+ d✓(�, ��) , (3.91)

after integrating by parts. The first term defines the equations of motion E = 0, whereas
the latter term defines the n� 1-form ✓(�, ��) called presymplectic potential current. The
reason for the prefix “pre” will become clear in a moment. The solutions to the equations of
motion specify a subspace F̄ ⇢ F .

Note that ✓ is defined only up to an exact term ✓ ! ✓ + dY and can be changed by
adding a boundary term to the Lagrangian. Since none of these two have any consequences
for the following we will not discuss them further.11 Choose now an equal-time slice12 ⌃,
that is assumed to be a Cauchy surface for M, and define the presymplectic potential as

✓(�, ��) =

Z

⌃
✓(�, ��). (3.92)

Since the presymplectic potential ✓ depends linearly on the variation �� and yields a number it
can be regarded as a one-form ✓A in field space. This should be compared to the canonical one-
form of section 2.1 that allowed us to define a symplectic structure in the finite-dimensional
case via equation (2.8).

From this analogy it is clear how to proceed. Define an n� 1 form ! called pre-symplectic
current as

!(�, �1�, �2�) = �1✓(�, �2�)� �2✓(�, �1�) (3.93)

and the pre-symplectic structure as

⌦(�1�, �2�) =

Z

⌃
! . (3.94)

11Requiring that the variational principle for the Lagrangian L be well-defined fixes these ambiguities
to some extent. More details on this point and the relation to (non)-conservation of charges can be found
in [147].

12Although the formalism presented in this section applies equally well to Euclidean theories or radial
evolution we will stick to this name in the following. The author apologizes for using ⌃ again for the time-slice,
as is conventional. This should not be confused with the target space of the PSM model.
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⌃1

⌃2
@⌃2

@⌃1

BI

Figure 3.1: The integration regions of equation (3.96). In the two-dimensional case there
could be a second boundary on the left hand side or the two time slices meet in the center of
the disk, in the Euclidean finite temperature case.

Again, ⌦ can be regarded as a two-form on field space ⌦AB = �⌦BA since it depends linearly
on the variations �1�A and �2�B . This is in complete analogy to the finite-dimensional case.
The pre-symplectic structure ⌦ is closed on F by construction, qualifying as symplectic
structure. In general, however, it will fail to be non-degenerate which explains the label
“pre-symplectic”. The pair (F ,⌦) is therefore not a well-defined symplectic manifold although
it is always possible to construct one by symplectic reduction.13 In most cases it is more
convenient to deal with the degenerate directions of ⌦ than to perform the reduction explicitly.

From equation (3.94) it is not immediately clear that the left hand side is independent of
the time-slice on which ! is evaluated. If this were not the case, this equation would provide
a bad definition for a symplectic structure as it would change from one instant to another.
To show the well-definedness of (3.94) consider the antisymmetrized, second variation of L

0 = �1E�2�� �2E�1�+ d!(�1�, �2�) . (3.95)

Thus, if the variations �1�, �2� satisfy the linearized equations of motion, i.e., they are
tangent to an element � 2 F̄ , then d! = 0. Evaluate now (3.94) on two time-slices ⌃1, ⌃2

and consider their difference. Then we find using Stoke’s theorem
Z

⌃2

! �
Z

⌃1

! +

Z

B

! =

Z

I
d! . (3.96)

13In this process one identifies the degenerate directions of ⌦ and, integrating along these, one can define
an equivalence relation �1 ' �2 between different field configurations. The quotient of F by this relation,
� = F/ ', induces a projection ⇡ : F ! �. The pullback of the presymplectic form ⌦ by this projection
yields a non-degenerate symplectic form ⇡

⇤⌦ such that the pair (�,⇡⇤⌦) is a symplectic manifold that serves
as phase space of the theory.
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Here, B denotes the part of @M enclosed by the boundary of the two hypersurfaces and I
is the subset of M in the interior of the two hypersurfaces, cf. figure 3.1. If the manifold
has no boundary the third term on the left hand side of (3.96) is not present. Otherwise,
one has to assume that either the symplectic structure is modified in such a way that this
term is not present14 or that the boundary conditions on � are such that this term does not
contribute.15 Thus, we find for variations tangent to the solution manifold F̄

Z

⌃1

! =

Z

⌃2

! , (3.97)

due to equation (3.95).
Having a symplectic structure on phase space, we are now able to define Hamiltonian

functions associated to symmetry transformations. Assume that �̂�� is a symmetry of the
Lagrangian L depending on the (local) parameter �, i.e., applying the symmetry leaves the
Lagrangian invariant up to a boundary term

�̂�L = d↵(�, �̂��) . (3.98)

Again, we can view �̂� as a vector field on F . Since a symmetry of the Lagrangian is also a
symmetry of the equations of motions [149], one has

�̂�E = 0 , (3.99)

i.e., the symmetry variation solves the linearized equations of motion [144]. In analogy to the
definition of Hamilton’s equations in the finite-dimensional case (2.14), we can now define
based on the above

�H[�] =

Z

⌃
!(��, �̂��) . (3.100)

This equation defines the Hamiltonian, or the charge, as the generator of the (local)
symmetry �̂��.

We will now apply the above to the PSM case. Starting from the Lagrangian (3.44) the
presymplectic potential current is

✓ = � k

2⇡
AI�X

I . (3.101)

Choosing an equal time slice ⌃ we can derive the presymplectic potential

✓ = � k

2⇡

Z

⌃
AI�X

I (3.102)

and the presymplectic structure

⌦ = � k

2⇡

Z

⌃

�
�1AI�2X

I � �2AI�1X
I
�
. (3.103)

14Notice that the requirement that this term vanishes is very similar to the requirement for a well-defined
variational principle for L. Thus, for a the symplectic structure coming from a Lagrangian with well-defined
variational principle this term will usually not be present, cf. e.g. [148].

15In some cases, however, there is a physical reason for this term being present and thus non-conservation
of the symplectic current; for instance, in the case of asymptotically flat spacetimes for nonvanishing Bondi
news [146].
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Although it is certainly possible to proceed completely covariant, let us introduce co-
ordinates (t, r) on M for convenience and assume that ⌃ is a constant r-slice. Then the
symplectic structure is

⌦ = � k

2⇡

Z

⌃
dr
�
�1(AI)r�2X

I � �2(AI)r�1X
I
�
. (3.104)

We can use this to understand the phase space � of the PSM model. We see immediately
that ⌦ is degenerate in the direction of variations along (AI)t. Thus, this component of AI

can be regarded as pure gauge. Furthermore, variations of (AI)r and XI whose pullback
to ⌃ vanish, i.e., which are localized away from the hypersurface, lead also to vanishing
⌦. From this we can conclude that one should identify all ((AI)r, X) that differ only by
their values away from ⌃. The phase space � of the PSM model is given by all ((AI)r, XI)
having distinct values on ⌃. However, the equation of motion (3.48a) constrains the possible
elements of � to fulfill

@rX
I + P IJ(AJ)r = 0 . (3.105)

The phase space � is therefore further reduced to the constraint manifold �̄ that consists of
all elements of � that obey equation (3.105).

We saw in our discussion in section 3.3 that all symmetries of PSM models are contained
in the non-linear gauge transformations (3.50). Thus, we should be able to construct the
charges for these symmetries by substituting them in Hamilton’s equation (3.100). This
yields immediately

�H[�] = � k

2⇡

Z

⌃
�I �

�
dXI + P IJAJ

�
+

k

2⇡
�I�X

I |@⌃ , (3.106)

or in the above system of coordinates

�H[�] = � k

2⇡

Z

⌃
dr�I �

�
@rX

I + P IJ(AJ)r
�
+

k

2⇡
�I�X

I |@⌃ . (3.107)

This equation shows that the constraint (3.105) is the generator of gauge transformations in
the bulk. This is an instant of the general credo that first class constraints generate gauge
symmetries.

If the variations are tangent to the constraint manifold �̄ we find

�H[�] =
k

2⇡
�I �X

I |@⌃ . (3.108)

The charge is thus given by a pure boundary term. It is a general result that the charge
associated to a gauge symmetry is the integral of an n� 2 form where n is the spacetime
dimension. The standard example for this behavior is Gauss law for the U(1) symmetry of
electrodynamics. Since n = 2 in our case, the charge is given by a function evaluated at
the boundary of the time slice. Notice that we cannot immediately functionally integrate
the charges since � can in principle contain state-dependent quantities, i.e., it might be a
function on F .

If one were to construct (3.108) using the Hamiltonian method pioneered in [139] one
would arrive at an equation similar to (3.107). However, the interpretation would be that the
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bulk term is the generator of gauge symmetries that needs to be enhanced by the boundary
term in order to be functional differentiable with respect to the canonical variables XI and
(AI)r.

Before we turn to this method to calculate the charge for dilaton gravity in the second
order formalism, let us add one more observation regarding equation (3.108). Recall the
target-space diffeomorphisms of the PSM model. We saw that they had to leave the Poisson
structure invariant in order for them to be symmetries of the theory. Among them were, in
particular, diffeomorphisms associated to Hamiltonian vector fields on the Poisson manifold
(3.60) with �J = @JH with H(XK) being a Hamiltonian function on the target space. For
symmetry parameters of this form we obtain from (3.108)

�H[�] =
k

2⇡
@IH �XI |@⌃, (3.109)

which can be trivially integrated to

H[�] =
k

2⇡
H(XK(x))|@⌃ . (3.110)

The Hamiltonian functions of the PSM model thus coincide with the Hamiltonian functions
on the Poisson manifold depending on the XK evaluated at the boundary of the base manifold.

Regge–Teitelboim method

The starting point for the Regge–Teitelboim method of constructing canonical charges [139]
is the Hamiltonian of the theory, that is a sum of constraints for diffeomorphism invariant
theories. Assuming that all second class constraints have been solved, the first-class constraints
generate gauge transformations via the Poisson (or Dirac brackets) with the canonical
variables. The crucial insight of [139] is that the first class constraints are in most cases not
functionally differentiable on a manifold with boundary, for gauge parameters that do not
vanish at infinity. The generators therefore have to be improved by a boundary term that is
interpreted as the charge associated to the symmetry transformation.

It is a nice exercise to calculate the charges for dilaton gravity in the second order
formulation. A straightforward ADM split (cf. appendix A) leads to the gravitational
Hamiltonian

H = ↵

Z

⌃

p
h
h
↵�1N c(⇡XDcX � 2Da⇡

a
b)+

N
�
↵�2�⇡abhab⇡X + ↵�2U(X)⇡ab⇡ab + �U(X)habDaXDbX + 2V (X)� 2D2X

�i
,

(3.111)

where the prefactor of the action (3.5) was denoted by ↵. The quantities multiplied by
N c and N correspond to diffeomorphism and Hamiltonian constraint, respectively. Given a
canonical variable �, defined on the hypersurface ⌃ the Hamiltonian acts as

�̇ = {�, H} . (3.112)

However, the Hamiltonian is not functionally differentiable with respect to most of the
canonical variables if the hypersurface ⌃ has an (asymptotic) boundary. Therefore, one has
to add certain boundary terms to the constraints appearing in the Hamiltonian.
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The variation of the Hamiltonian (3.111) produces the following terms

�H = ↵

Z

⌃

p
h(. . .)

+
h
� 2�⇡a

bN
bra + �Xrc(N

c⇡X + �U(X)hacDaX + 2DcN)� 2NrcDc�X
⇤
@⌃

(3.113)

where the bulk terms were not written, and rc denotes the (inward pointing) normal vector
of the boundary of ⌃. In order for for the Hamiltonian to be functionally differentiable one
has to add a boundary term Q such that the variation of Q cancels the boundary term in
(3.113). In the present case one finds

�Q =
h
2�⇡a

bN
bra � �Xrc(N

c⇡X + �U(X)hacDaX + 2DcN) + 2NrcDc�X
⇤
@⌃

. (3.114)

As above, we are in general not able to integrate expression (3.114) for the charge unless
we specify certain boundary conditions on the fields. Lapse and shift should be chosen such
that they preserve these asymptotic conditions. If it is possible to integrate �Q one defines
the improved Hamiltonian as the sum of bulk term and boundary term Q.16

Since the bulk term (3.111) is a sum of constraints it vanishes for every solution, and
the form of N and N c in the bulk is completely arbitrary. The boundary term Q evaluated
on a solution is then interpreted as charge of the solution associated to the asymptotic
transformation generated by N,Na.

In most cases we are interested in a covariant version of (3.114) in which a diffeomorphism
is not split into temporal and spatial components. For this, we demand that the evolution
of the dilaton X (or any other canonical variable) with Hamilton’s equation (3.112) should
correspond to the transformation coming from a diffeomorphism ⇠a acting via the Lie
derivative. We find from Hamilton’s equations

Ẋ = N�↵�1⇡abhab +N cDcX = (Nna +Na)raX (3.115)

Comparing this to £⇠X = ⇠araX we can relate lapse and shift appearing in (3.114) to a
diffeomorphism ⇠a.

Asymptotic Symmetries

Expressions (3.114) and (3.108), in particular the latter, will be our main tools in the study
of asymptotic dynamics of dilaton gravity since one can derive the asymptotic symmetries of
the theories from these. This can be seen as follows:

Since the configuration manifold F contains a choice of boundary conditions for the
fields it is necessary to check that the symmetry transformations of the theory do not lead
out of F . This will put restrictions on the gauge parameters. The set of symmetries with
these restricted parameters is called allowed symmetries. Among these one finds that certain

16Notice that by Hamiltonian we do not necessarily mean that it generates time translations. The
interpretation depends on the asymptotic form of lapse and shift.
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symmetries will lead to vanishing charges. In particular if the parameters vanish at the
boundary of spacetime, the charges are zero. These symmetries are called genuine or proper
gauge symmetries. On the other hand, if the charge associated to an allowed symmetry does
not vanish on-shell, the symmetry is said to define an improper or non-trivial gauge symmetry.
The associated charge can be used to distinguish physically different configurations; thus the
symmetry cannot describe a redundancy of the theory.

The asymptotic symmetries of a theory are then defined as the quotient of the non-trivial
symmetries by the trivial ones. The algebra of these symmetries is called asymptotic symmetry
algebra.





Chapter Four

Two-dimensional Anti-De Sitter Space

The main part of this work is concerned with the asymptotic dynamics of dilaton gravity
in AdS2 spacetime. We want to use this chapter to obtain a deeper understanding of this
spacetime. The outline is as follows. In section 4.1 we are going to discuss AdS2 solutions
in Lorentzian signature. We will see that, although all solutions have constant curvature,
depending on the behavior of the dilaton field they will have different interpretations. In
particular, we find that some of the solutions can be interpreted as black holes. In section 4.2
we will turn to the Euclidean sector. We will introduce and motivate the Fefferman–Graham
gauge for the metric that will play a crucial role in the rest of this thesis. The discussion of
two-dimensional geometries of constant negative curvature naturally leads into the realm of
hyperbolic geometry, to be introduced in section 4.3, that will help us in obtaining a deeper
understanding of the two-dimensional geometries we will be dealing with. In the last section
4.4 we will provide another viewpoint on Euclidean AdS2 geometries in Fefferman–Graham
gauge, deriving from their interpretation as elements of codadjoint orbits of the Virasoro
group.

Throughout this section we will repeatedly refer to various coordinate systems on AdS2

collected in appendix B. The curvature of AdS2 is taken to be R = �2 in the following.

4.1 Lorentzian signature solutions

The most convenient starting point for the discussion of Lorentzian solutions in two-
dimensional dilaton gravity is Eddington–Finkelstein gauge [150]

ds2 = 2 du dX � ⇠(X) du2 , (4.1)

where the dilaton X is used as a coordinate, and ⇠(X) is a function of the dilaton that
determines the geometry. Note that every solution of the action (3.5) can be written in this
form with the model defining functions U(X), V (X) only entering in the precise form of ⇠(X).
The derivation of this result will not be reviewed here as it can be found in, e.g., [99, 151].

Starting from (4.1) a short calculation yields R = �⇠00(X). Thus, ⇠(X) is a quadratic
function of the dilaton if the metric is to be AdS2. Introducing the radial coordinate r we
find for an AdS2 solution

ds2 = 2 du dr � (r2 �M0) du
2, X = r . (4.2)

53
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⌧
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Figure 4.1: The AdS2 black hole as a quotient of global AdS2. The coordinate patch covered
by (4.2) is painted in blue; the portion of spacetime in the exterior of the horizon (red hatched)
is covered by the coordinate system (B.11). The squiggly lines denote the “singularities"
where the dilaton vanishes.

where M0 is an arbitrary integration constant.
We can draw a number of immediate conclusions from this solution. First, the vector

@u is a Killing vector for the combined metric-dilaton system. For M0 > 0 the metric has
a Killing horizon at spatial coordinate rH =

p
M0. Furthermore, the dilaton vanishes at

r = 0. Since the dilaton can be regarded as an effective inverse Newton’s constant, as was
mentioned in section 3.1, one can think of this spacelike line as a strong coupling region.
With this interpretation, the geometry has the flavor of a black hole geometry, at least for
M0 > 0 where a Killing horizon shields the strong coupling region. On the other hand, the
dilaton field diverges for r ! 1 which corresponds to a weakly coupled, i.e., asymptotic
region. In this sense, the dilaton field provides boundary conditions for the interpretation
of the metric (4.2) as a spacetime. However, the geometry (4.2) is locally AdS, thus there
necessarily exists a coordinate transformation to global AdS2. The explicit form of this
transformation depends on the sign of M0.

Starting with the case M0 = 0, the simple replacement r = z�1, u = t � z brings the
metric into Poincaré patch form (B.7) which covers the portion of AdS2 shown in figure
B.1. With the above interpretation, we should not extend the spacetime beyond that patch,
despite being obviously possible, since the dilaton vanishes at these lines.

Consider now the case M0 = �|M0| < 0 and define r =
p
|M0| tan ⌫, u =

p
|M0|

�1
(⌧ + ⌫).

The metric is then global AdS2 (B.4). The dilaton diverges at ⌫ = ±⇡
2 which corresponds

to the boundaries but vanishes at ⌫ = 0. This time-like line is thus interpreted as a naked
singularity.
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Finally, the transformation

r =
p
M0

cos ⌧

cos ⌫
, u =

p
M0
�1
✓
tanh�1

✓
sin ⌧

sin ⌫

◆
� tanh�1

⇣cos ⌧
cos ⌫

⌘◆
(4.3)

brings the metric again into the form of global AdS2 but now the dilaton vanishes at the
time-like lines ⌧ = n⇡ hidden behind the horizon rH =

p
M0 (cf. figure 4.1). In this sense

geometries (4.2) with M0 > 0 describe black hole solutions. This black hole interpretation of
a regular two-dimensional geometry was given first in [152, 153] wherein these solutions were
obtained by dimensional reduction. Since the coordinate transformation (4.3) is periodic
in ⌧, ⌫, global AdS2 space accommodates an infinite number of the same black hole. This
procedure of obtaining a black hole by identifying points of AdS is reminiscent of the three-
dimensional case where it was shown that the Bañados–Teitelboim–Zanelli (BTZ) black hole
can be obtained from AdS3 by a quotient [28, 28]. We will see in the following that a similar
statement holds in two dimensions, although the roles seem to be somewhat reversed. This
is more straightforward to discuss in Euclidean signature to which we now turn.

4.2 Euclidean signature solutions

The aim of this section is to obtain a better understanding of Euclidean spacetimes of
constant negative curvature, i.e., hyperbolic manifolds. This is deeply related to the study
of Riemann surfaces since, by the uniformization theorem almost all Riemann surfaces are
hyperbolic. Even the attempt to provide an overview over this topic would be widely beyond
the scope of this work. Nevertheless, we will find that some very basic constructions are
advantageous for the understanding of the following chapters.

Before turning to hyperbolic manifolds, we specify the asymptotic form of the metrics
we are interested in. Since we are mainly considering finite temperature applications, we
assume that Euclidean time is periodic with periodicity of inverse temperature �

⌧ ⇠ ⌧ + � . (4.4)

Thus, the two-dimensional hyperbolic space should admit (at least) one boundary with the
topology of a circle. We will take � = 2⇡ in the following.

The spacetimes we are looking for have constant negative curvature R = �2. A well-known
theorem by Fefferman and Graham (cf. [154] for a review) states that any asymptotically
AdS spacetime admits an asymptotic coordinate system of the form

ds2 =
dr2

r2
+

1

r2
(g0 +O(r)) d⌧2. (4.5)

This can be understood in the conformal framework of Penrose [155] in the sense that one
has chosen a conformal factor ⌦ = r and then introduced Gaussian normal coordinates
emanating from the boundary. The induced metric on the boundary is then given by g0.
Notice that the choice of conformal factor ⌦ = r is not unique as a change of conformal
factor by ⌦0 = !⌦, where ! > 0, yields another conformal factor. This induces a conformal
transformation on the boundary metric g0 ! !2g0. Thus, as part of the boundary conditions
one has to fix a conformal class of boundary metrics, e.g., the class of conformally flat metrics
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in the seminal work by Brown and Henneaux [26]. Since in the present case the topology of
the boundary is a circle and all one-dimensional metrics belong to the same conformal class
we can fix g0 to any convenient value. Solving the curvature condition R = �2 in the gauge
(4.5) order by order in r, one finds

ds2 = d⇢2 +

✓
1

2
e⇢ � L(⌧)e�⇢

◆2

d⌧2 , (4.6)

which, in contrast to the higher-dimensional case, is exact. Notice, however, that this is not
the most general solution as will be discussed in chapter 6 where the boundary conditions of
(asymptotically) AdS2 will be discussed in more detail.

For the constant values L = + 1
2 , 0,�

1
2 the metric (4.6) can be recognized as the Euclidean

versions of the two-dimensional black hole metric (B.11), the Poincaré patch (B.8), and
global AdS2 (B.5), respectively.

In three-dimensional AdS-space all solutions, in particular the BTZ solution, can be
understood as quotients of global AdS by finite subgroups of the isometry group SO(2, 2).
Figure 4.1 suggests, similarly, that the two-dimensional black hole, (4.2) with M0 > 0, can
be regarded as a particular quotient of global AdS2 space. We now want to see explicitly
how the different solutions in the Euclidean case, parametrized by L in Fefferman–Graham
gauge, arise as identifications. We will start with zero modes L = const in the next section,
and then turn to L with arbitrary ⌧ dependence in section 4.4.

4.3 Some hyperbolic geometry

The hyperbolic plane H is defined as the upper half-plane H := {z = x + iy 2 C : y > 0}
together with the hyperbolic metric

ds2 =
dx2 + dy2

y2
. (4.7)

The boundary of H is taken to be the real line compactified by the point at infinity @H :=
R [ {1}, i.e., the boundary has the topology of a circle. This becomes more apparent in
the second model for hyperbolic space which is given by the Poincaré disc D. The Cayley
transform

z 7! z � i

z + i
(4.8)

maps H to the disc D := {z 2 C : |z| < 1} with metric

ds2 = 4
dx2 + dy2

(1� |z|2)2 . (4.9)

This defines the Poincaré disc model of hyperbolic space. Using polar coordinates on the
unit disc

x = tanh(⇢2 ) cos ⌧ y = tanh(⇢2 ) sin ⌧ (4.10)

this becomes the metric of the Euclidean black hole L = 1
2 in (4.6). We can thus identify

this geometry with the hyperbolic plane H.
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The isometries of (4.7) are given by the (real) Möbius transformations PSL(2,R)

z 7! az + b

cz + d
ad� bc = 1 . (4.11)

We will often be less precise, speaking of the isometries of AdS2 as SL(2,R) which is in fact
the double cover of (4.11). Thus, there exists a two-to-one map from SL(2,R) elements

M =

✓
a b
c d

◆
ad� bc = 1 (4.12)

to Möbius transformations (4.11) [±M 2 SL(2,R) lead to the same transformation in (4.11)].
Elements of (4.11) are classified according to the conjugacy class of the associated SL(2,R)

element M . Since the trace is invariant under conjugation M is called

• elliptic if |trM | < 2;

• parabolic if |trM | = 2;

• hyperbolic if |trM | > 2.

An elliptic matrix M is conjugate to a rotation matrix
✓

cos(2⇡!) sin(2⇡!)
� sin(2⇡!) cos(2⇡!)

◆
(4.13)

with ! 2 (0, 1/2) [ (1/2, 1). A hyperbolic matrix is conjugate to

±
✓
e2⇡! 0
0 e�2⇡!

◆
(4.14)

with ! > 0 and a parabolic matrix is conjugate to one of the following six matrices

±
✓
1 0
0 1

◆
, ±

✓
1 1
0 1

◆
, ±

✓
1 �1
0 1

◆
. (4.15)

Elements of SL(2,R) are equivalently distinguished by the number and loci of their fixed
points: a parabolic transformation has one fixed point in @H, a hyperbolic transformation
has two fixed points in @H, an elliptic transformation has one fixed point in H and one in
the complement of R2/H. This simply follows from solving the equation z = az+b

cz+d . Let � be
a subgroup of the isometries (4.11) of H. For a sufficiently well-behaved subgroup �, the
quotient X = H/� is another hyperbolic manifold. In order to study this in more detail we
first quote the following theorem [156]:

Theorem 9. Fuchsian groups. A subgroup of PSL(2,R) acts properly discontinuously on H

if and only if it is discrete. Such a group is called Fuchsian group.1

1As a reminder: A subgroup H of a topological group G is called discrete if there exists an open cover of
G such that every open set contains exactly one element of H, i.e., the induced topology on H is the discrete
topology. The action of a group G on a manifold M is properly discontinuous if for all compact subsets
K ⇢ M the set � 2 G such that �K \K 6= {} is finite.
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Figure 4.2: The first three identifications for the parabolic transformation z 7! z + 1 (left)
and the hyperbolic transformation z 7! 4z (right), respectively, on the Poincaré disk. Regions
bounded by two respective geodesics are identified with each other.

The importance of Fuchsian groups lies in a theorem by Hopf stating that all hyperbolic
surfaces can be obtained as quotients X = H/� where � is a Fuchsian group containing no
elliptic elements (this is a particular case of the classic theorem proved, e.g., in [91] that
pertains to arbitrary manifolds of constant sectional curvature). Let us show explicitly how
to obtain the various zero-mode geometries of (4.6).

The only non-trivial identification that can come from a parabolic transformation (4.15)
is conjugate to z ⇠ z+2⇡, where the constant was chosen conveniently. We can convince our-
selves that the group generated by this parabolic transformation acts properly discontinuous
and is therefore Fuchsian. This identification leaves fixed the point z = 1 or, equivalently
by the Cayley map (4.8), the point (1, 0) on the Poincaré disc. The geometry obtained in
this identification is called a cusp (cf. figure 4.2). A coordinate system adapted to this
identification is

y = e�⇢ x = ⌧ ⇠ ⌧ + 2⇡ . (4.16)

In this coordinate system the hyperbolic metric (4.7) becomes

ds2 = d⇢2 + e2⇢ d⌧2 , (4.17)

which is recognized as L = 0 in (4.6).
Let us now turn to hyperbolic transformations (4.14). These are conjugate to identifica-

tions z ⇠ e2⇡!z, where the prefactor was fixed conveniently. It is again straightforward to
show that this group is Fuchsian. The two fixed points of this transformations are z = 0,1
lying on the boundary @H. The corresponding geometry is known as funnel (cf. figure 4.2).
An appropriate coordinate system realizing this identification is

x = e!⌧
e2⇢ � !2

e2⇢ + !2
y = e!⌧

2e2⇢!

e2⇢ + !2
⌧ ⇠ ⌧ + 2⇡ . (4.18)

The hyperbolic metric then becomes (4.6) with L = �!2

2 . We have thus found an interpreta-
tion for L = 1

2 and all non-positive zero-modes of (4.6) as the hyperbolic plane and quotients
thereof by parabolic and hyperbolic subgroups.

But what about the other positive zero modes? Following the logic in the previous
paragraphs, one would expect that these can be generated from quotients of H by elliptic
subgroups. However, the classification mentioned below theorem 9 explicitly excluded those.
Thus, we expect that the geometries described by L > 0 are flawed. The reason behind this
is the following theorem [157]:
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Theorem 10 (Good quotient theorem). Let � be a group acting on a manifold X. The
quotient space X/� is a Hausdorff manifold with X ! X/� a covering map if and only if �
acts freely and properly discontinuously.

The manifolds produced from quotienting by an elliptic subgroup are not Hausdorff
manifolds.

Let us look at this in a bit more detail. An elliptic geometry is conjugate to a rotation
matrix (4.13). As we mentioned above, these groups have a fixed point in H and thus do
not act freely. If the rotation parameter ! in (4.13) is a rational number p/q, the group
is cyclic to order q and one can show that it is discrete and, by theorem 9, acts properly
discontinuously. Since the requirements of theorem 10 are met everywhere except at one
point, an identification leads to a manifold that is well-behaved everywhere except at one
single point. This construction defines an orbifold with a conical deficit angle of (1� 1

q )2⇡ at
the fixed point of the elliptic transformation. On the other hand, a rotation by an irrational
multiple of 2⇡ does not act properly discontinuously.2 Such an identification will lead to a
non-Hausdorff space. We can therefore conclude that most of the positive zero modes of L(⌧)
lead to sick geometries.

This concludes our inspection of the zero-mode solution of (4.6). In order to understand
L with arbitrary ⌧ -dependence we will turn to the discussions of coadjoint orbits of the
Virasoro group.

4.4 Asymptotic symmetries and coadjoint orbits of the

Virasoro group

In the previous subsection we understood the zero-modes of the asymptotically AdS2 line
element as quotients of the hyperbolic plane L = 1

2 . But what about geometries with
arbitrary L, not necessarily constant? In order to understand these solutions let us first
discuss the asymptotic symmetries of (4.6).

We said above that the boundary metric is only fixed up to a conformal factor. Using
the terminology introduced at the end of the previous chapter, the allowed symmetries of
the system are therefore given by the transformations leaving this background structure
invariant. They are therefore expected to be the conformal transformations of the circle
which is equivalent to the full diffeomorphism group of the circle Diff(S1). Let us stress that
without a concrete theory we do not know whether these symmetries are trivially canonically
realized, in which case they would be proper gauge symmetries, or non-trivially, thus being
improper gauge symmetries.

The allowed symmetries are determined in a straightforward calculation. Let ⇠µ be a
vector in M. The Lie derivative of the metric with respect to ⇠µ has to obey the boundary
conditions set by (4.6)

£⇠gµ⌫ = �gµ⌫ (4.19)

2Think of the action of such a rotation on a circle of fixed radius in the hyperbolic disc. Starting from
any point on the circle, applying the rotation often enough we can come arbitrarily close to every other point
on the circle. The orbit of a rotation by an irrational multiple of 2⇡ is dense. All of these points are identified
with each other.
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where
�g⇢⇢ = 0 �g⇢⌧ = �g⌧⌧ = O(e�2⇢) . (4.20)

This leads to the asymptotic Killing vector

⇠⇢ = ��0(⌧) ⇠⌧ = �(⌧)� 2e�2⇢�00(⌧) . (4.21)

At the boundary ⇢! 1 this reduces to the generator of an arbitrary infinitesimal diffeomor-
phism x ! x� �(⌧). The function L changes according to

��L = 2�0L+ �L0 + �000 . (4.22)

This infinitesimal transformation behavior is the hallmark for the appearance of the Virasoro
group. In particular, it shows that L belongs to a coadjoint orbit of the Virasoro group, as
we will discuss below. We will not be able to cover every aspect of this. More details can be
found in [158,159] and in the detailed pedagogical accounts [86, 87]. We will mostly stick to
the conventions of [87].

The Virasoro Group

An orientation-preserving diffeomorphism of the circle f : S1 ! S1,' 7! f(') is given by a
function that obeys

f('+ 2⇡) = f('), f 0(') > 0 , (4.23)

where the circumference of the circle was fixed to 2⇡. These diffeomorphisms form the group
Diff(S1) under composition. The identity transformation is given by f(') = '; the existence
of an inverse element is guaranteed by the second condition in (4.23). This is an example of
an infinite-dimensional Lie group. Let us determine the adjoint representation of this group,
i.e., the action on its Lie algebra given by the tangent space at the identity. Choose the
following curve in Diff(S1)

�t = '+ tX(') +O(t2) (4.24)

that reduces to the identity at t = 0. X(') is a periodic function on the circle. The adjoint
action is calculated as

Adf (X)(') =
d

dt

�
f
�
�t
�
f�1(')

���
|t=0, (4.25)

according to (2.49). Taylor expanding around t = 0 yields

Adf (X)(') =
X(f�1('))

(f�1('))0
, (4.26)

or, equivalently,
Adf (X)(f(')) = f 0(')X(') . (4.27)

We can recognize this as the transformation behavior of a vector fields X(')@' under
diffeomorphisms. The Lie algebra of the Lie group Diff(S1) is therefore identified with the
space of vector fields on the circle Vect(S1). The Lie bracket of this algebra is given by the
usual bracket of vector fields

[X(')@', Y (')@'] = (Y 0X �X 0Y )@', (4.28)
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which can established by calculating (4.25) for infinitesimal f [cf. equation (2.51)]. Defining
the Fourier modes of the generators Lm = eim'@' one recovers the Witt algebra from (4.28)

[Lm, Ln] = (m� n)Lm+n . (4.29)

The central extensions of a Lie algebra are in one-to-one correspondence to the non-trivial
elements of its second cohomology group [160]. In case of the Lie algebra Vect(S1) the
second-cohomology group is one-dimensional and spanned by the nontrivial cocycle

!(X,Y ) =
1

24⇡

Z 2⇡

0
d'X Y 000 (4.30)

called Gel’fand–Fuks cocyle. This allows to define the unique central extension of Vect(S1),
called Virasoro algebra, as dVect(S1) = Vect(S1)� R with Lie bracket

[(X,�), (Y, µ)] = ([X,Y ],!(X,Y )) . (4.31)

In terms of the generators introduced above, adding the cocycle (4.30) to equation (4.29)
reproduces the well-known Lie bracket of the Virasoro algebra.

Having defined a central extension of the Lie algebra of Diff(S1) it is a fair question
if there also exists a central extension of the Lie group the infinitesimal version of which
reduces to dVect(S1). The answer to this question is affirmative. Let f, g 2 Diff(S1) and
define the Bott–Thurston cocyle

C(f, g) =
1

48⇡

Z

S1

log(f 0 � g) d log(g0) . (4.32)

It can be shown that (4.32) is the “integral” of (4.30) and is the only non-trivial cocyle
of Diff(S1). We can now define the Virasoro group dDiff(S1) = Diff(S1) ⇥ R with group
operation

(f,�) · (g, µ) = (f � g,�+ µ+ C(f, g)) f, g 2 Diff, �, µ 2 R . (4.33)

The adjoint representation of this group on its Lie algebra dVect(S1) is given by

cAdf (X,�) =

✓
AdfX,�+

1

24⇡

Z

S1

S[f ]X

◆
(4.34)

where

S[f ] =

✓
f 00

f 0

◆0
� 1

2

✓
f 00

f 0

◆2

(4.35)

is the Schwarzian derivative (also denoted by {f ;'}) that will play a leading role in what
follows. It shows two important properties

• S[f � g] = (g0)2S[f ] � g + S[g] (cocyle condition)

• S[f ](⌧) = 0 if and only if f is of the form f = a⌧+b
c⌧+d .
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The latter implies in particular that the Schwarzian derivative vanishes for Möbius transfor-
mations (4.11).

As mentioned in section 2.3 the coadjoint action of a Lie group is defined on the dual of
its Lie algebra. The dual of the space Vect(S1) is the space of quadratic differentials on the
circle p(')(d')2 with scalar product

hp,Xi = 1

2⇡

Z

S1

pX d' . (4.36)

Similarly, the dual space of dVect(S1) is taken to be the pair (p(')(d')2, c) where c is a real
number, and the scalar product is naturally generalized to

h(p, c), (X,�)i = 1

2⇡

Z

S1

pX d'+ c� . (4.37)

It is now a straightforward exercise using the definition (2.52) to calculate the coadjoint
representation of the Virasoro group given by

f · p ⌘
⇣
dAd⇤fp

⌘
(f(')) =

1

(f 0('))2

h
p(')� c

12
S[f ](')

i
. (4.38)

The coadjoint representation of the Virasoro algebra, on the other hand, is given by

dad⇤Xp = Xp0 + 2X 0p+
c

12
X 000 . (4.39)

As promised above, this is precisely the transformation law of L for c = 12. We can
therefore understand different metrics (4.6) as coadjoint vectors (L(')(d')2, c = 12) at fixed
central charge. While infinitesimal asymptotic symmetries act on this like (4.39), a finite
asymptotic symmetry transforms this coadjoint vector according to (4.38). Notice that not
every transformation f · p will lead to a different solution. The transformations f for which
f · p = p determine the stabilizer group (cf. equation (2.55) in section 2.3). Similarly, the
elements of the Lie algebra that obey dad⇤Xp = 0 define the Lie algebra of the stabilizer group.
Since the expression for dad⇤Xp contains third derivatives, the stabilizer equation has always
three solutions locally. However, the requirement for periodicity 2⇡ puts a global restriction
on the solution. It is possible to show that this equation has either one or three globally
well-defined solutions. The stabilizer group is invariant along the orbit and therefore yields a
rough classification of orbits. In fact, the orbit can be written as a quotient of Diff(S1) by
the stabilizer group.

