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Abstract

The aim of this thesis is to study regularity properties and approximations of generalized equations
and to apply them for optimal control problems. The thesis is cumulative and consists of four
published or submitted for publication papers.
The first one investigates the convergence properties of Newton-type methods for solving

generalized equations. Classical results use the properties of metric regularity or strong metric
regularity of the generalized equation at the solution to show convergence of the Newton method
when the initial point is in a neighborhood of the solution. In contrast theorems of Kantorovich-
type impose regularity conditions on the initial point rather than the solutions and therefore
allow an a priori convergence analysis which is more useful for practical purposes. A known result
of Kantorovich-type for generalized equations requires the single-valued part of the generalized
equations to be differentiable with Lipschitz continuous derivative. A new nonsmooth version of
this result showing linear convergence of the Newton method is proved.

The second paper introduces uniform versions of metric regularity and strong metric regularity
on compact sets and uses them to analyze two path-following schemes for tracking a solution
trajectory of a differential generalized equation, which use ideas of the Euler/Heun method and
the Newton method simultaneously.
The third paper studies the necessary optimality condition for solutions of general optimal

control problems in Bolza form obtained by the Pontryagin maximum principle. This condition
can be rewritten as a generalized equation in suitable Sobolev spaces. Hence results about
Newton-type methods from the first part can be used for solving these problems. Known results
showing regularity mostly assume continuity of the optimal control which is not fulfilled for some
of the most basic Bolza problems, namely those that are linear in control. Usually these problems
have optimal controls of bang-bang type, i.e. they contain a finite number of switching points
where the control is discontinuous. Under weak convexity assumptions metric subregularity as
well as strong bimetric regularity of the generalized equations associated with these problems
are proved and used to show a convergence result about the Newton method applied to such
problems.
The final paper deals with the gradient projection method which, among other things, can

be used to solve the linearized problems which appear when using the Newton method on the
generalized equations obtained in the previous part. A new result about the convergence speed
of the gradient projection method in case of bang-bang controls is proved and some analytical
and numerical examples are given.





Kurzfassung

Ziel dieser Arbeit ist es, Regularitätseigenschaften und Approximationen von verallgemeinerten
Gleichungen zu untersuchen und auf optimale Steuerungsprobleme anzuwenden. Die Arbeit ist
kumulativ und besteht aus vier veröffentlichten oder zur Veröffentlichung eingereichten Artikeln.

Der erste untersucht die Konvergenzeigenschaften von Newton- und Newton-ähnlichen Verfah-
ren zur Lösung verallgemeinerter Gleichungen. Klassische Ergebnisse verwenden die Eigenschaf-
ten der metrischen Regularität oder der starken metrischen Regularität der verallgemeinerten
Gleichung im Lösungspunkt, um die Konvergenz der Newton-Methode zu zeigen, wenn der
Anfangspunkt in einer Umgebung der Lösung liegt. Im Gegensatz dazu verwenden Theoreme
vom Kantorovich-Typ Regularitätsbedingungen im Anfangspunkt und nicht im Lösungspunkt
und erlauben daher eine a priori Konvergenzanalyse, die für praktische Zwecke nützlicher ist. Ein
bekanntes Kantorovich-Theorem für verallgemeinerte Gleichungen erfordert, dass der einwertige
Teil der verallgemeinerten Gleichungen differenzierbar mit Lipschitz-stetiger Ableitung ist. Hier
wird eine neue, nicht glatte Version dieses Ergebnisses, mit linearer Konvergenzgeschwindigkeit
bewiesen.

Der zweite Artikel führt uniforme Versionen von metrischer Regularität und starker metrischer
Regularität auf kompakten Mengen ein und verwendet diese, um zwei path-following schemes zum
Auffinden einer Lösungstrajektorie einer differenziellen verallgemeinerten Gleichung (differential
generalized equation), die gleichzeitig die Ideen des Euler/Heun-Verfahrens und des Newton-
Verfahrens benutzen, zu analysieren.

Der dritte Artikel untersucht die notwendige Optimalitätsbedingung für Lösungen von allgemei-
nen optimalen Steuerungsproblemen in Bolza-Form, die durch das Pontryagin-Maximum-Prinzip
erhalten werden. Diese Bedingung kann als verallgemeinerte Gleichung in geeigneten Sobolev-
Räumen umgeschrieben werden. Daher können Ergebnisse über das Newton-Verfahren aus dem
ersten Teil zur Lösung dieser Probleme verwendet werden. Bekannte Ergebnisse, die Regularität
zeigen, nehmen meist die Stetigkeit der optimalen Steuerung an, die für einige der grundlegendsten
Bolza-Probleme nicht erfüllt ist, nämlich jenen, die in der Steuerung linear sind. Üblicherweise
haben diese Probleme optimale Steuerungen vom Bang-Bang-Typ, d.h. sie enthalten eine endliche
Anzahl von switching points, an denen die Steuerung unstetig ist. Unter schwachen Konvexi-
tätsannahmen werden die metrische Subregularität sowie die starke bimetrische Regularität der
verallgemeinerten Gleichungen dieser Probleme bewiesen und verwendet, um ein Ergebnis zur
Konvergenz der Newton-Methode für diese Probleme zu zeigen.

Der letzte Artikel beschäftigt sich mit der Gradientenprojektionsmethode, die unter anderem
dazu verwendet werden kann, die linearisierten Probleme zu lösen, die auftreten, wenn das
Newton-Verfahren auf die im letzten Teil erhaltenen verallgemeinerten Gleichungen angewendet
wird. Ein neues Ergebnis zur Konvergenzgeschwindigkeit der Gradientenprojektionsmethode im
Falle von Bang-Bang-Steuerungen wurde nachgewiesen und einige analytische und numerische
Beispiele angegeben.
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Introduction

Outline
This cumulative thesis consists of four papers: [1] and [4] are published, [3] is conditionally
accepted and [2] is submitted for publication.

• [1] Cibulka R., Dontchev A.L., Preininger J., Roubal T., Veliov V.M.: Kantorovich-type
Theorems for Generalized Equations. Journal Convex Analysis, 25(2), 459–486 (2018)

• [2] Cibulka R., Preininger J., Roubal T.: On uniform regularity and strong regulartiy.
Submitted in Journal of Optimization (2018)

• [3] Preininger J., Scarinci T., Veliov V.M.: Metric regularity properties in bang-bang
type linear quadratic optimal control problems. To appear in Journal of Set-Valued and
Variational Analysis: Theory and Applications (2018)

• [4] Preininger J., Vuong, P.T.: On the Convergence of the Gradient Projection Method of
Optimal Control Problems with Bang-bang Solutions. Computational Optimization and
Applications, 70(1), 221–238 (2018)

The contributions of the author of the thesis to the papers is clarified in the following. In [1]
the author mainly contributed in the formulation and proof of the main theorem (Theorem 2.2),
its Corollary 2.5, the examples in Section 3 and the numerical treatments in Section 5. In [2] the
author was involved in making the formulations and proofs in chapter 2 and 4. In [3] the author
contributed mainly to the chapters 1-4 and some ideas in chapter 5. In [4] the author was again
involved in chapters 1-3, mainly in the ideas and formulations of the main theorems (Theorem
3.2 and Theorem 3.6).

In the following introduction we will give some preliminaries and a summary of the results of
these articles. The subsequent chapters consist of the above-mentioned articles.

Preliminaries
Notation
In the following if not stated otherwise X and Y are Banach spaces, f : X → Y is a Fréchet
differentiable single-valued mapping and F : X ⇒ Y is a set valued mapping.

The Newton method
One of the most fundamental algorithms to numerically solve nonlinear equations of the form

f(x) = 0, (1)

is the Newton method defined as follows. Given an initial point x0 ∈ X define a sequence {xk}
via the following iteration

f(xk) +Df(xk)(xk+1 − xk) = 0, k = 0, 1, . . . . (2)
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When f is "nice enough" (e.g. if f has Lipschitz continuous derivative in a neighborhood of
the solution and the derivative at the solution point is invertible) one can show a quadratic
convergence rate of this method near the solution. Because of its simplicity and this fast
convergence rate the Newton method is one of the most effective methods for solving nonlinear
equations. For an in depth discussion on the classical Newton method see, for instance, [24].

Here we focus on the Newton method for the relatively modern notion of generalized equations
i.e. inclusions of the form

0 ∈ f(x) + F (x). (3)

Then the Newton method looks like the following

0 ∈ f(xk) +Df(xk)(xk+1 − xk) + F (xk+1). (4)

This general version of the Newton method covers a huge territory of iterative methods in
variational analysis, optimization and control. For instance if F ≡ 0 then the Newton method
reduces to the classical Newton method. If X = Rn, Y = Rp+q and F ≡ Rp−× 0 is the product of
the non-positive orthant in Rp with the origin in Rq then (3) describes a system of p inequalities
and q equalities. Further if Y = X∗ is the dual of X and F ≡ NC is the normal cone mapping

NC(x) =
{
∅ if x /∈ C
{l ∈ X∗ : 〈l, y − x〉 ≤ 0 ∀y ∈ C} if x ∈ C,

(5)

where C ⊂ X∗ is a nonempty convex set then (3) represents the variational inequality

Find x ∈ C such that 〈f(x), y − x〉 ≥ 0 ∀y ∈ C. (6)

In particular this includes the Karush-Kuhn-Tucker (KKT) optimality conditions of nonlinear
programming (NLP) problems. Consider the NLP

minimize f(x) subject to g(x) ≤ 0, h(x) = 0, (7)

where f : Rn → R, g : Rn → Rp and h : Rn → Rq. Then the KKT conditions are given as follows

∇Lx(x, λ, µ) = 0, g(x) ≤ 0, h(x) = 0, µ ≥ 0, 〈µ, g(x)〉 = 0, (8)

where L : Rn × Rp × Rq → R is the Lagrangian of (7) given by

L(x, λ, µ) = f(x) + 〈λ, h(x)〉+ 〈µ, g(x)〉. (9)

As the KKT-conditions are a set of equalities and inequalities the Newton-method is applicable.
In this context the Newton method is strongly connected to sequential quadratic programming
(SQP).

Strong metric regularity
Studying the proof of convergence of the classical Newton algorithm (2) and the exact conditions
on f (in particular the invertibility of the derivative Df(x̄) at the solution x̄) it becomes clear
that at its core the Newton algorithm relies on the implicit function theorem, which in turn
uses the contraction mapping principle, i.e. a fixed point theorem. To obtain a result about
convergence of the Newton method for generalized equations one would expect to need analogous
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theorems for generalized equations. This leads to the notion of strong metric regularity first
introduced by Robinson in 1980 (see [29]) which guarantees that these theorems work.1

Definition 1. A set-valued mapping F : X ⇒ Y is called strongly metrically regular at x̄ ∈ X
for ȳ ∈ Y with constant κ if (x̄, ȳ) ∈ gphF and its inverse F−1 has a Lipschitz continuous
single-valued localization around ȳ for x̄ with Lipschitz constant κ.

Of fundamental importance is the stability of the property of strong metric regularity under
single-valued Lipschitz perturbations. This fact is often called the Lyusternik-Graves theorem.
In its easiest form it states the following.

Theorem 2. Consider a set-valued mapping F : X ⇒ Y , a point (x̄, ȳ) ∈ gph(F ) and a Lipschitz
continuous function g : X → Y with Lipschitz constant µ. Assume that F is strongly metrically
regular at x̄ for ȳ with constant κ such that κµ < 1. Then the mapping g+F is strongly metrically
regular at x̄ for ȳ + g(x̄) with constant κ

1−κµ .

In fact this is the theorem used to show that the contraction mapping principle and in turn
the Newton theorem works for generalized equations. A full in depth analysis of this fact and of
(strong) metric regularity and its importance for iterative methods in general can be found in
[13]. Here we give the simplest version of Newton’s theorem for generalized equations.

Theorem 3. Let f : X → Y a Fréchet differentiable function with Lipschitz continuous derivative
and F : X ⇒ Y a set-valued mapping with closed graph. Assume that x̄ is a solution of (3) and
that f +F is strongly metrically regular at x̄ for 0. Then there exists a neighborhood O of x̄ such
that for any starting point x0 ∈ O the Newton algorithm (4) generates a unique sequence {xk}
that stays in O and converges quadratically to x̄.

There are a variety of different versions of this theorem spread in the literature (see e.g. [7]
[10], [19], [20]) with slightly different assumptions and corresponding convergence results.
We mention two of those which use the notions similar to strong metric regularity namely

(non-strong) metric regularity and strong metric subregularity.

Definition 4. A set-valued mapping F : X ⇒ Y is called metrically regular at x̄ ∈ X for ȳ ∈ Y
with constant κ if (x̄, ȳ) ∈ gphF and there are neighborhoods U and V of x̄ and ȳ respectively
such that

d(x, F−1(y)) ≤ κd(y, F (x)) ∀(x, y) ∈ U × V. (10)

Theorem 5. Let f : X → Y a Fréchet differentiable function with Lipschitz continuous derivative
and F : X ⇒ Y a set-valued mapping with closed graph. Assume that x̄ is a solution of (3) and
that f + F is metrically regular at x̄ for 0. Then there exists a neighborhood O of x̄ such that for
any starting point x0 ∈ O there exists a sequence {xk} fulfilling the Newton algorithm (4) which
stays in O and converges quadratically to x̄.

The main difference to Theorem 3 is that one no longer obtains a unique sequence but in every
iteration multiple choices of the next iterate may be possible and not every choice necessarily
leads to a convergent sequence. Therefore this result is more of theoretic interest and strong
metric regularity is usually desired for practical purposes.

Definition 6. A set-valued mapping F : X ⇒ Y is called strongly metrically subregular at
x̄ ∈ X for ȳ ∈ Y with constant κ if (x̄, ȳ) ∈ gphF and there are neighborhoods U and V of x̄
and ȳ respectively such that

‖x− x̄‖ ≤ κd(ȳ, F (x) ∩ V ) ∀x ∈ U. (11)
1Note however that there are even weaker notions like hemi- and semistability guaranteeing convergence of the
Newton method for generalized equations (see e.g. [21]).
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Theorem 7. Let f : X → Y a Fréchet differentiable function with Lipschitz continuous derivative
and F : X ⇒ Y a set-valued mapping with closed graph. Assume that x̄ is a solution of (3) and
that f + F is strongly metrically subregular at x̄ for 0. Then there exists a neighborhood O of x̄
such that if a sequence {xk} is generated by the Newton method (4) and has a tail {xk}k≥k0 with
xk ∈ O for all k ≥ k0 then {xk} is quadratically convergent to x̄.

This theorem has been shown very recently in [10]. In contrast to Theorem 3, here it is not
guaranteed that a convergent sequence exists at all. Hence if one only has strong subregularity
at the solution one has to prove existence of such a sequence by other means. Then this theorem
gives information about the speed of convergence.
The theorems above are all local results. I.e. they impose conditions on the solution and

therefore only get convergence in a small neighborhood (of undetermined size) around the
solution.

Newton-Kantorovich
Kantorovich [22] was the first to obtain a Newton-type theorem which imposes conditions on
the starting point rather than the solution, which makes the theorem far more useful as the
conditions can be checked before computing a solution. This idea was expanded to generalized
equations (e.g. in [11]) but as Kantorovich’s original theorem all the known results focus on the
smooth case.
Kantorovich [23] himself noted that to achieve linear convergence to the solution it is not

necessary to use the derivative Df(xk) at the current iteration but using Df(x0) in every
iteration is also sufficient. He called this method the modified Newton process, which today is
predominantly known as the chord method. Bartle [8] extended this idea and showed that it is
not necessary to choose a derivative Df(xk) of an iterate xk at all but any "arbitrary selected
point ... sufficiently close to the solution desired" is feasible. In fact it is not important to use a
derivative at all. In a nonsmooth setting (i.e. f is continuous but not necessarily differentiable)
Qi and Sun [27, Theorem 3.3] proved linear convergence in a Kantorovich-type theorem using
suitable linear mappings Ak : X → Y . Note however that the assumption they impose on the
mappings Ak are quite strong and restrict the functions f for which the theorem can be used
since there are nonsmooth functions f for which the assumptions fail to be satisfied for any linear
map.

Technically speaking all these ideas are special cases of what today are known as quasi Newton
methods where instead of the exact derivative of the current iteration an approximation of that
value is used. More details on Kantorovich’s theorem and quasi-Newton methods can be found
in various textbooks about the Newton method (e.g. [24]).

The Bolza problem
One of the most important classes of problems in optimal control are problems of Bolza type, i.e.
of the form

minimize ψ(x, u) := g(x(T )) +
∫ T

0
h(t, x(t), u(t))dt (12)

subject to
ẋ(t) = f(t, x(t), u(t)) for a.e. t ∈ [0, T ], x(0) = x0, (13)

and
u(t) ∈ U := [−1, 1]m for a.e. t ∈ [0, T ]. (14)
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Here [0, T ] is a fixed time horizon any measurable function u : [0, T ]→ Rm is called admissible
control, x : [0, T ]→ Rn differentiable a.e. is the state function while the functions f : R× Rn ×
Rm → Rn, g : Rn → R and h : R× Rn × Rm → R are given.

To solve these problems one usually uses a set of necessary conditions known as the Pontryagin
maximum principle.

The Pontryagin maximum principle
Similar to the KKT-condition the Pontryagin maximum principle (PMP) gives necessary condi-
tions for a solution (x∗, u∗) of the problem (12)-(14). Using the Hamiltonian

H(t, x, p, u) = 〈p, f(t, x, u)〉+ h(t, x, u) (15)

the PMP says that for a given solution (x∗, u∗) of (12)-(14) there exists an absolutely continuous
function p∗, called dual function, such that (x∗, p∗, u∗) solves the adjoint equation

ṗ(t) = −Hx(t, x(t), p(t), u(t)) = −fx(t, x(t), u(t))>p(t)− hx(t, x(t), u(t))> for a.e. t ∈ [0, T ]
p(T ) = ∇g(x(T )),

(16)
and for every u ∈ U

〈Hu(t, x∗(t), p∗(t), u∗(t)), u− u∗(t)〉 ≥ 0 for a.e. t ∈ [0, T ]. (17)

Rewriting these necessary conditions in the form (3) one can now apply Newton’s method (4)
and gets an infinite dimensional analogue to the SQP algorithm. To guarantee convergence
however some regularity conditions on f +F have to be assumed and in particular an appropriate
metric for the spaces that x, p and u lie in has to be found. E.g. in [12] it is proved that if one
uses appropriate Sobolev spaces and assumes coercivity, a strong form of second-order sufficient
condition, one gets strong metric regularity. Other necessary and/or sufficient condition for
metric regularity in optimal control are very rare. An overview on known results and open
problems can be found in [15].

Bang-bang type optimal control
In this thesis our focus lies on Bolza problems which are linear in control and usually do not
satisfy the coercivity condition. The solutions of these problems are usually of bang-bang type
i.e. there is a finite number of points where the optimal control switches from one extremal to
another and is constant otherwise. This is due to the fact that the so called switching function

σ∗(t) := Hu(t, x∗(t), p∗(t), u∗(t))

does not depend on u(t) directly and therefore is usually nonzero at all but a finite number of
points.
The study of regularity properties of optimal control problems with bang-bang solutions has

recently gained some popularity and some progress has been made (e.g. in [5], [6], [17], [28],
[30]).
All of these papers use some version the following two assumptions. First some convex or

convex-like assumption has to be made on the cost functional. Second a growth condition of the
switching function around its zeros has to be assumed. In particular in [3] and [4] we use the
following
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Assumption. There exist real numbers θ, α, τ > 0 such that for all j ∈ {1, . . . ,m} and s ∈ [0, T ]
with σ∗j (s) = 0 we have

|σ∗j (t)| ≥ α|t− s|θ ∀t ∈ [s− τ, s+ τ ] ∩ [0, T ]. (18)

This assumption ensures that under certain perturbations (made precise in [3, Proposition
4.3]) the bang-bang property remains stable and so called singular arcs do not occur.

Gradient projection for bang-bang type optimal control
Another way to use iterative methods in optimal control is to not apply the method on the
necessary conditions, but rather directly on the optimal control problem. To do so we view the
optimal control problem as an infinite dimensional optimization problem in the control i.e. a
problem of the form

minimize J(u) (19)

subject to
u ∈ U , (20)

where J(u) = ψ(x(u), u) is the cost function as a function of u, x(u) is the unique trajectory given
by the dynamics of the control and U = {u ∈ L1([0, T ],Rm) : u(t) ∈ [−1, 1]m for a.e. t ∈ [0, T ]}.

For problems of this type one can use the gradient projection method which works as follows.
For a given starting point u0 ∈ U generate a sequence {uk} by iteratively computing

uk+1 = PU (uk − λkDJ(uk)), (21)

where PU : L1([0, T ],Rm) → U is the operator projecting onto U and λk are predetermined
positive parameters. For strongly convex objective functions J it is known that the iterative
sequence {uk} converges linearly to the unique solution. More details about the classical gradient
descent and gradient projection method can be found e.g. in [25].

In the bang-bang case however the cost functional J is usually not strongly convex. In [4] we
address this problem.

Differential generalized equations
Another way to look at the necessary conditions in optimal control is to seperate the differential
equations from the (set-vauled) algebraic conditions. This motivates the notion of differential
generalized equations (DGE), i.e. a differential equation coupled with a generalized equation.

ẋ(t) = g(x(t), u(t))
0 ∈ f(x(t), x(0), x(T ), u(t)) + F (u(t))

This notion has been introduced very recently in [9], wherein regularity properties of this notion
are studied. It allows for a general comparison of pointwise versions of metric regularity of the set-
valued algebraic part where the spaces involved are finite dimensional and its infinite-dimensional
counterparts.

Summary of the results
In [1] we review the Kantorovich-type theorems discussed above and extend them for generalized
equations. We obtain a result [1, Theorem 2.2] extending the theorem of Qi and Sun[27, Theorem
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3.3] to generalized equations with nonsmooth single valued part f and linear mappings Ak
replacing the derivatives Df(xk). We then use this general result to prove various other known
Kantorovich-type theorems dealing with smoother cases including one which is very similar to
Kantorovich’s original statement but applied to generalized equations.2 Additionally we include
some elementary examples illustrating the difference between the Newton and the chord method
regarding radius of convergence and convergence speed. Finally we apply the Newton and the
chord method for some examples of generalized equations, namely for nonsmooth inequalities and
for a model of economic equilibrium introduced in [14] given by a specific variational inequality.

Further we want to apply the Newton method for optimal control problems. More precisely we
apply the Newton method onto the necessary optimality conditions where the Newton method
becomes an infinite dimensional analogue to the SQP algorithm in nonlinear programming.
Specifically in [3] we restrict ourselves to optimal control problems that are linear in control

i.e. we look at the following problem:

minimize g(x(T )) +
∫ T

0 [w(x(t), t) + 〈s(x(t), t), u(t)〉] dt
subject to ẋ(t) = a(x(t), t) +B(x(t), t)u(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,
x(0) = x0.

(22)

Then a Newton method as described above reduces solving these problems to solving a series
of optimal control problems which are linear in control and quadratic in the state variable, i.e.
problems of the form

minimize g(x(T )) +
∫ T

0

(
1
2x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
subject to ẋ(t) = A(t)x(t) +B(t)u(t) + d(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,
x(0) = x0,

(23)

which in the following we call LQ-bang-bang-type problems. It is therefore natural to focus first
on the regularity properties of these problems. Writing the associated generalized equation

0 ∈ F (z), (24)

where z = (x, p, u) and F : X ⇒ Y is the mapping associated with the PMP-system (see [3, page
2-3] for details) in appropriate spaces X and Y (see [3, page 5-6]) and assuming smoothness, a
convexity-type assumption, and the growth condition (18) ((A1)-(A3) in [3]) one can show that
a unique solution of bang-bang-type exists. Unfortunately at this solution strong regularity is
usually not satisfied. But we could show ([3, Theorem 3.3]) a stronger version of strong metric
subregularity of F at the solution ẑ ∈ X , namely that for every b > 0 there exists c > 0 such that
for any y ∈ Y with ‖y‖ ≤ b there exists z ∈ X such that y ∈ F (z) and for any such z we have

‖z − ẑ‖ ≤ c‖y‖
1
θ , (25)

where θ ≥ 1 is the constant given in (18). Some slightly different version with stronger assumptions
of this result was shown in [6].

Next we present a theorem ([3, Theorem 5.1]) which implies quadratic convergence of Newton’s
method assuming (25) for the linearized problem at the solution and existence of any Newton
sequence. This theorem is quite similar to Theorem 7, where the main difference lies in the fact
that we only need to assume that the starting point is close enough to the solution rather than a

2Note that there exists a version of this Kantorovich-type theorem in [11] but with slightly different assumptions.
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whole tail of the sequence. In our situation a compactness argument shows that such a Newton
sequence indeed exists. In summary we showed (see [3, Theorem 5.4]) that for the set-valued
mapping F corresponding to the problem (22) the Newton method converges quadratically if
there is a (then unique) solution ẑ such that the linearization LP (ẑ) at ẑ fulfills the assumptions
for [3, Theorem 3.3].
Additionally in the paper [3] we extend the notion of strong bi-metric regularity introduced

in [28] for Mayer problems to include LQ-bang-bang-type problems. This notion allows a more
precise treatment of perturbation analysis for bang-bang-type problems by using two seperate
metrics for measuring the perturbation of the point (x̄, ȳ) and the Lipschitz continuity.

Definition 8. The map Φ : X ⇒ Y is strongly bi-metrically regular (relative to Ỹ ⊂ Y ) at
x̄ ∈ X for ȳ ∈ Ỹ with constants ς ≥ 0, a > 0 and b > 0 if (x̄, ȳ) ∈ gph(Φ) and the following
properties are fulfilled:

1. the mapping B
Ỹ

(ȳ; b) 3 y 7→ Φ−1(y) ∩BX(x̄; a) is single-valued, and

2. for all y, y′ ∈ B
Ỹ

(ȳ; b),

dX(Φ−1(y) ∩BX(x̄; a),Φ−1(y′) ∩BX(x̄; a)) ≤ ςdY (y, y′). (26)

Note that this notion generalizes strong metric regularity insofar as if we choose Ỹ = Y and
d
Ỹ

= dY then bi-metric regularity reduces to strong metric regularity. This notion is needed
since in the L∞ norm for two nonidentical bang-bang controls there is a positive lower bound for
the distance between those two. I.e. a sequence of bang-bang controls which is not eventually
constant is never convergent in L∞. In contrast this is certainly possible for example in L1.
On the other hand the growth condition (18) is only stable in W 1,∞, which we also proved ([3,
Proposition 4.3]). As we show in [3, Theorem 4.5] if the condition (18) is fulfilled with θ = 1 then
under slightly stronger conditions ((A1’)-(A2’) in [3]) the mapping F is strongly bi-metrically
regular with constant ς = 1 for appropriately chosen spaces.

To solve optimal control problems directly without using the necessary optimality conditions
in practice one often uses the gradient projection method (GPM). In [4] we investigate the GPM
(21) for optimal control problems linear in control. As the cost function J(u) in this case is
usually not strongly convex the classical theory about the GPM fails. However, using assumptions
((A1)-(A5) in [4]) similar to those in [3] including convexity of J and a growth condition for J
around the solution u∗, which is fulfilled if (18) is satisfied, we show sublinear convergence in [4,
Thoerem 3.2]. More precisely we showed that for any chosen sequence {λk} with

0 < λmin ≤ λk ≤
1
L
∀k ∈ N, (27)

we have the following sublinear estimate for uk

‖uk − u∗‖2 ≤ ηk−
1
θ ∀k ∈ N, (28)

where η is a constant. Additionally we show that the sequence J(uk) is monotone decreasing.
Further we give a very simple example ([4, Example 3.4]) which shows that the estimation (28)
is sharp and illustrate by two practical examples ([4, Example 4.1-2]) taken from other papers
about bang-bang controls that the results are plausible.

In a very recent development [9] the authors introduced the notion of differential generalized
equations. This notion covers a large territory of problems in control and optimization, such as
control systems with constraints, necessary optimality conditions as well as differential variational
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inequalities. Further [9] studies (strong) metric regularity and especially the interplay between
the pointwise versions of these properties and their infinite-dimensional counterparts. In [2] we
extend these ideas. In particular we formalize the concept of uniform (strong) regularity, which is
used in [9] in a rather informal way. We prove that (strong) metric regularity at each point of a
compact set implies uniform (strong) metric regularity i.e. that it is possible to choose a common
regularity constant κ and neighborhood sizes for all these points. Further we extend the error
estimates for the predictor-corrector path-following scheme treated in [9] to a path following
scheme using a Heun-scheme-type predictor step. Additionally for constant set-valued parts we
prove ([2, Theorem 4.3]) that that pointwise regularity at a solution of a DGE is equivalent to
regularity in the infinite dimensional setting. In particular we use this along continuous paths
which allows us to show error estimates for predictor-corrector path-following schemes.

Further research
As with every research, further open questions remain. Firstly, we did not deal with singular arc
solutions in [3]. Some progress in this field has been made recently by Felgenhauer ([16],[18]). In
addition we only considered optimal control problems in finite horizon. Regularity properties in
infinite horizon optimal control are a widely open field where almost no research has been done
so far. Further the study of regularity properties for DGEs is everything but finished.
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1. Introduction

While there is some disagreement among historians who actually invented the
Newton method, see [34] for an excellent reading about early history of the
method, it is well documented in the literature that L. V. Kantorovich [22] was
the first to obtain convergence of the method on assumptions involving the
point where iterations begin. Specifically, Kantorovich considered the Newton
method for solving the equation f(x) = 0 and proved convergence by imposing
conditions on the derivative Df(x0) of the function f and the residual ∥f(x0)∥
at the starting point x0. These conditions can be actually checked, in con-
trast to the conventional approach utilizing the assumption that the derivative
Df(x̄) at a (unknown) root x̄ of the equation is invertible and then claim that
if the iteration starts close enough to x̄ then it generates a convergent to x̄
sequence. For this reason Kantorovich’s theorem is usually called a global con-
vergence theorem1 whereas conventional convergence theorems are regarded as
local theorems.
The following version of Kantorovich’s theorem is close to that in [27]; for a
proof see [27] or [23].
Theorem 1.1 (Kantorovich). Let X and Y be Banach spaces. Consider a
function f : X → Y , a point x0 ∈ X and a real a > 0, and suppose that f is
continuously Fréchet differentiable in an open neighborhood of the ball IBa(x0)
and its Fréchet derivative Df is Lipschitz continuous in IBa(x0) with a constant
L > 0. Assume that there exist positive reals κ and η such that

∥Df(x0)
−1∥ ≤ κ and ∥Df(x0)

−1f(x0)∥ < η.

If α := κLηa < 1
2

and a ≥ a0 := 1−√
1−2α

κL
, then there exists a unique sequence

{xk} satisfying the iteration

f(xk) +Df(xk)(xk+1 − xk) = 0, k = 0, 1, . . . , (1)

with a starting point x0; this sequence converges to a unique zero x̄ of f in
IBa0(x0) and the convergence rate is r-quadratic; specifically

∥xk − x̄∥ ≤ η

α
(2α)2

k

, k = 0, 1, . . . .

In his proof of convergence Kantorovich used a novel technique of majorization
of the sequence of iterate increments by the increments of a sequence of scalars.
Notice that the derivative Df is injective not only at x0 but also at the solution
x̄; indeed, for any y ∈ X with ∥y∥ = 1 we have

∥Df(x̄)y∥ ≥ ∥Df(x0)y∥ − ∥(Df(x̄)−Df(x0))y∥ ≥ 1

κ
− La0 =

√
1− 2α

κ
> 0.

1Some authors prefer to call such a result a semilocal convergence theorem.
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In a related development, Kantorovich showed in [23, Chapter 18] that, under
the same assumptions as in Theorem 1.1, to achieve linear convergence to a
solution there is no need to calculate during iterations the derivative Df(xk)
at the current point xk— it is enough to use at each iteration the value of the
derivative Df(x0) at the starting point, i.e., the iteration (1) becomes

f(xk) +Df(x0)(xk+1 − xk) = 0, k = 0, 1, . . . . (2)

He called this method the modified Newton process. This method is also known
as the chord method, see [24, Chapter 5].
The work of Kantorovich has been extended in a number of ways by, in par-
ticular, utilizing various extensions of the majorization technique, such as the
method of nondiscrete induction, see e.g. [29]. We will not go into discussing
these works here but rather focus on a version of Kantorovich’s theorem due to
R. G. Bartle [6], which has been largely forgotten if not ignored in the litera-
ture. A version of Bartle’s theorem, without referring to [6], was given recently
in [9, Theorem 5].
Specifically, Bartle [6] considered the equation f(x) = 0, for a function f acting
between Banach spaces X and Y, which is solved by the iteration

f(xk) +Df(zk)(xk+1 − xk) = 0, k = 0, 1, . . . , (3)

where zk are, to quote [6], “arbitrarily selected points ... sufficiently close to
the solution desired.” For zk = xk one obtains the usual Newton method, and
for zk = x0 the modified Newton/chord method, but zk may be chosen in
other ways. For example as x0 for the first s iterations and then the derivative
could be calculated again every s iterations, obtaining in this way a hybrid
version of the method. If computing the derivatives, in particular in the case
they are obtained numerically, involves time consuming procedures, it is quite
plausible to expect that for large scale problems the chord method or a hybrid
version of it would possibly be faster than the usual method. We present here
the following somewhat modified statement of Bartle’s theorem which fits our
purposes:
Theorem 1.2 (Bartle [6]). Assume that the function f : X → Y is contin-
uously Fréchet differentiable in an open set O. Let x0 ∈ O and let there exist
positive reals a and κ such that for any three points x1, x2, x3 ∈ IBa(x0) ⊂ O
we have

∥Df(x1)
−1∥ < κ and ∥f(x1)− f(x2)−Df(x3)(x1 − x2)∥ ≤ 1

2κ
∥x1 − x2∥,

(4)
and also

∥f(x0)∥ <
a

2κ
. (5)

Then for every sequence {zk} with zk ∈ IBa(x0) there exists a unique sequence
{xk} satisfying the iteration (3) with initial point x0; this sequence converges
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to a root x̄ of f which is unique in IBa(x0) and the convergence rate is r-linear;
specifically

∥xk − x̄∥ ≤ 2−ka, k = 0, 1, . . . .

