
DIPLOMA THESIS

Optimised Data Handling Strategy for High
Throughput

Submitted at the Faculty of Electrical Engineering and Information Technology, Vienna
University of Technology

in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur (equals Master of Sciences)

under supervision of

Ao.-Prof. Dl. Dr. Thilo Sauter

Institute of Computer Technology (E384)
Technischen Universität Wien by

Simon Schwingenschuh
Matr.Nr. 1126174

Theresiengasse 30, 1180 Wien

Vienna, June 2018

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Kurzfassung

Die steigende Datenübertragungsgeschwindigkeit heutiger und zukünftiger Kommunikationsnetze
erfordert Optimierungen von Datenverarbeitungsstrategien für einen leistungsfähigen Datenaus-
tausch. Es wird eine hohe Auslastung des Peripheriebussystems und die Reduzierung der Prozes-
sorzeit für die Datenverarbeitung gefordert. Diese Masterarbeit beschreibt notwendige Kom-
ponenten zur Übertragung von Daten zwischen einem Hostsystem und Peripheriegeräten und
konzentriert sich auf die Datenverarbeitungsstrategien von Netzwerkadaptern. Zwei Datenver-
arbeitungsstrategien werden analysiert und ein optimiertes Konzept erstellt und implementiert.
Messungen zeigen die Reduzierung der CPU-Verarbeitungszeit und die Verbesserung der Übertra-
gungsbandbreite einer Netzwerkkarte.

Abstract

The increasing data link speed of today’s and coming communication networks demands on
optimisations of data handling strategies for high-performance data exchange. High utilisation of
the peripheral bus system and the reduction of CPU time used for data handling are requested.
This diploma thesis describes needed components for transferring data between a host system and
peripheral components and focuses on the data handling concept of network interface controllers.
Two data handling strategies are analysed and an optimized concept is created and implemented.
Measurements prove the reduction of CPU processing time and the improvement of the bandwidth
of a network interface controller.

II

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung
anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus anderen Quellen oder indirekt
übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Wien, Juni 2018

III

Table of Contents

1 Introduction 1

1.1 Problem Description . 2

1.2 Structure of the Thesis . 2

2 Technology Overview 4

2.1 System Design . 4

2.1.1 Design Flow . 4

2.1.2 Hardware Description Languages . 7

2.2 Communication Basics . 9

2.2.1 Hardware Device Classification . 9

2.2.2 Device Addressing . 9

2.3 Input/ Output Operations . 10

2.3.1 Programmed Input/ Output . 11

2.3.2 Interrupt Driven Input/ Output . 11

2.3.3 Direct Memory Access . 12

2.4 On-Chip Bus Protocols . 13

2.4.1 Avalon Streaming Interface . 13

2.4.2 Avalon Memory Mapped Interface . 14

2.4.3 Network On Chip . 19

2.5 Off-Chip Bus Protocols . 20

2.5.1 PCI Express Bus . 20

2.5.2 USB . 22

3 Data Handling Techniques between Host System and Peripheral Units 24

3.1 Available Intellectual Properties For Data Handling 24

3.1.1 Xillybus . 24

3.1.2 JetStream . 27

3.2 Data Handling in Network Interface Cards . 30

3.2.1 Basic Concept . 31

3.2.2 WR-ZEN Board . 32

3.2.3 Oregano Systems syn1588 R© PCIe NIC . 35

3.3 Performance Analysis of Data Handling Components 42

3.3.1 Memory . 42

3.3.2 Bus Protocols . 43

3.3.3 Data Handling . 44

IV

3.3.4 Analysis of State of the Art Solutions . 45

4 Optimised Data Handling Architecture for Network Interface Card 47
4.1 Concept . 47

4.1.1 Buffer Descriptor Management . 48
4.1.2 Receive Data Sequence . 50
4.1.3 Transmit Data Sequence . 52

4.2 Hardware . 53
4.2.1 TX BD Register . 54
4.2.2 Return TX BD FIFO . 56
4.2.3 RX BD FIFO . 58
4.2.4 Bus Arbiter FSM . 59
4.2.5 BD Control FSM . 60
4.2.6 Transmit Packet FSM . 61
4.2.7 Receive Packet FSM . 62

4.3 Software . 63
4.3.1 Setup NIC . 63
4.3.2 Data Transfer . 64

5 Measurements 65
5.1 Setup . 65
5.2 Performance Results . 66
5.3 CPU Usage . 77

6 Conclusion and Outlook 82

Literature 84

V

Abbreviations

AHB Advanced High-Performance Bus
ASIC Application Specific Integrated Circuit
Avalon-MM Avalon Memory Mapped
Avalon-ST Avalon Streaming
AXI Advanced eXtensible Interface
BD Buffer Descriptor
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
DRAM Dynamic Random Access Memory
DMA Direct Memory Access
EDA Electronic Design Automation
EOF End Of packet
FIFO First-In-First-Out
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
GB Gigabyte
GB/s Gigabyte Per Second
GMII Gigabit Media Independent Interface
GP-GPU General Purpose - Graphic Processing Unit
GPU Graphic Processing Unit
HDL Hardware Description Level
IC Integrated Circuit
I/O Input/ Output
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
MAC Media Access Control
Mbps Megabit Per Second
MII Media Independent Interface
MM Memory Mapped
NoC Network on Chip
NIC Network Interface Card
MB Megabyte
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCIe PCI Express
PE Processing Element
PHY Physical layer
PLD Programmable Logic Device
PS Processing System
PTP Precision Time Protocol

VI

RTL Register Transfer Level
RX Receive
SI Sink
SoC System on Chip
SOP Start Of Packet
SR Source
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/ Internet Protocol
TX Transmit
UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol
USB Universal Serial Bus
VHDL Very High Speed Integrated Circuit Hardware Description Language
VHSIC Very High Speed Integrated Circuit

VII

1 Introduction

Data transfer between peripheral components highly influences the performance of computer
systems. Processing units always need enough data for processing their tasks. The performance
of the memory, the central processing unit and the bus system are defining the processing speed
of a computer system. Additionally, other peripheral components, as for example graphic cards,
network cards or hardware accelerators, are used to add special functionality to a system or speed
it up.

The demand of optimising computational intensive or time critical functions available on platforms
with reduced computational resources opens a growing area for specialised peripheral components.
The peripheral unit moves data processing from the Central Processing Unit (CPU) to specialised
hardware components. Optimisation in terms of processing time and power consumption is also
a demand for these hardware components.

Moving computational intensive functions like floating point calculations from the CPU to the
General Purpose-Graphic Processing Unit (GP-GPU) adds complexity to the development but
improves the performance greatly. Initially, GPUs were used to calculate the graphical outputs.
In the last decades, the GPUs were upgraded to be usable in general-purpose computing [VN14].

The highest complexity in developing, but with a great boost in computational power, power
efficiency and configurability, is reached, if Field Programmable Gate Arrays (FPGA) are used.
While GP-GPUs have fixed computational modules, FPGAs are programmable digital logic chips,
which can be fully configured to achieve any goal. The high configurability gives the developer a
great freedom in developing solutions, but also increases the development time and complexity.
FPGAs are not intentionally built for accelerating CPUs. They were built to get reconfigurable
hardware chips for replacing digital circuits. They are also a cheap alternative to Application
Specific Integrated Circuits (ASICs), which are costly in development and fabrication [Rei09].

Connecting devices in a network enables the exchange of data for different areas of applications.
The highly increasing amount of application data and the usable link speed of communication
networks is the reason for demanding improvements in data handling strategies. The utilisation
of resources available on computer systems and the efficiency of communication channels between
components have to be increased.

1

Introduction

1.1 Problem Description

Communication channels in present-day computer systems must be prepared for transferring a
huge amount of data. The network speed of up to 100 gigabits per seconds (Gbps) is leading to a
problem for computer systems. Data handling methods have to be optimised to fully utilize the
link speed of network interfaces.

The challenging thing is to serve enough data to take advantage of the high data rate of com-
munication interfaces. However, the processor should not be highly involved in preparing and
transmitting data from the memory to the network interface - other components should take care
of that.

The limited availability of on-chip memory of a processing chip adds complexity to data handling
methods. Low cost network interfaces are implemented without external memory. The complexity
in developing a memory controller for temporarily storing data is too high. Also, the costs of
the memory chips and the development of the data management units are too big for consumer
network interfaces.

The following points have to be considered for creating a data handling strategy for network
interface cards:

• The communication bus between the CPU, the memory and the peripheral units is used by
multiple devices.

• The data transfer is not predictable, because multiple components can access the memory.

• The communication bus can add communication overhead and can have some parameters,
which influences the design of the data exchange strategy.

• Limited availability of on-chip memory on the network interface controller.

A data handling method must have an efficient way to transfer data between the processing
system and the network interface without using much processing time. The processor should just
be notified, if packet data was sent or received by the network interface. It also has to copy data
from memory accessible by the operating system to memory accessible by the network interface.
To achieve performant data handling between a host system and a network interface controller,
an architecture has to be designed, which utilises the given resources efficiently.

This thesis presents an optimised data handling method for a network controller. The focus is on
highly utilising the available resources. The design can be easily adapted for different applications
and hardware environments.

1.2 Structure of the Thesis

Chapter 2 gives an overview of the state of the art technologies for developing a Network Interface
Card. Basics of system development and describing methods are introduced. Different types of
devices in a computer system, their addressing scheme and data exchange methods triggered by
the system are described in Sections 2.2 to 2.3. Transferring data needs the usage of bus systems,
which are presented in Sections 2.4 and 2.5.

2

Introduction

Chapter 3 describes state of the art intellectual properties for handling data between host systems
and peripheral units. It also includes the analysis of two data handling methods used in two
network interface cards.

Chapter 4 includes the concept of the created data handling method and its hardware and software
description.

The performances of the old and the optimised data handling strategy is, presented in Chapter
4, are compared by the measurements described in Chapter 5. The CPU usage for processing
packets and the bandwidth of the NIC are measured.

Finally, Chapter 6 summarises the achieved goals of the thesis and provides an outlook on future
works.

3

2 Technology Overview

This section gives an overview about available and used technologies solving the problem of
handling data between components. The first section describes the development process of digital
circuits and the other sections describe bus protocols and data handling methods.

2.1 System Design

Digital integrated circuits (ICs) packed into chips started to be used in the 1962s, when the
Transistor-Transistor-Logic (TTL) based on bipolar transistor technology was introduced by
Texas Instruments and Fairchild. Chips with less than 100 transistors packed into one die were
produced to improve computers from IBM and DEC. These systems consist of multiple printed
circuit boards packed with ICs to achieve the wanted functionality.

New fabrication processes and technology improvements were developed to increase the integra-
tion intensity of transistors in chips greatly. Figure 2.1 illustrates the technology improvements
in terms of on die place-able transistors and development productivity of a digital circuit de-
signer. The exponential increase of transistor density was observed by Gordon Moore in the year
1965. He predicted, that every 18 months, the integration density of transistors will be doubled
(Moore’s law) [Moo06]. Multiple techniques were developed to increase the productivity of design
engineers.

This section gives a short introduction to system description techniques used in today’s chip
development.

2.1.1 Design Flow

The design flow of a system uses different abstraction levels to describe the functionality. Mod-
elling systems at different abstraction layers leads to an accelerated development. The lower the
abstraction gets the more details are implemented in the model. The verification of the abstracted
model is done by simulation. These steps help the circuit designers to find design faults in an
early development state. The rising design complexity and the improved fabrication processes,
which enables developers to put billions of transistors on a chip, require models with different
abstraction levels. Figure 2.2 illustrates the design flow of a system.

4

Technology Overview

Automatic Place and Route

19
81

19
89

19
85

19
93

20
01

19
97

20
09

20
05

20
13

0.001

0.01

0.1

1

10

100

1 000

10 000

0.01

0.1

1

10

100

1 000

10 000

100 000

Logic Synthesis

RTL Synthesis
Architecture Synthesis

ESL58% / Year

M
ill
io
n
Tr
an
si
st
or
s p

er
 C
hi
p

(

)

Text

D
ev
el
op
er
 P
ro
du
ct
iv
ity

10
00
 T
ra
ns
is
to
rs
/ P
er
so
n/
 M

on
th

(

)

Year

21% / Year

Figure 2.1: Progress in integration intensity of transistors in chips vs design productivity of digital circuit
developers [Rei09, chapter 1]

Written System Level Specification

The start of every design is an idea which is written down on paper. The written form characterises
the behaviour very abstract, because the wanted functionality is described without defining the
realisation in any way. The final version of the written specification is converted into an executable
one. The interpretation of some functionality can be misunderstood by the system designers, so
the executable version can help developers to find misinterpretation of the specification.

Executable System Level Specification

The Executable System Level Specification is used to get an overview of the needed system
components. The executable specification is written in a higher abstract language like C++ or
SystemC. The available libraries to implement functionality enables a fast development of this
model. The component splitting is done during the model design.

The system designer has to decide which components should be designed in hardware and which
in software. Also, the interfaces or bus protocols between the components have to be specified.
These steps are necessary to accelerate the development in Register Transfer Level (RTL) level,
because multiple developers can build well defined components and verify their functionality.

Existing Electronic Design Automation (EDA) tools support designers in a way, that high level
representation of functionality can directly synthesised into RTL. The number of synthesisable
application is limited to only a few. The major part of the system has to be rewritten in a
Hardware Description Language (HDL) like VHDL or Verilog.

One very important task is to create a simulation environment. The functionality of the model is
checked and a Golden Model of the system is created. The Golden Model stores the output values

5

Technology Overview

Figure 2.2: Design flow of a digital circuit [KB09, chapter 1]

of given input vectors. It is used in the other abstraction levels to check the correct functionality
of the design.

RTL Representation

Only a few parts of the Executable System Level Specification can be automatically synthesised
in RTL and the other parts have to be designed with an HDL. To reduce the development costs
and time of a system, the use of third party Intellectual Properties (IPs) from other vendors or
the reuse of already developed parts is necessary.

6

Technology Overview

Third party IPs can be seen as very well tested and verified components. Multiple components
like communication cores, data compression cores, cryptography cores or Central Processing Unit
(CPU) cores can be bought from vendors. The well-defined and understood interfaces of the
components enables fast usage of it.

The built RTL representation of the design defines a bit and cycle accurate model of the design.
The interface specification process, which is done during the Executable System Level Specifica-
tion, already defines the interfaces in a bit accurate way. The cycle accurate representation is
modelled with the help of state machines. The states define different phases of the computation
in different clock cycles. This cycle accurate and bit accurate representation is one reason, why
HDLs are the only way to describe functionality in an efficient way.

The simulation and verification is not only done for the whole system. The component design-
ers also have their own small simulation environment to verify the correct behaviour of their
component. The system simulation environment of the Executable System Level Specification
is redesigned in a way, that it can be used by the RTL model. The data of the Golden Model
are used to check the correct behaviour. The new built model has to be simulated and verified
against the data in the Golden Model.

Gate Level Representation

At this level of abstraction, the behaviour of the digital circuit is converted into gates. It describes
the design bit right, clock right and delay right. Synthesis tool uses the vendor specific library to
convert the functionality into this representation. The target information, served by the vendor
libraries, enables the synthesis tool to do some optimisation. FPGAs have built in digital signal
processing units and special memory blocks which can be used by the synthesis tool for getting
an optimised gate level representation of the RTL model.

The physical realisation of the gate level model adds an important parameter to it: the signal
time delay. The timing analysis is important for the correct behaviour of the system. The signal
propagation and the time constraints of the gate inputs can be proven. The timing analysis also
enables the tool to determine the maximum clock frequency of the design.

The gate level model representation is also verified by simulating the behaviour of the new ab-
straction level. Time delay data of the signals are added to the simulation and the result is
compared with the Golden Model.

Physical Level Representation

The last step in the design flow is done automatically by the design tool. The design is represented
in the target needed way. The fabrication labs need the layout of the chip, to build the wafer.
Programmable Logic Devices (PLD) like Complex PLDs (CPLDs) or FPGAs need a bit stream,
which is used to configure the digital circuits of the board.

2.1.2 Hardware Description Languages

In the 80th of the 20th century, the industry was faced with the problem of a higher getting design
productivity gap of digital circuits. The improvements in fabrication made it possible, to put
more and more digital circuits on a chip. The rising numbers of transistors, led to more expensive

7

Technology Overview

development processes. The major problems where that different software for simulation and no
standardised way to document digital circuits was available. The not compatible and vendor
specific tools for designing circuits had to be replaced by standardised ones.

The main difference between a software programming language and a HDL is, that the HDL has
to be able to describe concurrent processes. The ability of parallel processing blocks marks the
information processing strength of digital circuits. The HDLs Verilog and VHDL are the majors
languages, which are used in the industry [Hop06, chapter 2].

Very High Speed Integrated Circuit Hardware Description Language

The Department of Defence of the United States initiated the program Very High Speed Integrated
Circuit (VHSIC), which had the aim to decrease the development time of digital circuits. Digital
circuit companies used different tools to describe their functionality. The lack of documentation
and the incompatible design tools made the replacement of existing digital circuits difficult.
This was the reason why the companies Intermetrics, IBM and Text Instruments were hired to
create the HDL Very High Speed Integrated Circuit Hardware Description Language (VHDL).
Companies, like EDA Tool developers, got interested in this topic too, which accelerates the
development. In 1987 the American Institute of Electrical and Electronics Engineers (IEEE)
standardised the HDL (IEEE 1076-1987) [KB09, chapter 2].

The development focus of VHDL was to create a behaviour description languages for circuits
and systems, as well as to get a language for describing the simulation environment. The idea
of creating an automatic converter from RTL to gate level came in the end of the 80th. The
company Synopsis built a synthesis tool, which was able to build a gate level representation of
the RTL design. Because not every function of VHDL code is synthesizable, the standard IEEE
1076.6 was created in 1999. Multiple standards, like IEE 1164, were created to help developers by
implementing functions like many-level logic data types and arithmetic operators [KB09, chapter
2]. The VHDL standard was lastly updated in 2008 (IEEE 1076-2008).

Verilog Hardware Description Language

The company Automated Integrated Design Systems started 1985 to build a logic simulator with
special hardware acceleration to find a countermeasure against the costly reengineering tasks at
broken digital circuits. The company was renamed to Gateway Design Automation and published
their first simulator Verilog in the year 1986. The simulator was able to simulate logical circuits
and abstract behaviour description, which was written in a C like language. The Verilog simulator
gathers the structure of a digital circuit in net lists. The ability to describe simultaneously running
task makes the difference between HDL and sequential programming languages like C [Hop06,
chapter 2].

The learning curve of Verilog is due to the similarity to C lower than it is for VHDL. VHDL
uses a more complex substructure than Verilog. Apart of this, Verilog and VHDL can be used
to describe any digital circuit. Because Verilog was built by Gateway Design Automation (later
Cadence), it was a commercial product and so other companies were not able to build simulators
or synthesis tools. Between 1997 and 2001, the IEEE standardised it as standard 1394 [Hop06,
chapter 1].

