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Abstract

This thesis presents calculations of temperature driven lattice vibrations and their impact on
the metamagnetic phase transition of ordered FeRh in the cubic B2 structure. Computational
data has been derived from first–principles on basis of Density Functional Theory (Dft) us-
ing the Vienna ab-initio Simulation Package (Vasp). The properties of the lattice vibrations
have been found by phonon calculations within a supercell approach and in the limits of a har-
monic approximation, which are implemented in the python–based programme phono.py. The
antiferromagnetic ground state (AFM II) of bulk FeRh has been compared to the competing
ferromagnetic state (FM) with a very accurately relaxed primitive cell. Furthermore, two dif-
ferent Gga functionals (PBE and rPBE) have been applied and show significant differences
in the Fe magnetic moments and the atomic volume concerning the AFM II state. For PBE,
where the Fe magnetic moments and the cell volume are smaller compared to rPBE, the phonon
band structure shows imaginary frequencies pointing to a lattice instability in the Afm phase.
Calculations using rPBE, however, reveal stable modes at all high symmetry points of the re-
ciprocal space and give a clear hint that the magnetic properties and the cell volume of FeRh can
play a decisive role in order to stabilise the AFM II state. Thermodynamic properties of the vi-
brational modes, as the internal energy E, free energy F , entropy S and heat capacity CV have
been evaluated as well. Comparing the free energy of the two magnetic phases demonstrates
that the phase transition cannot be explained by only taking lattice vibrations into account.
The experimental observation of a large entropy difference at the expected transition temperat-
ure TM ∼ 350 K, however, can be confirmed with 15.3 J/(K kg) [26.5 J/(K kg)] for PBE [rPBE].
Prior to a detailed presentation of the calculated results a comprehensive summary on the theory
and thermodynamics of phase transitions, the basic principles of Dft, as well as the description
and concepts of phonon calculations is given.





Kurzfassung

Diese Arbeit zeigt die Berechnungen von temperaturabhängigen Gitterschwingungen und deren
Auswirkungen auf den metamagnetischen Phasenübergang von FeRh in der kubischen B2 Struk-
tur. Alle Daten wurden aus sogenannten first–principles auf der Grundlage der Dichte Funk-
tional Theorie (Dft) und unter Verwendung des Vienna ab-initio Simulation Package (Vasp)
gewonnen. Die Eigenschaften der Gittervibrationen wurden durch Berechnung der Phononen im
Festkörper mithilfe von Simulationen von Superzellen und im Rahmen der harmonischen Nähe-
rung analysiert. Letzteres ist im Programm phono.py, das auf der Programmiersprache python
basiert, implementiert. Der anti–ferromagnetische Grundzustand (AFM II) von FeRh wurde mit
dem energetisch konkurrierenden ferromagnetischen Zustand (FM) mit einer sehr genau relaxier-
ten primitiven Zelle verglichen. Darüber hinaus wurden zwei unterschiedliche Gga Funktionale
(PBE und rPBE) angewandt, die im AFM II Zustand signifikante Unterschiede in den lokalen
magnetischen Momenten der Fe Ionen und dem Atomvolumen zeigen. Bei der Anwendung des
PBE Funktionals, bei dem die magnetischen Momente und das Zellvolumen im Vergleich zu rP-
BE kleiner sind, sind in der Bandstruktur der Phononen imaginäre Frequenzen zu finden, die auf
eine Instabilität des Gitters in der Afm Phase hinweisen. Berechnungen mit rPBE zeigen jedoch
stets stabile Moden an allen Symmetriepunkten des reziroken Raums und geben einen entschei-
denden Hinweis auf die Möglichkeit den AFM II–Zustand von FeRh mithilfe seiner magnetischen
Eigenschaften und des Zellvolumens zu stabilisieren. Die thermodynamischen Eigenschaften der
Phononen, wie die innere Energie E, freie Energie F , Entropie S und Wärmekapazität CV wur-
den ebenso berechnet. Vergleicht man die freie Energie der beiden magnetischen Phasen, so zeigt
sich, dass der Phasenübergang nicht allein durch die Berücksichtigung der Gittervibrationen er-
klärt werden kann. Die experimentelle Beobachtung eines großen Unterschiedes in der Entropie
zwischen beiden Phasen bei der erwarteten Übergangstemperatur TM ∼ 350 K kann jedoch mit
den Werten 15.3 J/(K kg) [26.5 J/(K kg)] für PBE [rPBE] bestätigt werden. Bevor die berechne-
ten Ergebnisse und Methoden im Detail gezeigt werden, findet man im ersten Teil dieser Arbeit
des Weiteren eine weitreichende Zusammenfassung zur Theorie und Thermodynamik von Pha-
senübergängen, den Prinzipien zu Dft, sowie den Konzepten zur Beschreibung und Berechnung
von Phononen.





Chapter 1

Phase Transitions

The fundamental laws of nature, i.e. Maxwell and many–body Schrödinger equations, ideally
show significant features of symmetry. They are both invariant under translation of space and
time, rotations and reflections (Euclidian plane isometry). The states in real condensed matter,
however, do not reveal the full symmetry of these laws. A solid for example is only invariant
to discrete translations, as well as rotations of a point group. This is the reason why chemical
substances (matter) can be found in different phases which differ in their symmetry, hence show
different (thermal, mechanical, electric, magnetic, . . . ) properties.
A phase is a homogeneous region of a macroscopic system with a characteristic arrangement
(crystallographic, electric, magnetic, . . . ) derived from a given chemical composition and de-
pendent on a set of outer thermodynamic variables (e.g. temperature T , pressure p, magn.
field ~H, elec. field ~E, . . . ). In other words, it describes one of the many different possible
forms of a state of matter in which the macroscopic physical properties of the substance are
uniform and set by outer thermodynamic conditions. A "state" in this sense is represented
by a macroscopic observable called order parameter that for each phase changes to entirely
different values, for example, density ρ(~r) (solid, liquid, gas), magnetisation ~M (ferromagnet,
anti-ferromagnet, paramagnet), and so on. When changing these outer conditions to certain
values (critical limit) a transformation from one phase to another will occur, which is called a
phase transition. Such transitions always follow the principle of a minimised thermodynamic po-
tential which describes the system accordingly, e.g. Helmholtz free energy for magnetic systems
F = F (T, ~M , N)→ min→ dF = 0.
One of the first to present a qualitative description of phase transitions in real gases was

J.D. van der Waals in the publication of his doctoral thesis (1873). P. Weiss developed a model
for the phase transition of a ferromagnet (1907) even without the techniques of quantum mechan-
ics. A phenomenological approach of continuous (second order) phase transitions, see Sec.1.2.2,
has been derived by L.D. Landau (1937), which also provided as a basis of describing supercon-
ductivity without its microscopic mechanism. All of those theories are accounted to the classical
theories of phase transition. The first non-trivial model of a ferromagnet regarding microscopic
interactions is named after the German physicist E. Ising (1925: Ising model). The Hamiltonian
is based on localised magnetic moments at each lattice site where the strength of the interaction
(overlap of the individual wavefunctions) between two sites is described by an exchange integral
Jij and can usually be restricted to the nearest–neighbours. The spin operator is represented
by a classical one–dimensional vector and has only two anti-parallel states, Si = ±1, which
symbolises spin up (+1, ↑) and spin down (−1, ↓). Conventionally, the spin vector is therefore
chosen along the z-axis.

~Si = Siêz

Note that the spin vector is indeed in a classical representation, because commutation relations
between spins – one of the most important features of quantum physics – are not considered in
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1 Phase Transitions

this model. Ising’s task was to prove whether a spontaneous ordering of the spins as it manifests
in a ferromagnet could be described via the microscopic interaction J(ij). In his dissertation
he was able to solve only the one–dimensional case and showed that a phase transition to the
ordered state could only occur at T = 0. Hence, long range order is destroyed at any finite
temperature which is a result opposed to the findings of P. Weiss. It was later when R. Peierls
(1936) could prove the existence of phase transitions for higher dimensions D ≥ 2 and L. Onsager
(1948) presented an analytic expression of the free energy and the magnetisation for D = 2,

M(T ) =


[
1− sinh−4

(
2J

kB

)]β
, T < TC

0 , T ≥ TC
, (1.1)

where kB is the Boltzmann constant and β = 1
8 is the critical exponent of the order parameter.

The Curie temperature can be derived as

TC =
2

ln(1 +
√

2)

J

kB
∼ 2.269185

J

kB
. (1.2)

For the three–dimensional (D = 3) Ising model there is still no analytic solution so far, but
numerical calculations from Monte–Carlo simulations already offer convincing results.

1.1 Thermodynamics of Phase Transitions

This section is not supposed to claim a complete derivation of the equations appearing in the
notion of thermodynamics (Td). It should rather serve as an overview and a reminder of the
most important expressions and the terminology needed to describe phase transitions in a mac-
roscopic sense. Starting with a quite general definition the emphasis later on will be laid on the
description of magnetic systems.

The first law of Td can generally be written as

dU = δQ+ δW , (1.3)

where dU is the differential quantity of the internal energy, δQ is the difference of exchanged
heat, δW is the work done on (δW > 0) or by (δW < 0) the system with respect to the outer
environment. If the system is open to its environment, i.e. particles are exchanged, there is
a special form of energy usually accounted to δW named particle– or chemical energy δWC
which is related to the chemical potential µ specifying the potential energy that is needed to add
one particle to the system. Hence, for α different types of particles, where the system contains
Nk (k = 1, . . . , α) particles of each type,

δW −→ δW + δWC

δWC =
α∑
k=1

µk dNk . (1.4)
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1.1 Thermodynamics of Phase Transitions

The internal energy U is, and even more so, has to be a unique function of the independent state
variables in phase space, which means that for a circular process∮

dU = 0 . (1.5)

The internal energy is therefore a state function and dU is a total differential, which means that
for n state variables {x1, x2, . . . , xn}

dU =
∑
j

(
∂U

∂xj

)
xk 6=j

dxj =
∑
j

Fj(x1, . . . , xn) dxj

=⇒
(
∂Fj
∂xi

)
xm 6=i

≡ ∂2U

∂xi ∂xj
=

∂2U

∂xj ∂xi
≡
(
∂Fi
∂xj

)
xm 6=j

, ∀ i, j ≤ n . (1.6)

The latter expression in (1.6) is known as integrability condition (Schwarz’s theorem). Fulfilling
these conditions guarantees that energy is conserved and the system is well–defined. Otherwise,
one would have a free source of gaining energy taking one path from initial state A→ B and a
different one back from final state B → A (perpetuum mobile).

1.1.1 Work — Expression in generalised coordinates

A general expression for the (differential, quasistatic) work δW can be denoted as

δW =
∑
j

Fj dxj , (1.7)

which closely resembles similar terms found in the fields of analytical mechanics or electrodynam-
ics. The variables in the set x = {x1, . . . , xj , . . . , xn} are generalised coordinates and in relation
to their conjugated generalised force components F = {F1, . . . , Fj , . . . , Fn}. Generalised coordin-
ates do not necessarily need to have a dimension of length, nor are generalised forces required to
be seen in a strict mechanical sense. The only requisite of a generalised system is for the product
(Fj · qj) to always lead to a dimension of energy.

1.1.2 Heat — Entropy as a state function

The first law of Td (1.3) states that the temperature of a system can also be changed without
any work done in a sense as it was noted above. The notion of heat is introduced as a form
of energy (exchange) and closely related to the definition of entropy S. In Td this relation is
purely based on a macroscopic phenomenological point of view. A better way to derive a smooth
definition for this quantity and to understand its meaning can be done in statistical mechanics
within the theory by L. Boltzmann and his famous formula S = kB ln ΩN (E, V ). In the kinetic
gas theory heat is described as the kinetic energy of the individual gas molecules in a chaotic
motion. From this form of energy a common non-formal description of entropy is followed as a
measure of disorder in a many–body system, where the latter actually refers to the number of
different microscopic states a system can be in.
The Clausius theorem (or Clausius inequality) states the important result∮

δQ

T
≤ 0 . (1.8)
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1 Phase Transitions

Fig. 1.1: Virtual substitute process R of an irreversible process P between an initial state A and
a final state B.

It is derived from a system that undergoes a cyclic process and exchanges heat with N → ∞
reservoirs (thermodynamic limit) which themselves are coupled with one another by Carnot
engines. For every set of initial and final states there is a path between them that is reversible.
A reversible cyclic process just changes the flow into opposite direction which mathematically
manifests in a change of sign in (1.8). Since both directions deliver a correct statement in order
to avoid a contradiction only the equality sign holds for reversible processes,

∮
δQrev

T
= 0 . (1.9)

The integral in the equation above from an arbitrary state A to another state A→ B is therefore
path independent and the quantity of entropy is defined as

S(B) = S0(A) +
A

∫ B δQrev

T

=⇒ dS =
δQrev

T
, (1.10)

where dS is an exact (total) differential and therefore a state function, similar to dU in (1.6).
Note that S0 is solely an additive constant and a calculation of the entropy is only possible if a
reversible path between A and B is defined. This is also the case when A→ B is an irreversible
process. In this case one needs to find a virtual substitute process between the same two (initial
and final) states which is reversible and delivers the same change in entropy. In the following an
irreversible path P and the according virtual reversible path R are defined, as it is figuratively
shown in Fig.1.1 . Both paths start from a mutual initial state A and end in the same final state
B, so that they can also be combined to a cyclic process via

A
P
 B!

−R
A .

Starting from the Clausius inequality (1.8) one derives

8



1.1 Thermodynamics of Phase Transitions

A
(P)

∫ B δQ

T
+

B
(−R)

∫ A δQ

T
≤ 0

A
(P)

∫ B δQ

T
≤ −

B
(−R)

∫ A δQ

T
=

A
(R)

∫ B δQ

T
.

(1.11)

The expression on the right side is equivalent to the integral in (1.10), hence

A
(R)

∫ B δQ

T
≡

A

∫ B δQrev

T

=⇒ dS ≥ δQ

T
. (1.12)

The latter is known as the mathematical expression of the second law of Td and a generalisation
of the previously derived formula seen in (1.10). Comparison of these two shows again that
equality can only be true for reversible processes. This is an important result which states that
a process of an isolated system (TdS ≥ 0) always seeks the equilibrium of the system where the
entropy is at its maximum. In other words, when heat is absorbed (1.12) denotes a change in
entropy which for an irreversible process is larger than necessary. For such a process the entropy
increases after a complete cycle which after (1.3) results in a loss of internal energy.
Note that δW as well as δQ are not total differentials (which is symbolised by the letter

delta "δ"), so that they do not fulfil the integrability condition in (1.6). However, it is always
possible to define an integrating factor λ(x1, . . . , xn) 6= 0, which is a function of state variables
that is multiplied to an inexact differential δA to derive a new integrable function f by

df = λ(x1, . . . , xn) δA =
∑
j

λ F̃j(x1, . . . , xn) dxj

=⇒

(
∂(λ · F̃j)
∂xi

)
xm 6=i

=

(
∂(λ · F̃i)
∂xj

)
xm 6=j

, ∀ i, j ≤ n . (1.13)

The definition of λ(x1, . . . , xn) though is not unique. In fact, there is an infinite number of
possibilities available. Hence, δW and δQ are not unique in phase space and cannot be declared
as state functions. A plausible explanation is that per definition work and heat are a transfer or a
flow of energy into or out of a system. This means that they represent a process where an energy
(state) variable is changed from an initial to a final value under certain conditions. However,
the conditions in order to reach this explicit and unique final state do not necessarily need to be
always the same, making it impossible to define a system solely based on those functions.
Opposed to the latter it can be seen from (1.9) and the definition of entropy (1.10) that dS
is indeed an exact (total) differential. The transformation of δQ is thereby achieved by an
integrating factor λ(T ) = 1

T , which is only dependent on temperature alone and is therefore
unique (except for a constant scaling factor).

1.1.3 Free Energies

The results from the previous sections show that the entropy of a system can also be a state
function. Therefore, we can generally combine the first and the second law, (1.3) and (1.12),

9



1 Phase Transitions

respectively, in order to derive the fundamental relation of Td,

T dS ≥ dU − δW − δWC . (1.14)

Internal Energy (adiabatic) An explicit general expression of the latter can be given for
open systems, using (1.4) and (1.7),

dU ≤ T dS +
∑
j

Fj dxj +
α∑
k=1

µk dNk , (1.15)

which yields a formula for the differential of the internal energy. It can be seen that dU is defined
by the independent state variables (S,x,N). In systems where the inner energy can be described
as a function

U = U(S,x,N) ,

the used state variables can be freely varied (or kept constant) in experiments. Even more so,
by (1.15) their conjugated dependent variables can be derived directly by partial differentiation
of the inner energy with the according entity keeping the others constant (see also Apx.A).
Therefore, a state equation similar to dU is called a thermodynamic potential, in analogy to a
potential in classical mechanics, and the independent state variables are called natural variables
of the system. If the system is closed from the environment (dNk = 0) (1.15) states that for an
adiabatic process (δQ = 0 ⇐⇒ dS = 0) dU measures the work the system is able to perform.
The internal energy is thus the free energy for an adiabatic process.

Helmholtz Free Energy (isothermal) The natural variables of the internal energy are not
always the best choice to describe a specific system. For example, the entropy is a system
parameter that is experimentally quite hard to control. Hence, there is a need to define further
thermodynamic potentials which natural variables are more suitable to the experiment. The
transformation from one set of (natural) variables to another uses the fact that all entities of
energy in Td come in pairs of conjugated parameters. A differential form of those pairs can be
easily calculated by d(x y) = x dy+y dx, from which one can interchange natural variables solely
by addition or subtraction. This is called a Legendre transformation. In order to swap entropy
S by its conjugate variable temperature T one defines the Helmholtz free energy F as

F = U − T S (1.16)

=⇒ dF = dU − d(T S) = (δQ− T dS)︸ ︷︷ ︸
= 0 , reversible
< 0 , irreversible

−S dT +
∑
j

Fj dxj +

α∑
k=1

µk dNk

dF ≤ −S dT +
∑
j

Fj dxj +
α∑
k=1

µk dNk . (1.17)

If the process is reversible the first term vanishes with the relation (1.10) and temperature T has
indeed been transformed into a natural variable. As a consequence one can state from (1.17)
that for reversible isothermal (dT = 0) processes the Helmholtz free energy equals the amount
of work a system can use or gain.

F = F (T,x,N)

10



1.1 Thermodynamics of Phase Transitions

For an irreversible isothermal process (1.12) shows that dF < (δW + δWC) which follows that
dF gives the maximal amount of work for the system to exchange, which only can be used if the
process is reversible. Since temperature is now a control parameter and can be kept constant it
is required for the entropy to change during a process, i.e. there will always be an exchange of
heat with the outer environment which is unavailable to be used by the system.

Gibbs Free Energy (isothermal – iso"forces") For systems where it is possible to control
the temperature T and the forces Fj that define the work of the system, for example pressure p,
the according Legendre transformation

G = H − T S (1.18)

=⇒ dG = dU −
∑
j

d(Fj xj)− d(T S)

dG ≤ −S dT −
∑
j

xj dFj +
α∑
k=1

µk dNk (1.19)

defines the Gibbs free energy G. The introduced new variable H = U −
∑
Fj xj is the enthalpy

of the system. G is thus sometimes also referred to as free enthalpy. In order to maintain a
constant temperature dT = 0 (isothermal) and constant generalised forces dFj = 0 (in terms
of pressure dp = 0 isobaric) heat and work have to constantly be exchanged with the outer
environment and can therefore not be used by the system.

G = G(T,F,N)

All that is left is the previously in (1.4) defined chemical energy for open systems. This is an
exact result, which will be shown in Sec.1.1.6. In summary, it can be stated that for reversible
isothermal processes with constant generalised forces, e.g. pressure, the Gibbs free energy gives
the amount of chemical work available to open systems.

1.1.4 Homogeneity

In Td the scalability of a system is treated by extensive variables and reveals important results
which shall be presented in Sec.1.1.6.

Tab. 1.1: Examples for combinations of conjugated intensive and extensive variables.

intensive extensive

thermal T S
work Fi xi
expansion p V

magnetic ~H ~M
chemical µ N

11



1 Phase Transitions

Extensive & Intensive Variables Thermodynamic variables can behave differently when
the homogeneous phase of the system they determine is scaled by a certain factor λ. Extensive
variables multiply with λ as well, where intensive variables maintain their value everywhere
within the system. Free energies are always extensive. Energy expressions derived by two
conjugated thermodynamic variables thus are always a combination of an extensive and intensive
variable. Tab.1.1 shows examples of conjugated variables. The natural variables of the internal
energy are U = U(S,x,N), and therefore changes in the internal energy are only related to
changes in extensive variables. As shown in Sec.1.1.3 the extensive variables can be exchanged
with their conjugated intensive variables by the according Legendre transformations defining the
thermodynamic potentials. If the system is homogeneous and all surface effects are neglected
(thermodynamic limes) the following homogeneity relations for the thermodynamic potentials
read

U(λS, λx, λN) = λ U(S,x,N) , (1.20a)

F (T, λx, λN) = λ F (T,x,N) , (1.20b)

G(T,F, λN) = λ G(T,F,N) . (1.20c)

1.1.5 Response Functions

In experiments investigating the physics of a material is usually done by changing a natural
variable or applying an external field and measure the response of the system. This can be
traced over a certain range of an outer variable, so that the behaviour of the system is fitted
into a response function. Unfortunately, the characteristics of these functions are rarely linear.
Linearity can generally only be granted for a defined (small) range of the outer entity Y causing
the response Z. For changes within that range it is then possible to write

dZ =

(
∂Z

∂Y

)
X 6=Y

dY , (1.21)

where the expression in parenthesis is the according response function and the statement at the
bottom of the parenthesis means that any other quantity X 6= Y , which Z is also dependent on,
is kept constant.

Heat Capacities & Specific Heat Heating a system exhibits an influence — a response —
on its temperature. The reference of how much heat δQ is needed to achieve a temperature
change dT is given by the heat capacity CX of the system

CX
.
=

(
δQ

dT

)
X

. (1.22)

Again, X stands for all the natural variables different from temperature that are kept constant.
Since CX is dependent on the total mass M it is an extensive variable (for a description of

12



1.1 Thermodynamics of Phase Transitions

extensive and intensive variables see Sec.1.1.4). It is practical to define the specific heat cx by
dividing (1.22) by the total mass

cx
.
=

(
δQ

M dT

)
x

, (1.23)

which now is an intensive variable.
Consider a closed system where the internal energy is only dependent on temperature T and

the set of generalised coordinates x = {x1, . . . , xj , . . . , xn} that within terms of linearity

U = U(T, x)

=⇒ dU =

(
∂U

∂T

)
x

dT +
∑
j

(
∂U

∂xj

)
T, xi 6=j

dxj . (1.24)

Using (1.7) in the first law (1.3) the heat differential can be written as

δQ = dU −
∑
j

Fj dxj . (1.25)

Entering (1.24) in the latter yields a differential form of the first law of Td,

δQ =

(
∂U

∂T

)
x

dT +
∑
j

[(
∂U

∂xj

)
T, xi6=j

− Fj

]
dxj . (1.26)

For x = {const} it is relatively simple to derive an expression for Cx from (1.26) using its
definition (1.22). For the derivation of CF, with F = {const}, a transformation to xj =
xj(T, F1, . . . , Fn) is necessary

Fj = Fj(T, x) −→ xj = xj(T, F)

=⇒ dxj =

(
∂xj
∂T

)
F

dT +
∑
k

(
∂xj
∂Fk

)
T, Fi6=k

dFk , (1.27)

which can be entered into (1.26). The heat capacities for both cases result in

x = {const} −→ Cx =

(
∂U

∂T

)
x

, (1.28a)

F = {const} −→ CF =

(
∂U

∂T

)
x

+
∑
j

[(
∂U

∂xj

)
T, xi 6=j

− Fj

](
∂xj
∂T

)
F

, (1.28b)

so that by subtraction a relation between the two expressions can be followed,

CF − Cx =
∑
j

[(
∂U

∂xj

)
T, xi 6=j

− Fj

](
∂xj
∂T

)
F

. (1.29)
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1 Phase Transitions

Bulk Modulus & Compressibility These two entities are related to volume and pressure
changes. Measurements are either conducted adiabatically (dS = 0) or isothermally (dT = 0).
The adiabatic (isothermal) bulk modulus K is defined as

KS (T ) = −V
(
∂p

∂V

)
S (T )

= κS (T )
−1 , (1.30)

and the inverse is called compressibility κ. Mechanical stability of the system always requires
(without proof) that

κS (T ) ≥ 0 . (1.31)

Thermal Expansion The response of matter to modify its taken volume when temperature
is changed is described by a thermal expansion coefficient α at constant pressure

αp =
1

V

(
∂V

∂T

)
p

. (1.32)

(Magnetic) Susceptibility & Expansion The response function for magnetic systems is
usually seen as an analogy to the previously mentioned compressibility, where this time a relation
between the exterior magnetic field H = | ~H| (source) and the magnetisation M = | ~M | (effect)
is given by

χS (T ) =

(
∂M

∂H

)
S (T )

, (1.33)

and also with the possibility for χ to become negative (diamagnetism).
For completeness there is also a magnetic analogy to thermal expansion without any specific
name

βH =

(
∂M

∂T

)
H

. (1.34)

1.1.6 Gibbs – Duhem Relation

The homogeneity relations (1.20) presented in Sec.1.1.4 hold for any scaling factor λ. As an
example the expression for the internal energy is used to differentiate both sides of (1.20a) with
respect to λ, letting (λ→ 1)

U(S,x,N) = lim
λ→1

 ∂U

∂(λS)

∂(λS)

∂λ
+
∑
j

∂U

∂(λxj)

∂(λxj)

∂λ
+

α∑
k=1

∂U

∂(λNk)

∂(λNk)

∂λ


=⇒ U =

(
∂U

∂S

)
S +

∑
j

(
∂U

∂xj

)
xj +

α∑
k=1

(
∂U

∂Nk

)
Nk . (1.35)
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1.1 Thermodynamics of Phase Transitions

Expressions for F (T,x,N) and G(T,F,N) can be derived in a similar way using (1.20b) and
(1.20c), respectively. Appropriately entering the partial derivatives of (A.1) brings the result

U = T S +
∑
j

Fj xj +

α∑
k=1

µkNk , (1.36a)

F =
∑
j

Fj xj +
α∑
k=1

µkNk , (1.36b)

G =

α∑
k=1

µkNk . (1.36c)

There are three conclusions which can be followed from the equations in (1.36):

1. It can now be directly seen by subtraction that

F = U − T S , and G = (U −
∑
Fj xj)− T S = H − T S .

2. As it was stated before in Sec.1.1.3, (1.36c) shows that the free enthalpy indeed can be
interpreted as the total chemical energy available to the system.

3. From the (total) differential of the internal energy dU , which was previously derived in
(1.15), it follows from (1.36a) that

dU = d(T S) +
∑
j

d(Fj xj) +

α∑
k=1

d(µkNk)
(1.15)

=

= T dS +
∑
j

Fj dxj +
α∑
k=1

µk dNk

=⇒ S dT +
∑
j

xj dFj +
α∑
k=1

Nk dµk = 0 . (1.37)

The latter is called Gibbs–Duhem relation, implying that it is impossible to define a ther-
modynamic potential with only independent intensive variables.

