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Abstract

Material Flow Analysis (MFA) is a tool that helps to model and quantify the flows
and stocks of a system of interest. Due to unavoidable measurement or estimation
errors, the observed values of flows and stocks are in conflict with known constraints
such as the law of mass conservation. The basic idea of data reconciliation is to
resolve these contradictions by statistically adjusting the collected data based on
the assumption that their uncertainty is described by a probability density function
(pdf).

Most solving techniques that have been developed over the last 60 years are based
on a weighted least-squares minimization of the measurement adjustments subject
to constraints involving observed variables, unknown variables and fixed quantities.
The underlying main assumption of this approach is that of normally distributed
(Gaussian) observation errors, with zero mean and known covariance matrix. In
STAN, a freely available software that supports MFA and allows to consider data
uncertainties, this approach has been implemented. Paper 1 of this cumulative
doctoral thesis covers the mathematical foundation of the nonlinear data reconcili-
ation algorithm incorporated in STAN and demonstrates its use on a hypothetical
example from MFA.

In scientific models in general and in MFA models in particular, however, data is
often not normally distributed. Thus, a different approach to data reconciliation,
based on Bayesian reasoning, was developed within the scope of this thesis that
can deal with arbitrary continuous probability distributions. Its main idea is to
restrict the joint prior probability distribution of the observed variables with model
constraints to get a joint posterior probability distribution. Because in general
the posterior probability density function cannot be calculated analytically, it is
shown that it has decisive advantages to sample from the posterior distribution by
a Markov chain Monte Carlo (MCMC) method. From the resulting sample, the joint
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pdf of observed and unobserved variables and its moments can be estimated, along
with the marginal posterior densities, moments, quantiles, and other characteristics.
Paper 2 covers the case of linear constraints while paper 3 deals with nonlinear
constraints. In both papers, the method is illustrated by examples from MFA and
chemical engineering.

Finally, the summary of this thesis contains two additional topics for the Bayesian
approach, which haven’t been covered by the papers 2 and 3: it is shown how to
use copulas to implement correlated observations, and how to use M-estimators to
get a reconciliation procedure that is robust against outlying observations and does
not require any prior assumptions on the distribution of the outliers.



Kurzfassung

Die Materialflussanalyse (MFA) ist ein Werkzeug, das dabei hilft, die Flüsse und
Lager eines zu untersuchenden Systems zu modellieren und zu quantifizieren. Auf
Grund unvermeidlicher Mess- und Schätzfehler sind die erhobenen Daten im Wi-
derspruch mit bekannten Zwangsbedingungen wie zum Beispiel dem Massenerhal-
tungsgesetz. Die grundlegende Idee des Datenausgleichs ist es, diese Widersprüche
aufzulösen, indem die gesammelten Daten statistisch angepasst werden. Dabei
wird angenommen, dass deren Unsicherheit durch eine Wahrscheinlichkeitsdich-
tefunktion beschrieben werden kann. Die meisten Lösungsverfahren, die in den
letzten 60 Jahren entwickelt wurden, basieren auf einer Minimierung der gewich-
teten Quadrate der notwendigen Beobachtungsanpassungen (Methode der klein-
sten Fehlerquadrate), bei der die zu erfüllenden Zwangsbedingungen beobachtete
Variablen, unbekannte Variablen und fixe Größen enthalten können. Die zugrun-
deliegende Hauptannahme dieses Ansatzes ist, dass die Fehler der Beobachtungen
normalverteilt sind, mit Mittelwert Null und bekannter Kovarianzmatrix. Dieser
Ansatz wurde auch in STAN verwendet, einer frei erhältlichen Software für MFA,
die die Berücksichtigung von Datenunsicherheiten unterstützt. Artikel 1 dieser
kumulativen Dissertation behandelt die mathematischen Grundlagen des nichtline-
aren Ausgleichsalgorithmus, der in STAN implementiert wurde und demonstriert
seine Anwendung an einem hypothetischen Beispiel aus der MFA.

In wissenschaftlichen Modellen im allgemeinen, und in MFA-Modellen im speziel-
len, sind die verwendeten Daten jedoch oft nicht normalverteilt. Deshalb wurde
im Rahmen dieser Doktorarbeit ein alternativer Zugang zum Datenausgleich ent-
wickelt, der auf bayesschen Schlussfolgerungen basiert und mit beliebigen steti-
gen Wahrscheinlichkeitsverteilungen umgehen kann. Die Hauptidee diese Ansat-
zes ist, die gemeinsame a-priori Wahrscheinlichkeitsverteilung der beobachteten
Größen mit den Modellgleichungen einzuschränken, um die gemeinsame a-posteriori
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Wahrscheinlichkeitsverteilung zu erhalten. Da im allgemeinen die a-posteriori Ver-
teilung nicht analytisch berechnet werden kann, wird gezeigt, dass es erhebliche Vor-
teile bringt, die a-posteriori Verteilung mittels eines Markov-Ketten-Monte-Carlo-
Verfahrens (MCMC) zu beproben. Aus der resultierende Stichprobe können die ge-
meinsame Wahrscheinlichkeitsverteilung, sowie die a-posteriori Randverteilungen,
Momente, Quantile und andere Charakteristika der beobachteten und unbekannten
Variablen berechnet werden. Artikel 2 deckt den Fall der linearen Randbedingun-
gen ab, während sich Artikel 3 mit nicht linearen Zwangsbedingungen beschäftigt.
In beiden Artikeln werden Beispiele aus der MFA und der chemischen Literatur
verwendet, um die Anwendung der entwickelten Methode zu demonstrieren.

Zusätzlich enthält die Rahmenschrift dieser Doktorarbeit zwei Erweiterungen für
den bayesschen Ansatz, die in den Artikeln 2 und 3 nicht behandelt wurden: (1) die
Verwendung von Copulas für die Implementierung von korrelierten Beobachtungen
und (2) die Verwendung von M-Schätzern, um eine Ausgleichsprozedur zu erhal-
ten, die robust gegen Ausreißer ist und keine Annahmen über die Verteilung der
Ausreißer benötigt.
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1 Introduction

Collecting data is an important part of each modeling procedure. Due to the fact
that information often originates from different sources, collected data is unavoida-
bly of varying quality. If only the point estimators of observations are considered,
known constraints such as the conservation laws of mass and energy are frequently
violated. Considering also the uncertainties of these point estimators, data recon-
ciliation (DR) can be applied to statistically adjust contradicting observations by
using redundant information.

Since the first publication on DR in the context of process optimization (Kuehn
and Davidson, 1961), a variety of techniques has been developed to deal with these
problems. For a comprehensive review see Narasimhan and Jordache (2000); Ro-
magnoli and Sanchez (2000); Bagajewicz (2010). Most of the proposed methods
are based on a weighted least squares minimization of the measurement adjust-
ments subject to constraints involving observed (measured or estimated) variables,
unobserved variables and fixed quantities. This classical approach, based on the as-
sumption that the observation errors are normally distributed with zero mean and
known variance, has also been implemented in STAN, a freely available software
that supports MFA and enables the consideration of uncertain data under nonlinear
constraints (Cencic and Rechberger, 2008). The calculation algorithm of STAN al-
lows to make use of redundant information to reconcile uncertain “conflicting” data
(with DR) and subsequently to compute unknown variables including their uncer-
tainties (with error propagation) (Cencic, 2016). For more detailed information
about the software, visit the website www.stan2web.net.

In scientific models in general and in MFA models in particular, however, data is
often known to be not normally distributed. If, for instance, a process model is
correct (i.e. there are no model uncertainties), mass flows cannot take negative
values, and mass fractions and transfer coefficients 1are restricted to the unit in-



2 1 Introduction

terval. Another example is provided by expert opinions that frequently have to
be relied on in MFA due to missing data. These opinions are often modeled by
uniform, triangular or trapezoidal distributions, depending on the expert’s know-
ledge about the quantity under consideration. And finally, if a sufficient number of
measurements of the quantity is available, either a parametric model can be fitted,
or a nonparametric model such as the empirical distribution function or the kernel
estimate can be used.

Therefore, an alternative approach to DR based on Bayesian reasoning was deve-
loped that is able to perform DR with arbitrarily distributed input data (Cencic
and Frühwirth, 2015, 2018). The goal of this work is to deliver a methodology to
be able to compare the results from the classical approach, using the assumption
of normally distributed data, to those of the Bayesian approach, using arbitrary
pdfs.

Note that in this thesis pdfs are used to express the uncertainties of variables.
Thus, probabilistic DR is covered only. For a possibilistic approach to DR, where
the uncertainties of variables are expressed with membership functions (fuzzy sets)
instead, see Dubois et al. (2014); Dzubur et al. (2017).

1A transfer coefficient describes the percentage of the input of a process that is transferred to
a certain output flow.
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Remark: Because the notations used in the three papers of this doctoral thesis
(Cencic, 2016; Cencic and Frühwirth, 2015, 2018) are slightly different (e.g. accents
of variables), it was necessary to unify them in this summary in order to be able
to give a consistent overview of the used methods and to show the connections
between them.

2.1 Error Model

Observations are subject to observation errors that are of random or systematic
nature. The respective error model can be written as

x̃ = µx + ϵ+ δ, (2.1)

where x̃ is the vector of observations, µx is the vector of true values of the observed
variables x, ϵ is the vector of random errors (with expectation E(ϵ) = 0) and δ is
the vector of measurement biases.

In the following, it is assumed that δ = 0, i.e. the observations are free of systematic
errors. How to deal with gross errors (δ ̸= 0), see sections 2.2.4 and 2.3.4.

2.2 Weighted Least Squares Approach to DR

If the observation errors ϵ are assumed to be normally distributed with zero mean
and known joint covariance matrix,

ϵ ∼ N (0,Qx̃), (2.2)
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the best estimates x̂ of the true but unknown values µx of the observed variables
x can be found by minimizing the objective function

J(x) = (x− x̃)TQ−1
x̃ (x− x̃) (2.3)

with respect to x, subject to the constraints

G(y;x; z) = 0. (2.4)

x is the vector of observed variables, y is the vector of unobserved variables and z

is the vector of fixed (nonrandom) quantities.

2.2.1 Linear Constraints

If Eq. (2.4) is a set of linear constraints, the system of equations can be written
as

G(y;x; z) = By +Ax+Cz = 0,

= By +Ax+ c = 0,
(2.5)

where A, B and C are coefficient matrices, which, in the linear case, contain only
fixed entries. c is a vector of aggregated fixed quantities.

If by transformation of the linear equality constraints at least one equation can be
found that contains no unknown but at least one observed variable, DR can be
performed to improve the accuracy and precision of the observations.

To eliminate unobserved variables from the DR problem, Madron (1992) proposed
to apply a Gauss-Jordan elimination to the coefficient matrix (B,A, c) 1 of the
linear constraints to get its canonical form (= reduced row echelon form, RREF).
After reordering the columns of the resulting matrix and the corresponding rows of

1The comma (semicolon) denotes horizontal (vertical) concatenation of vectors and matrices
(Matlab convention).
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the variable vector, the initial system of constraints

(
B A c

)
y

x

1

 = 0 (2.6)

can be written as



I O O O E1 E2 e

O I F0 O F1 F2 fu

O O O I D1 O d

O O O O O O fz

O O O O O O O





yo

yu1

yu2

xr1

xr2

xn

1


= 0. (2.7)

The structure of the resulting matrix in Eq. (2.7) simplifies the reconciliation pro-
cedure and provides useful information for variable classification.

Given that all elements of Eq. (2.7) exist

• yo are “observable” unknown variables that can be computed from the con-
straints.

• yu1 and yu2 are “unobservable” unknown variables that cannot be computed
from the constraints.

• xr1 and xr2 are “redundant” observed variables. Each of these variables
could be computed from the rest of the redundant observations if its value
was missing. Thus, it would become an observable unknown variable.

• xn are “nonredundant” observed variables. None of these variables could be
computed from the rest of the observations if its value was missing. Thus, it
would become an unobservable unknown variable.
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• F0 is a matrix where each row contains at least one nonzero element. Zero
columns in F0 indicate that the corresponding unobserved variables are not
included in the constraints.

• D1 is a matrix where each column contains at least one nonzero element.

• E1, E2, F1 and F2 are matrices with arbitrary content. Zero columns in
matrix (E2;F2) indicate that the corresponding redundant observed variables
are not included in the constraints.

• e, fu and d are column vectors with arbitrary content.

• fz is a scalar that is either 0 or 1.

Zero rows at the bottom of the matrix exist if

• the given constraints included dependent equations that have been eliminated
during the Gauss-Jordan elimination procedure,

• there are given/transformed constraints containing constant noncontradicting
input data only.

If the constant input data violate given/transformed constraints, fz = 1. In this
case, the respective contradictions have to be resolved before being able to solve
the system of equations, resulting in a zero row with fz = 0.

In all cases, zero rows can be ignored because they have no influence on the solution
of the equation system.

The remaining equations can then be written as

yo +E1xr2 +E2xn + e = 0, (2.8)
yu1 + F0yu2 + F1xr2 + F2xn + fu = 0, (2.9)

xr1 +D1xr2 + d = 0. (2.10)

Eq. (2.10) is a set of equations, containing observed variables and fixed quantities
only, which is normally not satisfied by the observations. However, it can be used
to adjust the observations by DR. Note that Eq. (2.10) is free of nonredundant
observed variables xn. That is the reason why xn is not adjusted during DR
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provided that the observations xr and xn are not correlated.

Eq. (2.9) represents a set of equations that cannot be solved because each involved
equation contains at least two unobservable variables, one from yu1 and least one
from yu2 .

Eq. (2.8) is a set of equations that can be used to compute the observable variables
yo.

Note that yo is a function of xr2 and xn, and xr1 is a function of xr2 only. Thus,
in section 2.3, (xr2 ;xn) is denoted as the vector of free observed variables w of the
equation system, and xr1 as the vector of dependent observed variables u.

For the sake of simplicity, we assume in the following that y = (yo;yu1 ;yu2) and
x = (xr1 ;xr2 ;xn) = (u;w), i.e. the entries of y and x are already in the right
order to reach the structure of the matrix in Eq. (2.7) without having to reorder
any columns after the Gauss-Jordan elimination. Additionally, the classification of
the observed variables will be ignored even if it could be exploited to accelerate the
computation.

By removing the unobservable variables yu1 and yu2 from the variable vector, and
deleting the corresponding rows and columns of the coefficient matrix in Eq. (2.7)
(by deleting columns 2 and 3, and row 2), the constraints can be rewritten as

 I E e

O D d



yo

x

1

 = 0. (2.11)

with E = (O,E1,E2) and D = (I,D1,O).

Eq. (2.10) then becomes

Dx+ d = 0. (2.12)

The result of minimizing the objective function (Eq. (2.3)) subject to the now
reduced set of constraints (Eq. (2.12)) can be found by using the classical method
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of Lagrange multipliers (solved first in Kuehn and Davidson (1961)):

x̂ = x̃−Qx̃D
T(DQx̃D

T)−1(Dx̃+ d) (2.13)

The best estimates of the observable unknown variables ŷo can then be calculated
from Eq. (2.8):

ŷo +Ex̂+ e = 0 (2.14)

The variance-covariance matrices Qx̂ of the reconciled observations x̂, and Qŷo of
the best estimates ŷo of the observable unknown variables can be computed by
error propagation from Eqs. (2.13) and (2.14) leading to

Qx̂ = (I −Qx̃D
T(DQx̃D

T)−1D)Qx̃, (2.15)
Qŷo = EQx̂E

T. (2.16)

The complete variance-covariance matrix of all estimated variables can be written
as

Q =

 Qŷo −EQx̂

−Qx̂E
T Qx̂

 . (2.17)

Fully worked examples can be found in Brunner and Rechberger (2016, section 2.3).

2.2.2 Nonlinear Constraints

Nonlinear DR problems that contain only equality constraints can be solved using
iterative techniques based on successive linearization and analytical solution of the
linear reconciliation problem (Narasimhan and Jordache, 2000).

If Eq. (2.4) is a set of nonlinear constraints, a linear approximation can be obtained
from a first order Taylor series expansion:

G(y;x; z) ≈ Jy(ŷ; x̂; z)(y − ŷ) + Jx(ŷ; x̂; z)(x− x̂) +G(ŷ; x̂; z) = 0 (2.18)
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This can be written as

(
B A c

)
y − ŷ

x− x̂

1

 = 0, (2.19)

where A and B are the Jacobi matrices Jx = ∂G/∂x and Jy = ∂G/∂y, respecti-
vely, and c is the vector of the residuals of the equality constraints G, all evaluated
at the expansion point (ŷ; x̂; z).

The only differences to the linear case (Eq. (2.6)) are:

• the variable vector contains the differences to the expansion point instead of
the variable values themselves,

• the entries of A, B and c may also contain functions of variables (evaluated
at the expansion point), in contrast to only constant entries in the case of
linear constraints.

Because of the latter, the solution must be found iteratively.

Applying the same procedure as described in section 2.2.1, the reduced constraints
can be written as

(yo − ŷo) +E(x− x̂) + e = 0, (2.20)
D(x− x̂) + d = 0. (2.21)

The solution of minimizing the objective function (Eq. (2.3)) subject to the reduced
set of constraints (Eq. (2.21)) can again be found by using the classical method of
Lagrange multipliers:

x̂i+1 = x̃−Qx̃Di
T(DiQx̃Di

T)−1(Di(x̃− x̂i) + di) (2.22)

The best estimates of the observable unknown variables yo can be computed from
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Eq. (2.20):

ŷo,i+1 = ŷo,i −Ei(x̂i+1 − x̂i)− ei (2.23)

In the first iteration, the observations x̃ are taken as initial estimates x̂1. If there
are also unobserved variables, an educated guess of the initial estimates ŷo,1 has
to be provided by the user. Alternatively, e.g. the constraint consensus met-
hod (Chinneck, 2004) can be employed to find proper starting values for unobserved
variables.

If the new estimates x̂i+1 and ŷo,i+1 are significantly different from the previous es-
timates x̂i and ŷo,i, respectively, another iteration is performed by re-expanding the
nonlinear constraints at the updated expansion point (ŷ; x̂; z) (see Eq. (2.18)). Note
that the new ŷ also contains the initial estimates of the unobservable unknown vari-
ables ŷu. As soon as convergence is reached, the procedure is stopped and the com-
plete variance-covariance matrix is computed from Eqs. (2.15), (2.16) and (2.17),
as in the linear case.

A fully worked example can be found in Cencic (2016).

2.2.3 Correlated Observations

In the case of normally distributed measurement errors, correlations between the
observations x̃ can be easily introduced by modifying their joint covariance matrix
Qx̃.

If the correlation matrix R is given, the corresponding covariance matrix Qx̃ can
be computed from

Qx̃ = diag(σx̃)R diag(σx̃), (2.24)

where diag(σx̃) is a diagonal matrix constructed from the vector of standard devi-
ations of the observations.
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2.2.4 Gross Error Detection

Beyond their statistical uncertainty, the observations may also be corrupted by
gross errors δ such as biased observations or faulty readings. If these gross errors
are not detected and eliminated or at least down-weighted, the reconciled values
will be biased.