Coadjoint orbits of the Virasoro Group

A classification of coadjoint orbits of the Virasoro group will reveal which geometries are
related by an asymptotic symmetry transformation. We will only give a rough classification
and refer the reader to the above mentioned literature for more details.

Let us first introduce the second-order differential equation

c

6
 00(') + p(') (') = 0 (4.40)
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called Hill’s equation associated to a coadjoint vector (p, c). Assume that  (') is a differential
form of weight �1/2, i.e., it transforms as

(f ·  )(f(')) = (f 0('))1/2 (') (4.41)

under a diffeomorphism f('). If  solves Hill’s equation associated to the coadjoint vector
(p, c), then it is straightforward to show that (f ·  ) solves Hill’s equation associated to
(f · p, c). Thus, Hill’s equation is an orbit invariant.

Let  1, 2 be two independent solutions to Hill’s equation. Then the Wronskian

W [ 1, 2] = det

✓
 01  02
 1  2

◆
(4.42)

is constant and can be set to W [ 1, 2] = 1. Now let  i('), i = 1, 2 be a solution vector to
Hill’s equation and consider  i('+2⇡). Since p(') is 2⇡ periodic  i('+2⇡) will be another
solution. Therefore, there exists a linear transformation relating the solutions  i(') and
 i('+ 2⇡) ✓

 1(')
 2(')

◆
= M

✓
 1('+ 2⇡)
 2('+ 2⇡)

◆
(4.43)

Furthermore, since both sides have Wronskian equal to one, the matrix M is an element of
SL(2,R) called monodromy matrix. Since Hill’s equation is linear all pairs of solutions are
related by a linear matrix of determinant one. Choosing a different pair of solution therefore
changes the the monodromy matrix (4.43) by conjugation. Thus, every Hill’s equation with
given (p, c) is associated to a monodromy matrix of fixed conjugacy class. Looking at (4.43)
shows that the transformed solution f ·  has a monodromy matrix in the same conjugacy
class. Consequently, the conjugacy class of the monodromy matrix M is an orbit-invariant.

Using Hill’s equation one can therefore give a rough classification of coadjoint orbits
of the Virasoro group using conjugacy classes of SL(2,R). Orbits that arise by applying
(4.38) to a constant p0, are said to have a constant representative.3 Given a generic point on
an orbit with constant representative, it is always possible to find the transformation that
brings it to its constant representative (cf. [87, 159] for a more detailed discussion). We can
therefore discuss Hill’s equation for constant representatives only, which is then given by

c

6
 00 + p0 = 0. (4.44)

p0 < 0: In this case a basis of solutions is given by

 1 = (2!)�1/2e!⌧ ,  2 = (2!)�1/2e�!⌧ !2 =
6|p0|
c

. (4.45)

The monodromy matrix is hyperbolic, given by (4.14) with ! as above. The stabilizer
equation (4.38) has a single solution X = const that is globally well-defined. The
stabilizer group is therefore U(1) .

3In addition to these orbits there are two classes of orbits without constant representatives that we will
not discuss further.
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p0 = 0: A normalized basis of solutions is given by

 1 = ⌧,  2 = 1 (4.46)

with parabolic monodromy matrix given by the second matrix in (3.10). The stabilizer
group is again U(1).

p0 > 0: For these orbits a set of solutions is

 i =
p
!
�1/2

sin(!')  2 =
p
!
�1/2

cos(!') ! =
p
6p0/c . (4.47)

The monodromy matrix is then given by (4.13) with ! as above. The orbit is elliptic.
The only globally well-defined solution to the stabilizer equation is X = const. The
stabilizer group is one-dimensional and given by U(1).

We find therefore that every p0 is associated to a separate orbit. The classification into
hyperbolic, elliptic and parabolic orbits is consistent with the one for zero modes given in
the previous section.

Notice that for the values
p0 =

n2c

24
(4.48)

the monodromy matrix is not elliptic but the (negative) unit matrix. These exceptional orbits
(called degenerate parabolic in the terminology of [87]) have a three-dimensional stabilizer
group given by PSL(n)(2,R), i.e., the n-fold cover of (4.11). Consistently, the geometry
associated to the exceptional point n = 1 at c = 12 is the hyperbolic plane or the Euclidean
black hole geometry (B.11).

As mentioned in the the section 2.3, a coadjoint orbit comes with a natural symplectic
structure in the form of the Kostant–Kirillov–Souriau bracket (2.70). This can be used to
better understand the boundary dynamics of three-dimensional Einstein gravity in AdS3.
In that case, the algebra of canonical charges is given by (two copies of) the Virasoro
algebra. This is precisely the structure that Hamiltonian vector fields associated to canonical
transformations on the coadjoint orbit are given from the symplectic structure. This allows a
classification of boundary gravitons along the above lines [161]. Furthermore, the classification
of coadjoint orbits yields a positive energy theorem for three-dimensional Einstein gravity in
AdS3 [162].

From what we have seen, it seems that we will recover a similar structure in two dimensions.
Indeed, the asymptotic symmetries of the two-dimensional Euclidean metric (4.6) form the
group of diffeomorphisms of the circle and the function L defining the geometry transforms
according to this symmetry. From this, one could expect that the asymptotic phase space is
again an orbit of the Virasoro group, just as in the three-dimensional case. However, this
is too hasty a conclusion. Without specifying the symplectic structure of our gravitational
theory it is not clear if the transformations are proper or improper gauge transformations, to
use the terminology introduced at the end of the last chapter. Furthermore, we have not
included the dilaton in our considerations. As we will see explicitly in the next chapters, the
boundary conditions on the dilaton will play a crucial role.

We have now collected enough tools to turn to the second part of this thesis containing
the original research results wherein some protagonists of this part will be met again.
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Chapter Five

Constant Dilaton Holography

After collecting and examining our tools we are finally ready to start our discussion of the
asymptotic dynamics of two-dimensional dilaton gravity, and thus possible starting points
for AdS2 holography.

In section 3.4 we discussed two solution sectors for dilaton gravity: linear dilaton and
constant dilaton solutions. Naïvely, one would expect that the latter is the more basic set-up,
thus it will be the starting point in our search for AdS2 holography. However, there is an
immediate caveat: For constant dilaton, the theory (3.5) essentially reduces to a theory
of the metric alone, and there is a well-known argument, going back to [45] and rederived
coming from various directions [42–44,163], that pure AdS2 does not allow for finite energy
excitations. We will not repeat this argument here, but rederive it from another perspective.
In summary, this avenue, i.e., having constant dilaton, appears not to be very promising as
starting point for a holographic duality.

Nevertheless, there have been some attempts to circumvent this conclusion. In particular,
a concrete proposal for a model of AdS2 holography with constant dilaton was made in [164].
They introduced an additional Maxwell field and, using the similarity of the theory to a two-
dimensional CFT, found an anomalous transformation behavior for the stress tensor twisted
by the U(1) current. Their results were confirmed through a holographic renormalization
procedure [165]. This is in line with the discussion at the beginning of section 4.4 in the
previous chapter.

However, when calculating the canonical boundary charges á la Brown and Henneaux [26]
it turns out that they vanish for this particular model in the classical approximation, see
for instance appendix A of [166], reminiscent of the situation in near horizon extremal
Kerr [42–44] as was mentioned in the introduction. Thus, from an intrinsic two-dimensional
perspective there are no physical states, which is consistent with the general argument of [45]
mentioned above.

What was not known until the publication of [4], on which this chapter is based, is to what
extent these conclusions are specific to the chosen model, the chosen boundary conditions
and/or the classical approximation. It could be that some model exhibits non-trivial constant
dilaton holography.

Thus, we are going to study an extension of the Euclidean dilaton gravity action (3.5) by

67
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a Maxwell field

Ibulk = � k

4⇡

Z
d2x

p
g
�
XR� U(X)(@X)2 � 2V (X)� 1

4 F (X)fµ⌫f
µ⌫
�

(5.1)

where k = 1/(4G) is inversely proportional to the Newton constant and where fµ⌫ =
@µa⌫ � @⌫aµ is the Abelian field strength. The main aim of the present chapter is to clarify
the issue raised in the above paragraph by a comprehensive holographic analysis of all the
models described by the bulk action (5.1) that allow for AdS2 solutions with a constant
dilaton field. We will find that the PSM formulation will be very convenient to study these
constant dilaton vacua (CDVs).

The main conclusion we will find is that AdS2 holography is trivial for constant dilaton
boundary conditions for any choices of the functions U , V and F in the bulk action (5.1).
We will show the robustness of our conclusion by considering looser boundary conditions,
non-linear interactions of the Maxwell field with the dilaton, inclusion of higher spin fields
or generic gauge fields. Therefore, if one would like to study AdS holography in a purely
two-dimensional context one has to give up the condition of a constant dilaton. This will be
subject of the following chapters.

The outline of this chapter is as follows. In section 5.1 we are going to define the model
and determine conditions on our solutions for them to be CDVs in AdS2. Using the boundary
conditions on the metric (4.6) as inspiration we propose AdS2 constant dilaton boundary
conditions. In section 5.2 we discuss the canonical charges for our boundary conditions
and show that all of them vanish. We try to circumvent this result by considering various
generalizations but always end up with a similar conclusion. In order to determine if the
theory can be non-trivial if one considers quantum effects we calculate the one-loop partition
function in section 5.3, finding again that the result is trivial.

As everywhere else in this thesis, the viewpoint taken is an intrinsic two-dimensional one,
without any relations to higher-dimensional theories, since we are interested in genuine AdS2

holography. Naturally, our perspective and scope differ from papers that try to connect with
AdS3 holography, see, e.g., [166–168] and Refs. therein.

5.1 Poisson-sigma model formulation of CDVs

Introducing Cartan variables as in section 3.4 converts the second order action (5.1) into
a first order action that depends on the zweibein ea, the dualized spin-connection !, the
gauge connection a, the dilaton X, Lagrange multipliers for the torsion constraint Xa and
an auxiliary field f , which on-shell becomes essentially the electric field E. The bulk action
is given by

Ibulk = � k

2⇡

Z �
Xa (dea + ✏a

b! ^ eb) +X d! + f da+
1

2
✏abea ^ eb V(Xc, X, f)

�
(5.2)

with
V(Xc, X, f) = � 1

2 X
aXb�ab U(X)� V (X) + f2/F (X) . (5.3)

The only difference to the first order action presented in section 3.4 is the inclusion of
additional fields related to the Maxwell term in (5.1) and a corresponding change of the
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potential function V. We will be working in Euclidean signature from now on so that the
tangent space metric is just the Kronecker delta. The metric follows in the usual way from
the zweibein, gµ⌫ = eaµe

b
⌫�ab.

Using the map between dilaton gravity and PSM formulation given in section 3.4 in the
other direction we can formulate (5.2) as a PSM model (3.44). The target space is now a
four-dimensional space with coordinates XI = (X, Xa, f). The connection 1-form AI has
four components AX = !, Aa = ea, Af = a and the Poisson tensor acquires additional
(vanishing) entries

PXb = Xa✏ b
a P ab = V(Xc, X, f)✏ab P fX = P fa = 0 P IJ = �P JI . (5.4)

For convenience, we write down again the equations of motion that follow from this
action:

dXI + P IJAJ = 0 (5.5a)

dAI +
1

2
@IP

JKAJ ^AK = 0 . (5.5b)

As in this chapter we are only interested in CDV solutions of the equations of motion we
find

Xc = 0 X = X̄ f = f̄ (5.6)

in accordance with the discussion in section 3.4. The constants X̄ and f̄ are related by the
condition

V(Xc = 0, X = X̄, f = f̄) = 0 (5.7)

which is dictated by the requirement that the Poisson tensor vanishes on-shell. The first
set of equations (5.5a) then holds trivially. Equations (5.5b) for the connection 1-forms AI

imply vanishing torsion Ta, constant curvature R and constant electric field E

dea + ✏a
b ! ^ eb = 0 = Ta, (5.8a)

⇤ d! = �@XV =
1

2
R, (5.8b)

⇤ da = �@fV = �E . (5.8c)

To obtain an AdS2 solution with unit AdS radius, R = �2, we additionally demand

@XV(Xc, X, f)
��
Xc=0, X=X̄, f=f̄

= 1 . (5.9)

Since V has dimension of inverse length squared, condition (5.9) can be achieved always by a
rescaling of units, provided the quantity @XV is positive on a given CDV, which is necessarily
the case for AdS vacua.

Boundary conditions in the PSM formulation

The line-element for AdS2 in Fefferman–Graham gauge was already introduced in the previous
section. Based on equation (4.6) we define CDV boundary conditions in the PSM formulation
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that lead asymptotically to the above solutions for the line-element and constant dilaton and
electric field.

X0 = 0 e⌧0 = 1
2 e

⇢ � e�⇢L(⌧) +O(e�3⇢) e⇢0 = 0 (5.10a)
X1 = 0 e⌧1 = 0 e⇢1 = 1 (5.10b)
X = X̄ !⌧ = � 1

2 e
⇢ � e�⇢L(⌧) +O(e�3⇢) !⇢ = 0 (5.10c)

f = f̄ a⌧ = E !⌧ + j(⌧) +O(e�2⇢) a⇢ = 0 (5.10d)

The constants X̄ and f̄ are related through the conditions (5.7) and the electric field E is
given by (5.8c). We have gauge-fixed as much as possible, using Fefferman–Graham gauge
for the zweibein and axial gauge for spin- and gauge-connections. These are essentially the
same boundary conditions as used in [165], reformulated in PSM language and generalized
to arbitrary dilaton gravity models (5.1). There are two free functions of the Euclidean time
⌧ appearing in our boundary conditions, L(⌧) and j(⌧).

We consider now all transformations (3.50) that preserve the gauge and boundary
conditions (5.10) and find

�0 = 1
2 �(⌧)e

⇢ +
�
� �(⌧)L(⌧) + �00(⌧)

�
e�⇢ (5.11a)

�1 = ��0(⌧) (5.11b)
�X = � 1

2 �(⌧)e
⇢ +

�
� �(⌧)L(⌧) + �00(⌧)

�
e�⇢ (5.11c)

�f = E �X + µ(⌧) . (5.11d)

Thus, we have two free functions, �(⌧) and µ(⌧), parametrizing all allowed boundary
condition preserving transformations. In the nomenclature given at the end of section 3.5
these correspond to the allowed symmetry transformations that preserve the space of field
configurations F defined by the boundary conditions (5.10).

Under the transformations (5.11) the free functions L and j change according to

�L = L0�+ 2L�0 + �000 (5.12)
�j = �µ0 . (5.13)

These results are compatible with the ones in [164–166], but now are valid for arbitrary
dilaton gravity models with an AdS CDV. In particular, the presence of a Maxwell field is in
no way essential for the appearance of the infinitesimal Schwarzian derivative in (5.12), that
we already saw in the study of allowed symmetries in the second order formulation (4.22).

Introducing the normalization factor ↵ for the Virasoro zero mode, L0 = ↵L0, we find
that our result (5.12) is compatible with the assumption that the asymptotic symmetry
algebra contains a Virasoro algebra [Ln, Lm] = (n�m)Ln+m + c/12 (n3 � n) �n+m, 0 with
central charge

c = 12↵ (5.14)

again in concordance with the results in [164]. The chiral Cardy formula would then yield
an entropy

SCardy =
⇡2c T

3
= 2⇡

r
cL0

6
= 2⇡↵

p
L0 . (5.15)
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However, we have not checked yet whether there is a non-trivial asymptotic symmetry algebra
in the first place; it could be that the transformations (5.12), (5.13) are pure gauge, in which
case the theory would contain no physical states besides the vacuum. Therefore, we will now
turn to the charges constructed in section 3.5.

5.2 Canonical charges of the model

Repeating expression (3.108), the canonical boundary currents of the theory are given by

�Q[�I ] =
k

2⇡
�XI �I

��
⇢!1

. (5.16)

The canonical currents (5.16) vanish identically for our boundary conditions (5.10) since
X̄ is assumed to be a fixed quantity for the whole phase space. The canonical charges are
state-independent and hence trivial. This means that the asymptotic symmetry algebra is
empty, and the boundary condition preserving transformations (5.12), (5.13) are pure gauge.

Another interesting property of the canonical currents (5.16) is their gauge invariance

��2
J

Q[�1I ] =
k

2⇡
P IJ�2J �

1
I

��
⇢!1

= 0 (5.17)

due to the CDV conditions (5.6). This shows that even non-infinitesimal transformations
(connected with the identity) cannot make the canonical currents non-trivial.

Another indication that the theory is empty comes from the on-shell action. Notice that
the PSM action (3.44) already has a well-defined variational principle for our boundary
conditions, without the need to add a further boundary term

��
��
CDV

=
k

2⇡

Z

@M
AI �X

I = 0 . (5.18)

According to the saddle-point approximation to the Euclidean path integral an action with
a well-defined variational principle, evaluated on a solution yields the free energy of that
configuration. We find for all solutions encompassed by our boundary conditions (5.10)

�
��
CDV

= 0 . (5.19)

All of this can be regarded as a reformulation of the statement in [45] mentioned above
that there exist no finite energy states above AdS2. It is worth stressing again that this is
completely independent of the chosen model and of the presence or absence of a Maxwell
field.

Possible Generalizations

We will now try to circumvent these conclusions by considering looser boundary conditions
and more complicated interactions.
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Looser boundary conditions. Perhaps the boundary conditions (5.10) are simply too
strict. Indeed, we have switched off all fluctuations of the target space coordinates, but we
could have allowed instead some asymptotic fall-off. From the canonical currents (5.16) we
see that a fall-off behavior of the dilaton field of the form �X = O(e�⇢) could produce finite
canonical charges, since the gauge parameter �X in (5.11) diverges like e⇢. Motivated by
this observation we consider now looser boundary conditions that allow for such terms.

X0 = X0
(1)(⌧)e

�⇢ +O(e�2⇢) (5.20a)

X1 = X1
(1)(⌧)e

�⇢ +O(e�2⇢) (5.20b)

X = X̄ +X(1)(⌧)e
�⇢ +O(e�2⇢) (5.20c)

f = f̄ + f(1)(⌧)e
�⇢ +O(e�2⇢) (5.20d)

e⌧0 = 1
2 e

⇢ + e(0)⌧0 (⌧) + e(1)⌧0 (⌧)e
�⇢ +O(e�2⇢) (5.20e)

e⇢0 = e(1)⇢0 (⌧)e
�⇢ +O(e�2⇢) (5.20f)

e⌧1 = e(0)⌧1 (⌧) + e(1)⌧1 (⌧)e
�⇢ +O(e�2⇢) (5.20g)

e⇢1 = 1 + e(1)⇢0 (⌧)e
�⇢ +O(e�2⇢) (5.20h)

!⌧ = � 1
2 e

⇢ + !(0)
⌧ (⌧) + !(1)

⌧ (⌧)e�⇢ +O(e�2⇢) (5.20i)

!⇢ = !(1)
⇢ (⌧)e�⇢ +O(e�2⇢) (5.20j)

a⌧ = E !⌧ + a(0)⌧ (⌧) + a(1)⌧ (⌧)e�⇢ +O(e�2⇢) (5.20k)

a⇢ = a(1)⇢ (⌧)e�⇢ +O(e�2⇢) (5.20l)

Again, the constants X̄ and f̄ are related through the conditions (5.7) and the electric field
E is given by (5.8c). Note that we particularly allow for fluctuations

�XI = O(e�⇢) . (5.21)

Since we are mostly interested in the evaluation of the canonical currents (5.16), we
impose on-shell conditions on all the fluctuation terms that we have written explicitly. The
EOM impose the conditions

X(1) = X0
(1) (5.22)

f(1) = 0 (5.23)

on the subleading components of the target space coordinates. There are further restrictions
on the functions appearing in the loose boundary conditions (5.20), but we do not need them
for our conclusions. Note that the conditions above imply

�X0 = �X +O(e�2⇢) �f = O(e�2⇢) . (5.24)
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The gauge parameters that preserve the boundary conditions (5.20) can be similarly
expanded

�0 = 1
2 �(⌧)e

⇢ + �(0)0 + �(1)0 e�⇢ +O(e�2⇢) (5.25a)

�1 = �(0)1 + �(1)1 e�⇢ +O(e�2⇢) (5.25b)

�X = � 1
2 �(⌧)e

⇢ + �(0)X + �(1)X e�⇢ +O(e�2⇢) (5.25c)

�f = E �X + µ(⌧) + �(1)f e�⇢ +O(e�2⇢) . (5.25d)

Again, there will be restrictions on the functions appearing in the gauge parameters (5.25),
and again we do not need them for our conclusions.

With the boundary conditions and gauge parameters above the canonical currents (5.16)
expand to a sum of order unity terms [due to (5.21)] and subleading terms

�Q[�I ] =
k�(⌧)

4⇡
e⇢c
�
�X0 � �X � E �f

�
+O(e�⇢c) . (5.26)

Here ⇢c � 1 is the cut-off surface where the charges are evaluated. Taking the cut-off to
infinity, ⇢c ! 1, removes the subleading terms O(e�⇢c). However, due to the relations
(5.24) the order unity terms cancel precisely and the canonical currents vanish.

Therefore, even for the looser set of boundary conditions (5.20) the canonical charges are
trivial.

Let us discuss one final generalization of our boundary conditions. We can allow X and f
to fluctuate to O(1), as long as the condition (5.7) remains intact. This modifies the previous
boundary conditions by making X̄ and f̄ state dependent, so that the following fluctuations
are allowed additionally

�X = �E �f �f = O(1) . (5.27)

In this case there is a non-trivial, integrable and finite U(1) charge.

Q[µ] =
k

2⇡
fµ (5.28)

However, there are still no diffeomorphism charges, and the asymptotic symmetry algebra is
trivial, since any gauge variation of the charge (5.28) vanishes due to ��I

f = P fI�I = 0. We
consider this case as somewhat artificial, as the boundary electric field (5.8c) is allowed to
vary.1

Having failed in circumventing the triviality statement by considering looser boundary
conditions one could conceive of adding interactions in the form of Yang–Mills or higher
spin fields to find non-vanishing charges. However, as is argued in [4] also these fields do not
change the conclusion.

In all the examples so far we have seen that the canonical diffeomorphism charges are
trivial classically. In the next section we check indirectly if this statement also holds at the
quantum level by calculating the full quantum gravity partition function.

1This choice of boundary conditions was also discussed in [168].
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5.3 Quantum gravity partition function

The canonical analysis of the previous section was classical. It is conceivable that switching
on quantum effects makes the theory non-trivial. After all, the asymptotic symmetry algebra
and the canonical charges could receive quantum corrections, so even if the classical results
show triviality the quantum mechanical results might be non-trivial. In this section we rule
out this possibility by considering the full quantum gravity partition function and showing
that it is unity.

Classical partition function

We use the Euclidean path integral formulation [169,170]. Our aim is to determine the full
quantum gravity partition function

Z =

Z

bc

(DXI)(DAI)(measure) exp
�
� �[XI , AI ]

�
(5.29)

where ‘bc’ denotes that we evaluate the path integral for certain boundary and smoothness
conditions, ‘measure’ refers to the ghost- and gauge-fixing part, and � is the full action, i.e.,
including boundary terms such that the variational principle is well-defined. Results for
the exact path integral have shown quantum triviality, i.e., the quantum partition function
equals the classical one [171]. However, the previous calculations did not take into account
asymptotic boundary conditions, nor possible global effects, nor instanton contributions.
This is why we re-evaluate the path integral. As we shall see, the local results of [171] are
not modified globally for CDVs.

We make now an expansion of the path-integral into classical contribution (c), perturbative
corrections (p) and non-perturbative corrections (n).

Z = Zc ⇥ Zp ⇥ Zn (5.30)

We start with the classical piece.

Zc = exp
�
� �|CDV

�
(5.31)

With the result (5.19) we then obtain

Zc = 1 . (5.32)

Thus, the classical partition function is trivial, which concurs of course with the conclusions
of section 5.2 that the canonical charges are trivial.

Perturbative corrections

Let us consider now the perturbative corrections Zp to the classical partition function (5.32).
Given that our theory is a topological field theory of Schwarz type, one can argue that the
theory should be one-loop exact, along similar lines as [35] (who applied this to 3-dimensional
gravity). We assume that there is no relevant subtlety with these arguments, so that the
one-loop partition function captures the full information about all perturbative corrections.
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In the one-loop calculation we use bars to denote classical values, while un-barred
quantities will be quantum fluctuations. The action quadratic in quantum fluctuations reads

S2 = � k

2⇡

Z
d2x


✏̃µ⌫XI(@µA⌫I + ⌦µI

JA⌫J) + (ē)
1

2

@2V(X̄K)

@XI@XK
XIXK

�
(5.33)

where (ē) = 1
2 ✏̃

µ⌫✏abēµaē⌫b and

⌦µa
b = !̄µ✏

b
a (5.34)

⌦µa
X = �✏ b

a ēµb ⌦µX
a = �✏abēµb (5.35)

⌦µf
a = �Ē✏abēµb . (5.36)

All other components of the connection ⌦ vanish. To derive (5.33) we used that the classical
fields satisfy (5.8)-(5.9) for an AdS2 CDV with unit AdS radius.

The same connection appears in the linearized gauge transformations

��X
J = 0 ��AµI = �@µ�I � ⌦µI

J�J ⌘ �Dµ�I . (5.37)

The invariance of the quadratic action (5.33) under gauge transformations (5.37) implies
that the connection ⌦ is flat.

[Dµ, D⌫ ] = @µ⌦⌫ � @⌫⌦⌫ + [⌦µ,⌦⌫ ] = 0 (5.38)

The flatness of the connection can also be verified by direct calculation.
Let us expand the fluctuations AµI into a sum of gauge (�) and transverse (�) parts.

AµI = �Dµ�I + " ⌫µ D†

⌫�I +A(h)
µI (5.39)

Here " ⌫µ is the Levi–Civitá tensor. A(h)
µI correspond to square integrable harmonic one-forms,

that are both longitudinal and transverse and are given by gradients (with Dµ) of non-
normalizable zero modes of the scalar operator D†

µDµ (cf., e.g., [172]). As argued in [173],
the harmonic one-forms correspond to boundary modes of the theory. Interestingly, these
modes do not contribute to the quadratic action (5.33). These facts hint to the holographic
triviality of CDVs. This is in contrast to the model considered in [174] where non-integrable
scalar modes on the hyperbolic plane generate physical boundary states.

The presence of infinitely many harmonic one-forms complicates computations of the
partition function on H

2. To avoid this difficulty we will analytically continue the partition
function to the sphere S2. The unit S2 is a CDV corresponding to the zeros of V(X,Xa, f)
where @XV = �1 instead of +1 in Eq. (5.9). Non-vanishing components of the zweibein and
spin-connection read: ē⇢1 = 1, ē⌧0 = sin(⇢), !̄⌧ = � cos(⇢). The only modification of the
connection ⌦µ is the sign flip of ⌦µX

a, that becomes

⌦µX
a = �✏abēµb (5.40)

on S2.
We define the path integral measure DAµJ by the identity

Z
DAµJ e�hA,Ai = 1 . (5.41)
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The path integral measure is, therefore, defined by the inner product h , i. We take an
ultralocal product

hA,A0i =
Z

d2x(ē)�IJ ḡµ⌫AµIA
0

⌫J . (5.42)

The connection ⌦ is not hermitian with respect to the inner product (5.42). This implies
in particular that D† 6= �D. However, it can be transformed to a hermitian one,

Dµ = ��1D̂µ� D̂ = �D̂† (5.43)

with the field
� = Id + � �f

X = �Ē (5.44)

where Id is the identity. Notice that for E = 0, we have � = Id and the connection is
Hermitian.

The change of variables AµJ ! �J , �J induces a Jacobian factor, DAµJ = J D�JD�J ,
which can be easily found by substituting the decomposition (5.39) in the definition of the
measure (5.41) and performing Gaussian integrals over � and �. This yields the Jacobian

J = det(D†

µD
µ)

1
2 · det(DµD

µ†)
1
2 . (5.45)

The one-loop partition function then decomposes into path integrals over X, � and �.

Z =

Z
DX DA exp(�S2)

=

Z
DX D�D�J exp


k

2⇡

Z
d2x(ē)

✓
�XIDµD†

µ�I +
1

2

@2V(X̄K)

@XI@XK
XIXK

◆�
(5.46)

The integration over � is performed trivially, yielding an infinite volume of the gauge group,
which we discard. The integration over XI and �I gives

Z = J · det(DµD†

µ)
�1 =

det(D†

µD
µ)

1
2

det(DµDµ†)
1
2

. (5.47)

Interestingly, the terms in S2 that are quadratic in fluctuations of the target space coordinates
XI have no influence on the partition function. This means that our results are universal for
AdS2 CDVs, regardless of the specific properties of the potentials in the action. Note that
for Ē = 0 we have D = �D†, and the partition function is trivial, Z = 1. This means we
have proven that the one-loop partition function is trivial if the electric field vanishes.

The only reason why the partition function (5.47) has a chance to be non-trivial is that
the transformation � is not unitary. In order to prove that the partition function vanishes
for non-zero electric field one parametrizes the transformation � in terms of a parameter
↵ and calculates �↵Z. We will not go into the details of these rather involved calculations
based on [175,176] but refer to the original paper [4]. As final result we find

�↵Z = 0 . (5.48)

Thus, the partition function is trivial, independently of the presence or absence of the electric
field. A similar conclusion can be reached based on the Euclidean path integral in the second
order approach [4].
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Using our arguments above on one-loop exactness we have then the result

Zp = 1 . (5.49)

Thus, there are no perturbative corrections to the classical partition function.

Nonperturbative Corrections

Let us finally consider non-perturbative corrections. These come from all classical saddle
points consistent with our boundary conditions (5.10), given a periodicity � of the boundary
coordinate ⌧ , and smoothness conditions, which we now specify. We allow all smooth
Euclidean saddle points; in particular we prohibit conical singularities. Thus, only two
saddle points are possible, namely global AdS2 and the Poincaré disk corresponding to values
L = � 1

2 and L = 1
2 , respectively, in Fefferman–Graham gauge (4.6). Note that these two

saddle points have different topologies: the former is topologically a cylinder, the latter
topologically a plane.

Thus, for fixed topology2 there is only one allowed saddle point and we find no instanton
corrections.

Zn = 1 (5.50)

In summary, the results (5.32), (5.49) and (5.50) together show that the full partition
function (5.30) is trivial,

Z = Zc ⇥ Zp ⇥ Zn = 1 . (5.51)

We conclude that AdS2 holography is trivial for CDVs not just classically, but also in the
full quantum theory, which has only one physical state, the vacuum.

Since we originally set out to find AdS2 holography we have to admit that our quest failed
for CDVs. The only state to match to a possible boundary theory would be the vacuum.
Thus, we showed in this chapter that the constant dilaton sector is just too trivial to allow
for interesting dynamics to match to a possible boundary theory. Having no other options
left, we return to the crossroads between constant and linear dilaton sectors, to take the
path of linear dilaton solutions.

2It is conceivable to sum over both topologies. Then each saddle point contributes with a trivial partition
function to the full partition function. However, it would still be a state-independent number and thus of no
physical significance.





Chapter Six

Jackiw-Teitelboim Model

We saw in the previous chapter that CDVs in generic models of two-dimensional dilaton
gravity are too simple to allow any physical states. It seems therefore that one has to turn to
models with linear dilaton solutions in order to find more interesting physics. Unfortunately,
one has to pay for this increase in complexity with the ability to treat all models in one go, as
we did in the previous chapter. In this chapter we are going to start with the simplest model
of dilaton gravity that allows for linear dilaton solutions in AdS2: the Jackiw–Teitelboim
model [79, 80].

The study of dilaton gravity in two dimensions began with this model in the 1980’s and
has been punctuated by periods of increased interest in the community. For instance, in
the early 1990s, work on the string theory black hole [108, 109, 177, 178] and the CGHS
model [111] triggered a new round of activity and led to the emergence of a host of new
models [179,180]. Neglecting global effects, the path integral for all of them was calculated
in [171]. See the book by Brown [181] for an account of the first five years, the review [99]
for a summary of the first eighteen years, and table 1 in [113] for a (non-exhaustive) list of
models.

Naturally, only after the late 1990s dilaton gravity was revisited in the context of AdS/CFT
[23–25] and holographic renormalization [142,182–184]. Interest in AdS2 holography has been
re-invigorated by recent work [47] on the Sachdev–Ye–Kitaev (SYK) model [46,48,185]. The
main reason for this is that the latter model shows an emergent reparametrization invariance
in the infrared that is spontaneously broken to a SL(2,R). As we will see, a similar pattern
of symmetry breaking is found in the JT model. In the SYK model, the resulting Goldstone
modes are governed by an effective action, the Schwarzian action, that emerges naturally as
a boundary action in the case of dilaton gravity. Appendix D contains an introduction to
the SYK model.

The outline of this chapter is as follows. Section 6.1 introduces the JT model and defines
the boundary conditions we are going to use. They differ in some respects from those found
in the previous literature. In particular, we assume that the dilaton is not fixed at the
boundary but transforms under the symmetry transformations. This circumvents the usual
argument that only constant dilaton vacua are consistent with all of the isometries of AdS2.
This possibility was discussed for the first time in [186], to the best of the author’s knowledge.
A short detour into the conformal boundary framework of Penrose sheds some light on the

79
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geometric interpretation of our boundary conditions. In section 6.2 we discuss the solutions
of the JT model. Section 6.3 shows that the JT model has a well-defined variational principle
when certain boundary terms are added to the action. We will furthermore discuss the
asymptotic Killing vectors of the model. In section 6.4 we will come to one of the main
points of this chapter, namely a derivation of the Schwarzian action from the JT model. To
this end, some material of section 4.4 on the coadjoint orbit of the Virasoro group will come
in handy. We will end this chapter with a discussion of the canonical charges of the JT
model in section 6.5, where we will see another indication for the spontaneous symmetry
breaking mentioned above.

Throughout this chapter we work with the second order action of dilaton gravity in
Euclidean signature at finite temperature �. The JT model is reformulated as a PSM model
in section 7. Based on this we will then discuss certain generalizations of the JT model and
their corresponding Schwarzian-like actions.

6.1 The model

The JT model is defined by the choice of functions U(X) = 0 , V (X) = �X in the action
(3.5) for dilaton gravity.1 This leads to the second-order action

IJT = � k

4⇡

Z

M

d2x
p
g X(R+ 2) , (6.1)

where again k = 1/(4G). From this we can see immediately that variation with respect to X
yields R = �2. Thus, the solutions for the metric will be locally AdS2. In total we find

Eµ⌫ = gµ⌫ X +rµr⌫X � gµ⌫ r2X = 0 (6.2a)
EX = R+ 2 = 0 , (6.2b)

as equations of motion.
Without additional boundary terms the action (6.1) is not well-defined. As is well-known,

a Gibbons–Hawking–York boundary term is required if the metric is to be subject to Dirichlet
boundary conditions only. Secondly, without specification of the boundary conditions the
functional space on which the action is extremized is not even defined. In general, further
counterterms have to be added to the action, so that the classical solution is indeed an
extremum for all variations compatible with the boundary conditions. We will do so in
section 6.3.

Our boundary conditions are as follows: In a coordinate system (⇢, ⌧) that is valid in the
neighborhood of the boundary @M, metric and dilaton field are of the form

ds2 = d⇢2 + (O(e2⇢) + ...) d⌧2 X = O(e⇢) . (6.3)

Notice that these are looser boundary conditions for the metric than

ds2 = d⇢2 + (
1

2
e2⇢ +O(1)) d⌧2 X = O(e⇢) , (6.4)

1A variant of the JT model in which the dilaton is shifted so that V (X) = �X + a, has been dubbed
Almheiri–Polchinski model [163]. One of the properties of this model is that it allows for both linear and
constant dilaton solutions, while the latter would be considered singular X = 0 in the JT model.
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where the boundary metric is fixed, that led to the Fefferman-Graham form (4.6).2 Note in
particular that the boundary metric is not fixed by the conditions (6.3) and the dilaton is
allowed to fluctuate to leading order. How can the boundary conditions (6.3) be consistent
with the explanation surrounding equation (4.6)? In order to clarify this issue it is worthwhile
to take an excursion into the conformal framework of Penrose [155].

A conformal excursion. Let us try to find a covariant formulation of what we mean by
a two-dimensional (Euclidean) AdS2 manifold M. We assume: i) there exists a conformal
factor ⌦ > 0 such that the unphysical metric g̃ = ⌦2g has a smooth limit to @M with ⌦ = 0
on @M and ra⌦ nowhere vanishing on @M; ii) the boundary has the topology of a circle
(being at finite temperature)3; iii) the Ricci scalar R = �2 +O(⌦2) at @M.4

The derivative of the boundary defining function ⌦ yields the normal vector to the
boundary na = ra⌦. A conformal transformation of the Ricci scalar gives

⌦2R̃ = (R� 2⌦r̃añ
a + 2ñaña), (6.5)

where tilded quantities are raised with the unphysical metric, r̃ is the covariant derivative
compatible with the unphysical metric and R̃ is the Ricci scalar of the unphysical metric.
Since the unphysical metric is smooth near the boundary, the unphysical Ricci scalar is
smooth as well, and taking the limit ⌦! 0 we find

1b=ñaña , (6.6)

where b= denotes evaluation at the boundary. If we were in Lorentzian signature, we would
learn from this equation that the boundary is time-like.