1.1.7 Equilibrium Conditions

When two or more subsystems are brought into contact with each other there are certain bound-
ary conditions that have to be met in order to describe the equilibrium state for the system in
total. They all rely on the fundamental relation (1.14) and only differ by the several possible
ways the system interacts with its outer surroundings. Therefore, it is clear that there are also
special cases which can be conveniently described using thermodynamic potentials and shall be
presented here. Whether the boundaries separating the subsystems are interpreted as walls or
just different phases of a substance will not change the outcome of the conditions for equilibrium
(see Sec.1.2.3).
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1 Phase Transitions

Isolated System An isolated system is not able to exchange heat with the surroundings and
is characterised by

U = const , xj = const , Nk = const
m m m

dU = 0 , dxj = 0 , dNk = 0 .
(1.38a)

This implies with (1.15) that

dS ≥ 0 =⇒ dS = 0 (in equilibrium) . (1.38b)

As long as irreversible processes are still possible in this kind of system the entropy can only
increase. Transition to equilibrium is therefore irreversible and characterised by the entropy
reaching its maximum.

Closed System in Heat Bath There are two different configurations for closed systems that
can exchange heat to keep a constant temperature.
The first one is set up so that there is no change of work as in (1.7),

T = const , xj = const , Nk = const
m m m

dT = 0 , dxj = 0 , dNk = 0 ,
(1.39a)

which yields with (1.17)

dF ≤ 0 =⇒ dF = 0 (in equilibrium) . (1.39b)

All irreversible processes that are possible under conditions (1.39a) result in a decreasing Helm-
holtz free energy. In equilibrium F is at its minimum.

The second possible isolated system is configured in a way that the forces are constant,

T = const , Fj = const , Nk = const
m m m

dT = 0 , dFj = 0 , dNk = 0 .
(1.40a)

For irreversible processes under these conditions the Gibbs free energy (free enthalpy),

dG ≤ 0 =⇒ dG = 0 (in equilibrium) , (1.40b)

is decreasing at all times and minimal at equilibrium.

1.2 Classifications

A commonly used nomenclature to classify phase transitions was introduced by P. Ehren-
fest (1933). His definition is based on the non-analytical behaviour of the free energy (or the
potential that describes the system) as a function of one of the thermodynamic control para-
meters at such a transition. Since those quantities can be expressed as the nth derivative of a
free energy, a change in phase can accordingly be categorised as to be of nth order.
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1.2 Classifications

1.2.1 Ehrenfest Classification

As it was introduced above, when there is a transition from one phase to the other its order is
defined by the lowest derivative of the free energy which becomes discontinuous at that state.
Considering the Helmholtz and Gibbs free energy, F and G respectively, the notion of a first–
order phase transition manifests when the first derivatives

F = U − T · S −→ S = −
(
∂F

∂T

)
V

, p = −
(
∂F

∂V

)
T

, (1.41a)

G = H − T · S −→ S = −
(
∂G

∂T

)
p

, V =

(
∂G

∂p

)
T

, (1.41b)

show a discontinuity at the critical point. The only assumed generalised coordinate here is
the volume (dxj → dV ) and its conjugated force, which is the pressure (−p), so that the
derivative with respect to volume (∂V ) in (1.41a) leads to pressure and vice versa (except for
the sign) in the case of Gibbs energy in (1.41b). A finite jump in the entropy is associated with
a latent heat ∆Q = T12(S2 − S1) keeping the transition temperature T12 constant and is typical
for a first–order transition.
For second–order transitions the second derivatives reveal non-analytic behaviour at the critical

points. The first derivatives, however, are smooth functions over their entire space, which implies
there is no latent heat in such transitions since S1 = S2 = S. The terms for F = F (T, V,N)
yield (

∂2F

∂T 2

)
V

=
∂

∂T

(
∂F

∂T

)
V

= −
(
∂S

∂T

)
V

= −CV
T

≤ 0 , (1.42a)

(
∂2F

∂V 2

)
T

=
∂

∂V

(
∂F

∂V

)
T

= −
(
∂p

∂V

)
T

= +
1

V · κT
≥ 0 , (1.42b)

where the expressions in (1.41a) have been used.
For the Gibbs free energy G = G(T, p,N) one derives(

∂2G

∂T 2

)
p

=
∂

∂T

(
∂G

∂T

)
p

= −
(
∂S

∂T

)
p

= −Cp
T
≤ 0 , (1.43a)

(
∂2G

∂p2

)
T

=
∂

∂p

(
∂G

∂p

)
T

=

(
∂V

∂p

)
T

= −V · κT ≤ 0 , (1.43b)

by applying (1.41b).
As it is shown in Apx.A the second derivatives lead to response functions, such as the heat
capacity at constant volume and pressure, respectively,

CV =

(
∂U

∂T

)
V

= T

(
∂S

∂T

)
V

, (1.44a)

Cp =

(
∂H

∂T

)
p

= T

(
∂S

∂T

)
p

. (1.44b)
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1 Phase Transitions

(1.42b) and (1.43b) both use the expression (1.30) for the compressibility κT at constant tem-
perature. Note that in a magnetic system the magnetic susceptibility χT (1.33) usually replaces
κT ,

M = −
(
∂F

∂H

)
T

−→ ∂2F

∂H2
= −

(
∂M

∂H

)
T

= −χT , (1.45a)

H =

(
∂G

∂M

)
T

−→ ∂2G

∂M2
=

(
∂H

∂M

)
T

= χT
−1 , (1.45b)

with the absolute value of the exterior magnetic field H = | ~H| and the magnetisation M = | ~M |.
Due to reasons of stability CX and κX always need to have a positive value, so that the second
derivatives also show that the Helmholtz free energy (Gibbs free energy) is a concave (concave)
function of T , and convex (concave) as a function of V . The susceptibility χ is usually positive,
however, can also take negative values as it is the case in diamagnetic materials.
The change of matter from solid to liquid holds as a good example of a first–order transition,

since the density ρ (or better the difference of the densities of the two phases [ρph1 − ρph2])
appears to be the order parameter due to its vast change at the critical point and is solely the
inverse of the volume ρ = V −1 in (1.41b).
Even though after the scheme by Ehrenfest phase transitions of higher order (n > 2) can exist

per definition, the difference of coexisting phases becomes physically less significant up to the
point where the definition of a phase is not sensible any more. Basically, only first and second–
order transitions are of practical interest, although the number of examples for second–order
transitions in the sense of Ehrenfest are quite limited.

1.2.2 Beyond Ehrenfest Classification – Modern Modifications

The objections to the applicability of the Ehrenfest classification are all due to experimental
observations. For example, the existence of metastable phases, which typically exist at first–
order transitions can be observed. This implies that for each phase the according thermody-
namic potential is an individual smooth function which can be continued into another phase.
However, the discontinuity in the first derivative of the total energy function is indeed apparent,
because at the transition temperature, where the individual free energies intersect, only the phase
with the smaller free energy is stable leaving a "kink" in the overall curve. In many systems
with second–order transitions measurements show that the critical thermodynamic entities are
rather singularities than finite discontinuations. Note that the notion of individual free energy
functions for each phase that intersect are not applicable for higher–order transitions, since first
derivative has to be a smooth function. Thus, there is no real analogy between first– and higher–
order transitions, which contradicts the concept of Ehrenfest. Furthermore, as stated before in
Sec.1.2.1, to classify phase transitions up to arbitrarily high order is not practical.
Therefore, the classification of phase transitions is now split into only two categories. Based

on the behaviour of the first derivative of the free energy as a function of its (energy–)conjugated
natural variable it is now common to use the definition of a discontinuous and continuous
phase transition.
A discontinuous phase transition is the same as the previously discussed first–order phase trans-
ition after Ehrenfest. Due to the sudden change in entropy there is a latent heat ∆Q = T12∆S
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1.2 Classifications

serving as a qualitative observable for the discontinuity, but does not hold as a matter constant,
i.e. the transition temperature T12, where two phases are in coexistence, is adjusted by other
variables of the system T12 = T12(xj , F j). Also for most systems it is observed that ∆S is
decreasing for rising T12 until one reaches a critical temperature Tc, where the phase boundary
(discontinuity) disappears and the first derivatives are smooth again

lim
T12→Tc

∆S = 0 .

When there are singularities found in the second derivatives of the free energy at Tc one thus de-
notes it as a continuous phase transition. Continuous transitions often show anomalous phenom-
ena appearing around a critical point of the system, due to the phases becoming indistinguishable.
This anomalous behaviour is treated and explained by the theory of critical phenomena.

Order Parameter Beside the discontinuity in the according derivative there is another tool to
identify a phase transition. The notion of an order parameter is a macroscopic variable that can
be properly defined in each phase, but signals the breakdown of an ordered state by an abrupt
change of its own value. The best known example of an order parameter is the magnetisation of
a ferromagnet which for (T < TC) has a finite value due to the spontaneous order of the spins
without an exterior field, and for (T ≥ TC) indicates a disordered state by abruptly cancelling
to zero. Other examples are the gap ∆ of a superconductor or the difference of the densities,
∆ρ = ρf − ρg , in a fluid – gas phase.

1.2.3 Coexistence Conditions for Closed Systems

In Sec.1.1.7 equilibrium conditions have been derived for bringing two (or more) subsystems into
contact under certain conditions. These subsystems shall now be identified by the individually
distinguishable phase (ν = 1, . . . , π) the substance is in. Each phase ν consists of α different type
of particles, where N (k)

ν (k = 1, . . . , α) is the number of particles of type k in phase ν. Hence,
the total number N in a closed system reads

N =
π∑
ν=1

Nν =
π∑
ν=1

(
α∑
k=1

N (k)
ν

)
≡

α∑
k=1

π∑
ν=1

N (k)
ν =

α∑
k=1

Nk

=⇒ Nν =
α∑
k=1

N (k)
ν , Nk =

π∑
ν=1

N (k)
ν ,

with Nν and Nk being the total number of particles in phase ν and of type k, respectively. Note
that in a closed system dNν 6= 0 is possible whereas Nk cannot change. Any other extensive
natural variable is also additive,

xj =

π∑
ν=1

xjν ,

and since this is also true for the free energies one can write

F (T,x,N) =
π∑
ν=1

Fν(T,xν ,Nν) , G(T,F,N) =
π∑
ν=1

Gν(T,F,Nν) (1.46)
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1 Phase Transitions

From (1.39a) we derive the following boundary conditions

dxj =
π∑
ν=1

dxjν = 0 , (1.47a)

dNk =

π∑
ν=1

dN (k)
ν = 0 , (1.47b)

where the latter (dNk = 0) is also valid for (1.40a).
In order to find the state where all the phases are in equilibrium under the boundary conditions

(1.47) based on (1.39b) one needs to minimise the Helmholtz free energy by

dF =
π∑
ν=1

∑
j

(
∂Fν
∂xjν

)
Nν

dxjν +
α∑
k=1

(
∂Fν

∂N
(k)
ν

)
xν , N

(l 6=k)
ν

dN (k)
ν

 = 0 . (1.48)

If all xν , Nν would be independent from one another, the equilibrium state could be easily calcu-
lated by letting the coefficients in (1.48) vanish. Unfortunately, due to the boundary conditions
this is not the case and one has to use the mathematical optimisation method of Lagrange Mul-
tipliers, where without changing anything one can state

(1.47) =⇒

λj ·
π∑
ν=1

dxjν = 0 , (1.49a)

λk ·
π∑
ν=1

dN (k)
ν = 0 (1.49b)

{λj} and {λk} are real numbers not defined yet and called Lagrange parameter. Using (1.49) in
(1.48) reads

π∑
ν=1

∑
j

[(
∂Fν
∂xjν

)
Nν

− λj

]
dxjν +

α∑
k=1

( ∂Fν

∂N
(k)
ν

)
xν , N

(l 6=k)
ν

− λk

dN (k)
ν

 = 0 . (1.50)

Since there is only one boundary condition per natural parameter it is possible to split them into
(π − 1) independent variables and 1 variable dependent on all the others. Hence, the Lagrange
parameters can be arbitrarily set to

Fj1 =

(
∂F1

∂xj1

)
N1

= λj , µ
(k)
1 =

(
∂F1

∂N
(k)
1

)
x1, N

(l 6=k)
1

= λk ,

so that for (ν = 1) all expressions in squared brackets in (1.50) are zero and only independent
variables in the terms of the sums are left. However, this means due to independence that all
terms in square brackets have to be zero, and one can follow the final results

Fjν = Fj , ∀ν , (1.51a)

µ
(1)
1 = · · · = µ

(1)
ν = · · · = µ

(1)
π

...
...

... ,

µ
(α)
1 = · · · = µ

(α)
ν = · · · = µ

(α)
π

(1.51b)
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1.2 Classifications

which implies that for a system in equilibrium an intensive variable not natural to the system has
the same value for all phases ν. This can also be shown via statistical mechanics by optimising
the inverse of the partition sum, which gives the most probable configuration (state) a system
can be found in equilibrium.

1.2.4 Gibbs’ Phase Rule

Dependent on the free energy describing the system the chemical potentials in (1.51b) show the
following dependencies,

F (T,x,N) −→ µ(k)
ν (T, ξ, c) , G(T,F,N) −→ µ(k)

ν (T,F, c) , (1.52)

where µ(k)
ν as an intensive quantity can only be dependent on intensive variables. Hence, it is

necessary to use the intensive concentrations

c(k)
ν

.
=
N

(k)
ν

Nν
=⇒

α∑
k=1

c(k)
ν = cν = 1 ,

and molar generalised coordinates defined as

ξjν
.
=
xjν
Nν

, j = 1, . . . , n

rather than the extensive number of particles N (k)
ν and generalised coordinates xjν , respectively.

The chemical potential is therefore dependent on (1+n+απ) (intensive! ) variables which are
not independent from each other due to the [α · (π − 1)] equations from (1.51b) and the π side
conditions of concentrations (cν = 1). In total one therefore derives f degrees of freedom for a
non-reactive multi-component heterogeneous system in thermal equilibrium,

f = (1 + n+ α · π)− α · (π − 1)− π

=⇒ f = (n+ 1) + α− π . (1.53)

(f ≥ 0)

The latter is known as Gibbs’ phase rule and shows that the number of possible phases has an
upper limit

π ≤ (n+ 1) + α ,

since the number of degrees of freedom can never be negative.

1.2.5 Clausius–Clapeyron Equation

After deriving general conditions for the coexistence of π phases we shall now assume two ar-
bitrary phases (ν = 1, 2) separated by a phase line in some parameter plane which defines the
thermodynamic system with only one component (α = 1). The two variables (T,X) that gener-
ate this plane shall be identified as temperature T and a general entity X. A point on the phase
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1 Phase Transitions

line is defined after (1.51b) where the chemical potential of both phases are equal. Considering
two points on the line that are separated by a small difference (∆T,∆X) brings

µ1(T,X) = µ2(T,X)

µ1(T + ∆T,X + ∆X) = µ2(T + ∆T,X + ∆X)

=⇒ µ1(T + ∆T,X + ∆X)− µ1(T,X) = µ2(T + ∆T,X + ∆X)− µ2(T,X) ,

where the latter has been derived by subtracting the second from the first equation. Each side
is expanded into a Taylor series of linear order in (∆T,∆X) and then solved for the ratio of the
two differences in the limes (∆T,∆X)→ 0,(

∂µ1

∂T

)
X

∆T +

(
∂µ1

∂X

)
T

∆X ≈
(
∂µ2

∂T

)
X

∆T +

(
∂µ2

∂X

)
T

∆X

=⇒ dX

dT
= lim

∆→0

∆X

∆T
=

(
∂µ1

∂T

)
X

−
(
∂µ2

∂T

)
X(

∂µ2

∂X

)
T

−
(
∂µ1

∂X

)
T

. (1.54)

(1.54) relates the slope at a certain point of a phase line where two phases are in thermodynamic
equilibrium to the thermodynamic properties of those phases. This is the general form of the
Clausius–Clapeyron equation. The evaluation of the partial differentials shall be shown by the
following example.

Magnetic System For such a system the Gibbs free energy can be written asGν = Gν(T, ~H, Nν).
Note that usually N1 6= N2, so that by (1.36c)

µν(T, ~H) =
1

Nν
Gν(T, ~H, Nν) , (1.55)

which by using (1.19) and (1.40b) yields

dµν = −sνdT − ~mνd ~H . (1.56)

Note that sν = Sν
Nν

and ~mν =
~Mν
Nν

are divided by the according number of particles and thus
are the intensive entropy and magnetisation, respectively, per particle in a given phase. It is
explicitly assumed that s1 6= s2, as well as m1 6= m2 with mν = |~mν |. This implies that (1.54)
can only be valid for first–order phase transitions.
Finally, the Clausius–Clapeyron equation for magnetic systems reads

dH

dT
=

s2 − s1

(m1 −m2)
. (1.57)

1.3 Mean–Field Models

For the studies of phase transitions the task is to derive models that are appropriate to the
system and solve them by means of statistical (quantum-)mechanics. Unfortunately, there are
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1.3 Mean–Field Models

only a few that have been solved exactly. In the case of an N -spin Ising model, for example,
the number of states equals to 2N (due to the two possible spin configurations per state). If N
is increased just by one order of magnitude, the number of states scales significantly by several
orders making it impossible to calculate the partition function in a usual manner. Hence, with
the exception of some ingenious solutions one is generally restricted to approximation methods
which offer a possibility to understand the essential features of the physical phenomena under
investigation. One of the most common and widely used is the mean–field theory, where basically
a many–body interaction is averaged and represented by a mean–field that interacts only with
a single variable reducing the number of degrees of freedom drastically. It turns out that this
description is equivalent to ignoring fluctuations from the average value of the observable.
The starting point for a mean–field approximation of a (microscopic) Hamiltonian H is the
Bogoliubov inequality

F ≤ Φ ,

where Φ = F0 + 〈H −H0〉 .
(1.58)

F is the true free energy of the system, H0 a trial Hamiltonian with the corresponding free en-
ergy F0. The average 〈. . .〉 is taken in the ensemble defined by H0. If the trial Hamiltonian is
dependent on a parameter H0 the mean–field free energy is then derived by minimising Φ with
respect to H0,

FMF = min
H0

Φ . (1.59)

The latter is analogous to the variational principle in quantum mechanics, where (1.58) guaran-
tees that the mean–field free energy cannot be smaller than the true free energy. For H0 usually
a free Hamiltonian (no interaction between individual particles) is considered.
In magnetic systems the Heisenberg Hamiltonian describes the interaction between neighbour-

ing spins and it shall now serve as a basis for the following derivations of this section. In general
the latter reads

H = −
∑
i<j

Jij ~Si · ~Sj − gJ µB ~H
∑
i

~Si . (1.60)

The Heisenberg model treats the spins as microscopic quantum mechanical observables. The first
term stands for the cooperative behaviour of pairwise interaction between two spins on different
lattice sites i and j 6= i. The coupling constants Jij are the respective exchange integrals,
coming from the quantum mechanical exchange interaction of indistinguishable particles. They
are positive for a ferromagnetic interaction and negative in case of an anti–ferromagnetic one. If
only nearest–neighbour sites are considered — denoted as indices in angle brackets — the first
term in (1.60) reads

−J
∑
〈k,δk〉

~Sk · ~Sk+δk ,

where δk is the counter that symbolically points to all the closest neighbouring spins of site k.
The second term in (1.60) with the Landé factor (gJ) and the Bohr magneton (µB = e~

2m) is the
Zeeman interaction of the spins with an external field | ~H| > 0. For T = 0 K all spins are aligned
to that field and form the ground state of the system.
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1 Phase Transitions

1.3.1 Ising Model

The Ising model restricts the spin vector operator to only one dimension, most conveniently to
the z-axis

~Si = Siêz ,

and defines two antiparallel states it can occupy as spin up (Si = +1) and spin down (Si = −1).
The resulting Hamiltonian using (1.60) reads

H = −J
∑
〈i,j〉

Si Sj − gJ µBH
∑
i

Si , (1.61)

where the external field ~H = (0, 0, H) is pointing in z-direction.
It is desired that the interaction between the spins is averaged in a mean–field H0. This can

be achieved by replacing the ℵ nearest–neighbour spins in (1.61) by an average value Sj → 〈S〉,
so that one derives a non-interacting (trial) Hamiltonian in the form of

H0 = − (H0 + gJ µBH)
∑
i

Si , (1.62)

where H0 = J ℵ 〈S〉 .

The formal derivation of the expression for H0 can be reviewed in Apx.B . It will be shown in the
following that this is equivalent to neglecting the fluctuations (deviations) δS from the thermal
average 〈S〉 of the spins.
The Ising spin variables are separated into

S = 〈S〉+ δS

=⇒ Si Sj = Si 〈Sj〉+ 〈Si〉Sj − 〈Si〉 〈Sj〉+ [Si − 〈Si〉] [Sj − 〈Sj〉] . (1.63)

The latter expression is entered into the first term of (1.61) ignoring the second–order terms of
δS, which yields

H = −J 〈S〉

≡ℵ
∑
i Si︷ ︸︸ ︷∑

〈i,j〉

(Si + Sj) +J 〈S〉2
∑
〈i,j〉

1

︸ ︷︷ ︸
=ℵ N

2

−J

→0 (neglected)︷ ︸︸ ︷∑
〈i,j〉

[Si − 〈Si〉] [Sj − 〈Sj〉]−gJ µBH
∑
i

Si

=⇒ H ≈ H0 +
M0H0

2
, (1.64)

which is the same expression as in (1.62), except for a constant magnetic energy term with
the average magnetisation M0 = N 〈S〉. Note that 〈Si〉 = 〈Sj〉 = 〈S〉 has been assumed due
to translation invariance (space translation symmetry). The average results from the ensemble
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1.3 Mean–Field Models

defined by H0 from (1.62), which can be denoted as

〈S〉 = 〈Si〉 =

∑
Si=±1

Si eβ (H0+... )Si∑
Si=±1

eβ (H0+... )Si
=

sinh
(
β (H0 + . . . )

)
cosh

(
β (H0 + . . . )

)
=⇒ 〈S〉 = tanh

(
β (J ℵ 〈S〉+ . . . )

)
. (1.65)

Since β = (kB T )−1 is the inverse temperature the latter yields an equation that can be solved
self–consistently in order to determine the average magnetisation 〈S〉 dependent on the external
parameters of temperature T and magnetic field H. As indicated before it is not possible to
solve (1.65) explicitly, but the qualitative behaviour of the latter can be understood by plotting
the expression on the left and the right side of the equation individually as a function of 〈S〉
(see Fig.1.2). The intersections of the curves then correspond to the values for 〈S〉 that solve
(1.65). If for simplicity H = 0, it can be seen that a solution different from zero is only possible
when the slope of tanh(β J ℵ 〈S〉) at the origin is greater than 1, i.e. J ℵβ > 1. The according
value indeed minimises the mean–field free energy, which means that the system shows a stable
ferromagnetic phase with a finite spontaneous magnetisation. With rising temperature the slope
at the origin becomes smaller until J ℵβ < 1 and the two curves do not intersect anymore
(except for the origin), representing the paramagnetic phase. It is therefore obvious that where
the transition between those two phases occurs a critical temperature Tc can be defined as

kB Tc = J ℵ . (1.66)

As an estimation for the temperature dependence of the mean–field magnetisation only small
〈S〉 and τ , where

τ
.
=
T − Tc
Tc

(1.67)

is the reduced temperature, are assumed. The temperature is thus close to Tc so that the hyper-
bolic tangent can be expanded to

tanh(x) = x− 1

3
x3 +

2

15
x5 − . . . , with x =

1

1 + τ
〈S〉 .

Using the latter it is possible to approximate (1.65) to

〈S〉 ≈ 1

1 + τ
〈S〉 − 1

3

1

(1 + τ)3
〈S〉3 +O( 〈S〉5, τ5)

≈ (1− τ) 〈S〉 − 1

3
〈S〉3 +O( 〈S〉τ2, 〈S〉3τ) ,

where
1

1 + τ
= 1− τ + τ2 − . . . .

(1.68)

Neglecting all terms of order τ2 and higher the temperature dependence can be estimated to

〈S〉 ∼ (−τ)
1
2 . (1.69)
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1 Phase Transitions

Fig. 1.2: Depicted solution for 〈S〉 derived from the according self–consistent mean–field ap-
proach (1.65). The straight dashed line (grey) only intersects with the hyperbolic tan-
gent if the argument J ℵβ > 1 (blue). For J ℵβ < 1 (red) there is no other possible
solution than zero. One can therefore define a critical temperature Tc according to
(1.66) where the transition from ferro– to paramagnetic phase occurs (green).

It is worth noting that the critical temperature only depends on the number of nearest neigh-
bours ℵ and other important details of the lattice structure, such as dimensionality, are com-
pletely neglected. This results, for example, in an incorrect prediction of a phase transition at
finite temperature for the one–dimensional Ising model.

Ising Model — Antiferromagnetic Ordering Models within the mean–field theory gen-
erally assume a parallel spin alignment of two neighbouring sites, so that all spins have the
tendency to point in the same direction and ferromagnetic (Fm) interaction can be described.
In an antiferromagnetic (Afm) material, however, the stable configuration of a pair of neigh-
bouring spins is antiparallel. The Hamiltonian (1.61) is still valid, but since now Si Sj = −1 the
exchange integral has to be negative (J < 0) in order to minimise the Hamiltonian H.
The simplest way to treat Afm interaction is to split the system into two sublattices, A and B,
where within each subsystem all spins are parallel to one another, but point in the exact oppos-
ite direction of the sites described by the other subsystem. Many lattices, such as the simple
square (cubic) lattice in two (three) dimensions, respectively, allow such a description where the
neighbouring spins of one site of sublattice A (B) always belong to the other sublattice B (A).
The result from (1.65) for the self–consistent calculation of the average magnetisation in the
Fm case has to remain valid if one considers the change of sign of the exchange by substituting
J → −J . Furthermore, all neighbouring sites of a spin belong to the other sublattice, so that
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1.3 Mean–Field Models

Fig. 1.3: Temperature dependence of the Afm susceptibility χAfm. The critical temperature TN
can be identified by a cusp in the curve’s continuity.

the self–consistent equation (1.65) is therefore split into two coupled equations,

〈SA〉 = tanh
(
β (−J ℵ 〈SB〉+ . . . )

)
, (1.70a)

〈SB〉 = tanh
(
β (−J ℵ 〈SA〉+ . . . )

)
. (1.70b)

〈SA〉 and 〈SB〉 are the averaged values of the spins from sublattice A and B, respectively. It is
quite obvious that a replacement of

{
〈SA〉 = −〈SB〉

}
→ 〈S〉 once more yields the Fm solution

again, which means that — except for the opposite orientation of the spins — sublattice A and B
show exactly the same properties as it is expected for Afm. Thus, it follows that there is also
a critical point in case of an Afm configuration, TN = J ℵ, called Néel temperature, where
spontaneous staggered magnetisation occurs.
The behaviour of the magnetic susceptibility can be analysed by using its definition (1.33) in
the zero–field limit (H → 0) and that the magnetisation reads M = N 〈S〉,

χA ∼ lim
H→0

∂ 〈SA〉
∂H

=
β (−J ℵχB + 1)

cosh2
(
β J ℵ 〈SB〉

) , (1.71a)

χB ∼ lim
H→0

∂ 〈SB〉
∂H

=
β (−J ℵχA + 1)

cosh2
(
β J ℵ 〈SA〉

) . (1.71b)

These equations are again a coupled set which is satisfied by the sublattice susceptibilit-
ies per spin χA, B. Note that the symmetry relation of the hyperbolic cosine, cosh(−x) = cosh(x),
has been applied. For Afm materials the set of equations (1.71a) has to meet the conditions
χA = χB → χAfm and 〈SA〉 = −〈SB〉 → 〈S〉 in order to derive a self–consistent equation for the
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Afm susceptibility per spin,

χAfm =
β (−J ℵχAfm + 1)

cosh2
(
β J ℵ 〈S〉

) = β
(
− J ℵχAfm + 1

) (
1− 〈S〉2

)
, (1.72)

where relation (1.65) can be entered into the latter by expressing the hyperbolic tangent

1

cosh2(x)
=

cosh2(x)− sinh2(x)

cosh2(x)
= 1− tanh2(x) .

