
    

    

 

 
 

 

DIPLOMARBEIT 

 

Pricing Financial Derivatives 
using Brownian Motion and a 

Gaussian Markov Alternative to 
Fractional Brownian Motion 

 

zur Erlangung des akademischen Grades 

Diplom-Ingenieurin 

im Rahmen des Studiums 

Finanz- und Versicherungsmathematik 

eingereicht von 

Miriam Skorupa 
Matrikelnummer: 01528571 

 
 
 
 
ausgeführt am Institut für Stochastik und Wirtschaftsmathematik 
der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien  
 
 
Betreuer: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Gerhold 
 
 
 
 
Wien, 14.05.2018     

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in) 

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Abstract

This thesis examines different models for pricing financial options. Instead
of using Brownian motion as the underlying process, as is done in the Black–
Scholes model, fractional Brownian motion is introduced and discussed. Then
the Dobrić–Ojeda process, a Gaussian Markov alternative, and a modified
version of it will be presented as an alternative to fractional Brownian mo-
tion, based on the analysis of Conus and Wildman. In contrast to Brownian
motion, fractional Brownian motion and its alternatives incorporate past
dependencies, using the Hurst index. The Black–Scholes and the Conus–
Wildman model will be tested on options of the S&P 500 index, where the
implied volatility and the implied Hurst index are estimated. The pricing ac-
curacy of the two models will be compared using the obtained estimators. We
find that the Conus–Wildman model estimates option prices better than the
Black–Scholes model, concluding that past dependencies matter and should
be incorporated when pricing options.
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Chapter 1

Introduction

The Black–Scholes model, sometimes called Black–Scholes–Merton model, is
probably the most famous model for financial option pricing. The Nobel price
winning paper ”The pricing of Options and Corporate Liabilities”, published
in the Journal of Political Economy in 1973 [3], has since facilitated the
calculation of option prices. The Black–Scholes price frequently overprices
options, due to several assumptions made in the model, especially assuming
a constant volatility. Black calls the simplicity of the model its greatest
weakness and strength, as it is easy for people to understand. It is a good
’first approximation’ and knowing its holes, can be extended [2], as will be
done in this paper.

An option is a security that gives the holder the right, but not the obliga-
tion, to exercise it, that is to buy or sell an asset. While an American option
can be exercised at any time during a specified period of time, a European
option can only be exercised at the end of that time period, on the maturity
date. The price that is paid when the option is exercised is called the strike
price. Options that give the option holder the right to buy the underlying
asset are referred to as call options, while put options give the holder the
right to sell the underlying.

In 1900 L. Bachelier was the first one to develop a model describing the
evolution of stock prices S = (St)t≥0,

St = S0 + µt+ σWt,

where W = (Wt)t≥0 is a standard Brownian motion process and t indicates
time, S0 ∈ R+ is the initial condition, today’s stock price, µ ∈ R represents
the drift of the stock price and σ ∈ R∗+ its volatility. The main criticism
of Bachelier’s model is that stock prices can take on negative values, which
let P. Samuelson to describe the logarithms of the stock prices St as a linear
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model instead of the prices itself,

ln
St
S0

= µt+ σWt, (1.1)

describing stock prices using a geometric Brownian motion,

St = S0e
µteσWt−σ

2

2
t.

Solving (1.1) with Itô’s formula (4.1) the stochastic differential equation
(SDE) can be obtained straightforward

dSt = St(µ dt+ σ dWt). (1.2)

Adding a bank account B = (Bt)t≥0 with dBt = rBt dt for a (fixed) risk-
free interest rate r > 0, the standard diffusion (B,S)-model. On the basis of
this model F. Black, M. Scholes and R. Merton obtained the famous Black–
Scholes formula [3], [26].

F. Black and M. Scholes based their model on the assumption that when
options are priced correctly, it should not be possible to make an immediate
profit through buying (long position) and selling (short position) options [3].
This concept known as arbitrage is central in financial markets. An arbi-
trage free market is a realistic assumption; if there would exist an arbitrage
opportunity traders would immediately act upon it, driving prices towards
an arbitrage free equilibrium and eliminating the opportunity. The following
other assumptions that were made in [3] are considering an ’ideal’ market
and are common for economic models in general: the short term interest rate
is known and constant, stock prices follow a random walk, the distribution
of stock prices is log-normal, the variance rate is constant, the stock pays no
dividends, there are no transaction costs, it is possible to borrow any fraction
of a security at any time and there are no penalties for short selling.

A major weakness of the (B,S)-model is the assumption of a known and
constant variance. Financial prices have shown that the volatility changes for
different maturity dates T with a fixed strike price K, and also for different
strike prices with a fixed maturity; in this case the volatility takes the shape
of a convex function, which is known as the (volatility) smile effect [26].
There have been several attempts to allow for a stochastic volatility as a
more realistic model. In chapter 3 Heston’s stochastic volatility model will
be introduced.

In comparison to Brownian motion which is the underlying process of
the Black–Scholes model, fractional Brownian motion has been shown to
model stock prices more accurately, as it incorporates long-range dependen-
cies through including Hurst index H. Previous models usually assume in-
dependent increments (as is the case for Brownian motion), which means
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that the stock price process would be independent of its past. But frac-
tional Brownian motion is not a semimartingale (except for H = 0.5, which
is the classical Brownian motion) and therefore allows for arbitrage. For this
reason fractional Brownian motion was discarded as an underlying process
for financial models for a while, but has picked up on popularity in recent
years as the amount of literature shows. It is not a Markov process either,
so all the stochastic calculus has to be derived from Gaussian properties.
The motivation for using fractional Brownian motion is that market data
has shown, that stock prices do have some dependence of the past. As shown
in section 8.3 we estimate the Hurst index of the historical S&P 500 data to
be H = 0.58.

Dobrić and Ojeda proposed a Gaussian Markov alternative to fractional
Brownian motion. Gaussian Markov processes are commonly used to model
dynamic systems. For financial stochastic models the majority of processes
are Markovian and many are Gaussian. That is, because Gaussian Markov
processes have many nice properties like long-range dependence, fat tails
and non-stationary volatility, corresponding to the real market and allowing
a more realistic approach [23].

Throughout this paper we will assume to be on a filtered probability
space (Ω,F ,P) and if not stated otherwise all stochastic processes will be real
valued. Further, the underlying stock price process (St)t≥0 satisfies S0 = 1.
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Chapter 2

A Discourse on Chaos and
Fractal Geometry

Chaos theory has fascinated all kinds of scientists, cutting across traditional
scientific disciplines; explaining irregularities, randomness and chaos through
patterns and order. In the 1970s chaos theory began evolving with the help
of the computer, which facilitated computing repeated iterations of simple
mathematical formulas, the basis of chaos. Physiologists found an order in
the chaos developing in human hearts, Ecologists in the rise and fall of moth
populations and Economists in stock price data.

The best known principle of chaos theory is probably the Butterfly Effect
or in more technical terms the ’sensitive dependence on initial conditions’.
The name ’Butterfly Effect’ arises from the graph as shown in figure 2.2.
In 1961 E. Lorenz discovered that the weather’s unpredictability had some
consistency. He found that insignificant changes in input had significant
changes in output. For a more detailed history and overview we will refer to
[11].

Houthakker, a Harvard economics professor, who collected cotton prices
could not make his data fit under the in statistics popular Gaussian normal
distribution, the bell shaped curve. Up until then it was believed that all
sorts of data would be best described by the normal distribution, having only
a few big outliers.

Benoit Mandelbrot discovered that he had found similar data as Houthakker
had, but on a completely different topic, the distribution of small and large
incomes. Mandelbrot started looking for patterns in cotton price data, be-
cause those prices had been documented regularly. When studying the
(ir)regularities of transmission noise in telephone lines, Mandelbrot found
that the transmission errors described a Cantor set over time. Other inter-
esting examples are the Koch snowflake, the Sierpinski triangle and carpet
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Figure 2.1: Mandelbrot set Figure 2.2: Lorenz attractor

and the Menger sponge. Then Mandelbrot discovered the data Hurst had
collected, which will be described in the following section, and introduced
the Noah Effect and the Joseph Effect. The Noah Effect describes the phe-
nomenon that large changes can happen very fast and not as previously
assumed slowly, for example a stock price can drop suddenly without having
gone through all prices in between. The Joseph Effect describes persistence,
for example a lot of transmission errors happen in one period of time, while in
another one there are none, meaning that once you have some errors you are
more likely to have more following. Another famous example of Mandelbrot
is the question of how long Britain‘s coastline is. The answer is, that it de-
pends on the size of the ruler being used; the shorter the ruler, the longer the
coastline, as one starts to measure more details of the coastline. Mandelbrot
was the one who introduced the word fractal as he was searching for a name
to describe his findings. ”[A] fractal is a way of seeing infinity”[11]. Fractal
means self-similarity, which is a form of invariance across time and space.
The famous Mandelbrot set is shown in figure 2.1, displaying self-similarity
on all scales.

Physicists then used chaos to approach turbulence, a topic previously left
to the force of nature. Kolmogorov [15], examining turbulent flow, described
smaller scale turbulent motions on a random self-similar field with stationary
increments.
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2.1 Hurst Discoveries and Long-Range De-

pendece

The British hydrologist H. E. Hurst observed a surprising phenomenon while
studying the fluctuations of yearly run-offs of rivers, especially the Nile. Fol-
lowing [26] let x1, x2, . . . , xn be the values of n successive water run-offs of
the Nile, with expected value 1

n
Xn, where Xn =

∑n
k=1 xk. The deviation of

the cumulative value Xk to k successive years from the empirical mean is
Xk − k

n
Xn with range

Rn = max
k≤n

(
Xk −

k

n
Xn

)
−min

k≤n

(
Xk −

k

n
Xn

)
.

Hurst considered the normalized values Qn = Rn
Sn

, with

Sn =

√√√√ 1

n

n∑
k=1

x2
k − (

1

n

n∑
k=1

xk)2

and discovered for large n
Rn

Sn
∼ cnH ,

that H, which is now known as the Hurst index, is approximately 0.7, with
c being some constant. This came as a surprise as he would have expected
the index to be H = 0.5, indicating that the run offs were independent of
the past. Mandelbrot was the one who introduced the name Hurst index,
when he discovered Hurst’s findings [1]. Note that H is also referred to as
self-similarity parameter in some literature as in [22], the definition of self-
similarity is given in section 5.2. In [23] the Hurst index of the S&P 500
index was calculated to be 0.61, while we have found it to be 0.58 using the
ergodic ratio of second moments method described in section 8.2. Further,
Scansaroli [23] made three main observations about the Hurst index:

1. The Hurst index is not constant over time.

2. The Hurst index is greater than H = 0.5 on a 95% confidence interval
for most of the time.

3. Capitalization, volume and liquidity may influence the index.

The Hurst index allows for long-range dependence, meaning that the in-
crements are positively correlated, this is the case for H > 0.5, and the
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closer H is to 1, the more long memory the process has. For H = 0.5, we
have classical Brownian motion and increments that are not correlated. The
case H < 0.5 indicates a negative correlation between increments. Most au-
thors who have studied fractional Brownian motion in the field of financial
mathematics focus on the case H > 0.5 as the data suggests being realistic.

Gaussian white noise ε = (εt)t≥1 can be obtained with Brownian motion
B = (Bt)t≥0, representing the randomness of the process,

εt = Bt −Bt−1,

for t ≥ 1 and with E [εt] = 0 and E [ε2t ] = 1, where εt are independent identi-
cally distributed random Gaussian variables. Accordingly, fractional Gaus-
sian white noise is obtained through the increments of fractional Brownian
motion,

εt = BH(t)−BH(t− 1),

with Hurst index H ∈ (0, 1).
Now we can define long-range dependence, see [10], [26]:

Definition 2.1.1. If 1
2
< H < 1 a process is said to have long-range depen-

dence if
∞∑
n=0

|ρ(n)| =∞,

where ρ(n) is the covariance function

ρH(n) = Cov(εt, εt+n) =
1

2

{
|n+ 1|2H − 2|n|2H + |n− 1|2H

}
.

Note that for H < 1
2
, we have

∑∞
n=0 |ρ(n)| <∞.
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Chapter 3

Stochastic Volatility Models

In the Black–Scholes model a constant and fixed volatility was assumed in
order to facilitate calculations. As is known from financial markets, this
is not a very realistic assumption. There have been several attempts since
to incorporate a stochastic volatility into financial option pricing models. In
stochastic volatility models the stock price process is accompanied by another
stochastic differential equation (SDE) for the volatility σ, these models are
of the form

dSt = St
√
σt

(
ρ dB

(1)
t +

√
1− ρ2 dB

(2)
t

)
,

dσt = a(t, σt) dt+ b(t, σt) dB(t), σ0 > 0,

where (B
(1)
t , B

(2)
t )t≥0 is a two dimensional standard Brownian motion, cor-

relation ρ ∈ [−1, 1] and with a and b satisfying some regularity conditions
so that the solution of the SDEs exists. In the following section Heston’s
stochastic volatility model will be introduced. For further models, see [14]
and [19].

3.1 Heston

In [12] Heston assumes that the volatility follows an Ornstein–Uhlenbeck
process,

d
√
σt = −β

√
σt dt+ δ dB(t),

where B(t) is Brownian motion. Then using Itô’s formula (4.1) the Cox–
Ingersoll–Ross process can be obtained,

dSt = St
√
σt

(
ρ dB

(1)
t +

√
1− ρ2 dB

(2)
t

)
,

dσt = κ(θ − σt) dt+ ξ
√
σt dB(t), σ0 > 0,
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where the constants κ, θ, ξ > 0 satisfy the Feller condition 2κθ > ξ2.
As shown in [25] calibration results are pretty accurate for a wide range

of maturities, but for short time maturities the generated volatility smile is
not steep enough, which is known as the small-time explosion feature.
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Chapter 4

Preliminaries

As a short recap, the main processes and theorems that are used throughout
this paper will be defined in this section. As main reference for the stochastic
analysis, we refer to [24].

Definition 4.0.1. A Gaussian process is a real valued stochastic process
(Xt)t∈[0,T ], if for any t1, . . . , tk in T the random variables Xt1 , . . . , Xtk are
jointly normal.

A Gaussian process Xt is called centered if E [Xt] = 0 for all t ∈ [0, T ]. It
is completely characterized by its covariance, i.e. E [XtXs] for all s, t ∈ [0, T ].

Definition 4.0.2. A random process (Xt)t∈[0,T ] is called a Markov process
with respect to filtration F , if for all s ≤ t the random variable Xt is condi-
tionally independent of Fs given Xs.