In a path-breaking paper Qi and Sun [30] extended the Newton method to
a nonsmooth equation by employing Clarke’s generalized Jacobian ∂̄f of a
function f : Rn → Rn instead of the derivative Df and proved convergence for
a class of nonsmooth functions. Specifically, consider the following iteration:
given xk choose any matrix Ak from ∂̄f(xk) and then find the next iterate by
solving the linear equation

f(xk) + Ak(xk+1 − xk) = 0, k = 0, 1, . . . . (6)

The following convergence theorem was proved in [30, Theorem 3.2]:
Theorem 1.3. Suppose that f : Rn → Rn is Lipschitz continuous around a
root x̄ at which all matrices in ∂̄f(x̄) are nonsingular. Also assume that for
every ε > 0 there exists δ > 0 such that for every x ∈ IBδ(x̄) and for every
A ∈ ∂̄f(x) one has

∥f(x)− f(x̄)− A(x− x̄)∥ ≤ ε∥x− x̄∥. (7)

Then there exists a neighborhood U of x̄ such that for every starting point x0 ∈ U
there exists a sequence satisfying the iteration (6) and every such sequence is
superlinearly convergent to x̄.

A function f which is Lipschitz continuous around a point x̄ and satisfies (7)
is said to be semismooth2 at x̄. Accordingly, the method (6) is a semismooth
Newton method for solving equations. For more advanced versions of Theo-
rem 1.3, see e.g. [15, Theorem 7.5.3], [21, Theorem 2.42] and [14, Theorem
6F.1].
In the same paper Qi and Sun proved what they called a “global” theorem [30,
Theorem 3.3], which is more in the spirit of Kantorovich’s theorem; we will
state and prove an improved version of this theorem in the next section.
In this paper we derive Kantorovich-type theorems for a generalized equation:
find a point x ∈ X such that

f(x) + F (x) ∋ 0, (8)

where throughout f : X → Y is a continuous function and F : X →→ Y is a
set-valued mapping with closed graph. Many problems can be formulated as
(8), for example, equations, variational inequalities, constraint systems, as well
as optimality conditions in mathematical programming and optimal control.
2Sometimes one adds to (7) the condition that f is directionally differentiable in every di-
rection.
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Newton-type methods for solving nonsmooth equations and variational inequal-
ities have been studied since the 70s. In the last two decades a number of
new developments have appeared some of which have been collected in several
books [15, 18, 19, 25, 33]. A broad presentation of convergence results for
both smooth and nonsmooth problem with particular emphasis on applying
Newton-type method to optimization can be found in the recent book [21]. A
Kantorovich-type theorem for generalized equations under metric regularity is
proven in [13, Theorem 2] using the majorization technique, see also the re-
cent papers [2] and [32]. Related results for particular nonsmooth generalized
equations are given in [16] and [28]. In [8] applications of the modified New-
ton method for solving optimization problems appearing in nonlinear model
predictive control are reported.
We adopt the notations used in the book [14]. The set of all natural numbers
is denoted by IN and IN0 = IN ∪ {0}; the n-dimensional Euclidean space is
Rn. Throughout X and Y are Banach spaces both norms of which are denoted
by ∥ · ∥. The closed ball centered at x with radius r is denoted as IBr(x);
the unit ball is IB. The distance from a point x to a set A is dist(x,A) =
infy∈A ∥x− y∥. A generally set-valued mapping F : X →→ Y is associated with
its graph gphF =

{
(x, y) ∈ X×Y

∣∣ y ∈ F (x)
}

and its domain domF =
{
x ∈

X
∣∣F (x) ̸= ∅

}
. The inverse of F is y 7→ F−1(y) =

{
x ∈ X

∣∣ y ∈ F (x)
}

. By
L(X,Y ) we denote a space of linear bounded operators acting from X into Y
equipped with the standard operator norm.
Recall that a set-valued mapping Φ : X ⇒ Y is said to be metrically regular at
x0 for y0 if y0 ∈ Φ(x0) and there exist neighborhoods U of x0 and V of y0 and
a positive constant κ such that the set gphΦ ∩ (U × V ) is closed and

dist
(
x, Φ−1(y)

)
≤ κ dist

(
y, Φ(x)

)
for all (x, y) ∈ U × V. (9)

The infimum over all κ ≥ 0 in (9) is the regularity modulus of Φ at x0 for y0
denoted by reg(Φ;x0 |y0). If in addition the mapping σ : V ∋ y 7→ Φ−1(y) ∩ U
is not multivalued on V , then Φ is said to be strongly metrically regular and
then σ is a Lipschitz continuous function on V . More about metric regularity
and the related theory can be found in [14].

2. Main theorem

In preparation to our main result presented in Theorem 2.2 we give a strength-
ened version of [30, Theorem 3.3] for the iteration (6) applied to an equation
in Banach spaces.
Theorem 2.1. Let f : X → Y be a continuous function and let the numbers
a > 0, κ ≥ 0, δ ≥ 0 be such that

κδ < 1 and ∥f(x0)∥ < (1− κδ)
a

κ
. (10)
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Consider the iteration (6) with a starting point x0 and a sequence {Ak} of linear
and bounded mappings such that for every k ∈ IN0 we have
{

∥A−1
k ∥ ≤ κ and

∥f(x)− f(x′)− Ak(x− x′)∥ ≤ δ∥x− x′∥ for every x, x′ ∈ IBa(x0).
(11)

Then there exists a unique sequence satisfying the iteration (6) with initial point
x0. This sequence remains in int IBa(x0) and converges to a root x̄ ∈ int IBa(x0)
of f which is unique in IBa(x0); moreover, the convergence rate is r-linear:

∥xk − x̄∥ < (κδ)ka.

Proof. Let α := κδ. We will show, by induction, that there is a sequence {xk}
with elements in int IBa(x0) satisfying (6) with the starting point x0 such that

∥xj+1 − xj∥ ≤ αjκ∥f(x0)∥ < aαj(1− α), j = 0, 1, . . . . (12)
Let k := 0. Since A0 is invertible, there is a unique x1 ∈ X such that we get
A0(x1 − x0) = −f(x0). Therefore,

∥x1 − x0∥ = ∥A−1
0 A0(x1 − x0)∥ = ∥A−1

0 f(x0)∥ ≤ κ∥f(x0)∥ < a(1− α).

Hence x1 ∈ int IBa(x0). Suppose that, for some k ∈ IN , we have already found
points x0, x1, . . . , xk ∈ IBa(x0) satisfying (12) for each j = 0, 1, . . . , k− 1. Since
Ak is invertible, there is a unique xk+1 ∈ X such that Ak(xk+1−xk) = −f(xk).
Then (12) with j := k − 1 implies

∥xk+1 − xk∥ = ∥A−1
k Ak(xk+1 − xk)∥ = ∥A−1

k f(xk)∥ ≤ κ∥f(xk)∥
= κ∥f(xk)− f(xk−1)− Ak−1(xk − xk−1)∥
≤ κδ∥xk − xk−1∥ ≤ αkκ∥f(x0)∥ < aαk(1− α).

From (12), we have

∥xk+1 − x0∥ ≤
k∑

j=0

∥xj+1 − xj∥ ≤
k∑

j=0

αjκ∥f(x0)∥ < a
∞∑

j=0

αj(1− α) = a, (13)

that is, xk+1 ∈ int IBa(x0). The induction step is complete.
For any natural k and p we have

∥xk+p+1 − xk∥ ≤
k+p∑

j=k

∥xj+1 − xj∥ ≤
k+p∑

j=k

αjκ∥f(x0)∥

<
αk

1− α
κ∥f(x0)∥ < aαk. (14)

Hence {xk} is a Cauchy sequence; let it converge to x̄ ∈ X. Passing to the
limit with p → ∞ in (14) we obtain

∥x̄− xk∥ ≤ αk

1− α
κ∥f(x0)∥ < aαk for each k ∈ IN0.
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In particular, x̄ ∈ int IBa(x0). Using (6) and (11), we get

0 ≤ ∥f(x̄)∥ = lim
k→∞

∥f(xk)∥ = lim
k→∞

∥f(xk)− f(xk−1)− Ak−1(xk − xk−1)∥

≤ lim
k→∞

δ∥xk − xk−1∥ = 0.

Hence, f(x̄) = 0. Suppose that there is ȳ ∈ IBa(x0) with ȳ ̸= x̄ and f(ȳ) = 0.
Then

∥ȳ − x̄∥ ≤ κ∥A0(ȳ − x̄)∥ = κ∥f(ȳ)− f(x̄)− A0(ȳ − x̄)∥
≤ κδ∥ȳ − x̄∥ < ∥ȳ − x̄∥,

which is a contradiction. Hence x̄ is a unique root of f in IBa(x0).

Our main result which follows is an extension of Theorem 2.1 for generalized
equations (8). We adopt the following model of an iterative procedure for
solving (8). Given k ∈ IN0, based on the current and prior iterates xn (n ≤ k)
one generates a “feasible” element Ak ∈ L(X,Y ) and then the next iterate
xk+1 is chosen according to the following Newton-type iteration:

f(xk) + Ak(xk+1 − xk) + F (xk+1) ∋ 0. (15)

In order to formalize the choice of Ak we consider a sequence of mappings
Ak : X

k → L(X,Y ), where Xk = X × . . .×X is the product of k copies of X.
Thus, Ak does not need to be chosen in advance and may depend on the already
obtained iterates. In particular, one may take Ak = A0(x0), that is, use the
same operator for all iterations, as in the standard chord method. Another
possibility is to use Ak = Df(xk) in the case of a differentiable f or Ak ∈
∂̄f(xk), the Clarke generalized Jacobian if applicable. Intermediate choices are
also possible, for example to use the same operator A in m successive steps
and then to update it at the current point: Ak(x0, . . . , xk) = Am[k/m](xm[k/m]),
where [s] is the integer part of s.
Theorem 2.2. Let the scalars a > 0, b > 0, κ > 0, δ ≥ 0 and the points
x0 ∈ X, y0 ∈ f(x0) + F (x0) be such that
(A1) κδ < 1 and ∥y0∥ < (1− κδ)min{ a

κ
, b}.

Moreover, assume there exists a function ω : [0, a] → [0, δ] such that for every
k ∈ IN0 and every x1, . . . , xk ∈ IBa(x0) the linear and bounded operator Ak :=
Ak(x0, . . . , xk) appearing in the iteration (15) has the following properties:
(A2) the mapping

x 7→ GAk
(x) := f(x0) + Ak(x− x0) + F (x) (16)

is metrically regular at x0 for y0 with constant κ and neighborhoods IBa(x0)
and IBb(y0);
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(A3) ∥f(x)−f(xk)−Ak(x−xk)∥ ≤ ω(∥x−xk∥) ∥x−xk∥ for every x ∈ IBa(x0).
Then for every α ∈ (κδ, 1) there exists a sequence {xk} generated by the iteration
(15) with starting point x0 which remains in int IBa(x0) and converges to a
solution x̄ ∈ int IBa(x0) of (8); moreover, the convergence rate is r-linear;
specifically

∥xk− x̄∥ < αka and dist(0, f(xk)+F (xk)) ≤ αk∥y0∥ for every k ∈ IN0. (17)

If limξ→0 ω(ξ) = 0, then the sequence {xk} is convergent r-superlinearly, that is,
there exist sequences of positive numbers {εk} and {ηk} such that ∥xk− x̄∥ ≤ εk
and εk+1 ≤ ηkεk for all sufficiently large k ∈ IN and ηk → 0.
If there exists a constant L > 0 such that ω(ξ) ≤ min{δ, Lξ} for each ξ ∈ [0, a],
then the convergence of {xk} is r-quadratic: specifically, there exists a sequence
of positive numbers {εk} such that for any C > αL

δ
we have εk+1 < Cε2k for all

sufficiently large k ∈ IN .
If the mapping GAk

defined in (16) is not only metrically regular but also strongly
metrically regular with the same constant and neighborhoods, then there is no
other sequence {xk} satisfying the iteration (15) starting from x0 which stays
in IBa(x0).

Proof. Choose an α ∈ (κδ, 1) and then κ′ such that

α

δ
≥ κ′ > κ and ∥y0∥ < (1− α)min

{ a

κ′ , b
}
. (18)

Such a choice of κ′ is possible for α > κδ sufficiently close to κδ. We shall prove
the claim for an arbitrary value of α for which (18) holds with an appropriately
chosen κ′ > κ. This is not a restriction, since then (17) will hold for any larger
value of α.
We will show that there exists a sequence {xk} with the following properties,
for each k ∈ IN :
(a) ∥xk − x0∥ ≤ 1−αk

1−α
κ′∥y0∥ < (1− αk)a;

(b) ∥xk − xk−1∥ ≤ αk−1γ0 . . . γk−1κ
′∥y0∥ < αk−1(1− α)a,

where γ0 := 1, γi := ω(∥xi − xi−1∥)/δ for i = 1, . . . , k − 1;
(c) 0 ∈ f(xk−1)+Ak−1(xk−xk−1)+F (xk), where Ak−1 := Ak−1(x0, . . . , xk−1).
We use induction, starting with k = 1. Since 0 ∈ IBb(y0) and y0 ∈ GA0(x0),
using (A2) for GA0 we have that

dist
(
x0, G

−1
A0
(0)

)
≤ κ dist

(
0, GA0(x0)

)
≤ κ∥y0∥.

If y0 = 0, then we take x1 = x0. If not, we have that

dist
(
x0, G

−1
A0
(0)

)
< κ′∥y0∥
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and then there exists a point x1 ∈ G−1
A0
(0) such that

∥x1 − x0∥ < κ′∥y0∥ < (1− α)a.

Clearly, (a)–(c) are satisfied for k := 1 and γ1 is well-defined.
Assume that for some k ∈ IN the point xk has already been defined in such a
way that conditions (a)–(c) hold. We shall define xk+1 so that (a)–(c) remain
satisfied for k replaced with k + 1.
First, observe that (a) implies xk ∈ IBa(x0). Denote rk := f(x0) − f(xk) −
Ak(x0 − xk). In view of (a), the fact that ω(∥x0 − xk∥) ≤ δ and (A3) with
x = x0, we have

∥rk − y0∥ ≤ ∥y0∥+ ∥f(x0)− f(xk)− Ak(x0 − xk)∥

≤ ∥y0∥+ δ∥x0 − xk∥ ≤ ∥y0∥+
1− αk

1− α
κ′δ∥y0∥

≤ ∥y0∥+
1− αk

1− α
α∥y0∥ =

1− αk+1

1− α
∥y0∥ < b.

If rk ∈ GAk
(xk) then we take xk+1 = xk. If not, by (A2),

dist
(
xk, G

−1
Ak
(rk)

)
≤ κ dist

(
rk, GAk

(xk)
)
< κ′ dist

(
rk, GAk

(xk)
)
.

Then there exists a point xk+1 ∈ G−1
Ak
(rk) such that

∥xk+1 − xk∥ < κ′ dist (rk, GAk
(xk)) .

Due to (c), we get GAk
(xk) = f(x0) + Ak(xk − x0) + F (xk) ∋ f(x0) +

Ak(xk − x0)− f(xk−1)− Ak−1(xk − xk−1).
Using (A3) with x = xk and then (b) and (18) we have

∥xk+1 − xk∥ ≤ κ′∥rk − [f(x0)− f(xk−1) + Ak(xk − x0)− Ak−1(xk − xk−1)]∥
= κ′∥f(xk)− f(xk−1)− Ak−1(xk − xk−1)∥
≤ κ′ω(∥xk − xk−1∥)∥xk − xk−1∥ = κ′δγk∥xk − xk−1∥ (19)
≤ αkγ0 . . . γkκ

′∥y0∥ < αk(1− α)a. (20)

Hence, condition (b) is satisfied for k + 1 and γk+1 is well-defined. By the
choice of xk+1 we have

rk ∈ GAk
(xk+1) = f(x0) + Ak(xk+1 − x0) + F (xk+1),

hence, after rearranging, condition (c) holds for k + 1. To finish the induction
step, use (a) to obtain

∥xk+1 − x0∥ ≤ ∥xk+1 − xk∥+ ∥xk − x0∥ ≤ αkκ′∥y0∥+
1− αk

1− α
κ′∥y0∥

=
1− αk+1

1− α
κ′ ∥y0∥.
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Now we shall prove that the sequence {xk} identified in the preceding lines is
convergent. By (b) (with γi replaced with 1), applied for k := m, n ∈ N with
m < n, we have

∥xn − xm∥ ≤ αm1− αn−m

1− α
κ′∥y0∥,

hence {xk} is a Cauchy sequence. Let x̄ = limk→∞ xk. Then by (a),

∥x̄− x0∥ ≤ κ′

1− α
∥y0∥ < a,

that is, x̄ ∈ int IBa(x0). Using (b), for any k ∈ IN0, and the second inequality
in (18), we have

∥xk − x̄∥ = lim
m→∞

∥xk − xk+m∥ ≤ lim
m→∞

k−1+m∑

i=k

∥xi − xi+1∥

≤ lim
m→∞

k−1+m∑

i=k

αiγ1 . . . γiκ
′∥y0∥ ≤ αkγ1 . . . γk lim

m→∞

k−1+m∑

i=k

αi−kκ′∥y0∥

≤ αkγ1 . . . γk
κ′∥y0∥
1− α

≤ αkγ1 . . . γka =: εk. (21)

By the definition of εk we get

εk+1 = αγk+1εk.

Since γk+1 ≤ 1 we obtain linear convergence in (17). If limξ→0 ω(ξ) = 0, then
γk → 0 and we have r-superlinear convergence.
Finally, if there exists a constant L such that ω(ξ) ≤ min{δ, Lξ} for each
ξ ∈ [0, a], then for each k ∈ IN condition (b) implies that ξ := ∥xk+1−xk∥ < a;
hence

γk+1 ≤ min{1, L∥xk+1 − xk∥/δ} ≤ ∥xk+1 − xk∥L/δ ≤ (εk+1 + εk)L/δ.

Fix any C > αL/δ. Since the sequence {εk} is strictly decreasing and converges
to zero, we obtain

εk+1 ≤ αL

δ
(εk + εk+1)εk < Cε2k for all sufficiently large k ∈ IN.

This implies r-quadratic convergence.
To show that x̄ solves (8), let yk := f(xk) − f(xk−1) − Ak−1(xk − xk−1) for
k ∈ IN . From (c) we have yk ∈ f(xk) + F (xk). Using (A3) with x = xk and
then using (b) we obtain that

∥yk∥ = ∥f(xk)− f(xk−1)− Ak−1(xk − xk−1)∥
≤ δ∥xk − xk−1∥ ≤ δαk−1κ′∥y0∥ ≤ αk∥y0∥. (22)
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Thus (xk, yk) → (x̄, 0) as k → ∞. Since f is continuous and F has closed
graph, we obtain 0 ∈ f(x̄) + F (x̄). The second inequality in (17) follows from
(22).
In the case of strong metric regularity of GA the way xk+1 is constructed from
xk implies automatically that xk+1 is unique in IBa(x0).

Remark 2.3. Suppose that there exist β ∈ (0, 1] and L > 0 such that ω(ξ) ≤
min{Lξβ, δ} for each ξ ∈ [0, a]. Then {xk} converges to x̄ with r-rate 1 + β:
there exists a sequence of positive numbers {εk} converging to zero and C > 0
such that εk+1 ≤ Cε1+β

k for all k ∈ IN . Indeed, for each k ∈ IN , (b) implies
that ξ := ∥xk+1 − xk∥ < a, hence

γk+1 ≤
L

δ
∥xk+1 − xk∥β ≤ L

δ
(εk+1 + εk)

β =
L

δ
(1 + αγk+1)

βεβk ≤ L

δ
(1 + α)βεβk .

Hence, taking C := αL(1 + α)β/δ we get

εk+1 = αγk+1εk ≤ Cε1+β
k for all k ∈ IN.

Remark 2.4. Theorem 2.1 follows from the strong regularity part of Theo-
rem 2.2. Indeed, for the case of the equation condition (A1) is the same as
(10). The first inequality in (11) means that the mapping GAk

with F ≡ 0
is strongly metrically regular uniformly in k, and the second inequality is the
same as (A3).

The following corollary is a somewhat simplified version of Theorem 2.2 which
may be more transparent for particular cases.
Corollary 2.5. Let a, b, κ, δ be positive reals and a point (x0, y0) ∈ gph(f+F )
be such that condition (A1) in Theorem 2.2 holds. Let {Ak} be a sequence of
bounded linear operators from X to Y such that for every k ∈ IN0 the mapping
GAk

defined in (16) is metrically regular at x0 for y0 with constant κ and
neighborhoods IBa(x0) and IBb(y0), and

∥f(x)− f(x′)− Ak(x− x′)∥ ≤ δ∥x− x′∥ for any x, x′ ∈ IBa(x0).

Then for every α ∈ (κδ, 1) there exists a sequence {xk} satisfying (15) with
starting point x0 which is convergent to a solution x̄ ∈ int IBa(x0) of (8) with
r-linear rate as in (17).

3. Some special cases

Consider first the generalized equation (8) where the function f is continuously
differentiable around the starting point x0. Then we can take Ak = Df(xk) in
the iteration (15) obtaining

f(xk) +Df(xk)(xk+1 − xk) + F (xk+1) ∋ 0. (23)
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In the following theorem we obtain q-superlinear and q-quadratic convergence
of the iteration (23) by concatenating the main Theorem 2.2 with conventional
convergence results from [14], Theorems 6C.1 and 6D.2.
Theorem 3.1. Consider the generalized equation (8), a point (x0, y0) ∈ gph(f+
F ) and positive reals κ, δ, a and b such that condition (A1) in Theorem 2.2 is
satisfied. Suppose that the function f is continuously differentiable in an open
set containing IBa(x0), for every z ∈ IBa(x0) the mapping

x 7→ Gz(x) := f(x0) +Df(z)(x− x0) + F (x)

is metrically regular at x0 for y0 with constant κ and neighborhoods IBa(x0) and
IBb(y0), and also

∥f(x)− f(x′)−Df(x)(x− x′)∥ ≤ δ∥x− x′∥ for all x, x′ ∈ IBa(x0).

Then there exists a sequence {xk} which satisfies the iteration (23) with starting
point x0 and converges q-superlinearly to a solution x̄ of (8) in int IBa(x0). If
the derivative mapping Df is Lipschitz continuous in IBa(x0), then the sequence
{xk} converges q-quadratically to x̄.

Proof. Clearly, for any sequence {xk} in IBa(x0) and for each k ∈ IN0 the
mapping Ak := Df(xk) satisfies (A2) and (A3) of Theorem 2.2 with ω(ξ) := δ,
ξ ≥ 0. From condition (A1) there exists α ∈ (κδ, 1) such that

∥y0∥ < (1− α)b. (24)

Hence we can apply Theorem 2.2, which yields the existence of a sequence {xk}
satisfying (23) and converging to a solution x̄ ∈ int IBa(x0) of (8); furthermore

∥x̄− x0∥ ≤ α

δ(1− α)
∥y0∥.

Hence, for v0 := f(x̄)− f(x0)−Df(x̄)(x̄− x0) we have

∥y0 + v0∥ = ∥y0 + f(x̄)− f(x0)−Df(x̄)(x̄− x0)∥ ≤ ∥y0∥+ δ∥x̄− x0∥

≤ ∥y0∥+
α

1− α
∥y0∥ =

∥y0∥
1− α

< b,

where we use (24). Clearly, the mapping

x 7→ G′(x) := f(x̄) +Df(x̄)(x− x̄) + F (x) = v0 +Gx̄(x)

is metrically regular at x0 for y0+v0 with constant κ and neighborhoods IBa(x0)
and IBb(y0 + v0). Let r, s > 0 be so small that

IBr(x̄) ⊂ IBa(x0) and IBs(0) ⊂ IBb(y0 + v0).
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Then since 0 ∈ G′(x̄), the mapping G′ is metrically regular at x̄ for 0 with
constant κ and neighborhoods IBr(x̄) and IBs(0). Hence we can apply Theorems
6C.1, resp. 6D.2, in [14], according to which there exists a neighborhood O of
x̄ such that for any starting point in O there exists a sequence {x′

k} which is q-
superlinearly, resp. q-quadratically, convergent to x̄. But for some k sufficiently
large the iterate xk of the initial sequence will be in O and hence it can be taken
as a starting point of a sequence {x′

k} which converges q-superlinearly, resp.
q-quadratically, to x̄.

In the theorem coming next we utilize an auxiliary result which follows from
Proof I, with some obvious adjustments, of the extended Lyusternik-Graves
theorem given in [14, Theorem 5E.1].
Lemma 3.2. Consider a mapping F : X ⇒ Y , a point (x0, y0) ∈ gphF and a
function g : X → Y . Suppose that there are a′ > 0, b′ > 0, κ′ ≥ 0, and µ ≥ 0
such that F is metrically regular at x0 for y0 with constant κ′ and neighborhoods
IBa′(x0) and IBb′(y0), the function g is Lipschitz continuous on IBa′(x0) with
constant µ, and κ′µ < 1. Then for any positive constants a and b such that





1

1− κ′µ
[(1 + κ′µ)a+ κ′b] + a < a′,

b+ µ

(
1

1− κ′µ
[(1 + κ′µ)a+ κ′b] + a

)
< b′,

(25)

the mapping g + F is metrically regular at x0 for y0 + g(x0) with any constant
κ > κ′/(1− κ′µ) and neighborhoods IBa(x0) and IBb(y0 + g(x0)).

Theorem 3.3. Let the numbers a > 0, b > 0, κ > 0 and δ > 0 and the points
x0 ∈ X, y0 ∈ f(x0) + F (x0) be such that (A1) is fulfilled. Let the numbers a′,
b′, κ′ be such that:

0 < κ′ <
κ

1 + κδ
, a′ > 2a(1 + κδ) + κb, b′ > (2aδ + b)(1 + κδ). (26)

Let f be Fréchet differentiable in an open set containing IBa(x0), let T ⊂
L(X,Y ), and let Ak : X

k → T be any sequence with supA∈T ∥A−A0(x0)∥ ≤ δ.
Assume that
(A2’) the mapping x 7→ G(x) := f(x0) + A0(x0)(x − x0) + F (x) is metrically

regular with constant κ′ and neighborhoods IBa′(x0) and IBb′(y0);
(A3’) ∥A−Df(x)∥ ≤ δ whenever A ∈ T and x ∈ IBa(x0).
Then the first claim in Theorem 2.2 holds.

Proof. We shall prove that conditions (A2) and (A3) in Theorem 2.2 are
satisfied. To check (A2), pick any A ∈ T and let GA be the mapping from
Theorem 2.2 (with Ak := A). Define g(x) := (A−A0)(x− x0), x ∈ X, so that
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GA = G+ g. Then g is Lipschitz continuous with constant δ and we can apply
Lemma 3.2 with µ := δ, which implies (A2).
It remains to check (A3). Let ω(ξ) := δ for each ξ ≥ 0. Pick arbitrary
points x0, x1, . . . , xk in IBa(x0) and set Ak := Ak(x0, . . . , xk). Finally, fix
any x ∈ IBa(x0). By the mean value theorem there is z ∈ IBa(x0) such that
f(x)− f(xk)−Df(z)(x− xk) = 0. Hence
∥f(x)− f(xk)− Ak(x− xk)∥ = ∥Df(z)(x− xk)− Ak(x− xk)∥ ≤ δ∥x− xk∥.
This proves (A3) and therefore the theorem.

Next, we state and prove a theorem regarding convergence of the Newton’s
method applied to a generalized equation, which is close to the original state-
ment of Kantorovich. The result is somewhat parallel to [13, Theorem 2] but
on different assumptions.
Theorem 3.4. Let the positive scalars L, κ, a, b and the points x0 ∈ X,
y0 ∈ f(x0) + F (x0) be such that the function f is differentiable in an open
neighborhood of the ball IBa(x0) and its derivative Df is Lipschitz continuous
on IBa(x0) with Lipschitz constant L and also the mapping

x 7→ G(x) := f(x0) +Df(x0)(x− x0) + F (x) (27)
is metrically regular at x0 for y0 with constant κ and neighborhoods IBa(x0) and
IBb(y0). Furthermore, let κ′ > κ and assume that for η := κ′∥y0∥ we have

h := κ′Lη <
1

2
, t̄ :=

1

κ′L
(1−

√
1− 2h) ≤ a and ∥y0∥+ Lt̄2 ≤ b. (28)

Then there is a sequence {xk} generated by the iteration (23) with initial point
x0 which stays in IBa(x0) and converges to a solution x̄ of the generalized
equation (8); moreover, the rate of the convergence is

∥xk − x̄∥ ≤ 2
√
1− 2hΘ2k

κ′L(1−Θ2k)
, for k = 1, 2, . . . , (29)

where

Θ :=
1−

√
1− 2h

1 +
√
1− 2h

.

If the mapping G is not only metrically regular but also strongly metrically reg-
ular with the same constant and neighborhoods, then there is no other sequence
{xk} generated by the method (23) starting from x0 which stays in IBa(x0).

Proof. In the sequel we will utilize the following inequality for u, v ∈ IBa(x0):

∥f(u)− f(v)−Df(v)(u− v)∥ = ∥
∫ 1

0

[Df(v + s(u− v))−Df(v)](u− v) ds∥

≤ L∥u− v∥2
∫ 1

0

s ds =
L

2
∥u− v∥2.
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We apply a modification of the majorization technique from [17]. Consider a
sequence of reals tk satisfying t0 = 0, tk+1 = s(tk), k = 0, 1, . . . , where

s(t) = t− (p′(t))−1p(t), p(t) =
κ′L

2
t2 − t+ η.

It is known from [17] that the sequence {tk} is strictly increasing, convergent
to t̄, and also

tk+1 − tk =
κ′L(tk − tk−1)

2

2(1− κ′Ltk)
, k = 0, 1, . . . . (30)

Furthermore,

t̄− tk ≤
2
√
1− 2hΘ2k

κ′L(1−Θ2k)
, for k = 0, 1, . . . . (31)

We will show, by induction, that there is a sequence {xk} in IBa(x0) fulfilling
(23) with the starting point x0 which satisfies

∥xk+1 − xk∥ ≤ tk+1 − tk, k = 0, 1, . . . . (32)

This implies that {xk} is a Cauchy sequence, hence convergent to some x̄,
which, by passing to the limit in (23), is a solution of the problem at hand.
Combining (31), (30) and (32) we obtain (29).
Let k = 0. If y0 = 0 then we take x1 = x0. If not, since 0 ∈ IBb(y0) and
y0 ∈ G(x0), from the metric regularity of the mapping G in (27) we obtain

dist(x0, G
−1(0)) ≤ κ∥y0∥ < κ′∥y0∥,

hence there exists x1 ∈ G−1(0) such that

∥x1 − x0∥ < κ′∥y0∥ = η = t1 − t0.

Suppose that for some k ∈ IN we have already found points x0, x1, . . . , xk in
IBa(x0) generated by (23) such that

∥xj − xj−1∥ ≤ tj − tj−1 for each j = 1, . . . , k.

Without loss of generality, let xk ̸= x0; otherwise there is nothing to prove. We
have

∥xk − x0∥ ≤
k∑

j=1

∥xj − xj−1∥ ≤
k∑

j=1

(tj − tj−1) = tk − t0 = tk < t̄ ≤ a.

Furthermore, for every x ∈ IB t̄−tk(xk) ⊂ IB t̄(x0), we obtain

∥f(x0) +Df(x0)(x− x0)− f(xk)−Df(xk)(x− xk)∥ ≤
≤ ∥f(x)− f(x0)−Df(x0)(x− x0)∥+ ∥f(x)− f(xk)−Df(xk)(x− xk)∥

≤ L

2

(
∥x− x0∥2 + ∥x− xk∥2

)
< Lt̄2 ≤ b− ∥y0∥.
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In particular, we have f(x0)+Df(x0)(x−x0)−f(xk)−Df(xk)(x−xk) ∈ IBb(y0).
Moreover,

r :=
1
2
κ′L∥xk − xk−1∥2
1− κ′L∥xk − x0∥

≤ κ′L(tk − tk−1)
2

2(1− κ′Ltk)
= tk+1 − tk.

Since xk ∈ IBa(x0) is generated by (23) from xk−1, we get

f(x0) +Df(x0)(xk − x0)− f(xk−1)−Df(xk−1)(xk − xk−1) ∈ G(xk). (33)

Now consider the set-valued mapping

X ∋ x 7→ Φk(x) := G−1(f(x0)+Df(x0)(x−x0)−f(xk)−Df(xk)(x−xk)) ⊂ X.

If xk = xk−1 then take xk+1 = xk. Suppose that xk ̸= xk−1. From (33) we
obtain

dist(xk,Φk(xk)) = dist(xk, G
−1 (f(x0) +Df(x0)(xk − x0)− f(xk))

≤ κ dist(f(x0) +Df(x0)(xk − x0)− f(xk), G(xk))

≤ κ∥f(xk)− f(xk−1)−Df(xk−1)(xk − xk−1)∥

≤ 1

2
κL∥xk − xk−1∥2 <

1
2
κ′L∥xk − xk−1∥2
1− κ′L∥xk − x0∥

(1− κ′L∥xk − x0∥)

= r(1− κ′L∥xk − x0∥).

Let u, v ∈ IB t̄−tk(xk) and let z ∈ Φk(u) ∩ IB t̄−tk(xk). Then

f(x0) +Df(x0)(u− x0)− f(xk)−Df(xk)(u− xk) ∈ G(z).