The behavior of the dilaton near the boundary is obtained by checking the conformally
transformed equation of motion (6.2) for smoothness. From this one finds that

X̃ = ⌦X (6.7)

is smooth at the boundary. The asymptotic structure of this system is therefore defined by
the pair (g̃ab, X̃) where the line denotes pullback to the boundary. But notice that this is
not unique, as a change in the conformal factor ⌦! !⌦ with ! > 0 induces a change

(g̃ab, X̃) ! (!2g̃ab,!X̃) (6.8)

on @M. If we do not want to introduce further structure on the manifold, in the form of the
conformal factor, then the two pairs should be equivalent. Thus, as part of the boundary
conditions only the conformal class of the boundary metric g̃ab is specified. Similarly, the
boundary dilaton is only specified up to multiplication by an arbitrary function.

2In the original work [2] even looser boundary conditions were considered. In order to reduce clutter and
in an attempt to focus on particular results we will only discuss (6.3) and (6.4) in this thesis.

3We assume that the spacetime has only one boundary, i.e., it has the topology of a (possibly singular)
disc.

4In higher dimension D condition (ii) is replaced by the requirement that the boundary is topologically
S
D�2 ⇥ S (or S

D�2 ⇥ R in Lorentzian signature) and (iii) is replaced by a condition on the asymptotic
behavior of the stress-energy tensor and the requirement that Einstein’s equations hold.
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In this conformal framework, an asymptotic symmetry is a vector field ⇠ in M that has
a smooth extension to the boundary @M and induces the change (6.8) in the boundary
structure by acting on the physical metric with the usual Lie derivative. We have

�⇠ g̃ab ⌘ ⌦2£⇠gab = £⇠ g̃ab � 2⌦�1⇠cncg̃ab (6.9a)

�⇠X̃ ⌘ ⌦£⇠X = £⇠X̃ � ⌦�1⇠cncX̃ . (6.9b)

Since this should have a smooth limit to @M we find that ⇠cnc = ⌦K for some arbitrary
function K that is smooth at the boundary. It is important to stress that this only fixes a
trivial symmetry generator, as this component actually vanishes at the boundary.5 Setting
K = 0 and calculating the pull-back of (6.9), we find that vector fields acting as conformal
Killing vectors for the boundary metric g̃ab produce the change (6.8). This is another
derivation of the fact that the asymptotic symmetries of asymptotically AdS-spacetimes
(note that nothing essential about our derivation assumed two dimensions) correspond to the
conformal symmetries of the boundary metric, usually taken to be the flat metric.6

Two comments are in order. Firstly, it is important to notice that the conformal factor ⌦
was assumed to be part of the background structure in equation (6.9) since it was not varied
under a symmetry transformation �⇠⌦ = 0, in line with the general principle (1.2). Secondly,
in most applications the coefficient of the subleading term K is chosen in such a way that
the boundary metric does not transform �⇠ g̃ab = 0.

We are now in the position to understand the two sets of boundary conditions (6.3)
and (6.4). Starting with the latter, suppose we are given the boundary data (g̃ab, X̃) being
arbitrary functions. We can use the freedom (6.8) to set one of the two functions to any
value, since the boundary metric is one-dimensional and thus conformal to any other one-
dimensional metric. We decide to fix the boundary metric to g̃(0)ab to the value 1

2 so that the
boundary data for the dilaton remains arbitrary. Since the asymptotic symmetries act on
g̃(0)ab as conformal Killing vectors we have

�⇠ g̃
(0)
ab b=£⇠ g̃

(0)
ab � 2Kg̃(0)ab = 2Da⇠

ag̃(0)ab � 2Kg̃(0)ab (6.10)

where Da denotes the covariant derivative with respect to the boundary metric, and the
factor follows from taking the trace of the conformal Killing equation. Thus, we can choose
K = Da⇠a in order to preserve the above condition, �⇠ g̃

(0)
ab = 0. The dilaton then transforms

as
�⇠X̃ b=£⇠X̃ �Da⇠

aX̃ = ⇠aDaX̃ �Da⇠
aX̃ , (6.11)

i.e., as a boundary vector. We will re-derive this result in coordinates below.
The above provides a nice geometrical interpretation for the more restrictive set of

boundary conditions (6.4). What is the interpretation for the looser set of boundary
conditions where the boundary metric is an arbitrary function? Everything on the above
hinged on the assumption that ⌦ is arbitrary but non-dynamical. This led to equation (6.8)
that allowed us to fix half of the boundary data. However, one can also think of ⌦ not as

5For a discussion of this issue in the case of four-dimensional asymptotically flat spacetimes see, e.g.,
[187,188].

6Again, without a concrete theory or a symplectic structure we do not know whether these transformations
are proper or improper gauge transformations using the terminology introduced at the end of section 3.5
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background structure but as an additional dynamical field. Then fixing the boundary metric
to a particular value by the transformation (6.8) is not possible anymore since ⌦ will take on
a different value that is assumed to be physically distinguishable. Notice that by this we are
leaving the realm of pure geometry since we are now assuming that the manifold M carries
more structure than just the metric (and the dilaton). Furthermore, since the argument
of (6.10) was based on having fixed the boundary metric using the transformations (6.8),
there will be no way to fix the subleading component ⇠cnc = ⌦K. Thus, we expect that this
subleading component will become an independent parameter of transformations.

This concludes our digression into the conformal framework. What follows can be
understood without the above but it provides a geometric point of view on the following
results we will derive in coordinates.

6.2 Linear dilaton solutions

Let us now solve the equations of motion (6.2). From our boundary conditions we find the
expansion

ds2 = d⇢2 + h(⇢, ⌧)2 d⌧2 (6.12)

with h being linear in e⇢. The Ricci scalar is then R = �2h�1 @⇢2h, so the equation of
motion EX = 0 immediately gives

h(⇢, ⌧) = e⇢ L+(⌧)� e�⇢ L�(⌧) . (6.13)

Likewise, combining the different components of Eµ⌫ = 0 yields the following equation for
the dilaton

@2⇢X = X , (6.14)

which is solved by

X(⇢, ⌧) = e⇢ X+(⌧) + e�⇢ X�(⌧) . (6.15)

The equations E⇢⌧ = 0 and E⇢⇢ = 0 together yield the condition

@⇢

✓
�@⌧X

h

◆
= 0 . (6.16)

The quantity in parentheses must be a function of ⌧ . It will be convenient to call this
radial-independent quantity X 0. As a result, the functions in (6.13) and (6.15) satisfy

(X±)0 ± L± X 0 = 0 , (6.17)

where a prime indicates a derivative with respect to ⌧ . Finally, if we evaluate E⇢⇢ = 0 using
(6.13), (6.15), and (6.17), we find one last condition

(X 0)0 + 2
�
L+ X� � L� X+

�
= 0 . (6.18)
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The three equations (6.17) and (6.18) comprise the on-shell conditions for the free functions
appearing in (6.13) and (6.15). Notice that the three equations are not linearly independent:
the combination

C = X+ X� � 1

4
(X 0)2 (6.19)

is preserved @⌧C = 0. This should come as no surprise since we immediately recognize (6.19)
as the Casimir function available in every dilaton gravity model.

Some of the solutions derived above correspond to Euclidean versions of the two-
dimensional black holes discussed in section 4.1. Suppose h(⇢, ⌧) vanishes for some (possibly
⌧ dependent) value of ⇢. We will denote this by ⇢ = ⇢H(⌧). In Lorentzian signature this
would correspond to a horizon.Then we have

L�(⌧) e�⇢H(⌧) = L+(⌧) e⇢H(⌧) . (6.20)

To remove any conical singularities, we set L+(⌧) e⇢H(⌧) = 2⇡/�. Thus, we have black hole
solutions with

ds2 = d⇢2 +

✓
⇡

�
e⇢�⇢H(⌧) � ⇡

�
e�⇢+⇢H(⌧)

◆2

d⌧2, (6.21)

which can be rewritten as

ds2 = d⇢2 +
4⇡2

�2
sinh2

�
⇢� ⇢H(⌧)

�
d⌧2. (6.22)

6.3 Variational principle and asymptotic symmetries

We mentioned above that the action (6.1) is not well-defined without further boundary terms.
In this section we want to show that a good variational principle is provided by the full
action

� = � k

4⇡

Z

M

d2x
p
g X (R+ 2)� k

2⇡

Z

@M
dx

p
�XK

+
k

2⇡

Z

@M
dx

p
�
⇣p

X2 + c0 +
1

2X
�µ⌫ @µX@⌫X

⌘
, (6.23)

where � is the induced metric on @M and K is the trace of the extrinsic curvature of @M
embedded in M. The variation of this action yields

��� =
k

4⇡

Z

M

d2x
p
g
h
Eµ⌫ �gµ⌫ + EX �X

i
(6.24)

+
k

2⇡

Z

@M
dx

p
�
h �
⇡µ⌫ + pµ⌫

�
�gµ⌫ +

�
⇡X + pX

�
�X
i
.
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Setting to zero the bulk terms gives the equations of motion (6.2) while the coefficients of
the field variations appearing in the boundary term are

⇡µ⌫ =
1

2
�µ⌫ n�r�X (6.25)

pµ⌫ = � 1

2
�µ⌫
p
X2 + c0 +

1

2X

⇣
�µ� �⌫� � 1

2
�µ⌫ ���

⌘
@�X @�X (6.26)

⇡X = K (6.27)

pX = � Xp
X2 + c0

+
1

2X2
�µ⌫ @µX @⌫X +Dµ

⇣ 1

X
DµX

⌘
. (6.28)

The ⇡’s come from the variation of the terms in the first line of (6.23), while the p’s come
from the variation of the holographic counterterms in the second line.

The first holographic counterterm in the second line of (6.23) was obtained in [112] via
variational arguments and the Hamilton–Jacobi approach to holographic renormalization.
However, that derivation assumed that the boundary @M was an isosurface of the dilaton,
which is not the case here. Solving the Hamilton–Jacobi equation order-by-order in a boundary
derivative expansion yields the final term in (6.23). The first holographic counterterm contains
a constant c0. This constant was set to zero in [112], to preserve a stringy symmetry of the
action (Buscher duality). We will not set it zero immediately. Indeed, we will find in section
6.4 that it has a natural interpretation in terms of the conformal quantum mechanics of
dAFF [189].

Solutions of the equations of motion (6.2) have constant negative curvature, R = �2, and
hence the bulk term in the action (6.23) vanishes. The non-zero contributions come from
the boundary terms

�
��
R=�2

= � k

2⇡

Z

@M
dx

p
�

✓
XK �

p
X2 + c0 �

1

2X
�µ⌫ @µX@⌫X

◆
. (6.29)

Taking the boundary @M as the ⇢c ! 1 limit of the surface ⇢ = ⇢c, the on-shell value is

�
��
pEOM

= � k

2⇡

Z
d⌧

L+

2X+

⇣
4 C � c0

⌘
. (6.30)

Obtaining this result involved integrating-by-parts, imposing the first equation of (6.17) and
(6.18), and dropping total (boundary) derivatives. The fact that we did not have to impose
all equations of motion will become important later. The subscript pEOM in (6.30) thus
denotes being partially on-shell.

In the following it will be useful to define the quantity

Y =
X+

L+
, (6.31)

and the zero-mode of its inverse

Y
�1 ⌘ 1

�

�Z

0

d⌧

Y
(6.32)

that will play a leading role in this chapter and the next.
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Evaluating the variation of the action (6.24) on a solution of the equations of motion, we
have

��
���
pEOM

=
k

2⇡

Z
d⌧


1

4X+L+

�
4 C + c0

�
e�2⇢ �g⌧⌧ �

L+

2 (X+)2
�
4 C + c0

�
e�⇢ �X

�
. (6.33)

From the powers of e�⇢, we see that on-shell �� vanishes for any variations of the fields that
grow more slowly than the leading terms in g⌧⌧ and X as ⇢! 1. This is what one expects
for an action that admits a variational principle with Dirichlet boundary conditions on the
fields at ⇢! 1. But if we consider variations of the leading terms in the fields, this becomes

��
���
pEOM

=
k

2⇡

Z
d⌧


1

2X+

�
4 C + c0

�
�L+ � L+

2 (X+)2
�
4 C + c0

�
�X+

�
. (6.34)

With the above definitions the on-shell variation reduces to

��
���
pEOM

=
k

4⇡

Z
d⌧ (4 C + c0) �

⇣ 1

Y

⌘
. (6.35)

Assuming now that we go fully on-shell, i.e., imposing all three equations (6.17) and (6.18)
implies that the Casimir is constant. We have therefore

��
���
EOM

=
k

4⇡
(4 C + c0)

Z
d⌧ �

⇣ 1

Y

⌘
. (6.36)

Thus, the on-shell variation of the action is zero even for variations of the leading terms
in the fields, provided the zero-mode of the ratio L+/X+ = 1/Y is held fixed. While this
variational principle might seem somewhat odd at first sight, we will see in section 6.4 that
it comes with an interesting geometrical interpretation.

Since the free energy of a configuration is related to the on-shell action via F = ��1 �|EOM

in the saddle-point approximation to the Euclidean path integral, the above yields

F = � k

⇡Ȳ

⇣
C +

c0
4

⌘
, (6.37)

since the Casimir is on-shell constant.

Asymptotic Symmetries

We will now turn to the asymptotic symmetries of our boundary conditions. Under a
diffeomorphism xµ ! xµ � ⇠µ, the bulk fields transform with the Lie derivative £⇠ along the
vector field ⇠.

�⇠gµ⌫ = £⇠gµ⌫ = ⇠↵@↵gµ⌫ + gµ↵@⌫⇠
↵ + g⌫↵@µ⇠

↵ �⇠X = £⇠X = ⇠↵@↵X (6.38)

In a neighborhood of @M (⇢! 1), the most general diffeomorphism that preserves the
gauge g⇢⇢ = 1 and the generalized Fefferman–Graham form of the fields (6.3) is given by

⇠⌧ = �(⌧) + e�2⇢
�0

2(L+)2
+O(e�4⇢) (6.39a)

⇠⇢ = �(⌧) . (6.39b)
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The action of this diffeomorphism on the fields is

�⇠L+ = �L+ + (�L+)0 (6.40a)

�⇠L� = � �L� + (�L� � �0

2L+
)0 (6.40b)

�⇠X+ = �X+ � �L+ X 0 (6.40c)

�⇠X 0 = � 2�L+ X� + 2 (�L� � �0

2L+
)X+ (6.40d)

�⇠X� = � �X� + (�L� � �0

2L+
)X 0 . (6.40e)

For the stricter boundary conditions, the condition of preserving L+ = 1
2 would give

� = �2�0 thus fixing the subleading component ⇠⇢ (to see that this indeed vanishes at
the boundary, it is useful to do the change of coordinates e⇢ = ⌦). The pullback of X
to the boundary, X+, then transforms as a vector. Since this is not possible anymore in
the case of looser boundary conditions, the subleading component becomes an independent
transformation parameter �.

Under the diffeomorphism (6.39), the response of the on-shell action has the form (6.36).
The ratio L+/X+ = 1/Y transforms on-shell as a total derivative

�⇠
⇣ 1

Y

⌘���
pEOM

=
⇣ �
Y

⌘0
. (6.41)

This means in particular that the zero mode of 1/Y is not changed, which is a non-trivial
consistency check of our variational principle. Thus, the action (6.23) is invariant under
diffeomorphisms that take the form (6.39) in a neighborhood of @M.

6.4 Schwarzian action

We have shown that the variational principle is well-defined, if the zero-mode of the ratio
L+/X+ = 1/Y is fixed. In this section we clarify the interpretation of this variational
principle and, provided with these results, show its relation to the Schwarzian action that
rose to prominence recently in the context of SYK (-like) models.

Comments on the variational principle

As equation (6.41) shows, the quantity 1/Y transforms as a total derivative under an
infinitesimal change of the boundary coordinate ⌧ 7! ⌧ � �(⌧). The quantity Y itself
transforms as a vector on-shell

�⇠Y
��
pEOM

= Y 0� � �0Y (6.42)

under this infinitesimal change of coordinates and is a well-defined, nowhere vanishing vector
field on @M for the following reasons. For consistency, L+ must be a nowhere vanishing
positive function such that the induced metric on the cut-off surface ⇢c is Euclidean and
non-singular in the limit ⇢c ! 1. Similarly, the leading order component of the dilaton, X+,
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must be a non-zero (positive) function everywhere if we want to interpret the asymptotic
region ⇢ ! 1 as a weak coupling region X ! 1. Consequently, the quantity Y that we
keep fixed as part of our boundary conditions is finite and well-defined.

Furthermore, let us define the function M(⌧),

M = T � P2 � P 0 (6.43)

where
T = L+L� P = � (L+)0

2L+
. (6.44)

This can be regarded as a boundary stress tensor obtained by a (twisted) Sugawara construc-
tion (6.43) from L±. It transforms with an infinitesimal Schwarzian derivative,

�⇠M = �M 0 + 2�0M +
1

2
�000 (6.45)

under infinitesimal reparametrizations of the boundary coordinate as can be checked straight-
forwardly using the relations (6.40). This is immediately recognized as the infinitesimal
transformation of a coadjoint vector of the Virasoro group given in equation (4.39). Under
finite transformations, ⌧ 7! f(⌧), where f(⌧) is a diffeomorphism on S1 obeying

f 0(⌧) > 0 f(⌧ + �) = f(⌧) + � (6.46)

we find the transformation law (4.38)

f ·M = M̃(f(⌧)) =
1

(f 0(⌧))2
�
M(⌧)� 1

2 Sch[f ](⌧)
�
. (6.47)

In the following it will be convenient to evaluate the left hand side of (6.47) at ⌧ instead
of f(⌧). Using the cocylce condition for the Schwarzian derivative with g = f�1 yields

f ·M = M̃(⌧) =
�
(f�1)0(⌧)

�2
M(f�1(⌧)) + 1

2 Sch[f�1](⌧) . (6.48)

Since a particular coadjoint orbit is a homogeneous space for the Virasoro group, the result
(6.48) shows that any point on the orbit M̃ can be reached by acting with an appropriate
diffeomorphism f(⌧) on a chosen representative M . With the help of the quantity M , the
on-shell conditions (6.17) and (6.18) are equivalent to the equation

C = Y 2M � 1
4 (Y

0)2 + 1
2Y Y 00 , (6.49)

relating M , Y , and the Casimir function C. Conservation of the Casimir C0 = 0 establishes

YM 0 + 2Y 0M + 1
2Y
000 = 0 . (6.50)

We stress that only two of the three constraints are needed to derive equation (6.49), which
implies that this equation is valid without assuming the conservation of the Casimir. By
contrast, (6.50) is an immediate consequence of this conservation and is valid only if all three
constraints are imposed. This distinction between “fully on-shell" and “partially on-shell"
will be important for the following.
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Since the (rescaled) leading order of the dilaton field transforms like a boundary vector
and solves equation (6.50) it can be regarded as the stabilizer of the coadjoint orbit of the
Virasoro group determined by M . If the on-shell condition of conservation of the Casimir
function is not enforced, comparison between (6.50) and (6.45) suggests that the quantity Y
generates infinitesimal diffeomorphisms under which M transforms anomalously.

By solving the equation
d⌧

Y
=

d⌧̃

Y
(6.51)

one can always find a diffeomorphism ⌧ 7! ⌧̃ to a new coordinate system ⌧̃ in which Y takes
the constant value Y . In this coordinate system equation (6.49) yields

M = CY �2, (6.52)

thus determining the constant representative of each orbit (cf. the discussion in section 4.4).7
In this coordinate system the solution of equation (6.50) is straightforward. For generic
values of M , Y will be the only periodic solution to this equation, and the stabilizer group is
just U(1). However, at the exceptional values

M =
n2⇡2

�2
(6.53)

one finds two additional solutions, and the stabilizer group is given by PSL(n)(2,R), i.e.,
the n-fold cover of the Euclidean AdS2 group SO(2, 1) ' SL(2,R)/Z2. This singles out the
Euclidean black hole configurations with n = 1 as smooth geometries. The relation between
Casimir and temperature for smooth classical solutions is therefore given by

C =
Ȳ 2⇡2

�2
. (6.54)

The Schwarzian action

We can now make contact with the recent developments regarding a proposed duality between
(nearly) AdS2 gravity in the form of the JT model and the SYK model [46–48]. We will
show that our on-shell action (6.30), deriving from an action with well-defined variational
principle (6.23), can be naturally reformulated as a Schwarzian action.

Using the notation introduced in section 6.4, the on-shell action takes the form

�
��
pEOM

= � k

4⇡

�Z

0

d⌧

Y

⇣
4 C � c0

⌘
= � k

4⇡

�Z

0

d⌧

Y

�
4Y 2M � (Y 0)2 � c0

�
, (6.55)

where we used equation (6.49) in the second step and discarded a total derivative. The
subscript pEOM denotes that we are only partially on-shell, i.e., we have only used two of
three equations of motion and thus have not assumed on-shell constancy of the Casimir.

7Our conditions on the dilaton field, in particular the requirement that it is non-zero everywhere disallow
orbits without constant representatives.
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Otherwise the whole action would equal a constant. The mass function M must be an
element of the Virasoro orbit with constant representative given by (6.53) with n = 1 since
otherwise we would have a solution that is not smooth for given �.8

As a first observation note that (6.55) becomes the action of Euclidean conformal quantum
mechanics discussed in [189,190] coupled to the external source M upon replacing Y ! q2

�
��
pEOM

= �k

⇡

�Z

0

d⌧

✓
q2M � (q0)2 � c0

4q2

◆
. (6.56)

This field redefinition is well-defined since we argued that Y is always positive. As men-
tioned above, the quantity c0 becomes the coupling strength of the conformal quantum
mechanics model. Consistently with Y transforming like a boundary vector under arbitrary
reparametrizations, q transforms with conformal weight � 1

2 .
We return now to (6.55) and set c0 = 0. This value is special since for string-related

models of dilaton gravity it restores a stringy symmetry, Buscher duality [191], while for JT
it restores homogeneity of the action in the dilaton field X. Let us define a diffeomorphism
g : S1 ! S1, ⌧ 7! u = g(⌧) by

g(⌧) = Ȳ

⌧Z

0

d⌘

Y (⌘)
. (6.57)

Since Y is required to be positive and transforms as a vector under reparametrizations
this diffeomorphism is well-defined. It defines a finite reparametrization of the boundary
coordinate ⌧ . We can therefore rewrite the action (6.55) as

�
��
pEOM

= �kȲ

⇡

�Z

0

du
⇣
(g�1)0(u)M + 1

2 Sch[g�1](u)
⌘
. (6.58)

The Lagrangian in (6.58) is the coadjoint action of the Virasoro group (6.48) acting on the
element M . This provides an effective action for the reparametrizations g�1(u).

Without loss of generality we assume M is a constant representative (since any element
on the orbit can be reached from it), and setting g�1(u) ⌘ ⌧(u) we find

�
��
pEOM

= �kȲ

2⇡

�Z

0

du

✓
1

2

⇣2⇡
�

⌘2
(⌧ 0)2 + Sch[⌧ ](u)

◆
, (6.59)

which is precisely the Schwarzian action at finite temperature � for finite reparametrizations
of the circle ⌧ [47, 192] (cf. equation (D.94) in appendix D). Comparing the expressions for
the Schwarzian action on the two sides of the duality, one can relate the various parameters in
front of the action. As in the usual holographic dictionary it is suggestive to set k = 1

4G ⇠ N
so that large N leads to a weakly coupled gravity theory (remember that Newton’s constant

8If one were considering contributions to the Euclidean path integral that allow for conical defects or
other non-smooth features, other orbits than the one considered here are possible.
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is dimensionless in two dimensions). For the coupling strength of the SYK model we find
then J ⇠ Ȳ �1.

The Schwarzian action (6.59) is invariant under PSL(2,R) transformations. Redefining
f = tan( ⌧2 ) the Schwarzian action becomes

�
��
pEOM

= �kȲ

2⇡

�Z

0

du Sch[f ](u) , (6.60)

which is invariant under the transformation f 7! af+b
cf+d . We can therefore derive the Schwarzian

action by an effective field theory argument. In the SYK model the reparametrization
symmetry of the circle is spontaneously broken to SL(2,R) by the ground state. The
corresponding Goldstone bosons are therefore elements of the quotient Diff(S1)/SL(2,R),
which is the coadjoint orbit of the Virasoro group consistent with temperature �. The action
with the lowest number of derivatives that is invariant under SL(2,R) is the Schwarzian
action. Notice that when deriving (6.59) we were always careful not to impose conservation
of the Casimir. Otherwise we would have obtained only the ground-state contribution to the
action.

In the next section we are going to see the breaking of conformal symmetry from a
different point of view.

6.5 Charge algebra of the JT model

An expression for the canonical charges of dilaton gravity in the second order formalism was
derived in (3.114). In the Fefferman–Graham like gauge that we are using in this section we
have the following simplifications:

N = h(⇢, ⌧), Na = 0, h⇢⇢ = 1, K = 0. (6.61)

Evaluating the charge for the asymptotic Killing vectors (6.39) one obtains after a straight-
forward calculation

�Q[⇠] =
k

2⇡

✓
���X 0 + 2�L+�X� � (

�0

2L+
� L��)�X+

◆
. (6.62)

Stricter boundary conditions

We will first turn to the set of stricter boundary conditions (6.4) that was analyzed previously
in [4,186] and that is more “typical” for asymptotically AdS2 behavior since the leading order
metric is not allowed to fluctuate, i.e., L+ is set to the convenient constant value L+ = 1/2.

The function L� transforms with an infinitesimal Schwarzian derivative

��L� = �(L�)0 + 2�0L� + �000 (6.63)

and is related to the mass function by a factor 1
2

M =
1

2
L� . (6.64)
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Therefore, also the mass function M again transforms with an infinitesimal Schwarzian
derivative [as in (6.45)] under infinitesimal diffeomorphisms parametrized by �.

The asymptotic symmetries for these boundary conditions were previously analyzed
in [4, 186]. It was shown therein that the charges associated to these asymptotic symmetries
are, in general, non-integrable. A prescription to calculate the Poisson brackets of non-
integrable charges was proposed in [193]. The price one has to pay in that approach is a
non-standard central extension, in the sense that it becomes field-dependent. In the present
context we will follow a different way to deal with the non-integrability of the charges.

Setting L+ = 1
2 and using the linearized equations of motion we arrive at

�Q[�] =
k

2⇡
(��0�Y 0 + ��Y 00 + 2��(MY ) + �00�Y + 2�M�Y ) . (6.65)

We mentioned above that this charge is not integrable. However, this conclusion depends
crucially on the interpretation of the function L�. Since the variational principle does
not require L� to be fixed, one would consider it as a state-dependent function, i.e., a
function that varies in phase space. However, if this is the case, then the charge is clearly
non-integrable. If on the other hand L� is thought of as an arbitrary but fixed function
that takes everywhere on phase space the same value, i.e., as a chemical potential, then the
variation can be pulled through and the charge is integrable. As a result we either obtain
one or three resulting charges corresponding to the stabilizer group of the orbit determined
by L�. This can be seen as follows. Since L� is a fixed function we can set it to an arbitrary
value, thus we will for simplicity assume that it is constant. Furthermore, only �’s that
solve the stabilizer equation ��L� = 0 are then allowed. Given that L� is not an element of
the exceptional orbit (6.53), this equation has only the constant solution � = �̄. Since the
equation for the (rescaled) dilaton Y is of the same form [cf. equation (6.50)], the dilaton is
also constant Y = Ȳ . Then there is only one non-zero term in (6.65) and we find Q ⇠ Ȳ .
So the symmetry algebra is U(1). On the other hand if L� is an element of the exceptional
orbit, both the stabilizer equation determining � and the equation for the dilaton (6.65)
have three solutions. One can easily show that these produce three non-vanishing conserved
charges forming an SL(2,R) algebra.

Is it possible to obtain an interpretation for the charge (6.65) also in the case when
�L� 6= 0? First, let us define the averaged charges

�Q̂[�] =
k

2⇡�

�Z

0

d⌧(��0�Y 0 + ��Y 00 + ��(LY ) + �00 �Y + �L�Y ) . (6.66)

If the charge is independent of Euclidean time then the average (6.66) does not do anything.
On the other hand, non-integrability is usually related to non-conservation of the charges
(cf. e.g. asymptotically flat spacetimes with non-zero news [146, 193]). A charge that is
dependent on Euclidean time is difficult to interpret in a thermodynamic context which
suggests to look at the averaged expression (6.66).

The expression (6.66) is still non-integrable. In section 6.4 we saw that the quantity
Y is a boundary vector that is related to infinitesimal reparametrizations of the boundary
coordinate as suggested by equation (6.50). Taking this similarity serious we redefine the
gauge parameter � as

� = "Y (6.67)
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As we are going to show this leads to integrable charges with interesting properties. Inserting
the redefinition (6.67) into the variation of the charges (6.66) we find that the charges become
integrable

Q[�] =
k

⇡�

�Z

0

d⌧
�

Y

✓
Y 2M � 1

4
Y 0

2
+

1

2
Y Y 00

◆
. (6.68)

The quantity in parentheses is just the Casimir (6.49). However, let us not enforce
the on-shell conservation of the Casimir for the moment. Then, following the same line of
reasoning that led us to the Schwarzian action in section 6.4, we find that the charge (6.68)
is given by

Q[�] =
kȲ
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. (6.69)

By equation (6.48) the quantity in parentheses denotes a generic point M(u) on the orbit of
the constant representative Diff(S1)/SL(2,R), which leads to

Q[�] =
kȲ

⇡�

�Z

0

du�(u)M(u) . (6.70)

These are just the usual charges on would expect on the phase space of a coadjoint orbit of
the Virasoro group [158]. Indeed, one can check that

��2Q[�1] ⌘ {Q[�1], Q[�2]} =
kȲ
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�Z

0

du�1(u)
�
�2M

0 + 2�02M + 1
2�
000

2

�
. (6.71)

We therefore find a Virasoro algebra at central charge

c =
6kȲ

⇡
. (6.72)

Thus, our requirement of a well-defined variational principle that led to the fixing of Ȳ
implies that the central charge (6.72) is state-independent.

However, the above derivation was based on the assumption that the strict on-shell
conservation of the Casimir is not enforced. This is also clear from equation (6.71) since
recalling the parametrization �2 = "2Y we obtain

{Q[�1], Q[�2]} =
kȲ

⇡�

�Z

0

du�1(u)"2

✓
2Y 0M + YM 0 +

1

2
Y 000
◆

= 0, (6.73)

due to equation (6.50) which was a consequence of the on-shell conservation of the Casimir.
In summary, the above discussion suggests the following general picture: Using the

conformal boundary conditions we find that off-shell the averaged charges form a Virasoro
algebra. The on-shell conservation law of the Casimir breaks this conformal symmetry. This
pattern of on-shell breaking of conformal symmetry also is a distinctive feature of the SYK
model [46,47,192,194,195].
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Looser boundary conditions

Let us now consider the looser boundary conditions in which L+ is not fixed. While the
transformation behavior of L+ and L� was given in (6.40), the quantities P and T defined
in (6.44) have a more interesting interpretation. We find

�"P = �1

2
�00 + �0P + �P 0 � 1

2
�0 (6.74a)

�"T = �T 0 + 2�0T � �0P � 1

2
�00 . (6.74b)

Notice that P reduces to P = � 1
2@⌧ logL

+. This transformation behavior is characteristic
of a warped conformal algebra [196] with twist term [197]. Our boundary conditions can
thus be regarded as a two-dimensional analog of the AdS3 boundary conditions introduced
in [198].

Unfortunately, the construction of averaged charges that off-shell realize this charge
algebra is not as clear as in the above case. We therefore refrain from presenting them here
but refer to the original work [2].

Concluding remarks

This concludes our discussion of the JT model in the second order formulation. We saw
that the well-defined variational principle (6.23) reduces to the Schwarzian action under the
assumption that conservation of the Casimir is not imposed. The zero-mode that is fixed
as part of the variational principle turned out to be related to the coupling constant of a
possible SYK model on the boundary. The pattern of symmetry breaking that is distinctive
for the SYK model can be reproduced, after a redefinition of the transformation parameter
�, using the canonical charges of the dilaton theory, assuming again non-conservation of the
Casimir. In [2] a number of further checks of the action principle and the thermodynamics
of the model are considered. Most interestingly, one finds that the entropy of black holes
calculated using Wald’s formula [199,200] or using the on-shell action (6.37) coincides with
the entropy calculated using the “off-shell” central charge (6.72) in the chiral Cardy formula.

In the next chapter we will rederive some of the above results using the PSM formulation
of the JT model. This formulation lends itself to a number of interesting generalizations.
Our aim will be the construction of boundary actions for these generalizations that exhibit
properties similar to the Schwarzian action.



Chapter Seven

Boundary Actions for Generalized

Jackiw–Teitelboim Models

We saw in the previous chapter that both the Schwarzian action and the symmetry breaking
characteristic of the SYK model can be reproduced using the JT model as gravitational dual.

It is of interest to consider various extensions of SYK, since this enlarges the theory-space
of possible holographic relationships and thus may allow to address relevant conceptual
questions, for instance how general holography is and what are necessary ingredients for it
to work.

While these are intriguing questions, our goals in the present chapter are more modest,
namely to supply candidates on the gravity side that generalize the symmetry breaking
mechanism in SYK. In a sense, our approach is complementary to recent work by Gross and
Rosenhaus [201], who considered free Majorana fermions in the large N limit and conjectured
that the bulk dual is some topological cousin of AdS2 Vasiliev theory [186,202–210]: they
worked on the field theory side [deforming the free theory by a bi-local bi-linear interaction
preserving SL(2,R)], while this chapter deals exclusively with the bulk side (not necessarily
related to the Gross–Rosenhaus model).

More specifically, our focus is to extend the symmetry breaking mechanism summarized
above to other infinite-dimensional symmetry groups that contain a Virasoro subgroup.

We are interested in two types of generalizations, one that has an interpretation in terms
of dilaton gravity coupled to Yang–Mills and the other where Virasoro gets extended to
W -symmetries, which arise in higher spin generalizations [186,208,209] of JT. Thus, we aim
to provide the first few steps towards a higher spin (and Yang–Mills) generalization of SYK.

The holographic dual description of a finite temperature quantum field theory is generated
by placing a Euclidean black hole in the bulk. Let us suppose the set of black hole solutions
preserves a certain (in lower dimensions typically infinite-dimensional) asymptotic symmetry
group G1. Demanding smoothness of the solutions yields a subset thereof that is invariant
only under a subgroup G ⇢ G1. In the SYK context this reproduces the symmetry breaking
G1 ! G. The dynamics of the breaking is governed by a field belonging to the quotient space
G1/G. For instance, in the case of the Schwarzian action, the group G1 is Diff(S1), while
G = SL(2,R). The field ⌧(u) of the Schwarzian in the previous section is a diffeomorphism
associated to the orbit Diff(S1)/SL(2,R) [211].

95
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In this chapter we consider generalized models of dilaton gravity based on a gauge
group G [105,106]. The suitable extension of the Schwarzian dynamics is governed by one-
dimensional actions located at the boundary of the space-time. In order to have a well-defined
AdS2 gravity interpretation we study cases where G contains an SL(2,R) subgroup. More
precisely, we are interested in two cases: Direct product groups, SL(2,R)⇥K, where K is a
compact group representing (Yang–Mills) matter fields and higher rank groups SL(N,R),
where the spin two excitation is enhanced by the coupling of N � 1 higher spin fields,
analogous to the situation in three spacetime dimensions [212,213].

The outline of this chapter is as follows. In section 7.1 we demonstrate that the PSM
formulation of the JT model gives rise to a BF theory based on the group SL(2,R). We will
use this result in section 7.2 as a motivation to consider generalized JT models in the form
of BF theories based on arbitrary groups containing an SL(2,R) subgroup. In section 7.3 we
rederive the Schwarzian action as boundary action of the JT model using the formulation as
a BF theory, and we present a generalization of this result to cases in which the JT model is
coupled to Yang–Mills fields with gauge group K. This derivation closely mimics the one
of the last chapter. In order to consider generalizations to other gauge groups we propose
in section 7.4 a boundary action for generic BF theories in two dimensions. Based on this
boundary action we will then consider BF theories for the group SL(N) in section 7.5, that
can be regarded as higher spin extensions of the JT model. Using properties of differential
equations that generalize Hill’s equation (4.40) we reduce these actions to the gravitational
sector and find corresponding higher spin generalizations of the Schwarzian action. Section
7.6 contains some considerations concerning the thermodynamics of our models.