4.1 Short Review on Brownian Motion

Brownian motion originally observed in 1827 in the physical field by the
Scottish botanist Robert Brown, who under a microscope followed the jittery
motion of tiny particles in water, introduced as a mathematical concept in
1900 by L. Bachelier, who presented a stochastic analysis of the stock and
option markets, and A. Einstein (1905), who explained the motion as a result
of numerous collisions with even smaller particles, is also called a Wiener
process after Norbert Wiener, who proved and expanded the theory in 1923.

Definition 4.1.1. An adapted Rd-valued stochastic process B = (Bt)t≥0 is
called d-dimensional Brownian motion with respect to filtration F if the fol-
lowing properties hold:
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Figure 4.1: Brownian motion

1. P [B0 = X] = 1.

2. Independence of increments, i.e. Bt − Bs is independent of Fs for all
s < t in R+.

3. Stationarity of increments, i.e. (Bt − Bs)
d
= (Bt−s − B0) for all s < t

in R+.

4. Normal distribution of increments, i.e. (Bt − B0)
d
=N (0, tId) for all t

in R+, where Id ∈ Rd×d is the identity matrix.

5. B has continuous paths, i.e. t → Bt(ω) is continuous for every ω ∈ Ω
and every t in R+.

Brownian motion is called standard Brownian motion if the process starts
at the origin, i.e (1) is replaced with P [B0 = 0] = 1. (Standard) Brownian
motion is a continuous Gaussian process with homogeneous independent in-
crements. It is one of the wideliest used stochastic processes in financial
mathematics, being the underlying process of several financial models, in-
cluding the Black–Scholes model. It involves a multi-dimensional normal
distribution. It is a Gaussian process, a Lévy process, a Markov process, a
diffusion process, a martingale and a self-similar process [10].

Definition 4.1.2. A d-dimensional Lévy process belongs to a larger class
of processes, where requirement (4) is dropped in the definition of Brownian
motion and (5) is replaced with the condition of càdlàg paths.
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4.2 Itô’s Lemma and Girsanov’s Theorem

Itô’s lemma, the most important result of stochastic analysis, named after
the Japanese mathematician Kiyosi Itô, who proved the lemma in 1944. The
version for continuous semimartingales will be given here.

Lemma 4.2.1. (Itô’s Lemma.) Let U be an open non-empty subset of
Rd and X = (X1, . . . , Xd) be a U-valued continuous semimartingale. Let
f ∈ C2(U,Rn), with f = f1, . . . , fn. Then, f is an Rn-valued continuous
semimartingale and

fk(X) = fk(X0) +
d∑
i=1

∫ .

0

∂ifk(Xs) dX
i
s +

1

2

d∑
i,j=1

∫ .

0

∂i∂jfk(Xs)d[X i, Xj]s,

(4.1)
for every k ∈ {1, . . . , n}, up to indistinguishability, with partial derivatives
∂i, ∂j.

Girsanov’s theorem tells us how to convert the probabilty measure P to
a risk-neutral measure Q, which is an essential tool when pricing financial
derivatives.

Theorem 4.2.2. (Girsanov’s theorem.) Let X be a Rd-valued continuous
semimartingale with canonical decomposition X = A + M and let Q be a
probability measure on (Ω,F) and Z an adapted continuous process such
that dQ = Zt dP on Ft, t ∈ R+. Then, X = Ã + M̃ is a continuous Q-
semimartingale with

Ã = A+

∫ .

0

1

Zs
d[M,Z]s and M̃ = M −

∫ .

0

1

Zs
d[M,Z]s,

where
∫ .

0
1
Zs
d[M,Z]s is of locally bounded variation.
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Chapter 5

Fractional Brownian Motion

The motivation of using fractional Brownian motion originates from empirical
study, where a past dependency on stock price returns has been discovered.
As shown in figure 8.1 the estimated Hurst parameter obtained through end
of day closing values of the S&P 500 index, which is a good proxy for the
United States stock market, but also worldwide, using 7, 986 values is around
H = 0.58. Figures 5.1 and 5.2 demonstrate the influence Hurst index H has
on fractional Brownian motion, for the negatively correlated case H = 0.2
and the positively correlated one H = 0.8. Note that the uncorrelated case

Graphs of fractional Brownian motion

Figure 5.1: Negatively correlated
increments, H = 0.2.

Figure 5.2: Positively correlated
increments, H = 0.8.

H = 0.5, which is classical Brownian motion is shown in figure 4.1. The
starting value of the fractional Brownian motion is 0 and we have chosen the
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number of time points, for example trading days, between starting time 0
and end time 1 to be 1, 000 in both graphs.

5.1 Background of Fractional Brownian Mo-

tion

Before fractional Brownian motion, Lévy [17] introduced another moving
average process, the Holmgren–Riemann–Liouville integral

BH(t) =
1

Γ(H + 1
2
)

∫ t

0

(t− s)H−
1
2 dB(s), (5.1)

where B(s) is white noise and Γ the gamma function, but Mandelbrot found
that this integral puts too great importance on the origin [18]. Kolmogorov
[16] was the first one to introduce fractional Brownian motion on a Hilbert
space in 1940, calling it Wiener Helix. The name fractional Brownian motion
(fBm) was first used by Mandelbrot and van Ness in [18] in 1968, where they
presented a stochastic integral representation of fBm:

BH(t)−BH(0) =
1

Γ(H + 1
2
)

∫
R

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
dZ(s)

=
1

Γ(H + 1
2
)

×
(∫ 0

−∞
((t− s)H−

1
2 − (−s)H−

1
2 ) dB(s) +

∫ t

0

(t− s)H−
1
2 dB(s)

)
,

where B = (BH(t))t≥0 is a real valued stochastic process with Hurst exponent
H ∈ (0, 1) and starting value BH(0). BH(t) has independent increments if
and only if H = 0.5, hence if BH(t) is Brownian motion. Note that BH(t) is
a continuous centered Gaussian process.

5.2 Concepts of Fractional Brownian Motion

Fractional Brownian motion has dependent increments. In order to incorpo-
rate past dependencies of stock prices, the Hurst index H, which measures
the intensity of long-range dependencies as described in section 2.1, will be
used as an additional parameter.
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Definition 5.2.1. A real valued stochastic process (Xt)t≥0 is called self-
similar, if for any a > 0 there exists b > 0 such that

Xat
d
= bXt.

If b = aH for each a > 0 and H unique, (Xt)t≥0 is self-similar with Hurst
exponent H.

The following example shows that Brownian motion is a self-similar pro-
cess, compare to [10], [26].

Example 5.2.2. Brownian motionB = (Bt)t≥0 with E [Bt] = 0 and E [Bs, Bt] =
min(s, t) is a self-similar process. It follows that

E [Bas, Bat] = min(as, at) = amin(s, t) = E [(a
1
2Bs)(a

1
2Bt)].

Hence, (Bas, Bat)
d
= (a

1
2Bs, a

1
2Bt), which is a self-similar process according to

Definition 5.2.1 with Hurst index H = 1
2
.

In the following theorem the covariance of fractional Brownian motion is
determined.

Theorem 5.2.3. Let X = (XH(t))t≥0 be a self-similar Gaussian process with
zero mean and Hurst exponent H ∈ (0, 1). Then

E [XH(t)XH(s)] =
1

2
(t2H + s2H − |t− s|2H), s, t ∈ R+, (5.2)

is the covariance function.

Proof.

E [XH(t)XH(s)] =
1

2
(E [X2

H(t)] + E [X2
H(s)]− E [(XH(t)−XH(s))2]

−(E [X2
H(t)] + E [X2

H(s)]− E [XH(|t− s|)2]))

=
1

2
(t2H + s2H − |t− s|2H).

In order to prove that it is indeed a covariance function, which is stated
without proof in most literature, it needs to be shown that the matrix is
positive semi-definite, see [24]. Note that for r ≥ 0,

r2H =
1

C

∫ ∞
0

1− e−r2u2

u1+2H
du,
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with C ∈ R∗+ and substituting v = ru,

C :=

∫ ∞
0

1− e−v2

v1+2H
dv.

Then, expanding e2stu2 into the power series
∑∞

k=1
1
k!

(2stu2)k,

−|s− t|2H =
1

C

∫ ∞
0

e−s
2u2−t2u2(e2stu2 − 1)

u1+2H
du

=
1

C

∞∑
k=1

2k

k!

∫ ∞
0

ske−s
2u2tke−t

2u2

u1−2k+2H
du,

where monotone convergence is applied to interchange the integral with the
power series. Hence,

n∑
i,j=1

〈vi,Cov(XH(ti), XH(tj))vj〉 =
1

2

n∑
i,j=1

〈vi(t2Hi + t2Hj − |ti − tj|2H)vj〉

=
1

2C

∫ ∞
0

|
∑n

i=1(1− e−t2i u2)vi|2

u1+2H
du

+
∞∑
k=1

2k

k!

∫ ∞
0

|
∑n

i=1 t
k
i e
−t2i u2vi|2

u1−2k+2H
du ≥ 0,

for all n ∈ N, all vectors v1, . . . , vn ∈ Rd and all times t1, . . . , tn ∈ Rd, which
proves that the covariance matrix is positive semi-definite.

Definition 5.2.4. A continuous Gaussian process B = (BH(t))t≥0 with
Hurst index H ∈ (0, 1) with zero mean and covariance as in (5.2) is called
fractional Brownian motion (fBm).

The notation Z = (ZH(t))t≥0 will be used in this paper as an indication for
fBm as was done in [6], [7] and [8]. While Brownian motion has independent
increments, fractional Brownian motion has negative correlated increments
for H ∈ (0, 1

2
) and positive correlated increments for H ∈ (1

2
, 1), which is

the main difference between those processes. Recall that H = 1
2

is Brownian
motion. As the distribution of a zero mean Gaussian process is entirely
determined by its covariance function, due to its characteristic function, it
follows from theorem 5.2.3 that fBm is H-self-similar and has stationary
increments. Conversely, an H-self-similar process with stationary increments
is fBm.

Theorem 5.2.5. Fractional Brownian motion Z = (ZH(t))t≥0 has the fol-
lowing properties [8], [22], [26]:
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1. P [Z0 = 0] = 1.

2. E [Zt] = 0 for all t ∈ R+.

3. Z has stationary increments, i.e. (Zt+s−Zs)
d
=Zt, for all s ≤ t ∈ R+.

4. Z has finite second moments, i.e. E [Z2
t ] = |t|2H , for all t ∈ R+.

5. Z has continuous sample paths.

If E [Z2
1 ] = 1 the process is called standard fractional Brownian motion.

The following theorem states that fractional Brownian motion has almost
surely Hölder continuous paths, see [24].

Theorem 5.2.6. Fractional Brownian motion with Hurst index H ∈ (0, 1)
has almost surely Hölder continuous paths with α ∈ (0, H).

Proof. Let s, t ∈ R+, using theorems 5.2.3 and 5.2.5,

Cov(Zs − Zt) = Cov(Zs)− 2Cov(Zs, Zt) + Cov(Zt) = |s− t|2HId.

Hence,

E [|Zs − Zt|2n] = E [|X|2n]|s− t|2Hn,

for X ∼ N (0, Id) and E [|X|2n] < ∞ for all n ≥ 0. With the Kolmogorov-
Chentsov criterion, we have

E [(Zs, Zt)
2n] ≤ E [|X|2n]|s− t|2Hn−1,

hence, the paths are locally Hölder continuous for all exponents α ∈ (0, α̃) with α̃ =
supn∈N

2Hn−1
2n

.

5.3 Replacing Brownian Motion with Frac-

tional Brownian Motion in the Black–Scholes

Model

Following [13] and [27] the Black–Scholes SDE (1.2) with fBm as its under-
lying process can be easily transformed to

dSt = St(µ dt+ σ dZH(t)) (5.3)
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with solution, that is obtained through the use of Wick calculus instead of
Itô calculus,

St = S0 exp

{
σZH(t) + µt− 1

2
σ2t2H

}
,

with E [St] = S0e
µt. Note that Brownian motion can theoretically be replaced

by fractional Brownian motion, but as fBm is not a semimartingale, it admits
arbitrage and fails to admit a hedging strategy, therefore cannot be used as
a realistic financial pricing model. Y. Hu and B. Øksendal [13] argue that
the arbitrage problem is not only a problem of having a martingale or non-
martingale, but also of the type of integral, having an Itô type integral or
Stratonovich type integral.

5.3.1 Stochastic Calculus for Fractional Brownian Mo-
tion

As fractional Brownian motion is not a semimartingale and does not allow
for Itô calculus, a stochastic Itô type integral that uses the Wick product or
a Stratonovich type integral must be used. Note that for stochastic calculus
we need to distinguish between the two cases H > 1

2
and H < 1

2
. Recall that

the covariance of fBm is

E [ZH(t), ZH(s)] =
1

2
(s2H + t2H − |t− s|2H) := RH(t, s),

where t, s ≥ 0, which can be written as

RH(t, s) = αH(t, s)

∫ t

0

∫ s

0

|r − u|2H−2 du dr,

with αH = H(2H − 1). We do not need stochastic calculus for fractional
Brownian motion in this thesis, as we use another process, the modified
Dobrić–Ojeda or the Conus–Wildman process, which allows for Itô calculus.
For further reading, see [1], [21].
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Chapter 6

The Dobrić–Ojeda Process

The Dobrić–Ojeda process, proposed as an alternative to fractional Brownian
motion, is a Gaussian Markov process with dependent increments in time.
Its main advantage is its semimartingale property, which allows for the use
of Itô calculus.

6.1 Fractional Brownian Fields

Dobrić and Ojeda constructed a Gaussian field encompassing all fractional
Brownian motion while searching for natural wavelets for fBm. In [8] the
existence of a fractional Brownian field and its covariance has been derived
and proven. Every fractional Brownian field is a sum of the odd and even
part of two independent Gaussian fields, which are called dependent fractional
Brownian fields (dfBf),

Bo
H(t) =

BH(t)−BH(−t)
2

and Be
H(t) =

BH(t) +BH(−t)
2

.

The odd and even fields, (Bo
H(t))(t,H)∈[0,∞)×(0,1) and (Be

H(t))(t,H)∈[0,∞)×(0,1),
respectively, are not independent of each other, see [8], therefore they are
called dependent.