Since temperature is implicitly taken into account by the inverse β it is possible to analyse
the behaviour of χAfm with varying temperature. Considering (1.72) for T ≥ TN there is no
spontaneous magnetisation and thus 〈S〉 = 0, which yields the simple expression

χAfm(T ) =
1

T + TN
, T ≥ TN . (1.73)

It can already be seen that the susceptibility does not diverge at T = TN, as it would be the
case for a FM material at critical temperature Tc. The reason is that a uniform field due to
the opposite orientation of the spins below TN cannot effectively cause a macroscopic response
around the critical temperature. In case of T < TN the susceptibility reads

χAfm(T ) =
1− 〈S〉2

T + TN
(
1− 〈S〉2

) , T < TN , (1.74)

and shows a rapid decrease to zero as T → 0. Both curves are plotted in Fig.1.3, where it can
be seen that instead of divergence the Afm susceptibility shows a cusp in the continuity of the
curve when reaching the Néel temperature.

1.3.2 Landau Theory

Landau theory of phase transitions is a phenomenological approach of the free energy F of the
system based on very simple assumptions. It does not consider microscopic entities of a statistical
model, such as Ising spins for example. The free energy is only dependent on one variable known
as order parameter. As long as the symmetry of the problem is preserved the latter can be
arbitrarily chosen.
In magnetic systems the order parameter is usually the magnetisation M . For a ferromagnet

without an external field the free energy can then be expanded as a power series in M , where
only even powers are taken into account,

F (M) = F0 + a2M
2 + a4M

4 + . . . . (1.75)

Only those terms are compatible with the symmetry of a magnetic system, since invariance has
to be guaranteed when the sign of the magnetisation is reversed. The coefficients ai = ai(T )
are dependent on temperature, but constant as functions of M . For a qualitative analysis
it is sufficient to stop the expansion after the fourth order term (M4). As a matter of fact,
subsequent higher terms cannot alter the critical behaviour of the system. It is required that
the coefficient a4 always has a positive value, since otherwise the free energy would decrease
infinitely with increasing M . Additionally, for a positive coefficient a2 > 0 the free energy is
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Fig. 1.4: Plot of the Landau model (1.75) up toM4. The paramagnetic phase (red) is determined
by a positive coefficient a2 > 0. If a2 < 0 (blue), the curve shows two minima at ±M0,
where only one of the values is actually observed in a real ferromagnetic phase (spont.
symmetry breaking). The phase transition occurs when a2 = 0 (green).

minimal only at the origin (M = 0), thus the system is in a paramagnetic phase. If due to
temperature influence the coefficient decreases and becomes negative, a2 < 0, two minima are
formed at finite values ±M0 of the order parameter which emerge away from origin into positive
and negative direction, respectively, as a2 decreases, indicating a ferromagnetic phase. Both
cases are depicted in Fig.1.4. The transition from one phase to the other occurs when a2 = 0,
which corresponds to a critical temperature Tc. One can thus parametrise the coefficient by

a2 = a τ , (1.76)

where τ is again the reduced temperature from (1.67) and a is a plain scaling constant. With the
variation of τ it is now possible to describe a continuous phase transition of the magnetisation.
The equilibrium magnetisation M0 can be calculated by the first derivative of the free energy

dF

dM
= 2a2M + 4a4M

3 , (1.77)

where the latter is zero and for τ < 0 yields

M0 =

√
− a2

2 a4
=

√
− a

2 a4
τ

=⇒ M0 ∼ (−τ)
1
2 , (1.78)

which is the same result that has been previously derived with (1.69) in the case of the Ising model.
Differentiating (1.77) a second time,

d2F

dM2
= 2a2 + 12a4M

2 , (1.79)

29



1 Phase Transitions

furthermore yields the susceptibility χ =
(

d2F
dM2

)−1
for τ < 0,

χ =
1

2a2 + 12a4

(
− a2

2a4

) = − 1

4a τ

=⇒ χ ∼ (−τ)−1 . (1.80)

It is thus shown that these two theories are equivalent in the sense of approximating a mean–
field interaction (although details of the dimensionality and number of components is completely
lost, which is generally not appropriate). Using (1.78) the expression for the free energy (1.75)
can be rewritten in terms of the reduced temperature for τ < 0,

F = F0 −
a2

4a4
τ2 . (1.81)

Note that the symmetry inherent in (1.75) consequently establishes two stable states ±M0 that
coexist in the ferromagnetic order. However, it is evident that in a physical system the actual
state only shows one of the two minima truly realised. It follows that the realised equilibrium
state does not show the above mentioned symmetry, which is called spontaneous symmetry
breaking. Only a part of the phase space is reached by the system; the tendency to one of the
equilibriums is developed by a small external field or an initial condition in time evolution of the
system. This is a common phenomenon seen in mean–field approximations.

1.3.3 The Limits of Mean–Field Approximations

The application of approximative methods also always demands the question of its limitations.
Usability and validity are the two decisive factors one generally has to consider. The limit for
mean–field approximations clearly lies within the disregard of fluctuations around the average of
the physical quantities. In order to give an estimation for the latter and thus find a rule where
the mean–field theory in D dimensions can reliably be applied, one integrates all fluctuations of
magnetisation up to the length scale of correlation length ξ,

σ2 =
0

∫ ξ

dDr Γ(r) , (1.82)

with r = |i− j| as the difference to the specific lattice sites, and Γ(r) is the correlation function
of the spins, where

Γ(i, j) =
〈 (
Si − 〈Si〉

) (
Sj − 〈Sj〉

) 〉
=⇒ Γ(r) = 〈SrS0〉 − 〈Sr〉 〈S0〉 = 〈SrS0〉 − 〈S〉2 .

For the last term translation invariance and isotropy are assumed. The correlation function Γ(r)
remains at an almost constant value for r < ξ and exponentially decreases beyond. Fluctuations
at a length scale larger than ξ are therefore uncorrelated and a change of the upper limit beyond
ξ will not effectively change the value of the integral in (1.82). It is shown in Apx.C that the
integral with extension to infinity is proportional to the magnetic susceptibility χ. The latter is
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known as susceptibility sum rule, which is derived from linear response theory, and is a special
case of the fluctuation–dissipation theorem. As a consequence we can therefore write

χ = β
0

∫ ∞
dDr Γ(r) ≈ β σ2 . (1.83)

The mean–field approximation is consistent where the fluctuations σ2 are extensively smaller
than the square of the magnetisation integrated up to the correlation length, which gives a
self–consistent condition called Ginzburg criterion,

0

∫ ξ

dDr 〈Sr〉 〈S0〉 ∼M2 ξD � kBT χ . (1.84)

Near criticality the criterion can be rewritten using the according critical exponents,

τ2β τ−νD � kBT τ
−γ ,

=⇒ νD − 2β > γ ,
(1.85)

which implies when the mean–field values (see Tab.1.2) are entered that

D > 4 .

Hence, it is shown that mean–field theory is consistent for D > 4, where the critical exponents
are granted to take the mean–field values and mean–field theory forms a universality class. The
threshold Duc = 4 is the upper critical dimension. The argument above only concerns the
asymptotic behaviour of thermodynamic functions near criticality. Although the exponents are
correct beyond Duc, critical temperatures Tc and other non-universal quantities are generally
not. It is quite plausible that a theory, where the interaction is based on the average of all
other spins, should approximate to better results when the system is viewed in a wider region.
Beside a higher dimensionality this could be achieved by an increase of interacting neighbours
or a greater range of interactions. Generally, the mean–field approximation is a better theory
outside a certain critical region with size RD, where it is expected that fluctuations are small and
even almost neglectable. The size of the region is material dependent (non-universal) and can
be estimated again by the Ginzburg criterion (1.84); considering that M2 ∝ |τ |, ξ ∝ R|τ |−1/2,
and using the result (1.80) from Landau theory,

RD|τ |1−
D
2 � 1

4a |τ |
=⇒ RD � C |τ |−

(4−D)
2 , (1.86)

where C is a constant of order one. The latter equation shows that fluctuations become more
relevant as the dimensionality D is lower.
Albeit the reliability of the mean–field theory is quite limited, there are many cases where

its application, for example as series expansion from four dimensions, brings fruitful qualitative
predictions, as it often delivers (in some cases) the only feasible approach to complicated issues.
It can then be seen as the groundwork for more sophisticated calculations. Finally, the most
peculiar feature is that mean–field theory — as opposed to many other numerical approaches —
actually improves with increasing dimensionality, which highlights the importance of symmetry
of the order parameter.
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1.3.4 Universality

The theory of continuous phase transition reveals interesting effects when approaching the critical
parameters, for example Tc, where the transition occurs. Especially in magnetic systems there are
some entities that diverge (e.g. susceptibility χT ) and others that vanish (e.g. magnetisation M
as order parameter). There are many (physically) different systems that can show the exact
same behaviour near criticality, which leads to the notion of universality. If a system shows
universal features, the order parameter will become less dependent on the details of the system
the closer the system parameter approaches its critical value. Mathematically, the ansatz

A = A0 |T − Tc|±λ ∼ A0 |τ |±λ (1.87)

describes this fact, where λ > 0 is the critical exponent which takes typical values for the
according quantity A to parametrise its near-critical behaviour when approaching Tc. As it has
been shown previously in Sec.1.3.1 and Sec.1.3.2 the critical exponent for the order parameter
(magnetisation) is β = 1

2 . All further critical exponents for other magnetic quantities can be
derived in a similar manner or as a consequence of β taking this value. They are shown in
Tab.1.2 . It might seem surprising that two different models derive the same critical exponents
under the class of mean–field approximations; however, this is not a coincidence. The fact
that very different systems can have the same critical exponents classifies them as universal
entities. Opposed to these the values of the critical parameters (Tc, . . .) are dependent on the
Hamiltonian of the system in a complex manner and are therefore non-universal. The phenomena
of universality is based on quantities which only depend on a few fundamental global parameters
(e.g. dimension), but not on the knowledge of any dynamical details of the system. Moreover,
systems with the same set of critical exponents can be unified to so-called universality classes
where it is important to note that these systems do not necessarily need to have the same
physical basis, but all commonly show the same critical behaviour. A phase transition is therefore
sufficiently characterised by finding and relying on the proper universality class. The mean–
field approximation is a good example for such a class, as the individual critical exponents
always take the same value.

Tab. 1.2: The critical exponents of Mean–Field approximations.

Crit. Exponent Mean–Field

α 0
β 1

2
γ 1
δ 3
ν 1

2

Renormalisation Group and Critical Phenomena In a wider sense universality can be
explained within the theoretical frame of renormalisation group. A system with nf degrees of free-
dom can be equivalently described by a reduced system, where n′f < nf (scale invariance). The
concept of renormalisation is to observe the change of physical quantities as the length scale is
successively increased by applying mathematical operations embodied within this group. These
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are known as coarse graining and (re)scaling, where parts of the microscopic degrees of freedom
are traced out and the spatial scale is again normalised after being changed by a scaling factor b,
respectively. Repeating these operations draws attention to the long-length behaviour of a macro-
scopic system, but neglects short-range contributions. Since for phase transitions the correlation
length ξ goes to infinity fluctuations near the critical point are thereby systematically taken
into account. On the other hand short-ranged interaction is gradually cancelled out and the
critical behaviour of the system is understood as the asymptotic behaviour of infinitely many
iterations of the renormalisation process. Under such a transformation, where a set of vari-
ables {S} is traced out and a set {S′} remains the partition function (and hence the free energy)
has to be invariant,

Znf(H) =
∑
{S′}

∑
{S}

e−H =
∑
{S′}

e−H
′ ≡ Zn′f(H

′) , (1.88)

where the Hamiltonians are derived by a generally non-linear transformation Rb(·) that reduces
the number of degrees of freedom accordingly,

H′ = Rb(H)

=⇒ nf
′ = b−D nf ,

(1.89)

where D stands for the dimensionality. Coarse graining is not a unique operation. Choosing one
procedure leads to a particular renormalisation group scheme and since for b > 1 information is
irretrievably lost as degrees of freedom are traced out, it is impossible to define an inverse trans-
formation Rb−1. There is, however, still an identity map (b = 1) and two successive mappings
are equivalent to a single map

H′′ = Rb2 Rb1(H) ≡ Rb1 b2(H) , (1.90)

so that mathematically the set of transformations {Rb} forms what is called a semi–group.
If the system is at the critical point there are fluctuations of all length scales, which is the

reason it should stay unchanged after many steps of renormalisation. If the number of steps goes
to infinity the Hamiltonian approaches a fixed point H∗ defined by

H∗ = lim
n→∞

Rb
n(Hc) . (1.91)

It should be clear that the Hamiltonian at the critical point Hc is not the same as the one at
the fixed point H∗, but rather approaches the latter asymptotically. Furthermore, a fixed point
can be identified by its invariance

H∗ = Rb(H∗) . (1.92)

The Hamiltonian can be written in a parameter space {u1, . . . , un} and introduced as the sum
of products between parameter uj and operator Âj ,

H =
∑
j

uj Âj . (1.93)

The operators are well-defined, so that analogously to (1.89) one can use a similar map for the
parameter space

u′ = Rb(u) . (1.94)
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1 Phase Transitions

It is not explicitly stated that obviously lengths are again reduced by a scale factor b for each
transformation. As this is also valid for the correlation length ξ it now can be seen that in
the limit of infinitely repeated renormalisation group operations the asymptotic behaviour of
the parameters {uj} determines the critical exponents that describe non-analyticities of the
physical quantities at criticality. A fixed point u∗ in parameter space is again identified by
invariance

u∗ = Rb(u
∗) , (1.95)

and can be associated with the according fixed point Hamiltonian H∗ from (1.91). The correla-
tion length at the fixed point reads

ξ [Rb(u
∗)] = ξ [u∗] = b−1ξ [u∗] , (1.96)

where ξ [u∗] can either be zero (away from criticality → 0) or infinity (stays at criticality →∞).
The latter manifests a critical fixed point where the former is a trivial fixed point and expresses
that there is no characteristic length scale at such point. As the interest lies in the singular
behaviour near criticality it is instructive to study the properties of the system with parameter
values slightly away from the fixed point. The parameters before and after renormalisation can
thus be written as a small deviation from it,

u = u∗ + δu , (1.97a)
u′ = u∗ + δu′ . (1.97b)

The transformation appearing in the recursion relation (1.94) is in general non-linear, but
analytic and can be linearised by expansion around the fixed point and neglecting terms of
second–order and beyond,

u′ = Rb(u
∗ + δu) ≈

=u∗ (1.95)︷ ︸︸ ︷
Rb(u

∗) +
∂Rb
∂u

(u∗)︸ ︷︷ ︸
=Lb(u∗)

δu . (1.98)

Lb(u
∗) is a not necessarily symmetric real matrix which can be diagonalised with real eigenvalues.

Comparing the latter with (1.97b) one derives the linearised recursion relation, which is only
valid close to the fixed point

δu′ = Lb(u
∗) δu , (1.99)

where [Lb(u
∗)]ij =

∂u′i
∂uj

(u∗) .

Since the semi–group property of (1.90) must also be valid for Lb2 Lb1 ≡ Lb1 b2 , where Lb generally
is a function of scaling factor b, the eigenvalues λi(b) of the transformations as a consequence of
linearity must also read

λi(b1 b2) = λi(b1)λi(b2)

=⇒ λi(b) = bυi ,
(1.100)
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1.3 Mean–Field Models

Fig. 1.5: Schematic parameter flow of the scaling fields gi and gj , where one of the according
exponents is positive (υi > 0) and the other is negative (υj < 0). The fixed point
u∗(gi = gj = 0) can only be reached when there are no contributions of gi.

which can only be satisfied if the eigenvalues are powers of b. The deviations δu, δu′ are then
expanded by the set of eigenvectors {φi} of Lb, so that the equations in (1.97) read

u = u∗ +
∑
i

gi φi , (1.101a)

u′ = u∗ +
∑
i

gi
′ φi . (1.101b)

The variables gi are called scaling fields and are important quantities to characterise the para-
meter space u. Using (1.99) implies that gi and g′i are related by∑

i

gi
′ φi = Lb

∑
i

gi φi =
∑
i

gi Lbφi =

=
∑
i

gi λi(b)φi =
∑
i

gi b
υi φi

=⇒ gi
′ = bυi gi (1.102)

The renormalisation group analysis has therefore been reduced to gaining information about the
fixed points u∗, the exponents {υi} of the eigenvalues of Lb and the scaling fields {gi}.

Critical phenomena can be characterised by the eigenvalues and eigenvectors of the lin-
ear transformation Lb. Especially the concept of universality can be extracted from them, where
the sign of the eigenvalue’s exponents takes a decisive part. It can be seen from (1.102) that
if υi is positive, the scaling field gi is amplified (b > 1) after each renormalisation group trans-
formation. The parameter u′ would therefore move further away from the fixed point with every
additional step. For negative υi, on the other hand, the parameter would converge towards u∗.
Fig.1.5 shows the parameter flow schematically for a positive and a negative exponent. In or-
der for the system parameters to be attracted to a fixed point it is therefore necessary that all
scaling fields with a positive exponent are gauged to zero,

∀gi : {υi > 0 =⇒ gi = 0} ∴ {u∗ = lim
n→∞

Rb
n(u)} . (1.103)
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1 Phase Transitions

Since this is a decisive adjustment to the behaviour of the system a scaling field with positive
exponent is called a relevant variable (υ > 0). The rapid diminishment of scaling fields with
negative exponents makes them an irrelevant variable (υ < 0), as they have no effect on the
critical properties. For υ = 0 variables are called marginal, which are associated with logar-
ithmic corrections to scaling. The described features of a variable are relative to the according
fixed point. A variable may be relevant to one particular fixed point, but irrelevant (or marginal)
to another.
In a ferromagnetic system only two parameters, temperature and external magnetic field, need
to be adjusted to critical values in order to observe critical phenomena. Slight deviation from
these values will lead the system away from criticality, which shows that the two quantities
τ (reduced temperature) and h (reduced magnetic field) are related — even proportional near
the fixed point due to analyticity — to the relevant variables gτ and gh, respectively. Variables
represented by other scaling fields with negative exponents do not affect the essential features of
critical phenomena. Hence, there is usually no influence on the critical exponents, except for the
positive exponents of υτ and υh. Since the parameters irrelevant to the description of criticality
can be quite diverse, the observed critical exponents can cover a wide range of different systems
described by these parameters. This leads a way to clarify the notion of universality from the
view of renormalisation group theory by showing that the only traceable difference of systems
with the same critical phenomena are the irrelevant parameters, while the relevant ones are
commonly shared. Therefore, a universality class specifies amongst other fundamental entities
the shared set of relevant variables.
The critical exponents can be linked to the positive exponents υi of the eigenvalues of the

linear transformation Lb which are related to the relevant scale variables gi. The main concept lies
behind the analysis of the free energy per degree of freedom f(H) under a renormalisation group
transformation (remember that the free energy is invariant per se). With the definition f .

= F
nf

and the result from (1.89) one can define a renormalisation group transformation as

f(g1, g2, g3, . . .) = b−D f(g1
′, g2

′, g3
′, . . .) + w(g1, g2, g3, . . .) , (1.104)

where for completeness the regular term w has been added, which corresponds to the logarithm
of a coefficient product in the partition function and should be regarded when the exact value
of the free energy is demanded. This multiplicative factor, however, does not have any influence
on the fixed point or the critical exponents and is thus omitted. In the ferromagnetic case gτ and
gh become proportional to τ and h close to the critical point, respectively. One can therefore
use (1.104) with (1.102), so that after n steps of renormalisation,

f(τ, h) = b−nD f(bnυτ τ, bnυh h) . (1.105)

For τ > 0 the number n is chosen so that the first argument on the right goes to unity,

bnυτ τ = 1 ⇐⇒ n = − 1

υτ

ln τ

ln b
.

For τ < 0 the sign is just reversed to −1. Replacing bn the expression above is equivalent to a
scale transformation,

bn = τ−
1
υτ (1.106)

=⇒ f(τ, h) = τ
D
υτ f

(
1, h τ−

υh
υτ

)
≡ τ

D
υτ Φ

(
h τ−

υh
υτ

)
. (1.107)
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1.3 Mean–Field Models

The latter is known as scaling law and has effectively transformed a function of two independent
variables into a single–variable function, which is called scaling function Φ. The scaling law
implicitly assumes that the free energy f is a generalised homogeneous function. The repetition
of the renormalisation group transformation shifts the reduced temperature τ away from the
critical region and the usual critical condition |τ | � 1 has to be replaced by

|τ | � 1 −→ |τ | = b−nυτ .

It is possible to establish special relations between the critical exponents and the exponents of
the eigenvalues υτ , υh by using the scaling law. Not explicitly shown, they result in the following
expressions,

α = 2− D

υτ
, β =

D − υh
υt

, γ =
2υh −D
υτ

, δ =
υh

D − υh
. (1.108)

The critical exponents are not independent from each other. Eliminating υτ and υh from (1.108)
yields the scaling relations

γ = β (δ − 1) , (1.109a)

α+ 2β + γ = 2 , (1.109b)

which are satisfied by the exponents of mean–field theory.
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Chapter 2

Density Functional Theory

The Density Functional Theory (Dft) is a quantum mechanical modelling method used to calcu-
late the electronic structure of many–body systems. The idea is to work with a simple quantity
— in this case the electron density % — instead of solving Hamiltonians through complicated
many–body wave functions. The basic principles are presented on a very pragmatic level by the
Thomas–Fermi model (free electron gas). The fundamental steps, however, have been made by
the two theorems of Pierre Hohenberg and Walter Kohn. The first Hohenberg–Kohn theorem
shows that the energy of the system can be expressed as a functional E[%(~r)] of the spatially
dependent electron density %(~r), and the second theorem states that this functional is found to
be minimal at the unique ground state density %(~r)→ %0(~r). Dft is among the most versatile
methods available in computational physics. The computational effort is relatively low com-
pared to the traditional methods based on the complex many–body wave functions, such as the
Hartree–Fock theory.

2.1 Many–Body Systems: Schrödinger Representation

The dynamics of a quantum system is described by the Hamiltonian Ĥ. If |Ψ〉 is a quantum state
wave function of the system, its time–evolution is given by

i~∂t |Ψ〉 = Ĥ |Ψ〉 ,

where ∂t
.
= ∂

∂t and Ψ = Ψ(~r1, . . . ,~rN , t) .

(2.1)

Stationary states with discrete energy eigenvalues are obtained by the time independent Schrödinger

equation using the separation ansatz Ψ = ψ(~r1, . . . ,~rN ) · e−i
E
~ t

Ĥ |ψ〉 = |ψ〉E, 〈ψ|ψ〉 = 1 , (2.2)

or alternatively derived from the variational problem

E[ψ] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

. (2.3)

In the latter case the ground state energy E0 ≤ E[ψ] is identified as the minimum of the energy
functional,

E0 = min
ψ
E[ψ] , (2.4)

which can be calculated using the variational principle under the constraints δE[ψ] = 0 and
〈ψ|ψ〉 = 1,

δ
{
〈ψ|Ĥ|ψ〉 − λ

(
〈ψ|ψ〉 − 1

)}
= 0 . (2.5a)
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2 Density Functional Theory

λ is the Lagrange parameter, which is equivalent to the energy eigenvalue E,

λ ≡ E =⇒ δ
{
〈ψ|Ĥ|ψ〉 − E

(
〈ψ|ψ〉 − 1

)}
= 0 . (2.5b)

The equivalence is justified due to the fact that the variation with respect to 〈ψ| = ψ∗ leads
again to the Schrödinger equation (2.2).
The system to be considered consists of N identical particles (in most cases these particles are

electrons) moving in an external field and interacting with each other by pair forces. The number
of particles is conserved; furthermore there are no excitations, nor a temperature dependence.
The Hamiltonian for this case is built up by the kinetic energy operator T̂ , the external potential
operator Û of the interaction of the particles with the field of the nuclei, and the two–particle
interaction operator Ŵ ,

Ĥ = T̂ ⊕ Û ⊕ Ŵ . (2.6)

The spatial representation uses the eigenstates of the coordinates ~r (and possibly the spin pro-
jection s with respect to a given quantisation axis z) of the particles as basis vectors in the
Hilbert space of one–particle quantum states:

r̂ |r〉 = |r〉~r
σ̂z |s〉 = |s〉 s

x
.
= (~r, s) ,

∫
dx

.
=
∑
s

∫
d3r .

If the Hamiltonian in (2.6) is now acting on spatially dependent (stationary) wave functions, it
then can be explicitly given as

Ĥ = T̂ + Û + Ŵ

Ĥ = − ~2

2m

N∑
i=1

~∇ 2
i +

N∑
i=1

u(xi) + e2
N∑
i<j

1

rij
,

where rij = |~ri − ~rj | and u(xi) = −e2
∑
α

Zα
riα

.

(2.7)

u(xi) is the potential of the external field for a particle with position and spin xi. It should be
noted that this field can also be spin dependent. Generally, this dependency would be treated
by four spatial functions, where two spinor indices (ss′) of a (spatially local) S = 1

2 operator
define these functions by uss′(~r). This operator is only used in density functional treatments of
ground states with non-collinear spin structure. In most cases, however, the spin dependence
is visualised as an external magnetic field B(~r), which is restricted to the z–direction and only
acting on the spin while its effect on the orbital motion is neglected. The result is a simple
potential energy contribution of −2sB(~r) and allows a treatment similar to the spin–independent
case.
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2.2 Thomas–Fermi Theory

For a better overview Natural Units will be used within this chapter, which gives (2.7) the
form

~ = m = e = 1

Ĥ = −1

2

N∑
i=1

~∇ 2
i +

N∑
i=1

u(xi) +
N∑
i<j

1

rij
. (2.8)

2.2 Thomas–Fermi Theory

In the modern progress of Dft one tries to find a functional expression for the ground state
energy E[ρ] via the ground state density ρ(~r) and then to base a variational principle with
respect to the density on this functional relation. The Thomas–Fermi theory is the earliest and
least complex version of these approximating theories, but learning from its concept is still of
importance.
Thomas and Fermi independently considered that there is an important contribution to the total
energy due to the interaction between the electrons themselves. However, they could only derive
a classical Coulomb term. The quantum mechanical phenomena they were not aware of at that
time was the exchange energy of the electrons (fermions), and thus they neglected the correlation
term. All potential terms could therefore be expressed through the particle density ρ(~r). The
only contribution not readily related to ρ(~r) was the kinetic energy.
It is the assumption that the electrons surrounding an atomic nucleus behave like a homo-

geneous interaction–free fermion gas (S = 1
2). In the atomic ground state they will fill out a

spherical momentum space volume Vp up to the Fermi momentum pF,

Vp =
4

3
π pF

3 . (2.9)

Considering the spin of the electrons and the Pauli exclusion principle one electronic state oc-
cupies a phase space volume of h3

2 , which can easily be shown by calculating the phase space
volume of a non-spin state in a three dimensional cube with length L. The periodic boundary
conditions yield a ∆k = 2π

L . Therefore, the phase space volume for one state is

(L ·∆p)3 = (L · ~∆k)3 = h3 . (2.10)

The total phase space volume of a small volume element dV can be calculated by

Vphase = Vp · dV =
4

3
π pF

3 · dV . (2.11)

Using (2.10) and (2.11) the number dN of occupied states is

dN =
2

h3
· Vphase =

8π

3

1

h3
pF

3 dV =

=
1

3π2

(pF
~

)3
dV .