7.1 The JT model as a gauge theory

In this section we want to reformulate the JT model of the last chapter as a PSM model
along the lines of chapter 3. The choice of potentials U and V in the bulk action for the JT
model (6.1) leads to the Poisson tensor

PXb = Xa✏ b
a P ab = X✏ab , (7.1)

in the PSM action
I = � k

2⇡

Z

M

✓
XI dAI +

1

2
P IJAI ^AJ

◆
. (7.2)

Introducing a metric ⌘IJ = diag(+1,+1,�1) on the target space, with volume form ✏01X = 1,
the Poisson tensor can be written as

P IJ = ✏IJKXK . (7.3)

Since ✏IJK are the structure functions of the Lie algebra so(2, 1) we can recognize equation
(7.3) as a particular case of the Kirillov–Kostant bracket (2.64) [or (2.67)] that defines a
Poisson structure on the dual of a Lie algebra parametrized by the coordinates XI . However,
since the Lie algebra so(2, 1) ' sl(2) is semi-simple we will use the existing non-degenerate,
invariant metric to freely switch between the Lie algebra and its dual.

Using the above form of the Poisson tensor the (linear) gauge transformations for the JT
model can be expressed as

�✏X
I = ✏IJK"JXK �✏AI = � d"I � ✏IJKAJ"K (7.4)
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with gauge parameter ". Now choose so(2, 1) generators JI satisfying the algebra

[J0, J1] = JX [J1, JX ] = �J0 [JX , J0] = �J1 , (7.5)

with invariant bilinear form given by

hJIJJi =
1

2
⌘IJ . (7.6)

Then in terms of the Lie-algebra valued quantities X = XIJI , A = AIJI , and " = "IJI , the
transformations are

�"X = [X , "] �"A = D✏ ⌘ +(d"+ [A, "]) . (7.7)

As mentioned in section 4.3 the symmetry group of Euclidean AdS2 space is PSL(2,R) '
SO+(2, 1). However, for practical purposes it will be more convenient to work with the
double cover SL(2,R) of this group sharing the same Lie algebra. The transformation to
sl(2) generators is given by

L0 = J1 L+ = J0 + JX L� = JX � J0 , (7.8)

with inverse transformation

JX =
1

2
(L+ + L�) J0 =

1

2
(L+ � L�) . (7.9)

The sl(2) generators obey the commutation relations

[LI , LJ ] = (I � J)LI+J I, J = +1,�1, 0 , (7.10)

with invariant bilinear form given by

hLILJi =

0

@
0 0 �1
0 1/2 0
�1 0 0

1

A

IJ

. (7.11)

From the above follows that the action (7.2) can also be written as

I =
k

⇡

Z

M

tr(X (dA+A ^A)) , (7.12)

with equations of motion

DA = dA+A ^A = F = 0 (7.13a)
DX = dX + [A,X ] = 0 . (7.13b)

We have thus rephrased the Jackiw–Teitelboim model as a BF theory of the gauge group
SL(2,R). This reformulation of the JT model was for the first time pointed out in [105,106].

We saw in the previous section how the Schwarzian action emerges as an effective boundary
theory for the JT model. We will show in section 7.3 how to obtain the Schwarzian action
in the formulation (7.12). This form of the JT model suggests a number of straightforward
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generalizations. In particular, the gauge group SL(2,R) can be replaced by any other
(semi-simple) gauge group G.1 Of course, not all of these groups will have a meaningful
interpretation as a gravitational theory on AdS2. We assume that a sufficient requirement for
this is the existence of an sl(2,R) sector in the gauge algebra, as we shall review below. Since
this sector is linear, i.e., allows a simpler interpretation of the Poisson-� model as non-Abelian
BF-theory, we are going to consider exclusively extensions of JT that preserve linearity in the
present chapter. The second ingredient for a satisfactory gravity interpretation, particularly
in a holographic context, is the imposition of suitable boundary conditions on all fields. We
will motivate our boundary conditions below.

7.2 Generalizations of the JT model

The gauge theoretic bulk action for generalizations of JT is then

I0[X ,A] =
k

⇡

Z
hX ,Fi (7.14)

containing the coadjoint “dilaton” X = XAJA, the non-Abelian gauge field A = AA
µJA dxµ

and the associated curvature two-form F = dA+A ^A.2 Both fields are valued in the Lie
algebra g with generators JA satisfying [JA, JB] = fAB

CJC where fAB
C are the structure

constants of g. We raise and lower algebra indices with the invariant metric hAB = hJA, JBi.
Throughout this chapter we consider fields that live in a space with the topology of a disk
endowed with coordinates (⌧, ⇢) whose ranges are 0 < ⇢ < 1 and ⌧ ⇠ ⌧ + �. For details see
figure 7.1.

The BF-theory (7.14) is gauge invariant. Given a Lie algebra parameter ✏, the fields
transform as

�✏A = d✏+ [A, ✏] �✏X = [X , ✏] (7.15)

and the infinitesimal variation of the bulk action (7.14) becomes a boundary term. The field
equations that are obtained by varying (7.14) with respect to X and A are

F = 0 dX + [A,X ] = 0 . (7.16)

The first equation tells us that the on-shell connection is pure gauge, A = �(dG)G�1,
with G 2 G a not necessarily single-valued group element (that may account for non-trivial
holonomies). The dynamics of the dilaton corresponds exactly to a gauge transformation
that preserves the form of A or, in other words, Xon-shell is an element of the isotropy algebra
of A (cf. section 2.3). This is precisely the behavior that we saw in the last chapter in
equation (6.50) in the second order formulation.

By our assumption, g must contain an sl(2,R) subalgebra, which then allows an identifi-
cation of this sl(2)-part with Cartan variables (zweibein and dualized Lorentz connection).
The additional generators correspond to additional fields on the spacetime. This provides the
first necessary ingredient for a gravity-interpretation of the non-Abelian BF-theory (7.14).

1Although it is certainly interesting to consider non-semisimple groups like ISO(2), i.e., the Euclidean
two-dimensional Poincaré group, we restrict ourselves to semi-simple groups.

2Notice that we have changed the normalization of k by a factor of two with respect to the original
work [1] in order to stay consistent with the normalization of the last section.
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⌧

⇢

⇢ = 0

A = A1(⌧) + · · ·

X = X1(⌧) + · · ·

H[A] 6= ±1l

⌧

⇢ = 0

A = AG(⌧) + · · ·

X = XG(⌧) + · · ·

H[A] = ±1l

Figure 7.1: Finite temperature and asymptotic symmetry in the gauge theory formulation.
Euclidean black holes are represented by fields (A,X ) in a cigar-type geometry. The
“Euclidean horizon” is located at ⇢ = 0. Demanding the black hole to be at Hawking
temperature (absence of holonomies, H[A] = ±1l) affects the asymptotic symmetries. The
asymptotic fields (A1(⌧),X1(⌧)) become (AG(⌧),XG(⌧)) consistently with smoothness of
the solutions.

The second ingredient, specific boundary conditions on the connection and the dilaton, are
provided in section 7.3 below for the JT model and in later sections for generalizations
thereof.

Observables

We can construct two types of observables for BF-theories (7.14): Wilson loops around the
⌧ -cycle and Casimir functions.

The former are expressed as

H[A] = P exp
h
�
I

A
i

(7.17)
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where P denotes path ordering and the integral is over the ⌧ -cycle whose period is �. For pure
gauge connections we have dG+AG = 0, so solving G in terms of A yields H = G(�)G(0)�1.
One is forced to demand that H belongs to the center of the group in order to single out
smooth Euclidean solutions, yielding G(�) = ZG(0) where Z commutes with all the elements
of G. In the case of G = SL(N,R) one chooses Z = (�1)N+11l as element of the center.

Another important class of gauge invariant observables are Casimir functions. Any
semi-simple Lie-algebra g admits invariant tensors gA1···An

, where n ranges from two to
1+rank of g [for sl(N) the range is from two to N ]. The associated Casimirs are defined as

Cn = � 1

n
gA1···An

XA1 · · · XAn . (7.18)

Casimir functions play the role of conserved charges of the theory. Indeed, the dilaton
equation of motion (7.16) establishes the conservation equations

@⌧Cn = 0 . (7.19)

In the simplest case of sl(2) the rank is 1 and the single Casimir reduces to the one existing
in any dilaton gravity model; in particular, expression (6.19) in case of the JT model.

A variational principle for BF theories

Note that without boundary terms the action (7.14) does not have a well-defined variational
principle: an infinitesimal variation yields

�I0 = (bulk equations of motions) +
k

⇡

Z

⇢=1
d⌧ hX , �A⌧ i . (7.20)

The last term in (7.20) spoils the variational principle. However, we can get rid of the last
term by adding a suitable boundary term IB to the bulk action (7.14). Demanding

�I
��
EOM

= �I0
��
EOM

+ �IB
��
EOM

!
= 0 (7.21)

we find the following consistency condition

�IB = �k

⇡

Z

⇢=1
d⌧ hX , �A⌧ i . (7.22)

In order to find a local expression for IB, we need pull the variation � out of the integral.
Without further assumption this cannot be done. To resolve this issue an integrability
condition,

A1⌧ = f(X1) , (7.23)
is needed. Here f is an arbitrary function of the dilaton X and the superscripts 1 denote
evaluation of the corresponding quantity in the limit ⇢! 1. By means of the integrability
condition (7.23) we can, in principle, find a local expression for IB. In order to choose
our boundary conditions we follow the ideas of [214]. This amounts to pick a connection
satisfying certain asymptotic conditions associated with a group G1. The dilaton field is
chosen to be the gauge parameter that preserves the form of the gauge field. This choice
naturally selects an integrability condition that allows to define a well-defined variational
principle. Let us apply this rationale to the JT model.



7.3. JACKIW–TEITELBOIM MODEL AND SCHWARZIAN ACTION (AGAIN) 101

7.3 Jackiw–Teitelboim model and Schwarzian action (again)

The JT model is obtained as non-Abelian BF-theory described in section 7.1 by choosing
as gauge group G = SL(2,R). The invariant tensor is determined by the matrix trace
hLm, Lni = tr[LnLm], and the generators Lm 2 sl(2,R) with m = {�1, 0, 1} satisfy the usual
commutation relations [Lm, Ln] = (m� n)Lm+n. The fundamental representation for these
generators is

L1 =

✓
0 0
1 0

◆
L0 =

1

2

✓
1 0
0 �1

◆
L�1 =

✓
0 �1
0 0

◆
. (7.24)

To specify boundary condition for the dilaton and the gauge field we employ a convenient
parametrization of the fields [2].

A = b�1(d+ a)b X = b�1x(⌧)b a = a⌧ (⌧) d⌧ b = exp(⇢L0) (7.25)

We assume that this is always possible near the boundary.

Boundary conditions

In this chapter we consider only the analogue of the more restrictive boundary conditions
(6.4), i.e., having set L+ = 1, since the interesting asymptotic behavior that is related to the
SYK model already appears in that case. They are most conveniently represented in the
so-called highest weight gauge for the field a⌧

a⌧ = L1 + L(⌧)L�1 . (7.26)

In order to choose boundary conditions for the dilaton x we proceed as follows. First, let
us study the gauge symmetries that preserve the form of the auxiliary connection (7.26).
Solving

�⇤a⌧ = @⌧⇤+ [a⌧ ,⇤] = O(a⌧ ) (7.27)

yields
⇤["; a⌧ ] = "L1 � "0L0 +

�
L"+ 1

2"
00
�
L�1 (7.28)

and implies transformation of the function L by an infinitesimal Schwarzian derivative.

�"L = "L0 + 2"0L+ 1
2"
000 (7.29)

As we saw before, the dilaton field x is the stabilizer of a. Thus it satisfies �xa⌧ = 0. We
assume that x has the form of (7.28) with " replaced by some y.

x = ⇤[y; a⌧ ] (7.30)

The on-shell value of the dilaton satisfies the relation �yL = 0. This condition corresponds to
the little group equation of a Virasoro coadjoint orbit for the representative L [cf. equation
(2.57)].
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The latter choice for x has some nice consequences. The first one is that y transforms
as a one-dimensional vector field. From the dilaton transformation (7.15) we have �✏x =
[⇤[y],⇤["]].3 The component along L1 of this expression tells us

�"y = "y0 � y"0 (7.31)

which is the announced vectorial transformation that we saw in (6.42) in the second order
formulation. The second consequence is that the choice (7.30) gives us a suitable integrability
condition. In fact, we can reexpress (7.30) in a simpler manner

x = y
�
a⌧ � u�1@⌧u

�
, (7.32)

with u = exp(� 1
2y
0L�1) exp(log(y)L0). By inverting this relationship we can express the

gauge field as
a⌧ = f⌧x+ u�1@⌧u, (7.33)

where f⌧ = 1/y. From a more general perspective (7.33) can be used as an integrability
condition (7.23) that relates the asymptotic connection a⌧ with x in terms of two quantities:
a one-form f⌧ d⌧ and a group element u. They are free boundary data.

Action principle and on-shell action

Inserting our boundary condition (7.33) into the variation of the boundary term (7.22) one
obtains

�IB = �k

⇡

Z
d⌧
⇥
�(f⌧ C) + C�f⌧ � tr

�
(@⌧x+ [u�1@⌧u, x])u

�1�u� @⌧ (xu
�1�u)

�⇤
. (7.34)

Note that f⌧ is a one-form component in one dimension, hence it can be written as f⌧ = 1
ȳ@⌧f ,

where
1

ȳ
:=

1

�

I
d⌧

y
(7.35)

is the zero mode of the quantity 1/y introduced in (7.32). We assume, additionally, that
f(⌧) is a well-defined diffeomorphism respecting f(⌧ + �) = f(⌧) + �. This ensures that the
second term vanishes since on-shell the Casimir C is constant. The third term is zero on-shell
and we can discard the last term by imposing that the fields are periodic on the ⌧ cycle.

From (7.34) together with the parametrization for X and A in (7.25) we can infer that
the bulk-plus-boundary action

I[X ,A] = I0[X ,A] +
k

2⇡ȳ

Z
d⌧
�
@⌧f

�
tr(X 2) (7.36)

has a well-defined action principle. (Note that the term df = d⌧
�
@⌧f

�
acts as a boundary

volume form.) Moreover, since the field strength vanishes on-shell, the corresponding value
of the on-shell action is

I on-shell = �k�

⇡ȳ
C (7.37)

3Notice that this is true only asymptotically, i.e., to leading order if the ⇢ dependence is reinstated.
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The result for the on-shell action (7.37) agrees precisely with the result (6.37) in the second
order formulation (if the factor � for free energy is reinstated and c0 = 0 for which there
seems to be no analogue in the first order formulation).

The relation (7.32) permits to express the Casimir in terms of f⌧ = 1
ȳf
0 and L.

C =
ȳ2

f 02
�
L� 1

2{f ; ⌧}
�

(7.38)

Thus, the Casimir is determined from the coadjoint action of the Virasoro group.
Under the diffeomorphism u = f(⌧) and renaming f�1(u) ⌘ ⌧(u), the corresponding

on-shell action (7.37) reduces to the Schwarzian action

Ion-shell[⌧ ] = �kȳ

2⇡

�Z

0

du
⇥
2⌧ 0(u)2L+ Sch[⌧ ;u]

⇤
. (7.39)

Imposing regularity on the connection implies H[a] = �1l. In order to satisfy this condition
we need to provide the general solution to the equation (@⌧ + a⌧ )g = 0 with anti-periodic
boundary conditions g(0) = �g(�) [Note that the relation between G and g is G = b�1g].

Using the connection in highest weight gauge, (7.26), we find

g =

✓
� 01 � 02
 1  2

◆
(7.40)

where  1 and  2 are two independent solutions to Hill’s equation

(@2⌧ + L) = 0 , (7.41)

that we met already in the classification of coadjoint orbits of the Virasoro algebra (4.40). If
we make a diffeomorphism such that we go to the frame with constant L we find solutions of
the form exp(i

p
L⌧). In order to satisfy the anti-periodic boundary condition we find

L = ⇡2n2/�2 n 2 Z (7.42)

which corresponds to an element of the Virasoro coadjoint orbit associated with the Euclidean
black hole. Thus, the value of L in (7.39) is restricted to be any element of the orbit
Diff(S1)/ SL(2,R). Choosing L to be the constant representative with n = 1 we recover

precisely the form of the Schwarzian action (6.59).

Yang–Mills extensions of the JT model

The method of this section can be applied as well to BF-theories with gauge groups SL(2,R)⇥
K where K is a compact group. These theories have the interpretation of dilaton gravity
coupled to Yang–Mills. We will not go into the details of this construction but briefly quote
the result of the original work [1]. Denote the gauge fields corresponding to the group K by
↵⌧ = PaIa, where Ia are the generators of the algebra of K and we have again gauged-away
the radial dependence. Let � be a group element of K. Then we find a Schwarzian-like action
of the form

I on-shell[⌧,�] = �kȳ

⇡

Z �

0
du


(⌧ 0)2L+

1

2
{⌧ ;u}� trk[2P��1�0 � (��1�0)2]

�
. (7.43)
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This is our desired generalization of the Schwarzian action. It is expected to be relevant for
the low-energy description of SYK-like models with global symmetries [52,57,59,215]. The
Abelian case can be interpreted as the bosonic part of the N = 2 super SYK model [56, 216].

7.4 Boundary actions of BF theories in two dimension

We saw in the last section a derivation of the Schwarzian action for the JT model that
mimicked closely the discussion of chapter 6, i.e., starting from an action with a well-defined
variational principle that essentially reduces to the Casimir, we expressed the Casimir in
terms of free boundary data and reproduced the Schwarzian action. The dilaton acted as the
stabilizer for the geometry-defining quantity L. While this approach worked nicely for the JT
model and gauge groups of the form SL(2,R)⇥K it becomes less tractable for generalizations
to other gauge groups containing an SL(2,R) subgroup, such as SL(N).

In this section we discuss therefore an alternative way to obtain a boundary action
associated to BF theories in two dimensions, namely by providing a suitable Hamiltonian
action.

Symplectic structure and geometric actions

The kinetic term of this Hamiltonian action is obtained from the symplectic form associated
to (7.14). From (7.20), we know that a general variation of the Lagrangian gives

�L = (equations of motions) +
k

⇡

Z
hX , �Ai . (7.44)

We can therefore define a presymplectic potential ✓ on a time slice ⌃ = {⌧ = constant}

✓ =
k

⇡

Z

⌃
hX , �Ai . (7.45)

Now we restrict ourselves to the part of phase space on which the geometry equations of
motion F = 0 are imposed. This corresponds to the solutions of (7.16) given by

a = � dgg�1 x = gx0g
�1 dx0 = 0 , (7.46)

where we have made use of the factorization similar to (7.25) in order to express everything
in terms of ⇢-independent quantities, i.e., we have assumed that it is possible to split-off the
radial dependence near the boundary

G(⇢, ⌧) = b�1(⇢)g(⌧) . (7.47)

by a suitable choice of group element b. Notice that this is, however, a non-trivial assumption
considered to be part of our boundary conditions.

We find then that the presymplectic potential (7.45) reduces to a pure boundary term

✓ = �k

⇡
hx0, g

�1�gi|@⌃ . (7.48)
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Following the definition (3.94), we find for the symplectic structure

⌦ = �k

⇡
�1hx0, g

�1 �2gi|@⌃ � (�1 $ �2), (7.49)

i.e., the symplectic structure is again given by a pure boundary term. In fact there is a nice
geometric picture behind this symplectic structure that is worth exploring.

The Maurer–Cartan form ⇥ is a g-valued left-invariant one-form on a Lie group G, defined
by the condition ⇥(e)(⇠) = ⇠ with ⇠ 2 TeG. Assuming that G is a matrix Lie group we have
due to left-invariance at any other point g 2 G

⇥(g)(Y ) = g�1 · ⇠ ⇠ 2 TgG . (7.50)

The Maurer–Cartan form obeys the Maurer–Cartan equation

d⇥+ [⇥,⇥] = 0 (7.51)

where d is the differential on the Lie group (this should not be confused with the differential
on the manifold M).

Assume for the moment that �x0 = 0, that is x0 is a fixed coadjoint vector. Then the
field configuration is specified by the value of g, and �g can be viewed as a tangent vector to
the field configuration, i.e., an element of TgG. With this we find that ⌦ can be rewritten as

⌦ =
k

⇡
hx0, [⇥(�1g),⇥(�2g)]i . (7.52)

This is precisely the Kirillov–Kostant–Souriau symplectic structure on a codadjoint orbit
defined in equation (2.70). Using the Maurer–Cartan equation we can rewrite the symplectic
structure (7.52) as

⌦ = �k

⇡
dhx0,⇥i , (7.53)

where we have dropped the tangent vectors �1g, �2g, so ⌦ is now a two-form on the Lie group
G (again, d is the differential on the Lie group G).

Consider a surface N in the group manifold of G, bounded by the curve � = @N , that is
parametrized as �(s). Then ⌦ as given in (7.53) defines a geometric action

I[g] =

Z

N

⌦ = �k

⇡

Z

�
ds

⌧
x0, g

�1 d

ds
g

�
, (7.54)

where Stoke’s theorem was used in the second step. For more details regarding geometric
actions and applications to lower-dimensional gravity consult, e.g., [87, 217].4

However this is not yet the action we want. Remember that we assumed �x0 = 0 which
means that we are on a fixed coadjoint orbit. Having fixed x0 corresponds to fixed Casimir
and we saw in various places that on-shell conservation of the Casimir is in conflict with
having a Schwarzian action. We therefore take (7.54) as our motivation for defining the
action

Igeom[x, g] = �k

⇡

Z

�
ds

⌧
x,

d

ds
g g�1

�
, (7.55)

4A similar action has been considered also in [218,219] in a different context.
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in which x = gx0g�1 is again introduced as a dynamical variable. Since the original symplectic
form (7.49) was defined on the boundary of the spacetime M, we can regard (7.55) as the
kinetic term for a boundary action of a generic BF model. Notice that the symplectic
form obtained from (7.55) coincides with the symplectic form (7.49) which means that the
definition is consistent.

Boundary Hamiltonians

In order to give dynamics to this model we need to include a Hamiltonian preserving G-
invariance. The Casimir functions (7.18) naturally preserve the symmetry along �. The
most general choice is

H =
k

⇡

NX

i=2

µ(i)(s)Ci (7.56)

where µi’s are some arbitrary functions and N some integer depending on the gauge group
(for SL(N, R) this number is N). Then, the natural dynamical system for (generalized)
dilaton gravity models follows from the reduced action principle

IH
geom

[x, g] = �k

⇡

Z

�
ds

 ⌧
x,

d

ds
g g�1

�
�

NX

i=2

µ(i) Ci

!
. (7.57)

Note that the on-shell action for this system is given by the sum of the Casimir functions.
The equation of motion for x is given by

✓
d

ds
g g�1

◆

A

= �
NX

i=2

µ(i)gAA2···Ai
xA2 · · ·xAi . (7.58)

Plugging this back in the action (7.57) we find

IH
geom

= �k

⇡

NX

i=2

(i� 1)

Z

�
ds µ(i)Ci . (7.59)

This acquires the same form for the previously known case with one Casimir function (7.37).
In what follows we consider the more tractable case where µ(2) is the only non-vanishing
function. In that case, Z

dsH = � k

2⇡

Z
ds µ(2)(s)hx, xi . (7.60)

From the above expression, we see that µ(2) plays the role of an einbein. Defining 1/ȳ as the
zero mode of µ(2), we can always choose a new coordinate ⌧ such that µ(2) ds = 1

ȳ d⌧ where
µ(2) = 1

ȳ ⌧
0(s). This allows us to relate the arbitrary curve parameter s in the Lie group to

the boundary time ⌧ of the dilaton gravitational theory.
It is convenient to express the action in the second order formulation. This is achieved

by eliminating the momenta x using equation (7.58)

x = � ȳ

⌧ 0
@sg g

�1 =) IH
geom

[g] =
kȳ

2⇡

Z
d⌧h@⌧gg�1, @⌧gg�1i . (7.61)

We claim that this is the boundary action for any BF model based on a (semi-simple) Lie
group G.
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Symmetries

The model (7.61) is invariant under multiplication by constant group elements both from
the left and the right

g 7! a g b a, b 2 G . (7.62)

It is straightforward to find the canonical charges that generate the symmetries (7.62). The
symplectic potential

✓(g, �g) =
kȳ

⇡
hg�1@⌧g , g�1�gi (7.63)

yields the symplectic structure

⌦ =
kȳ

⇡
hg�1�(@⌧g), g�1�gi (7.64)

for the model (7.61), where antisymmetrization in the variations is assumed. As expected,
this is identical to the symplectic structure (7.49) after imposing the equation of motion
for x.

The vectors in the tangent bundle of the group manifold ⇠ that are tangent to the flows
generated by the symmetries (7.62) are given by

⇠A = �Ag ⇠B = �gB A,B 2 g , (7.65)

respectively, where A and B are the Lie algebra elements corresponding to a and b via the
exponential map. The canonical charge Q generating the flow tangent to a vector field ⇠ is
given by Hamilton’s equation

�Q = i⇠⌦ . (7.66)

In the present case one finds

QL
A =

kȳ

⇡

⌦
A, @⌧gg

�1
↵
, QR

B =
⌦
B, g�1@⌧g

↵
(7.67)

as generator of left and right symmetry, respectively. The Poisson brackets between the
charges, read off from the symplectic structure,

{QL
A, Q

L
A0} =

⇡

kȳ
QL

[A0,A], {QR
B , Q

R
B0} =

⇡

kȳ
QR

[B0,B], {QL
A, Q

R
B} = 0 (7.68)

show explicitly that the symmetry algebra consists of two commuting copies of g.

7.5 Higher Spin Schwarzian actions

Let us now specialize to the case G = SL(N,R). Expression (7.61) corresponds then to
the action of a particle on the SL(N,R) group manifold (for details related to N = 2
see [220,221]). In the context of the JT model, this was already found in [222].
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Reduction to the gravitational sector

The action (7.61) was derived using the gauge flatness condition (7.46) without assuming
any particular form of a. However, in order to make contact with the previous sections the
connection cannot be arbitrary but should fulfill two requirements:

• the geometry associated to a is asymptotically AdS2 (with fluctuating dilaton);

• a is compatible with the temperature, i.e., has no conical deficits.

We will treat the second item later which means that we restrict ourselves to the zero-
temperature case in the following.

Our approach is based on the parametrization of the SL(N) group element g as solution to
a particular N -th order differential equation that generalizes Hill’s equation (7.40). Another
approach based on the Iwasawa decomposition of the group element g is presented in appendix
C.

The interpretation of a as describing an asymptotically AdS2 geometry is guaranteed if
the connection is taken to be of the (highest-weight) form

a⌧ = L1 +Q , (7.69)

where [L�1, Q] = 0. The connection (7.26) considered in the previous sections belong to
this class. More generally, choosing the principal embedding sl(2) ,! sl(N), the adjoint
representation of sl(N) is decomposed in irreducible representations {W s

m}, s = 3, . . . , n of
the ‘spin-2 gravity’ subalgebra (7.10) with commutators

[Lm,W (s)
n ] = ((s� 1)m� n)W (s)

m+n . (7.70)

The above requirement thus restricts the connection (7.69) to be of the form

a⌧ = L1 + LL�1 +
NX

i=3

Wi W
(i)
1�i . (7.71)

Note that these generators provide an orthogonal basis for the Lie algebra with respect to
the Cartan-Killing metric.

From the form (7.71) and the flatness condition a⌧ = �@⌧g g�1 of (7.46) it follows that
SL(N) element g therefore has to obey the equation

⇣
@⌧ + L1 + LL�1 +

nX

i=3

Wi W
(i)
1�i

⌘
g = 0 , (7.72)

where the fundamental representation for the sl(N) elements is assumed. We demonstrate
now that this equation implies a parametrization of g in terms of the independent solutions
to an N -th order differential equation, analogous to the case discussed in section 7.3 for
N = 2.
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In the fundamental representation the operator acting on g in equation (7.72) is of the
form

0

BBBBBBB@

@⌧ �
p
k1L ↵3W3 ↵4W4 · · · ↵N�1WN�1 ↵NWNp

k1 @⌧ �
p
k2L ↵3W3 · · · ↵N�2WN�2 ↵N�1WN�1

0
p
k2 @⌧ �

p
k3L · · · ↵N�3WN�3 ↵N�2WN�2

...
...

...
... · · ·

...
...

0 0 0
p
kN�2 · · · @⌧ �

p
kN�1L

0 0 0 0 · · ·
p

kN�1 @⌧

1

CCCCCCCA

, (7.73)

where ki = 2
P

j(K
�1)ij , Kij is the Cartan matrix, and ↵s is some normalization for the

higher spin charges that, although straightforward to determine, will not be important in
the following.

Writing the group element g in terms of n-dimensional row vectors

g =

0

BBBBB@

 N

 N�1
...
 2

 1,

1

CCCCCA
(7.74)

the structure of the operator (7.73) allows to express the vectors  2, . . . , N in terms of
(N � 1) derivatives of  1. Denoting the components of  1 by  1, 2, . . . , N the solution of
(7.72) thus boils down to solving the n-th order differential equation

 (N)
i + u2 

(N�2)
i + u3 

(N�3)
i + · · ·+ uN�1 

0

i + uN i = 0 . (7.75)

Notice the absence of a term proportional to  (N�1)
i . This is related to the fact that g has

determinant equal one, as it is an SL(N) element. The differential equation (7.75) generalizes
Hill’s equation (7.41) to which it reduces for N = 2.

The coefficient functions ui are monomials of derivatives of L and Wi. However, it is
straightforward to show that the coefficient u2 is always given by

u2 =
N(N2 � 1)

6
L . (7.76)

The differential equation (7.75) transforms covariantly under WN transformations. While
the transformation under arbitrary finite W transformations is not known apart from some
specific cases (see e.g., [223]), under the subgroup of reparametrizations of ⌧ , i.e., the Virasoro
group,  i transforms as

 i(⌧) =

✓
dt

d⌧

◆�N�1
2

 i(t) ⌧ ! ⌧(t). (7.77)

For an infinitesimal transformation ⌧ 7! ⌧ + ✏(⌧) one finds

�✏ i = ✏ 0i �
N � 1

2
✏0 i . (7.78)
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The coefficients ui have a complicated transformation behavior under reparametrizations
but it is straightforward to show that u2 transforms as an anomalous two-tensor

u2(t) = u2(⌧)

✓
d⌧

dt

◆2

+
N(N2 � 1)

12
{⌧ ; t} , (7.79)

as suggested by the observation (7.76).
Further properties of the differential equation (7.75) have been intensively studied in the

context of W-algebras and their relation to KdV flows and Gel’fand–Dikii Poisson structures.
Here we do not go into the details of these interesting developments but refer to the ample
literature, see e.g. [224] and references therein.5

We saw above that the general model (7.61) has a global SL(N) ⇥ SL(N) symmetry
under multiplication from the left and from the right (7.62). However, it is clear from (7.46)
or (7.72) that the global left symmetry of the model is broken if g in (7.61) is required to be
a solution of that equation. On the other hand, multiplication of g on the right by an SL(N)
element is still a symmetry. The action on the  i of this symmetry is immediately clear from
their representation as a row vector in (7.74), i.e., it is the natural action of SL(N) on an
element of RN . It is convenient to introduce the following ratios

si =
 i

 N
1  i  N � 1 , (7.80)

since the determinant condition det g = 1 allows then to express  N as a function of the si’s.
Notice that the si’s can be viewed as homogeneous coordinates on the (N � 1) dimensional
real projective space RP

N�1. The differential equation (7.75) is therefore associated to a
curve �(⌧) = (s1(⌧), ..., sN�1(⌧)) 2 RP

N�1. The action of SL(N) on the  i’s then induces
the action PSL(N) on the si. For instance in the case N = 2 one finds the transformation

s1 7! as1 + b

cs1 + d
(7.81)

in accordance with (4.11).

Higher spin Schwarzian actions (zero temperature)

We are now ready to present the key point of the argument that allows us to construct
analogues of the Schwarzian action in the higher spin cases: It is possible to construct (N �1)
projective invariants I(r)(si; ⌧) with r = 2, . . . , N from the solutions si of the differential
equation (7.75). They are invariant under the projective action of SL(N) on si and transform
as r-tensors under reparametrizations of ⌧ . In particular, for r = 2 one finds

I(2)(si; ⌧) = u2(⌧) , (7.82)

with the same anomalous transformation law under diffeomorphisms. We do not present
the general algorithm, which can be found, e.g., in [226, 227] but outline the calculation

5A recent interesting connection between Gel’fand–Dikii structures and three-dimensional gravity was
shown in [225].
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for N = 2. In this case (7.75) reduces to Hill’s equation (7.41) with u2 = L. Plugging the
parametrization (7.80) with  1 = s1 2 in Hill’s equation yields

s001 2 + 2s01 
0

2 = 0 . (7.83)

Differentiating this equation and using Hill’s equation again yields

(s0001 � 2s01L) 2 + 3s001 
0

2 = 0 . (7.84)

This set of two differential equation for  2 and  02 can have a non-trivial solution only if its
determinant vanishes. We therefore find

L =
1

2

 
s0001
s01

� 3

2

✓
s001
s01

◆2
!

=
1

2
{s1; ⌧} . (7.85)

Since the Schwarzian derivative is invariant under fractional linear transformations such
as (7.81) and transforms anomalously under reparametrizations of ⌧ , we have succeeded in
finding I(2)(si; ⌧) in the case N = 2.

By equations (7.76) and (7.82) it is always possible to write L in terms of N�1 functions si

L = L[s1(⌧), · · · , sN�1(⌧)] . (7.86)

Inserting a = �@⌧gg�1 in the action (7.61) and using the fact that our basis of sl(N) is
orthogonal we find that the action can be rewritten as

I[g] = 
kȳ

⇡

Z
d⌧ L, (7.87)

where
 = tr(L1L�1) . (7.88)

By the arguments in the previous paragraphs this action is manifestly invariant under
SL(N) transformations. For N > 2 it describes the appropriate higher-spin analogue of the
Schwarzian action. Indeed, in the case N = 2 we reproduce

I[g] = �kȳ

2⇡

Z
d⌧

 
s0001
s01

� 3

2

✓
s001
s01

◆2
!
, (7.89)

while for N = 3 we find

I[g] = �4kȳ

⇡

Z
d⌧

 
f 000

f 0
� 4

3

✓
f 00

f 0

◆2

+
e000

e0
� 4

3

✓
e00

e0

◆2

� 1

3

f 00e00

f 0e0

!
, (7.90)

where e = s01/s
0

2 and f = s2. The generalization of the Schwarzian appearing in this action
and its relation to W3 algebras is well-known, e.g., [228,229]. The SL(3) invariance of this
action, guaranteed by the above arguments, can be checked in a straightforward if tedious
manner using the transformations

s1 7! a11s1 + a12s2 + a13
a31s1 + a32s2 + a33

s2 7! a21s1 + a22s2 + a23
a31s1 + a32s2 + a33

, (7.91)

where aij denote components of an SL(3) matrix.
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Higher spin Schwarzian actions (finite temperature)

We deal now with the second item of the list at the beginning of section 7.5, i.e., we demand
the connection a to be compatible with the temperature given by the inverse of the periodicity
of Euclidean time �. We set � = 2⇡ in this subsection.

As discussed in section 7.2, the absence of conical singularities is guaranteed if the
connection (7.71) has trivial holonomy. This is equivalent to the condition

g(2⇡) = (�1)N+1 g(0) (7.92)

on the group element (7.74). The solutions  i we are looking for therefore have to obey
(anti-) periodic boundary conditions for N (even) odd:  i(2⇡) = (�1)N+1 i(0). This is
consistent with the fact that by equation (7.78) a solution  i has (half-)integer spin for
(even) odd N .

The holonomy condition on the group elements g (7.92) can be reformulated in the
following neat geometric way. We mentioned above that a solution to (7.75) can be viewed
as a curve in RP

N�1 with Euclidean time ⌧ as parameter. Since we are working at finite
temperature � this corresponds to a map � : S1 ! RP

N�1.
A generic solution � is not closed but is shifted by an element M 2 SL(N), called

monodromy, after one period of Euclidean time

�(⌧ + 2⇡) = M�(⌧) M 2 SL(N) . (7.93)

The (conjugacy class of the) monodromy is an invariant of the differential equation (7.75) [230].
In other words, acting on the differential equation (7.75) with an arbitrary W transformation
leads to a different solution curve albeit with the same monodromy as the solution curve
of the original equation. In section 4.4 we discussed this in relation to the classification of
coadjoint orbits of the Virasoro algebra.

The homotopy class of curves with a given monodromy, i.e., the (in-)ability to deform
one into the other, provides another invariant for the differential equation (7.75). In fact,
monodromy and homotopy class are the only invariants [230].