8

Technology Overview

2.2 Communication Basics

Many Different ways exist to communicate with components of a system. The standardisation of
components, their classification and their addressing schemes is very important for the exchange-
ability of components. All Computer keyboards, printers or hard drives should use the same way
to communicate. This section describes classification of components and addressing schemes.

2.2.1 Hardware Device Classification

A not perfect classification method tries to categories I/O devices into two categories: block
devices and character devices [TB16, section 5.1]. A block device stores data in fixed block sizes,
where each block has a unique address. The block sizes start from 512 bytes and end at 64 kilo
bytes. An important property of a block device is, that each block can be read and written
independently. Hard disks, USB memories or Blue-ray Discs are examples for block oriented
devices.

Character devices use character streams for communication. The internal memory is not address-
able and search operation can’t be executed. Devices which are not similar to disks like printers,
network interface cards (NIC) or computer mice are character devices.

There are many devices which don’t fit in these models. Computer displays, touch screens or
interrupt clocks can’t be categorised. The generalisation of block and character devices helps to
define device independent software.

The classification is independent of the system’s bus protocols. Off-chip bus protocols like USB
can be used to communicate with storage devices like USB memories, but can also be used to
receive data from computer mice or keyboards. The software has to control the data handling
and also the different data rates of the devices and bus protocols.

2.2.2 Device Addressing

Devices use registers for storing basic information or configurations. The communication of de-
vices can be done by different bus protocols (see 2.4 and 2.5). The configuration of the devices
is loaded during the boot process or during the activation of the device driver. Hardware accel-
erators, storing devices or output devices additionally have data buffers for storing data before
processing them.

Multiple devices can be connected to a bus. A device gets activated, if the address of the bus
corresponds to an address in the address space of the device. Processors uses different methods
to access the peripherals of their buses. Figure 2.3(a) and Figure 2.3(b) shows two different
concepts.

I/O Port

The simplest addressing scheme is I/O Port addressing. The peripherals get an 8-bit or a 16-bit
address range, which enables the processor to address the control registers and the data buffers.
The address space is protected from being accessed by user programs. Only the operating system
is allowed to access the device.

9

Technology Overview

(a) Separate address space for memory and peripherals (b) One address space for memory
and peripherals

Figure 2.3: Device addressing concepts [TB16, Chapter 5.1]

The processor uses special I/O commands to read from and write to devices. The special I/O
commands add some complexity for the programmers to use devices. Application programmers
have to develop assembler code to communicate with the device. The instruction set of processors
can be different, so the assembler code has to be adapted, if the program is executed on different
machines [TB16, Chapter 5.1].

Memory Mapped I/O

This addressing technique uses the same address space as the memory. The lower addresses of
the space are used for addressing the main memory of the system and the higher are used for
accessing peripheral devices. Each device has a unique address to avoid conflicts.

Application developer don’t have to distinguish between a read or a write operation on system
memory or a device. The processor uses the same operations for accessing the data. The address
of the device is put on the bus address lines and the corresponding device is going to answer.
This enables the programmer to write code for different machines without changing the assembler
code for device access [TB16, Chapter 5.1].

2.3 Input/ Output Operations

Handling data between devices include different things to define like which bus does the device
use, how does the device handle read and write requests, who is allowed to access the device or
does the device handle the data block or character wise. This section is focusing only on the
pure data exchange between the processor and the device. It describes how the software can be
developed to transfer data to or receive data from a device.

10

Technology Overview

Reading and Writing data from a processor to peripheral units have to be done in a proper way.
The performance of a system depends greatly on efficient data handling between a processing unit
and a device. Multiple concepts for handling data between peripherals and the processor exists.
The performance of the system, the speed and size of the processor as well as the application
helps to find the right data handling method.

The available I/O operation techniques of a processor depends on the available components of the
system. This section describes 3 different ways to program the data exchange between the proces-
sor and peripherals. Modern processors have all these methods available, while microcontrollers
often have only the first two implemented.

2.3.1 Programmed Input/ Output

This technique describes a synchronous one for data exchange. The application, which performs
an I/O operation, sets an I/O request and then sets the appropriate I/O status bits. The processor
is busy reading the status bit of the I/O module to know, when the I/O operation is completed.
The resources of the process are used just for reading the status bits.

The Programmed I/O technique uses the processor as long as the I/O module has done the
operation or is ready to get more data. The program waits, until the I/O operation has been
executed. This technique degrades the performance level of a system heavily, if much data has
to be transferred from or to the device.

The Programmed I/O operation is the simplest one and therefore often used in small microcon-
trollers or for transmission of few data. Small systems, which only have to do one task, are using
also the Programmed I/O technique [SM15].

2.3.2 Interrupt Driven Input/ Output

The Programmed I/O operation wastes much time in waiting for the I/O module to set the
status bit to ready. The processor could do some other tasks while the I/O module is processing
the operation. The idea of Interrupt Driven I/O is to have a notification mechanism, where the
processor gets informed, if the I/O module is ready for new data. During waiting for the ready
bit, the processor could be used to do some other tasks, which do not depend on the I/O module
operation or could go to a sleep mode, where it saves energy.

Nearly every processor is supporting interrupts. Interrupts help the processor to get informed,
that some asynchronous event has taken place. This asynchronous event could be, that a spe-
cific time has passed (timer interrupt), an arithmetic execution has caused a problem (program
interrupt), a power failure or memory parity error has taken place (hardware failure interrupt)
or an I/O module operation has been finished. The interrupt can halt the execution of a normal
program to inform the process that a specific action has taken place.

The Interrupt Driven I/O can issue an I/O command to a module and then can switch to another
program. The program is executed as long as the I/O module is not issuing an interrupt to the
processor. After an I/O interrupt, the processor switches back to the I/O program and then can
do some other operations.

11

Technology Overview

The described technique rises the efficiency of the processor usage compared to the Programmed
I/O. The processor only gets activated, if the I/O module is ready for sending or getting new
data. The processor still has to trigger the next I/O operation.

The two described methods have two major drawbacks [SM15]:

• The limitation of the transfer rate is caused by the speed, which the processor can test and
service the device.

• The processor has to set up and manage each I/O transfer.

If a large amount of data has to be transferred, a separate controller should handle the trans-
fer. The data transfer could be done by just knowing the memory address of the data and the
destination of it. The processor could then be used for more important tasks.

2.3.3 Direct Memory Access

This I/O transfer technique uses a separate module, a Direct Memory Access Controller, to
perform the data exchange. The DMA controller is one module, which has access to the memory
and the peripherals. The processor has to setup the DMA controller for transferring data from
the memory to the device or vice versa. The processor gets an interrupt, if the transfer has been
finished.

Figure 2.4: DMA transfer flow [TB16, Chapter 5.1]

Figure 2.4 illustrates a DMA transfer flow. At first the processor has to setup the DMA controller
for the data exchange. The DMA controller needs the storage address of the data, the address
of the peripheral, the amount of data, which should be transferred, and the direction of the
transfer (memory-to-peripheral or peripheral-to-memory). After setting up the DMA controller,
the processor can process other tasks. The second step has to be done by the DMA controller. It
has to setup the data exchange for every word transfer between the memory and the peripheral.
The third step transfers the data from the peripheral to the memory. The peripheral sends
an acknowledge to the DMA controller, after each transfer. This notifies the DMA controller
that the transaction has happened (fourth step). The steps 2 to 4 are repeated, until all data
is transferred. After that, the fifth step is done by the DMA controller, where it informs the
processor, that the dara transfer has finished, by triggering an interrupt.

The concept of using a DMA controller enables an efficient data transfer between the memory
and the peripherals. It also enables new ways of data exchange. As shown in Figure 2.4, a system

12

Technology Overview

can have peripheral units, which have DMA controllers implemented. These controllers can be
used, to trigger memory-to-peripheral communication without the help of the processors. The
communication between the processor and the peripheral could be triggered by the content of a
specific memory location, like a processing descriptor. The peripheral unit could periodically read
from a specified location of the memory to get informed, that new data is available for processing.

2.4 On-Chip Bus Protocols

Different chip parts use standardised on-chip bus protocols to communicate. This enables the
developer to easily reuse IP cores or to easily exchange the functionality of a chip with a better
version. FPGA and IP vendors have defined their own interfaces but have made the documenta-
tion of it public.

This section describes a streaming and a memory mapped communication interface developed
by Altera. The concept of streaming and memory mapped bus protocol can also be found in
the area of ARM processing systems. The name of the communication interfaces are then AXI-
Stream and AXI-Memory Mapped interfaces. The bigger getting systems and the higher getting
complexity in interconnecting devices have led to a network based communication, which can be
implemented on a chip. The basics of it are described in Section 2.4.3.

2.4.1 Avalon Streaming Interface

High bandwidth, low latency and unidirectional data flow can be built with the Avalon Streaming
(Avalon-ST) interface. It can transport streams or packet oriented data from a source (SR)
component to a sink (SI) component. The Avalon Stream interface can implement channels
for separating logical paths between two ports [noa18]. Table 2.1 describes the signals of an
Avalon-ST interface.

Table 2.1: Avalon-ST Interface signal description [noa18]

Signal Role Width Direction Description

channel 1 - 128 SR → SI Defines the logical channel

data 1 - 4096 SR → SI Data bus signal.

error 1 SR → SI Bit mask for marking bytes with errors.

ready 1 SI → SR If the sink is ready to receive data, the ready signal is
asserted.

valid 1 SR → SI The signal gets asserted by the source, if valid data is
available on the data bus

empty 1-5 SR → SI Represents the empty symbols in the data bus. The
master doesn’t have to utilize the whole signals of the
data bus. The not used symbols are marked with the
empty signal.

endofpacket 1 SR → SI Signals the sink component the end of a packet.

startofpacket 1 SR → SI Signals the sink component the start of a packet.

The Avalon-ST interface has different transport models defined. The difference between a con-

13

Technology Overview

tinuous data stream transfer and a packet oriented data transfer is, that the startofpacket and
the endofpacket signal is set for the packet oriented one. The start of a transfer can also be con-
figured in different ways. One configuration would be, that the sink has to be ready before the
valid signal of the source is asserted. Backpressure is the name of the other configuration, where
the source asserts the valid signal before the sink asserts the ready signal. Figure 2.5 illustrates
a transfer with backpressure.

0 1 2 3 4 5 6 7 8

clk

ready

valid

startofpacket

endofpacket

empty 3

channel 0

data D1 D2 D3 D4

Figure 2.5: Avalon Streaming data transfer with backpressure [noa18]

1. The source sets the valid and the startofpacket signal to indicate, that it is has new data
for transmitting (backpressure).

2. The sink asserts the ready signal. The data transfer is started.

3. The first data byte is captured by the sink. The source clears the startofpacket signal and
asserts new data to the data signal.

4. The sink is capturing the second data byte. Then it clears the ready signal to inform the
source, that it is not ready for receiving data. The source asserts new data to the data
signal.

5. The source waits for an active ready signal. The sink is asserting the ready signal.

6. The next data byte is transmitted and the last data packet is set to the data signal. The
endofpacket is asserted and the empty signal is set, to inform the sink, that not every symbol
on the data bus is used.

7. The signals are cleared and the transmission is finished

2.4.2 Avalon Memory Mapped Interface

The address-based read/write interface is used to communicate between master and slave compo-
nents. Microprocessors, memories, UARTs, DMAs and timers use the memory-mapped interfaces
to address devices and to write data to memory located on these devices.

14

Technology Overview

Table 2.2 gives an overview of the used signals for communication:

Table 2.2: Avalon Memory Mapped Interface signal description [noa18]

Signal Role Width Direction Description

address 1 - 64 M → S Represents the byte address of memory.

bytenable 2, 4 ,8,
16, 32,
64, 128

M → S Each signal represents the location of a byte
transferred during the transaction. If the <n>
bit is low, the byte <n> is not used for transmit-
ting data. The symbol doesn’t have valid data
and it should not be used by the communication
partner.

read 1 M → S A read request triggered by the master.

readdata 8, 16, 32,
64, 128,
256, 512,
1024

S → M Data, which was requested by the master.

response 2 S → M Optional signal for transferring the status of the
response.

write 1 M → S A write triggered by the master

8, 16, 32,
64, 128,
256, 512,
1024

M → S Represents the data which should be written to
the address specified in the address signals.

lock 1 S → M If the master gets access to teh bus, the lock
signal is set to notify the slave, that the master
can do multiple transactions.

waitrequest 1 S → M The slave can assert this signal to notify, that
the read or write request is processed and that
it is not ready for the next request.

readdatavalid 1 S → M Is asserted if the slave has valid data on the read
data signal. It is used for variable-latency and
pipelined read transfers.

writeresponsevalid 1 M → S Optional signal which is asserted if the value of
the write response is valid

burstcount 1 - 11 M → S It is used to define the length of a burst transfer.

beginbursttransfer 1 M → S Indicates the begin of a burst transfer.

The Avalon-MM interface has five different transfer modes for communicating with slaves. The
transfer modes use different signals for configuring the transfer.

Typical Read and Write Transfer

This transfer mode supports read and write transfers, where the slave can control the flow with
the waitrequest signal. The slave can stall the transaction by asserting the waitrequest signal.

Figure 2.6 shows the sequence and the used signals for transferring data with this mode.

15

Technology Overview

clk

address address address

byteenable byteenable byteenable

read

write

waitrequest

readdata data

response resp

writedata data

1 2 3 4 5 6 7

Figure 2.6: Typical read and write transfer [noa18]

1. The address, the byteenable and the read signal are asserted by the master, to start a read
transfer. The waitrequest signal is immediately asserted by the slave, to inform the master,
that the next readdata signal don’t represent valid data.

2. The master samples the active waitrequest, which means, that the request is stalled. The
asserted values of the master remain constant.

3. The waitrequest signal is cleared by the slave. This indicates that the data transferred with
the readdata signals are valid. Additionally the response signal is used to send the status
of the readdata.

4. The master is triggering a write request by setting the correct data to the writedata signals
and asserting the write signal. The slave asserts the waitrequest signal to stall the transfer.

5. The waitrequest signal is cleared, which indicates that the transfer will finish with the next
rising edge.

6. The master clears the write signal and the transfer finishes.

Transfer Using the waitrequestAllowance Property

The property waitrequestAllowance is used for specifing the number of write transfers a slave
must accept after it has asserted the waitrequest. The slave must have a buffer to store the
values sent with the signal writedata. If the waitrequestAllowance is 0 a typical write transfer is
triggered.

Read and Write Transfer with Fixed Wait-States

The Avalon-MM interface has two properties, the readWaitTime and the writeWaitTime, to
specify the time, a master has to wait until data is written to the slave or valid data are asserted

16

Technology Overview

on the readdata signals. This mode doesn’t need the waitrequest signal, because of the fixed wait
state configured by the two properties

Pipelined Transfer

The pipelined transfer enables the master to trigger multiple read request to the slave. The slave
asserts the waitrequest signal, if it can’t store more requests. The readdatavalid signal is used to
indicate valid data on the readdata signal. Figure 2.7 illustrates a pipelined read transfer with
variable latency:

clk

address addr1 addr2 addr3 addr4 addr5

read

waitrequest

readdata D1 D2 D3 D4 D5

readdatavalid

1 2 3 4 5 6 7 8 9 10 11

Figure 2.7: Pipelined read transfer with variable latency [noa18]

1. The master starts a read request by setting the address signals and asserting the read signal.

2. The slave captures the address. The master changes the address and doesn’t clear the read
signal, to request a second read transfer.

3. The slave captures the address. The master changes the address and doesn’t clear the read
signal, to request a second read transfer.

4. The slave can only handle 2 read request, so the waitrequest signal is asserted.

5. The slave sets the readdatavalid signal after asserting the wanted data on the readdata
signals. The waitrequest is cleared, to indicate, that new requests can be processed.

6. The master receives the data and can request a new read transaction. The slave changes
the readdata signals and leaves the readdatavalid assigned. The slave stores another read
request of the master.

7. The slave asserts new data on the readdata signal and the master requests a new read
action.

8. The slave asserts readdatavalid and sets the readdata value.

9. The slave gets the 5th read request of the master. The read signal is cleared, because the
master doesn’t have more read requests.

10. The master captures data from the readdata signals

11. The master gets the data of the fifth read request. After that the readdatavalid signal is
cleared and the pipelined read transfer is finished.

17

Technology Overview

Burst Transfer

Burst transfers are used to transfer multiple data words by just requesting one burst transfer.
The address specified while requesting the transaction is increased automatically by the slave.
This transfer mode increases the efficiency when handling multiple data words at a time, like it
is done when data is read or written from a memory.

Figure 2.8 illustrates the steps for a write transaction

clk

address addr1

beginbursttransfer

burstcount 4

write

writedata D1 D2 D3 D4

waitrequest

1 2 3 4 5 6 7 8

Figure 2.8: Write burst transfer transitions [noa18]

1. The Master asserts the address, the beginbursttransfer, the burstcount, the write and the
writedata signal to initiate a write burst transaction. The beginbursttransfer signal is only
asserted for one cycle.

2. The slaves sets the waitrequest signal to stall the write request.

3. The waitrequest signal was cleared by the slave, so the first data is written.

4. The second data is written to the slave. The master has no more data ready so the write
signal is cleared and the burst is paused.

5. The burst is paused

6. The write signal is asserted again and the slave reads the data.

7. The waitrequest is asserted so the burst is paused again

8. The last data are written and the burst transaction is finished by clearing the write signal

A read burst transaction sequence is a bit different to the write transaction. The slave signals
valid data on the readdata bus with assigning the readdata valid signal. Figure 2.9 illustrates a
read burst transaction for 3 data words.

1. The Master asserts the address, the beginbursttransfer, the burstcount, and the read signal
to initiate a read burst transaction. The beginbursttransfer signal is only asserted for one
cycle. The slave sets the waitrequest signal to stall the read request.

18

Technology Overview

0 1 2 3 4 5 6 7

clk

address addr1

read

beginbursttransfer

waitrequest

burstcount 3

readdatavalid

readdata D1 D2 D3

Figure 2.9: Read burst transfer transitions [noa18]

2. The waitrequest signal is cleared by the slave and the readdatavalid signal is assigned, to
inform the master, that valid data is assigned on the readdata signal

3. The master clears the read signal because the waitrequest signal is cleared. He also receives
the first data word, because the readdatavalid signal is set.