With ρ .
= dN

dV and pF = ~ kF the expression for the electron density of the Thomas–Fermi model
reads,

ρ =
1

3π2

(pF
~

)3
=

1

3π2
kF

3 . (2.12)
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2 Density Functional Theory

The average kinetic energy per particle 〈t〉 now can be calculated (classically) as a function of
the electron density,

〈t〉 = 0

∫ pF

d3p
p2

2m

0

∫ pF

d3p

=
4π

2mVp 0

∫ pF

dp p4 =
1

m

3

10
pF

2 . (2.13)

Using (2.12) yields

〈t〉 −→ t(ρ) =
~2

m

3

10

(
3π2
) 2

3 ρ
2
3 . (2.14a)

Transforming to Natural Units results in

t(ρ) = CF ρ
2
3 , (2.14b)

where CF =
3

10

(
3π2
) 2

3 ≈ 2.8712 .

The kinetic energy per unit volume dV is ρ · t(ρ), so that

dT = CF ρ
5
3 dV . (2.15)

Under the assumption that the electron density varies slowly enough in space for a real atomic
configuration, then

T [ρ(~r)] ≈
V

∫
dV ρ(~r) t(~r) = CF

V

∫
dV ρ

5
3 (~r) (2.16)

can be conducive to an acceptable approximation for the kinetic energy functional T [ρ] of the
electron density.
For the potential terms of (2.1) the transfer from a discrete number of particles to a (continuous)
particle density has to be accomplished by

N =

N∑
i=1

ρ(~ri) −→
V

∫
d3r ρ(~r) . (2.17)

Without proof the potential functionals are

U [ ρ(~r);u(~r) ] =
V

∫
d3r u(~r) ρ(~r) , (2.18)

W [ ρ(~r) ] =
1

2 V

∫
d3r uH(~r) ρ(~r)

.
=

1

2
VH[ρ(~r)] , (2.19)

where u(~r) =
∑
α

Zα

|~r − ~Rα|
, uH(~r) =

V

∫
d3r′

ρ(~r ′)

|~r ′ − ~r|
.

Using (2.16), (2.18) and (2.19) the Thomas–Fermi functional for the total energy is

ETF[ ρ(~r);u(~r) ] = CF
V

∫
d3r ρ

5
3 (~r) +

V

∫
d3r u(~r) ρ(~r) +

1

2 V

∫
d3r uH(~r) ρ(~r) . (2.20)
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2.2 Thomas–Fermi Theory

It is a functional explicitly given by the density ρ(~r) and the external potential u(~r). The
factor 1

2 in the last term prevents double counting. It is the so called Hartree–term VH with the
Hartree potential uH(~r), which describes the classical Coulomb interaction of the electrons.
For a Coulomb system (2.20) becomes

ETF[ ρ(~r); ~Rα, ~Rβ ] =E[ ρ(~r) ] + Vnucl[ ~Rα, ~Rβ ] =

= CF
V

∫
d3r ρ

5
3 (~r)−

∑
α V

∫
d3r

Zα ρ(~r)

|~r − ~Rα|
+

+
1

2 V

∫∫
d3r d3r′

ρ(~r ′) ρ(~r)

|~r ′ − ~r|
+

1

2

∑
α 6=β

Zα Zβ

|~Rα − ~Rβ|
.

(2.21)

The last term in the equation above is the Coulomb interaction energy of the nuclei. It is
independent from the electron density and can therefore be separated in terms of a Born–
Oppenheimer approximation.
In order to find the ground state, (2.20) will be used as a variational expression, where the
density ρ(~r) will be varied under the constraint that the number of particles N from (2.17) is
conserved. It is the usual practice that one assumes a potential u(~r) to be negative and to
approach zero at infinity, which is a proper description in most of the cases

u(~r) ≤ 0 , lim
|~r|→∞

u(~r) = 0 .

If a particle is added, the potential can either bind it
(
E N+1
TF [u] < E N

TF[u]
)
, or the particle

disappears at infinity in an E → 0 state. For the latter there would be no minimal ρ(~r) for
(N + 1) particles. But there is always a maximum number of particles Nmax that the potential
can bind, and hence the particle density minimises the functional ETF[ρ;u] for all N , because
the excess particles are disappearing at infinity. Precisely, the condition for variation has to be
changed to

V

∫
d3r ρ(~r) ≤ Nmax . (2.22)

In other words this expression states that a minimum is taken for some ρ, where

V

∫
d3r ρ(~r) = N , ∀N ∈ N : N < Nmax ,

and that a minimum is also taken for N ≥ Nmax, but this time with

V

∫
d3r ρ(~r) = Nmax , ∀N ∈ N : N ≥ Nmax .

The variational principle with respect to ρ yields

δ

{
ETF[ ρ(~r) ]− µ

[
V

∫
d3r ρ(~r)−N

]}
= 0 , (2.23)

where µ is the Lagrange parameter, which can be identified as the chemical potential. The use of
functional derivatives will be necessary in order to be able to determine the kinetic and potential
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terms of (2.20). Per definition a test function ϕ(~r) has to be introduced,

d

dε
F [ f(~r) + εϕ(~r) ]

ε=0

.
= lim

ε→0

[
F [f + εϕ]− F [f ]

ε

]
=

=

∫
d3r

δF

δf(~r)
· ϕ(~r)

(2.24)

As an example the derivative of (2.16) can be determined by

d

dε
T [ ρ(~r) + εϕ(~r) ]

ε=0
= lim

ε→0

d

dε
CF

∫
d3r [ ρ(~r) + εϕ(~r) ]

5
3 =

= lim
ε→0

5

3
CF

∫
d3r [ ρ(~r) + εϕ(~r) ]

2
3 · ϕ(~r) =

=
5

3
CF

V

∫
d3r ρ

2
3 (~r) · ϕ(~r)

=⇒ δT

δρ(~r)
=

5

3
CF ρ

2
3 (~r) . (2.25)

The derivatives of the potential terms can be calculated in an analogous way, but they are only
dependent on the external potential u(~r) and the Hartree–potential uH(~r).
Using (2.25) in (2.23) results in

µ =
δETF

δρ(~r)
=

5

3
CF ρ

2
3 (~r) + u(~r) + uH(~r) , (2.26)

however, in order to ensure that the minimal density is found there has to be the restriction

5

3
CF ρ

2
3 (~r) = max

{
µ− u(~r)− uH(~r) , 0

}
, (2.27a)

with the definiton [
µ− u(~r)− uH(~r)

]
+

.
= max

{
µ− u(~r)− uH(~r) , 0

}
=⇒ ρ(~r) =

2
√

2

3π2

[
µ− u(~r)− uH(~r)

] 3
2

+
. (2.27b)

Equation (2.27a) is called the Thomas–Fermi equation which yields a relation between the elec-
tron density and the interacting potentials. The density ρ(~r) remains non-zero where u(~r) +
uH(~r) < µ. In (2.27b) the numeric expression of CF has been entered. The Thomas–Fermi equa-
tion can be brought into a differential form by using the Poisson equation. The Hartree potential
brings the relation

−∆uH(~r) = 4πρ(~r) , (2.28)

which together with (2.27b) yields

−∆uH(~r) =
8
√

2

3π

[
µ− u(~r)− uH(~r)

] 3
2

+
. (2.29)
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2.2 Thomas–Fermi Theory

The latter equation shows the advantage of the Thomas–Fermi approximation; instead of solving
the N particle Schrödinger equation (eigenvalue problem in 3N coordinates), approximative
solutions of the ground state energy and the ground state density are now obtained by solving a
three dimensional integral equation. In the following there will be a qualitative analysis of the
Thomas–Fermi atom and a short discussion of the limits within this model.

2.2.1 The Thomas–Fermi Atom

Neutral Atom (N = Z) For a neutral atom one has,

N = Z , u(~r) = −Z
r

=⇒ ∆u(~r) = 4πZ δ(~r) . (2.30)

In this case, the Thomas–Fermi equation (2.27) is solved by a spherical ρ(r). For a region outside
of a given radius r0 we can assume

ρ(r) = 0 , r > r0 . (2.31)

Thus, the potentials are retrieved by applying the laws of electrostatics,

ueff
.
= u+ uH = 0 , r > r0 , (2.32)

where the effective potential ueff has been introduced. Entering these results into (2.27) yields

µ = 0 , r > r0 . (2.33)

Positively Charged Ion (N < Z) In this case ueff < 0 for all r > r0 and therefore,

µ = ueff(r0) < 0 . (2.34)

Negatively Charged Ion (N > Z) Since electrostatics now deliver a positive effective po-
tential ueff > 0, r > r0, where ρ(r) = 0, r > r0, it is impossible to derive a finite r0 according to
(2.27). Furthermore, both the effective potential and the density approach to zero for r → ∞,
hence

µ = 0 , ∀r (2.35)

is the only possible solution.
For N ≥ Z (neutral atoms and negatively charged ions) the result was µ = 0, so that by using

(2.29) and (2.30) the Thomas–Fermi equation takes the form

−∆uH(~r)−∆u(~r) =
8
√

2

3π

(
− uH(~r)− u(~r)

)3
2 − 4πZ δ(~r)

−∆ueff(~r) =
8
√

2

3π

(
− ueff(~r)

)3
2 − 4πZ δ(~r) .

(2.36)

Assuming that the potentials are only dependent on r, and not on the angles (ϑ, φ), the Laplace
operator becomes

∆ • =
1

r2

∂

∂r

(
r2∂•
∂r

)
+O(ϑ, φ) =

1

r

∂2

∂r2

(
r •

)
+O(ϑ, φ) . (2.37)

45



2 Density Functional Theory

Hence, for N ≥ Z and r 6= 0 (2.36) reads

− 1

r

d2

dr2

(
r ueff(r)

)
=

8
√

2

3π

(
− ueff(r)

)3
2 − 4πZ δ(r) . (2.38)

The delta function leads to two boundary conditions,

(1) r → 0 : r ueff → −Z ,
(2) r →∞ : ueff → 0 ,

and determines a unique solution for ueff in (2.38). Condition (1) can be derived directly by
integrating both sides of (2.36) over the boundary of a sphere with arbitrary r. For r → 0 the
delta function and the integration

∫
Ω sinϑ dϑ dφ = 4π deliver the result for (1). For r →∞ the

particle density ρ(r) goes to zero in order to describe the physical situation. The density can
be obtained by entering ueff into the Poisson equation. These considerations justify the second
boundary condition (2). For large r the solution of (2.38) is ueff ∼ r−4.
In a different approach (2.38) can be rewritten using Gauss’ theorem. If N(r) denotes the

number of electrons inside the radius r, then this theorem states

r2 d

dr
ueff(r) = Z −N(r) =⇒ −∆ueff(r) =

1

r2

∂

∂r

(
N(r)− Z

)
, (2.39)

where the Laplace operator in spherical coordinates (2.37) has been used again. The only possible
solution for (2.38) in this case is Z−N = Z−N(∞) = 0. In other words, under the assumption
N ≥ Z only N = Z can be found as an adequate solution. The summary of these three cases
implies that within the Thomas–Fermi Theory

• there is a unique solution for every neutral atom ( N = Z ),

• there is always a finite r0 for positively charged ions ( N < Z ), and

• there is no solution for negatively charged ions ( N > Z ).

Using the ansatz

ueff(r) = −Z
r
χ(αr) ,

the Thomas–Fermi equation for the neutral atom can be transferred into a universal equation

d2χ(x)

dx2
=

1

x
1
2

χ(x)
3
2 , x = αr . (2.40)

It is χ(0) = 1 and χ(∞) = 0. The universal equation (2.40) can only be solved numerically.
Without proof, the Thomas–Fermi electron density ρ(r) can be derived as

ρ(r) =
32

9π3

[
χ(αr)

αr

] 3
2

Z2 , (2.41)

r → 0 : ρ(r)→∼ r−3/2

r →∞ : ρ(r)→∼ r−6
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and therefore the Thomas–Fermi energy of the atom becomes

ETF[Z] ≈ −0.7687 Z
7
3 . (2.42)

This value is approximately 55 % lower than the one expected for hydrogen, and about 15 %
too low for heavy elements (Z ≈ 100), compared to the exact quantum mechanical result En =
Z2

n2ER. In this case (natural units) the Rydberg constant ER = −0.5 . The monotonous function
χ(αr) leads to a monotonous charge density. There is no indication of a shell structure of
the atom in the Thomas–Fermi model and the charge density diverges in a wrong asymptotic
behaviour (since there is no exponential falloff). This "failure" is corrected by the theorems of
Hohenberg and Kohn.

2.3 Hohenberg–Kohn Theory

The theory of Thomas and Fermi was a rather simply figured aim to derive a first description of
the structure of heavier atoms when the new apparatus of quantum physics was applied. The first
results were quite promising. It was about 30 years later when Teller stated with his analytical
proof that there is no possibility of a chemical binding in the Thomas–Fermi theory (without
the Weizsäcker term). Even though this was meant to be a destructive verdict to their quite
pragmatic approach, it was maybe due to Teller himself that many scientists kept an interest in
that topic. Teller’s theorem had to be confirmed, and as a consequence many important results
have been derived from these activities.
The first method to deliver promising results was Slater’s Xα method and considered as an

approach from quantum chemistry and its closely related Hartree–Fock theory. In his attempt to
interpret the role of the exchange interaction in metals he assumed that it is possible to approx-
imate the latter by a potential averaged over the occupied states of a homogeneous electron gas.
The Slater exchange potential then only depends on the local electron density pointed at by the
vector ~r, which in full terms reads

uxcS
[
ρ
]

= −3e2

(
3

8π

) 1
3

ρ
1
3 (~r) . (2.43)

The main parameter, however, is the correction factor α, which is multiplied by the Slater
exchange term uxcS in order to meet the respective Hartree–Fock value of the total energy of
an isolated atom. It appears that again a rather pragmatic step turned out to become most
significant for the success of this method.
The biggest impact on the understanding of the electronic structure of solids has been made

with the development of the Density Functional Theory (Dft). Formally based on the two
theorems of Walter Kohn and Pierre C. Hohenberg, as well as a decisive measure Kohn elaborated
in cooperation with Lu J. Sham, this formalism instantly offered a much broader theoretical basis
and hence created many ways to generalise the Thomas–Fermi and the Xα approach. The
first theorem basically states that the ground state energy can be uniquely determined by a
universal functional of the electron density ρ(~r). The second theorem is related to the variation
of the total energy with respect to the electron density, which leads to an effective one–electron
Schrödinger equation. Several applications of this theory are derived by making reasonable
assumptions and compromises; some of which will be presented in this chapter. The gap between
the rigorous execution of the theory and its pragmatic execution will probably never be closed.
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2.3.1 The Theorems of Hohenberg and Kohn

The following derivations assume a fixed particle numberN and Hamiltonians as shown in Sec.2.1
[see for example (2.7)]. It is important to emphasise that minimising the energy functional as
done in (2.4) leads to a ground state energy E0 as a lower limit (E0 ≤ E[ψ] ). A given Hamiltonian
with a certain external potential U [N, u(~r)] — T̂ and Ŵ only depend on the particle number N
— yields a ground state wave function ψ0 and thereafter a ground state density ρ0 can be
determined only if a non–degenerated ground state is assumed,

N, u(~r)→ Ĥ → ψ0 → ρ0 =⇒ E = E[N, u(~r)] .

Therefore, the energy functional depends on N and u(~r). Clearly, this is not desired within the
Dft. If it can be shown that both the number of particles and the external potential can be
uniquely expressed by the particle density ρ(~r), the energy functional would only depend on one
variable and a 3N dimensional problem could be reduced to a single 3 dimensional one. This is
where the first theorem of Hohenberg and Kohn can serve as an answer [1].

Theorem I

The determination of the particle number N is trivial. By the nature of the particle density,

N =
V

∫
d3r ρ(~r) ,

is the obvious result. The second problem of showing that an external potential u(~r) can be
traced back by the according density in a unique fashion is proved by reductio ad absurdum. In
other words, a proposition is shown to be true if the opposite of this proposition will always lead
to a contradiction.
One assumes that for two different external potentials u1(~r) and u2(~r) (u1 6= u2) the Hamilto-

nians Ĥ[ui] yield two different ground state energies E0[ui] with the according wave func-
tions ψ0[ui]

.
= ψi. Both states, however, derive the same ground state density ρ0(~r). Hard

potential barriers are excluded and therefore ψi is non-zero where the potentials are different, so
that ψ2 is not an eigenstate of the Schrödinger equation in a potential u1 and vice versa. Hence,
the general variation principle leads to an inequality in both cases,

E0[u1] < 〈ψ2| Ĥ[u1] |ψ2〉 = 〈ψ2| Ĥ[u2] |ψ2〉 + 〈ψ2|
(
Ĥ[u1]− Ĥ[u2]

)
|ψ2〉 =

= E0[u2] +

∫
d3r ρ2(~r)

(
u1(~r)− u2(~r)

)
,

(2.44a)

E0[u2] < 〈ψ1| Ĥ[u2] |ψ1〉 = 〈ψ1| Ĥ[u1] |ψ1〉 − 〈ψ1|
(
Ĥ[u1]− Ĥ[u2]

)
|ψ1〉 =

= E0[u1] −
∫

d3r ρ1(~r)
(
u1(~r)− u2(~r)

)
.

(2.44b)

After building the sum over both equations and using the initial assumption that ρ0[u1] =
ρ0[u2] = ρ0 , one derives the presumed contradiction,

E0[u1] + E0[u2] < E0[u2] + E0[u1] . (2.45)
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The ground state energy E0 of a system with N particles and an external potential u(~r) can be
determined by a unique functional of the particle density ρ(~r), so that E0 = E[ρ0(~r)].

Theorem II

As stated before, the kinetic energy T and the electron interaction term W do not depend on
u(~r). These term can thus be unified to one general expression in the form of a functional known
as the universal Hohenberg–Kohn functional. It is defined as

FHK[ρ0]
.
= 〈ψ0| T̂ + Ŵ |ψ0〉 . (2.46a)

Equation (2.46a) only holds for non–degenerated ground states. In that case the mapping
between ρ0 and u(~r) is in equal relation (1:1) and, consequently, this is also true for the map-
ping between ρ0 and the ground state wave function ψ0[u(~r)]. However, as degeneracy of the
ground state is quite common one has to find a more general expression. Therefore, the previous
assumption of non–degeneracy is from now on neglected and

FHK[ρ]
.
= Eu[ρ]−

∫
d3r ρ(~r)u(~r) , (2.46b)

where Eu[ρ] =

∫
d3r ρ(~r) Ĥ[u] ,

will be used as a basic definition of the Hohenberg–Kohn functional.
As a starting point of the theorem consider

Eũ[ρ] = FHK[ρ] +

∫
d3r ρ(~r) ũ(~r) ,

as a functional of the two independent variables ρ and an arbitrary ũ 6= u, where it is assumed
that ρ is a ground state density for a system with potential u. The following yields

Eũ[ρ] = FHK[ρ] +

∫
d3r ρ(~r)u(~r) +

∫
d3r ρ(~r)

(
ũ(~r)− u(~r)

)
=

= E0[ρ] +

∫
d3r ρ(~r)

(
ũ− u

)
=

= 〈ψ0| Ĥ[u] |ψ0〉 +

∫
d3r ρ(~r)

(
ũ− u

)
=

= 〈ψ0| Ĥ[ũ] |ψ0〉

=⇒ Eũ[ρ] ≥ E0[ρ] = Eu[ρ0] . (2.47)

The inequality derives from the general variational principle of quantum mechanics and follows
since ρ is the ground state density ρ0 for a system in an external potential u. Hence, the
total energy can be minimised as a functional E0 = minEu[ρ] = Eu[ρ0], however, (2.47) only
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holds under the condition that

δ

{
Eu[ρ(~r)]− µ

(
V

∫
d3r ρ(~r)−N

)}
= 0

=⇒ µ =
δEu[ρ]

δρ(~r)
=
δFHK[ρ]

δρ(~r)
+ u(~r) . (2.48)

The latter is the Hohenberg–Kohn variational principle. µ serves as the Lagrange parameter
and can be identified as the chemical potential. The problem of the Hohenberg–Kohn theory
becomes obvious now. The density, and thus the ground state energy, could be easily derived
by (2.48) for any known potential u(~r) if only the functional FHK[ρ] would be explicitly known.
Unfortunately, this is not the case and many attempts to solve (2.48) directly have remained
unsuccessful. However, the second theorem generally guarantees the existence of the functional.

2.3.2 Kohn–Sham Equations

Sec.2.3.1 provides a solid proof for the existence of an energy functional depending on the dens-
ity matrix that is rigorously based on quantum theory. It does not, however, offer any explicit
values. Some of the most important contributions to modern Dft have been made by adaptation
and amendment of the many–fermion theory. The interpretation of the density as a basis set of
electron orbitals, as well as using the occurring exchange energy term as a possibility for several
approximations, has made Dft a powerful tool to tackle the problems of modern computational
solid state physics.
The basic principles of this chapter are tightly related to the Hartree–Fock theory (see Apx.D).

In Sec.2.2 it was shown that the weakest part of the Thomas–Fermi theory was the treatment
of the kinetic energy functional T [ρ]. Kohn and Sham fixed this problem by mapping a non–
interacting system to a fully interacting one; they were able to treat the whole interaction itself
in an effective potential. The advantage of the approach from a non–interacting system is that
all orbitals φi (i = 1, . . . , N) are derived by a single–particle Hamiltonian. Hence, they are
independent of one another and the general wave function is a single (Slater-)determinant. This
method is less elaborate to implement into algorithms than the Hartree–Fock approximation,
for example, and has led to the great success of programs based on Dft. The ingenious part
of the Kohn–Sham equations is the treatment of the exchange– and correlation potential of the
electron–electron interaction [2].
First, one considers an interaction free N particle system (Ŵ = 0). The Hohenberg–Kohn func-

tional (2.46) is identical to the kinetic energy functional when it is considered for the ground state
density of the system,

FHK[ρ0] ≡ T [ρ0] = E0
u[ρ0]−

∫
d3r ρ0(~r)u(~r) . (2.49)

Still the explicit form of this functional is not known but, as it was stated before, the second
Hohenberg–Kohn theorem grants its existence. For a system of N non–interacting fermions there
are always single particle states φi(~r) (orbitals) which deliver an exact solution of the ground state
when they are composed in form of a single (Slater-)determinant. From the general expression
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2.3 Hohenberg–Kohn Theory

of the quantum mechanical probability density an ansatz for the ground state density of the
system can be derived,

ρ(~r) = lim
Ñ→∞

Ñ∑
i=1

ni φ
∗
i (~r)φi(~r) −→

N∑
i=1

φ∗i (~r)φi(~r) , (2.50)

0 ≤ ni ≤ 1 (occupation numbers) ni = 1

only if Ψ0 =
1√
N !

det ‖φi(~rj)‖ , 〈φi|φj〉 = δij .

The orbital states are eigenstates of the kinetic energy operator T̂ ∝ p̂2. Under the same
conditions as before, the kinetic energy of the system is the sum over the single eigenvalues,

T [ρ] = 〈Ψ0| T̂ |Ψ0〉 = −1

2

N∑
i=1

〈φi|~∇|φi〉 . (2.51a)

Likewise, the density ρ in the integral of the external potential U can also be replaced by,

U [ρ] =

∫
d3r ρ(~r)u(~r) =

N∑
i=1

〈φi|u|φi〉 (2.51b)

These two expressions can be entered into (2.49) to form an ansatz for the HK variational prin-
ciple as in (2.48), in order to calculate the total energy Eu[ρ0] = E0 of the ground state for a set
of determinant states {φi} that minimise the energy. The side conditions now are provided by
the normalisation of the orbitals. Note that the Hermitian Lagrange multipliers εij have already
been diagonalised by a unitary transformation and εi

.
= εii,

δ

{
N∑
i=1

(
−1

2
〈φi|~∇2|φi〉 + 〈φi|u|φi〉 − εi

(
〈φi|φi〉 − 1

))}
= 0 . (2.52)

It is sufficient to only vary over the imaginary part 〈φi| = φ∗i (~r), and furthermore, each term i
of the sum can be treated separately. This yields a single particle Schrödinger equation for the
N orbitals φi, which are the exact lowest eigenstates of a non-interacting system,

ĥ0 φi =

(
−1

2
~∇2 + u(~r)

)
φi = εi φi (i = 1, . . . , N) . (2.53)

Taking both equations of (2.51) into account, one can easily derive an expression for the
(ground state) energy functional by the following actions,∑

i

∫
d3r φ∗i (~r) · (2.53)

=⇒ Eu[ρ0] = T [ρ0] + U [ρ0] =
N∑
i=1

εi (ε1 ≤ ε2 ≤ . . . ) . (2.54)
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For the interacting system (Ŵ 6= 0) a rearrangement of the Hohenberg–Kohn functional is
necessary,

FHK[ρ] = T [ρ] +W [ρ] = T [ρ] +
1

2
VH[ρ] + Exc[ρ] , (2.55)

where VH is the Hartree energy as in (2.19) which describes the classical part of the interac-
tion. The last expression Exc is the exchange- and correlation energy which contains any other
energy contribution caused by quantum effects of the interaction of indistinguishable particles.
Composing the terms in (2.55) differently reveals

Exc[ρ] =
(
W − 1

2
VH

)
[ρ] = −1

2
VF[ρ] , (2.56)

which can be interpreted as the non-classical Fock (exchange) energy. If (2.55) is used in (2.48),
the Lagrange parameter of the Hohenberg–Kohn variational principle reads

µ =
δT [ρ]

δρ
+

1

2

δVH[ρ]

δρ
+
δExc[ρ]

δρ
+ u(~r)

=
δT [ρ]

δρ
+ uH(~r) + uxc(~r) + u(~r)︸ ︷︷ ︸

=ueff(~r)

.
(2.57)

The latter expression contains the exchange- and correlation potential uxc(~r), which is defined
as

uxc(~r)
.
=
δExc[ρ]

δρ
. (2.58)

Note that the factor 1
2 of the Hartree term vanishes, due to the derivative of the biquadratic dens-

ity expression when the Hartree term is explicitly written out. The problem is that the functional
for the kinetic energy T [ρ] is unknown. One thus again falls back to the variation of a set of
(determinant) single states which, similar to (2.52), reads

δ

{
N∑
i=1

(
−1

2
〈φi|~∇2|φi〉 + 〈φi|ueff|φi〉 − εi

(
〈φi|φi〉 − 1

))}
= 0 , (2.59)

with the decisive difference that now it is applied to a system of non-interacting electrons moving
in a (given) effective potential ueff. The corresponding single particle Schrödinger equations,

ĥ φi =

(
−1

2
~∇2 + ueff(~r)

)
φi = εi φi (i = 1, . . . , N) , (2.60)

are called Kohn–Sham equations, which allow to compose the ground state particle density using
the optimised Kohn–Sham orbitals,

ρ0(~r) =
∑
i

|φi(~r)|2 . (2.61)

It should be noted that the individual eigenfunctions φi and according eigenvalues εi in (2.60)
as a consequence of the mapping to a non-interacting system do not have any direct physical
meaning. Without any approximation of the exchange term and further considerations an explicit
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expression for total energy of the ground state cannot be derived. However, it is still sensible to
calculate the sum over the eigenvalues analogous to (2.54), which gives

∑
i

∫
d3r φ∗i (~r) · (2.60)

T [ρ0] + U [ρ0] + VH[ρ0] +

∫
d3r ρ0(~r)uxc(~r) =

N∑
i=1

εi

=⇒ Eu[ρ0] =
N∑
i=1

εi −
1

2
VH[ρ0] + Exc[ρ0]−

∫
d3r ρ0(~r)uxc(~r) , (2.62)

where the total energy expression of (2.46) together with (2.55) has been compared to the
sum of eigenvalues. The equation in (2.60) describes a non-linear problem because the effect-
ive potential ueff depends on the density ρ by (2.58). Therefore, the Kohn–Sham algorithm is a
self–consistent method, similar to the Hartree–Fock method. On the contrary, however, it still
offers an exact solution because the many–body interactions, as well as exchange and correlation
effects, are fully integrated into the Hamiltonian. Unfortunately, the missing link to an exact
Dft calculation remains unrevealed due to the lacking knowledge of the precise functional Exc
and the potential uxc, where the complexity of many–electron systems is entirely hidden (the
only exception is the free electron gas). The introduction of an effective potential ueff and the
thereby arising simple form of the Kohn–Sham equations are an indisputable advantage in the
computational implementation which led to the known success of Dft. The major difference in
quality of nowadays available programs is to what extent the functional Exc and its derivative
have been approximated in the source code.