The holonomy condition (7.92) is thus translated to the following statement: To each
solution curve � 2 RP

N�1 one can associate its unique lift �̃ = ( 1, . . . , N ) 2 R
N , as

guaranteed by the determinant condition. The monodromy of the lift �̃ has to obey

fM = (�1)N+11l . (7.94)

This means that the monodromy of � is

M = 1l . (7.95)

The number of homotopy classes for curves � 2 RP
N�1 of monodromy 1l with the above

properties have been determined in [231] (see also [232,233]). They are N for N = 2, three
for N odd, and two for N > 2 even. The infinitely many different homotopy classes in the
case N = 2 correspond to the exceptional orbits (4.48) parametrized by the number n that
we saw in the classification of Virasoro orbits.6

6The origin of this large number of homotopies is the inability to continuously deform a diffeomorphism
that winds around the circle k times into one that winds around k + 1 times.
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Based on the above, we propose below the finite temperature version of the SL(N)-
invariant family of Schwarzian actions. To do so, we study in some detail the appearance of
the Schwarzian theory in the N = 2 case and then propose a generalization for N > 2.

In the SL(2) case, equation (7.75) is identical to Hill’s equation (7.41) with  =  1,2.
Suppose the parametrization ⌧ is such that L is constant. The anti-periodic boundary
conditions (7.92) force L to be L = 1/4, where we chose the homotopy class associated
to n = 1.7 The two independent solutions read  1 =

p
2 cos(⌧/2) and  2 =

p
2 sin(⌧/2).

For non-constant L, we build up a one-parameter family of solutions that have the same
monodromy as the previous solution. By applying a diffeomorphism ✓(⌧) on  we find

 ̂1(⌧) =

s
2

✓0(⌧)
cos

✓
1

2
✓(⌧)

◆
,  ̂2(⌧) =

s
2

✓0(⌧)
sin

✓
1

2
✓(⌧)

◆
. (7.96)

The corresponding L associated to this orbit of solutions is given by

L =

⇢
cot

✓
1

2
✓(⌧)

◆
; ⌧

�
. (7.97)

Thus, using (7.87) to define the action, we conclude that the Schwarzian theory is recovered.
An important observation that will be crucial for the generalization is that the argument of
L in this approach is given by

ŝ(⌧) =
 ̂1

 ̂2

= cot

✓
1

2
✓(⌧)

◆
(7.98)

which is precisely the map that relates the projective line to the circle S1. Note that while
( ̂1,  ̂2) 2 R

2 is anti-periodic on a 2⇡-period, the function ŝ is periodic. This illustrates the
relation between the monodromy (7.95) and the one associated to the lift (7.94).

Motivated by the previous analysis, we consider

ŝi : S
N�1 ! RP

N�1 (7.99)

which defines a projection of the coordinates si into the unit sphere SN�1 and satisfies the
monodromy condition (7.95). We propose that

I[g] = 
kȳ

⇡

2⇡Z

0

d⌧ L[ŝ1(⌧) · · · ŝN�1(⌧)] , (7.100)

is the Schwarzian action at finite temperature � = 2⇡ [with  defined in (7.88)].
As an example, let us present the map (7.99) associated to the N = 3 case. This is given

by the central projection of S2 on RP
2

⇣
ŝ1, ŝ2

⌘
=
⇣
cot(✓) cos('), cot(✓) sin(')

⌘
. (7.101)

The idea of this map is that we choose a point as the center of S2 and a tangent plane to it
representing RP

2. Lines passing trough the center projects points (ŝ1, ŝ2) on the two-sphere
7It would be interesting to see if the SYK model allows for an interpretation of different homotopy classes.
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represented by (✓,'). Provided ✓(⌧ + 2⇡) ⇠ ✓(⌧) + ⇡ and '(⌧ + 2⇡) ⇠ '(⌧) + 2⇡, this map
ensures that the monodromy condition is satisfied. An explicit expression for the SL(3)
Schwarzian action at finite temperature is presented in appendix C, that was obtained using
Iwasawa decomposition of the group element.

One-loop contribution from higher-spin fields

We would like to explore the effect of considering higher rank groups in the one-loop
contribution to the free energy. Let us consider

Z[�] =

Z
dµ[g] e�I[g] (7.102)

where g 2 SL(N,R) and µ is a measure that we will leave unspecified for the moment.
Action I[g] in the partition function is given by

I[g] =


�2

2⇡Z

0

d'L[ŝ1('), · · · , ŝN�1(')] ��2 =
2kȳ

�
. (7.103)

where we have introduced the coordinate ' = 2⇡
� ⌧ [and again  is defined in (7.88)]. The

one-loop contribution can be computed from the second variations associated to (7.103).
This can be expressed as

�2I[g] =

2⇡Z

0

d' tr
⇥
(@'✏� [@'gg

�1, ✏])@'✏
⇤

(7.104)

where we defined �gg�1 = � ✏(') and we have introduced the parameter � in the definition
to keep track of the perturbation expansion order. Evaluation in the gravitational sector
amounts to use the condition @'gg�1 = �a reg

' , where a reg

' is the connection satisfying the
regularity condition (7.92). Thus, the quadratic fluctuations around the saddle are controlled
by the second-order operator

� = �@'(@' + [areg
' , ·]) . (7.105)

The operator � has N2 � 1 zero modes corresponding to the SL(N,R) isometries of areg
' .

Summing over inequivalent configurations in (7.102) implies that we should consider this
modes as gauge symmetries. Following [47], the path integral measure should be corrected
with the introduction of the product

N2
�2Y

i=0

�(✏(i)(0))

which will remove the zero modes associated to �. To evaluate the quadratic contribution to
(7.102), we must express the measure associated to g in terms of ✏. This means that we need
to trade every Fourier mode of �gg�1 for a Fourier mode of ✏, except for the N2 � 1 zero
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modes that have been fixed. Extending the argument of [211] to the SL(N) case, the result
for this determinant is given by �1�N2

. In turn, the one-loop contribution to the free energy
is

F1-loop =
N2 � 1

2
T log(2kȳT ) . (7.106)

In the next section we discuss consequences for the entropy of the leading and subleading
terms, i.e., the zero- and one-loop contributions to the partition function for the extensions
of the Schwarzian action (Yang-Mills, higher spins).

7.6 Entropy

It is of interest to calculate the entropy associated with thermal states in BF-theories, as this
corresponds to the black hole entropy in cases where a gravitational interpretation exists.
We focus first on the leading, classical, contributions to the AdS2 black hole entropy.

One can derive the entropy in a variety of ways. In the present context perhaps the
simplest derivation is from evaluating the Euclidean on-shell action (see [112] and references
therein), multiplying by temperature to get free energy

F (T ) = T
�
I0 + IB

�
EOM

= T IB
��
EOM

(7.107)

and then taking the T -derivative to get entropy [with IB determined from (7.22) together
with a suitable integrability condition (7.23)].

S = �dF

dT
= �IB

��
EOM

� T
dIB
dT

��
EOM

(7.108)

In the spin-2 case we recover in this way from the on-shell action (7.37) the result
of [2, 4, 192],8

SJT =
k

⇡ȳ

dC

dT
= 2k⇡ȳ T (7.109)

where we have used the regularity condition (7.42) (setting n = 1) together with the relation
(7.40) between Casimir C and mass function L. Note that the result for entropy (7.109)
is compatible with the third law of thermodynamics and shows the same temperature
dependence as a Fermi-liquid (or -gas) with Sommerfeld constant9 given by � = 2k⇡ȳ.

The gravity result (7.109) for the entropy coincides qualitatively with the field theory
result derived in [47], see their (G.241): the first term in their expansion is temperature-
independent and captures the zero-temperature entropy S0 that is not modeled by JT. The
second term in their expansion

S � S0 = 2a3
NT

J
?
= SJT (7.110)

should then correspond to the entropy (7.109). Using the relation between N,�, J discussed
below (6.59) shows that indeed these two expressions coincide for any N, J, T (subject to

8To compare with [192] we need to identify �̄r in their (3.18) with our ȳ.
9The Sommerfeld constant is the ratio of specific heat and temperature in the limit T ! 0, which in the

Fermi-liquid case reduces to the coefficient linear in T in the small-T expansion of the entropy.
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N � 1 and J � T ) for some value of the numerical coefficient a3 that is independent from
N, J, T .

The on-shell value of the boundary action (7.57) proposed in section 7.4 is given by the
sum of Casimir (7.59)

F(N) = �k

⇡

NX

s=2

f (s)
0 Cs (7.111)

where f (s)
0 denotes the zero mode of the function µ(s) associated with a field of spin s. Since

we expect the scaling behavior Cs / T s [based on the scaling properties of the differential
equation (7.75)] the entropy would be

S(N) =
k

⇡

NX

s=2

f (s)
0

sCs

T
⇠

NX

s=2

f̂ (s)T s�1 . (7.112)

In all cases above at low temperatures the entropy is dominated by the spin-2 contribution
(as long as f (2)

0 6= 0), which scales linearly in T . In particular, the JT-result for entropy
(7.109) receives modifications from higher spin fields only at higher temperatures.

We consider now the 1-loop contribution to the entropy. The general expression (7.108)
together with the classical (7.112) and 1-loop results (7.106) yields

S1-loop = S(N) �
N2 � 1

2
lnS(N) +O(1) . (7.113)

For the SL(2) case the famous factor �3/2 (see e.g. [234] and refs. therein) in front of the
log-term is recovered, while for general SL(N) this factor is instead �(N2 � 1)/2. The
result (7.113) implies that the dominant contribution from higher spin fields in the small
temperature limit actually may come from the 1-loop contribution to the entropy, as the
classical contribution is suppressed by T s�1.

This concludes our discussion on possible generalization of the Schwarzian action from
the gravitational side. In the conclusion we will point out various lines of research opened
up by the results of this chapter.



Chapter Eight

Conclusions

Let us summarize what was achieved in this thesis and point out possible new avenues of
investigation.

Summary

Following an introduction to symplectic structures and Poisson structures in chapter 2, we
presented a reformulation of dilaton gravity theories as (non-linear) gauge theories in the
form of PSM models in chapter 3. We extensively discussed geometry and interpretation of
different AdS2 solutions in chapter 4.

We started our search for AdS2 holography in chapter 5 with a comprehensive study
of all dilaton gravity models that allow for an AdS2 solution with constant dilaton. By
this we confirmed and extended previous claims in the literature, e.g., [43, 45,163,166] that
this set-up does not allow for any physical states with finite energy. We confirmed this
both classically, by showing that the canonical charges and the on-shell action vanish, and
quantum mechanically by showing that the one-loop partition function is trivial. These
results are completely independent of any choice of dilaton gravity model and are equally
valid in the presence of additional matter fields such as Yang–Mills.

Chapter 6 was concerned with the simplest model of dilaton gravity that allows for linear
dilaton solutions in AdS2 space. We considered boundary conditions, similar to [198] in
three dimensions for which the boundary metric in Fefferman–Graham gauge is not fixed,
and provided a geometric interpretation using the conformal framework. Furthermore, the
boundary value of the dilaton was not assumed to be fixed but rather transformed non-
trivially under the asymptotic symmetry translations. In this way we circumvented the
common lore that only constant dilaton solutions are consistent with all the isometries of
AdS2. Subsequently we showed that this action has a well-defined variational principle that
required a new boundary term for the dilaton. We showed that this improved action principle
gave rise to the Schwarzian action as a boundary action for JT model thus establishing a
link to the SYK model. The asymptotic charges of the model were constructed and it was
argued that they reproduce the pattern of symmetry breaking featured in the SYK model.

In chapter 7 we reformulated the JT model as BF theory and rediscovered the Schwarzian
action using the fact that the dilaton behaved as the stabilizer of the asymptotic connection
one-form a⌧ . We then considered various generalizations. First to dilaton gravity-Yang–Mills
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theories where the gauge group of the BF action was taken to be SL(2,R)⇥K. We found
the corresponding boundary action to consist of a gravitational Schwarzian part and a K
Kac–Moody contribution. In order to generalize the Schwarzian action to higher rank groups
G such as SL(N) we used the symplectic structure of the PSM model to define a boundary
theory that was found to describe a particle moving on the group manifold of G. Using
the relation between flat sl(N) connections and certain N -th order ordinary differential
equations generalizing Hill’s equation, we were able to construct higher spin Schwarzian
actions at zero temperature and proposed a prescription to obtain finite temperature actions.
We concluded with a discussion of one-loop partition function, obtained in analogy to [211],
and discussed thermodynamic aspects of the action. An alternative approach to these higher
spin Schwarzian actions is presented in appendix C.

Open issues and avenues for further research

CDV holography. The results of chapter 5 show that any dilaton gravity theory on
AdS2 in the constant dilaton sector necessarily contains only the vacuum. However, before
delivering a final verdict over AdS2 holography for constant dilaton, we should be careful
enough to examine possible loopholes of our argument. In section 5.3 we calculated the
one-loop contribution to the partition function using analytic continuation to the sphere. The
reason for this was the presence of harmonic vector modes on AdS2. It would be worthwhile
to check if analytic continuation to the sphere can be avoided by treating these contributions
explicitly (as we checked they do not contribute to the action) or using some of the methods
developed in [235,236]. Furthermore, all of our calculations were performed in the first order
formulation of PSM models. We showed in chapter 3 that this is equivalent to the first
order formulation of dilaton gravity and, after elimination of the connection and Lagrange
multipliers enforcing the torsion constraint, to the second order formulation. However, this
equivalence is only true up to boundary terms that might become important in holographic
applications.

JT model. An immediate question that follows from the material presented in chapter 6
concerns the status of the looser boundary conditions with L+ 6= 1

2 . As mentioned in section
6.5 we were not able to integrate the corresponding charges even after performing similar
tricks as in the stricter case treated in more detail in that section. Furthermore, the form of
the boundary action following from (6.23) is always of the form (6.56) or (6.59), respectively
since L+ only enters in the definition of the function M . It is therefore not clear what the
physical significance of varying L+ is.

The variational principle we provided is somewhat unusual since it is valid only if
integrated over the boundary @M having the topology of a circle. This is because the zero
mode Ȳ defined in (6.32) was required to be fixed. It is therefore valid only in Euclidean
signature at finite temperature. It can be of interest to consider a Lorentzian version of
(6.23), i.e., a variational principle where the boundary is not an isosurface of the dilaton. An
application of our boundary conditions, in particular the fluctuating leading order of the
dilaton, to dilaton gravity models giving rise to other geometries, would be of interest.

Although somewhat beyond the scope of the present work, let us mention the recent
paper [237] in which the authors study the JT model in Lorentzian signature. For the solution
of figure 4.1 coined wormhole solution, they construct the Hilbert space for the quantum



119

JT model in the presence of the two asymptotic regions. It is claimed that, while the JT
model has a well-defined quantum theory, the Hilbert space does not factorize into Hilbert
spaces defined on the two boundaries, from which follows that the JT model is not dual to
any CFT on the boundary. They argue that a similar statement should be true for Einstein
gravity on AdS3, as well, in concordance with the result of [35]. It would be interesting to
understand their argument in the PSM (or BF) formulation of the JT model that we have
used in this work. In particular since this gauge theoretic formulation is very similar to the
Chern–Simons formulation of three-dimensional gravity. This could yield valuable input on
the pressing question of the existence of a CFT dual to Einstein gravity in three dimensions.

Generalizations of the Schwarzian action. An obvious question regarding our higher
spin action is their interpretation on the boundary side. Just from naïve comparison with
the SYK model one would expect that they arise from a model that exhibits an analogous
spontaneous symmetry breaking WN ! SL(N) in the IR. Despite the existence of a large
number of SYK-like models [49–70] none of these models shows the mentioned behavior, to
the best of the author’s knowledge. It is of interest to study in what way higher rank groups
would change the thermodynamic behavior of the boundary theory in the low energy limit.
Note in particular the entropy relation [192]

Sblack ⇠ SSchwarz (8.1)

where Sblack = k⇡ȳT is the JT black hole entropy and SSchwarz / NT/J is the field theory
entropy in the small T limit with the T = 0 result subtracted. As shown in section 7.6 the
same relation remains true at small temperatures after including higher spin fields. It is
therefore not clear if there is a field theory generalization of SYK accessible in the regime
T ⌧ J that is sensitive to higher spin fields. However, even at small temperatures higher
spin fields in principle are detectable semi-classically through a change of the numerical
coefficient in the log-corrections to the entropy (7.113). It could be thus very interesting on
the field theory side to generate SYK-like models where this coefficient in the log-corrections
to the entropy can be tuned to �(N2 � 1)/2, where N is some integer, in order to mimic the
behavior of spin-N theories in AdS2.

In our derivation of the Schwarzian action we assumed that the geometry-defining function
L belonged to the exceptional orbit with n = 1 [cf., e.g., (6.53)] that has PSL(2,R) as its
stabilizer group. It would be interesting to know if Schwarzian actions based on orbits of
different homotopy class, i.e., having n 6= 1, have a meaningful interpretation in the boundary
theory. The same goes for the higher spin Schwarzian actions that can be associated to orbits
of either two or three different homotopy classes [see the discussion around equation (7.94)].

There are a number of immediate generalizations of our approach. While we assumed
in the derivation of the boundary action (7.61) that the gauge group of the BF model is
semi-simple this was just out of convenience and in no way essential. Therefore, a similar
approach could be successful in the study of other groups with gravitational interpretation.

In particular, generalizing our result to the BF theory of the centrally extended Poincaré
algebra (also known as Maxwell algebra, see e.g. [238]) [239, 240] would be an interesting
first step. This dilaton gravity models describes the conformally transformed string black
hole in two dimensions [108, 177, 178] (see also [111]). Apart from the centrally extended
Poincaré algebra and the sl(2,R) algebra associated to AdS2 there exists a number of other
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kinematical Lie algebras with associated spacetimes in two dimensions (for a classification
see [241]) that might be worthwhile to consider in our approach.

Generic linear dilaton vacua. While our discussion for constant dilaton vacua was valid
for generic models of dilaton gravity, in our search for the asymptotic dynamics of dilaton
gravity in AdS2 we had to restrict ourselves to the JT model and similar extensions that
allowed for a gauge theory of Lie-algebra type. It would be rewarding to generalize this
discussion to arbitrary dilaton gravity models (perhaps subject to some condition on the
potentials, e.g., asymptotic AdS2 behavior) and to find possible quantum mechanics duals.
This is quite an ambitious goal, since one can no longer rely on the simplicity of linear gauge
algebras and instead has to deal with non-linear algebras and their associated groups. If
successful, a large class of models can be described in this way, some of which emerge from
dimensional reduction of gravity in arbitrary dimensions.
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Appendix A

ADM Split of Dilaton Gravity

In this appendix we present the ADM split for the second order dilaton gravity action (3.5)
that we repeat here for convenience

I = ↵

Z

M

d2x
p
�g
⇣
XR� �U(X)(rX)2 � 2V (X)

⌘
. (A.1)

where the prefactor was called ↵ to reduce cluttering.
We foliate the spacetime M by a family of hypersurfaces ⌃ parametrized by a function t.

Let ta be a vector field such that ta@at = 1. We are interested in a Hamiltonian split of (A.1)
with respect to this vector field. Let na be the unit normal vector of ⌃. Then the metric gab
splits into

gab = �nanb + hab . (A.2)

The sign � is � = +1 for Euclidean signature or a time-like surface in Lorentzian signature
and � = �1 for a spacelike foliation in Lorentzian signature. We define lapse N and shift
Na as

N = �tana = (na@at) Na = habt
b (A.3)

which yields the decomposition
ta = Nna +Na . (A.4)

Extrinsic curvature is defined as

Kab =
1

2
h c
a h d

b Lnhcd =
1

2
Lnhab (A.5)

where the second equality sign follows from hypersurface orthogonality of na.
From the Gauss–Codazzi relations follows the decomposition

R = R̄+ �(K2 �KabKab) + 2�ra(n
crcn

a � narcn
c) (A.6)

for the Ricci scalar in terms of the Ricci scalar R̄ intrinsic to the hypersurface and extrinsic
curvature Kab and its trace K = Kabhab. Since the hypersurface ⌃ is one-dimensional we
have Kab = habK and R̄ = 0. We are then left with

R = 2�ra(n
crcn

a � narcn
c) . (A.7)
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With the above definitions and the identity p
�g = N

p
h the Lagrangian of the action

(A.1) can be written in terms of variables intrinsic to the hypersurface ⌃

L = ↵

Z

⌃
dx

p
h
h
2�K

⇣
Ẋ �N cDcX

⌘
� 2�acDcX �N�1U(X)(Ẋ �N cDcX)2

�N�U(X)habDaXDbX � 2NV (X)
i
.

(A.8)

The vector aa is the acceleration vector aa = ncrcna that is normal to na; derivatives with
respect to ta are denoted by a dot, Da is the covariant derivative compatible with the metric
on the hypersurface hab, and boundary terms due to integration by parts have been dropped.
From (A.8) we derive the momenta

⇡X ⌘ 1p
h

�L

�Ẋ
= 2↵�K � 2U(X)(naraX) (A.9a)

⇡ab ⌘ 1p
h

�L

�ḣab

= ↵�(naraX)hab (A.9b)

where the form
K =

1

2N

⇣
ḣab � (DaNb +DbNa)

⌘
hab (A.10)

of extrinsic curvature was used. A Legendre transform of (A.8) yields after some calculation
the Hamiltonian quoted in section 3.5

H = ↵

Z

⌃

p
h
h
↵�1N c(⇡XDcX � 2Da⇡

a
b)+

N
�
↵�2�⇡abhab⇡X + ↵�2U(X)⇡ab⇡ab + �U(X)habDaXDbX + 2V (X)� 2D2X

�i
.

(A.11)

As expected, lapse and shift function act as Lagrange multipliers for Hamiltonian and
diffeomorphism constraint, respectively.

Doing this calculation more carefully, one would have introduced momenta for N and
Na finding that both of them vanish. Calculating the bracket of these primary constraints
with the Hamiltonian (A.11) one obtains Hamiltonian and diffeomorphism constraint as
secondary constraints. The extended Hamiltonian is then given by adding all constraints
with arbitrary coefficients to the canonical Hamiltonian. Since the net effect of this procedure
is the addition of arbitrary functions to both lapse and shift, one can eliminate these two
variables and their associated momenta completely from the system leaving only Hamiltonian
and diffeomorphism constraint, multiplied by two Lagrange multipliers that for lack of better
name (and to increase confusion in students) are denoted by the same letters N c and N .



Appendix B

Coordinate Systems on AdS2

The best starting point for constructing coordinate systems on AdS2 is the three-dimensional
ambient space with coordinates (Y0, Y1, Y2) and Minkowski metric of signature (�,�,+)

ds2 = � dY 2
0 � dY 2

2 + dY 2
1 . (B.1)

Two-dimensional AdS space is defined as the embedded surface

Y 2
0 + Y 2

2 � Y 2
1 = `2 , (B.2)

where ` is the AdS-radius that is conventionally set to one. This surface can be parametrized
by various coordinates. Introduce first

Y0 = ` sec ⌫ cos ⌧ (B.3a)
Y1 = ` tan ⌫ (B.3b)
Y2 = ` sec ⌫ sin ⌧ (B.3c)

with coordinate range �⇡
2 < ⌫ < ⇡

2 ,�⇡ < ⌧ < ⇡. This yields the induced metric

ds2 =
`2

cos2 ⌫

�
� d⌧2 + d⌫2

�
. (B.4)

Going to the universal cover by letting �1 < ⌧ < 1, this metric is AdS2 in global coordinates.
From this form of the metric it is clear that this spacetime is conformally flat (as every
two-dimensional metric) and that it has two one-dimensional, timelike conformal boundaries
at ⌫ = ±⇡.

Another coordinate system for global AdS2, that we will use more often is given by
defining r = arsinh(tan ⌫) so that the metric becomes

ds2 = `2(� cosh2 r d⌧2 + dr2) . (B.5)
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The so-called Poincaré patch of AdS2 is obtained by using the parametrization

Y0 =
1

2z
(z2 + `2 � t̂2) (B.6a)

Y1 =
1

2z
(z2 � `2 � t̂2) (B.6b)

Y2 =
`t̂

z
(B.6c)

with coordinate range 0 < z < 1,�1 < t̂ < 1, from which the metric

ds2 =
`2

z2
(dz2 � dt̂2) (B.7)

is obtained. Setting z = e�⇢̂ this is sometimes expressed as

ds2 = `2(d⇢̂2 � e2⇢̂ dt̂2) . (B.8)

Instead of the surface (B.2) in ambient space consider now

Y 2
0 + Y 2

2 � Y 2
1 = �`2 (B.9)

and define the coordinates

Y0 = ` sinh ⇢ cos ⌧ (B.10a)
Y1 = ` cosh ⇢ (B.10b)
Y2 = ` sinh ⇢ sin ⌧ (B.10c)

with coordinate range 0 < ⇢ < 1, 0 < ⌧ < 2⇡. This leads to the induced metric

ds2 = `2
�
� sinh2 ⇢ d⌧2 + d⇢2

�
, (B.11)

in which the time coordinate ⌧ is again unwrapped. Notice that this last metric (B.11) is
special in some sense since the Killing vector with respect to which it is static has a horizon
at ⇢ = 0.

All of the above metrics have constant negative curvature R = �2/`2. Since there exists
a unique, inextendible spacetime of constant negative curvature given by (B.4) or (B.5),
respectively, the other two coordinate systems (B.7) and (B.11) can cover only a subset of
the global spacetime. While the relation between global and Poincaré patch coordinates can
be read off from (B.3) and (B.6) we add for completeness the transformation from (B.11) to
(B.7)

t̂ =
sinh ⌧

cosh ⌧ + coth ⇢
z =

1

cosh ⇢+ cosh ⌧ sinh ⇢
. (B.12)

The Carter–Penrose diagram for global AdS with the various coordinate patches is
presented in figure B.1.
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Figure B.1: Carter–Penrose diagram for global AdS2 with coordinate patches for Poincaré
patch coordinates (B.7) in green and black hole coordinates (B.11) in red.





Appendix C

Alternative Form of the SL(N)
Schwarzian Action

In this appendix we want to present an alternative approach to constructing the finite
temperature version of the generalized Schwarzian action. This approach is complementary
to the one discussed in section 7.4. In contrast to the discussion presented there it will lead
us to an explicit finite temperature version of the generalized Schwarzian action associated to
SL(3). Our approach is closely related to the Hamiltonian reduction of WZW models. The
main difference is our usage of the Iwasawa decomposition instead of the Gauss decomposition,
since the former takes care of the correct holonomy condition.

Hamiltonian reduction

Our starting point is again the second order action (7.61) restricted to SL(N). In order to
obtain a connection that is asymptotically AdS2 we assume that a⌧ is of the highest weight
form, i.e., we will impose the constraint

�@⌧gg�1 = L1 +Q. (C.1)

where [L�1, Q] = 0. In order to parametrize this constraint we will now use the Iwasawa
decomposition for the group element g. This consists of a product of three elements: R
which belongs to SO(N), D a diagonal matrix, and a nilpotent matrix N . Thus, we have

g = NDR, . (C.2)

The matrices D and N are parametrized as

D = e�
1
2

P
i
'iHi , N = e

P
a
XaE+

a . (C.3)

Here Xa, 'i are arbitrary functions of ⌧ .1

1This procedure is well-known in the context of gauged WZW models (cf. [242] for a comprehensive
review), which in some sense can be regarded as the “square” of the model we are discussing. Instead of the
Iwasawa decomposition (C.2) the Gauss decomposition of SL(N) is used in these applications.
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The Cartan basis of sl(N,R) is represented by N � 1 commuting generators Hi =
Ei,i�Ei+1,i+1 where (Ei,j)kl = �ik�jl is the matrix with all entries zero except the ij-th being
one. In addition we have the generators E±

i with the commutation relations

[Hi, Hj ] = 0, [Hi, E
±

j ] = ±KjiE
±

j , [E+
i , E�j ] = �ijHi . (C.4)

The remaining generators E↵ are obtained by repeated commutations of E±

i . To both E±

↵

and E±

i we refer collectively as E±

a labeled by the roots a. These are given by E±

a = E(a⌥1),a.
The generators E±

i are associated to the simple roots.
The rotation group element SO(N) is generated by elements taken to be

Ja = E+
a � E�a . (C.5)

In the case of SL(3) these generators satisfy [Ja, Jb] = ✏abcJc with ✏123 = 1. On the other
hand, for SL(2) we choose the single generator

J = E+ � E� . (C.6)

The generators Hi, E±

a , Ja fulfill the following trace relations

hHiHji =Kij , hE±

a E⌥b i = �ab, hE±

a E±

b i = 0, hE±

a Hii = 0,

hJaJbi = �2�ab, hJaE±

b i = ⌥�ab, hJaHii = 0.
(C.7)

where Kij is the Cartan matrix of sl(N,R).
We define the generator L1 to be2

L1 = �
N�1X

i=1

E�i . (C.8)

Condition (C.1) is now translated to the Cartan basis as

hE+
i @⌧g g

�1i = 1, hE+
↵ @⌧g g

�1i = 0, hHi@⌧g g
�1i = 0 . (C.9)

In what follows, we make use of the identities

D�1E+
a D =

X

k

e+
1
2

P
j
Kkj'

j

E+
k + . . . ,

N�1HiN = Hi +
X

k

KkiX
kE+

k + . . . ,
(C.10)

where ellipsis stands for terms along E+ that are not simple roots. These follow straightfor-
wardly from the Baker–Campbell–Hausdorff formula.

2We choose this definition, differing from the one used in (7.73), in order to avoid carrying along factors
of

p
ki.
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Using these identities and the trace relations (C.7), condition (C.9) can be written as

@⌧RR�1 =
X

k

e�
1
2

P
j
Kkj'

j

Jk, Xk =
1

2
'̇k. (C.11)

In terms of the parametrization (C.2), the lagrangian (7.61) reads

L =
kȳ

2⇡
hg�1@⌧gg�1@⌧gi =

kȳ

2⇡
h(R�1Ṙ)2 + (D�1Ḋ)2 + 2N�1ṄDṘR�1D�1i, (C.12)

By means of relations (C.10) and (C.11) we find

hN�1ṄDṘR�1D�1i =
X

k

Ẋk = �@⌧ hL0D
�1@⌧Di, (C.13)

where we have defined L0 =
P

i,j K
�1
ij Hj .

Imposing constraints (C.11) inside the action (7.61) we obtain

I[R] =
kȳ

⇡

Z
d⌧

✓
1

2
h(R�1Ṙ)2i+ TD

◆
, (C.14)

where TD = h 12 (D
�1Ḋ)2 � L0@⌧ (D�1@⌧D)i is defined by expressing @⌧'i in terms of the

components of R�1Ṙ using (C.11).
We saw in section 7.4 that the original model (7.61) was invariant under both left and

right multiplication by constant SL(N,R) elements. As before, due to the constraint (C.1)
only multiplication by the left remains. Thus, all actions (C.14) will have a global SL(N)
invariance.

Let us discuss the two simplest examples:

SL(2,R). The rotations of SO(2) are parametrized by R = exp
⇥
✓
2J
⇤

with J being the single
generator of the algebra. The normalization of ✓ is forced upon us by the requirement that
the holonomy be minus one (cf. section 7.4) and we assumed � = 2⇡. The (one-dimensional)
Cartan matrix is given by K = 2. The corresponding constraints (C.11) then translate to

✓̇ = �2e�', X =
1

2
'̇. (C.15)

The action (C.14) is therefore

I =
kȳ

2⇡

Z
d⌧

 
� ✓̇

2

2
+

1

2
'̇2 + '̈

!
. (C.16)

Imposing the constraint (C.15) relating ' and ✓ leads to the expression TD = 1
4 (@⌧')

2 +
1
2@

2
⌧' = � 1

2{✓(⌧); ⌧}. With this we recover the finite temperature Schwarzian action

I = �kȳ

2⇡

Z
d⌧

✓
1

2
✓̇2 + Sch[✓](⌧)

◆
(C.17)
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for � = 2⇡ that we found already in different ways in the second and first order formulation.
As we saw this action is SL(2) invariant as is required by the general argument given above.

Notice that the step from (C.16) to (C.17) involved the choice to solve the constraint
(C.15) in terms of ✓. Solving for ' and dropping the boundary term in (C.16) we find

I =
kȳ

2⇡

Z
d⌧

✓
1

2
'̇2 � 2e�2'

◆
(C.18)

which is the action for Liouville theory in one dimension. There are two reasons why the
action (C.17) is preferable over (C.18). First, the constraint (C.15) is not algebraic, thus
care must be taken concerning the zero modes of various quantities. Solving the constraint
in terms of ✓ guarantees this, while the other way round information about the zero mode
of ✓ is lost. Related to that, the SL(2,R) symmetry is explicitly realized in the Schwarzian
action (C.17), while it is realized only non-locally in (C.18).

It is tempting to muse that an analogue approach to the one presented here can be
applied to three dimensional gravity. Also there the reduction of the asymptotic dynamics
to Liouville theory [32] is valid only up to zero modes [243].

SL(3,R). Turning to SL(3) the Cartan matrix is given by

Kij =

✓
2 �1
�1 2

◆
. (C.19)

We express an arbitrary element of the rotation group using Euler angles as R =
exp(�✓3J3) exp(✓2J2) exp(✓1J3), then

ṘR�1 =
⇣
�✓̇3 + ✓̇1 cos ✓2

⌘
J3

+
⇣
✓̇1 sin ✓2 cos ✓3 + ✓̇2 sin ✓3

⌘
J1 +

⇣
�✓̇1 sin ✓2 sin ✓3 + ✓̇2 cos ✓3

⌘
J2. (C.20)

Constraint (C.11) implies then

✓̇1 cos ✓2 � ✓̇3 = 0,

✓̇2 sin ✓3 + ✓̇1 sin ✓2 cos ✓3 = e�'
1+ 1

2'
2

,

✓̇2 cos ✓3 � ✓̇1 sin ✓2 sin ✓3 = e�'
2+ 1

2'
1

.

(C.21)

And TD is given by

TD =
1

4

�
('̇1)

2 � '̇1'̇2 + ('̇2)
2 + 2'̈1 + 2'̈2

�
,

=
1

3

⇣
( ̇1)

2 +  ̇1 ̇2 + ( ̇2)
2
⌘
+  ̈1 +  ̈2,

(C.22)

where  1 = '1 � 1
2'2 and  2 = '2 � 1

2'1.
Due to our experience in SL(2) we want to solve the constraints keeping track of all the

zero modes. In particular, one solves the first constraint of (C.21) for ✓2. Then one has

✓2 = arccos(
✓̇3

✓̇1
) ⌘ arccos(x) ., (C.23)
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where we defined the abbreviation x in the last equality. Plugging the solutions into the
second and third equation of (C.21) one ends up with

�(1� x2)�1/2ẋ sin ✓3 + ✓̇1(1� x2)1/2 cos ✓3 = e� 1 (C.24)

�(1� x2)�1/2ẋ cos ✓3 � ✓̇1(1� x2)1/2 sin ✓3 = e� 2 . (C.25)

This can be rewritten as

✓̇1

✓̇3
@⌧
⇣
(1� x2)1/2 sin ✓3

⌘
= e� 1 (C.26)

✓̇1

✓̇3
@⌧
⇣
(1� x2)1/2 cos ✓3

⌘
= e� 2 . (C.27)

Defining the coordinates ⇠ = (1�x2)1/2 cos ✓3, ⌘ = (1�x2)1/2 sin ✓3 one obtains the relations:

 1 = � log
�
x�1⌘̇

�
 2 = � log

⇣
x�1⇠̇

⌘
. (C.28)

Using these relations we can write the action (C.14) as

I =
kȳ

⇡

Z
d⌧
⇣
(x4 � x2)�1

⇣
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+ TD

⌘
. (C.29)

The stress energy tensor TD takes the form
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ẋ2

x2
� ẍ
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◆
. (C.30)

While we have decided to express the action in terms of the variables ⇠, ⌘, x these are in fact
fully determined by ✓1, ✓3 and their derivatives. Notice that the stress tensor is similar to
the zero temperature Schwarzian action for SL(3) [cf. (7.91)]. In the SL(2) case finite and
zero temperature Schwarzian action are related by the map (7.98) that projects the line to
the circle. Using our proposal (7.100) one should be able to recover (C.29) with the map
(7.101) from the zero temperature result (7.91).





Appendix D

The SYK Model

The roots of the Sachdev–Ye–Kitaev model (SYK model) go back to a model proposed by
Sachdev and Ye to describe a spin fluid state [48]. The Hamiltonian they studied is of the
form

HSY =
1p
NM

X

i<j

Jij ~Si
~Sj , (D.1)

where the sum extends over N sites and ~S are spin-operators of the group SU(M). The
coupling constants Jij are randomly chosen from a Gaussian distribution which means that
the system shows quenched disorder. The interesting physics for the present purpose occurs
when taking the double limit N ! 1 and M ! 1 where the former should be thought of
as the usual thermodynamic limit.

A possible holographic interpretation of the model in this limit was first suggested in [185].
Kitaev realized that the model could be simplified by replacing the two-point interaction of
the spin-operators by a four-point interaction between Majorana fermions [46]. In this way
only a single (thermodynamic) limit N ! 1 has to be taken. Many aspects of the model
were developed in more detail by Maldacena and Stanford [47].