If the observations follow normal distributions, there are various test statistics with
known distribution under the null hypothesis of no gross errors. These can be used
for detecting or identifying corrupted observations. For instance, the mere presence
of gross errors can be detected by a test on the global chi-square statistic (Almasy
and Sztano, 1975; Madron et al., 1977). In Tamhane and Mah (1985), two tests
were discussed that identify the contaminated observation(s) so that they can be
removed from the reconciliation process, the nodal test and the measurement test
(see also Madron (1992)). Instead of identifying and removing observations with
gross errors, the approach taken by robust methods is to give them smaller weight or
larger variance during reconciliation. In Johnston and Kramer (1995), a maximum
likelihood rectification technique was proposed that is closely related to robust
regression. The use of M-estimators in general and of redescending M-estimators in
particular has been discussed extensively in the literature, see e.g. Arora and Biegler
(2001); Özyurt and Pike (2004); Hu and Shao (2006); Llanos et al. (2015). Finally,
the methods proposed in Alhaj-Dibo et al. (2008); Yuan et al. (2015) describe
simultaneous reconciliation and gross error detection based on prior information
about the distribution of the gross errors.

For comprehensive reviews on gross error detection techniques with illustrative
examples, see Narasimhan and Jordache (2000); Romagnoli and Sanchez (2000);
Bagajewicz (2010).

2.3 Bayesian Approach to DR

In the context of MFA, in most cases, the precise but unknown true value of a
quantity of interest is to be estimated (e.g. the mass of residual solid waste produ-
ced in Austria in the year 2016). The respective uncertainty of this estimator is of
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epistemic nature (in contrast to aleatory variability) because it could be reduced
if more information were available. Often, the assumption of normally distributed
observation errors is not justified (e.g. mass flows, for instance, cannot take nega-
tive values, and mass fractions and transfer coefficients are restricted to the unit
interval). The more information about the quantity of interest is available, the
better the shape of the pdf of the estimator can be modeled. If a sufficient number
of observations of the quantity is available, either a parametric model can be fitted,
or a nonparametric model such as the empirical distribution function or the kernel
estimate can be used.

If no observation is available, expert opinions are often used instead to restrict the
possible location of the true value of a quantity of interest. These opinions are
frequently modeled by uniform, triangular or trapezoidal distributions, depending
on the expert’s knowledge about the quantity under consideration.

As the objective function in Eq. (2.3) uses only the first two moments of the distri-
butions, in all of the above mentioned cases, it is not possible to take into account
the complete information contained in the joint pdf of the observations. Conse-
quently, the reconciliation problem cannot be fully solved by minimizing an ob-
jective function of this form. Only in the case of linear constraints, the constrained
least-squares estimator is unbiased and a linear function of the observations, and
therefore gives the correct mean and covariance matrix of the reconciled values.
Their distribution, however, is not known, and it is not possible to compute quan-
tiles or higher moments such as the skewness.

This problem was solved in Cencic and Frühwirth (2015) by a Bayesian method
that gives the joint (posterior) distribution of the reconciled variables under linear
constraints for arbitrary continuous (prior) distributions of the observations. In
Cencic and Frühwirth (2018), the method was extended to nonlinear constraints.

The main idea of this approach is to restrict the joint prior probability distribu-
tion of the observed variables with model constraints to get their joint posterior
probability distribution. Thus, the posterior distribution is the prior distribution
conditional on the constraints, and not on observed data (which are already part
of the prior distribution).
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Example 1: Let us assume that there are three observed variables x1, x2 and x3

with the prior density f(x1, x2, x3) defined on R3. The constraint equation x3 =

0.2x1x2 defines a surface in R3. If the prior density is restricted to points in this
surface and normalized to 1, the joint posterior density of x1, x2, x3 is obtained. By
computing the marginal distributions of the posterior we get the posterior densities
of x1, x2 and x3, respectively.

Figure 2.1 shows an instance of this problem, with x1, x2, x3 independent, f1(x1) =

γ(x1; 2, 2), f2(x2) = γ(x2; 3, 1.5) and f3(x3) = γ(x3; 6, 1.7), where γ(x; a, b) is the
density of the gamma distribution with parameters a and b:

γ(x; a, b) =
xa−1 e−x/b

ba Γ(a)

The values of f(x1, x2, x3) are shown color-coded. �

Notes: (1) The Bayesian approach also allows to consider inequality constraints by
introducing slack variables. For instance, the inequality constraint x1 ≤ f(x2, x3)

can be transformed into the equality constraint x1 + xS = f(x2, x3) with a slack
variable xS ≥ 0, which is assumed to have a proper or an improper prior enforcing
positivity. (2) If multiple observations (priors) of the same quantity are available,
additional equality constraints have to be added stating that the posteriors of the
observations have to be identical. (3) While in the classical weighted least squares
approach only the point estimators of true values are reconciled, in the Bayesian
approach the complete pdfs are taken into account.

As shown in section 2.2.1, the nx observed variables x can be split into nw free
variables w and nu dependent variables u. The nyo observable variables yo and
the dependent observed variables u can then be expressed as functions of the free
variables w:

yo = k(w) (2.25)
u = h(w) (2.26)

In Cencic and Frühwirth (2018) it was shown that the posterior density of the free



14 2 Methodology

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Marginal density of x
1

x
1

 

 

µ=5.5
σ=2.5

prior
posterior

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Marginal density of x
2

x
2

 

 

µ=7.1
σ=2.8

prior
posterior

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Marginal density of x
3

x
3

 

 

µ=7.2
σ=2.9

prior
posterior

Figure 2.1: Visualization of the densities in Example 1. Top left: prior density f(x1, x2, x3). Top
right: prior density f(x1, x2, x3) on the surface x3 = 0.2x1x2. Bottom: observed
(prior, blue) and reconciled (posterior, red) densities of x1, x2, x3.

variables w can be written as

π(w) =
f(h(w),w)V (w)∫

W

f(h(w),w)V (w) dw
, (2.27)

where W is the domain of the free variables w, f(u,w) is the joint prior density
of the observed variables, and V (w) dw = dS(w) is a differential element of the
constraint manifold S defined by Eq. (2.26). S is of dimension nw and can thus be
a curve, a surface, a volume, or a hypervolume.
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V (w) can be computed from

V (w) =
√

|I +HTH|, (2.28)

where H is the Jacobian of the function h,

H(w) =
∂h(w)

∂w
, (2.29)

and I +HTH is the metric tensor of the induced metric in S (O’Neill, 1983).

If the observed variables are independent, their joint prior density factorizes into
the marginal densities fu(u) and fw(w), and the posterior density of w is equal
to

π(w) =
fu(h(w)) fw(w)V (w)∫

W

fu(h(w)) fw(w)V (w) dw
. (2.30)

The reason why it is not possible to state the posterior distribution π(x) of all
observed variables explicitly is demonstrated by the following example: Let us as-
sume there are two measured variables x1 and x2, with given joint prior distribution
f(x1, x2), which have to obey the constraint x2 = h(x1). The constraint can be vi-
sualized as a 1-dimensional cut of the 2-dimensional density f(x1, x2). Taking the
cut as a new 1-dimensional coordinate system, there exists a posterior density along
this cut. But, because the cut has no area, there is no posterior density defined
with respect to the original 2-dimensional coordinate system, which is denoted as
singular pdf. However, the 1-dimensional posterior density along the cut can be
transformed into a corresponding pdf with respect to a different 1-dimensional re-
ference system (the one of the so called free variable), which in our case could be
the x1-axis or the x2-axis of the originally given 2-dimensional reference system.
Note that in this example it is completely arbitrary which variable to choose as the
free variable, provided the transformation is done correctly by taking into account
the metric structure, i.e., the arc length of the curve as a function of x1 or x2.

The explicit calculation of the posterior density in Eqs. (2.27) and (2.30) can be
avoided by generating a random sample from the posterior distribution by means
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of Markov chain Monte Carlo (MCMC) methods (Robert and Casella, 2004; Liu,
2004; Brooks et al., 2011). This has two advantages: 1. the normalization constant
(= denominator of Eqs. (2.27) and (2.30)) is irrelevant; 2. the corresponding sam-
ple values of the dependent variables yo and u can be computed by Eqs. (2.25)
and (2.26). It is therefore straightforward to estimate posterior marginals, expec-
tations, variances and covariances of all variables from the full sample.

The first MCMC sampling algorithm was presented in Metropolis et al. (1953),
which was generalized later in Hastings (1970). Its goal is to get a large representa-
tive sample from a posterior distribution π(w) that cannot be sampled directly or
whose normalizing constant is not known. The requirements for this sampler are

• a function proportional to the posterior (in our case the numerator of Eqs. (2.27)
and (2.30)), which can be evaluated at any point w,

• a proposal density p(wtarget|wsource) = p(wtarget −wsource) to suggest where
to go next, which can also be evaluated at any point w, and from which
random vectors can be generated.

The proposed position ẇ (= wtarget), which depends on the current position wi (=

wsource) in the chain, is accepted with a certain probability α(wi, ẇ), i.e. if a uniform
random number drawn from the unit interval is smaller than or equal to

α(wi, ẇ) = min

(
1,

π(ẇ) p(wi|ẇ)

π(wi) p(ẇ|wi)

)
. (2.31)

Otherwise, the current position wi is appended to the sample instead.

In Cencic and Frühwirth (2015) it was argued that the sampler best suited to the
context of DR is the independence sampler (Chib and Greenberg, 1995; Liu, 1996;
Brooks et al., 2011), in which the proposal values ẇ are drawn from a proposal
density p(w) independent of the current position . The acceptance probability of
the sampler is given by

α(wi, ẇ) = min

(
1,

π(ẇ) p(wi)

π(wi) p(ẇ)

)
. (2.32)
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In the case of independent observations, this is equivalent to

α(wi, ẇ) = min

(
1,

fu(h(ẇ)) fw(ẇ)V (ẇ) p(wi)

fu(h(wi)) fw(wi)V (wi) p(ẇ)

)
. (2.33)

Note that the normalizing constant of π(w) cancels in Eqs. (2.31), (2.32) and (2.33),
so there is no need to compute it. If the proposal density is chosen as p(w) = fw(w),
Eq. (2.33) reduces to

α(wi, ẇ) = min

(
1,

fu(h(ẇ))V (ẇ)

fu(h(wi))V (wi)

)
. (2.34)

In the general case of correlated observations, the acceptance probability has to be
computed according to Eq. (2.32), with a suitable proposal density p(w).

2.3.1 Linear Constraints

Using w and u instead of x, Eq. (2.7) can be rewritten as

G(y;u;w) =

I O E e

O I D d



yo

u

w

1

 = 0, (2.35)

with E = (E1,E2), D = (D1,O), u = xr1 and w = (xr2 ;xn).

Due to the Gauß-Jordan elimination, the observable unknown variables yo, which
are linear functions of w only, are eliminated from the DR problem, simplifying the
constraints to

u = h(w) = −Dw − d. (2.36)

The observable unknown variables can be computed from

yo = k(w) = −Ew − e. (2.37)
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Thus, for any given w the corresponding u and yo can be computed from Eqs. (2.36)
and (2.37), which is prerequisite for the Bayesian approach.

In the case of linear constraints, V (w) is a constant and cancels in the posterior
densities defined in Eqs. (2.27) and (2.30).

Fully worked examples can be found in Cencic and Frühwirth (2015).

2.3.2 Nonlinear Constraints

If the explicit computation of the dependent variables yo and u as functions of the
chosen free variables w (see Eqs. (2.25) and (2.26)) is not feasible, the solution has
to be computed by numerical methods. The algorithms that can be employed to
this purpose fall into two categories. Algorithms in the first category use gradient
information, algorithms in the second category do not, i.e. are gradient-free. A
typical example of the first category is the Newton-Raphson algorithm.

Adapting Eq. (2.35) for nonlinear constraints yields

G(y;u;w) ≈

 I O E e

O I D d




yo − ŷo

u− û

w − ŵ

1

 = 0. (2.38)

For given w, the corresponding yo and u are to be computed. With initial educated
guesses ŷo and û, and the choice ŵ = w, Eq. (2.38) reduces to

(yo − ŷo) + e = 0, (2.39)
(u− û) + d = 0, (2.40)

leading to the update equations

ŷo,i+1 = ŷo,i − ei, (2.41)
ûi+1 = ûi − di. (2.42)
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If ŷo,i+1 and ûi+1 are significantly different from ŷo,i and ûi, respectively, another
iteration is performed with re-expanding the nonlinear constraints at the updated
expansion point (ŷ; x̂; z) = (ŷ; û; ŵ; z) as described in section 2.2.2. Note that the
new ŷ also contains the initial estimates of the unobservable unknown variables ŷu.
Convergence is guaranteed only if the initial ŷ1 and û1 are sufficiently close to the
final solution.

Note that, in this context, the finally found ŷ, û and ŵ are not estimated parame-
ters of distributions, as in chapter 2.2.1 and 2.2.2, but a set of numbers complying
with the constraints. Thus, for any given w the corresponding u and y can be
computed by this iterative procedure, which is prerequisite for the Bayesian appro-
ach.

If the Newton-Raphson iteration (or any other gradient-based method) fails to
converge, a gradient-free approach can be applied. For example, the objective
function

J(y;u) = ∥G(y;u;w)∥2 (2.43)

can be minimized for given w with respect to y and u by the simplex algo-
rithm (Nelder and Mead, 1965).

Gradient-based methods need an initial expansion point, gradient-less methods
need a starting point. For a dependent observed variable the natural choice is the
mode of the prior distribution of the variable. If there are unobserved variables,
an educated guess of the starting point should be sufficient to find the correct
solution by the simplex algorithm. Alternative methods such as the constraint
consensus method (Chinneck, 2004) can also be employed to find starting values
for unobserved variables. The simplex algorithm is less sensitive to the starting
point than gradient-based methods, as it is possible to leave a local minimum by
restarting the search with a sufficiently large initial simplex.

The application of the independence sampler additionally requires the compu-
tation of H = ∂u/∂w to derive V (w), which is part of the posterior density
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(see Eqs. (2.27) and (2.30)). It follows from Eq. (2.38) that

H = −D. (2.44)

Example 2: The example in Figure 2.2 shows a splitting process with one input
and two output flows. All variables, three mass flows and two transfer coefficients,
are measured (n = nx = 5). The constraints are the mass balance of the process
and two transfer coefficient equations (nc = 3):

x1 = x2 + x3

x2 = x1t2

x3 = x1t3

The observations are assumed to be independent with the following prior distribu-
tions:

x1 ∼ Trap(80, 90, 110, 120)
x2 ∼ Tria(40, 60, 80)
x3 ∼ Unif(30, 50)
t2 ∼ Unif(0.5, 0.7)
t3 ∼ Unif(0.3, 0.5)

Unif(a, b) denotes the uniform distribution in the interval [a, b], Tria(a, b, c) de-
notes the triangular distribution in the interval [a, c] with maximum at b, and
Trap(a, b, c, d) denotes the trapezoidal distribution in the interval [a, d] that is uni-

Figure 2.2: Flowsheet of Example 2.3 with three flows and one processes.
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form in [b, c].

For this simple example, u = h(w) can be written in closed form. If e.g. w =

(x3; t3) is selected as the nw = n− nc = 5− 3 = 2 free variables, u = (x1;x2; t2) =

h(w) becomes

u =


x1

x2

t2

 =


x3/t3

x3/t3 − x3

1− t3

 .

Note that not all choices of w lead to a feasible solution for the dependent variables:
e.g. w = (t2; t3) leads to u = (x1;x2;x3) = (0; 0; 0).

V (w) can be derived from Eq. (2.28):

H(w) =
∂h(w)

∂w
=


∂x1

∂x3

∂x1

∂t3

∂x2

∂x3

∂x2

∂t3

∂t2
∂x3

∂t2
∂t3

 =


1
t3

− x3

t32

( 1
t3
− 1) − x3

t32

0 −1


V (w) =

√
|I +HTH| =

√
(3x3

2 + 4t3
4 − 4t3

3 + 4t3
2)/t3

4

Because the analytical computation of V (w) gets laborious pretty fast even for
small models, the numerical solution is often to be preferred:

The Taylor series expansion of the original constraints leads to


1 −1 0 −1 0 x̂1− x̂2− x̂3

−t̂2 1 −x̂1 0 0 x̂2 − x̂1t̂2

−t̂3 0 0 1 −x̂1 x̂3 − x̂1t̂3





x1 − x̂1

x2 − x̂2

t2 − t̂2

x3 − x̂3

t3 − t̂3

1


=


0

0

0

 .
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After the Gauss-Jordan elimination, these constraints can be written as


1 0 0 − 1

t̂3

x̂1

t̂3

x̂3−t̂3x̂1

t̂3

0 1 0 t̂3−1
t̂3

x̂1

t̂3

t̂3x̂2−x̂3+t̂3x̂3

t̂3

0 0 1 t̂2+t̂3−1
t̂3x̂1

− t̂2−1
t̂3

x̂3(t̂2+t̂3−1)

t̂3x̂1





x1 − x̂1

x2 − x̂2

t2 − t̂2

x3 − x̂3

t3 − t̂3

1


=


0

0

0

 ,

(
I D d

)
u− û

w − ŵ

1

 = 0.

Note that normally the Gauss-Jordan elimination is performed numerically. For
comparison reasons, here it was done analytically.

Using the Newton-Raphson algorithm, the corresponding u for given w are compu-
ted iteratively via update equation Eq. (2.42). After convergence, the constraints
can be written as


1 0 0 − 1

t̂3

x̂3

t̂32
0

0 1 0 t̂3−1
t̂3

x̂3

t̂32
0

0 0 1 0 1 0





x1 − x̂1

x2 − x̂2

t2 − t̂2

x3 − x̂3

t3 − t̂3

1


=


0

0

0

 .

Comparing the result with the analytical derivation of H(w)), it can be seen that
H(w) = −D, as stated in Eq. (2.44).

By using the independence sampler, a sample W = (w1,w2, . . . ,wL) of size L is
drawn from the posterior distribution of the free variables w. The corresponding
sample U = (u1,u2, . . . ,uL) of the dependent variables u is computed by using
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Figure 2.3: Priors and smoothed marginal posteriors of x1, x2, x3, t2, t3 in Example 2

Eq. (2.26). Figure 2.3 shows the smoothed2marginal posterior densities with their
means and standard deviations. The latter are estimated from the posterior sample
and are given with a precision that is commensurate with their standard error. �

Other worked examples can be found in Cencic and Frühwirth (2018).

2We have used the function smooth in the Matlab Curve Fitting Toolbox.
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2.3.3 Correlated Observations

In the case of normal observations, correlations between the observed variables can
be introduced by modifying their joint covariance matrix. In the nonnormal case,
the standard way of imposing correlations on observations with given marginal
distributions is via a copula.

A function C : [0, 1]d → [0, 1] is called a d-dimensional copula if it is the joint
cumulative distribution function (cdf) of a d-dimensional random vector on the
unit hypercube [0, 1]d with uniform marginals (Nelsen, 2006). In the following, the
Gaussian copula CG(ξ;R) with ξ ∈ [0, 1]d and correlation matrix R is used. Its
density cG is given by

cG(ξ;R) =
1√

detR
exp

[
−1

2
Φ−1(ξ)T

(
R−1 − I

)
Φ−1(ξ)

]
, ξ ∈ [0, 1]d, (2.45)

where Φ−1 is the inverse distribution function of the d-dimensional standard normal
distribution.

In the general form of the posterior density (Eq. (2.27)), f(u;w) is the joint density
of all observed variables, which in the presence of correlations no longer factorizes
into the marginal densities of u and w (cf. Eq. (2.30)).

Let fk(xk) denote the prior marginal density of the (observed) variable xk and
Fk(xk) its cdf, where k = 1, . . . , nx. R is the assumed or estimated correlation
matrix of x. The following lemma shows how to compute the joint density function
of x and its correlation matrix.

