
Diploma Thesis

Combinatorial and Algorithmic Constructions

of Covering Arrays

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Technical Mathematics

submitted by

Ludwig Kampel

Registration Number: 0826015

submitted to the Institute of Discrete Mathematics and Geometry

of the Faculty of Mathematics and Geoinformation

of the Vienna University of Technology

Advisor: Univ. Lektor Dr. Dimitrios E. Simos

Vienna, 13.02.2018

(Signature of Author) (Signature of Advisor)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Diplomarbeit

Kombinatorische und Algorithmische

Konstruktionen von Covering Arrays

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Ludwig Kampel

Matrikelnummer 0826015

eingereicht am Institut für Diskrete Mathematik und Geometrie

der Fakultät für Mathematik und Geoinformation

der Technischen Universität Wien

Betreuer: Univ. Lektor Dr. Dimitrios E. Simos

Vienna, 13.02.2018

(Unterschrift Verfasser) (Unterschrift Betreuer)

Contents

Abstract i

Zusammenfassung iii

Publications arisen from this Thesis v

Acknowledgments vii

Introduction 1

I. Theoretical Constructions 4

1. Preliminaries and Definitions 5

1.1. Covering Arrays (CAs) . 5

1.2. Mixed Level Covering Arrays (MCAs) 8

1.3. Some Basic Properties of CAs and MCAs 11

1.3.1. Basic Properties of Binary CAs 12

1.3.2. Basic Properties of MCAs . 13

1.4. Asymptotics for Covering Array Numbers 16

2. Combinatorial Constructions 20

2.1. Constructions Based on Algebraic Structures 20

2.1.1. Orthogonal Arrays over Finite Fields 20

2.1.2. CAs via Group Actions . 25

2.2. Plug-In Constructions . 33

2.2.1. Nested CAs . 33

2.2.2. A Refinement of the Nested CA Construction 40

2.2.3. Relevance of Nested CA Constructions for Applications in

Combinatorial Testing . 46

v

2.2.4. CAs from Perfect Hashfamilies 52

2.3. CAs as Families of Sets . 57

2.3.1. Independent Families of Sets (IFSs) 57

2.3.2. Maximal 2-Independent Families of Sets 60

2.4. MCAs as Families of Partitions . 63

II. Algorithms for Covering Arrays 67

3. An Overview of Algorithms for CA generation 68

3.1. Greedy Algorithms for CA Generation 68

3.1.1. Vertical Greedy Algorithms 69

3.1.2. Horizontal Greedy Algorithms 69

3.1.3. Two Dimensional Growth . 70

3.2. Metaheuristic Methods . 71

3.3. Hybrid Methods . 74

3.4. Exact Approaches . 74

4. CAs as Cover Problems 75

4.1. Set Covers and Integer Programming 75

4.1.1. Set Covers . 75

4.1.2. Integer Programming . 76

4.1.3. Set Covers and Integer Programming 77

4.2. Formulating Covering Arrays as Set Covers 78

4.2.1. Mapping MCAs to SCs . 78

4.2.2. Mapping Variable Strength CAs to SCs 84

4.2.3. Mapping Weighted Budgeted CAs to Budgeted SCs 88

4.3. Algorithms . 93

4.3.1. gAETG: A Greedy Heuristic for MCA Generation 93

4.3.2. A Review of the Deterministic Density Algorithm 94

4.3.3. DDA for WBCAs . 96

4.3.4. Revisiting gAETG as a Greedy Heuristic for Set Covers . . . 96

4.3.5. A Weighted Budgeted Variant of gAETG for WBCAs 102

4.4. Experiments . 105

5. A Family of Algorithms based on IFSs 112

5.1. A Balancing Property . 112

5.2. A Family of Algorithms for Generation of IFSs 115

5.2.1. IFS-Origin . 116

5.2.2. IFS-Greedy . 117

5.2.3. IFS-Score . 117

5.3. Results . 120

6. Conclusion and Future Work 123

List of Acronyms 126

List of Tables 127

List of Figures 128

List of Algorithms 129

Abstract

Covering arrays are discrete structures appearing in combinatorial design theory.

Most frequently, they are introduced as arrays having specific coverage properties

regarding the appearance of tuples in certain subarrays. The aim of this thesis

is not only to give a thorough introduction to covering arrays and some of their

generalizations, but also to describe combinatorial and algorithmic constructions of

these structures. In doing so, links to various fields of discrete mathematics such as

group theory and the theory of finite fields are established. Throughout the whole

thesis, the reader will be guided by an objective for optimality, as one notorious

problem that arises is to find covering arrays that have the smallest number of

rows. Often the concept of optimality has to be replaced by the aim for covering

arrays that have a small number of rows, as the current state of the art is that

constructions of optimal covering arrays are only known for some special classes of

covering arrays. The generation of optimal covering arrays is not only a theoretically

interesting problem, but is also of interest for practical purposes, as covering arrays

find applications in testing, especially in automated software testing.

i

ii

Zusammenfassung

Covering Arrays sind kombinatorische Designs. Als solche werden diese üblicherweise

als Matrizen mit speziellen Eigenschaften betreffend des Vorkommens von Tupeln

in gewissen Teilmatrizen definiert. Ziel dieser Arbeit ist es, eine Einführung in

Covering Arrays und deren Generalisierungen zu geben, um im Anschluss sowohl

kombinatorische als auch algorithmische Konstruktionsmethoden dieser Strukturen

zu diskutieren. Im Verlauf dieser Diskussion werden verschiedenste Verbindungen zu

anderen Teilbereichen der diskreten Mathematik, wie Gruppentheorie und endliche

Körper, hergestellt und angewandt. Bei dem Studium von Covering Arrays ergibt

sich das zentrale Problem, optimale Covering Arrays, das sind solche mit der ge-

ringsten Anzahl an Zeilen, zu erzeugen. Oft muss das Ziel, Covering Arrays mit

der geringsten Anzahl an Zeilen zu finden, aufgegeben und durch ein Streben nach

solchen mit einer geringen Anzahl an Zeilen ersetzt werden. Dies zeigt der aktuelle

Stand der Forschung, nach welchem Konstruktionen für optimale Covering Arrays

nur für spezielle Klassen bekannt sind. Das Generieren optimaler Covering Arrays

ist nicht nur aus theoretischer Sicht ein interessantes Problem, sondern auch von

praktischem Interesse, da Covering Arrays in Testverfahren, vor allem im Bereich

automa-tischer Softwaretests, Anwendung finden.

iii

iv

Publications arisen from this Thesis

During the work conducted as part of this Master thesis the following scientific

publications have arisen, which are related to the field of Combinatorial Design

Theory and their Algorithms as well as their application to Combinatorial Testing.

1. Ludwig Kampel and Dimitris E. Simos, “Set-based Algorithms for Combina-

torial Test Set Generation”, in ICTSS 2016: Proceedings of the 28th

International Conference on Testing Software and Systems, Lecture

Notes in Computer Science, vol. 9976, pp. 231-240, 2016.

2. Ludwig Kampel, Bernhard Garn and Dimitris E. Simos, “Combinatorial meth-

ods for modelling composed software systems”, in IWCT 2017: Proceed-

ings of the 6th International Workshop on Combinatorial Testing,

collocated with ICST 2017: 10th IEEE International Conference on

Software Testing, Verification and Validation, pp. 229-238, 2017.

3. Ludwig Kampel, Bernhard Garn and Dimitris E. Simos, “Covering arrays via

set covers”, to appear in Electronic Notes in Discrete Mathematics, vol.

65, (2018).

4. Ludwig Kampel, Manuel Leithner, Bernhard Garn and Dimitris E. Simos,

“Problems and Algorithms for Covering Arrays via Set Covers”, submitted

for publication.

v

vi

Acknowledgments

My gratitude goes to my advisor Dimitrios Simos, who awakened my interest for

combinatorial design theory. I want to thank you for your guidance and the profes-

sional, technical, emotional and financial support in the last years.

Further, my thanks go to my family, friends and colleges for supporting me during

the writing process of this thesis. My special thanks go to Cathi, for helping me

piecing together my broken English.

For a comprehensive overview of my thanks pleas see the table below.

Thanks to\for Support Guidance Friendship Love Money

Dimitrios × × ×
Family × × × ×
Hubert × × × × You still owe me 5 e

Bernhard × × × ×
Dimitris × × ×
Peter, Cathi,

× ×
Manuel, Kris

vii

Introduction

Covering Arrays (CAs) are structures appearing in combinatorial design theory

and can be considered a generalization of Orthogonal Arrays. As such, they are

introduced as matrices having specific properties regarding the appearance of tuples

in subarrays. More precisely, any subarray comprised of a fixed number t of columns

of a CA has the property that any t-tuple over a given alphabet appears at least once

as a row of this subarray. The fixed number t is called the strength of the CA and

is of increased interest when it comes to application domains of CAs in practice. As

mentioned in [70] CAs find practical use, amongst other fields, in testing networks

[95] and hardware circuits [84], further they find applications in domains as material

science [100] and genomics [85]. In recent years though such matrices have attained

a lot of attention due to their use in automated software testing [13, 25, 24, 34].

The author’s motivation to deal with the topic of CAs is rooted in a striving to use

theoretical results and abstract structures to tackle real world challenges, and thus

to generate materialistic value. To the author’s opinion, combinatorial designs and

particularly covering arrays, play a pivotal role in that process, comparable to the

application of algebra to address issues that arise with transmission channels, which

lead to the development of the field of Error-Correcting Codes in the mid of the 20th

century. To explain this viewpoint further, one can think of the increasing number

of electronic devices in our daily life, an increasing number of which depends on

some software product, in one way or another. As hardware and software needs to

be tested to secure the quality of the products, testing techniques based on covering

arrays can provide means for an efficient and cost-effective way for testing these

products. At the same time the effort that needs to be spent in order to apply

covering arrays for testing a certain piece of software or hardware, can be very

minimal ([53]), establishing a direct link from theory to practice.

According to a report of the National Institute of Standards and Technology (NIST)

[91], faults in software cost the U.S. economy up to $59.5 billion per year, where

1

these costs could be reduced by $22.2 billion, if better software testing infrastructure

was available. An empirical study of the NIST from 2010 [59] shows that, in all

tested software applications, faults were triggered by interactions of up to 6 input

parameters. This reveals the importance of generating software tests from CAs, as

each column of a CA can be identified with an input parameter of the software, so

that each row of the array gives rise to a test. The defining property of a CA of

strength t ensures that each interaction of up to t parameter values is tested, once

all tests generated from the rows of one CA have been executed. This shows that the

generation of CAs with a small number of rows is of major interest for applications.

In fact, the problem of generating optimal CAs, i.e. ones with the smallest possible

number of rows, is not solved for the general case and remains a challenging problem

for researchers.

This thesis provides an introductory overview of the topic of CAs, highlighting com-

binatorial and algorithmic aspects of these structures. To this end it is structured

in two parts.

The thesis is structured as follows. The first part of this master thesis starts

with an introduction to CAs in Chapter 1, stating basic definitions and properties,

such as the Logarithmic Guarantee which states that the number of rows of optimal

CAs grows with the logarithm of the number of columns. In Chapter 2 some state of

the art construction methods for CAs are considered. First two constructions based

on algebraic structures, in this case groups and finite fields, are considered. The

first construction provides means to construct orthogonal arrays over alphabets,

which cardinality is a prime power, and have a limited number of columns. The

second construction, based on a group acting on the entries of a matrix, is used

to determine the smallest number of rows for which a certain CA exists. Further

we discuss plug-in constructions, which use properties of structures appearing in

combinatorial design theory together with a replacement scheme. In this context

we show that the plug-in of CAs into a CA yields again a CA, giving rise to a

nested CA construction and further describe a plug-in construction for CAs involving

perfect hash families. Finally connections between CAs and families of sets with

specific intersection properties are discussed and the equivalence of binary CAs to

independent families of sets is established, to be reused in the second part. Many of

the discussed construction methods can only be applied, if certain constraints, e.g.

regarding appearing alphabet sizes, are fulfilled. In terms of application domains

2

these constraints can be very limiting, as many applications demand for CAs with

arbitrary or mixed alphabet sizes (e.g. [54]).

In the second part of this thesis the focus is shift to algorithmic approaches for CA

construction, being capable of generating CAs over arbitrary alphabets. In Chapter

3 we give a summary of algorithms for CA computation, which make use of different

paradigms, including greedy, metaheuristic and hybrid methods. Thereafter, in

Chapter 4, we will highlight connections between CAs and set covers, which enables

us to interpret problems pertaining CAs as problems regarding set covers. In this

context we consider some algorithms for CA generation from the view point of set

covers ([47]) and provide an experimental comparison of algorithms specialized for

problems pertaining CAs and algorithms for set covers. Finally in Chapter 5 we

will present a family of algorithms that construct CAs via families of sets fulfilling

certain intersection properties ([48, 30]).

3

Part I.

Theoretical Constructions

4

1. Preliminaries and Definitions

In this first chapter we will introduce the basic definitions and notations used

throughout this thesis. This includes the definition of Covering Arrays (CAs) as

combinatorial objects, as well as definitions of generalizations of CAs. Having es-

tablished the necessary definitions, next we will show some basic properties of these

structures.

Notations and abbreviations used in this thesis

Throughout this thesis we will use the abbreviation [n] for the integer interval

{0, 1, . . . , n − 1} for n ∈ N. For a set A ⊆ U we denote the complement of A in U

also as AC := A \ U , omitting the specification of the underlying set U whenever

there is no danger for ambiguity.

1.1. Covering Arrays

In this section we introduce Covering Arrays as arrays having specific coverage prop-

erties. Further we define a first generalization of these objects, loosening limitations

when it comes to the underlying alphabet from which the entries of these arrays

arise.

There are various ways in existing literature on how to define Covering Arrays

leading to inconsistent nomenclature. Some alternative names for covering arrays

are for example surjective matrices [40] and surjective arrays [14]. Yet in more recent

literature the term covering array seems to be established for these objects, which are

usually defined along the lines of [21], deviating only slightly in the used terminology.

We will also follow to the definition given in [21], augmenting it afterward with some

additional terminologies that will be helpful throughout this thesis.

Definition 1.1. For an integer v ∈ N we say that an array A is a v-ary array, if its

entries arise from a set Σ, also called the alphabet, of cardinality |Σ| = v.

5

Since the properties of the arrays considered in this work do not depend on the actual

alphabet, i.e. the actual elements of the set from which the entries of these arrays

arise, rather on the cardinality of the alphabet, in most cases we restrict ourselves,

without loss of generality, to arrays over integer intervals [v] = {0, 1, . . . , v − 1} for

v ∈ N.

Definition 1.2. A covering array, denoted as CA(N ; t, k, v) is an N × k array with

the following properties:

(i) The entries of A arise from the set [v],

(ii) for each selection of t different columns, the subarray comprised by these

columns has the property that every t-tuple in [v]t appears at least once as

a row of the subarray.1

For short we denote such covering arrays by CA(N ; t, k, v), and refer to (t, k, v) as

the parameters of the CA.

Example 1.3. The array below is an example of a CA(6; 2, 10, 2).

1 1 0 1 1 0 1 0 0 1

1 0 1 0 1 1 0 0 1 1

1 0 1 1 0 0 1 1 1 0

0 1 0 1 1 1 0 1 1 0

0 1 1 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0

Remark. In general, to avoid a notation heavy thesis, when there is no immediate

need to know the exact parameters of the covering arrays considered, we may use

the term covering array or just the abbreviation CA. Further in case we consider

CAs over the binary alphabet {0, 1} we also refer to them as binary CAs for short.

Note that in some works the transposed notation of CAs is being used, where the

roles of rows and columns are interchanged (e.g. in [71]).

As mentioned in the introduction, CAs can be considered a generalization of orthog-

onal arrays (OAs) of index unity, which are defined as in [10] as follows.

1For a set B and an integer t we denote with Bt := B ×B × . . .×B︸ ︷︷ ︸
t times

the t-th cartesian power of

B.

6

Definition 1.4. An N × k array is called an orthogonal array of strength t and

index λ, denoted as OAλ(t, k, v) if it has the following properties:

1. The entries arise from the set [v],

2. for each selection of t different columns of the array, the subarray comprised

by these columns has the property that every t-tuple in [v]t appears exactly λ

times as a row of the subarray.

Remark. From the definition of orthogonal arrays it follows immediately that an

OAλ(t, k, v) needs to have exactly N = λvt rows. This is also the reason why the

notation of OAs is not uniform in literature, since some authors (see for example

[37] denote them as OA(N ; t, k, v) where the index λ is implicitly determined by the

number of rows N .

Example 1.5. The array below is an example of an OA2(2, 5, 2), taken from [87].

0 0 0 0 0

1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1 1 0 0 1

1 0 1 1 0

0 1 1 1 1

1 1 1 0 0

Remark 1.6. From the definitions of CAs and OAs it follows immediately that every

OA1(t, k, v) is also a CA(vt; t, k, v).

From a different perspective, informally speaking, one could argue that orthogonal

arrays of index unity are perfect covering arrays, since they attain the required

property (ii) in Definition 1.2 while having the smallest number of rows possible

(see Theorem 1.22). Then the following question arises naturally in the theory of

CAs. Which is the smallest N for which a CA(N ; t, k, v) exists?

Definition 1.7. For given t, k, v ∈ N, with 1 ≤ t ≤ k and 2 ≤ v, the smallest N for

which a CA(N ; t, k, v) exists is called the covering array number for (t, k, v) and is

denoted as CAN(t, k, v),

CAN(t, k, v) := min
N∈N
{N | ∃ CA(N ; t, k, v)}.

A CA(N ; t, k, v) achieving this bound, i.e. with N = CAN(t, k, v) is called optimal.

7

Example 1.3 (continuing from p. 6). As will be shown later in this thesis (Section

2.3) any CA(6; 2, 5, 2) is optimal.

The latter definition is also reflected by the following problem.

Problem 1.8 (Optimal CA (OCA)). Given parameters t, k and v, find a CA(N ; t, k, v)

with N = CAN(t, k, v).

Determining the covering array number and optimal CAs for given (t, k, v) is subject

to current research. State of the art tables of upper bounds for CAN(t, k, v) for

various (t, k, v) can be found at [18]. We will revisit to this problem in later sections,

as it will always be present throughout the chapters of this thesis in one form or

another. From a theoretical point of view it is a challenging problem to find CAs

with a small number of rows, which can be seen at hand of the number of different

approaches that are involved to create the results documented in [18]. For practical

applications it is of high interest to find optimal CAs, or at least CAs with a number

of rows approximating the covering array number of the respective parameters in

some sense, as test suites constructed from CAs with less rows consume less resources

during test execution than those constructed from CAs with more rows, see [59].

1.2. Mixed Level Covering Arrays

In this section we introduce a generalization of CAs, allowing different alphabet

sizes for the different columns of an array, which leads to the notion of mixed level

covering arrays (MCAs). Notions and concepts similar to the ones given in this

section can be found in [21, 72]. For the sake of more compact writing, we introduce

the following terminology.

Definition 1.9. For a family of k integers (v1, . . . , vk) ∈ Nk and an n × k array

A, we say that A is an array over (v1, . . . , vk), if A = (c1, . . . , ck) ∈ Nn×k and the

entries in column cj arise from the set [vj] for all j ∈ {1, . . . , k}. In case n = 1, we

also speak of a vector over (v1, . . . , vk).

The following definition deviates slightly in terminology from the one given in [21]

(see also [72]).

Definition 1.10. A mixed level covering array2, denoted as MCA(N ; t, k, (v1, v2, . . . , vk))

is an N × k array with the following properties:

2In some literature, as in [35], these arrays are called covering arrays over heterogeneous alphabets

8

(i) It is an array over (v1, . . . , vk).

(ii) For each selection of t different columns, the subarray comprised by these

columns has the property that every t-tuple 3 in
∏t

r=1[vjr] appears at least

once as a row.

We refer to (N ; t, k, (v1, v2, . . . , vk)) as the parameters of the MCA, and call the

parameter t the strength of the MCA.

In case of v = v1 = . . . = vk an MCA(N ; t, k, (v1, . . . , vk)) is exactly a CA(N ; t, k, v).

Remark. Despite MCAs being a generalization of CAs, we informally use the abbre-

viation CA to refer to CAs as well as MCAs, when the meaning is clear from the

context.

Remark 1.11. Throughout this work we only consider CAs and MCAs for cases

where 2 ≤ t ≤ k and 2 ≤ vi ∀i ∈ {1, . . . , k}, using the same notation as in Definition

1.10, to avoid dealing with trivial cases and exceptions.

Remark 1.12. In the course of this work we may use the term coverage property to

refer to the defining property in Definition 1.2 (ii) or Definition 1.10 (ii) of CAs

respectively MCAs.

The following two notations are mainly to allow a more compact writing of argu-

ments.

Definition 1.13. For an N × t array C = (c1, . . . , ct) over (v1, . . . , vt) we say that

C covers a certain t-tuple (x1, . . . , xt) ∈
∏t

j=1[vj], if (x1, . . . , xt) appears at least

once as a row of C. Further, if C covers all t-tuples of
∏t

j=1[vj], we say that C is

covering.

Additionally, we introduce the following exponent notation for MCA parameters: In

case the alphabet sizes v1, . . . , vk of an MCA(N ; t, k, (v1, . . . , vk)) form sequences of ei

equal numbers ui for some i ∈ {1, . . . , r}, we denote the MCA also as MCA(N ; t, k, (ue11 , u
e2
2 , . . . , u

er
r)).

Example 1.14. We give below an example of an MCA(16; 3, 12, (42, 33, 27)).

Analogue to the covering array number for CAs we define a similar notation for

MCAs.

3Note that, with
∏t

r=1[vjr] we denote the Cartesian product of the sets [vj1], . . . , [vjt], i.e. all

t-tuples where the r-th entry can take values from {0, . . . , vjr − 1}.

9

0 0 0 1 2 1 0 0 1 1 0 1

0 1 1 2 0 0 0 1 1 0 1 0

0 2 0 1 2 1 1 1 0 0 1 0

0 3 2 0 1 0 1 0 1 1 1 1

1 0 2 2 2 0 0 1 1 1 1 0

1 1 0 1 1 0 1 0 0 1 0 0

1 2 2 0 0 0 0 0 1 1 1 1

1 3 1 2 2 1 0 1 0 0 0 1

2 0 2 0 1 1 1 1 0 0 1 0

2 1 1 0 2 1 0 0 0 1 0 0

2 2 0 2 1 0 0 0 0 0 0 1

2 3 2 1 0 1 0 0 1 1 0 1

3 0 1 2 0 1 1 0 0 1 1 0

3 1 2 2 2 0 1 0 1 1 0 1

3 2 1 1 1 1 1 1 1 1 1 1

3 3 0 0 0 0 0 0 0 0 0 0

Figure 1.1.: An MCA(16; 3, 12, (42, 33, 27)).

Definition 1.15. The smallest N for which an MCA(N ; t, k, (v1, . . . , vk)) exists is

called mixed covering array number for (t, k, (v1, . . . , vk)) and is denoted as MCAN(t, k, (v1, . . . , vk)),

MCAN(t, k, (v1, . . . , vk)) := min
N∈N
{N | ∃ MCA(N ; t, k, (v1, . . . , vk))}.

An MCA(N ; t, k, (v1, . . . , vk)) achieving this bound, i.e. withN = MCAN(t, k, (v1, . . . , vk))

is called optimal.

The notorious problem coming along with CAs and MCAs more generally, is that of

finding optimal instances, i.e. arrays having the desired coverage properties, while

having the smallest number of rows possible.

Problem 1.16 (Optimal MCA (OMCA)). Given parameters t, k and (v1, . . . , vk),

find a MCA(N ; t, k, (v1, . . . , vk)) with N = MCAN(t, k, (v1, . . . , vk)).

Example 1.14 (continuing from p. 9). As we will see from Theorem 1.22 the MCA

in Figure 1.1 is an optimal MCA.

In the last decades researchers have put a vast amount of work into solving this and

related problems ([20, 35, 88, 71]). This problem will accompany us throughout this

whole writing in one form or another.

10

The striving to solve Problem 1.16, or at least to find bounds on the number of

rows, for specific MCA parameters, will be present throughout the whole thesis.

In the sequel of this work we will often use the following notation, which explains

the concept of tuples that need to be covered.

Definition 1.17. For positive integers t, k and v1, . . . , vk with t ≤ k, we define a

(v1, . . . , vk)-ary t-tuple as a pair ((x1 . . . , xt), (p1, . . . , pt)) where xi ∈ {0, . . . , vpi −
1}, ∀i ∈ {1, . . . , t} and 1 ≤ p1 < . . . < pt ≤ k. For the sake of compact writing

we also use the notation v-ary t-tuple for a vector v = (v1, . . . , vk), and (v)ki=1-ary

t-tuple in the case of v1 = v2 = . . . ,= vk = v.