Hence,

dist(z,Φk(v)) = dist(z,G−1(f(x0)+Df(x0)(v−x0)−f(xk)−Df(xk)(v−xk))

≤ κ dist(f(x0) +Df(x0)(v − x0)− f(xk)−Df(xk)(v − xk), G(z))

≤ κ∥f(x0) +Df(x0)(v − x0)− f(xk)−Df(xk)(v − xk)−
− (f(x0) +Df(x0)(u− x0)− f(xk)−Df(xk)(u− xk))∥

≤ κ∥Df(x0)−Df(xk)∥∥u− v∥ ≤ (κ′L∥xk − x0∥)∥u− v∥.

Since IBr(xk) ⊂ IB t̄−tk(xk), by applying the contraction mapping theorem [14,
Theorem 5E.2] we obtain that there exists a fixed point xk+1 ∈ IBr(xk) of Φk.
Hence

xk+1 ∈ G−1 (f(x0) +Df(x0)(xk+1 − x0)− f(xk)−Df(xk)(xk+1 − xk)) ,

that is, xk+1 is a Newton iterate from xk according to (23). Furthermore,

∥xk+1 − xk∥ ≤ r ≤ tk+1 − tk.
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Then

∥xk+1 − x0∥ ≤
k+1∑

j=1

∥xj − xj−1∥ ≤
k+1∑

j=1

(tj − tj−1) = tk+1 − t0 = tk+1 < t̄ ≤ a.

The induction step is complete and so is the proof.

At the end of this section we add some comments on the results presented
in this paper and give some examples. First, we would like to reiterate that,
in contrast to the conventional approach to proving convergence of Newton’s
method where certain conditions at a solution are imposed, the Kantorovich
theorem utilizes conditions for a given neighborhood of the starting point asso-
ciated with some constants, the relations among which gives the existence of
a solution and convergence towards it. In the framework of the main Theo-
rem 2.2, among the constants taken into account are the radius a of the given
neighborhood of the starting point x0, the norm of the residual ∥y0∥ at the
starting point, the constant of metric regularity κ, and the constant δ measur-
ing the “quality” of the approximation of the “derivative” of the function f by
the operators Ak. These constants are interconnected through relations that
cannot be removed even in the particular cases of finite dimensional smooth
problems, or nonsmooth problems where elements of the Clarke’s generalized
Jacobian play the role of approximations. In the smooth case the constant δ
may be measured by the diameter of the set {∥Df(x)∥ : x ∈ IBa(x0)} or by La
if Df is Lipschitz continuous with a Lipschitz constant L. In the nonsmooth
case however, it is not sufficient to assume that the diameter of the generalized
Jacobian around x0 is less than δ. One may argue that for any small δ there
exists a positive ε such that the generalized Jacobian has the “strict derivative
property” displayed in [14, 6F.3] but in order this to work we need ε to match
a. Note that if the residual ∥y0∥ = 0 then we can always choose the constant a
sufficiently small, but this may not be the case for the Kantorovich theorem. It
would be quite interesting to know exactly “how far” the conventional and the
Kantorovich theorems are from each other in particular for problems involving
nonsmooth functions.
Next, we will present some elementary examples that illustrate the difference
between the Newton method and the chord method with Ak = A0 for all k, as
well as the conditions for convergence appearing in the results presented.

Example 3.5. We start with the smooth one-dimensional example3 to find a
nonnegative root of f(x) := (x − 1)2 − 4; it is elementary to check that x̄ = 3
is the only solution. For every x0 > 1 the usual Newton iteration is given by

xk+1 = xk −
f(xk)

f ′(xk)
=

x2
k + 3

2(xk − 1)
.

3Note that this problem can be written as a generalized equation.
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This iteration is convergent quadratically which agrees with the theory. The
chord method,

xk+1 = xk −
f(xk)

f ′(x0)
=

2x0xk − x2
k + 3

2(x0 − 1)
,

converges linearly if there is a constant c < 1 and a natural number N such
that

|xk+1 − 3|
|xk − 3| =

|2x0 − xk − 3|
2|x0 − 1| ≤ c

for every k ≥ N , but it may not be convergent for x0 not close enough to 3.
For example take x0 = 1+ 2√

5
. Then the method oscillates between the points

1 + 2√
5

and 1 + 6√
5
. The method converges q-superlinearly whenever

lim
k→∞

|xk+1 − 3|
|xk − 3| = lim

k→∞

|2x0 − xk − 3|
2|x0 − 1| = 0;

but this holds only for x0 = 3. Hence, even in the case when there is conver-
gence, it is not q-superlinear.
Let us check the assumptions of Theorem 2.2 with ω ≡ δ. Given x0 and a > 0
we can calculate how large κ and δ have to be such that conditions (A2) and
(A3) are fulfilled. Let us focus on the case x0 > 1. For (A2) to hold we have to
assume a < x0− 1. Then on IBa(x0) we have that f ′ is positive and increasing.
Hence (A2) and (A3) are satisfied for κ = 1/f ′(x0 − a) = 1/(2(x0 − a− 1) and
δ = f ′(x0+a)−f ′(x0−a) = 4a. For fixed x0 let us find a such that (A1) holds
as well, i.e.,

∥y0∥ < (1− κδ)
a

κ
= 2a(x0 − 3a− 1). (34)

The right hand side is maximal for a = x0−1
6

. Expressing both sides of this
inequality in terms of x0, we obtain that if x0 ∈ (1 + 2

√
6/7, 1 + 2

√
6/5) then

we have convergence.

The following example from [26], see also [25], example BE.1, shows lack of
convergence of the nonsmooth Newton method if the function is not semismooth
at the solution. But it is also an example which illustrates Corollary 2.5.
Example 3.6. Consider intervals I(n) = [n−1, (n − 1)−1] ⊂ R and define
c(n) = 1

2
(n−1 + (n − 1)−1) for n ≥ 2. Let gn be the linear function through

the points ((n− 1)−1, (n− 1)−1) and (−c(n), 0), and hn be the linear function
through the points (n−1, n−1) and (c(2n), 0). Then

gn(x) =
2n

4n− 1
x+

2n− 1

(n− 1)(4n− 1)
and hn(x) =

4(2n− 1)

4n− 3
x− 4n− 1

n(4n− 3)
.

Now define f(x) = min{gn(x), hn(x)} for x ∈ I(n), f(0) = 0 and for x < 0 :
f(x) = −f(−x). Then the equation f(x) = 0 has the single solution x̄ = 0 and
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we have that ∂̄f(0) = [1
2
, 2]. If we try to apply Corollary 2.5 for a neighborhood

that contains x̄ = 0 we have to choose δ ≥ 3
2

and κ ≥ 2; but then κδ > 1. In
this case for any starting point x0 ̸= 0 the Newton iteration does not converge,
as shown in [26].

A similar example follows to which Corollary 2.5 can be applied.
Example 3.7. Define

g(x) :=

{
2 if x ∈ ∪n∈Z[22n−1, 22n)

3 if x ∈ ∪n∈Z[22n, 22n+1)
.

Let f(x) :=
∫ x

0
g(t)dt for x ≥ 0 and f(x) = −f(−x) for x < 0. The function f

is well defined on R with a unique root at x̄ = 0. For any starting point x0 the
assumptions for Corollary 2.5 are then fulfilled with κ = 1

2
and δ = 1 and each

a > 0. Both the Newton and the chord method converge linearly.

4. Nonsmooth inequalities

Suppose that K is a nonempty subset of Y and let F (x) := K for each x ∈ X.
Then the generalized equation (8) reads as

f(x) +K ∋ 0. (35)

When f : Rn → Rm and K := Rm
+ then the above inclusion corresponds to a

system of m nonlinear (possibly nonsmooth) inequalities: find x ∈ Rn such
that

f1(x) ≤ 0, f2(x) ≤ 0, . . . , fm(x) ≤ 0.

Kantorovich-type theorems for exact Newton’s method for solving (35) with K
being a closed convex cone and f being smooth can be found in [4, Chapter
2.6] and [31]. An inexact Newton’s method is treated in a similar way in [16].
The paper [28] deals with a generalized equation of the form

g(x) + h(x) +K ∋ 0, (36)

where g : X → Y is a smooth function having a Lipschitz derivative on a
neighborhood O ⊂ X of a (starting) point x0 ∈ X and the function h : X → Y
is Lipschitz continuous on O. The algorithm proposed therein reads as: given
xk ∈ X find xk+1 satisfying

g(xk) + h(xk) + g′(xk)(xk+1 − xk) +K ∋ 0. (37)

Key assumptions are, similar to [31, 4, 16], that T := g′(x0)(·) + K maps X
onto Y and

∥T−1∥− := sup
∥y∥≤1

inf
x∈T−1(y)

∥x∥ ≤ b
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for a sufficiently small number b > 0. Then Open Mapping Theorem [5, The-
orem 2.2.1] (see also [14, Exercise 5C.4]) implies that T is metrically regular
at zero for zero with any constant κ > b and neighborhoods X and Y . More-
over, the Lipschitz constants of g′ and h are assumed to be small compared
to b. Clearly, (37) corresponds to our iteration scheme with f := g + h and
Ak := g′(xk), and, since Ak does not take into account the non-smooth part, it
is expected to be slower in general (or not even applicable) as we will show on
two toy examples below.
Consider a sequence {Ak} in L(X,Y ) and a starting point x0 ∈ X. Given
k ∈ IN0, xk ∈ X, and Ak, let

Ωk := {u ∈ X
∣∣ g(xk) + h(xk) + Ak(u− xk) +K ∋ 0}.

The next iterate xk+1 generated by (15), which is sure to exist under the metric
regularity assumption in Theorem 2.2, is any point lying in Ωk such that

∥xk+1 − xk∥ ≤ κ′ dist(−g(xk)− h(xk), K),

where κ′ > κ satisfies (18) and the right-hand side of the above inequality
corresponds to a residual at the step k. To sum up, for the already computed
xk, the next iterate xk+1 can be found as a solution of the problem:

minimize φk(x) subject to x ∈ Ωk,

where φk : X → [0,∞) is a suitably chosen function. In [28], φk = ∥ · −xk∥2 is
used. In the following examples we solve the linearized problem in MATLAB
using either function fmincon for φk = ∥ · −xk∥22 or quadprog for φk(x) :=
1
2
xTx − xT

k x. We will compare the following three versions of (15) for solving
(36) with different choices of Ak at the step k ∈ IN0 and current iterate xk:
(C1) Ak := g′(xk);
(C2) Ak ∈ ∂̄(g + h)(xk) = g′(xk) + ∂̄h(xk);
(C3) Ak := A0, where A0 is a fixed element of ∂̄(g + h)(x0) = g′(x0) + ∂̄h(x0).

Example 4.1. Consider the system from [28]:

x2 + y2 − |x− 0.5| − 1 ≤ 0,

x2 + (y − 1)2 − |x− 0.5| − 1 ≤ 0,

(x− 1)2 + (y − 1)2 − 1 = 0.

(38)

Observe that the exact solutions are given by y = 1±
√
2x− x2 if 0 ≤ x ≤ (11−

6
√
3)/26 and y = 1−

√
2x− x2 when (11− 6

√
3)/26 ≤ x ≤ 1/2, in particular,

the points (x∗
1, y

∗
1) := (0.5, 1−

√
3/2) and (x∗

2, y
∗
2) = (1−

√
2/2, 1−

√
2/2) solve

the problem. Then setting g(x, y) := (x2 + y2 − 1, x2 + (y − 1)2 − 1, (x− 1)2 +
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Step fmincon quadprog
k (C1) (C2) (C3) (C1) (C2) (C3)
0 5.0 E -2 5.0 E -2 5.0 E -2 5.0 E -2 5.0 E -2 5.0 E -2
1 2.4 E -2 2.0 E -3 2.0 E -3 2.5 E -2 2.0 E -3 2.0 E -3
2 1.2 E -2 2.3 E -6 2.3 E -6 1.3 E -3 2.3 E -6 2.3 E -6
4 3.1 E -3 1.0 E -8 1.0 E -8 3.1 E -3 6.5 E -9 6.5 E -9

Table 4.1: ∥(x∗
1, y

∗
1)− (xk, yk)∥∞ in Example 4.1 for (x0, y0) = (0.55, 0.1).

Step fmincon quadprog
k (C1) (C2) (C3) (C1) (C2) (C3)
0 2.9 E -1 2.9 E -1 2.9 E -1 2.9 E -1 2.9 E -1 2.9 E -1
1 4.2 E -2 4.2 E -2 4.2 E -2 4.2 E -2 4.2 E -2 4.2 E -2
2 1.2 E -3 1.2 E -3 1.2 E -3 1.2 E -3 1.2 E -3 1.2 E -3
4 1.1 E -10 5.2 E -10 5.2 E -10 7.9 E -13 7.9 E -13 5.2 E -13
7 1.1 E -10 5.2 E -10 5.2 E -10 1.6 E -16 1.1 E -16 1.1 E -16

Table 4.2: ∥(x∗
2, y

∗
2)− (xk, yk)∥∞ in Example 4.1 for (x0, y0) = (0, 0).

(y−1)2−1), h(x, y) := (−|x−0.5|,−|x−0.5|, 0), and K := R2
+×{0} we arrive

at (36). Denote

H(x, y) :=




2x− sgn(x− 0.5) 2y
2x− sgn(x− 0.5) 2(y − 1)

2(x− 1) 2(y − 1)


 ,

with sgn(u) := 1, if u > 0, and sgn(u) := −1 otherwise. In (C2) we set
Ak := H(xk, yk) for each k ∈ IN0 and in (C3) we put A0 := H(x0, y0).

From Table 4.1, in which 5.0 E -2 stands for 5.0 × 10−2, we see that the con-
vergence of (15) with the choice (C1) and the starting point (0.55, 0.1) is much
slower than (15) with the choice (C3). Both quadprog and fmincon are of almost
the same efficiency.
From Table 4.2 we see that for the starting point (0, 0) all the choices (C1)–(C3)
provide similar accuracy but we get substantially better results when quadprog
is used to solve the linearized problem.
Example 4.2. Consider the system

x2 + y2 − 1 ≤ 0 and − |x| − |y|+
√
2 ≤ 0 (39)

having four distinct solutions. Set g(x, y) := (x2+y2−1, 0), h(x, y) := (0,−|x|−

|y|+
√
2), K := R2

+, and H(x, y) =

(
2x 2y

−sgn(x) −sgn(y)

)
.
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Step k
fmincon quadprog

(C2) (C3) (C2) (C3)
0 7.0 E -1 7.0 E -1 7.0 E -1 7.0 E -1
1 2.5 E -9 2.5 E -9 0 0
2 7.5 E -8 7.5 E -8 0 0
4 1.2 E -8 1.2 E -8 0 0
7 8.5 E -8 8.5 E -8 0 0
10 8.5 E -9 3.7 E -9 0 0

Table 4.3: ∥(−
√
2/2,−

√
2/2)− (xk, yk)∥∞ in Example 4.2

for (x0, y0) = (0, 0).

Step fmincon quadprog
k (C1) (C2) (C3) (C1) (C2) (C3)
0 9.9 E 2 9.9 E 2 9.9 E 2 9.9 E 2 9.9 E 2 9.9 E 2
1 4.9 E 2 4.9 E 2 4.9 E 2 – 4.9 E 2 4.9 E 2
4 6.1 E 1 6.1 E 1 6.1 E 1 – 6.1 E 1 6.1 E 1
10 5.0 E -1 6.0 E -1 6.0 E -1 – 5.8 E -1 8.3 E -1
21 7.0 E -1 3.0 E -4 1.5 E -1 – 2.8 E -4 1.4 E 0
40 7.0 E -1 5.3 E -9 1.5 E -1 – 1.0 E -8 1.4 E 0

Table 4.4: ∥(−
√
2/2,

√
2/2)− (xk, yk)∥∞ in Example 4.2

for (x0, y0) = (99,−999).

As before, in (C2) we set Ak := H(xk, yk) for each k ∈ IN0 and in (C3) we put
A0 := H(x0, y0).

For the starting point (0, 0) the method (15) with (C1) fails. The convergence
for the remaining two choices (C2) and (C3) can be found in Table 4.3. Note
that using quadprog we find a solution (up to a machine epsilon) after one step
and the iteration using fmincon gives the precision 10−9 at most.
For the starting point (99,−999) the method (15) with (C1) and (C3) do not
converge – see Table 4.4. The only convergent scheme is (15) with (C2) (note
that we start far away from the solution).

5. Numerical experiments for a model of economic equilibrium

In this section we present numerical results for a model of economic equilibrium
presented in [12] and solved by using the Newton, the chord and the hybrid
method with various parameter choices. A detailed description of the model is
given in [12] so we shall not repeat it here.
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The equilibrium problem considered is described by the variational inequality

0 ∈ g(p,m, x, λ,m0, x0) +NC(p,m, x, λ), (40)

where

g(p,m, x, λ,m0, x0) =




∑r
i=1(x

0
i − xi)

· · ·
λi −∇mi

ui(mi, xi)
· · ·

λip−∇xi
ui(mi, xi)

· · ·
m0

i −mi + ⟨p, x0
i − xi⟩

· · ·




and NC is the normal cone to the set

C = Rn
+ × Rr

+ × U1 × · · · × Ur × Rr
+.

Here r is the number of agents trading n goods, who start with initial vectors
of goods x0

i and initial amount of money m0
i . Further, x represents the vector

of goods, p is the vector of prices, m is the vector of the amounts of money, Ui

are closed subsets of Rn
+. The functions ui are utility functions and are given

by

ui(mi, xi) = αi ln(mi) + χ≥m1
i
(mi)γi(mi −m1

i )
2 +

n∑

j=1

βij ln(xij)

where γi ∈ R, αi, βij and m1
i are positive constants and

χ≥m1
i
(mi) =

{
1 mi ≥ m1

i

0 otherwise
,

that is, when γi is different from zero then ∇mi
ui, and hence g, are not differ-

entiable.
The numerical implementation of Newton’s method for this variational inequal-
ity has been done in Matlab. Each step of the method reduces to solving a
linear complementarity problem (LCP). To solve these problems we used the
Path-LCP solver available at [11]. For the linearization for the term involving
χ we use the zero vector which is always an element of Clarke’s generalized
Jacobian of that function.
The computations are done for the following data (similar to [3]). We set the
parameters as n = r = 10 (so in total we have 130 variables), αi = βij = 1
and Ui = [0.94, 1.08]n and use random initial endowments m0

i ∈ [1, 1.3] and
x0
ij ∈ [0.94, 1.09].

First we consider at the smooth problem, that is, with γi = 0 for all i =
1, 2, . . . , 10. We use the Newton method with starting points psj = ms

i =
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Step k = 1 k = 2 k = 3 k = 5 k = 100

0 9.7 E -1 9.7 E -1 9.7 E -1 9.7 E -1 9.7 E -1
1 2.0 E -1 2.0 E -1 2.0 E -1 2.0 E -1 2.0 E -1
2 3.9 E -3 3.5 E -2 3.5 E -2 3.5 E -2 3.5 E -2
3 1.5 E -6 1.9 E -4 3.3 E -3 3.3 E -3 3.3 E -3
4 0 2.2 E -6 2.0 E -6 1.2 E -3 1.2 E -3
5 - 0 0 2.1 E -4 2.1 E -4
6 - - - 0 2.1 E -5

Table 5.1: Absolute errors with starting values
psj = ms

i = xs
ij = λs

i = 1.

Step k = 1 k = 2 k = 3 k = 5 k = 100

0 1.1 E 0 1.1 E 0 1.1 E 0 1.1 E 0 1.1 E 0
1 1.0 E 0 1.0 E 0 1.0 E 0 1.0 E 0 1.0 E 0
2 1.3 E -1 7.6 E -1 7.6 E -1 7.6 E -1 7.6 E -1
3 1.8 E -3 3.5 E -2 4.2 E -1 4.2 E -1 4.2 E -1
4 0 9.1 E -4 1.7 E -2 2.7 E -1 2.7 E -1
5 - 0 1.4 E -3 1.6 E -1 1.6 E -1
6 - - 1.9 E -4 2.2 E -3 1.0 E -1

Table 5.2: Absolute errors with starting values
psj = ms

i = xs
ij = λs

i = 0.97.

Step k = 1 k = 2 k = 3 k = 5 k = 100

0 1.2 E 0 1.2 E 0 1.2 E 0 1.2 E 0 1.2 E 0
1 1.7 E 0 1.7 E 0 1.7 E 0 1.7 E 0 1.7 E 0
2 4.3 E -1 1.8 E 0 1.8 E 0 1.8 E 0 1.8 E 0
3 1.6 E -2 2.5 E -1 1.8 E 0 1.8 E 0 1.8 E 0
4 1.1 E -5 2.3 E -2 4.4 E -1 1.8 E 0 1.8 E 0
5 0 2.1 E -5 2.1 E -1 1.8 E 0 1.8 E 0
6 - 0 1.5 E -1 4.7 E -1 1.9 E 0

Table 5.3: Absolute errors with starting values
psj = ms

i = xs
ij = λs

i = 0.96.
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Step k = 1 k = 2 k = 3 k = 5 k = 100

0 2.1 E 0 2.1 E 0 2.1 E 0 2.1 E 0 2.1 E 0
1 4.5 E -1 4.5 E -1 4.5 E -1 4.5 E -1 4.5 E -1
2 6.2 E -2 8.2 E -2 8.2 E -2 8.2 E -2 8.2 E -2
3 1.5 E -4 6.9 E -4 2.7 E -2 2.7 E -2 2.7 E -2
4 0 9.1 E -6 5.3 E -5 1.3 E -2 1.3 E -2
5 – 0 5.9 E -7 3.7 E -3 3.7 E -3
6 – – 0 3.3 E -6 1.1 E -3

Table 5.4: Absolute errors with parameters m1
i = 0.8 and γi = 0.5.

Step k = 1 k = 2 k = 3 k = 5 k = 100

0 4.1 E 0 4.1 E 0 4.1 E 0 4.1 E 0 4.1 E 0
1 1.5 E 0 1.5 E 0 1.5 E 0 1.5 E 0 1.5 E 0
2 1.2 E 0 2.8 E -1 2.8 E -1 2.8 E -1 2.8 E -1
3 1.3 E -2 3.0 E -2 2.7 E -1 2.7 E -1 2.7 E -1
4 1.1 E -5 5.3 E -3 2.3 E -3 1.4 E -1 1.4 E -1
5 0 0 4.2 E -5 6.9 E -2 6.9 E -2
6 – – 1.5 E -6 3.8 E -4 8.0 E -2

Table 5.5: Absolute errors with parameters m1
i = 0.8 and γi = 1.

xs
ij = λs

i = 1, where we update the Jacobian iteration every k steps. For k =
1, 2, 3, 5, 100 we get a solution with error ε = 10−7 after 4, 5, 5, 6, 9 iterations,
respectively. Then, while the number of iterations needed increases the number
of times to calculate a derivative decreases from 4 to 1. Table 5.1 shows the
errors to the solution.
If we change the starting points to psj = ms

i = xs
ij = λs

i = 0.97 the number
of iterations needed increases to 4, 5, 7, 9, 32. Again, the number of times we
update the Jacobian decreases from 4 to 1. The errors are shown in Table 5.2.
One can see that, as expected, the choice of the starting point becomes more
important if the Jacobian is not updated after every iteration. This is even more
evident if we change the starting values to psj = ms

i = xs
ij = λs

i = 0.96, where
the pure chord method without updating of the Jacobian does not converge,
see Table 5.3.
Consider now the nonsmooth problem for various values of γi and m1

i . The
starting point for the iteration is always psj = ms

i = xs
ij = λs

i = 1. The results
for m1

i = 0.8 and γi = 0.5 are given in Table 5.4.
If we increase γi to 1 the convergence speed in general decreases; the results
are in Table 5.5.
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Step k = 1 k = 2 k = 3 k = 5 k = 100

0 1.2 E 0 1.2 E 0 1.2 E 0 1.2 E 0 1.2 E 0
1 8.4 E -1 8.4 E -1 8.4 E -1 8.4 E -1 8.4 E -1
2 7.5 E -1 8.0 E -1 8.0 E -1 8.0 E -1 8.0 E -1
3 1.2 E 0 7.6 E -1 7.8 E -1 7.8 E -1 7.8 E -1
4 8.6 E -1 8.5 E -1 8.1 E -1 7.7 E -1 7.7 E -1
8 8.5 E -1 9.1 E -1 1.2 E 0 1.2 E 0 7.6 E -1
13 5.8 E -1 8.6 E -1 1.2 E 0 1.2 E 0 8.2 E -1
23 0 8.6 E -1 1.2 E 0 1.2 E 0 1.2 E -1

Table 5.6: Absolute errors with parameters m1
i = 0.8 and γi = −0.7.

For negative values of γi the model becomes quite unstable. For example if we
set γi = −0.7 then for k = 1 the method converges after 23 iterations while for
k = 2 we get a different solution after only 13 iterations and for k = 3 we get
yet another different solution after 8 iterations. The absolute differences to the
solution of the first Newton method are given in Table 5.6.
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Abstract. We investigate uniform versions of (metric) regularity and strong (metric)
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These two properties turn out to play a key role in analyzing path-following schemes for
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of a differential generalized equation (DGE). The latter model covers a large territory in
control and optimization, such as differential variational inequalities, control systems
with constraints, as well as necessary optimality conditions in optimal control. We
propose two inexact path-following methods for DGEs having the order of the grid
error O(h) and O(h2), respectively. We provide numerical experiments, comparing the
schemes derived, for simple problems arising in physics. Further, we study (metric)
regularity of mappings associated with a particular case of the DGE arising in control
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1 Introduction

We are going to investigate uniform (metric) regularity and strong (metric) regularity on
compact subsets of Banach spaces of mappings which are defined as a sum of a single-valued
(possibly non-smooth) mapping and a set-valued mapping with a (locally) closed graph.
In the second section, we recall basic definitions from regularity theory and derive a re-
sult guaranteeing that a perturbed problem has a solution which is similar to the classical
Lyusternik-Graves and Robinson theorem. Conditions ensuring uniform [strong] regularity
along continuous paths are obtained as a corollary. Roughly speaking, by the word “uni-
form” we mean that the constants as well as the size of neighborhoods, appearing in the
corresponding definitions, remain the same for a certain set of mappings and/or points.

In the third section, we study two (inexact) path-following methods for a differential
generalized equation (DGE), a model introduced in [5], which is a problem to find a pair of
functions x : [0, ε] → Rn and u : [0, ε] → Rm such that





ẋ(t) = g(x(t), u(t)),

0 ∈ f(x(t), u(t)) + F (u(t)),

x(0) = x
I
,

for all t ∈ [0, ε],(1)

with a fixed ε > 0, single-valued functions f : Rn ×Rm → Rd and g : Rn ×Rm → Rn, a set-
valued mapping F : Rm ⇒ Rd, and a given initial state x

I
∈ Rn. This model covers a large

territory in control and optimization, such as differential variational inequalities, control
systems with constraints, as well as necessary optimality conditions in optimal control (see
[5] and references therein). The first scheme, requiring stronger smoothness properties of the
solution trajectory of (1), is based on the modified Euler (Euler-Cauchy) method for solving
differential equations and is shown to have the grid error of order O(h2). On the other hand,
the latter scheme, based on the Euler method, has the grid error of order O(h) but requires
Lipschitz continuity of the solution trajectory only. We provide numerical experiments,
comparing the schemes derived and a standard MATLAB function ODE45, for two simple
problems arising in mechanics and electronics, respectively.

In the fourth section, we study regularity of mappings associated with the problem of
feasibility in control, which is the problem to find a pair of functions x : [0, ε] → Rn and
u : [0, ε] → Rm such that

ẋ(t) = g(x(t), u(t)) and f(x(t), u(t)) ∈ Uad for a.e. t ∈ [0, ε], x(0) = 0,(2)

where ε > 0, functions f : Rn×Rm → Rd and g : Rn×Rm → Rn and a closed convex subset
Uad of Rd are given. We focus on the interplay between the pointwise conditions and their
uniform and infinite-dimensional counterparts. We extend several results from [5].

Basic notation. The distance from a point x to a subset A of a metric space (X, %) is
d(x,A) = infy∈A %(x, y). The closure and the interior of A is denoted by clA and intA,
respectively. Given sets C, D ⊂ X, the excess of C beyond D is defined by e(C,D) :=
supx∈C d(x,D). We use the convention that inf ∅ := +∞ and as we work with non-negative
quantities we set sup ∅ := 0. The closed ball centered at a point x ∈ X with a radius r > 0

2



is denoted by IBr(x). A set A ⊂ X is locally closed at its point x if there is r > 0 such
that the set A ∩ IBr(x) is closed. Any singleton set will be identified with its only element,
that is, we write a instead of {a}. Given a (generally set-valued) mapping F : X →→ Y
between sets X and Y , the graph, the domain, and the range of F are the sets gphF :={
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
, domF :=

{
x ∈ X

∣∣F (x) 6= ∅
}
, and rgeF :=

{
y ∈ Y

∣∣ ∃x ∈
X with y ∈ F (x)

}
, respectively. The inverse of F always exits and is defined as a mapping

Y 3 y 7−→ F−1(y) :=
{
x ∈ X

∣∣ y ∈ F (x)
}
. We write f : X → Y to emphasize that the

mapping f is single-valued. The space of all linear bounded (single-valued) mappings acting
from a Banach space X into another Banach space Y equipped with the standard operator
norm is denoted by L(X, Y ). The space Rn is equipped with the Euclidean norm, while the
Cartesian product of two or more spaces is considered with the box (product) topology. By
a.e. we mean almost every in terms of the Lebesgue measure.

2 Uniform regularity

In our analysis, we employ two key concepts from set-valued analysis called regularity and
strong regularity of a set-valued mapping. Let us emphasize that unlike definitions in [13],
we prefer not to include the assumption that the mapping under consideration has a locally
closed graph in any definition of regularity. Given metric spaces (X, %), (Y, %) and a non-
empty subset U × V of X × Y , a mapping F : X →→ Y is said to be regular on U for V if
there is a constant κ > 0 such that

d
(
x, F−1(y)

)
≤ κ d(y, F (x) ∩ V ) for every (x, y) ∈ U × V.

If U = X and V = Y then F is said to be globally regular. Given (x̄, ȳ) ∈ X × Y , the
mapping F is said to be regular at x̄ for ȳ if (x̄, ȳ) ∈ gphF and there are positive constants
a, b, and κ such that

d
(
x, F−1(y)

)
≤ κ d

(
y, F (x)

)
for each (x, y) ∈ IBa(x̄)× IBb(ȳ).

The infimum of κ > 0 such that the above inequality holds for some a > 0 and b > 0
is the regularity modulus of F at x̄ for ȳ and is denoted by reg(F ; x̄| ȳ). Clearly, if F
is regular at x̄ for ȳ with a constant κ and neighborhoods IBa(x̄) and IBb(ȳ), then F is
regular on IBa(x̄) for IBb(ȳ) with the same constant. On the other hand, when the sets U
and V are neighborhoods of points x̄ and ȳ, respectively, and ȳ ∈ F (x̄), then regularity of
F on U for V implies regularity of F at x̄ for ȳ. The constants are the same again but
neighborhoods may differ [13, Proposition 5H.1]. By the Banach open mapping principle,
a mapping A ∈ L(X, Y ) is globally regular if and only if it is surjective. A mapping
F : X →→ Y is said to be strongly regular on U for V if there is a constant κ > 0 such
that the mapping σ : V 3 y 7−→ F−1(y) ∩ U is both single-valued and Lipschitz continuous
on V = dom σ with the constant κ. The mapping F is said to be strongly regular at x̄ for ȳ
if ȳ ∈ F (x̄) and there are neighborhoods U of ȳ and V of x̄ such that F is strongly regular
on U for V .

First, we present a statement concerning perturbed [strong] regularity on a set.
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Theorem 2.1. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let G : X ⇒ Y be a set-valued
mapping, and (x̄, ȳ) ∈ X×Y . Assume that there are positive constants a, b, and κ such that
the set gphG ∩

(
IBa(x̄) × IBb(ȳ)

)
is closed in X × Y and G is [strongly] regular on IBa(x̄)

for IBb(ȳ) with the constant κ. Let µ > 0 be such that κµ < 1 and let κ′ > κ/(1−κµ). Then
for every positive α and β such that

(3) 2κ′β + α ≤ a and µ(2κ′β + α) + 2β ≤ b

and for every mapping g : X → Y satisfying

(4) ‖g(x̄)‖ ≤ β and ‖g(x)− g(x′)‖ ≤ µ‖x− x′‖ for every x, x′ ∈ IB2κ′β+α(x̄),

the mapping g + G has the following property: for every y, y′ ∈ IBβ(ȳ) and every x ∈
(g +G)−1(y) ∩ IBα(x̄) there exists a [unique] point x′ ∈ IB2κ′β+α(x̄) such that

(5) y′ ∈ g(x′) +G(x′) and ‖x− x′‖ ≤ κ′‖y − y′‖.

Proof. We shall imitate the proof of [13, Theorem 5G.3]. First, suppose that G is regular
on IBa(x̄) for IBb(ȳ) with the constant κ. Choose any α and β, and then any g as in the
statement. Then

(6) y − g(x) ∈ IBb(ȳ) for each (x, y) ∈ IB2κ′β+α(x̄)× IBβ(ȳ).

Indeed, fix any such a pair (x, y). Then (4) and (3) imply that

‖y − g(x)− ȳ‖ ≤ ‖g(x̄)‖+ ‖g(x̄)− g(x)‖+ ‖y − ȳ‖ ≤ β + µ‖x− x̄‖+ β

≤ 2β + µ(2κ′β + α) ≤ b.

Fix any two distinct y, y′ ∈ IBβ(ȳ) and any x ∈ (g +G)−1(y) ∩ IBα(x̄). Let r := κ′‖y − y′‖.
As r ≤ 2κ′β, the first inequality in (3) implies that

IBr(x) ⊂ IB2κ′β+α(x̄) ⊂ IBa(x̄).