Definition 6.1.1. Let the real-valued centered Gaussian process Z = (ZH(t))t≥0

be fractional Brownian motion, Bi
H(t) and W i

H(t) with i=o and i=e be the
odd and even part of two dfBf B = (BH(t))t∈[0,∞) and W = (WH(t))t∈[0,∞),
respectively, with H ∈ (0, 1) and ZH(0) = 0 almost surely, embedded in the
fractional Gaussian field Z = (ZH(t))(t,H)∈[0,∞)×(0,1) defined by

ZH(t) =

{
Be
H(t) +W o

H(t) for t ≥ 0,

Be
H(−t) +W o

H(−t) for t < 0,
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with covariance

E [ZH(t)ZH′(s)] = aH,H′

(
|t|H+H′ + |s|H+H′ − |t− s|H+H′

2

)
, (6.1)

with

aH,H′ =


√

Γ(2H + 1)Γ(3− 2H) sin2(πH) for H +H ′ = 1,

− 2
π

√
Γ(2H + 1) sin(πH)

√
Γ(2H ′ + 1) sin(πH ′)

×Γ(−(H +H ′)) cos((H ′ −H)π
2

cos(H ′ +H)π
2
) for H +H ′ 6= 1.

In the case where H + H ′ = 1, (H,H ′) is called a dual pair, which
generates two martingales, one driving BH and the other driving BH′ . If
H = H ′, ZH is fractional Brownian motion and if H = H ′ = 1

2
, ZH is

standard Brownian motion. In this paper the focus shall lie on the dual pair
case where H + H ′ = 1 and to simplify notation, the subscript H ′ shall be
dropped from aH,H′ =: aH .

6.2 Martingale Properties

We will show that a martingale can be generated from fractional Brownian
motion, which then can be used to derive the variance and covariance.

Theorem 6.2.1. The process MH = (MH(t))t≥0 defined by

MH(t) = E [ZH′(t)|FHt ] (6.2)

is a martingale with respect to FHt , where H +H ′ = 1 and

FHt := σ(ZH(s) : 0 ≤ s ≤ t)

is the filtration generated by MH(t).

This martingale is called a fundamental martingale, discovered by Molchan
in 1969 in [20] as a stochastic integral with respect to a time dependent ker-
nel. Norros et. al [22] obtained fundamental martingales in their study
of Girsanov’s formula for fractional Brownian motion in 1999. Dobrić and
Ojeda [7] built a kernel that when integrated with respect to fBm, retrieves,
up to a constant, Molchan’s fundamental martingale, and is the basis of the
martingale theory used throughout this paper. Our martingale MH generates
the same filtration as the non-semimartingale Z. For the case where (H,H ′)
is not a dual pair, the process is a martingale plus an additional process,
and the more H + H ′ approaches 1, the more does the additional process
approach zero and hence the closer we get to a martingale [7]. Following [6]
for the proof:
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Proof. Let t ∈ R+. The stochastic process M = MH(t) is adapted to FHt ,
i.e. it is FHt -measurable for all t > 0. As MH(t) is defined as the conditional
expectation of the Gaussian process ZH′(t), it follows that MH(t) is also a
Gaussian process and E [MH(t)] = 0. Using the definition of MH(t), the
Gaussian property of ZH′(t) = Z1−H(t) and Jensen’s inequality the integra-
bility of M can be obtained straightforward,

E [|MH(t)|] = E [|E [ZH′(t)|FHt ]|] = E [|E [Z1−H(t)|FHt ]|]
≤ E [E [|Z1−H(t)||FHt ]] = E [|Z1−H(t)|] <∞.

The martingale property E [MH(t)|FHs ] = MH(s) for 0 ≤ s < t remains to
be shown. By the definition of MH(t) and the tower property we obtain

E [MH(t)|FHs ] = E [E [ZH′(t)|FHt ]|FHs ] = E [ZH′(t)|FHs ]

= E [ZH′(t)− ZH′(s)|FHs ] + E [ZH′(s)|FHs ]

= E [ZH′(t)− ZH′(s)|FHs ] +MH(s).

For the martingale property to hold we need to show that E [ZH′(t) −
ZH′(s)|FHs ] = 0. Fix V ∈ FHs and without loss of generality, let V =
1{ZH(u)∈B} for some u ≤ s and B denoting a Borel set. Then

E [V (ZH′(t)− ZH′(s))] = E [1{ZH(u)∈B}ZH′(t)]− [1{ZH(u)∈B}ZH′(s)].

Note that for any Borel set B and any centered jointly Gaussian random
variables X and Y with variance σ2

X and σ2
Y , respectively, and covariance ρ,

E [1{X∈B}Y ] = ρ
σ2
X
E [1{X∈B}X], which gives us

E [1{ZH(u)∈B}ZH′(t)] =
aHu

E [Z2
H(u)]

E [1{ZH(u)∈B}ZH(u)] = E [1{ZH(u)∈B}ZH′(s)].

It follows that E [V (ZH′(t)−ZH′(s))] = 0 for all V ∈ FHs . Hence, E [ZH′(t)−
ZH′(s)|FHs ] = 0, which completes the proof.

Dobrić and Ojeda proved the following stochastic integral representation
of MH(t) using a hypergeometric identity,

MH(t) = E [ZH′(t)|FHt ] = cH

∫ t

0

(1− u)
1
2
−Hu

1
2
−HdZH(u), (6.3)

where

cH =
aH

2HΓ(3
2
−H)Γ(H + 1

2
)

=

√
Γ(3− 2H)Γ(2H + 1) sin2(πH)

2HΓ(3
2
−H)Γ(H + 1

2
)

,
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for H +H ′ = 1, see [7] for the proof.
By projecting fBm on to the fractional Gaussian field, our martingale MH

is used to capture information of the fractional Brownian motion process
[6]. As MH is Gaussian centered, we are searching for a process of the
form GHMH , with GH = (GH(t))t≥0 being some deterministic coefficient, to
approximate fractional Brownian motion. This is done by minimizing the
least-squares difference from ZH , i.e.

min E [ZH(t)−GH(t)MH(t)]2,

where the minimizing GH is given by

GH(t) =
E [ZH(t)MH(t)]

E [M2
H(t)]

.

By the definition of MH and by the covariance of ZH and ZH′ , given in
equation 6.1, the following covariance of ZH and MH and the second moment
of MH can be recovered as

E [ZH(t)MH(t)] = E [ZH(t)E [ZH′(t)|FHt )]] = E [ZH(t)ZH′(t)] = aHt (6.4)

and
E [M2

H(t)] = E [MH(t)E [ZH′(t)|FHt ] = E [MH(t)ZH′(t)]. (6.5)

Recall that E [Z2
H(t)] = |t|2H and note that E [Z2

H′(t)] = |t|2H′ = |t|2(1−H) =
t2−2H , with t ∈ R+.

In [8] the following closed form solution was found for GH

GH(t) =
2HΓ(3− 2H)Γ(H + 1

2
)

aHΓ(3
2
−H)

t2H−1 := cGt
2H−1.

The Dobrić–Ojeda Gaussian Markov process VH = (VH(t))t∈[0,∞) can now
be defined as originally in [7] by V. Dobrić and F. M. Ojeda as

VH(t) = GH(t)MH(t). (6.6)

Proposition 6.2.2. The second moment of MH is given by

E [M2
H(t)] = cM t

2−2H ,

with

cM =
a2
HΓ(3

2
−H)

2HΓ(H + 1
2
)Γ(3− 2H)

and aH = 2HcHB

(
1

2
+H,

3

2
−H

)
,

where B denotes the Beta function.
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Note that this cannot be seen immediately and was stated without proof
in [6] and [7].

Proof. Using (6.3), (6.4) and (6.5) and substituting u = tv, we have

E[M2
H(t)] = E [cH

∫ t

0

(1− u)
1
2
−Hu

1
2
−H dZH(u)ZH′(t)]

= cH

∫ t

0

(1− u)
1
2
−Hu

1
2
−HdE [ZH(u)ZH′(t)]

= aHcH

∫ t

0

(1− u)
1
2
−Hu

1
2
−H du

= aHcHt

∫ 1

0

(t− tu)
1
2
−Htu

1
2
−H du

= aHcHt
2−2H

∫ 1

0

(1− u)
1
2
−Hu

1
2
−H du

= aHcHt
2−2HB

(
3

2
−H, 3

2
−H

)
.

Therefore, by proposition 6.2.2 and equation 6.4, GH can be depict as

GH(t) =
E [ZH(t)MH(t)]

E [M2
H(t)]

=
aHt

cHaHB(3
2
−H, 3

2
−H)t2−2H

= t2H−1 Γ(3− 2H)

cHΓ2(3
2
−H)

.

Proposition 6.2.3. The martingale process MH has independent increments
and covariance E [MH(t)MH(s)] = cM(s ∧ t).

Proof. Assume without loss of generality s < t. Then, by the martingale
property and proposition 6.2.2,

E [MH(t)MH(s)] = E [(MH(t)−MH(s))MH(s)] + E [(MH(s))2]

= cM(s ∧ t)2−2H − cMs2−2H + cMs
2−2H = cMs

2−2H ,
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which proves the covariance. In order to prove the independence of incre-
ments assume h > 0 small, such that s+ h < t. Then,

E [(MH(t+ h)−MH(t))(MH(s+ h)−MH(s))]

= E [MH(t+ h)MH(s+ h)]− E [MH(t)MH(s+ h)]

−E [MH(t+ h)MH(s)] + E [MH(t)MH(s)]

= cM(s+ h)2−2H − cM(s+ h)2−2H − cMs2−2H + cMs
2−2H = 0.

Since MH is a Gaussian process, this concludes the proof.

Following [6] we will prove that the quadratic variation of MH is equal to
cM t

2−2H , using the following lemma.

Lemma 6.2.4. The following approximation holds for all even moments of
martingale process Mt as defined in (6.2):

E [(∆Mti)
2k] ≤ (2k − 1)!!(cM(2− 2H)(ti ∧ ti−1)1−2H∆ti)

k,

where k ≥ 1, ∆Mti = Mti −Mti−1
and for n > 0, ti = it

n
, i = 0, . . . , n be a

partition sequence of [0, t].

Proof. Let k = 1. By 6.2.2 and the Mean Value Theorem we have

E [(∆Mti)
2] = E [M2

ti
] + 2E [MtiMti−1

] + E [M2
ti−1

]

= cM t
2−2H
i − 2E [(Mti −Mti−1

+Mti−1
)Mti−1

] + cM t
2−2H
i−1

= cM t
2−2H
i − 2E [(∆Mti +Mti−1

)Mti−1
] + cM t

2−2H
i−1

= cM t
2−2H
i − 2E [(∆MtiMti−1

]− 2E [M2
ti−1

] + cM t
2−2H
i−1

= cM t
2−2H
i − 2E [cM(ti ∧ ti−1)2−2H − cM t2−2H

i−1 ]

−2cM t
2−2H
i−1 + cM t

2−2H
i−1

= cM(t2−2H
i − t2−2H

i−1 )

≤ cM(2− 2H)(ti ∧ ti−1)1−2H∆ti.

As MH(t) is a Gaussian process, this holds true for all k ≥ 1.

Proposition 6.2.5. Let ti = it
n

be a partition sequence of [0, t] with i =
0, . . . , n and n > 0 and martingale process Mt, then (6.2)

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(∆Mti)
2 − cM t2−2H

∣∣∣∣∣
∣∣∣∣∣
2

= 0

and

lim
n→∞

n∑
i=1

(∆Mti)
2 = cM t

2−2H almost surely,

where ∆Mti = Mti −Mti−1
.
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Proof. Since f(t) = t2−2H is integrable,

cM(2− 2H)
n∑
i=1

t1−2H
i ∆t→ cM t

2−2H as n→∞,

in L2 and almost surely. Therefore, by the Triangle Inequality, it suffices to
show

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(∆Mti)
2 − cM(2− 2H)

n∑
j=1

t1−2H
j ∆t

∣∣∣∣∣
∣∣∣∣∣
2

= 0.

With the independent increments of MH(t), Proposition 6.2.3, and Lemma
6.2.4 it follows

E

( n∑
i=1

(∆Mti)
2 − cM(2− 2H)

n∑
j=1

t1−2H
j ∆t

)2


=
n∑
i=1

n∑
j=1

E [(∆Mti)
2]E [(∆Mtj)

2]

−2cM(2− 2H)
n∑
i=1

n∑
j=1

E [(∆Mti)
2] t1−2H

j ∆t

+c2
M(2− 2H)2

n∑
i=1

n∑
j=1

t1−2H
i t1−2H

j (∆t)2 ≤ 0.

The inequality holds for both H ∈ (0, 0.5) and H ∈ [0.5, 1), which proves
L2-convergence and with Borel–Cantelli almost sure convergence follows.

Define the difference equation between fractional Brownian motion and
the Dobrić–Ojeda process as

NH(t) = ZH(t)−GH(t)MH(t) = ZH(t)− VH(t)
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with

E [N2
H(t)] = E [Z2

H(t)]− 2E [ZH(t)GH(t)MH(t)] + E [G2
H(t)M2

H(t)]

= t2H − 2E
[
ZH(t)

E [ZH(t)MH(t)]

E [M2
H(t)]

MH(t)

]
+ E

[(
E [ZH(t)MH(t)]

E [M2
H(t)]

)2

M2
H(t)

]

= t2H − (E [ZH(t)MH(t)])2

E [M2
H(t)]

= t2H − a2
Ht

2Γ(3− 2H)

aHcHΓ2(3
2
−H)t2−2H

= t2H
(

1− aHΓ(3− 2H)

cHΓ2(3
2
−H)

)
= t2Hb2

H .

Through substitution of aH = 2HcHB(1
2

+H, 3
2
−H) the relative L2-error

is

b2
H = 1−

2HcHΓ(1
2

+H)Γ(3
2
−H)Γ(3− 2H)

Γ2(3
2
−H)

= 1− 2H
Γ(1

2
+H)Γ(3− 2H)

Γ(3
2
−H)

.

(6.7)

The graph of bH is shown in Figure 6.1. For H ∈ (0.4, 1) the Dobrić–Ojeda

Figure 6.1: Graph of bH

process VH approximates ZH with a relative L2-error of at most 12%. Note
that most literature considers H ∈ (0.5, 1), which is the case for dependent
increments and is a reasonable assumption. As H decreases below 0.4 the
approximation worsens and as H approaches 0 the error increases up to 1,
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which can be seen straightforward from equation 6.7. In [6] and [7] the L2-
error of 12% is not questioned, although it seems to be a rather large error
for pricing options.

6.3 Properties of the Dobrić–Ojeda Process

Following [6], we show that the Dobrić–Ojeda process satisfies some stochas-
tic differential equation and find its quadratic variation.