2.3.3 Approximations of the Exchange and Correlation Functional

As previously mentioned in Sec.2.3.2, the advantage of Dft is that its treatment is rigorously
based on many–body quantum theory. It should be clear now that the Thomas–Fermi theory
(see Sec.2.2) is a crude but explicit approximation of the Kohn–Sham equations. The key to an
explicit formulation of the latter is to model the exchange and correlation energy according to
the specific problem and probe those models to the phenomenology by comparison. Handling
the formalism of Kohn and Sham in the spirit of the overly pragmatic Thomas–Fermi approach
leads to the Local Density Approximation, which can be considered as the starting point of all
other approximative variants of Dft.

Local Density Approximation (Lda) This case is based upon the assumption of a slow
and weak spatial variaton of the density in an inhomogeneous assembly, which can be locally
approximated by the well–known model system of a homogeneous electron gas. Let εxc = ε−εH be
the exchange and correlation energy per particle of a homogeneous electron gas, then ρ(~r) εxc[ρ]
is the energy per unit volume and we derive

Exc ≈
∫

d3r ρ(~r) εxc[ρ(~r)]
.
= E Lda

xc [ρ] . (2.63)
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The Kohn–Sham potential can be calculated by its definition (2.58) and the functional derivative
now reads,

uxc ≈
δ

δρ(~r)

(
ρ(~r) εxc[ρ]

)
= εxc[ρ] + ρ(~r)

δεxc
δρ(~r)

[ρ]
.
= u Lda

xc . (2.64)

The main task within the Lda is to find a proper expression for εxc and set the parameters that
are according to the described system. As one of many examples an approximation formula by
Gunnarsson and Lundqvist is shown [3, 4]. They executed long numerical calculations focusing
on the properties of every individual electron in a homogeneous electron gas and, subsequently,
fitted their numerical data to a simple analytic function, which reads

εxc[ρ] = α
1

rS
− 1

2
β G
(
rS

11.4

)
, (2.65)

where α = −1
2

3
2πα′ = −0.4581 , β = 0.0666 , and

G(x) =
[(

1 + x3
)

ln
(

1 + 1
x

)
− x2 + x

2 −
1
3

]
.

α′ =
(

4
9π

) 1
3 is a numerical constant, and rS is the Wigner–Seitz radius of the homogeneous elec-

tron gas. Using (2.64) and the fact that

ρ(rS) =
1

VS
=

1
4π
3 r

3
S
−→ ∂

∂ρ
=
∂rS
∂ρ

∂

∂rS
= −

4πr 4
S

9

∂

∂rS

=⇒ ρ(rS)
∂

∂ρ
= −1

3
rS

∂

∂rS
, (2.66)

the Kohn–Sham potential reads

uxc(rS) =
4

3
α

1

rS
− 1

2
β ln

(
1 + 11.4

rS

)
. (2.67)

Calculations based on Lda reveal that the approximation can be used as a powerful tool. Some-
times this is also true in systems where the assumption of a slowly varying density is not fulfilled.
Further derivatives of this kind are known as the LsDa, a generalisation that also considers the
electron–spin, and Lda+U, which offers a freely adjustable interaction parameter, the Hubbard U
to simulate an excitation gap in the band structure due to strong electron–electron correlation
(e.g. Mott insulators cannot be described by pure mean–field theory). Naturally, with all approx-
imations there are also configurations where Lda fails and should be avoided, namely systems
with a small number of electrons (N < 4) that are spatially well separated from each other.
Especially in the case of the hydrogen atom the Hartree–Fock theory delivers an effective po-
tential which is equal to the external potential u. Hence, uH and uxc have to cancel each other
out, however, this is not obtained by the approach of a homogeneous electron gas. The so–
called self interaction is obviously incorrect and yields in an error of approximately 5 % for the
hydrogen energy.

Generalized Gradient Approximations (Gga) A clear improvement to Lda, but never-
theless still a local approach, is implemented within theGga [5–7]. This method also implements
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the derivative (gradient) of the density and delivers a somewhat semi-local information. The ex-
change and correlation energy is again determined by

Exc ≈
∫

d3~r ρ(~r) εxc
[
ρ, |~∇ρ|

] .
= E Gga

xc
[
ρ, ~∇ρ

]
. (2.68)

Functionals that also take the second derivative (Laplacian) of the electron density into account,
and further include a kinetic energy density τ , are known as meta–Gga functionals,

εxc −→ εxc
[
ρ, |~∇ρ|, ∆ρ; τ

]
.

There is no standard functional for Gga. The most commonly used are the PBE functional by
Perdew, Burke and Ernzerhof for Gga [8–10], and (R)TPSS for meta–Gga [11, 12].

Hybrid (Hartree–Fock) Functionals The treatment of many–body systems is tightly asso-
ciated with the Hartree–Fock approximation. In Apx.D a comprehensive description is offered
concerning this matter. The derived Hartree–Fock equations (D.7) reveal an (exact) exchange term
(Fock–term), which lowers the energy of the system. The latter is used in a mixture with the
exchange and correlation terms of the previously discussed approximations in order to establish
so-called Hybrid Functionals [13]. As an example the PBE0 functional is shown, which has been
independently developed by Ernzerhof and Scuseria [14], as well as Adamo and Barone [15],

E PBE0
xc = a VF + (1− a)E Gga

x + E Gga
c . (2.69)

The PBE0 functional derived its name from being free of any fitted empirical parameter. Note
that the correlation term is only considered by Gga. The exchange terms, however, are being
combined by a mixing parameter a = [0, 1] ∈ R (Standard for PBE0 is a = 0.75). Using this
functional without any further considerations would require an immense computational effort
because of the slow decrease of the Coulomb potential (r−1) in the Fock–term. A more power-
ful hybrid functional has been introduced by Heyd, Scuseria and Ernzerhof (HSE) [16], with
the assumption of a screened Coulomb potential for the exchange term(s). Furthermore, the
exchange functionals are separated into long ranging (Lr) and short ranging (Sr) parts with a
remarkably larger computational efficiency [17],

EHSE
xc = a V

(Sr)
F (ω) + (1− a)E Gga (Sr)

x (ω) + E Gga (Lr)
x (ω) + E Gga

c . (2.70)

The parameter ω describes the weight of short–ranged interaction acting on the particles, where
a is again the mixing parameter (Standard values for the commonly used HSE06 are a = 0.25 and
ω = 0.2). For ω = 0 the hybrid functional degenerates to PBE0. The use of these functionals for
materials with strong Coulomb screening significantly improves the band gap values compared
to theory.

2.4 Vienna Ab-Initio Simulation Package (Vasp)

The Vienna Ab-Initio Simulation Package (Vasp) is a computer programme for atomic scale
materials modelling, i.e. electronic structure calculations and quantum mechanical molecular dy-
namics (Md) from first principles [18].
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Vasp computes an approximate solution of the many–body Schrödinger equation, either within
Dft solving the Kohn–Sham equations or within the Hartree–Fock (HF) approximation solving
the Roothaan equations. Hybrid functionals, like the HSE06, are also implemented [19].
In Vasp, major quantities like the one-electron orbitals, the electronic charge density and

the local potential are expressed in a plane–wave basis set [20, 21]. The interactions between
the electrons and ions are described using norm–conserving or ultrasoft pseudopotentials (Pp)
[22–24], lately implemented by a special type named projector–augmented–wave (Paw) method
[25, 26].

2.4.1 Methods

The KS equations build the bridge from a complicated many–body wave function to a set of
orthogonal single state orbitals, which of course drastically changes the computational demand
of necessary grid points,

Ψ(~r1, . . . , ~rN ) −→
{
φ1(~r), . . . , φN (~r)

}
.

(# of grid points)N N × (# of grid points)

However, for the sake of efficiency there is the need for periodic boundary conditions, which are
implemented by the use of lattice periodic Bloch functions

φ(~ks ; ~r + ~R) = φ(~ks ; ~r) ei
~k ~R ,

where φ(~ks ; ~r) = υ(~ks ; ~r) ei
~k~r and υ(~ks ; ~r + ~R) = υ(~ks ; ~r) .

All states are labelled by a Bloch vector ~k, which usually lies within the first Brillouin zone of
the reciprocal space lattice, and the band index s. Computing the charge density is achieved by
integrating over the first Brillouin zone,

ρ(~r) =
1

VBZ

∑
s BZ

∫
d~k f(~ks) |φ(~ks ; ~r|2 ∼

∑
~k,s

w(~k) f(~ks) |φ(~ks ; ~r|2 ∆~k , (2.71)

where the integral has been replaced by a weighted sum under the assumption that the orbitals
at Bloch vector ~k are close to one another and thus almost identical. As a consequence one
derives a discrete set of ~k points that sample the reciprocal space for a number of bands that
is of the same order as the number of electrons per unit cell (coarse grain sampling). The
number of points can be arbitrarily set by the user (Kpoints file) and it is recommended to
choose a mesh that is centred by the Γ symmetry point of the crystal. This number can be
further reduced by applying the according symmetry relations of the crystal in order to derive
the irreducible number of ~k points (Ibz) with a proper weighting.

Plane Wave Basis Set In solid state physics it is common to express the solutions of the
Ks equations (2.60) and the derived properties of a crystal using plane waves. Hence, the
cell periodic part of the Bloch functions is described in a basis set of plane waves. Then the
treatment of these functions reduces to Fourier analysis. One thus expands
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(a) (b) (c)

Fig. 2.1: Simplified depiction of a plane wave FFt with energy cutoff radius. (a) Plane wave
in τ1 direction. (b) Plane wave in τ2 direction. (c) Plane wave with a kinetic energy
larger than the energy cutoff. All pictures taken from [18, Documentation:Vasp Work-
shop Lectures].

υ(~ks ; ~r) =
1√
VBZ

∑
~G

C( ~G, ~ks) ei
~G~r ⇐⇒ φ(~ks ; ~r) =

1√
VBZ

∑
~G

C( ~G, ~ks) ei(
~G+~k)~r ,

(2.72)
but all other cell periodic properties can be expanded as well, for example

ρ(~r) =
∑
~G

ρ ~G ei
~G~r . (2.73)

In principle there is an infinite amount of plane waves, so that for computational purposes the
basis set must be restricted to a cutoff energy Ecut including all plane waves for which

~2

2
| ~G +~k|2 < Ecut .

This property is the maximal kinetic energy associated with a plane wave of wave vector
(
~G+~k

)
.

It is again chosen by the user (Encut tag in Incar file) and needs to be carefully tested for every
system. It turns out that there are operations where the evaluation becomes more convenient
in real space and others that find an easier application in reciprocal space. The main advantage
of plane waves becomes obvious as there is a computationally convenient mapping of those two
spaces by fast Fourier transformation (FFt) that scales with t ∼ N lnN ,

C(~r, ~ks) =
∑
~G

C( ~G, ~ks) ei
~G~r (2.74a)

m

C( ~G, ~ks) =
1

N

∑
~r

C(~r, ~ks) e−i
~G~r , (2.74b)

where N is the number of plane waves within the FFt grid (unit cell). The action of the
Hamiltonian on the orbitals can thus be efficiently evaluated. Another reason to use plane waves
is that many elements exhibit a band structure similar to the free electron picture, for example
those which are metallic in the s and p shell [21], and that energy expressions become practically
easy to implement into a programme.
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Fig. 2.2: General principle of a pseudopotential. The nodal features close to the nucleus of an
orbital wave function Ψ caused by a potential V are replaced by a non-nodal orbital Ψ̃
with the according (pseudo)potential Ṽ . Beyond the cutoff radius rc, where the in-
teraction with other orbitals and thus the chemical bonding should occur, the two
wave functions and potentials are (in the ideal case) identical, respectively. Taken from
[18, Documentation:Vasp Workshop Lectures].

Projector–Augmented–Wave Method (Paw) The number of plane waves that are needed
in order to describe spatially strongly localised states, i.e. 3s and beyond, or rapid oscillations
of the orbitals near the nucleus would be (except for the very first light elements as for example,
hydrogen) prohibitively large. However, there are methods that are commonly applied in com-
putational physics to escape this situation. The first solution is a process known as frozen core
approximation, where the core electrons are pre-calculated and remain in the same (frozen) state
creating an effective potential during the remaining calculations. The justification of this method
is that in a heavy element the inner electrons are well shielded by the outer ones and do not con-
tribute to the chemical binding. The second approach builds up on the former by introducing the
idea of (norm–conserving or ultrasoft) pseudopotentials [22–24] that act around the atom instead
of using an exact potential in order to neglect the capacity increasing, but often not necessary
rapid oscillations near the nucleus. A sketch of the general idea born with pseudo–wave functions
and the according potentials is described in Fig.2.2. The problem of pseudopotential theory in
general is that the element is reduced to only have effective (nodeless) valence states, where
orthogonality to the (frozen) core states is not guaranteed anymore. However, there is a special
kind of pseudopotential theory, which still incorporates the nodal feature of the wave functions,
known as the Projector–Augmented–Wave method by Blöchl [25] and is implemented in Vasp.
The essential part of the Paw method is the representation of the true orbital ψn in two

different bases,
|ψn〉 = |ψ̃n〉 +

∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|ψ̃n〉 . (2.75)

The first term ψ̃n is the pseudo–orbital as explained in Fig.2.2 and is expressed in the basis set
of plane waves. The second part is built up by local functions around the according atomic sites
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Fig. 2.3: The Paw method in three steps. The true orbital is split according to (2.75) first into
a pseudo–wave function described in plane waves, which is the variational part to be
determined by Vasp calculations (left). Within a certain radius around the atomic site
all plane–wave features are cancelled out by the subtraction of pseudo partial–waves φ̃i,
which are described by an additional complete basis set (center), and finally nodal fea-
tures associated with the true atomic wave function are locally added by the all–electron
partial–waves φi within another independent basis set (right). Taken from [18, Docu-
mentation:Vasp Workshop Lectures].

in an additional independent basis set of radial logarithmic grids which describes local on–
site spheres that conserve the nodal structure and the orthogonality to the core states without
the necessity to be represented in plane waves. The employment of radial logarithmic grids
incorporates the description of highly resolvable features with little computational effort. The
sum in (2.75) can be interpreted as the measure of how strong these localised functions shall
be mixed with the plane wave solution, which is determined by a projection p̃i onto the accord-
ing plane wave solution. One distinguishes again between localised (true) all–electron partial–
waves φi and pseudo partial–waves φ̃i. A schematic illustration of the mixing is shown in Fig.2.3.
In Vasp the (pseudo)partial–waves and the projection functions are computed in advance for al-
most every single element of the periodic table and stored in special files that need to be provided
for every calculation (Potcar files). The all–electron partial–waves are derived as solutions to
the radial scalar relativistic non-spin polarised Schrödinger equations on a radial logarithmic
grid, which are similar to the KS equations (2.60),(

− 1

2
~∇2 + ueff

)
|φi〉 = εi |φi〉 . (2.76)

The set of partial–waves can then be transformed by a pseudisation process into

|φi〉 −→ |φ̃i〉 =⇒ ueff −→ ũeff =⇒ 〈p̃i|φ̃j〉 = δij ,

where the only requirement to the projection functions p̃i is to be dual to the pseudo partial–
waves which obey(

− 1

2
~∇2 + ũeff +

∑
ij

|p̃i〉Dij 〈p̃j |
)
|φ̃k〉 = εk

(
1 +

∑
ij

|p̃i〉Qij 〈p̃j |
)
|φ̃k〉 . (2.77)
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The matrix elements Dij and Qij are called the strength parameters and augmentation charges,
respectively,

Dij = 〈φi| −
1

2
~∇2 + ueff |φj〉 − 〈φ̃i| −

1

2
~∇2 + ũeff |φ̃j〉 , (2.78a)

Qij = 〈φi|φj〉 − 〈φ̃i|φ̃j〉 . (2.78b)

The augmentation charges account for the fact that the norm of the pseudo partial–waves is not
necessarily equal to the norm of the all–electron partial–waves. The relation in (2.77) thus grants
that the pseudo eigenvalue spectrum is identical to the all–electron problem. It is important to
highlight that quantities within the Paw method can never be expressed on a common grid.
The essential advantage of this method manifests in the rigorous separation of quantities on the
regular plane wave grid and those on the radial logarithmic grid with the assurance that there
will never be any cross terms between the two spaces.

Electronic Minimisation Processes One distinguishes between two methods in order to
find the ground state by solving the KS equations. There is the possibility to either minimise
the functional E[{ψn}] directly by using a set of initial orbitals (random numbers) and optimise
them by propagation along the gradient (the residual, see (2.82) below) of the energy curve
(direct minimisation), or to start with a trial density that is diagonalised with the corresponding
Hamiltonian expressed in a plane wave basis in order to derive a new set of orbitals and repeat
these steps until a convergence criterion is reached (self–consistency–cycle),

H̄ = 〈 ~G| H[ρ] | ~G′〉 ,

ρ0 −→ H̄0 −→ ρ′ −→ ρ1 = {ρ′, ρ0} −→ H̄1 −→ . . . .

In the latter case the new density ρ′ from the derived orbitals is admixed to the old one to avoid
a phenomena known as charge sloshing, which is especially evident in small gap systems. Vasp
uses a Broyden mixer for the new density, and afterwards the diagonalisation is executed iter-
atively (subspace diagonalisation) in order to calculate only the minimal amount of eigenstates
needed for the problem and not all possible eigenstates of the FFt grid. There are two pos-
sible flavours implemented in the program, namely the Rmm–Diis residual or the more reliable
Blocked Davidson algorithm. These methods yield efficiently sized diagonalisation problems of
a certain subspace, where the Rayleigh–Ritz problem with the Hamiltonian H̄ of the according
subspace and the overlap operator S̄ reads,∑

n

HmnBnk =
∑
n

ε̃k SmnBnk , (2.79)

where Hmn = 〈ψm|H |ψn〉 and Smn = 〈ψm| S |ψn〉 .

One derives an approximation to the lowest eigenstates of H within the subspace spanned by
the current orbitals by

|ψ′k〉 =
∑
n

Bnk |ψn〉 , (2.80)

with the approximative eigenvalues

ε̃ =
〈ψm|H |ψn〉
〈ψm| S |ψn〉

. (2.81)
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Fig. 2.4: Diagram of the steps in a self–consistency–cycle implemented in Vasp. Iterative diagon-
alisation (optimisation of {ψn} ) is executed by the use of Rmm–Diis or Blocked David-
son algorithms and density mixing that is responsible for the construction of a new input
density is covered by a Broyden mixer. Taken from [18, Documentation:Vasp Work-
shop Lectures].

The norm of the residual
|R(ψn)〉 =

(
H− ε̃S

)
|ψn〉 , (2.82)

is a measure for the error within the new eigenvector. Hence, for an exact state the residual
would be zero.
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Chapter 3

Phonons

Lattice vibrations are treated in the classical picture of elastic waves propagating through a (poly-
atomic) crystal. Orthonormality guaranties a simple treatment of the modes which jointly allow
a certain perturbation spreading over the atomic positions of the crystal. The quantum mechan-
ical analogue is the creation of phonons, which are quasiparticles derived from the treatment of
quantised elastic waves in a harmonic potential. Quasiparticles are constituents of the principle
of elementary excitations, where the complex behaviour of a many–body system (simplifying a
quantum mechanical many–body problem) is investigated by perturbing the ordered ground state
by an outer influence to an excited state of higher energy and afterwards measure the according
response function. An elementary excitation cannot be composed out of other excitations at
lower energy. If the quasiparticles are only weakly interacting with one another most of the
low level excited states of a solid can be considered as an ensemble of elementary excitations.
A phonon shows bosonic feature (integral spin) and is therefore seen as a collective excitation
rather than a quasiparticle, although it should be emphasised that there is no strict distinction
between these two expressions. However, as mentioned before, the picture of an elastic wave
propagating in a certain direction of the solid is much simpler to describe than observing every
perturbed atom individually.

3.1 Classical Picture of Elastic Waves

Within small displacements of the atomic equilibrium position the elastic response of the crystal is
a linear function of the forces, so that the elastic energy is a quadratic function of the displacement
of any two points in the crystal. Consider a linear chain of equal masses M which are connected
by springs with equal force constants C. This description would be equivalent to an elastic wave
propagating in certain directions of cubic crystals, for example [100] or [111]. For these directions
entire planes of atoms of the same type (and equal mass M) are in phase with displacements
either parallel or perpendicular to the direction of the wave vector and can thus be described by
a single displacement variable un for plane n. The problem is therefore one dimensional (as is
the chain). Assuming only nearest neighbour interactions the total force on the nth atom in the
chain is

Fn = M ün = C (un+1 − un)− C (un − un−1) = C (un+1 − 2un + un−1) . (3.1)

The solutions for un shall all have the same time dependence of e−iωt. These normal modes
— normal in a sense that every solution with a fixed frequency (resonance) being orthonormal,
i.e. independent from the others — are well suited for the description of elementary excitations.
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Hence, the equation of motion (3.1) transforms into

−Mω2un = C (un+1 − 2un + un−1)

=⇒ un±1 = u ei(n±1)ka .
(3.2)

The latter is known as a (finite) difference equation which yields propagating wave solutions for
un±1, where k is the wave vector of the elastic wave and a is the spacing between the atoms and
will depend on the direction of k. Note that the time dependent factor e−iωt is not added, as
it is the same for all solutions and usually cancels out. The solutions are explicitly entered into
(3.2) and the cancellation of u · einka leaves

−Mω2 = C
(

eika + e−ika−2
)
. (3.3)

With the identity of the cosine, cos(x) = 1
2(eix + e−ix), and the trigonometric relation cos(2x) =

cos2(x)− sin2(x) one derives the dispersion relation

ω2 =
2C

M

(
1− cos(ka)

)
=

4C

M
sin2

(
ka
2

)
=⇒ ω = ω0

∣∣∣2 sin
(
ka
2

)∣∣∣ , (3.4)

where

ω0 =

√
C

M
, (3.5)

is the resonance frequency.
The group velocity of the wave packet reads

vG =
dω

dk
= ω0 a

∣∣∣ cos
(
ka
2

)∣∣∣ , (3.6)

which from the supremum at k = 0 decreases with increasing k → π
a until reaching zero at the

boundary of the first Brillouin zone at k = π
a (showing symmetric behaviour in the negative

direction of k → −π
a ). At these boundaries the solution (3.2) for un represents a standing wave

un = u einka −→ u e±inπ = u (−1)n . (3.7)

The latter describes neighbouring atoms in opposite phases. It can be seen by (3.6) that vG = 0
and the wave does not move at all, but successive reflections at the boundaries build up a
standing wave.
For small wave vectors, i.e. the phase k a � 1 (long wavelength limit), the sine in (3.2) can be
approximated to sin(x) ∼ x, so that the dispersion relation yields

ω ∼ ω0 ka

ω

k
= ω0 a =

√
C

M
a2 = cS

=⇒ vG = cS .

(3.8)

In the limit of long wavelengths (sometimes referred to as continuum limit) the frequency is
directly proportional to the wave vector, which means that the group velocity is independent
of frequency and a constant, namely the speed of sound cS (if you could see it, then you’d
understand).
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Different Masses Mν The phonon dispersion exhibits more than the previously presented
features when there are two or more different masses Mν (ν = 1, . . . , p) in a coupled chain,
which is equivalent to a primitive cell of a crystal containing Nu atoms of p different types. As a
consequence of the coupling, each polarisation mode develops different branches named acoustical
and optical due to their energy bandwidth. For a unit cell in D dimensional reciprocal space in
total there are DNu branches to the dispersion relation, which are distributed over D acoustical
and D(Nu−1) optical ones. The number of modes available at each wave vector k is appropriate
to the number of degrees of freedom (DoF) provided by every atom in the crystal. Individually,
every atom has (D) DoF (for D = 3 it would be: x, y, z), hence, for N unit cells with each
containing Nu atoms there is a total of (DNuN) DoF for the whole crystal. It follows that
the number of allowed k values in one Brillouin zone has to be N per single branch. This can
be easily verified by applying periodic boundary conditions to the modes of a cubic crystal of
volume V = LD, similar to (2.10). One k value occupies the reciprocal space volume of

(
∆k
)D

=
(2π

L

)D
=

(2π)D

V
.

With a volume Vp of the primitive cell the volume of the Brillouin zone is (2π)D

Vp
, and the number

of allowed k values is thus derived by the ratio

(2π)D

Vp

(2π)D

V

=
V

Vp
= N , (3.9)

which is exactly the number of primitive cells N in the crystal. Therefore, the acoustical branches
occupy DN modes, whereas the optical branches accommodate the other (Nu − 1)DN modes.
As an example a cubic crystal containing two different type of atoms with according mass

(M1, M2) shall be considered. One set of planes only consists of atoms with mass M1 and
another set of planes only of atoms with mass M2, where the planes are arranged in alternating
fashion (see Fig.3.1). As before, only elastic waves that propagate in a symmetry direction of
the cubic crystal are described such that a single plane contains just one type of atom. Within
a plane–set of one type the repeat equilibrium distance of one plane to the other is a, which is
not the nearest–neighbour distance d ≤ a

2 . The equation of motion for each plane interacting
with its nearest–neighbour and identical force constants C reads

M1 ün = C (vn + vn−1 − 2un) , (3.10a)

M2 v̈n = C (un+1 + un − 2vn) . (3.10b)

Again the solutions shall have a form of a propagating wave similar to (3.2) with the same time
dependency, but this time with different amplitudes (u, v) on alternate planes. Entering these
solutions explicitly into (3.10) and cancel all ei(nka−ωt) leaves

−M1ω
2 u = C v

(
1 + e−ika

)
− 2C u , (3.11a)

−M2ω
2 v = C u

(
e+ika +1

)
− 2C v . (3.11b)
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Fig. 3.1: Illustrating the derivation of (3.10). Cubic crystal containing two different type of atoms
with M1 (red) and M2 (blue) with displacements ui and vi from equilibrium position,
respectively. The repeat distance of one plane to another is a, which should not be
confused with the nearest–neighbour distance d ≤ a

2 .

The latter is a homogeneous linear equation which only has a solution if the determinant of the
coefficients is zero, ∣∣∣∣∣ 2C −M1ω

2 −C
(
1 + e−ika

)
−C

(
1 + e+ika

)
2C −M2ω

2

∣∣∣∣∣ = 0

=⇒ M1M2 ω
4 − 2C

(
M1 +M2

)
ω2 + 2C2

(
1− cos(ka)

)
= 0 . (3.12)

Due to the biquadratic form of the determinant it is quite easy to find the exact solutions for ω2

which yield a dispersion relation that reads

ω2
± =

C

µ
± C

µ

√
1− 2µ

M1 +M2

(
1− cos(ka)

)
, (3.13)

where µ =
M1M2

M1 +M2
(reduced mass) .

However, from a pragmatic point of view it will be more informative to estimate the results in
the limits of small wave vectors k � 1

a and at the boundaries of the first Brillouin zone, k = ±π
a .