Following a short section D.1 on properties of disordered systems, we will introduce the
SYK model in section D.2. Our main aim is to understand the emergence of the Schwarzian
action, that we saw already in the JT model (6.59), from the SYK model. Our plan is as
follows: First, we want to study the large N behavior of the model. We will calculate the
partition function and introduce variables in which the model becomes much simpler. These
variables will turn out to be related to the holographic dual. In a complementary approach
based on Feynman diagrams, we show that to leading order all correlation functions are
dominated by so-called melon diagrams. From this we will see, secondly, that at strong
coupling/low energies the theory shows an emerging reparametrization symmetry that
is, however, spontaneously broken by the ground-state to SL(2,R). The arising pseudo-
Goldstone bosons are governed by the Schwarzian action. This action will serve as our bridge
to gravitational physics in the form of the JT model discussed in chapter 6.

Our discussion is largely based on [47].
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D.1 Disordered systems

The SYK model is a quantum-mechanical model inspired by the analysis of disordered spin
systems. Disorder in a physical system is usually studied by introducing random couplings
in the Hamiltonian of the theory that follow a specific probability distribution. The use
of these models was pioneered by Edwards and Anderson [244] in the study of spin-glass
systems. The original Edwards–Anderson model takes on the form

HEA = �1

2

X

hiji

Jij ~Si
~Sj . (D.2)

Here ~Si denotes a spin-operator at lattice site i and Jij denote coupling parameters that are
chosen randomly from a probability distribution P (J). The sum extends over all nearest
neighbor sites denoted by hiji. The Hamiltonian (D.2) describes impurities inserted at random
locations in a metal that can interact both ferromagnetically and antiferromagnetically with
each other. However, instead of assigning the impurities random lattice positions, the model
(D.2) assigns fixed lattice positions to the impurities but lets the couplings change randomly.
Physical systems of a type similar to (D.2) are said to exhibit quenched disorder. The
impurities are thought of to be “frozen” into their position, i.e., the time-scales on which
the Jij are changing are much larger than the time-scales on which the spins interact with
them. While physical quantities for a system with quenched disorder can be calculated from
the partition function at a fixed value of the random coupling, ZJ , such a procedure does
not yield much insight into the general behavior of the system. As in standard statistical
mechanics one is interested in quantities, fJ , for which the fluctuations for different choices
of J vanish in the thermodynamic limit N ! 1,

f2 � (f)2 = O(N�a) a > 0, (D.3)

where by f we denote the average over J

f =

Z
dJ P (J)fJ . (D.4)

Quantities for which (D.3) holds, being extensive in general, are called self-averaging. It is
well-known that fluctuations of free energy F around its thermal mean vanish like O(N�1/2)
in the thermodynamic limit. A general argument establishes that the same is true for the
fluctuations due to different choices in the coupling constants J [245]. For a quenched system
the free energy is consequently calculated according to

F =

Z
dJ P (J)FJ = �

Z
dJ P (J)��1 lnZJ . (D.5)

Thermodynamics and correlations functions are then studied based on the averaged free
energy (D.5).

Notice that this is not equivalent to first averaging the partition function and then
calculating the free energy, i.e.

Z =

Z
dJ P (J)ZJ ) F̄ = ���1 lnZ. (D.6)
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The reason for this is that in the case of (D.6) the couplings are treated on the same
footing as the spin variables, i.e., they are not frozen but can interact with the spin system.
A system of this type is known as annealed. The annealed case (D.6) is computationally
much simpler to treat than the quenched case. For instance, if the distribution of random
couplings P (J) is Gaussian, the integral (D.6) can be usually calculated analytically.

An efficient method to calculate the free energy in the quenched case is the replica method.
This method makes use of the identity

lnZ = lim
n!0

Zn � 1

n
, (D.7)

and the fact that Zn can be calculated very efficiently. By calculating the n-th power
of the partition function one has effectively replicated the system n times. Although the
introduction of the n replicas appears to be a simple computational trick they acquire
physical significance. In particular, one expects that the system is invariant under the replica
symmetry, i.e., under permutations of the replicas among themselves. However, it turns out
that this symmetry is broken at low temperatures in the Edwards-Anderson model (D.2)
and many other models of quenched disorder. This breaking of replica symmetry is related
to a phase transition to the magnetically ordered spin-glass state.

D.2 The SYK model

The SYK model is a quantum-mechanical model of N Majorana fermions with a four point
interaction. In the following we want to be quite explicit about the model, mostly following
the conventions of [47].

Consider the free Lagrangian for a theory of N Majorana fermions

L(0) =
i

2
 i ̇i . (D.8)

Here  i should be thought of as real, anticommuting Grassmann variables, i.e.

 ⇤i =  i  i j = � j i. (D.9)

Since we have (AB)⇤ = B⇤A⇤, the i in (D.8) is necessary for L(0) to be real. The momentum
conjugate to  i is

pi =
@L(0)

@ ̇i

= � i

2
 i, (D.10)

where we always use a derivative acting on the left, imposes a second class constraint that
can be immediately eliminated by going to the Dirac brackets

{ i, j}⇤ = �i�ij . (D.11)

The Hamiltonian
H =  ̇ipi �

i

2
 i ̇i = 0 (D.12)

vanishes identically.
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Canonical quantization leads to the quantum-mechanical anticommutator between the
operators  ̂i in the Schrödinger picture

{ ̂i,  ̂j} = ~�ij , (D.13)

where ~ was made explicit to stress the difference between (D.11) and (D.13). The operators
 ̂i form an N -dimensional Clifford algebra and can consequently be represented in terms
of Euclidean gamma matrices. While this observation is beneficial for numerical studies of
the SYK model, we will not be interested in representations of (D.13) as we will be mostly
concerned with the path-integral.

The SYK model is defined by adding to the free Lagrangian (D.8) an interaction term
such that the interacting theory is

L = L(0) + L(int) =
i

2

NX

i=1

 i ̇i �
iq/2

q!

X

i1,i2,..,iq

ji1i2...iq i1 i2 .. iq . (D.14)

The crucial point in the definition of the SYK model is that the coupling constants ji1i2...iq
are supposed to be randomly taken from a Gaussian distribution; from the Grassmann
property of  i it is clear that ji1i2...iq is totally antisymmetric. This random distribution is
characterized by

jI = 0 jIjI0 = �II0
J2(q � 1)!

Nq�1
, (D.15)

where I is to be understood as a multi-index. More generally speaking, the system shows
quenched disorder as the Edwards–Anderson model (D.2).

The Hamiltonian coming from the Lagrangian (D.14) is then given by the interaction
piece only, i.e.,

H =
iq/2

q!

X

i1,i2,..,iq

ji1i2...iq i1 i2 .. iq . (D.16)

In the following we will focus on the case q = 4 which is the case originally related to
AdS2 holography. Furthermore, we will consider the Euclidean version of this model. The
Wick rotation t = �i⌧ leads to the definition of the Euclidean action

�S ⌘ �
Z

d⌧

0

@1

2

NX

i=1

 i@⌧ i +
1

4!

X

i1,i2,i3,i4

ji1i2i3i4 i1 i2 i3 i4

1

A . (D.17)

Let us pause for a moment for a dimensional analysis of (D.17). The Majorana fields are
dimensionless [ ] = 0, while the coupling constant has mass dimension 1, [j] = 1, and is
therefore a relevant coupling. This means that the theory will be strongly/weakly coupled
in the IR/UV. If the generic pattern of AdS/CFT as a strong/weak duality applies to the
two-dimensional case, one can expect to see holography emerging in the low-energy regime.
As we are going to see, this expectation will be met.
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Feynman diagrammatics. The Euclidean propagator is defined as

Gij(⌧) ⌘ hT ( i(⌧) j(0)i = h i(⌧) j(0)i✓(⌧)� h i(0) j(⌧)i✓(�⌧) . (D.18)

As the first step we calculate the free propagator of the theory, G(0). Its value in the free
theory can be determined immediately from the Clifford algebra (D.13) and the fact that the
Hamiltonian vanishes. Thus, in the Heisenberg picture we have  i(⌧) =  i(0) and therefore

G(0)(⌧)ij = hT ( (⌧)i (0)ji0 =
1

2
sgn(⌧)�ij , (D.19)

where h..i0 denotes the expectation value in the free theory.
However, let us derive this result again using the Euclidean path integral as a useful

exercise for the following. The Euclidean path integral of the free theory is given by

Z[⌘] =
NY

i=1

Z
D ie

�
R
d⌧( 1

2 i@⌧ i+⌘i i), (D.20)

where we have added a classical source ⌘i in the form of a Grassmann number. The path
integral can be evaluated using common techniques. First one can write

Z[⌘] =
NY

i=1

Z
D ie

�
R
d⌧( 1

2  ̃i@⌧  ̃i)e�
1
2

R
d⌧ d⌧ 0⌘i(⌧)Gij(⌧�⌧

0)⌘j(⌧
0), (D.21)

where we redefined the fields  ̃

 ̃j(⌧) ⌘
Z

d!

2⇡
e�i!⌧

✓
 j(!) +

1

i!
⌘j(!)

◆
(D.22)

and defined the propagator

Gij(⌧ � ⌧ 0) ⌘ �ij

Z
d!

2⇡
e�i!(⌧�⌧

0) i

!
=

1

2
sgn(⌧ � ⌧ 0)�ij . (D.23)

Assuming that the measure is invariant under the shift  !  ̃, we can integrate over the
first term that we call Z[0] and are left with

Z[⌘] = Z[0]
NY

i=1

e�
1
2

R
d⌧ d⌧ 0⌘i(⌧)Gij(⌧�⌧

0)⌘j(⌧
0) . (D.24)

The time-ordered Euclidean propagator is equivalent to the two-point function in the free
theory which can be obtained from the path integral (D.20), or equivalently (D.24), by

hT i(⌧) j(⌧
0)i = Z[0]�1

✓
� �

�⌘(⌧)

◆✓
� �

�⌘(⌧ 0)

◆
Z[⌘]|⌘=0. (D.25)

Derivation with respect to the sources, observing the anticommutativity, we find indeed

hT i(⌧) j(⌧
0)i = �1

2
Gij(⌧

0 � ⌧) +
1

2
Gij(⌧ � ⌧ 0) = Gij(⌧ � ⌧ 0) =

1

2
sgn(⌧ � ⌧ 0)�ij , (D.26)
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reproducing equation (D.19) at which we arrived using canonical techniques.
The above result for the free propagator (D.19) is true also in the finite temperature

case, where we would impose periodicity ⌧ ⇠ ⌧ + � in Euclidean time. If we are interested in
the trace over the Hilbert space, as is the correct choice for the thermodynamics partition
function, in contrast to the supertrace we have to impose anti-periodic boundary conditions
on the fermion fields

 i(0) = � i(�). (D.27)

The propagator in position space trivially reflects this property. In momentum space, however,
only discrete energy levels are allowed; the so-called Matsubara frequencies

! =
2⇡

�
(2n+ 1). (D.28)

In the following calculations we will assume for simplicity that we are at zero temperature.
Let us now turn to the interacting theory based on the Euclidean action (D.17). Expanding

the interaction term in the path integral to arbitrary order in the coupling constant one can
straightforwardly set-up a perturbation theory. In addition to the path integral the average
over the disorder with the Gaussian measure

dJ ⌘ dJijklP (Jijkl) , (D.29)

where

P (Jijkl) =

r
N3

12⇡J2
exp

✓
�N3(Jijkl)2

12J2

◆
. (D.30)

has to be taken. According to the discussion in section D.1 one should take the disorder
average after calculating the path-integral. More precisely, let O denote an observable such
as a two-point function, then the disorder average is defined as

hOi =
Z

dJ
R
D i O e�SR
D i e�S

, (D.31)

where S denotes the Euclidean action (D.17) of the SYK model. On the other hand if Jijkl
were treated as quantum fields on the same footing as the fermions one would compute

hOi = Z�1
Z

D i dJP (Jijkl)O e�S . (D.32)

We want to calculate the exact propagator of the theory in the large N limit. The
propagator is the disorder-averaged two-point function

Gij(⌧ � ⌧ 0) ⌘hT i(⌧) j(⌧ 0)i =Z
dJ Z�1J

Z
D ie

�
R
d⌧( 1

2 i@⌧ i+ 1
4!Jijkl i j k l) i(⌧) j(⌧

0),
(D.33)

with the partition function at fixed J being defined as

ZJ =

Z
D ie

�
R
d⌧( 1

2 i@⌧ i+ 1
4!Jijkl i j k l). (D.34)
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Using perturbation theory and Wick’s theorem we can calculate this to arbitrary order in
the coupling constant. To first order in J we find

Gij(⌧ � ⌧ 0) =
Z

dJ Z�1J

Z
D ie

�
R
d⌧ 1

2 k@⌧ k

✓
1� 1

4!

Z
d⌧Jl1l2l3l4 l1 l2 l3 l4 + ...

◆
 i(⌧) j(⌧

0)

= G(0)
ij (⌧ � ⌧ 0) +O(J2),

(D.35)

due to Wick’s theorem and the antisymmetry of Jijkl. Furthermore, the average of J vanishes
by itself. To second order in perturbation theory we find the first non-vanishing contribution.
Before performing the disorder average we find for the O(J2) term in (D.35)

Z�1J

1

2(4!)2

Z
D ie

�
R
d⌧ 1

2 i@⌧ i

Z
d⌧1 d⌧2Jk1k2k3k4Jl1l2l3l4( k1 k2 k3 k4)(⌧1)( l1 l2 l3 l4)(⌧2) i(⌧) j(⌧

0) ,

(D.36)

where ( i1 i2 ... in)(⌧1) ⌘  i1(⌧1) i2(⌧1)... in(⌧1). Wick contraction yields one disconnected
term that is canceled by the normalization factor Z�1J , i.e., contracting  i(⌧) and  j(⌧ 0), and
one non-vanishing contribution to the propagator. After the disorder average the propagator
to second order is given by

Gij(⌧ � ⌧ 0) = G(0)
ij (⌧ � ⌧ 0) + �ijJ

2

Z
dt dt0G(0)(⌧ � t)

⇣
G(0)(t� t0)

⌘3
G(0)(t� ⌧ 0) +O(J4).

(D.37)
Notice that this contribution is independent of N . In other words, the normalization in
(D.30) was chosen such that this term is non-vanishing in the large N limit.

Equation (D.37) can be expanded in Feynman diagrams in the following way:

= + +O(J4) (D.38)

The interpretation of the diagrams is clear from the context: a drawn line corresponds to the
free propagator, every vertex is associated with a factor of J , and the broken line denotes
the disorder average. The second diagram, or similarly the second term in (D.37) is called
melon diagram. In the large N limit all Feynman diagrams of the SYK model are dominated
by melon diagrams.

Since the J3 contribution is again zero, let us demonstrate this for the J4 term. All possible
Feynman diagrams to fourth order (up to trivial permutations of internal propagators) with
distinct choices of performing the disorder average are depicted in figure D.1. Determining
the dependence on N of each diagram is simply a matter of labeling all internal legs and
tracing through the Kronecker deltas imposed by propagators and disorder averages. From
this procedure we find that the first and third diagram contribute to order O(1), the fifth
contributes to order O(N�1) while the second, fourth and sixth are subsubleading to order



142 APPENDIX D. THE SYK MODEL

Figure D.1: Contributions to the propagator to order J4

Figure D.2: The self-energy diagram

O(N�2). We see therefore that the leading order corrections in N to the propagator to
fourth order in perturbation theory come from iterated melon diagrams.

Thus, the large N expansion simplifies the problem to determine the sum of all melon
diagrams. It is possible to write down an implicit equation for the exact propagator. Denote
by ⌃(⌧ � ⌧ 0) the melon diagram with the internal lines replaced by the exact propagator (cf.
figure D.2). This is

⌃(⌧ � ⌧ 0) = J2G(⌧ � ⌧ 0)3. (D.39)

The exact propagator is obtained by concatenating this diagram with propagators, i.e.

G(⌧ � ⌧ 0) = G(0)(⌧ � ⌧ 0) +

Z
d⌧1 d⌧2G

(0)(⌧ � ⌧1)⌃(⌧1 � ⌧2)G(⌧2 � ⌧ 0), (D.40)

which is nothing but the Schwinger-Dyson equation for the exact propagator. In a diagram-
matic notation this would be written as

= + (D.41)

By iterating equation (D.40) and going to Fourier space one obtains a geometric sum
that yields the simple relation

G(!) =
1

�i! � ⌃(!) . (D.42)

The system (D.39) and (D.42) thus determines the exact propagator completely.

Effective Action. It is possible to obtain an effective Lagrangian for the fields G and ⌃
with equation (D.39) and (D.40) as equations of motion. The starting point for this is the
replica trick (D.7). Defining n replicas of the Majorana fermions  a

i , a = 1, .., n, the n-th
power of the partition function at fixed J is given by

Zn
J =

Z
D a

i e
�

R
d⌧( 1

2 
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i
@⌧ 

a

i
+ 1

4!Jijkl 
a

i
 a

j
 a

k
 a

l ). (D.43)
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The disorder-average can be computed explicitly by completing the square after which one
finds

Zn =

Z
D a

i exp
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:�
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d⌧

✓
1

2
 a
i @⌧ 

a
i

◆
� J2

8N3

nX
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Z
d⌧ d⌧ 0

�
 a
i (⌧) 

b
i (⌧
0)
�4
9
=

;. (D.44)

Notice that the last term describes an interaction between different replicas of a single
fermion. The action can be further simplified by inserting the functional delta function

1 =

Z
DGab �

�
NGab(⌧, ⌧

0)�  a
i (⌧) 

b
i (⌧
0)
�
, (D.45)

where we introduced the bilocal field Gab(⌧, ⌧ 0). Introducing the field ⌃ab(⌧, ⌧ 0) as Lagrange
multiplier that enforces the constraint (D.45) equation (D.44) takes the form

Zn =

Z
D a

i D⌃abDGab exp

⇢
�
Z

d⌧

✓
1

2
 a
i (@⌧�ab � ⌃ab) 

b
i

◆
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nX

a,b=1

Z
d⌧ d⌧ 0⌃(⌧, ⌧ 0)Gab(⌧, ⌧

0)� J2

4
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0)4
�
.

(D.46)

The advantage of introducing the fields ⌃ and G is now apparent, since one can perform the
integral over the fermion fields  a

i explicitly

Zn =

Z
D⌃abDGab exp

⇢ nX

a,b=1

N

2
log det(@⌧�ab � ⌃ab)

� N

2

Z
d⌧ d⌧ 0⌃ab(⌧, ⌧

0)Gab(⌧, ⌧
0)� J2

4
Gab(⌧, ⌧

0)4
�
.

(D.47)

In order to employ the identity (D.7) one needs to know Zn as a function of replica
number n. The path-integral can then be evaluated in the saddle point approximation in the
large N limit. Practically, however, one exchanges the two limits and, assuming a specific
ansatz for the fields in the path integral, evaluates the path integral in the saddle point
approximation before performing the limit n ! 0. The difficulty lies in the choice of an
appropriate ansatz for the fields appearing in Zn. Although the replicas of the system were
originally introduced as a mere computational trick, in many instances an ansatz that is
symmetric under permutations of the replicas leads to inconsistencies at low temperatures.
The reason for this is the phenomenon of replica symmetry breaking that is associated with
the emergence of magnetically ordered spin glass phases at low temperatures. It is widely
assumed that the SYK model does not exhibit a spin glass phase at low temperatures. This
is backed by numerical study performed in [246] which indicates that the model shows
non-Fermi liquid behavior at low temperatures.1 With this assumption it is possible to make

1Even without this result, one can show that interactions between different replicas do not contribute to
the order in N we are interested in. The SYK model can therefore be treated to subleading order in N as an
annealed system [66].
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the replica symmetric ansatz

Gab(⌧, ⌧
0) = �abG(⌧, ⌧ 0) ⌃ab(⌧, ⌧

0) = �ab⌃(⌧, ⌧
0) (D.48)

which brings out an explicit factor of n such that the limit n ! 0 yields

e��F =

Z
D⌃DG exp

⇢
N

2
log det(@⌧ � ⌃)�

N

2

Z
d⌧ d⌧ 0⌃(⌧, ⌧ 0)G(⌧, ⌧ 0)� J2

4
G(⌧, ⌧ 0)4

�
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(D.49)
This suggests to define the non-local effective action S̃ for the SYK model

S̃ = �N

2
log det(@⌧ � ⌃) +

N

2

Z
d⌧ d⌧ 0⌃(⌧, ⌧ 0)G(⌧, ⌧ 0)� J2

4
G(⌧, ⌧ 0)4. (D.50)

Variation with respect to the bi-local fields ⌃(⌧, ⌧ 0) and G(⌧, ⌧ 0) reproduces equations (D.39)
and (D.42) under the assumption that the fields depend only on the difference ⌧ � ⌧ 0. In
the following we will denote the respective solutions to these equations as G⇤(⌧1, ⌧2) and
⌃⇤(⌧1, ⌧2).

Conformal Solution. Although equations (D.39) and (D.42) look deceivingly simple a
closed form for G⇤(⌧ � ⌧ 0) is not known. Numerical solutions were obtained in [47]. In the
low-energy regime, however, the equations are quite simple to solve. Remember that the
theory becomes strongly coupled in the IR. This means that ⌃(!) containing a factor of J2

will be the dominant term in the denominator of (D.42). Similarly, at finite temperature we
are interested in the behavior at �J � 1. We can therefore solve

G(!)⌃(!) = �1, (D.51)

or in configuration space
Z

d⌧1G(⌧ � ⌧1)⌃(⌧1 � ⌧ 0) = ��(⌧ � ⌧ 0). (D.52)

When the time-dependence of the variables is clear from the context we will sometimes write
the above as

G ⇤ ⌃ = ��, (D.53)

where ⇤ is the convolution.
It is this equation that is the source of many interesting developments about the

SYK model. In particular, equation (D.52) shows conformal invariance in one dimen-
sion, i.e., reparametrization invariance. Assume that G(⌧ � ⌧1) solves equation (D.52). If
one reparametrizes

⌧ = f(�) (D.54)

and simultaneously demands that G(⌧ � ⌧ 0) scales such that

G(� � �0) = (f 0(�)f 0(�0))
�
G(⌧ � ⌧ 0), (D.55)

then one obtains Z
d�1G(� � �1)⌃(�1 � �0) = ��(� � �0), (D.56)
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provided � = 1
4 .

We have found that the equations of motion for the SYK model show an emergent
conformal symmetry in the IR regime if the theory is expressed in terms of the quantities G
and ⌃. This is also directly apparent in the non-local action (D.50). In the IR regime one
can neglect the derivative in the first term of the effective action which renders the action
invariant under the reparametrizations (D.55).

Conformal symmetry suggests the following ansatz for the propagator in the conformal
regime which we will denote by G⇤c

G⇤c(⌧) =
b

|⌧ |2� sgn(⌧), (D.57)

with coefficient b to be determined from (D.52) and conformal weight � = 1
4 . From its

Fourier transform
G⇤c(!) = i

p
2⇡

bp
|!|

sgn(!) (D.58)

and equation (D.51) one finds for the undetermined coefficient

b =

✓
1

4J2⇡

◆ 1
4

. (D.59)

Due to the reparametrization invariance (D.55) it is straightforward to determine the finite
temperature version of the conformal propagator (D.57). The function f(⌧) = tan( ⌧⇡� ) maps
the circle with periodicity � to the real line. The conformal propagator for finite temperature
� is therefore

G⇤c(⌧) = b

 
⇡

� sin ⇡⌧
�

!2�

sgn(⌧). (D.60)

We have seen that the SYK model exhibits an emergent conformal symmetry in the
infrared regime. Both approaches, the non-local effective action (D.49) and the Schwinger-
Dyson equations for the two-point function (D.39) and (D.42) show this explicitly. The
interesting way in which conformal symmetry is broken can be studied using the four-point
function.

D.3 Four-point function

In this section we study the four-point function

h i(⌧1) i(⌧2) j(⌧3) j(⌧4)i. (D.61)

This is the most general four-point function since the disorder-average forces indices to be
pair-wise equal. This four-point function consists of a disconnected term and a subleading
contribution

1

N2

NX

i,j=1

 i(⌧1) i(⌧2) j(⌧3) j(⌧4)i = G⇤(⌧1 � ⌧2)G
⇤(⌧3 � ⌧4) +

1

N
F +O(N�2). (D.62)
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The purpose of this section is to understand the structure of the subleading piece F in more
detail. In the same way that the leading term in the two-point function came from melon
diagrams the term F in (D.62) is obtained by summing ladder diagrams. More precisely, one
has the following diagrammatic expansion

⌧1

⌧2

⌧3

⌧4

+
⌧1

⌧2

⌧3

⌧4

+
⌧1

⌧2

⌧3

⌧4

� (⌧3 $ ⌧4) + ... . (D.63)

Due to the constraint (D.45) imposed in the transition to the non-local action (D.50) the
four-point function (D.62) can be written as a two-point function in the non-local variables
G(⌧1, ⌧2)

1

N2

NX

i,j=1

h i(⌧1) i(⌧2) j(⌧3) j(⌧4)i = Z�1
Z

D⌃DGe�S̃ G(⌧1, ⌧2)G(⌧3, ⌧4). (D.64)

Notice that we assume the time-ordering ⌧1 > ⌧2 > ⌧3 > ⌧4. In order to evaluate this integral
it is convenient to perform an expansion around the solutions G⇤ and ⌃⇤,

G = G⇤ + |G⇤|�1g ⌃ = ⌃⇤ + |G⇤|�, (D.65)

where g,� denote the fluctuations around G⇤ and ⌃⇤, respectively. The normalization of
the fluctuations was chosen conveniently. The measure in the path integral changes to
D⌃DG = D�Dg. The integrand independent of the fluctuations g in (D.64) yields the
leading order term in (D.62). Since the terms linear in g vanish the subleading term F is
given by

1

N
F = Z�1

Z
D�Dg, e�S̃ |G⇤(⌧1, ⌧2)|�1|G⇤(⌧3, ⌧4)|�1g(⌧1, ⌧2)g(⌧3, ⌧4). (D.66)

Expanding the action S̃ to quadratic order in the fluctuations one obtains

S̃(G,⌃) = S̃(G⇤,⌃⇤)� N

12J2

Z
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J2g(⌧1, ⌧2)

2

◆
, (D.67)

where K(⌧1, ⌧2; ⌧3, ⌧4) is defined by

K(⌧1, ⌧2; ⌧3, ⌧4) = �3J2|G⇤(⌧1, ⌧2)|G⇤(⌧1, ⌧3)G⇤(⌧2, ⌧4)|G⇤(⌧3, ⌧4)|. (D.68)

K is symmetric under the permutation (⌧1, ⌧2) $ (⌧3, ⌧4). One can think of K as a symmetric
matrix in the space of antisymmetric functions of two time coordinates.

The action (D.64) is quadratic in the fluctuations �. It is thus straightforward to perform
the Gaussian integration over � in (D.66). The right hand side is then given by

1

N
F = Z�12

Z
Dg e�S̃2 |G⇤(⌧1, ⌧2)|�1|G⇤(⌧3, ⌧4)|�1g(⌧1, ⌧2)g(⌧3, ⌧4), (D.69)
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where

S̃2 =
3J2N

4

Z
d⌧1... d⌧4 g(⌧1, ⌧2)K

�1(1�K)(⌧1, ⌧2; ⌧3, ⌧4)g(⌧3, ⌧4). (D.70)

The normalization in (D.69) is now provided by the partition function

Z2 =

Z
Dg e�S̃2 . (D.71)

From equation (D.69) one therefore arrives at the relation between K and the four-point
function F

1

3J2
|G⇤(⌧1, ⌧2)||G⇤(⌧3, ⌧4)|F = 2(1�K)�1K (D.72)

where we dropped the ⌧ -dependence of K.
Although we arrived at equation (D.72) using the path integral of the non-local action

the above relation can also be obtained from summing the ladder diagrams. There one notes
that the ladder diagram Fn+1 with 2(n+ 1) vertices is obtained from the diagram Fn with
2n vertices by acting with the kernel K 0, that is proportional to K

Fn+1 = K 0Fn ) F =
1X

n=0

K 0nF0 = (1�K 0)�1F0. (D.73)

Since F0 is given by KI, where I is the identity matrix for antisymmetric functions of two
variables, this reproduces equation (D.72) after reinstating the appropriate factors.

Suppose that one can define eigenfunctions  ↵(⌧1, ⌧2) of K as
Z

d⌧3 d⌧4K(⌧1, ⌧2; ⌧3, ⌧4) ↵(⌧3, ⌧4) = k(↵) ↵(⌧1, ⌧2), (D.74)

where ↵ labels the set of eigenvalues associated to  ↵, that are normalized according to the
standard inner product

h ↵, ↵i =
Z

d⌧1 d⌧2 
⇤

↵(⌧1, ⌧2) ↵(⌧1, ⌧2) = 1. (D.75)

The fundamental relation determining the four-point function F can therefore be written as

1

3J2
G⇤(⌧1, ⌧2)G

⇤(⌧3, ⌧4)F(⌧1, ⌧2, ⌧3, ⌧4) = 2
X

↵

k(↵)

1� k(↵)
 ↵(⌧1, ⌧2) 

⇤

↵(⌧3, ⌧4), (D.76)

where we reinstated the dependence on ⌧ and assumed that we have normal ordered time.
The calculation of the four-point function thus boils down to diagonalizing the kernel

K. This is in principle a very difficult problem, in particular since the exact propagator
G⇤ is only known numerically. However, in the conformal limit one has access to the exact
propagator G⇤c and conformal invariance can be used to diagonalize the kernel Kc in this
limit. Firstly, conformal invariance demands that Kc depends only on the SL(2) invariant
cross ratio

� =
(⌧1 � ⌧2)(⌧3 � ⌧4)

(⌧1 � ⌧3)(⌧2 � ⌧4)
. (D.77)
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Secondly, one can show that Kc commutes with the Casimir. Since the eigenfunctions of the
latter are non-degenerate they will be the eigenfunctions of Kc, labeled by the eigenvalues
h(h� 1) of the Casimir. Equation (D.76) is valid also in the conformal limit up to a small
but important issue which will be commented on below.

We will not go through this rather involved calculation in detail but just quote the results
that we are going to need in the following. These were first obtained in [46] and then worked
out later in more detail by [47,247].

The eigenvalues kc(h) of Kc come in two sets: a discrete set with h = 2, 4, 6, .. and a
continuous set with h = 1

2 + is, s 2 R
+. They are explicitly given by

kc(h) = �3

2

tan ⇡(h�1/2)
2

h� 1/2
. (D.78)

This gives rise to the following interesting observation. The four-point function (D.76) is
well-defined unless k(h) = 1. However, by equation (D.78) it is clear that kc(h = 2) = 1
which shows that the conformal four-point function has a divergence. Understanding the
source for this divergence will lead to a deeper insight into the IR regime of the SYK model.

Consider a small reparametrization ⌧ ! ⌧ + ✏(⌧) of the Euclidean time. According to
equation (D.55) this changes the conformal solution G⇤c to G⇤c + �✏G⇤c where

�✏G
⇤

c = (�✏0(⌧1) +�✏
0(⌧2) + ✏(⌧1)@⌧1 + ✏(⌧2)@⌧2)G

⇤

c(⌧1, ⌧2) (D.79)

and similarly for ⌃⇤c . Since the saddle-point equations, or equivalently the Schwinger-Dyson
equations, (D.51) and (D.52) are reparametrization invariant in the conformal limit G⇤c+�✏G⇤c
will be another solution. To first order in the reparametrization (D.53) yields

�✏G
⇤

c ⇤ ⌃⇤c +G⇤c ⇤ �✏⌃⇤c = 0. (D.80)

Convoluting on the left with �G⇤c and multiplying by |G⇤c | we obtain

|G⇤c | · �✏G⇤c � 3J2|G⇤c | ·
�
G⇤c ⇤ (G⇤c)2�✏G⇤c ⇤G⇤c

�
= 0 (D.81)

which can be rewritten as

|G⇤c(⌧12)|�✏G⇤c(⌧12) + 3J2

Z
d⌧3 d⌧4|G⇤c(⌧12)|G⇤c(⌧13)G⇤c(⌧24)|G⇤c(⌧34)||G⇤c(⌧34)|�✏G⇤c(⌧34) = 0 .

(D.82)
The second term of (D.82) is recognized to be the kernel K defined in (D.68) in the conformal
limit such that the above can be condensed written as

(1�Kc)(|G⇤c |�✏G⇤c) = 0. (D.83)

This means that infinitesimal reparametrizations of the conformal solution (D.57) are eigen-
vectors of K with eigenvalue 1. The quadratic action (D.70) therefore vanishes on these
fluctuations which produces the divergence in the four-point function.

However, notice that we have

�✏G
⇤

c = 0 ✏ = 1, ⌧, ⌧2, (D.84)
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i.e., the conformal solution is left invariant under sl(2,R) transformations. One can also
check directly in equation (D.57) that G⇤c is left invariant under the SL(2,R) transformation

⌧ =
a� + b

c� + d
ad� bc = 1 a, b, c, d 2 R. (D.85)

The conformal solution G⇤c therefore spontaneously breaks the emerging conformal
symmetry in the infrared to SL(2,R). The reparametrizations that do not belong to SL(2,R)
become Nambu–Goldstone bosons that are zero-modes of the effective action (D.70) in the
conformal limit. The divergence in the four-point function comes from these undamped
directions in the functional integral (D.69). This suggests that the strict conformal/IR limit
does not lead to a consistent theory by itself, rather for a consistent theory one needs an
additional ingredient coming from the UV. The divergence comes from the h = 2 eigenvectors
of the conformal kernel K which suggests that one has to treat this contribution away from
the conformal limit. As we will see this will lead to a new action that has to be added to the
conformal action in the IR limit.

D.4 Schwarzian action

As the first step, we will reconsider the reparametrizations |G⇤c |�✏G⇤c . Since we want to study
the theory away from the conformal limit the Euclidean line and the Euclidean circle cannot
be treated on the same footing anymore. In the following it is more convenient to work on the
Euclidean circle at finite temperature �, ⌧ ⇠ ⌧ + �, in the coordinates ✓ = 2⇡⌧

� . Evaluating
the reparametrizations (D.79) in this coordinate system for the Fourier modes ✏ = e�in✓ and
normalizing with respect to the inner product defined in (D.75) yields the eigenfunctions
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✓
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2

◆
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(D.86)
The n = 0,�1, 1 contributions associated to sl(2,R) transformations vanish. Notice that in
the conformal limit the h = 2 subspace of the kernel K is degenerate, since the  2,n, n � 2
eigenfunctions form a representation of sl(2,R). This can be checked explicitly when one
represents the generators as

P = e�i✓
✓
@✓ �

i

2

◆
, K = �ei✓

✓
@✓ +

i

2

◆
, D = i@✓. (D.87)

The vector  2,2 is the highest weight vector in this representation. This degeneracy will be
lifted when moving away from the conformal limit.

In the next step we determine the shift of the eigenvalues of K in the h = 2 subspace that
is due to a small non-conformal contribution. More precisely, one can study the propagator
G away from the conformal limit treating (�J)�1 as expansion parameter

G = Gc + (�J)�1�Gc + .... (D.88)

This will lead to a shift �Kc in the conformal kernel Kc. To first order in perturbation theory
the eigenvalues of Kc in the h = 2 subspace will be shifted by

(�J)�1 h 2,n| �Kc | 2,ni . (D.89)
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For the calculation of the shifted eigenvalue we refer to [47]. The result is

k(2, n) = 1�
p
2↵K

�J
|n|+ ... , (D.90)

where ↵K ⇡ 2.85 is a constant that can be determined numerically. As expected, the shift in
the eigenvalues lifts the degeneracy in the h = 2 subspace and renders this contribution to
the four-point function (D.76) finite.

However, notice the following: the right hand side of (D.76) will receive a contribution
that is proportional to �J

p
2↵K |n|

+ O((�J)�1) from the ↵ = (2, n) sector. In the IR limit,
i.e., at large �J this term will be the dominant contribution. Due to the small breaking of
conformal symmetry the former Nambu–Goldstone bosons will give an enhanced contribution.

Although the above discussion was based on the four-point function one can see that a
parallel discussion can be carried on the level of the effective action (D.70). We saw above
that in the conformal limit, when K = Kc, the reparametrizations of Gc are zero-modes of
(D.69). In the same way as for the four-point function we want to study the contribution
of the Nambu-Goldstone modes to the action when moving away from the conformal limit.
Due to the normalization of the fluctuations g in (D.65) one should set

g = |Gc|�✏Gc (D.91)

in (D.70). We know from the above that these are (up to normalization) equal to the
eigenfunctions  2,n of Kc. In particular, one finds

gn =
|n|(1� n2)

6J2
 2,n. (D.92)

Diagonalizing the operator in the action (D.69) only the h = 2 subspace will contribute.
Using the shifted eigenvalue (D.90) we obtain an action that is proportional to n2(n2 � 1).
This can be written in position space as

S

N
=
↵S

p
2

J

Z �

0

1

2

 
(✏00)2 �

✓
2⇡

�

◆2

(✏0)2
!
, ↵S ⌘ ↵K

128⇡
. (D.93)

This action vanishes for infinitesimal SL(2,R) transformations, as it must, since these were
not part of the functional integral (D.71) in the first place. The action (D.93) is known as
the infinitesimal Schwarzian action. Notice that it formally vanishes in the J ! 1 limit.
However, we saw above that the pure IR theory is not well-defined in this limit. Furthermore,
the action is proportional to N which means that it will contribute at the same order as the
conformal action in the large N limit.