Consider the mapping

X 3 u 7−→ Φ(u) = Φy′(u) := G−1
(
y′ − g(u)

)
⊂ X.

It suffices to show that there is a fixed point x′ of Φ in IBr(x), because then x
′ ∈ (g+G)−1(y′)

and the desired distance estimate holds. To obtain such a point x′ we are going to apply [13,
Theorem 5E.2]. The set Ω := gphΦ∩ (IBr(x)× IBr(x)) is closed. Indeed, pick any sequence
(xn, zn) in Ω converging to a point (x̃, z̃) ∈ X × X. Clearly, (x̃, z̃) ∈ IBr(x) × IBr(x). The
definition of Φ and (6) imply that
(
zn, y

′ − g(xn)
)
∈ gphG ∩ (IBr(x)× IBb(ȳ)) ⊂ gphG ∩ (IBa(x̄)× IBb(ȳ)) for each n ∈ N.

Passing to the limit we get that
(
z̃, y′ − g(x̃)

)
∈ gphG, that is, (x̃, z̃) ∈ gphΦ.

According to (6) we have y− g(x) ∈ G(x)∩ IBb(ȳ) and y
′− g(x) ∈ IBb(ȳ), thus regularity

of G on IBa(x̄) for IBb(ȳ) yields that

d(x, Φ(x)) = d
(
x,G−1(y′ − g(x))

)
≤ κ d

(
y′ − g(x), G(x) ∩ IBb(ȳ)

)
≤ κ‖y − y′‖

< κ′‖y − y′‖(1− κµ) = r(1− κµ).
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Let u, v ∈ IBr(x) be arbitrary. Pick an arbitrary w ∈ Φ(u) ∩ IBr(x) (if there is any). As
y′ − g(u) ∈ G(w) ∩ IBb(ȳ) and y

′ − g(v) ∈ IBb(ȳ), we get

d(w,Φ(v)) = d
(
w,G−1(y′ − g(v))

)
≤ κ d

(
y′ − g(v), G(w) ∩ IBb(ȳ)

)
≤ κ‖g(u)− g(v)‖.

This means that

e
(
Φ(u) ∩ IBr(x), Φ(v)

)
≤ κ‖g(u)− g(v)‖ ≤ κµ ‖u− v‖ whenever u, v ∈ IBr(x).

The assumptions of [13, Theorem 5E.2] are verified. The existence of x′ ∈ IB2κ′β+α(x̄)
satisfying (5) is established.

Now, let G be strongly regular on IBa(x̄) for IBb(ȳ) with the constant κ. To prove the
uniqueness, it is enough to show that the mapping IBβ(ȳ) 3 y 7−→ σ(y) := (g + G)−1(y) ∩
IB2κ′β+α(x̄) is nowhere multivalued. Assume on the contrary that for some y ∈ IBβ(ȳ)
there are two distinct points x1, x2 ∈ σ(y). Clearly, x1 ∈ G−1(y − g(x1)) ∩ IBa(x̄) and
x2 ∈ G−1(y−g(x2))∩ IBa(x̄). By (6), the points y−g(x1) and y−g(x2) are in IBb(ȳ). Hence
0 < ‖x1 − x2‖ ≤ κ‖g(x1)− g(x2)‖ ≤ κµ‖x1 − x2‖ < ‖x1 − x2‖, a contradiction.

If, in addition to the assumptions of Theorem 2.1, we have (x̄, ȳ) ∈ gphG, then we arrive
at [9, Theorem 2.3] which is a slight improvement [13, Theorem 5G.3], where it is supposed
that G is regular at x̄ for ȳ with the constant κ and neighborhoods IBa(x̄) and IBb(ȳ).

Remark 2.2. Under the strong regularity, the reasoning used at the end of the proof of
Theorem 2.1 implies that the function σ, defined therein, is Lipschitz continuous relative to
dom σ ⊂ IBβ(ȳ) with the constant κ′. If, in addition,

(7)
(
IBα(x̄)× IBβ(ȳ)

)
∩ gph(g +G) 6= ∅,

then dom σ = IBβ(ȳ) and consequently g + G is strongly regular on IB2κ′β+α(x̄) for IBβ(ȳ).
Note that (7) holds, for example, when (x̄, ȳ) ∈ gphG.

We also get the following uniformity result.

Corollary 2.3. Under assumptions of Theorem 2.1, let γ ∈ [0, α), δ ∈ [0, β), and (x, y) ∈
IBγ(x̄) × IBδ(ȳ) be arbitrary. Then the mapping g + G is regular on IBα−γ(x) for IBβ−δ(y)
with the constant κ′.

Proof. Let constants γ and δ along with a pair (x, y) be as in the premise. Set U := IBα−γ(x)
and V := IBβ−δ(y). We have to show that

d
(
u, (g +G)−1(v)

)
≤ κ′ d(v, (g +G)(u) ∩ V ) for every (u, v) ∈ U × V.

Fix any such a pair (u, v). Pick an arbitrary v′ ∈ (g+G)(u)∩V (if there is any). Noting that
U × V ⊂ IBα(x̄)× IBβ(ȳ), Theorem 2.1 yields u′ ∈ (g +G)−1(v) with ‖u− u′‖ ≤ κ′‖v − v′‖.
Hence d

(
u, (g+G)−1(v)

)
≤ ‖u− u′‖ ≤ κ′‖v− v′‖. As v′ ∈ (g+G)(u)∩V was arbitrary, the

proof is finished.

We show now that the regularity at each point of a compact set implies uniform regularity,
that is, we can choose the same constant and neighborhoods for all points in this set.
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Theorem 2.4. Let (P, %) be a metric space, let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces,
and let Ω be a compact subset of P ×X. Consider a set-valued mapping F : X →→ Y and a
mapping σ : P ×X → Y such that

(i) for each z = (p, x) ∈ Ω the mapping X 3 v 7−→ Gp(v) := σ(p, v) + F (v) ⊂ Y has
a locally closed graph at (x, 0) and is [strongly] regular at x for 0;

(ii) for each z = (p, x) ∈ Ω and each µ > 0 there is δ > 0 such that for each v, v′ ∈ IBδ(x)
and each p′ ∈ IBδ(p) we have

‖[σ(p′, v′)− σ(p, v′)]− [σ(p′, v)− σ(p, v)]‖ ≤ µ‖v − v′‖;

(iii) for each x ∈ X the function σ(·, x) is continuous.

Then there are positive constants a, b, and κ such that for each z = (p, x) ∈ Ω the mapping
Gp is [strongly] regular at x for 0 with the constant κ and neighborhoods IBa(x) and IBb(0).

Proof. Fix any z̄ = (p̄, x̄) ∈ Ω. Using (i), we find positive constants az̄, bz̄, and κz̄ such
that the set gphGp̄ ∩ (IBaz̄(x̄) × IBbz̄(0)) is closed in X × Y and Gp̄ is regular on IBaz̄(x̄)
for IBbz̄(0) with the constant κz̄. Let µz̄ := 1/(2κz̄) and κ′z̄ := 3κz̄. Then κz̄µz̄ < 1 and
κ′z̄ > 2κz̄ = κz̄/(1 − κz̄µz̄). In view of (ii), there is αz̄ ∈ (0,min{az̄/2, 3κz̄bz̄/4}) such that
for each v, v′ ∈ IB2αz̄(x̄) and each p ∈ IBαz̄(p̄) we have

(8) ‖[σ(p, v)− σ(p̄, v)]− [σ(p, v′)− σ(p̄, v′)]‖ ≤ µz̄‖v − v′‖.

Let βz̄ := αz̄/(2κ
′
z̄). Then

(9) 2κ′z̄βz̄ + αz̄ = 2αz̄ < az̄ and µz̄(2κ
′
z̄βz̄ + αz̄) + 2βz̄ =

αz̄

κz̄
+

αz̄

3κz̄
=

4αz̄

3κz̄
< bz̄.

Now, (iii) implies that there is rz̄ ∈ (0, αz̄/2) such that

(10) ‖σ(p, x̄)− σ(p̄, x̄)‖ ≤ βz̄ for all p ∈ IBrz̄(p̄).

Pick any z = (p, x) ∈
(
intIBrz̄(p̄)× intIBrz̄(x̄)

)
∩ Ω. Define a mapping gp,p̄ : X → Y by

gp,p̄(v) := σ(p, v)− σ(p̄, v), v ∈ X.

Then Gp = Gp̄ + gp,p̄. By (8), for any v, v′ ∈ IB2αz̄(x̄) we have

‖gp,p̄(v)− gp,p̄(v
′)‖ ≤ µz̄‖v − v′‖.

Using (10) we get ‖gp,p̄(x̄)‖ ≤ βz̄. Applying Theorem 2.1 we conclude that the following
claim holds: for every y, y′ ∈ IBβz̄(0) and every v ∈ G−1

p (y′)∩IBαz̄(x̄) there exists v
′ ∈ G−1

p (y)
such that ‖v − v′‖ ≤ κ′z̄ ‖y − y′‖.

As z ∈ Ω, we have 0 ∈ Gp(x). We show next that

(11) d(v,G−1
p (y)) ≤ κ′z̄ d(y,Gp(v)) for all (v, y) ∈ IBκ′

z̄βz̄/3(x)× IBβz̄/3(0).
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To see this fix any such a pair (v, y). Pick an arbitrary y′ ∈ Gp(v) (if there is any). The
choice of βz̄ and rz̄ implies that

IBκ′
z̄βz̄(x) = IBαz̄/2(x) ⊂ IBαz̄(x̄).

First, assume that ‖y′‖ ≤ βz̄. The claim yields v′ ∈ G−1
p (y) with ‖v − v′‖ ≤ κ′z̄ ‖y − y′‖.

Consequently,

d(v,G−1
p (y)) ≤ ‖v − v′‖ ≤ κ′z̄ ‖y − y′‖.

On the other hand, assuming that ‖y′‖ > βz̄, we have ‖y′ − y‖ > βz̄ − βz̄/3 = 2βz̄/3. Then
using the claim, with (y′, v) := (0, x), we find v′ ∈ G−1

p (y) such that ‖x − v′‖ ≤ κ′z̄ ‖y‖.
Consequently,

d(v,G−1
p (y)) ≤ ‖v − x‖+ d(x,G−1

p (y)) ≤ ‖v − x‖+ ‖x− v′‖ ≤ ‖v − x‖+ κ′z̄ ‖y‖
≤ κ′z̄βz̄/3 + κ′z̄βz̄/3 = 2κ′z̄βz̄/3 < κ′z̄‖y − y′‖.

We have shown that d(v,G−1
p (y)) ≤ κ′z̄ ‖y − y′‖ for any y′ ∈ Gp(v), which proves (11).

Summarizing, for each z = (p, x) ∈
(
intIBrz̄(p̄)× intIBrz̄(x̄)

)
∩Ω the mapping Gp is regular

at x for 0 with the constant κ′z̄ and neighborhoods IBκ′
z̄βz̄/3(x) and IBβz̄/3(0), that is, the size

of neighborhoods and the constant of regularity are independent of z in a vicinity of z̄. From
the open covering ∪z̄=(p̄,x̄)∈Ω

(
[intIBrz̄(p̄) × intIBrz̄(x̄)] ∩ Ω

)
of Ω choose a finite subcovering

Oi := [intIBrz̄i
(p̄i) × intIBrz̄i

(x̄i)] ∩ Ω, i = 1, 2, . . . , k. Let a = min{κ′z̄iβz̄i/3 | i = 1, . . . , k},
κ = max{κ′z̄i | i = 1, . . . , k}, and b = min{βz̄i/3 | i = 1, . . . , k}. For any z = (p, x) ∈ Ω there
is an index i ∈ {1, . . . , k} such that z ∈ Oi. Hence the mapping Gp is regular at x for 0 with
the constant κ and neighborhoods IBa(x) and IBb(0).

Under the assumption of strong regularity one uses Remark 2.2 (or the strong regularity
part of Theorem 5G.3 in [13]).

Remark 2.5. Note that (ii) in Theorem 2.4 is satisfied, in particular, when σ has a point-
based approximation on Ω in the sense of Robinson [17]. Theorem 2.4 yields [9, Lemma
0]. Moreover, given a non-empty subset Ω of a metric space, define the measure of non-
compactness of Ω by

χ(Ω) := inf{r > 0
∣∣ Ω ⊂ ΩF + IBr(0) for some finite subset ΩF of Ω}.

Then Theorem 2.4 holds provided that χ(Ω) is strictly smaller than the infimum of the
reciprocal values of the regularity moduli of the mappings appearing in (i). This statement
is a key element in the proof of the non-smooth versions of Robinson and Lyusternik-Graves
theorems, cf. [7, Step 1] and [8, Lemma 12].

Next statement guarantees uniform [strong] regularity along continuous paths.

Theorem 2.6. Let (T, %) be a compact metric space, let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach
spaces. Consider a set-valued mapping F : X →→ Y with closed graph, a mapping σ : T×X →
Y , and two continuous mappings ϕ : T → X and ψ : T → Y such that
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(i) for each t ∈ T the mapping X 3 v 7−→ Gt(v) := σ(t, v)+F (v) ⊂ Y is [strongly] regular
at ϕ(t) for ψ(t);

(ii) for each t ∈ T and each µ > 0 there is δ > 0 such that for each v, v′ ∈ IBδ(ϕ(t)) and
each t′ ∈ IBδ(t) we have

‖[σ(t′, v′)− σ(t, v′)]− [σ(t′, v)− σ(t, v)]‖ ≤ µ‖v − v′‖;

(iii) for each x ∈ X the function σ(·, x) is continuous.

Then there are positive constants a, b, and κ such that for each t ∈ T the mapping Gt

is [strongly] regular at ϕ(t) for ψ(t) with the constant κ and neighborhoods IBa(ϕ(t)) and
IBb(ψ(t)).

Proof. Apply Theorem 2.4 with P := T × Y , a (compact) set Ω :=
⋃

t∈T (t, ψ(t), ϕ(t)), and
σ(p, x) := σ(t, x)− y, p = (t, y) ∈ P , x ∈ X.

3 Path-following for differential generalized equations

Consider the DGE (1), with ε > 0, single-valued functions g : Rn × Rm → Rn and f :
Rn × Rm → Rd, a set-valued mapping F : Rm ⇒ Rd, and an initial state x

I
∈ Rn. If it is

not clearly indicated otherwise we impose the following:

Standing assumptions (SA). Consider the DGE (1) and suppose that f and g are
differentiable functions with a locally Lipschitz continuous derivative, and that F has a closed
graph. Further, let a pair of functions (x̄(·), ū(·)) be a solution of (1) such that both of them
are differentiable on [0, ε] and have a Lipschitz continuous derivative on this interval.

For an integer N > 1, consider the uniform grid ti := ih, i ∈ {0, 1, . . . , N}, with a step
size h := ε/N . Given ∆ > 0 and points (ei)

N−1
i=0 in IB∆h2(0), consider the following iteration





x̃i+1 = xi + hg(xi, ui),

ei ∈ f(x̃i+1, ui) +∇uf(x̃i+1, ui)(ui+1 − ui) + F (ui+1),

xi+1 = xi +
h

2
(g(xi, ui) + g(x̃i+1, ui+1)),

(12)

with (x0, u0) sufficiently close to (x̄(0), ū(0)). The reason for allowing x0 6= xI is that for
a given time interval I := [−ε, ε], say, one cannot expect that ū(·) is differentiable on the
whole of I in general (for example when a geometric constraint represented by the generalized
equation is a variational inequality). However, ū(·) can be piece-wise smooth on I and the
starting point x0 can be viewed as a final iterate obtained by a numerical algorithm on the
previous subinterval [−ε, 0]. One can consider more general Runge-Kutta approximations as
in [11] but we prefer to keep the presentation as clear as possible. We use a modification of
the classical trapezoidal rule [10] in our analysis.
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Lemma 3.1. Let ϕ : [a, b] → R be a function with a Lipschitz continuous derivative on [a, b].
Then there is a constant m > 0 such that for each t1, t2 ∈ [a, b], with t1 < t2, we have

∣∣∣∣
(t2 − t1)

2

(
ϕ(t1) + ϕ(t2)

)
−

∫ t2

t1

ϕ(t) dt

∣∣∣∣ ≤ m(t2 − t1)
3.

Proof. Let ` > 0 be a Lipschitz constant of ϕ̇ on [a, b]. Fix arbitrary t1, t2 ∈ [a, b] with
t1 < t2 and let h := t2 − t1. Find τ1 and τ2 in [t1, t2] such that ϕ̇(τ1) = minτ∈[t1,t2] ϕ̇(τ) and
ϕ̇(τ2) = maxτ∈[t1,t2] ϕ̇(τ). Consider a function ψ : [t1, t2] → R defined by

ψ(t) := ϕ(t)− ϕ̇(τ1) + ϕ̇(τ2)

2
t, t ∈ [t1, t2].

For each t ∈ [t1, t2], we have ϕ̇(τ1) ≤ ϕ̇(t) ≤ ϕ̇(τ2), and consequently

−`h
2

≤ − `
2
|τ1 − τ2| ≤

1

2
(ϕ̇(τ1)− ϕ̇(τ2)) ≤ ψ̇(t) ≤ 1

2
(ϕ̇(τ2)− ϕ̇(τ1)) ≤

`

2
|τ2 − τ1| ≤

`h

2
.

Thus maxτ∈[t1,t2] |ψ̇(τ)| ≤ `h/2. Basic calculus and the mean value theorem imply that
∣∣∣∣
h

2

(
ϕ(t1) + ϕ(t2)

)
−

∫ t2

t1

ϕ(t) dt

∣∣∣∣ =

∣∣∣∣
h

2

(
ψ(t1) + ψ(t2)

)
−

∫ t2

t1

ψ(t) dt

∣∣∣∣

=

∣∣∣∣∣

∫ t1+
h
2

t1

[ψ(t1)− ψ(t)] dt+

∫ t2

t1+
h
2

[ψ(t2)− ψ(t)] dt

∣∣∣∣∣

≤ max
τ∈[t1,t2]

|ψ̇(τ)|
(∫ t1+

h
2

t1

(t− t1) dt+

∫ t2

t1+
h
2

(t2 − t) dt

)

= max
τ∈[t1,t2]

|ψ̇(τ)|
(
h2

8
+
h2

8

)
≤ `

8
h3.

As ` is independent of both t1 and t2, setting m := `/8 we finish the proof.

Theorem 3.2. In addition to (SA), suppose that for each t ∈ [0, ε] the mapping

(13) Rm 3 v 7−→ Gt(v) := f(x̄(t), ū(t)) +∇uf(x̄(t), ū(t))(v − ū(t)) + F (v) ⊂ Rd

is [strongly] regular at ū(t) for 0. Then for any ∆ > 0 there are N0 ∈ N and positive
constants α and d̄ such that for each N > N0, each (x0, u0) ∈ IB∆h2(x̄(0))×IB∆h2(ū(0)), and
each (ei)

N−1
i=0 in IB∆h2(0), where h := ε/N , there are [uniquely determined] points (xi, ui) ∈

Rn×Rm, i ∈ {1, . . . , N}, generated by the iteration (12), with the initial point (x0, u0), such
that (xi, ui) ∈ IBα(x̄(ti))× IBα(ū(ti)) for each i ∈ {1, . . . , N} satisfying

(14) max
0≤i≤N

‖xi − x̄(ti)‖ ≤ d̄h2 and max
0≤i≤N

‖ui − ū(ti)‖ ≤ d̄h2.

Proof. Let a (continuous) function σ be defined by σ(t, v) := f(x̄(t), ū(t))+∇uf(x̄(t), ū(t))(v−
ū(t)), (t, v) ∈ [0, ε] × Rm. For each t ∈ [0, ε] and each µ > 0, the continuity of the function
s 7−→ ∇uf(x̄(s), ū(s)) at t yields a constant δ > 0 such that

‖∇uf(x̄(t
′), ū(t′))−∇uf(x̄(t), ū(t))‖ < µ whenever t′ ∈ (t− δ, t+ δ) ∩ [0, ε],
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consequently, for any such t′ and arbitrary v, v′ ∈ Rm we have

‖[σ(t′, v′)− σ(t, v′)]− [σ(t′, v)− σ(t, v)]‖ = ‖[∇uf(x̄(t
′), ū(t′))−∇uf(x̄(t), ū(t))](v

′ − v)‖
≤ µ‖v − v′‖.

Theorem 2.6 with T := [0, ε], ϕ := ū(·), ψ ≡ 0 yields positive constants a, b, and κ such that
for each t ∈ [0, ε] the mapping Gt is [strongly] regular at ū(t) for 0 with the constant κ and
neighborhoods IBa(ū(t)) and IBb(0). Find `1 > 0 such that both x̄(·) and ū(·) are Lipschitz
continuous on [0, ε] with the constant `1. Let r > 0 be such that x̄([0, ε]) + aIBRn ⊂ rIBRn

and ū([0, ε])+aIBRm ⊂ rIBRm . Pick `2 > 0 such that f , g, and ∇uf are Lipschitz continuous
on the (compact) set rIBRn × rIBRm . Let

(15) κ′ := 2κ, µ := 1/(3κ), and ` := max{1, `1, `2}.

By the basic calculus, for every u, u′ ∈ rIBRm and every x ∈ rIBRn , we have

‖f(x, u′)− f(x, u)−∇uf(x, u)(u
′ − u)‖ ≤ `

2
‖u′ − u‖2.(16)

Let

(17) α := min{1, a/2, 1/(6`κ), a/(16κ`), 3κb/(20κ`+ 1)} and β := 2`α.

We show the following claim: For any (t, u, x, y) ∈ [0, ε] × IBα(ū(t)) × IBα(x̄(t)) × IBβ(0),
there is a [unique] point w ∈ IBα(ū(t)) such that y ∈ f(x, u) +∇uf(x, u)(w− u) +F (w) and

‖w − ū(t)‖ ≤ κ′`(‖x− x̄(t)‖+ ‖u− ū(t)‖2 + ‖y‖).

To prove this, fix any such (t, u, x, y) and consider a function ϕ : Rm → Rd defined by

ϕ(v) := f(x, u) +∇uf(x, u)(v − u)− f(x̄(t), ū(t))−∇uf(x̄(t), ū(t))(v − ū(t)), v ∈ Rm.

We are going to use Theorem 2.1 (with G := Gt and g := ϕ). Note that Gt has closed graph.
Clearly (15) implies κµ < 1 and κ′ > 3κ/2 = κ/(1− µκ). We also get

2κ′β + α = (8κ`)α + α ≤ a/2 + a/2 = a,

and, consequently, we obtain that

µ(2κ′β + α) + 2β =
8κ`α + α

3κ
+ 4α` = α

20κ`+ 1

3κ
≤ b.

As u ∈ IBα(ū(t)) ⊂ IBa(ū(t)) ⊂ rIBRm and x ∈ IBα(x̄(t)) ⊂ IBa(x̄(t)) ⊂ rIBRn , by (16) we
get

‖ϕ(ū(t))‖ = ‖f(x̄(t), ū(t))− f(x, u)−∇uf(x, u)(ū(t)− u)‖
≤ ‖f(x̄(t), ū(t))− f(x, ū(t))‖+ ‖f(x, ū(t))− f(x, u)−∇uf(x, u)(ū(t)− u)‖

≤ `‖x̄(t)− x‖+ `

2
‖ū(t)− u‖2 < `α + `α2 ≤ 2`α = β.(18)
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Since 2`α ≤ 1/(3κ) = µ, for arbitrary v, v′ ∈ Rm, we have

‖ϕ(v)− ϕ(v′)‖ = ‖(∇uf(x, u)−∇uf(x̄(t), ū(t))(v − v′)‖
≤ `

(
‖x− x̄(t)‖+ ‖u− ū(t)‖

)
‖v − v′‖ ≤ 2`α‖v − v′‖ ≤ µ‖v − v′‖.

Moreover, observing that ϕ+ Gt = f(x, u) +∇uf(x, u)(· − u) + F , we get

ϕ(ū(t)) = f(x, u) +∇uf(x, u)(ū(t)− u)− f(x̄(t), ū(t))

∈ f(x, u) +∇uf(x, u)(ū(t)− u) + F (ū(t)) = (ϕ+ Gt)
(
ū(t)

)
.

Hence ū(t) ∈ (ϕ + Gt)
−1

(
ϕ(ū(t))

)
and ϕ(ū(t)) ∈ IBβ(0). Remembering that y ∈ IBβ(0).

Theorem 2.1 implies that there is w ∈ (ϕ+Gt)
−1(y) such that ‖w− ū(t)‖ ≤ κ′‖y−ϕ(ū(t))‖.

Then y ∈ f(x, u) +∇uf(x, u)(w − u) + F (w) and (18) implies that

‖w − ū(t)‖ ≤ κ′(‖y‖+ `‖x− x̄(t)‖+ `‖u− ū(t)‖2),

which proves the claim because ` ≥ 1.
Use Lemma 3.1 to find m > 0 such that for each τ1, τ2 ∈ [0, ε], with τ1 < τ2, we have

(19)

∥∥∥∥
(τ2 − τ1)

2

(
g(x̄(τ1), ū(τ1)) + g(x̄(τ2), ū(τ2))

)
−

∫ τ2

τ1

g(x̄(t), ū(t)) dt

∥∥∥∥ ≤ m(τ2 − τ1)
3.

Pick an arbitrary ∆ > 0. Let

q := max{4`2,∆, κ′`, ε2,m}, λ := 4q3, and d̄ := q
(
ελeελ + 4q

)
.

Choose N0 ∈ N such that 2d̄ < N0 and qε ≤ N0 min{α, β}. Fix any N > N0 and let
h := ε/N . Then

h <
ε

N0

≤
√
q

N0

<

√
q

2d̄
<

1

2
and h ≤ qh < q

ε

N0

≤ min{α, β}.(20)

Let (x0, u0) ∈ IB∆h2(x̄(0)) × IB∆h2(ū(0)) and (ei)
N−1
i=0 in IB∆h2(0) be arbitrary. For each

i ∈ {0, 1, . . . , N}, let ti := ih and ci := λieλih. Since q ≥ ∆, we have

‖x0 − x̄(0)‖ ≤ qh2 = (c0h+ q)h2 and ‖u0 − ū(0)‖ ≤ qh2 < q(c0h+ 4q)h2.

As qh2 < qh/2 < α/2 we have (x0, u0) ∈ IBα(x̄(t0))× IBα(ū(t0)). We proceed by induction.
Suppose that for some i ∈ {0, 1, . . . , N − 1} a point (xi, ui) ∈ IBα(x̄(ti))× IBα(ū(ti)) verifies

(21) ‖xi − x̄(ti)‖ ≤ (cih+ q)h2 and ‖ui − ū(ti)‖ ≤ q(cih+ 4q)h2.

We will show that there are [uniquely determined] points x̃i+1, xi+1 ∈ IBα(x̄(ti+1)) and
ui+1 ∈ IBα(ū(ti+1)) satisfying (12) such that (21) holds for i := i+ 1.

Let x̃i+1 be defined by the first equality in (12). Clearly, for any s ∈ [ti, ti+1], we have

‖g(xi, ui)− g(x̄(s), ū(s))‖ ≤ `(‖xi − x̄(s)‖+ ‖ui − ū(s)‖)
≤ `(‖xi − x̄(ti)‖+ `(s− ti) + ‖ui − ū(ti)‖+ `(s− ti))

= `(‖xi − x̄(ti)‖+ ‖ui − ū(ti)‖) + 2`2(s− ti).(22)
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As cih < ελeελ and `d̄h < q/4, using (22) and (20) we get

‖x̃i+1 − x̄(ti+1)‖ =

∥∥∥∥xi + hg(xi, ui)− x̄(ti)−
∫ ti+1

ti

g(x̄(s), ū(s)) ds

∥∥∥∥

≤ ‖xi − x̄(ti)‖+
∫ ti+1

ti

‖g(xi, ui)− g(x̄(s), ū(s))‖ ds

≤ ‖xi − x̄(ti)‖+ `h(‖xi − x̄(ti)‖+ ‖ui − ū(ti)‖) + `2h2

= (1 + `h)‖xi − x̄(ti)‖+ `h‖ui − ū(ti)‖+ `2h2

≤ (1 + `h)(cih+ q)h2 + `d̄h3 + `2h2

=
(
cih+ `(cih+ q)h+ q + `d̄h+ `2

)
h2

<
(
cih+ `d̄h+ q + `d̄h+ q/4

)
h2 < (cih+ q/4 + q + q/4 + q/4)h2

< (cih+ 2q)h2 < (d̄/q)h2 = h(d̄h)/q < h/2 < α/2.(23)

In particular x̃i+1 ∈ IBα(x̄(ti+1)). Remembering that cih < ελeελ, (21) and (20) yield that

‖ui − ū(ti+1)‖ ≤ ‖ui − ū(ti)‖+ ‖ū(ti)− ū(ti+1)‖ < q(ελeελ + 4q)h2 + `h(24)

= (d̄h)h+ `h <
√
qh < α.

Clearly, ei ∈ IBβ(0). The claim with t := ti+1, y := ei, x := x̃i+1, and u := ui together with
(23), (24), and (20) yields a [unique] point ui+1 ∈ IBα(ū(ti+1)) such that

ei ∈ f(x̃i+1, ui) +∇uf(x̃i+1, ui)(ui+1 − ui) + F (ui+1)

satisfying

‖ui+1 − ū(ti+1)‖ ≤ q(‖x̃i+1 − x̄(ti+1)‖+ ‖ui − ū(ti+1)‖2 + ‖ei‖)
< q (cih+ 2q + q +∆)h2 ≤ q(cih+ 4q)h2.(25)

As ci < ci+1, we obtain the latter estimate in (21) with i := i + 1. Let xi+1 be defined by
the last equality in (12). Now (19), (21), (23), (25), and (20) imply that

‖xi+1 − x̄(ti+1)‖ =

∥∥∥∥xi +
h

2

(
g(xi, ui) + g(x̃i+1, ui+1)

)
− x̄(ti)−

∫ ti+1

ti

g(x̄(s), ū(s)) ds

∥∥∥∥

≤ ‖xi − x̄(ti)‖+mh3 +
h

2
‖g(xi, ui) + g(x̃i+1, ui+1)− g(x̄(ti), ū(ti))− g(x̄(ti+1), ū(ti+1))‖

≤ (cih+ q)h2 +mh3 +
`h

2

(
‖xi − x̄(ti)‖+ ‖ui − ū(ti)‖+ ‖x̃i+1 − x̄(ti+1)‖+ ‖ui+1 − ū(ti+1)‖

)

≤ (ci +m)h3 + qh2 +
`h

2

(
(cih+ q)h2 + q(cih+ 4q)h2 + (cih+ 2q)h2 + q(cih+ 4q)h2

)

< (ci + q)h3 +
h3

4

(
q(cih+ q) + q2(cih+ 4q) + q(cih+ 2q) + q2(cih+ 4q)

)
+ qh2

= ci
(
1 + (q + q2)h/2

)
h3 + (q + 3q2/4 + 2q3)h3 + qh2 < ci(1 + 4q3h

)
h3 + 4q3h3 + qh2

= ci
(
1 + λh

)
h3 + λh3 + qh2 ≤ λieλ(i+1)hh3 + λeλ(i+1)hh3 + qh2

= λ(i+ 1)eλ(i+1)hh3 + qh2 = (ci+1h+ q)h2.
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The first estimate in (21) with i := i+1 is proved. Since (ci+1h+ q)h2 < d̄h2 < qh/2 < α/2,
we have xi+1 ∈ IBα(x̄(ti+1)). The induction step is complete and so is the proof by noting
that for each i ∈ {0, 1, . . . , N} we have cih ≤ ελeελ.

If ū(·) is only Lipschitz continuous on [0, ε], one can consider the following iteration:
{
xi+1 = xi + hg(xi, ui),

ei ∈ f(xi+1, ui) +∇uf(xi+1, ui)(ui+1 − ui) + F (ui+1),
(26)

Using a similar technique as in the proof of Theorem 3.2 we obtain:

Theorem 3.3. Consider the DGE (1) and suppose that f and g are differentiable functions
with a locally Lipschitz continuous derivative, and that F has a closed graph. Let a pair of
functions (x̄(·), ū(·)) be a solution of (1) such that both x̄(·) and ū(·) are Lipschitz continuous
on [0, ε]. Suppose that for each t ∈ [0, ε] the mapping Gt in (13) is [strongly] regular at ū(t)
for 0. Then for any ∆ > 0 there are N0 ∈ N and positive constants α and d̄ such that for each
N > N0, each (x0, u0) ∈ IB∆h(x̄(0)) × IB∆h(ū(0)), and each (ei)

N−1
i=0 in IB∆h(0), where h :=

ε/N , there are [uniquely determined] points (xi, ui) ∈ Rn×Rm, i ∈ {1, . . . , N}, generated by
the iteration (26), with the initial point (x0, u0), such that (xi, ui) ∈ IBα(x̄(ti)) × IBα(ū(ti))
for each i ∈ {1, . . . , N} satisfying

(27) max
0≤i≤N

‖xi − x̄(ti)‖ ≤ d̄h and max
0≤i≤N

‖ui − ū(ti)‖ ≤ d̄h.

The above statement is a slight extension of [5, Theorem 5.1]. Next, we discuss two basic
examples from engineering, which can be formulated either as a DGE or an ODE with a
Lipschitz continuous right-hand side. We compare schemes (12) and (26) with the method
ODE45 which is used with the absolute error tolerance 10−12 to get a reference solution
trajectory. All simulations are performed in MATLAB.