We can visualize (v1, . . . , vk)-ary t-tuple as a vector of length k over (v1, . . . , vk)

having specified only t entries at positions pi for i = 1, . . . , t where the entries arise

from the specific alphabets. We use (v1, . . . , vk)-ary t-tuples, to encode a column

selection, (p1, . . . , pt), together with a t-tuple, (x1, . . . , xt). Hence for illustration

purposes we use an informal vector notation for (v1, . . . , vk)-ary t-tuples, e.g. we

denote the (3, 2, 2)-ary 2-tuple ((2, 1), (1, 3)) as (2,−, 1), where “−” represents an

undefined entry. This also motivates the following definition.

Definition 1.18. For positive integers t, k and v = (v1, . . . , vk) with t ≤ k, we say

that a vector w over (v1, . . . , vk) covers a (v1, . . . , vk)-ary t-tuple ((x1 . . . , xt), (p1, . . . , pt)),

if the entries of w in positions pi equal xi for all i = 1, . . . , t. We also say that an

array over (v1, . . . , vk) covers a (v1, . . . , vk)-ary t-tuple, if it is covered by one of the

rows of the array.

Having established the necessary terminology we are now able to show some proper-

ties of CAs and MCAs, including some bounds for CAN(t, k, v) and MCAN(t, k, (v1, . . . , vk))

in the following section.

1.3. Some Basic Properties of CAs and MCAs

In this section we first state some basic properties of CAs and MCAs. In doing so

we follow the work of [65] and [20].

In terms of applications, binary CAs, i.e. CAs over the binary alphabet, play a

special role, due to their applicability to software and hardware testing, see for

example [60] and [53]. Also theoretically speaking, CAs over binary alphabets are

11

already interesting combinatorial objects giving rise to various research questions

that are subject to current research, such as the determination of the covering array

number CAN(t, k, 2) for arbitrary t and k ([18]).

1.3.1. Basic Properties of Binary CAs

To deal with the topic of determining covering array numbers and the generation

of CAs with a small number of rows, we begin with the statement of some simple

or trivial properties of binary CAs, respectively covering array numbers for binary

arrays along the work of [65].

Theorem 1.19. Some simple, but also useful inequalities are:

(i) CAN(t, k, 2) ≥ 2t,

(ii) CAN(k, k, 2) = 2k,

(iii) CAN(t, k + 1, 2) ≥ CAN(t, k, 2),

(iv) CAN(t+ 1, k + 1, 2) ≥ 2CAN(k, t, 2).

Proof :

(i) Any CA(N ; t, k, 2) needs to have at least 2t rows so that all binary t-tuples can

appear as rows in any subarray consisting of t columns of the CA(N ; t, k, 2). Hence

also CAN(t, k, 2) ≥ 2t.

(ii) CAN(k, k, 2) = 2k is clear, since the array having all 2k binary vectors of length

k is a CA(k, k, 2), together with (i), the claim is established.

(iii) Suppose we are given a CA(N ; t, k+1, 2) in column notation as (c1, . . . , ck, ck+1).

Deleting one column from it, say the last, yields an CA(N ; t, k, 2) = (c1, . . . , ck), since

the restriction to the first k columns does not influence the coverage property of

these. Therefor every CA(N ; t, k+1, 2) yields a CA(N ; t, k, 2) and hence CAN(t, k+

1, 2) ≥ CAN(t, k, 2).

(iv) Suppose we are given a CA(N ; t+ 1, k + 1, 2) given as A = (c1, . . . , ck, ck+1) =

(ai,j) for i ∈ {1, . . . , N} and j ∈ {1, . . . , k + 1}. We consider the arrays A0 and A1

defined as follows, A0 := (ai,j) for j ∈ {1, . . . , k} and i ∈ {h|h ∈ {1, . . . , N}∧ah,k+1 =

0}. In words, A0 consists of those row vectors appearing in A that have a 0 entry in

the last component, which is ignored in the definition of A0. Analogously we define

A1 := (ai,j) for j ∈ {1, . . . , k} and i ∈ {h|h ∈ {1, . . . , N}∧ah,k+1 = 1}, as the matrix

12

comprised by the rows appearing in A that have a 1 entry in the last component,

ignoring the last component at the same time for the definition of A1. Since A is a

CA(N ; t + 1, k + 1) we can select any subset {i1, . . . , it} ⊆ {1, . . . , k} of cardinality

t, being ensured that every binary (t+ 1)-tuple appears at least once as a row when

considering the subarray (ci1 , . . . , cit , ck+1) of A. All (t+ 1)-tuples having a 0 entry

in the last component are covered by the rows corresponding to the rows of A0, and

those with a 1 entry in the last component are covered by the rows corresponding

to the rows of A1. Hence all binary t-tuples are covered by both, the rows of A0 as

well as of the rows of A1. At least one of the two arrays A0 or A1 has at most N/2

rows. Hence we showed that each CA(N ; t+ 1, k + 1, 2) yields a CA(N ′; t, k, 2) with

N ′ ≤ N/2 and therefore CAN(t+ 1, k + 1, 2) ≥ 2CAN(k, t, 2).

We will come back to binary CAs in a later section, where we show that the problem

of determining covering array numbers for binary CAs of strength two is completely

solved.

1.3.2. Basic Properties of MCAs

Many results from the previous section can be generalized not only for CA(N ; t, k, v),

but also for MCAs. Before we show these generalizations, we first want to discuss

some even more basic properties of MCAs, which we summarize in the following

theorem.

Theorem 1.20. Some basic properties of MCAs are:

(i) Permuting the rows of an MCA(N ; t, k, (v1, . . . , vk)) yields again an MCA(N ; t, k,

(v1, . . . , vk)).

(ii) Permuting the columns of an MCA(N ; t, k, (v1, . . . , vk)) under a permutation

π ∈ Sk4, yields an MCA(N ; t, k, (vπ(1), . . . , vπ(k))).

(iii) Permuting the values of any column of an MCA(N ; t, k, (v1, . . . , vk)) yields

again an MCA(N ; t, k, (v1, . . . , vk)).

Proof :

(i) Is clear, since the order in which t-tuples of
∏t

j=1[vij] appear in any subarray

comprised by columns i1, . . . , it of an MCA(N ; t, k, (v1, . . . , vk)) has no significance

for the defining property (see Definition 1.10) of an MCA(N ; t, k, (v1, . . . , vk)).

4Let Sk denote the symmetric group on a set of k elements.

13

(ii) Let A be an MCA(N ; t, k, (v1, . . . , vk)). Permuting the columns of an array

A = (c1, . . . , ck) over (v1, . . . , vk) via some π ∈ Sk yields obviously an array Aπ =

(cπ(1), . . . , cπ(k)) over (vπ(1), . . . , vπ(k)). Lets consider any selection (cπ(i1), . . . , cπ(it))

of t different columns of Aπ.

Then a t-tuple (xi1 , . . . , xit) is covered by a row r of (cπ(i1), . . . , cπ(it)), if and only if

the t-tuple (xπ−1(i1), . . . , xπ−1(it)) is covered by row r of the subarry (ci1 , . . . , cit) of

A. Since A is an MCA(N ; t, k, (v1, . . . , vk)), there exists at least one such row r.

(iii) Let again A = (c1, . . . , ck) = (ai,j) be an MCA(N ; t, k, (v1, . . . , vk)) and πi ∈ Svi
a permutation of the values {0, . . . , vi − 1} of the i-th column of A. Let Aπi :=

(c1, . . . , c
πi
i , . . . , ck), where cπii := (πi(ai,j))

N
j=1. Any t selection of columns of Aπi

not including the i-th column is covering, since A is an MCA. Consider a sub-

array of Aπi comprised by t different columns (cm1 , . . . , cmt), including the i-th

column, lets say cm1 = ci without loss of generality (w.l.o.g). Then the tuple

(x1, . . . , xt) ∈ [vi]×
∏t

j=2[vmj
] is covered in every row r of (ci, . . . , cmt)A

πi where the

tuple (π−1i (x1), x2, . . . , xt) is covered in A. Since A is an MCA(N ; t, k, (v1, . . . , vk))

there is at least one such r.

Remark 1.21. Due to Theorem 1.20 (iii), we may assume at certain points, without

loss of generality regarding the number of rows of the considered arrays, that we

deal with MCAs where the alphabet sizes are given in a descending order, i.e. when

we consider an MCA(N ; t, k, (v1, . . . , vk)) we mostly assume that v1 ≥ v2 ≥ . . . ≥ vk.

What follows is the generalization of Theorem 1.19 for MCAs. These statements

can be partly found in [35] .

Theorem 1.22. Some basic, but also useful inequalities for MCAs are:

(i) MCAN(t, k, (v1, . . . , vk)) ≥
∏t

i=1 vi.

(ii) MCAN(k, k, (v1, . . . , vk)) =
∏k

i=1 vi. Such (M)CAs are also called trivial (M)CAs.

(iii) Given vi ≥ ui ∀i ∈ {1, . . . , k}, it holds that

MCAN(t, k, (v1, . . . , vk)) ≥ MCAN(t, k, (u1, . . . , uk)).

(iv) MCAN(t+ 1, k, (v1, . . . , vk)) ≥ viMCAN(t, k, (v1, . . . , vi−1, vi+1, . . . , vk)).

Proof :

(i) Since every t-tuple of
∏t

i=1[vi] must appear at least once as a row in the submatrix

14

comprised of the first t columns of an MCA(N ; t, k, (v1, . . . , vk)) we have N ≥
∏t

i=1 vi

and hence MCAN(t, k, (v1, . . . , vk)) ≥
∏t

i=1 vi.

(ii) The array comprised of all vectors over (v1, . . . , vk) is an MCAN(k, k, (v1, . . . , vk)).

With (i) follows the claim.

(iii) Given an MCA(N ; t, k, (v1, . . . , vk)), say A = (ai,j), we can define an MCA B

with the same number of rows over (u1, . . . , uk) as follows. For each alphabet of the

k columns of A let fi : [vi] → [ui] be an arbitrary function with fi �[ui]= id[ui], and

define

B := (bi,j)(i,j)∈{1,...,N}×{1,...,k} := (fi(ai,j))(i,j)∈{1,...,N}×{1,...,k},

by applying the function fi to the entries in the i-th column of A for all i ∈ {1, . . . , k}.
Doing so collapses the alphabet [vi] of the i-th column to [ui]. Consider any selection

(bi1 , . . . ,bit) of columns of B and a t-tuple (x1, . . . , xt) ∈
∏t

r=1[vir]. Since A is an

MCA(N ; t, k, (v1, . . . , vk)) the t-tuple (x1, . . . , xt) appears at least once as a row r in

(a1, . . . , at), and since fi �[ui]= id[ui] also appears in row r of (bi1 , . . . ,bit).

(iv) Given an MCA(N ; t + 1, k, (v1, . . . , vk)), say A = (a1, . . . , ak), analogue to the

construction in the proof of (iv) in Theorem 1.19 we define arrays A0, A1, . . . , Avi−1,

where for every s ∈ {0, . . . , vi−1} the array As consist of exactly those rows of the ar-

ray (a1, . . . , ai−1, ai+1 . . . , ak) where the respective row of the array (a1, . . . , ai−1, ai, ai+1,

. . . , ak) has the entry s in column i. Then there is at least one array As having at

most N/vi rows. Lets assume again, without loss of generality, due to Theorem 1.20

(iii), that this holds for A0. Any selection of t indices (m1, . . . ,mt) of columns of A0

can be completed to a selection of t+ 1 columns of A, adding the index i to the se-

lection (m1, . . . , i, . . . ,mt). Since A is an MCA(N ; t+1, k, (v1, . . . , vk)) a (t+1)-tuple

(x1, . . . , 0, . . . , xt), with a 0 entry in the position corresponding to the i-th column

of A, is covered at least once by these columns of A. By our construction it follows,

that the t-tuple (x1, . . . , xt) is covered at least once by the columns of A0. Hence

A0 is an MCA(N ′; t, k, (v1, . . . , vi−1, vi+1, . . . , vk)) with N ′ ≤ N/vi, which shows

MCAN(t, k, (v1, . . . , vi−1, vi+1, . . . , vk)) ≤
1

vi
MCAN(t+ 1, k, (v1, . . . , vk)).

Lemma 1.23. If there exists an MCA(N ; t, k, (v1, . . . , vk, vk+1), there also exists an

MCA(N ; t, k, (v1, . . . , vk)).

Proof :

We can simply delete the last column of an MCA(N ; t, k, (v1, . . . , vk, vk+1) to obtain

15

an MCA(N ; t, k, (v1, . . . , vk)), as this does not influence the coverage property of the

first t columns.

The statement (iii) of Theorem 1.22 shows connections between the number of rows

of MCAs and the reduction of alphabet sizes. Next we show a result from [72] for the

converse, increasing the size of the alphabet of the column with the largest alphabet.

Theorem 1.24. Let e ≥ 0 and v1 ≥ v2 ≥ . . . ≥ vk, then

MCAN(2, k, (v1 + e, . . . , vk)) ≤ MCAN(2, k, (v1, . . . , vk)) + ev2

Proof :

Given A = (c1, . . . , ck) an MCA(N ; 2, k, (v1, . . . , vk)), we can consider the array

consisting of the first two columns (c1, c2). One way to cover all 2-tuples of [v1 +

e]× [v2] is to append an array (d1,d2) having as rows all pairs of {v1, . . . , v1 + e−
1} × {0, . . . , v2 − 1}. Vertically juxtaposing the array (d1,d2) to (c1, c2) we get an

array

(c′1, c
′
2) =

(
c1, c2

d1,d2

)
,

consisting of two columns that are covering all 2-tuples of [v1 + e] × [v2]. We can

append the column vector d2 to all columns of A, yielding an array

(c′1, . . . , c
′
k) :=

(
c1, c2, . . . , ck

d1,d2 . . . ,d2.

)
,

where every subarray (c′1, c
′
j) covers all pairs of [v1 + e]× [vj]. After collapsing the

alphabets of the columns c′j for all j ∈ {2, . . . , k}, via functions fj : [v2]→ [vj] with

fj �[vj]= id[vj], we attain an MCA(N + ev2; t, k, (v1 + e, . . . , vk)).

1.4. Asymptotics for Covering Array Numbers

In this section we establish an important result, showing that the smallest number

of rows for which (mixed-level) covering arrays exist is lower and upper bound by

multiples of the logarithm of the number of columns of the considered arrays. The

following result is also mentioned in [7].

Theorem 1.25. For fixed v and t, we have CAN(t, k, v) ≥ logv k.

16

Proof :

A necessary condition for an N×k array A = (ci1 , ci2 , . . . , cit) to be an CA(N ; t, k, v)

is that all columns are different. If there were two identical columns, say ci1 = ci2

any selection of t (recall that we assume t ≥ 2) columns including these columns

would only cover those t-tuples with identical entries in positions i1 and i2, which

cannot be all t-tuples, as we only consider alphabets with v ≥ 2. Since there exist

only vN different v-ary column vectors of length N , vN ≥ k, respectively N ≥ logv(k)

is a necessary condition for the existence of a CA(N ; t, k, v).

Corollary 1.26. Expressing MCAN(t, k, (v1, . . . , vk)) in terms of k, it belongs to

Ω(log k), in particular:

MCAN(t, k, (v1, . . . , vk)) ∈ Ω(log k).

Proof :

Assume that (v1, . . . , vk) is ordered descending. From Theorem 1.22 (iii) we know

that MCAN(t, k, (v1, . . . , vk)) ≤ CAN(t, k, v1) and from Theorem 1.25 we know that

CAN(t, k, v1) ≤ logv1(k).

Since logv1 k = logb k/ logb v1, and logb(v1) is a constant not depending on k, we get

MCAN(t, k, (v1, . . . , vk)) ∈ Ω(logb(k)) for arbitrary base b of the logarithm.

The following theorem was proven for the special case of CAs of strength t = 2

over a v-ary alphabet in [13], which we generalize for arbitrary strength and mixed

alphabets as follows.

Theorem 1.27. Let 1 ≤ t ≤ k, (v1, . . . , vk) =: v be a k-tuple with v1 ≥ v2 ≥
. . . ≥ vk ≥ 2, A be an s × k array over (v1, . . . , vk) and n be the number of v-ary

t-tuples not covered by any row of A. Then there exists a row r ∈
∏k

i=1{0, . . . , vi−1}
that covers at least n/h of the v-ary t-tuples not covered by the rows of A, where

h :=
∏t

i=1 vi.

Proof :

Let R :=
∏k

i=1{0, . . . , vi−1} denote the set of all rows over (v1, . . . , vk). We define

W to be the set of all pairs of rows over (v1, . . . , vk) and v-ary t-tuples covered by

them, i.e.

W := {(d, p)|d ∈ R and d covers the v-ary t-tuple p}.

17

Each d ∈ R appears exactly in
(
k
t

)
elements of W as a first component. Furthermore,

a v-ary t-tuple p = ((x1, . . . , xt), (p1, . . . , pt)) is covered by exactly
∏

i∈{1,...,k}\{p1,...,pt} vi

rows of R, and hence appears as second component of exactly that many ele-

ments of W . Therefore, v-ary t-tuples ((x1, . . . , xt), (p1, . . . , pt)) with (p1, . . . , pt) =

(v1, . . . , vt) appear least often as second components of elements of W , namely ex-

actly ` :=
∏k

i=t+1 vi times. We consider the subset V ⊆ W , defined as

V := {(d, p)| p is not covered by any row of A and d covers p},

and prove the theorem by counting the cardinality of V in two different ways.

For any pair (d, p) ∈ V , since p is a v-ary t-tuple not covered by the rows of A, all

pairs (d′, p) where d′ covers p appear in V , and hence p appears at least ` times as

second component of a pair in V . Since this holds for all of the n v-ary t-tuples that

are not covered by the rows of A, we get

` · n ≤ |V |. (1.1)

Conversely, let md denote the number of v-ary t-tuples the row d covers that are

not covered by the rows of A, i.e. 0 ≤ md ≤
(
k
t

)
, and let m := maxd∈Rmd denote

the maximum of the md’s. Then we also have

|V | =
∑
d∈R

md ≤ m · |R| = m ·
k∏
i=1

vi. (1.2)

From (1.1) together with (1.2) we get

m ≥ |V |∏k
i=1 vi

≥ ` · n∏k
i=1 vi

=
n

h
,

and hence there exists a d ∈ R that covers at least n/h v-ary t-tuples that are not

covered by the rows of A.

Using the same notation as in the last theorem, we obtain the following.

Corollary 1.28 (Logarithmic Guarantee). Let t, k and (v1, . . . , vk) be given and let

denote h :=
∏t

i=1 vi, then

MCAN(t, k, (v1, . . . , vk)) ≤ h · log(h) + h · log
((k

t

))
+ 1. (1.3)

Hence we have in terms of k:

MCAN(t, k, (v1, . . . , vk)) ∈ O(log k). (1.4)

18

Proof :

We give a constructive proof, constructing an MCA(N ; t, k, (v1, . . . , vk)) with N ≤
h · log(h) + h · log

((
k
t

))
+ 1. We start with an empty array, adding one row after

another proceeding in steps. Form Theorem 1.27 we know that in each such step

there exists a row that covers at least a fraction of 1
h

of the yet uncovered v-ary

t-tuples. The initial number of uncovered v-ary t-tuples is

∑
{i1,...,it}⊆{1,...,k}

t∏
j=1

vij ≤
(
k

t

) t∏
i=1

vi =

(
k

t

)
h =: n0

We are therefore ensured to have found an MCA, after adding at most s rows to the

initially empty array, where

n0 ·
(

1− 1

h

)s
< 1 (1.5)

⇔ s · ln
(

1− 1

h

)
< ln

(1

n0

)
(1.6)

⇔ s > − lnn0

ln(1− 1/h)
. (1.7)

Using − ln(1− x) > x, for 0 < x < 1, we get

− lnn0

ln(1− 1/h)
< h · ln(n0),

and hence s > h · ln(n0) also ensures

n0 ·
(

1− 1

h

)s
< 1.

We therefore need to add at most h · ln(n0) + 1 = h · ln(h) +h · ln
(
k
t

)
+ 1 rows, which

is in O(h(log h+ t log k)) or in O(log k) in terms of k.

The results of Corollary 1.26 and Corollary 1.28 can be summarized in the following

theorem.

Theorem 1.29. In terms of the number of columns k we have for MCAs:

MCAN(t, k, (v1, . . . , vk)) ∈ Θ(log k).

Proof :

From Corollary 1.26 we get MCAN(t, k, (v1, . . . , vk)) ∈ Ω(log k) and from Corollary

1.28 we get MCAN(t, k, (v1, . . . , vk)) ∈ O(log k), which proves the claim.

19

2. Combinatorial Constructions

In this chapter we detail several combinatorial constructions for CAs. The first

constructions considered make use of algebraic structures, utilizing properties of

finite fields and groups. After that, we focus on purely combinatorial constructions,

describing two methods that bear a commonality, both using a replacement scheme.

Finally we show how CAs can be represented as families of sets having certain

intersection properties.

2.1. Constructions Based on Algebraic Structures

The first construction discussed in this section makes use of some properties of

finite fields and provides means to construct optimal CAs with a restricted number

of columns, over alphabets that have a number of elements that is a prime power

([88]). The second construction, makes use of a group acting on the entries of an

array and can also be helpful to determine covering array numbers, as has been

shown in [11].

2.1.1. Orthogonal Arrays over Finite Fields

In the following we will prove a theorem that deals with orthogonal arrays (recall

Definition 1.4) over finite fields. We will follow the proof given in [10].

Giving a thorough introduction to finite fields goes well beyond the scope of this

work, instead we would like to refer the reader to [42], for the basic notions we will

use of this topic. We denote with GF (qn) the finite field with qn elements for a

prime power q.

For the proof of the main result of this subsection we need the following well known

lemma.

20

Lemma 2.1. Let F be an arbitrary field, and M be a Vandermonde matrix over

K, i.e.

M =

xn−11 xn−21 · · · x1 1

xn−12 xn−22 · · · x2 1
...

...
...

...

xn−1n xn−2n · · · xn 1

 .

Then the determinant of M is given by

det(M) =
∏

1≤i<j≤n

(xj − xi). (2.1)

Proof :

We show the assertion by induction.

Induction base: n = 1: As det(1) = 1 equals the empty product, the induction base

holds.

Induction hypothesis: Equation (2.1) holds for n.

Induction step: n→ n+ 1:

We can substract the i + 1st column multiplied by x1 from the i-th for all i =

1, . . . , n− 1 without changing the determinants value:

det(M) = det

xn1 xn−11 · · · x1 1

xn2 xn−12 · · · x2 1
...

...
...

...

xnn+1 xn−1n+1 · · · xn+1 1

= det

0 0 · · · 0 1

xn2 − x1xn−12 xn−12 − x1xn−22 · · · x2 − x1 1
...

...
...

...

xnn+1 − x1xn−1n+1 xn−1n+1 − x1xn−2n+1 · · · xn+1 − x1 1

= det

0 0 · · · 0 1

(x2 − x1)xn−12 (x2 − x1)xn−22 · · · (x2 − x1) 0
...

...
...

...

(xn − x1)xn−1n+1 (xn − x1)xn−2n+1 · · · (xn+1 − x1) 0

 .

Where we get the second equality by subtracting the first row once from all others.

Further we can extract the factors (xi − x1) from the i-th row for i = 2, . . . , n + 1

21

to get

det(M) =
n+1∏
i=2

(xi − x1) · det

xn−12 xn−22 · · · x2 1

...
...

...

xn−1n+1 xn−2n+1 · · · xn+1 1

 .

The assertion follows immediately by applying the induction hypothesis.

Theorem 2.2. Let q = pn be a prime power (q ∈ P, a prime number) and t < q.

Then an OA1(q
t; t, q + 1, q) can be constructed.