Although we have studied only infinitesimal perturbations around the conformal solution
(D.91) one can generalize the infinitesimal Schwarzian action to finite reparametrizations of
the circle ⌧ ! f(⌧). In this case one finds

S = � N

↵S

p
2J

Z �

0
d⌧

 
Sch[f ](⌧) +

✓
2⇡

�

◆2

(f 0)2
!
, (D.94)

the Schwarzian action that we also obtained from the JT model on the gravity side (6.59).
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The Schwarzian derivative vanishes for fractional linear transformations f(⌧) = a⌧+b
c⌧+d ,

which implies that the Schwarzian action (D.94) vanishes for finite SL(2,R) transformations.
One could have arrived at the form of the Schwarzian action also by simple effective field

theory arguments. Since the ground-state spontaneously breaks the conformal symmetry
consisting of all reparametrizations of the circle to SL(2,R) the Nambu–Goldstone bosons
should correspond to the reparametrizations contained in Diff(S1)/SL(2,R). By the standard
effective field theory argument the effective action governing these bosons must be the
action compatible with these symmetries with the smallest number of derivatives. This leads
directly to the Schwarzian action. The 1/J coefficient is fixed by dimensional analysis or the
requirement that in the strict conformal limit the action (D.94) should vanish.





Bibliography

[1] H. A. González, D. Grumiller, and J. Salzer, “Towards a bulk description of higher
spin SYK,” JHEP (to appear) (2018) , arXiv:1802.01562 [hep-th].

[2] D. Grumiller, R. McNees, J. Salzer, C. Valcárcel, and D. Vassilevich, “Menagerie of
AdS2 boundary conditions,” JHEP 10 (2017) 203, arXiv:1708.08471 [hep-th].

[3] D. Grumiller, J. Salzer, and D. Vassilevich, “Aspects of AdS2 holography with
non-constant dilaton,” in International Wokshop on Strong Field Problems in Quantum
Theory Tomsk, Russia, June 6-11, 2016. 2016. arXiv:1607.06974 [hep-th].

[4] D. Grumiller, J. Salzer, and D. Vassilevich, “AdS2 holography is (non-)trivial for
(non-)constant dilaton,” JHEP 12 (2015) 015, arXiv:1509.08486 [hep-th].

[5] S. Prohazka, J. Salzer, and F. Schöller, “Linking Past and Future Null Infinity in Three
Dimensions,” Phys. Rev. D95 no. 8, (2017) 086011, arXiv:1701.06573 [hep-th].

[6] A. Bagchi, D. Grumiller, J. Salzer, S. Sarkar, and F. Schöller, “Flat space cosmologies
in two dimensions - Phase transitions and asymptotic mass-domination,” Phys.Rev.
D90 no. 8, (2014) 084041, arXiv:1408.5337 [hep-th].

[7] D. Grumiller, R. McNees, and J. Salzer, “Cosmological constant as confining U(1)
charge in two-dimensional dilaton gravity,” Phys.Rev. D90 no. 4, (2014) 044032,
arXiv:1406.7007 [hep-th].

[8] D. Grumiller, R. McNees, and J. Salzer, “Black holes and thermodynamics - The first
half century,” Fundam. Theor. Phys. 178 (2015) 27–70, arXiv:1402.5127 [gr-qc].

[9] E. Wigner, “Nobel lecture: Events, laws of nature, and invariance principles.” Nobel
lecture, 1963.

[10] P. H. Mark A. Bedau, Emergence - Contemporary Readings in Philosophy and Science.
Bradford Books. The MIT Press, 1 ed., 2008.

[11] A. Einstein, “Approximative Integration of the Field Equations of Gravitation,”
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) (1916) 688–696.

[12] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in
general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc.
Lond. A269 (1962) 21–52.

153

http://arxiv.org/abs/1802.01562
http://arxiv.org/abs/1708.08471
http://arxiv.org/abs/1607.06974
http://dx.doi.org/10.1007/JHEP12(2015)015
http://arxiv.org/abs/1509.08486
http://dx.doi.org/10.1103/PhysRevD.95.086011
http://arxiv.org/abs/1701.06573
http://dx.doi.org/10.1103/PhysRevD.90.084041
http://dx.doi.org/10.1103/PhysRevD.90.084041
http://arxiv.org/abs/1408.5337
http://dx.doi.org/10.1103/PhysRevD.90.044032
http://arxiv.org/abs/1406.7007
http://dx.doi.org/10.1007/978-3-319-10852-0_2
http://arxiv.org/abs/1402.5127
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161


154 BIBLIOGRAPHY

[13] M. Henneaux and C. Teitelboim, “Asymptotically anti-De Sitter Spaces,”
Commun.Math.Phys. 98 (1985) 391–424.

[14] A. Ashtekar and A. Magnon, “Asymptotically anti-de Sitter space-times,” Class.
Quant. Grav. 1 (1984) L39–L44.

[15] J. Bekenstein, “Black holes and the second law,” Lett.Nuovo Cim. 4 (1972) 737–740.

[16] J. D. Bekenstein, “Black holes and entropy,” Phys.Rev. D7 (1973) 2333–2346.

[17] S. Hawking, “Black hole explosions,” Nature 248 (1974) 30–31.

[18] S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43 (1975)
199–220.

[19] R. M. Wald, “The thermodynamics of black holes,” Living Rev.Rel. 4 (2001) 6,
arXiv:gr-qc/9912119 [gr-qc].

[20] S. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys.Rev. D14

(1976) 2460–2473.

[21] G. ’t Hooft, “Dimensional reduction in quantum gravity,” 1993.

[22] L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995) 6377–6396,
hep-th/9409089.

[23] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Adv.Theor.Math.Phys. 2 (1998) 231–252, arXiv:hep-th/9711200
[hep-th].

[24] S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from
noncritical string theory,” Phys.Lett. B428 (1998) 105–114, arXiv:hep-th/9802109
[hep-th].

[25] E. Witten, “Anti-de Sitter space and holography,” Adv.Theor.Math.Phys. 2 (1998)
253–291, arXiv:hep-th/9802150 [hep-th].

[26] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity,”
Commun.Math.Phys. 104 (1986) 207–226.

[27] M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in three-dimensional
space-time,” Phys.Rev.Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099 [hep-th].

[28] M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli, “Geometry of the (2+1)
black hole,” Phys.Rev. D48 no. 6, (1993) 1506–1525, arXiv:gr-qc/9302012 [gr-qc].

[29] A. Strominger, “Black hole entropy from near horizon microstates,” JHEP 9802 (1998)
009, arXiv:hep-th/9712251 [hep-th].

[30] J. L. Cardy, “Operator content of two-dimensional conformally invariant theories,”
Nucl. Phys. B270 (1986) 186–204.

http://dx.doi.org/10.1007/BF01205790
http://dx.doi.org/10.1088/0264-9381/1/4/002
http://dx.doi.org/10.1088/0264-9381/1/4/002
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1038/248030a0
http://arxiv.org/abs/gr-qc/9912119
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://arxiv.org/abs/hep-th/9409089
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://arxiv.org/abs/gr-qc/9302012
http://arxiv.org/abs/hep-th/9712251


BIBLIOGRAPHY 155

[31] H. W. J. Bloete, J. L. Cardy, and M. P. Nightingale, “Conformal invariance, the
central charge, and universal finite size amplitudes at criticality,” Phys. Rev. Lett. 56

(1986) 742–745.

[32] O. Coussaert, M. Henneaux, and P. van Driel, “The Asymptotic dynamics of
three-dimensional Einstein gravity with a negative cosmological constant,”
Class.Quant.Grav. 12 (1995) 2961–2966, arXiv:gr-qc/9506019 [gr-qc].

[33] S. Carlip, “What we don’t know about BTZ black hole entropy,” Class. Quant. Grav.
15 (1998) 3609–3625, arXiv:hep-th/9806026 [hep-th].

[34] S. Carlip, “Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole,”
Class.Quant.Grav. 22 (2005) R85–R124, arXiv:gr-qc/0503022 [gr-qc].

[35] A. Maloney and E. Witten, “Quantum Gravity Partition Functions in Three
Dimensions,” JHEP 02 (2010) 029, arXiv:0712.0155 [hep-th].

[36] K. Jensen, S. Kachru, A. Karch, J. Polchinski, and E. Silverstein, “Towards a
holographic marginal Fermi liquid,” Phys. Rev. D84 (2011) 126002, arXiv:1105.1772
[hep-th].

[37] L. Gou, J. E. McClintock, R. A. Remillard, J. F. Steiner, M. J. Reid, J. A. Orosz,
R. Narayan, M. Hanke, and J. García, “Confirmation Via the Continuum-Fitting
Method that the Spin of the Black Hole in Cygnus X-1 is Extreme,” Astrophys. J. 790

no. 1, (2014) 29, arXiv:1308.4760 [astro-ph.HE].

[38] R. Fender, E. Gallo, and D. Russell, “No evidence for black hole spin powering of jets
in X-ray binaries,” Mon. Not. Roy. Astron. Soc. 406 (2010) 1425–1434,
arXiv:1003.5516 [astro-ph.HE].

[39] H. K. Kunduri and J. Lucietti, “Classification of near-horizon geometries of extremal
black holes,” Living Rev. Rel. 16 (2013) 8, arXiv:1306.2517 [hep-th].

[40] M. Guica, T. Hartman, W. Song, and A. Strominger, “The Kerr/CFT
Correspondence,” Phys. Rev. D80 (2009) 124008, arXiv:0809.4266 [hep-th].

[41] A. Sen, “Black hole entropy function and the attractor mechanism in higher derivative
gravity,” JHEP 09 (2005) 038, arXiv:hep-th/0506177 [hep-th].

[42] O. J. Dias, H. S. Reall, and J. E. Santos, “Kerr-CFT and gravitational perturbations,”
JHEP 0908 (2009) 101, arXiv:0906.2380 [hep-th].

[43] V. Balasubramanian, J. de Boer, M. M. Sheikh-Jabbari, and J. Simón, “What is a
chiral 2d CFT? And what does it have to do with extremal black holes?,” JHEP 02

(2010) 017, arXiv:0906.3272 [hep-th].

[44] A. J. Amsel, G. T. Horowitz, D. Marolf, and M. M. Roberts, “No Dynamics in the
Extremal Kerr Throat,” JHEP 09 (2009) 044, arXiv:0906.2376 [hep-th].

[45] J. M. Maldacena, J. Michelson, and A. Strominger, “Anti-de Sitter fragmentation,”
JHEP 02 (1999) 011, arXiv:hep-th/9812073 [hep-th].

http://dx.doi.org/10.1088/0264-9381/12/12/012
http://arxiv.org/abs/gr-qc/9506019
http://dx.doi.org/10.1088/0264-9381/15/11/020
http://dx.doi.org/10.1088/0264-9381/15/11/020
http://arxiv.org/abs/hep-th/9806026
http://dx.doi.org/10.1088/0264-9381/22/12/R01
http://arxiv.org/abs/gr-qc/0503022
http://dx.doi.org/10.1007/JHEP02(2010)029
http://arxiv.org/abs/0712.0155
http://dx.doi.org/10.1103/PhysRevD.84.126002
http://arxiv.org/abs/1105.1772
http://arxiv.org/abs/1105.1772
http://dx.doi.org/10.1088/0004-637X/790/1/29
http://dx.doi.org/10.1088/0004-637X/790/1/29
http://arxiv.org/abs/1308.4760
http://dx.doi.org/10.1111/j.1365-2966.2010.16754.x
http://arxiv.org/abs/1003.5516
http://dx.doi.org/10.12942/lrr-2013-8
http://arxiv.org/abs/1306.2517
http://dx.doi.org/10.1103/PhysRevD.80.124008
http://arxiv.org/abs/0809.4266
http://dx.doi.org/10.1088/1126-6708/2005/09/038
http://arxiv.org/abs/hep-th/0506177
http://dx.doi.org/10.1088/1126-6708/2009/08/101
http://arxiv.org/abs/0906.2380
http://dx.doi.org/10.1007/JHEP02(2010)017
http://dx.doi.org/10.1007/JHEP02(2010)017
http://arxiv.org/abs/0906.3272
http://dx.doi.org/10.1088/1126-6708/2009/09/044
http://arxiv.org/abs/0906.2376
http://dx.doi.org/10.1088/1126-6708/1999/02/011
http://arxiv.org/abs/hep-th/9812073


156 BIBLIOGRAPHY

[46] A. Kitaev, “A simple model of quantum holography.” KITP strings seminar, 2015.

[47] J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys.
Rev. D94 no. 10, (2016) 106002, arXiv:1604.07818 [hep-th].

[48] S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum
Heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030
[cond-mat].

[49] Y.-Z. You, A. W. W. Ludwig, and C. Xu, “Sachdev-Ye-Kitaev Model and
Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry
Protected Topological States,” Phys. Rev. B95 no. 11, (2017) 115150,
arXiv:1602.06964 [cond-mat.str-el].

[50] A. Jevicki, K. Suzuki, and J. Yoon, “Bi-Local Holography in the SYK Model,” JHEP
07 (2016) 007, arXiv:1603.06246 [hep-th].

[51] Y. Gu, X.-L. Qi, and D. Stanford, “Local criticality, diffusion and chaos in generalized
Sachdev-Ye-Kitaev models,” JHEP 05 (2017) 125, arXiv:1609.07832 [hep-th].

[52] D. J. Gross and V. Rosenhaus, “A Generalization of Sachdev-Ye-Kitaev,” JHEP 02

(2017) 093, arXiv:1610.01569 [hep-th].

[53] M. Berkooz, P. Narayan, M. Rozali, and J. Simón, “Higher Dimensional
Generalizations of the SYK Model,” JHEP 01 (2017) 138, arXiv:1610.02422
[hep-th].

[54] A. M. García-García and J. J. M. Verbaarschot, “Spectral and thermodynamic
properties of the Sachdev-Ye-Kitaev model,” Phys. Rev. D94 no. 12, (2016) 126010,
arXiv:1610.03816 [hep-th].

[55] S. Banerjee and E. Altman, “Solvable model for a dynamical quantum phase transition
from fast to slow scrambling,” Phys. Rev. B95 no. 13, (2017) 134302,
arXiv:1610.04619 [cond-mat.str-el].

[56] W. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, “Supersymmetric
Sachdev-Ye-Kitaev models,” Phys. Rev. D95 no. 2, (2017) 026009, arXiv:1610.08917
[hep-th]. [Addendum: Phys. Rev.D95,no.6,069904(2017)].

[57] E. Witten, “An SYK-Like Model Without Disorder,” arXiv:1610.09758 [hep-th].

[58] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker,
D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random Matrices,” JHEP
05 (2017) 118, arXiv:1611.04650 [hep-th].

[59] I. R. Klebanov and G. Tarnopolsky, “Uncolored random tensors, melon diagrams, and
the Sachdev-Ye-Kitaev models,” Phys. Rev. D95 no. 4, (2017) 046004,
arXiv:1611.08915 [hep-th].

http://dx.doi.org/10.1103/PhysRevD.94.106002
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://arxiv.org/abs/1604.07818
http://dx.doi.org/10.1103/PhysRevLett.70.3339
http://arxiv.org/abs/cond-mat/9212030
http://arxiv.org/abs/cond-mat/9212030
http://dx.doi.org/10.1103/PhysRevB.95.115150
http://arxiv.org/abs/1602.06964
http://dx.doi.org/10.1007/JHEP07(2016)007
http://dx.doi.org/10.1007/JHEP07(2016)007
http://arxiv.org/abs/1603.06246
http://dx.doi.org/10.1007/JHEP05(2017)125
http://arxiv.org/abs/1609.07832
http://dx.doi.org/10.1007/JHEP02(2017)093
http://dx.doi.org/10.1007/JHEP02(2017)093
http://arxiv.org/abs/1610.01569
http://dx.doi.org/10.1007/JHEP01(2017)138
http://arxiv.org/abs/1610.02422
http://arxiv.org/abs/1610.02422
http://dx.doi.org/10.1103/PhysRevD.94.126010
http://arxiv.org/abs/1610.03816
http://dx.doi.org/10.1103/PhysRevB.95.134302
http://arxiv.org/abs/1610.04619
http://arxiv.org/abs/1610.08917
http://arxiv.org/abs/1610.08917
http://arxiv.org/abs/1610.09758
http://dx.doi.org/10.1007/JHEP05(2017)118
http://dx.doi.org/10.1007/JHEP05(2017)118
http://arxiv.org/abs/1611.04650
http://dx.doi.org/10.1103/PhysRevD.95.046004
http://arxiv.org/abs/1611.08915


BIBLIOGRAPHY 157

[60] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, “Thermoelectric
transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models
and holography,” Phys. Rev. B95 no. 15, (2017) 155131, arXiv:1612.00849
[cond-mat.str-el].

[61] C. Peng, M. Spradlin, and A. Volovich, “A Supersymmetric SYK-like Tensor Model,”
JHEP 05 (2017) 062, arXiv:1612.03851 [hep-th].

[62] C. Krishnan, S. Sanyal, and P. N. Bala Subramanian, “Quantum Chaos and
Holographic Tensor Models,” JHEP 03 (2017) 056, arXiv:1612.06330 [hep-th].

[63] G. Turiaci and H. Verlinde, “Towards a 2d QFT Analog of the SYK Model,” JHEP 10

(2017) 167, arXiv:1701.00528 [hep-th].

[64] F. Ferrari, “The Large D Limit of Planar Diagrams,” arXiv:1701.01171 [hep-th].

[65] T. Li, J. Liu, Y. Xin, and Y. Zhou, “Supersymmetric SYK model and random matrix
theory,” JHEP 06 (2017) 111, arXiv:1702.01738 [hep-th].

[66] R. Gurau, “Quenched equals annealed at leading order in the colored SYK model,”
EPL 119 no. 3, (2017) 30003, arXiv:1702.04228 [hep-th].

[67] G. Mandal, P. Nayak, and S. R. Wadia, “Coadjoint orbit action of Virasoro group and
two-dimensional quantum gravity dual to SYK/tensor models,” JHEP 11 (2017) 046,
arXiv:1702.04266 [hep-th].

[68] D. J. Gross and V. Rosenhaus, “The Bulk Dual of SYK: Cubic Couplings,” JHEP 05

(2017) 092, arXiv:1702.08016 [hep-th].

[69] C. Krishnan and K. V. P. Kumar, “Towards a Finite-N Hologram,” JHEP 10 (2017)
099, arXiv:1706.05364 [hep-th].

[70] M. Berkooz, P. Narayan, M. Rozali, and J. Simón, “Comments on the Random
Thirring Model,” JHEP 09 (2017) 057, arXiv:1702.05105 [hep-th].

[71] A. Strominger, “The dS / CFT correspondence,” JHEP 10 (2001) 034,
arXiv:hep-th/0106113 [hep-th].

[72] J. Polchinski, “S matrices from AdS space-time,” arXiv:hep-th/9901076 [hep-th].

[73] G. Barnich and C. Troessaert, “Aspects of the BMS/CFT correspondence,” JHEP 05

(2010) 062, arXiv:1001.1541 [hep-th].

[74] A. Bagchi, R. Basu, D. Grumiller, and M. Riegler, “Entanglement entropy in Galilean
conformal field theories and flat holography,” Phys. Rev. Lett. 114 no. 11, (2015)
111602, arXiv:1410.4089 [hep-th].

[75] A. Bagchi, S. Detournay, R. Fareghbal, and J. Simón, “Holography of 3D Flat
Cosmological Horizons,” Phys. Rev. Lett. 110 no. 14, (2013) 141302,
arXiv:1208.4372 [hep-th].

http://dx.doi.org/10.1103/PhysRevB.95.155131
http://arxiv.org/abs/1612.00849
http://arxiv.org/abs/1612.00849
http://dx.doi.org/10.1007/JHEP05(2017)062
http://arxiv.org/abs/1612.03851
http://dx.doi.org/10.1007/JHEP03(2017)056
http://arxiv.org/abs/1612.06330
http://dx.doi.org/10.1007/JHEP10(2017)167
http://dx.doi.org/10.1007/JHEP10(2017)167
http://arxiv.org/abs/1701.00528
http://arxiv.org/abs/1701.01171
http://dx.doi.org/10.1007/JHEP06(2017)111
http://arxiv.org/abs/1702.01738
http://dx.doi.org/10.1209/0295-5075/119/30003
http://arxiv.org/abs/1702.04228
http://dx.doi.org/10.1007/JHEP11(2017)046
http://arxiv.org/abs/1702.04266
http://dx.doi.org/10.1007/JHEP05(2017)092
http://dx.doi.org/10.1007/JHEP05(2017)092
http://arxiv.org/abs/1702.08016
http://dx.doi.org/10.1007/JHEP10(2017)099
http://dx.doi.org/10.1007/JHEP10(2017)099
http://arxiv.org/abs/1706.05364
http://dx.doi.org/10.1007/JHEP09(2017)057
http://arxiv.org/abs/1702.05105
http://dx.doi.org/10.1088/1126-6708/2001/10/034
http://arxiv.org/abs/hep-th/0106113
http://arxiv.org/abs/hep-th/9901076
http://dx.doi.org/10.1007/JHEP05(2010)062
http://dx.doi.org/10.1007/JHEP05(2010)062
http://arxiv.org/abs/1001.1541
http://dx.doi.org/10.1103/PhysRevLett.114.111602
http://dx.doi.org/10.1103/PhysRevLett.114.111602
http://arxiv.org/abs/1410.4089
http://dx.doi.org/10.1103/PhysRevLett.110.141302
http://arxiv.org/abs/1208.4372


158 BIBLIOGRAPHY

[76] A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152,
arXiv:1312.2229 [hep-th].

[77] S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) B516–B524.

[78] T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s
soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].

[79] R. Jackiw, “Liouville field theory: A two-dimensional model for gravity?,” in Quantum
Theory Of Gravity, S. Christensen, ed., pp. 403–420. Adam Hilger, Bristol, 1984.

[80] C. Teitelboim, “The Hamiltonian structure of two-dimensional space-time and its
relation with the conformal anomaly,” in Quantum Theory Of Gravity, S. Christensen,
ed., pp. 327–344. Adam Hilger, Bristol, 1984.

[81] B. Khesin and R. Wendt, The geometry of infinite-dimensional groups. Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in
Mathematics. Springer, 1 ed., 2008.

[82] I. Vaisman, Lectures on the Geometry of Poisson Manifolds. Birkhäuser Basel, 1994.

[83] C. Laurent-Gengoux, A. Pichereau, and P. Vanhaecke, Poisson Structures.
Grundlehren der mathematischen Wissenschaften. Springer, 2013 ed., 2012.

[84] J. Marsden and T. Ratiu, Introduction to mechanics and symmetry. Springer-Verlag,
1994.

[85] R. Abraham and J. Marsden, Foundations of Mechanics. Addison-Wesley Publishing
Company, Inc., 2nd ed ed., 1987.

[86] L. Guieu and C. Roger, Algèbre et le groupe de Virasoro : Aspects géométriques et
algébriques, généralisations. Les publications CRM, 2007.

[87] B. Oblak, BMS Particles in Three Dimensions. PhD thesis, Brussels U., 2016.
arXiv:1610.08526 [hep-th].

[88] A. Weinstein, “The local structure of Poisson manifolds,” J. Differential Geom. 18

no. 3, (1983) 523–557.

[89] J. Lee, Introduction to smooth manifolds, vol. 218 of Graduate Texts in Mathematics.
Springer, 2012.

[90] N. M. J. Woodhouse, Geometric quantization. Oxford Mathematical Monographs.
Clarendon Press, 1992.

[91] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature. Graduate texts in
mathematics. Springer, 1 ed., 1997.

[92] G. S. Birman and K. Nomizu, “The Gauss-Bonnet theorem for 2-dimensional
spacetimes,” Michigan Math. J. 31 no. 1, (1984) 77–81.

http://dx.doi.org/10.1007/JHEP07(2014)152
http://arxiv.org/abs/1312.2229
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1007/JHEP05(2015)151
http://arxiv.org/abs/1401.7026
http://dx.doi.org/10.1007/978-3-319-61878-4
http://arxiv.org/abs/1610.08526
http://dx.doi.org/10.4310/jdg/1214437787
http://dx.doi.org/10.4310/jdg/1214437787
http://dx.doi.org/10.1307/mmj/1029002964


BIBLIOGRAPHY 159

[93] P. R. Law, “Neutral Geometry and the Gauss-Bonnet Theorem for Two-dimensional
Pseudo-Riemannian Manifolds,” Rocky Mountain J. Math. 22 no. 4, (12, 1992)
1365–1383.

[94] C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,”
Phys. Rev. 124 (1961) 925–935.

[95] J. M. Ezquiaga and M. Zumalacárregui, “Dark Energy After GW170817: Dead Ends
and the Road Ahead,” Phys. Rev. Lett. 119 no. 25, (2017) 251304, arXiv:1710.05901
[astro-ph.CO].

[96] J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817 for
Cosmological Scalar-Tensor Theories,” Phys. Rev. Lett. 119 no. 25, (2017) 251303,
arXiv:1710.05893 [astro-ph.CO].

[97] P. Creminelli and F. Vernizzi, “Dark Energy after GW170817 and GRB170817A,”
Phys. Rev. Lett. 119 no. 25, (2017) 251302, arXiv:1710.05877 [astro-ph.CO].

[98] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, “Strong
constraints on cosmological gravity from GW170817 and GRB 170817A,” Phys. Rev.
Lett. 119 no. 25, (2017) 251301, arXiv:1710.06394 [astro-ph.CO].

[99] D. Grumiller, W. Kummer, and D. Vassilevich, “Dilaton gravity in two-dimensions,”
Phys.Rept. 369 (2002) 327–430, arXiv:hep-th/0204253 [hep-th].

[100] J. Salzer, “The Cosmological Constant as a Thermodynamic Variable in 2d Dilaton
Gravity,” Master’s thesis, Vienna University of Technology, 2013.

[101] H.-J. Schmidt, “Scale Invariant Gravity in Two-dimensions,” J. Math. Phys. 32 (1991)
1562–1566.

[102] S. N. Solodukhin, “On higher derivative gravity in two-dimensions,” Phys. Rev. D51

(1995) 591–602, arXiv:hep-th/9405132 [hep-th].

[103] T. Strobl, “Gravity in two space-time dimensions.” Habilitation thesis, 1999.

[104] D. Cangemi and R. Jackiw, “Poincaré gauge theory for gravitational forces in (1+1)-
dimensions,” Ann. Phys. 225 (1993) 229–263, hep-th/9302026.

[105] K. Isler and C. A. Trugenberger, “A gauge theory of two-dimensional quantum
gravity,” Phys. Rev. Lett. 63 (1989) 834.

[106] A. H. Chamseddine and D. Wyler, “Gauge theory of topological gravity in
(1+1)-dimensions,” Phys. Lett. B228 (1989) 75.

[107] J. Callan, Curtis G., E. Martinec, M. Perry, and D. Friedan, “Strings in Background
Fields,” Nucl.Phys. B262 (1985) 593.

[108] E. Witten, “On string theory and black holes,” Phys.Rev. D44 (1991) 314–324.

[109] R. Dijkgraaf, H. L. Verlinde, and E. P. Verlinde, “String propagation in a black hole
geometry,” Nucl. Phys. B371 (1992) 269–314.

http://dx.doi.org/10.1216/rmjm/1181072662
http://dx.doi.org/10.1216/rmjm/1181072662
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRevLett.119.251304
http://arxiv.org/abs/1710.05901
http://arxiv.org/abs/1710.05901
http://dx.doi.org/10.1103/PhysRevLett.119.251303
http://arxiv.org/abs/1710.05893
http://dx.doi.org/10.1103/PhysRevLett.119.251302
http://arxiv.org/abs/1710.05877
http://dx.doi.org/10.1103/PhysRevLett.119.251301
http://dx.doi.org/10.1103/PhysRevLett.119.251301
http://arxiv.org/abs/1710.06394
http://dx.doi.org/10.1016/S0370-1573(02)00267-3
http://arxiv.org/abs/hep-th/0204253
http://dx.doi.org/10.1063/1.529267
http://dx.doi.org/10.1063/1.529267
http://dx.doi.org/10.1103/PhysRevD.51.591
http://dx.doi.org/10.1103/PhysRevD.51.591
http://arxiv.org/abs/hep-th/9405132
http://arXiv.org/abs/hep-th/9302026
http://dx.doi.org/10.1016/0550-3213(85)90506-1
http://dx.doi.org/10.1103/PhysRevD.44.314
http://dx.doi.org/10.1016/0550-3213(92)90237-6


160 BIBLIOGRAPHY

[110] D. Grumiller, “An action for the exact string black hole,” JHEP 05 (2005) 028,
hep-th/0501208.

[111] J. Callan, Curtis G., S. B. Giddings, J. A. Harvey, and A. Strominger, “Evanescent
black holes,” Phys.Rev. D45 (1992) 1005–1009, arXiv:hep-th/9111056 [hep-th].

[112] D. Grumiller and R. McNees, “Thermodynamics of black holes in two (and higher)
dimensions,” JHEP 0704 (2007) 074, arXiv:hep-th/0703230 [HEP-TH].

[113] D. Grumiller and R. Meyer, “Ramifications of lineland,” Turk.J.Phys. 30 (2006)
349–378, arXiv:hep-th/0604049 [hep-th].

[114] A. Achucarro and P. Townsend, “A Chern-Simons Action for Three-Dimensional
anti-De Sitter Supergravity Theories,” Phys.Lett. B180 (1986) 89.

[115] E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys.
B311 (1988) 46.

[116] P. Schaller and T. Strobl, “Poisson structure induced (topological) field theories,”
Mod.Phys.Lett. A9 (1994) 3129–3136, arXiv:hep-th/9405110 [hep-th].

[117] N. Ikeda, “Two-dimensional gravity and nonlinear gauge theory,” Annals Phys. 235

(1994) 435–464, arXiv:hep-th/9312059 [hep-th].

[118] A. Medina and P. Revoy, “Algèbres de lie et produit scalaire invariant,” Annales
scientifiques de l’École Normale Supérieure 18 no. 3, (1985) 553–561.

[119] J. M. Figueroa-O’Farrill and S. Stanciu, “On the structure of symmetric selfdual Lie
algebras,” J. Math. Phys. 37 (1996) 4121–4134, arXiv:hep-th/9506152 [hep-th].

[120] S. Prohazka, Chern-Simons Holography: Boundary Conditions, Contractions and
Double Extensions for a Journey Beyond Anti-de Sitter. PhD thesis, Vienna, Tech. U.,
2017. arXiv:1710.11110 [hep-th].

[121] J. Zanelli, “Lecture notes on Chern-Simons (super-)gravities. Second edition (February
2008),” in Proceedings, 7th Mexican Workshop on Particles and Fields (MWPF 1999):
Merida, Mexico, November 10-17, 1999. 2005. arXiv:hep-th/0502193 [hep-th].

[122] D. Birmingham, M. Blau, M. Rakowski, and G. Thompson, “Topological field theory,”
Phys. Rept. 209 (1991) 129–340.

[123] M. Blau and G. Thompson, “Topological Gauge Theories of Antisymmetric Tensor
Fields,” Annals Phys. 205 (1991) 130–172.

[124] G. Barnich and M. Henneaux, “Consistent couplings between fields with a gauge
freedom and deformations of the master equation,” Phys. Lett. B311 (1993) 123–129,
arXiv:hep-th/9304057 [hep-th].

[125] G. Barnich, F. Brandt, and M. Henneaux, “Local BRST cohomology in the antifield
formalism. 1. General theorems,” Commun. Math. Phys. 174 (1995) 57–92,
arXiv:hep-th/9405109 [hep-th].

http://arxiv.org/abs/hep-th/0501208
http://dx.doi.org/10.1103/PhysRevD.45.R1005
http://arxiv.org/abs/hep-th/9111056
http://dx.doi.org/10.1088/1126-6708/2007/04/074
http://arxiv.org/abs/hep-th/0703230
http://arxiv.org/abs/hep-th/0604049
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1142/S0217732394002951
http://arxiv.org/abs/hep-th/9405110
http://dx.doi.org/10.1006/aphy.1994.1104
http://dx.doi.org/10.1006/aphy.1994.1104
http://arxiv.org/abs/hep-th/9312059
http://dx.doi.org/10.1063/1.531620
http://arxiv.org/abs/hep-th/9506152
http://arxiv.org/abs/1710.11110
http://arxiv.org/abs/hep-th/0502193
http://dx.doi.org/10.1016/0370-1573(91)90117-5
http://dx.doi.org/10.1016/0003-4916(91)90240-9
http://dx.doi.org/10.1016/0370-2693(93)90544-R
http://arxiv.org/abs/hep-th/9304057
http://dx.doi.org/10.1007/BF02099464
http://arxiv.org/abs/hep-th/9405109


BIBLIOGRAPHY 161

[126] G. Barnich, M. Henneaux, and R. Tatar, “Consistent interactions between gauge fields
and the local BRST cohomology: The Example of Yang-Mills models,” Int. J. Mod.
Phys. D3 (1994) 139–144, arXiv:hep-th/9307155 [hep-th].

[127] K. I. Izawa, “On nonlinear gauge theory from a deformation theory perspective,” Prog.
Theor. Phys. 103 (2000) 225–228, arXiv:hep-th/9910133 [hep-th].

[128] N. Ikeda, “Deformation of BF theories, topological open membrane and a
generalization of the star deformation,” JHEP 07 (2001) 037, arXiv:hep-th/0105286
[hep-th].

[129] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems. Princeton
University Press, Princeton, New Jersey, 1992.

[130] J. Gomis, J. Paris, and S. Samuel, “Antibracket, antifields and gauge theory
quantization,” Phys. Rept. 259 (1995) 1–145, arXiv:hep-th/9412228 [hep-th].

[131] L. Baulieu, A. S. Losev, and N. A. Nekrasov, “Target space symmetries in topological
theories. 1.,” JHEP 02 (2002) 021, arXiv:hep-th/0106042 [hep-th].

[132] M. Bojowald, A. Kotov, and T. Strobl, “Lie algebroid morphisms, Poisson sigma
models, and off-shell closed gauge symmetries,” J. Geom. Phys. 54 (2005) 400–426,
arXiv:math/0406445 [math-dg].

[133] M. Kontsevich, “Deformation quantization of Poisson manifolds, I,” Lett. Math. Phys.
66 (2003) 157–216, q-alg/9709040.

[134] A. S. Cattaneo and G. Felder, “A Path integral approach to the Kontsevich
quantization formula,” Commun. Math. Phys. 212 (2000) 591–611,
arXiv:math/9902090 [math].

[135] S. Gukov and E. Witten, “Branes and Quantization,” Adv. Theor. Math. Phys. 13

no. 5, (2009) 1445–1518, arXiv:0809.0305 [hep-th].

[136] M. Henneaux and C. Teitelboim, Quantization of gauge systems. Princeton University
Press, Princeton, NJ, 1992.

[137] M. F. Ertl, M. O. Katanaev, and W. Kummer, “Generalized supergravity in two
dimensions,” Nucl. Phys. B530 (1998) 457–486, hep-th/9710051.

[138] T. Strobl, “Target-superspace in 2d dilatonic supergravity,” Phys. Lett. B460 (1999)
87–93, arXiv:hep-th/9906230.

[139] T. Regge and C. Teitelboim, “Role of surface integrals in the hamiltonian formulation
of general relativity,” Annals Phys. 88 (1974) 286.

[140] G. Barnich and F. Brandt, “Covariant theory of asymptotic symmetries, conservation
laws and central charges,” Nucl.Phys. B633 (2002) 3–82, arXiv:hep-th/0111246
[hep-th].

http://dx.doi.org/10.1142/S0218271894000149
http://dx.doi.org/10.1142/S0218271894000149
http://arxiv.org/abs/hep-th/9307155
http://dx.doi.org/10.1143/PTP.103.225
http://dx.doi.org/10.1143/PTP.103.225
http://arxiv.org/abs/hep-th/9910133
http://dx.doi.org/10.1088/1126-6708/2001/07/037
http://arxiv.org/abs/hep-th/0105286
http://arxiv.org/abs/hep-th/0105286
http://dx.doi.org/10.1016/0370-1573(94)00112-G
http://arxiv.org/abs/hep-th/9412228
http://dx.doi.org/10.1088/1126-6708/2002/02/021
http://arxiv.org/abs/hep-th/0106042
http://dx.doi.org/10.1016/j.geomphys.2004.11.002
http://arxiv.org/abs/math/0406445
http://arxiv.org/abs/q-alg/9709040
http://dx.doi.org/10.1007/s002200000229
http://arxiv.org/abs/math/9902090
http://dx.doi.org/10.4310/ATMP.2009.v13.n5.a5
http://dx.doi.org/10.4310/ATMP.2009.v13.n5.a5
http://arxiv.org/abs/0809.0305
http://arxiv.org/abs/hep-th/9710051
http://arxiv.org/abs/arXiv:hep-th/9906230
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://dx.doi.org/10.1016/S0550-3213(02)00251-1
http://arxiv.org/abs/hep-th/0111246
http://arxiv.org/abs/hep-th/0111246


162 BIBLIOGRAPHY

[141] G. Barnich and G. Compere, “Surface charge algebra in gauge theories and
thermodynamic integrability,” J. Math. Phys. 49 (2008) 042901, arXiv:0708.2378
[gr-qc].