Example 3.4. Consider a particle of mass m > 0 connected by a rigid, weightless rod of
length ` > 0 to a base by means of a pin joint that can rotate in a plane due to gravity. In
addition, the pendulum can have a contact with two walls made of a very flexible material
which are at a distance r > 0 from a pin joint. The contact force acting on the mass at time
t is denoted by u(t); and ϕ1(t) and ϕ2(t) denote the angular displacement and the angular
velocity at time t, respectively (see Figure 6.1). The equations of motion of the system are





ϕ̇1(t) = ϕ2(t),
ϕ̇2(t) = −g

`
sinϕ1(t)− 1

`m
H(ϕ1(t)),

ϕ1(0) = γ1, ϕ2(0) = γ2,
for all t ∈ [0, ε],

with given initial conditions γ1, γ2 ∈ R, a gravitational acceleration g = 9.81 ms−2, and
u(t) = H(ϕ1(t)) describing the dependence of the contact force on the angular displacement.
We assume that

H(ϕ) =





argsinh (ϕ− arcsin (r/`)) for ϕ > arcsin (`/r),

argsinh (ϕ+ arcsin (r/`)) for ϕ < − arcsin (`/r),

0 otherwise.
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Figure 6.1: Mechanical model from Example 3.4.

The corresponding DGE has form




ϕ̇1(t) = ϕ2(t),
ϕ̇2(t) = −g

`
sinϕ1(t)− 1

`m
u(t),

0 ∈ −ϕ1(t) + sinh u(t) + arcsin (r/`) ∂| · |(u(t)),
ϕ1(0) = γ1, ϕ2(0) = γ2,

for all t ∈ [0, ε],

where ∂ denotes a subdifferential in the sense of convex analysis. The solution for ` = m :=
1, r := sin 1, ε := 2, γ1 = π/3, and γ2 = 0 is in Figure 6.2. The grid errors with respect to
the solution obtained by ODE45 are in Figure 6.3. For both the schemes (12) and (26), we
use the discretion step h = 10−5 and ei = 0, i ∈ {0, 1, . . . , N − 1}.
Example 3.5. Consider a circuit in Figure 6.4 involving the four-diodes bridge full-wave
rectifier, a resistor with a resistance R > 0, a capacitor with the capacitance C0 > 0 and an
inductor with the inductance L > 0. Denote vC a voltage across the capacitor, iC a current
through the capacitor, iL a current through the inductor, iDF1, iDF2, iDR1, iDR2 currents
through the diodes, and vDF1, vDF2, vDR1, vDR2 voltages across the diodes, respectively.
Using the Kirchhoff’s laws, this problem can be described as a particular DGE (see [4]) called
a differential linear complementarity problem (system) in the form

(28)





ẋ(t) = Ax(t) + Bu(t),

0 ≤ Cx(t) +Du(t) ⊥ u(t) ≥ 0, t ∈ [0, ε],

x(0) = x
I
,

where

x :=

(
vC
iL

)
, A :=




0 − 1

C0
1

L
0


 , B :=


 0 0 − 1

C0

1

C0

0 0 0 0


 ,

u :=




−vDR1

−vDF2

iDF1

iDR2


 , C :=




0 0
0 0
−1 0
1 0


 , D :=




1

R

1

R
−1 0

1

R

1

R
0 −1

1 0 0 0
0 1 0 0



,
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Figure 6.2: The solution from Example 3.4.

the symbol ⊥ denotes a complementarity relation, and inequalities in R4 are understood
coordinate-wise. From (28) we have vDR1(t) = −max{vC(t), 0}, vDF2(t) = −max{−vC(t), 0},
iDF1(t) = 1/Rmax{vC(t), 0}, and iDR2(t) = 1/Rmax{−vC(t), 0} for each t ∈ [0, ε]. Hence
the problem is equivalent to the system of ordinary differential equations, in the form

ẋ(t) = Ax(t) + Bu(t), t ∈ [0, ε], and x(0) = x
I
.

For the simulation we use library LCP1 and assume that C0 := 10−6, L := 0.01, R := 1000,
ε := 0.005, and x

I
:= [10, 0]. For both the schemes (12) and (26), we use the discretion step

h = 10−8 and ei = 0, i ∈ {0, 1, . . . , N − 1}. Graphs of solution components are in Figure 6.5
while grid errors are in Figure 6.6. We note that the maximal grid error means the biggest
error of elements of u or x at the points of the grid.

To conclude this section, let us point out that a similar technique, can be used also
in the case of a parametric generalized equation, which is a problem for a fixed function
p : [0, ε] → Rn, find a function z : [0, ε] → Rn such that

(29) p(t) ∈ f(z(t)) + F (z(t)) for all t ∈ [0, ε],

where a constant ε > 0, a function f : Rn → Rn and a set-valued mapping F : Rn ⇒ Rn are
given. This problem can be used, for example, for modeling static problems from electronics,
that is, when no capacitors and inductors appear in the circuit [1, 2, 3, 14].

1It is available on: https://www.mathworks.com/matlabcentral/fileexchange/20952-lcp—mcp-solver–
newton-based-?requestedDomain=www.mathworks.com
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(a) Grid errors of the scheme (12).
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Figure 6.3: Errors of the solution from Example 3.4.
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Figure 6.4: The circuit from Example 3.5.

For an integer N > 1, define the uniform grid ti := ih, i ∈ {0, 1, . . . , N}, with a step size
h := ε/N . Given ∆ > 0 and points (ei)

N
i=0 in IB∆h2(p(ti+1)), we study a predictor-corrector

scheme in the form

(30)

{
ei ∈ f(zi) +∇f(zi)(vi+1 − zi) + F (vi+1),

p(ti+1) ∈ f(vi+1) +∇f(vi+1)(zi+1 − vi+1) + F (zi+1),

where z0 is sufficiently close to the exact solution of (29) at time t := 0. Uniform regularity
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Figure 6.5: Graphs of the solution from Example 3.5.

along a continuous path was used in [6] to obtain the following extension of the main result
from [12].

Theorem 3.6. Let z̄ : [0, ε] → Rn be a Lipschitz continuous solution of the problem (29),
where p : [0, ε] → Rn is Lipschitz continuous, f : Rn → Rn has a locally Lipschitz continuous
derivative on whole of Rn, and F : Rn ⇒ Rn has a closed graph. Suppose that for each
t ∈ [0, ε] the mapping

Rn 3 v 7−→ Gt(v) := f(z̄(t)) +∇f(z̄(t))(v − z̄(t)) + F (v) ⊂ Rn

is [strongly] regular at z̄(t) for p(t). Then there is α > 0 such that for any ∆ > 0 there
are constants N0 ∈ N and c > 0 such that for each N > N0 and each z0 ∈ IB∆h4(z̄(t0)),
where h := ε/N , there are [uniquely determined] points (zi)

N
i=1 generated by the iteration
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(a) Maximal grid error of the scheme (12).
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Figure 6.6: Errors of the solution from Example 3.5.

(30), with the initial point z0 and arbitrarily chosen points (ei)
N−1
i=0 in IB∆h2(p(ti+1)), such

that zi ∈ IBα(z̄(ti)) for each i ∈ {0, . . . , N} and

(31) max
0≤i≤N

‖zi − z̄(ti)‖ ≤ ch4.

The point ei appearing in (30) can be interpreted as a sufficiently precise prediction at
time ti of the (possibly unknown) value of p(ti+1). Then we wait until the precise value of
p(ti+1) is known and compute a correction zi+1. On the other hand, taking ei := p(ti) +
hp′(ti), i ∈ {0, 1, . . . , N − 1}, we have ‖ei − p(ti+1)‖ ≤ ∆h2 provided that p′(·) exists and
is Lipschitz on [0, ε] with the constant 2∆. Hence the algorithm proposed in [13, Section
6G] is a particular case of (30). Finally, instead of p(ti+1) in the latter inclusion of (30)
one can take any ẽi ∈ IB∆h4(p(ti+1)), that is, the corrector step can be done via an inexact
method (which is always the case in practice). Finally, let us note that sufficient conditions
(of different type) guaranteeing the existence of a Lipschitz continuous solution z̄(·) of (29)
can be found either in [6, Theorem 6] or [5, Theorem 11].

4 Uniform regularity and regularity in function spaces

In case that the solution trajectory is not continuous (or even defined) on the whole time
interval we can derive the following statement.
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Theorem 4.1. Let ε > 0 and S be a non-empty subset of [0, ε]. Consider a pair of bounded
functions x̄ : S → Rn and ū : S → Rm such that

0 ∈ f(x̄(t), ū(t)) + F (ū(t)) for each t ∈ S,

with a continuous f : Rn ×Rm → Rd having a continuous derivative ∇uf and F : Rm →→ Rd

having a closed graph. Let Λ := ∪t∈S(x̄(t), ū(t)) and for each (x, u) ∈ cl Λ define a mapping

(32) Rm 3 v 7−→ Gx,u(v) := f(x, u) +∇uf(x, u)(v − u) + F (v) ⊂ Rd.

Then the following statements are equivalent:

(i) for each (x, u) ∈ cl Λ the mapping Gx,u is [strongly] regular at u for 0;

(ii) there are positive constants a, b, and κ such that for each (x, u) ∈ cl Λ the mapping
Gx,u is [strongly] regular at u for 0 with the constant κ and neighborhoods IBa(u) and
IBb(0);

(iii) there are positive constants a, b, and κ such that for each t ∈ S the mapping Gt in (13)
is [strongly] regular at ū(t) for 0 with the constant κ and neighborhoods IBa(ū(t)) and
IBb(0).

Proof. Assume that (i) holds. Define a (compact) set Ω := cl
(
∪t∈S (x̄(t), ū(t), ū(t))

)
and

a (continuous) function σ(x, u, v) := f(x, u) +∇uf(x, u)(v − u), (x, u, v) ∈ Rn × Rm × Rm.
Note that (x, u, v) ∈ Ω if and only if v = u and (x, u) ∈ cl Λ. Theorem 2.4 yields positive
constants a, b, and κ such that for each (x, u, u) ∈ Ω the mapping Gx,u is [strongly] regular at
u for 0 with the constant κ and neighborhoods IBa(u) and IBb(0). Since (x̄(t), ū(t), ū(t)) ∈ Ω
and Gt = Gx̄(t),ū(t) for each t ∈ S, (iii) is proved.

Assume that (iii) holds. Let κ′ := 2κ and µ := 1/(3κ). Then κµ < 1 and κ′ > κ/(1−κµ).
Pick r > 0 such that x̄(S) + aIBRn ⊂ rIBRn and ū(S) + aIBRm ⊂ rIBRm . As f and ∇uf are
continuous, they are uniformly continuous on a compact set Ω := rIBRn ×rIBRm . Find β > 0
such that both 2κ′β + β < a and µ(2κ′β + β) + 2β < b; and also that for each (x, u) ∈ Ω
and each (x′, u′) ∈ (IB2κ′β+β(x)× IB2κ′β+β(u)) ∩ Ω we have

‖∇uf(x
′, u′)−∇uf(x, u)‖ < µ and ‖f(x′, u′)− f(x, u)−∇uf(x

′, u′)(u′ − u)‖ < β.

Fix any (x, u) ∈ cl Λ ⊂ Ω. Then 0 ∈ Gx,u(u) since f is continuous and gphF is closed. Find
t̄ ∈ S such that (x, u) ∈ IBβ(x̄(t̄))× IBβ(ū(t̄)). Then Gx,u = Gt̄ + g, with

g(v) = f(x, u) +∇uf(x, u)(v − u)− f(x̄(t̄), ū(t̄))−∇uf(x̄(t̄), ū(t̄))(v − ū(t̄)), v ∈ Rm.

Then ‖g(ū(t̄))‖ = ‖f(x, u) − f(x̄(t̄), ū(t̄)) − ∇uf(x, u)(u − ū(t̄))‖ < β. Moreover, for any
v, v′ ∈ Rm we have ‖g(v) − g(v′)‖ = ‖[∇uf(x, u) − ∇uf(x̄(t̄), ū(t̄))](v − v′)‖ ≤ µ‖v −
v′‖. Applying Theorem 2.1, with α := β, and using a similar reasoning as in the proof of
Theorem 2.4 we conclude that the mapping Gx,u is [strongly] regular at u for 0 uniformly in
(x, u) ∈ cl Λ. Hence (ii) holds. Clearly, (ii) implies (i).
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The above statement is a generalization of [5, Theorem 7], where strong regularity is
considered only, because it requests point-wise [strong] regularity on the closure of the range
of the solution instead of on the closure of its graph. The function x̄(·) can be either an input
signal in a parametric generalized equation (29) or a state trajectory of the DGE (1). In
the latter case, x̄(·) is continuous on S = [0, ε], so if ū(·) has closed range, then the uniform
[strong] regularity of Gt in (13) on S is equivalent to its point-wise [strong] regularity on S.
We also get the following uniform version of the Lyusternik-Graves and Robinson theorem
which implies [5, Theorem 9] under substantially weaker assumptions.

Theorem 4.2. Let ε, S, x̄(·), ū(·), f , and F be as in Theorem 4.1. Then the mapping
Gt = f(x̄(t), ·) + F is [strongly] regular at ū(t) for 0 uniformly in t ∈ S if and only if so is
the mapping Gt in (13).

Proof. Suppose that there are positive constants a, b and κ such that for each t ∈ S the
mapping Gt in (13) is [strongly] regular at ū(t) for 0 with the constant κ and neighborhoods
IBa(ū(t)) and IBb(0). Let β, κ

′, µ, r, Ω be as in the proof of (iii) ⇒ (ii) in Theorem 4.1. Fix
any t ∈ S. Let gt(v) := f(x̄(t), v)− f(x̄(t), ū(t))−∇uf(x̄(t), ū(t))(v − ū(t)), v ∈ Rm. Then
gt(ū(t)) = 0 and for any v, v′ ∈ IB2κ′β+β(ū(t)) we have

‖gt(v)− gt(v
′)‖ = ‖f(x̄(t), v)− f(x̄(t), v′)−∇uf(x̄(t), ū(t))(v − v′)‖

= ‖
∫ 1

0

(
∇uf(x̄(t), v

′ + s(v − v′))−∇uf(x̄(t), ū(t))
)
(v − v′) ds‖

≤ µ‖v − v′‖.

As in Theorem 4.1 we conclude that the mapping Gt = gt + Gt is [strongly] regular at ū(t)
for 0 uniformly in t ∈ S. The converse implication follows in the same way.

Before continuing we set up notions used later.

Notation (N). Let a constant ε > 0, twice differentiable functions f : Rn×Rm → Rd and
g : Rn×Rm → Rn, and a closed convex subset Uad of Rd be given. Consider the problem (2).
The controls u(·) are assumed to be in U := L∞([0, ε],Rm), the space of essentially bounded
and measurable functions on [0, ε] with values in Rm considered with the norm ‖u(·)‖∞ :=
ess sup‖u(·)‖, u(·) ∈ U . The state trajectories x(·) belong to X := W1,∞

0 ([0, ε],Rn), the space
of Lipschitz continuous functions on [0, ε] with values in Rn satisfying x(0) = 0 equipped
with the norm ‖x(·)‖X = ‖x(·)‖∞+‖ẋ(·)‖∞, x(·) ∈ X . Let V := X ×U , R := L∞([0, ε],Rn),
P := L∞([0, ε],Rd),

Uad := {u(·) ∈ U
∣∣ u(t) ∈ Uad for a.e. t ∈ [0, ε]},

and W := R × P . Given a solution (x̄(·), ū(·)) ∈ V of (2) we set A(t) = ∇xg(x̄(t), ū(t)),
B(t) = ∇ug(x̄(t), ū(t)), C(t) = ∇xf(x̄(t), ū(t)),D(t) = ∇uf(x̄(t), ū(t)), and f̄(t) = f(x̄(t), ū(t))
for a.e. t ∈ [0, ε]. Let Φ be the fundamental matrix solution of the linear equation ż = A(t)z,
that is, d

dt
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I.

Consider a set-valued mapping H : V →→ W defined by

V 3 (x(·), u(·)) 7−→ H(x(·), u(·)) :=
(
ẋ(t)− g(x(t), u(t))
f(x(t), u(t))− Uad

)
⊂ W
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along with its shifted partial linearization H at (x̄(·), ū(·)) defined for each (z(·), v(·)) ∈ V
by

H(z(·), v(·)) :=
(
ż(t)− A(t) z(t)− B(t) v(t)
f̄(t) + C(t) z(t) +D(t) v(t)− Uad

)
⊂ W ,

a mapping K : U →→ P defined as

K[v(·)](t) := f̄(t) + C(t)

∫ t

0

Φ(t, τ)B(τ)v(τ) dτ +D(t) v(t)− Uad, v(·) ∈ U ,

and mappings Gt, Gt : Rm → Rd, t ∈ S, defined, respectively, for each v ∈ Rm by

Gt(v) := f(x̄(t), v)− Uad and Gt(v) := f̄(t) +D(t) (v − ū(t))− Uad.

Now we are ready to formulate and prove the main result of this section generalizing [5,
Theorem 3].

Theorem 4.3. Under the notation (N), the following assertions are equivalent:

(i) H is regular at (x̄(·), ū(·)) for 0;

(ii) H is regular at (0, 0) for 0;

(iii) K is regular at 0 for 0;

(iv) there is a subset S of [0, ε] having full Lebesgue measure such that the mapping Gt is
regular at ū(t) for 0 uniformly in t ∈ S;

(v) there is a subset S of [0, ε] having full Lebesgue measure such that the mapping Gt is
regular at ū(t) for 0 uniformly in t ∈ S;

(vi) there is δ > 0 such that for every w(·) ∈ P with ‖w(·)‖∞ < δ there is v(·) ∈ U with
‖v(·)‖∞ ≤ 1 such that

f̄(t) + C(t)

∫ t

0

Φ(t, τ)B(τ)v(τ) dτ +D(t) v(t) + w(t) ∈ Uad for a.e. t ∈ [0, ε];

(vii) there are δ > 0 and r > 0 such that for every w(·) ∈ P with ‖w(·)‖∞ < δ there is
a pair (z(·), v(·)) ∈ rIBX × rIBU such that

f̄(t) + C(t) z(t) +D(t) v(t) + w(t) ∈ Uad for a.e. t ∈ [0, ε].

Proof. Define a bounded linear mapping Q : R → X by Q[r(·)](t) =
∫ t

0
Φ(t, τ) r(τ) dτ for

t ∈ [0, ε]. Let ν := max{‖A(·)‖∞, ‖B(·)‖∞, ‖C(·)‖∞, ‖D(·)‖∞, ‖x̄(·)‖∞, ‖ū(·)‖∞}.
Applying the Lyusternik-Graves theorem [13, Theorem 5E.6] and substituting z(·) =

x(·) − x̄(·) and v(·) := u(·) − ū(·), we obtain that (i) ⇔ (ii). By Theorem 4.2 we have
(iv) ⇔ (v) because x̄(·) is continuous and ū(·) is essentially bounded.

To prove that (ii) ⇔ (iii), note that given r(·) ∈ R, one has that ż(t)− A(t)z(t) = r(t)
for a.e. t ∈ [0, ε] and z(0) = 0 if and only if z(t) = Q[r(·)](t), t ∈ [0, ε]. This implies
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that having (r(·), p(·)) ∈ H(z(·), v(·)) is the same as having w(t) ∈ K[v(·)](t) for w(t) =
p(t)−C(t)Q[r(·)](t), that is, we can replace the differential expression in H with the integral
one and then drop the variable z. Moreover, ‖w(·)‖∞ is bounded by a quantity proportional
to ‖(r(·), p(·))‖W .

As K has a closed convex graph, (iii) ⇔ (vi) by Robinson-Ursescu theorem [13, Theorem
5B.4]. If (vi) holds then setting z(t) := Q[B(·)v(·)](t), t ∈ [0, ε], we get (vii) with r :=
max{1, ν‖Q‖}.

Suppose that (vii) holds. We shall establish (v). Pick β > 0 such that w̄β(·) ≡
(β, β, . . . , β) ∈ Rd has ‖w̄β(·)‖∞ < δ. Let {w1, w2, . . . } be a countable dense subset of IBβ(0).
For any i ∈ N, the function wi(·) ≡ −wi has ‖wi(·)‖∞ ≤ ‖w̄β(·)‖∞ < δ, thus there is a subset
Si of [0, ε] having a full Lebesgue measure along with a pair (zi(·), vi(·)) ∈ rIBX × rIBU such
that

f̄(t) + C(t) zi(t) +D(t) vi(t)− wi ∈ Uad for all t ∈ Si.

Without any loss of generality assume that ‖zi(t)‖ ≤ r and ‖vi(t)‖ ≤ r whenever t ∈ Si.
Then S := ∩∞

i=1Si has a full Lebesgue measure. Without any loss of generality assume
that ‖C(t)‖ ≤ ν and ū(t) is defined whenever t ∈ S. Fix any t ∈ S. Define a mapping
Ft(z, v) := f̄(t) + C(t) z + D(t) v − Uad, (z, v) ∈ Rn × Rm. For every i ∈ N we have
wi ∈ Ft(rIBRn × rIBRm). Hence the image of rIBRn × rIBRm under Ft (having a closed
convex graph) is dense in IBβ(0), and consequently applying Robinson-Ursescu theorem [15,
Theorem 6.22] we get that Ft is regular at (0, 0) for 0 with modulus r/β. In particular, the
regularity modulus does not depend on the choice of t ∈ S. Let Λ be the set in Theorem 4.1.
Fix any (x, u) ∈ cl Λ. Let

Fx,u(z, v) := f(x, u) +∇xf(x, u)z +∇uf(x, u)v − Uad, (z, v) ∈ Rn × Rm.

Then 0 ∈ Fx,u(0, 0) since f is continuous and Uad is closed. Since ∇xf and ∇uf are continu-
ous, the uniformity of the regularity moduli of mappings Ft and the Lyusternik-Graves the-
orem imply that Fx,u is regular at (0, 0) for 0. Thus the mapping F ′

x,u(z, v) := Fx,u(z, v−u),
(z, v) ∈ Rn×Rm, is regular at (0, u) for 0. Since w ∈ F ′

x,u(z, v) if and only if w−∇xf(x, u)z ∈
Gx,u(v), where Gx,u is the mapping in (32) with F ≡ −Uad, we conclude that Gx,u is regular
at u for 0. Theorem 4.1 implies that (v) holds.

Suppose that (v) holds. We shall establish (ii) and the theorem will be proved. Assume
without any loss of generality that

sup{‖A(t)‖, ‖B(t)‖, ‖C(t)‖, ‖D(t)‖, ‖ū(t)‖, ‖x̄(t)‖} ≤ ν for each t ∈ S.

Theorem 4.1 implies that there are positive constants a, b and κ such that for any (x, u) ∈
cl Λ, with Λ := ∪t∈S(x̄(t), ū(t)), the mapping

Gx,u(v) := f(x, u) +∇uf(x, u)(v − u)− Uad, v ∈ Rm,

is regular at u for 0 with the constant κ and neighborhoods IBa(u) and IBb(0). Pick ` > κ
and then β ∈ (0,min{a/`, b}/2). Let Ω := IBβ(0)× cl Λ and consider a mapping

Ω 3 (y, x, u) 7−→ Σ(y, x, u) := G−1
x,u(y) ∩ IB`‖y‖(u) ⊂ Rm.
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Given w := (y, x, u) ∈ Ω, the regularity of Gx,u at u for 0 implies that there is v ∈ G−1
x,u(y) such

that ‖u − v‖ ≤ `‖y‖ (with the strict inequality when y 6= 0), which means that v ∈ Σ(w).
The set Uad is both closed and convex hence so is G−1

x,u(y), and consequently also Σ(w). We
showed that domΣ = Ω and Σ has closed convex values.

Since Σ(w) ⊂ IB`‖y‖(u) for any w ∈ Ω and Σ(0, x̄, ū) = {ū} for each (x̄, ū) ∈ cl Λ, the
mapping Σ is continuous at any point of the set Ω0 := {0} × cl Λ. We will show that Σ is
inner semi-continuous on Ω \Ω0. To see this fix an arbitrary w̄ = (ȳ, x̄, ū) ∈ Ω \Ω0 and then
any v̄ ∈ Σ(ȳ, x̄, ū). Let Ov̄ be any open set containing v̄.

First, assume that ‖v̄− ū‖ < `‖ȳ‖. As v̄ ∈ IB`‖ȳ‖(ū) ⊂ IBa/2(ū) and ȳ ∈ IBβ(0) ⊂ IBb/2(0)
the mapping Gx̄,ū is regular at v̄ for ȳ with the constant κ (cf. Corollary 2.3). Thus the
mapping Φ := Gx̄,ū(·)− ȳ is regular at v̄ for 0 with the same constant. Define the function g
for each w = (y, x, u) ∈ Ω and each v ∈ Rm by

g(w, v) := f(x, u) +∇uf(x, u)(v − u)− y − f(x̄, ū)−∇uf(x̄, ū)(v − ū) + ȳ.

Let S(w) := {v ∈ Rm
∣∣ 0 ∈ Gx,u(v)− y = Φ(v) + g(w, v)}, w = (y, x, u) ∈ Ω. The continuity

of ∇uf and the implicit form of the Lyusternik-Graves theorem [13, Theorem 5E.5] imply
that there are positive constants λw̄ and δw̄ such that

S(w′) ∩ IBδw̄(v̄) ⊂ S(w) + λw̄‖w − w′‖IBRm whenever w,w′ ∈ IBδw̄(w̄) ∩ Ω.

As S(w̄) = Φ−1(0) 3 v̄, taking w′ := w̄ we get a function s : IBδw̄(w̄) ∩ Ω → Rm such that

y ∈ Gx,u

(
s(w)

)
and ‖s(w)− v̄‖ ≤ λw̄‖w − w̄‖ for each w = (y, x, u) ∈ IBδw̄(w̄) ∩ Ω.

As ‖v̄− ū‖ < `‖ȳ‖ and the function s is continuous at w̄ with s(w̄) = v̄, there is a neighbor-
hood Ow̄ of w̄ = (ȳ, x̄, ū) with Ow̄ ⊂ IBδw̄(w̄) such that

s(w) ∈ Ov̄ and ‖s(w)− u‖ < `‖y‖ for each w = (y, x, u) ∈ Ow̄ ∩ Ω.

Consequently, s(w) ∈ G−1
x,u(y)∩ IB`‖y‖(u)∩Ov̄ = Σ(w)∩Ov̄ for each w = (y, x, u) ∈ Ow̄ ∩Ω.

So Σ(w) ∩ Ov̄ 6= ∅ for each w ∈ Ow̄ ∩ Ω.
On the other hand, if ‖v̄ − ū‖ = `‖ȳ‖ then find v̂ ∈ Σ(w̄) with ‖v̂ − ū‖ < `‖ȳ‖ (which

exists as we have seen right after the definition of Σ). Since the set Σ(w̄) is convex and
contains both v̂ and v̄, there exists ṽ ∈ Σ(w̄)∩Ov̄ such that ‖ṽ− ū‖ < `‖ȳ‖. By the previous
case, there is a neighborhood Ow̄ of w̄ such that Σ(w) ∩ Ov̄ 6= ∅ for every w ∈ Ow̄ ∩ Ω.

In both the cases we showed that Σ is inner semi-continuous at (w̄, v̄). Hence Σ is
inner semi-continuous on whole of Ω. Michael selection theorem [13, Theorem 5J.5] yields
a continuous mapping σ such that

σ(y, x, u) ∈ G−1
x,u(y) and ‖σ(y, x, u)− u‖ ≤ `‖y‖ for each (y, x, u) ∈ IBβ(0)× cl Λ.

Let c ∈ (0, β/(ν + 1)) and Ωc := {(z, t, p) ∈ Rn+1+d | t ∈ S, ‖z‖ ≤ c, ‖p‖ ≤ c}. Clearly,
for each (z, t, p) ∈ Ωc we have p− C(t)z ∈ IBβ(0). Define the function

Ωc 3 (z, t, p) 7−→ u(z, t, p) := σ(p− C(t)z, x̄(t), ū(t)).
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Then for any t ∈ S (hence for a.e. t ∈ [0, ε]), the function (z, p) 7−→ u(z, t, p) is continu-
ous. For every {(z, p) | (z, t, p) ∈ Ωc for some t ∈ S}, the function S 3 t 7−→ u(z, t, p) is
measurable as a composition of a continuous function and a measurable function; and

‖u(z, t, p)− ū(t)‖ = ‖u(z, t, p)− u(0, t, 0)‖ ≤ `(‖p‖+ ν‖z‖) whenever (z, t, p) ∈ Ωc.

Choose ∆ > 0 such that

(33) ∆ε(1 + `ν)eν(1+`ν)ε < c.

Fix arbitrary functions p(·) ∈ P and r(·) ∈ R with ‖p(·)‖∞ < ∆ and ‖r(·)‖∞ < ∆. Consider
the initial value problem

(34) ż(t) = A(t)z(t) + B(t)(u(z(t), t, p(t))− ū(t)) + r(t) for a.e. t ∈ [0, ε], z(0) = 0.

The right-hand side of this differential equation is a Carathèodory function, and also the
initial condition z(0) = 0 ∈ int IBc(0). Hence there is a maximal interval [0, τ ] ⊂ [0, ε] such
that there exists a solution z(·) ∈ X of (34) on [0, τ ] with values in IBc(0), and if τ < ε then
‖z(τ)‖ = c. Suppose that τ < ε. Then for each t ∈ [0, τ ] we have

‖z(t)‖ ≤
∫ t

0

(
ν‖z(s)‖+ ν`(∆ + ν‖z(s)‖) + ∆

)
ds < ∆ε(1 + `ν) + ν(1 + `ν)

∫ t

0

‖z(s)‖ ds.

Applying the Grönwall lemma and using (33), we get ‖z(t)‖ < ∆ε(1 + `ν)eν(1+`ν)ε < c for
each t ∈ [0, τ ]. In particular, ‖z(τ)‖ < c, a contradiction. Hence τ = ε and there exists
a solution z(·) of (34) on the entire interval [0, ε] such that z(t) ∈ int IBc(0) for each t ∈ [0, ε].
Let v(t) := u(z(t), t, p(t))− ū(t), t ∈ [0, ε]. Then (z(·), v(·)) ∈ V , z(0) = 0, and

ż(t) = A(t)z(t) + B(t)v(t) + r(t),
p(t) ∈ f̄(t) + C(t)z(t) +D(t)v(t)− Uad,

for a.e. t ∈ [0, ε].

Hence (r(·), p(·)) ∈ H(z(·), v(·))). As H has a closed convex graph, Robinson-Ursescu theo-
rem implies (ii).

It seems that one can formulate a similar statement when a constant mapping F ≡ −Uad

is replaced by a general F : Rm → Rd with a closed convex graph, which would be a regularity
version of [5, Theorem 13]. This is out of the scope of the current work and is a subject for
future research.
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Metric regularity properties in bang-bang type linear-quadratic

optimal control problems∗

J. Preininger†, T. Scarinci‡, and V.M. Veliov§

Abstract

The paper investigates the Lipschitz/Hölder stability with respect to perturbations of opti-

mal control problems with linear dynamic and cost functional which is quadratic in the state

and linear in the control variable. The optimal control is assumed to be of bang-bang type

and the problem to enjoy certain convexity properties. Conditions for bi-metric regularity and

(Hölder) metric sub-regularity are established, involving only the order of the zeros of the as-

sociated switching function and smoothness of the data. These results provide a basis for the

investigation of various approximation methods. They are utilized in this paper for the conver-

gence analysis of a Newton-type method applied to optimal control problems which are affine

with respect to the control.

Key words: variational analysis, optimal control, linear control systems, bang-bang controls,

metric regularity, stability analysis, Newton’s method.
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1 Introduction

Stability analysis of solutions is a crucial topic in optimization theory due, in particular, to its appli-

cations for obtaining error estimates of numerical approximations. Although related investigations

in optimal control theory accompany its development from its early stages, the systematic analysis

of (Lipschitz) stability in the area started with the works of Dontchev, Hager and Malanowski (see

[10, 12]). In these papers, the authors prove Lipschitz dependence of the solutions with respect

to perturbations, under a strict coercivity condition which also implies Lipschitz continuity of the

optimal control.

In contrast, in the present paper we investigate a class of problems in which the control appears

linearly, therefore the strict coercivity fails. Moreover, when the control set is the m-dimensional
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hypercube [−1, 1]m, each component of the optimal control generally switches from ±1 to ∓1,

possibly concatenating with arcs with values in the interior of [−1, 1]. That is, the optimal control

is typically discontinuous.

Problems which are affine with respect to the control variable arise in many applications, such

as engineering, biology and medicine (see e.g. [22, 21, 23, 25]). Nevertheless, only few papers

address the stability analysis in case of non-coercive problems and such with discontinuous optimal

controls; in fact, many relevant questions still remain unanswered. Recent progress was made in

[16, 24, 18, 17] for control-affine problems and in [27] for problems with linear dynamics, and we

build on these papers. We mention also the paper [29] and the references therein for problems

with group sparsity. Applications to error estimates for time-discretization schemes are discussed

in [32, 2, 19, 3, 29, 26] for linear systems or problems of the type (P) below. We mention also the

paper [5], where stability analysis is discussed for control-affine systems with bang-singular optimal

controls.

In the present paper we focus our attention on the following class of optimal control problems:

minimize J(x, u)

subject to ẋ(t) = A(t)x(t) +B(t)u(t) + d(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,

x(0) = x0,

(P)

where

J(x, u) := g(x(T )) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt.

Here, u(t) ∈ U and x(t) ∈ Rn denote the control and the state of the system at time t ∈ [0, T ],

the function g : Rn → R is given, as well as A(t),W (t) ∈ Rn×n, B(t), S(t) ∈ Rn×m and d(t) ∈ Rn,

t ∈ [0, T ]. The set of admissible controls in Problem (P), further denoted by U , consists of all

measurable functions u satisfying u(t) ∈ U for almost every t ∈ [0, T ],

U = {u ∈ L∞([0, T ],Rm) : u(t) ∈ U a.e. on [0, T ]}.

Linear terms in u or x are not included in the integrand, which is not a restriction of generality,

since such terms can be shifted in a standard way into the differential equation.