Proof :

Let us denote the elements of GF (q) as GF (q) = {e0, e1, . . . , eq−1}. We consider the

set of all polynomials of degree smaller or equal to t− 1 over GF (q):

H := {g(x) ∈ GF (q)[x]
∣∣g(x) = at−1x

t−1 + at−2x
t−2 + . . .+ a1x+ a0}. (2.2)

Since the coefficients of the polynomials in H range over GF (q), there are qt polyno-

mials in H, for which we fix an enumeration g0(x), g1(x), . . . , gqt−1. We now define

an qt × q array A = (ai,j) as follows

(ai,j) := u, where eu = gi(ej), (2.3)

and show that it is in fact an OA1(q
t; t, q + 1, q). Suppose on the contrary that

A is not an OA1(q
t; t, q, q). Hence there exist t columns c1, . . . , ct in which not

all q-ary t-tuples appear exactly once, in other words, there exists a q-ary t-tuple

that appears at least twice as a row of A, lets say in rows i and i′, and let gi(x) =

at−1x
t−1+. . . , a1x+a0 and gi′ = a′t−1x

t−1+. . . , a′1x+a′0 be the polynomials associated

to these rows. Then we have gi(ecj) = gi′(ecj) for all j ∈ {c1, . . . , ct} due to the

definition of A. Defining bi := ai − a′i for all i ∈ {0, . . . , t − 1} this yields the

following system of t linear equations

bt−1e
t−1
cj

+ bt−2e
t−2
cj

+ . . .+ b1ecj + b0 = 0, ∀j ∈ {1, . . . t}. (2.4)

Since the two polynomials gi(x) and gi′(x) are different, not all of the bi’s can be

zero. Hence y0 = b0, y1 = b1, . . . , yt−1 = bt−1 is a non-trivial solution of the following

system of linear equations in the unknowns y0, y1, . . . , yt−1:

yt−1e
t−1
c1

+ yt−2e
t−2
c1

+ . . .+ y1ec1 + y0 = 0

...

yt−1e
t−1
ct + yt−2e

t−2
ct + . . .+ y1ect + y0 = 0

22

This means that the determinant of the matrix

V =

et−1c1

et−2c1
· · · ec1 1

et−1c2
et−2c2

· · · ec2 1
...

...
...

...

et−1ct et−2ct · · · ect 1

of coefficients of this system of linear equations must vanish. However, from Lemma

2.1 we know that the matrix V of Vandermonde type has the property that

det(V) =
∏

1≤u<v≤t

(ecv − ecu). (2.5)

Since ecu 6= ecv , ∀u 6= v ∈ {1, . . . , t}, as we chose t different columns of A, corre-

sponding to different elements of GF (q), none of the factors in (2.5) is zero, and

hence det(V) 6= 0. A contradiction to (2.4), which proves A to be an OA1(q
t; t, q, q).

We are able to add yet another column to A, constructing an OA1(q
t; t, q + 1, q),

by adding the column aq+1 = (ai,q+1) where ai,q+1 := u, where eu is the leading

coefficient of gi(x). We show that (A|aq+1) (denoting the array A extended by

the column aq+1) is the desired OA1(q
t; t, q + 1, q). We already showed that all

subarrays comprised by any t of the first q columns of (A|aq+1) are covering. Which

leaves us to show, that all subarrays comprised by the last column aq+1 together

with t − 1 other columns of (A|aq+1) are covering. Lets again assume there exist

t columns c1, . . . , ct−1, q + 1 which are not covering. Hence there are not all q-

ary t-tuples covered exactly once by the qt rows, i.e. there exist two rows i and

i′ that cover the same q-ary t-tuple. Let gi(x) = at−1x
t−1 + . . . , a1x + a0 and

gi′ = a′t−1x
t−1 + . . . , a′1x+a′0 be the polynomials corresponding to these rows. Hence

we have again gi(ecj) = gi′(ecj) for all j ∈ {0, . . . , t− 1} as well as at−1 = a′t−1.

We define again bi := ai−a′i for all i ∈ {0, . . . , t−1} this yields the following system

of t− 1 linear equations (bt−1 = 0)

bt−2e
t−2
cj

+ . . .+ b1ecj + b0 = 0, ∀j ∈ {1, . . . t− 1}. (2.6)

Since the two polynomials gi(x) and gi′(x) are different, again not all of the bi’s

can be zero. Hence y0 = b0, y1 = b1, . . . , yt−2 = bt−2 is a non-trivial solution of the

23

following system of linear equations in the unknowns y0, y1, . . . , yt−2:

yt−2e
t−2
c1

+ yt−3e
t−3
c1

+ . . .+ y1ec1 + y0 = 0

...

yt−2e
t−2
ct−1

+ yt−3e
t−3
ct−1

+ . . .+ y1ect−1 + y0 = 0

Again considering the determinant of the matrix V of the coefficients of this system

V =

et−2c1

et−3c1
· · · ec1 1

et−2c2
et−3c2

· · · ec2 1
...

...
...

...

et−2ct−1
et−3ct−1

· · · ect−1 1

it must vanish. Yet again the matrix is of Vandermonde type and hence its deter-

minant does not vanish, since all factors in the product below are non-zero:

det(V) =
∏

1≤u<v≤t−1

(ecv − ecu) 6= 0. (2.7)

A contradiction to (2.6).

Applying Lemma 1.23, we immediately get the following.

Corollary 2.3. Using the same notation as in Theorem 2.2, for every t ≤ k ≤ q+1

an OA1(q
t; t, k, q) can be constructed.

The following corollary was proven in [69].

Corollary 2.4. Let n be the smallest integer such that v ≤ 2n and k ≤ 2n, then we

have

CAN(t, k, v) ≤ 2tvt − 1.

Proof :

If v = 2n is a power of two then, due to Theorem 2.2, there exists an OA1(2
n·t; t, 2n+

1, 2n) and hence also an OA1(2
n·t; t, 2n, 2n), and 2n·t ≤ 2t2nt − 1.

For the case that v is not a power of 2, i.e. 2n−1 < v < 2n, we can take the

OA1(2
n·t; t, 2n, 2n) and reduce the underlying alphabet from [2n] to [v]. As in the

proof of Theorem 1.22 (iii) we can construct a CA(2nt; t, 2n, v). Hence CAN(t, k, v) ≤
2nt = 2t2(n−1)t < 2tvt.

24

2.1.2. CAs via Group Actions

In this subsection we review a construction for CAs of strength three described in

[11], which was used to prove CAN(3, 6, 3) = 33.

For the proof of the main result of this section, we need some additional notions

and lemmas. As graph theory is not part of the main interest of this thesis, we refer

the reader to an introductory work (e.g. [94]) for the terminology used, and directly

state the following definition, which can also be found in [94].

Definition 2.5. Let G = (V (G), E(G)) be a graph. A factor or spanning subgraph

of G is a subgraph with the same vertex set V (G). A factorization of G is a set of

factors of G whose union is whole G and that are pairwise edge-disjoint, i.e. no two

factors have an edge in common. A 1-factor is a factor that is a regular graph of

degree 1, i.e. each vertex is incident to exactly one edge. A 1-factorization of G is a

partition of E(G) into edge-disjoint 1-factors.

It is also well known that the complete graph on an even number of vertices has an

1-factorization, see [94] Theorem 6.2. for a proof.

Theorem 2.6. For all n ∈ N the complete graph K2n has an 1-factorization.

The construction of CAs described in the following heavily relies on a group acting

on the entries of an array. To describe these constructions we further need the

following notion, see also [42].

Definition 2.7. An action of a group G on a set S is a function

α :

G× S → S

(g, s) 7→ sg,

such that ∀g1, g2 ∈ G and ∀s ∈ S it holds that

se = s and (sg1)g2 = sg1g2 .

In this case we also say that G acts on S (via the group action α).

Remark 2.8. As follows directly from the definition of a group action, we get for a

group G acting on a set S (using the same notation as in Definition 2.7):

(i) holding g ∈ G fixed, the induced function αg : S → S : s 7→ α(g, s) = sg is a

permutation of S, as its inverse is given by α−1g .

25

(ii) G also acts on the set Sn×k of n×k arrays over S, by defining the latter action

component wise: G× Sn×k → Sn×k

(g, (si,j)) 7→ (sgi,j)

In the light of the previous remark we define the following.

Definition 2.9. Let G be a group acting on a set S, and M = (mi,j) ∈ Sn×k be an

array over S. Then for all g ∈ G, we define the image of M under g as

M g := (mg
i,j) ∈ Sn×k.

The n · |G| × k matrix MG is defined by developing M by G, i.e. by vertically

juxtaposing the images of M under the elements g ∈ G:

MG := [M g]g∈G ∈ Sn·|G|×k.

We continue by importing the following theorem from [42]. As the proof is straight-

forward and not of major importance for the content of this thesis, it is omitted.

Theorem 2.10. Let G be a group acting on S.

(i) The relation ∼ defined by

x ∼ y ⇔ ∃g ∈ G : xg = y

is an equivalence relation. For x ∈ S the equivalence class [x]∼ is called orbit

of x (in S under G).

(ii) For any x ∈ S

Gx := {g ∈ G|xg = x},

is a subgroup of G, called the stabilizer of x.

The following theorem is also proven in [42]. We use the same notation as in Defi-

nition 2.7 and Theorem 2.10.

26

Lemma 2.11. Let G be a group acting on a set S, then the cardinality of the orbit

[x]∼ is given by the index (the number of cosets) of the stabilizer of x in G:∣∣[x]∼
∣∣ = [G : Gx]

Proof :

Let g, h ∈ G, then

xg = xh ⇔ xgh
−1

= x⇔ gh−1 ∈ Gx ⇔ gGx = hGx.

It follows that the map defined by gGx 7→ xg is a well-defined bijection of the set of

cosets of Gx in G onto the orbit [x]∼ = {xg|g ∈ G}.
Using the same notation as in the last lemma, we state the following well-known

theorem (see also [49]).

Theorem 2.12 (Orbit-counting Lemma). Let G be a group acting on a set S, S/G

denote the set of orbits in S under G and for g ∈ G let fixS(g) := |{x ∈ S|xg = x}|
denote the number of fix-points of g in S, then

|G| · |S/G| =
∑
g∈G

fixS(g).

Proof :

With Lagrange’s theorem (|G| = [G : U] · |U | for a subgroup U ≤ G of G, also see

[49]), we get ∑
g∈G

fixS(g) =
∑
g∈G

∑
s∈S,sg=s

1 =
∑
s∈S

∑
g∈G,sg=s

1

=
∑
s∈S

|[s]∼|
2.11
=
∑
s∈S

[G : Gs]

=
∑
s∈S

|G| 1

|Gs|
= |G|

∑
[s]∼∈S/G

∑
x∈[s]∼

1

|Gs|

= |G|
∑

[s]∼∈S/G

1 = |G| · |S/G|,

where for the fifth equation we use Lagrange’s theorem, which states |G| = [G :

U] · |U | for a subgroup U ≤ G of G (see e.g. [49]).

We further need the following notions that can also be found in [81].

27

Definition 2.13. A group G is acting r-transitive on a set S (via the group action

(g, s) 7→ sg), if and only if for all r-tuples (s1, . . . , sr), (s
′
1, . . . , s

′
r) ∈ Sr with pairwise

distinct elements s1, . . . , sr, and pairwise distinct elements s′1, . . . , s
′
r, there is an

element g ∈ G, such that

(sg1, . . . , s
g
r) = (s′1, . . . , s

′
r).

If G is acting 1-transitive on S, then we simply say G is acting transitive on S for

short.

Definition 2.14. For a finite field GF (q), we define GF∞(q) := GF (q) ∪ {∞},
adjoining the symbol ∞ to GF (q), and

L(q) :=
{
f : GF∞(q)→ GF∞(q)

∣∣f(x) =
ax+ b

cx+ d
; a, b, c, d ∈ GF (q) ∧ ad− bc 6= 0

}
,

called the set of linear fractional transformations 1, where we define f(x) = ax+b
cx+d

as

follows:

(i) for x ∈ GF (q) and cx+ d 6= 0 via evaluating (ax+ b)(cx+ d)−1 in GF (q),

(ii) for x ∈ GF (q) and cx+ d = 0 (⇒ ax+ b 6= 0), f(x) :=∞,

(iii) f(∞) = a∞+b
c∞+d

:= a
c

:=

ac−1 ∈ GF (q), c 6= 0

∞, c = 0
.

The proof of the following lemma is technical and is hence omitted.

Lemma 2.15. For a finite field GF (q) and L(q) as defined above, we have

(i) (L(q), ◦) is a group, where ◦ denotes the composition of functions.

(ii) The stabilizer L(q)∞ of ∞ ∈ GF∞(q) in L(q) is the set of all linear functions

Lin(q) := {f ∈ L(q)|f(x) = ax+b
cx+d
∧ c = 0}, which hence forms a subgroup of

L(q).

Notice that as c = 0 implies d 6= 0 for all f(x) = ax+b
cx+d

∈ L(x), we can interpret
ax+b
cx+d

= ax+b
d

= a
d
x + b

d
, with a

d
, b
d
∈ GF (q), as a linear function f(x) = ãx + b̃ over

GF (q), with ã, b̃ ∈ GF (q), additionally defining ã∞+ b̃ =∞ for all a, b ∈ GF (q).

1In projective geometry GF∞(q) corresponds to the projective line over GF (q) and L(q) to the

projective general linear group PGL(2, q).

28

Theorem 2.16. Let G be a group acting transitive on a set S viaG× S → S

(g, s) 7→ sg,

and x ∈ S be a fixed element. Then G is acting r-transitive on S if and only if the

stabilizer Gx of x in G is acting (r − 1)-transitive on S \ {x}.

Proof :

Let G act r-transitive on S, and let (s1, . . . , sr−1), (s
′
1, . . . , s

′
r−1) ∈ (S \{x})r−1, with

pairwise different elements s1, . . . , sr−1 respectively s′1, . . . , s
′
r−1. Then (s1, . . . , sr−1, x),

(s′1, . . . , s
′
r−1, x) ∈ Sr, with pairwise different elements s1, . . . , sr−1, x respectively

s′1, . . . , s
′
r−1, x. Hence there exists a g ∈ G with

(s1, . . . , sr−1, x)g = (s′1, . . . , s
′
r−1, x),

and as xg = x, we even have g ∈ Gx, with (s1, . . . , sr−1)
g = (s′1, . . . , s

′
r−1).

Conversely let Gx act (r−1)-transitive on S \{x}, and let (s1, . . . , sr), (s
′
1, . . . , s

′
r) ∈

Sr with pairwise different elements s1, . . . , sr respectively s′1, . . . , s
′
r. As G acts

transitive on S, there are h1, h2 ∈ G with sh1r = x and xh2 = s′r. As Gx acts

(r − 1)-transitive on S \ {x}, there is a g ∈ Gx with

(sh11 , . . . , s
h1
r−1)

g = (s
′h−1

2
1 , . . . , s

′h−1
2

r−1),

as sh11 , . . . , s
h1
r−1 and s

′h−1
2

1 , . . . , s
′h−1

2
r−1 are pairwise different (see Remark 2.8). Then

(s1, . . . , sr−1, sr)
h1gh2 = (sh11 , . . . , s

h1
r−1, x)gh2

= (s
′h−1

2
1 , . . . , s

′h−1
2

r−1 , x)h2

= (s′1, . . . , s
′
r−1, s

′
r).

As h1gh2 ∈ G the assertion follows.

Theorem 2.17. For a finite field GF (q) and L(q) respectively Lin(q) defined as in

Definition 2.14 and Lemma 2.15, we have

(i) Lin(q) acts 2-transitive on GF (q) via α, where

α : Lin(q)×GF (q) → GF (q)

(f, x) 7→ f(x).

29

(ii) L(q) acts 3-transitive on GF∞(q), via β, where

β : L(q)×GF∞(q) → GF∞(q)

(f, x) 7→ f(x).

Proof :

(i) For given x1 6= x2 and y1 6= y2 ∈ GF (q), the linear function f(x) = ax+b
cx+d

with

c = 0, d = 1, a = (y1 − y2)(x1 − x2)−1 and b = y1 − x1(y1 − y2)(x1 − x2)−1 satisfies

(x1, x2)
f = (y1, y2).

(ii) Follows directly from L(q)∞ = Lin(q) (Lemma 2.15) and Theorem 2.16 together

with (i).

Notation. In the following proof we use the notation CS,k to denote the v×k array,

having a constant row for each element of a given set S = {s0, . . . , sv−1}, i.e.

CS,k =

s0 s0 . . . s0

s1 s1 . . . s1
...

...
...

...

sv−1 sv−1 . . . sv−1

 .

The main idea behind the construction used in the following theorem, is to reduce

the construction of a CA, to the construction of an n×k array M over S, that covers

a representative of most orbits in the respective subarrays of M , such that for an

appropriate group G acting on S, the array MG or

(
MG

CS,k

)
, denoting the vertical

concatenation of MG and CS,k, is a CA.

The following theorem is proven in [11].

Theorem 2.18. Let v ≥ 3 be an integer and q ≥ v − 1 be a prime power. Then

there is a CA((2v − 1)(q3 − q) + v; 3, 2v, v).

Proof :

We first show that there exists a CA(N ; 3, 2v, q + 1), with

N = (2v − 1)(q3 − q) + q + 1,

from which, as we will see, the desired CA((2v − 1)(q3 − q) + v; 3, 2v, v) can be

constructed in a simple manner.

30

Since q is a prime power, the group G := L(q) acts 3-transitive on GF (q)∞ (Theorem

2.17 (ii)). Hence there are exactly the following orbits of 3-tuples in GF∞(q)3 under

L(q):

1. O1 = {(a, a, a)|a ∈ GF (q)∞},

2. O2 = {(a, a, b)|a, b ∈ GF (q)∞ ∧ a 6= b},

3. O3 = {(a, b, a)|a, b ∈ GF (q)∞ ∧ a 6= b},

4. O4 = {(a, a, b)|a, b ∈ GF (q)∞ ∧ a 6= b},

5. O5 = {(a, b, c)|a, b, c ∈ GF (q)∞ ∧ a 6= b ∧ b 6= c ∧ a 6= c}.

We show the existence of an array M ∈ GF∞(q)(2v−1)×2v, such that A :=

(
MG

CGF∞(q),k

)
is a CA(N ; 3, 2v, q + 1). Therefor we have to ensure that for any selection of three

columns of M at least one representative of each orbit O2, O3, O4, O5 is covered at

least once, as all 3-tuples belonging to the orbit O1 are covered anyway by the rows

of CGF∞(q),k. To this end we consider the (undirected) complete graph K2v = (E, V)

on the vertex set V = [2v]. Let F1,F2, . . . ,F2v−1 be a 1-factorization of K2v, which

exists due to Theorem 2.6. In other words, F1,F2, . . . ,F2v−1 are 2v−1 edge-disjoint

perfect matchings of K2v, each containing exactly v edges.. Let f : E → GF∞(q)

be an arbitrary function with the property that ∀i ∈ {1, . . . , 2v − 1} ∀e, e′ ∈ Fi :

f(e) 6= f(e′), i.e. f is injective on the edges belonging to the same 1-factor. Such a

map exists, as |GF∞(q)| > v. An example for such a function would be a function

f that maps an edge {x1, x2} to one of its incident vertices x1 or x2, as 1-factors

are regular graphs of degree 1, there are no edges of a 1-factor incident to the same

vertex. We define the (2v−1)×2v matrix M = (mi,j) where i ∈ {1, . . . , 2v−1}, j ∈
{0, . . . , 2v − 1} with entries in GF∞(q) by

mi,j := f(e),

where e is the, well defined, edge of Fi that is incident to j. Now let j1, j2, j3 be

any of the 2v columns of M . The edge e = {j1, j2} is an edge of some factor Fi,
in which x3 is incident to some other edge e′ of Fi. Thus f(e) = a 6= b = f(e′)

for some a, b ∈ GF∞(q) and (mi,j1 ,mi,j2 ,mi,j3) = (a, a, b). Thus a representative of

the orbit O2 is covered in columns j1, j2, j3. The analogue argument can be carried

31

out for the orbits O3 and O4 considering the edges {j1, j3} and {j2, j3} respectively.

To show that also a representative of orbit O5 is covered, consider that there are

(2v − 4) 1-factors that do not contain any of the edges {j1, j2}, {j1, j3} or {j2, j3}.
As 2v ≥ 5 there is at least one 1-factor F ′i , in which the vertices v1, v2 and v3 are

incident to individual edges e, e′ and e′′ with different images under f and hence

(mi′,j1 ,mi′,j2 ,mi′,j3) = (a, b, c) for pairwise different a, b, c ∈ GF∞(q).

Summarizing we have that A :=

(
MG

CGF∞(q),k

)
is a CA(N ; 3, 2v, q+1) over the alphabet

GF∞(q) with N = (2v−1)(q3−q)+q+1. To obtain a CA((2v−1)(q3−q)+v; 3, 2v, v),

we reduce the alphabet size as in the proof of Theorem 1.22 (iii) by replacing the

v symbols of GF∞(q) with the v symbols of [v] according to an arbitrary bijection,

and replace the remaining q + 1 − v symbols of GF∞(q) all with the same value

of [v], say 0. The thus additionally generated constant zero rows in CGF∞(q),k can

be omitted, as they are duplicates of the constant zero row already appearing in

CGF∞(q),k.

Remark 2.19. As mentioned in [71], the construction used in the previous proof can

be generalized for an arbitrary group G acting on a set Sk. To construct small CAs

the aim is to choose a group G being of small cardinality |G| and that has view

orbits in Sk, such that, provided a specific matrix M ∈ Sn×k, the development of

M by G yields an array MG that has view rows. By the Orbit-counting Lemma

(Theorem 2.12) we know that this is the case exactly when the all elements of G

have a small number of fix-points in Sk, as it states

|Sk/G| · |G| =
∑
g∈G

fix(g),

where fix(g) denotes the number of fix points of g in Sk, and |Sk/G| denotes the

number of orbits of G over Sk.

To conclude this subsection, we will show how Theorem 2.18 can be used for

the determination of covering array numbers. To this end we import the result

CAN(2, 5, 3) = 11 stated in [88].

Theorem 2.20. We have CAN(3, 6, 3) = 33.

As CAN(2, 5, 3) = 11 we get from Theorem 1.22 (iv) that CAN(3, 6, 3) ≥ 33. Apply-

ing Theorem 2.18 with v = 2 and q = 3 we get the existence of a CA(33; 3, 6, 3) and

hence CAN(3, 6, 3) ≤ 33, which shows CAN(3, 6, 3) = 33.

32

2.2. Plug-In Constructions

In this section we will detail two methods for CA generation, called plug-in construc-

tions, which have in common a replacement scheme well known in combinatorial de-

sign theory (see [83]). Informally speaking this term is used to refer to constructions

where elements of an object get replaced by some entities, yielding a new object. By

ensuring specific properties of the involved structures, the resulting object has the

properties of interest. It comes as no surprise that there exist plug-in constructions

for CAs, due to similar constructions used for related structures in design theory

[88].

2.2.1. Nested CAs

In this subsection we show that the plug-in of CAs into another CA yields again a

CA, under the right conditions. This construction hence yields a nested CA. Note

that this construction has appeared so far in the literature under different disguises,

see e.g. [23, 58]. We amplify these works by providing a detailed proof of the coverage

inheritance, that guarantees, that the result of the discussed plug-in construction is

again a CA. The structure of this subsection follows the work introduced in [46].

We start with formalizing the necessary notations, before we prove the main results

that provide the coverage inheritance. Further we will give examples that visual-

ize the discussed constructions and present the used constructions as algorithmic

procedures. Finally, we will briefly discuss the relevance of the presented plug-in

construction in terms of applications.

Definitions

A formal description of the 2 plug-in constructions that we will consider in this

subsection can be given as follows.

2Notice that there does not necessarily exist a prototype of a plug-in construction, as plug-

in rather describes a scheme. There are plug-in constructions where arrays are plugged in

([83]), some where rows are plugged in, as is the case in this subsection, and there are plug-in

constructions where columns are plugged in, as will be the case in the next subsection. As we

only consider a single plug-in construction in this subsection there is no danger of ambiguity

and we will refer to it as the plug-in construction.

33

Definition 2.21. Given an array M, and arrays Si for i ∈ {1, . . . , k}, with the

properties:

(i) M has exactly k columns, M = (M1, . . . ,Mk).

(ii) For every i ∈ {1, . . . , k} there exists a surjective mapping φi from the set of

values that can appear in column Mi of M onto the set of rows of Si.

Then the result of the plug-in construction applied to the family of arrays (Si)
k
i=1

and the array M, denoted as (Si)
k
i=1 ×M := (S1 × M1, S2 × M2, . . . , Sk × Mk),

is defined as the array that results, when, for every i ∈ {1, . . . , k}, each entry of

column Mi of M = (mr,i) is replaced with its image under φi, i.e. a row of Si:

(Si)
k
i=1 ×M := (φi(mr,i)).

Remark 2.22. In the context of the latter definition we also refer to the family (Si)
k
i=1

as the seed arrays and toM as the meta array. We may also say that we plug-in

(Si)
k
i=1 intoM, when we apply the plug-in construction to the family of seed arrays

(Si)
k
i=1 and the meta array M.

To get an impression of the structure of the outcome of the plug-in construction,

the reader may have a look at Figure 2.1.

(Si)
k
i=1 ×M

.

w1 w2 wk−1 wk.