Lemma. Assume that ξ is distributed according to the Gaussian copula CG(ξ;R)

and xk = F−1
k (ξk), k = 1, . . . , nx. Then:

(a) The joint density of x is equal to

g(x) = cG(F1(x1), . . . , Fnx(xnx);R)
nx∏
k=1

fk(xk) (2.46)

and the marginal density of xk is equal to fk(xk).
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(b) The joint correlation matrix of x is equal to R in first-order Taylor approxi-
mation.

Proof. Assertion (a) follows from the relations ξk = Fk(xk) and the transformation
theorem for densities:

g(x) = cG(ξ, . . . , ξnx ;R)

∣∣∣∣ ∂ξ∂x
∣∣∣∣

= cG(F1(x1), . . . , Fnx(xnx);R)
nx∏
k=1

fk(xk)

Assertion (b) can be proved by noting that the linear error propagation from ξ to
x has the following form:

Cov(x) = J Cov(ξ)JT, with J =
∂x

∂ξ
(2.47)

J is diagonal, which reduces the error propagation to a rescaling of the variables.
As correlation matrices are invariant under such a transformation, the correlation
matrix of x is equal to R in first-order approximation.

The simplest proposal density p(w) is the product of the marginal densities of the
free variables:

p(w) =
nw∏
k=1

fw,k(wk) (2.48)

The sampling algorithm is summarized in the box Algorithm 1.

Example 3: The modified sampler is illustrated using the linear model in Cencic
and Frühwirth (2015, Example 4.3) which has nine flows and four processes. Va-
riables x3 and x8 are unobserved. The other variables are modeled by lognormal
priors. The effect of setting ρ24 = 0.7, ρ56 = −0.4, ρ57 = −0.3, ρ67 = −0.6 is shown
in Figure 2.4. The posterior densities of x5 and x6 are significantly affected by the
correlations, whereas the other variables hardly change. �
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Figure 2.4: Priors and smoothed posterior marginals without and with correlations of all varia-
bles in Example 3. The improper priors of x3 and x8 cannot be shown.
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Algorithm IS-CO

IS-CO1. Set i = 1 and choose the sample size L.
IS-CO2. Generate the starting value w1 by drawing independent random num-

bers from the prior marginal distribution of the free variables and com-
pute u1 = h(w1), x1 = (u1;w1). If g(x1) = 0, repeat the procedure until
g(x1) > 0.

IS-CO3. Generate a proposal value ẇ by drawing independent random numbers
from the prior marginal distribution of the free variables and compute
u̇ = h(ẇ), ẋ = (u̇; ẇ).

IS-CO4. Compute the acceptance probability α:

α(wi, ẇ) = min

(
1,

g(ẋ)V (ẇ) p(wi)

g(xi)V (wi) p(ẇ)

)
, (2.49)

with g as in Eq. (2.46).
IS-CO5. Draw a uniform random number ξ ∈ [0, 1].
IS-CO6. If ξ ≤ α, accept the proposal and set xi+1 = ẋ; otherwise set xi+1 =

xi.
IS-CO7. Increase i by 1. If i < L, go to IS-CO3, otherwise stop sampling.

Algorithm 1: Independence sampler for correlated observations

2.3.4 Robust Reconciliation and Gross Error Detection

All the methods for gross error detection mentioned in chapter 2.2.4 have in common
that they rely explicitly or implicitly on the assumption of normally distributed
observations. In the case of nonnormal distributions, the distributions of residuals
or chi-square like statistics can in general no longer be computed explicitly, so
that tests based on these statistics are not feasible. However, it turns out that
M-estimators can be generalized to nonnormal and even asymmetric distributions,
leading to a reconciliation procedure that is robust against outlying observations
and does not require any prior assumptions on the distribution of the outliers.

In the case of normal observations, an M-estimator of location can be implemen-
ted as an iterated reweighted least-squares estimator (Hampel et al., 1986; Huber,
2004). The reweighting process is tantamount to rescaling or dilating the distribu-
tion of an outlying observation around its mean, which is also the mode and the
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median in the normal case. The dilation can be immediately generalized to non-
normal symmetric distributions, for instance Student’s t-distribution, the Laplace
distribution or the hyperbolic secant distribution, all of which fall off to zero less
rapidly than the normal distribution. In the case of unimodal, but asymmetric
distributions, however, the mode of the density is to be preferred over the mean as
the parameter of location (Dalenius, 1965; Porzio et al., 2015) and therefore as the
center of the dilation.3 This results in the following prescription for the dilation of
an unimodal distribution with density f(x) and mode m by a factor s:

fs(x) =
1

s
f(m+ (x−m)/s) (2.50)

The mode is invariant under the dilation, and the standard deviation is multiplied
by s. If the observation has to be positive, the dilated prior density can be truncated
and renormalized (see Figure 2.5). If the prior density is improper, as in the case of
a variable with only a positivity constraint, rescaling has no effect and is skipped.
The user is free to implement a different dilation algorithm or to refrain from
dilation altogether if suggested by the problem, especially if the distribution to be
dilated is not unimodal or confined to a finite interval. A typical example is the
Beta distribution which is confined to the interval [0, 1] and may have modes both at
0 and at 1, in which case it is difficult to come up with a reasonable prescription.

The scaling factor s should be larger than 1 for outlying observations, and equal
to or close to 1 for regular observations. In order to compute s, a measure of
distance between the prior and the posterior marginals of the observed variables is
introduced. In analogy to the normal case, the distance equals the difference of the
mean values, divided by the standard deviation of the prior:

ri =
Eprior[xi]− Eposterior[xi]

σprior[xi]
(2.51)

The weight wi (a number between 0 and 1) of observation i is calculated from
the distance ri. In the normal case, applying a weight w to an observation means
multiplying the prior standard deviation by 1/

√
w. The equivalent for a nonnormal

3If the density attains is maximal value in an entire interval, the mode is defined as the center
of the modal interval.
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Figure 2.5: Visualization of the dilation procedure: The original prior (blue line) is dilated
around the mode by factor s. The resulting dilated prior (red line) needs to be
normalized by dividing its density by s. The normalized dilated prior (green line) is
truncated at zero and renormalized (black line).

observation is to dilate its prior density by the factor s = 1/
√
w around the mode.

For the problem considered here, one of the redescending M-estimators propo-
sed in Frühwirth and Waltenberger (2008) has been used, because redescending
M-estimators are particularly insensitive to gross errors or extreme outliers (Shev-
lyakov et al., 2008). The weight function has been slightly modified to ensure that
w(0) = 1:

w(ri) =
φ(ri)

φ(ri) + φ(c)

φ(0) + φ(c)

φ(0)
(2.52)

In principle, the function φ(r) can be any symmetric standardized density function
with infinite support. If φ is the standard normal density, the weight function
decays to 0 very quickly with rising |r| (see Figure 2.6, dotted line). To avoid
this, φ has — somewhat arbitrarily — been chosen as the density of a Student-
t distribution with 4 degrees of freedom. The cut value c can be interpreted as
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a (fuzzy) boundary which discriminates between “good” and “bad”, or “inlying”
and “outlying” observations. The weight function w(|r|) with c = 2.5 is shown by
the full line in Figure 2.6. If necessary, the number of degrees of freedom can be
adapted to the problem at hand, or a different family of densities can be chosen.
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Figure 2.6: The weight function of Eq. (2.52) (full line) on a linear scale (left) and a logarithmic
scale (right). The weight function based on the standard normal density (dotted
line) is shown for comparison.

The sampler can be run as usual, but has to be iterated. After each run of the
sampler, the distances ri and the corresponding weights wi are recomputed, the
prior distributions are dilated accordingly, and the sampler is run again, until con-
vergence of the weights. Note that the distances (Eq. (2.51)) have to be computed
using the spread of the original, undilated prior.

Example 4: The robustified sampler is demonstrated on the linear model in Fi-
gure 2.7. The nonnormal priors of the five flows are as follows:

x1 ∼ Trap(160, 180, 190, 210)
x2 ∼ Trap(85, 105, 115, 135)
x3 ∼ Tria(145, 170, 195)
x4 ∼ Unif(70, 90)
x5 ∼ Unif(45, 65)



2 Methodology 31

where Trap(a, b, c, d) is the trapezoidal distribution with support [a, d] and modal
interval [b, c]. Tria(a, b, c) is the triangular distribution with support [a, c] and mode
b. Unif(a, b) is the uniform distribution with support [a, b].

Figure 2.7: Flowsheet of the simple model used to demonstrate robust reconciliation and gross
error detection.

The robustified sampler converges after three iterations, and the final weights are
between 0.99 and 1. The acceptance rate4 is 58%. Figure 2.8 shows the prior
and the reconciled (posterior) densities of the flows. If the prior distribution of
x2 is shifted by 50, the acceptance rate in the first iteration is only 2.5%, and
the posterior distributions are strongly biased by the gross error. The robustified
sampler estimator converges after 22 iterations, with a final acceptance rate of 63%.
The weight of x2 is 0.12, the other weights are between 0.98 and 1. Figure 2.9 shows
the prior and the reconciled (posterior) densities of the flows. Note that the prior
density of x2 is dilated by a factor of about 3, whereas the other priors are hardly
changed. The posteriors are very similar to the posteriors in Figure 2.8.

If the prior distribution of x2 is shifted by 100, the acceptance rate is 0, and no
weights can be computed. If this is the case, the priors have to be approximated
by normal densities, and the final weights of the standard M-estimator are then
used as the initial weights of the robustified sampler. The results are shown in
Figure 2.10. The prior of x2 is dilated by a factor of about 15. Note that with a
shift of 100, x2 has a very small weight, so that the posteriors look more similar to
the posteriors without shift than with shift 50.

4Number of accepted proposed values in Markov chain in relation to sample size L.
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Figure 2.8: Priors and smoothed marginal posteriors of x1, . . . , x5.

The computation of the initial weights by the M-estimator with approximating
normal densities can also be used if the acceptance rate is not strictly 0, but small
enough to raise suspicion of a gross error. If the prior of x2 is shifted by 50, this
procedure gives virtually identical results, but the robustified sampler converges
much faster, after only three iterations. �
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Figure 2.9: Priors and smoothed marginal posteriors of x1, . . . , x5. The prior of x2 is shifted by
50. The dilated prior of x2 is also shown.
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3 Conclusions and Outlook

The classical weighted least squares approach to DR, which assumes normally dis-
tributed observation errors, poses the problem that only in case of linear constraints
the estimation errors of the adjusted observations are normally distributed again.
In case of nonlinear constraints, however, the normally distributed results gained
from linearization can differ substantially from the precise solution, especially if the
involved uncertainties are large. Additionally, in scientific models, the assumption
of normally distributed input data is often not justified.

Therefore, in Cencic and Frühwirth (2018), the Bayesian approach to DR for linear
constraints, presented in Cencic and Frühwirth (2015), was further developed and
extended to nonlinear constraints.

The advantages of the Bayesian approach are: First, arbitrary continuous pdfs can
be used to describe the uncertainty of the observations. Second, even nonparametric
estimators of the pdf are allowed, provided that it is possible to draw a random
sample from them. Third, not only means, variances and covariances of observed
and unobserved variables can be computed a posteriori, but also various other
characteristics of the marginal posteriors, such as the mode, skewness, quantiles,
and HPD intervals.

The main idea of the method is to restrict the joint prior probability distribution
of the observed variables with model constraints to get a joint posterior probability
distribution. The derived joint posterior of the free observed variables is sampled
by a MCMC method using the independence sampler, and the dependent variables
(observed and unobserved) are computed from this sample.

By construction, all individual elements of the Markov chain satisfy the constraints,
but the sample mean in the nonlinear case in general does not. If a representative
value of the posterior distribution satisfying the constraints is required, the element
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of the Markov chain with the smallest distance from the sample mean can be
selected. Possible distance measures are, among others, the L1, the L2 and the L∞

distance.

It was shown that, for nonlinear constraints, it is essential to consider the metric
of the constraint manifold. The posterior density derived in Cencic and Frühwirth
(2018) contains the term V (w) (Eq. (2.28)), which in the linear case is constant
and cancels. If V (w) is neglected in the nonlinear case, the posterior is no longer
invariant under the choice of the free variables.

For the Bayesian approach, in chapter 2.3.3 it was shown how to incorporate corre-
lated observations, and in chapter 2.3.4 how to perform robust gross error detection
with the help on redescending M-estimators. Note that both topics are not covered
in the three papers of this thesis.

In subsequent work, the Bayesian method will be applied to more extensive real life
examples in order to compare the results to alternative approaches such as classi-
cal weighted least squares, fuzzy sets (possibilistic approach to DR), and another
Bayesian approach that was published recently in Lupton and Allwood (2018).
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Notation

a parameter of a distribution

A coefficient matrix of observed variables

b parameter of a distribution

B coefficient matrix of unobserved variables

c parameter of a distribution

c vector of aggregated constant quantities

C copula

C coefficient matrix of constant quantities

cG probability density function of the Gaussian copula

CG cumulative distribution function of the Gaussian copula

d parameter of a distribution

d vector, which is a submatrix of RREF(B,A, c)

D submatrix of RREF(B,A, c)

dS differential element of the constraint manifold S

D1 submatrix of RREF(B,A, c)

e vector, which is a submatrix of RREF(B,A, c)

E expectation

E submatrix of RREF(B,A, c)

E1 submatrix of RREF(B,A, c)

E2 submatrix of RREF(B,A, c)

f distribution function

F cumulative distribution function

fs dilated distribution function
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fu joint prior density of dependent observed variables

fu vector, which is a submatrix of RREF(B,A, c)

fw joint prior density of free observed variables

fz scalar that is either 0 or 1

F0 submatrix of RREF(B,A, c)

F1 submatrix of RREF(B,A, c)

F2 submatrix of RREF(B,A, c)

g joint prior density of correlated observed variables

G vector of equality constraint equations

h vector of functions of free observed variables to compute dependent
observed variables

H partial derivatives of function h with respect to w

i counter of iterations

I identity matrix

J objective function to be minimized

J partial derivatives of x with respect to ξ

Jx partial derivatives of equality constraints G with respect to observed
variables x

Jy partial derivatives of equality constraints G with respect to unknown
variables y

k counter of observed variables

k vector of functions of free observed variables to compute observable
unknown variables

L sample size

L1 Manhattan distance

L2 Euclidean distance

L∞ Chebyshev distance

m mode

m vector containing one element of the Markov chain
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n number of variables

N normal distribution

nc number of independent equality constraint equations

nu number of dependent observed variables

nw number of free observed variables

nx number of observed variables

nyo number of observable unknown variables

O null matrix

p proposal density for MCMC algorithm

Q variance-covariance matrix of estimated observable unknown and re-
conciled observed variables

Qx̂ variance-covariance matrix of reconciled observed variables

Qx̃ variance-covariance matrix of observations of observed variables

Qŷo variance-covariance matrix of estimated observable unknown variables

r measure of distance between prior and posterior distribution

R correlation matrix

t transfer coefficient

s dilation factor

S constraint manifold; domain of the constraint manifold

u vector of dependent observed variables

V square root of the determinant of the metric tensor

w weight, a number in the interval [0, 1]

w vector of free observed variables

W domain of the free variables w

x observed variable

x vector of observed variables

xn vector of nonredundant observed variables

xr1 vector of dependent redundant observed variables
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xr2 vector of free redundant observed variables

y vector of unknown variables

yo vector of observable unknown variables; subset of y

yu1 vector of ’dependent’ unobservable unknown variables; subset of y

yu2 vector of ’free’ unobservable unknown variables; subset of y

z vector of constant quantities

0 null vector

Greek symbols:

α probability of acceptance

γ gamma distribution

Γ complete gamma function

δ vector of measurement biases of observed variables

ϵ vector of random errors of observed variables

µ mean value

µx vector of true values of observed variables

σ standard deviation

σ vector of standard deviations

φ symmetric standardized density function with infinite support

Φ−1 inverse distribution function of the multi-dimensional standard normal
distribution

ξ uniform random numbers in the interval [0,1]

ξ vector of uniform random numbers in the interval [0,1]

π joint posterior distribution

ρ correlation coefficient
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Superscripts:

~ measured/observed values

^ estimated values

· proposed values

Summary of unified notation:

Thesis Paper 1 Paper 2 Paper 3

d Arz

D Arx

e A∗
cz

E A∗
cx

fu fd

fw ff

G f

J F (x) F (x)

n N

nc K

nx n I

nyo o J ny

Qx̂ Qx

Qx̃ Q Σ

Qŷo Qy∗

u vd

w vf

ẇ ŵ

yo y∗ y y





Abbreviations

cdf cumulative distribution function
Cov covariance
DR data reconciliation
e.g. for example
i.e. that is; in other words
IS-CO independence sampler - correlated observations
MCMC Markov chain Monte Carlo
MFA material flow analysis
pdf probability density function
RREF reduced row echelon form
STAN software for subSTance flow ANalysis
Trap trapezoidal distribution function
Tria triangular distribution function
Unif uniform distribution function
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a b s t r a c t

STAN is a freely available software that supports Material/Substance Flow Analysis (MFA/SFA) under the
consideration of data uncertainties. It is capable of performing nonlinear data reconciliation based on the
conventional weighted least-squares minimization approach, and error propagation. This paper sum-
marizes the mathematical foundation of the calculation algorithm implemented in STAN and demon-
strates its use on a hypothetical example from MFA.
© 2016 Chinese Institute of Environmental Engineering, Taiwan. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

Material flow analysis (MFA) is a systematic assessment of the
flows and stocks of materials within a system defined in space and
time [1]. Due to the fact that direct measurements are scarce for
macro-scale MFA (e.g., regions, countries), additional data are often
taken from other sources of varying quality such as official statis-
tics, reports or expert estimates [2]. Because all these sources are
subject to uncertainties, practitioners are frequently confronted
with data that are in conflict with model constraints. These con-
tradictions can be resolved by applying data reconciliation, a sta-
tistical method that helps to find themost likely values of measured
quantities. While most of the model constraints are linear (e.g.,
mass flow balances of individual processes), in some cases also
nonlinear equations (e.g., concentration or transfer coefficient
equations) are involved leading to nonlinear data reconciliation
problems.

A variety of techniques has been developed in the last 50 years
to deal with these problems. Most of them are based on a weighted
least squares minimization of the measurement adjustments sub-
ject to constraints involving reconciled (measured), unknown
(unmeasured) and fixed variables [3e5]. This approach is also

implemented in STAN (Fig. 1), a freely available software that
supports MFA/SFA (Substance Flow Analysis) and enables the
consideration of data uncertainties [6]. The calculation algorithm of
STAN allows to make use of redundant information to reconcile
uncertain “conflicting” data (with data reconciliation) and subse-
quently to compute unknown variables including their un-
certainties (with error propagation). For more detailed information
about the software, see appendix A or visit the website www.
stan2web.net.

In this paper, the mathematical foundation of the calculation
algorithm implemented in STAN is explained and its application
demonstrated on a hypothetical example from MFA. A detailed
description of the notation used in this paper can be found in
appendix B.

2. Example

As example, a simple model with seven mass flows and three
processes (Fig. 2) is investigated where the mass flows are repre-
sented by the variables m1 to m7. Additionally, a (nonconstant)
transfer coefficient tc34 is given defining how much of flow 3 is
transferred into flow 4.

The constraints of this model are the mass balances of the three
processes (linear equations f1 to f3) and the additional relation
between flow 3 and flow 4 defined by the transfer coefficient tc34
(nonlinear equation f4):
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f1 ¼ m1 þm2 þm4 �m3 ¼ 0;

f2 ¼ m3 �m4 �m5 ¼ 0;

f3 ¼ m5 �m6 �m7 ¼ 0;

f4 ¼ m4 �m3$tc34 ¼ 0:

Even though the nonlinearity in this example is marginal (only
equation f4 is nonlinear), it is sufficient to demonstrate the calcu-
lation procedure and the necessary preprocessing of the equation
system in the nonlinear case.