For small arguments the cosine can be simplified to cos(x) ∼ 1 − x2

2 , so that within the
long wavelength limit (k a� 1) the root in (3.13) can be written as√

1− µ

M1 +M2
k2 a2 ∼ 1− 1

2

µ

M1 +M2
k2 a2 ,

where within the same limit also the root itself can be approximated by
√

1− cx2 ∼ 1 − 1
2cx

2.
The two branches of (3.13) are then evaluated to

=⇒ ω2
+ '

2C

µ
= 2C

(
1

M1
+

1

M2

)
(optical) , (3.14a)

=⇒ ω2
− '

1

2

C

M1 +M2
k2 a2 (acoustical) . (3.14b)
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The former yields an expression for the optical branch and hardly shows any dispersion, where the
latter is called the acoustical branch with a dispersion relation reminiscent of (3.8). The names
of the branches appear to be a sensible choice when either of the expressions are substituted
into the equations of motion (3.10). In the limit of k → 0 the ratio of the amplitudes for the
optical branch (3.14a) reads

u

v
= −M2

M1
.

The atoms vibrate against each other, while their centre of mass does not change. A motion
of this type can be excited by the electric field of a light wave (infrared), especially when the
vibrating atoms carry opposite charges. The acoustical expression (3.14b) vanishes for k → 0,
so that the amplitude ratio is

u

v
= 1 ⇐⇒ u = v .

The atoms oscillate in phase together with their centre of mass, as it is the case for long wavelength
vibrations in acoustics, hence the name. It should be noted that for any arbitrary k the ex-
pressions for both amplitude ratios become more complex. The tendencies of both dispersion
relation branches are shown in Fig.3.2a . The optical branch is usually found at higher fre-
quencies, which becomes clear when deriving (3.14a) can also be achieved by simply neglecting
the ω–independent term in (3.12). On the other hand, (3.14b) is found as well by ignoring the
higher order term of the frequency in (3.12), which shows that the acoustical branch is dominant
at lower frequencies.
At the boundaries of the first Brillouin zone, where k = ±π

a , the off-diagonal elements of the
coefficient determinant (3.12) are zero, so that the problem simplifies to(

2C −M1ω
2
)
·
(
2C −M2ω

2
)

= 0 ,

and therefore only allows two constant values as solutions

ωj
2 =

2C

Mj
, j = 1, 2 . (3.15)

Which one of these roots is part of the optical or acoustical branch is dependent on the masses.
IfM1 > M2, then ω1 would be of an acoustic type and ω2 of an optical one, and vice versa. More
important, however, is the fact that there are no waveform solutions for frequencies between ω1

and ω2. At the first Brillouin zone boundary one thus finds a frequency gap, which turns out to
be characteristic for elastic waves in polyatomic lattices.

3.2 Quantum Mechanical Treatment – Phonons as Quasiparticles

Phonons are quantised lattice vibrations with frequency ω and thus energy ~ω and (quasi)
momentum ~k. However, as it was shown in the beginning of Sec.3.1 stationary lattice vibrations
can be interpreted as standing waves in the crystal where the group velocity is zero. What seems
to be a discrepancy at first sight can be explained by the description of inelastic scattering. When
photons or neutrons scatter inelastically with the crystal the resulting energy difference ∆E is
mostly transformed into lattice vibrations. During the scattering process the momentum transfer
creates a travelling acoustic wave which is reflected at crystal surfaces and finally relaxes into
a stationary oscillating state, so that within the process the momentum ~∆k is actually taken
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(a) (b)

Fig. 3.2: Comparison of phonon dispersion relations (a) classically derived with a frequency gap
at the first Brillouin zone boundary and (b) for a quantised elastic wave based on the
model of a harmonic oscillator. (a) and (b) taken from [27] and [28], respectively.

by the whole crystal. This rather complicated context of an inelastic scattering process in a
crystal can be significantly simplified by the introduction of a phonon as a carrier of energy and
quasi–momentum and therefore allows a correct application of the conservation laws. Phonons
are thus also referred to as quasiparticles, in order to emphasise that because they are driving
static lattice vibrations they neither can have any mass, nor (real) momentum, but are used as a
simplification in the description of the complicated energy and momentum transfer throughout
the whole crystal when particles are inelastically scattered.

3.2.1 Quantised Elastic Waves in a Harmonic Potential

A simple model for phonons in a crystal is a periodic linear lattice of N particles of massM that
are connected by springs with a force constant C and length a (lattice constant). Each particle
interacts in a harmonic potential and is further harmonically coupled to its nearest neighbours.
The particle motion can be quantised exactly as it would be the case for a harmonic oscillator (or a
set of coupled harmonic oscillators), but in order to reach consistent expressions a transformation
to normal coordinates (phonon coordinates) that will represent a travelling wave is additionally
necessary.
The Hamiltonian of a harmonic oscillator reads

H |φξ〉 = εξ |φξ〉 ,

with H =
1

2M
p2 +

Mω0
2

2
x2 ,

(3.16)

and the according energy eigenvalues with ξ = 0, 1, 2, . . . are

εξ =
(
ξ +

1

2

)
~ω0 . (3.17)
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3.2 Quantum Mechanical Treatment

Let un be the displacement of particle n out of its equilibrium position, and pn is its momentum.
Then the Hamiltonian of the system is

H =

N∑
n=1

1

2M
pn

2 +

N∑
n=1

(
Mω2

2

(
un+1 − un

)2
+
Mω0

2

2
un

2

)
. (3.18)

The latter used in an eigenvalue problem as in (3.16) is solvable for a chain in the limit of an
infinitely expanded system, which means that periodic boundary conditions (un+N = un) can be
used and the problem is thus translation invariant,

xn = n · a+ un

=⇒ xn+N = (n+N) · a+ un+N = n · a+ un +N · a = xn +N · a = xn .
(3.19)

We can therefore diagonalise the Hamiltonian by a Fourier transformation from the coordinates
{un, pn} to {Uk, Pk} known as normal or phonon coordinates,

un =
1√
N

∑
k

Uk einka , pn =
1√
N

∑
k

Pk e−inka (3.20a)

m m

Uk =
1√
N

∑
n

un e−inka , Pk =
1√
N

∑
n

pn einka . (3.20b)

The N values for wave vector k are given by the periodic boundary conditions,

un+N = un =⇒ eiNka = 1 =⇒ k =
2π`

Na
,

where ∀ ` ∈ Z :

{
| ` | ≤ N−1

2 (N odd)
−N

2 < ` ≤ N
2 (N even)

.

(3.21)

The thereby confined interval for values of k defines the first Brillouin zone in reciprocal space.
Using (3.19) and the quantum commutator relation [xm, pn] = i~ δmn, one can prove that the
canonical variables {un, pn} satisfy the following commutator relations,

[um, pn] = i~ δmn , [um, un] = 0 , [pm, pn] = 0 , (3.22)

and thus are conjugate operators, which also justifies the opposite signs of the exponential
function in the Fourier transform. One now needs to prove that {Uk, Pk} are conjugate as well.
Taking a closer look at the commutator relation with the expressions from (3.20b) and (3.22)
yields

[Uk, Pk′ ] =
1

N

∑
m

∑
n

[um, pn] e−i(mk−nk
′)a =

i~
N

∑
n

e−in(k−k′)a = i~ δ(k − k′) , (3.23)

where the latter summation has been evaluated as∑
n

e−in(k−k′)a =
∑
n

e−i2π(`−`′) n
N = N δ``′ ≡ N δ(k − k′) . (3.24)
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The other relations, [Uk, Uk′ ] = 0 and [Pk, Pk′ ] = 0 follow directly from their definitions. Note
that δ(k − k′) is generally valid for unlimited k = 2π`

Na . For an index ` that is restricted to the
first Brillouin zone according to (3.21) the Kronecker–delta will be denoted as δ(k − k′)→ δkk′ .
The transformation is executed by entering (3.20a) into the Hamiltonian (3.18) and make again
use of the summation rule (3.24). The individual terms thus read

∑
n

pn
2 =

1

N

∑
n

∑
k

∑
k′

PkPk′ e
−in(k+k′)a =

∑
k

∑
k′

PkPk′ δ−k,k′

=⇒
∑
n

pn
2 =

∑
k

Pk P−k =⇒
∑
n

un
2 =

∑
k

Uk U−k , (3.25a)

∑
n

(
un+1 − un

)2
=
∑
n

(
un+1 − un

)
k

(
un+1 − un

)
k′

=

=
1

N

∑
n

∑
k

∑
k′

UkUk′ e
in(k+k′)a

(
eika−1

)(
eik
′a−1

)
=

=
∑
k

∑
k′

UkUk′
(

ei(k+k′)a− eika− eik
′a +1

)
δ−k,k′ =

∑
k

UkU−k

(
2−

(
eika + e−ika

))

=⇒
∑
n

(
un+1 − un

)2
= 2

∑
k

UkU−k
(
1− cos(ka)

)
. (3.25b)

Hence, in total the phonon Hamiltonian in normal coordinates becomes

H =
∑
k

1

2M
Pk P−k +

∑
k

Mωk
2

2
Uk U−k , (3.26)

with the according dispersion relation

ωk
2 = 2ω2

(
1− cos(ka)

)
+ ω0

2

=⇒ ωk =

√
ω2
(

2 sin
(
ka
2

))2
+ ω0

2 . (3.27)

One again distinguishes between acoustical phonons, which are derived for ω0 = 0, and op-
tical phonons for a finite ω0 6= 0. The Hamiltonian (3.26) in Fourier space is very similar to
(3.16) — this will be proved next in Sec.3.2.2 — and thus yields uncoupled oscillators with
frequency ωk (only oscillators with wave vector ±k are still connected, so that also ωk = ω−k).

3.2.2 Second Quantisation of Phonon Coordinates

Since phonons are indistinguishable particles it is more convenient to diagonalise the Hamiltonian
(3.26) in second quantisation. Analogue to the harmonic oscillator there is a possibility to
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introduce a creation and annihilation operator by a transformation of the phonon coordinates,

ak =
1√

2~Mωk

(
Mωk Uk + i P−k

)
, (3.28a)

a†k =
1√

2~Mωk

(
Mωk U−k − i Pk

)
, (3.28b)

where one uses the fact that U †k = U−k and P †−k = Pk, which can be deduced from (3.20b) and
the requirement that un and pn need to be Hermitian operators. With the properties of (3.23)
the commutation relations for the ladder operators give the well-known relations,

[ak, a
†
k′ ] =

1

2~

(
− i [Uk, Pk′ ] + i

=[Uk,Pk′ ]
†︷ ︸︸ ︷

[P−k′ , U−k]
)

=
1

2~

(
~ δkk′ + ~

=δk′k=δkk′︷ ︸︸ ︷
δ−k′,−k

)
=⇒ [ak, a

†
k′ ] = δkk′ , [ak, ak′ ] = 0 , [a†k, a

†
k′ ] = 0 , (3.29)

which already indicate the bosonic behaviour of phonons.
The inverse of this transformation yields the following relations,

Uk =

√
~

2Mωk

(
ak + a†−k

)
, (3.30a)

Pk = i

√
~Mωk

2

(
a†k − a−k

)
. (3.30b)

These expressions are entered into the Hamiltonian (3.26) in order to derive

~ωk
4

[(
a−k − a†k

)(
a†−k − ak

)
+
(
ak + a†−k

)(
a−k + a†k

)]
=

=
~ωk

4

[
a−ka

†
−k + a†kak − a−kak − a†ka†−k +

+ a†−ka−k + aka
†
k + aka−k + a†−ka

†
k

]
=

=
~ωk

4

[(
1 + 2 a†−ka−k

)
+
(
1 + 2 a†kak

)
+ [ak, a−k]︸ ︷︷ ︸

=0

+ [a†−k, a
†
k]︸ ︷︷ ︸

=0

]
≡ ~ωk

2

(
1 + 2 a†kak

)

=⇒ H =
∑
k

~ωk
(
a†kak + 1

2

)
. (3.31)

Consequently, it was shown by the application of the commutator rules (3.29) that the Hamilto-
nian can be interpreted as a system of N uncoupled oscillators, where the sum in (3.31) is over
all N wave vectors {k1, . . . , kj , . . . , kN} within the first Brillouin zone.
In second quantisation a many–body state is represented in an occupation number basis,

also known as Fock state, where the basis state is denoted by a set of occupation numbers
and the tensor product of eigenfunctions is implicitly symmetrised. Consider a wave function
Ψ = |nk1 , . . . , nkj , . . . , nkN 〉 composed out of eigenstates of (3.31) with according symmetry to
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3 Phonons

solve the Schrödinger equation,

HΨ = EΨ ⇐⇒ H |nk〉 = εk |nk〉 ,

with E =
∑
k

εk .

Then it is possible to prove that a(†) |n〉 are also eigenstates of the same Hamiltonian. In this
case the ladder operators commute with the Hamiltonian (3.31) the following way,

[H, ak] = −~ωk ak , [H, a†k] = +~ωk a†k , (3.32)

which is easy to verify using (3.29) and a standard commutator rule, [AB,C] = A[B,C]+[A,C]B.
The latter yields

H ak |nk〉 = ak(H− ~ωk) |nk〉 = (εk − ~ωk) ak |nk〉 , (3.33a)

H a†k |nk〉 = a†k(H+ ~ωk) |nk〉 = (εk + ~ωk) a†k |nk〉 . (3.33b)

a(†) |n〉 are indeed eigenstates with the respective eigenvalues of ε ∓ ~ω and the names of
the operators now become evident: As the action of the operators onto the eigenfunctions can
be repeated the creation operator rises the energy by an integer multiple of ~ωk, where the
annihilation operator lowers it by the same measure. This points to a (quasi)particle nature,
whence these integral excitations are called phonons; a†k creates a phonon with wave vector k
and frequency ωk and ak destroys (annihilates) one with k and ωk. As it was mentioned before,
wave vector k is confined to the first Brillouin zone by the N values it can take, however, the
appertaining occupation numbers nk of the phonon states are unlimited natural numbers. Thus,
phonons underlie boson statistics.
The ground state of Ψ is denoted as |0〉 (sometimes also called vaccum state) and shall indicate
that all occupation numbers are zero. There is no state lower in energy than the ground state,
so that

ak |0〉 = 0 , ∀k

immediately follows. One can therefore determine the ground state energy as,(
H− ~ωk

2

)
|0〉 =

∑
k

~ωk a†kak |0〉 = 0 =
(
H− E0

)
|0〉

=⇒ E0 =
∑
k

ε0 k =
∑
k

~ωk
2

. (3.34)

Due to the treatment of quantum mechanics the oscillating system thus always has a zero–
point energy, as it is the case for the quantum harmonic oscillator and opposed to the clas-
sical result. The total energy must therefore be

E =
∑
k

εk =
∑
k

nk ~ωk + E0 =
∑
k

~ωk
(
nk + 1

2

)
, (3.35)

which compared to (3.31) lets us identify the Hermitian particle number operator as

n̂k = a†kak =⇒ n̂k |nk〉 = nk |nk〉 , (3.36)
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3.2 Quantum Mechanical Treatment

and has |nk〉 as eigenstate giving the occupancy of the phonon mode k. Similar to (3.32) the
number operator commutes with the ladder operators by

[n̂k, ak′ ] = −ak δkk′ , [n̂k, a
†
k′ ] = a†k δkk′ , (3.37)

and one can show that a(†) |n〉 are also eigenstates of n̂ by using the latter relations in

n̂k
(
ak |nk〉

)
= ak(n̂k − 1) |nk〉 = (nk − 1)

(
ak |nk〉

)
, (3.38a)

n̂k
(
a†k |nk〉

)
= a†k(n̂k + 1) |nk〉 = (nk + 1)

(
a†k |nk〉

)
. (3.38b)

This result is not surprising as it is related to (3.33) (the operator n̂k is part of the Hamiltonian)
and also yields the same findings considering the respective eigenvalues; the creation operator
a†k increases the occupation number nk for a phonon with wave vector k, where the annihil-
ator operator ak reduces it (note that only in this case nk > 0). However, it can also be found
that the states

n̂k |nk − 1〉 = (nk − 1) |nk − 1〉 , n̂k |nk + 1〉 = (nk + 1) |nk + 1〉 ,

derive the same eigenvalues as before, respectively, so that the two according states must be
proportional to one another,

ak |nk〉 = Ck− |nk − 1〉 , a†k |nk〉 = Ck+ |nk + 1〉 .

The constants Ck± can be determined by calculating the square norm,

|Ck−|2 = ‖Ck− |nk − 1〉 ‖2 = ‖ak |nk〉 ‖2 = 〈nk|a†kak|nk〉 = 〈nk|n̂k|nk〉 = nk ,

|Ck+|2 = ‖Ck+ |nk + 1〉 ‖2 = ‖a†k |nk〉 ‖2 = 〈nk|aka†k|nk〉 = 〈nk|n̂k + 1|nk〉 = nk + 1 ,
(3.39)

which yields in total

ak |nk〉 =
√
nk |nk − 1〉 , (3.40a)

a†k |nk〉 =
√
nk + 1 |nk + 1〉 . (3.40b)

3.2.3 Phonon Dynamics

All of the derived Hamiltonians (3.18), (3.26), and (3.31) are in general time–independent and
thus valid at any point. It is therefore best to investigate the phonon dynamics in the Heis-
enberg representation (matrix mechanics) in which only operators are evolved in time, but all
state vectors are static (in contrast to the Schrödinger representation, where it is exactly the
opposite). In this case an arbitrary operator X is expanded by

X(t) = e+iH~ t X e−i
H
~ t = T †(t)X T (t) ,

where T (t) is the time–evolution operator. The Heisenberg equation, whose derivation can be
found in Apx.E, provides an equation of motion for the operator X in the according represent-
ation and reads

Ẋ(t) =
i

~
[H, X(t)]

(
+ ∂tX(t)

)
, (3.41)
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where it is assumed that the operator itself is not explicitly time–dependent; ∂tX → 0 is here
stated for the sake of completeness.
If the Hamiltonian is used in form of (3.26) one can describe an equation of motion for the

phonon coordinate operator Uk by using (3.41) together with the commutator (3.23) and finds,

U̇k =
i

~
[H, Uk] =

i

~
1

2M
[Pk P−k, Uk] =

i

~
1

2M

(
Pk [P−k, Uk]︸ ︷︷ ︸

=−i~ δ−k,k

+ [Pk, Uk]︸ ︷︷ ︸
=−i~

P−k

)
=

1

2M

(
2P−k

)

=⇒ P−k = M U̇k . (3.42)

Using the latter result one can further write,

Ük =
i

~
[H, U̇k] =

i

~M
[H, P−k] =

i

~
ωk

2

2
[Uk U−k, P−k] =

=
i

~
ωk

2

2

(
Uk [U−k, P−k]︸ ︷︷ ︸

=i~

+ [Uk, P−k]︸ ︷︷ ︸
=i~ δk,−k

U−k

)
= −ωk

2

2

(
2Uk

)

=⇒ Ük + ωk
2 Uk = 0 . (3.43)

For the quantum mechanical treatment the derived differential equation is transformed back into
particle coordinates un(t) by (3.20b),

1√
N

∑
n

(
ün(t) e−ikan +ωk

2un(t) e−ikan
)

= 0

=⇒ ün(t) + ωk
2un(t) = 0 , (3.44)

which is the equivalent to the (classical) equation of motion (3.1) of a harmonic oscillator with
frequency ωk from (3.27). Here we define an = n ·a . The time evolution again has been achieved
by the Heisenberg representation

un(t) = T †(t)un(0) T (t) , (3.45)

where the particle displacement operator un(0) can be found from its Fourier transform and
written in second quantisation by entering (3.30a) into (3.20a),

un(0) = un =
∑
k

√
~

2N Mωk
eikan

(
ak + a†−k

)
=

=
∑
k

√
~

2N Mωk

(
ak eikan +a†k e−ikan

)
.

(3.46)
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The time dependency (3.45) of un(t) can thus be written as

T †(t)un T (t) =
∑
k

√
~

2N Mωk

[
T †(t) ak T (t) e+ikan +T †(t) a†k T (t) e−ikan

]
=

=
∑
k

√
~

2N Mωk

[
exp

(
i
∑
k

ωk(n̂−k + 1
2) t
)
ak exp

(
− i

∑
k

ωk(n̂k + 1
2) t+ ikan

)
+

+ exp
(
i
∑
k

ωk(n̂k +
1

2
) t
)
a†k exp

(
− i

∑
k

ωk(n̂−k +
1

2
) t− ikan

)]

=⇒ un(t) =
∑
k

√
~

2N Mωk

(
ak ei(kan−ωkt) +a†k e−i(kan−ωkt)

)
. (3.47)

The structure of this expression is similar to the classical solution, except that the amplitudes of
the waves are replaced by creation and annihilation operators, respectively. For k = π

a we would
derive an equation for a standing wave again. The fact that

T †(t) ak T (t) = ak e−iωkt , T †(t) a†k T (t) = a†k e+iωkt ,

is not shown here, but these relations are derived by expanding the exponential functions into
their respective power series and building up commutator relations that are suited for comparison
to (3.32) or (3.37). The expansion is then set back to the exponential function in the final result.
Details of this quite elaborate calculation can be found in literature [28].

3.3 Phonons in Computation – phono.py

Phonon calculations within this thesis have been achieved by the use of a python–based pro-
gramme called phono.py [29], which is implemented and maintained by Associate Professor At-
sushi Togo (atztogo.github.com) from the Isao Tanaka Research Group of Kyoto University.
It is based on the supercell approach and derives phononic features within the limit of a har-
monic approximation. However, as a kind of pre-process precisely converged forces between the
atoms need to be evaluated from first–principles calculations, for example, as it is done in Vasp.
phono.py was built to replace and extend fropho (fropho.sourceforge.net) and is thus also
based on the Parlinski–Li–Kawazoe method [30], a numerical fitting approach to obtain force con-
stants by given forces and displacements. An outstanding feature of the programme structure is
the well-implemented symmetry finder with the use of spglib (spglib.sourceforge.net). As
the source code is written in python within a logic structure, it is easy to understand and can as
well be imported as a python module. Further information and a comprehensive manual of the
programme can be found at atztogo.github.io/phonopy .

3.3.1 Phonon Methods

Assuming a three dimensional (D = 3) perfect crystal lattice with boundary conditions the
expressions derived in Sec.3.2 need to be further elaborated. One defines ~rl as the position vector
to the Bravais lattice of unit cell l {l ∈ N : l = 1, . . . , N}, and within a unit cell the equilibrium
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Fig. 3.3: Definition of the unit cell vector ~rl and the relative equilibrium position vector ~rj .

position vector to basis atom j {j ∈ N : j = 1, . . . , Nu} is denoted by ~rj (see Fig.3.3 for
reference). Combined the equilibrium position of atom j in unit cell l is thus written as

~r(lj) = ~rl + ~rj , (3.48)

and the total number of DoF is 3NuN .

Second Order Force Constants Similar to (2.6) we can write Hamiltonian (3.18) generally
as

H = T̂ ⊕ V̂ ,

where T̂ and V̂ are the kinetic and potential energy, respectively. The latter is represented as a
function of the momentary atomic position vectors ~x(lj) = ~r(lj) + ~u(lj),

V = V [~x(11), . . . ,~x(lj), . . . ,~x(N Nu)] = V (x) ,

so that it can be expanded with respect to the atomic displacements ~u(lj) around the equilib-
rium states x = ~r(lj) (denoted by a subscript "0"),

V = V [~r(lj)] +
∑
ljα

(
∂V (x)

∂xα(lj)

)
0

uα(lj) +

+
1

2

∑
ljα

∑
l′j′β

(
∂2V (x)

∂xα(lj) ∂xβ(l′j′)

)
0

uα(lj)uβ(l′j′) +O(u3) ≈

≈ V0 −
∑
ljα

(
Fα(lj)

)
0
uα(lj) +

1

2

∑
ljα

∑
l′j′β

Φαβ(lj, l′j′) uα(lj)uβ(l′j′) ,

(3.49)

where the newly introduced indices (α, β) are for the Cartesian components (D = 3 : α, β =
{1, 2, 3} or {x, y, z}). The first term V0 = 0 can be identified as a constant contribution at
the equilibrium positions (thus sometimes referred to as binding energy due to the form of
the potential) and is for simplicity arbitrarily set to zero. The first and second derivative are
respectively found to be a force due to a displacement of atom j in unit cell l within a potential
V (x) of the other atoms in the crystal,

Fα(lj) = − ∂V (x)

∂xα(lj)
, (3.50)
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which vanishes in the linear term as the expansion is around equilibrium positions, and a
second order force constant,

Φαβ(lj, l′j′) =
∂2V (x)

∂xα(lj) ∂xβ(l′j′)
= − ∂Fα(lj)

∂xβ(l′j′)
. (3.51)

The displacements of the atomic positions in a crystal are rarely larger than 3 % of the lattice con-
stant. Therefore it is sensible to stay within the harmonic approximation (small displacements)
and neglect terms of third order or higher, which finally yields

V (x) ≈ 1

2

∑
ljα

∑
l′j′β

Φαβ(lj, l′j′) uα(lj)uβ(l′j′) . (3.52)

Using a potential approximated by (3.52) one derives a harmonic Hamiltonian, which can be
diagonalised and delivers a solution of independent bases.

Dynamical Matrix Equivalent to the diagonalisation of the harmonic Hamiltonian is to solve
the eigenvalue problem of the dynamical matrix. The Hamiltonian yields an equation of motion
that reads

Mj üα(lj, t) = −
∑
l′j′β

Φαβ(lj, l′j′) uβ(l′j′, t) . (3.53)

This is a linear force law and the ansatz,

uα(lj, t) =
1√
Mj

wα(lj,~k) e−iω(~k)t , (3.54)

results in an eigenvalue equation for the (3NuN) normal frequencies ω(~k),∑
l′j′β

1√
MjMj′

Φαβ(lj, l′j′) wβ(l′j′,~k) = ω2(~k)wα(lj) , (3.55)

where the direction of the oscillations is given by the eigenvectors wα(lj,~k) (polarisation). Tak-
ing into account that due to crystal symmetry the force constants Φαβ(lj, l′j′) show a transla-
tional invariance and thus are only dependent on the difference ∆l = l− l′, one can develop the
eigenvectors ~w(lj) similar to the electronic band model by the use of the Bloch theorem,

wα(lj,~ks) = cα(j,~ks) ei
~k~rl ,

where s is known as band index and wave vector ~k is restricted only to the first Brillouin zone.
(3.55) can then be simplified to∑

j′β

Dαβ(jj′,~k) cβ(j′,~ks) = ω2(~ks) cα(j,~ks) , (3.56)

where Dαβ(jj′,~k) is the real symmetric dynamical matrix

Dαβ(jj′,~k)
.
=

1√
MjMj′

∑
l′

Φαβ(l′, jj′) ei
~k(~rl′−~rl) , (3.57)
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which is reduced to a (3Nu) dimensional eigenvalue problem. Consequently, the polarisation vec-
tor ~w(~ks) and frequencies ω2(~ks) are real as well and obtained by diagonalisation. The dynam-
ical matrix can be determined by ab-initio calculations of the force constants; either directly
with methods of perturbation theory, for example Df(p)t, or indirectly by finite displacement
methods and the according evaluation of the resulting forces on the atoms (see also Sec.3.3.3).
The atomic displacements ~u(t) are given similar to (3.47),

uα(lj, t) =
∑
~k,s

√
~

2NuMjω(~ks)

(
a(~ks) exp

[
i
(
~k~r(lj)− ω(~ks)t

)]
+

+ a†(~ks) exp
[
− i
(
~k~r(lj)− ω(~ks)t

)])
cα(j,~ks) .