Figure 2.1.: The structure of the result R = (Si)
k
i=1×M of the plug-in construction,

applied to the seed arrays (Si)
k
i=1 and meta array M.

Example 2.23. Assume we are given the seed arrays A, B, C and D, as well as

the meta array M, as depicted in Figures 2.2 and 2.3.

34

A

a1 a2

0 0

0 1

1 0

1 1

2 0

2 1

B

b1 b2 b3

0 0 1

0 1 0

1 0 0

1 1 1

C

c1 c2 c3

0 0 1

1 1 1

1 0 0

0 1 0

D

b1 b2 b3

0 0 1

0 1 0

1 0 0

1 1 1

Figure 2.2.: The arrays A, B, C and D used as seed arrays in Example 2.23.

We can map the values appearing in the columns ofM to the rows of the seed arrays,

according to the mappings given on the right hand side of Figure 2.3. Applying the

plug-in construction 2.21 to the seed arrays (A,B,C,D) and the meta arrayM, we

attain the resulting array R, see Figure 2.4, having the same number of rows asM.

R
a1 a2 b1 b2 b3 c1 c2 c3 d1 d2 d3

1 0 0 0 0 1 1 1 1 0 1 0

2 0 0 0 1 0 1 0 0 1 0 0

3 0 0 1 0 0 0 1 0 1 1 1
...

...
...

...
...

...
...

...
...

...
...

...

24 2 1 1 1 1 0 1 0 1 1 1

Figure 2.4.: The resultR of the plug-in of (A,B,C,D) intoM, referring to Example

2.23.

Coverage Inheritance

Having introduced this plug-in construction for arrays, we can now prove some

properties regarding the inheritance of t-way coverage when MCAs are involved in

the aforementioned construction. In doing so, we follow the work in [46].

Theorem 2.24 (Coverage Inheritance: CA× CA → CA). Given a mixed-level cov-

ering array M = MCA(N ; t, k, (v1, . . . , vk)) and a family Si = MCA(vi; ti, gi,wi =

35

M
M1 M2 M3 M4

1 0 0 1 1

2 0 1 2 2

3 0 2 3 3

4 0 3 0 0

5 1 0 2 3

6 1 1 3 0

7 1 2 0 1

8 1 3 1 2

9 2 0 3 2

10 2 1 0 3

11 2 2 1 0

12 2 3 2 1

13 3 0 0 2

14 3 1 1 3

15 3 2 2 0

16 3 3 3 1

17 4 0 0 0

18 4 1 1 1

19 4 2 2 2

20 4 3 3 3

21 5 0 0 0

22 5 1 1 1

23 5 2 2 2

24 5 3 3 3

M1 ↔ (a1, a2)

φ1 :

0 7→ (0, 0)

1 7→ (0, 1)

2 7→ (1, 0)

3 7→ (1, 1)

4 7→ (2, 0)

5 7→ (2, 1)

M2 ↔ (b1, b2, b3)

φ2 :

0 7→ (0, 0, 1)

1 7→ (0, 1, 0)

2 7→ (1, 0, 0)

3 7→ (1, 1, 1)

M3 ↔ (c1, c2, c3)

φ3 :

0 7→ (0, 0, 1)

1 7→ (1, 1, 1)

2 7→ (1, 0, 0)

3 7→ (0, 1, 0)

M4 ↔ (d1, d2, d3)

φ4 :

0 7→ (0, 0, 1)

1 7→ (0, 1, 0)

2 7→ (1, 0, 0)

3 7→ (1, 1, 1)

Figure 2.3.: The meta arrayM = (M1,M2,M3,M4) over (6, 4, 4, 4) used in Example

2.23, and functions φi that map the values occurring in Mi to rows of

the arrays A,B,C and D from Figure 2.2 accordingly.

36

(wi,1, . . . , wi,gi)) of MCAs, for all i ∈ {1, . . . , k}. Then an MCA(N ; τ,
∑

i gi, (w1, . . . ,wk))

with τ = min{t, t1, t2 . . . , tk} and (w1, . . . ,wk) denoting the horizontal concatenation

of the vectors wi, can be constructed, by applying the plug-in construction to the ar-

rays (Si)
k
i=1 and M.

Proof :

Assume M, (Si)
k
i=1 and τ are given as specified above. By assumption, for each

i ∈ {1, . . . , k}, the number of values that can appear in the i-th column of M is

equal to the number of rows in the array Si. Therefore, for every i ∈ {1, . . . , k}, there

exists a bijective function φi from the set {1, . . . , vi} onto the set of rows of Si. We

are now in a position to apply the plug-in construction to the family of arrays (Si)
k
i=1

and the array M, using the bijections φi, i = 1, . . . , k. Let R denote the result of

this plug-in construction (Si)
k
i=1×M (Figure 2.1 gives a schematic of the structure

of R). We claim that R is an MCA(N ; τ,
∑

i gi, (w1, . . . ,wk)). First, we show that

R is indeed an array with the correct number of rows over the correct alphabets.

Since, for all i ∈ {1, . . . , k}, the i-th column ofM is expanded to exactly gi columns

via the bijection φi, it follows that R has
∑

i gi columns. We enumerate the columns

of R with tuples (i, j), where i ∈ {1, . . . , k} and j ∈ {1, . . . , gi}. By construction it

also holds that the entries in column (i, j) of R are elements of the set {1, . . . , wi,j},
since by assumption Si is a covering array with the parameter configuration wi. In

the plug-in construction, entries of the meta arrayM are replaced with row vectors,

therefore the number of rows does not change and R has N rows.

What remains to be shown, is that R is an MCA of strength τ . To this end, we

next remark that any selection of at most τ columns that arise from one column of

M is always covering.

Remark 2.25. Let P = {u1, . . . ,up} be a selection of p ≤ τ column indices of R,

which all arise from the expansion of a single column Mi ofM, i.e. us = (i, js) for a

fixed i, and p different values js ∈ {1, . . . , gi}, ∀s = 1, . . . , p. Then all the p-tuples

in
∏p

s=1{1, . . . , wi,js} appear within the subarray comprised of the columns (i, js),

for s = 1, . . . , p, of R. This is due to the reason, that Si is an MCA of strength

ti, therefore also an MCA of strength p, since p ≤ τ ≤ ti, and due to φi being a

surjective function, which guarantees that each row of Si appears at least once in

the respective sub-array of R. This concludes our remark.

For simplicity we distinguish two cases, despite Case 1 can be viewed as a special

instance of Case 2. Let u1, . . . ,uτ be τ different column indices from R, and y ∈

37

∏τ
s=1{1, . . . , wus} (note that we identify wu = w(i,j) = wi,j). We show that y appears

as a row in the sub-array of R comprised of the columns u1, . . . ,uτ .

Case 1: The selected columns ofR with indices u1, . . . ,uτ arise from the expansion

of exactly one columnMi ofM. Then, by Remark 2.25, all necessary τ -tuples appear

in the selected sub-array of R.

Case 2: The columns with indices u1, . . . ,uτ of R arise from exactly l ≥ 2 (l = 1

yields Case 1) different columns Mi1 , . . . ,Mil of M.

We partition the set of column indices {u1, . . . ,uτ} as follows. Let Pie be the set

containing exactly those indices from {u1, . . . ,uτ}, that arise from the expansion of

column Mie ofM via φie , i.e. us ∈ Pie ⇔ (us = (ie, js)∧js ∈ {1, . . . , gie}). Then, the

set P = {Pi1 , . . . , Pil} is a partition of the indices set {u1, . . . ,uτ} with l nonempty,

pairwise-disjoint classes. For the given τ -tuple y, we consider its components ye with

respect to the partition P , i.e.

ye ∈
∏
j∈Pie

{1, . . . , wie,j}, ∀e ∈ {1, . . . , l}.

As |Pie| ≤ τ − 1, by Remark 2.25, for each class Pie ∈ P , it holds that all the

|Pie|-tuples in
∏

j∈Pie
{1, . . . , wie,j} appear within the columns of R, specified by Pie .

Furthermore, since Sie is an MCA of strength tie ≥ τ − 1, for each e ∈ {1, . . . , l}
we can find a row re of Sie , which has the |Pie|-tuple ye in the positions specified

by Pie . (Note that in general this row re is not unique.) By the bijections φie ,

we get elements xe ∈ {1, . . . , vie}, with φie(xe) = re,∀e = 1, . . . , l. Now consider

the l-tuple (x1, . . . , xl) ∈
∏l

e=1{1, . . . , vie}. Since by assumption M is an MCA of

strength τ ≥ l, there exists a row r in M that covers the l-tuple (x1, . . . , xl), and

since φie(xe) covers ye, ∀e ∈ {1, . . . , l}, row r in R covers therefore the τ -tuple y. It

follows that R is an MCA of strength τ , which completes the proof.

Remark 2.26. Notice that for the proof of Theorem 2.24 it would suffice that for all

i ∈ {1, . . . , k}, the number of values that can appear in the i-th column of M is at

least the number of rows vi of the seed array Si and use surjections φi instead of

bijections. Nevertheless, using a meta arrayM having more than vi different values

in the i-th column might yield a result (Si)
k
i=1 ×M having more rows than using a

meta arrayM having exactly vi different values in the i-th column, as Theorem 1.22

38

(iii) shows. Hence we stick to plug-in constructions (Si)
k
i=1×M involving arrays as

described in the previous theorem.

When the CAs M and (Si)
k
i=1 have the same strength, we immediately get the

following result.

Corollary 2.27 (t-way Coverage Inheritance). Given a mixed-level covering array

M = MCA(N ; t, k, (v1, . . . , vk)) and a family Si = MCA(vi; t, gi,wi = (wi,1, . . . wi,gi))

of MCAs, for i = 1, . . . , k. Then an MCA(N ; t,
∑

i gi, (w1, . . . ,wk)) can be con-

structed, by applying the plug-in construction to the arrays (Si)
k
i=1 and M.

In the light of the previous corollary we consider once more Example 2.23.

Example 2.23 (continuing from p. 34). The arrays A,B,C,D and M are MCAs

of strength t = 2 for their respective parameter configurations. By Theorem 2.24,

the result R of the plug-in construction is again an MCA of strength two, namely

an MCA(24, 2, 11, (3, 210)).

Construction of Nested CAs

We can use the plug-in construction analyzed in the previous subsection for the

construction of a target MCA(N ; t, g, (v1, . . . , vg)), which is, due to the nature of the

plug-in construction, a composition of seed arrays according to a certain pattern

given by the meta array. For that reason we call such constructed arrays nested

CAs. The construction of nested CAs can be formalized algorithmically as follows.

Algorithmic Procedure 1 (Nested CA). To construct an MCA(N ; t, `, (v1, . . . , v`))

proceed in the following steps:

Step 1 : Partition the given parameter configuration (v1, . . . , v`) into arbitrary

classes V1, . . . , Vk.
3

Step 2 : For each i = 1, . . . , k, construct seed arrays Si = MCA(Ni; t, |Vi|, Vi).

Step 3 : Construct a meta array M = MCA(Nm; t, k, (N1, . . . , Nk)).

Step 4 : Apply the plug-in construction to the seed arrays (Si)
k
i=1 and the meta

array M.

3Recall that due to Theorem 1.20 (ii) we can permute the columns of the array, such that all

parameters belonging to the same partition Vi appear sequentially in (v1, . . . , v`).

39

The validity of this construction, meaning that (Si)
k
i=1×M is in fact an MCA(N ; t, g,

(v1, . . . , vg))
4, is ensured by Theorem 2.24 (and Corollary 2.27). We exemplify this

construction with the following example.

Example 2.28. Suppose we want to compute a CA(N ; 3, 1000, 2) and that available

tools are not capable of generating CAs for that many parameters, due to resource

consumption or architecture. However, one way to still construct the desired CA is

to follow these steps:

Step 1 : Partition parameters into classes of 10 parameters each.

Step 2 : Compute a seed array S = CA(12; 3, 10, 2).

Step 3 : Compute a meta array M = CA(Nm; 3, 100, 12).

Step 4 : Apply the plug-in construction to the seed arrays (S)100i=1 and the meta

array M.

Notice that each class of the partition of the parameters consist of exactly 10 binary

parameters. Hence it is sufficient to compute a seed array S = CA(12; 3, 10, 2)

only once and use it for all classes of the partition of the parameter configuration.

This way we reduce the problem of computing the whole CA(N ; 3, 1000, 2) at once,

to the computation of a seed array S = CA(12; 3, 10, 2) and a meta array M =

CA(Nm; 3, 100, 12), both having a fraction of the columns, the desired array has.

We will discuss potential advantages and disadvantages of the nested CA construc-

tion later in this subsection.

2.2.2. A Refinement of the Nested CA Construction

We already mentioned that the number of rows vi of the seed arrays Si (using the

notation from Theorem 2.24) is influencing the size of the meta array, for given

t and k, and therefore the size of the resulting array. The next theorem can be

regarded a refined version of Theorem 2.24. It enables us to formalize a refinement

of the nested CA construction, using seed arrays of strength t − 1 for the plug-

in construction, while compensating the loss of coverage by vertically juxtaposing

arrays of strength t. We will first use this construction in the proof of the following

4When desired the columns of the result can be permuted again.

40

theorem, exemplify it afterwards and finally formally present it as an algorithmic

procedure. The following theorem and its proof are also from [46].

Theorem 2.29. Given a mixed-level covering arrayM = MCA(N ; t, k, (u1, . . . , uk))

and two families Ti = MCA(vi; ti, gi,wi = (wi,1, . . . wi,gi)) and Si = MCA(ui; ti −
1, gi,wi = (wi,1, . . . wi,gi)) of MCAs, for all i ∈ {1, . . . , k}. Then an MCA(M ; τ,

∑
i gi, (w1,

. . . ,wk)) can be constructed, where M = N + max{vi|i ∈ {1, . . . , k}} and τ =

min{t, t1, t2 . . . , tk}.

Proof :

First we apply the plug-in construction to the arrays (Si)
k
i=1 andM, using arbitrary

bijective functions φi from {1, . . . , ui} onto the set of rows of Si for all i ∈ {1, . . . , k}.
Let H = (Si)

k
i=1 ×M denote the resulting array from the plug-in construction, and

R denote the array when additionally vertically juxtaposing the arrays (Ti)
k
i=1 (see

Figure 2.5 for the structure of R). Since the number of rows of the (Ti)
k
i=1 can

differ, we have to add some rows with don’t-care values 5, so that all Ti have the

same number of rows, to obtain a proper array. See Figure 2.5 for the structure of

R, where don’t-care values are depicted by the symbol ∗. The justification for the

claimed number of rows and for the parameter configuration of R is analogue to the

one given in the proof of Theorem 2.24. We distinguish two cases to show that R is

an MCA of strength τ .

Case 1: The columns with indices u1, . . . ,uτ of R arise from a single column Mi

of M:

In this case, all required τ -tuples are covered by the rows of Ti, since Ti is an MCA

of strength ti ≥ τ , and it is vertically juxtaposed to the columns of H, that arise

from the expansion of column Mi of M.

Case 2: The columns ofR with indices u1, . . . ,uτ arise from exactly l ≥ 2 different

columns Mi1 , . . . ,Mil of M:

In this case all the required τ -tuples are covered by the rows of H, which can be

shown in analogous manner to the 2nd case of the proof of Theorem 2.24, while

5In literature these don’t care values are mostly considered as new symbols, not belonging to the

alphabet of any of the parameters, represented by ∗. We never introduced this notion formally,

but we can consider these don’t-care-values as arbitrary symbols of the respective alphabet

represented by ∗.

41

noting that for the argumentation we only require that Sie is an MCA of strength

(τ − 1), which holds by assumption, since tie − 1 ≥ τ − 1.

(Si)
k
i=1 ×M

.

.

w1 w2 wk−1 wk.

T1 T2 Tk−1 Tk

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Figure 2.5.: The structure of the outcome of the refined nested CA construction,

with the (Ti)
k
i=1 vertically juxtaposed to the result of the plug-in of the

(Si)
k
i=1 to M. The array T1 in the figure is the one having the most

rows amongst the arrays (Ti)
k
i=1, this is why it needs not to be filled up

with rows consisting of only don’t-care values (denoted as ∗), like the

other ones pictured.

Example 2.30. We now give an example for the construction used in the proof of

Theorem 2.29. Assume we are given the seed arrays Ai, Bi, Ci and Di for i ∈ {1, 2},
as well as the meta array M, as follows:

42

A1

a1 a2

0 0

1 0

2 1

A2

a1 a2

0 0

0 1

1 0

1 1

2 0

2 1

B1

b1 b2 b3

0 0 0

1 1 1

B2

b1 b2 b3

0 0 1

0 1 0

1 0 0

1 1 1

C1

c1 c2 c3

0 0 0

1 1 1

C2

c1 c2 c3

0 0 1

1 1 1

1 0 0

0 1 0

D1

b1 b2 b3

0 0 0

1 1 1

D2

b1 b2 b3

0 0 1

0 1 0

1 0 0

1 1 1

Figure 2.6.: A1, B1, C1 and D1 are CAs of strength 1, used as seeds for a plug-in

construction with the meta array M. A2, B2, C2 and D2 are CAs of

strength 2 used for vertical juxtaposition under M.

M
M1 M2 M3 M4

1 0 0 1 1

2 0 1 0 0

3 1 0 0 1

4 1 1 1 0

5 2 0 0 0

6 2 1 1 1

M1 ↔ A1

φ1 :

0 7→ (0, 0)

1 7→ (1, 0)

2 7→ (2, 1)

M3 ↔ C1

φ3 :

0 7→ (0, 0, 0)

1 7→ (1, 1, 1)

M2 ↔ B1

φ2 :

0 7→ (0, 0, 0)

1 7→ (1, 1, 1)

M4 ↔ D1

φ4 :

0 7→ (0, 0, 0)

1 7→ (1, 1, 1)

Figure 2.7.: Meta arrayM and maps φi, i ∈ {1, 2, 3, 4}, which identify values ofM
with rows of the respective seed array, referring to Example 2.30

43

R
a1 a2 b1 b2 b3 c1 c2 c3 d1 d2 d3

1 0 0 0 0 0 1 1 1 1 1 1

2 0 0 1 1 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 1 1 1

4 1 0 1 1 1 1 1 1 0 0 0

5 2 1 0 0 0 0 0 0 0 0 0

6 2 1 1 1 1 1 1 1 1 1 1

7 0 0 0 0 1 0 0 1 0 0 1

8 0 1 0 1 0 1 1 1 0 1 0

9 1 0 1 0 0 1 0 0 1 0 0

10 1 1 1 1 1 0 1 0 1 1 1

11 2 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 2 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Figure 2.8.: The result R of the refined plug-in construction applied to

A1, B1, C1, D1; A2, B2, C2, D2 and M as given in Figures 2.6 and 2.7.

We apply the plug-in construction (Definition 2.21) to the seed arrays (A1, B1, C1, D1)

and the meta array M, which are all MCAs of strength t = 1 for their respective

parameter configurations. The result of this plug-in can be found in the first six rows

of R given in Figure 2.8. R itself is attained by vertically juxtaposing the arrays

A2, B2, C2 and D2 to the array (A1, B1, C1, D1) ×M, and filling up empty entries

with don’t-care-values (denoted as ∗) if necessary. Since the arrays A2, B2, C2 and

D2 are MCAs of strength t = 2 for their respective parameter configurations, we are

ensured, by Theorem 2.29, that the resulting array R is an MCA(12; 2, 11, (3, 210)),

having exactly half the number of rows as the MCA in Example 2.23 attained with

the plug-in construction (Algorithmic Procedure 1).

Construction of Refined Nested CAs

The construction used in the proof of Theorem 2.29 as well as in the previous

example, can be formalized algorithmically as follows, yielding a refinement of the

nested CA construction, referred to as refined nested CA construction:

44

Algorithmic Procedure 2 (Refined Nested CA). To construct an MCA(N ; t, `,

(v1, . . . , v`)) proceed in the following steps:

Step 1 : Partition the given parameter configuration (v1, . . . , v`) into arbitrary classes

V1, . . . , Vk.

Step 2 : For each i = 1, . . . , k construct seed arrays Si = MCA(Ni; t− 1, |Vi|, Vi).

Step 3 : For each i = 1, . . . , k construct seed arrays Ti = MCA(Mi; t, |Vi|, Vi).

Step 4 : Construct a meta array M = MCA(Nm; t, k, (N1, . . . , Nk)).

Step 5 : Apply the plug-in construction to the seed arrays (Si)
k
i=1 and the meta array

M.

Step 6 : Vertically juxtapose the seed arrays (Ti)
k
i=1 accordingly, and fill up possible

empty positions with don’t-care-values, or arbitrary elements of the respective

alphabet, to obtain a proper array.

Example 2.31. Suppose again we want to compute a CA(N ; 3, 1000, 2) and that

available tools are not capable of generating CAs for that many parameters, due

to resource consumption or architecture. However, one way to still construct the

desired CA may be by following these steps:

Step 1 : Partition parameters into classes of 5 binary parameters each.

Step 2 : Compute a seed array S = CA(6; 2, 5, 2).

Step 3 : Compute a seed array T = CA(20; 3, 5, 2).

Step 4 : Construct a meta array M = CA(1635; 3, 200, 6)).

Step 5 : Apply the plug-in construction to the seed array (S)200i=1 and the meta array

M.

Step 6 : Vertically juxtapose the seed arrays (T)200i=1 accordingly.

Again all classes of the partition are of the same size and consist of 5 binary param-

eters each. Therefore it is sufficient to compute the seed arrays S = CA(6; 2, 5, 2)

and T = CA(20; 3, 5, 2) only once and use them for all classes of the partition of

the parameter configuration. This way we reduce the problem of computing the

45

whole CA(N ; 3, 1000, 2) at once, to the computation of the seed arrays S, T and a

meta array M = CA(Nm; 3, 200, 12), all three having a fraction of the columns, the

desired array has.

2.2.3. Relevance of Nested CA Constructions for Applications in

Combinatorial Testing

As we will explain in this subsection, CAs can be interpreted as abstract test suites

in terms of software testing, which can be transformed to software artifact, provided

the CA matches with an input parameter model of the software of interest. There

are cases where input parameter models demand for CAs with a specific parame-

ter configuration and strength, that existing tools fail to compute, due to resource

consumption as we will see later in this subsection. In the following we will picture

how the nested CA constructions can provide means to overcome these boundaries.

In this regard, our proposed algorithmic procedures provide a way to address com-

putational challenges in the test generation process of combinatorial testing. In a

second step, we will explain how far nested CA constructions fit to the modelling of

composed systems.

The Tuple Counting Problem

We can benefit from the nested CA construction and its refinement, when using

tools that can handle less parameters with a higher number of parameter values

better than a large number of parameters, with less parameter values. To justify

this claim, we present in Table 2.1 the computation time and memory usage for

some instances of CAs that fail to compute using the ACTS tool (Version 2.93) [98],

[76] but using the refined nested CA construction (Algorithmic Procedure 2) we are

able to compute their individual building blocks (i.e. seed and meta arrays) and as

a result, to construct the arrays in question.

Since the number of respective values of the parameters influences the size N , of an

MCA(N ; t, k, (v1, . . . , vk)) significantly, as the lower bound
∏t

i=1 vi (Theorem 1.22

(i)) for the number of rows of an MCA shows, the plug-in construction benefits from

smaller seed arrays, because the parameters of the meta array have less values.

The tuple counting problem for CA generation depends heavily on a data structure,

which keeps track of which v-ary t-tuples are covered and which are not (see e.g. [55],

46

where such a data structure was subject to research). In particular, we consider as

a setting for this problem the computation of a CA(N ; t, k, v) using a CA generation

tool (that is based on tuple counting).

We want to compare the direct computation of a CA(N ; t, k, v) versus the compu-

tation of the seed arrays S = CA(NS; t − 1, ks, v), T = CA(NT ; t, ks, v) and a meta

array M = CA(Nm; t, km, Ns1), where ks · km = k, as used in the refined nested CA

construction. Our focus is to determine how many tuples need to be counted during

each computation and also to give bounds on the size of resulting arrays.

The main advantage of this algorithmic construction lies in the fact that they can be

used for CA computation with considerable less memory consumption. In particular,

comparing the number of tuples that need to be covered by the involved arrays, we

can get smaller numbers when using the refined nested CA construction with a

suitable partitioning of the parameters, compared to the direct computation of a

CA. This can be crucial for CA generation tools that rely on tuple counting. We

justify our claim with the following example, and generalize it afterwards:

Direct computation using CA generation tools. Suppose we want to construct a

CA(N ; 3, 1000, 2), using a CA generation tool, which is based on tuple counting,

such as the framework described in [8] or the ACTS tool [98]. For the computation

of a CA(N ; 3, 1000, 2) the respective tool has to check the appearance of all possible(
1000
3

)
· 23 = 1.329336 · 109 3-tuples.