The measured variables m1, m3, m5 and tc34 are assumed to be
normally distributed specified by theirmeanvalues (measurements)
and standard errors, while variable m2 is assigned a constant value.
The variables m4, m6 and m7 are unknown. The respective values of
the variables are listed in Table 1 and displayed in Fig. 2.

Trying to compute the unmeasured values without considering
the uncertainties of the measurements, the following problems are
encountered:

Firstly, there are multiple ways to compute m4 with different
results. Calculated from the balance equation of process 1 (f1),
m4¼150, from the balance equation of process 2 (f2), m4¼140, or
from the transfer coefficient equation (f4),m4¼150. Because one of
the values is contradicting the others, it has to be checked if the
contradiction can be resolved by adjusting (reconciling) the
measured (uncertain) data, or if there are really conflicting constant
values involved in the problem.

Fig. 1. The user interface of software STAN.

Fig. 2. Flowsheet example with seven flows and three processes.

Table 1
List of available input data.

Variable name Measurement of
mass flow

Standard error
of measurement

m1 100 10
m2 50 0
m3 300 30
m4 ? ?
m5 160 16
m6 ? ?
m7 ? ?
tc34 0.5 0.05
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Secondly, there is not enough information given to compute m6
and m7. That does not look like a major issue but could prevent the
automatic computation of other unknown variables when using
linear algebra.

In the following the mathematical foundation of the nonlinear
data reconciliation algorithmwill be derived step by step and each
step immediately applied to the presented example.

3. Mathematical foundation

3.1. Theory (Part 1)

The general data reconciliation problem can be formulated as a
weighted least-squares optimization problem by minimizing the
objective function (Eq. (1)) subject to equality constraints (Eq. (2)).

FðxÞ ¼ ð~x� xÞTQ�1ð~x� xÞ; (1)

f ðy; x; zÞ ¼ 0: (2)

~x is the vector of measurements of random variables with the true
but unknownmean values mx. These measurements ~x are subject to
measurement errors ε (Eq. (3)), which are assumed to be normally
distributed with zero mean and known variance-covariance matrix
Q (Eq. (4)).

~x ¼ mx þ ε; (3)

ε � N ð0;Q Þ: (4)

x is the vector of reconciled (adjusted) measurements, which are
the best estimates of mx computed by data reconciliation (Eq. (5)). x
has to fulfill the model constraints.

x ¼ bmx: (5)

y is the vector of estimates of unknown (unmeasured) random
variables, and z is a vector of constant values.

Nonlinear data reconciliation problems which contain only
equality constraints can be solved by using iterative techniques
based on successive linearization and analytical solution of the
linear reconciliation problem [4]. In STAN even linear constraints
will be treated as if they were nonlinear. In these cases, the solution
will be found after two iterations.

A linear approximation of the nonlinear constraints can be ob-
tained from a first order Taylor series expansion of Eq. (2) at the
expansion point by; bx; z:
f ðy; x; zÞzJyðby; bx; zÞðy � byÞ þ Jxðby; bx; zÞðx� bxÞ þ f ðby; bx; zÞ ¼ 0;

(6)

or

f ðy; x; zÞz
�bJy bJ x bf �

0
@ y � by

x� bx
1

1
A ¼ 0: (7)

As the initial estimates bx of the reconciled measurements x the
measured values ~x are used. The initial estimates by of the unknown
values y have to be provided by the user. The Jacobi matrices Jy, Jx
(derivations of f with respect to the unknown and measured vari-
ables, respectively) and the vector of equality constraints f are

evaluated with respect to by; bx and z leading to bJy, bJ x and bf , where
the latter contains the constraints residuals.

Linearizing the nonlinear constraints and assuming the input
data to be normally distributed ensures the results of data recon-
ciliation to be also normally distributed. The limitations of this
approach are discussed in Section 4.

3.2. Example (Part 1)

Grouping the variables into unknown, measured and fixed
variables, y¼ (m4, m6, m7)T, x¼ (m1, m3, m5, tc34)T and
z¼ (m2)¼ (50). As initial estimates bx of the reconciled measure-
ments x, the measurements ~x themselves are taken:

bx ¼ ~x ¼ �
~m1; ~m3; ~m5;~tc34

�T ¼ ð100;300;160;0:5ÞT:
In this example, the standard errors of the individual mea-

surements are assumed to be 10% of the measured values. Because,
in general, the measurement errors are assumed to be indepen-
dent, i.e., there are no covariances, the variance-covariance matrix
Q has nonzero entries only in the diagonal, representing the
variance of the measurement errors. Therefore, the variance-
covariance matrix is

Q ¼

0
BB@

102 0 0 0
0 302 0 0
0 0 162 0
0 0 0 0:052

1
CCA:

The choice of the covariance matrix Q influences the results of
data reconciliation considerably. Thus, the measurement or esti-
mation error has to be determined as precisely as possible.

The initial estimates by of the unknown values y are computed
from f1 and f3 with

bm4 ¼ ~m3 � ~m1 � ~m2;

bm6 ¼ ~m7 ¼ ~m5

2
;

leading to

by ¼ ð bm4; bm6; bm7ÞT ¼ ð150;80;80ÞT:
The coefficient matrix

�
Jy Jx f

�
is evaluated with respect toby; bx and z with

f ¼

0
BB@

f1
f2
f3
f4

1
CCA ¼

0
BB@

m1 þm2 þm4 �m3
m3 �m4 �m5
m5 �m6 �m7
m4 �m3$tc34

1
CCA;

Jy ¼ vf
vy

¼

0
BBBBBBBBBBBBB@

vf1
vm4

vf1
vm6

vf1
vm7

vf2
vm4

vf2
vm6

vf2
vm7

vf3
vm4

vf3
vm6

vf3
vm7

vf4
vm4

vf4
vm6

vf4
vm7

1
CCCCCCCCCCCCCA

¼

0
BBBB@

1 0 0

�1 0 0

0 �1 �1

1 0 0

1
CCCCA;
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Jx ¼
vf
vx

¼

0
BBBBBBBBBBBBB@

vf1
vm1

vf1
vm3

vf1
vm5

vf1
vtc34

vf2
vm1

vf2
vm3

vf2
vm5

vf2
vtc34

vf3
vm1

vf3
vm3

vf3
vm5

vf3
vtc34

vf4
vm1

vf4
vm3

vf4
vm5

vf4
vtc34

1
CCCCCCCCCCCCCA

¼

0
BB@
1 �1 0 0
0 1 �1 0
0 0 1 0
0 �tc34 0 �m3

1
CCA;

leading to

3.3. Theory (Part 2)

If by transformation of a nonlinear set of equations at least
one equation can be found that contains no unknown and at
least one measured variable, data reconciliation can be per-
formed to improve the accuracy of the measurements. Madron
[7] proposed to apply the Gauss-Jordan elimination to the co-
efficient matrix of a linear or linearized set of equations in order
to decouple the unknown variables from the data reconciliation
process. The structure of the resulting matrix, known as the
reduced row echelon form (rref) or canonical form, can also be
used to classify the involved variables, detect contradictions in
constant input data, and eliminate dependent equations from
the constraints.

A matrix is in rref when it satisfies the following conditions [8]:

� All zero rows (if there are any) are at the bottom of the matrix.
� The leading entry of each nonzero row after the first occurs to
the right of the leading entry of the previous row.

� The leading entry in any nonzero row is 1.
� All entries in the column above and below a leading 1 are zero.

Fig. 3 shows a numerical example of a matrix in rref.
To transform a matrix into rref, the following elementary row

operations can be applied to the matrix [9]:

� Interchange two rows.
� Multiply any row by a nonzero element.
� Add a multiple of one row to another.

If the Gauss-Jordan elimination is applied to the coefficient
matrix

�bJy bJ x bf �, the resulting matrix, which is in rref, can be
split into the following submatrices:

A ¼ rref
�bJy bJx bf � ¼

0
@Acy Acx Acz

O Arx Arz
O O Atz

1
A ¼ �

Ay Ax Az
�

¼
0
@Ac

Ar
At

1
A:

(8)

The corresponding transformed linearized set of equations g can
then be expressed as

gðy; x; zÞz
0
@Acy Acx Acz

O Arx Arz
O O Atz

1
A
0
@ y � by

x� bx
1

1
A ¼ 0: (9)

Fig. 3 shows a numerical example of how to split matrix A into
its submatrices.

The columns of matrix A corresponding to the unknown vari-
ables y are denoted as Ay, and the columns corresponding to the
measured variables x as Ax. The last column of A, denoted as Az, is a
column vector that contains the constraint residuals of the trans-
formed linearized equation system g evaluated with respect to by; bx
and z.

The rows of A that contain nonzero entries in Ay are denoted as
Ac. Ac represents the coefficients of the transformed linearized
equations g that contain unknown variables. The rows of matrix A
that contain only zero entries in Ay and nonzero entries in Ax, are
denoted as Ar. Ar represents the coefficients of the transformed
linearized equations g that contain no unknown variables but at
least one measured variable. Finally, the rows of A that contain only
zero entries in Ay and Ax are denoted as At. At represents the re-
siduals of the transformed linearized equations g that are free of
unknown and measured variables.

All other submatrices of A with two index letters (Acy, Acx, Acz,
Arx, Arz, Atz) are the intersection of a row matrix (Ac, Ar, At) with a
column matrix (Ay, Ax, Az). E.g., Acy is the intersection of the row
matrix Ac with the column matrix Ay.

If Atzs0 (actually the first row of Atzs0), there exist contra-
dictions in the constant input data. In this case, the first row of Atz

shows the residual of a constraint g(z) containing constant values
only that should be zero per definition. These conflicts have to be
resolved before it is possible to reconcile measured data or calculate
unknown variables.

IfAtz¼ 0, the originallygiven equation system includes redundant
(dependent) equations that are eliminated during the Gauss-Jordan
elimination, and/or a possibly found constraint g(z) is consistent,
i.e., there are no contradictions in constant input data. In both cases,
these zero rows of A (¼ At) do not have to be considered any more.

If At does not exist, all given equations are independent and
constant input data are not in conflict.

If Ars O exists (this implies ArxsO), the matrix ðArx Arz Þ can
be used for data reconciliation. The constraints for data reconcili-
ation are then reduced to

Arxðx� bxÞ þ Arz ¼ 0; (10)

i.e., they no longer contain any unknown variables.
If Ar does not exist, but there is an Ax (this implies AcxsO), given

measurements cannot be reconciled.
If Ax does not exist, the problem does not contain any measured

variables at all. In this case there is also no Ar.
Fig. 3. Example of a matrix in reduced row echelon form split into submatrices. X
entries can be any number.
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The solution of minimizing the objective function (Eq. (1))
subject to the now reduced set of constraints (Eq. (10)) can be found
by using the classical method of Lagrangemultipliers, leading to the
following equation:

x ¼ ~x� QAT
rx

�
ArxQAT

rx

��1ðArxð~x� bxÞ þ ArzÞ: (11)

3.4. Example (Part 2)

After Gauss-Jordan elimination of
�bJy bJ x bf �, the resulting

coefficient matrix is

As At does not exist, all given equations are independent and
there are no contradiction in constant input data.

New estimates for x can now be calculated by using Eq. (11):

x ¼ ð102:4220;302:4220;152:4420;0:4960ÞT:

3.5. Theory (Part 3)

If Ac does not exit (this implies there is also no Ay), there are no
unknown variables involved in the problem.

If Acy¼ I, all unknown variables are observable, meaning they
can be calculated (A�

cy ¼ Acy ¼ I;A*
cx ¼ Acx;A*

cz ¼ Acz; y* ¼ y,by* ¼ by).
If AcysI, matrix Amust be altered in order to be able to calculate

the observable unknown variables. Therefore, all rows in Ac that
contain more than one nonzero entry in Acy and all columns in Ay

that have nonzero entries in these rows have to be deleted
(Acy/A�

cy ¼ I;Acx/A*
cx;Acz/A*

cz). The deleted columns of Acy refer
to unobservable unknown variables (they cannot be calculated
from the given data) that also have to be removed from y and by
(y/y*, by/by*).

After the elimination of unobservable unknown variables the
observable ones can be calculated from

Iðy� � by�Þ þ A�
cxðx� bxÞ þ A�

cz ¼ 0; (12)

leading to

y� ¼ by� � A�
cxðx� bxÞ � A�

cz: (13)

3.6. Example (Part 3)

Because AcysI the equation system contains unobservable un-
known variables that have to be eliminated. This goal can be
reached by deleting row 2 (it contains more than one nonzero entry
in Acy) and column 2 and 3 (nonzero entries in row 2 representing
the unobservable unknown variable m6 and m7) of matrix A. This
leads to

by* ¼ ð bm4Þ ¼ ð150Þ:
New estimates for y* can be calculated by using Eq. (13):

y* ¼ ð150Þ:

3.7. Theory (Part 4)

If the new estimates x and y* are significantly different from the
initial estimates bx and by*, respectively (the 2-norm of x� bx or y* �by* is bigger than a chosen convergence tolerance, e.g., 10�10), the
procedure has to be repeatedwith renewed evaluation of Jy, Jx and f,
where bx ¼ x and by ¼ y (y is the initial by updated with y* on the
positions of observable unknown variables). Otherwise the itera-
tions can be stopped and the variance-covariancematricesQx of the
reconciled variables x and Q y* of the observable unknown variables
y* can be calculated:

Q x ¼
�
I � QAT

rx

�
ArxQAT

rx

��1
Arx

�
Q ; (14)

Q y� ¼ A�
cxQ xA

�T
cx : (15)

Eqs. (14) and (15) are derived by error propagation from Eqs.
(11) and (13).

3.8. Example (Part 4)

Because x is significantly different from bx (here, in the first
iteration y* ¼ by*), the calculation procedure has to be repeatedwith

bx ¼ x ¼ ðm1;m3;m5; tc34ÞT

¼ ð102:4220;302:4220;152:4420;0:4960ÞT;

by ¼ y ¼ ðm4;m6;m7ÞT ¼ ð150;80;80ÞT:
After five iterations the final solution is reached (Fig. 4):

x ¼ ð102:4260;302:4162;152:4260;0:4960ÞT;

y* ¼ ð149:9903Þ;

Q x ¼

0
BB@

62:1384 61:6419 62:1384 �0:1027
61:6419 511:1494 61:6419 0:6481
62:1384 61:6419 62:1384 �0:1027
�0:1027 0:6481 �0:1027 0:0014

1
CCA;

Q y� ¼ ð450:0040Þ:
In thediagonal of theQmatrices thevariancesof the results canbe

found.Thestandarderrorsare calculatedby taking their square roots.

sx ¼ ð7:8826;22:6086;7:8826;0:0377ÞT;

sy� ¼ ð21:2133Þ:
Although the measurements were initially assumed to be in-

dependent, the Qx matrix shows that the reconciled measurements
are correlated after the data reconciliation procedure due to the
applied constraints. However, these correlations are not displayed
in STAN.

3.9. Summary of algorithm

1. Take the measured values ~x as initial estimates bx and compute
initial estimates by .

2. Evaluate Jy, Jx and f with respect to by; bx and z.
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3. Compute rref
�bJy bJ x bf �.

4. Eliminate unobservable unknown variables and redundant
equations.

5. Compute new estimates x with Eq. (11).
6. Compute new estimates y* with Eq. (13).
7. If the new estimates x and y* are significantly different from bx

and by*, respectively, set bx ¼ x and by ¼ y and go to 2. Otherwise
go to 8.

8. Compute the variance-covariance-matrices Qx with Eq. (14) and
Q y* with Eq. (15).

4. Discussion and outlook

In this paper, the nonlinear data reconciliation algorithm
implemented in STAN was explained and its application demon-
strated on a simple hypothetical example from MFA.

A restriction of the used weighted least squares minimization
approach is the assumption of normally distributed measurement
errors. In scientific models in general and in MFA models in
particular, this assumption is often not valid: e.g., concentrations
cannot take negative values, and transfer coefficients are restricted
to the unit interval. To overcome the limitation of normality, a
general framework to reconcile data with arbitrarily distributed
measurement errors was introduced [10]. This framework is limited
to linear constraints, but has been extended to nonlinear con-
straints in Ref. [11].

It was shown [12] that it is also possible to use a possibilistic
approach for data reconciliation. There, the uncertainty of mea-
surements is modelled with membership functions instead of
probability density functions to account for the epistemic nature of
measurements errors (that is, error due to insufficient knowledge).
While the paper covers linear constraints only, the approach has
been extended to nonlinear constraints in Ref. [13].

The problem of nonlinear data reconciliation can also be solved
with nonlinear programming techniques, like sequential quadratic
programming or reduced gradientmethods. These techniques allow
for a general objective function, not just one with weighted least
squares, and they are able to handle inequality constraints and
variable bounds. For a short reviewof thesemethods see e.g. Ref. [5].

While all of these alternative approaches definitely have their
advantages, their common disadvantage is the large amount of
computation time required compared to the conventional approach
of weighted least squares.

In general, nonlinear data reconciliation of normally distributed
input data does not result in normally distributed output data. This
is only the case for linear constraints or linearized nonlinear con-
straints. The latter approximation, however, delivers sound results
only if the uncertainties of the input data are small. If the un-
certainties are large, the results of linearization can differ sub-
stantially from the precise solution.

In the weighted least squares minimization approach, the in-
verse of the covariance matrix Q was chosen as the weight matrix
because it delivers the best linear unbiased estimator of x in Eq.
(11). A prove of the linear case can be found in Ref. [14].

The following list contains some limitations of STAN that should
be addressed/optimized in a future version:

1. While the variable classification using the Gauss-Jordan elimi-
nation is easy to understand, it is not the best way in a
computational sense. Other equation-oriented approaches have
been developed to reach the same goal more efficiently [5].

2. There is no equation parser implemented in STAN, thus, it is
restricted to a few types of equations only: mass balances,
transfer coefficient equations, linear relations between similar
entities (can be used to model, e.g., losses from stocks) and
concentration equations.

3. The default algorithm used in STAN (called “Cencic2012”) is
coded for dense matrices, thus, the speed of the calculation is
reduced considerably when dealing with large models. An
implementation of sparse matrices would increase the calcula-
tion speed substantially.

4. The only gross error detection test that has been yet imple-
mented in STAN is the so called measurement test [4] that is
based on measurement adjustments. A more sophisticated
robust gross error detection routine would be of advantage.

Since September 2012, an alternative commercial calculation
algorithm developed by J.D. Kelly is available in STAN. Originally
called “Kelly2011”, it was later renamed into “IAL-IMPL2013”. It
applies a regularization approach by assuming unknown variables
to be known with a sufficient large uncertainty. Details about the
algorithm can be found in Ref. [15].

Since the first version of STANwas released in 2006, a lot of MFA
studies have been conducted with its help. An updated list of
publications can be found under www.stan2web.net/infos/
publications. Unfortunately, still a lot of recent MFA studies do
not consider data uncertainties, thus, ignoring valuable information
for decision makers. The author would appreciate if STAN could
help to raise the awareness for the importance of uncertainties,
thus, taking MFA to the next level.