[142] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,”
Commun.Math.Phys. 208 (1999) 413–428, arXiv:hep-th/9902121 [hep-th].

[143] R. Aros, M. Contreras, R. Olea, R. Troncoso, and J. Zanelli, “Conserved charges for
gravity with locally AdS asymptotics,” Phys. Rev. Lett. 84 (2000) 1647–1650,
arXiv:gr-qc/9909015 [gr-qc].

[144] J. Lee and R. M. Wald, “Local symmetries and constraints,” J. Math. Phys. 31 (1990)
725–743.

[145] V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for
dynamical black hole entropy,” Phys. Rev. D50 (1994) 846–864,
arXiv:gr-qc/9403028 [gr-qc].

[146] R. M. Wald and A. Zoupas, “A General definition of ’conserved quantities’ in general
relativity and other theories of gravity,” Phys. Rev. D61 (2000) 084027,
arXiv:gr-qc/9911095 [gr-qc].

[147] F. Schöller. PhD thesis, TU Wien, 2018.

[148] V. Iyer and R. M. Wald, “A Comparison of Noether charge and Euclidean methods for
computing the entropy of stationary black holes,” Phys.Rev. D52 (1995) 4430–4439,
arXiv:gr-qc/9503052 [gr-qc].

[149] P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second ed., 1993.

[150] W. Kummer and D. J. Schwarz, “General analytic solution of R**2 gravity with
dynamical torsion in two-dimensions,” Phys. Rev. D45 (1992) 3628–3635.

[151] T. Klosch and T. Strobl, “Classical and quantum gravity in (1+1)-dimensions. Part 2:
The Universal coverings,” Class. Quant. Grav. 13 (1996) 2395–2422,
arXiv:gr-qc/9511081 [gr-qc].

[152] A. Achucarro and M. E. Ortiz, “Relating black holes in two-dimensions and
three-dimensions,” Phys.Rev. D48 (1993) 3600–3605, arXiv:hep-th/9304068
[hep-th].

[153] M. Cadoni and S. Mignemi, “Dilatonic black holes in theories with moduli fields,”
Phys. Rev. D48 (1993) 5536–5538, arXiv:hep-th/9305107 [hep-th].

[154] C. Fefferman and C. R. Graham, “The ambient metric,” Ann. Math. Stud. 178 (2011)
1–128, arXiv:0710.0919 [math.DG].

[155] R. Penrose, “Zero rest mass fields including gravitation: Asymptotic behavior,” Proc.
Roy. Soc. Lond. A284 (1965) 159.

http://dx.doi.org/10.1063/1.2889721
http://arxiv.org/abs/0708.2378
http://arxiv.org/abs/0708.2378
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://dx.doi.org/10.1103/PhysRevLett.84.1647
http://arxiv.org/abs/gr-qc/9909015
http://dx.doi.org/10.1063/1.528801
http://dx.doi.org/10.1063/1.528801
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://dx.doi.org/10.1103/PhysRevD.61.084027
http://arxiv.org/abs/gr-qc/9911095
http://dx.doi.org/10.1103/PhysRevD.52.4430
http://arxiv.org/abs/gr-qc/9503052
http://dx.doi.org/10.1007/978-1-4612-4350-2
http://dx.doi.org/10.1103/PhysRevD.45.3628
http://dx.doi.org/10.1088/0264-9381/13/9/007
http://arxiv.org/abs/gr-qc/9511081
http://dx.doi.org/10.1103/PhysRevD.48.3600
http://arxiv.org/abs/hep-th/9304068
http://arxiv.org/abs/hep-th/9304068
http://dx.doi.org/10.1103/PhysRevD.48.5536
http://arxiv.org/abs/hep-th/9305107
http://arxiv.org/abs/0710.0919
http://dx.doi.org/10.1098/rspa.1965.0058
http://dx.doi.org/10.1098/rspa.1965.0058


BIBLIOGRAPHY 163

[156] D. Borthwick, Spectral Theory of Infinite-Area Hyperbolic Surfaces. Progress in
Mathematics. Springer International Publishing, 2016.

[157] W. Thurston and S. Levy, Three-dimensional Geometry and Topology, vol. 1.
Princeton University Press, 1997.

[158] E. Witten, “Coadjoint Orbits of the Virasoro Group,” Commun. Math. Phys. 114

(1988) 1.

[159] J. Balog, L. Feher, and L. Palla, “Coadjoint orbits of the Virasoro algebra and the
global Liouville equation,” Int. J. Mod. Phys. A13 (1998) 315–362,
arXiv:hep-th/9703045 [hep-th].

[160] J. A. de Azcárraga and J. M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and
some Applications in Physics. Cambridge University Press, 2011.

[161] A. Garbarz and M. Leston, “Classification of Boundary Gravitons in AdS3 Gravity,”
JHEP 05 (2014) 141, arXiv:1403.3367 [hep-th].

[162] G. Barnich and B. Oblak, “Holographic positive energy theorems in three-dimensional
gravity,” Class. Quant. Grav. 31 (2014) 152001, arXiv:1403.3835 [hep-th].

[163] A. Almheiri and J. Polchinski, “Models of AdS2 backreaction and holography,” JHEP
11 (2015) 014, arXiv:1402.6334 [hep-th].

[164] T. Hartman and A. Strominger, “Central Charge for AdS(2) Quantum Gravity,”
JHEP 04 (2009) 026, arXiv:0803.3621 [hep-th].

[165] A. Castro, D. Grumiller, F. Larsen, and R. McNees, “Holographic Description of
AdS(2) Black Holes,” JHEP 0811 (2008) 052, arXiv:0809.4264 [hep-th].

[166] A. Castro and W. Song, “Comments on AdS2 Gravity,” arXiv:1411.1948 [hep-th].

[167] R. K. Gupta and A. Sen, “Ads(3)/CFT(2) to Ads(2)/CFT(1),” arXiv:0806.0053
[hep-th].

[168] M. Cvetič and I. Papadimitriou, “AdS2 holographic dictionary,” JHEP 12 (2016) 008,
arXiv:1608.07018 [hep-th]. [Erratum: JHEP01,120(2017)].

[169] G. Gibbons and S. Hawking, “Action Integrals and Partition Functions in Quantum
Gravity,” Phys.Rev. D15 (1977) 2752–2756.

[170] G. W. Gibbons and S. W. Hawking, eds., Euclidean quantum gravity. Singapore:
World Scientific, 1993.

[171] W. Kummer, H. Liebl, and D. Vassilevich, “Exact path integral quantization of generic
2-D dilaton gravity,” Nucl.Phys. B493 (1997) 491–502, arXiv:gr-qc/9612012
[gr-qc].

[172] R. Camporesi and A. Higuchi, “Spectral functions and zeta functions in hyperbolic
spaces,” J. Math. Phys. 35 (1994) 4217–4246.

http://dx.doi.org/10.1007/BF01218287
http://dx.doi.org/10.1007/BF01218287
http://dx.doi.org/10.1142/S0217751X98000147
http://arxiv.org/abs/hep-th/9703045
http://dx.doi.org/10.1007/JHEP05(2014)141
http://arxiv.org/abs/1403.3367
http://dx.doi.org/10.1088/0264-9381/31/15/152001
http://arxiv.org/abs/1403.3835
http://dx.doi.org/10.1007/JHEP11(2015)014
http://dx.doi.org/10.1007/JHEP11(2015)014
http://arxiv.org/abs/1402.6334
http://dx.doi.org/10.1088/1126-6708/2009/04/026
http://arxiv.org/abs/0803.3621
http://dx.doi.org/10.1088/1126-6708/2008/11/052
http://arxiv.org/abs/0809.4264
http://arxiv.org/abs/1411.1948
http://arxiv.org/abs/0806.0053
http://arxiv.org/abs/0806.0053
http://arxiv.org/abs/1608.07018
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1016/S0550-3213(97)00143-0
http://arxiv.org/abs/gr-qc/9612012
http://arxiv.org/abs/gr-qc/9612012
http://dx.doi.org/10.1063/1.530850


164 BIBLIOGRAPHY

[173] F. Larsen and P. Lisbao, “Quantum Corrections to Supergravity on AdS2 ⇥ S2,” Phys.
Rev. D91 no. 8, (2015) 084056, arXiv:1411.7423 [hep-th].

[174] M. Bertin, S. Ertl, H. Ghorbani, D. Grumiller, N. Johansson, and D. Vassilevich,
“Lobachevsky holography in conformal Chern-Simons gravity,” JHEP 1306 (2013) 015,
arXiv:1212.3335.

[175] D. V. Vassilevich and A. Zelnikov, “Discrete symmetries of functional determinants,”
Nucl. Phys. B594 (2001) 501–517, hep-th/0009084.

[176] P. B. Gilkey, K. Kirsten, D. Vassilevich, and A. Zelnikov, “Duality symmetry of the p
form effective action and supertrace of the twisted de Rham complex,” Nucl. Phys.
B648 (2003) 542–556, arXiv:hep-th/0209125 [hep-th].

[177] G. Mandal, A. M. Sengupta, and S. R. Wadia, “Classical solutions of two-dimensional
string theory,” Mod.Phys.Lett. A6 (1991) 1685–1692.

[178] S. Elitzur, A. Forge, and E. Rabinovici, “Some global aspects of string
compactifications,” Nucl.Phys. B359 (1991) 581–610.

[179] S. D. Odintsov and I. L. Shapiro, “One loop renormalization of two-dimensional
induced quantum gravity,” Phys. Lett. B263 (1991) 183–189.

[180] J. G. Russo and A. A. Tseytlin, “Scalar tensor quantum gravity in two-dimensions,”
Nucl. Phys. B382 (1992) 259–275, arXiv:hep-th/9201021.

[181] J. Brown, Lower Dimensional Gravity. World Scientific, 1988.

[182] R. Emparan, C. V. Johnson, and R. C. Myers, “Surface terms as counterterms in the
AdS / CFT correspondence,” Phys.Rev. D60 (1999) 104001, arXiv:hep-th/9903238
[hep-th].

[183] S. de Haro, S. N. Solodukhin, and K. Skenderis, “Holographic reconstruction of
space-time and renormalization in the AdS / CFT correspondence,” Commun. Math.
Phys. 217 (2001) 595–622, arXiv:hep-th/0002230 [hep-th].

[184] I. Papadimitriou and K. Skenderis, “AdS / CFT correspondence and geometry,” in
AdS/CFT correspondence: Einstein metrics and their conformal boundaries.,
O. Biquard, ed., pp. 73–101. 2005. arXiv:hep-th/0404176 [hep-th].

[185] S. Sachdev, “Holographic metals and the fractionalized Fermi liquid,” Phys. Rev. Lett.
105 (2010) 151602, arXiv:1006.3794 [hep-th].

[186] D. Grumiller, M. Leston, and D. Vassilevich, “Anti-de Sitter holography for gravity
and higher spin theories in two dimensions,” Phys. Rev. D89 no. 4, (2014) 044001,
arXiv:1311.7413 [hep-th].

[187] R. P. Geroch and J. Winicour, “Linkages in general relativity,” J. Math. Phys. 22

(1981) 803–812.

http://dx.doi.org/10.1103/PhysRevD.91.084056
http://dx.doi.org/10.1103/PhysRevD.91.084056
http://arxiv.org/abs/1411.7423
http://dx.doi.org/10.1007/JHEP06(2013)015
http://arxiv.org/abs/1212.3335
http://arXiv.org/abs/hep-th/0009084
http://dx.doi.org/10.1016/S0550-3213(02)00975-6
http://dx.doi.org/10.1016/S0550-3213(02)00975-6
http://arxiv.org/abs/hep-th/0209125
http://dx.doi.org/10.1142/S0217732391001822
http://dx.doi.org/10.1016/0550-3213(91)90073-7
http://arxiv.org/abs/arXiv:hep-th/9201021
http://dx.doi.org/10.1103/PhysRevD.60.104001
http://arxiv.org/abs/hep-th/9903238
http://arxiv.org/abs/hep-th/9903238
http://dx.doi.org/10.1007/s002200100381
http://dx.doi.org/10.1007/s002200100381
http://arxiv.org/abs/hep-th/0002230
http://arxiv.org/abs/hep-th/0404176
http://dx.doi.org/10.1103/PhysRevLett.105.151602
http://dx.doi.org/10.1103/PhysRevLett.105.151602
http://arxiv.org/abs/1006.3794
http://dx.doi.org/10.1103/PhysRevD.89.044001
http://arxiv.org/abs/1311.7413
http://dx.doi.org/10.1063/1.524987
http://dx.doi.org/10.1063/1.524987


BIBLIOGRAPHY 165

[188] F. Schöller, “Distinct Minkowski spaces from Bondi-Metzner-Sachs supertranslations,”
Phys. Rev. D97 no. 4, (2018) 046009, arXiv:1711.02670 [gr-qc].

[189] V. de Alfaro, S. Fubini, and G. Furlan, “Conformal invariance in quantum mechanics,”
Nuovo Cim. A34 (1976) 569.

[190] M. Astorino, S. Cacciatori, D. Klemm, and D. Zanon, “AdS(2) supergravity and
superconformal quantum mechanics,” Ann. Phys. 304 (2003) 128–144,
arXiv:hep-th/0212096.

[191] T. H. Buscher, “A symmetry of the string background field equations,” Phys. Lett.
B194 (1987) 59.

[192] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in
two dimensional Nearly Anti-de-Sitter space,” PTEP 2016 no. 12, (2016) 12C104,
arXiv:1606.01857 [hep-th].

[193] G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011) 105,
arXiv:1106.0213 [hep-th].

[194] J. Engelsöy, T. G. Mertens, and H. Verlinde, “An investigation of AdS2 backreaction
and holography,” JHEP 07 (2016) 139, arXiv:1606.03438 [hep-th].

[195] K. Jensen, “Chaos in AdS2 Holography,” Phys. Rev. Lett. 117 no. 11, (2016) 111601,
arXiv:1605.06098 [hep-th].

[196] S. Detournay, T. Hartman, and D. M. Hofman, “Warped Conformal Field Theory,”
Phys. Rev. D86 (2012) 124018, arXiv:1210.0539 [hep-th].

[197] H. Afshar, S. Detournay, D. Grumiller, and B. Oblak, “Near-Horizon Geometry and
Warped Conformal Symmetry,” JHEP 03 (2016) 187, arXiv:1512.08233 [hep-th].

[198] C. Troessaert, “Enhanced asymptotic symmetry algebra of AdS3,” JHEP 08 (2013)
044, arXiv:1303.3296 [hep-th].

[199] R. M. Wald, “Black hole entropy is the Noether charge,” Phys.Rev. D48 (1993)
3427–3431, arXiv:gr-qc/9307038 [gr-qc].

[200] R. B. Mann, “Conservation laws and 2-d black holes in dilaton gravity,” Phys. Rev.
D47 (1993) 4438–4442, hep-th/9206044.

[201] D. J. Gross and V. Rosenhaus, “A line of CFTs: from generalized free fields to SYK,”
JHEP 07 (2017) 086, arXiv:1706.07015 [hep-th].

[202] I. Bengtsson and P. Sandin, “Anti de Sitter space, squashed and stretched,” Class.
Quant. Grav. 23 (2006) 971–986, arXiv:gr-qc/0509076 [gr-qc].

[203] E. S. Fradkin and V. Ya. Linetsky, “Higher Spin Symmetry in One-dimension and
Two-dimensions. 1.,” Mod. Phys. Lett. A4 (1989) 2635–2647.

[204] E. S. Fradkin and V. Ya. Linetsky, “Higher Spin Symmetry in One-dimension and
Two-dimensions. 2.,” Mod. Phys. Lett. A4 (1989) 2649–2665.

http://dx.doi.org/10.1103/PhysRevD.97.046009
http://arxiv.org/abs/1711.02670
http://dx.doi.org/10.1016/S0003-4916(03)00008-3
http://arxiv.org/abs/hep-th/0212096
http://dx.doi.org/10.1093/ptep/ptw124
http://arxiv.org/abs/1606.01857
http://dx.doi.org/10.1007/JHEP12(2011)105
http://arxiv.org/abs/1106.0213
http://dx.doi.org/10.1007/JHEP07(2016)139
http://arxiv.org/abs/1606.03438
http://dx.doi.org/10.1103/PhysRevLett.117.111601
http://arxiv.org/abs/1605.06098
http://dx.doi.org/10.1103/PhysRevD.86.124018
http://arxiv.org/abs/1210.0539
http://dx.doi.org/10.1007/JHEP03(2016)187
http://arxiv.org/abs/1512.08233
http://dx.doi.org/10.1007/JHEP08(2013)044
http://dx.doi.org/10.1007/JHEP08(2013)044
http://arxiv.org/abs/1303.3296
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://arxiv.org/abs/hep-th/9206044
http://dx.doi.org/10.1007/JHEP07(2017)086
http://arxiv.org/abs/1706.07015
http://dx.doi.org/10.1088/0264-9381/23/3/022
http://dx.doi.org/10.1088/0264-9381/23/3/022
http://arxiv.org/abs/gr-qc/0509076
http://dx.doi.org/10.1142/S021773238900294X
http://dx.doi.org/10.1142/S0217732389002951


166 BIBLIOGRAPHY

[205] K. Li, “Construction of topological W(3) gravity,” Phys. Lett. B251 (1990) 54–60.

[206] K. Li, “Action for Topological W Gravity,” Nucl. Phys. B346 (1990) 329–348.

[207] M. A. Vasiliev, “Higher spin gauge interactions for matter fields in two-dimensions,”
Phys. Lett. B363 (1995) 51–57, arXiv:hep-th/9511063 [hep-th].

[208] K. B. Alkalaev, “On higher spin extension of the Jackiw-Teitelboim gravity model,” J.
Phys. A47 (2014) 365401, arXiv:1311.5119 [hep-th].

[209] K. B. Alkalaev, “Global and local properties of AdS2 higher spin gravity,” JHEP 10

(2014) 122, arXiv:1404.5330 [hep-th].

[210] M. Mezei, S. S. Pufu, and Y. Wang, “A 2d/1d Holographic Duality,”
arXiv:1703.08749 [hep-th].

[211] D. Stanford and E. Witten, “Fermionic Localization of the Schwarzian Theory,” JHEP
10 (2017) 008, arXiv:1703.04612 [hep-th].

[212] M. Henneaux, G. Lucena Gómez, J. Park, and S.-J. Rey, “Super- W(infinity)
Asymptotic Symmetry of Higher-Spin AdS3 Supergravity,” JHEP 1206 (2012) 037,
arXiv:1203.5152 [hep-th].

[213] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Towards metric-like
higher-spin gauge theories in three dimensions,” J.Phys. A46 (2013) 214017,
arXiv:1208.1851 [hep-th].

[214] M. Henneaux, A. Perez, D. Tempo, and R. Troncoso, “Chemical potentials in
three-dimensional higher spin anti-de Sitter gravity,” JHEP 1312 (2013) 048,
arXiv:1309.4362 [hep-th].

[215] J. Yoon, “SYK Models and SYK-like Tensor Models with Global Symmetry,” JHEP
10 (2017) 183, arXiv:1707.01740 [hep-th].

[216] T. G. Mertens, “The Schwarzian Theory - Origins,” arXiv:1801.09605 [hep-th].

[217] G. Barnich, H. A. Gonzalez, and P. Salgado-Rebolledo, “Geometric actions for
three-dimensional gravity,” Class. Quant. Grav. 35 no. 1, (2018) 014003,
arXiv:1707.08887 [hep-th].

[218] A. Alekseev and S. L. Shatashvili, “Path Integral Quantization of the Coadjoint Orbits
of the Virasoro Group and 2D Gravity,” Nucl. Phys. B323 (1989) 719–733.

[219] A. Alekseev, L. D. Faddeev, and S. L. Shatashvili, “Quantization of symplectic orbits
of compact Lie groups by means of the functional integral,” J. Geom. Phys. 5 (1988)
391–406.

[220] G. Dzhordzhadze, L. O’Raifeartaigh, and I. Tsutsui, “Quantization of a relativistic
particle on the SL(2,R) manifold based on Hamiltonian reduction,” Phys. Lett. B336

(1994) 388–394, arXiv:hep-th/9407059 [hep-th].

http://dx.doi.org/10.1016/0370-2693(90)90231-T
http://dx.doi.org/10.1016/0550-3213(90)90284-K
http://dx.doi.org/10.1016/0370-2693(95)01122-7
http://arxiv.org/abs/hep-th/9511063
http://dx.doi.org/10.1088/1751-8113/47/36/365401
http://dx.doi.org/10.1088/1751-8113/47/36/365401
http://arxiv.org/abs/1311.5119
http://dx.doi.org/10.1007/JHEP10(2014)122
http://dx.doi.org/10.1007/JHEP10(2014)122
http://arxiv.org/abs/1404.5330
http://arxiv.org/abs/1703.08749
http://dx.doi.org/10.1007/JHEP10(2017)008
http://dx.doi.org/10.1007/JHEP10(2017)008
http://arxiv.org/abs/1703.04612
http://dx.doi.org/10.1007/JHEP06(2012)037
http://arxiv.org/abs/1203.5152
http://dx.doi.org/10.1088/1751-8113/46/21/214017
http://arxiv.org/abs/1208.1851
http://dx.doi.org/10.1007/JHEP12(2013)048
http://arxiv.org/abs/1309.4362
http://dx.doi.org/10.1007/JHEP10(2017)183
http://dx.doi.org/10.1007/JHEP10(2017)183
http://arxiv.org/abs/1707.01740
http://arxiv.org/abs/1801.09605
http://dx.doi.org/10.1088/1361-6382/aa9806
http://arxiv.org/abs/1707.08887
http://dx.doi.org/10.1016/0550-3213(89)90130-2
http://dx.doi.org/10.1016/0393-0440(88)90031-9
http://dx.doi.org/10.1016/0393-0440(88)90031-9
http://dx.doi.org/10.1016/0370-2693(94)90549-5
http://dx.doi.org/10.1016/0370-2693(94)90549-5
http://arxiv.org/abs/hep-th/9407059


BIBLIOGRAPHY 167

[221] M. Heinze, B. Hoare, G. Jorjadze, and L. Megrelidze, “Orbit method quantization of
the AdS2 superparticle,” J. Phys. A48 no. 31, (2015) 315403, arXiv:1504.04175
[hep-th].

[222] M. Brigante, S. Cacciatori, D. Klemm, and D. Zanon, “The asymptotic dynamics of
two-dimensional (anti-)de Sitter gravity,” JHEP 03 (2002) 005, hep-th/0202073.

[223] J. Gomis, J. Herrero, K. Kamimura, and J. Roca, “Finite W(3) transformations in a
multitime approach,” Phys. Lett. B339 (1994) 59–64, arXiv:hep-th/9409024
[hep-th].

[224] P. Di Francesco, C. Itzykson, and J. B. Zuber, “Classical W algebras,” Commun. Math.
Phys. 140 (1991) 543–568.

[225] A. Perez, D. Tempo, and R. Troncoso, “Boundary conditions for General Relativity on
AdS3 and the KdV hierarchy,” JHEP 06 (2016) 103, arXiv:1605.04490 [hep-th].

[226] A. R. Forsyth, Theory of differential equations. Ordinary linear equations, vol. Volume
4, Part 3. Cambridge University Press, 1902.

[227] S. Govindarajan, “Higher dimensional uniformization and W geometry,” Nucl. Phys.
B457 (1995) 357–374, arXiv:hep-th/9412078 [hep-th].

[228] A. Marshakov and A. Morozov, “A NOTE ON W(3) ALGEBRA,” Nucl. Phys. B339

(1990) 79–94. [Sov. Phys. JETP70,403(1990)].

[229] W. Li and S. Theisen, “Some aspects of holographic W-gravity,” JHEP 08 (2015) 035,
arXiv:1504.07799 [hep-th].

[230] V. Y. Ovsienko and B. A. Khesin, “Symplectic leaves of the gel’fand-dikii brackets and
homotopy classes of nondegenerate curves,” Functional Analysis and Its Applications
24 (01-03, 1990) .

[231] M. Z. Shapiro, “Topology of the space of nondegenerate curves,” Functional Analysis
and Its Applications 26 (07-09, 1992) .

[232] Z. Bajnok and D. Nogradi, “Geometry of W algebras from the affine Lie algebra point
of view,” J. Phys. A34 (2001) 4811–4830, arXiv:hep-th/0012190 [hep-th].

[233] S. T. V. Ovsienko, Projective Differential Geometry Old and New: From the
Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge
Tracts in Mathematics. Cambridge University Press, 2004.

[234] A. Sen, “Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole
Entropy in Different Dimensions,” JHEP 04 (2013) 156, arXiv:1205.0971 [hep-th].

[235] C. Keeler, P. Lisbao, and G. S. Ng, “Partition functions with spin in AdS2 via
quasinormal mode methods,” JHEP 10 (2016) 060, arXiv:1601.04720 [hep-th].

[236] A. Castro, C. Keeler, and P. Szepietowski, “Tweaking one-loop determinants in AdS3,”
JHEP 10 (2017) 070, arXiv:1707.06245 [hep-th].

http://dx.doi.org/10.1088/1751-8113/48/31/315403
http://arxiv.org/abs/1504.04175
http://arxiv.org/abs/1504.04175
http://arXiv.org/abs/hep-th/0202073
http://dx.doi.org/10.1016/0370-2693(94)91132-0
http://arxiv.org/abs/hep-th/9409024
http://arxiv.org/abs/hep-th/9409024
http://dx.doi.org/10.1007/BF02099134
http://dx.doi.org/10.1007/BF02099134
http://dx.doi.org/10.1007/JHEP06(2016)103
http://arxiv.org/abs/1605.04490
http://dx.doi.org/10.1016/0550-3213(95)00527-7
http://dx.doi.org/10.1016/0550-3213(95)00527-7
http://arxiv.org/abs/hep-th/9412078
http://dx.doi.org/10.1016/0550-3213(90)90534-K
http://dx.doi.org/10.1016/0550-3213(90)90534-K
http://dx.doi.org/10.1007/JHEP08(2015)035
http://arxiv.org/abs/1504.07799
http://dx.doi.org/10.1007/bf01077916
http://dx.doi.org/10.1007/bf01077916
http://dx.doi.org/10.1007/bf01075643
http://dx.doi.org/10.1007/bf01075643
http://dx.doi.org/10.1088/0305-4470/34/23/303
http://arxiv.org/abs/hep-th/0012190
http://dx.doi.org/10.1007/JHEP04(2013)156
http://arxiv.org/abs/1205.0971
http://dx.doi.org/10.1007/JHEP10(2016)060
http://arxiv.org/abs/1601.04720
http://dx.doi.org/10.1007/JHEP10(2017)070
http://arxiv.org/abs/1707.06245


168 BIBLIOGRAPHY

[237] D. Harlow and D. Jafferis, “The Factorization Problem in Jackiw-Teitelboim Gravity,”
arXiv:1804.01081 [hep-th].

[238] S. Bonanos, J. Gomis, K. Kamimura, and J. Lukierski, “Maxwell Superalgebra and
Superparticle in Constant Gauge Badkgrounds,” Phys. Rev. Lett. 104 (2010) 090401,
arXiv:0911.5072 [hep-th].

[239] H. L. Verlinde, “Black holes and strings in two-dimensions,” in Recent developments in
theoretical and experimental general relativity, gravitation and relativistic field theories.
Proceedings, 6th Marcel Grossmann Meeting, Kyoto, Japan, June 23-29, 1991. Pts. A,
B, pp. 178–207. 1991.

[240] D. Cangemi and R. Jackiw, “Gauge invariant formulations of lineal gravity,” Phys.
Rev. Lett. 69 (1992) 233–236, arXiv:hep-th/9203056 [hep-th].

[241] J. M. Figueroa-O’Farrill and S. Prohazka, “Spacetimes for kinematical lie algebras,” to
appear (2018) .

[242] L. Feher, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui, and A. Wipf, “On Hamiltonian
reductions of the Wess-Zumino-Novikov-Witten theories,” Phys. Rept. 222 (1992)
1–64.

[243] M. Henneaux, L. Maoz, and A. Schwimmer, “Asymptotic dynamics and asymptotic
symmetries of three-dimensional extended AdS supergravity,” Annals Phys. 282

(2000) 31–66, arXiv:hep-th/9910013 [hep-th].

[244] S. Edwards and P. Anderson, “Theory of spin glasses,” Journal of Physics F Metal
Physics 5 (1975) .

[245] K. H. Fischer and J. A. Hertz, Spin glasses, vol. 33. Cambridge University Press, New
York, 1993.

[246] W. Fu and S. Sachdev, “Numerical study of fermion and boson models with
infinite-range random interactions,” Phys. Rev. B94 no. 3, (2016) 035135,
arXiv:1603.05246 [cond-mat.str-el].

[247] J. Polchinski and V. Rosenhaus, “The Spectrum in the Sachdev-Ye-Kitaev Model,”
JHEP 04 (2016) 001, arXiv:1601.06768 [hep-th].

http://arxiv.org/abs/1804.01081
http://dx.doi.org/10.1103/PhysRevLett.104.090401
http://arxiv.org/abs/0911.5072
http://dx.doi.org/10.1103/PhysRevLett.69.233
http://dx.doi.org/10.1103/PhysRevLett.69.233
http://arxiv.org/abs/hep-th/9203056
http://dx.doi.org/10.1016/0370-1573(92)90026-V
http://dx.doi.org/10.1016/0370-1573(92)90026-V
http://dx.doi.org/10.1006/aphy.2000.5994
http://dx.doi.org/10.1006/aphy.2000.5994
http://arxiv.org/abs/hep-th/9910013
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1088/0305-4608/5/5/017
http://dx.doi.org/10.1016/1044-5803(94)90069-8
http://dx.doi.org/10.1103/PhysRevB.94.035135
http://arxiv.org/abs/1603.05246
http://dx.doi.org/10.1007/JHEP04(2016)001
http://arxiv.org/abs/1601.06768


+BLPC 4BM[FS

1FSTPOBM %BUB

%BUF PG #JSUI� "VHVTU ��UI ����

1MBDF PG #JSUI� 7JFOOB

$JUJ[FOTIJQ� "VTUSJBO

-BOHVBHFT� (FSNBO 	OBUJWF
 &OHMJTI 	GMVFOU
 4QBOJTI 	JOUFSNFEJBUF


&NBJM� TBM[FS!IFQ�JUQ�UVXJFO�BD�BU

&EVDBUJPO

TJODF ������� %PDUPSBM 4UVEJFT BU 56 8JFO 	BEWJTPS %� (SVNJMMFS

3FTFBSDI *OUFSFTUT� CMBDL IPMFT DMBTTJDBM�RVBOUVN HSBWJUZ IPMPHSBQIZ
MPXFS�EJNFOTJPOBM HSBWJUZ

�������o������� 3FTFBSDI WJTJU BU 6OJWFSTJEBEF EP "#$ 4¤P 1BVMP #SB[JM

�������o������� .BTUFS 4UVEJFT i5FDIOJTDIF 1IZTJLw BU 56 8JFO
HSBEVBUFE XJUI EJTUJODUJPO

�������o������� &SBTNVT FYDIBOHF TUVEFOU BU 6OJWFSTJEBE "VU°OPNB .BESJE 4QBJO

�������o������� #BDIFMPS 4UVEJFT i5FDIOJTDIF 1IZTJLw BU 56 8JFO
HSBEVBUFE XJUI EJTUJODUJPO

������� .BUVSB BU #( 9*9 (ZNOBTJVNTUSB�F 7JFOOB�
QBTTFE XJUI EJTUJODUJPO

5FBDIJOH BOE 8PSL &YQFSJFODF

�������o������� 1SPKFDU BTTJTUBOU BU UIF *OTUJUVUF PG 5IFPSFUJDBM 1IZTJDT 56 8JFO

��o������� $P�PSHBOJ[FS PG UIF 7JFOOB 5IFPSZ -VODI 4FNJOBS

�������o������� 5FBDIJOH BTTJTUBOU JO &MFDUSPEZOBNJDT * BOE 2VBOUVN 5IFPSZ * 56 8JFO

�������o������� $JWJM 4FSWJDF BU 3FE $SPTT

"XBSET BOE (SBOUT

������� &SXJO 4DIS³EJOHFS GFMMPXTIJQ CZ UIF '8'

������� 0VUTUBOEJOH NBTUFS UIFTJT BXBSE PG UIF "VTUSJBO 1IZTJDBM 4PDJFUZ



1VCMJDBUJPO 3FDPSE

� QVCMJDBUJPOT JO QFFS�SFWJFXFE KPVSOBMT 	+)&1 1IZT� 3FW� %


� DPOGFSFODF QSPDFFEJOHT DPOUSJCVUJPO

� CPPL DPOUSJCVUJPO

4DJFOUJGJD 5BMLT

t $POGFSFODFT 8PSLTIPQT

o A&4* 8PSLTIPQ PO 2VBOUVN 1IZTJDT BOE (SBWJUZ�
+VOF ���� &SXJO 4DIS³EJOHFS *OTUJUVUF 7JFOOB "VTUSJB

o A�1( "OOVBM .FFUJOH �����
4FQ ��UI���UI ���� 7JFOOB "VTUSJB

t *OWJUFE 4FNJOBST

���� A"TQFDUT PG "E42 IPMPHSBQIZ� /JFMT #PIS *OTUJUVUF $PQFOIBHFO %FONBSL

A"TQFDUT PG "E42 IPMPHSBQIZ� 6OJWFSTJUZ PG #BSDFMPOB 4QBJO

A)PMPHSBQIZ JO �E %JMBUPO (SBWJUZ� *$51�4"*'3 4¤P 1BVMP #SB[JM

A)PMPHSBQIZ JO �E %JMBUPO (SBWJUZ� 6'3+ 3JP EF +BOFJSP #SB[JM

���� A)PMPHSBQIZ JO �E %JMBUPO (SBWJUZ� "&*�(PMN (FSNBOZ

A)PMPHSBQIZ JO �E %JMBUPO (SBWJUZ� 6-# #SVTTFMT #FMHJVN

���� A5BOHMFE 6Q JO 5XP o �E EJMBUPO HSBWJUZ� 6OJWFSTJUZ PG 7JFOOB "VTUSJB

0VUSFBDI

������� *OWJUFE UBML JO UIF QVCMJD A:PVOH .JOET� TFTTJPO BU UIF
BOOVBM NFFUJOH PG UIF "VTUSJBO 1IZTJDBM 4PDJFUZ

��o������� (VJEF UISPVHI UIF FYIJCJUJPO i��� :FBST PG (FOFSBM 3FMBUJWJUZw
BU UIF "VTUSJBO "DBEFNZ PG 4DJFODFT

"UUFOEFE 4DIPPMT BOE $POGFSFODFT

������� &4* 8PSLTIPQT PO 2VBOUVN 1IZTJDT BOE (SBWJUZ 7JFOOB "VTUSJB

������� "E4�� UIFPSZ BOE QSBDUJDF ((* 'MPSFODF *UBMZ

������� �1( "OOVBM .FFUJOH ���� 7JFOOB "VTUSJB

������� 7JFOOB $FOUSBM &VSPQFBO 4FNJOBS PO 2VBOUVN BOE (SBWJUZ 7JFOOB "VTUSJB

������� 4BBMCVSH 4VNNFS 4DIPPM PO 5IFPSFUJDBM 1IZTJDT 8PMGFSTEPSG (FSNBOZ

������� 4USJOHT ���� #BOHBMPSF *OEJB

������� 8JOUFS 4DIPPM PO 1SPTQFDUT PG 1BSUJDMF 1IZTJDT 4DIMBENJOH "VTUSJB

������� &VSPQFBO $POGFSFODF PO $PNQMFY 4ZTUFNT 7JFOOB "VTUSJB



1VCMJDBUJPOT

3FTFBSDI BSUJDMFT

<�> )� "� (PO[ MF[ %� (SVNJMMFS BOE +� 4BM[FS i5PXBSET B CVML EFTDSJQUJPO PG IJHIFS TQJO
4:,w �`sBp,R3ykXyR8ek (?2T@i?)�

<�> %� (SVNJMMFS 3� .D/FFT +� 4BM[FS $� 7BMD SDFM BOE %� 7BTTJMFWJDI i.FOBHFSJF PG "E42
CPVOEBSZ DPOEJUJPOTw +)&1 �� 	����
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	����
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 ������ �`sBp,R9yeXdyyd
(?2T@i?)�
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 ��o�� �`sBp,R9ykX8Rkd (;`@[+)�

$POGFSFODF QSPDFFEJOHT
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EJMBUPOw 3VTT� 1IZT� +� �� OP� �� 	����
 ����o���� �`sBp,ReydXyeNd9 (?2T@i?)�
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