Refined nested CA construction using CA generation tools. If we use the refined

nested CA construction, partitioning the parameters in groups of five, we first have to

compute the seed arrays S = CA(NS; 2, 5, 2) and T = CA(NT ; 3, 5, 2). CA generation

tools, relying on tuple counting, have to check for the appearance of only
(
5
2

)
·22 = 40

tuples for computing S respectively
(
5
3

)
· 23 = 80 tuples for computing T , which is

negligible. Suppose further we get a seed array S with Ns = 6 rows (as is the case

using IPOG as implemented in ACTS version 2.93). For the computation of the meta

array CA(Nm; 3, 200, 6) the previous tool has to check for
(
200
6

)
· 63 = 2.836944 · 108

3-tuples (notice that we plug-in S intoM), which are 1.0456416 · 109 less tuples, or

roughly 1/5-th of the tuples, compared to the case of direct computation of the CA

in question.

Advantages. In the general case, we know that the number of tuples to cover

in the seed arrays will always be less than when constructing a CA directly, since

the parameter configurations of the seed arrays are always part of the parameter

47

configuration of the target CA. To enable extending the boundaries of the usage

of a CA generation tool based on tuple counting, we only have to ensure that the

number of tuples that need to be covered when constructing the meta array, is less

than when directly constructing the CA:(
km
t

)
N t
s <

(
k

t

)
vt.

In Table 2.1 two cases are documented, where CA generation is feasible due to the

refined nested CA construction. All CAs for these experiments were computed with

the CA generation tool ACTS [99], [76] (in this case ACTS, version 2.93), which

failed to compute instances of a CA(N ; 3, 1000, 2) and CA(N ; 3, 2000, 3) directly. In

the first column, the entries CA(N ; t, k, v) point to which array we are interested to

construct. S, T , and M are the seed respectively meta arrays used for the refined

Nested CA construction, and R the resulting array. For the cases where the “Com-

putation Time” reads “o.o.M.”, the computation aborted with an out-of-memory

error. In the fourth column we give the available memory for the computations.

The table entries with the resulting arrays have no computation time, as the time

needed to apply the refined nested CA construction, as a process of substituting the

rows of the seed arrays into the meta array, is negligible and was not measured.

Disadvantages. However, the nested CA constructions, besides the previous ad-

vantages, have also certain limitations. For example, one disadvantage of using

the refined nested CA construction is that it generally constructs larger CAs com-

pared to a direct computation. A natural lower bound on the number of rows in a

CA(N ; t, k, v) is given by vt. In the refined nested CA construction howerver, the

seed array S of strength t− 1 has vt−1 ≤ Ns1 number of rows. Since the number of

rows in the seed array equals the cardinality of parameter values of the meta array,

we obtain a lower bound of vt
2−t for the number of rows appearing in the meta

array. Hence, the number of rows of the resulting array of the refined nested CA

construction is bounded at least by the same value vt
2−t, due to the additional ver-

tical juxtaposition of arrays. If we choose to directly construct a CA(N ; t, ks · km, v)

array, we have the lower bound vt (which is sharp for orthogonal arrays), and more

generally N ∈ O(vtt(log v+ log(kskm))) (provided of course an algorithm capable of

returning CAs of that size, see e.g. [13] or Algorithm 6 and Corollary 1.28), yielding

much smaller arrays, especially for large t.

48

Array Computation Time Size Memory

CA(N ; 3, 1000, 2) o.o.M. - 5 GB

S = CA(6; 2, 5, 2) 0 sec 6 5 GB

T = CA(20; 3, 5, 2) 0 sec 20 5 GB

M = CA(1635; 3, 200, 6) ∼10 min 1635 5 GB

R = CA(1655; 3, 1000, 6) - 1655 5 GB

CA(N ; 3, 2000, 3) o.o.M. (after >7 hrs) - 10 GB

S = CA(6; 2, 5, 2) 0 sec 6 10 GB

T = CA(20; 3, 5, 2) 0 sec 20 10 GB

M = CA(1930; 3, 400, 6) ∼2.5 hrs 1930 10 GB

R = CA(1950; 3, 2000, 2) - 1950 10 GB

Table 2.1.: Two CA generations enabled by using the ACTS tool in combination

with the refined plug-in construction (Algorithmic Procedure 2).

Application of Nested CAs in Testing

Before we highlight the applicability of the previously discussed plug-in construction,

in the field of combinatorial testing, we give a short introduction to combinatorial

testing in the first place, and introduce some notations.

Combinatorial Testing. To apply combinatorial testing to a system under test

(SUT), i.e. testing the system with a test suite based on combinatorial designs, e.g.

based on CAs ([59, 60, 86]), orthogonal latin squares ([68]) or others, it is required to

model the input space of the SUT by determining parameters (also called factors or

stages), and their respective values such that, an input to this model of the SUT can

be represented by a specific assignment of values to these parameters. This modelling

technique is referred to as input parameter modelling, and the resulting model is the

input parameter model (IPM) of the SUT [33]. Focusing on combinatorial testing

based on CAs, in general the parameters of the IPM are identified with the columns

of a CA. The symbols that appear in a column of the CA are mapped to the values,

the corresponding parameter can take. Each row of the CA gives rise to a test, when

assigning values to the input parameters of the SUT according to the entries in the

row. The strength t of the CA underlying the test suite, then translates to the t-way

interaction coverage of the parameters modelling the SUT, guaranteeing, that any t-

way combination of parameter-value combinations, are executed at least once, when

the whole test suite is executed. This property is of major importance, considering

that a study of the National Institute of Standards and Technology (NIST) from

49

2010 [59], revealed that a significant amount of software faults are induced by the

interaction of two or more parameters. At the same time the empirical data in [59]

shows that in fielded software products these faults rely on the interactions of at

most 6 parameters. For this reason CAs have attracted a lot of research attention,

as their properties predestine them for applications in automated software testing

[59, 86, 60].

In this context we motivate the applicability of the nested CA constructions for

composed software systems, despite they can also be applicable in domains.

Nested CAs in Software Testing. Modern software design relies heavily on mod-

ular software architecture, as well structured software is easier understandable for

software users and developers. Additionally, it makes further development and main-

tenance of the software more manageable. It is often easier to understand certain

components of a software and understanding the interplay of these in a second step,

in comparison to understanding the whole system at once.

Consider an SUT, being composed of several components C1, . . . , Ck, which are

interacting with each other and where each component can have its own IPM. In

this sense, an IPM of the composed SUT is comprised of the many (possibly different)

IPMs of its components. This hierarchy of IPMs, gives a way to combine tests for the

components to obtain a test suite for the SUT, that has a different IPM. Figure 2.9

shows the schematics of an SUT that is composed of four components, each having

its own internal structure, i.e. each component has its own IPM. In software testing

one distinguishes between testing the components of a composed SUT independently,

which is referred to as unit testing ([43]), and integration testing ([77]), where the

whole SUT, i.e. the interplay between the components, is tested. In the following

we will briefly highlight how the nested CA constructions can be applied for testing

such software systems, and hence adopt to this hierarchical structure of modern

software design and interconnected systems.

Various approaches are devoted to model the operational environment of an SUT

and its input space, focusing on appearing internal structures or dependencies of the

acting entities, see e.g. [23, 58]. The nested CA construction is a purely combinato-

rial way to bridge the gap between unit testing and integration testing when applying

combinatorial testing using CAs. We further explain this as follows: Assume the

SUT depicted in Figure 2.9 comprised of the four components C1, C2, C3, C4, where

C1 can be modelled with one ternary and one binary input parameter and C2, C3

50

C1 C2

C3C4

Figure 2.9.: Composed SUT, with components C1, C2, C3, C4, each having its own

internal structure.

and C4 can be modelled having three binary input parameters each. An example

for such IPMs would be as follows:

IPM(C1) :

p1: on, standby, off

p2: on, off

IPM(C2) :

p3: on, off

p4: on, off

p5: on, off

IPM(C3) :

p6: on, off

p7: on, off

p8: on, off

IPM(C4) :

p9: on, off

p10: on, off

p11: on, off

Given the IPM of an SUT, we can generate a CA over the appropriate alphabet,

which then in terms of testing can be considered as an abstract test suite. For exam-

ple regarding C2 we can construct a CA(N ; 2, 3, 2) and consider it as an abstract test

suite (see Figure 2.10). An IPM for the SUT comprised of the components C1, C2.C3

and C4 would consist of a single ternary parameter and ten binary parameters.

CA(4; 2, 3, 2)

0 0 0

0 1 1

1 0 1

1 1 0

Test suite

off off off

off on on

on off on

on on off

Figure 2.10.: On the left hand side a CA(4; 2, 3, 2) that can be interpreted as an

abstract test suite for C2 provided the IPM(C2). On the left hand

side a test suite for C2, generated from the CA on the right, by is

instantiating the values according to IPM(C2).

51

Consider the case that there already exist CAs, i.e. abstract test suites, for the

components, e.g. the covering arrays A,B,C respectively D in Example 2.23. Given

these CAs of strength 2, we can construct an abstract test suite for the whole SUT,

by nesting the CAs that give rise to the test suites of the components, merging them

using the nested CA construction (Algorithmic Procedure 1), using an appropriate

meta array M = (M1,M2,M3,M4), also of strength 2 (see again Example 2.23).

The resulting CA is compatible with the IPM for the whole SUT, consisting of one

ternary and ten binary parameters. Then a test suite for the whole SUT, generated

from this array, enjoys full 2-way interaction coverage, due to Theorem 2.27. Put

differently, we just described how to generate an abstract combinatorial integration

test suite for an SUT, starting from abstract combinatorial unit test suites for the

SUTs components.

An application of this methodology to modelling the system call interface of the

Linux kernel can be found in [46].

2.2.4. CAs from Perfect Hashfamilies

In this subsection we describe another plug-in construction for CAs which was intro-

duced in [69]. Different to the row-wise nature of the plug-in construction discussed

in the previous subsection, in the sequel of this subsection we will consider a column-

wise plug-in of arrays. Also the target structure in which the columns get plugged-in

are no longer CAs, but perfect hash families (PHFs).

Perfect Hash Families

Following the work of [69] we first give a definition, before we discuss connections

of PHFs to other classes of mathematical objects, including CAs.

Definition 2.32. A t-perfect hash family is an N × k array over the alphabet [q],

denoted as PHF(N ; k, q, t), with the property that for a fixed integer t all subarrays

comprised of any t columns, have the property that there is at least one row that

has pairwise different entries in these columns.

The typical problem for PHFs is to construct a PHF(N ; k, q, t), for given k, q and t,

with a small, or the smallest possible, number of rows N . Therefore the interesting

cases are those where k ≥ q ≥ t, as for k < q there always exists a PHF consisting of

52

only one row having pairwise different entries, and as for q < t there does not exist a

q-ary vector of length t having pairwise different entries and hence no PHF(N ; k, q, t).

Remark. We also immediately see that any CA(N ; t, k, v) with t ≤ v is also a

PHF(N ; k, v, t), as t ≤ v guarantees the appearance of a t-tuple having pairwise

different entries in every selection of t columns.

Example 2.33. The following array gives an example of a PHF(6; 12, 3, 3):

0 1 2 2 1 2 2 0 1 1 0 0

0 2 1 0 2 2 2 1 0 1 2 1

1 0 0 2 2 2 1 1 2 1 0 2

2 0 1 1 2 0 2 0 1 1 2 1

2 0 2 1 2 1 0 2 2 1 1 0

2 0 1 2 1 1 2 2 0 1 2 1

.

Interpreting the rows of a PHF(N ; k, q, t) as functions fi : [k] → [q] for all i ∈
{1, . . . , N}, the defining property of PHFs means that for each subset of [k] having

cardinality t, there is at least one function fi that is injective on this subset.

There is a close connection between PHFs and error-correcting codes, as the fol-

lowing theorem, which was proven in [1], shows. Before we show the theorem, we

introduce the following definition for the sake of completeness. See also [41].

Definition 2.34. An (N, k, d, q) code is a subset C ⊆ AN of vectors, ehich are also

called codewords, with |A| = q and |C| = k, with the property that the Hamming

distance dH(u, v) := |{i|i ∈ {1, . . . , N} ∧ ui 6= vi}| for any two distinct codewords

u = (u1, . . . , uN) and v = (v1, . . . , vN) in C is at least d.

Theorem 2.35. If there exists an (N, k, d, q) code C with N > (N − d)
(
t
2

)
for an

integer t, then there exists a PHF(N ; k, q, t).

Proof :

We show that the N × k array (u1, . . . ,uk) comprised by the column-wise vectors

of an (N, k, d, q) code C, with N > (N − d)
(
t
2

)
, is the desired PHF(N ; k, q, t). Let

{c1, . . . , ct} ⊆ C be a set of t different arbitrary vectors of C. We show that there

is a coordinate where these codewords are pairwise different, which concludes the

proof.

Suppose there exists no such coordinate. Then for each coordinate i ∈ {1, . . . , N}
there exist at least two vectors, having the same entry in the coordinate i. If we

53

consider the sum of all Hamming distances of pairs of vectors from {c1, . . . , ct} we

hence get (
t

2

)
d ≤

∑
1≤i<j≤N

dH(ci, cj) ≤ N

(
t

2

)
−N

⇔ N ≤ (N − d)

(
t

2

)
,

a contradiction.

In the next theorem we will make use of the following notion.

Definition 2.36. Let A = (ai,j) be a CA(N ; t, k, v). For any two rows j1, j2 ∈
{1, . . . , N} of A we define

I(j1, j2) := |{i ∈ {1, . . . , k}|aj1,i = aj1,i}|,

the number of positions these two rows are equal, and

I(A) := max{I(j1, j2)|j1 6= j2 ∈ {1, . . . , N},

as the maximum of these values over all selections of two different rows of A.

Theorem 2.37. Let A be a CA(N ; t, k, v) with k/I(A) >
(
t′

2

)
, then there exists a

PHF(k;N, v, t′).

Proof :

Consider the code C that has as codewords the rows of A. Then C is a (k,N, k −
I(A), v) code. Since k/I(A) >

(
t′

2

)
⇔ k > (k−(k−I(A)))

(
t′

2

)
we can apply Theorem

2.35, to show the existence of a PHF(k;N, v, t′).

Corollary 2.38. If there exists an OA1(t, k, v) and an integer t′ with k/(t−1) >
(
t′

2

)
,

then there also exists a PHF(k; vt, v, t′).

Proof :

Let A be an OA1(t, k, v), to apply Theorem 2.37 we only have to show that I(A) =

t−1. I(A) ≤ t−1 is clear, since if I(A) ≥ t there would be a subarray comprised of

t columns of A, where a certain (v)ki=1-ary t-tuple is covered more than once. A con-

tradiction to A being an OA1(t, k, v). I(A) ≥ t−1 holds, as the t-tuples (0, 0, . . . , 0)

and (1, 0, . . . , 0) need to be covered by the rows of the subarray comprised of the

first t columns of A. Let j1, j2 be the rows that cover these two t-tuples, then we

have I(j1, j2) ≥ t− 1 and hence I(A) ≥ t− 1.

In combination with Theorem 2.2 we get the following.

54

Corollary 2.39. For any prime power q and any integer r with 2 ≤ r ≤ q, there

exists a PHF(q; qr, q, t′) as long as q/(r − 1) >
(
t′

2

)
.

A Plug-In Constructions of CAs using PHFs

Note once more, that the plug-in construction in the proof of the following Theorem

is column-wise.

Theorem 2.40. Suppose there exists a PHF(s; k,m, t) and a CA(N ; t,m, v), then

there also exists a CA(sN ; t, k, v), which can be constructed by replacing the i-th

symbol of the PHF with the i-th column of the CA.

Proof :

Let B = (bi,j) ∈ [m]s×k denote the PHF(s; k,m, t), and A = (ai,j) = (a1, . . . , am) ∈
[v]N×m denote the CA(N ; t,m, v). Consider the map f : [m] → {a1, . . . , am} : ` 7→
a`, and define C as the sN × k array over [v] that results when replacing all entries

of B with their image under f ,

C := (c1, . . . , ck) := (f(bi,j))(i,j)∈{1,...,s}×{1,...,k} ∈ [v]sN×k.

We show that C is a CA of strength t. Let (ci1 , . . . , cit) be a subarray comprised

of t arbitrary columns of C. Since B is a t-perfect hash family, there exists a row

j, so that the entries in (bi1,j, . . . , bit,j) are pairwise different. Hence their images

f(bir,j) = air for r ∈ {1, . . . , t} are pairwise different columns of A. Since A is a CA of

strength t, (ai1 , . . . , ait) is covering (recall Definition 1.13). As (ai1 , . . . , ait) appears

as a subarray of (ci1 , . . . , cit), as expansion of the j-th row of B, also (ci1 , . . . , cit)

is covering.

Example 2.41. As an example for the construction described in the last theorem

consider the following PHF(2; 6, 4, 2) and the CA(5; 2, 4, 2) given in Table 2.11. For

demonstration purposes we consider the PHF to be over the alphabet {a, b, c, d}.
We also label the columns of the CA with the elements of {a, b, c, d}, so that each

element labels the column that will replace the element.

Using Corollary 2.38 together with Theorem 2.40 it becomes possible to recursively

construct CAs.

55

CA(5; 2, 4, 2)

a b c d

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 1

×
PHF(2; 6, 4, 2)

a b c d a b

b a c d a b

=

CA× PHF

0 0 0 0 0 0

0 1 1 0 0 1

1 0 1 0 1 0

1 1 0 1 1 1

0 0 1 1 0 0

0 0 0 0 0 0

1 0 1 0 0 1

0 1 1 0 1 0

1 1 0 1 1 1

0 0 1 1 0 0

Figure 2.11.: The plug-in construction described in Example 2.41. The boxes em-

phasize the structure of the resulting CA(10; 2, 6, 2).

Theorem 2.42. Let q be a prime power. Suppose there exists a CA(N0; t, q
s0 , v) and

qs0 >
(
t
2

)
. Then there exists a CA(N0Ri; t, q

si , v), for all i ≥ 0, where R0 = 1 and

Ri = qsi−1Ri−1,

si = si−1

⌈qsi−1(
t
2

) ⌉,
for all i ≥ 1.

Proof :

We proceed by induction on i.

Induction base: For i = 0 we are given a CA(N0; t, q
s0 , v), since R0 = 1 the assertion

is holds.

Induction hypothesis: There exists a CA(N0Ri; t, q
si , v) with Ri = qsi−1Ri−1 and

si = si−1

⌈
qsi−1

(t
2)

⌉
.

Induction step: i→ t+ 1 :

Applying Corollary 2.39 with the prime power qsi−1 and r =
⌈
qsi−1

(t
2)

⌉
, we get the

existence of a PHF(qsi−1 ; qsi , qsi−1 , t), as

qsi−1(⌈
qsi−1

(t
2)

⌉
− 1
) > qsi−1

qsi−1

(t
2)

=

(
t

2

)

56

holds. By the induction hypothesis there exists a CA(N0Ri−1; t, q
si−1 , v). The

column-wise plug-in of this CA(N0Ri−1; t, q
si−1 , v) into the PHF(qsi−1 ; qsi , qsi−1 , t),

according to Theorem 2.40 yields the desired CA(N0Ri; t, q
si , v).

2.3. CAs as Families of Sets

There is a vast amount of structures in combinatorial design theory. Many of these

are closely related, and some can be viewed from various aspects providing connec-

tions to different fields of scientific applications. In this section we consider certain

families of sets, which, as will be shown, turn out to be equivalent to CAs. We

will show that the size of a maximal 2-independent family of sets is completely de-

termined, and such a family can explicitly be constructed, as proven in [50, 56].

In a second step, we will use the equivalence between these structures and CAs to

completely address the problem of optimal CA(N ; 2, k, 2) generation for arbitrary k.

2.3.1. Independent Families of Sets (IFSs)

The definitions given below are slightly different from the ones given in [21], and

can also be found in [65].

Definition 2.43. A t-independent family of sets 6 IFS(N ; t, k) is a family (A1, . . . , Ak)

of k subsets of [N], with the property that for each choice {i1, . . . , it} ⊆ {1, . . . , k}
of t different indices and for all Āij ∈ {Aij , ACij} it holds that

⋂t
j=1 Āij 6= ∅. The

parameters t and k are respectively called the strength and the size of the IFS.

We also say that a family of sets is t-independent, if it is an IFS(N ; t, k) for some

value of N and k without mentioning them explicitly, when it is clear from the

context and need no further specification. Note that it is possible to define IFSs

over arbitrary finite sets. Yet, since for our purposes, only the cardinality of the

underlying set is of importance, we only consider IFSs over the underlying set [N]

for some N ∈ N. In the following we use the notation Ā for a variable that can take

the values A or AC = [N] \ A, for a given set [N].

6Note that in literature (e.g. in [50]) also the term t-qualitatively independent family of sets is

used. Nevertheless we use the term t-independent family of sets also used by the authors of

[56].

57

Example 2.44. An example of a 2-independent family of sets over [5], IFS(5; 2, 4),

is given by F = (A1, A2, A3, A4), where

A1 = {0, 1},

A2 = {0, 2}, (2.8)

A3 = {0, 3},

A4 = {0, 4}

The check that all intersections Āi ∩ Āj for Ai 6= Aj ∈ F , where Ā ∈ {A,AC}, are

nonempty, is left to the reader.

Further we would like to motivate the nomenclature “independent family of sets” in

the same manner, as Katona does in [50]. Considering two sets A,B ⊆ [N] and the

intersections

A ∩B, AC ∩B, A ∩BC , AC ∩BC . (2.9)

If one of these intersections is empty, then the information x ∈ A (or x /∈ A),

may already contain information whether x resides in B or not. Say for example

A ∩ BC = ∅, then the information x ∈ A contains the information x ∈ B. In the

contrary case that none of the intersections in (2.9) is empty, the question after

x ∈ B can be answered independently from the answer to the question whether

x ∈ A. In that regard, judging from (2.9), A and B are independent.

The typical question that arises with independent families of sets, is how large such

families can get when the underlying set [N] is fixed.

Definition 2.45. The largest number k such that an IFS(N ; t, k) exists, is defined

as

CAK(N ; t) := max{k : ∃ IFS(N ; t, k)}.

As the similarity of the definitions of CAs and IFSs implies, there is a close rela-

tion between these two combinatorial structures. In fact, it is known that every

CA(N ; t, k, 2) is equivalent to an IFS(N ; t, k) (see for example [65] and [21], Remark

10.5). We will make this connection explicit in the proof of the following theorem.

Theorem 2.46. Every t-independent family of sets IFS(N ; t, k) induces a binary

covering array CA(N ; t, k, 2) and vice versa.

58

Proof :

Let A = (A1, . . . , Ak) be an IFS(N ; t, k). It is well-known that there exists an one-to-

one correspondence between subsets of {0, . . . , N − 1} and binary vectors of length

N (see also Chapter 4). Let P({0, . . . , N−1}) denote the powerset of {0, . . . , N−1}.
In particular, we have that:

φ : P({1, . . . , N}) → {0, 1}(N×1)

A 7→ (v0, . . . , vN−1)
T , where vi =

1, i ∈ A

0, i /∈ A
,

is a bijection (and in fact even an isomorphism of the Boolean algebras (P([N]),∩,∪,
.C , ∅, [N]) and ({0, 1},∧,∨,¬, 0, 1)N , [90]).

By virtue of φ we can identify the sets Ai of A with their corresponding binary N tu-

ples ai for all i ∈ {1, . . . , k}. Let us now consider the matrix M = (a1, a2, . . . , ak) =

(ai,j) composed of the column-wise indicator vectors of the Ai ∈ A. In other words,

the j-th row of M has a 1-entry in column i if and only if j ∈ Ai and a 0-entry

otherwise. Let {i1, . . . , it} ⊆ {1, . . . , k} be a set of t different arbitrary indices,

and (u1, . . . , ut) ∈ {0, 1}t be an arbitrary binary t-tuple. We show that the N × t
subarray (ai1 , ai2 , . . . , ait) of M covers the tuple (u1, . . . , ut). Let us define

Āis :=

Ais , if us = 1

ACis , if us = 0
, ∀s ∈ {1, . . . , t}.

Since A is a t-independent family of sets, it holds that

t⋂
s=1

Āis 6= ∅.

Let r ∈
⋂t
s=1 Āis , this is exactly the case if r ∈ Ais for all s ∈ {1, . . . , t} with

us = 1 and r /∈ Ais for all s ∈ {1, . . . , t} with us = 0, or equivalently that row r of

(ai1 , ai2 , . . . , ait) equals (u1, . . . , ut). Summarizing we have

r ∈
t⋂

s=1

Āis ⇒ (ar,is)
t
s=1 = (u1, . . . , ut), (2.10)

which shows that M is a binary CA of strength t, as (u1, . . . , ut) and {i1, . . . , it}
were arbitrary.