Proposition 6.3.1. There exists a Brownian motion process Wt = (WH(t))t≥0

adapted to the filtration (FHt )t≥0 such that the Dobrić–Ojeda process

VH(t) = GH(t)MH(t), t ∈ [0,∞),

is an Itô diffusion process satisfying the SDE

dVH(t) =
2H − 1

t
VH(t) dt+DHt

H− 1
2 dWt

where DH = cG
√
cM(2− 2H).

To see how much DH with H ∈ (0, 1) impacts VH , the graph of DH , which
is defined as

DH =

√
2H(2− 2H)Γ(3− 2H)Γ(H + 1

2
)

Γ(3
2
−H)

, (6.8)

is shown in figure 6.2. For the case of regular Brownian motion, H = 1
2
, DH

Figure 6.2: Graph of DH

is equal to 1.
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Proof. By the Martingale Representation Theorem there exists a Brownian
motion process Wt adapted to the filtration (FHt )t∈[0,∞) for which

dMH(t) =
√

(cM(2− 2H)t
1
2
−H dWt.

Note that MH(t) = (GH(t))−1VH(t)and recall that GH(t) = cGt
2H−1 and

E [MH(t)] = 0. By the definition of VH (6.6) and the quadratic variation of
MH , proposition 6.2.2, and using integration by parts,

dVH(t) = d(GH(t)MH(t))

= GH(t)dMH(t) +MH(t)dGH(t)

= GH(t)
√
cM(2− 2H)t

1
2
−H dWt + (GH(t))−1VH(t)d(cGt

2H−1)

= cG
√
cM(2− 2H)t2H−1t

1
2
−HdWt + c−1

G t−2H+1VH(t)cG(2H − 1)t2H−2 dt

= DHt
H− 1

2 dWt +
2H − 1

t
VH(t) dt.

Note, that dVH(t) is well-defined. Conus and Wildman [6] observed that
the martingale part of this representation has a similar form as the Holmgren–
Riemann–Liouville fractional integral (5.1), but while the fractional integral
is not Itô integrable the diffusion process is non-anticipating and therefore
Itô integrable. Concluding, that the drift part of the diffusion process com-
pensates the difference and somehow imitates fractional Brownian motion,
while remaining a semimartingale.

Corollary 6.3.2. The quadratic variation of VH(t) is

[VH , VH ] =
D2
H

2H
t2H ,

where DH = cG
√
cM(2− 2H) and without loss of generality H 6= 1

2
.

Proof. As the quadratic variation of Brownian motion Wt is d[W ]t = dt, the
quadratic variation of VH(t) can be obtained straightforward,

[VH , VH ] = D2
H

∫ t

0

s(H− 1
2

)2 d[W ]s = D2
H

∫ t

0

s2H−1 ds =
D2
H

2H
t2H .

32



Chapter 7

Option Pricing

As is shown in the previous section there exists a Brownian motion (WH(t))t≥0

adapted to the filtration (FHt )t≥0, so that the Dobrić–Ojeda process can be
written as

dVH(t) =
2H − 1

t
VH(t) dt+DHt

H− 1
2 dWt,

for DH as in (6.2). The Dobrić–Ojeda process is a semimartingale and there-
fore allows for Itô calculus. For option pricing a risk neutral measure is
needed; a measure equivalent to our original measure P such that the share
price is equal to the discounted expectation of the share price under the
measure. A risk-neutral measure exists is and only if the market is arbitrage
free. Note that a risk neutral measure cannot be obtained straightforward
as was the case for the Black–Scholes model, because the drift has t in the
denominator and explodes for t = 0. First, let us replace Brownian motion
with the Dobrić–Ojeda process in the Black–Scholes SDE (1.2):

dSt = St(µdt+ σ dVH(t)).

Recall that H = 1
2

is Brownian motion and assume without loss of generality
H 6= 1

2
, then applying Itô’s formula (4.1) to Yt = lnSt,

dYt =
dSt
St
− 1

2

(dSt)
2

(St)2

= µ dt+ σ dVH(t)− 1

2
σ2d[VH , VH ]t,

and with the quadratic variation from corollary 6.3.2,

Yt = Y0 + µt+ σVH(t)− 1

2
σ2[VH , VH ]t

= Y0 + µt+ σVH(t)− D2
Hσ

2

4H
t2H .
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Hence, the stock price process St = exp (Yt) can be expressed as

St = S0 exp

{
µt+ σVH(t)− D2

Hσ
2

4H
t2H
}
.

To simplify notations the subscript H will be dropped from VH(t),MH(t)
and FHt in the following.

7.1 Risk-Neutral Measure

We are searching for a risk neutral probability measure Q on (Ω,F) on Ft for
every t ∈ [0,∞), such that dQ = Zt dP, where Zt is an Ft-adapted density,
which exists after Radon–Nikodým, under which the discounted stock price
process,

dZt = Zt((µ− r) dt+ σ dVt),

with Zt = St
Bt

, is a martingale. As in the Black–Scholes model, r > 0 is
the risk-free constant interest rate and Bt = ert is the bond price process.
Plugging in the SDE from proposition 6.3.1, we obtain

dZt = Zt((µ− r) dt+ σ
2H − 1

t
Vt dt+ σDHt

H− 1
2 dWt),

rearranging,

dZt = σDHt
H− 1

2Zt(dWt + γt) dt,

where γt is the drift correction from Girsanov’s theorem, theorem 4.2.2,

γt =
µ− r
σDH

t
1
2
−H +

2H − 1

DH

t−
1
2
−HVt. (7.1)

As shown in [6] the Novikov condition fails to hold,

Proposition 7.1.1. For t ∈ [0, T ],

E
[
exp

(
1

2

∫ t

0

γ2
s ds

)]
=∞,

where γ is as defined in (7.1).

Note that for the Novikov condition to hold we would need E
[
exp

(
1
2

∫ t
0
γ2
s ds

)]
<

∞.
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Proof. Taking the square of (7.1),

γ2
s = A2s1−2H + 2ABs−2HVs +B2s−1−2HV 2

s ,

where A and B are constants defined as A = µ−r
σDH

and B = 2H−1
DH

. Recall that

Vs = GsMs with E [Ms] = 0, E [M2
s ] = cMs

2−2H and Gs = cGs
2H−1. Then,

using Jensen’s inequality, as we have the convex exponential function,

E
[
exp

(
1

2

∫ t

0

γ2
s ds

)]
≥ exp

(
E
[

1

2

∫ t

0

A2s1−2H + 2ABs−2HVs +B2s−1−2HV 2
s ds

])
= exp

(
A2

2(2− 2H)
t2−2H

)
exp

(
B2c2

GcM
2

∫ t

0

1

s
ds

)
=∞,

where the middle term E [2ABs−2HGsMs] = 0.

Therefore Girsanov’s theorem cannot be applied to the Dobrić–Ojeda pro-
cess and without Girsanov it is rather difficult to find a risk-neutral measure
as this is usually the way to proceed. Alternatively, Conus and Wildman in-
troduced the modified Dobrić–Ojeda process for which the Novikov condition
holds and Girsanov’s theorem can be applied, that will be presented in the
following section.

7.2 Modified Dobrić–Ojeda Process

The modified Dobrić–Ojeda process was introduced in [6] as a way around
Girsanov’s formula, replacing Vt with V ε

t , a process that has zero drift for
t ∈ [0, ε) for small ε > 0 and is equal to the original Dobrić–Ojeda process,
Vt = V ε

t , for all t ≥ ε.

Definition 7.2.1. Let ε > 0. The modified Dobrić–Ojeda process V ε
t =

(V ε
H(t))t∈[0,∞) is given by

dV ε
H(t) = cG(2H − 1)t2H−2Mt1[ε,∞)(t) dt+DHt

H− 1
2 dWt, (7.2)

with DH = cG
√
cM(2− 2H).

Following [6] the properties of the modified Dobrić–Ojeda process will be
shown.

Proposition 7.2.2. The modified Dobrić–Ojeda process V ε
t as defined in

(7.2) is well-defined.
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Proof. Using Itô isometry,

E

[(
DH

∫ t

0

sH−
1
2 dWs

)2
]

= D2
H

∫ t

0

s2H−1 ds =
D2
H

2H
t2H <∞,

as DH is independent of s and t ∈ [0,∞). By assumption and without loss
of generality H 6= 1

2
as H = 1

2
is Brownian motion. Hence, it remains to be

shown that the first integral is well-defined for t ≥ ε. Note that the integral
is 0 for t < ε, and not as suggested in [6] for t ≤ ε. Using Itô isometry and
the covariance of Mt, proposition 6.2.3.

E

[(
cG(2H − 1)

∫ t

0

s2H−2Ms1[ε,∞)(s) ds

)2
]

= c2
G(2H − 1)2

∫ t

ε

∫ t

ε

s2H−2
1 s2H−2

2 E [Ms1Ms2 ] ds2 ds1

= c2
G(2H − 1)2

∫ t

ε

∫ t

ε

s2H−2
1 s2H−2

2 cM(s1 ∧ s2)2−2H ds2 ds1

= c2
GcM(2H − 1)2

∫ t

ε

(∫ s1

ε

s2H−2
1 ds2 +

∫ t

s1

s2H−2
2 ds2

)
ds1

= c2
GcM(2H − 1)2

∫ t

ε

s2H−1
1 − εs2H−2

1 +
t2H−1 − s2H−1

1

2H − 1
ds1

= c2
GcM(2H − 1)2 t2H−1

2H − 1
(t− ε) +

∫ t

ε

s2H−1
1

(
1− 1

2H − 1

)
− εs2H−2

1 ds1

= c2
GcM(2H − 1)2 t2H−1

2H − 1
(t− ε) +

2H − 2

(2H − 1)2H

(
t2H − ε2H

)
− ε

2H − 1

(
t2H−1 − ε2H−1

)
= 2c2

GcM(2H − 1)2

(
1

2H
(t2H − ε2H)− ε

2H − 1
(t2H−1 − ε2H−1)

)
<∞.

Hence, both integrals are well-defined, which concludes the proof. Note that
we have extended the proof here, solving the integral with the minimum ∧,
which is not obvious and left open in [6].

Next, the first and second moment of the modified Dobrić–Ojeda process
will be derived.

Proposition 7.2.3. The modified Dobrić–Ojeda process V ε
t satisfies for all

ε > 0,

1. E [V ε
t ] = 0 for all t > 0,
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2. E [(V ε
t )2] =



D2
H

2H
t2H if t < ε,

D2
H

2H
t2H + 2D2

H(2H − 1)
1

2H
(t2H − ε2H)

+2c2
GcM(2H − 1)2

(
1

2H
(t2H − ε2H)

− ε

2H − 1
(t2H−1 − ε2H−1)

)
if t ≥ ε.

Proof. 1. For t < ε,

E [V ε
t ] = E

[
DH

∫ t

0

sH−
1
2 dWs

]
= 0,

as it is the expectation of a measurable square integrable Itô integral,

i.e. E
[
D2
H

∫ t
0
s2H−1 ds

]
<∞ for H 6= 1

2
.

For t ≥ ε,

E [V ε
t ] = E

[
cG(2H − 1)

∫ t

0

s2H−2Ms1[ε,∞)(s) ds+DH

∫ t

0

sH−
1
2 dWs

]
= cG(2H − 1)

∫ t

0

s2H−2E [Ms]1[ε,∞)(s) ds = 0,

as E
[
DH

∫ t
0
sH−

1
2 dWs

]
= 0 and E [Ms] = 0.

2. For the second moment, we have for t < ε,

E [(V ε
t )2] = E

[(
DH

∫ t

0

sH−
1
2 dWs

)2
]

=
D2
H

2H
t2H

and for t ≥ ε, with the proof of proposition 7.2.2,

E [(V ε
t )2]

= E

[(
cG(2H − 1)

∫ t

0

s2H−2Ms1[ε,∞)(s) ds+DH

∫ t

0

sH−
1
2 dWs

)2
]

= 2c2
GcM(2H − 1)2

(
1

2H
(t2H − ε2H)− ε

2H − 1
(t2H−1 − ε2H−1)

)
+2cGDH(2H − 1)E

[∫ t

0

∫ t

0

s
H− 1

2
1 s2H−2

2 Ms21[ε,∞)(s2) dWs1 ds2

]
+
D2
H

2H
t2H .
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By the martingale representation Ms2 =
√
cM(2− 2H)

∫ s2
0
u

1
2
−H dWu,

we have

2cGDH(2H − 1)E
[∫ t

ε

∫ t

0

s
H− 1

2
1 s2H−2

2 Ms2 dWs1 ds2

]
= 2cGDH(2H − 1)

∫ t

ε

s2H−2
2 E

[
Ms2

∫ t

0

s
H− 1

2
1 dWs1

]
ds2

= 2cG
√
cM(2− 2H)DH(2H − 1)

×
∫ t

ε

s2H−2
2 E

[∫ s2

0

u
1
2
−H dWu

∫ t

0

s
H− 1

2
1 dWs1

]
ds2

= 2D2
H(2H − 1)

∫ t

ε

s2H−2
2

∫ s2∧t

0

du ds2

= 2D2
H(2H − 1)

1

2H
(t2H − ε2H),

which is the middle term and hence completes the proof.

Proposition 7.2.4. The quadratic variation of the modified Dobrić–Ojeda
process V ε

t = (V ε
H(t))t≥0 is given by

[V ε, V ε]t =
D2
H

2H
t2H

where DH = cG
√
cM(2− 2H).

Note that the modified Dobrić–Ojeda process has the same quadratic
variation as the original Dobrić–Ojeda process, Vt, which follows from the
fact that we have modified the drift, but not the martingale part of the
process, from which the quadratic variation is made up of. Next, following
[6], we will show that the modified Dobrić–Ojeda process converges to the
original Dobrić–Ojeda process.

Proposition 7.2.5. For fixed H ∈ (0, 1) the process (V ε
t )t∈[0,∞) converges

uniformly in L2(Ω) and almost surely to (Vt)t∈[0,∞) as ε converges to 0.

Proof. For ε > 0, define the difference process (Xε
t )t∈[0,∞),

Xε
t = Vt − V ε

t ,

for all t ≥ 0. Then, using the definition of Vt and the SDEs from proposition
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6.3.1 and equation 7.2,

dXε
t = dVt − dV ε

t

=
2H − 1

t
(Vt − Vt1[ε,∞)(t)) dt

=


2H − 1

t
Vt dt if t < ε,

0 if t ≥ ε.