(3.58)

A frequency ω2 < 0 (imaginary mode) leads to a dynamically unstable crystal structure, which
sometimes can relate to a phase transition or simply a relaxation of the crystal lattice. In
phono.py imaginary frequencies are displayed by negative values in the plot of the phonon
band structure.

Modified Parlinski–Li–Kawazoe Method This method is a numerical fitting approach and
implemented in phono.py in order to derive force constants from given displacements and accord-
ing forces [30]. In phono.py (3.51) is used as a displacement method based on finite differences
and approximated by

Φαβ

(
lj, l′j′

)
∼ −

Fα
(
lj, uβ(l′j′)

)
− Fα

(
lj
)

uβ
(
l′j′
) , (3.59)

where the difference is taken from

∆~x(l′j′) =
[
~r(l′j′) + ~u(l′j′)

]
− ~r(l′j′) = ~u(l′j′) .

The latter is written in matrix representation for an atomic pair {lj, l′j′} as

F̄ = −Ū P̄

(
Fx , Fy , Fz

)
= −

(
ux , uy , uz

) Φxx Φxy Φxz

Φyx Φyy Φyz

Φzx Φzy Φzz

 ,
(3.60)

where the symmetry of the force constants (Φαβ = Φβα) has been taken into account. The
matrix equation can be expanded for a sufficient number of atomic displacements and forces,
and solved using the Moore–Penrose inverse (pseudoinverse), so that

P̄ = −

Ū1

Ū2
...


+ F̄1

F̄2
...

 . (3.61)

The required number of sufficient displacements to solve the equations is reduced by applying
site–point symmetry operations onto (3.60),

R̂(F̄) = −R̂(Ū) P̄ , (3.62)
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where R̂ is the symmetry operation centring at ~u(lj), which can be written in the matrix rep-
resentation of the rotation operator R̄

R̂(F̄) −→ R̄ F̄
(
R̂−1(l′j′)

)
,

R̂(Ū) −→ R̄ Ū
(
l′j′
)
.

Group Velocity This property can be calculated by

vG(~ks) = ~∇k ω(~ks) =

=
1

2ω(~ks)
∂~k
(
ω(~ks)

)2
=

1

2ω(~ks)
〈~c(~ks)|∂~k D̂(~k)|~c(~ks)〉 ,

(3.63)

where the diagonalised dynamical matrix solves the eigenvalue problem (3.56) for the values of
ω2(~ks). phono.py implements the calculation of the group velocity using finite differences by

vG(~ks) ∼ 1

2ω(~ks)
〈~c(~ks)|∆D̄(~k)

∆~k
|~c(~ks)〉 . (3.64)

The difference ∆~k = (∆kx , ∆ky , ∆kz) is described in reciprocal space by Cartesian coordinates.
The method employs central difference, where the distance ±∆qα (α = x, y, z) is specified by the
user in units of the reciprocal space.

3.3.2 Thermodynamic Properties

As it was demonstrated before in Sec.3.2.2 phonons show bosonic behaviour. Thermodynamic
properties are thus derived from Bose–Einstein statistics. The partition function Z for a system
of Ñ phonons reads,

Z =
∏
~k,s

e−
1
2
β ~ω(~ks)

1− e−β ~ω(~ks)
=
∏
~ks

[
2 sinh

(
1
2β ~ω(~ks)

)]−1
, (3.65)

with β = (kB T )−1 being the inverse temperature. Its derivation can be found in Apx.F . The
average occupation number of a phonon mode {~ks} is then according to a Bose–Einstein distri-
bution,

〈n(~ks)〉 =
1

eβ ~ω(~ks)−1
=⇒ 〈Ñ〉 =

∑
~k,s

〈n(~ks)〉 , (3.66)

which yields the (harmonic) internal energy of the phonon system to be

U =
∑
~k,s

~ω(~ks)
(
〈n(~ks)〉+ 1

2

)
. (3.67)

The free energy is according to statistical mechanics and (3.65),

F = −kBT lnZ =
1

2

∑
~k,s

~ω(~ks) + kBT
∑
~k,s

ln
(

1− e−β ~ω(~ks)
)
, (3.68)
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which with (1.41a) gives an expression for the entropy,

S = −
(
∂F

∂T

)
V

=

= − 1

T

∑
~k,s

~ω(~ks)

eβ ~ω(~ks)−1
− kB

∑
~k,s

ln
[
1− e−β ~ω(~ks)

]
=

=
1

2T

∑
~k,s

~ω(~ks) coth
(

1
2β ~ω(~ks)

)
− kB

∑
~k,s

ln
[
2 sinh

(
1
2β ~ω(~ks)

)]
.

(3.69)

Finally, the (harmonic) response of the system can be described by entering (3.67) into (1.28)
and derive the heat capacity at constant volume,

CV =

(
dU

dT

)
V

= T ·
(
∂S

∂T

)
V

=

= kB
∑
~k,s

(
β ~ω(~ks)

)2 eβ ~ω(~ks)(
eβ ~ω(~ks)−1

)2 .

(3.70)

3.3.3 Workflow in phono.py

The derivation of phonon properties from a material of interest is done by a combination
of phono.py and an interface to any external calculator that features the calculation of in-
teratomic forces (preferably from first–principles). The workflow of a calculation is shown in the
diagram of Fig.3.4 . Boxes and diamonds show tasks related to phono.py and external calcu-
lators, respectively. Terms in circles symbolise input and intermediate output data for further
analysis. The starting point is a carefully relaxed unit cell with very small uncertainties in the
interacting forces. phono.py analyses the applicable symmetry operations of the crystal and
creates a supercell of desired and necessary size (set by the Dim tag or the --dim option). A
supercell too small in size might result in an incomplete response caused by an atomic displace-
ment, which would cut off important contributions to the phonon dispersion, especially in the
localised bands. The interaction range thus needs to be carefully tested, but in most cases as a
rule of thumb a supercell should contain around 100 atoms in order to derive satisfying results.
As a next step the user can choose between two ways that indirectly yield the dynamical mat-
rix D̄(~k),

(1) from the set of atomic forces due to finite displacements, or
(2) from the force constants calculated by means of perturbation theory.

The default amplitude for the displacements is 0.01Å, but can be arbitrarily set by the user
(Disp or --disp) with caution; a displacement value that is too small causes numerical errors
in the force constants, where a large value leaves the confinement of the harmonic approach and
demands anharmonic contributions to the potential. In default mode phono.py applies plus–
minus displacements onto a minimum number of atoms in the supercell under symmetry aspects
for an elastic wave whose propagating direction is one of the basis vectors of the crystal. Errors of
residual forces are thus often cancelled out. Forces or force constants can be calculated by Vasp
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Fig. 3.4: The workflow of a phonon calculation with phono.py used in pre– and post–processing.
Illustration taken from [29].

using the settings Ibrion=−1 (no relaxation) or Ibrion=8 (Dfpt), respectively. phono.py then
builds the dynamical matrix (3.57) at an arbitrary wave vector ~k from the force constants of the
supercell and solves (3.56) in order to obtain the according phonon frequencies ω(~ks) and polar-
isation vectors ~c(j,~ks). Finally, the post–process includes the calculation and plotting of features
as the band structure, phonon (p)Dos and thermal properties according to Sec.3.3.2, as well as
an output of the polarisation eigenvectors and an animation–interface for the vibrational modes.

(a) (b)

Fig. 3.5: (a) Phonon interaction range R within a supercell. Next to it is a unit cell for refer-
ence. In this example a 4× 4× 4 supercell would be necessary to describe all phonon
contributions correctly. (b) Schematic picture of the finite displacement method. An
atom is displaced from its equilibrium position which causes forces according to (3.50)
that can be calculated by first–principles. The drawn displacement is exaggerated.
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Chapter 4

Methodology

In the last couple of years bilayer films consisting of FeRh and FePt have attracted a great
interest to be used as an application for Heat–Assisted Magnetic Recording (Hamr) media. The
most prominent features exploited from these materials are in case of FeRh the metamagnetic
first–order phase transition from an antiferromagnetic (Afm) to ferromagnetic (Fm) phase with
increasing temperature at ∼ 320K, and in case of FePt the reduction of the coercive field by
heating.

4.1 Unit Cell & Magnetic Configuration of FeRh

The unit cell of FeRh crystallises in a cubic B2 structure (CsCl) with space group symmetry
Pm3m (#221). As it can be seen in Fig.4.1, the individual Fe and Rh ions arrange in two
resembled simple cubic lattices, where the Rh lattice is shifted by half a lattice constant in [111]
direction. The structure is similar to a bcc cell, however, the centered ion (Rh) is not the same
as those in the corner of the cell (Fe).
In this structure there are three possible types of magnetic assembly. Lowest energy, thus the

ground state, can be reached by the AFM II spin structure, where all Fe spins in the {111}
planes are Fm coupled and alternate between spin up and spin down for each individual plane
(Fig.4.1a). In case of Afm coupling the Rh magnetic moments are all zero. It was shown (see
e.g. Shirane et al. [31]) that there is another stable solution with higher energy and larger volume
that forms a FM phase (Fig.4.1b). The magnetic moment for the individual Fe sites remains
approximately constant around 3µB for both phases, where the Rh moments change from zero to
about 1µB in the FM phase. The third, but most improbable state is AFM I. In this case the Fe
spins are ferromagnetically coupled in the {001} lattice planes instead of a diagonal propagation,
and alternate accordingly (Fig.4.1c). The transition temperature to the paramagnetic state lies
at about TC ∼ 675 K [32].

Models for the Metamagnetic Phase Transition Recently, FeRh has attracted attention
for the use in recording media as it undergoes a temperature–induced metamagnetic phase trans-
ition between the AFM II and FM state at TM ∼ 340 – 350 K, where the exact transition tem-
perature sensitively depends on the conditions of sample preparation. This first–order transition
was experimentally discovered already more than 70 years ago and is not only identified by a
change in the magnetic ordering, but also by a large volume (about 1 %) and entropy change
(∆S ∼ 14.0 mJ/(gK)) between the different phases due to the electronic contribution related to
spin fluctuations of the Rh atoms. The mechanism behind the transition is not well understood.
The finding of an appropriate model is still in process and under debate.
One of the first explanations was given by Kittel suggesting an exchange inversion model [33],

where the transition occurs due to volume–dependent exchange interaction inversion. The ex-
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(a) (b) (c)

Fig. 4.1: Cubic FeRh unit cell in (a) the magnetic ground state AFM II, (b) the stable FM state,
(c) the AFM I state. The arrows symbolise Fe sites and their spin direction. The
Rh site is always body–centred (in red, except for the smaller spin in the FM state).

change parameters are in a linear relation with the lattice parameters and change their sign at a
critical value, so that the system is driven by the change of magnetoelastic energy. This model
is, however, incompatible with the observed large entropy change.
Mryasov proposed a model based on a Heisenberg Hamiltonian, but also including effective
higher–order exchange interactions up to the bi-quadratic terms (~Si · ~Sj)2 [34]. Size and direc-
tion of the magnetic moment of Rh are dictated by the Weiss field of the surrounding Fe sites
in a non-linear fashion (compared to FePt, for example, where it is linear [35]). The effect-
ive spin Hamiltonian therefore only contains degrees of freedom from the Fe sites, since the
induced Rh moments are incorporated by an (Fe–Rh–Fe) superexchange–interaction, which gen-
erally favours Afm coupling and is still within the frame of a Heisenberg model. However, as the
bi-quadratic expansion is degenerate in energy for both magnetic states the transition cannot be
driven by those terms alone. Barker and Chantrell thus extended this model and emphasised
the importance of a full expansion of the quadratic interactions into four–spin exchange terms
(~Si · ~Sj)(~Sk · ~Sl), however, simplified the Hamiltonian to the competition between the standard
bilinear and the newly introduced four–spin interactions [36]. Since fluctuations are now de-
termined by four independent spins instead of two, the effect of the four–spin term will decrease
more rapidly with temperature than the bilinear term. After a fit of the interaction paramet-
ers (J〈001〉, J〈011〉, J〈Q〉) from experimental data they solved the Landau–Lifshitz–Gilbert (LLG)
equation using atomistic spin dynamics (Asd), which led to a good approximation of the trans-
ition temperature TM.
A similar, but slightly different approach is taken by Polesya et al. [37]. In earlier first–principle
studies by Sandratskii and Mavropoulos the density of states (Dos) for both magnetic phases
show a strong hybridisation of the Fe and Rh states in both spin channels [38]. Especially in
the case of an Afm configuration this means that instead of applying a previously suggested
Stoner model, where the exchange interaction of the Fe moments at the Rh sites is treated as an
external mean–field, there is a strong covalency with the spin–polarised Fe states leading to a
non-zero intra–atomic spin polarisation of the Rh states (implicit spin splitting). In other words,
the electronic states of the two equal spin projections of the Rh–Dos hybridise with the according
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Fe sublattices (up and down) and the total moment of the Rh site averages to zero due to sym-
metry, but not because of a vanishing spin density (as it would be the case in a Stoner picture).
In the Fm case, however, the spin density is redistributed and a magnetic moment appears on
the Rh site. Polesya et al. showed a linear dependence of the Rh magnetic moment on the Fm or-
dering of the Fe sublattices and that the former contributes to the stabilisation of the Fm state.
They as well emphasise the importance of the biquadratic exchange interaction to be included in
the Heisenberg Hamiltonian in order to describe the metamagnetic phase transition. However,
whilst Barker and Chantrell account the extended terms to an (Fe–Rh–Fe) superexchange, the
model Hamiltonian of Polesya acts solely on the Fe atoms, where the first part includes the
indirect Fe–Fe exchange JijFe–Fe (Afm) and the other term scales the Fm exchange interaction
via a response function χFe–Rh dependent on the induced Rh moments. The parameters are
obtained self–consistently from uncompensated Disordered Local Moment (uDlm) calculations
and the Hamiltonian implemented in Monte Carlo (Mc) simulations yields reasonable results
with a transition temperature TM ∼ 320 K.

4.2 Optimisation

In order to derive reliable results it is crucial forDft calculations to test and optimise most of the
necessary parameters, such as unit cell, reciprocal space parametrisation (k–points), energy cutoff
of the plane–wave basis set, and so on. The following shall present an overview of the first rough
cell optimisation (relaxation) and the testing of the total energy difference at varying k–points
and energy cutoff settings.

4.2.1 Relaxations

Before the optimal sampling of the Brillouin zone (k–points) and a usable energy cutoff for the
plane–wave basis set can be determined it is necessary to create unit cells where every indi-
vidual ion of the cell is relaxed to its equilibrium position in the potential of the respective
neighbouring sites (including electrons). For comparison, the exchange and correlation effects
are treated by two slightly different functionals in the generalised gradient approximation (Gga)
for two individual runs, namely the version of Perdew–Burke–Ernzerhof (PBE) and the re-
vised Perdew–Burke–Ernzerhof (rPBE), respectively. The Fe (Rh) Paw potential considers
3p , 4s 1, 3d 7 (4p , 5s 1, 4d 8) as valence electrons (both pv–potentials). Two further Fe potentials
that either additionally treat 3s states as valence (sv–potential), or on the other hand skip the
3p states (standard), have been tested as well and deliver slightly different results. The cutoff–
energy of the plane–wave basis was selected to a quite high value of 600 eV. It will turn out
(see Sec.4.2.2) that this is about +9 % higher than the determined optimal value for Ecut. The
Brillouin zone was also selected to be sampled with a dense (24× 24× 24) Γ–centred mesh of
k–points. In order to ensure accurate forces during relaxation furthermore a superfine Fast Four-
ier Transform (FFt) grid for the augmentation charges and a Methfessel and Paxton smearing
with σ ≤ 0.2 eV has been applied. The unit cell has been relaxed by a conjugate–gradient al-
gorithm, as well as allowing changes of the cell structure and volume until forces between the
ions were less than 1 meV/Å.
The unit cell shown in Fig.4.1 could only be used to simulate the FM state due to peri-

odic boundary conditions (symmetry) implemented in Vasp. It is therefore inevitable to use
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larger cells in order to be able to establish all magnetic configurations and compare them with
one another. The most convenient primitive cell that also has been used throughout this thesis is
built up by fcc basis vectors and contains two Fu (2 FeRh). See Tab.4.1 and Fig.4.2 for reference.

Tab. 4.1: Basis vectors of the fcc–like primitive cell and direct coordinates for the lattice sites of
FeRh. ã = 2a is twice the lattice constant of the cubic unit cell a.

~a1 = ã
(

0 1
2

1
2

)
, ~a2 = ã

(
1
2 0 1

2

)
, ~a3 = ã

(
1
2

1
2 0

)
(fcc basis)

1 2
Fe

(
0 , 0 , 0

) (
1
2 ,

1
2 ,

1
2

)
Rh

(
1
4 ,

1
4 ,

1
4

) (
3
4 ,

3
4 ,

3
4

)
(direct coordinates)

(a) (b)

Fig. 4.2: (a) fcc conventional cell as the primitive structure for the AFM II ground state. (b)
Comparison between a fcc (solid) and a cubic structure (dotted). Fe sites with spin up
in grey, with spin down in silver, Rh sites in red.

The second possible primitive cell containing two Fu as well has rhombohedral basis vectors
and is depicted in Fig.4.3. As it can be seen from Tab.4.2 the rhombohedral basis is not as
elegant to treat as it is the case with the fcc basis, due to the radical expressions of the vectors
and the three different angles (α = 60◦, β = 90◦, γ = 120◦) between the vectors.
It should be noted that both cells are related to each other due to the cubic class of the system
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which is reflected in the length of all basis vectors

|~ai| =
ã√
2

=
2a√

2
=
√

2 a , (4.1)

where ã = 2a is the lattice constant of the primitive cells and a is the one of the basic cubic
unit cell. There are further possibilities for structures containing equal or more Fu, such as a
simple double stack of the basic cell or a larger tetragonal cell as it was used for example for the
first–principle calculations of Moruzzi and Marcus [39]. For comparison, an eight–fold supercell
(8 FeRh) showing the equivalence of the two latter structures is shown in Fig.4.4.

Tab. 4.2: Basis vectors of the rhombohedral primitive cell and direct coordinates for the lat-
tice sites of FeRh. ã = 2a is twice the lattice constant of the cubic unit cell a.

~a1 = ã
(

1√
2
−
√

3√
2

0
)

, ~a2 = ã
(

1√
2

√
3√
2

0
)

, ~a3 = ã
(

1√
2

1√
6

2√
3

)
(rhombohedral basis)

1 2
Fe

(
0 , 0 , 0

) (
1
2 , 0 , 1

2

)
Rh

(
1
4 ,

1
2 ,

1
4

) (
3
4 ,

1
2 ,

3
4

)
(direct coordinates)

(a) (b)

Fig. 4.3: (a) Primitive cell with rhombohedral basis vectors as another possibility to depict an
AFM II state under periodic boundary conditions. (b) Comparison between rhombo-
hedral (solid) and basic cubic structure (dotted). Fe sites with spin up in grey, with
spin down in silver, Rh sites in red.

The results of the relaxation runs with the settings from above are summarised in Tab.4.3.
Generally, the AFM II state is individually compared to the respective FM state for the fcc–like

87



4 Methodology

and rhombohedral structure under different exchange–correlation (xc) potential setups. In the
case of fcc, PBE and rPBE exchange are compared with one another both with pv electrons for
the Fe sites (as stated before the valence configuration for the Rh ions has not been changed and
always kept at the recommended pv setting), where in the rhombohedral case the influence of the
three different setups for the valence band has been investigated. As expected, both cells yield
similar results, which can be seen when comparing the calculations with PBE(pv) exchange.
For PBE the ground–state lattice constant relaxes to a = 2.990Å (3.007Å) for the AFM II (FM)
state, which is in good agreement with experimental data and previous calculations. Note that for
rPBE the cell volume is slightly larger, a = 3.016Å (3.033Å), which together with the increased
local magnetic moments will have an effect on the later investigated phonon band structure
(see Sec.5.1). The energy difference of the FM to the ground state (AFM II) varies significantly
with the chosen potential and valence band in a range of ±20 meV per Fu. The smallest en-
ergy difference per Fu can be found by using rPBE(pv), while the latter yields about 1 – 2 %
larger local magnetic moments at the Fe sites, however, the induced Rh local moment in the
FM state remains approximately constant compared to PBE(pv). PBE(sv) clearly underestim-
ates the Fe moments in both phases.

Tab. 4.3: Comparison of the energy, energy difference, basic cubic lattice constant, length of
lattice vector, and local magnetic moment of the Fe and Rh sites for the ground–
state (AFM II) and FM state. The last column shows the used exchange and correlation
potential with the according configuration of the valence band. Energy differences are
given per formula unit (Fu).

E(eV) ∆E(meV/Fu) a(Å) |~ai| mFe (µB) mRh (µB) xc–pot

F
c
c

AFM II −31.289 — 2.990 4.229 ±3.145 0.000 pv

P
B
EFM −31.182 53.3 3.007 4.252 3.205 1.049

AFM II −29.236 — 3.016 4.266 ±3.205 . .

r
P
B
EFM −29.148 44.1 3.033 4.289 3.245 1.052

R
h
o
m
bo

AFM II −31.289 — 2.991 4.229 ±3.145 0.000 pv

P
B
E

FM −31.183 53.0 3.007 4.253 3.204 1.050

AFM II −31.470 — 2.990 4.228 ±3.022 . svFM −31.355 57.2 3.006 4.251 3.098 1.047

AFM II −31.259 — 2.990 4.228 ±3.123 . stdFM −31.130 64.4 3.007 4.252 3.173 1.055

4.2.2 Kpoints & Encut Optimisation

Appropriate values for the Kpoints– and Encut–tag, which establishes a reciprocal space
grid (with reciprocal space point volume {Nb1 × Nb2 × Nb3}) and includes plane–waves with
Ekin < Ecut in the basis set, respectively, have been tested for different cell sizes and magnetic
configurations of the FeRh system. The total energy convergence with rising Kpoints/Encut
values is shown in Fig.4.5 as energy difference dE = Ei−Eref with respect to a reference energy
of the highest Kpoints/Encut value.
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Fig. 4.4: Comparison between the fcc conventional (centred) and the rhombohedral cell (outside)
in an eight–fold supercell structure (8 FeRh). Fe sites with spin up in grey, with spin
down in silver, Rh sites in red.

For the calculations presented a functional that treats the exchange and correlation within
the generalised gradient approximation in a version of Perdew–Burke–Ernzerhof (PBE Gga) has
been applied, where the Fe (Rh) Paw potential considers 3p , 4s 1, 3d 7 (4p , 5s 1, 4d 8) as valence
electrons. Two further potentials that either additionally treat 3s (4s ) states as valence, or on
the other hand skip the 3p (4p ) states, have been tested as well, but did not lead to satisfying
results and are thus not shown here.

Two unit cells with different size have been tested. In Fig.4.5a the fcc–like cell as shown in
Fig.4.2 that contains the primitive FeRh structure twice has been used, whereas in Fig.4.5b a
supercell structure with 8×FeRh has been selected. In both cases two magnetic configurations
(AFM II, FM) have been compared.

The increase of the number of k–points is connected with oscillations of the total energy around
Eref, however, from a mesh of (12× 12× 12) points onwards the energy difference remains within
a range of ±1 meV for both cell types and magnetic configurations. Finally, a dense Γ–centred
mesh of (18× 18× 18) k–points has been used to sample the Brillouin zone for subsequent
calculations (unless explicitly stated otherwise) in order to ensure a proper convergence of the
total energy as it is shown in Fig.4.5.
The graphs of varying Encut value for both cells are qualitatively similar which can be seen
by comparing the total energy curves per formula unit (Fu). The latter are actually almost
identical, which cannot be seen from the graphs directly as they are plotted on a different scale.
Unfortunately, convergence to a non-varying total energy is quite slow and a high energy cutoff
for the plane–wave energy Ecut is needed. Since high values for the cutoff energy would be
timewise prohibitive a compromise is taken by a selecting the the latter to 550 eV (unless stated
otherwise). This is already +88 % higher than the standard value (set by the Enmax–tag) for
the used Fe (Paw) potential, however, together with the above mentioned setting for Kpoints
it ensures a convergence of the total energy to less than 1 meV/Fu.
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(a) (b)

Fig. 4.5: Optimisation of the reciprocal space point density (Kpoints, top) and the energy cutoff
Ecut of the plane–wave basis set (Encut, bottom) on basis of the total energy conver-
gence. Plane–waves with Ekin < Ecut are included in the basis set. Energy conver-
gence is demonstrated as the difference with respect to the energy value of the highest
Kpoints/Encut value. Dashed line shows the energy difference per formula unit (Fu).
(a) Conventional cell with 2FeRh. (b) Supercell containing 8FeRh.

4.2.3 Volume Variation

With the optimised number of k–points and energy cutoff a total energy curve with varying
volume of the primitive cell has been calculated for the AFM II, as well as the FM state, and
the result per Fu is shown in Fig.4.6. The global energy minima at 26.73Å3 and 27.27Å3

for the AFM II and FM state are equivalent to an according lattice constant of 2.99Å and
3.01Å, respectively, thus confirm the correct cell relaxations from Sec.4.2.1. The ratio of both
energetically favoured volumes indicates a magnetovolume effect of about 2 %, which slightly
overestimates the experimental value of 1 %. The two curves cross at 30.23Å3, and beyond
this point EFM < EAFM, however, the according lattice constant is already far beyond the
dissolving point of the cell (> +3 %) and important contributions to the total energy such
as entropy and lattice vibrations (phonons) are not considered, so that a simple picture of
thermal expansion can be excluded and the metamagnetic phase transition indeed drives the
lattice expansion.

4.3 Heat–Assisted Magnetic Recording

A new standard of achieving an increase of bit or areal density in magnetic hard disk drives (Hdd)
is the new technology of heat–assisted magnetic recording (Hamr). In order to reduce thermal
write errors current concepts employ a combination of a hard and soft magnetic layer which are
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Fig. 4.6: Energy graph with varying volume of the primitive cell for the AFM II (red) and
FM state (green). The minima of the curves correspond to the accordingly relaxed
lattice constants. The two lines cross at a volume that is far beyond the dissolving
point. Energy and volume are given per formula unit (Fu).

coupled by the formalism of exchange spring media [40–42]. The hard layer consists of FePt
known for the high magnetic anisotropy and Curie temperature, where for the soft layer FeRh is
chosen as it undergoes a metamagnetic transition from anAfm to a Fm state at about T ∼ 350 K.
The writing process in Hamr media is triggered by a laser that locally heats the FeRh above
the transition temperature via a sophisticated lens system (plasmonic Near–Field Transducer
(Nft) [43], focus of about 5 nm) while a head field changes the magnetic orientation. Due to the
coupling to the hard layer and its large anisotropy it is possible to store this magnetic state for a
long period of time, as the FeRh falls back to a state with no net magnetic moment while cooling.
It is the hope that by these measures the distance between every individual bit can be lowered
or, in other words, the number of bits per square inch can be significantly increased. Current
Hdd products on the market reach an areal density of ∼ 640 GB in−2, but with Hamr it is
the hope to reach ∼ 1 TB in−2 and beyond, which has already been shown to be a reasonable
goal to reach [44, 45]. The measured bit error rate is required to be Ber∼ 10−2 or better,
which is dependent on the signal–to–noise ratio (Snr), where the signal is determined by the
remanent magnetisation and the head–disk spacing (Hds). The media noise is produced by
transition position fluctuations or jitter which is dependent on the number of grains per bit and
the thermal gradient while writing.
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Chapter 5

Phonon Analysis

The phononic contribution of the crystal lattice to the magnetic phase transition has been invest-
igated by calculating properties like the phonon band structure, the vibrational density of states
(vDos), and the thermodynamic contributions of the phonons to the free energy F , the entropy S
and the heat capacity at constant volume CV in the two cubic magnetic phases, AFM II and FM.
For convenience the primitive cell with fcc basis vectors (see Fig.4.2) again has been used. As
it was mentioned before, in order to have all the stable phonon branches properly converged it
is necessary to enlarge the cell size till the required accuracy of the forces is reached. It will be
shown that the latter can be achieved by a supercell of size–factor 4× 4× 4 respective to the
primitive cell which then contains 256 atoms. Also, the behaviour of two differentGga potentials
has been compared and delivered surprising results leading to interesting conclusions.