Final remark: The presented nonlinear data reconciliation al-
gorithm is of course not restricted to MFAmodels. It can be used for
arbitrary reconciliation problems.
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Fig. 4. Results of flowsheet example rounded to one decimal place.
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Appendix A. Software availability

Appendix B. Notation

m number of equations
mc number of equations available for calculating unknown

variables (¼ rows of Ac)
mr number of equations available for data reconciliation (¼

rows of Ar)
mt number of redundant equations (¼ rows of At)
n number of measured variables (¼ columns of Ax)
o number of observable unknown variables
p number of unknown variables (¼ columns of Ay)
q number of constant variables
* superscript of vectors and matrices with removed parts

due to unobservable unknown variables (in dimensions
replace mc/ o and p/ o)

F objective function to be minimized
f vector (m� 1) of equality constraintsbf vector (m� 1) of equality constraints evaluated at by; bx; z
g vector (m� 1) of transformed equality constraints
x vector (n� 1) of reconciled measurementsbx vector (n� 1) of initial estimates of reconciled

measurements
~x vector (n� 1) of measurements

y vector (p� 1) of best estimates of unknown variablesby vector (p� 1) of initial estimates of unknown variables
z vector (q� 1) of constant values
mx vector (n� 1) of true values of measured variables
ε vector (n� 1) of measurement errors of measurements
0 null vector
A coefficient matrix (m� (pþ nþ 1)) of transformed

linearized equality constraints g
Ac submatrix of A (mc� (pþ nþ 1)) for computation of

unknown variables
Acx submatrix of A (mc� n) for computation of unknown

variables
Acy submatrix of A (mc� p) for computation of unknown

variables
Acz submatrix of A (mc� 1) for computation of unknown

variables
Ar submatrix of A (mr� (pþ nþ 1)) for data reconciliation
Arx submatrix of A (mr� n) for data reconciliation
Arz submatrix of A (mr� 1) for data reconciliation
At submatrix of A (mt� (pþ nþ 1)) for check on

contradiction in constant input data
Atz submatrix of A (mt� 1) for check on contradiction in

constant input data
Ax submatrix of A (m� n) corresponding to measured

variables
Ay submatrix of A (m� p) corresponding to unknown

variables
Az submatrix of A (m� 1) containing constraint residuals
I identity matrix
Jx Jacobi-matrix (m� n) of measured variablesbJ x Jacobi-matrix (m� n) of measured variables evaluated atby; bx; z
Jy Jacobi-matrix (m� p) of unknown variablesbJy Jacobi-matrix (m� p) of unknown variables evaluated atby; bx; z
O null matrix
Q variance-covariance matrix (n� n) of measurements
Qx variance-covariance matrix (n� n) of reconciled

measurements
Q y* variance-covariance matrix (o� o) of best estimates of

observable unknown variables
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a  b  s  t  r a  c  t

This paper  presents  a new  method,  based  on  Bayesian  reasoning,  for the  reconciliation  of  data  from
arbitrary  probability  distributions.  The main  idea  is to  restrict  the joint  prior  probability  distribution  of
the involved  variables  with  model  constraints  to  get  a joint  posterior  probability  distribution.  This  paper
covers  the  case  of  linearly  constrained  variables,  with the  focus  on  equality  constraints.  The  procedure
is  demonstrated  with  the help  of  three  simple  graphical  examples.  Because  in general  the  posterior
probability  density  function  cannot  be calculated  analytically,  it is  sampled  with  a  Markov  chain  Monte
Carlo  (MCMC)  method.  From  this  sample  the density  and  its moments  can  be estimated,  along  with  the
marginal  densities,  moments  and  quantiles.  The  method  is tested  on several  artificial  examples  from
material  flow  analysis,  using an independence  Metropolis–Hastings  sampler.
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1. Introduction

The goal of material flow analysis (MFA) is to model and quan-
tify all flows and stocks of a system of interest. For this reason as
much information about the system as possible is collected which
comprises direct measurements when available, but more often
data taken from official statistics, reports, publications, expert esti-
mates and similar sources (Laner et al., 2014). Unfortunately these
data are often in conflict with known conservation laws such as
mass or energy balances, preventing the calculation of unknown
quantities or parameters of the model that cannot be measured
directly. The basic idea of data reconciliation (DR) is to resolve these
contradictions by statistically adjusting the collected data based on
the assumption that their uncertainty is described by a probability
density function.

DR has been widely used in chemical engineering for more than
50 years to adjust plant measurements. Most solving techniques
that have been developed in this period of time are based on a
weighted least-squares minimization of the measurement adjust-
ments subject to constraints involving reconciled, unmeasured and
fixed variables (Narasimhan and Jordache, 2000; Romagnoli and
Sanchez, 2000; Bagajewicz, 2010). The underlying main assump-
tion of this approach is that of normally distributed (Gaussian)

∗ Corresponding author. Tel.: +43 1 58801 22657; fax: +43 1 58801 9 22657.
E-mail address: oliver.cencic@tuwien.ac.at (O. Cencic).

measurement errors with zero mean (Johnston and Kramer, 1995).
However, in scientific models in general and in MFA  models in
particular, data is often not normally distributed. If, for instance,
a process model is correct, mass flows and concentrations cannot
take negative values, and transfer coefficients are restricted to the
unit interval.

Another example is provided by expert opinions that frequently
have to be relied on in MFA  due to scarce or missing data. They
are often modeled by uniform, triangular or trapezoidal distribu-
tions. The more detailed the expert’s knowledge about the quantity
under consideration is, the more precisely the distribution can be
modeled. If a sufficient number of measurements of the quantity
is available, one can either fit a parametric model to the measured
data or use a nonparametric model such as the empirical distri-
bution function or the kernel estimate of the probability density
function. In the following we will denote a variable as “measured”
if there is prior information on the variable of any kind, which is
not necessarily a proper measurement.

Although it was demonstrated in Crowe (1996) that the
assumption of a normal distribution is acceptable for unknown dis-
tributions having relative standard deviations smaller than 30%,
it is questionable in the context of macro-scale MFA  (e.g. region,
country) where relative standard deviations larger than 30% are
not uncommon. In addition, the normal distribution is unsuitable
to describe uncertainties with strong intrinsic asymmetry.

In the following we  propose a numerical DR procedure that
is also able to deal with data that cannot be modeled by normal

http://dx.doi.org/10.1016/j.compchemeng.2014.12.004
0098-1354/© 2014 Elsevier Ltd. All rights reserved.
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distributions. In this paper we treat the case of linearly constrained
variables, with the focus on equality constraints; the cases of non-
linear and inequality constraints will be the subject of a subsequent
paper. We  start from the following assumptions:

1. There are N measured or unmeasured variables that take values
in a subset D ⊆ R

N .
2. The I ≤ N measured variables form an I-dimensional random

variable with known joint density. The latter is called the prior
density. The prior density can be either objective, i.e. the model
of a measurement process, or subjective, i.e. the formalization of
an expert opinion.

3. The variables are subject to linear equality constraints that define
an affine subspace S ⊂ R

N of dimension P < N.

In Section 2 it is shown that the density of the variables con-
ditional on the constraints is obtained by restricting their prior
density to the set D ∩ S and normalizing the restricted density to
1. The resulting density is called the posterior density. The prior
density plays a key role in the DR mechanism proposed below. No
matter how it is obtained, it is good practice to study its influence
on the posterior distribution.

In the case of a low-dimensional variable space, the construction
of the posterior density can be demonstrated graphically. To show
this, we present some simple examples.

Example 1.1. Let us assume that there are two measured variables
x1 and x2 with the prior density f(x1, x2) defined on D ⊆ R

2. The
constraint equation x1 = x2 defines a 1-dimensional subspace S, i.e.
a line in R

2. If the prior density is restricted to points on this line
and normalized to 1, the posterior density of x1, x2 is obtained. By
computing the marginal distributions of the posterior we  get the
posterior densities of x1 and x2, which are identical in this case. The
values of f(x1, x2) along S can be visualized by intersecting the prior
density surface with the vertical plane through S.

Fig. 1 shows an instance of this problem, with x1, x2 independent,
f1(x1) = �(x1 ; 2, 2) and f2(x2) = �(x2 ; 3, 1.5), where �(x ; a, b) is the
density of the Gamma  distribution with parameters a and b:

�(x; a, b) = xa−1 e−x/b

ba �(a)
.

Example 1.2. Let us assume that there are three measured vari-
ables x1, x2 and x3 with the prior density f(x1, x2, x3) defined on
D ⊆ R

3. The constraint equation x3 = x1 + x2 defines a 2-dimensional
subspace S, i.e. a plane in R

3. If the prior density is restricted to
points in this plane and normalized to 1, the posterior density of
x1, x2, x3 is obtained. By computing the marginal distributions of the
posterior we get the posterior densities of x1, x2 and x3, respectively.

Fig. 2 shows an instance of this problem, with x1, x2, x3 inde-
pendent, f1(x1) = �(x1 ; 2, 2), f2(x2) = �(x2 ; 3, 1.5) and f3(x3) = �(x3 ; 6,
1.7). The values of f(x1, x2, x3) are shown color-coded.

Example 1.3. Let us assume that there are two measured variables
x1, x2 and one unmeasured variable x3. The prior density of x1, x2,
x3 is defined on D ⊆ R

3, but can be written as f(x1, x2), as it does not
depend on x3. The rest of the procedure is the same as in Example
1.2. Due to the lack of an actual constraint the 2-dimensional prior
density is not restricted by the 2-dimensional subspace S, the pos-
terior densities of x1 and x2 are equal to the priors, and the posterior
of x3 is their convolution.

Fig. 3 shows an instance of this problem, with x1, x2 indepen-
dent, f1(x1) = �(x1 ; 2, 2), f2(x2) = �(x2 ; 3, 1.5) and x3 not measured.
The values of f(x1, x2) are shown color-coded. This example demon-
strates that the method can also be used to calculate unknown

variables and that it even works when the measured variables can-
not be reconciled.

In the case of a nonnormal prior density, the normalization
constant of the restricted density cannot in general be computed
analytically. In the simple examples just discussed, it can be com-
puted numerically by a single or a double integral. For larger
dimensions of S, however, numerical integration becomes cum-
bersome and time-consuming. We therefore propose to avoid
explicit calculation of the posterior density altogether by gener-
ating a random sample from the unnormalized restricted density.
This can be achieved by applying a tool that is frequently used in
Bayesian statistics (O’Hagan, 1994), namely Markov chain Monte
Carlo (MCMC) (Robert and Casella, 2004; Liu, 2004; Brooks et al.,
2011). The method and its implementation in the context of DR is
explained in Section 3. Section 4 presents the application of MCMC
to four examples in MFA. Finally, Section 5 contains our conclusions
and the outlook on further work.

2. Mathematical foundation

Let v be a column vector of N measured or unmeasured vari-
ables. Following the notation in Madron (1992), we  assume that
v is arranged such that v = (y; x), where y contains the J unmea-
sured variables and x contains the I = N − J measured variables.1

We  also may  have a vector z of M fixed (nonrandom) variables. DR
means that v is modified in such a way that it satisfies a system of
constraint equations. If all K equations are linear, the constrained
system can be written in the following form:

By + Ax + Cz = 0 or By + Ax + c = 0, (1)

where A, B, C are known matrices of dimension K × I, K × J, K × M,
respectively, and c is a column vector of dimension K × 1. We
assume that

A1. rank(B,  A) = rank(B,  A, c), meaning the system is solvable;
A2. rank(B,  A) = K, meaning the model equations are linearly inde-

pendent;
A3. rank(B) = J, meaning all unmeasured quantities are observable

(they can be calculated).

If any of these assumptions is violated the underlying prob-
lems have to be resolved before being able to proceed. One
way to achieve this goal is to apply the Gauss-Jordan elim-
ination to matrix (B, A, c). The result, known as the reduced
row echelon form (or canonical form), serves to detect contradic-
tions (A1), to eliminate dependent equations automatically (A2)
and to classify variables, in particular to identify and eliminate
unobservable unmeasured variables (A3). For detailed instruc-
tions how to proceed see Madron (1992, p. 125). There exist
alternative equation-oriented approaches for variable classifica-
tion (Romagnoli and Sanchez, 2000, p. 33), but in our opinion the
Gauss–Jordan elimination is the easiest to understand.

We make further use of the reduced row echelon form in order
to identify dependent and free variables of the system. The column
numbers of the pivot elements (leading 1 in each row) denote the
dependent variables, which can be unmeasured or measured ones.
All other variables, which have to be measured ones, are designated
as free. The outcome of this classification process depends on the
initial order of the variables. Although the posterior density itself is
unique, the choice of the free variables can affect its computation,
so the initial order of the variables should be chosen carefully (see
Section 3.2 and Example 4.4).

1 The semicolon (comma) denotes vertical (horizontal) concatenation of matrices.
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Fig. 1. Visualization of the densities in Example 1.1. Top left: prior density f(x1, x2). Top right: prior density f(x1, x2) cut along the line x1 = x2; the red line is the (unnormalized)
restricted density. Bottom: measured (prior, blue) and reconciled (posterior, red) densities of x1, x2.

After column reordering the system can be written as

Ivd + Dvf + d = 0, (2)

where vd contains the K dependent variables and vf contains the
N − K free variables. The number of free variables is equal to the
dimension of the constraint manifold used to restrict the prior dis-
tribution. If for instance N − K = 2, the constraint manifold is a plane
in R

N . The general solution of Eq. (2) can then be written as

vd = −Dvf − d. (3)

Let us assume that all variables are independent a priori, so that
the prior density of v can be written as the product of the marginal
densities:

f (v) =
N∏

i=1

fi(vi) = fd(vd) · ff(vf). (4)

If a dependent variable is not measured, its marginal prior den-
sity is set to the improper prior fi(vi) = 1.

After DR, constraint Eq. (3) has to be satisfied. The posterior
distribution of vd is therefore uniquely determined by the poste-
rior distribution of vf. In order to compute the latter, we  make the
following affine transformation:

r = vd + Dvf + d, w = vf, (5)

or(
r

w

)
= H

(
vd

vf

)
+

(
d

0

)
, with H =

(
I D

O I

)
, (6)

where I is the identity matrix and O is the null matrix. The joint
density of (r; w) can be computed by using the following lemma.

Lemma. Let t be a vector of n random variables with joint density
f( t), H a n × n matrix of full rank, and e a vector of dimension n. The
joint density g( s) of s = Ht + e is then given by

g(s) = f (t)
| det H| = f  (H−1(s − e))

| det H| . (7)

Solving Eq. (6) for vd and vf gives:

vd = r − Dw − d, vf = w.

As |det H| = 1, the joint density of (r; w) is then given by

g(r; w) = fd(r − Dw − d) ff (w). (8)

The marginal density gr(r)  is obtained by integration over w:

gr(r) =
∫

fd(r − Dw − d) ff (w) dw. (9)

The constraints are satisfied if and only if r = 0. The posterior
density �(vf) of vf = w is therefore given by the following condi-
tional density:

�(vf) = g(w|r = 0) = g(0; w)
gr(0)

= fd(−Dvf − d) ff (vf)∫
fd(−Dvf − d) ff (vf) dvf

. (10)

The calculation of the posterior density �(vf) in Eq. (10) requires
the evaluation of the integral in the denominator. With the
exception of very simple cases, the integral cannot be computed
analytically. Numerical integration is feasible if the dimension of
vf is small, but becomes cumbersome with increasing number of
free variables. However, explicit calculation of the integral can be
avoided altogether if a random sample is drawn from the poste-
rior density �(vf) by Markov chain Monte Carlo (MCMC) methods.
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Fig. 2. Visualization of the densities in Example 1.2. Top left: prior density f(x1, x2, x3). Top right: prior density f(x1, x2, x3) on the plane x3 = x1 + x2. Bottom: measured (prior,
blue)  and reconciled (posterior, red) densities of x1, x2, x3.

The sample is not independent, as each draw depends on the pre-
vious one. From this sample the posterior density and its moments
can be estimated, along with the marginal densities, moments and
quantiles. A general introduction to Markov chains and MCMC  is
contained in Robert and Casella (2004), Liu (2004), Brooks et al.
(2011).

It can be proved that in the case of normally distributed obser-
vations Eq. (10) gives the same result as the traditional constrained
least-squares optimization. A sketch of the proof can be found in
Appendix A.

If the variables are not independent, their prior density has the
general form f (v) = f (vd; vf). Using the same affine transformation
as in Eq. (6), we obtain the posterior density of vf in the general
case:

�(vf) = f (−Dvf − d; vf)∫
f (−Dvf − d; vf) dvf

. (11)

The proof in Appendix A can be modified to show that the results
are again the same as in the traditional approach.

3. MCMC  sampling

3.1. The sampling algorithm

The idea behind MCMC  sampling is the construction of a Markov
chain with an equilibrium distribution that is equal to the target

distribution �(w).2 A useful review of this approach is given in
Tierney (1994).

The sampler presented below is a special case of the
Metropolis–Hastings (MH) algorithm (Robert and Casella, 2004;
Liu, 2004; Metropolis et al., 1953; Hastings, 1970). For an intro-
ductory exposition of the MH algorithm see Chib and Greenberg
(1995). All MH  samplers require a proposal density from which
candidates for the Markov chain are drawn. The choice of the pro-
posal density is a critical step in the construction of the sampler.
If it is too narrow, it is difficult to explore the entire target dis-
tribution. If it is too wide, the acceptance rate of the proposed
values is low, and the convergence to the target distribution is slow.
Of course, drawing from the proposal density should be easy and
fast.

We have found that the sampler best suited to the problem of
DR is the independence sampler (IS) (Brooks et al., 2011; Chib and
Greenberg, 1995; Liu, 1996). In the IS, the proposal values are drawn
independently from a proposal density p(w). The proposed values
therefore do not depend on the current value of the Markov chain,
but the accepted values do. The algorithm can be summarized as
follows.
Algorithm IS

IS1 Set i = 1, choose the sample size L and the starting value w1.
IS2 Draw a proposal value ŵ from the proposal density p(w).

2 In order to avoid cluttering the notation with subscripts, we write w instead of
vf and u instead of vd from now on.
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Fig. 3. Visualization of the densities in Example 1.3. Top left: prior density f(x1, x2). Top right: prior density f(x1, x2, x3) on the plane x3 = x1 + x2. Bottom: measured (prior,
blue)  and reconciled (posterior, red) densities of x1, x2, x3.

IS3 Compute the acceptance probability  ̨ by

˛(wi, ŵ)  = min

(
1,

�(ŵ) p(wi)
�(wi) p(ŵ)

)
. (12)

IS4 Draw a uniform random number u ∈ [0, 1].
IS5 If u ≤ ˛, accept the proposal and set wi+1 = ŵ,  otherwise set

wi+1 = wi.
IS6 Increase i by 1. If i < L, go to IS2, otherwise go to IS7.
IS7 Stop sampling.

The normalization constant of the posterior density �(w) in Eq.
(10) cancels out in the fraction in Eq. (12), therefore its value is
irrelevant. In the context of DR, there is a natural choice of the
proposal density for the IS, namely the prior density p(w) = ff(w).
Consequently, no tuning of the proposal density is required. As
an additional bonus, the acceptance probability has a particularly
simple form:

˛(wi, ŵ)  = min

(
1,

fd(−Dŵ − d) ff (ŵ) ff (wi)
fd(−Dwi − d) ff (wi) ff (ŵ)

)

= min

(
1,

fd(−Dŵ − d)
fd(−Dwi − d)

)
.

(13)

As all draws from the proposal density are equally valid starting
points of the Markov chain, no “burn-in”, i.e. discarding an initial
segment of the chain, is necessary.3

3 This has been argued by C. Geyer on his website, see http://users.stat.
umn.edu/ geyer/mcmc/burn.html (accessed on 03.10.14).