By the Minkowski and Cauchy–Schwarz inequalities,

E
[

sup
0≤t<∞

(Xε
t )

2

]
= E

[
sup

0≤t≤ε

∣∣∣∣(2H − 1)

∫ t

0

Vs
s
ds

∣∣∣∣2
]

≤ (2H − 1)2 E

[
sup

0≤t≤ε

(∫ t

0

∣∣∣∣Vss
∣∣∣∣ ds)2

]

= (2H − 1)2

∫ ε

0

∫ ε

0

1

su
E [|VsVu|] ds du

≤ (2H − 1)2

∫ ε

0

∫ ε

0

1

su
||Vs||2||Vu||2 ds du

= c2
GcM(2H − 1)2

(∫ ε

0

sH−1 ds

)2

=
c2
GcM(2H − 1)2

H2
ε2H → 0

as ε→ 0 and where by the martingale representation of Ms,

||Vs|| = ||GsMs|| = c2
Gt

4H−2cM(2− 2H)

∫ s

0

u1−2H du = c2
GcMs

2H ,

which proves L2-convergence. For almost-sure convergence we use the SDE
of the processes Vt and V ε

t and dominated convergence, where the indicator
function is bounded above by 1.

lim
ε→0

V ε
t = lim

ε→0

(
cG(2H − 1)

∫ t

0

s2H−2Ms1[ε,∞)(s) ds+DH

∫ t

0

sH−
1
2 dWs

)
= cG(2H − 1)

∫ t

0

s2H−2Ms lim
ε→0

1[ε,∞)(s) ds+DH

∫ t

0

sH−
1
2 dWs

= cG(2H − 1)

∫ t

0

s2H−2Ms ds+DH

∫ t

0

sH−
1
2 dWs

= Vt,

which completes the proof.
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7.3 Modified Stock Price Process

Now, we can apply the modified Dobrić–Ojeda process to the option pricing
theory developed at the beginning of this chapter. Let Sεt be the modified
stock price process for ε > 0 small, then

dSεt = Sεt (σ dV
ε
t + µ dt).

Applying Itô’s formula (4.1) to Y ε
t = lnSεt , as before to St,

dY ε
t =

dSεt
Sεt
− 1

2

(dSεt )
2

(Sεt )
2

= µ dt+ σV ε
t −

1

2
σ2d[V ε, V ε]t,

which gives us, using proposition 7.2.4,

Y ε
t = Y0 + µt+ σV ε

t −
1

2
σ2[V ε, V ε]t

= Y0 + µt+ σV ε
t −

D2
Hσ

2

4H
t2H .

Hence, the modified stock price process can be written as

Sεt = S0 exp

{
µt+ σV ε

t −
D2
Hσ

2

4H
t2H
}
. (7.3)

By proposition 7.2.5 and dominated convergence, we have

lim
ε→0

Sεt = lim
ε→0

S0 exp

{
µt+ σV ε

t −
D2
Hσ

2

4H
t2H
}

= S0 exp

{
µt+ σ lim

ε→0
V ε
t −

D2
Hσ

2

4H
t2H
}

= S0 exp

{
µt+ σVt −

D2
Hσ

2

4H
t2H
}

= St.

As before the bond price process is Bt = ert, and with Sεt (7.3), we can define

Zε
t =

Sεt
Bt

= S0 exp

{
(µ− r)t+ σV ε

t −
D2
Hσ

2

4H
t2H
}
.

Then, using Itô’s formula (4.1) and (7.2),

dZε
t = Zε

t ((µ− r) dt+ σ dV ε
t )

= Zε
t

(
(µ− r) dt+ σ

(
cG(2H − 1)t2H−2Mt1[ε,∞)(t) dt+DHt

H− 1
2 dWt

))
= σDHt

H− 1
2Zε

t (dWt + γ dt),
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where
γt = At

1
2
−H +BtH−

3
2Mt1[ε,∞)(t), (7.4)

with constants

A =
µ− r
σDH

and B =
cG(2H − 1)

DH

.

Our goal is to obtain a risk-neutral measure Q through invoking Girsanov’s
theorem (theorem 4.2.2). In order to use Girsanov, we will show that Novikov’s
condition holds for the modified stock price process. Note that it only holds
for some restricted ε.

Proposition 7.3.1. For γt as defined in (7.4) and all t ∈ [0, T ], the Novikov
condition holds for ε > exp{− 1

2B2cM
}t,

E
[
exp

(
1

2

∫ t

0

γ2
s ds

)]
<∞.

Proof. Using the definition of γt (7.4) and the Cauchy–Schwarz inequality,
following [6] for the proof,

E
[
exp

(
1

2

∫ t

0

γ2
s ds

)]
= E

[
exp

(
1

2

∫ t

0

(As
1
2
−H +BsH−

3
2Ms1[ε,∞)(s))

2 ds

)]
= exp

(
A2t2−2H

2(2− 2H)

)
E
[
exp

(
AB

∫ t

ε

Ms

s
ds

)
exp

(
B2

2

∫ t

ε

s2H−3M2
s ds

)]
≤ exp

(
A2t2−2H

2(2− 2H)

)(
E
[
exp

(
2AB

∫ t

ε

Ms

s
ds

)]) 1
2

×
(
E
[
exp

(
B2

∫ t

ε

s2H−3M2
s ds

)]) 1
2

.

The first term is finite as A is some constant. The second term is finite for
E
[
exp

{∫ t
ε
Ms

s
ds
}]

< ∞, which is the moment generating function of the

Gaussian random variable
∫ t
ε
Ms

s
ds. For the last term to be finite recall that

E [M2
H(t)] = cM t

2−2H and note that for k ≥ 1 and Brownian motion process
Bt, ∫ cM t

2−2H

cM ε2−2H

E [B2k
r ]

1
k

r2
dr =

∫ cM t
2−2H

cM ε2−2H

r−2

(
2kΓ(k + 1

2
)

√
π

rk
)1/k

dr

=
2Γ(k + 1

2
)1/k(2− 2H)

π1/2k
ln

(
t

ε

)
.

(7.5)
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Then, by the time-change for martingales and the convergence given in propo-
sition 6.2.5, we have for any t ≥ 0, Mt = B〈M〉ι = BcM t2−2H , which lets us
rewrite the last term using Taylor expansion of f(x) = ex,

E
[
exp

(
B2

∫ t

ε

s2H−3M2
s ds

)]
= E

[
exp

(
B2

∫ t

ε

s2H−3B2
cMs2−2H ds

)]
= E

[
exp

(
B2cM

∫ t

ε

s2H−3B2
s2−2H ds

)]

= E

 ∞∑
k=0

1

k!

(
B2cM

2− 2H

∫ t2−2H

ε2−2H

r−2B2
r dr

)k
 .

With the Cauchy–Schwarz inequality and (7.5), the expression can be trans-
formed in the following way

E

 ∞∑
k=0

1

k!

(
B2cM

2− 2H

∫ t2−2H

ε2−2H

r−2B2
rdr

)k
 ≤ 1 +

1√
π

∞∑
k=1

(
2B2cM ln

(
t

ε

))k
,

see [6]. Hence, the series converges if∣∣∣∣2B2cM ln

(
t

ε

) ∣∣∣∣< 1,

which is

te
− 1

2B2cM < ε < te
1

2B2cM .

The right-hand inequality can be dropped, as we want ε to be small and

te
1

2B2cM > t. Hence, E
[
exp

(
1
2

∫ t
0
γ2
s ds

)]
< ∞ holds for all ε > te

− 1
2B2cM .

This completes the proof for Novikov’s condition.

Conus and Wildman argue that Novikov’s condition should hold for all

ε > 0, as δH := e
− 1

2B2cM , which is shown in figure 7.1.
Having shown that Novikov’s condition holds, Girsanov’s theorem can be

applied.

Proposition 7.3.2. Under the modified Dobrić–Ojeda process V ε
t there ex-

ists by Girsanov’s theorem a risk-neutral measure Q that is equivalent to
probability measure P such that

dW ε
t = dWt + γt dt

= dWt + (At
1
2
−H +BtH−

3
2Mt1[ε,∞)(t)) dt
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Figure 7.1: Graph of δH

is a Brownian motion process under Q. It follows that,

dZε
t = σDHt

H− 1
2Zε

t dW
ε
t

is a martingale process under Q.

Proof. Under Q, we obtain

Zε
t = S0 exp

{
σDH

∫ t

0

sH−
1
2 dW ε

s −
D2
Hσ

2

4H
t2H
}

and

Sεt = S0 exp

{
rt+ σDH

∫ t

0

sH−
1
2 dW ε

s −
D2
Hσ

2

4H
t2H
}
. (7.6)

Now, taking the expectation with respect to measure Q, we have, with the
Itô formula (4.1) and the moment generating function,

EQ [Sεt ] = EQ

[
S0 exp

{
rt+ σDH

∫ t

0

sH−
1
2 dW ε

s −
D2
Hσ

2

4H
t2H
}]

= S0e
rt.

Hence, Q is indeed a risk-neutral measure.

With Novikov’s condition and Girsanov’s theorem, it follows that risk
neutral measure Q is an equivalent local martingale measure (ELMM) and
the process (Zε

t )t∈[0,T ] is a Q-supermartingale, as the process Zε
t is a strictly

positive local martingale, with

dZε
t = σDHt

H− 1
2Zε

t dW
ε
t .
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7.4 Conus–Wildman Option Pricing

We will call the underlying price process that was established in the previous
section according to [6] the Conus–Wildman price process, (Sεt )t∈[0,T ]. Let Ft
be the payoff of an option with price Sεt for some ε > δ(H)t at time t > 0
and define

Et := EQ

[
F

BT

∣∣∣∣Ft] .
By the martingale representation theorem, there exists an adapted process
(φt)t∈[0,T ] such that

dEt = φtdZ
ε
t .

For each ε > δ(H)t, we obtain a ∆-hedging portfolio, given by (φt, ψt)t∈[0,T ],
where φt is the number of shares of the risky asset at time t, ψt = Et − φtZε

t

the number of shares of the bond at time t and ∆t describes the sensitivity of
an option’s value to a change in the underlying price process, i.e. ∆t =

δV εt
δSεt

.

A ∆-hedging portfolio tries to maintain the ∆ as close to zero as possible.
Assuming an arbitrage free market, we have

Ft = φtS
ε
t + ψtBt = BtEQ

[
F

BT

∣∣∣∣Ft] , (7.7)

at any time t ∈ [0, T ]. Note that the portfolio (φt, ψt) is self-financing, no
money is infused or withdrawn at any time, which means that purchasing
is financed by selling, that is dFt = φtdS

ε
t + ψt dBt. With the no-arbitrage

condition, we have a replicating portfolio, where the value of the portfolio is
equal to the value of the option at any time t ∈ [0, T ].

The corresponding Black–Scholes partial differential equation is given in
the following proposition.

Proposition 7.4.1. The value of an option with payoff F and underlying
Conus–Wildman price process, Sεt , at time t ∈ [0, T ] is given by f(Sεt , t),
where f(x, t) is the solution of the partial differential equation

rf(x, t) = rxfx(x, t) + ft(x, t) +
1

2
σ2D2

Ht
2H−1x2fxx(x, t),

with f(x, T ) = F as terminal condition. Where ft, fx are the partial deriva-
tives of t and x, respectively, and fxx the second partial derivative of x.

Proof. By (7.2) and (7.3),

dSεt = Sεt (µ dt+ σ dV ε
t )

=
(
µ+ σcG(2H − 1)t2H−2Mt1[ε,∞)(t)

)
Sεt dt+ σDHt

H− 1
2Sεt dWt

= αtS
ε
t dt+ σDHt

H− 1
2Sεt dWt,
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with αt = µ+ σcG(2H − 1)t2H−2Mt1[ε,∞)(t). Using Itô’s formula (4.1),

df(Sεt , t) = fx(S
ε
t , t)dS

ε
t + ft(S

ε
t , t) +

1

2
fxx(S

ε
t , t)(S

ε
t )

2

= fx(S
ε
t , t)

(
αtS

ε
t dt+ σDHt

H− 1
2Sεt dWt

)
+ ft(S

ε
t , t)

+
1

2
σ2D2

Ht
2H−1(Sεt )

2fxx(S
ε
t , t) dt.

(7.8)

As we have a self-financing hedging portfolio (φ, ψ) that replicates the value
of the option for every t ∈ [0, T ],

df(Sεt , t) = φtdS
ε
t + ψt dBt

= φt

(
αtS

ε
t dt+ σDHt

H− 1
2Sεt dWt

)
+ ψtrBt dt.

(7.9)

Equating (7.8) and (7.9),(
φtαtS

ε
t + ψtrBt − αtSεtfx(Sεt , t)− ft(Sεt , t)−

1

2
σ2D2

Ht
2H−1(Sεt )

2fxx(S
ε
t , t)

)
dt

=

(
σDHt

H− 1
2Sεtfx(S

ε
t , t)− φtσDHtH −

1

2
Sεt

)
dWt.

Since we have a martingale process with respect to Brownian motion Wt and
a non martingale process on the left hand side, both sides have to be equal
to zero almost surely. Hence, for the right hand side to be equal to zero, it
follows that

φt = fx(S
ε
t , t),

where φt is the number of shares of the underlying stock in the replicating
portfolio. With ψtBt = f(Sεt , t)− φtSεt , the left hand side gives us

rf(x, t) = rxfx(x, t) + ft(x, t) +
1

2
σ2D2

Ht
2H−1x2fxx(x, t),

which completes the proof.

In the following sections, a Black–Scholes type call and put option price
for the Conus–Wildman process will be computed.

7.4.1 Call Option Pricing

Recall that the payoff of a call option is C = (ST − K)+ at maturity T ,
where K is the strike price and St the stock price at time t. The value of a
Black–Scholes European call option is

C(St, t) = StN (d1)−Ke−r(T−t)N (d2),
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where N indicates the standard normal distribution, T the expiration date,
r the risk-free interest rate, with

d1 =
ln(St

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

and
d2 = d1 − σ

√
T − t.

Now, following [6], using the Conus–Wildman modified stock price process
(Sεt )t∈[0,T ], the payoff of a call option is

Cε = (SεT −K)+.