5.1 Phonon Band Structure

The details of the band structure for both magnetic configurations are shown in this section.
The results for calculations using a PBE functional are shown in Fig.5.1. In the FM case
(Fig.5.1b) a stable dispersion is found within the entire Brillouin zone throughout different cell
sizes. The bands of the 4× 4× 4 supercell (solid red lines) are compared with those of smaller
cells (grey lines) regarding convergence. It can be shown that a band structure with full details
can only be achieved with a considerably large super–cell of 256 atoms.
At symmetry point X the lowest band of the AFM II state shows imaginary frequencies

(negative values in Fig.5.1a) independent of the cell size, indicating a dynamic instability of the
crystal. With enlargement of the cell further instabilities develop at the reciprocal space pointsK
and U , which means that the instability is not only confined to the Γ–X–W direction of the
Brillouin zone, but gradually becomes stronger along X–U and X–K. Hence, a displacement
of the ions according to the wave vector at X should lead to a relaxation and a lowering of
the total energy. The latter points into the direction of one of the cubic axes and produces a
transverse optical phonon with a periodicity of 2aAfm.
In order to clarify the impact of the applied functional on the instabilities observed with PBE

the calculations have been repeated using a different Gga functional. The phonon band struc-
ture employing rPBE exchange (see also Sec.4.2.1 and Tab.4.3) is shown in Fig.5.2. Compared
to Fig.5.1 the stable phonon branches are qualitatively similar, however, although the optical
modes at X, K, and U are considerably soft the imaginary frequencies in case of the AFM II
configuration completely vanish with the use of rPBE, which reveals that the instability can-
not be a universal feature. The magnetic moments from Tab.4.3 for the two functionals show
a considerable discrepancy, ±3.145µB (PBE) to ±3.205µB (rPBE). More comprehensive in-
vestigations of the magnetic moments associated with different functionals together with related
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Fig. 5.1: Comparison of the phonon band structure of FeRh in the (a) AFM II, and (b) FM
state calculated with a PBE functional. Bands of 2× 2× 2 (grey dotted) and 3× 3× 3
(grey dashed) supercells are plotted against 4× 4× 4 (red solid) regarding convergence.
Imaginary frequencies display as negative values.
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Fig. 5.2: Comparison of the phonon band structure of FeRh in the (a) AFM II, and (b) FM state
calculated with an rPBE functional. Bands of 2× 2× 2 (grey dotted) and 3× 3× 3
(grey dashed) supercells are plotted against 4× 4× 4 (red solid) regarding convergence.
The imaginary frequencies from Fig.5.1a vanish due to the different treatment of inter-
action within the applied functional.

volume effects indeed reveal that a sole increase of the magnetic moments is sufficient for a
stabilisation of the cubic AFM II phase [46, 47].
Taking a closer look at the most prominent instability at the X point (transverse optical

phonon branch) reveals a wave vector that is parallel to one of the cubic axes. The direction
of the ionic displacements caused by this wave vector are displayed in Fig.5.3. It can be shown
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5.2 Thermodynamic Aspects

that by gradually displacing the atoms without allowing relaxations the total energy can be
lowered by about 0.2 meV per Fu, and that after full cell and ionic relaxations even a new
monoclinic structure (P2/m) with an energy gain of 24.3 meV per Fu can be found [46]. Un-
fortunately, this structure has not yet had any experimental confirmation. It is assumed that
the extremely shallow energy minimum found by the displacement can easily be smeared out
by kinetic fluctuations at temperatures that are already larger than 2 K. Furthermore, a small
number of anti–site defects is enough to suppress Afm order down to low temperatures [48].

Fig. 5.3: Direction of the ionic displacements caused by the phonon wave vector along one of the
cubic axes at the most prominent instability at the X point for calculations using the
PBE functional.

5.2 Thermodynamic Aspects

Thermodynamic properties have been calculated within the harmonic approximation for all four
configurations Afm,Fm(PBE) shown in Fig.5.4a,b, and Afm,Fm(rPBE) in Fig.5.4c,d. The
internal energy E(T ), free energy F (T ), entropy S(T ), and heat capacity at constant volume
CV (T ) have been derived according to the expressions (3.67)–(3.70), respectively. All these ther-
modynamic features contributed by the phonons can be directly related to experiments and could
deliver a not negligible contribution in the explanation of the metamagnetic phase transition.
Note that magnetic contributions to the free energies have not been included.
Qualitatively all curves in Fig.5.4 show similar results. A detailed comparison of the en-

ergy curves (Fig.5.5) reveals that albeit phonons might contribute to the phase transition the
phonon energies alone cannot display any crossing and thus no phase transition at room temper-
ature. Investigating the entropy S of both phases in Fig.5.6 reveals a considerable difference of
about ∆S = 2.44 J/(K mol)→ 15.3 J/(K kg) [4.21 J/(K mol)→ 26.5 J/(K kg)] for PBE [rPBE]
at T ∼ 350 K where the transition should take place, which has also been observed experi-
mentally [49]. From T = 40 K onwards the FM state exhibits a larger heat capacity than the
other phase. Above room temperature the vibrational specific heat for constant V reaches the
limit that comes with the law of Dulong–Petit. Below T = 40 K the lattice specific heat of
the AFM phase exceeds the one from the FM phase. This has also been observed in thin film
experiments [50].
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Fig. 5.4: Phonon contributions of the thermodynamic properties in FeRh. All four plots show the
internal energy (black), the free energy (red), the entropy (blue), and the heat capacity at
constant volume (green). Energies in kJ/mol, entropy and heat capacity in J/(K mol).
(a) AFM II (PBE) (b) FM (PBE) (c) AFM II (rPBE) (d) FM (rPBE). All plots show
the same qualitative behaviour.

5.3 Conclusions

It has been shown that the AFM II phase in cubic FeRh manifests soft phonon branches which are
imaginary at some high symmetry points in the reciprocal space, especially around the X point.
These instabilities are sensitive to the magnitude of the stabilised total magnetic moment and
related volume effects, where larger moments are apparent to stabilise the cubic structure. Fur-
ther investigations [46] show that by careful relaxation of the atoms in constrained direction
of the displacements a monoclinic Afm structure lower in energy can be found, however, the
energy gain along the calculated transformation pathway is only of about 0.2 meV per Fu, so
that already small thermal fluctuations are sufficient to suppress the transition and it thus be-
comes almost impossible to confirm this structure experimentally. Thermodynamic properties
have been calculated and the according energies deliver no direct signs of a phase transition at
room temperature. However, it could yield important contributions to more dominant interac-
tions that drive the transition. Furthermore, the large entropy difference that has been observed
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Fig. 5.5: Detailed comparison of the phonon contribution to the internal energy (black) and the
free energy (red), both in kJ/mol. None of the curves cross at room temperature, which
means that the metamagnetic phase transition is not based on phonons.

when reaching the transition temperature can be confirmed. As a consequence, the knowledge
and detailed information on the thermodynamic contributions of the lattice could play a decisive
role in the many existing magnetic models and could be an important step forward in the final
discovery of the origin of the metamagnetic transition in FeRh.
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Fig. 5.6: Detailed comparison of the phonon contribution to the entropy (blue) and the heat ca-
pacity at constant volume (green), both in J/(K mol). At T ∼ 350 K, where the trans-
ition should occur, the entropy of both states shows a considerable difference. Beyond
T = 40 K the heat capacity of the AFM II phase exceeds the one of the FM phase.
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Appendix

A. Derivatives of the Free Energies

As it was presented in Sec.1.1.3 all defined free energies are thermodynamic potentials if they
can be described with their natural variables. That is, the first derivatives always result in the
according conjugated dependent state variables.

U = U(S,x,N) −→ T =

(
∂U

∂S

)
x

, Fj =

(
∂U

∂xj

)
S, xi6=j

, (A.1a)

F = F (T,x,N) = U − T · S −→ S = −
(
∂F

∂T

)
x

, Fj =

(
∂F

∂xj

)
T, xi 6=j

, (A.1b)

G = G(T,F,N) = H − T · S −→ S = −
(
∂G

∂T

)
F

, xj = −
(
∂G

∂Fj

)
T, Fi6=j

. (A.1c)

All the other natural variables have to be kept constant. This includes the independent vari-
ables N, which is not explicitly stated at the derivatives for a better overview. In all three cases
the derivative of Nk yields the chemical potential µk

• = •(X,N) −→ µk =

(
∂•
∂Nk

)
X,Nl 6=Nk

(A.2)

The second derivatives, using the results from (A.1), read(
∂2U

∂S2

)
x

=
∂

∂S

(
∂U

∂S

)
x

=

(
∂T

∂S

)
x

=
T

Cx
≥ 0 , (A.3a)(

∂2U

∂xj2

)
S, xi 6=xj

=
∂

∂xj

(
∂U

∂xj

)
S, xi 6=xj

=

(
∂Fj
∂xj

)
S, xi 6=xj

, (A.3b)

(
∂2F

∂T 2

)
x

=
∂

∂T

(
∂F

∂T

)
x

= −
(
∂S

∂T

)
x

= −Cx

T
≤ 0 , (A.4a)(

∂2F

∂xj2

)
T, xi 6=xj

=
∂

∂xj

(
∂F

∂xj

)
T, xi 6=xj

=

(
∂Fj
∂xj

)
T, xi 6=xj

, (A.4b)

(
∂2G

∂T 2

)
F

=
∂

∂T

(
∂G

∂T

)
F

= −
(
∂S

∂T

)
F

= −CF

T
≤ 0 , (A.5a)(

∂2G

∂Fj
2

)
T, Fi 6=Fj

=
∂

∂Fj

(
∂G

∂Fj

)
T, Fi 6=Fj

= −
(
∂xj
∂Fj

)
T, Fi 6=Fj

, (A.5b)
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where from the definition (1.28)

Cx =

(
δQ

dT

)
x

=

(
dU

dT

)
x

=

(
∂U

∂S

)
x

(
∂S

∂T

)
x

= T ·
(
∂S

∂T

)
x

,

CF =

(
δQ

dT

)
F

=

(
dH

dT

)
F

=

(
∂H

∂S

)
F

(
∂S

∂T

)
F

= T ·
(
∂S

∂T

)
F

,

has been used.
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B. Derivation of the Mean–Field in the Ising Model

The explicit expression for the mean–field H0 can be derived with statistical mechanics by
minimising the parameter Φ of the Bogoliubov inequality (1.58),

Φ = F0 + 〈H −H0〉 ,

where the average is with respect to the ensemble defined by H0.
Using a mean–field ansatz as a trial Hamiltonian,

H0 = − (H0 + gJ µBH)
∑
i

Si , (B.1)

together with the Ising–Hamiltonian (1.61) one derives

〈H −H0〉 = −J
∑
〈i,j〉

〈Si〉 〈Sj〉+H0

∑
i

〈Si〉 , (B.2)

which for a system withN spins and ℵ nearest–neighbours that are invariant to space translations
can be summarised to

〈Si〉 = 〈Sj〉 = 〈S〉 ,

=⇒ 〈H−H0〉 = N 〈S〉
(
−J ℵ 〈S〉

2
+H0

)
. (B.3)

The free energy F0 for the mean–field can be derived calculating the partition sum Z of the
ensemble

Z = Z(T,H,N) =
∑
S1=±1

· · ·
∑

SN=±1

exp
(
− βH0

)
=

=
∑
S1=±1

· · ·
∑

SN=±1

exp
(
β (H0 + gJ µBH)

∑
i

Si

)
=

=
[
2 cosh

(
β (H0 + gJ µBH)

)]N
,

(B.4)

where β = (kB T )−1 and the expression for the hyperbolic cosine

cosh(x)
.
=

1

2

∑
k=±1

exp(k x) ,

has been used. Thus the free energy reads

F0 = −kB T lnZ =

= −N kB T ln
[
2 cosh

(
β (H0 + gJ µBH)

)]
.

(B.5)

The first derivative of the free energy with respect to the (magnetic) mean–field H0 yields an
average magnetisation M0 established by the average value of the spins at each site

M0 = N 〈S〉 = −
(
∂F0

∂H0

)
= N kB T

2β sinh
(
β H0 . . .

)
2 cosh

(
β H0 . . .

) = N tanh
(
β H0 . . .

)
=⇒ 〈S〉 = tanh

(
β (H0 + gJ µBH)

)
. (B.6)
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The latter is entered into (B.3) and yields together with (B.5) a self–consistent expression for
the mean–field H0

FMF = min
H0

Φ

∂

∂H0

[
−N kB T ln

(
2 cosh

(
β H0 . . .

))
−N J ℵ

2
tanh2

(
β H0 . . .

)
+N H0 tanh

(
β H0 . . .

)]
= 0

=⇒ H0 = J ℵ tanh
(
β H0 . . .

)
. (B.7)

Equivalently, comparison with (B.6) shows that H0 = J ℵ 〈S〉 and the self–consistent equation
for the mean–field magnetisation reads

〈S〉 = tanh
(
β J ℵ 〈S〉 . . .

)
, (B.8)

and hence the mean–field free energy is

FMF = −N kB T ln
[
2 cosh

(
β H0 . . .

)]
+
M0H0

2
. (B.9)
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C. Susceptibility and Correlation Functions

Consider an arbitrary system with a Hamiltonian H0. This Hamiltonian is modified as soon as
an external inhomogeneous field ~B(~r) is present,

H = H0 −
∫

d~r φ(~r) ~B(~r) , (C.1)

where φ(~r) is the system variable that couples linearly to the field (spins or magnetisation). The
partition function reads

Z = trφ

[
exp

(
− βH0 + β

∫
d~r φ(~r) ~B(~r)

)]
, (C.2)

and the free energy is derived by F = − 1
β lnZ, so that one can define a generalised iso-

thermal susceptibility as the second order functional derivative of the free energy

χ(~r,~r′) = − δ2F

δB(~r) δB(~r′)
. (C.3)

The two–point correlation function is defined as

Γ(~r,~r′) .
=
〈 (
φ(~r)− 〈φ(~r)〉

) (
φ(~r′)− 〈φ(~r′)〉

) 〉
≡
〈
φ(~r)φ(~r′)

〉
−
〈
φ(~r)

〉 〈
φ(~r′)

〉
,

(C.4)

so that (C.3) can be evaluated to

χ(~r,~r′) =
1

β

δ2 lnZ
δB(~r) δB(~r′)

=

=
1

β

(
1

Z
δ2Z

δB(~r) δB(~r′)
− 1

Z
δZ

δB(~r)
· 1

Z
δZ

δB(~r′)

)
=

= β

(〈
φ(~r)φ(~r′)

〉
−
〈
φ(~r)

〉 〈
φ(~r′)

〉)

=⇒ χ(~r,~r′) = β Γ(~r,~r′) . (C.5)

A system with translational invariance can use relative paths Γ(~r,~r′)→ Γ(|~r − ~r′|) = Γ(r) and
the total susceptibility reads

χ =

∫
d~r χ(r) ≡ β

∫
d~r Γ(r) . (C.6)

The latter equation sets the response χ in relation to an external perturbation ~B of the system
with the fluctuations in equilibrium. It could therefore be interpreted as a special case of the
fluctuation–dissipation theorem.
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D. Hartree–Fock Theory

In order to solve the (interaction–free) many–body Hamiltonian,

Ĥ0 = − ~2

2m

N∑
i=1

~∇ 2
i +

N∑
i=1

u(~ri) = T̂ + Û , (D.1)

Douglas Hartree suggested a product ansatz for the general wave function which is built up by
the eigenstates of the single particle Schrödinger equations (orbitals),

ĥ0 φi =

(
− ~2

2m
~∇ 2
i + u(~ri)

)
φi = ε0

i φi ⇐⇒ ΨH(~r1, . . . ,~rN ) =
N∏
i=1

φi(~ri) . (D.2)

However, the latter is not suitable for fermions (but indeed for bosons) because wave function
ΨH is not strictly antisymmetric with respect to the exchange of two (indistinguishable) fermions
with one another. For a correct description of the behaviour of electrons in atoms or molecules
the Pauli exclusion principle must be fulfilled. Vladimir Fock improved the ansatz of Hartree by
applying an anti–symmetry operator A to the orbitals in (D.2),

ΨHF(~r1, . . . ,~rN ) =
√
N !AΨH(~r1, . . . ,~rN ) =

=
1√
N !

∣∣∣∣∣∣∣
φ1(~r1) . . . φ1(~rN )

...
. . .

...
φN (~r1) . . . φN (~rN )

∣∣∣∣∣∣∣ .
(D.3)

The latter is called Slater determinant, which is an elegant way of expressing the desired an-
tisymmetric state for fermions. Taking the exchange and correlation of the (indistinguishable)
electrons into account, we derive a Hamiltonian similar to (2.7). The variation of the energy
reads

δ

{
〈ΨHF| Ĥ |ΨHF〉 −

∑
i

εi

(
〈φi|φi〉 − 1

)}
= 0 . (D.4)

Note that the orbitals taken from (D.2) account for the presence of other electrons only in
an average manner — the Hartree–Fock method thus is a mean–field theory. They appear as
constraints in (D.4) to grant that the single states are all orthonormal. It is sufficient to project
the expectation value in (D.4) onto real space,

〈ΨHF| Ĥ |ΨHF〉 =
∑
i

∫
d3r′ φ∗i (~r

′)

[
− ~2

2m
~∇ 2
i + u(~r ′)

]
φi(~r

′) +

+
1

2

∑
i 6=j

∫∫
d3r ′ d3r ′′ φ∗i (~r

′)φ∗j (~r
′′)

1

|~r ′′ − ~r ′|
φi(~r

′)φj(~r
′′)

︸ ︷︷ ︸
=VH

−

− 1

2

∑
i 6=j

∫∫
d3r′ d3r′′ φ∗i (~r

′)φ∗j (~r
′′)

1

|~r ′′ − ~r ′|
φi(~r

′′)φj(~r
′)

︸ ︷︷ ︸
=VF

,

(D.5)
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and only vary over the imaginary part φ∗k,

δ

δφ∗k(~r)

{
〈ΨHF| Ĥ|ΨHF〉 (D.5) −

∑
i

εi

(∫
d3r′ |φi(~r ′)|2 − 1

)}
= 0 . (D.6)

As a final result one derives the N Hartree–Fock–equations,(
− ~2

2m
~∇ 2
k + u(~r)

)
︸ ︷︷ ︸

ĥ0

φk(~r) +
∑
i

∫
d3r′ |φi(~r ′)|2

1

|~r − ~r ′|
φk(~r)︸ ︷︷ ︸

Coulomb–Term (Hartree)

−

−
∑
i

∫
d3r′ φ∗i (~r

′)
1

|~r − ~r ′|
φk(~r

′)φi(~r)︸ ︷︷ ︸
Exchange–Term (Fock)

= εkφk(~r) .

(D.7)

The latter expression is the exchange term, which is only derived by the antisymmetric nature of
the orbitals. Obviously, the exchange of the electrons results in a lower total energy. The other
terms could also be calculated by solely using the Hartree–ansatz (D.2). In order to retrieve a
general expression of (D.7), the Fock operator F̂ is defined as

F̂ = ĥ0 +
∑
i

(
〈φi|ŵ|φi〉 − |φi〉 〈φi| ŵ

)
= ĥ0 + ̂− k̂ ,

with ŵ =
1

|~r − ~r ′|

=⇒ F̂ |φk〉 = εk |φk〉 . (D.8)

The Fock operator for an electron k is set up by the wave functions of all the other electrons.
Hence, the Fock equations can only be solved iteratively in terms of a self–consistent field method.
A similar example of this method has been shown at the beginning of Sec.2.3. In case of the
free electron gas the Fermi vector can be expressed by the density of states. Slater used the
exchange term of the Hartree–Fock approximation to calculate the exchange potential for metals
(2.43).
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E. Heisenberg Representation

Starting from the Schrödinger equation, i~∂t |ψ〉 = H |ψ〉 , with a time–independent Hamiltonian
one can define a unitary time–evolution operator

|ψ(t)〉 = T (t) |ψ(0)〉 , with T (t)
.
= e−i

H
~ t . (E.1)

An arbitrary operator X must yield the same expectation value x in both representations, so
that also all state vectors can be constrained to rigid basis of time–independent wave functions
and a Heisenberg operator is transformed by

x = 〈ψ(t)|X|ψ(t)〉 = 〈ψ(0)|T †(t)X T (t)|ψ(0)〉 =⇒ X(t) = T †(t)X T (t) . (E.2)

As the state |ψ(t)〉 is not stationary it is possible that also the expectation value is evolving
with time. Sometimes also an operator itself can explicitly have a time dependency — even in
the Schrödinger picture, for example a time–varying potential — which could have an effect on
the average value, but will be neglected here. In order to give the rate of change d

dtx = ẋ one
defines an operator Ẋ with

Ẋ |ψ〉 = ẋ |ψ〉 .
Note that Ẋ is not a time derivative in a classical sense, but indeed the definition of a new op-
erator. One finds with (E.2)

〈ψ(0)|Ẋ(t)|ψ(0)〉 = ẋ =
d

dt
x =

d

dt

(
〈ψ(0)|X(t)|ψ(0)〉

)
, (E.3)

which yields the Heisenberg equation

d

dt

(
〈ψ(0)|X(t)|ψ(0)〉

)
≡ d

dt

(
〈ψ(t)|X|ψ(t)〉

)
=

=
(
∂t 〈ψ(t)|

)
X |ψ(t)〉 + 〈ψ(t)|X

(
∂t |ψ(t)〉

)
+ 〈ψ(t)|

(neglected)︷ ︸︸ ︷(
∂tX

)
|ψ(t)〉 =

=
i

~
〈ψ(t)|HX|ψ(t)〉 − i

~
〈ψ(t)|XH|ψ(t)〉 =

i

~
〈ψ(t)| [H, X] |ψ(t)〉 ≡

≡ i

~
〈ψ(0)|T † HX T |ψ(0)〉 − i

~
〈ψ(0)|T † XH T |ψ(0)〉 =

i

~
〈ψ(0)| [H, X(t)] |ψ(0)〉 =

=⇒ Ẋ(t) =
i

~
[H, X(t)] . (E.4)

This equation of motion in the Heisenberg representation is the equivalence of the Schrödinger equa-
tion. The expression for the partial time–derivative of the state vector derives either directly
from the Schrödinger equation, or equivalently from the derivative of the exponential function
of the time–evolution operator. It was assumed that X is not implicitly dependent on time
(∂tX → 0), and that the time–evolution operator commutes with the Hamiltonian ([H, T ] = 0)
which is proved by the series expansion of the exponential function1.

1Rigorously, the Hamiltonian has to be a bound operator for this proof to be true. It takes a more elaborate
effort to show that the commutator relation also holds for an unbound Hamiltonian (which is usually the
case).
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F. Partition Sum of a Phonon System

Consider a system of Ñ phonons. The probability P(nk) of finding nk phonons in a state of
frequency ω(~ks) is

P(nk) =
1

Zk
e−β ε(nk) =

1

Zk
e−β ~ωk

(
nk+ 1

2

)
, (F.1)

where β = (kB T )−1 is the inverse temperature and the normalisation factor Zk is the parti-
tion function of the single modes k with energy ε(nk) from (3.35) in the case of D = 3. For
better readability the indices •(~ks) → •k have been unified to only one subscript. The chem-
ical potential is zero (µ = 0) as phonons can be created and annihilated in an unlimited way, so
that the free energy in equilibrium will always be minimal. The probability of the whole system
being in a state of total energy E(Ñ) is just the product of the single–modes probabilities,

P(Ñ) =
Ñ∑
{nk}B

∏
k

P(nk) =
1

Z

Ñ∑
{nk}B

e−β
∑

k ~ωk

(
nk+ 1

2

)
=

1

Z

Ñ∑
{nk}B

e−β E(Ñ) , (F.2)

where the sum is to be taken over all combinations of occupation numbers {nk}B taking any
possible (natural) value within boson statistics (B) and under the restriction that

Ñ =
∑
k

nk . (F.3)

The total partition function Z of the system is defined as

Z =
∏
k

Zk , (F.4)

which again gives rise that the system is similar to (3NuN) independent harmonic oscillators.
Under the condition that

∞∑
Ñ=0

P(Ñ) = 1 ⇐⇒ Z =

∞∑
Ñ=0

Ñ∑
{nk}B

∏
k

e−β ~ωk

(
nk+ 1

2

)
,

follows an expression for the partition function. Now, since the first sum is over all total number
values, the restriction of the combination sum can be replaced by

∞∑
Ñ=0

Ñ∑
{nk}B

. . . ⇐⇒
∑
nk1

· · ·
∑
nkN

. . . ,

because the combination of independent summations over every individual occupation number nk
on the right side contains exactly the same terms as on the left (note the difference of N allowed
k values, and the total number Ñ of phonons in the system). Hence, the partition function of a
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phonon system can equivalently be written as

Z =

∞∑
Ñ=0

Ñ∑
{nk}B

∏
k

e−β ~ωk

(
nk+ 1

2

)
≡

≡
∑
nk1

· · ·
∑
nkN

e−β ~ωk1

(
nk1

+ 1
2

)
· . . . · e−β ~ωkN

(
nkN

+ 1
2

)
=

=

(
e−

1
2
β~ωk1

∑
nk1

e−β ~ωk1
nk1

)
· . . . ·

(
e−

1
2
β~ωkN

∑
nkN

e−β ~ωkN
nkN

)
=

=
∏
k

(∑
nk

e−β ~ωk

(
nk+ 1

2

) )
=
∏
k

Zk ,

(F.5)

whereby one identifies the single–modes partition functions to be

Zk =
∑
nk

e−β ~ωk

(
nk+ 1

2

)
. (F.6)

The sum in (F.5) and (F.6) can be interpreted as an infinite geometric series,

∞∑
n=0

qn =
1

1− q
, |q| < 1 .

The partition function thus finally reads

Z =
∏
k

e−
1
2
β ~ωk

1− e−β ~ωk
=
∏
k

[
2 sinh

(
1
2β ~ωk

)]−1
. (F.7)

Average Phonon Number
From the standard expression

〈nk〉 =
∑
nk

nk P(nk) , (F.8)

entering (F.1) with (F.6) as the according probability one can find the average occupation number
of a phonon state k. Setting xk = β ~ωk it can be shown that,

〈nk〉 =
1∑

nk

e−xk nk

∑
nk

nk e−xk nk = − 1∑
nk

e−xk nk

∑
nk

∂

∂xk
e−xk nk =

= − 1∑
nk

e−xk nk

∂

∂xk

(∑
nk

e−xk nk

)
= − ∂

∂xk
ln
(∑

nk

e−xk nk

)
=

= − ∂

∂xk
ln
( 1

1− e−xk

)
= +

∂

∂xk
ln
(

1− e−xk
)

=
e−xk

1− e−xk

=⇒ 〈nk〉 =
1

eβ ~ωk −1
, (F.9)
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which yields the expected Bose–Einstein distribution. Note how any zero–point energy cancels
out and does not contribute. It follows equivalently with (F.2), (F.3), and (F.7) that the average
total number of phonons is

〈Ñ〉 =
∑
Ñ

Ñ P(Ñ) = . . .

=⇒ 〈Ñ〉 =
∑
k

〈nk〉 (F.10)
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