If the variables are not independent, the natural choice of the
proposal density is the marginal prior density p(w) of w:

p(w) =
∫

f (u; w) du

This is useful in practice only if the proposal density can be com-
puted in closed form and is suitable for the fast generation of
random draws. Otherwise an alternative proposal density has to
be found.

3.2. The acceptance rate

The acceptance rate of the sampler is defined as the fraction
of proposal values that are accepted in step IS5. If the acceptance
rate is low, there will be many sequences of identical values in
the generated chain, and the autocorrelation (see Brockwell and
Davis, 2006) of the chain will be high. Such a chain contains less
information about the posterior distribution as a chain with high
acceptance rate and low autocorrelation. One possibility to keep
the number of accepted proposal values at the same level is to esti-
mate the acceptance rate a in a preliminary run of the sampler with
sample size L0 and to choose the final sample size L inversely pro-
portional to a, i.e., L = L0/a with L0 of the order of 105. For a more
refined way to choose L by using the autocorrelations of the chain,
see Geyer (1992), where the concept of an effective sample size is
introduced.

In the case of DR, the acceptance rate of the sampler is a rough
indication of the extent to which the variables can be reconciled. A
high acceptance rate indicates a large overlap between the prior
and the posterior marginals, a low acceptance rate indicates a
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small overlap. For a model with low acceptance rate, see Example
4.4. It is shown there that the acceptance rate can be maximized
by choosing the variables with the smallest variances as the free
variables. However, even with an acceptance rate below 5% the pos-
terior distribution in Example 4.4 can be determined with sufficient
precision by running the sampler for less than a minute on an off-
the-shelf laptop. Given enough computing time, acceptance rates
of a couple of percent can be tolerated.

If the priors have finite support it can happen that the acceptance
rate is zero, showing that there is no overlap at all between the
proposed values of one or several dependent variables and their
prior distribution, in other words, that no DR is possible. This can be
regarded as a problem, but also as an advantage of our approach: an
irreconcilable discrepancy of the prior distributions is immediately
visible. Determining which of the variables are responsible for the
discrepancy is another matter, one which we intend to investigate
in a subsequent paper.

In the IS the proposal values are drawn independently from the
proposal distribution. It is therefore possible to generate a sample
of proposal values in advance. In our Matlab implementation this
results in a nonnegligible gain of computational speed. It also opens
up the possibility of running several Markov chains in parallel, each
one with its own sample of proposal values. At the end all chains
can be combined to a single posterior sample. This is particularly
useful if the acceptance rate is low and the model is large.

3.3. Posterior analysis

Once a sample W = (w1, w2, . . .,  wN) of w = vf has been gener-
ated, the corresponding sample U = (u1, u2, . . .,  uN) of u = vd can
be computed by ui = −Dwi − d, i = 1, . . .,  N. From the complete
sample V = (U ; W ) posterior quantities such as means, quantiles,
variances and correlations can be estimated. For a graphical repre-
sentation of the posterior distributions the marginal densities can
be estimated from the sample by a kernel estimator (Silverman,
1998) or obtained by smoothing the normalized frequency distri-
bution in a histogram.

We have seen that the acceptance rate gives an indication of how
well the data can be reconciled. It is, however, hard to interpret
this in a quantitative way, so some formal measures of goodness
are required. In DR with normal distributions there is a convenient
measure of distance between the prior and the posterior distribu-
tion, namely the �2-distance or its probability integral transform,
defined by u = F(�2), where F is the cumulative distribution function
of �2. A value of u close to 1 indicates large discrepancies between
the original and the reconciled data.

There are several ways to generalize this distance to the non-
normal case. One possibility is the Mahalanobis distance (Seber,
2004) of the posterior sample from the prior distribution. This dis-
tance, however, is based on the first two moments of the sample,
and therefore implicitly introduces an approximation by a normal
distribution. We  therefore propose to measure the goodness of the
DR by computing the discrepancies between the prior and the pos-
terior marginals. This takes into account the actual (nonnormal)
shape of the marginals, and also displays the discrepancy of each
individual variable. The discrepancy of the posterior sample can be
computed with respect to the prior marginal, which is usually avail-
able in closed form, or with respect to a sufficiently large sample
from the prior marginal.

Let us assume that we have a sample from the prior marginal
distribution of vi and a sample from the posterior marginal. A
possible measure of discrepancy between the samples is the
Kolmogorov–Smirnov statistic dKS, i.e. the maximal absolute dif-
ference of the two empirical distribution functions (Ross, 2009). In
Matlab dKS is computed by the function kstest2. Another possibil-
ity is dBC = 1 − BC, where BC is the Bhattacharyya coefficient of the

Fig. 4. Flowsheet of Example 4.1 with five flows and two  processes.

two samples (Fukunaga, 1990). A Matlab function that computes
BC can be obtained from the authors on request. Both measures
of discrepancy lie in the interval [0, 1], are equal to 0 for identical
samples, and are equal to 1 for samples without overlap.

4. Examples

We illustrate the independence sampler on a couple of simple
artificial examples. The Matlab code used for these examples can
be obtained from the authors on request.

Example 4.1. The first example is a small model with five flows
and two processes, shown in Fig. 4. Each mass flow is represented
by one variable and the mass balances of the two  processes form
the constraints.

The variables are independent and have the following prior dis-
tributions:

f (x1) = Tria(90, 100, 110),

f (x2) = �(50),

f  (x3) = Unif(270, 330),

f (x4) = unknown,

f (x5) = Trap(140, 150, 160, 170).

�(a) denotes the Dirac distribution with mass 1 at x = a, Unif(a,
b) denotes the uniform distribution in the interval [a, b], Tria(a, c, b)
denotes the triangular distribution in the interval [a, b] with max-
imum at c, and Trap(a, c, d, b) denotes the trapezoidal distribution
in the interval [a, b] that is uniform in [c, d]. The constraints are:

x1 + x2 + x4 = x3,

x3 = x4 + x5.

In order to make the representation in Eq. (1) unique, we  sort
the measured variables by descending variance of the prior, so that
variables with smaller variance are more likely to be chosen as free
variables. This in turn maximizes the acceptance rate of the sam-
pler. After grouping the variables into unmeasured, measured and
fixed variables we  get y = (x4), x = (x3, x5, x1)T and z = (x2). With
this definition the constraints can be written in the form

By + Ax + Cz = 0 or By + Ax + c = 0,

with

B =
(

1

−1

)
, A =

(
−1 0 1

1 −1 0

)
, C =

(
1

0

)
, c =

(
50

0

)
.

The reduced row echelon form of (B, A,  c) is given by

rref(B , A , c) = 1 −1 0 1 50
0 0 1 −1 −5 0 .

Rows of the reduced row echelon form with zeros in all columns
corresponding to unmeasured variables indicate that DR is possi-
ble. Measured variables with nonzero entries in the corresponding
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Fig. 5. Priors and smoothed marginal posteriors of x1, x3, x4, x5 in Example 4.1. The improper prior of x4 cannot be shown.

columns of these rows will be reconciled (they are redundant) while
the rest of them remain unchanged (they are nonredundant). In our
example x3 is classified as nonredundant, so its posterior will be
equal to its prior.

The column numbers of the pivot elements (leading 1 in each
row) denote the dependent variables. All other variables are des-
ignated as free. If we regroup the variables into dependent and
free ones by setting vd = (x4, x5)T and vf = (x3, x1)T, the constraint
equation can be written as

(
1 0

0 1

)
vd +

(
−1 1

0 −1

)
vf +

(
50

−50

)
= 0.

After rearranging the terms we get

vd = −Dvf − d, with D =
(

−1 1

0 −1

)
, d =

(
50

−50

)
.

On a MacBook Pro with a 2.4 GHz Intel Core i5 processor the
independence sampler requires about 10 s to draw a sample of size
100,000 from the posterior distribution of vf. The acceptance rate is
about 86%, and the autocorrelation function (Brockwell and Davis,
2006) of the posterior samples decays very quickly. It is of the order
of 0.15 at lag 1 and around 0.02 at lag 2. Fig. 5 shows the smoothed4

marginal posterior densities with their means and standard devi-
ations. The latter are estimated from the posterior sample and are
given with a precision that is commensurate with their standard
error.

4 We have used the function smooth in the Matlab Curve Fitting Toolbox.

A posteriori the variables are of course correlated. The posterior
correlation coefficients are:

x1 x3 x4 x5

x1 1.00 0.00 1.00
x3 0.00 1.00 0.98 0.00

0.98 1.00x4 −0.20 −0.20
x5 1.00 0.00 −0.20

−0.20

1.00

The high acceptance rate indicates a large overlap between the
prior and the posterior marginals. The discrepancy as measured by
dBC is equal to 0.014, 0 and 0.172 for x1, x3 and x5, respectively,
while dKS is equal to 0.116, 0.004 and 0.354, respectively.

Example 4.2. The second example is a small model with three
flows and one process (Fig. 6). Each mass flow is represented by one
variable and the mass balance of the process forms the constraint.

The measured variables are again independent and have the
following prior distributions:

f (x1) = Unif(10, 20),

f (x2) = Unif(5,  15).

The constraint equation is

x1 = x2 + x3.

Fig. 6. Flowsheet of Example 4.2 with three flows and one process.
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Fig. 7. Priors and smoothed marginal posteriors of x1, x2, x3 in Example 4.2. The prior density of x3 is Unif(0, 15).

The only information about x3 is that it is positive. In order
to enforce positivity we use a uniform prior density that extends
from 0 to the largest admissible value of x3, which is given by the
constraint x3 ≤ max  x1 − min  x2 = 20 − 5 =15:

f (x3) = Unif(0,  15).

This is the distribution with maximal entropy (O’Hagan, 1994) in
the admissible range. Even though x3 is an unmeasured variable it
has to be treated as a measured one because of the prior information
introduced to enforce positivity. The model therefore contains only
the measured variables x = (x3, x1, x2)T, and the constraint can be
written in the form

Ax = 0, with A = (−1 1 − 1)

Note that the measured variables are again sorted by descending
variance of the prior. The reduced row echelon form of ( A) is given
by

rref(A) = (1 − 1 1)

If we regroup the variables into dependent and free ones by
setting vd = (x3) and vf = (x1, x2)T, the constraint equation can be
written as

(1) vd + (−1 1) vf = 0.

After rearranging the terms we  get

vd = −Dvf, with D = (−1 1).

The independence sampler requires about 11 s to draw a sample
of size 100,000 from the posterior distribution of vf. The acceptance
rate is about 87%. The autocorrelations decay even more quickly
than in Example 4.1. Fig. 7 shows the smoothed marginal posterior
densities with their means and standard deviations. The posterior
correlation coefficients of (x1, x2, x3) are:

x1 x2 x3

x1 1.00
x2 0.23
x3 0.62

0.23
1.00

−0.62

0.62

1.00
−0.62

The discrepancy between prior and posterior marginals as mea-
sured by dBC is equal to 0.005, 0.005 and 0.042 for x1, x2 and x3,
respectively, while dKS is equal to 0.083, 0.078 and 0.196, respec-
tively.

If there is prior information about the distribution of x3, it can be
taken into account by a nonuniform prior distribution, for instance
a triangular distribution, a scaled Beta distribution, or a truncated
exponential distribution. If, for instance, the most probable value
of x3 is believed to be at x3 = 7, a suitable prior is the triangular dis-
tribution Tria(0, 7, 15). The corresponding posterior marginals are
shown in Fig. 8. The acceptance rate drops to 65% and the discrep-
ancies change somewhat: dBC is equal to 0.014, 0.013 and 0.017 for
x1, x2 and x3, respectively, while dKS is equal to 0.131, 0.126 and
0.131, respectively.
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Fig. 8. Priors and smoothed marginal posteriors of x1, x2, x3 in Example 4.2. The prior density of x3 is Tria(0, 7, 15).

Fig. 9. Flowsheet of Example 4.3 with nine flows and four processes.

Example 4.3. The third example is a medium-sized model with
nine flows and four processes (Fig. 9). Each mass flow is represented
by one variable and the mass balances of the processes form the
constraints. Variables x3 and x8 are unmeasured but assumed to be
positive. Because they are observable (they can be calculated from
the measured variables) they can be treated as dependent mea-
sured variables with an improper prior (f(x) = 1 for x ≥ 0). All other
variables are modeled by a log-normal prior with the following
means mi and standard deviations si:

x1 x2 x4 x5 x6 x7 x9

m 8 5 15 75 48 22 8
s 3 2 5 20 15 7 3

After sorting by descending variance we  get x = (x3, x8, x5, x6, x7,
x4, x1, x9, x2)T. The constraints

x2 + x8 = x3 + x4,

x1 + x4 + x6 = x5,

x5 = x6 + x7,

x7 = x8 + x9,

can then be written in the form

Ax = 0,
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Fig. 10. Priors and smoothed marginal posteriors of all variables in Example 4.3. The improper priors of x3 and x8 cannot be shown.

with

A =

⎛
⎜⎜⎝

−1 1 0 0 0 −1 0 0 1

0 0 −1 1 0 1 1 0 0

0 0 1 −1 −1 0 0 0 0

0 −1 0 0 1 0 0 −1 0

⎞
⎟⎟⎠ .

The reduced row echelon form of A is given by

rref(A) =

⎛
⎜⎜⎝

1 0 0 0 0 0 −1 1 −1

0 1 0 0 0 −1 −1 1 0

0 0 1 −1 0 −1 −1 0 0

0 0 0 0 1 −1 −1 0 0

⎞
⎟⎟⎠ .

The column numbers of the pivot elements (leading 1 in each
row) denote the dependent variables. All other variables are desig-
nated as free. If we regroup the variables into dependent and free

ones by setting vd = (x3, x8, x5, x7)T and vf = (x6, x4, x1, x9, x2)T,
the constraint equation can be written as

Ivd + Dvf = 0 or vd = −Dvf,

with

D =

⎛
⎜⎜⎝

0 0 −1 1 −1

0 −1 −1 1 0

−1 −1 −1 0 0

0 −1 −1 0 0

⎞
⎟⎟⎠ .

The independence sampler requires about 12 s to draw a sample
of size 100,000 from the posterior distribution of vf. The accep-
tance rate is about 62%. The autocorrelations decay somewhat more
slowly than in the preceding examples; they are below 0.1 at lag
3. Fig. 10 shows the smoothed marginal posterior densities with
their means and standard deviations. The discrepancies between
prior and posterior marginals are shown in Table 1. The values for
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Fig. 11. Flowsheet of Example 4.4 with four flows and one process.

the actually measured variables indicate large overlaps and thus a
satisfactory reconciliation.

Example 4.4. A low acceptance rate of the sampler indicates little
overlap between the prior and the posterior distributions of some
of the measured variables. It is, however, not always possible to
identify the variable(s) causing the discrepancy. This is illustrated
by the model in Fig. 11.

The model has four flows and one process. The mass balance of
the process yields the following constraint equation:

x1 + x2 = x3 + x4.

All variables are measured, independent, and have the following
prior distributions:

f (x1) = Tria(10, 15,  20), � = 15.0, �2 = 4.16̇,

f (x2) = Tria(20, 25,  30), � = 25.0, �2 = 4.16̇,

f (x3) = Tria(10, 20,  25), � = 18.3̇, �2 = 9.72̇,

f (x4) = Tria(25, 35,  45), � = 35.0, �2 = 16.6̇.

In view of the simplicity of this example we skip the detailed
calculation of A and D, as it has already been illustrated in the
previous examples.

Table 1
Discrepancy between prior and posterior marginals in Example 4.3.

x1 x2 x3 x4 x5 x6 x7 x8 x9

dBC 0.004 0.001 – 0.016 0.059 0.013 0.057 – 0.013
dKS 0.031 0.038 – 0.114 0.200 0.065 0.131 – 0.089

Table 2
Acceptance rate a as a function of the dependent variable vd in Example 4.4.

vd x1 x2 x3 x4

a [%] 4.1 4.1 9.3 12.5

Table 3
Discrepancy between prior and posterior marginals in Example 4.4.

x1 x2 x3 x4

dBC 0.090 0.089 0.270 0.363
dKS 0.338 0.333 0.569 0.645

Each of the four variables can be chosen as the dependent
one; the other three are free. Depending on the choice of the
dependent variable, the acceptance rate varies between 4% and 12%.
The independence sampler requires about 36 s to draw a sample
of size 500,000 from the posterior distribution of vf. The poste-
rior densities should not and do not depend on the choice of the
dependent variable, but the acceptance rate rises significantly with
the variance of the dependent variable, see Table 2. Again the opti-
mal  order of the measured variables is obtained by sorting them by
descending variance.

Fig. 12 shows the prior and the posterior densities with x4 as the
dependent variable, and Table 3 shows the discrepancy between
the prior and the posterior marginals.
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Fig. 12. Priors and smoothed marginal posteriors of all variables in Example 4.4. The dependent variable is x4.
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A better fit and a higher acceptance rate can be achieved by shif-
ting or rescaling anyone of the four variables. Unfortunately, in this
simple case it is not possible to conclude from the posteriors which
variable should be considered as the outlier. Still, it is conceivable
that in a larger model with more constraints outliers can be iden-
tified. However, this issue is outside the scope of the present work
and will be addressed in a subsequent paper.

5. Discussion and Outlook

We  have presented a new method to reconcile nonnormally dis-
tributed data by a Markov chain Monte Carlo method. Our method
of choice is the independence sampler. This sampler has several
advantages. First, there is a natural proposal density that does not
have to be tuned. Second, there is no need to discard an initial seg-
ment of the chain (“burn-in”). Third, the acceptance probability has
an extremely simple mathematical form. Finally, the proposal val-
ues can be generated in advance, and many chains can be generated
in parallel.

The acceptance rate of the sampler gives a rough indication of
how well the variables can be reconciled. In the extreme case of the
acceptance rate being zero it can be concluded immediately that no
reconciliation is possible. We  have also proposed two  measures of
discrepancy between the original (prior) and the reconciled (pos-
terior) distributions of the variables. They can be used to quantify
the goodness of the reconciliation.

In this paper we have dealt only with linear equality constraints.
However, the presented approach is also able to solve inequal-
ity constraints by introducing slack variables. For instance, the
inequality constraint x1 ≤ x2 + x3 can be transformed to the equality
constraint x1 + xS = x2 + x3 with an unmeasured slack variable xS ≥ 0.
The only restriction is that slack variables have to be classified as
observable unmeasured variables in order to be treated as depend-
ent measured variables with a proper or improper prior enforcing
positivity. In fact, the first part of Example 4.2 can be interpreted as
the solution to the inequality constraint x2 ≤ x1 with measured x1
and x2, x3 serving as the slack variable. Inequality constraints will be
studied in more detail in a subsequent paper, as will be nonlinearly
constrained variables.

Finally, we also intend to investigate how and to which extent
the DR procedure can be robustified. This implies the automatic
identification of outlying or erroneous measurements that prevent
a successful reconciliation. Such measurements can then be either
eliminated or given a larger uncertainty in the reconciliation pro-
cess.
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Appendix A.

We  sketch a proof that in the case of normally distributed obser-
vations Eq. (10) gives the same result as the traditional method,
which is constrained least-squares estimation. As the unmeasured
variables are known linear functions of the measured variables, the
proof can be restricted to the measured variables. We  denote the
free variables by vf and the measured dependent variables by vd. If
v = (vd; vf) is normally distributed, both fd and ff are multivariate
normal density functions:

fd(vd) = ϕ(vd; �d, Vd), ff(vf) = ϕ(vf; �f, V f).