The stability properties of the solution(s) of (P) will be analyzed through the Pontryagin mini-

mum principle, which states that for any optimal pair (x̂, û), there exists an absolutely continuous

function p̂ : [0, T ]→ Rn such that the triple (x̂, p̂, û) solves the following system a.e. on [0, T ]:

0 = ẋ(t)−A(t)x(t)−B(t)u(t)− d(t),

0 = ṗ(t) +A(t)>p(t) +W (t)x(t) + S(t)u(t),

0 ∈ B(t)>p(t) + S(t)>x(t) +NU (u(t)),

0 = p(T )−∇g(x(T )).

(PMP)

Here NU (u) is the normal cone to U at u defined in the usual way:

NU (u) :=

{
∅ if u /∈ U
{l ∈ Rm : 〈l, v − u〉 ≤ 0 ∀v ∈ U} if u ∈ U.
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It will be assumed (see the next sections for precise formulations) that the data are smooth

enough, Problem (P) satisfies some convexity-like assumptions, the (reference) optimal control is

piece-wise constant with each component taking only the values −1 and 1. Moreover, it will be

assumed that each component of the associated “switching function”, t 7→ B(t)>p(t) + S(t)>x(t),

satisfies at its zeros a certain growth condition, characterized by a number κ ≥ 1 (κ can be regarded

as the multiplicity of the zeros if the switching function is smooth).

We recast the system (PMP) as the generalized equation

0 ∈ F (x, p, u), (1.1)

where F is the set-valued mapping

F (x, p, u) :=




ẋ−Ax−Bu− d
ṗ+A>p+Wx+ Su

B>p+ S>x+NU (u)

p(T )−∇g(x(T ))


 (1.2)

acting in a suitable Banach space X 3 (x, p, u) with values in a linear normed space Y. The set

NU (u) in (1.2) is a functional replacement for the point-wise cones NU (u(t)) in (PMP) and will be

strictly defined in the next section together with the spaces X and Y.

As usual, we investigate the stability of the solution of problem (P) by introducing a pertur-

bation y ∈ Y in the system of necessary optimality conditions, that is, considering the perturbed

inclusion y ∈ F (x, p, u). Under the assumptions briefly mentioned above, the unperturbed system

0 ∈ F (x, p, u), that is the system of necessary optimality conditions (PMP), has a unique solution

(x̂, p̂, û).

Two main concepts of stability are investigated in the paper.

The first concept is a stronger version of the Hölder strong metric sub-regularity (see the recent

paper [9]). Roughly speaking, we prove that for all sufficiently small perturbations y, the inclusion

y ∈ F (x, p, u), associated with problem (P), has a solution and all the solutions are at distance

(in the space X ) at most proportional to ‖y‖1/κ from the unique solution (x̂, p̂, û) of the inclusion

0 ∈ F (x, p, u). We mention that a similar result was proved in [3, Theorem 9], but with different

functional spaces and on slightly stronger assumptions. Moreover, the claim in our result is some-

what stronger, which is rather essential for the analysis of the strong bi-metric regularity and the

convergence of Newton’s method which will be discussed below.

The second concept extends the standard strong metric regularity introduced in the seminal paper

[28] by Robinson (see also [13, Chapter 3.7]). The new feature is that a second metric space

Ỹ ⊂ Y is involved (presumably with a non-equivalent and larger metric than that in Y) and only

disturbances from this space are considered. Roughly, strong bi-metric regularity relative to Ỹ ⊂ Y
of F at ẑ := (x̂, p̂, û) means that the inverse mapping Y 3 y 7→ F−1(y) = {z ∈ X : y ∈ F (z)} is

locally (around ẑ) single-valued when restricted to a sufficiently small ball in Ỹ, centered at y = 0.

Moreover, this single-valued mapping is Lipschitz continuous with respect to the metric of Y. In the

terminology of [13], this means that F has a single-valued localization in X × Ỹ and it is Lipschitz

continuous, but the Lipschitz property holds with respect to the metric of Y.
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The general notion of strong bi-metric regularity was introduced in somewhat more restrictive

form in [27], where applications to Mayer’s type problems for linear control systems were in the

focus. Similarly as the strong metric regularity, it has the important property to be invariant with

respect to small (in an appropriate sense) functional perturbations of F . This property is often

referred to as Lyusternik-Graves type theorem, see e.g. [13, Chapter 5.5]. In the present paper we

prove a general Lyusternik-Graves type theorem for strong bi-metrically regular inclusions, which

is a substantial improvement of the one in [27], since most of the assumptions are now formulated

in terms of the (smaller) metric of Y rather than in the metric of Ỹ, as in [27].

We prove strong bi-metric regularity of the mapping F associated with Problem (P), which

extends the result in [27] concerning Mayer’s problems. This extension is nontrivial, since, tech-

nically speaking, the integral cost introduces the state variable in the switching function, making

this function nonsmooth. This forces us, among other things, to consider the present slightly more

general notion of bi-metric regularity compared with the one in [27]. As an application we give a

Lipschitz stability result with respect to small non-linear perturbations in the differential equation.

In the last section of the paper, we investigate the convergence of a Newton-type method (as in-

terpreted in the context of generalized equations, see e.g. [13, Chapter 6.3]) applied to a class of

control-affine problems for which (P) can be regarded as a linearization. Notice that the known

convergence results (cf. [10]) are inapplicable for non-coercive problems, where the strong metric

regularity in the usual space settings fails. We will give sufficient conditions under which the con-

sidered Newton’s method converges, and does so quadratically. The proof is based on a strengthen

version of the metric sub-regularity proved in the present paper for Problem (P). We mention

that the stability analysis and the convergence properties of Newton methods still remain not fully

understood when singular arcs occur. Some advances have been done recently in [17] for the first

issue, and in [5, 15] for the latter. However, these issues remain as interesting topics for future

research.

The paper is organized as follows. In Section 2, we recall some basic facts and introduce the main

assumptions on Problem (P) together with some notations. Section 3 is devoted to the proof of

the Hölder sub-regularity of Problem (P) (actually, of the associated mapping F ). In Section 4, we

introduce the definition of strong bi-metric regularity, and prove an extension of the Lyusternik-

Graves theorem suitable to this new notion. After that, we prove the strong bi-metric regularity of

the mapping F resulting from problem (P) and give a result about the invariance of this property

under a class of non-linear perturbations. In Section 5, we investigate the convergence of a Newton-

type method applied to some control-affine problems with bang-bang solutions.

2 Preliminaries

Throughout the paper we use the following common notations. The standard n-dimensional Eu-

clidean space is denoted by Rn, with the scalar product and norm denoted by 〈·, ·〉 and | · |, respec-

tively. The superscript > denotes transposition. Further, L1([0, T ],Rn) and L∞([0, T ],Rn) are the

spaces of all measurable and absolutely integrable, respectively essentially bounded, functions with

the corresponding norms ‖·‖1 and ‖·‖∞, which sometimes will be abbreviated as L1 and L∞, respec-

tively. Moreover, W 1,k([0, T ],Rn) is the space of all absolutely continuous functions from [0, T ] to Rn
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whose first derivatives belonging to Lk, k ∈ {1,∞}. The corresponding norms are denoted by ‖·‖1,1
and ‖ · ‖1,∞, respectively. We also denote W 1,1

x0 ([0, T ],Rn) := {x ∈W 1,1([0, T ]),Rn) : x(0) = x0}.
We introduce the following assumptions, some of which will be strengthened in the next sections.

Assumption (A1). The matrix-functions B and S are continuous, A, W and d are measurable and

bounded. The matrix W (t) is symmetric for every t ∈ [0, T ]. The function g is differentiable with

globally Lipschitz continuous gradient ∇g.

We stress that the assumption about global Lipschitz continuity of ∇g is made for technical

convenience only and is not a real restriction. Since the reachable set in Problem (P) is compact,

any modification of g outside a neighborhood of the reachable set does not affect the problem.

For every u ∈ U the differential equation in problem (P) with the given initial condition has a

unique (absolutely continuous) solution x on [0, T ]. Every such pair (x, u) is called “admissible”,

and the set of all admissible pairs is denoted by F .

Thanks to Assumption (A1), a standard compactness argument implies the existence of an

optimal solution of Problem (P). In what follows we consider a fixed optimal solution (x̂, û).

Assumption (A2). For every admissible pair (x, u) ∈ F it holds that

〈∇g(x(T ))−∇g(x̂(T )),∆x(T )〉+

∫ T

0
(〈W (t)∆x,∆x〉+ 2〈S(t)∆u,∆x〉)dt ≥ 0,

where ∆x(T ) := x(T )− x̂(T ), ∆x := x(t)− x̂(t) and ∆u := u(t)− û(t).

Let p̂ be a co-state function for (x̂, û), i.e. (x̂, p̂, û) solves (PMP). We recall that

σ̂ := B>p̂+ S>x̂

is the so-called switching function corresponding to the triple (x̂, p̂, û). For every j ∈ {1, . . . ,m}
denote by σ̂j its j-th component. Notice that σ̂ is continuous due to Assumption (A1).

In the next assumption we postulate that the optimal control û is strictly bang-bang, with a

finite number of switching times on [0, T ], and that the switching function exhibits a certain growth

in a neighborhood of any zero.

Assumption (A3). There exist real numbers κ ≥ 1 and α, τ > 0 such that for all j ∈ {1, . . . ,m}
and s ∈ [0, T ] with σ̂j(s) = 0 we have

|σ̂j(t)| ≥ α|t− s|κ ∀t ∈ [s− τ, s+ τ ] ∩ [0, T ].

A similar assumption is introduced in [16] in the case κ = 1 and in [27, 30] for κ ≥ 1. The set U of

admissible controls will be considered as a metric space with the metric induced by the L1-norm.

For this reason we define

X := W 1,1
x0 ([0, T ],Rn)×W 1,1([0, T ],Rn)× L1([0, T ],Rm),

with the usual norm: for (x, p, u) ∈ X ,

‖(x, p, u)‖ := ‖x‖1,1 + ‖p‖1,1 + ‖u‖1.
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Next, we denote by Y the space

Y := L1([0, T ],Rn)× L1([0, T ],Rn)× L∞([0, T ],Rm)× Rn, (2.1)

with the usual norm: for (ξ, π, ρ, ν) ∈ Y,

‖(ξ, π, ρ, ν)‖ := ‖ξ‖1 + ‖π‖1 + ‖ρ‖∞ + |ν|.

We denote by dY the distance induced by ‖ · ‖.
As in the introduction, we recast the first order optimality conditions (Pontryagin system)

(PMP) for Problem (P) as the generalized equation

0 ∈ F (x, p, u), (2.2)

where F : X ⇒ Y is defined in (1.2). The normal cone NU (u) appearing there is defined in the

standard way: for u ∈ L1([0, T ],Rm),

NU (u) := {v ∈ L∞([0, T ],Rm) : v(t) ∈ NU (u(t)) for a.e. t ∈ [0, T ]}.

Notice that this definition is consistent with the general definition of a normal cone if U is considered

as a subset of the space L1 (although U is also contained in L∞; but then NU (u) should be a cone

in the dual space to L∞).

In the following sections, given a perturbation y = (ξ, π, ρ, ν) ∈ Y, we will study the inclusion

y ∈ F (x, p, u), (2.3)

which, written in detail, looks as follows: for a.e. t ∈ [0, T ],

0 = ẋ(t)−A(t)x(t)−B(t)u(t)− d(t)− ξ(t),
0 = ṗ(t) +A(t)>p(t) +W (t)x(t) + S(t)u(t)− π(t),

0 ∈ B(t)>p(t) + S(t)>x(t)− ρ(t) +NU (u(t)),

0 = p(T )−∇g(x(T ))− ν.

(2.4)

3 Strong metric sub-regularity

In this section we prove an important regularity property of the mapping F defined in (1.2), related

to, but stronger than, strong Hölder metric sub-regularity, see [9].

We begin with some important properties of switching functions that fulfill Assumption (A3) .

First we fix some notations. Given any continuous function σ : [0, T ]→ Rm (σj will denote its j-th

component) satisfying Assumption (A3) with constants κ, α and τ , and a real number δ > 0, we

define

Ij(σ, δ) :=
⋃

s∈[0,T ]:σj(s)=0

(s− δ, s+ δ) ∩ [0, T ], I(σ, δ) :=
⋃

1≤j≤m
Ij(σ, δ),

and

lmin(σ, δ) := min
1≤j≤m

min
t∈[0,T ]\Ij(σ,δ)

|σj(t)| > 0. (3.1)
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Note that this minimum always exists and is indeed positive since σ is continuous and [0, T ]\Ij(σ, τ)

is compact for any j ∈ {1, . . . ,m}.
Now we state an auxiliary result which presents an inverse integral inequality for functions

satisfying Assumption (A3) of the type of those developed in Theorem 2.1 and Corollary 2.1 and

2.2 in [31]. It extends [30, Lemma 1.3], which in its turn originates from [16, Lemma 3.3].

Lemma 3.1. Let σ : [0, T ] → Rm be any continuous function satisfying Assumption (A3). Then

there exists a constant c0 > 0 such that

‖v‖κ∞
∫ T

0

m∑

j=1

|σj(t)vj(t)| dt ≥ c0‖v‖κ+1
1 for any v ∈ L∞([0, T ],Rm). (3.2)

Remark 3.2. Carefully following the proof below we can establish that the constant c0 in the lemma

only depends on the numbers κ, α, τ and lmin(σ, τ). Thus Lemma 3.1 can be reformulated in the

following more precise form: for any given positive real numbers κ ≥ 1, α, τ > 0 and m0 > 0 there

exists a constant c0 > 0 such that the claim (3.2) holds for any continuous function σ : [0, T ]→ Rm
satisfying Assumption (A3) with constants κ, α, τ , and with lmin(σ, τ) ≥ m0.

Proof. If v = 0, then the inequality in Lemma 3.1 is fulfilled. If v 6= 0 then due to the homogeneity

of order κ + 1 of the two sides of (3.2) with respect to v, it is enough to prove the lemma in the

case of ‖v‖∞ = 1, which will be assumed in the remaining part of the proof.

Now we choose δ̄ ∈ (0, τ) such that αδ̄κ < lmin(σ, τ). Then for all δ ∈ (0, δ̄] and j ∈ {1, . . . ,m}
we have

|σj(t)| ≥ αδκ ∀t ∈ [0, T ] \ I(σ, δ). (3.3)

Indeed, if t ∈ Ij(σ, τ) \ I(σ, δ) then inequality (3.3) follows from (A3) and if t 6∈ Ij(σ, τ) then

|σj(t)| ≥ lmin(σ, τ) > αδ̄κ ≥ αδκ.

Using (3.3) we obtain that

ϕ(v) :=

∫ T

0

m∑

j=1

|σj(t)vj(t)| dt ≥
∫

[0,T ]\I(σ,δ)

m∑

j=1

|σj(t)vj(t)| dt

≥ αδκ
m∑

j=1

∫

[0,T ]\I(σ,δ)
|vj(t)| dt ≥ αδκ


‖v‖1 −

m∑

j=1

∫

I(σ,δ)
|vj(t)| dt


 ≥ αδκ(‖v‖1 − 2λδ),

where λ is the sum of the number of zeros of σj for all j ∈ {1, . . . ,m}. (Notice that Assumption

(A3) implies λ ≤ mT
2τ +m.) If ‖v‖1 ≥ 4λδ̄, we choose δ := δ̄ to get

ϕ(v) ≥ αδ̄κ

2
‖v‖1

and since ‖v‖1 ≤ T‖v‖∞ = T we have that ϕ(v) ≥ αδ̄κ

2Tk
‖v‖κ+1

1 . If ‖v‖1 ≤ 4λδ̄, we choose δ :=
‖v‖1
4λ ≤ δ̄ to get

ϕ(v) ≥ α

22κ+1λκ
‖v‖κ+1

1 .
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Hence, by defining c0 := min
{
αδ̄κ

2Tκ ,
α

22κ+1λκ

}
we obtain that

ϕ(v) ≥ c0‖v‖κ+1
1 ,

which proves (a).

Since we can choose δ̄ to only depend on κ, α, τ and m0 and there is an upper bound to λ

which only depends on m, T and τ , the constant c0 also only depends on m, T , κ, α, τ and m0.

This proves Remark 3.2. Q.E.D.

The following theorem establishes a stability property of the mapping F associated with system

(PMP) which is a somewhat stronger form of the well known property of metric sub-regularity, [13,

Section 3I]. It extends [3, Theorem 8] in that Assumption (A3) is weaker than the corresponding

assumption there (since we allow 0 and T to be feasible zeros of some components of the switching

function), the norm in the space Y is somewhat weaker, and the function g is not necessarily

quadratic. Most importantly, the size of the disturbance y for which the claim of the theorem holds

is not a priori restricted (as in the definition of metric sub-regularity, [13, Section 3H] and in [3,

Theorem 8]).

Theorem 3.3. Let (x̂, p̂, û) be a solution of (PMP) such that Assumptions (A1)–(A3) are fulfilled.

Then for any b > 0 there exists c > 0 such that for any y ∈ Y with ‖y‖ ≤ b, there exists a triple

(x, p, u) ∈ X solving y ∈ F (x, p, u), and any such triple satisfies

‖x− x̂‖1,1 + ‖p− p̂‖1,1 + ‖u− û‖1 ≤ c‖y‖
1
κ . (3.4)

Remark 3.4. Due to further needs, in the proof of the above theorem we will care about how the

constant c depends on the data of the problem and the associated switching function σ̂. More

precisely, the following statement will be proved.

Let the natural numbers n, m and the real number T > 0 be fixed. Given constants κ ≥ 1,

α > 0, τ > 0, m0 > 0, b > 0 and K, there exists a number c > 0 with the following property1.

Let the (n× n)-matrix functions A(t) and W (t) the (n×m)-matrix functions B(t) and S(t) be

defined on [0, T ], and g : Rn → R be such that Assumption (A1) is fulfilled, and in addition,

‖A‖∞, ‖B‖∞, ‖W‖∞, ‖S‖∞, ‖d‖∞, ≤ K, ∇g is Lipschitz with constant K. (3.5)

Let (x̂, p̂, û) be a solution of (PMP) (i.e. of (1.1)) such that Assumption (A2) holds, the correspond-

ing switching function σ̂ fulfills Assumption (A3) with constants κ, α and τ , and lmin(σ̂, τ) ≥ m0.

Then for every y ∈ Y with ‖y‖ ≤ b the inclusion y ∈ F (x, p, u) (with F defined in (1.2)) has a

solution and for every solution (x, p, u) the estimation (3.4) holds.

Proof. First of all, we note that the inclusion y ∈ F (x, p, u), for any y = (ξ, π, ρ, ν) ∈ Y, represents

the system of necessary optimality conditions of the following problem:

min
{
g(x(T ))− ν>x(T ) +

∫ T

0

(1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)− ρ>(t)u(t)− π>(t)x(t)

)
dt
}

(3.6)

1 If κ = 1, then the constant c can be chosen independent of b.
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subject to

ẋ(t) = A(t)x(t) +B(t)u(t) + d(t) + ξ(t), t ∈ [0, T ], x(0) = x0,

u(t) ∈ U := [−1, 1]m.

Due to the linearity in u and the convexity and compactness of the constraining set U this problem

has a solution, hence also the inclusion y ∈ F (x, p, u).

Now, let b > 0 be arbitrarily chosen and let (x, p, u) be a solution of y ∈ F (x, p, u), where

y = (ξ, π, ρ, ν) ∈ Y and ‖y‖ ≤ b. The following notations will be used. As before, σ̂(t) :=

B(t)>p̂(t)+S(t)>x̂(t), while σ(t) := B(t)>p(t)+S(t)>x(t)−ρ(t). Furthermore, we denote ∆x(t) :=

x(t)− x̂(t), ∆p(t) = p(t)− p̂(t), ∆u(t) := u(t)− û(t) and ∆σ(t) := σ(t)− σ̂(t) and skip the argument

t whenever this does not lead to ambiguity.

Integrating by parts, we have

∫ T

0
〈∆ṗ,∆x〉 dt = 〈∆p(T ),∆x(T )〉 −

∫ T

0
〈∆p,∆ẋ〉 dt.

Substituting here the expressions for ∆x and ∆p resulting from the inclusions y ∈ F (x, p, u) and

0 ∈ F (x̂, p̂, û) in view of (1.2) we obtain that

∫ T

0
〈−A>∆p−W∆x− S∆u+ π,∆x〉 dt

= 〈∇g(x(T ))−∇g(x̂(T )) + ν,∆x(T )〉 −
∫ T

0
〈∆p,A∆x+B∆u+ ξ〉 dt.

Rearranging the terms in this equality and using Assumption (A2) we get

∫ T

0
(〈∆p,B∆u〉+ 〈S∆u,∆x〉) dt+

∫ T

0
(〈π,∆x〉+ 〈ξ,∆p〉) dt− 〈ν,∆x(T )〉

= 〈∇g(x(T ))−∇g(x̂(T )),∆x(T )〉+

∫ T

0
(〈W∆x,∆x〉+ 2〈S∆u,∆x〉) dt ≥ 0.

Using this inequality and the definitions of the functions σ and σ̂ we obtain

∫ T

0
〈∆σ,∆u〉 dt =

∫ T

0
〈B>∆p+ S>∆x− ρ,∆u〉 dt ≥

≥
∫ T

0
(−〈π,∆x〉 − 〈ξ,∆p〉 − 〈ρ,∆u〉) dt+ 〈ν,∆x(T )〉. (3.7)

The third component of the inclusion y ∈ F (x, p, u) reads as −σ(t) ∈ NU (u(t)), which implies

〈−σ(t), û(t)− u(t)〉 ≤ 0. Then

−
∫ T

0
〈∆σ,∆u〉 dt =

∫ T

0
[−〈σ,∆u〉+ 〈σ̂, ∆u〉] dt ≥

∫ T

0
〈σ̂, ∆u〉 dt.

From here, using that −σ̂j(t) ∈ N[−1,1](ûj(t)), hence σ̂j(t) ∆uj(t) ≥ 0 for each j, Lemma 3.1 implies

that

−
∫ T

0
〈∆σ,∆u〉 dt ≥

∫ T

0

m∑

j=1

|σ̂j ∆uj | dt ≥ c0‖∆u‖κ+1
1 ,
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where the constant c0 only depends on κ, α, τ and m0 (see Remark 3.4). Then using (3.7) and the

Hölder inequality we obtain

‖π‖1 ‖∆x‖∞ + ‖ξ‖1 ‖∆p‖∞ + |ν| |∆x(T )|+ ‖ρ‖∞ ‖∆u‖1 ≥ c0‖∆u‖κ+1
1 . (3.8)

Using Assumption (A1) and the solution formula of the Cauchy problem for ∆x and ∆p we get

‖∆x‖∞ ≤ c1(‖ξ‖1 + ‖∆u‖1), ‖∆p‖∞ ≤ c2(‖ξ‖1 + ‖π‖1 + ‖∆u‖1 + |ν|) (3.9)

for some constants c1 and c2 that only depend on K (see (3.5) in Remark 3.4). (We mention that

for the estimation of ‖∆p‖∞ we use the estimation for |∆x(T )| and the Lipschitz continuity of the

gradient ∇g appearing in the end-point conditions for p and p̂ in (1.1).) Therefore, by (3.8)–(3.9)

we obtain that

(‖y‖2 + ‖y‖‖∆u‖1) ≥ c3‖∆u‖κ+1
1 (3.10)

for some constant c3, only depending on c0, c1 and c2. Now, we distinguish two cases. First, if

‖y‖ ≤ ‖∆u‖1 then

2‖y‖‖∆u‖1 ≥ c3‖∆u‖κ+1
1 ,

which implies

‖∆u‖1 ≤
(

2

c3
‖y‖
)1/κ

. (3.11)

Otherwise, if ‖∆u‖1 ≤ ‖y‖ ≤ b then

‖∆u‖1 ≤ ‖y‖1/κ‖y‖(κ−1)/κ ≤ b(κ−1)/κ‖y‖1/κ. (3.12)

Inequalities (3.11) and (3.12) imply that for any b > 0 there exists c4 > 0, depending on c3 and b

such that

‖∆u‖1 ≤ c4‖y‖1/κ.
Then the claim of the theorem follows with a suitable constant c (depending only on c1, c2 and c4)

from the above estimation together with (3.9).

Notice that c4, hence also c, depend on b only due to the term b(κ−1)/κ in estimation (3.12),

which equals 1 in the case κ = 1. This justifies Footnote 1. Q.E.D.

Remark 3.5. Clearly, the property established in Theorem 3.3 implies that (x̂, p̂, û) is the unique

solution of (PMP), thus (x̂, û) is the unique solution of problem (P). Therefore, (PMP), together

with Assumptions (A1)–(A3), is a sufficient optimality condition.

4 Bi-metric regularity

The notion of strong bi-metric regularity was introduced in [27] in order to grasp in a relevant

way the dependence on perturbations of the solutions of Mayer’s type optimal control problems for

linear systems. Its extension to the Bolza problem considered in this paper is more complicated

due to the missing smoothness of the switching function associated with the optimal control. In

this section we present such an extension, starting from the abstract definition of strong bi-metric

regularity and a new, substantially strengthened version of the Lyusternik-Graves type theorem

proved in [27].
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4.1 The abstract setting

First, we give the definition of strong bi-metric regularity, which is a more convenient extension of

the one introduced in [27].

Let (X, dX), (Y, dY ) and (Ỹ , d̃Y ) be metric spaces, with Ỹ ⊂ Y and dY ≤ d̃Y on Ỹ . Denote

by BX(x̄; a) and B
Ỹ

(ȳ; b) the closed balls in the metric spaces (X, dX) and (Ỹ , d̃Y ) with radius

a > 0 and b > 0 centered at x̄ and ȳ, respectively. We will suppose that the metric dY and d̃Y are

shift-invariant, which means, in terms of the metric dY , that

dY (y + z, y′ + z) = dY (y, y′), ∀y, y′, z ∈ Y.

Definition 4.1. The map Φ : X ⇒ Y is strongly bi-metrically regular relative to Ỹ ⊂ Y at x̄ ∈ X
for ȳ ∈ Ỹ with constants ς ≥ 0, a > 0 and b > 0 if (x̄, ȳ) ∈ graph(Φ) and the following properties

are fulfilled:

1. the mapping B
Ỹ

(ȳ; b) 3 y 7→ Φ−1(y) ∩BX(x̄; a) is single-valued, and

2. for all y, y′ ∈ B
Ỹ

(ȳ; b),

dX(Φ−1(y) ∩BX(x̄; a),Φ−1(y′) ∩BX(x̄; a)) ≤ ςdY (y, y′). (4.1)

It is important to notice that in this definition the “disturbances” y, y′ are taken from the

smaller space Ỹ (and are sufficiently small in the metric of this space), but the Lipschitz property

(4.1) holds with the (smaller) metric dY . This is the crucial difference with the standard definition

of strong metric regularity (see e.g. [13, Section 3G] and [20]), where the spaces Y and Ỹ coincide.

The next result resembles the main features of the Lyusternik-Graves-type theorem proved in

[27, Theorem 2.1], but under substantially weakened requirements, as explained in the comments

after the proof.

Theorem 4.2. Let X be a complete metric space, Y be a linear space, Ỹ be a subspace of Y , and

let both metrices, dY in Y and d̃Y in Ỹ , be shift-invariant and dY ≤ d̃Y on Ỹ . Let the set-valued

map Φ : X ⇒ Y be strongly bi-metrically regular at x̄ for ȳ with constants ς, a, b. Let µ > 0 and ς ′

be such that ςµ < 1 and ς ′ ≥ ς/(1− ςµ). Then for every positive constants a′, b′, and γ satisfying

a′ ≤ a, b′ + γ ≤ b, ςb′ ≤ (1− ςµ)a′, (4.2)

and for every function ϕ : X → Ỹ such that

d̃Y (ϕ(x̄), ϕ(x)) ≤ γ ∀x ∈ BX(x̄; a′), (4.3)

and

dY (ϕ(x), ϕ(x′)) ≤ µdX(x, x′) ∀x, x′ ∈ BX(x̄; a′), (4.4)

the mapping B
Ỹ

(ȳ + ϕ(x̄); b′) 3 y 7→ (ϕ + Φ)−1(y) ∩ BX(x̄; a′) is single-valued and Lipschitz con-

tinuous with constant ς ′ with respect to the metric dY .
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Proof. Let us fix µ, ς ′, a′, b′ and γ as in the theorem. Take an arbitrary function ϕ : X → Ỹ such

that (4.3) and (4.4) are fulfilled.

By assumption, the mapping B
Ỹ

(ȳ; b) 3 y 7→ s(y) := Φ−1(y)∩BX(x̄; a) is a Lipschitz continuous

function (with respect to the metric dY in Ỹ ) with Lipschitz constant ς. For any x ∈ BX(x̄; a′) and

y ∈ B
Ỹ

(ȳ + ϕ(x̄); b′) we have

d̃Y (y − ϕ(x), ȳ) ≤ d̃Y (y, ȳ + ϕ(x̄)) + d̃Y (ϕ(x̄), ϕ(x)) ≤ b′ + γ ≤ b. (4.5)

Thus s(y − ϕ(x)) is defined for all such pairs (x, y).

For an arbitrarily fixed y ∈ B
Ỹ

(ȳ+ϕ(x̄); b′) we consider the mapping BX(x̄; a′) 3 x 7→ Zy(x) :=

s(y−ϕ(x)). We shall prove that the mapping Zy has a unique fixed point by using the contraction

mapping theorem in the form of [13, Theorem 1A.2]. For this we denote λ = ςµ < 1 and estimate

dX(x̄, Zy(x̄)) = dX(s(ȳ), s(y − ϕ(x̄))) ≤ ςdY (ȳ + ϕ(x̄), y)

≤ ςb′ ≤ (1− ςµ)a′ = (1− λ)a′.

Moreover, for x, x′ ∈ BdX (x̄; a′) we have

dX(Zy(x), Zy(x
′)) = dX(s(y − ϕ(x)), s(y − ϕ(x′))) ≤ ςdY (y − ϕ(x), y − ϕ(x′))

= ςdY (ϕ(x), ϕ(x′)) ≤ ςµdX(x, x′) = λdX(x, x′).

Then, according to [13, Theorem 1A.2], there exists a unique x = x(y) ∈ BX(x̄; a′) such that x =

s(y−ϕ(x)). The latter implies that y−ϕ(x) ∈ Φ(x), hence x ∈ (ϕ+Φ)−1(y)∩BX(x̄; a′). Moreover,

x(y) is the unique element of (ϕ + Φ)−1(y) ∩ BX(x̄; a′). Indeed, if x ∈ (ϕ + Φ)−1(y) ∩ BX(x̄; a′),
then y ∈ ϕ(x) + Φ(x), hence y−ϕ(x) ∈ Φ(x), and since as in (4.5) we have y−ϕ(x) ∈ B

Ỹ
(ȳ; b) and

x ∈ BX(x̄; a′) ⊂ BX(x̄; a), it also holds that x = s(y − ϕ(x)). Thus x = x(y). Thus the mapping

B
Ỹ

(ȳ + ϕ(x̄); b′) 3 y 7→ (ϕ+ Φ)−1(y) ∩BX(x̄, a′) is single-valued.

Now, take two arbitrary elements y, y′ ∈ B
Ỹ

(ȳ + ϕ(x̄); b′) and let x = s(y − ϕ(x)) and x′ =

s(y′ − ϕ(x′)) be the unique solutions of y ∈ ϕ(x) + Φ(x) in BX(x̄; a′) corresponding to y and y′,
respectively. Then

dX(x, x′) = dX(s(y − ϕ(x)), s(y′ − ϕ(x′))) ≤ ςdY (y − ϕ(x), y′ − ϕ(x′))

≤ ςdY (y, y′) + ςdY (ϕ(x), ϕ(x′)) ≤ ςdY (y, y′) + ςµdX(x, x′).

Hence,

dX(x, x′) ≤ ς

1− ςµdY (y, y′) ≤ ς ′dY (y, y′),

which completes the proof. Q.E.D.

The main improvement in the above theorem, compared with [27, Theorem 2.1], is that the

Lipschitz property (4.4) is required in [27, Theorem 2.1] to be fulfilled in the stronger metric d̃Y ,

which makes the theorem unusable in several applications, including that presented in Subsection

4.3.
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4.2 Strong bi-metric regularity of the linear-quadratic problem

Now consider again Problem (P). First we will present a result about stability under perturbations

of Assumption (A3) in the case κ = 1, where the following strengthened form of Assumption (A1)

will be used.

Assumption (A1’). The functions A,W and d are continuous, B and S have continuous first

derivatives. The matrices W (t) and S>(t)B(t) are symmetric for every t ∈ [0, T ]. The function g

is differentiable with (globally) Lipschitz continuous gradient.

Furthermore we introduce the subspace

Ỹ := L∞([0, T ],Rn)× L∞([0, T ],Rn)×W 1,∞([0, T ],Rm)× Rn

of Y endowed with the usual norm of y = (ξ, π, ρ, ν) ∈ Ỹ:

‖(ξ, π, ρ, ν)‖∼ := ‖ξ‖∞ + ‖π‖∞ + ‖ρ‖1,∞ + |ν|. (4.6)

We denote by d̃Y the distance induced by ‖ · ‖∼.

Proposition 4.3. (Stability of Assumption (A3).) Let Assumption (A1’) be fulfilled. Let (x̂, p̂, û)

be a solution of (PMP), and let Assumption (A2) and Assumption (A3) with κ = 1 be fulfilled.

Then Assumption (A3) is stable under perturbations in the following sense: there exist constants

b̃ > 0, α̃ > 0, τ̃ > 0 and m̃0 > 0 such that if (ξ, π, ρ, ν) = y ∈ Ỹ with ‖y‖∼ ≤ b̃, then for any triple

(x, p, u) ∈ X solving y ∈ F (x, p, u) the function σ := B>p + S>x − ρ satisfies Assumption (A3)

with κ = 1 and constants α̃ and τ̃ replacing α and τ , respectively, and lmin(σ, τ̃) ≥ m̃0 (see (3.1)).