By (7.6) and (7.7), it follows

Cε
t = BtEQ

[
Cε

BT

∣∣∣∣Ft]
= BtEQ

[
(SεT −K)+

BT

∣∣∣∣Ft]
=
Bt

BT

EQ

[(
Sεt
SεT
Sεt
−K

)+ ∣∣∣∣Ft
]

= e−r(T−t)EQ

[(
Sεte

r(T−t)+σDH
∫ T
t sH−

1
2 dW ε

s− 1
2
σ2D2

H(T
2H−t2H

2H
) −K

)+
∣∣∣∣Ft]

= e−r(T−t)EQ

[(
xer(T−t)+σDH

∫ T
t sH−

1
2 dW ε

s− 1
2
σ2D2

H(T
2H−t2H

2H
) −K

)+
∣∣∣∣x = Sεt

]
,

as Sεt is Ft measurable and
∫ T
t
sH−

1
2 dW ε

s is independent of Ft. Further,∫ T
t
sH−

1
2 dW ε

s is a centered Gaussian random variable with variance T 2H−t2H
2H

,
which gives us

Cε
t = e−r(T−t)

1√
2π

×
∫ ∞
−∞

(
Sεte

r(T−t)+σDH
√
T2H−t2H

2H
z− 1

2
σ2D2

H(T
2H−t2H

2H
) −K

)+

e−
1
2
z2dz,

with z as standard normal random variable. For

Sεte
r(T−t)+σDH

√
T2H−t2H

2H
z− 1

2
σ2D2

H(T
2H−t2H

2H
) −K ≥ 0

to be true,

z ≥
ln
(
K
Sεt

)
− r(T − t) + 1

2
σ2D2

H

(
T 2H−t2H

2H

)
σDH

√
T 2H−t2H

2H

:= −dε2
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needs to hold.
Then our pricing formula for a call option is,

Cε
t (S

ε
t , t) = e−r(T−t)

1√
2π

×
∫ ∞
d1

(
Sεte

r(T−t)+σDH
√
T2H−t2H

2H
z− 1

2
σ2D2

H(T
2H−t2H

2H
) −K

)+

e−
1
2
z2dz

= Sεt
1√
2π

∫ ∞
d1

e
− 1

2

(
z−σDH

√
T2H−t2H

2H

)2

dz −Ke−r(T−t) 1√
2π

∫ ∞
d1

e−
1
2
z2dz

= SεtN (dε1)−Ke−r(T−t)N (dε2),

with

dε1 = dε2 + σDH

√
T 2H − t2H

2H
.

Note that for H = 1
2

we have the original Black–Scholes call option price.

7.4.2 Put Option Pricing

The payoff of a put option is P = (K−ST )+, where K is the strike price and
St the stock price at time t ∈ [0, T ]. The value of a Black–Scholes European
put option is

P (St, t) = Ke−r(T−t)N (−d2)− StN (−d1),

where d1 and d2 are defined as in the previous section. Similarly, as for the
call option, a put option pricing formula can be obtained from the modified
Dobrić–Ojeda process,

P ε
t (Sεt , t) = Ke−r(T−t)N (−dε2)− SεtN (−dε1),

with dε1 and dε2 defined as for the call option.
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Chapter 8

Parameter Estimation

Thus far we have assumed to have constant parameters µ, σ and H for the
stock price process. Some literature approaches this issue through estimation
methods using historical stock price data, which will be introduced in this
section, but estimation methods using implied volatility have been shown to
estimate actual volatility better, which will be done in section 10.

8.1 Estimating the Hurst Index

As the speed and volume of trading has severely increased, facilitated through
electronic trading, estimation techniques have to be fast and accurate. As
Taqqu et al. examined in [28] many estimation techniques are fast and
simple, but with a slow convergence rate and wide confidence intervals.
They simulated 50 sample paths with 10, 000 realizations of fBm for H =
0.5, 0.6, . . . , 0.9, using various estimation techniques to compare the accuracy
of the estimates of the Hurst index. The following three are the main types
of Hurst index estimators for fractional Brownian motion.

1. Time domain based analysis; rescaled range (R/S) method

2. Aggregated processes analysis; variance and absolute convergence meth-
ods

3. Frequency based analysis; periodogram/ spectral methods, wavelet meth-
ods and Whittle’s MLE

Note that the (R/S) method is the method used in Hurst’s hydrological
analysis described in section 2.1. It is the best-known method, measuring
the long range-dependence in a time series. Taqqu et al. find Whittle’s
Maximum Likelihood Estimator (MLE) approach to be the most accurate. In
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the following section estimators using ergodic theory, that are competitive to
Whittle’s approach, will be introduced, using the self-similar and stationary
properties of fractional Gaussian noise.

8.2 Ratio of Second Moment Method with

Ergodic Theory

”Ergodic theory says that a time average equals a space average” [9]. In order
to use the ergodic theory estimation techniques introduced in [23], we assume,
as in [6], that the Hurst index of the stock price following a geometric Conus–
Wildman process is the same parameter as of the corresponding fractional
Brownian motion, i.e. HZt = HV εt

. Recall that the relative error of the
processes Zt and Vt is at most 12%, as shown in figure 6.1. Assume that
the stock price follows a geometric fBm process as in the Black–Scholes SDE
(1.2) and defining the log returns yi = Si

Si−1
for i = 1, . . . , N , where Si is the

observed price of the underlying stock at time ti = iT
N

, for i = 1, . . . , N , for
fixed time periods, ∆t = T

N
. Then,

yi = µ∆t+ σ(ZH(ti)− ZH(ti−1))− 1

2
σ2(t2Hi − t2Hi−1)

We want to show that yi → µ∆t as N →∞. By the ergodic property of ZH ,

1

N

N∑
i=1

(ZH(ti)− ZH(ti−1))→ E[ZH(t1)− ZH(t0)] = 0 a.s. (8.1)

The last term can be rearranged to a Riemann sum, which converges to zero
as n goes to infinity, see [6]. Hence,

1

N

N∑
i=1

yi = µ∆t+
σ

N

N∑
i=1

(ZH(ti)− ZH(ti−1))− σ2

2N

N∑
i=1

(t2Hi − t2Hi−1)

→ µ∆t as N →∞,

which gives us an estimator for µ for N sufficiently large,

µ̂ =
1

∆t

1

N

N∑
i=1

yi.
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In order to estimate the volatility σ and the Hurst index H, a ratio of second
moments will be used that was introduced in [23],

SS1 :=
1

N

N∑
i=1

(yi − µ̂∆t)2

=
1

N

N∑
i=1

(
σ(ZH(ti)− ZH(ti−1))− σ2

2
(t2Hi − t2Hi−1)

)2

=
σ2

N

N∑
i=1

(ZH(ti)− ZH(ti−1))2 − σ3

N

N∑
i=1

(ZH(ti)− ZH(ti−1))(t2Hi − t2Hi−1)

+
σ4

N

N∑
i=1

(t2Hi − t2Hi−1)2.

Using the same argument as before and because we have finite variation,
which means that the quadratic variation has to be zero, we have

σ4

N

N∑
i=1

(t2Hi − t2Hi−1)2 → 0 as N →∞.

By the Cauchy–Schwarz inequality, the second term converges to zero,

σ3

N

N∑
i=1

(ZH(ti)− ZH(ti−1))(t2Hi − t2Hi−1)

≤

√√√√(σ2

N

N∑
i=1

(ZH(ti)− ZH(ti−1))2

)(
σ4

N

N∑
i=1

(t2Hi − t2Hi−1)2

)
→ 0 as N →∞.

The first term converges to the increments of second moment, by the ergodic
theorem,

1

N

N∑
i=1

σ(ZH(ti)− ZH(ti−1))2 → σ2(∆t)2H as N →∞,

and hence
SS1 → σ2(∆t)2H as N →∞. (8.2)

As we want to obtain a ratio, we need a second estimator. In [23] two further
estimates were defined, one formed from the even increments and one from
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the odd ones, and their average was taken. In [6], as will be done here, this
step was combined to defining one second parameter with half as many points
as used in SS1.

SS2 :=
1

bN/2c

bN/2c∑
i=1

(y2i − µ̂2∆t)2 → σ2(2∆t)2H as N →∞, (8.3)

where the convergence is obtained as for SS1. We are now able to take the
ratio of the two moments SS1 (8.2) and SS2 (8.3),

SS2

SS1

=
σ2(2∆t)2H

σ2(∆t)2H
= 4H ,

which lets us solve for the estimator of the Hurst index H,

Ĥ = log4

(
SS2

SS1

)
.

Using the ratio’s method estimate of H in equation 8.2, the volatility esti-
mator σ can be obtained,

σ̂2 =
1

(∆t)2Ĥ

1

N

N∑
i=1

(yi − µ̂∆t)2.

Note that outliers or large jumps shall be omitted in the data, as the ratio
method is sensitive to anomalities, which will skew SS1 and SS2 (see [23]).
Further, the estimates of H and σ are highly correlated, as is obvious from
the dependent computational method.

8.3 Quadratic Variation Estimation Method

The ratio method that was introduced in the previous section cannot be
applied to the Conus–Wildman process as it does not have ergodic incre-
ments. Alternatively, parameters can be estimated through quadratic vari-
ation as will be shown in this section, which then will be used for another
ratio method. Note that we do not need to estimate drift µ as it is not rel-
evant for option pricing. The estimators of the variance σ and Hurst index
H remain to be calculated. Recall that the quadratic variation of both the
Dobrić–Ojeda and the Conus–Wildman process are the same, corollary 6.3.2
and proposition 7.2.4,

I :=t0 [V ε, V ε]T =
D2
H

2H
(T 2H − t2H0 ).
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We want to show L2- and almost sure convergence using the quadratic vari-
ation of V ε

t for the parameter estimation, following [6].

Theorem 8.3.1. Let ti = iT
bn1+ηc , i = i0, . . . , bn1+ηc , i0 =

t0bn1+ηc
T

, be

a sequence of partitions of [t0, T ] for some η > 0 and the Dobrić–Ojeda
processVH(t) = GH(t)MH(t), as in (6.6). Then

lim
n→∞

∣∣∣∣∣∣∣∣ n∑
i=1

(∆Vti)
2 − I

∣∣∣∣∣∣∣∣
2

= 0

and

lim
n→∞

bn1+ηc∑
i=1

(∆Vti)
2 = I a.s.,

with ∆Vti = Vti − Vti−1
.

For the proof see the appendix of [6]. The term bn1+ηc results from the
fact that for almost sure convergence the sampling rate should be strictly
greater than n, thus this holds for all η > 0. Note, that this will only
marginally impact the precision of the estimator.

Corollary 8.3.2. The sample quadratic variation of the Conus–Wildman

process V ε
t converges in L2 and almost surely to I =

D2
H

2H
(T 2H − t2H0 ).

Proof. This follows immediately as there have been no changes to the quadratic
variation.

Similarly, the convergence of the quadratic variation for the log stock
price process Y ε

t = ln(Sεt ) is given.

Corollary 8.3.3. The sample quadratic variation of the log stock price pro-

cess Y ε
t converges in L2 and almost surely to Iσ2 =

D2
Hσ

2

2H
(T 2H − t2H0 ).

Proof. As defined in (7.3),

Y ε
t = ln(Sεt ) = µt+ σV ε

t −
D2
Hσ

2

4H
t2H .

As the drift part does not impact the quadratic variation, the quadratic

variation of the log stock price process is given by
D2
Hσ

2

2H
(T 2H − t2H0 ).
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Ratio Method with Quadratic Variation

Analogously as for the ratio method with ergodic theory (section 8.2), we
want to have equally time spaced observations defined as m := bn1+ηc of
the stock price process Sεt =: si at time ti = iT

m
, i = 0, . . . ,m. Assuming we

have a non dividend paying stock and again let the log returns be defined
by yi = ln si

si−1
. Further, assume the stock price process follows a geometric

Dobrić–Ojeda process, with Sεt as in (7.6):

Sεt = S0 exp

{
rt+ σDH

∫ t

0

sH−
1
2 dW ε

s −
D2
Hσ

2

4H
t2H
}

Let

yi = µ∆t+ σ(V ε
ti
− V ε

ti−1
)− D2

Hσ
2

4H
(t2Hi − t2Hi−1).

Note that t0 = 0 according to our definition and by corollary 8.3.3 we have

m∑
i=1

y2
i →

D2
Hσ

2

2H
T 2H .

For the sample quadratic variation for half the sample paths we have similar
convergence,

bm/2c∑
i=1

y2
i →

D2
Hσ

2

2H

(
T

2

)2H

.

Since the convergence is almost surely we can take the ratio as in section 8.2,

∑m
i=1 y

2
i∑bm/2c

i=1 y2
i

→
D2
Hσ

2

2H
T 2H

D2
Hσ

2

2H

(
T
2

)2H
= 4H .

Hence, the estimator of the Hurst index H for m sufficiently large is given
by

Ĥ = log4

( ∑m
i=1 y

2
i∑bm/2c

i=1 y2
i

)
.

Note that in [6] the fraction should be reciprocal or the logarithm to base
1
4
. We have used the quadratic variation method to obtain a value for H

using historical end-of-day closing values of the S&P 500 index with a total
of 7, 984 observations from January 2nd, 1986 to August 31st, 2017.
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Figure 8.1: Historical H

The estimator for all 7, 084 observations is H = 0.5749. Then, using
estimator Ĥ to obtain the volatility estimator σ,

σ̂2 =
2Ĥ

DHT 2Ĥ

m∑
i=1

y2
i .
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Chapter 9

Conus–Wildman

The major goal of Conus and Wildman [6] was to apply the Dobrić–Ojeda
process as noise to the Black–Scholes SDE (1.2):

dSt = St(µ dt+ σ dVt).

They did a simulation using the above presented underlying processes to
compare the Black–Scholes price, the fractional Brownian motion price and
the Dobrić–Ojeda price to the trading price. The price was computed of a
European call option using historical stock price data. This was done over
a period of 62 consecutive days. The case study was performed on a call
option of an American Airline stock (AAL) and of a Bank of America stock
(BAC) with a fixed strike price. They observe that with a lower value of H
for the quadratic variation ratio method, the Dobrić–Ojeda option price is
more accurate than the Black–Scholes and the fractional Brownian motion
price with respect to the actual option trading price. However, when the
quadratic variation ratio method estimates a higher value of H, the Dobrić–
Ojeda model overestimates the option price.

While incorporating past dependencies, through their estimation method
Conus and Wildman still obtained a constant volatility σ > 0, which suggests
that the volatility smile is still flat.

Picking just one or two stocks makes it difficult to get a feeling for the
overall market and the choice of stocks seems rather random. Therefore we
have used the S&P 500 index for calibration in the following section, using
different strike prices and using call and put options.

Instead of taking historical data for our estimators, we want to calculate
the implied volatility, i.e. solving for the volatility σ using given market
values. The implied volatility is believed to be superior to the historical
volatility as it reflects market participants’ expectations and it has been
shown that it reflect the actual volatility better. Typically, the higher the
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implied volatility, the more expensive the option. Options that are at-the-
money are usually traded more often.In the following section we have derived
the implied volatility for the Conus–Wildman model.