4. The master receives the second data word. The slave stalls the transaction by clearing the
readdatavalue

5. The slave assigns the readdatavalid to signal valid data on the readdata bus

6. The last data is received by the master

2.4.3 Network On Chip

Communication between multiple processing elements (PEs), processors and storage elements
increase the requirements on scalable communication systems. The interconnect structure is
moving away from bus-based to network-based solutions. Network on Chip (NoC) connects
functional units of a chip via a packet-switching communication network. The scheme can be
compared with the internet, where multiple computers are connected. With the help of routing
information, packets are sent through the network. Figure 2.10 illustrates a typical NoC topology.
Each PE has implemented a packet switch for forwarding packets [BA13, chapter 4].

The NoC has the following features:

• Asynchronous data transfer through the network.

• Transmission of packets instead of words.

• No dedicated address lines are needed.

• High bandwidth, because of the distributed propagation delay across multiple switches and
effective pipelined packet transmission.

19

Technology Overview

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

n

m

Figure 2.10: Typical standard N x M mesh topology [BA13, chapter 4]

• Transmission can be done in parallel, if the sender and receiver can handle more transmission
channels.

• Theoretical infinity of scalability.

• Simplify reuse of IP cores.

• Enables a higher level of parallelism.

2.5 Off-Chip Bus Protocols

Multiple ways exist to communicate between chips and components, which are externally con-
nected. The performance of the component, the application and the environment where the
component is used are helping to find the right protocol.

This section describes to common off chip bus protocols: The Peripheral Component Interconnect
(PCI) Express bus and the Universal Serial Bus (USB).

2.5.1 PCI Express Bus

The state-of-the-art way to connect components of a computer system is the PCI Express bus.
It was built for high-speed, high-performance, serial and point-to-point communication between
devices. A packed based protocol is used for transmitting data [Sol14].

20

Technology Overview

PCI Express Link

The PCI Express bus uses links for defining the communication channel. Every link can have
multiple of two, low-voltage, differentially driven signal pairs. One pair is for receiving and the
other pair for sending data between the components. The link doesn’t have a dedicated wire for
transferring a clock signal. It uses an encoding scheme to recover the transfer clock out of the
data. The PCI Express standard version 1 to 2 used an 8b/10b encoding scheme and starting
from version 3.0 they used a 128/130b encoding scheme. The upgrade of the encoding scheme
reduced the bandwidth overhead from 2/10 = 20% to 2/130 = 1.54%.

The PCI Express supports different number of lanes for a link. A link consists at least of 1 lane,
while a lane consists of one sending and one receiving signal pair. The standard specification
describes x1, x2, x4, x8, x12, x16 and x32 lane widths. The higher the lane width, the higher
also the bandwidth of the system. The PCI Express components identify the number of available
lanes and the operating frequency during the initialisation process.

The bandwidth of the different PCI Express versions is shown in Table 2.3.

Table 2.3: Bandwidth of different PCI Express versions [Sol14]

Bandwidth (GB/s)
Link Width

x1 x2 x4 x8 x16

PCIe 1.x ”2.5 GT/s” 0.25 0.5 1 2 4

PCIe 2.x ”5 GT/s” 0.5 1 2 4 8

PCIe 3.0 ”8 GT/s” 1 2 4 8 16

PCIe 4.0 ”16GT/s” 2 4 8 16 32

PCI Express Fabric Topology

Figure 2.11 illustrates a PCI Express fabric. The figure illustrates a hierarchical structure with
the following components:

• Root Complex: Is the top of the hierarchy of a PCI Express bus. It connects the CPU
and the memory with the PCI express endpoints. Every interface of the component defines
a separate hierarchy domain, which can include multiple switches and endpoints.

• Switch: A PCI Express switch forwards packet data from a PCI Express device to the
location specified in the header of the packet. It uses a round robin or a weighted round
robin arbitration to decide, which packet is forwarded.

• PCI Express Endports: A Requester or Completer of a PCI Express transaction is
defined as endpoint. Graphic cards, NICs or USB host controller, which are attached to
the PCI Express bus, are examples for endpoints.

• PCI Express to PCI/PCI-X Bridge: Works as bridge to the older bus systems PCI
and PCI-X.

21

Technology Overview

Root
Complex

CPU

Memory

PCI Express
PCI Express Endpoint

PCI Express to
PCI/ PCIX Bridge

PCI/PCIX

Switch

PCI Express

PCI Express

PCI
Express

Legacy Endpoint Legacy Endpoint PCI Express
Endpoint

PCI Express
Endpint

PCI
Express

PCI
Express

PCI
Express

Figure 2.11: PCI Express Fabric Topology [noa10]

2.5.2 USB

The Universal Serial Bus (USB) is a peripheral bus for low- and high-speed devices like keyboards,
printers or hard drives. A personal computer can connect up to 127 peripheral devices, which
will automatically be configured as the device is attached. The data rate of the bus changed from
USB 1.0 width 1.5Mbps to 10Gbps with USB 3.1 [Ela18, chapter 6.9].

Architecture

Figure 2.12 illustrates the basic architecture of the USB bus. Each USB device is directly com-
municating with the host controller. The USB hubs are only forwarding the data from the devices
to the host controller.

• Host Controller: Every USB bus has only one host controller which initiates all data
transfer on the bus. Connected and disconnected devices get detected with a polling action
triggered by the controller.

• Root Hub: The power distribution of the devices and the activation of ports are controlled
by the root hub. It provides also the connection between the host controller and the USB
ports.

22

Technology Overview

CPU Memory

Peripheral Bus

Root HUB

USB Device USB HUB

USB Device USB Device USB Device

USB Host Controller

Host Computer

Figure 2.12: Architecture of a USB bus [Ela18, chapter 6.9]

• Hub: This component helps to expand the number of connected devices. If data is sent
from the host controller to the USB device, the hub transmits it to every device. The
recipient device of the data accepts the packet and the others discard it.

• USB Cable: Four Wires are used for data transmission: A ground wire, a V wire for
powering the device and two signals, called D+ and D-, for data transmission.

• USB Device: Different types of devices can use the USB bus to transmit information. The
basic information of the type, the manufacture ID and the data rate can be easily read by
the host controller. This enables the system to establish a basic connection and to transfer
basic data.

23

3 Data Handling Techniques between Host
System and Peripheral Units

Multiple bus protocols can be used to communicate with peripheral units. Systems use different
bus protocols depending on their hardware and system requirements. The protocols only define
the data transport to the hardware. The data fetching strategy, which has to be organised by
the host system and the hardware, has to be defined.

This chapter describes Intellectual Properties (IPs) for transferring data from the host system to
the hardware as well as data handling implementations for Network Interface Cards (NICs).

3.1 Available Intellectual Properties For Data Handling

Each hardware accelerator or peripheral unit needs a way, to communicate with its host system.
The data transfer should be implemented in an efficient and standardised form. On-chip bus
protocols give the developer standardised interfaces, which can be used to implement the data
transfer.

Data handling is a task, where designers have to develop the software (device driver) and the
hardware part of it. To minimize its development time of new systems, IPs are used to implement
functionality. This section discusses the open-source high-performance PCI Express Version 3
Streaming Library JetStream and Xillybus, which is an FPGA IP core for easy DMA over PCI
Express.

3.1.1 Xillybus

The Xillybus IP core is a commercial DMA-based end-to-end solution for data transport between
an FPGA and a host system running Linux or Microsoft Windows. The IP core can communicate
with personal computers as well as with embedded systems. The PCI Express bus is used for
communicating with personal computers. Xillybus is also available for ARM-based processors,
where the AXI bus is used as an interface.

Xillybus provides the developers a well-defined interface to handle data between the host and an
FPGA. A user program can easily read and write to different interfaces, which are defined as
devices. Linux operation systems access devices by opening a file or by piping data directly into a

24

Data Handling Techniques between Host System and Peripheral Units

file. Its communication to the programmable logic is done by FIFOs. If data is available (empty
signal is cleared) or the FIFO has space for receiving data (full signal is cleared), the Xillybus
can handle data between the FPGA and the host system.

A custom Xillybus IP core can be generated by using an online web interface. With the help of
different parameters like number of streams, their bandwidth or their direction, the online tool
creates a customised hardware block and its device driver.

Hardware

Figure 3.1 illustrates the block diagram of the Xillybus hardware. The left diagram illustrates
the block diagram of an embedded system implementation of the Xillybus, which communicates
with an on-chip ARM processor core using the AXI bus interface. The right block diagram uses
the PCI Express IP core of Xilinx or Altera.

Figure 3.1: Block diagram illustrating Xillibus IP core communication between a host system and pro-
grammable logic [Ltd18a]

The communication between the ARM processor and between the Xilinx PCI Express IP core is
done using AXI bus interfaces. The Altera PCI Express IP core uses the Avalon bus interface.
The Xillybus IP core communicates with the application logic with the help of application FIFOs.
The full and empty signals are used to signal the Xillybus IP core, that new data is available or
that data can be written to the FIFO.

The Xillybus IP core can be customised with an online tool on the website of Xillybus. The
following parameters can be configured:

• Device file name: Describing the device name of the Xillybus interface starting with
xillybus {device file name}.

• Direction: The direction of the stream can be upstream (FPGA-to-host), downstream
(host-to-FPGA) or bidirectional. The bidirectional selection enables the user to configure
the up- and downstream. The two streams share a device file, which can be opened for
reading and writing separately.

• Use of device file: The stream can be used for different purposes like audio or video
streams, data exchange with coprocessors or to address data interfaces.

When it is used for data acquisition or frame grabbing, the buffer sizes and the flow control
is chosen to support a continuous data stream.

25

Data Handling Techniques between Host System and Peripheral Units

If ”Data exchange with coprocessor” is selected, the stream is optimised for high throughput.

The option ”Address/ Data interface” adds address lines to the FPGA and the stream is
configured as synchronous.

• Data width: Xillybus supports 8-bit, 16-bit and 32-bit interfaces. High performance
streams should use 32-bit data width, because the internal data paths of the Xillybus are
optimised for 32-bit words.

The performance of the bus greatly relies on the data width. If, for example, a host-to-
FPGA link is 32-bit wide and only 2 bytes of data are written from the user program to the
driver, the driver will wait to send the data to the FPGA until two more bytes are written
by the application. This could lead to an undesired behaviour of the interface.

• Expected bandwidth: The streams are operating with the rate at which data is made
available to them. For performance tuning, the IP core generator needs the expected speed
to define the DMA buffer size in the host memory. A realistic bandwidth should be set to
support the generation and also to display warnings, if the expected bandwidth can’t be
reached by the bus.

• Synchronous / Asynchronous stream: These attributes configure the driver of the
Xillybus. A synchronous stream blocks the writing to the file until the data is transported.
Asynchronous writes are the preferred choice in almost all cases, in particular, if the com-
munication must be performant.

Synchronous streams are used for sending commands to the FPGA. A continuous flow of
data is nearly impossible.

• Number of buffers: The Xillybus driver has to allocate DMA buffers to guarantee a
performant data exchange. The IP core needs the number of buffers to prepare the logic
appropriate.

The possible size of buffers is between 2 and 1024. Slow streams (< 10Mbps) need 4 buffers,
while high bandwidth streams should use 16 to 64 buffers.

• Size of each buffer: This attribute sets the size of each DMA buffer. The total size of all
buffers should not exceed 8MB on Linux systems and 512MB on Windows. The allocation
of more memory is refused by the operation system.

A fully filled buffer sends a hardware interrupt to the host system, which should be kept at
a level sane to the processor.

Software

Accessing the FPGA from the host is done by the driver. The Xillybus IP core generator also
generates the driver and the device file for every stream. The streams can be handled like files,
which enable every practical programming languages to use the FPGA without adding any special
module extension or other adaption. Programming languages only need functions to open, read
or write files.

The illusion of continuous data stream is done by a handshake protocol between the FPGA and
the host. While the driver is loaded, the DMA buffers are allocated and the FPGA is informed
about their addresses. The number of DMA buffers and their size is hard coded into the Xillybus
IP core.

26

Data Handling Techniques between Host System and Peripheral Units

Example Code

1 i n t main () {
2 i n t fd , rc , numbytes ;
3 unsigned char ∗buf ;
4

5 // open f i l e with low−l e v e l f unc t i on
6 fd = open (”/dev/ x i l l y bu s ou r d e v i c e ” , OWRONLY) ;
7 // proof , i f dev i c e i s a v a i l a b l e
8 i f (fd < 0) {
9 per ro r (” Fa i l ed to open d e v f i l e ”) ; e x i t (1) ;

10 }
11 // i n i t i a l i s e the v a r i a b l e s
12 // . .
13 // end l e s s whi l e loop f o r wr i t i ng data
14 whi le (1) {
15 // wr i t i ng ”numbytes” data from the buf array to the FPGA
16 rc = wr i t e (fd , buf , numbytes) ;
17

18 // e r r o r handl ing
19 i f ((rc < 0) && (errno == EINTR)) {
20 cont inue ;
21 }
22

23 i f (r c < 0) {
24 per ro r (” wr i t e () f a i l e d ”) ; break ;
25 }
26 // do something with ” rc ” bytes o f data
27 // prepare bu f f e r f o r wr i t i ng data to the FPGA
28 }
29 }

Listing 3.1: Example code for transferring data using Xillybus [Ltd18b]

Listing 3.1 illustrates the example code for a write action to an FPGA stream ”ourdevice”
[Ltd18b]. The device is opened with the low-level open function. The device is opened for writing
in blocking mode. This means, that the wr i t e function waits until all bytes are written to the
FPGA. A successful open is notified, if the file descriptor has a number greater zero assigned.
The while loop continuously writes to the FPGA (line 12). Line 16 issues a write of numbytes
bytes to the FPGA from the buffer buf. The wr i t e function returns the written bytes. The first
if-statement checks if the wr i t e function returned prematurely, because of a system interrupt as
result of the process receiving a signal from the operating system. The program was not able to
write data, but no error occurred. The second if statement can terminate the while loop, because
a real error has occurred.

3.1.2 JetStream

JetStream is an open-source high-performance PCI Express 3, which supports FPGA-to-host
and FPGA-to-FPGA communication [VKVF16]. FPGA vendors already have IPs available to
support the development of PCIe connected devices. Nevertheless, the need of several additional
logic is required to manage the communication between the host system and an FPGA.

JetStream additionally enables the developer to transfer data directly between FPGAs. This
enables the developer to separate logic over several FPGAs. A multi-FPGA solution can help

27

Data Handling Techniques between Host System and Peripheral Units

the developer to reduce the hardware costs, by using several smaller and cheaper FPGAs. Power
consumption of FPGAs could also cause problems for peripheral units, which gain their power
only from the bus system. 8-lane PCI Express cards are only allowed to consume 10W for half
height and 25W for full height cards in high power mode [noa10].

Hardware

Channel 3 Channel 2
Xilinx
PCIe
Core

Completion
Engine

Request
Engine Arbiter

Registerfile

Channel 1

User
register file

Userlogic

ICAP

User Module 3

User Module 2

User Module 1

Figure 3.2: System Overview of the JetStream Library [VKVF16]

Figure 3.2 illustrates the hardware overview of the library. JetStream uses the Xilinx PCIe IP
core as a start point of the communication library. The IP core has four AXI interfaces for
data transfer, where one pair is connected to the Completion Engine and the other pair one to
the Request Engine. The Completer Engine handles transactions initiated by the host and the
Request Engine handles FPGA-to-host or FPGA-to-FPGA transactions. The engines are used
to create/decode the headers and to align the 32-bit data words to 256-bit, which is the size of
the other interface.

The Registerfile module is used to program the size of DMA transfers. The number of channels,
which can be used, is parameterisable. The driver can automatically configure itself by reading
the available channels from the Registerfile module. Each channel contains of a register group
and a FIFO, which serves the driver the ability to issue multiple commands on one channel. A
completion counter is used to give the host system the ability to know how many commands have
been completed. The user cannot add user defined registers to the Registerfile module, but the
Registerfile module serves an interface, where the user can define an address to access the user
register files located in the user logic module.

The Arbiter module handles valid commands to the corresponding User Module. The arbiter
is split into a receiving arbiter and a sending arbiter. Each of them has a command and an
arbitration logic. The command logic setups a transfer by looking at the commands stored in the
Registerfile and the available data. The module also splits the data into multiple packages, if the
data size is greater than the possible payload size of one PCIe request size.

The User Modules can be fully customised by the user. The developer has to make sure, that
the module is able to receive or create at least a maximum PCI Express payload sized packet at
wire speed. The library provides a parameterisable buffer FIFO for easy implementation.

28

Data Handling Techniques between Host System and Peripheral Units

The host system must have always sufficient memory allocated to be able to receive data from
the hardware. This is not always the case for FPGA-to-FPGA communication. To proof the
availability of data storage, the sending FPGA is transmitting a request to the FPGA, which
contains the amount of data he wants to send. The arbiter of the receiving FPGA ensures,
that the data sending is only triggered, if enough memory is available. The line between the
Completion Engine and the User Module illustrates a sink channel for direct FPGA-to-FPGA
communication.

Software

The software of the JetStream library is split in two parts. First of all, the library has a device
driver for the FPGA. The second part is a C++ API for initiating data transfer. The API
supports three transfer modes (Figure 3.3). The three modes differ in size, complexity and speed.

swap

userspace kernel space FPGA
PCIedriver

Figure 3.3: Three transfer modes for handling data between host and FPGA [VKVF16]

The single buffering mode (top figure of Figure 3.3) is the simplest mode. The driver gets a
pointer to data in the memory space. The driver allocates FPGA accessible memory and copies
the data to this memory. After that, the FPGA gets a request, that new data for a specific
channel is available. This transfer mode can be configured for both directions. This buffering
method needs an additional copy of data between the user and the kernel space. The user space
or the FPGA is only able to access data, if all of the data is transferred.

This is not the case for the double buffering transfer mode (middle figure of Figure 3.3). The
driver is copying data from memory allocated in the user space to a kernel buffer. Additional to
the buffer between the user space and the kernel space, it has a buffer for making data available
from the kernel space to the FPGA. This enables the driver to copy data into the first buffer, while

29

Data Handling Techniques between Host System and Peripheral Units

the FPGA is reading from the second buffer, and vice versa for FPGA-to-host communication.
This transfer mode speeds the data transfer up, but also doubles the memory usage.

The last transfer mode (bottom figure of Figure 3.3) avoids the need of an extra data copy
between the data memory and the buffer. The Zero copy DMA mode offers the user space
program a memory accessible by the FPGA. This avoids an additional copying mechanism and
also achieves the highest data throughput.