Proof. Let α and τ be the constants appearing in Assumption (A3), and let j ∈ {1, . . . ,m} be

arbitrary. Further, we consider only disturbances y ∈ Ỹ satisfying ‖y‖∼ ≤ 1.

First, observe that for all t ∈ [0, T ] it holds that

|σj(t)− σ̂j(t)| ≤
∣∣∣∣
(
B(t)>(p(t)− p̂(t)) + S(t)>(x(t)− x̂(t))

)
j

∣∣∣∣+ |ρj(t)|.

Using this inequality and Theorem 3.3 (applied with b = 1), we obtain that there is a constant c1

such that

|σj(t)− σ̂j(t)| ≤ c1‖y‖
for all j = 1, . . . ,m, t ∈ [0, T ], and y ∈ Ỹ with ‖y‖∼ ≤ 1. Hence,

|σj(t)| ≥ |σ̂j(t)| − c1‖y‖, t ∈ [0, T ], j ∈ {1, . . . ,m}. (4.7)

Consider (skipping the argument t) the derivative

˙̂σj =
[
Ḃ>p̂+B> ˙̂p+ Ṡ>x̂+ S> ˙̂x

]
j

=
[
Ḃ>p̂+B>(−A>p̂−Wx̂− Sû) + Ṡ>x̂+ S>(Ax̂+Bû+ d)

]
j

=
[
Ḃ>p̂+B>(−A>p̂−Wx̂) + Ṡ>x̂+ S>(Ax̂+ d)

]
j
, (4.8)
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where in the last inequality we use the symmetricity of B>S. This implies, in particular, that ˙̂σj is

continuous. Then there exists τ1 ∈ (0, τ ] such that | ˙̂σj(θ1)− ˙̂σj(θ2)| ≤ α/4 whenever θ1, θ2 ∈ [0, T ]

and |θ1− θ2| < τ1. Hence, using (4.8) and Assumption (A3) we obtain that for any j ∈ {1, . . . ,m},
for any zero ŝ of σ̂j and arbitrary t ∈ (ŝ− τ1, ŝ+ τ1) ∩ [0, T ]

α|t− ŝ| ≤ |σ̂j(t)− σ̂j(ŝ)| =
∣∣
∫ t

ŝ

˙̂σj(θ) dθ
∣∣ ≤

∣∣
∫ t

ŝ

˙̂σj(ŝ) dθ
∣∣+
∣∣
∫ t

ŝ

α

4
dθ
∣∣,

hence | ˙̂σj(ŝ)| ≥ 3α/4 for any zero ŝ of σ̂j , j = 1, . . . ,m.

The equality (4.8) holds also for σj (where (x̂, p̂) is replaced with (x, p)), with the additional

term
[
B>π + S>ξ − ˙̂ρ

]
j

in the right-hand side. Then using Assumption (A1’), and the estimation

in Theorem 3.3, we obtain that

‖σ̇j − ˙̂σj‖∞ ≤ c2(‖y‖+ ‖ξ‖∞ + ‖π‖∞ + ‖ρ̇‖∞) ≤ c3‖y‖∼, (4.9)

where c2 and c3 are independent of j and y ∈ Ỹ, ‖y‖∼ ≤ 1.

Define τ̃ := τ1/2 and choose the number b̃ > 0 in such a way that

c1b̃ ≤ min

{
lmin(σ̂, τ̃ /2)

2
,
ατ̃

4

}
and 4c3b̃ ≤ α, b̃ ≤ 1, (4.10)

and let ‖y‖∼ ≤ b̃. Since from (4.7) and the first inequality in (4.10) we have that for t ∈ [0, T ] \
Ij(σ̂, τ̃ /2)

|σj(t)| ≥ |σ̂j(t)| − c1‖y‖ ≥ lmin(σ̂, τ̃ /2)− c1b̃ ≥
lmin(σ̂, τ̃ /2)

2
> 0,

we obtain that any zero s of σj is contained in Ij(σ̂, τ̃ /2). Thus s ∈ (ŝ − τ̃ /2, ŝ + τ̃ /2) ∩ [0, T ] for

some zero ŝ of σ̂j .

Now take an arbitrary t ∈ (s− τ̃ , s+ τ̃) ∩ [0, T ]. Then t, s ∈ (ŝ− τ1, ŝ+ τ1) ∩ [0, T ] and using

(4.9) and the second inequality in (4.10) we obtain that

|σj(t)| =

∣∣∣∣
∫ t

s
σ̇j(θ) dθ

∣∣∣∣ =

∣∣∣∣
∫ t

s

[
˙̂σj(ŝ) + ( ˙̂σj(θ)− ˙̂σj(ŝ)) + (σ̇j(θ)− ˙̂σj(θ))

]
dθ

∣∣∣∣

≥ | ˙̂σj(ŝ)||t− s| −
α

4
|t− s| − c3‖y‖∼ |t− s|

≥ 3α

4
|t− s| − α

4
|t− s| − α

4
|t− s| ≥ α

4
|t− s|.

Thus (A3) holds for σ with κ = 1 and constants α̃ = α/4 and τ̃ .

Further for t ∈ I(σ̂, τ̃) \ I(σ, τ̃) we have

|σj(t)| ≥ α|t− ŝ| − c1‖y‖ ≥ α|t− s| − α|s− ŝ| − c1‖y‖ ≥
ατ̃

4

for some zeros ŝ and s of σ̂ and σ respectively. So if we set m0 := min{ατ̃4 , lmin(σ̂, τ̃)} then

lmin(σ, τ̃) ≥ m0. Q.E.D.

Proposition 4.3 allows to extend the result for strong bi-metric regularity of F , obtained in

[27] for Mayer’s problems for linear systems, to the present Bolza problem. For that we need the

following stronger version of Assumption (A2).
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Assumption (A2’). For every couple of admissible pairs (x, u), (x′, u′) ∈ F it holds that

〈∇g(x(T ))−∇g(x′(T )), x(T )− x′(T )〉+
∫ T

0

(
〈W (t)

(
x(t)− x′(t)

)
, x(t)− x′(t)〉+ 2〈S(t)

(
u(t)− u′(t)

)
, x(t)− x′(t)〉

)
dt ≥ 0.

Remark 4.4. Standard convex analysis shows that Assumption (A2’) is equivalent to the fact

that the functional J is convex on the set F , or equivalently, the mapping L1([0, T ],Rm) 3 u 7→
J(x(u), u) is convex on the set of admissible controls U , where x(u) denotes the solution of the

Cauchy problem ẋ = Ax+Bu, x(0) = 0.

To prove strong bi-metric regularity of (PMP) we first have to introduce the following additional

spaces. First we consider the set U = L∞([0, T ], U) as a metric space with the metric

d#(u1, u2) = meas {t ∈ [0, T ] : u1(t) 6= u2(t)},

where “meas” stands for the Lebesgue measure in [0, T ]. This metric is shift-invariant and we shall

shorten d#(u1, u2) = d#(u1 − u2, 0) =: d#(u1 − u2). Moreover, U is a complete metric space with

respect to d# (see [14, Lemma 7.2]). Then the triple (x, p, u) is considered as an element of the

space

X̃ = W 1,1
x0 ([0, T ],Rn)×W 1,1([0, T ],Rn)× U , (4.11)

endowed with the (shift-invariant) metric

d̃X (x, p, u) = ‖x‖1,1 + ‖p‖1,1 + d#(u). (4.12)

Clearly X̃ is a complete metric space.

Theorem 4.5 (Bi-metric regularity). Let Assumptions (A1’) and (A2’) be fulfilled. Let (x̂, p̂, û) be a

solution of (PMP) such that Assumption (A3) is fulfilled with κ = 1. Then the mapping F : X̃ ⇒ Y
introduced in (1.2) is strongly bi-metrically regular relative to Ỹ ⊂ Y at ẑ := (x̂, p̂, û) ∈ X̃ for 0 ∈ Ỹ.

Proof. We shall prove that F−1 is single-valued in BỸ(0; b̃) and

d̃X (F−1(y′), F−1(y)) ≤ cdY(y′, y), (4.13)

for all y, y′ ∈ BỸ(0; b̃), where b̃ and c are as in Proposition 4.3. Thus the conditions in Definition 4.1

will be fulfilled even with a = +∞.

Let us start by giving a reformulation of the perturbed version of (P), which will turn out to

be useful in the sequel. Let us take an arbitrary y = (ξ, π, ρ, ν) ∈ Y. Then the perturbed system

y ∈ F (x, p, u) is the set of necessary conditions for the problem (3.6) introduced in the proof of

Theorem 3.3. Notice that (3.6) is exactly of the same form as (P) with the state and co-state

variables augmented by one dimension, and the data A, B, d, W , S and g replaced with

Ã =

(
A 0

π> 0

)
, B̃ =

(
B

ρ>

)
, d̃ =

(
d+ ξ

0

)
, W̃ =

(
W 0

0 0

)
, S̃ =

(
S

0

)
,
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and g̃(x(T ), xn+1(T )) = g(x(T )) − ν>x(T ) − xn+1(T ), respectively. Thus, (x, p, u) is a solution of

y ∈ F (x, p, u) if and only if the triple

(x̃(·), p̃(·), ũ(·)) =

((
x(·)∫ ·

0

(
π>x+ ρ>u

)
dt

)
,

(
p(·)
−1

)
, u(·)

)
(4.14)

is a solution of the system

0 = ˙̃x(t)− Ã(t)x̃(t)− B̃(t)ũ(t)− d̃(t)

0 = ˙̃p(t) + Ã(t)>p̃(t) + W̃ (t)x̃(t) + S̃(t)ũ(t)

0 ∈ B̃(t)>p̃(t) + S̃(t)>x̃(t) +NU (ũ(t))

0 = p̃(T )−∇g̃(x̃(T )).

(4.15)

The above system can be recast as a generalized inclusion

0 ∈ F̃y(x̃, p̃, ũ) (4.16)

where F̃y is defined as in (1.2) replacing A by Ã, and similarly for the other data. F̃y maps the

space

X̂ := W 1,1
x̃0

([0, T ],Rn+1)×W 1,1([0, T ],Rn+1)× L1([0, T ],Rm)

to

Ŷ := L1([0, T ],Rn+1)× L1([0, T ],Rn+1)× L∞([0, T ],Rm)× Rn+1,

where x̃0 := (x>0 , 0)>. In few words, the dimension of the state and co-state variable is augmented

to n+ 1 and the additional initial condition xn+1(0) = 0 is added.

Note that by construction for any y ∈ Ỹ Assumption (A1) and Assumption (A2’) are fulfilled

for (4.16). Choose b̃, α̃, τ̃ and m0 as in Proposition 4.3. Then there exists a constant K such that

for any y with ‖y‖∼ ≤ b̃ we have

‖Ã‖∞, ‖B̃‖∞‖, ‖d̃‖∞, ‖W̃‖∞, ‖S̃‖∞ ≤ K, ∇g̃ is Lipschitz with constant K.

Then by Proposition 4.3 for any y = (ξ, π, ρ, ν) ∈ BỸ(0; b̃) and any solution (x, p, u) of the perturbed

problem y ∈ F (x, p, u) Assumption (A3) is satisfied by σ := B>p + Sx − ρ with constants α̃, τ̃

and lmin(σ, τ̃) ≥ m0. An easy calculation shows that the switching function of the solution (x̃, p̃, ũ)

(given by (4.14)) of (4.16) is given by B̃>p̃+ S̃>x̃ = B>p+S>x− ρ = σ. Then Theorem 3.3 in the

detailed form in Remark 3.4 is applicable to (4.16) with the constant c independent of the particular

y ∈ BỸ(0; b̃). In particular, this implies that (x̃, p̃, ũ) is the unique solution for (4.16). Therefore,

ũ = u is bang-bang and F−1 is single valued on BỸ(0; b̃). For any y′ = (ξ′, π′, ρ′, ν ′) ∈ BỸ(0; b̃) and

its solution (x′, p′, u′) of y′ ∈ F (x′, p′, u′) we define

(x̃′, p̃′, ũ′) := ((x′,
∫ ·

0
(π>x′ + ρ>u′)), (p′,−1), u′), ỹ′ := ((ξ′ − ξ, 0), (π′ − π, 0), ρ′ − ρ, (ν ′ − ν, 0)).

An easy calculation shows the inclusion ỹ′ ∈ F̃y(x̃
′, p̃′, ũ′). Then Theorem 3.3 (in the form in

Remark 3.4) implies

‖x̃′ − x̃‖1,1 + ‖p̃′ − p̃‖1,1 + ‖ũ′ − ũ‖1 ≤ c‖ỹ′‖Ŷ , (4.17)
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where ‖ · ‖Ŷ denotes the norm of Ŷ. Hence by (4.17) we have

‖x− x′‖1,1 + ‖p− p′‖1,1 + ‖u− u′‖1 ≤ ‖x̃′ − x̃‖1,1 + ‖p̃′ − p̃‖1,1 + ‖ũ′ − ũ‖1
≤ c‖ỹ′‖Ŷ = c‖y − y′‖.

Since u, u′ are bang-bang, similar to [27, p. 4130] we have ‖u − u′‖1 ≥ 2d#(u − u′) which proves

(4.13). Q.E.D.

We mention that the strong bi-metric regularity for Mayer’s problems is proved in [27] for a

general polyhedral set U and also in the case κ > 1. Extension of Theorem 4.5 to a general compact

polyhedral U set is a matter of modification of Assumption (A3) and technicalities that we avoid

in this paper, while the case κ > 1 is still open and challenging for the Bolza problem.

4.3 Stability of bi-metric regularity under perturbations

In this subsection, we will apply Theorem 4.2 to prove that the strong bi-metric regularity property

is stable under some class of nonlinear perturbations.

Along with problem (P) we consider the following perturbed problem:

minimize J̃(x, u)

subject to ẋ(t) = A(t)x(t) + ã(x(t), t) +B(t)u(t) + B̃(x(t), t)u(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,

x(0) = x0,

(4.18)

where

J̃(x, u) :=g(x(T )) + g̃(x(T ))+
∫ T

0

(
1

2
x(t)>W (t)x(t) + w̃(x(t), t) + x(t)>S(t)u(t) + 〈s̃(x(t), t), u(t)〉

)
dt.

Here ã : Rn × [0, T ] → Rn, B̃ : Rn × [0, T ] → Rn×m, g̃ : Rn → R, w̃ : Rn × [0, T ] → R,

s̃ : Rn × [0, T ]→ Rm are continuously differentiable functions. All these functions will be assumed

“small” in a sense clarified in the theorem below.

The system of necessary optimality conditions for problem (4.18) is given by

0 = ẋ(t)−A(t)x(t)− ã(x(t), t)−B(t)u(t)− B̃(x(t), t)u(t),

0 = ṗ(t) +
(
A(t) + ãx(x(t), t) + (B̃(x(t), t)u(t))x

)>
p(t) +W (t)x(t) + w̃x(x(t), t)> + S(t)u(t),

+s̃x(x(t), t)>u(t)

0 ∈ (B(t) + B̃(x(t), t))>p(t) + S(t)>x(t) + s̃(x(t), t) +NU (u(t)),

0 = p(T )−∇g(x(T ))−∇g̃(x(T )),
(4.19)

where the subscript x (as in ãx) means differentiation with respect to x.

The system (4.19) can be recast as

0 ∈ f(x, p, u) + F (x, p, u), (4.20)
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where F (corresponding to the non–perturbed system) is given by (1.2) and f is defined by

f(x, p, u)(t) =




−ã(x, t)− B̃(x, t)u(
ãx(x, t) + (B̃(x, t)u)x

)>
p+ w̃x(x, t)> + s̃x(x, t)>u

B̃(x, t)>p+ s̃(x, t)

−∇g̃(x(T ))


 .

As before we consider F as a set-valued mapping X̃ ⇒ Y, where the spaces X̃ and Y are defined

in (4.11) and (2.1), respectively. We fix a solution ẑ := (x̂, p̂, û) of the inclusion 0 ∈ F (x, p, u).

Assumption (B). The mapping F : X̃ ⇒ Y is strongly bi-metrically regular relative to Ỹ ⊂ Y at

ẑ ∈ X̃ for 0 ∈ Ỹ.

We recall that sufficient conditions for strong bi-metric regularity of F are given in Theorem 4.5.

Our purpose will be to prove that the strong bi-metric regularity of F is not destroyed by the

disturbance f , provided that the disturbances in (4.18) are sufficiently “small”. Notice that the

space X̃ contains elements (x, p, u) for which some of the norms ‖x‖∞, ‖p‖∞, ‖ẋ‖∞, ‖ṗ‖∞, may be

arbitrarily large or even infinite (the latter applies to the derivatives), that is, elements which are

irrelevant to the linear-quadratic problem to which F is associated. Moreover, the image f(X̃ ) is

not necessarily contained in Ỹ, which is important from a technical point of view. Therefore, for a

given compact set D ⊂ Rn we introduce the complete metric space (with the metric d̃X)

X̃D := {(x, p, u) ∈ X̃ : x(t), p(t), ẋ(t), ṗ(t) ∈ D for any t ∈ [0, T ]}.

Also, denote by FD := F |X̃D : X̃D ⇒ Y and fD := f |X̃D : X̃D → Y the restrictions of F and f

to XD.

Lemma 4.6. Let Assumption (A1) be fulfilled, let ẑ = (x̂, p̂, û) be a solution of the non-perturbed

system (PMP), and let Assumption (B) be fulfilled. Then there exists a compact set D0 ⊂ Rn
such that for every compact set D ⊂ Rn containing D0 the restriction fD maps X̃D into Ỹ and the

mapping FD : X̃D ⇒ Y is strongly bi-metrically regular relative to Ỹ ⊂ Y at ẑ ∈ X̃ for 0 ∈ Ỹ.

Proof. First note that because of continuity of ã, B̃, s̃, ãx, B̃x, w̃x and s̃x we have that for

every compact set D0 the first three components of fD0 are in L∞. Moreover the third component

is differentiable in t and since (B̃(x, t)>p)x is continuous as a function in x, p and t, and s̃x is

continuous this derivative lies in L∞. Hence fD0 maps into Ỹ.

Further let ς ≥ 0, a > 0 and b > 0 be the constants corresponding the strong bi-metric regularity

of F . Let y = (ξ, π, ρ, ν) ∈ BỸ(0; b) and (x, p, u) ∈ X̃ be a solution the generalized equation

y ∈ F (x, p, u) (i.e. of (2.4)). Moreover we denote ∆x(t) := x(t) − x̂(t), ∆p(t) := p(t) − p̂(t) and

∆u(t) := u(t)− û(t). Then by the solution formula of the Cauchy problems for ∆x and ∆p we get

‖∆x‖1,∞ ≤ c1(‖ξ‖∞ + ‖∆u‖∞), ‖∆p‖1,∞ ≤ c2(‖ξ‖∞ + ‖π‖∞ + ‖∆u‖∞ + |ν|), (4.21)

which shows that there is a compact set D0 such that (x, p, u) ∈ X̃D0 . Therefore F−1(BỸ(0; b)) ⊆
X̃D0 ⊆ X̃D for every D containing D0 which implies that FD : X̃D ⇒ Y is strongly bi-metrically

regular relative to Ỹ ⊂ Y at ẑ ∈ X̃ for 0 ∈ Ỹ. Q.E.D.
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Below we prove a stability result in the same spirit as [27, Theorem 4.1], which concerns Mayer’s

problems. We mention that there is a gap in the proof of [27, Theorem 4.1], but it can be easily

corrected by using Theorem 4.2 instead of [27, Theorem 2.1]. This is done in the next theorem

which, in addition, extends [27, Theorem 4.1] to Bolza problems.

Theorem 4.7. Let assumption (A1’) be fulfilled, let ẑ = (x̂, p̂, û) be a solution of the non-perturbed

system (PMP), and let Assumption (B) be fulfilled. Let D ⊂ Rn be a compact set such that

f(X̃D) ⊂ Ỹ and the mapping FD is strongly bi-metrically regular relative to Ỹ ⊂ Y at ẑ ∈ X̃D
for 0 ∈ Ỹ (see Lemma 4.6). Then there exist positive real numbers ε0, δ and c with the following

property.

For any positive number ε ≤ ε0 let ã, B̃, g̃, w̃, s̃ be any functions satisfying the assumptions given

above in this section and such that

• the functions ã, B̃, s̃, ãx, B̃x, w̃x, s̃x, B̃t, s̃t are all bounded by ε on D × [0, T ];

• the functions ã, B̃, s̃, ãx, B̃x, w̃x, s̃x are Lipschitz continuous in x with Lipschitz constant ε;

• the function ∇g̃ is bounded by ε and Lipschitz continuous on D with Lipschitz constant ε.

Then

(i) the perturbed system (4.19) has a unique solution z∗ = (x∗, p∗, u∗) in the δ-neighborhood of

ẑ in X̃D and

d̃X (z∗ − ẑ) ≤ cε.
(ii) the mapping f +F : X̃D ⇒ Y is strongly bi-metrically regular at z∗ for 0 relative to Ỹ ⊂ Y.

Proof. We want to apply Theorem 4.2 for the mappings Φ = F and ϕ = f at the point (ẑ, ŷ),

where ŷ := f(x̂, p̂, û). Let ς, a, b be the numbers in the definition of strong bi-metric regularity of

F at ẑ for 0, and let µ, ς ′, a′, b′, γ be arbitrary numbers such that the conditions (4.2) are fulfilled.

Since ã, B̃, s̃, ãx, B̃x, w̃x, s̃x, B̃t, s̃t, ∇g̃ are all bounded by ε and ˙̂x, p̂, ˙̂p are bounded by

|D| := supx∈D |x| and |û| ≤ √m we have that

dỸ(ŷ, 0) = ‖ − ã(x̂, t)− B̃(x̂, t)û‖∞ + ‖
(
ãx(x̂, t) + (B̃(x̂, t)û)x

)>
p̂+ w̃x(x̂, t)> + s̃x(x̂, t)>û‖∞ +

+‖B̃(x̂, t)>p̂+ s̃(x̂, t)‖∞ + ‖
(
B̃(x̂, t)>p̂

)
x

˙̂x+ B̃t(x̂, t)
>p̂+ B̃(x̂, t)> ˙̂p‖∞ + |∇g̃(x̂(T ))|

≤ (1 +
√
m)ε+ (2 + |D|+√m)ε+ (|D|+ 1)ε+ (|D|2 + 2|D|)ε+ ε

≤ C1ε,

for some constant C1 only depending on |D|. Similarly for z ∈ BX̃D(ẑ; a′) we have

d̃Y(0, f(z)) ≤ C1ε,

which gives

d̃Y(ŷ, f(z)) ≤ d̃Y(ŷ, 0) + d̃Y(0, f(z)) ≤ 2C1ε. (4.22)

19



Next since B̃, ãx, B̃x, s̃x are bounded by ε and ã, B̃, s̃, ãx, B̃x, w̃x, s̃x, ∇g̃ are Lipschitz

continuous with Lipschitz constant ε, p is bounded by |D| and |u| ≤ √m we have that for any

z, z′ ∈ BX̃D(ẑ; a′)

dY(f(z), f(z′)) = ‖ − ã(x, t)− B̃(x, t)u+ ã(x′, t) + B̃(x′, t)u′‖1
+ ‖

(
ãx(x, t) + (B̃(x, t)u)x

)>
p+ +w̃x(x, t)> + s̃x(x, t)>u

−
(
ãx(x′, t) + (B̃(x′, t)u′)x

)>
p′ − w̃x(x′, t)> − s̃x(x′, t)>u′‖1

+ ‖B̃(x, t)>p+ s̃(x, t)− B̃(x′, t)>p′ − s̃(x′, t)‖∞ + |∇g̃(x(T ))−∇g̃(x′(T ))|
≤ ε

[
(‖x− x′‖1 +

√
m|D| ‖x− x′‖1 + ‖u− u′‖1)‖)

+ (|D| ‖x− x′‖1 + ‖p− p′‖1 +
√
m|D| ‖x− x′‖1 + |D| ‖u− u′‖1

+
√
m‖p− p′‖1 + ‖x− x′‖1 +

√
m‖x− x′‖1 + ‖u− u′‖1)

+ (‖x− x′‖∞ + |D| ‖x− x′‖∞ + ‖p− p′‖∞) + |x(T )− x′(T )|
]

≤ C2ε‖z − z′‖X̃D
(4.23)

for some constant C2 only depending on |D|.
Hence, if we choose ε0, δ and c such that

2C1ε0 ≤ γ, C2ε0 ≤ µ, C1ε0 < b′, δ = a′, c = ς ′C1, cε0 < a′,

then we can apply Theorem 4.2 to see that f + F is strongly bi-metrically regular at ẑ for ŷ with

constants ς ′, a′ and b′. Therefore, there is a unique z∗ ∈ BX̃D(ẑ; a′) such that

0 ∈ f(z∗) + F (z∗).

and we have

d̃X (z∗ − ẑ) ≤ ς ′dY(0, ŷ) ≤ ς ′C1ε = cε,

which proves (i). Moreover since (z∗, 0) ∈ int(BX̃D(ẑ; a′)×BỸ(ŷ; b′)), the map f+F is also strongly

bi-metrically regular at z∗ for 0. This proves (ii). Q.E.D.

We mention that the issue of stability with respect to linearization of the strong bi-metric

regularity property (in the spirit of Robinson’s theorem [28]) is more complicated and will be a

subject of a separate investigation, together with further applications of this property.

5 A Newton-type method for bang-bang optimal control problems

In this section we investigate the convergence of a Newton-type method for solving affine optimal

control problems under conditions which guarantee that the (strengthened) sub-regularity property

in Theorem 3.3 holds for the linearized problem along the optimal solution. For this, we first present

an abstract result which is similar to, but stronger than [9, Theorem 6.1], since it is based on the

stronger version of sub-regularity in Theorem 3.3.

Theorem 5.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Let the mapping ϕ : X → Y be

Fréchet differentiable (Dϕ denotes the derivative) and let Φ : X ⇒ Y be a set-valued mapping. Let

x̂ be a solution of the inclusion

ϕ(x) + Φ(x) 3 0.
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Assume that there are positive constants R, L and c such that

‖Dϕ(x)−Dϕ(x̂)‖ ≤ L‖x− x̂‖X ∀x ∈ BX(x̂, R) (5.1)

and

‖x− x̂‖X ≤ c‖y‖Y (5.2)

for every x ∈ X and y ∈ ϕ(x̂) +Dϕ(x̂)(x− x̂) + Φ(x).

Then for x ∈ BX(x̂, r), where r = min{R, 2
5cL}, and for every solution z ∈ X of the Newton

inclusion

ϕ(x) +Dϕ(x)(z − x) + Φ(z) 3 0, (5.3)

it holds that z ∈ BX(x̂, r) and

‖z − x̂‖X ≤
1

r
‖x− x̂‖2X . (5.4)

Before proving the theorem we mention that condition (5.2) is a strengthened form of the metric

sub-regularity of the partial linearization x→ ϕ(x̂) +Dϕ(x̂)(x− x̂) + Φ(x) of the mapping ϕ+ Φ.

The inclusion z ∈ BX(x̂, r) implies that any finite or infinite sequence generated by the Newton

inclusion (5.3) and starting from BX(x̂, r) (if such exists) stays in BX(x̂, r). Inequality (5.4) claims

quadratic convergence of any such sequence which starts in the interior of BX(x̂, r).

Proof. For any x ∈ BX(x̂, r), let z ∈ X be an arbitrary solution of (5.3) (if any). Then,

ϕ(x̂) +Dϕ(x̂)(z − x̂) + Φ(z) 3 ϕ(x̂)− ϕ(x) +Dϕ(x̂)(z − x̂)−Dϕ(x)(z − x).

This means that z solves (5.3) with perturbation y given by the right-hand side of the inclusion

above. Therefore, (5.2) yields that

‖z − x̂‖X ≤ c‖ϕ(x̂)− ϕ(x) +Dϕ(x̂)(z − x̂)−Dϕ(x)(z − x)‖Y .

Now using (5.1) we get

‖z − x̂‖X ≤ c(‖ϕ(x̂)− ϕ(x) +Dϕ(x̂)(x− x̂)‖Y + ‖(Dϕ(x̂)−Dϕ(x))(z − x)‖Y )

≤ cL

2
‖x− x̂‖2X + cL‖x− x̂‖X ‖z − x‖X

≤ cL

2
‖x− x̂‖2X + cL‖x− x̂‖X (‖z − x̂‖X + ‖x− x̂‖X) .

Hence,

(1− cL‖x− x̂‖X)‖z − x̂‖X ≤
3cL

2
‖x− x̂‖2X .

Since 1− cL‖x− x̂‖X ≥ (1− cLr) ≥ 3
5 we obtain (5.4), which implies that z ∈ BX(x̂, r). Q.E.D.

Remark 5.2. A similar convergence result of the Newton’s method can be found in [7] for variational

inequalities and nonlinear programming. In that paper, the author introduces the conditions of

hemi-stability hemi-regularity in order to ensure the convergence of the Newton’s method. The

assumptions in Theorem 5.1 are weaker, but existence of a Newton sequence is not claimed, similarly

as to [9, Theorem 6.1]. Existence will follow in the analysis of optimal control problems that follow.
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Now, we shall use Theorem 5.1 to investigate the convergence of the Newton method for the

following affine optimal control problem:

minimize C(x, u)

subject to ẋ(t) = a(x(t), t) +B(x(t), t)u(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,

x(0) = x0,

(5.5)

where

C(x, u) := g(x(T )) +

∫ T

0
[w(x(t), t) + 〈s(x(t), t), u(t)〉] dt.

Here the functions a : Rn ×R→ Rn, B : Rn ×R→ Rn×m, w : Rn ×R→ R, s : Rn ×R→ Rm and

g : Rn → R are given. Further, we use the following assumptions.

Assumption (A1”). The functions a,B,w, s are twice differentiable in x, and all these functions

and derivatives of first and second order are continuous in t and locally Lipschitz in x, uniformly in

t. g is twice continuously differentiable with Lipschitz derivate. The problem (5.5) has a solution,

(x̂, û).

Remark 5.3. The optimality can be understood as local, since it is only important that the Pon-

tryagin maximum principle is fulfilled for (x̂, û). Due to the linearity of the problem with respect to

the control and the compactness and convexity of the control constraints, existence of an optimal

solution is granted if the differential equation in (5.5) has a solution on [0, T ] for every u ∈ U .

By the Pontryagin minimum principle, there exists an absolutely continuous function p̂ such

that the triple (x̂, p̂, û) solves for a.e. t ∈ [0, T ] the system

0 = ẋ(t)− a(x(t), t)−B(x(t), t)u(t),

0 = ṗ(t) +
(
ax(x(t), t) + (B(x(t), t)u(t))x

)>
p(t) + wx(x(t), t)> + sx(x(t), t)>u(t),

0 ∈ B(x(t), t)>p(t) + s(x(t), t) +NU (u(t)),

0 = p(T )−∇g(x(T )),

(5.6)

where the subscript x (as in ax) means differentiation with respect to x.

We rewrite system (5.6) as the following generalized equation

0 ∈ f(x, p, u) +G(x, p, u), (5.7)

where f : X → Y is given by

f(x, p, u)(t) :=




ẋ− a(x, t)−B(x, t)u

ṗ+
(
ax(x, t) + (B(x, t)u)x

)>
p+ wx(x, t)> + sx(x, t)>u

B(x, t)>p+ s(x, t)

p(T )−∇g(x(T ))


 , (5.8)

G : X ⇒ Y is given by

G(x, p, u) =




0

0

NU (u)

0


 , (5.9)
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and X and Y are the spaces defined in Section 2, namely X = W 1,1
x0 ×W 1,1 × L1, Y = L1 × L1 ×

L∞ × Rn.

Following [13, Chapter 6.3], we define the Newton-type method for solving problem (5.7) as follows,

where zk := (xk, pk, uk) denotes the obtained iterate at step k = 0, 1, . . ..

Newton’s method:

1. Choose z0 ∈ X .

2. Given zk, obtain zk+1 as a solution of the generalized equation

f(zk) +Df(zk)(zk+1 − zk) +G(zk+1) 3 0. (5.10)

Here, Df(z) is the Jacobian of f at z.

We mention that if zk satisfies (5.10) then uk is an admissible control, because NU (u) = ∅ whenever

u 6∈ U .

For any z̄ ∈ X the inclusion f(z̄) +Df(z̄)(z − z̄) +G(z) 3 0 represents the Pontryagin system

of necessary optimality conditions for a linear-quadratic problem which can be recast as (P) by

introducing an additional state variable, similarly in the proof of Theorem 4.5. We denote this

problem by LP (z̄) (we skip its explicit formulation, which can be found for instance in [11, Section

5]). For the next theorem it is important to ensure that the claim in Theorem 3.3 holds for the

particular problem LP (ẑ) corresponding to z̄ = ẑ, which obviously has the solution ẑ – the solution

of the non-linearized problem (5.5). Therefore, we make the following assumptions, related to

Assumption (A2) and (A3) in Section 2.

Assumption (A2”). The objective functional in problem LP (ẑ) is convex on the set of all admissible

pairs F .

Assumption (A3”). The switching function σ̂(t) in problem LP (ẑ), which is

σ̂(t) = B(x̂(t), t)>p̂(t) + s(x̂(t), t),

satisfies Assumption (A3) with κ = 1.

The next theorem claims that on the assumptions made, Newton’s method generates a sequence

quadratically converging to the optimal solution of (5.5).

Theorem 5.4. Let Assumption (A1”) be fulfilled and let ẑ := (x̂, p̂, û) be a solution of problem (5.6).