9.1 Implied Volatility in the Conus–Wildman

Process

In order to obtain the implied volatility, the derivative of our payoff function
F with respect to volatility σ needs to be taken. Recall that

Ft = SεtN (d1)−Ke−r(T−t)N (d2),

with

d1 =
ln
(
Sεt
K

)
+ r(T − t) + 1

2
σ2D2

H

(
T 2H−t2H

2H

)
σDH

√
T 2H−t2H

2H

and

d2 =
ln
(
Sεt
K

)
+ r(T − t)− 1

2
σ2D2

H

(
T 2H−t2H

2H

)
σDH

√
T 2H−t2H

2H

= d1 − σDH

√
T 2H − t2H

2H
.

Taking the derivative with respect to the volatility is known as the Vega of
the Greeks in the Black–Scholes model.

∂Ft
∂σ

= SεtN ′(d1)

(
−d2

σ

)
−Ke−r(T−t)N ′(d2)

(
−d1

σ

)
=

1√
2π
Sεte

− d
2
1
2

(
−d2

σ

)
− 1√

2π
Ke−r(T−t)e−

d22
2

(
−d1

σ

)
=

1√
2π
e−

d21
2

(
−S

ε
td2

σ
+
Ke−r(T−t)d1

σ
e
d21
2
− d

2
2
2

)
= N ′(d1)

(
−S

ε
td2

σ
+
Ke−r(T−t)d1

σ
e

1
2

(d1−d2)(d1+d2)

)
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= N ′(d1)

(
−S

ε
td2

σ

+
e−r(T−t)d1

σ
exp

1

2
σDH

√
T 2H − t2H

2H

2 ln
Sεt
K

+ 2r(T − t)

σDH

√
T 2H−t2H

2H




= N ′(d1)

(
−S

ε
td2

σ
+
Ke−r(T−t)d1

σ

Sεt
K
er(T−t)

)
= SεtN ′(d1)DH

√
T 2H − t2H

2H
,

where the derivative of d1 with respect to σ is

∂d1

∂σ
=
σ2D3

H

(
T 2H−t2H

2H

) 3
2

σ2D2
H

(
T 2H−t2H

2H

)
−

(
ln
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Similarly, the derivative of d2 with respect to σ

∂d2

∂σ
= −d1

σ
.

In order to solve the two dimensional optimization problem with a gradient
approach, the derivative with respect to H is required. First, note that,

∂

∂H

T 2H − t2H

2H
=
t2H − 2Ht2H ln(t)− T 2H + 2HT 2H ln(T )

2H2
:= A.
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Then,
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Chapter 10

Calibration

For the calibration we have used an iterative approach with two loops in
the case of the Conus–Wildman model one for the volatility σ and one for
Hurst index H. Note that with the calculations of the implied volatility of
the previous section a gradient approach would be possible, but it would not
simplify the estimation. We have chosen to use the S&P 500 index, as it is
known to be the best representation of the United States stock market and
it entails a great variety of liquid options.

10.1 S&P 500 Index

The Standard&Poor’s 500 (S&P 500) index consists of 500 stocks chosen
for reasons like market size and liquidity. The index differs from stocks, for
example the underlying for index options is the numerical value of the index.
When a S&P 500 call option is exercised, the exerciser obtains the in-the-
money cash value of the option times 100$. It is an A.M. settled index option
which means that the expiration day is always on the Saturday following the
third Friday of the month, so the last trading day is on Thursday and the
final settlement value is determined at opening Friday morning.

The Chicago board options exchange (Cboe) has created a volatility in-
dex (VIX) for the S&P 500 index (SPX). The VIX calculates the 30-day
expected volatility for the U.S. stock market, derived from the SPX call and
put options. It often moves in the opposite direction of the SPX. The data
used in this paper has been extracted from the Cboe, as it offers a variety of
options.
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10.2 Estimators

We will estimate the volatility σ and the Hurst index H using different call
and put option prices on the S&P 500 index across different strike prices
and maturities and test the accuracy of these estimators by comparing the
estimates to other given option prices. We will take the average of the bid
and ask option prices. Note that we will only consider option prices where the
average is strictly positive and where the ask option price is larger than the
bid option price. Disproportional big outliers, where the difference between
ask and bid price is disproportionately large, will be excluded. Out-of-the
money and in-the-money options will be considered. Recall that while in-
the-money options are worth exercising, out-of-the money options have no
intrinsic value, but time value. This is done for data extracted from different
days separately. After filtering the total amount of options we have is between
6, 000 and up to over 10, 000, depending on the date, that includes put and
call options throughout maturities ranging from two weeks to over one and
a half years and 294 different strike prices from 100 to 4, 100. All prices will
be stated in US dollars. In figure 10.1 all of the call and put options data
that is being used to obtain the estimates, that was extracted from Cboe on
April 20th, 2018, is plotted. Observe that the data seems to be consistent,

Figure 10.1: SPX call and put options across different maturities, strikes and
prices

which is a good starting point for our calculations. The time to maturity T
is on the z-axis, having values up to 1.67 years, while the strike price K is
on the x-axis on top, strike prices range from 100 to 4, 100, and the prices P
of the options are on the y-axis, where the highest price of a put option is
1, 363.05 while the highest call option price is 2, 579.75.

We will obtain a volatility estimate for the Black–Scholes model and an
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estimator for the volatility and for the Hurst index for the Conus–Wildman
model in order to compare these two models to each other. We will do that by
using the least square method with an iterative approach to the optimization
problem.

Moreover, we will apply different weights to the options, i.e. more weight
to expiration dates that are sooner, as they are more liquid and the pricing
tends to be more accurate. Our goal is to minimize the error sum Y , defined
as

Y ε
n = min

n∑
i=1

wi(F
ε
t − Ft)2,

where (wi)i∈[1,n] is the weight vector, with
∑n

i=1wi = 1, and F is the payoff
function for either put options P or call options C. F ε

t indicates the price
we obtain from the Conus–Wildman process and Ft is the market price.
In order to test the obtained estimators every other option will be used in
the minimization problem and the remaining options will be tested through
calculating the sum of the weighted squared difference of the option price to
the estimated option price. In order to compare the Conus–Wildman model
to the Black–Scholes one, we will do the same with the Black–Scholes option
price,

Y BS
n = min

n∑
i=1

wi(F
BS
t − Ft)2,

where FBS
t indicates the Black–Scholes option price of either a call or a put

option.

10.3 Implementation in R

First, we will show how the Black–Scholes option price can be obtained in R.
We have included an indicator function I in order to differentiate between
call and put option prices. The variables are defined in the usual way, where
S is the stock price, K the strike price, Tau = T − t the time to maturity, r
the risk-free interest rate and sigma the volatility.

#Black−S c h o l e s f u n c t i o n
BS <− function ( sigma , S , K, r , Tau , I ) {

d1 <− ( log (S/K) + ( ( r + sigma ˆ2/2)∗(Tau ) ) )
/ ( sigma∗sqrt (Tau ) )

d2 <− ( log (S/K) + ( ( r − sigma ˆ2/2)∗(Tau ) ) )
/ ( sigma∗sqrt (Tau ) )
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i f ( I == ’C ’ ) {
x <− pnorm( d1 ) ∗ S

− K∗exp(−r∗(Tau ) ) ∗ pnorm( d2 ) #C a l l
} else {

x <− K∗exp(−r∗(Tau ) ) ∗ pnorm(−d2 )
− pnorm(−d1 ) ∗ S #Put

}
return ( x )

}

Similarly, for the Conus–Wildman process,

#Conus−Wildman f u n c t i o n
fCW <− function ( sigma , S , K, r , t , T, H, I ) {

D <− D(H)
Tau <− (T−t )
d1 <− ( log (S/K) + r∗Tau + sigma ˆ2/2

∗ Dˆ2 ∗ (Tˆ(2∗H) − t ˆ(2∗H) ) /(2∗H) )
/ ( sigma ∗ D ∗ sqrt ( (Tˆ(2∗H)−t ˆ(2∗H) ) /(2∗H) ) )

d2 <− ( log (S/K) + r∗Tau − sigma ˆ2/2
∗ Dˆ2 ∗ (Tˆ(2∗H) − t ˆ(2∗H) ) /(2∗H) )
/ ( sigma ∗ D ∗ sqrt ( (Tˆ(2∗H)−t ˆ(2∗H) ) /(2∗H) ) )

i f ( I == ’C ’ ) {
x <− pnorm( d1 ) ∗ S
− K∗exp(−r∗(Tau ) ) ∗ pnorm( d2 ) #C a l l

} else {
x <− K∗exp(−r∗(Tau ) ) ∗ pnorm(−d2 )

− pnorm(−d1 ) ∗ S #Put
}

return ( x )
} ,

where D(H) is DH as defined in equation 6.2. Next, we want to sum over
the weighted squared difference of our estimated option price that we obtain
using function fCW defined above and the given option price P for all entries
i. Note that we do the same for the Black–Scholes model, where the code is
very similar and hence omitted here.

e r r o r f u n c t i o n <− function ( sigma , S , K, r , t , T, H,
P, I , w) {

i <− 1
x <− 0
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for ( i in 1 : length (P) ){
x <− x +w[ i ]

∗(fCW( sigma , S , K[ i ] , r , t , T[ i ] , H, I)−P[ i ] ) ˆ 2
i<−i+1
}

return ( x )
}

With the findmin function the estimators for σ and H are obtained
through an iterative approach, where the values that yield the smallest sum
in the errorfunction are saved. We restrict σ to be between 0 and 1, which
is a quite generous assumption; when regarding the VIX from Cboe, the
highest historical value was on October 20th, 1987, the Tuesday after Black
Monday, where the VIX reached 172.79%, but other than that it never had
a value higher than 100, during the financial crisis its highest value in 2008
was 89.53%.

f indmin <− function (S , K, r , t , T, P, I , w) {
sigma <− 0 .01
yold <− 100000000000000
while ( sigma < 1) {

H <− 0 .01
while (H<1) {

ynew <− e r r o r f u n c t i o n ( sigma , S , K, r ,
t , T, H, P, I , w)

i f (ynew < yold ) {
yold <− ynew
sigmabest <− sigma
Hbest <− H

}
H <− H+0.01

}
sigma <− sigma +0.01

}
r e s u l t <− c ( s igmabest , Hbest , yold )
return ( r e s u l t )

}
Note that for the Black–Scholes model we only have one iteration for the
volatility σ.

Finally, we use the obtained estimators to compare the model prices that
are calculated using the estimators to the ones that are given for all the
options that we have not used in the calculation of the estimators, i.e. every
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other option.

compareCW <− function (S , K, r , t , T, P, I , w) {
sigma <− f indmin (S , K, r , t , T, P, I , w) [ 1 ]
H <− f indmin (S , K, r , t , T, P, I , w) [ 2 ]
j <− 1
x <− c ( )
for ( j in 1 : length (P) ) {

x [ j ] <− w[ j ]
∗(fCW( sigma , S , K[ j ] , r , t , T[ j ] , H, I)−P[ j ] ) ˆ 2
j <− j+1
}
return ( x )

}

Notice that the sigma and the H are given the optimal values that have been
obtained in the findmin function. Then a vector is created through a loop,
calculating the weighted squared difference of the calculated price through
function fCW and the given price P for each of the entries.

10.4 Results

We will show the results we have obtained by implementing the findmin
function, described in the previous section. This was done for call and put
options separately and then combining the two. In theory the implied volatil-
ity of the put and call options should be the same under the Put-Call Parity,
i.e. in a perfect market, in reality this does not always hold and out of cu-
riosity it will be done here for those three cases. The estimation will be done
for data extracted from three different days separately. All data has been
extracted from the Cboe. The weight formula that has been applied, where
more weight is put upon closer expiration dates, is consistent over put and
call options and for the three different days. The options have 293 different
strike prices ranging from 100 to 4,100. Further, the calculations are done
with a risk free interest rate of 1%, r = 0.01. The results from May 9th are
given in appendix B.

10.4.1 Estimates for the Black–Scholes Model

For the Black–Scholes call option prices, the following estimate is obtained
using 2,094 call option prices, which is half of the amount of call options we
have. We used half, i.e. every other, of the available option prices to find
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the estimate, where the ones that are not used to obtain the estimators will
be used to test the estimate using the compare function. The data that is
used has been extracted from Cboe, we will start with the data extracted on
April 20th, 2018, where the index price was S = 2, 693.13,

> findminBS (S , K3, r , Tau3 , P3 , ’C ’ , w3)
[ 1 ] 0 .14000 34 . 66505 .

Thus, we obtain the volatility σ = 0.14 and a minimum error sum of Y BS =
34.67.

Using the compare function to compare each of the other 2,094 prices
that are given to the ones we estimated through the Black–Scholes formula
for σ = 0.14,

> x <− compareBS (S , K5, r , Tau5 , P5 , ’C ’ , w5)
> sum(x , na .rm=TRUE)
[ 1 ] 34 . 69197 .

Hence, the error sum is very close to the one in the minimization problem,
which suggests that the estimate is consistent.

Similarly, for put option prices, where we have a total of 1,887 option
prices, and thus will use 944 for estimation,

> findminBS (S , K4, r , Tau4 , P4 , ’ q ’ , w4)
[ 1 ] 0 .1500 53 . 4791 .

Note that the minimum error sum is significantly larger than for the call
options and the volatility σ has increased from 14% to 15%.

> x <− compareBS (S , K6, r , Tau6 , P6 , ’ q ’ , w6)
> sum(x , na .rm=TRUE)
[ 1 ] 53 . 56196 .

Using the compare function again gives us a similar result for the error
sum, as we obtained in the put options minimization problem with function
findmin.

Combining put and call options in order to have one best estimate, using
a total of 6,076 put and call options, where we use half, i.e. 3,038 to obtain
the estimate,

> findminBS (S , K3, r , Tau3 , P3 , I3 , w3)
[ 1 ] 0 .14000 44 . 51704 .

The weight has been distributed so that
∑n

i=1wi = 1 holds, therefore it
makes sense that our estimate lies between the one of the put option and the
one of the call option. Now, using the compare function for the other put
and call options,
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> x <− compareBS (S , K5, r , Tau5 , P5 , I5 , w5)
> sum(x , na .rm=TRUE)
[ 1 ] 44 .54121 ,

which is consistent with the error sum obtained with function findmin.
From the data obstructed on May 3rd, where the index price was S =

2, 635.67, and with 5,421 available call options, we use 2,710 to get the fol-
lowing estimate,

> findminBS (S , K3, r , Tau3 , P3 , ’C ’ , w3)
[ 1 ] 0 .13000 88 .31069 ,

> x <− compareBS (S , K5, r , Tau5 , P5 , ’C ’ , w5)
> sum(x , na .rm=TRUE)
[ 1 ] 88 . 14593 .