Example Code

1 i n t main () {
2 // a l l o c a t e the next a v a i l a b l e FPGA
3 FPGA fpga () ;
4 // a l l o c a t e a bu f f e r
5 Buf f e r bu f f e r = fpga . mal loc (1024) ;
6 // f i l l the bu f f e r with data
7 // . . .
8 {
9 // lock the FPGA

10 Transact ion fpga . t r an sa c t i on () ;
11 //non b lock ing wr i t e r eque s t command
12 fpga . channel [0] . send (bu f f e r) ;
13 // . . .
14 // b lock ing read reque s t command
15 Operation r e c e i v e =
16 fpga . channel [1] . syncRece ive (bu f f e r) ;
17 }
18 // r e c e i v e . sync () ;
19 }

Listing 3.2: Example code for transferring data using Zero copy DMA [VKVF16]

Listing 3.2 illustrates the code for transferring data between user space and an FPGA. The
creation of an FPGA object, is the starting point of every program. This FPGA object references
a physical FPGA. Line 5 allocates memory for the data transfer. The command is used to allocate
memory for the Zero copy DMA memory transfer. This means, that the memory is accessible from
the user space and also from the FPGA side. After that, the buffer has to be filled with data. In
this example, the FPGA is doing a specific task and the outcome is read out afterward. To make
sure, that the program is the only program accessing the FPGA, the FPGA get locked (line 9).
A write request is sent to the channel 0 of the locked FPGA. The FPGA is now reading the data
from the memory asynchronously. The send command is a non-blocking C++ command. The
program could now perform some other tasks. For receiving data, a non-blocking and a blocking
option is available. The command on line 16 is used to do a blocking read on the channel 1 of
the FPGA. If the command syncRece ive is replaced by r e c e i v e , the receive command would
also be asynchronous and the data would be written from the FPGA to the host into the memory,
described by the buffer object. Line 18 would then wait for reading the data.

3.2 Data Handling in Network Interface Cards

The growing number of connected devices and the applications, which use internet services, makes
it necessary to implement efficient and fast communication interfaces. Many services use battery

30

Data Handling Techniques between Host System and Peripheral Units

driven mobile devices, where processing time should be reduced to a minimum. The reduction
of processing time is in conflicts with the growing amount of data and the growing link speed of
network interfaces.

The rising link speed of Network Interface Cards (NICs) needs developments in the data handling
concept for data transmission. The communication between the CPU and the NIC has to be
improved, to support higher link speeds. The functionality of a communication channel has a
software and a hardware part. The software part can be implemented as application or as device
driver of the operating system.

This section describes the basic concept of data handling between a host and a NIC and two
different implementations. The SoC board WR-ZEN represents consists illustrates the imple-
mentation of a communication interface for SoCs and the Oregano Systems syn1588 R© PCIe NIC
illustrates the data handling in a consumer Ethernet network card.

3.2.1 Basic Concept

Network cards are more complex regarding in data handling compared to other peripheral units.
The data transmission of the system is never deterministic, therefore the NIC has to be always
ready for sending and receiving data. After a packet has been transmitted or received, the system
must be informed to do some ongoing tasks.

The data handling between the host and the NIC can be split into two parts. The first part is
named as the buffer descriptor exchange. A buffer descriptor contains the memory location of
the packet data and some other information used for exchanging data between the host and a
NIC. The host transfers this data at first, to configure the transmission. The second part is the
packet data transmission from and to the FPGA.

In Section 2.3, different forms of I/O operations were introduced for communicating with pe-
ripheral units. The network interface card can use multiple. Steen Larsen and Ben Lee [LL14]
described a possible sequence of operations for sending and receiving a packet using DMA con-
trolled transmission.

Ethernet Packet Transmission

The transmission of a packet from a host to the NIC needs 8 steps:

1. The kernel or the driver of the system creates the outgoing packet and saves it to the
system memory. The packet needs header information, sequence number and checksums to
support the protocol stack like Transmission Control Protocol (TCP) and Internet Protocol
(TCP/IP)

2. The NIC has to be informed, that new data is available for transmission. This is done by a
doorbell request on the bus. This is the last thing the host does for the packet transmission.
It will wait to release the memory buffers until the NIC notifies the transmission of the
packet.

3. A DMA request for reading the physical address of the sending payload is triggered.

31

Data Handling Techniques between Host System and Peripheral Units

4. The read request returns with multiple descriptors, containing the physical addresses of the
header and the payload. After that, the NIC requests the header information of the packet.

5. Next step is to transmit the payload from the memory to the transmit buffer of the NIC.

6. If the payload data and the header are available, the NIC combines it to an Ethernet frame
with the correct ordering

7. At last, the bitstream is passed to the physical layer (PHY), which converts it into the
proper signal condition of the medium

8. After transmitting the packet, the host gets informed by an interrupt. The system can now
free the allocated memory.

Ethernet Packet Receiving

The receiving of data and the transmission to the host needs the following 6 steps:

1. The NIC needs a descriptor for storing a packet in the system memory. The host has
allocated memory for storing data and has stored the location of the memory in the buffer
descriptor. The NIC fetches the descriptor from the system memory

2. The NIC receives a packet from the physical layer (PHY) asynchronously.

3. A DMA write transfer is triggered to store the received packet to the memory location
which is stored in the descriptor.

4. The NIC interrupts the host after transmitting the complete packet to the memory.

5. The host is processing the interrupt and writes the next location of a descriptor to the NIC.
This action also confirms the packet receiving by the host

6. The host system can know process the received packet.

3.2.2 WR-ZEN Board

The first System on Chip (SoC) implementation of a White Rabbit sub-nanosecond synchronised
communication is built in the WR-ZEN board [SGLAJLD17]. The board consists of a Zynq-
7000 SoC, which has a dual-core ARM Cortex-A9 Processor System (PS) and a Programmable
Logic (PL) part with Artix-FPGA logic. The original developed board uses the NIC modules
with regular Ethernet data traffic and White Rabbit timing distribution on the same link. This
simplifies the network infrastructure, the deployment and the maintenance of the system.

The link speed of the NIC supports 1Gbps. Due to not optimised data handling between the
PS and the PL, the board was not able to utilise the full link speed. The paper [SGLAJLD17]
describes the changes for optimising the data throughput.

32

Data Handling Techniques between Host System and Peripheral Units

RX
WRPC
Endpoint TX

AXI Status STR

 S2MM
RX Buffer

MM2S
TX Buffer

AXILITE CTRL
AXI Control STR

Xilinx AXI
DMA v7.1

AXIS2WB
Converter

AXI HPAXIFull
Switch

ARM
Processing
System

Master
AXI4 S2MM

Slave
AXI4 MM2S

Figure 3.4: Block diagram of the WR-ZEN board hardware [SGLAJLD17]

Hardware

Figure 3.4 illustrates the optimised hardware components of the WR-ZEN board. The compo-
nents for transferring the data from the PS, where a Linux is running, are the following:

• Xilinx AXI DMA IP Core: The Advanced eXtensible Interface (AXI) DMA core of
Xilinx provides high-bandwidth access directly to the memory. The AXI4 Stream to Mem-
ory Mapped (S2MM) slave interface is used for writing data to the memory and the AXI4
Memory Mapped to Stream (MM2S) master interface interfaces is used for reading data
from the memory. The DMA and the Scatter/Gather engine for fetching buffer descriptors
reduce the CPU usage significantly. The DMA IP core provides high-speed data rates and
can be seen as major component for improving the data rate.

• AXI-Streaming to Wishbone Fabric Converter (AXIS2WB Converter): The
White Rabbit PTP Core (WRPC) uses the open source bus Wishbone Pipeline Fabric
for data exchange. This block converts the AXI signals communing from the Xilinx DMA
controller into the Wishbone Fabric bus. This converter is also responsible for communi-
cating management configuration options for each transmission. It also ensures, that each
Ethernet packet reaches the minimum frame length.

• White Rabbit PTP Core (WRPC): The real time White Rabbit stack is implemented
in this component. The Wishbone Pipelined Fabric bus is used at one side and on the
other side the Ethernet PHY of the WR-ZEN board is connected through its Ethernet
MAC implementation. The architecture allows using a generic NIC with White Rabbit
synchronisation.

• Additional AMBA AXI Bus Fabric: This bus connection is used for accessing the
main memory of the PS. The high speed AXI4 connection enables fast data movements and
therefore maximises the data transfer throughput.

• AXI-Streaming Buffering: Two FIFOs, one for receiving and one for sending data are
used to buffer transmission. The 16k-word FIFOs enable the system to transfer Ethernet
jumbo packets and avoid data losses, while operating at high data rates.

33

Data Handling Techniques between Host System and Peripheral Units

Software

The hardened ARM PS core of the SoC is used for running an embedded Linux. The software, for
communicating with the NIC, is built as a network device driver of the Linux system. The NIC
device driver has to be updated, to support the new DMA-based hardware. Figure 3.5 illustrates
the components of the driver.

Application 0 Application 0 Application N

WRZWRZ_NET FMC

DMAengine XILINX_DMA

Userspace

Kernel Space
System Calls
(Networking, File system, etc.)

Figure 3.5: Linux Network Driver for DMA-based hardware. [SGLAJLD17]

• WRZ (Main Module): It is used to configure the WR-ZEN board, setups the network
interface and manages the user-space communication.

• WRZ NET: Communicates with the main network and enables network functionality

• FPGA Mezzanine Card (FMC): Different FMC extension cards can be used by the
WR-ZEN board. This part enables the usage of them.

• DMAengine: Abstraction layer for accessing DMA controllers.

• XILINX DMA: Module for setting up data transfer. The configuration and the access of
the Xilinx DMA is done through the generic interfaces of the DMAengine

The driver uses two descriptor pools for data handling, one for receiving and one for transmission.
After the network interface has received a packet, the data allocation for a free receive buffer
descriptor is done. After that, the data is transferred from the board to the main memory of the
system. The end of the transmission is signalled by an interrupt triggered by the DMA module
to the PS. The driver will then make the received packet available to the operating system.

34

Data Handling Techniques between Host System and Peripheral Units

The data handling for sending packets is also done by buffer descriptors. The hardware loads
the data specified in the buffer descriptor and sends it to the network interface. An interrupt is
triggered by the DMA module, if the packet is sent. The driver can then free the buffer descriptor
and the packet data memory.

The interrupt handling, for notifying the driver that data has been received or transmitted, was
designed two times. The architecture of the first design had to send an interrupt for every sent
and received packet. Because the first approach led to a bandwidth inefficient, the interrupt
triggering was bundled. The second approach let the hardware module wait until N packets
were sent or received. This approach works great for high bandwidth utilisation, but has to be
completed by a timeout mechanism, if only a few packets were transferred. If N packets were
sent or a specific counter value has been exceeded, the hardware has to send an interrupt to the
PS.

3.2.3 Oregano Systems syn1588 R© PCIe NIC

The syn1588 R© PCIe NIC is a 1-lane PCI Express Ethernet card with the supported link speeds
of 10Mbps, 100Mbps and 1Gbps. The special feature of the card is a patented technology for
on-the-fly timestamping of sent and received packets. Additionally, the card is fully compliant to
the time synchronisation standards IEEE1588-2002 and IEEE1588-2008. It includes a patented
hardware clock for serving highly accurate timestamps.

The functionality of the data handling is specified in a not publicly available document. The
specification document and the source code of the hardware and software implementation were
provided by Oregano Systems.

Buffer Descriptor

The packet transfer between the host system and the NIC is split in 2 parts. Before the payload
of the packet can be transmitted, the NIC needs a buffer descriptor. The buffer descriptor for
receiving and transmitting packets with the syn1588 R© NIC includes the 32-bit entries described
in Table 3.1 and 3.2.

Address Description

0
Receive Buffer Descriptor
Control/ Status Word

1 RX BD Address Word

2 Reserved

3 Reserved

Table 3.1: Entries of a Receive Buffer Descriptor

Address Description

0
Transmit Buffer Descriptor
Control/ Status Word

1 TX BD Address Word

2 Timestamp Nanoseconds

3 Timestamp Seconds

Table 3.2: Entries of a Transmit Buffer Descriptor

The Receive Buffer Descriptor (RX BD) consists of the RX BD Control/ Status Word and the
Memory Pointer, of the data. The RX BD Control/Status Word includes several transmission
information described in Table 3.3. The important information for data handling is stored in bits
31:16 and bit 15. The NIC needs a free RX BD to move the data from the NIC to the host. A
free BD is marked with bit 15. The empty bit is cleared by the host and must be set by the NIC,
if the received data of a packet is stored in the RX BD Address Word entry pointed memory. The
normal packet length of an Ethernet packet can be between 42 and 1500 bytes. Therefore, the

35

Data Handling Techniques between Host System and Peripheral Units

host has to allocate at least 1500 bytes for the packet data in the memory. Data centers often use
bigger Ethernet packet sizes, so called jumbo packets, to improve the throughput. Therefore, the
packet length information, which is stored in bits 31 to 16, can store greater values than 1500.
Bit 10 informs the NIC, if an interrupt has to be sent to the host to inform, that a packet was
successfully sent. If the packet includes a timestamp, the 6th bit of the RX BD Control/Status
Word is set. Bits 0 to 5 and bits 7 to 9 are storing transmission information of the packet.

Bit # Description

31:16 RW Number of the received bytes associated, with this BD.

15 RW
Empty
0 = BD has valid data
1 = BD data is empty

14:11 RW reserved

10 RW
Interrupt Request Enable,
0 = No interrupt is generated after the reception.
1 = When data is received (or error occurs), an RXF interrupt will be asserted

9 RW VLAN RX packet: 0 = no VLAN packet; 1 = VLAN packet

8 RW Control Frame: 0 = Normal data frame; 1 = Control frame

7 RW
Miss (promiscuous mode only):
0 = Address recognition hit; 1 = Promiscuous mode

6 RW Packet with timestamp: 0 = no timestamp; 1 = 64-bit timestamp appended

5 RW
Invalid Symbol (promiscuous mode only):
Bit is set when the reception of an invalid symbol is detected by the PHY

4 RW
Dribble Nibble (promiscuous mode only):
Bit is set when a received frame cannot be divided by eight

3 RW
Long Frame Error (promiscuous mode only):
Bit is set when a frame larger than the maximum length is received

2 RW
Short Frame (promiscuous mode only):
Bit is set when a frame smaller than the minimum length is received

1 RW
Rx CRC Error (promiscuous mode only):
Bit is set when a received frame contains a CRC error.

0 RW
Late Collision (promiscuous mode only):
Bit is set when a late collision occurred while receiving a frame

Table 3.3: Receive Buffer Descriptor Control/Status Word bit definition

The Transmit Buffer Descriptor (TX BD) consists of the TX BD Control/Status Word, the TX
BD Address Word and the seconds and nanoseconds timestamp word. The entries are stored as
32-bit words. The TX BD Control/Status Word entries are illustrated in Table 3.4. The TX BD
Ready information, located at the 15th bit of the TX BD Control/Status Word signals the NIC,
that the packet is ready for transmission. If the TX BD is processed by the NIC, the 11th bit is
set. Bits 0 to 7 are storing information about the packet transmission.

Hardware

Figure 3.6 illustrates the functional module blocks of the NIC. The main logical functionality
of the NIC is implemented in an FPGA. The translation of the Ethernet signals is done by

36

Data Handling Techniques between Host System and Peripheral Units

Bit # Description

31:27 RW Reserved for internal usage: BD RAM Address [7:3]

26:16 RW Number of the received bytes associated, with this BD.

15 RW
TX BD Ready
0 = BD is not ready and payload data can manipulated
1 = data buffer is ready for transmission

14:12 RW Reserved for internal usage: BD RAM Address [2:0]

11 RW BD used

10 RW
Interrupt Request Enable
0 = No interrupt after transmission
1 = interrupt after transmission

9 R reserved for internal usage

8 R TX packet has received a timestamp

7:4 RW
TX Retry Count
Indicate the number of retries before successfully sending.

3 RW
Retransmission Limit
This bit is set when the transmission of a packets fails due to
repeated collisions on the medium

2 RW
Late Collision
Late collision is any collision after the 64th data byte.

1 RW
Defer Indication
The frame was deferred before being sent successfully.

0 RW
Carrier Sense Lost
Carrier Sense was lost during a frame transmission

Table 3.4: Transmit Buffer Descriptor Control/Status Word bit definition

the Physical Layer Interface. The syn1588 R© Clock M Module is connected to a highly accurate
oscillator, which is used as clock source.

The communication between the host system, the main memory and the NIC is done by a 1-
lane PCI Express version 2.0 bus. The data handling functionality between the host and the
NIC is implemented by the 10/100/1000Mbps MAC IP core. The other modules don’t affect the
implementation of the data transmission between the host and the NIC.

Figure 3.7 gives a more detailed view of the model used for data transmission. The data handling
procedure needs the PCI Express IP Core, a module called AHB Slave, a memory for storing the
buffer descriptors, two modules which converts the Avalon-MM bus into a AHB bus, a module
called AHB Master and two modules for sending (TX MAC) and receiving (RX MAC) the data
from the network.

The PCIe IP core has an Avalon-MM Slave and an Avalon-MM Master interface implemented.
The master interface is used by the CPU to access registers of the ABH Slave module and to
access the Buffer Descriptor Memory. The host system can read and write buffer descriptors for
receiving and sending packets. The AHB Master uses the Avalon-MM Master interface to trigger
read or write actions on the PCIe bus.

The ABH Slave module is used to setup the NIC controller, to read data registers and to access
the buffer descriptor memory. The configuration registers of the NIC are located in the AHB
Slave module. The Clock IP as well as the AHB Master have access to the registers of the AHB

37

Data Handling Techniques between Host System and Peripheral Units

10/100/1000 Mbps
Physical Layer

Interface

RJ-45
Jack

10/100/1000 Mbps
MAC

IP Core

PCIe
IP Core

syn1588® Clock_M

32 Bit AHB

MII/ GMII

PCIe Bus

FPGA

Figure 3.6: Block diagram of Oregano Systems syn1588 R© PCIe NIC [Cad17]

Figure 3.7: Components necessary for data handling

Slave. The host system is able to access the buffer descriptor memory over the AHB Slave to
read and write buffer descriptors.

The Buffer Descriptor Memory stores the receive and transmit buffer descriptors. The memory
is implemented as a 9 x 32-bit dual ported ram with a 9-bit address signal and 32-bit data lines
for input and output. The AHB Slave is connected to port A and the AHB Master is connected
to port B. Each receive and transmit BD needs 128 bits or 4 x 32-bit. The memory can store
64 RX BD and 64 TX BD. The buffer descriptors are separated in two sections. Address 0x000
to 0x0FF (0 to 64 ∗ 4 − 1) are used to save the entries of TX BD and the Addresses 0x100 to
0x1FF (64 ∗ 4 to 128 ∗ 4− 1) are used to store the RX BD entries. Bits 1:0 are describing, which
entry of the BD gets accessed (see Table 3.1 and 3.2).

The AHB Master controls the data transmission between the memory and the NIC as well as the
signalling for new received or sent packets. The AHB Master is connected to port B of the Buffer

38

Data Handling Techniques between Host System and Peripheral Units

Descriptor Memory and to the registers of the AHB Slave. The RX MAC and the TX MAC are
connected with an Avalon Streaming Bus interfaces. The AHB Master is connected to the RX
MAC and the TX MAC, as well as to the PCI Express IP Core.