59

For the reverse direction, let M = (m1,m2, . . . ,mk) be a binary CA(N ; t, k, 2).

Define A = (A1, . . . , Ak) by Ai := φ−1(mi) ∀i ∈ {1, . . . , k}. We want to show

that an arbitrary intersection
⋂t
s=1 Āis , for {i1, . . . , it} ⊆ {1, . . . , k} and some fixed

Āis ∈ {Ais , ACis} is nonempty. Consider the binary t-tuple u = (u1, . . . , ut) where

us =

1, if Āis = Ais

0, if Āis = ACis

, ∀s ∈ {1, . . . , t}.

Since M is a binary CA(N ; t, k, 2), there is a row r of (m1,m2, . . . ,mk) that covers

(u1, . . . , ut). By the definition of (u1, . . . , ut), we have

(u1, . . . , ut) = (mr,is)
t
s=1 ⇒ r ∈

t⋂
s=1

Āis 6= ∅.

Example 2.44 (continuing from p. 58). By virtue of the last theorem, we can map

the IFS(5; 2, 4) defined by the equations in (2.9) to the following CA(5; 2, 4, 2):
1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.11)

An immediate consequence of the Theorem 2.46 is the following.

Corollary 2.47. For N, t, k ∈ N with k ≥ t ≥ 1 we have

CAN(t, k, 2) = min{N |∃ IFS(N ; t, k)},

CAK(N ; t) = max{k|∃ CA(N ; t, k, 2)}.

2.3.2. Maximal 2-Independent Families of Sets

We will show that the size of a maximal 2-independent family of sets is completely

determined. The main result of this section shares a lot of similarities with a well

known Theorem of Sperner ([89]), which is the reason, why it is also referred to

as a Sperner-type theorem ([57]). Before we give the proof of it, we introduce the

necessary notions and theorems used in the proof.

The following definition can be also found in [2].

60

Definition 2.48. An antichain of a partially ordered set (P,4) is a subset A ⊆ P

such that any two different elements a1 6= a2 ∈ A are incomparable:

a1 64 a2 and a2 64 a1.

The following theorem describes maximal antichains in power sets of finite sets and

was proven due to Sperner in [89]; for an English source see also [2].

Theorem 2.49 (Sperner’s Theorem). Let M be a finite set with |M | = N elements.

Then an antichain in the partially ordered set (P(M),⊆) has at most
(

N
bN/2c

)
ele-

ments. A maximal antichain A with |A| =
(

N
bN/2c

)
can be constructed, by defining A

as the set of all subsets of M with cardinality bN/2c:

A = {S
∣∣S ⊆M ∧ |S| = bN/2c}.

The following theorem is proven in [27], where we refer the interested reader for the

proof.

Theorem 2.50 (Erdös-Ko-Rado Theorem). Let `,m ∈ N with l ≤ m/2, then for

any family of sets F with the properties

(i) ∀B ∈ F : B ⊆ {0, . . . ,m− 1},

(ii) ∀B ∈ F : |B| ≤ `,

(iii) ∀B,D ∈ F : B 6⊆ D,

(iv) ∀B,D ∈ F : B ∩D 6= ∅,

it holds that |F| ≤
(
m−1
`−1

)
.

The following theorem has been proven in the beginning of the 1970s by several

authors (e.g. in [56, 50]). The proof we give here is similar to the one given in [56].

Theorem 2.51. For every N ≥ 2 it holds that

CAK(N ; 2) =

(
N − 1

bN/2c − 1

)
.

More particular a maximal 2-independent family of sets over {0, . . . , N −1} is given

by the family F2(N) of all subsets of {0, . . . , N − 1} of cardinality bN/2c, all con-

taining a fixed element.

61

Proof :

We distinguish two cases for N even and N odd.

1st Case: N ≡ 0 mod 2.

Let F = {B1, . . . , Bk} be a 2-independent family of sets and BC := {0, . . . , N −
1} \ B denote the complement of B in {0, . . . , N − 1}. Then F∗ := {B1, . . . , Bk} ∪
{BC

1 , . . . , B
C
k } is an anti-chain in the partially ordered set ([N],⊆), as for all i 6= j

we have:

Bi ∩Bj 6= ∅ ⇒ Bi 6⊆ BC
j ,

BC
i ∩BC

j 6= ∅ ⇒ BC
i 6⊆ Bj,

Bi ∩BC
j 6= ∅ ⇒ Bi 6⊆ Bj,

BC
i ∩Bj 6= ∅ ⇒ BC

i 6⊆ BC
j .

From Sperners Theorem [89] we hence know

|F∗| = 2k ≤
(

N

bN/2c

)
⇔ k ≤ 1

2

(
N

bN/2c

)
=

(
N − 1

bN/2c − 1

)
.

Conversely assume given the maximal anti-chain F∗ of ({1, . . . , N−1},⊆) consisting

of all subsets of {1, . . . , N − 1} of size bN−1
2
c (see Sperner’s Theorem [89]). Then

|F∗| =
(
N−1
bN−1

2
c

)
=
(

N−1
bN/2c−1

)
, as N is even. Then for any B1 6= B2 ∈ F∗ from

B1 6⊆ B2 we get B1 ∩ BC
2 6= ∅, and from B2 6⊆ B1 we get BC

1 ∩ B2 6= ∅. As

|B1| = |B2| = bN−12
c we have |BC

1 | = |BC
2 | = N−1−bN−1

2
c = N−1−(N

2
−1) = N/2.

Hence |BC
1 | + |BC

2 | > N − 1 and BC
1 , B

C
2 must intersect in at least one element:

BC
1 ∩ BC

2 6= ∅. Finally, by adjoining one element to all sets in F∗, by defining

F := {B ∪ {0}|B ∈ F∗}, we get 0 ∈ D1 ∩ D2 6= ∅ for all D1, D2 ∈ F . The other

relations DC
1 ∩D2 6= ∅, D1 ∩DC

2 6= ∅ and DC
1 ∩DC

2 6= ∅, transfer from the Bi ∈ F∗

to the Di = Bi ∪ {0} ∈ F , for which complements DC
i are considered respectively

{0, 1, . . . , N − 1}. Hence F is a 2-independent family of sets over [N], where all sets

contain 0.

2nd Case: N ≡ 1 mod 2.

Let N = 2u+1 with u ∈ N. We define F := {B
∣∣B ⊆ [N]∧0 ∈ B∧|B| = u} and show

that F is a 2-independent family of sets with, as can be seen easily,
(
2u
u

)
=
(

N−1
bN/2c−1

)
elements. Let B 6= D ∈ F , then we heave

B ∩D 6= ∅: as B ∩D ⊇ {0} 6= ∅

62

BC ∩DC 6= ∅: as BC ⊆ {1, . . . , N − 1} and |BC | = u+ 1. The same holds for

DC . Hence BC and DC must intersect on at least one of the 2u elements of

{1, . . . , N − 1}.

BC ∩D 6= ∅: As B 6= D we have BC 6= DC and hence, as |BC | = |DC |, we

have BC 6⊆ DC . Therefore BC ∩D 6= ∅.

B ∩DC 6= ∅: analogue to BC ∩D 6= ∅.

Conversely assume given a 2-independent family of sets F . As we are only interested

in the cardinality of F , we may assume without loss of generality that each B ∈ F
fulfills |B| ≤ u, since if |B| > u we can always remove B from F and replace it with

Bc having |BC | = 2u+ 1− |B| ≤ u = bN/2c elements. Applying the Erös-Ko-Rado

Theorem 2.50 to F we immediately get |F| ≤
(

2u
u−1

)
=
(

N−1
bN/2c−1

)
.

Combining Theorem 2.46 and Corollary 2.47 we immediately get the following.

Corollary 2.52. For every k ≥ 1 it holds that

CAN(2, k, 2) = min
{
N
∣∣ k ≤ (N − 1

bN/2c − 1

)}
.

Further an optimal CA(N ; 2, k, 2) can be constructed by horizontally juxtaposing k

different binary column vectors of length N , each having a 1-entry in the first posi-

tion, and bN/2c 1-entries in total.

Example 2.44 (continuing from p. 58). As CAK(5; 2) =
(

5−1
b5/2c−1

)
= 4, the IFS

defined by the equations of (2.9) and hence also the binary CA in (2.11), are optimal.

2.4. MCAs as Families of Partitions

In this section we generalize the representation of CAs as families of sets to MCAs.

To this end, we have to consider a generalization of independent families of stets to

independent families of partitions (IFPs).

Definition 2.53. We call a family P1, P2, . . . , Pk of partitions of the set {1, . . . , N},
with |Pr| = vr, a t-independent family of partitions, if for all subsets {i1, . . . , it} ⊆
{1, . . . , k} all

∏t
j=1 vj intersections

⋂t
j=1Aij , with Aij ∈ Pij , are non-empty. Such a

family of partitions is denoted as IFP(N ; t, k, (v1, . . . , vk)), and the parameters t and

k are called respectively strength and size of the IFP.

63

As was the case for IFSs and CAs, there is also a strong connection between IFPs

and MCAs. This connection was also mentioned in [65] and [21], and can be stated

as follows. Note that to the best of the author’s knowledge a proof was never given

explicitly in the literature.

Theorem 2.54. Every t-independent family of partitions IFP(N ; t, k, (v1, . . . , vk))

yields a mixed-level t-covering array MCA(N ; t, k, ((v1, . . . , vk)) and vice versa.

Proof :

Let (P1, P2, . . . , Pk) be an IFP(N ; t, k, (v1, . . . , vk)), where Pj = {Aj,0, . . . , Aj,vj−1} is

a partition of the set {1, . . . , N} for all j ∈ {1, . . . , k}. We define the N × k matrix

M = (mi,j) as:

mi,j = `⇔ i ∈ Aj,`.

M can be considered the matrix of the column-wise generalized indicator vectors

of the Pj’s. It follows, that the entries of the j-th column of M are elements of

[vj]. Let us consider a set {i1, . . . , it} ⊆ {1, . . . , k} and a t-tuple u = (u1, . . . , ut) ∈∏t
j=1[vij]. Since P1, P2, . . . , Pk is a t-independent family of partitions, there exists

an r ∈ {1, . . . , N}:

r ∈
t⋂

j=1

Aij ,uj 6= ∅,

i.e. in row r of the columns i1, . . . , it of M the t-tuple u = (u1, . . . , ut) is covered.

This proves M being an MCA(N ; t, k, (v1, . . . , vk)).

If we are given anMCA(N ; t, k, (v1, . . . , vk)), consider the following family (P1, . . . , Pk)

of subsets of {1, . . . , N}, defined by Pj = {Aj,0, . . . , Aj,vj−1}, where

i ∈ Aj,` ⇔Mi,j = `. (2.12)

Hence M being again the matrix of column-wise generalized indicator vectors of

the Pj’s. For j fixed, the Aj,0, . . . , Aj,vj−1 are disjoint, as the entries of M are well

defined, and they satisfy
⋃vj−1
r=0 Aj,r = [vj], as M is an MCA of strength t ≥ 1. So

(P1, . . . , Pk) is a family of partitions of {1, . . . , N}. Considering any intersection⋂t
j=1Aij ,uj with {i1, . . . , it} ⊆ {1, . . . , k}, and (u1, . . . , ut) ∈

∏t
j=1[vij] arbitrary

Since M is an MCA(N ; t, k, (v1, . . . , vk)), the t-tuple u is covered by some row r in

the columns i1, . . . , it of M . By (2.12) we get r ∈
⋂t
j=1Aij ,uj 6= ∅. This proves

P1, . . . , Pk to be a t-independent family of Partitions.

Consider the following example that makes this connection more concrete.

64

Example 2.55. Given a family (P1, P2, P3, P4) of four Partitions of the set {1, . . . , 15},
whereat

P1 = {{2, 4, 5.6, 7}︸ ︷︷ ︸
A1,0

, {1, 9, 10, 12, 14}︸ ︷︷ ︸
A1,1

, {3, 8, 11, 13, 15}︸ ︷︷ ︸
A1,2

},

P2 = {{1, 2, 3, 4, 5, 6}︸ ︷︷ ︸
A2,0

, {7, 8, 9, 10, 11, 12, 13, 14, 15}︸ ︷︷ ︸
A2,1

},

P3 = {{4, 5, 6, 8, 9}︸ ︷︷ ︸
A3,0

, {3, 7, 10, 12, 14}︸ ︷︷ ︸
A3,1

, {1, 2, 11, 13, 15}︸ ︷︷ ︸
A3,2

},

P4 = {{1, 7, 8}︸ ︷︷ ︸
A4,0

, {2, 3, 9}︸ ︷︷ ︸
A4,1

, {4, 10, 11}︸ ︷︷ ︸
A4,2

, {5, 12, 13}︸ ︷︷ ︸
A4,3

, {6, 14, 15}︸ ︷︷ ︸
A4,4

}

Table 2.12 shows the corresponding matrix M = (m1,m2,m3,m4) = (mi,j) of

the column-wise generalized indicator vectors. For instance m5,4 = 3 means that

5 is an element of A4,3. Considering the partitions as families rather than sets,

we could say that m5,4 = 3 means that 5 is an element of the 3rd set of the

fourth partition P4. In fact the given family of partitions is 2-independent, i.e.

an IFP(15; 2, 4, (3, 2, 3, 5)), or equivalently M an MCA over (3, 2, 3, 5) of strength

2, i.e. an MCA(15; 2, 4, (3, 2, 3, 5)). Let us now reconstruct the relation between the

coverage property of M and the independence property of (P1, P2, P3, P4) with the

help of an example. We choose the set {1, 4} ⊆ {1, . . . , 4} of cardinality 2. For

demonstration purposes we choose the (3, 2, 3, 5)-ary 2-tuple ((1, 4), (1, 3)). Now we

have

(1, 3) is covered by row 12 of M ⇔ 12 ∈ A1,1 ∩ A4,3.

We will use the connection between binary CAs and IFSs in the second part of this

thesis, in Chapter 5. Where in Chapter 4, we will establish a different connection

between CAs and families of sets.

65

P 1
=

(A
1,
0
, A

1,
1
, A

1,
2
)

P 2
=

(A
2,
0
, A

2,
1
)

P 3
=

(A
3,
0
, A

3,
1
, A

3,
2
)

P 4
=

(A
4,
0
, A

4,
1
, A

4,
2
, A

4,
3
, A

4,
4
)

1 1 0 2 0

2 0 0 2 1

3 2 0 1 1

4 0 0 0 2

5 0 0 0 3

6 0 0 0 4

7 0 1 1 0

8 2 1 0 0

9 1 1 0 1

10 1 1 1 2

11 2 1 2 2

12 1 1 1 3

13 2 1 2 3

14 1 1 1 4

15 2 1 2 4

Figure 2.12.: An MCA(15, 4, 2, (3, 2, 3, 5)), where the rows are labeled with the ele-

ments of {1, . . . , N}, and each columns with its corresponding partition

of {1, . . . , N}, referring to Example 2.55. The (3, 2, 3, 5)-ary 2-tuple

((1, 4), (1, 3)) covered in the 12-th row is highlighted.

66

Part II.

Algorithms for Covering Arrays

67

3. An Overview of Algorithms for CA

generation

This chapter gives an overview of various algorithmic approaches for CA genera-

tion. The notorious difficulty of constructing optimal CAs has been the subject of

many algorithmic approaches. Some closely related NP-complete problems (e.g. [6],

[26],[73] and [84]) suggest that the problem of finding an optimal covering array

is a hard combinatorial optimization problem. In general, there is still no known

strategy to efficiently construct covering arrays with the smallest number of rows,

nor to determine the covering array number for specific covering array parameters.

Despite the effort expended by numerous researchers, finding optimal CAs remains

a challenging problem, as much research has been devoted to finding approximations

to CAs with the smallest number of rows via related algorithmic approaches. The

works [61, 62, 92, 15] provide surveys of such CA generation methods. To give an

exhaustive overview of all these approaches is beyond the scope of this writing.

Instead, in this chapter we will give an overview of some of the algorithmic method-

ologies used for CA generation. Amongst these methodologies are greedy heuris-

tics ([22]), metaheuristic approaches, as simulated annealing ([52]) or tabu search

([31, 32]), as well as combinations of these algorithmic approaches with theoretical

constructions.

3.1. Greedy Algorithms for CA Generation

Among the most popular strategies for CA generation, greedy methods are the most

popular one. According to [22]:“ A greedy algorithm always makes the choice that

looks best at the moment. That is, it makes a locally optimal choice in the hope

that this choice will lead to a globally optimal solution.” There are several ways to

generate CAs one step at a time. Greedy algorithms for CA generation usually start

68

from an empty array, or from a trivial CA (see Theorem 1.22 (ii)), then growing the

array vertically (row by row), horizontally (column by column) or both, one column

or row at a time.

3.1.1. Vertical Greedy Algorithms

A general algorithmic framework for greedy methods for CA construction can be

found in [7] and [9]. The most popular greedy algorithms that grow CAs row by

row are the AETG algorithm [13] and a deterministic density algorithm (DDA)

[6, 7]. Both algorithms are given as input the strength t as well as the alphabet

sizes (v1, . . . , vk) of the desired MCA(N ; t, k, (v1, . . . , vk)) and start with an initially

empty array, proceeding in steps, adding one row at a time. The AETG algorithm

produces a beforehand fixed number of rows at random, selecting the row, which

covers the most number of yet uncovered v-ary t-tuples, from these randomly chosen

ones. The algorithm stops, when there are no more v-ary t-tuples left to be covered.

For further details see [13], where also another heuristic is mentioned, where in each

step, from all vectors over (v1, . . . , vk), one is selected that covers the most v-ary

t-tuples that are not yet covered by the current array. The strategy of DDA on the

other hand is to add a row to the produced array, that is of at least average quality,

in terms of covering yet uncovered v-ary t-tuples. Again, the algorithm stops, when

there are no more v-ary t-tuples left to be covered. We will take a closer look at the

latter two strategies in Chapter 4.

3.1.2. Horizontal Greedy Algorithms

The greedy algorithms belonging to the IFS-family ([30, 48]) of algorithms construct

independent families of sets. As we will see in Chapter 5, when this methodology

is translated in terms of arrays, this means that these algorithms grow binary CAs

column by column. In that sense, the input to these algorithms is the number of rows

N and the strength t of the desired CA(N ; t, k, 2). Additionally some restrictions on

the number of appearing binary i-tuples for i ≤ t have to be imposed. The algorithm

starts with a randomly selected binary column vector of length N , with bN/2c 1-

entries. In each step of the algorithm these restrictions are used to determine which

columns can be used to grow the array at hand, ensuring that the array stays a CA

of strength t. The algorithm stops, when there is no more column that can be added

69

to the generated array, so that it maintains a CA of strength t.

3.1.3. Two Dimensional Growth

Algorithms belonging to the IPO-family [66, 67] of algorithms, grow CAs in two

dimensions. The input to these algorithms is the desired strength t as well as

the alphabet sizes (v1, . . . , vk) underlying the columns of the desired MCA. Some

algorithms optionally can also handle constraints, such as forbidding specific v-ary

t-tuples to be covered by the array. The method common to these algorithms is to

start with a t × (
∏t

i=1 vi) array of all vectors over (v1, . . . , vt). From there on the

algorithms proceed in two phases, alternating each other, the horizontal extension

(adding a column) and the vertical extension (adding rows), until the desired CA

with k columns over (v1, . . . , vk) has been constructed. Thereby it is ensured that

the result of the vertical extension phase is always a CA. The IPOG algorithm can be

described informally as follows. In the horizontal extension step an initially empty

column is added to the current array A, which is a CA, say with i columns. For

each row of A a value for the (i + 1)-st column is selected, such that the number

of newly covered (v1, . . . , vi, vi+1)-ary t-tuples is maximal under all possible values

that can be selected for this position.

In case all (v1, . . . , vi, vi+1)-ary t-tuples can be covered in this way, there is no vertical

extension phase, and the algorithm proceeds by adding the next column to the array.

Otherwise the remaining uncovered (v1, . . . , vi, vi+1)-ary t-tuples have to be covered,

where for each such tuple τ the algorithm tries to find a row of A, where unspecified

values can be set such that τ is covered by this row. If no such row exists, a new

row that covers τ and which is unspecified in other positions, is added to A.

This procedure is repeated until all (v1, . . . , vi, vi+1)-ary t-tuples are covered, hence

the current array is a CA(N ; t, i+ 1, (v1, . . . , vi, vi+1)) with some unspecified values,

representing don’t care values. The algorithm enters again the horizontal extension

phase, unless k columns are already reached.

As the first i columns of the generated array always constitute a CA(N ; t, i, (v1, . . . , vi))

when adding the i + 1st column, the only (v1, . . . , vi, vi+1)-ary t-tuples of interest

in these steps are those involving the position i + 1. Such tuples correspond to

selections of t columns, involving the newly added i+ 1st column.

Algorithmic Procedure 3 (IPOG). To construct an MCA(N ; t, k, (v1, . . . , vk)), on

input t, k, (v1, . . . , vk), proceed as follows:

70

Step 1 : Initialize an array having as rows all vectors of
∏t

i=1[vi].

Step 2 : While the number i of columns of A is less than k, repeat steps 3 to 4.

Step 3 : Extend A with a column having alphabet size vi+1, with initially unspecified

entries.

Step 4 : As long as uncovered (v1, . . . , vi, vi+1)-ary t-tuples remain, iterate over the rows

of A, specifying the unspecified values of the i+1st column such that each row

covers the maximal number of the yet uncovered (v1, . . . , vi, vi+1)-ary t-tuples.

Step 5 : Every such uncovered (v1, . . . , vi, vi+1)-ary t-tuple τ is now covered by either

(a) specifing unspecified values of A such that τ gets covered by a row, or

(b) in case there does not exist such a row, a new row that covers τ and is

unspecified in the other positions, is added to A.

Step 6 : Once A has k columns, return A.

3.2. Metaheuristic Methods

Other than greedy heuristics, a number of works use metaheuristics to design algo-

rithms for CA construction, as [15, 93], using simulated annealing, the work in [15],

using hill climbing and [75], using tabu search. Before we briefly summarize these

methodologies, we introduce the necessary terminologies to do so.

Simulated annealing, hill climbing and tabu search are closely related search tech-

niques, as all of them rely on a set of feasible solutions Σ and certain costs c(S)

associated to each S ∈ Σ, to specify an optimization problem. Then, an optimal

solution to the problem corresponds to a feasible solution S with minimal (or max-

imal) cost c(S). With regard to CAs a feasible solution could be an array over the

desired alphabet, and the cost of an array could be the number of uncovered tuples,

as used for example in [15, 93]. Then an array of cost zero is a CA. For each solution

S ∈ Σ a set of transitions TS is defined, where each such transition transforms the

current solution to another feasible solution. The set of feasible solutions that can

be reached from S via transitions of TS is called the neighborhood N(S) of S. Again,

for CAs, such transitions could be modifying single entries of an array, see [15, 93].

71

In the following we describe how the mentioned metaheuristics can be applied for

the search of a CA(N ; t, k, v), although they can also be applied for the search for

MCA(N ; t, k, (v1, . . . , vk)), [15].

Hill Climbing

For the hill climbing approach presented in [15], initially a randomly generated fea-

sible solution is chosen, in this case a random N×k array over [v]. From the current

feasible solution S a random transition is performed to obtain a feasible solution S ′.

In case of c(S ′) ≤ c(S), S ′ is accepted as the new current feasible solution, and is

rejected otherwise. This enables the algorithm to randomly traverse Σ, decreasing

the cost of the solution at hand. To prevent the algorithm from getting stuck in

local minima, an upper bound on the number of randomly selected transitions from

the current solution S can be used, which when reached, the algorithm aborts and

returns the current feasible solution S. Note that, with a cost function as described

above, S is a CA, if and only if c(S) = 0. The whole process can be iterated, each

time starting with a random initial feasible solution, to obtain several random walks

through Σ, trying to increase the chances of finding a CA.

Simulated Annealing

The approaches based on simulated annealing proposed in [15, 93], both also start

from randomly generated feasible solutions S, i.e. a randomly generated array over

the appropriate alphabet. As for the previously described hill climbing approach, in

each step a neighbor S ′ ∈ N(S) is computed, via selecting a random transition from

TS. In case the cost c(S ′) is lower or equal to the cost c(S), S ′ is accepted as current

feasible solution. To avoid that the algorithm from getting stuck in local minima,

in the case of c(S ′) > c(S), S ′ might still be accepted as current feasible solution,

but only with a certain probability, which decreases over time. As described in [15],

this probability can be computed via exp(−(c(S ′) − c(S))Ti/K, where Ti is called

the temperature of the system in iteration i and K is a constant. This temperature

is decreased in each iteration Ti+1 := Tiα for a given α being part of the input and

satisfying 0 < α < 1. After an appropriate stopping criterion is met, e.g. c(S) = 0,

the number of iterations bypassed a beforehand given bound or the temperature

reaches a given value Tf , the current solution is returned as an approximation to

the solution to the given problem. Again, the whole process can be iterated to

72

increase the chance of finding a solution to the problem.