Let, in addition, Assumptions (A2”) at (A3”) be fulfilled for ẑ. Then there exists a neighborhood

O ⊂ X of ẑ such that for any starting point z0 ∈ O there is a sequence {zk}∞k=1 = {(xk, pk, uk)}∞k=1

(not necessarily unique) generated by the Newton method (5.10) and any such sequence is quadrat-

ically convergent to ẑ, i.e. there is a constant c > 0 such that

‖xk+1 − x̂‖1,1 + ‖pk+1 − p̂‖1,1 + ‖uk+1 − û‖1 ≤ c
(
‖xk − x̂‖1,1 + ‖pk − p̂‖1,1 + ‖uk − û‖1

)2
.
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Proof. Since problem LP (zk) has a solution and the generalized equation (5.10) represents the

Pontryagin necessary optimality conditions for this problem, the iterate zk exists for every k.

We will apply Theorem 5.1 with spaces X and Y (for X and Y ) and mappings f and G (for ϕ

and Φ).

An easy but cumbersome calculation (which we skip) shows that Assumption (A1”) implies that

the mapping f : X → Y is Fréchet differentiable with locally Lipschitz derivative. Thus condition

(5.1) in Theorem 5.1 is satisfied with ϕ = f and some constants R and L. Moreover, thanks to

Assumptions (A1”)–(A3”), Problem LP (ẑ) fulfills Assumptions (A1)-(A3) in Theorem 3.3. This

implies (see Remark 3.4 and Footnote 1) that condition (5.2) in Theorem 5.1 is also fulfilled with

some constant c. Then the convergence claimed in the present theorem follows from Theorem 5.1

with the neighborhood O defined as the open ball in X centered at ẑ and with radius r, where r is

defined in Theorem 5.1. Q.E.D.

Conclusion

This paper contributes to the regularity theory for Bolza-type optimal control problems with linear

dynamics, quadratic in the state and linear in the control objective integrand, and a non-linear

terminal term. Conditions for Lipschitz/Hölder sub-regularity and bi-metric regularity are obtained

and the results are utilized for obtaining a convergence result for the Newton method applied to

non-linear problems that are affine with respect to the control. One of this conditions, which is

particularly restrictive, requires that the optimal control is of pure bang-bang type. Extensions

of the regularity results and the Newton method to control-affine optimal control problems with

singular arcs is an important open area.

References

[1] Adly S., Cibulka R., Ngai H. V.: Newton’s method for solving inclusions using set-valued

approximations, SIAM J. Optim. 25 (1), 159–184 (2015)

[2] Alt W., Baier R., Gerdts M., Lempio F.: Approximation of Linear Control Problems with

Bang-Bang Solutions. Optimization. 62(1), 9–32 (2013)

[3] Alt W., Schneider C., Seydenschwanz M.: Regularization and implicit Euler discretization of

linear-quadratic optimal control problems with bang-bang solutions. Appl. Math. and Comp.

287-288, 104–124 (2016)

[4] Aragon Artacho F. J., Mordukhovich B. S.: Enhanced metric regularity and Lipschitzian

properties of variational systems, J. Global Optim. 50 (1) 145–167 (2011)

[5] Aronna M. S., Bonnans J. F., Martinon P.: A shooting algorithm for optimal control problems

with singular arcs. J. Optim. Theory Appl. 158, 419–459 (2013)

[6] Bressan A., Piccoli B.: Introduction to the Mathematical Theory of Control. American Insti-

tute of Mathematical Sciences, 2007.

24



[7] Bonnans F. J. : Local analysis of Newton-type methods for variational inequalities and non-

linear programming, Appl. Math. Optim., 29, pp. 161–186 (1994)

[8] Cannarsa P., Sinestrari C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal

control. Boston, MA: Birkhäuser Boston Inc., 2004
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Abstract

We revisit the gradient projection method in the framework of nonlinear optimal control

problems with bang-bang solutions. We obtain the strong convergence of the iterative sequence

of controls and the corresponding trajectories. Moreover, we establish a convergence rate, de-

pending on a constant appearing in the corresponding switching function and prove that this

convergence rate estimate is sharp. Some numerical illustrations are reported confirming the

theoretical results.

Keywords: Gradient projection method, Strong convergence, Convergence rate, Optimal con-

trol, Bang-bang control.
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1 Introduction

Numerical solution methods for various optimal control problems have been investigated during

the last decades [9, 8, 10, 11, 6]. However, in most of the literature, the optimal controls are

assumed to be at least Lipschitz continuous. This assumption is rather strong, as whenever the

control appears linearly in the problem, the lack of coercivity typically leads to discontinuities of

the optimal controls. Recently, optimal control problems with bang-bang solutions attract more

attention. Stability and error analysis of bang-bang controls can be found in [14, 32, 26]. Euler

discretizations for linear-quadratic optimal control problems with bang-bang solutions were studied

in [1, 2, 29, 5]. Higher order schemes for linear and linear-quadratic optimal control problems with

bang-bang solutions were developed in [24, 27].

On the other hand, among many traditional solution methods in optimization, projection-type

methods are widely applied because of their simplicity and efficiency [13, 15, 31].
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Recently, the gradient projection method has been reconsidered for solving general optimal con-

trol problems [22, 28]. Under some suitable conditions, it was proved that the control sequence con-

verges weakly to an optimal control and the corresponding trajectory sequence converges strongly

to an optimal trajectory. However, no convergence rate result has been established.

In this paper, we study the gradient projection method for optimal control problems with

bang-bang solutions. In particular we consider the following problem

minimize ψ(x, u) := g(x(T )) +

∫ T

0
h(t, x(t), u(t))dt (1.1)

subject to

ẋ(t) = f(t, x(t), u(t)) for a.e. t ∈ [0, T ], x(0) = x0, (1.2)

and

u(t) ∈ U := [−1, 1]m for a.e. t ∈ [0, T ]. (1.3)

Here [0, T ] is a fixed time horizon, admissible controls are all measurable functions u : [0, T ]→ U ,

while x(t) ∈ Rn denotes the state of the system at time t ∈ [0, T ] and the functions f : R×Rn×Rm →
Rn, g : Rn → R and h : R× Rn × Rm → R are given.

Further we assume (see the next section for precise formulations) that the data are smooth

enough, that the problem (1.1)-(1.3) is convex and that for the (unique) optimal control u∗ the

objective function fulfills a certain growth condition. In particular we show that this condition is

satisfied in the bang-bang case if each component of the associated switching function satisfies a

growth condition as given in [29, 25].

Under these assumptions, we prove that the control sequence actually converges strongly to the

solution. Moreover, the convergence rates for both controls and states are provided, depending on

the constant appearing in the growth condition for the switching function. An example is analysed

showing that the estimation for these convergence rates is sharp.

The paper is organized as follows: In Section 2, we specify the assumptions we use and recall

some facts which will be useful in the sequel. Section 3 discusses the convergence properties of

the gradient projection method. Some numerical examples of linear-quadratic type are reported in

Section 4 illustrating the results in the previous section. Some final remarks are given in the last

section.

2 Preliminaries

In this section, we will clarify the assumptions used and recall some important facts which are

necessary to establish our result.

By U := L2([0, T ], U) we denote the set of all admissible controls and if not stated otherwise

‖ · ‖ denotes the L2-norm. The first two assumptions guarantee that the problem (1.1)-(1.3) is

meaningful.
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Assumption (A1). For any given control u ∈ U there is a unique solution x = x(u) of (1.2) on

[0, T ].

Assumption (A2). The problem (1.1)-(1.3) has a solution (x∗, u∗).

Now recall the Hamiltonian of (1.1)-(1.3) as

H(t, x, u, p) = 〈p, f(t, x, u)〉+ h(t, x, u).

Then by the Pontryagin maximum principle there is an absolutely continuous function p∗ such that

(x∗, u∗, p∗) solves the adjoint equation

ṗ(t) = −Hx(t, x(t), u(t), p(t)) = −fx(t, x(t), u(t))>p(t)− hx(t, x(t), u(t))> for a.e. t ∈ [0, T ]

p(T ) = ∇g(x(T )),

(2.1)

and for every u ∈ U

〈Hu(t, x∗(t), u∗(t), p∗(t)), u− u∗(t)〉 ≥ 0 for a.e. t ∈ [0, T ].

We define J : U → R via J(u) := ψ(x(u), u), where x(u) is the solution (1.2). Then we have the

following useful formula for the gradient of J (see, e.g. [31, 22]).

∇J(u)(t) = Hu(t, x(t), u(t), p(t)) = fu(t, x(t), u(t))>p(t) + hu(t, x(t), u(t))>, (2.2)

where x and p are the unique solution of (1.2) and (2.1) depending on u ∈ U .

Assumption (A3). The objective function J is continuously differentiable on U with Lipschitz

derivative.

We denote by L the Lipschitz modulus of the gradient ∇J of J and write J∗ := J(u∗) for its

optimal value. The following result is well known (see e.g. [23, Lemma 1.30]).

Lemma 2.1. Suppose that (A3) is fulfilled. Then for every u, v ∈ U the following estimation holds

J(v)− J(u)− 〈∇J(u), v − u〉 ≤ L

2
‖v − u‖2.

Assumptions (A1)-(A3) are common in optimal control. For example the following two assump-

tions (B1)-(B2) imply (A1)-(A3) (cf. [22])

Assumption (B1). The functions f and h are of the form f(t, x, u) = f0(x) + f1(x)u and

h(t, x, u) = h0(x) + 〈h1(x), u〉 respectively, where f0 : Rn → Rn, f1 : Rn → Rn×m, h0 : Rn → R and

h1 : Rn → Rm are twice continuously differentiable.

Assumption (B2). There exists c ≥ 0 such that for every x ∈ Rn and u ∈ U :

〈x, f(t, x, u)〉 ≤ c(1 + |x|2).

Additionally we assume the following.
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Assumption (A4). The objective function J is convex.

Note that if the set F of admissible pairs is convex this assumption is equivalent to the statement

that the function ψ is convex on F . In particular this is the case if f is affine (i.e. f is of the form

f(t, x, u) = A(t)x+B(t)u+ d(t)) as in [29, 25].

Further we will assume a growth condition for J that is similar to (4.7) in [3].

Assumption (A5). For a solution u∗ of (1.1)-(1.3) there are constants β > 0 and θ ≥ 0 such that

for every u ∈ U we have

J(u)− J(u∗) ≥ β‖u− u∗‖2θ+2.

Note that in particular (A5) implies that the solution u∗ is unique.

Remark 2.2. For coercive optimal control problems (in the sense of [12]) Assumptions (A1)-(A4)

are fulfilled as well as (A5) for θ = 0. In these problems the objective function J however is even

strongly convex and therefore one can apply known results (e.g. [21, Theorem 2.1.15]) directly to

show linear convergence of the gradient projection method in this case.

In the following we will show that Assumption (A5) is fulfilled for bang-bang controls with no

singular arcs. We recall that in the case of bang-bang controls the function σ∗ := Hu(·, x∗, u∗, p∗) is

called switching function corresponding to the triple (x∗, u∗, p∗). For every j ∈ {1, . . . ,m} denote

by σ∗j its j-th component. The following assumption says that the switching function σ∗ satisfies a

growth condition around the switching points, which implies that u∗ is strictly bang-bang.

Assumption (B3). There exist real numbers θ, α, τ > 0 such that for all j ∈ {1, . . . ,m} and

s ∈ [0, T ] with σ∗j (s) = 0 we have

|σ∗j (t)| ≥ α|t− s|θ ∀t ∈ [s− τ, s+ τ ] ∩ [0, T ].

Assumption (B3) plays the main role in the study of regularity, stability and error analysis of

discretization techniques for optimal control problems with bang-bang solutions. Many variations

of this assumption are used in the literature about bang-bang controls. To our knowledge the

first assumption of this type was introduced by Felgenhauer [14] for continuously differentiable

switching functions with θ = 1 to study the stability of bang-bang controls. Alt et. al. [1, 2, 4]

used a slightly stronger version of (B3) with θ = 1, that additionally excludes the endpoints 0

and T as zeros of the switching function, to investigate the error bound for Euler approximation

of linear-quadratic optimal control problems with bang-bang solutions. Quincampoix and Veliov

[26] used a rank condition which implies (B3) (including cases where θ 6= 1) to obtain the metric

regularity and stability of Mayer problems for linear systems. Seydenschwanz [29], Preininger et.

al. [25], Pietrus, Scarinci and Veliov [24, 27] used this assumption in the study of metric (sub)-

regularity, stability and error estimate for discretized schemes of linear-quadratic optimal control

problems with bang-bang solutions.

To prove that (B3) implies (A5) we need the following lemma, which is a simplified version of

[29, Lemma 1.3] (see also, [1, Lemma 4.1]).
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Lemma 2.3. Let Assumptions (A1)-(A2) be fulfilled and let u∗ be a solution of (1.1)-(1.3) such

that (B3) is fulfilled for some θ > 0. Then there exists constants β > 0 such that for any feasible

u ∈ U it holds ∫ T

0
σ∗(t)T (u(t)− u∗(t)) dt ≥ β‖u− u∗‖θ+1

1 ,

where ‖ · ‖1 is the L1-norm.

Proposition 2.4. Let Assumptions (A1)-(A2) and (A4) be fulfilled and let u∗ be a solution of

(1.1)-(1.3) such that (B3) is fulfilled. Then (A5) holds.

Proof. From Assumption (A4) and (2.2) we obtain

J(u)− J(u∗) ≥ 〈∇J(u∗), u− u∗〉 =

∫ T

0
σ∗(t)T (u(t)− u∗(t)) dt. (2.3)

Since ‖ · ‖2 ≤ C‖ · ‖1 on U for some constant C > 0, from Lemma 2.3 there exists β > 0 such that

∫ T

0
σ∗(t)T (u(t)− u∗(t)) dt ≥ β‖u− u∗‖θ+1

1 ≥ β

Cθ+1
‖u− u∗‖2θ+2. (2.4)

Combining (2.3) and (2.4) we obtain (A5). Q.E.D.

To define the gradient projection method in the next chapter we will need the following notion

of a projection. For each u ∈ U , there exists a unique point in U (see [17, p. 8]), denoted by PU (u),

such that

‖u− PU (u)‖ ≤ ‖u− v‖ ∀v ∈ U .

It is well known [17, Theorem 2.3] that the projection operator can be characterized by

〈u− PU (u), v − PU (u)〉 ≤ 0 ∀v ∈ U . (2.5)

Further to establish the convergence rate of the gradient projection method, we will need the

following lemmas.

Lemma 2.5. [18, Lemma 7.1] Let α > 0 and let {δk}∞k=0 and {sk}∞k=0 be two sequences of positive

numbers satisfying the conditions

sk+1(δks
α
k+1 + 1) ≤ sk ∀k ∈ N.

Then there is a number γ > 0 such that

sk ≤
(
s−α0 + γ

k−1∑

i=0

min{δi, δ
α
α+1

i }
)− 1

α

∀k ∈ N.

In particular, we have limk→∞ sk = 0 whenever
∑∞

k=0 δk =∞.
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Lemma 2.6. [7, Lemma 3.2] Let {αk} , {sk} be sequences in R+ satisfying

∞∑

i=0

αksk <∞,

the sequence {αk} is non-summable and the sequence {sk} is decreasing. Then

sk = o

(
1

∑k
i=0 αi

)
,

where the o-notation means that sk = o(1/tk) if and only if limk→∞ sktk = 0.

3 Convergence Analysis

We consider the following Gradient Projection Method (GPM):

Algorithm GPM.

Step 0: Choose a sequence {λk} of positive real numbers and an initial control u0 ∈ U . Set

k = 0.

Step 1: Compute the gradient ∇J(uk)(t) := fu(t, xk(t), uk(t))
>pk(t) + hu(t, xk(t), uk(t))

> by

solving the following differential equations

ẋk(t) = f(t, xk(t), uk(t)), xk(0) = x0; (3.1)

ṗk(t) = −fx(t, xk(t), uk(t))
>pk(t)− hx(t, xk(t), uk(t))

>, pk(T ) = ∇g(xk(T )).

Step 2: Compute

uk+1 = PU (uk − λk∇J(uk)). (3.2)

Step 3: If uk+1 = uk then Stop. Otherwise replace k by k + 1 and go to Step 1.

It is known (see e.g. [21, Theorem 2.1.14]) that for J continuously differentiable with Lipschitz

derivative the gradient (projection) method has the convergence rate O( 1k ) in terms of the objective

value. I.e. that

J(uk)− J∗ = O(
1

k
). (3.3)

For the strongly convex objective function, it is known that the iterative sequence {uk} converges

linearly to the unique solution. However, it is not possible to show convergence for the iterative

sequence {uk} for the general convex case. Here, thanks to Assumptions (A1)-(A5), we are able

to prove that the iterative sequence {uk} generated by the GPM converges strongly to an optimal

control. Moreover, the convergence rate is established, depending on the constants θ appearing in

Assumption (A5).

The following estimate will be used repeatedly in our convergence analysis.

6



Proposition 3.1. Let Assumption (A1)-(A4) be satisfied, let u∗ be a solution of (1.1)-(1.3) such

that Assumption (A5) is fulfilled with some θ > 0 and β > 0. Then for all k ∈ N, the following

estimate holds

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2 − 2λkβ‖uk+1 − u∗‖2θ+2. (3.4)

Proof. Since uk+1 = PU (uk − λk∇J(uk)), it follows from (2.5) that

〈uk − λk∇J(uk)− uk+1, u− uk+1〉 ≤ 0 ∀u ∈ U . (3.5)

Substituting u = u∗ ∈ U into the latter inequality yields

〈uk − λk∇J(uk)− uk+1, u
∗ − uk+1〉 ≤ 0,

or equivalently

〈uk − uk+1, u
∗ − uk+1〉 ≤ λk〈∇J(uk), u

∗ − uk+1〉.

This implies that

‖uk+1 − u∗‖2 = ‖uk − u∗‖2 + 2 〈uk − u∗, uk+1 − uk〉+ ‖uk+1 − uk‖2

= ‖uk − u∗‖2 + 2 〈uk+1 − u∗, uk+1 − uk〉 − ‖uk+1 − uk‖2

≤ ‖uk − u∗‖2 + 2λk〈∇J(uk), u
∗ − uk+1〉 − ‖uk+1 − uk‖2

= ‖uk − u∗‖2

−2λk

[
〈∇J(uk), uk+1 − u∗〉+

L

2
‖uk+1 − uk‖2 +

(
1

2λk
− L

2

)
‖uk+1 − uk‖2

]

= ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2

−2λk

[
〈∇J(uk), uk − u∗〉+ 〈∇J(uk), uk+1 − uk〉+

L

2
‖uk+1 − uk‖2

]
. (3.6)

Since J has Lipschitz derivative, we have from Lemma 2.1 that

J(v)− J(u)− 〈∇J(u), v − u〉 ≤ L

2
‖v − u‖2 ∀u, v ∈ U .

Substituting u = uk and v = uk+1 into the last inequality yields

− 〈∇J(uk), uk+1 − uk〉 −
L

2
‖uk+1 − uk‖2 ≤ J(uk)− J(uk+1). (3.7)

Moreover, since J is convex, we obtain

− 〈∇J(uk), uk − u∗〉 ≤ J(u∗)− J(uk) (3.8)

Combining (3.6), (3.7) and (3.8) gives

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2 − 2λk (J(uk+1)− J(u∗)) . (3.9)
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Using Assumption (A5) we obtain

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− λkL) ‖uk+1 − uk‖2 − 2λkβ‖uk+1 − u∗‖2θ+2,

which is (3.4). Q.E.D.

We are now in the position to establish the strong convergence and the convergence rate of {uk}
to a solution.

Theorem 3.2. Let Assumptions (A1)-(A4) be satisfied, let u∗ be a solution of (1.1)-(1.3) such

that Assumption (A5) is fulfilled with some θ > 0. Let the sequence {λk} be chosen such that

0 < λmin ≤ λk ≤
1

L
∀k ∈ N.

Then we have

(i) ‖uk − u∗‖2 ≤ ηk−
1
θ , for all k, where η > 0 is a constant;

(ii) The sequence {J(uk)} is monotonically decreasing. Moreover
∑∞

k=0 (J(uk)− J(u∗)) < +∞.

Proof. We first prove that {uk} converges strongly to u∗. From (3.4) and 0 < λmin ≤ λk ≤ 1
L ,

the sequence {‖uk − u∗‖} is decreasing and bounded from below by 0, and therefore it converges.

Moreover, since

2λminβ‖uk+1 − u∗‖2θ+2 ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 (3.10)

we conclude that {‖uk − u∗‖} converges to 0, which means {uk} converges strongly to u∗.

Now we can apply Lemma 2.5 for sk = ‖uk − u∗‖2, α = θ and δk = 2λminβ to obtain the

convergence rate (i) for {‖uk − u∗‖}.
Substituting u = uk in (3.5) implies

λk〈∇J(uk), uk − uk+1〉 ≥ ‖uk+1 − uk‖2. (3.11)

Combining (3.7) and (3.11) we get

J(uk+1)− J(uk) ≤
(
L

2
− 1

λk

)
‖uk+1 − uk‖2 ≤ 0. (3.12)

Hence the sequence {J(uk)} is monotonically decreasing. Now from (3.9) and 0 < λmin ≤ λk ≤ 1
L

we have

2λmin (J(uk)− J(u∗)) ≤ ‖uk−1 − u∗‖2 − ‖uk − u∗‖2 ∀k ∈ N.

Summing this inequality from 0 to i− 1 we obtain

i−1∑

k=0

(J(uk)− J(u∗)) ≤ 1

2λmin

(
‖u0 − u∗‖2 − ‖ui − u∗‖2

)
.

Finally, taking the limit as i→∞, we obtain (ii). Q.E.D.
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Remark 3.3. From (ii) in Theorem 3.2, we can conclude that J(uk)− J(u∗) = o( 1k ), which signifi-

cantly improves the error estimate J(uk)− J(u∗) = O( 1k ) in (3.3).

The following example illustrates that the estimation (i) in Theorem 3.2 cannot be improved

when λk is bounded from below by a constant λmin.

Example 3.4. Consider the following optimal control problem

minimize
∫ T
0 σ(t)u(t)dt

subject to u(t) ∈ U := [−1, 1]m,
(3.13)

where σ is any continuous function fulfilling Assumption (B3). Then∇J(u)(t) = σ(t) is independent

of u and the optimal control is given by u∗(t) = −sgn(σ(t)). Starting the GPM with u0 ≡ 0 and

λk = λ for some λ ∈ R+ we get

uk(t) =





1, if − kλσ(t) > 1,

−kλσ(t), if − 1 ≤ −kλσ(t) ≤ 1,

−1, if − kλσ(t) < −1.

In the special case σ(t) = tθ, we therefore have uk(t) = max{−1,−kλtθ}. This implies that for

k > 1
λT θ

, we have

‖uk(t)− u∗(t)‖2 =

∫ (kλ)−
1
θ

0
(1− kλtθ)2dt = (kλ)−

1
θ (1− 2

θ + 1
+

1

2θ + 1
) = Ck−

1
θ .

For the objective value we get

J(uk)− J(u∗) =

(
1

θ + 1
− 1

2θ + 1

)
(kλ)−1−

1
θ , (3.14)

which is stronger than (ii). It remains unknown whether in the general case the estimation (ii) can

be improved to an estimation similar to (3.14).

Using the stronger Assumptions (B1)-(B2) the convergence rate of the corresponding trajectories

can be obtained as a corollary of Theorem 3.2 and [22, Lemma 2].

Corollary 3.5. Let Assumptions (B1)-(B2) and (A4) be satisfied and let (x∗, u∗) be a solution

of (1.1)-(1.3) such that assumption (A5) is fulfilled with some θ > 0. Further suppose that λk ∈
[λmin, 1/L] ⊂ (0, 1/L]. Then the sequence {xk(t)} of trajectories converges strongly to the solution

x∗. Moreover, there exists a positive constant C such that for all k it holds,

‖xk − x̂‖c ≤ Ck−
1
2θ ,

where ‖x(·)‖c = maxt∈[0,T ] |x(t)|.

When the Lipschitz modulus L is difficult to estimate, one can consider the non-summable

diminishing stepsizes as follow.
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Theorem 3.6. Let assumption (A1)-(A4) be satisfied, let u∗ be a solution of (1.1)-(1.3) such that

assumption (A5) is fulfilled with some θ > 0. Let the sequence {λk} be chosen such that

lim
k→∞

λk = 0,

∞∑

k=0

λk =∞.

Then the sequence {uk} converges strongly to u∗. Moreover there exists N > 0 such that for all

k ≥ N , it holds

(i) ‖uk − u∗‖2 ≤ Cµ
− 1
θ

k

(ii) J(uk)− J(u∗) = o
(

1
µk

)
,

where µk :=
∑k−1

i=N λi and C is a constant.

Proof. Let β > 0 be as in Proposition 3.1. Since limk→∞ λk = 0, there exists N > 0 such that for

all k ≥ N we have 1− λkL > 0 and 2λkβ < 1. From (3.4) we have that {‖uk − u∗‖} is decreasing,

therefore it converges. Moreover

2λkβ‖uk+1 − u∗‖2θ+2 ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ∀k ≥ N.

Using Lemma 2.5 with sk = ‖uk+N − u∗‖2, α = θ and δk := 2λk+Nβ we get that there exists

γ > 0 such that

‖uk − u∗‖2 ≤
(
‖uN − u∗‖−2θ + γ

k−1∑

i=N

λi

)− 1
θ

∀k ≥ N,

which shows (i).

From (3.9), we have

2λk (J(uk+1)− J(u∗)) ≤ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ∀k ≥ N.

leading to
∞∑

k=N

λk (J(uk+1)− J(u∗)) <∞.

Applying Lemma 2.6 with αk = λN+k and sk = J(uN+k)− J(u∗) we obtain (ii). Q.E.D.

Using the same example as above we can again show that the estimation (i) cannot be improved.

Example 3.7. Consider the problem (3.13) with σ(t) := tθ again. As before we use GPM with

u0 ≡ 0 but now with non-constant λk. Denoting µk :=
∑k−1

i=0 λi we get uk(t) = max{−1,−µktθ}.
Hence for k big enough such that µk >

1
T θ

we have

‖uk(t)− u∗(t)‖2 =

∫ µ
− 1
θ

k

0
(1− µktθ)2dt = µ

− 1
θ

k (1− 2

θ + 1
+

1

2θ + 1
) = Cµ

− 1
θ

k

and

J(uk)− J(u∗) =

(
1

θ + 1
− 1

2θ + 1

)
µ
−1− 1

θ
k .
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Similar to Corollary 3.5 we obtain

Corollary 3.8. Let Assumptions (B1)-(B2) and (A4) be satisfied and let (x∗, u∗) be a solution of

(1.1)-(1.3) such that assumption (A5) is fulfilled with some θ > 0. Further let the sequence {λk} be

chosen such that

lim
k→∞

λk = 0,
∞∑

k=0

λk =∞.

Then the sequence {xk(t)} of trajectories converges strongly to the solution x∗. Moreover, there

exists a positive constant C such that for all k it holds,

‖xk − x̂‖c ≤ Cµ
− 1

2θ
k .

4 Numerical Illustrations

In this section, we present some numerical experiments for a class of optimal control problems with

bang-bang solutions namely linear-quadratic problem, described as follow.

minimize ψ(x, u)

subject to ẋ(t) = A(t)x(t) +B(t)u(t) + d(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,

x(0) = x0,

(4.1)

where

ψ(x, u) :=
1

2
x(T )Qx(T ) + q>x(T ) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt.

Here we use the classical Euler discretization where the error estimate can be found in [1, 2, 5].

We choose a natural number N and define the mesh size h := T/N . Since the optimal control

is assumed to be bang-bang, we identify the discretized control uN := (u0, u1, . . . , uN−1) with its

piece-wise constant extension:

uN (t) = ui for t ∈ [ti, ti+1) , i = 0, 1, . . . , N − 1.

Moreover, we identify the discretized state xN := (x0, x1, . . . , xN ) and costate pN := (p0, p1, . . . , pN )

with its piece-wise linear interpolations

xN (t) = xi +
t− ti
h

(xi+1 − xi) , for t ∈ [ti, ti+1) , i = 0, 1, . . . , N − 1

and

pN (t) = pi +
ti − t
h

(pi−1 − pi) , for t ∈ (ti−1, ti] , i = N,N − 1, . . . , 1.

The Euler discretization of (1.1) is given by

minimize ψN (xN , uN )

subject to xNi+1 = xNi + h
[
A(ti)x

N
i +B(ti)u

N
i + d(ti)

]
,

xN (0) = x0,

uNi ∈ U,

(PN )
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where ψN is the cost function defined by

ψN (xN , uN ) :=
1

2
x>NQxN + q>xN + h

N−1∑

i=0

[
1

2
xTi W (ti)xi + xTi S(ti)ui

]
.

Observe that (PN ) is a quadratic optimization problem over a polyhedral convex set, where the

gradient projection method converges linearly, see e.g., [30]. This means that for each N , there

exists ρN ∈ (0, 1) such that

‖uNk+1 − uN∗‖ ≤ ρN‖uNk − uN∗‖, ∀k ∈ N.

In the following examples, we will consider various values of N which suggest that

lim
N→∞

ρN = 1.

This will confirm the sublinear rate obtained in Theorem 3.2. The codes are implemented in Matlab.

We perform all computations on a windows desktop with an Intel(R) Core(TM) i7-2600 CPU at

3.4GHz and 8.00 GB of memory. Since ∇J is linear in u, one can roughly estimate its Lipschitz

constant by L = ‖∇J(u0)‖/‖u0‖. We choose starting control u0(t) = 1∀t ∈ [0, T ] and stepsize

λ = 1/L. The stopping condition is ‖uNk − uNk−1‖ ≤ ε, where ε = 10−10.

The following example is taken from [27].

Example 4.1.

minimize −by(1) +
∫ 1
0

1
2 (x(t))2 dt

subject to ẋ(t) = y(t), x(0) = a

ẏ(t) = u(t), y(0) = 1.

u(t) ∈ [−1, 1].

(4.2)

Here, with appropriate values of a and b, there is a unique optimal solution u∗ with a switch

from −1 to 1 at time τ , which is a solution of the equation

−5τ4 + 24τ3 − (12a+ 36)τ2 + (24a+ 20)τ + 24b− 12a− 3 = 0.

As in [27], we choose a = 1, b = 0.1, then τ = 0.492487520 is a simple zero of the switching function.

Therefore, θ = 1 and the exact optimal control is

u∗(t) =




−1 if t ∈ [0, τ ]

1 if t ∈ (τ, 1].

The convergence results for Example 4.1 with some different values of N are reported in Table

4.1. We can see that when N increases, ρN also increases and approaches 1. This means that we

can only guarantee the sublinear convergence for the continuous problem. Figure 4.1 displays the

optimal control and the optimal states when the discretized size N = 50.

The following second example is taken from [1, Example 6.1]

12



Table 4.1: Convergence rates for Example 4.1

N 10 20 50 100 200 500

ρN 0.7701 0.9181 0.9839 0.9902 0.9964 0.9976

0 0.2 0.4 0.6 0.8 1
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−0.8
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t
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(t)

u*(t)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

t

x
(t
)

x1(t)
x2(t)

Figure 4.1: Optimal control (left) and optimal states (right) for N = 50.

Example 4.2.

minimize 1
2

(
(x1(5))2 + (x2(5))2

)

subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 5].

x1(0) = 6, x2(0) = 1,

u(t) ∈ [−1, 1].

(4.3)

The exact optimal control is given by

u∗(t) =





1 if t ∈ (τ, 5]

−1 if t ∈ (0, τ ],

where τ = 3.5174292.

The convergence results for Example 4.2 with some different values of N are reported in Table

4.2. Again, we see that when N increases, ρN also increases and approaches 1. Figure 4.2 displays

Table 4.2: Convergence rates for Example 4.2

N 10 20 50 100 200 500

ρN 0.9625 0.9724 0.9905 0.9937 0.9943 0.9944

the optimal control and the optimal states for N = 50.
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Figure 4.2: Optimal control (left) and optimal states (right) for Example 4.2 when N = 50.

In the next example, we consider a problem in which assumption (A5) is satisfied for θ 6= 1 (see

also [27, 29]).

Example 4.3. Here we present experiments with a family of problems satisfying assumption (A5)

with various values of θ, given in [29]. Below, the time-interval is [0, 1], the dimension of the state

is n = θ + 1 and the dynamics system depends on parameters sj :

minimize x1(1)

subject to ẋj(t) = sjxj+1(t) + u(t), j = 1, ..., θ

ẋθ+1(t) = u(t),

x(0) = 0,

u(t) ∈ [−1, 1].

(4.4)

For any natural number θ, the values of the parameters sj are chosen as

sj := −2(θ − j + 1) j = 1, ..., θ.

Then assumption (A5) is satisfied with the constant θ [29] and exact optimal control is given by

u∗(t) =





1 if t ∈ [0, 1/2]

−1 if t ∈ (1/2, 1]

if θ is odd, and u∗(t) = −1 if θ is even. The convergence results for Example 4.3 when θ = 2, 3 with

some different values of N are reported in Table 4.3. Figure 4.3 displays the approximate optimal

controls after 1000 iterations for N = 500. It seems like the optimal control has θ switching points.

This is to be expected since σ∗ has a zero of order θ at 1/2.

5 Concluding remarks

Note that the main results in Theorem 3.2 and Theorem 3.6 use Assumption (A5) which is more

general than just the bang-bang case. For example Assumption (A5) is also satisfied in the strongly
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Table 4.3: Convergence rates for Example 4.3

N 10 20 50 100 200 500

θ = 2

ρN 0.9418 0.9686 0.9865 0.9962 0.9953 0.9947

θ = 3

ρN 0.9245 0.9781 0.9936 0.9922 0.9968 0.9986
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Figure 4.3: Approximate optimal controls after 1000 iterations when θ = 2(left) and θ = 3 (right)

for Example 4.3 with N = 500.

convex case, where even better convergence results are known. Further it would be interesting to

see under what assumptions our results still apply in the case of singular arcs. This is challenging

due to the fact that currently there is no condition similar to the bang-bang Assumption (B3) that

ensures Assumption (A5) and therefore remains as a topic for future research.
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