The functionality of the AHB Master is separated in two processes. The first process handles the
BD. It continuously searches for new BD and stores ready (TX BD) or empty (RX BD) buffer
descriptors in the local register. The process also updates buffer descriptors of sent or received
packets. The BD Control/Status Word for receiving and transmitting packets include a bit, which
triggers the AHB Master to send an interrupt to the host system after updating. The module is
accessing the Buffer Descriptor Memory, if the other process does not have an empty or ready
buffer descriptor. The Buffer Descriptor Memory is also accessed from the AHB Slave, which has
priority over the AHB Master.

The second process is handling the packet data transfer between the host and the TX MAC and
the RX MAC. For receiving data, the process must have an empty BD available and the valid
signal of the RX MAC Avalon Stream interface has to be set (backpressure transfer mode). The
first 64 bits of the transmission includes the RX BD Control/Status word of the received packet.
The process can then initialise a transfer from the RX MAC to the location in the memory,
specified in the BD entry 2, the RX BD Address Word. The transmission of data is activated, if
the first process finds a ready TX BD in the Buffer Descriptor Memory and the Avalon Stream
sink interface of the TX MAC has its ready signal set. The process initialises a transfer from
the memory location, specified in the BD entry 2, the TX BD Address Word, to the TX MAC.
The first 64 bits, which are transferred, contain the TX BD Control/Status Word of the packet.
The address of the TX BD in the Buffer Descriptor Memory is stored in bits 31:27 (address 7:3)
and bits 14:12 (address 2:0). After transferring the data to the TX MAC, the 11th bit of the BD
Control/Status Word has to be set and the BD entry has to be updated in the Buffer Descriptor
Memory. After the TX MAC has sent the packet data over the network, the TX MAC signals
the AHB Master, that the transmission was done. Furthermore, the process updates the TX BD
entries with the address located in bits 31:27 and 14:12 of the TX BD Control/Status Word (see
Table 3.2). The update also includes the setting of the timestamps (TX BD entries 2 and 3).

Figure 3.8 illustrates the sending and receiving control flow of the AHB Master module. The
hardware is continuously searching for available BD in the Buffer Descriptor Memory. If a valid
empty RX BD is available (Figure 3.8(a)), the data of the RX BD is stored in internal registers
and the hardware waits, until a packet is received. The received packet is copied to the memory
address specified in the RX BD Address Word. After that the RX BD Control/Status Word is
updated and an Interrupt is sent to the CPU.

The sending control flow (Figure 3.8(b)) transmits the data specified in the TX BD into the TX
MAC Module. The TX BD is then updated and a new TX BD can be searched. The TX MAC
returns the TX BD Control/Status Word after sending a packet to the AHB Master module. The
returned TX BD Control/Status Word includes its location in the Buffer Descriptor Memory in
bits 31:27 and 14:12 (see Table 3.2). The returned TX BD Control/Status Word is updated in
the memory and an interrupt is sent to the CPU.

Software

The software of the NIC is implemented as a device driver of the operating system. The main
task of the software is to setup the NIC, allocate memory for packet transmission and handle
received data from the NIC.

39

Data Handling Techniques between Host System and Peripheral Units

Start

Yes

RX BD
available

Yes

Packet
received?

Transmit Data
to Memory

Update RX BD
Control/Status

Word

Send Interrupt
to CPU

No

No

(a) Receiving packets

Start

TX BD
available

Yes

Transmit Data
from Memory

Update TX BD
Control/Status

Word

Start

TX BD
returned from

TX MAC

Send Interrupt
to CPU

Update TX BD
Control/Status

Word

No

(b) Transmitting packets

Figure 3.8: Data handling control flow of the Oregano Systems syn1588 R© PCIe NIC

During the setup process, the driver has to initialise the BD for receiving and transmitting.
This includes setting up the configuration registers of the NIC, allocating memory for packets,
initialising the BD Control/Status Words with default values and storing the addresses of the
packet memories in BD Address Words of the BD. The allocation of the memory in the main
memory for storing the packet data is done at the beginning, to reduce the time for allocating
and saving the addresses to the Buffer Descriptor Memory.

The driver gets activated for transmitting a packet, if the operating system triggers it. The driver
uses two pointers for knowing, if a BD is free. The first pointers (write pointer) saves the index
of the last written BD and the second pointer (read pointer) stores the last BD, which was sent
by the NIC. After incrementing the write pointer, it gets compared with the read pointer. If
the values are equal, no BD is available for transmitting packets. Otherwise the packet data can
be transferred to the location, which is stored in the TX BD Address Word, and the TX BD
Control/Status Word is set. Afterwards, the TX BD Control/Status Word has to be written to
the NIC. The TX BD Address Word value of a TX BD is fixed after initialisation, so it doesn’t
have to be updated.

The NIC is sending an interrupt, if a packet was sent and the interrupt bit (10th bit) of the TX
BD Control/Status Word is set. The TX BD Control/Status Word was updated by the NIC and
was marked as not ready. The read pointer can be incremented to mark the BD as available for
a new packet.

The processing of received data is triggered by the NIC. After transmitting the data from the
NIC to the main memory, an interrupt is sent over the PCIe to the host. The driver, which
stores the pointer to the next RX BD, reads the RX BD Control/Status Word from the Buffer
Descriptor Memory of the NIC. The RX BD Address Word can be calculated out of the starting
address of the allocated memory and the RX BD pointer stored. The data is moved from the

40

Data Handling Techniques between Host System and Peripheral Units

location stored in the RX BD Address Word to a memory, which is accessible by the operating
system for further processing. After that, the RX BD Control/Status Word is set to an initial
value and is written to the Buffer Descriptor Memory of the NIC.

Control Flow for Packet Sending

The control flow for sending a packet includes the following steps:

1. The operating system forwards some data to the driver for sending on the network interface.

2. The driver search for a free TX BD. Afterwards, the packet data is copied to the memory
location of the TX BD. The address of the location is stored in the TX BD Address Word.

3. The TX BD is then written back to the Buffer Descriptor Memory of the NIC

4. The hardware is continuously searching for new TX BD. If a new TX BD is found, the data
of it is stored in local registers.

5. The packet data stored at the location specified in the TX BD Address Word is transferred
to the TX MAC.

6. The TX MAC returns the TX BD Control/Status Word of the packet. The TX BD Con-
trol/Status word contains the Buffer Descriptor Memory address of the TX BD in the bits
31:27 and bits 14:12 (see Table 3.4). The TX BD gets updated and an interrupt is triggered
to the CPU

7. The CPU reads the TX BD and signals the operating system, that the packet was sent
successfully.

The software executes the steps 1 to 4 and 8 while the others are processed by the hardware.

Control Flow for Packet Receiving

The control flow for receiving a packet includes the following steps:

1. The hardware is continuously searching for free RX BD. If an empty RX BD is found, the
data of it is stored in a local register.

2. The AHB Master is now sensing on the Avalon Streaming bus interface of the RX MAC.
The RX MAC signals a received packet by setting the valid and start of packet signal. The
first 64 bits of data contains the RX BD Control/Status Word of the received packet. It is
used to configure the data transfer to the memory location specified in the RX BD Address
Word entry specified in the RX BD.

3. After sending packet data to the memory, the RX BD is saved to the Buffer Descriptor
memory and an interrupt to the CPU is sent.

4. The CPU reads the RX BD and signals the operating system, that a packet was received.

5. After that, the RX BD is reset to an initial value.

The steps 1 to 3 are executed by the hardware and step 4 and 5 are handled by the software.

41

Data Handling Techniques between Host System and Peripheral Units

3.3 Performance Analysis of Data Handling Components

Multiple parameters influence the performance of data transfer between multiple components of
connected components of a device. Figure 3.9 gives a graphical representation of a system bus
with multiple components.

DMA
Controller CPU Main Memory

Peripheral 2

 DMA

Controller

Bus

Figure 3.9: Multiple connected components which use the same bus for data exchange

The communication between components is done with the help of a bus system. Multiple compo-
nents are connected and they share the same bus for data transfer. The CPU and the components
are exchanging their data with the help of the main memory of the system. Fast communication
and processing should not mean that the processor is heavy utilised or slowed down. This is
the reason, why data handling components like DMA controllers can be used to outsource data
moving mechanisms from the CPU to another component. Peripherals could also have a DMA
controller implemented to speed data communication up.

The following chapter discusses the performance impact of the memory and bus protocols and
presents the important points for getting a throughput optimised data handling concept.

3.3.1 Memory

Memory is an expensive part of a component. It is available on-chip and off-chip. On-chip
memory of an FPGA or an ASIC is limited to a few megabytes. Therefore, additional memory
is added by putting memory chips on the Printed Circuit Board (PCB). The complexity of a
memory managing unit integrated on an FPGA or an ASIC is very high and also its development
costs are very high. Digital circuit designers try to avoid adding additional memory blocks to
hardware by storing needed data on the main memory of the system.

Modern computer or SoC systems have multiple gigabytes of main memory available. It is used to
store application data and for transferring data from CPU to peripheral units. The performance
of memory intensive applications highly depends on the speed of the main memory.

Figure 3.10 illustrates the 3D - architecture of a Dynamic Random Access Memory (DRAM) chip
[RDK+00]. The three dimensions of the memory are represented with banks, rows and columns.
A bank has an array of memory cells which accesses an entire row at a time. The data of a row
is stored in a cache after if it was accessed. This reduces the latency of subsequent read or write
actions on the same row.

Several parameters are influencing the performance of reading or writing data from the memory:

• Clock frequency of the memory.

42

Data Handling Techniques between Host System and Peripheral Units

Sense Amplifiers (Row Buffer)

Column Decoder

Memory
Array

(Bank 0)

Bank N

Memory
Array

(Bank 0)
R
ow

 D
ec
od
er

Sense Amplifiers (Row Buffer)

Column Decoder

Bank 1

Address

Data

Memory
Array

(Bank 0)

Figure 3.10: 3D - architecture of a Dynamic Random Access Memory chip

• Memory scheduling schemes [RDK+00], which is responsible for reordering data fetching
requests, increase the utilisation of the caches and therefore the data exchange gets faster.

• Organisation of stored data.

The last point of the performance influencing parameters is addressed to the application engineer.
The data fetching from the memory can be optimised, if the data are consecutively stored in the
memory. The memory can be fully utilised for transferring the requested data. If multiple requests
to different addresses have to be processed by the memory controller, the performance will be
decreased.

3.3.2 Bus Protocols

Different bus protocols can be used to enable communication between components. Multiple bus
protocols exist for on-chip and off-chip communication. Memory-Mapped (MM) bus protocols,
which are able to address components or memory locations can be used to transfer data from the
main memory of a system to the CPU or other peripheral units.

On-Chip Bus Protocols

AMBA AXI-MM and Avalon-MM bus protocol 2.4.2 can be used to transfer data between the
main memory of a SoC to peripherals or the processing system. A bus system uses dedicated

43

Data Handling Techniques between Host System and Peripheral Units

signals for transferring addressing information and for transferring the data. A MM bus protocol
has different methods for transferring data.

• A simple read/write transfer: This action is used for getting only one data word of a memory.
The address signal refers to a byte, but will transfer data starting from the address specified
to the highest address possible to send over the data signal. Data widths of on chip bus
systems can be 8, 16, 32, 64, 128 or 256 bits.

This transfer mode should not be used to transfer a great amount of data. The utilisation
is reduced, because the master has to get access to the bus, before he can request a new
transaction. If multiple components use the bus, it has to wait until it gets control over the
bus again.

• Pipeline transfer: Multiple requests on different addresses can be triggered from the com-
ponent or the CPU and the memory responses in-order. This transfer mode can be used, if
multiple data, which is not stored consecutively, should be transferred.

• Burst transfer: The master can request a read or write transaction for multiple data words.
The starting address is specified by the address signal and a separate burst length is trans-
ferred with a signal, which describes the amount of transported data.

The last transfer method is the preferred one for transferring multiple data words. The application
developer has to allocate data blocks, so that the burst action can be used. The simple and the
pipelined transfer method will reduce the throughput on the bus. The arbiter of the bus system
will not give the same component access to the bus multiple times in a row. The CPU and the
DMA module of the system will have priority over other components.

Off-Chip Bus Protocols

The PCI Express bus (Section 2.5.1) is the most used off-chip bus protocol used for high speed
communication between the main memory and a peripheral unit. The packet based point-to-point
transfer supports different maximum payload sizes. Six different maximum payload sizes exist:
128, 256, 512, 1024, 2048 and 4096 bytes.

The bus request is fully utilised, if the maximum packet size can be used for reading or writing
requests. The internal buffers of the system should be chosen for supporting at least a payload
size of 128 bytes.

3.3.3 Data Handling

Transporting data between a CPU and peripheral units includes several steps and used compo-
nents. The performance of an application running on a peripheral component highly depends on
fast data exchange.

A data handling mechanism, optimised for data throughput, should consider the following points:

• Use memory blocks: Write and read actions on the system memory can be optimised by
accessing coherent memory blocks. The buffer of the memory can then be utilised efficiently.

44

Data Handling Techniques between Host System and Peripheral Units

• Use separate DMA controller: Handling data from one location to another can be
done by a separate DMA controller (see Section 2.3.3). It is important to unload simple
procedures from the CPU to other controllers. This frees the CPU for more important and
more difficult tasks.

• Consider maximum data size of bus systems: Application engineers should try to
utilise the whole data width of the bus. The read and write action should only be requested,
if the size of the request is big enough to utilise the bus width.

• Use as less bus requests as possible: Using less bus requests and fetching multiple
data points with one burst transaction will increase the data transfer. The arbiter of a bus
protocol, where multiple components are accessing the same bus, will give faster access to
a component, if the component uses fewer requests.

• Use as less memory requests as possible: Less memory requests mean less bus requests,
which can be easily guaranteed, if the application memory is allocated in blocks

• Minimise communication between CPU and peripheral unit: The CPU will directly
write to peripheral unit for configuring it. The DMA controller should transfer greater
amount of data. The peripheral must also transfer notification to the CPU for signalling
process completion. This notification can be sent by interrupts. After the CPU receives
the interrupt, an action gets triggered to do some ongoing tasks. If these interrupts can
be bundled to a few, so that the CPU needs less context switches, the performance of the
system will increase.

3.3.4 Analysis of State of the Art Solutions

The two analysed methods for handling data to a network interface for transmitting data over the
network use the same link speed for data transmission. The data handling solutions are working
in different areas. The WR-ZEN Board is a SoC board, which is capable to process White Rabbit
synchronisation. The NIC of Oregano Systems represents an interface which can be used in every
host system with a PCI Express bus.

WR-ZEN Board

A working group (Jorge Sánchez-Garrido et al. [SGLAJLD17]) have already found problems,
referring the data communication speed. The optimisation of the data handling is described in
Section 3.2.2. The paper focuses on the impact of high data throughput with the synchronisation
mechanism, but does not describe the maximum bandwidth of the system.

The possibilities for creating a complete new data handling strategy in a SoC are higher then for
NICs. Jorge Sánchez-Garrido et al. use two bus systems to transfer data. The packet data are
transferred with an AXI High Performance bus and the meta information is transmitted with the
help of an AXI LITE interface.

The paper describes, that every time a packet arrives, memory has to be allocated in the main
memory to store the data. Each received packet needs processor and memory actions for getting
memory and for transferring the allocated address back to the memory. The memory’s allocation
can fail, because no memory is available. This can lead to packet drops. Also, the load of

45

Data Handling Techniques between Host System and Peripheral Units

the memory is higher, because the allocation of memory for every packet needs memory and
processing time. The allocation of memory and the meta data transfer, which is triggered by the
processor, can be avoided by defining the memory for packet transfer during the activation of the
network interface.

Oregano Systems syn1588 R© PCIe NIC

The Oregano Systems PCI Express NIC is connected to a host system with a PCI Express bus.
Every time the CPU has to access the NIC, the PCI Express bus, which can be used by multiple
peripherals, has to be used.

The most time-consuming process of the NIC is the writing and reading of meta information
to and from the NIC. The meta information of a packet is represented with the help of buffer
descriptors (BDs). The NIC has a memory block on the hardware, which is used to store the
BDs. Every time the operating system has to send data, the device driver has to do the following
actions:

• Copying the data from the application storage to a memory location, which is accessible by
the NIC

• Writing the TX BD to the Buffer Descriptor Memory on the NIC

• Wait, until the NIC sends the packet and triggers an interrupt

• Reading the interrupt source from the NIC

• Reading the TX BD of the sent packet from the NIC

Sending a packet, needs one write and 2 read actions on the PCI Express bus. The transfer of a
received packet needs the following actions:

• Wait, until the NIC triggers an interrupt

• Reading the interrupt source from the NIC

• Reading the RX BD of the received packet from the NIC

• Writing an initial value to the RX BD, when it was processed by the device driver

This action also needs one write and 2 read actions on the PCI Express bus. The PCI Express
bus is not always available, so the time needed for reading and writing data is not deterministic.
The amount of data, which is transferred each time, are four bytes. A transaction with only a
few bytes does not fully utilize the bus.

46

4 Optimised Data Handling Architecture for
Network Interface Card

The fourth industrial revolution, where every device should be accessible via internet, demands on
high speed communication. The costs, energy efficiency and the performance of the used devices
have to be optimised for being competitive on the market.

The amount of data, which has to be transferred through the network, grows continuously. This
leads to rising link speeds, which are supported by different communication technologies. These
rising link speeds needs optimisations in the data handling mechanism of computer systems or
bus systems with higher bandwidths to transfer the data.

Network interface cards for wired and wireless communication are used to prepare data for com-
municating. This includes the handling of data from the CPU to the hardware and the conversion
of the data into the electrical representation used by the communication technology.

High speed computer networks use copper or optical interfaces for communicating data. The
link speed standard of computer systems is nowadays 1Gbps. This link speed defines only the
theoretical data throughput between two network nodes. The challenge of fast communication
is to serve enough data for transmission. The rising data link speed needs improvements in the
data handling mechanism between the CPU and the NIC.

The architecture for handling data between the CPU and the NIC includes the development of
a software part, which is executed by the CPU, and a new design of the hardware, which is
represented by a NIC. The tasks of the software are to allocate memory in the system memory,
create packets for sending, handle received packets to the destination application and to handle
interrupts triggered by the hardware. The hardware has to send and to receive data from the
network, store it in the system memory and signal the CPU, that new data is available.

This chapter describes an optimised data handling architecture for NICs. The concept of an
optimised architecture as well as the hardware and software realisation are described.