Which again shows a consistency of the estimators. Note that the error sum
is higher and the volatility has decreased to σ = 13%. For the put option
with a total of 4,556 options, 2,278 options prices are used in the estimation,

> findminBS (S , K4, r , Tau4 , P4 , ’ q ’ , w4)
[ 1 ] 0 .170 50 .296

and

x <− compareBS (S , K6, r , Tau6 , P6 , ’ q ’ , w6)
> sum(x , na .rm=TRUE)
[ 1 ] 50 . 56474 .

In this case the volatility for the put options has increased to σ = 17% and
the error sum is lower than for the call options. Combining put and call
options, which sum up to 9,977 options, using 4,988 in the estimation,

> findminBS (S , K3, r , Tau3 , P3 , I3 , w3)
[ 1 ] 0 .15000 88 .42767 ,

> x <− compareBS (S , K5, r , Tau5 , P5 , I5 , w5)
> sum(x , na .rm=TRUE)
[ 1 ] 88 . 28723 .

10.4.2 Estimates for the Conus–Wildman Model

Using the same data as in the previous section for the Black–Scholes model,
in order to compare both models to each other. For the call options, the
following results are obtained in the Conus–Wildman model, for the data
extracted on April 20th,
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> f indmin (S , K3, r , t , T3 , P3 , ’C ’ , w3)
[ 1 ] 0 .18000 0.59000 31 .80963 ,

where the volatility σε = 0.18 and Hurst index H = 0.59 and the minimum
error sum Y ε = 31.81. Note that this is lower than in the Black–Scholes
model, where the minimum error sum was Y BS = 34.67. Then, with the
compareCW function, we test the other options using these estimates,

> z <− compareCW(S , K5, r , t , T5 , P5 , ’C ’ , w5)
> sum( z , na .rm=TRUE)
[ 1 ] 31 .94628 ,

where we have a an error sum Y ε = 31.95, which is again lower than the one
obtained from the Black–Scholes model Y BS = 34.69.

For the put option prices, we obtain the following

> f indmin (S , K4, r , t , T4 , P4 , ’ q ’ , w4)
[ 1 ] 0 .18000 0.55000 49 . 52554 .

Observe that while we have the same estimate for the volatility, σε = 0.18,
the Hurst index is lower, H = 0.55.

> z <− compareCW(S , K6, r , t , T6 , P6 , ’ q ’ , w6)
> sum( z , na .rm=TRUE)
[ 1 ] 49 . 58949 .

As in the Black–Scholes model, although the error sum in the Conus–Wildman
model is lower, we have a larger error sum when compared to the call options.

Combining the put and call options,

> f indmin (S , K3, r , t , T3 , P3 , I3 , w3)
[ 1 ] 0 .18000 0.57000 41 .19015 ,

where σε = 0.18 is consistent with the volatility of the put and the call options
and Hurst index H = 0.57 is the average of the two estimates obtained, the
error sum Y ε = 41.19 also lies between the two error sums. Testing the
estimates with the compareCW function again yields a smaller error sum for
the Conus–Wildman model compared to the Black–Scholes model,

> z <− compareCW(S , K5, r , t , T5 , P5 , I5 , w5)
> sum( z , na .rm=TRUE)
[ 1 ] 41 . 20687 .

Using the data extracted on May 3rd, 2018 from [4] with index price
S = 2, 635.67 in the same way as for the Black–Scholes model,

> f indmin (S , K3, r , t , T3 , P3 , ’C ’ , w3)
[ 1 ] 0 .21000 0.66000 81 . 97849 .
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Notice that the error sum Y ε = 81.98 is higher than the one from April 20th in
a similar way that it has increased in the Black–Scholes model, but it is quite
a bit lower, compare to Y BS = 88.31. Further, the volatility σε = 0.21 and
the Hurst index H = 0.66 both have increased, while in the Black–Scholes
model the volatility had decreased to σ = 0.13. The compareCW function
shows consistency,

> z <− compareCW(S , K5, r , t , T5 , P5 , ’C ’ , w5)
> sum( z , na .rm=TRUE)
[ 1 ] 81 . 78778 .

For the put options, we have

> f indmin (S , K4, r , t , T4 , P4 , ’ q ’ , w4)
[ 1 ] 0 .16000 0.47000 49 .83244 ,

where the volatility is significantly lower and H < 0.5, which indicates neg-
ative past dependencies, but recall that H fluctuates and we have assumed
H > 0.4, moreover, in the rolling H estimates in [6] it is shown that the Hurst
index H can fluctuate below 0.4. In contrast, in the Black–Scholes model
the volatility for the put options was higher than for the call options.

> z <− compareCW(S , K6, r , t , T6 , P6 , ’ q ’ , w6)
> sum( z , na .rm=TRUE)
[ 1 ] 49 .93971 ,

the estimates are very consistent for each of the option data. Now, combining
put and call options,

> f indmin (S , K3, r , t , T3 , P3 , I3 , w3)
[ 1 ] 0 .17000 0.54000 87.55236

and

> z <− compareCW(S , K5, r , t , T5 , P5 , I5 , w5)
> sum( z , na .rm=TRUE)
[ 1 ] 87 .42714 ,

which again gives us a lower error sum than in the Black–Scholes model. In
the following section the results have been summarized for a better overview.

10.4.3 Summary Statistics

The tables give a summary of the results. First, for the Black–Scholes model
and then for the Conus–Wildman model. The number of options refers to
the number of options used to obtain the estimators.
Call options (BS):
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Date Volatility Error Sum Number of Options
April 20 0.14 34.66 2,094
May 3 0.13 88.31 2,710
May 9 0.14 27.22 2,932

Put options (BS):

Date Volatility Error Sum Number of Options
April 20 0.15 53.47 944
May 3 0.17 50.30 2,278
May 9 0.14 34.28 2,253

Call and put options (BS):

Date Volatility Error Sum Number of Options
April 20 0.14 44.52 3,038
May 3 0.15 88.29 4,988
May 9 0.14 30.70 5,185

In the following tables the estimation results for the Conus–Wildman
model are summarized. Call options (CW):

Date Volatility Hurst Index Error Sum Number of Options
April 20 0.18 0.59 31.81 2,094
May 3 0.21 0.66 81.98 2,710
May 9 0.18 0.59 25.05 2,932

Put options (CW):

Date Volatility Hurst Index Error Sum Number of Options
April 20 0.18 0.55 49.52 944
May 3 0.16 0.47 49.83 2,278
May 9 0.19 0.59 30.59 2,253

Call and put options (CW):

Date Volatility Hurst Index Error Sum Number of Options
April 20 0.18 0.57 41.19 3,038
May 3 0.17 0.54 87.55 4,988
May 9 0.18 0.58 27.90 5,185

Observe that the implied volatility is in all cases lower in the Black–
Scholes model than in the Conus–Wildman model, while the error sum, which
we have used to see how close the estimated prices from the models are to
the actual option prices, is in all cases higher in the Black–Scholes model,
which means that the Conus–Wildman model estimates option prices more
accurately.
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10.4.4 Error Sum Graphs

In order to see the errorsum function Y ε on a 3D graph, figures 10.2, 10.3
and 10.4, we created a two dimensional matrix, with the volatility σ and
Hurst index H, with the following R code. Note that the Conus–Wildman
function fCW is defined as in section 10.3.

errorsum <− function (S , K, r , t , T, P, I , w) {
k <− 1
l <− 1
y <− matrix (nrow=length ( sigma ) , ncol=length (H) )
for ( l in 1 : length (H) ) {

H <− H[ l ]
for ( k in 1 : length ( sigma ) ) {

sigma <− sigma [ k ]
j <− 1
x <− 0
for ( j in 1 : length (P) ){

x <− x + w[ j ]
∗(fCW( sigma , S , K[ j ] , r , t , T[ j ] ,

H, I [ j ])−P[ j ] ) ˆ 2
j <− j+1

}
i f ( x > 600) {
y [ k , l ] <− 600
} else {
y [ k , l ] <− x
}
k <− k+1

}
l <− l+1
}
return ( y )

}

To gain a better feeling for the shape of the errorsum function, we have
plotted three different kind of graphs. In figure 10.2 a cap with cut-off value
600, that assumes for all error sum values Y ε that are larger than 600 the
value 600, has been applied, see the if condition in the code. Figure 10.3
has a cut-off value of Y ε = 150 and gives way to another angle, showing the
curved shape of the function. Figure 10.4, has values H ∈ [0.45, 0.65] and
σ ∈ [0.1, 0.2], that give a zoomed in version of the graph, enabling a better
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Figure 10.2: Cap of 600 Figure 10.3: Cap of 150

Figure 10.4: Zoomed in graph

view of the volatility and Hurst index values around the optimal value. Note
that for all three days on which we have extracted the data the graphs look
very similar for each of the versions. The graphs that are displayed here are
from the data from May 9, 2018. From the graphs we can observe that our
error sum is a convex function that has one minimum.
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10.4.5 Volatility Index (VIX)

For plausibility reasons the estimated volatility is compared to the Cboe
implied volatility index (VIX) of the S&P 500 on the dates where we have
extracted the data. The VIX tends to move in the opposite direction of the
SPX, it is an indication for market insecurities.

The data for the VIX has been extracted from Cboe [5]. The VIX on April
20th had a lowest value of 15.19% and a highest value of 17.50%. When we
compare this to our estimated values, where we obtained a volatility of 14%
in the Black–Scholes model and a volatility of 18% in the Conus–Wildman
model, which do not lie in between, but just outside that range. On May
3rd, the VIX was between 15.43% and 18.66%, where the volatility in the
Black–Scholes model was estimated to be 15% and in the Conus–Wildman
model 17%. The VIX had a low of 13.38% and a high of 14.63% on May 9th,
compared to the volatilities of 14% in the Black–Scholes model and 18% in
the Conus–Wildman model. All volatilities seem to be in a plausible range.
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Chapter 11

Conclusion

The Black–Scholes model is known to make some rather strong assumptions,
as it assumes a constant volatility and past independencies, having Brownian
motion as its underlying process. Our goal was to incorporate past depen-
dencies into option pricing using the Hurst index. While fractional Brownian
motion simulates stock prices quite well, it cannot be used to estimate option
prices as it is not a semimartingale and admits arbitrage, which is dreaded in
financial models. Therefore, Dobrić and Ojeda had proposed an alternative
to fractional Brownian motion, a Gaussian Markov process, a semimartin-
gale that incorporates past dependencies. Conus and Wildman modified this
process so that Girsanov’s theorem could be applied and option pricing could
be derived. We used this analysis to obtain an implied volatility and an im-
plied Hurst index and used these estimators to calculate option prices. The
error sum, the minimum sum over the squared difference of the calculated
option prices and the actual option prices, was compared to the error sum
from the Black–Scholes model, where we also used the implied volatility as
an estimator, in order to compare the pricing accuracy of the two models.

We conclude that the Conus–Wildman model outperforms the Black–
Scholes model, as expected. The error sum comparing the estimated price
with the given option price is in all tested cases higher in the Black–Scholes
model than in the Conus–Wildman model. We find that the the Hurst in-
dex H plays an important role, as we estimate it to be around H = 0.58,
which shows that past dependencies should be incorporated when pricing
financial options. While the Black–Scholes model has Brownian motion as
an underlying process and thus assumes independence of the past, H = 0.5,
the Conus–Wildman model with the modified Dobrić–Ojeda process allows
the Hurst index to assume different values, giving the model a lot more flexi-
bility. Finally, we find that there exists a global minimum and no other local
minima, which can be seen from the three dimensional graphs.
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It would be interesting to deepen this analysis even further, with more
data from different dates and for different types of stocks, comparing different
industries and Hurst indices to each other.
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Appendix A

Notational Conventions

B, Beta function, B(µ, ν) =
∫ 1

0
xµ−1(1− x)ν−1 dx = Γ(µ)Γ(ν)

Γ(µ+ν)

∂if , partial derivative with respect to i of function f
E, expected value
Γ, Gamma function, Γ(t) =

∫∞
0
xt−1e−x dx

N , standard normal distribution N (x) = 1√
2π

∫ x
−∞ e

− t
2

2 dt

N = {1, 2, . . . }, natural numbers
R, real numbers
R+, non-negative real numbers
R∗+, positive real numbers
d
=, equal in distribution
∧, minimum
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Appendix B

Results from May 9th

B.1 Black–Scholes Model

Using 2, 932 call options for the estimation, from a total of 5, 864 call option
prices,

> findminBS (S , K3, r , Tau3 , P3 , ’C ’ , w3)
[ 1 ] 0 .14000 27.79736
> x <− compareBS (S , K5, r , Tau5 , P5 , ’C ’ , w5)
> sum(x , na .rm=TRUE)
[ 1 ] 27 . 21567 .

For the put option with a total of 4, 506 options and thus 2, 253 for estimation,

> findminBS (S , K4, r , Tau4 , P4 , ’ q ’ , w4)
[ 1 ] 0 .14000 34.28232
> x <− compareBS (S , K6, r , Tau6 , P6 , ’ q ’ , w6)
> sum(x , na .rm=TRUE)
[ 1 ] 34 . 56976 .

Combining all options, a total of 10,370 put and call option,

> findminBS (S , K3, r , Tau3 , P3 , I3 , w3)
[ 1 ] 0 .14000 30.69687
> x <− compareBS (S , K5, r , Tau5 , P5 , I5 , w5)
> sum(x , na .rm=TRUE)
[ 1 ] 30 . 39848 .
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B.2 Conus–Wildman Model

The same data and the same options are used for estimation as in the Black–
Scholes model. First, the call options,

> f indmin (S , K3, r , t , T3 , P3 , ’C ’ , w3)
[ 1 ] 0 .1800 0 .5900 25.0508
> z <− compareCW(S , K5, r , t , T5 , P5 , ’C ’ , w5)
> sum( z , na .rm=TRUE)
[ 1 ] 24 . 32232 .

Then, for the put options,

> f indmin (S , K4, r , t , T4 , P4 , ’ q ’ , w4)
[ 1 ] 0 .19000 0.59000 30.58614
> z <− compareCW(S , K6, r , t , T6 , P6 , ’ q ’ , w6)
> sum( z , na .rm=TRUE)
[ 1 ] 30 . 57277 .

Combining put and call options,

> f indmin (S , K3, r , t , T3 , P3 , I3 , w3)
[ 1 ] 0 .18000 0.58000 27.89667
> z <− compareCW(S , K5, r , t , T5 , P5 , I5 , w5)
> sum( z , na .rm=TRUE)
[ 1 ] 27 . 52513 .
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