Tabu Search

The work in [75] uses an algorithm based on tabu search for computing covering

arrays. The algorithm starts also by constructing a random N × k array S over [v].

In each step of the algorithm a (v)ki=1-ary t-tuple that is not covered by the rows

of S is selected at random. Next it checks which rows of S require only the change

of a single entry to cover the (v)ki=1-ary t-tuple at hand. Each of these changes

correspond to a transition, and the resulting arrays of these changes constitute the

neighborhood N(S) of S. The costs of the neighbors S ′ ∈ N(S), in this case the

number of uncovered (v)ki=1-ary t-tuples, is computed, and a neighbor of minimal

cost is selected, in case this move is not a tabu. To prevent the algorithm from

getting stuck in local minima, a tabu list of an a priori specified length T (in [75]

typically 1 ≤ T ≤ 10) is maintained. The tabu list prevents the algorithm to make

any transitions that would change any of the T latest modified entries of the array,

which enables the algorithm to escape from local minima. In case that N(S) = ∅ for

the current solution S, i.e. more than a single entry in the array needs to be changed

to cover the (v)ki=1-ary t-tuple at hand, on each row of S is selected at random and

modified so that the tuple is covered.

Finally it is worthwhile to mention that all of the previously described algorithms

depend on the input of N , the number of rows of the desired CA(N ; t, k, v). This

means that for values N < CAN(t, k, v), these algorithms are doomed to fail, as for

such N there exists no CA(N ; t, k, v). On the other hand, if the input N is chosen

to large, a potentially returned CA(N ; t, k, v) might have much more rows than an

optimal CA for (t, k, v). The problem is of course that CAN(t, k, v) is only known

for some special cases as discussed in Part I of this thesis (Chapter 2). We hence,

do not know a priori for which values of N there even exists a CA(N ; t, k, v). In

[15] upper and lower bounds for N are used to apply binary search in the created

interval, to obtain values for the input of N to start an algorithm based on hill

climbing. This method could also be applied to the described algorithms, based on

simulated annealing and tabu search. As an upper bound the result of Corollary

1.28 could be used, and vt as a lower bound, when searching for a CA(N ; t, k, v).

Another limitation of the approaches described above are computational resources

such as time and memory. To extend the boundaries of the usability of metaheuristic

73

approaches, one way is to combine them with theoretical constructions for CAs,

yielding hybrid methods, as we briefly picture in the next section.

3.3. Hybrid Methods

Due to the computational difficulties arising with the construction of optimal CAs,

the metaheuristic methods previously described degrade in speed as the problem

size increases and hence only work in a reasonable amount of time up to certain

sizes of CA parameters (i.e. strength, number of columns and alphabet sizes). For

constructing larger arrays, there are some approaches that combine combinatorial

constructions, in this case plug-in constructions comparable to the one used in The-

orem 2.40, with computational search. For example the authors of [16] successfully

use recursive combinatorial constructions, such as plug-in constructions for CAs, in

combination with computational search based on simulated annealing. While bene-

fiting from the generality of heuristic search, the combinatorial constructions enable

the generation of CAs for higher values of t, k or v.

3.4. Exact Approaches

Finally it is worthwhile to mention that there exists some literature on applying

exact methods for optimal CA generation, such as [38, 88, 96, 97], using constraint

programming, integer programming, backtracking or SAT approaches. Although

these methods are capable of producing optimal CAs, they suffer from the problem

of combinatorial explosion for larger CA parameters, and hence find these solutions

only for moderate problem sizes, i.e. CA parameters.

74

4. CAs as Cover Problems

So far, in this work we treated CAs as discrete structures appearing in combinatorial

design theory, just as they are introduced in literature most frequently, i.e. being

arrays with certain coverage properties. In this chapter, largely following the work

in [47], we will regard CAs from a different point of view, namely under the purview

of set covers (SCs). This and related approaches are not new and have already been

used implicitly or explicitly by some authors (e.g. [35, 96]).

We proceed by first specifying the necessary notions, structures and the interplay

between them, before providing mappings that translate CA parameters, to an in-

stance of a set cover problem. As a solution to the latter can be transformed to a

CA, by virtue of the appropriate backwards translation, a connection between CAs

and SCs is established. Thereafter we use this connection to generalize the former

mappings for generalizations of CAs, such as variable strength covering arrays and

weighted budgeted covering arrays in subsections 4.2.2 and 4.2.3. The connection

between these structures also enables us to import certain bounds for the quality

of SC heuristics, to attain upper bounds on the number of rows in the case of CAs

and a lower bound on the weight of covered tuples in the case of weighted budgeted

covering arrays. Finally we will compare two greedy methods for CA generation, one

having an analogue for SCs and the other one being specialized for CA generation.

4.1. Set Covers and Integer Programming

Next we define set covers and integer programs, before we describe the close relation

between these two notions.

4.1.1. Set Covers

Set covers have been heavily researched by both, mathematicians and computer

scientists in the past. Consequently they are subject to many works in these fields.

75

The next definition follows the one given in [49].

Definition 4.1 (Set Cover (SC)). A set cover (SC) of a finite set U is a set S of

nonempty subsets of U whose union is U . In this context, we call U the universe

and refer to the elements of S as blocks. A SC consisting of pairwise disjoint blocks

is called an exact cover, while an SC consisting only of blocks of cardinality d is

called a d-set cover.

The typical problems that arise with SCs are the following:

Problem 4.2 (Minimal Set Cover (MSC)). Given a finite set U and a set cover S
of U , i.e.

⋃
S = U , find one subset C of S of minimal cardinality such that

⋃
C = U .

(U,S) is also called the input to the MSC problem.

Problem 4.3 (Weighted Minimal Set Cover (Weighted MSC)). Given a finite set

U , a set cover S = {S1, . . . , Sr} of U and a cost vector c = (cS1 , . . . , cSr), find one

subset C of S with minimal cost such that
⋃
C = U , where the cost of a C ⊆ S is

defined as cost(C) :=
∑

S∈C cS. (U,S, c) is also called the input to the weighted MSC

problem.

4.1.2. Integer Programming

The following definition is taken from [74].

Definition 4.4. An integer programming problem1 is the problem of determining

max
x∈Nr
{cx|Ax ≤ b}, (4.1)

where c ∈ Z1×r is called the cost vector, A ∈ Zn×r and b ∈ Zn×1. the triple (c, A, b)

is called the input to the IP problem.

Since minx∈Nr{cx|Ax ≥ b} = −maxx∈Nr{(−c)x|(−A)x ≤ (−b)}, if one of them

exist, we are going to use the equivalent formulation of an integer programming

problem on the left hand side. Moreover we will only need to consider the following

special case of integer programming problems.

1Note that in literature, this is also known as linear (pure) integer program. As this thesis focuses

exclusively on this specific kind of integer programs, we elect to use this shorter, albeit possibly

nonstandard terminology.

76

Problem 4.5 (Integer Programming (IP)). A 0 − 1 integer programming problem

(IP problem) is the problem of finding

min
x∈{0,1}r×1

{cx|Ax ≥ b}, (4.2)

where c ∈ Z1×r, is called the cost vector, A ∈ {0, 1}n×r and b ∈ {0, 1}n×1. (c, A, b)

is also called the input to the IP problem.

4.1.3. Set Covers and Integer Programming

As subsets of a finite set with n elements can be identified with binary vectors

of length n, there is a close connection between MSC problems and IP problems.

We will briefly make this connection explicit and introduce some notations in the

process.

For a finite set X = {x1, . . . , xn} of n elements, each subset A ⊆ X can be mapped

to its indicator vector indX(A) ∈ {0, 1}n. Conversely, each x ∈ {0, 1}n can be

mapped to its support suppn(x) ⊆ {x1, . . . , xn}. As indX ◦ supp|X| = id{0,1}|X| and

supp|X| ◦ indX = idP(X), the two functions:

indX : P(X) → {0, 1}|X|

A 7→ ind(A) := (a1, . . . , an) with ai =

1, xi ∈ A

0, xi /∈ A
,

supp|X| : {0, 1}|X| → P(X)

(a1, . . . , an) 7→ A = {xi|ai = 1}.

are inverse to each other. We can use these functions to map the input (U,S, c) of

an arbitrary weighted MSC problem to the input (c, A, b) of a 0 − 1 IP problem.

Suppose U = {u1, . . . , un}, S = (S1, . . . , Sr) and c are given. We can define a

matrix A via the horizontal concatenation of the column-wise indicator vectors of

the blocks of S, i.e. A := (ind(S1), . . . , ind(Sr)) ∈ {0, 1}n×r. Let further denote

b := 1 := {1}n×1 the all-one vector of appropriate dimension. Now any solution

x to the IP problem minx∈{0,1}r×1{cx|Ax ≥ 1} can be mapped to a solution of the

original weighted MSC problem via

supp : {0, 1}r → P(S)

x 7→ supp(x) =: C.

77

That C is indeed a SC of U is ensured by Ax ≥ 1 and Si ∈ C ⇔ xi = 1, for all

i ∈ {1, . . . , r}.
For the other direction, any input (c, A, b) to a 0−1 IP problem minx∈{0,1}r×1{cx|Ax ≥
1}, where A = (a1, . . . , ar) ∈ {0, 1}n×r, can be mapped to a weighted MSC with the

input (U,S, c), where the universe U consists of n elements, and the set of blocks

S = {supp(a1), . . . , supp(ar)} consists of the supports of the columns of A. Then

a solution C to the weighted MSC (U,S, c) can be mapped to a solution to the IP

problem via ind : P(S) → {0, 1}r : C 7→ ind(C), as Ax ≥ 1 is equivalent to the

condition that the whole universe U is covered by C, and the minimality of the cost

of C over all subsets of S is equivalent to the minimality of cx over all x ∈ {0, 1}r.

Remark 4.6. We say that a SC problem and an IP problem are corresponding, if one

can be mapped to the respective other via the function ind, respectively supp, as

just described.

In fact the just described connection between these two problems is so natural that

the weighted MSC problem is often defined as its corresponding 0− 1 IP problem,

as, for example, in [3]:

Problem 4.7 (Weighted MSC via IP). The weighted minimal set cover problem is

the problem of determining

min
x∈{0,1}r×1

{cx|Ax ≥ 1}, (4.3)

where A ∈ {0, 1}n×r, 1 = {1}n×1 and c ∈ Z1×r.

4.2. Formulating Covering Arrays as Set Covers

In subsequent sections we consider various problem statements regarding MCAs and

other generalizations of CAs. In cases where there is no chance for ambiguity, we

refer to these problems as CA problems, although they are not exclusively stated

for CAs in the strict sense of Definition 1.2, but also for generalizations of CAs.

Similarly, we will refer with SC problems to problems regarding SCs.

4.2.1. Mapping MCAs to SCs

To the best of the author’s knowledge, a formulation of the optimal CA problem in

terms of SCs, was first mentioned for CAs in [88] as part of a private conversation

78

with D. Applegate. Later in [96] a more thorough treatment of the topic was given,

as the authors also investigate the feasibility of using an IP approach to solve the

optimal MCA generation problem.

In the following we will translate the OMCA Problem (c.f. Problem 1.16), to an

MSC problem via an algorithmic construction. For this purpose we require two

more notations, extending the notion of v-ary t-tuples (recall Definition 1.17).

Definition 4.8. For positive integers t, k and v1, . . . , vk with t ≤ k and v =

(v1, . . . , vk), we denote the set of all (v1, . . . , vk)-ary t-tuples with Tv,t. We fur-

ther denote with ϕv,t the function which maps each w ∈
∏k

i=1{0, . . . , vi − 1} to the

set of
(
k
t

)
(v1, . . . , vk)-ary t-tuples that are covered by w (recall Definition 1.18):

ϕv,t :
k∏
i=1

{0, . . . , vi − 1} → P(Tv,t)

w 7→ ϕv,t(w) := {τ |w covers τ ∈ Tv,t}.

Remark 4.9. Note that each function ϕv,t is injective on its respective domain, as

for any two vectors w1 6= w2 ∈
∏k

i=1{0, . . . , vi − 1} there exists at least one position

p where they differ, and hence the v-ary t-tuples that involve position p and that

are covered by w1 differ from those covered by w2 involving position p.

We refer to Example 4.10 where ϕ(3,2,2),2 is applied to all (3, 2, 2)-ary 2-tuples, for

an illustrative example of this concept.

We are now able to formulate the translations of CA problems to SC problems. We

will first elaborate on the connection between the OMCA problem and the MSC

problem. As input for an OMCA problem we require the number of columns k, the

alphabet sizes (v1, . . . , vk), and the desired strength t ≤ k. In Algorithm 1 this input

is translated to a universe U and a set of blocks S. The pair (U,S) can then serve

as input to an MSC problem. In a second step, we show how such a minimal SC

can subsequently be mapped to an optimal MCA.

Algorithm 1, which generalizes the algorithm given in [63], transforms MCA pa-

rameters (t, k, (v1, . . . , vk)) – the input to the OMCA problem – to a SC problem

instance having as input (U,S) and can be informally described as follows. As uni-

verse U , we consider the set Tv,t of all (v1, . . . , vk)-ary t-tuples, which have to be

covered by the rows of the MCA to be constructed. Via the function ϕv,t, every

vector w over (v1, . . . , vk), which could appear as a row of the MCA, is interpreted

79

as a block consisting of exactly those (v1, . . . , vk)-ary t-tuples that are covered by w.

Thus all blocks, generated this way, constitute the set of blocks S.

Algorithm 1 MCAP2SCP

1: INPUT: t, k,v = (v1, . . . , vk)

Require: 0 ≤ t ≤ k

2: U ← Tv,t (the set of all v-ary t-tuples) . Compute the universe

3: S ← ∅
4: for w ∈

∏k
i=1 {0, . . . , vi − 1} do . Compute set of blocks

5: S ← S ∪ ϕv,t(w)

6: end for

7: return U,S

Algorithm 2 SC2MCA

1: INPUT: C . Set Cover

Require: ∃ t, (v1, . . . , vk) s.t. ∀B ∈ C : B ∈ Im(ϕv,t)

2: A← ∅, w ← 0

3: for all B ∈ C do

4: w ← ϕ−1t,v(B)

5: A← (A;w) . Append row w to A

6: end for

7: MCA← A . MCA is a mixed-level covering array

8: return MCA

Now let us assume we are given a minimal set cover C of size N of the output (U,S) of

MCAP2SCP (Algorithm 1). This set cover can be mapped back to an MCA(N ; t, k,

(v1, . . . , vk)), by applying ϕ−1v,t to the blocks in C ⊆ Im(ϕv,t). The rows obtained, can

be arranged in any order, forming an array consisting of all rows that correspond

to a block in C. Note that for each block B ∈ S, where S is part of the output of

MCAP2SCP, there is a unique corresponding row w = (w1, . . . , wk) which covers

exactly those v-ary t-tuples that are elements of B (see Remark 4.9). As the family

C is a set cover of Tv,t by assumption, and a block of C covers a v-ary t-tuple if and

only if the corresponding row covers the v-ary t-tuple, it follows that the constructed

array indeed constitutes an MCA(N ; t, k, (v1, . . . , vk)). See SC2MCA (Algorithm 2)

for the inverse translation. Finally, the minimality (with respect to cardinality)

80

of the computed sub-family C guarantees that the corresponding MCA is optimal,

i.e. the corresponding MCA has MCAN(t, k, (v1, . . . , vk)) rows: Assume there was

an MCA having less rows. Then we could map these rows to their corresponding

blocks, which then constitute a set cover if U of smaller cardinality – a contradiction

to the minimality of the cardinality of C.
Note that the size of the universe |U | =

(
k
t

)
vt is exponential in t and the number of

blocks |S| =
∏k

i=1 v1 ≥ 2k is exponential in k, which may make the search for optimal

solutions infeasible in practice. Instead of an MSC problem solver, approximations

as described in [12, 36] can be applied to the SC problem to obtain upper bounds

for MCAN(t, k, (v1, . . . , vk)). We will discuss such approaches in Section 4.3.

We demonstrate this connection between optimal CAs and minimal SCs with the

following example.

Example 4.10. We map the problem of computing an optimal MCA(N ; 2, 3, (3, 2, 2))

to a minimal set cover problem. The universe U consists of all (3, 2, 2)-ary 2-tuples.

For demonstration purposes we use the, previously introduced, informal vector no-

tation for (3, 2, 2)-ary 2-tuples, e.g. we denote ((2, 1), (1, 3)) as (2,−, 1) where “−”

represents an undefined entry. In particular, using this notation we obtain the uni-

verse

U = {(0, 0,−), (0, 1,−), (1, 0,−), (1, 1,−), (2, 0,−), (2, 1,−),

(0,−, 0), (0,−, 1), (1,−, 0), (1,−, 1), (2,−, 0), (2,−, 1),

(−, 0, 0), (−, 0, 1), (−, 1, 0), (−, 1, 1)}

Each vector over (3, 2, 2), that could appear as a row of an MCA(N ; 2, 3, 2), is

mapped via ϕ(3,2,2),2 to the set of (3, 2, 2)-ary 2-tuple it covers (see Figure 4.1).

Thus we obtain the set of blocks S, given in Figure 4.2, which contains the minimal

set cover C. By applying ϕ−1(3,2,2),2 to these sets of (3, 2, 2)-ary 2-tuples, C corresponds

to the covering array A.

81

(0, 0, 0) ↔ {(0, 0,−), (0,−, 0), (−, 0, 0,)},

(0, 0, 1) ↔ {(0, 0,−), (0,−, 1), (−, 0, 1,)},

(0, 1, 0) ↔ {(0, 1,−), (0,−, 0), (−, 1, 0,)},

(0, 1, 1) ↔ {(0, 1,−), (0,−, 1), (−, 1, 1,)},

(1, 0, 0) ↔ {(1, 0,−), (1,−, 0), (−, 0, 0,)},

(1, 0, 1) ↔ {(1, 0,−), (1,−, 1), (−, 0, 1,)},

(1, 1, 0) ↔ {(1, 1,−), (1,−, 0), (−, 1, 0,)},

(1, 1, 1) ↔ {(1, 1,−), (1,−, 1), (−, 1, 1,)}.

(2, 0, 0) ↔ {(2, 0,−), (2,−, 0), (−, 0, 0,)}.

(2, 0, 1) ↔ {(2, 0,−), (2,−, 1), (−, 0, 1,)}.

(2, 1, 0) ↔ {(2, 1,−), (2,−, 0), (−, 1, 0,)}.

(2, 1, 1) ↔ {(2, 1,−), (2,−, 1), (−, 1, 1,)}

Figure 4.1.: All vectors over (3, 2, 2) mapped to their corresponding sets of (3, 2, 2)-

ary 2-tuples, according to ϕ(3,2,2),2.

S = {{(0, 0,−), (0,−, 0), (−, 0, 0,)},{(0, 0,−), (0,−, 1), (−, 0, 1,)},

{(0, 1,−), (0,−, 0), (−, 1, 0,)},{(0, 1,−), (0,−, 1), (−, 1, 1,)},

{(1, 0,−), (1,−, 0), (−, 0, 0,)},{(1, 0,−), (1,−, 1), (−, 0, 1,)},

{(1, 1,−), (1,−, 0), (−, 1, 0,)},{(1, 1,−), (1,−, 1), (−, 1, 1,)},

{(2, 0,−), (2,−, 0), (−, 0, 0,)},{(2, 0,−), (2,−, 1), (−, 0, 1,)},

{(2, 1,−), (2,−, 0), (−, 1, 0,)},{(2, 1,−), (2,−, 1), (−, 1, 1,)}}.

C = {{(0, 0,−), (0,−, 1), (−, 0, 1)},{(0, 1,−), (0,−, 0), (−, 1, 0)},

{(1, 0,−), (1,−, 0), (−, 0, 0)},{(1, 1,−), (1,−, 1), (−, 1, 1)},

{(2, 0,−), (2,−, 0), (−, 0, 0)},{(2, 1,−), (2,−, 1), (−, 1, 1)}}

A =

0 0 1

0 1 0

1 0 0

1 1 1

2 0 0

2 1 1

Figure 4.2.: Set of blocks S, minimal set cover C of the universe U and the corre-

sponding optimal MCA A, referring to Example 4.10.

Example 4.11. To visualize the interplay between CAs and set covers we give

another example. Consider the CA(5; 2, 4, 2) given on the left hand side of Figure

4.3, and the matrix E = (ei,j) on the right hand side of Figure 4.3. Each posi-

tion ei,j of the matrix E corresponds to exactly one (2, 2, 2, 2)-ary 2-tuple (i, j) =

((x1, x2), (p1, p2)), where the row index i equals the tuple (x1, x2) of values, and the

column index j = (p1, p2) represents the positions. The coloring of the entry in posi-

tion ei,j shows which row of the CA covers the respective (4, 2)-tuple, such that the

82

array on the right hand side represents the universe, with the cells as its elements.

Cells of the same color are covered by the same block. Each block of the cover has

again its own color and corresponds to the row of the same color of the CA on the

left hand side of Figure 4.3.

c1 c2 c3 c4

0 0 0 0

0 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1 (1,1)

(1,0)

(0,1)

(0,0)

(c1,c2) (c1,c3) (c1,c4) (c2,c3) (c2,c4) (c3,c4)

Figure 4.3.: Visualization of a CA as a SC. A colored row of the CA corresponds to

a block, which covers those elements (tuples), whose entry in the matrix

on the right hand side are of the same color.

Remark 4.12. Considering the general case, the universe and the set of blocks have

a special structure, which depends on the MCA parameters they are generated

from: |U | =
∑

I⊆{1,...,k}
|I|=t

∏
j∈I vj and |S| =

∏k
i=1 vi. From the fact that each w ∈∏k

i=1{0, . . . , vi − 1} covers exactly
(
k
t

)
(v1, . . . , vk)-ary t-tuples, it follows that each

block B ∈ S (which is part of the output of MCAP2SCP) has the same cardinality.

It is therefore possible to formulate each OMCA generation problem as an instance

of the following specialized SC problem.

Problem 4.13 (Minimal d-Set Cover). Given a universe U and a set of blocks S,

where each block has cardinality d, find a subset C of S, of minimal cardinality, such

that C is a d-set cover of U .

As will become apparent in the sequel, most problems considered in this work also

translate to d-set covers for an appropriate d.

Remark. The problem of finding an OA of index unity, interpreted as a CA(vt; t, k, v),

can be transformed to an instance of an exact d-set cover via MCAP2SCP.

83

Having defined the terminology and enhanced by new terms, it is simple to review

the IP formulations of the problems given in [88] and [96], which coincide with

the OCA problem and OMCA problem, respectively. In fact we can identify them

with the 0 − 1 IP problem that is corresponding (c.f. Remark 4.6) to the output

of MCAP2SCP. Following the notation of [88], Applegate’s integer programming

formulation for finding a CA(N ; t, n, q), with a minimal number of rows, is given as

follows. Let V denote the set of all qn vectors that could appear as a row in the

array to be constructed, S denote the set of all
(
n
t

)
t-tuples of coordinates, and P be

the set of all qt q-ary vectors of length t. A covering array D ⊆ V of strength t can

then be specified by setting xv = 1 if v ∈ D and xv = 0 if v /∈ D for al v ∈ V . Then,

the problem of finding an optimal CA is equivalent to the following 0 − 1 integer

program: Choose xv ∈ {0, 1} for v ∈ V , minimizing k =
∑

v∈V xv, subject to the

constraints ∑
xv ≥ 1, for all s ∈ S, p ∈ P, (4.4)

where the sum in (4.4) is over all v ∈ V such that the projection of v onto s is p.

Let (U,S) be the output of MCAP2SCP(t, n,v = (q, . . . , q)), with S = {S1, . . . , S(n
t)
},

then Applegate’s IP formulation coincides with the 0− 1 IP problem corresponding

to (U,S) (recall Remark 4.6),

min{x · 1|Ax ≥ 1, x ∈ {0, 1}qn×1}, (4.5)

where A = (ind(S1), . . . , ind(S(n
t)

)) is the matrix of column-wise indicator vectors

of the blocks in S.

Similar to Applegates formulation of the OCA problem, the 0 − 1 IP problem for-

mulation of the OMCA problem, as given in [96], can be interpreted by translating

the output of MCAP2SCP, to its corresponding 0− 1 IP problem.