4.1 Concept

A computer system consists of multiple connected components. The peripheral units share a bus
system for exchanging data to each other. The host system with a NIC consists of the units
illustrated in Figure 4.1. The PCI Express bus is the state of the art communication bus on

47

Optimised Data Handling Architecture for Network Interface Card

host systems. The CPU is accesses the NIC over the PCI Express bus and the NIC is accesses
the system memory also with this bus. The data handling module has an Avalon-MM bus to
communicate with the PCI Express module and uses two Avalon-ST buses to transfer received
and transmit packet data to the Gigabit MAC IP Core.

1Gbps
Physical
Layer

Interface

PCIe
IP Core GMII PCIe Bus

RX BDs

TX BDs

RX Data

TX Data

Main Memory

CPU

NIC

1Gbps
MAC
IP Core

Data
Handling
Module

Figure 4.1: Concept of the Data Handling Module

The communication between the CPU and the NIC is divided into two parts: At first the meta
information of a packet must be available on the NIC and then the packet payload can be fetched.
In order to increase the throughput of data the communication should be optimised. This goal
can be reached by realising data exchange with a minimum of bus and memory requests. Besides
that, direct communication should only be necessary fir configuring the NIC and for reading
interrupt signals.

The minimisation of bus requests is achieved by fetching multiple meta information and packet
data with one burst transaction. The burst length can be set to meet the payload sizes of one
PCI Express packet. As illustrated in Figure 4.1, the BD and the packet data of all packets are
stored in memory blocks. The organisation of the BD (Section 4.1.1) enables the NIC to fetch
multiple meta information of packets with one burst transaction. This optimises the usage of the
bus and accelerates the data transmission.

4.1.1 Buffer Descriptor Management

The meta data are organised in buffer descriptors, which have a different structure for sent and
received packets. Table 4.1 describes the list elements of a Transmit Buffer Descriptor (TX BD)
and Table 4.2 describes Receive Buffer Descriptor (RX BD) list elements.

The list elements of both BDs are designed as linked list. If the NIC gets the start address of
the first BD element, the hardware does not need any other configuration to get a new BD than
that. The BD fetching is optimised by using a data block for storing the BD. This enables the
hardware to get multiple BD with only one read burst transaction from the main memory. The
last BD list of the data block is linked to the first BD list via the 7th entry (Address of the next
RX BD List) of the structures. The BD storage can be regarded therefore as ring buffer of BD.
Figure 4.2 illustrates the memory used for two RX BD.

48

Optimised Data Handling Architecture for Network Interface Card

Entry Description

0 TX BD Control/ Status Word

1 Reserved

2 TX BD Address Word

3 Timestamp Seconds

4 Timestamp Nanoseconds

5 Reserved

6 Reserved

7 Address of the next TX BD List

Table 4.1: Transmit Buffer Descriptor list elements

Entry Description

0 RX BD Control/ Status Word

1 Reserved

2 RX BD Address Word

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Address of the next RX BD List

Table 4.2: Receive Buffer Descriptor list elements

RX BD Control/ Status Word
reserved 1

RX BD Address Word
reserved 2
reserved 3
reserved 4
reserved 5

Address of the next TX BD
RX BD Control/ Status Word

reserved 1
RX BD Address Word

reserved 2
reserved 3
reserved 4
reserved 5

Address of the next TX BD

Begin Packet Data

Begin Packet Data

Figure 4.2: Memory organisation of RX BD ring buffer with two RX BD

The first element of the BD list is the TX or RX BD Control/ Status Word, which stores multiple
transmission parameters. The data handling procedure uses the 15th bit (empty bit) for storing
the availability of a RX BD. The RX can be used by the hardware, if the empty bit is set. A TX
BD is marked as filled by setting the 15th bit (TX BD Ready) of the TX BD Control/ Status
Word.

The BDs are initialised by the device driver and the address of the first BD is saved to a configu-

49

Optimised Data Handling Architecture for Network Interface Card

ration register. The hardware is polling for new BDs, until it gets valid ones. The communication
of meta and payload data of a packet is therefore done by a polling action from the main memory.
The CPU communicates the data with the help of the system memory to the NIC. It has just to
trigger a memory copy from the application data to the memory location accessible by the NIC.
This is a very performant way to handle the data because the CPU is nearly not utilised and the
data exchange between CPU and memory is optimised.

4.1.2 Receive Data Sequence

The sequence for transmitting received data from the NIC to the operating system has the
following steps (Figure 4.3). The empty blocks represent software/ driver tasks and grey blocks
are hardware tasks.

1. The device driver of the NIC has to allocate memory in the system memory for storing RX
BDs which have to be initialised as empty RX BDs. The data for storing the payload of a
packet has to be allocated and its address saved into the 3rd element of the RX BD list.
The 7th element must locate the address of the next RX BD and the last RX BD must
point to the first RX BD list address to create the wanted ring buffer.

2. The device driver has to set the start address of the RX BD and some configuration registers
on the NIC.

3. The first task of the hardware is to fetch multiple RX BDs to be able to transmit received
packets to the system memory. Multiple RX BDs are read from the memory by using a
read burst request. The availability of an empty RX BD can be proven by reading the
15th bit of the RX BD Control/ Status Word. If one read RX BD is marked as not free,
the hardware stops reading the other RX BD, which are fetched during the burst request.
Empty RX BDs are stored in a FIFO.

4. The hardware reads an empty RX BD from the FIFO and is now ready for receiving data.

5. If the memory, which stores the received Ethernet packets, signals, that new data is avail-
able, the data handling module starts to upload the data to the main memory.

6. After the packet data was transferred, the RX BD of the packet is transmitted to the main
memory and the received packet interrupt signal is set for one clock cycle.

7. The device driver gets activated by the interrupt. The PCI express only supports one
interrupt signal, that is why the NIC has to read the interrupt source from the NIC and can
then handle the received data over to the application specified in the packet data payload.

8. After processing the RX BD, the value of the BD Control/ Status Word it is set to an initial
value.

9. If the FIFO for storing the RX BD is empty, new receive RX BDs are read from the system
memory (step 3), otherwise step 4 is executed.

50

Optimised Data Handling Architecture for Network Interface Card

Start

Create RX BD

Configure HW
Register

Yes

Empty RX BD
available?

Read Empty RX
BD from FIFO

No

Yes
Packet received

No

Transfer Packet to
Main Memory

Write RX BD
back to Main
Memory

handling data to
application

NoYes RX BD
available?

Set RX BD to
Initial Value

Figure 4.3: Receive Data Sequence

51

Optimised Data Handling Architecture for Network Interface Card

4.1.3 Transmit Data Sequence

The sequence for sending data over the network has the following steps (Figure 4.4). The empty
blocks represent software/ driver tasks and grey blocks are hardware tasks.

Start

Create TX BD

Configure HW
Register

Yes

Ready TX BD
available?

Read Ready TX
BD from Register

No

Transfer Packet to
FIFO

NoYes TX BD
available?

1 Gbps MAC
returns TX BD

Write TX BD
back to Main
Memory

Notify
Application

Set TX BD to
Initial Value

End

Figure 4.4: Transmit Data Sequence

1. The device driver of the NIC has to allocate memory in the system memory for storing TX
BDs, which have to be initialised as not ready TX BDs. The data for storing the payload
of a packet has to be allocated and the address of it has to be saved into the 3rd element
of the TX BD list. The 7th element must locate the address of the next TX BD and last
TX BD must point to the first TX BD list address to create the wanted ring buffer.

52

Optimised Data Handling Architecture for Network Interface Card

2. The device driver has to set the start address of the TX BD and some configuration registers
on the NIC.

3. The first task of the hardware is to fetch multiple TX BDs. Multiple TX BDs are read
from the memory by using a read burst request. The availability of a ready TX BD can
be proven by reading the 15th bit of the TX BD Control/ Status Word. If one received
TX BD is marked as not ready, the hardware stops reading the other TX BD, which are
fetched during the burst request. If the request contains a ready TX BD, it is stored in a
register. The address, at which the TX BD elements are stored in the register, is saved into
reserved bits of the BD Control/ Status Word. This address is necessary for acknowledging
the transmission of a packet.

4. The hardware reads a ready TX BD from the TX BD register and starts transmitting data
to the FIFO, if it space is available for store packet data.

5. The data handling module has to transfer the data from the system memory to the FIFO
module, which stores the packet data for sending.

6. After the packet data are transferred, the next TX BD can be loaded from the TX BD
register, if available there; If not, new TX BDs are read from the main memory.

7. The TX 1Gbps Mac IP Core of the NIC indicates, that a packet was sent, by setting a signal.
The TX 1Gbps MAC IP Core and the data handling module are operating in different clock
domains, so synchronisation mechanisms have to be designed. The TX BD Control/ Status
Word and the time stamps of the transmitted packet are returned

8. After writing the TX BD elements back to the main memory, a transmit interrupt is trig-
gered.

9. The device driver gets activated by the interrupt signal. The current PCI Express IP Core
implementation only supports one interrupt signal, that is why the NIC has to read the
interrupt source from the NIC first. Only then it can signal the operating system, that the
packet data were sent.

10. After processing the TX BD, the value of the TX BD Control/ Status Word it is set to an
initial value.

4.2 Hardware

The environment, in which the optimised architecture is built into, is illustrated in Figure 4.5. A
PCI Express IP core is used to implement the PCI Express bus functionality. The Data Handling
Module communicates over the Avalon-MM bus with the PCI Express core. The Avalon-MM bus
transfers 64 bits of data with each transaction. The MAC core of the NIC uses the Avalon-ST
interface to get sent data and to send received data to the Data Handling Module.

The functionality of the NIC is split into multiple modules. The modules consist of different
processes for enabling the data handling between the main memory and the NIC. Figure 4.6
illustrates the different modules. The system memory is accessed with the help of the Avalon-
MM interface; the Media Access Control modules for receiving and transmitting packets are
accessed through two Avalon-ST interfaces. Multiple configuration registers can be read to setup

53

Optimised Data Handling Architecture for Network Interface Card

Avalon ST

TX FIFO

Avalon ST
64 bit data

RX FIFO

TX BD word
32 bit data

Timestamp s 32 bit
Timestamp ns 32 bit

GMII
TX_MAC

Data Handling
Module Avalon ST

64 bit data

Avalon MM
64 bit data

BD_POLL_INTERVAL
BD_CTRL_STATUS
TX_BD_ADDRESS
RX_BD_ADDRESS

SW_RESET

PCIe

rxb_irq
rxe_irq
txb_irq
txe_irq
busy_irq

Bus

CPU

Main
Memory

Avalon ST

Figure 4.5: Environment of the Data Handling Module

basic configurations of the data handling architecture. Multiple interrupt signals are used to
notify the CPU, that packet data were transmitted.

This section will describe the behaviour of the data handling architecture modules.

4.2.1 TX BD Register

The TX BD Register stores the meta information for sending a packet on the network. The input
and output signals of the module are illustrated in Figure 4.7. The size of the storable TX BD
can be configured by a generic value. The whole data architecture is built vendor and platform
independent.

Three entries of the TX BD list have to be stored, to have the necessary information for sending
a packet:

• entry ’00’: Address of the TX BD list element

• entry ’01’: TX BD Status/ Control Word

• entry ’10’: TX BD Address Word

The following processes and modules are implemented to enable the storing of TX BD:

Generated Register Memory Core

Storing blocks like registers or First-In-First-Out (FIFO) memories can be integrated with IP
cores. This IP cores can be generated with development tools of the destination platform. The
TX BD Register needs a register memory element for storing the TX BDs.

The TX BD Register module uses a generic value for getting the size of the storable elements.
This value must be the source for calculating the size of the generated register. The register needs
the following parameters:

54

Optimised Data Handling Architecture for Network Interface Card

Interrupts

Current
TX BD

Current RX BD

BD Control
FSM

RX BD word

AvalonST
to TX FIFO

Transmit
Packet FSM

AvalonMM

AvalonMM
to

PCI Express
Module

External Registers

RX BD FIFO
M x (3 x 32 bit)

TX BD Register
N x (3 x 32 bit)

TX_MAC BD
+ timestamp s
+ timestamp ns

Return TX BD
FIFO

N x (3 x 32 bit)

updated

Receive
Packet FSM

AvalonST
from

RX FIFO

RX FIFO Packet
Count

RX FIFO almost full

Bus
Arbiter
FSM

AvalonMM

AvalonMM

Figure 4.6: Modules of the Data Handling Architecture

• Type: Single Port Ram

• Data With: 32bit. Each BD entry consists of 32 bits.

• Data Depth: 8 to 512 entries. It is calculated out of the entries, which are addressed by
the signal txbd reg entry i and the number of storable TX BD. For storing 4 TX BD, the
register needs a data depth of 16.

• Unregistered Output

• Registered Input

Process for Calculating Available Space

A TX BD is valid and uses storage, if the 15th bit of the TX BD Control/Status Word (entry
’01’) is set. A counter is reporting the available space to the output signal txbd reg avail space o.
The address of a free register is reported with the signal txbd reg free addr o and the
txbd reg free addr valid o validates, that the address is valid and can be used.

Process for Checking the BD Storage

This process checks, if the content of the registers was not corrupted during storage. The TX
packet transmission order is also checked during this procedure. The sent order must be the same
order, in which the TX BD were written to the register. An error is reported with the signal
txbd reg sanity check irq o.

55

Optimised Data Handling Architecture for Network Interface Card

txbd_reg_free_addr_o (max 7 bit)

txbd_reg_free_addr_valid_o 1 bitTX BD Register

txbd_reg_wrdata_i 32 bit

txbd_reg_wren_i 1 bit

txbd_reg_addr_i (max 7 bit)

txbd_reg_entry_i 2 bit

reset_n_i
1 bit

sw_reset_i
1 bit

txbd_reg_rddata_o 32 bit

txbd_reg_avail_space_o (max 8 bit)

ram_address_a_o (max 9 bit)

ram_wrdata_a_o 32 bit

ram_wren_a_o 1 bit

txbd_reg_sanity_check_irq_o 1 bit

ram_rddata_a_i 32 bit

av_m_clk_i

Figure 4.7: Inputs and Outputs of the TX BD Register module

Process for Connecting Signals to the Register Memory Core

The input and output signals used for communicating with the storage are registered. The signal
txbd reg entry i is directly routed to the first two address signals of the generated register. The
other address signals of the generated registers are connected with the signal txbd reg addr i.

4.2.2 Return TX BD FIFO

The description of a transmit packet sequence (Section 4.1.3) illustrates, that the TX MAC
returns the BD of a packet after sending. Multiple packets can be stored in the TX MAC and
can wait there to be sent. The Return TX BD FIFO is used for storing TX BD and the timestamp
information, which are returned from the TX MAC. The FIFO is necessary, because new sent
data can be returned, before the architecture is able to update the data to the main memory.
Figure 4.8 illustrates the input and output signal of this module.

The Return TX BD FIFO module has to save the returned data to a FIFO. The TX MAC
and the data handling architecture are working in different clock domains. To ensure correct
functionality independent on the clock relation between the two clock domains, the 32-bit input
signals from the TX MAC are ”frozen” for at least 16 clocks at transmit clock. The availability
of new data is indicated by negating the signal tx mac updated i. An edge detection (rising,
falling) is performed in the data handling architecture clock domain to detect the availability of
new data.

The Return TX BD FIFO saves the following data:

• TX BD Control/ Status Word of the sent packet

• Timestamp in seconds

• Timestamp in nanoseconds

56

Optimised Data Handling Architecture for Network Interface Card

Return TX BD FIFO

tx_mac_bd_control word_i 32 bit

tx_mac_timestamp_s_i 32 bit

tx_mac_timestamp_ns_i 32 bit

fifo_empty_i 1 bit

reset_n_i
1 bit

sw_reset_i
1 bit

ret_txbd_fifo_bd_control_word_o 32 bit

ret_txbd_fifo_timestamp_s_o 32 bit

fifo_wrdata_o 32 bit

fifo_wren_o 1 bit

fifo_rden_o 1 bit

txbd_sent_fifo_sanity_check_irq_o 1 bit

fifo_rddata_i 32 bit

av_m_clk_i

fifo_usedw_i N bit

ret_txbd_fifo_timestamp_ns_o 32 bit

ret_txbd_fifo_data_valid_o 1 bit

tx_mac_updated_i 1 bit

ret_txbd_processed_i 1 bit

Figure 4.8: Inputs and Outputs of the Return TX BD FIFO module

After data is stored in the FIFO, the data should be handed over to the BD Control FSM module,
which updates the TX BD list entry data.

The following processes and modules are designed to store the data:

Generated FIFO IP Core

The platform independence of a memory can be guaranteed, if the FIFO for storing the data is
generated with a tool supplied by the vendor of the target system. The FIFO has to be generated
using the following parameters:

• Type: Native FIFO

• Data With: 32bit. Each entry consists of 32 bits.

• Data Depth: 8 to 512 entries. The data depth depends on the storable TX BD in the TX
BD Register module. It must have the same size.

• Asynchronous Reset

• Synchronous Reset

• Empty Signal

• Used Word Signal

• Unregistered Output

57

Optimised Data Handling Architecture for Network Interface Card

Process for Reading Data from the TX MAC

This process reads the TX BD Control/ Status Word and the timestamp signals from the TX MAC
and saves it to the FIFO. Due to the fact that the TX MAC and the data handling architecture are
operating in different clock domains, it is necessary to add the functionality for synchronisation.
The availability of new data is indicated by negating the signal tx mac updated i. As already
mentioned, an edge detection (rising, falling) is performed to detect the availability of new data.
After detecting the edge, the signals from the TX MAC are valid. The data are stored in the
signals tx mac bd control word i, tx mac timestamp s i and tx mac timestamp ns i.

Process for Transferring Data to the Data Handling Master

If the fifo emtpy i signal of the generated FIFO is cleared, new data is available. The data is
loaded to the signals ret txbd fifo bd control word o, ret txbd fifo timestamp s o and
ret txbd fifo timestamp ns o. The signal ret txbd fifo data valid o is set afterwards to notify
the BD Control FSMmodule, that new data is available. The signal ret txbd fifo data valid o
is cleared, after the data were updated and the BD Control FSM module has set the signal
ret txbd processed i.

Process for Checking the Storage

A storage sanity check is implemented in the module, which uses a counter to record the number
of stored BDs. If no read or write request is triggered for 2 cycles and the counter of the stored
BDs multiplied by 3 is not equal to the used word signal value, the storage is corrupted and the
interrupt signal txbd sent fifo sanity check irq o is set.

Process for Connect Signals to Generated FIFO Module

The input and output signals for transferring data to the modules are registered signals. This
process manages the connection of the signals.

4.2.3 RX BD FIFO

The RX BD FIFO stores the meta information for receiving a packet on the network. The size of
the storable RX BD can be configured by a generic value and the EDA tool of the platform can
build the vendor dependent FIFO, which is used in this module. The input and output signals
of the module are illustrated in Figure 4.9.