Eq. (10) states that the posterior distribution of vf is proportional
to the product fd(−Dvf − d) ff (vf). The quadratic polynomial in the
exponent of the product can be rearranged as the sum of a quadratic
form and a constant term. The product is therefore proportional
to a multivariate normal density. The mean �� and the covariance
matrix V� can be read off the quadratic form and are the following:

�� = V�

[
V−1

f �f − DTV−1
d (�d + d)

]
, V� =

[
V−1

f + DTV−1
d D

]−1
.

The unbiased estimator of �� is then equal to:

�̃� = V�

[
V−1

f vf − DTV−1
d (vd + d)

]
. (14)

Next we  derive the constrained least-squares estimator of
� = (�d ; �f) and show that its free component is equal to �̃� . The
constraint Eq. (2) can be written in the form:

K� + d = 0, with K = (I, D).

The constrained least-squares estimate of � is obtained by min-
imizing the following objective function:

L(�, �) = (v − �)TG(v − �) + 2�T(K� + d),

where G is the inverse of the covariance matrix V of v and �
is a vector of Lagrange multipliers. Note that V is a block-diagonal
matrix with blocks Vd and Vf. Setting the gradient ∇L of L to zero
results in the following system of linear equations:

G� + KT� = Gv,

K� + d = 0.

Solving with respect to � yields the constrained minimum �̃ of
L:

�̃ = v + VKT(KVKT)
−1

(−d − Kv).

If the solution �̃ = (�̃d; �̃f) is split into the dependent and the
free component, we obtain for the free component:

�̃f = vf + V fD
T(Vd + DV fD

T)
−1

(−d − vd − Dvf).

The right hand side has the form of an update step of the Kalman
filter (Jazwinski, 1970). Using the Woodbury matrix identity (Press
et al., 2007), it can be transformed to the form of a weighted mean:

�̃f =
[
V−1

f + DTV−1
d D

]−1 [
V−1

f vf + DTV−1
d (−d − vd)

]
. (15)

Obviously the estimated posterior mean in Eq. (14) and the
constrained least-squares estimate in Eq. (15) are identical. This
completes the proof.
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ABSTRACT
This paper presents a new method for the reconciliation of data
described by arbitrary continuous probability distributions, with the
focus on nonlinear constraints. The main idea, already applied to
linear constraints in apreviouspaper, is to restrict the joint prior prob-
ability distribution of the observed variables with model constraints
to get a joint posterior probability distribution. Because in general
the posterior probability density function cannot be calculated ana-
lytically, it is shown that it has decisive advantages to sample from
the posterior distribution by a Markov chain Monte Carlo (MCMC)
method. From the resulting sample of observed and unobserved
variables various characteristics of the posterior distribution can be
estimated, suchas themean, the full covariancematrix,marginal pos-
terior densities, as well as marginal moments, quantiles, and HPD
intervals. The procedure is illustrated by examples frommaterial flow
analysis and chemical engineering.
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1. Introduction

Data reconciliation (DR) is a statisticalmethod to adjust observed data that are, due tomea-
surement or sampling errors, in conflict with known constraints such as the conservation
laws of mass and energy. By imposing the constraints on the observations external infor-
mation is added, and consequently the reconciled values have smaller uncertainty than the
original observations. In addition, unobserved variables occurring in the constraints can
be estimated, as long as the assumptions in Section 2.2 are fulfilled.

Traditionally, DR is formulated as a minimization problem where the observations are
adjusted so that they obey a set of constraint equations and, at the same time, minimize
an objective function. An important example of such an objective function is the sum of
squared differences (weighted or unweighted) between the adjusted and the original values,
resulting in a least-squares reconciliation.

In the simplest case, the observations x̃ are normally distributed with unknown mean
vector x and known or estimated joint covariance matrix �. Furthermore, the vector x is
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known to obey a system of linear equality constraints:

Ax + By + c = 0, (1)

where y is a vector of unobserved variables, A and B are known coefficient matrices of x
and y, respectively, and c is a vector of known constants. Under certain conditions (see
Appendix), a unique explicit solution can be found by constrained minimization with
respect to x of the following least-squares objective function:

F(x) = (x̃ − x)T�−1(x̃ − x), (2)

usually with the help of Lagrange multipliers [19]. The least-squares solution (ŷ; x̂)1 fulfills
the constraints, the reconciled vector x̂ is an unbiased estimator of x, and the variances of
x̂ are smaller than the variances of x̃. As the covariance matrix of x̂ is rank deficient, its
distribution is singular, i.e. concentrated on a set of Lebesgue measure zero, and does not
have a pdf (cf. Section 2.3). If x̃ follows a normal distribution, so does the solution (ŷ; x̂);
otherwise it does not.

This basic problem of DR can be generalized in two directions: first, the constraints
can be extended to nonlinear and/or inequality constraints; second, the distribution of
the observations x̃ can be extended to arbitrary, but absolutely continuous, multivariate
distributions, characterized by a probability density function (pdf) f (x̃).

The first extension to nonlinear and/or inequality constraints is conceptually simple,
but may pose technical difficulties. The solution can no longer be obtained in closed form,
but has to be computed iteratively by suitable algorithms for the constrained minimization
of F(x), with the usual potential problems of convergence, local minima and saddle points.
There is a large variety of methods that can be applied. Some examples in the engineer-
ing literature are successive linearization [10], nonlinear programming [1], quasi-Newton
methods [14] and genetic algorithms [23]. For textbooks on optimization with nonlinear
constraints, see, for instance, [5,6,22]. Note that with nonlinear constraints the reconciled
values are not normally distributed, even if the observations x̃ are.

The second extension to nonnormal observations can be achieved by an alternative
approach to the problem of DR. As the objective function in Equation (2) uses only the
first twomoments of the distribution, it is not able to take into account the full information
contained in the joint pdf of the observations. Consequently, the reconciliation problem
cannot be fully solved by minimizing an objective function of the form of Equation (2),
even if the joint pdf of the observations belongs to a parametric family. In the case of linear
constraints, the constrained least-squares estimator is unbiased and a linear function of the
observations, and therefore gives the correct mean and covariancematrix of the reconciled
values. Their distribution, however, is not known, and it is not possible to compute quan-
tiles or highermoments such as the skewness. This problemwas solved in [3] by a Bayesian
method that gives the joint (posterior) distribution of the reconciled variables under lin-
ear constraints for arbitrary (prior) distributions of the observations. In the appendix, it is
proved that this method delivers the same results as the least-squares approach in the case
of linear constraints and normal observations with arbitrary covariance matrix �.

This paper extends the method of Cencic and Frühwirth [3] to the case of nonlinear
constraints, which usually are present in all but the simplest models. In Section 2 the basic
assumptions about nonnormal models with nonlinear constraints are spelled out, and the
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posterior pdf of the free variables of themodel is derived. It is shown that the joint posterior
distribution of all variables, derived from the posterior distribution of the free variables,
is invariant under the choice of the free variables. Section 3 presents the independence
sampler that produces a Markov chain of all variables, observed and unobserved. From
theMarkov chain, important characteristics of the posterior distribution can be estimated,
among them the mean and the covariance matrix, marginal pdfs, marginal moments and
marginal quantiles. In Section 4 the sampler is applied to two examples, one from the field
ofmaterial flow analysis (MFA), the other from the chemical engineering literature. Finally,
Section 5 presents conclusions and gives an outlook to further work.

2. Nonnormal models with nonlinear constraints

2.1. Motivation and specification of priors

As the objective function in Equation (2) uses only the first two moments of the joint dis-
tribution of the observations, it is based on the implicit assumption of normally distributed
observation errors. This assumption guarantees normally distributed reconciled observa-
tions in case of linear or linearized constraints, where in the latter case the results are only
approximations. Sometimes, these approximations are not sufficient and the precise pdfs
of the results are desired instead.

Additionally, there might be variables involved in the problem where the normal
assumption is not appropriate. First, variables can be bounded in some ways. A typical
example is found in MFA, where it is crucial to close the mass balances of goods and sub-
stances traversing different kinds of processes in order to get reliable data for subsequent
evaluation. By definition, mass flows cannot take negative values, and transfer coefficients,
which describe how much of the mass going into a process is transferred into specific out-
put flows, as well as mass fractions of substances in goods are restricted to the unit interval,
rendering the assumption of normality implausible. Second, modelling the uncertainty
of observations by normal distributions can be too restrictive. If a sufficient number of
observations of a quantity is available and the observations fail a test on normality (see, for
instance [17]), one can fit a nonnormal parametricmodel to the observed data or construct
a nonparametric model such as the empirical distribution function or the kernel estimate
of the pdf. Third, if there are few or no observations of a quantity of interest, which is
frequently the case in MFA, expert opinions have to be relied on. The more detailed the
expert’s knowledge about the quantity under consideration is, the more precisely the dis-
tribution can be modelled. Common choices in this context (with rising complexity) are
uniform, triangular or trapezoidal distributions.

The data reconciliation method presented here is able to deal with arbitrary pdfs
describing the uncertainty of an observation, regardless of the procedure by which it has
been derived. Thus, nonnormal models can be used as they are, without any need for nor-
mal approximation. Before the constraints are imposed, the joint pdf of the observations,
built from these nonnormal models, is called the ‘prior’ pdf. As in least-squares DR, the
joint distribution of the reconciled observations is singular; there is, however, a subset
of the variables (called the free variables in the following) with a nonsingular distribu-
tion and a pdf, called the ‘posterior’ pdf. Although Bayes’ theorem is not invoked in the
derivation of the posterior pdf, the terms ‘prior’ and ‘posterior’ can be justified by the fact
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that the posterior pdf is a conditional density, namely the prior pdf conditioned on the
constraints.

2.2. Basic assumptions

Let m = (y; x) be a column vector of n variables that is arranged such that y contains the
ny unobserved variables and x contains the nx = n − ny observed variables. In addition,
there is a system of nc independent constraint equations, where ny ≤ nc ≤ n:

G(y; x) = 0, G : Rn −→ R
nc . (3)

The functionG usually also depends on a vector z of known constants. In order to simplify
the notation, this dependence is not shown explicitly.

The derivation of the posterior pdf of the observed variables is based on the following
assumptions:

(1) The n observed or unobserved variables take values in a subset D ⊆ R
n.

(2) The observations of the nx ≤ n observed variables x form an nx-dimensional random
variable with known joint pdf, called the prior pdf of the observed variables. As out-
lined in Section 2.1, the prior pdf of an observed variable can result from an individual
measurement, from a collection of measurements, or from capturing expert opinion
in a pdf.

(3) Then variables are subject tonc independent nonlinear equality constraints that define
a differentiable manifold S ⊂ R

n of dimension n − nc.
(4) The nc nonlinear equality constraints can be uniquely solved for a set of nc depen-

dent variables (observed or unobserved) that are differentiable functions of n − nc
free variables (observed only), for each admissible value of the free variables.

There is no prior information on the unobserved variables y. Their posterior distribution is
computed from the posterior distribution of the free variables using themodel constraints.

Assumption 4 implies that potentially involved unobservable variables have already
been eliminated from the system of equations. Additional constraints such as positivity or
boundedness can be incorporated directly in the prior distributions of the observed vari-
ables and need not be enforced explicitly.2 Inequality constraints can be transformed into
equality constraints by introducing slack variables with uninformative priors restricted to
positive values. For instance, the inequality constraint x1 ≤ x2 x3 can be transformed to
x1 + xS = x2 x3 with xS ≥ 0 a priori.

2.3. The posterior pdf with nonlinear constraints

By assumption, the nonlinear constraints are solved by representing the ny unobserved
variables y and the nu = nc − ny dependent observed variables u as functions of the nw =
n − nc chosen free observed variables w ∈ W, where W ⊆ R

nw is the domain of the free
variables:

y = k(w), (4)
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u = h(w). (5)

It is assumed that the function h is differentiable everywhere in W, with the following
Jacobian:

H(w) = ∂h(w)

∂w
, w ∈ W. (6)

If the constraints are sufficiently simple, the functions k and h can be computed explicitly.
In general, however, the nonlinear constraint equations have to be solved numerically for y
and u. The linearization method combined with Newton–Raphson iteration is a common
choice in this context. If this fails, gradient-freemethods such as the simplex algorithm [11]
are viable alternatives to compute y and u for given w (see Example 4.2).

The joint prior pdf does not depend on the unobserved variables y and can be written as
f (u;w). DR is tantamount to conditioning the prior distribution of the observed variables
on the constraints in Equation (5) and to find the resulting posterior distribution. Because
the unobserved variables y have thus been eliminated from the DR problem, the constraint
manifold S can now be considered as a nw-dimensional differentiable manifold inR

nx with
the following embedding:

ϕ(w) = (h(w);w), w ∈ W. (7)

The constraint manifold S has Lebesgue measure zero in R
nx , so the prior distribution

restricted to S is singular and has no pdf with respect to the Lebesgue measure. It can,
however, be characterized by a pdf with respect to the measure dS on S that is induced by
themetric structure of S [15,16]. This pdf is then transformed to a pdf π(w) in terms of the
free variables w (with respect to the Lebesgue measure inW ⊆ R

nw), which is the sought-
after reconciled or posterior pdf. It is uniquely determined by the prior pdf and the set of
constraints. In perfect analogy to DR by least squares, where the covariance matrix of x̂ is
rank deficient, there is no joint posterior pdf of all variables. As the constraint manifold
S is embedded into R

nx by the mapping in Equation (7), the metric tensor of the induced
metric in S is equal to T(w) = I + HTH, whereH is evaluated at w [13]. The metric T(w)

induces a differential volume element in the nw-dimensional tangent space at the point
(h(w);w), and thus a measure on the manifold [15,16]. The differential volume element
dS(w) of S at w is then given by

dS(w) = V(w) dw, with V(w) =
√

|I + HTH|. (8)

Depending on the dimension of S, dS(w) can actually be the differential element of a curve,
a surface, a volume or a hypervolume. If S is a curve u = h1(w) in R

2 or a surface u =
h2(w1,w2) inR

3, thewell-known respective expressions for the differential of the arc length
and the differential of the area are recovered:

u = h1(w) =⇒ dS =
√
1 + (dh1/dw)2 dw, (9)

u = h2(w1,w2) =⇒ dS =
√
1 + (∂h2/∂w1)2 + (∂h2/∂w2)2 dw1 dw2. (10)

The prior pdf f (u;w), restricted to S and written as a function of w only, is equal to
f (h(w);w), which in turn is proportional to the pdf fS(w) with respect to the measure dS
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on S:

fS(w) = (1/C) f (h(w),w), with C =
∫
S
f (h(w),w) dS(w). (11)

Finally, the posterior pdf fS(w) on S is transformed to the posterior pdf π(w) on W,
the domain of the free variables, with respect to the Lebesgue measure in W. In order
to conserve probabilities, the differential posterior probability π(w) dw must be equal to
the differential probability fS(w) dS(w) of the corresponding differential volume element
dS(w):

π(w) dw = fS(w) dS(w) ∝ f (h(w),w)V(w) dw. (12)

The posterior pdf of the free variables can therefore be written as follows:

π(w) = f (h(w),w)V(w)∫
W
f (h(w),w)V(w) dw

, (13)

where the integral is taken over the domain W of w.
If the observations of u and w are independent, their joint prior pdf factorizes into the

marginal pdfs fu(u) and fw(w), and the posterior pdf of w is equal to:

π(w) = fu(h(w))fw(w)V(w)∫
W
fu(h(w))fw(w)V(w) dw

. (14)

2.4. Visualization

In the case of a low-dimensional variable space, the construction of the posterior pdf as
outlined in Section 2.3 can be easily visualized, as shown by the following simple example.

Example 2.1: There are two observed variables x1 and x2 with the prior pdf f (x1, x2)
defined on D ⊆ R

2. The nonlinear constraint equation x2 = h(x1) defines a one-
dimensional manifold S, i.e. a curve in R

2. The ‘volume’ element of the curve is given by
the differential of the arc length:

dS = V(x1) dx1 =
√
1 + h′(x1)2 dx1.

The posterior pdf π(x1) is therefore equal to:

π(x1) = f (h(x1), x1)
√
1 + h′(x1)2∫

f (h(x1), x1)
√
1 + h′(x1)2 dx1

.

The values of f (x1, x2) along S can be visualized by intersecting the prior pdf surface with
the surface that is orthogonal to the x1, x2-plane and contains S.

Figure 1 shows an instance of this problem, with independent observations of
the variables x1, x2, the constraint x2 = x2/31 , and the prior pdfs f1(x1) = γ (x1; 2, 2),



JOURNAL OF APPLIED STATISTICS 7

0

0.01

20

0.02

0.03

0.04

x2

10

Prior density of (x1,x2)

20

x1

15100 50

0

0.01

20

0.02

0.03

0.04

x2

10

Prior density cut along x2=x1
2/3

20

x1

15100 50

0 5 10 15 20

x1

0

0.1

0.2

0.3

0.4

0.5
Marginal density of x 1

p1:  =3.9, =2.4

p2:  =3.4, =2.3

prior
posterior 1 (p1, =)
posterior 2 (p2, )

0 5 10 15 20

x2

0

0.1

0.2

0.3

0.4

0.5
Marginal density of x 2

p1:  =2.4, =1.0

p2:  =5.2, =2.5

prior
posterior 1 (p1, =)
posterior 2 (p2, )

Figure 1. Visualizationof thepdfs in Example 2.1. Top left: prior pdf f (x1, x2). Top right: prior pdf f (x1, x2)
cut along the curve x2 = x2/31 ; the red line is the (unnormalized) restricted pdf subject to the constraint

x2 = x2/31 . The remaining ‘mountain’ can be interpreted as the (unnormalized) restricted pdf subject to

the constraint x2 ≥ x2/31 . Bottom: observed (prior, blue) and reconciled (posterior 1, = , red; posterior 2,
≥ , green) pdfs of x1, x2.

f2(x2) = γ (x2; 3, 1.5), where γ (x; a, b) is the pdf of the gamma distribution with parame-
ters a and b:

γ (x; a, b) = xa−1 e−x/b

ba�(a)
I[0,∞)(x).

The chosen priors induce a nonnegative constraint on the observations.

2.5. Invariance property

The posterior distribution on the constraint manifold S (see Equation (11)) is invariant
under the choice of the free variables. In fact, the volume element dS is invariant under
general differentiable one-to-one coordinate transformations, and therefore in particular
invariant under different choices of the free variables. If w1 and w2 are two different sets of
free variables, the corresponding posteriors π1(w1) and π2(w2) are related to each other
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according to the transformation theorem for pdfs:

π1(w1) dw1 = π2(w2) dw2. (15)

This invariance property is illustrated by the following example.

Example 2.2: Consider a nonlinear model with two independently observed variables
x1, x2 and a nonlinear constraint x2 = h(x1), where x1 is the free variable and h(x1)
is assumed to be one-to-one, i.e. invertible with the inverse function x1 = η(x2). The
prior pdfs of the observations are given by f1(x1), f2(x2). According to Equation (13), the
posterior pdfs π1(x1),π2(x2) are proportional to:

π1(x1) ∝ f1(x1)f2(h(x1))
√
1 + h′(x1)2, (16)

π2(x2) ∝ f1(η(x2))f2(x2)
√
1 + η′(x2)2. (17)

π1(x1) can be transformed to a pdf π̇2(x2) by applying the transformation theorem for pdfs
and using the identity:

h′(η(x2))η′(x2) = 1.

This yields:

π̇2(x2) = π1(η(x2)) dx1/dx2

∝ f1(η(x2))f2(x2)
√
1 + h′(η(x2))2η′(x2)

= f1(η(x2))f2(x2)
√

η′(x2)2 + h′(η(x2))2η′(x2)2

= f1(η(x2))f2(x2)
√
1 + η′(x2)2

∝ π2(x2).