Three entries of the RX BD list must be stored in order to have the necessary information for
storing a received packet:

• Address of the RX BD list element

• RX BD Status/ Control Word

• RX BD Address Word

The processes for checking the storage and for connecting the FIFO signals to the input and
output signals are the same as described in Section 4.2.2 and the generated FIFO IP Core is also
the same as in Section 4.2.2

58

Optimised Data Handling Architecture for Network Interface Card

RX BD FIFO

rxbd_fifo_wrdata_i 32 bit

rxbd_fifo_wren_i 1 bit

rxbd_fifo_rden_i 1 bit

fifo_empty_i 1 bit

reset_n_i
1 bit

sw_reset_i
1 bit

rxbd_fifo_rddata_o 32 bit

rxbd_fifo_avail_space_o (N + 1 bit)

fifo_wrdata_o 32 bit

fifo_wren_o 32 bit

fifo_rden_o 1 bit

rxbd_fifo_sanity_check_irq_o 1 bit

fifo_rddata_i 32 bit

av_m_clk_i

fifo_usedw_i N bit

Figure 4.9: Inputs and Outputs of the RX BD FIFO module

4.2.4 Bus Arbiter FSM

The data handling architecture uses the Avalon-MM bus to communicate with the main memory.
Three modules called the BD Control Finite State Machine (FSM), the Transmit Packet FSM
and the Receive Packet FSM need to have access to the Avalon-MM bus. The Bus Arbiter FSM
controls the access to the bus. The BD Control FSM has a 50% chance to get access to the bus.
The Transmit Packet FSM and the Receive Packet FSM equally share the other 50%. However,
the Receive Packet FSM is prioritised over the Transmit Packet FSM, if the RX FIFO of the RX
MAC is almost full.

Idle

Transmit
Packet FSM

BD Data
Handling

Receive
Packet FSM

Figure 4.10: Finite State Machine of the Bus Arbiter for the Avalon-MM interfaces

The Bus Arbiter FSM has the following states (Figure 4.10):

• Idle: This is the default state of the FSM. Any other state returns back to the idle state,

59

Optimised Data Handling Architecture for Network Interface Card

if the Avalon-MM bus is no longer needed. The request of a bus is handled here and all
other states are available from here.

• BD Control FSM: The BD Control FSM module signals are mapped to the Avalon-MM
signals and the FSM returns back to the t idle state, if it does not need the bus any more.

• Transmit Packet FSM: The Transmit Packet FSM signals are mapped to the Avalon-
MM signals and the FSM returns back to the t idle state, if it does not need the bus any
more.

• Receive Packet FSM: The Receive Packet FSM signals are mapped to the Avalon-MM
signals and the FSM returns back to the t idle state, if it does not need the bus any more.

4.2.5 BD Control FSM

The BD Control FSM module controls the BD exchange between the main memory and the NIC.
It polls RX and TX BDs from the memory and updates the used BDs. The Transmit Packet FSM
and the Receive Packet FSM module are notified, if valid BDs are available. The BD Control
FSM module reads BDs from the memory and serves them to the Transmit Packet FSM and the
Receive Packet FSM module.

Polling BD from Memory

Two processes exist for managing the data polling from the main memory to the local memories.
The difference between the RX BDs and the TX BDs is, that the RX BDs are stored in a FIFO
and the TX BDs are stored in a register.

A BD polling action is triggered if space is available in the local buffers and a timeout got
triggered. The timeout mechanism is described in paragraph 4.2.5. The polling action only
requests as many BDs as are storable in the local memories. The fetched BDs are only stored, if
the 15th bit (RX BD: Empty bit, TX BD: Ready bit) is set.

Updating BD to Memory

After a packet is received or was sent, the meta information has to be refreshed in the main
memory. Additionally, the operating system is informed, that new data is available. For the re-
ceived packet, only the RX BD Control/ Status Word must be updated. The BD of a transmitted
packet can include a timestamp; hence, three elements of the TX BD are written back to the
main memory: The TX BD Control Status Word, the nanosecond and the second timestamp.

A RX BD is directly updated, after packet data were transferred from the NIC to the main
memory. A TX BD is updated, after being returned by the TX MAC and sent to the Data
Handling Module. The Return TX BD FIFO stores the returned TX BD Control/ Status Word
and the timestamps. After a BD was written back to the main memory, an interrupt is triggered
in order to signal, that new data is available.

60

Optimised Data Handling Architecture for Network Interface Card

Serving BD to Transmit Packet FSM and Receive Packet FSM

The BD Control FSM module reads valid BDs from the storage and serves them to the Transmit
Packet FSM and the Receive Packet FSM. After the FSMs have used the BD, an acknowledge
signal is triggered and new BDs are read from the memory.

BD Poll Timeout

Two counters are used to trigger timeouts for polling new BDs from the memory. The 32 bit
register BD Poll Interval stores the value, where a poll request should be triggered. The first
16 bits of the register stores the microsecond value, at which a RX BD should be requested and
the last 16 bits store the value for the TX BD poll timeout. The counter is counting until the
triggered value is reached and is cleared, when BDs are polled from the memory.

4.2.6 Transmit Packet FSM

Idle Burst
Padding

Init Read
Burst

Memory
to

TX FIFO

Packet Data Transmission
finished

Valid TX BD available
TX FIFO ready

Access to Avalon MM bus

Read Burst ended,
not all Data are Read

No more Packet Data
are available

Read Burst
not finished

Read Burst Initiated

Finishing
Read Burst

Figure 4.11: Finite State Machine for transferring packets to send from the main memory to the NIC

The transmission of packet data is triggered, if the BD Control FSM module serves a valid TX
BD. The state machine initiates an Avalon-MM read burst from the memory location specified
in the TX BD Address Word. The read data are transferred with the Avalon-ST interface to the
TX FIFO, which stores the packet data for sending.

The Transmit Packet FSM states are illustrated in Figure 4.11

• Idle: The idle state waits until three conditions are fulfilled: when a valid TX BD is served
by the BD Control FSM module, the TX FIFO has space for new data and the Bus Arbiter
modules grants access to the Avalon-MM bus.

• Init Read Burst: An Avalon-MM read burst action is triggered by this function. The
packet data transfer has to be split in multiple burst transactions. The maximum number
of transactions during a burst is located in the register BURSTLENGTH.

61

Optimised Data Handling Architecture for Network Interface Card

• Memory to TX FIFO: Packet data are read from the Avalon-MM interface and written
to the Avalon-ST interface. If the read burst transaction is finished and more packet data
is available, a new burst transaction is initiated by going to the state Init Read Burst. The
amount of packet data is stored in the TX BD Control/ Status Word of the packet.

• Burst Padding: This state proofs, if the Avalon-MM burst transaction was finished,
otherwise it reads data from the interfaces, without storing them. The next state is the Idle
state, if the Avalon-MM read burst came to an end.

4.2.7 Receive Packet FSM

Idle Burst
Padding

Init Write
Burst

RX FIFO
to

Memory

Packet Data Transmission
finished

Valid RX BD available
Packet Data received

Access to Avalon MM bus

Write Burst ended,
not all Data are wrote

No more Packet Data
are available

Write Burst
not finished

Read Burst Initiated

Finishing
Write Burst

Figure 4.12: Finite State Machine for transferring received packets from the NIC to the main memory

The RX FIFO - connected to the Receive Packet FSM via an Avalon-ST interface - signals received
data by backpressure (see Section 2.4.1). The packet can be transferred to the main memory,
if the BD Control FSM module serves a valid RX BD to the FSM. An Avalon-MM write burst
transaction is issued to the memory address stored in the RX BD Address Word for transferring
the data.

The Receive Packet FSM states are illustrated in Figure reffig:ReceivePacketFSM.

• Idle: The idle state waits until three conditions are fulfilled: when a valid RX BD is served
by the BD Control FSM module, the RX FIFO signals, that new data is available and the
Bus Arbiter modules grants access to the Avalon-MM bus.

• Init Write Burst: An Avalon-MM write burst action is triggered by this function. The
packet data transfer has to be split in multiple burst transactions. The maximum number
of transactions during a burst is located in the register BURSTLENGTH.

• RX FIFO to Memory: Packet data is read from the Avalon-ST interface and written to
the Avalon-MM interface. If the write burst transaction comes to an end and more packet
data is available, a new burst transaction is initiated by going to the state Init Write Burst.

62

Optimised Data Handling Architecture for Network Interface Card

The end of a packet is signalled with the Avalon-ST signal End of Packet (EOP). After the
EOP is assigned and the last data are sent to the main memory, the next state is the Burst
Padding State.

• Burst Padding: This state proofs, if the Avalon-MM burst transaction was finished,
otherwise it sends dummy data. The next state is the Idle state, if the Avalon-MM write
burst came to an end.

4.3 Software

Multiple applications are communicating with other network nodes over a NIC. The operating
system manages the data exchange between multiple applications with the NIC. Therefore, the
software for handling the data is written as device driver of the operating systems. This device
driver must be equipped with an implementation of the standard functionality of a NIC. The
standard function of a NIC are initiating the device, sending data, receiving data and getting
statistics of received and transmitted packets.

Figure 4.3 and 4.4 illustrate the receive and the transmit packet sequences. The blank boxes
illustrate the functionality, which the software has to have implemented. This section describes
the basic functionality of the NIC driver.

4.3.1 Setup NIC

During the setup process, multiple registers are configured to enable packet receiving and trans-
mission. The direct writing to and reading from registers should be minimized during the data
transmission. The setup of the NIC is only done once; so direct writing does not affect the
performance of the NIC.

The memory for sending and transmitting data is allocated during the setup process. The driver
defines the used amount of RX and TX BDs. Each Buffer Descriptor has eight entries, where
each entry uses four bytes. The setup function must write initial values to the BDs as well as to
write the address of the packet data location to the 3rd entry of the list (TX BD Address Word
or RX BD Address Word).

The memory for storing all RX BDs should be allocated contiguously. In that case, the memory
works as a ring buffer, so that multiple BDs can be fetched by reading multiple of 8 * 4 bytes
from a start address, which is the begin of a BD. The same memory allocation mechanism is used
for the TX BDs.

After the allocation of the memory, a default value is written to each RX/TX BD Control/ Status
Word, the RX/TX BD Address Word is set to a location, where 2048 bytes were allocated for
storing the packet data, and the Address of the next TX/RX BD List entry of the BD is written
to form a ring buffer. Figure 4.2 illustrates the memory organisation of the BD memory.

63

Optimised Data Handling Architecture for Network Interface Card

4.3.2 Data Transfer

The device driver has default functions for getting data from the operating systems. One function
is for sending data the other for receiving data. Both functions have to copy data from the
memory accessible from the NIC to a memory location accessible to the operating system. The
NIC informs the device driver by triggering an interrupt, that a packet was received or that a
packet was successfully sent.

Receive Packet

After the NIC has triggered an interrupt, the device driver reads from the interrupt register of the
NIC to get the interrupt source. If a new packet has been arrived, the receive interrupt signal is
asserted. The NIC loads then the data of the expected RX BD to get the information for copying
the data to a memory location, which is accessible by the application. After the data of the BD
are read, the initial value is assigned to the RX BD Control/ Address word.

Transmit Packet

Applications can trigger data transmission with commands served by the operating systems. The
operating system uses standard functions served by the device driver to transfer the data to the
device driver. After copying the data to the TX BD Address Word location of the next free TX
BD, the device driver sets the TX BD Control/ Status Word of the TX BD and the NIC can get
the data by polling the TX BD from the memory.

The device driver needs a second function, which is triggered, if the NIC sends a transmit packet
interrupt. This function is used to scan the TX BD memory, if a packet was sent to the network
and inform the application, that data was successfully sent.

64

5 Measurements

The performance of the new data handling concept, built into the syn1588 PCI Express NIC
of Oregano Systems, is measured in this section. The data throughput of the new concept is
compared with the currently implemented strategy and different parameters of the new data
handling method are varied to illustrate the best data handling configuration. The reduction of
CPU time is measured and illustrated in Section 5.3

5.1 Setup

The performance measurement setup is composed of two directly connected computers as illus-
trated in Figure 5.1. The computer, with an Oregano Systems NIC installed, uses an Intel Core
2 Duo CPU E6550 with a frequency of 2.33GHz and the second computer is an Intel Pentium
G4400 with a CPU frequency of 3.3GHz. It has a Realtek RTL8111/8168/8411 PCI Express
Gigabit Ethernet Controller installed. Both computers are running the operating system Ubuntu
14.04 and the kernel version 3.13.0-88. The Oregano Systems NIC is programmed with the old
and the new data handling concept.

Processor: Intel Core 2 Duo CPU E6550 @ 2,33GHz
OS: Linux Ubuntu 14.04
Kernel 3.13.088
NIC: Oregano syn1588 PCIe NIC

Processor: Intel Pentium CPU G4400 @ 3,3GHz
OS: Linux Ubuntu 14.04
 Kernel: 3.13.088
NIC: Realtek RTL8111/8168/8411 PCI Express
Gigabit Ethernet Controller

Cable: CAT 5e

Figure 5.1: Measurement Setup

The performance tool iperf1 in version 2.0.5 is used to measure the TCP data throughput of
the system. The tool uses the maximum MTU size (1500 bytes) supported by Ethernet and
transmits data for 10 seconds. Iperf stores the amount of sent data and calculates the bandwidth
after transmission. It was used in server and in client mode on both systems in order to get the

1https://www.iperf.fr

65

https://www.iperf.fr

Measurements

maximum bandwidth for receiving and transmitting packets. The default values of the program
were used to measure the bandwidth of the system.

The NIC’s data throughput is highly influenced by the PCI Express bus. The maximum amount
of data which is transferred between the data handling module and the PCI Express IP core,
is controlled with the BURSTLENGTH register. It defines the maximum number of read or
write transfers that can be initiated by the Avalon-MM bus of the data handling module. The
maximum value of the burst length supported by the PCI Express IP core is 255. The burst
length value is used by the PCI Express IP core to generate PCI Express packets to write data
to the main memory or to trigger read requests on the main memory. The maximum supported
payload size of the core is 256 bytes.

The number of buffer descriptor storable in the memories of the FPGA can be changed by
generating FIFOs and SRAMs with different sizes. The former data handling concept was able
to store 64 RX and 64 TX buffer descriptors.

The time for polling new BDs is controlled by the register BD POLL TIMEOUT. It stores the
number of microseconds the data handling module has to wait until it searches for new BDs. This
value is set during the initialisation of the NIC.

5.2 Performance Results

Multiple configurations of the FPGA bit stream were generated to measure the performance of
different configurations of the new data handling module. Multiple FIFOs and SRAMs were
generated to store different numbers of BDs on the NIC. The changing sizes enable the system
to fetch different numbers of BDs at once. The following configurations were tested and the
performance depending on the poll timeouts and the burst lengths were measured:

• 4 TX BD and 5 RX BD storable: Figure 5.2 - 5.3

• 8 TX BD and 10 RX BD storable: Figure 5.4 - 5.5

• 16 TX BD and 21 RX BD storable: Figure 5.6 - 5.7

• 32 TX BD and 42 RX BD storable: Figure 5.8 - 5.9

The first figure illustrates the receiving and transmitting performance for different poll timeout
values and burst lengths. The timeout values are set to the same value for polling RX and TX
BDs. The second figure shows the performance of the old data handling mechanism against the
new one for multiple burst lengths. The best results of the configuration are picked to compare
it with the results of the old.

66

Measurements

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��
���
���

(a) Receiving Packets

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��

���
���

(b) Transmitting Packets

Figure 5.2: Performance comparison of the newly developed data handling architecture with the ability
to store 4 Transmit Buffer Descriptors and 5 Receive Buffer Descriptors for different poll
intervals

67

Measurements

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������

��������������

�������
���
���

(a) Receiving Packets

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������

��������������

�������
���
���

(b) Transmitting Packets

Figure 5.3: Comparison of the best bandwidth achieved by the developed data handling architecture,
capable to store 4 Transmit Buffer Descriptors and 5 Receive Buffer Descriptors, against the
old data handling method. d

68

Measurements

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��
���
���

(a) Receiving Packets

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��
���
���

(b) Transmitting Packets

Figure 5.4: Performance comparison of the newly developed data handling architecture with the ability
to store 8 Transmit Buffer Descriptors and 10 Receive Buffer Descriptors for different poll
intervals

69

Measurements

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������

��������������

�������
���
���

(a) Receiving Packets

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������

��������������

�������
���
���

(b) Transmitting Packets

Figure 5.5: Comparison of the best bandwidth achieved by the developed data handling architecture,
capable to store 8 Transmit Buffer Descriptors and 10 Receive Buffer Descriptors, against
the old data handling method.

70

Measurements

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��
���
���

(a) Receiving Packets

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��
���
���

(b) Transmitting Packets

Figure 5.6: Performance comparison of the newly developed data handling architecture with the ability
to store 16 Transmit Buffer Descriptors and 21 Receive Buffer Descriptors for different poll
intervals

71

Measurements

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

�����������

��������������

�������
���
���

(a) Receiving Packets

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������

��������������

�������
���
���

(b) Transmitting Packets

Figure 5.7: Comparison of the best bandwidth achieved by the developed data handling architecture,
capable to store 16 Transmit Buffer Descriptors and 21 Receive Buffer Descriptors, against
the old data handling method.

72

Measurements

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��
���
���

(a) Receiving Packets

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

������������
�

��
��
��

���
���

(b) Transmitting Packets

Figure 5.8: Performance comparison of the newly developed data handling architecture with the ability
to store 32 Transmit Buffer Descriptors and 42 Receive Buffer Descriptors for different poll
intervals

73

Measurements

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������

��������������

�������
���
���

(a) Receiving Packets

��

����

����

����

����

�����

� ��� �� �� ��� ���

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������

��������������

�������
���
���

(b) Transmitting Packets

Figure 5.9: Comparison of the best bandwidth achieved by the developed data handling architecture,
capable to store 32 Transmit Buffer Descriptors and 41 Receive Buffer Descriptors, against
the old data handling method.

74

Measurements

The best performance is achieved if the burst length is set to the maximum value 255 and the
register BD POLL TIMEOUT is between 15 and 60µs. Figure 5.10 compares the newly developed
architecture and the old implementation with the maximum burst length set.

The receiving performance of the new data handling method has decreased for small burst lengths,
but is constant at the maximum value for burst lengths equal or greater than 16. The performance
of the old method decreases if the burst length is set to a value higher than 128, due to the
implementation of burst transactions. The old design always initiates a burst transaction with
the maximum burst length and writes dummy data or doesn’t use the read data, if it has no data
to write or doesn’t need the read data.

The performance for sending packets is higher if the burst length of the system is greater than
128. For lower values, the design performs nearly as good as the old one. The performance boost
for transmitting packets is because multiple transmit packets can be loaded from the memory
during one burst access, if the poll timeout is set correctly. The performance of the old data
handling method also degrades for the maximum burst length. The reason for this is also the
implementation of the burst transaction.