This is equivalent to showing that:

V2(x2) = V1(x1)
∣∣∣∣dx1dx2

∣∣∣∣ .
Thus, the posterior pdfs in Equations (16) and (17), and therefore the joint distribution of
all variables, are invariant under the choice of the free variable.

Remark: In the case of linear constraints, the volume element of the constraintmanifold is
a constant, and V(w) cancels in the normalization of the posterior pdf (see Equations (13)
and (14)). This explains whyV(w) does not appear in the posterior pdfπ(w) derived in [3].

3. MCMC sampling

In general, the integral in the denominator of the right-hand side of Equations (13) and (14)
cannot be computed analytically. In Example 2.1, the normalizing constant could be com-
puted numerically by a single integral over the curve S : x2 = x12/3. For higher dimensions
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of S, however, numerical integration becomes cumbersome and time consuming. It also
has the distinctive disadvantage that only the posterior pdf π(w) of the free variables w is
immediately available, and that nothing is known about the distribution of the dependent
variables y and u.

Generating a random sample from the posterior distribution in Equations (13) and (14)
by means of Markov chainMonte Carlo (MCMC)methods [2,8,18] has two advantages:

(1) There is no need to compute the normalization constant.
(2) The corresponding sample values of the dependent variables y and u can be computed

by Equations (4) and (5).

It is therefore straightforward to estimate posterior marginals, expectations, variances and
covariances of all variables from the full sample.

It was argued in [3] that the sampler best suited to the context of DR is the independence
sampler [2,4,7], in which the proposal values ẇ are drawn independently from a proposal
pdf p(w). The acceptance probability of the sampler is given by

α(wi, ẇ) = min
(
1,

π(ẇ) p(wi)

π(wi) p(ẇ)

)
. (18)

In the case of independent observations u and w, this is equivalent to

α(wi, ẇ) = min
(
1,

fu(h(ẇ))fw(ẇ)V(ẇ)p(wi)

fu(h(wi))fw(wi)V(wi)p(ẇ)

)
. (19)

Note that the normalizing constant of π(w) cancels in Equations (18) and (19), so there
is no need to compute it. If the proposal pdf is chosen as p(w) = fw(w), Equation (19)
reduces to

α(wi, ẇ) = min
(
1,

fu(h(ẇ))V(ẇ)

fu(h(wi))V(wi)

)
. (20)

The algorithm for independent observations is summarized in the box Algorithm 1. For
more details about the implementation of the sampler, see [3, Section 3]. In the general
case of correlated observations, the acceptance probability has to be computed according
to Equation (18), with a suitable proposal pdf p(w).

As all draws from the proposal pdf are equally valid starting points of theMarkov chain,
no ‘burn-in’, i.e. discarding an initial segment of the chain, is necessary.3

Algorithm 1. Algorithm IS-NL

(IS-NL1). Choose the sample size L, set i = 1.
(IS-NL2). Generate the starting valuew1 by drawing independent random numbers

from the prior marginal distributions of the free variables. Repeat (IS-
NL2) until fu(h(w1)) > 0.

(IS-NL3). Generate a proposal value ẇ by drawing independent random numbers
from the prior marginal distributions of the free variables.
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(IS-NL4). Compute the acceptance probability α according to Eq. (20).
(IS-NL5). Draw a uniform random number ξ ∈ [0, 1].
(IS-NL6). If ξ ≤ α, accept the proposal and set wi+1 = ẇ, otherwise set wi+1 = wi.
(IS-NL7). Increase i by 1. If i < L, go to (IS-NL3), otherwise stop sampling.

Remark: If a large number of variables is involved, the numerator and/or the denominator
of Equation (20)may fall belowmachine precision. This can be circumvented by taking the
logarithms of both sides of the equations and accepting when log ξ ≤ logα.

The proposal values Ẇ = (ẇ1, ẇ2, . . . , ẇL) and the corresponding values of U̇ =
(u̇1, u̇2, . . . , u̇L) and Ẏ = (ẏ1, ẏ2, . . . , ẏL) can be precomputed via u̇i = h(ẇi) and ẏi =
k(ẇi), respectively, for i = 1, . . . , L (see Equations (4) and (5)). As the proposal values
are independent, their computation can be easily parallelized. After the sampler has fin-
ished, the final Markov chain (Y ;U ;W) can then be used to estimate posterior quantities
such as means, variances, quantiles and correlations of all variables, both observed and
unobserved. For a graphical representation of the posterior distributions, the marginal
pdfs can be estimated from the Markov chain by a kernel estimator [20] or obtained by
smoothing the normalized frequency distribution in a histogram. For more details about
the acceptance rate and the posterior analysis, see [3].

By construction, all individual elementsmi = (yi; ui;wi) of theMarkov chain satisfy the
nonlinear constraints, but the sample mean in general does not. If a representative value of
the posterior distribution satisfying the constraints is required, the element of the Markov
chain with the smallest distance from the sample mean, the sample median or the sam-
ple mode can be selected. The multivariate sample mode is, however, notoriously difficult
to compute, and there are different ways to define a multivariate median [12]. Thus, the
element closest to the sample mean turns out to be virtually the only practical possibility.

4. Applications

The two examples in this section show the application of the independence sampler toMFA
and chemical engineering. TheMATLAB code used for the examples can be obtained from
the authors on request.

In both examples we assume that there is independent prior information for each of the
observed variables. The prior pdf displays the initial knowledge about the variable. This
knowledge can be objective, being the model of a measurement process, or it can be sub-
jective, being the expression of an expert opinion via a pdf. The mode of the prior pdf
represents the most probable or most credible value of the variable before imposing the
constraints. Similarly, the mode of the posterior pdf represents the most probable or cred-
ible value after imposing the constraints. Note that even if the observations are assumed
to be independent a priori, all variables are correlated a posteriori. A comparison of the
prior and the posterior marginal pdfs shows that the uncertainty of the observed vari-
ables is reduced: standard deviations become smaller, HPD intervals become shorter. Both
examples additionally contain unobserved variables. Although they have no prior pdfs,
their posterior marginal pdfs are estimated from the Markov chain of the free variables.
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This demonstrates the two essential features of data reconciliation: improving the precision
of the observed variables, and enabling the estimation of unobserved variables.

Example 4.1: This example is based on a simple problem inMFA. Figure 2 shows a graphi-
cal representation ofmaterial flows. Process 1 splits the input flow (1) into two output flows
(2 and 3). Each flow i is characterized by three variables: themass gi of the transported good,
themass si of a specific substance contained in the good, and themass fraction ci = si/gi of
the substance in the good. A typical example of this model could be the splitting of plastic
waste into a heavy and a light fraction, where the cadmium (= substance) mass flow and
its mass fraction in each of the goods is of interest.

Since the masses of both the goods and the substance are conserved in the process, and
the mass of the substance equals the mass of the good times its mass fraction in each flow,
the reconciled values of all variables have to fulfil the following minimal set of constraints:

g1 = g2 + g3, s1 = s2 + s3, s1 = g1c1, s2 = g2c2, s3 = g3c3.

There are six observed variables x = (g1; g2, g3; c1; c2; c3), and three unobserved variables
y = (s1; s2; s3). As the variables g1, g2, g3 cannot take negative values, their uncertainty is
modelled by independent lognormal priors. The variables c1, c2, c3 are restricted to the
interval [0, 1], and their uncertainty is modelled by independent beta priors. The modes
mi and standard deviations σi of the priors as well as the mean values are given in Table 1.

The choice of nonnegative priors guarantees that also the unobserved mass flows si of
the substance will automatically take nonnegative values only. Thus, it is not necessary to
enforce their positivity.

In this example, the functional dependencies y = k(w) and u = h(w) (see Equations (4)
and (5)) can be stated explicitly. The number of free variables to be selected from the
observed variables x is equal to n − nc = 9 − 5 = 4. If for instance w = (g2; g3; c2; c3),
y = (s1; s2; s3) and u = (g1; c1), then:

y =
⎛
⎝s1
s2
s3

⎞
⎠ =

⎛
⎝g2c2 + g3c3

g2c2
g3c3

⎞
⎠ ,

Figure 2. Flowsheet of Example 4.1 with three flows and one process.

Table 1. Modes, standard deviations and means of the prior distributions of the observed variables in
Example 4.1.

g1 g2 g3 c1 c2 c3

mi 15.00 8.00 5.00 0.30 0.20 0.50
σi 5.00 3.00 2.00 0.03 0.02 0.05
μi 16.99 9.28 5.89 0.30 0.20 0.50



12 O. CENCIC AND R. FRÜHWIRTH

u =
(
g1
c1

)
=

(
g2 + g3

(g2c2 + g3c3)/(g2 + g3)

)
.

The independence sampler (see box Algorithm 1) was run for L = 200, 000 iterations.
The acceptance rate of the sampler is about 62%. Figure 3 shows the smoothed marginal
posterior pdfs of q = (g1; g2; g3; c1; c2; c3; s1; s2; s3) with their modes, means and standard
deviations. The gain in precision due to DR is most clearly seen in the posterior standard
deviations of themass flows gi of the goods, which aremuch smaller than the prior ones. In
addition, there is valuable information about the unobserved mass flows of the substance,
which can be obtained only by DR.
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Figure 3. Priors and smoothed marginal posteriors of g1, g2, g3, c1, c2, c3, s1, s2, s3 in Example 4.1, with
modem, meanμ and standard deviation σ .
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Table 2. Sample mean q̄ and sample value qmin that is closest to the sample mean as measured by the
L2 distance.

Variable g1 g2 g3 c1 c2 c3 s1 s2 s3

q̄ 15.13 9.65 5.48 0.31 0.20 0.49 4.62 1.94 2.68
qmin 15.12 9.65 5.46 0.31 0.20 0.50 4.67 1.94 2.73

The sample mean q̄ and the sample value qmin that is closest to the sample mean, as
measured by the L2 distance, are given in Table 2.

Example 4.2: The second example uses the system of nonlinear constraints analysed
in [14], which is a commonly used benchmark example4 for nonlinear data reconciliation
with normally distributed observation errors:

G1(y; x) = 0.5x21 − 0.7x2 + x3y1 + x22y1y2 + 2x3y23 − 255.8 = 0,

G2(y; x) = x1 − 2x2 + 3x1x3 − 2x2y1 − x2y2y3 + 111.2 = 0,

G3(y; x) = x3y1 − x1 + 3x2 + x1y2 − x3y0.53 − 33.57 = 0,

G4(y; x) = x4 − x1 − x23 + y2 + 3y3 = 0,

G5(y; x) = x5 − 2x3y2y3 = 0,

G6(y; x) = 2x1 + x2x3y1 + y2 − y3 − 126.6 = 0.

The variables x = (x1; x2; x3; x4; x5) are observed with the following values:

x̃ = (4.4; 5.5; 1.7; 1.6; 5)

and the covariance matrix � = I. Although the context of the model is not stated in [14],
we assume that all variables have to be nonnegative. The prior of the observation xi is
assumed to be the lognormal pdf with mean x̃i and standard deviation σi = 1, for i =
1, . . . , 5. Assuming the observations to be independent, the joint prior is the product of
the individual priors. The unobserved variables y = (y1; y2; y3) can be forced to be non-
negative by assigning them an improper constant prior on [0,∞); however, this turns out
to be unnecessary.

If the two free variables are chosen as w = (x1; x2), the three dependent observed vari-
ables are equal to u = (x3; x4; x5). For given w, the functions u = h(w) and y = k(w)

(see Equations (4) and (5)) are computed by minimizing ‖G(y; u;w)‖2, using the simplex
algorithm [11] with restart. The starting point of the minimization is equal to (ỹ; x̃), where

ỹ = argmin
y

‖G(y; x̃)‖2.

The JacobianH(w) = ∂h(w)/∂w is computed by numerical differentiation.
The independence sampler was run for L = 200,000 iterations, with an acceptance rate

of about 13%. The posterior pdfs are shown in Figure 4. Clear deviations from normality
can be observed. The reconciled values of x and y given in [14] are very close to the pos-
terior modes. The posterior standard deviations of the observed values are significantly
smaller than 1, showing again the gain in precision due to data reconciliation.
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Figure 4. Priors and smoothed marginal posteriors of x1, x2, x3, x4, x5, y1, y2, y3 in Example 4.2, with
modem, meanμ and standard deviation σ . The reconciled values given in [14] are also shown.

5. Conclusions and outlook

In this paper, the method for reconciling nonnormally distributed data by a Markov chain
Monte Carlo method presented in [3] was extended to nonlinear constraints for uncorre-
lated and correlated observations. A crucial difference to the posteriorπ(w) derived for the
linear case (Equation (A10)) is the presence of V(w) (Equation (8)) in the corresponding
posterior for the nonlinear case (Equation (13)). If V(w) is neglected, the posterior is no
longer invariant under the choice of the free variables.

The method presented here has several advantages. First, arbitrary continuous pdfs
can be used to describe the uncertainty of the observations. Second, even nonparametric
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estimators of the pdf are allowed, provided that it is possible to draw a random sample from
them. Third, not only means, variances and covariances of observed and unobserved vari-
ables can be computed a posteriori, but also various other characteristics of the marginal
posteriors, such as the mode, skewness, quantiles, and HPD intervals.

In some systems of nonlinear constraints not all choices of free variables lead to fea-
sible solutions for the dependent variables. If this is the case, we propose to permute the
positions of the free variables randomly and repeat the calculations until a feasible solution
is reached. In large and complex models this may lead to an unacceptable combinatorial
overhead. A general procedure for finding a suitable set of free variables therefore remains
an important open question for further research.

The procedure developed in this paper for DR with nonlinear constraints can also
be applied to linear constraints. Thus, it is not necessary to assume improper priors for
unobserved variables, as was proposed in [3].

Beyond their statistical uncertainty, the observations may also be corrupted by gross
errors such as biased observations or faulty readings.Work is already in progress to develop
a robustification of the DR procedure by automatic identification of outlying or erroneous
observations that prevent a successful reconciliation.

In subsequent work, the method will be applied to a more extensive real-world example
in order to compare the results to alternative approaches such as classical weighted least
squares and fuzzy sets.

Notes

1. The comma (semicolon) denotes horizontal (vertical) concatenation of vectors and matrices
(Matlab convention).

2. See, however, the discussion of constraints versus priors in [21].
3. This has been argued by C. Geyer on his website, see http://users.stat.umn.edu/ geyer/mcmc/

burn.html. Last accessed on January 2, 2018.
4. See ‘Citing literature’ on http://onlinelibrary.wiley.com/doi/10.1002/aic.690340521/abstract.

Last accessed on January 2, 2018.
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Appendix. Proof of equivalence with linear constraints

For the case of normally distributed independent observations and linear constraints, it was proved
in [3] that the unbiased estimate of the expectationμπ of π(w) is equal to the least-squares solution
ŵ. Here, the proof is generalized to correlated observations.

Consider a system of nc linear constraint equations:

G(y; x) = By + Ax + c = 0, (A1)

where x is the vector of observed variables of dimension nx × 1, y is the vector of unobserved vari-
ables of dimension ny × 1, c is a constant vector of dimension nc × 1, and A and B are known
matrices of dimensionnc × nx andnc × ny, respectively. The system is assumed to have the following
properties:

(A1) rank(B,A) = rank(B,A, c), meaning the system has at least one solution;
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(A2) rank(B,A) = nc, meaning the system equations are linearly independent;
(A3) rank(B) = ny, meaning all unobserved quantities can be calculated.

If any of these assumptions are violated, the underlying problems have to be resolved before pro-
ceeding. This can be achieved, e.g. by transforming the matrix (B,A, c) to the reduced row echelon
form (RREF). This allows to detect contradictions (A1), to eliminate dependent equations automati-
cally (A2), and to classify variables, in particular to identify and eliminate unobservable unobserved
variables (A3). For detailed instructions how to proceed see, for instance [9, p. 125].

After the reduction to the RREF, the observed variables x can be split into nw = n − nc free
variables w and nu = nc − ny dependent variables u, which are linear functions of w:

G(y; x) = (B A c)

⎛
⎝y
x
1

⎞
⎠ =

(
I O E e
O I D d

) ⎛
⎜⎝
y
u
w
1

⎞
⎟⎠ = 0 (A2)

Remark: To reach the RREF displayed in Equation (A2), a reordering of variables in x may be
necessary, leading to v = (u;w).

Due to the reduction to the RREF, the ny unobserved variables y, which are linear functions of
w only, can be eliminated from the DR problem. Thus, the system of constraint equations can be
simplified to

u + Dw + d = 0, (A3)
which the reconciled values û and ŵ have to fulfil after DR:

û + Dŵ + d = 0 or û = −Dŵ − d. (A4)

The reconciled values ŵ can be used to compute ŷ via:

ŷ + Eŵ + e = 0 or ŷ = −Eŵ − e. (A5)

The least-squares solution of the linear DR problem can be found by the standard method of
Lagrange multipliers [19]:

v̂ = ṽ + �KT(K�KT)−1(−d − Kṽ), (A6)

where ṽ = (ũ; w̃) is the vector of observations,� is the joint covariance matrix of ṽ, andK = (I,D).
The solution v̂ can be written as v̂ = (û; ŵ), with

ŵ = w̃ + (�wu + �wwDT)H−1(−d − ũ − Dw̃), (A7)

where
H = K�KT = �uu + D�wu + �uwDT + D�wwDT, (A8)

and � is partitioned in the following way:

� = (�uu,�uw;�wu,�ww). (A9)

In [3] it has been shown that with linear constraints the reconciled or posterior pdf π(w) of the
free variables can also be obtained by restricting the joint pdf of the observations to the constraint
manifold. Assume that the joint pdf f (u;w) of the observations is a normal pdf with mean μ =
(μu;μw) and covariance matrix �. Then the posterior π(w), given by

π(w) = f (−Dw − d;w)∫
f (−Dw − d;w) dw

, (A10)

is a normal pdf too. If the inverse covariance matrix � = �−1 is partitioned as follows:

� = (�uu,�uw;�wu,�ww), (A11)



18 O. CENCIC AND R. FRÜHWIRTH

the quadratic form Q(w) in the exponent of π(w):

Q(w) = [(−Dw − d;w) − (μu;μw)]T� [(−Dw − d;w) − (μu;μw)], (A12)

can be written in the following form:

Q(w) = wT(DT�uuD − DT�uw − �wuD + �ww)w

− 2wT[(�ww − DT�uw)μw + (�wu − DT�uu)(d + μu)] + const. (A13)

π(w) is therefore the pdf of the normal distribution with inverse covariance matrix C and mean μπ

given by

C = DT�uuD − DT�uw − �wuD + �ww, (A14)

μπ = C−1[(�ww − DT�uw)μw + (�wu − DT�uu)(d + μu)]. (A15)

μπ can be expanded and rearranged in the following form:

μπ = μw + C−1(�wu − DT�uu)(d + μu + Dμw). (A16)

Its unbiased estimator μ̂π is obtained by replacing μu and μw by the observations ũ and w̃,
respectively:

μ̂π = w̃ + C−1(�wu − DT�uu)(d + ũ + Dw̃). (A17)
A comparison with ŵ in Equation (A7) shows that

μ̂π = ŵ ⇐⇒ C−1(�wu − DT�uu) = −(�wu + �wwDT)H−1

⇐⇒ (�wu − DT�uu)H + C(�wu + �wwDT) = O. (A18)

Expansion of the products while taking into account the symmetry of � and � along with the
relations:

�uu�uu + �uw�wu = I,

�uu�uw + �uw�ww = O,

�wu�uu + �ww�wu = O,

�wu�uw + �ww�ww = I

(A19)

shows that indeed μ̂π = ŵ.
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