The performance for receiving and transmitting packets are very different. Transferring received
packets from the network card to the memory has a simpler data flow than transmitting packets.
Multiple free RX BDs can be stored and used, if a packet gets received. The NIC can always
save received data to the main memory as long as free RX BDs are available. After the data has
been saved to the main memory and the meta information of the sent packet have been stored,
the NIC sends an interrupt and the CPU processes the packets.

For transferring packets the system has to create TX BDs which have to be polled by the network
card. Once a TX BD is available on the NIC, the packet data has to be loaded from the memory
to the TX FIFO. The packet is then sent by the NIC and the meta information about the
transmission is then returned to the data handling module. The meta information is then saved
to the main memory and the CPU is informed by an interrupt that data was sent.

Interrupts, which are used to inform the CPU about an event on the NIC, are sent via the PCI
Express bus. The device driver of the NIC has to read from the register MAC INT SOURCE
to fetch the reason for the NIC’s interrupt. The interrupt sending and reading data from the
interrupt source register takes very long, because every register read takes a minimum of 1µs. The
time for reading and writing register data highly depends on the workload of the PCI Express
bus.

The tool iperf was used to transfer packets with the Transmission Control Protocol (TCP).
TCP controls the transmission of packets by using congestion control. Only if data items are
acknowledged, new data is prepared and handed over to the device driver of the NIC. If the
acknowledgement is not given in time to the operating system, no additional data is prepared
and the transmission is slowed down. This could be the reason for the performance difference
between receiving and transmitting packets.

75

Measurements

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������
�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

�����������������

������������������
�
��
��
��

(a) Receiving Packets

��

����

����

����

����

�����

�� ��� ���� ���� ���� ����

�����������������

�����������������

�
�
�
�
�
��
��

�
��
�
�
�
�
���

�
�
�
��
�
�
�
�
�
�
�

������������������������������������

�����������������

�������������������
�
�

��
��

(b) Transmitting Packets

Figure 5.10: Comparison of the different architectures with the maximum burst length set

76

Measurements

5.3 CPU Usage

Every time an application has to send a packet or a packet is received by the NIC, the CPU
is triggered to process the packet. The time used by the CPU to process a packet is measured
directly in the kernel. The kernel timestamp function ktime get ts of Linux is used for getting
the current time in nanoseconds. The start and end time of the following functions are measured:

• Creating a packet for sending

• Process sent packet

• Process received packet

• Time between interrupt and packet processing

Creating a Packet

Figure 5.11 gives an overview of the time needed for creating a packet with the old and the
new data handling method. The durations for packet creation are grouped in 50ns bins and the
number of packets in this range are counted.

The newly developed data handling method, which writes the buffer descriptor to the main
memory and not directly to the NIC, reduces for all investigated functions. Table 5.1 shows the
mean, median, maximum and minimum value of the measured packet creation times. For the
former packet creation, the time the buffer descriptor was transferred to the NIC highly influences
the time used for packet creation. Now the time used for copying the data from one memory
location to another location defines the time used for creating a packet.

Mean[ns] Median[ns] Min[ns] Max[ns]

Old strategy creating 98 Byte Packet 1993,33 2024 1633 2373

Old strategy creating 1500 Byte Packet 2264,30 2243 2088 3267

New Strategy creating 98 Byte Packet 319,97 306 267 490

New Strategy creating 1500 Byte Packet 922,99 896 758 4156

Table 5.1: Statistical indicators of the CPU time used for creating a packet

Time Between Interrupt and Packet Processing

The time between the CPU starts to process an PCI Express interrupt triggered by the NIC and
the packet is processed by the received packet or sent packet function is illustrated in Figure 5.12.
The statistical indicators are shown in Table 5.2.

Mean[ns] Median[ns] Min[ns] Max[ns]

Time between Interrupt and Packet Processing 6629,23 6412 6093 13014

Table 5.2: Statistical indicators of the time between an interrupt is processed by the device driver of the
NIC and packet processing

77

Measurements

��

�����

����

�����

����

�����

����

�����

����

�����

����

�� ���� ����� ����� ����� ����� �����

�
��
�
�
�
�
�
�

������������������������������������

��
��
��
��

Figure 5.11: Histogram of CPU time used for creating a packet

Most of the function’s execution time is spent on reading register values from the NIC. The inter-
rupt only transfers a notification about an event on the NIC, but doesn’t include any additional
information. The device driver has to fetch additional data from NIC registers to get further
information. As described in the former section, reading a register takes about 1us. Because
the priority of the interrupt handling function is higher than the priority of the other packet
processing functions, the execution of the function is not varying that much.

Process Sent Packet

The NIC sends an interrupt after a packet has been sent. The CPU has to read the buffer
descriptor of the sent packet to get information about the data transmission and also has to
inform the application, which issued the data sending, about the successful transmission. The
CPU time used by the driver to process sent packets is illustrated in Figure 5.13. Table 5.3 shows
statistical indicators of the values illustrated in Figure 5.13.

Mean[ns] Median[ns] Min[ns] Max[ns]

Old strategy processing one sent packet 6189,07 5179 1747 34403

Old strategy processing two sent packets 8840,49 8512 3311 25907

New Strategy processing one sent packet 693,09 641 463 2415

New Strategy processing two sent packets 859,98 835 604 1423

Table 5.3: Statistical indicators of the CPU time used to process s sent packet

Reading the TX BDs from the NIC highly influences the processing time of the old data handling
strategy for this function. The function process time of the optimised strategy is influenced by

78

Measurements

��

�����

����

�����

����

�����

����

�����

����

�� ����� ����� ����� ����� ������ ������ ������

�
��
�
�
�
�
�
�

�����������������������

����������������������
���������������������

Figure 5.12: Histogram of time between interrupt occurrences on the NIC and packet is processed

the number of processed packets and the availability of the memory and the CPU.

Process Received Packet

The NIC directly transfers received packet data to the main memory before an interrupt to the
CPU is triggered. The system’s device driver then forwards the packet data to the destination
application. Figure 5.14 illustrates the time used to handle the received packet. Table 5.4 shows
the statistical indicators of the values illustrated in Figure 5.14.

Mean[ns] Median[ns] Min[ns] Max[ns]

Old strategy processing one received Packet 8051,59 7458 3549 25639

Old strategy processing two received Packets 13966,61 13128 5738 27567

New Strategy processing one received Packet 1234,22 1176 893 2626

New Strategy processing two received Packets 2077,79 1962 1607 8115

Table 5.4: Statistical indicators of the CPU time used to process received packet

The RX BDs fetching from the NIC is affecting the used CPU time of the old strategy enor-
mously. The duration of the new data handling strategy handling the received data, is defined
by the amount of packet data, which has to be copied to the memory location of the destination
application.

79

Measurements

��

����

����

����

����

����

����

�� ����� ����� ����� ����� ������ ������ ������

�
��
�
�
�
�
�
�

�����������������������

���
��
���
��

Figure 5.13: Histogram CPU time used to process sent packet

CPU Performance Analysis

The packet processing time of data is reduced by moving the BDs to the main memory enormously.
The minimum duration for reading or writing register data from the NIC is not deterministic and
varies from less than one to multiple µs. Depending on the usage of the PCI Express bus, the
reading and writing durations are changing.

The processing time for setting up a 1500 byte Ethernet packet to send is reduced from 1993,33ns
to 922,99ns and for handling the sent interrupt the duration is decreased from 6189,07ns to
693.09ns. The overall processing time for one sent packet is reduced from 8182,40ns to 1616,08ns
which is a reduction of 80,2% of the CPU processing time.

The processing of received packets with the old data handling strategy took 8051,59ns while the
new strategy only needs 1234,22ns. 84,67% of the CPU processing time are saved with the new
strategy.

The function, necessary for getting the NIC’s interrupt source, is using 6629,23ns. This function
reads interrupt registers from the NIC and triggers afterwards the sent or received packet process-
ing. The time used for processing the interrupt is not solved by the new data handling strategy.
The interrupt handling from the NIC to the system is a problem of the interrupt functionality
implemented in the PCI Express IP core of the NIC.

The variation of processing time for the receive and the sent process is because the CPU is
halted during register reads and the processor is doing a context switch to do other tasks. The
interrupt handling process time hasn’t that variation, because this function is running with a
higher priority. Higher prioritised functions get faster reactivated than lower prioritised ones.

80

Measurements

��

����

����

����

����

����

�� ����� ������ ������ ������

�
��
�
�
�
�
�
�

�����������������������

���
��
���
��

Figure 5.14: Histogram of CPU time used to process received packet

81

6 Conclusion and Outlook

A new strategy for handling data from a host system to a peripheral unit is presented in this
thesis. Research in the area of high-performance data exchange is demanded by the increasing
data link speed of today’s communication networks.

This work analyses the components necessary for transferring data from the CPU to a peripheral
unit. Two IP cores, used for handling data from a CPU to a peripheral unit, are analysed with
respect to their efficiency in transferring data. Data handling implementations of two network
interfaces are described and analysed.

The created data handling method aims to minimize the CPU usage, the requests on the memory
and the requests on the shared bus system. The data exchange between the CPU and the NIC
is accomplished by reading and writing to the main memory.

The technology-independent digital functionality of the strategy was implemented with the hard-
ware description language VHDL. The functionality of the modules is split into processes, which
are representing the implementation of the design. The software part is written as device driver
for Linux.

With this solution, the performance for transferring data on a 1-lane PCI Express Ethernet card
is improved. The bandwidth for receiving packets is as high as the former implementation but
the transmission rate was improved from 782Mbps to 894Mbps. The CPU time used for creating
packets, handling sent and received interrupts is reduced, because the meta information of each
packet is not stored directly on the NIC but on the main memory. The time used for creating a
packet is reduced from 2264ns to 922ns. The processing time for acknowledging a sent packet is
reduced from 6189ns to 693ns. The time for processing received packets by the device driver is
reduced from 8051ns to 1234ns.

The concept of minimising the bus requests by moving the meta information storage from the
NIC to the main memory of the systems leads to an enormous reduction in CPU usage. These
modifications enable the usage of more performant network adapters, like 10 gigabit network
interfaces.

Outlook

The presented solution improves the data handling strategy between the CPU and a peripheral
unit by fetching multiple meta information, represented as buffer descriptors, from the main

82

Conclusion and Outlook

memory at once. Updating multiple on the NIC stored buffer descriptors is suggested as future
work, to fully utilise the bus system for writing used buffer descriptors back to the main memory.

Measurements have shown that every time an interrupt is triggered, the system needs 6629ns
before packet processing is started. If the system only triggers an interrupt, when multiple
packets have been transferred, the speed of data processing could be increased. The time used for
processing one and two sent packet is 693ns and 859ns. The time used for setting up a separate
interrupt handling procedure is much higher than processing two packets at once. Processing
two packets with one interrupt reduces the CPU time used by 95%. If the system processes even
more packets, CPU time could be reduced further.

The implemented interrupt functionality of the PCI Express IP Core generates the same interrupt
for every interrupt source. The PCI Express core sends the interrupt as packet information to
the CPU. The device driver has to read two interrupt source registers to get the source of the
interrupt. The interrupt implementation of the PCI Express IP Core can be redesigned to send
the interrupt source with the interrupt to the CPU. This would reduce the CPU time used reading
the data from the NIC and also increases the utilisation of the bus.

83

Literature

[BA13] Ben Abdallah, Abderazek: Multicore Systems On-Chip: Practical Soft-
ware/Hardware Design : 2nd Edition. 2nd ed. Paris : Atlantis Press : Im-
print: Atlantis Press, 2013 (Atlantis ambient and pervasive intelligence ; v. 7).
10.2991/978-94-91216-92-3. – ISBN 94–91216–92–9

[Cad17] Cadek, Gerhard: syn1588 R© PCIe NIC Revision 2.1 – Data Sheet. http://

www.oreganosystems.at/download/syn1588_pcie_nic_ds.pdf. Version: März
2017

[Ela18] Elahi, Ata: Computer Systems : Digital Design, Fundamentals of Computer
Architecture and Assembly Language. Cham : Springer International Publishing
Imprint: Springer, 2018 10.1007/978-3-319-66775-1. – ISBN 3–319–66775–0

[GK83] Gajski, D. D. ; Kuhn, R. H.: Guest Editors’ Introduction: New VLSI Tools. In:
Computer 16 (1983), Dezember, Nr. 12, S. 11–14. http://dx.doi.org/10.1109/
MC.1983.1654264. – DOI 10.1109/MC.1983.1654264. – ISSN 0018–9162

[Hop06] Hoppe, Bernhard: Verilog : Modellbildung für Synthese und Verifikation.
München Wien : Oldenbourg, 2006. – ISBN 3–486–58004–3

[KB09] Kesel, Frank ; Bartholomä, Ruben [.: Entwurf von digitalen Schaltungen
und Systemen mit HDLs und FPGAs. 3., korr. u. aktualisierte Aufl. München :
Oldenbourg, 2009. – ISBN 978–3–486–73181–1

[LL14] Larsen, Steen ; Lee, Ben: Survey on System I/O Hardware Transactions and
Impact on Latency, Throughput, and Other Factors-Chapter Two. In: Advances
In Computers Bd. 92. 2014. – ISBN 978–0–12–420232–0, S. 67–104

[Ltd18a] Ltd., Xillybus: Xillybus - Getting started with Xillinux for Zynq-
7000. http://xillybus.com/downloads/doc/xillybus_getting_started_

zynq.pdf. Version: 2018
[Ltd18b] Ltd., Xillybus: Xillybus host application programming guide for Linux.

http://xillybus.com/downloads/doc/xillybus_host_programming_guide_

linux.pdf. Version: 2018
[Moo06] Moore, G. E.: Cramming more components onto integrated circuits, Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. In: IEEE
Solid-State Circuits Society Newsletter 11 (2006), September, Nr. 3, S. 33–
35. http://dx.doi.org/10.1109/N-SSC.2006.4785860. – DOI 10.1109/N–
SSC.2006.4785860. – ISSN 1098–4232

[noa09] IEEE Standard VHDL Language Reference Manual. In: IEEE Std 1076-2008
(Revision of IEEE Std 1076-2002) (2009), Januar, S. c1–626. http://dx.doi.

org/10.1109/IEEESTD.2009.4772740. – DOI 10.1109/IEEESTD.2009.4772740

84

10.2991/978-94-91216-92-3
http://www.oreganosystems.at/download/syn1588_pcie_nic_ds.pdf
http://www.oreganosystems.at/download/syn1588_pcie_nic_ds.pdf
10.1007/978-3-319-66775-1
http://dx.doi.org/10.1109/MC.1983.1654264
http://dx.doi.org/10.1109/MC.1983.1654264
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://dx.doi.org/10.1109/IEEESTD.2009.4772740
http://dx.doi.org/10.1109/IEEESTD.2009.4772740

LITERATURE LITERATURE

[noa10] PCI Express R© Base Specification Revision 3.0. November 2010
[noa18] Avalon R© Interface Specifications. (2018), 60. https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_

avalon_spec.pdf

[P03] P, Ravi: PCI express system architecture. Boston : Addison-Wesley, 2003. –
ISBN 0–321–15630–7

[RDK+00] Rixner, Scott ; Dally, William J. ; Kapasi, Ujval J. ; Mattson, Peter ; Owens,
John D.: Memory Access Scheduling. In: Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture. New York, NY, USA : ACM, 2000
(ISCA ’00). – ISBN 1–58113–232–8, 128–138

[Rei09] Reichardt, Jürgen: Lehrbuch Digitaltechnik : eine Einführung mit VHDL.
München : Oldenbourg, 2009 10.1524/9783486593600. – ISBN 3–486–59360–
9

[SGLAJLD17] Sánchez-Garrido, J. ; López-Antequera, A. M. ; Jiménez-López, M. ;
D́ıaz, J.: Sub-nanosecond Synchronization over 1G ethernet data links using
white rabbit technologies on the WR-ZEN board. In: 2017 40th International
Conference on Telecommunications and Signal Processing (TSP), 2017, S. 688–
693

[SM15] Stallings, William ; Manna, Moumita M.: Operating systems : internals and
design principles. Global edition, eighth edition. Boston München : Pearson
Education Limited, 2015 (Always learning). – ISBN 1–292–06194–4

[Sol14] Solomon, Richard: PCI Express R© Basics & Background. (2014),
45. https://pcisig.com/sites/default/files/files/PCI_Express_Basics_

Background.pdf

[TB16] Tanenbaum, Andrew S. ; Bos, Herbert: Moderne Betriebssysteme. 4., ak-
tualisierte Auflage. Hallbergmoos : Pearson, 2016 (Always learning). – ISBN
3–86894–270–X

[VKVF16] Vesper, M. ; Koch, D. ; Vipin, K. ; Fahmy, S. A.: JetStream: An open-
source high-performance PCI Express 3 streaming library for FPGA-to-Host and
FPGA-to-FPGA communication. In: 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), 2016, S. 1–9

[VN14] Véstias, M. ; Neto, H.: Trends of CPU, GPU and FPGA for high-performance
computing. In: 2014 24th International Conference on Field Programmable Logic
and Applications (FPL), 2014, S. 1–6

85

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
10.1524/9783486593600
https://pcisig.com/sites/default/files/files/PCI_Express_Basics_Background.pdf
https://pcisig.com/sites/default/files/files/PCI_Express_Basics_Background.pdf

	Titlepage
	Introduction
	Problem Description
	Structure of the Thesis

	Technology Overview
	System Design
	Design Flow
	Hardware Description Languages

	Communication Basics
	Hardware Device Classification
	Device Addressing

	Input/ Output Operations
	Programmed Input/ Output
	Interrupt Driven Input/ Output
	Direct Memory Access

	On-Chip Bus Protocols
	Avalon Streaming Interface
	Avalon Memory Mapped Interface
	Network On Chip

	Off-Chip Bus Protocols
	PCI Express Bus
	USB

	Data Handling Techniques between Host System and Peripheral Units
	Available Intellectual Properties For Data Handling
	Xillybus
	JetStream

	Data Handling in Network Interface Cards
	Basic Concept
	WR-ZEN Board
	Oregano Systems syn1588® PCIe NIC

	Performance Analysis of Data Handling Components
	Memory
	Bus Protocols
	Data Handling
	Analysis of State of the Art Solutions

	Optimised Data Handling Architecture for Network Interface Card
	Concept
	Buffer Descriptor Management
	Receive Data Sequence
	Transmit Data Sequence

	Hardware
	TX BD Register
	Return TX BD FIFO
	RX BD FIFO
	Bus Arbiter FSM
	 BD Control FSM
	Transmit Packet FSM
	Receive Packet FSM

	Software
	Setup NIC
	Data Transfer

	Measurements
	Setup
	Performance Results
	CPU Usage

	Conclusion and Outlook
	Literature