4.2.2. Mapping Variable Strength CAs to SCs

In this subsection we first introduce a further generalization of CAs, not only con-

sidering different alphabet sizes per column as for MCAs, but also considering a

generalized concept of coverage, leading to the notion of variable strength covering

arrays (VCAs). Next, we introduce new mappings for VCAs to set covers that can

be viewed as a natural extension of the mappings in subsection 4.2.1.

84

VCAs have been introduced in literature in non-uniform ways, see for example [17,

64, 80]. They can be regarded a generalization of MCAs, since not every t selection

of columns, for a fixed t, has to fulfill specific cover properties. Instead the sets of

columns, which have to satisfy the coverage properties, can be specified freely. A

property that makes VCAs more adoptable to applications, e.g. in software testing

[54], compared to CAs and MCAs. The following definition slightly deviated from

the one given in [64], as we use a different nomenclature and consider mixed alphabet

sizes.

Definition 4.14. For I ⊆ P({1, . . . , k}), a variable strength covering array (VCA)

is an N × k array (c1, . . . , ck), denoted as VCA(N ; I , k, (v1, . . . , vk)), with the fol-

lowing properties:

(i) ∀j ∈ {1, . . . , k} the values in column the j-th column cj arise from the set

{0, . . . , vj − 1}.

(ii) ∀I ∈ I the array comprised by the columns (ci)i∈I has the property that

every |I|-tuple in
∏

i∈I [vi] appears at least once as a row.

Remark 4.15. Using the same notation as in Definition 1.10, to avoid dealing with

trivial cases and exceptions, throughout this work, we only consider VCAs where

2 ≤ vi ∀i ∈ {1, . . . , k} and
⋃

I = {1, . . . , k}. As I represents the set of all column

selections, where all respective tuples need to be covered, the latter condition means

that every column of a VCA appears in at least one such selection.

As was the case for MCAs, we define in a similar manner the following for VCAs.

Definition 4.16. The smallest N for which an VCA(N ; I , k, (v1, . . . , vk)) exists,

is denoted as VCAN(I , k, (v1, . . . , vk)) and is called the variable strength covering

array number for (I , k, (v1, . . . , vk)). VCAs achieving this bound are called optimal.

Again, as for CAs and MCAs, VCAs with a small number of rows are of special

interest.

Problem 4.17 (Optimal VCA (OVCA)). Given parameters k and (v1, . . . , vk) and a

set I ⊆ P({1, . . . , k}), find a VCA(N ; I , k, (v1, . . . , vk)) with N = VCAN(I , k, v1,

. . . , vk).

To be able to translate problems related to VCAs to SC problems, we also need to

generalize the notion of v-ary t-tuples to a notation that allows tuples of different

sizes.

85

Definition 4.18. For positive integers v1, . . . , vk and a set I ⊆ P({1, . . . , k}) we

define a (v1, . . . , vk)-ary I -tuple as a pair ((xi)i∈I , I) with the property that I ∈ I

and xi ∈ {0, . . . , vi − 1}, ∀i ∈ I. For the sake of more compact writing we also use

the notation v-ary I -tuple for a vector v = (v1, . . . , vk).

Further notions are generalized below to apply also to VCAs.

Definition 4.19. For a family of positive integers v = (v1, . . . , vk) and a set I ⊆
P({1, . . . , k}) we say that a vector w ∈

∏k
i=1 {0, . . . , vi − 1} covers a (v1, . . . , vk)-

ary I -tuple ((xi)i∈I , I), if the entries of w in positions i equal xi for all i ∈ I. We

say an array over (v1, . . . , vk) covers a (v1, . . . , vk)-ary I -tuple, if one of the rows

of the array covers it. We further denote with ϕv,I the function that maps each

w ∈
∏k

i=1 {0, . . . , vi − 1}, to the set of |I | (v1, . . . , vk)-ary I -tuple that are covered

by w. With Tv,I we denote the set of all (v1, . . . , vk)-ary I -tuples.

ϕv,I :
k∏
i=1

{0, . . . , vi − 1} → P(Tv,I)

w 7→ ϕv,I (w) := {τ |w covers τ ∈ Tv,I }

Remark 4.20. Analogous to Remark 4.9 each function ϕv,I is injective on its respec-

tive domain. This can be seen, as any two vectors w1 6= w2 over v differ in at least

one coordinate j, and hence any (v1, . . . , vk)-ary I -tuple ((xi)i∈I , I) with j ∈ I
covered by w1 can not be covered by w2.

⋃
I = {1, . . . , k} ensures the existence of

at least one I ∈ I with j ∈ I.

Algorithm 3 transforms VCA parameters to an input to the SC problem and Algo-

rithm 4 transforms a SC for the output of Algorithm 3 to a VCA.

Algorithm 3 VCAP2SCP

1: INPUT: k,v = (v1, . . . , vk),I

2: U ← Tv,I (set of all v-ary I -tuples)

3: S ← ∅
4: for w ∈

∏k
i=1 {0, . . . , vi − 1} do . Compute set of blocks

5: S ← S ∪ ϕv,I (w)

6: end for

7: return U,S

86

Algorithm 4 SC2VCA

1: INPUT: C . Set Cover

Require: ∃I , (v1, . . . , vk) s.t. ∀B ∈ C : B ∈ Im(ϕv,I)

2: A← ∅, w ← 0

3: for all B ∈ C do

4: w ← ϕ−1v,I (B)

5: A← (A;w) . Append row w to A

6: end for

7: V CA← A . V CA is a variable strength covering array

8: return V CA

Example 4.21. We map the problem of computing an optimal VCA(N ; I , 4, (2, 2, 2, 2))

for I = {{1, 2, 3}, {1, 4}, {2, 4}} to a minimal set cover problem. The universe U

consists of all (2, 2, 2, 2)-ary I -tuples. For demonstration purposes we again use an

informal vector notation for (2, 2, 2, 2)-ary I -tuples, e.g. we denote ((0, 0, 1), (1, 2, 3))

as (0, 0, 1,−) where “−” represents an undefined entry. Using this notation, we ob-

tain the universe U :

U = {(0, 0, 0,−), (0, 0, 1,−), (0, 1, 0,−), (0, 1, 1,−),

(1, 0, 0,−), (1, 0, 1,−), (1, 1, 0,−), (1, 1, 1,−),

(0,−,−, 0), (0,−,−, 1), (1,−,−, 0), (1,−,−, 1),

(−, 0,−, 0), (−, 0,−, 1), (−, 1,−, 0), (−, 1,−, 1)}.

Each (2, 2, 2, 2)-ary I -tuple that could appear as a row of a VCA(N ; I , 4, (2, 2, 2, 2))

is identified with the set of (2, 2, 2, 2)-ary I -tuples it covers:

(0, 0, 0, 0) ↔ {(0, 0, 0,−), (0,−,−, 0), (−, 0,−, 0)},

(0, 0, 0, 1) ↔ {(0, 0, 0,−), (0,−,−, 1), (−, 0,−, 1)},
...

(1, 1, 1, 0) ↔ {(1, 1, 1,−), (1,−,−, 0), (−, 1,−, 0)},

(1, 1, 1, 1) ↔ {(1, 1, 1,−), (1,−,−, 1), (−, 1,−, 1)}.

We thus obtain the set of blocks S (see Figure 4.4), which contains the minimal

set cover C. Due to the identification of sets of (2, 2, 2, 2)-ary I -tuples with binary

87

vectors of length four given above, C can be translated to the VCA array A, using

SC2VCA (Algorithm 4).

S = {{(0, 0,−,−), (0,−, 0,−), (0,−,−, 0), (−, 0, 0,−), (−, 0,−, 0), (−,−, 0, 0)},

. . .

{(1, 1,−,−), (1,−, 1,−), (1,−,−, 0), (−, 1, 1,−), (−, 1,−, 0), (−,−, 1, 0)},

{(1, 1,−,−), (1,−, 1,−), (1,−,−, 1), (−, 1, 1,−), (−, 1,−, 1), (−,−, 1, 1)}}

C = {{(0, 0, 1,−), (0,−,−, 1)(−, 0,−, 1)},

{(0, 1, 0,−), (0,−,−, 0), (−, 1,−, 0)},

{(1, 0, 1,−), (1,−,−, 0), , (−, 0,−, 0)},

{(1, 1, 0,−), (1,−,−, 1), (−, 1,−, 1)},

{(0, 0, 0,−), (0,−,−, 1), (−, 0,−, 1)},

{(1, 0, 0,−), ((1,−,−, 0), (−, 0,−, 1)},

{(0, 1, 1,−), (0,−,−, 0), (−, 1,−, 0)},

{(1, 1, 1,−), (1,−,−, 1), (−, 1,−, 1)}}

A =

0 0 1 1

0 1 0 0

1 0 1 0

1 1 0 1

0 0 0 1

1 0 0 1

0 1 1 0

1 1 1 1

Figure 4.4.: Set of blocks S, a minimal set cover C of the universe U and the corre-

sponding optimal VCA A, referring to Example 4.21

4.2.3. Mapping Weighted Budgeted CAs to Budgeted SCs

In [35] the testing budget problem is formulated as the problem of constructing a B×k
array over v = (v1, . . . , vk) that covers the most v-ary t-tuples amongst all B × k
arrays over v, for given values B (the budget), k, v = (v1, . . . , vk) and a strength

t. This formulation reflects the need of practitioners, for test suites generated from

smaller arrays with good coverage properties instead of such generated from larger

arrays with complete coverage (CAs) of v-ary t-tuples.

We reflect this problem by defining the corresponding combinatorial object.

Definition 4.22 (Budgeted Covering Array). For a positive integer B, referred to

as the budget, a budgeted covering array is a B × k array BCA(B; t, k, (v1, . . . , vk))

with the properties:

(i) ∀j ∈ {1, . . . , k} the entries of the j-th column arise from the set {0, . . . , vj−1},

88

(ii) BCA(B; t, k, (v1, . . . , vk)) covers the maximum number of (v1, . . . , vk)-ary t-

tuples, i.e. there is no other B × k array that covers more (v1, . . . , vk)-ary

t-tuples than a BCA(B; t, k, (v1, . . . , vk)).

In some applications, it might be the case that certain v-ary t-tuples are more im-

portant to be covered than others. This leads to the following definition generalizing

the notion of budgeted covering arrays, by additionally assigning weights to v-ary

t-tuples.

Definition 4.23. For a positive integer B, called the budget, positive integers

v1, . . . , vk and t as well as a weight function ω : Tv,t → Q, where v = (v1, . . . , vk),

assigning a weight to each v-ary t-tuple 2, a weighted budgeted covering array

WBCA(B; t, k, (v1, . . . , vk)) is an N × k array satisfying the following criteria:

(i) N ≤ B,

(ii) ∀j ∈ {1, . . . , k} the entries of the j-th column arise from the set {0, . . . , vj−1},

(iii) WBCA(B; t, k, (v1, . . . , vk)) maximizes the sum of weights of the (v1, . . . , vk)-

ary t-tuples that are covered by its rows, where even if a certain tuple is covered

by multiple rows, its weight contributes only once to this sum.

Related structures to WBCAs have been discussed in [35, 4, 79].

Remark 4.24. Note that we do not appropriately use the notation of covering arrays,

as WBCAs are not CAs or MCAs in a strict sense, since they do not require to

cover all v-ary t-tuples. Nevertheless, WBCAs can be considered a generalization

of MCAs, as the latter appear as a special case of WBCAs, when the given budget

B ≥
∏k

i=1 vi and all appearing weights are greater or equal to zero.

A definition similar to Definition 4.23 can be found in [4], where the authors in-

troduce the notion of `-biased covering arrays. Let us briefly review this work and

relate it with the concept of WBCAs. Using the terminology introduced in this

thesis, the authors of [4] consider arrays with k columns f1, . . . , fk over an alphabet

of size v, additionally assuming that for all columns column fi (i ∈ {1, . . . , k}) and

for each of its values j ∈ {0, . . . , v − 1} uj a numerical value ti,uj ∈ [0; 1] is given.

ti,uj reflects the importance of the assignment of the value uj in column fi of a row.

In order to capture the importance of pairs, they define the importance of choosing

2In some cases we also consider given a set of weights W := ω(Tv,t).

89

ui in column fi together with uj in column fj as ti,ui · tj,uj . Then the benefit of a

row (in isolation) is defined as the sum of all importances of pairs covered by this

row. Put in the context of Definition 4.23, they assign the weight ti,ui · tj,uj to the

(v)ki=1-ary 2-tuple ((ui, uj), (fi, fj)), and the benefit of a row in isolation equals the

sum of the weights of the tuples covered by the row. The incremental benefit of

a row, with respect to a given array, is defined as the sum of all importances of

pairs that are newly covered, i.e. covered by this row and not covered by any row

of the given array. The total benefit of an array is then defined as the sum of the

incremental benefits of its rows. In other words, the total benefit of an array is the

sum of the benefits of all covered pairs, where the benefit of each pair contributes

only once to the sum, even if covered more than once. Finally an `-biased covering

array, is defined in [4] as a CA(N ; 2, k, v), where the benefit of the first ` rows is as

large as possible, i.e. there exists no other CA(N ′; 2, k, v) that has larger benefit on

the first `-rows than the first ` rows of an `-biased covering array. This definition

can be naturally generalized to CAs of higher strength as well as to MCAs.

Remark 4.25. The concepts of `-biased covering arrays and weighted budgeted cov-

ering arrays are closely related. Since a vk × k array, consisting of all v-ary vectors

of length k in any order, is always a CA(vk; 2, k, v), the first B rows of a B-biased

covering array have to have maximal benefit under all possible sets of B rows,

and therefore form a WBCA(B; 2, k, (v, . . . , v)) for budget B, where the weights of

(v)ki=1-ary 2-tuples are assigned according to their benefits. Conversely, extending

a WBCA(B; 2, k, (v, . . . , v)) for a given budget B and weights defined according to

the importance of column-value assignments, the addition of rows until all v-ary 2-

tuples are covered, always yields a B-biased covering array. This relation also holds

when we consider the generalization of `-biased covering arrays to higher strengths

and MCAs.

This observation leads to the following problem, which builds upon these structures

and naturally generalizes the testing budget problem as defined in [35].

Problem 4.26 (WBCA generation). For a positive integer B (called the budget), a

strength t, a k-tuple v = (v1, . . . , vk), and a weight function ω : Tv,t → Q, assigning

a weight to each v-ary t-tuple, the WBCA generation problem is to construct a

weighted budgeted covering array WBCA(B; t, k, (v1, . . . , vk)) for the budget B and

the weight function ω.

90

Similarly to the OMCA Problem 1.16, the latter problem can be treated in terms

of set covers. For this we need the following definition, which can be found among

other works, in [51].

Problem 4.27 (Weighted Budgeted Set Cover (WBSC)). The weighted budgeted

set cover problem3 is defined as follows: Given a universe U = {u1, u2, ..., un}, with

weights (wui)
n
i=1 associated to the elements, and a set of blocks S = {S1, S2, ..., Sm} ⊆

P(U), with costs (cSi
)mi=1 associated to the blocks, the goal is to find a collection

of blocks C ⊆ S, such that the total cost of elements in C does not exceed a given

budget B, and the total weight of elements covered by the blocks in C is maximized.

Algorithm 5 translates the input of a WBCA, with a given set of weightsW , problem

to the input of a WBSC problem with unary costs.

Algorithm 5 wbCAP2wbSCP

1: INPUT: t, k,v = (v1, . . . , vk),W
Require: t ≤ k

2: U ← Tv,t (the set of all v-ary t-tuples) . Compute the universe

3: S ← ∅
4: for w ∈

∏k
i=1{0, . . . , vi − 1} do . Compute set of blocks

5: S ← S ∪ ϕv,t(w)

6: end for

7: (cSi
)mi=1 = 1 . Assign unary costs

8: return U,W ,S, (cSi
)mi=1

Example 4.28. Similarly to previous examples we map the problem of computing

a WBCA(2; 2, 3, (3, 2, 2)) for a given budget B = 2 and and weightsW to a weighted

budgeted set cover problem applying wbCAP2wbSCP (Algorithm 5). To improve

readability, we omit the specification of the weightsW , instead we denote the weight

of a (3, 2, 2)-ary 2-tuple as an exponent of its informal vector notation. The algo-

rithm hence yields the following universe as part of its output:

U = {(0, 0,−)1, (0, 1,−)3, (1, 0,−)4, (1, 1,−)1, (2, 0,−)0, (2, 1,−)0,

(0,−, 0)2, (0,−, 1)4, (1,−, 0)2, (1,−, 1)4, (2,−, 0)0, (2,−, 1)0,

(−, 0, 0)2, (−, 0, 1)3, (−, 1, 0)1, (−, 1, 1)3}
3 In literature (e.g. [51]), Problem 4.27 is known as the Budgeted Maximum Set Cover problem.

We chose this different nomenclature to be consistent with the respective CA problems.

91

Each (3, 2, 2)-ary 3-tuple that could appear as a row of a WBCA(2; 2, 3, (3, 2, 2)), is

identified with the set of (3, 2, 2)-ary 2-tuple it covers. We denote the cumulative

weight of the tuples covered by a row as its exponent:

(0, 0, 0)5 ↔ {(0, 0,−), (0,−, 0), (−, 0, 0,)},

(0, 0, 1)8 ↔ {(0, 0,−), (0,−, 1), (−, 0, 1,)},

(0, 1, 0)6 ↔ {(0, 1,−), (0,−, 0), (−, 1, 0,)},

(0, 1, 1)10 ↔ {(0, 1,−), (0,−, 1), (−, 1, 1,)},

(1, 0, 0)8 ↔ {(1, 0,−), (1,−, 0), (−, 0, 0,)},

(1, 0, 1)11 ↔ {(1, 0,−), (1,−, 1), (−, 0, 1,)},

(1, 1, 0)4 ↔ {(1, 1,−), (1,−, 0), (−, 1, 0,)},

(1, 1, 1)8 ↔ {(1, 1,−), (1,−, 1), (−, 1, 1,)},

(2, 0, 0)2 ↔ {(2, 0,−), (2,−, 0), (−, 0, 0,)},

(2, 0, 1)3 ↔ {(2, 0,−), (2,−, 1), (−, 0, 1,)},

(2, 1, 0)1 ↔ {(2, 1,−), (2,−, 0), (−, 1, 0,)},

(2, 1, 1)3 ↔ {(2, 1,−), (2,−, 1), (−, 1, 1,)}

We thus obtain the set of blocks S (see Figure 4.5), which contains a solution C
to the input (U,S,W , 1) to the weighted budgeted SC problem with unary costs.

Due to the identification of sets of (3, 2, 2)-ary 2-tuples with (3, 2, 2)-ary 3-tuples

given above, C can be translated to A, the WBCA to the right of Figure 4.5, using

SC2MCA (Algorithm 2).

S = {{(0, 0,−), (0,−, 0), (−, 0, 0,)},{(0, 0,−), (0,−, 1), (−, 0, 1,)},

{(0, 1,−), (0,−, 0), (−, 1, 0,)},{(0, 1,−), (0,−, 1), (−, 1, 1,)},

{(1, 0,−), (1,−, 0), (−, 0, 0,)},{(1, 0,−), (1,−, 1), (−, 0, 1,)},

{(1, 1,−), (1,−, 0), (−, 1, 0,)},{(1, 1,−), (1,−, 1), (−, 1, 1,)},

{(2, 0,−), (2,−, 0), (−, 0, 0,)},{(2, 0,−), (2,−, 1), (−, 0, 1,)},

{(2, 1,−), (2,−, 0), (−, 1, 0,)},{(2, 1,−), (2,−, 1), (−, 1, 1,)}}

C = {{(0, 1,−), (0,−, 1), (−, 1, 1,)},{(1, 0,−), (1,−, 1), (−, 0, 1,)}}

A =

(
0 1 1

1 0 1

)

Figure 4.5.: Set of blocks S, a weighted budgeted set cover C of the universe U and

the corresponding WBCA A, referring to Example 4.28.

92

4.3. Algorithms

Having established the necessary concepts in the previous sections, we are now able

to use the formulated problems and the respective mappings to compare sophisti-

cated heuristic algorithms for CA generation from the view point of set covers. In

particular we will review the greedy algorithm proposed in Section 3 of [13], the

deterministic density algorithm DDA as proposed in [7], as well as an algorithm

for the construction of biased covering arrays, presented in [5], for approximating

some of the CA problems mentioned in the previous sections (e.g. Problems 1.16,

4.17 and 4.26). We will refer to the greedy algorithm of [13] with gAETG (Greedy

AETG) to distinguish it from the “AETG” strategy proposed in the same work (i.e.

in Section 4 of [13]). Moreover, we consider a generalized version of the gAETG

algorithm for the case of MCAs.

4.3.1. gAETG: A Greedy Heuristic for MCA Generation

The authors of [13] mention a greedy algorithm which constructs a CA from an

initially empty array by adding one row at a time. Although their algorithm is only

formulated for CAs for strength t = 2, it can be generalized for higher strengths

as well as for mixed alphabet sizes, i.e. for MCAs. In this thesis we generalize the

greedy algorithm mentioned in [13] to work also for MCAs in Algorithm 6. Recall

that ϕv,t(r) is the set of all v-ary t-tuples covered by the row r over v = (v1, . . . , vk).

The algorithm starts with an initial empty array and proceeds in steps that append

one row to the current array. Rows are chosen such that they cover the maximal

number of v-ary t-tuples that are not yet covered by the current array. Note that

this algorithm uses a greedy method to maximize its profit in each step. By doing

so, the algorithm also has characteristics of an exhaustive search, since, to the best

of the author’s knowledge, there is currently no known general method for finding

the row r in step 5 of Algorithm 6, with r = arg maxr∈∏k
i=1[vi]

|ϕv,t(r) ∩ T |, other

than iterating through
∏k

i=1{0, . . . , vi− 1}\A, which has a size exponential in k (as

follows from Corollary 4.29). This is also the reason why the authors of [13] modify

their algorithm towards a random greedy method for practical purposes; Instead

of determining r = arg maxr∈∏k
i=1[vi]

|ϕv,t(r) ∩ T | in step 5, a set of candidate rows

is computed, from which one that covers the most yet uncovered v-ary t-tuples is

selected to extend the current array. Each candidate row is generated by filling up

93

its position in a random order, choosing a value that maximizes the number of v-ary

t-tuples covered by the partially specified row. See [13] for details.

Algorithm 6 gAETG (for MCAs)

1: INPUT: t, k,v = (v1, . . . , vk)

Require: t ≤ k

2: A← ∅ . Initial array is empty

3: T ← Tv,t (the set of all v-ary t-tuples) . Initialize set of tuples

4: while T 6= ∅ do

5: determine r = arg maxr∈∏k
i=1[vi]

|ϕv,t(r) ∩ T |
6: A← A ∪ {r}
7: T ← T \ ϕv,t(r)

8: end while

9: return A

Although having a run time that is exponential in k when implemented in the

described naive manner, the gAETG algorithm is important, since it is proven to

produce an output that grows logarithmically in k in all cases. In other words, it

constructively provides evidence that MCAN(t, k,v) ∈ O(log k).

Corollary 4.29. For the input t, k, (v1, . . . , vk) Algorithm 6 returns an MCA(N ; t, k,

(v1, . . . , vk)) with N ∈ O(log k).

Scetch of a Proof:

1.) From Theorem 1.27 we know that in each iteration of steps 4 - 8 of Algorithm

6, there exists a row that covers at least n/h v-ary t-tuples that are not covered

by the yet constructed array.

2.) Hence in step 5 a row is selected that covers at least n/h currently uncovered

v-ary t-tuples.

3.) The proof of Corollary 1.28 applies and shows that N ∈ O(log k).

4.3.2. A Review of the Deterministic Density Algorithm

The authors of [7, 6] propose a deterministic density algorithm (DDA) as a sophis-

ticated greedy heuristic approach to the optimal MCA generation problem that can

94

be considered an improvement of gAETG. As mentioned in [6], the proof of the

Logarithmic Guarantee (Corollary 1.28) and hence the proof of Corollary 4.29 relies

on finding a row that covers at least n/h of the yet uncovered v-ary t-tuples, and

not necessarily on finding a row that covers the maximal number of uncovered v-ary

t-tuples. This observation was considered in the development of DDA, which, like

gAETG, constructs an array one row at a time until all v-ary t-tuples are covered.

In contrast to gAETG, DDA aims to add a row that covers at least the average

(and not necessarily maximal) number of still uncovered v-ary t-tuples. The main

improvement of DDA over gAETG is that there exists an efficient way to construct

these rows, avoiding the search over the exponentially sized set of all candidate rows.

The key notion that provides means to construct such a row is the notion of density.

Informally, the density of an array is the proportion of uncovered v-ary t-tuples to

the number of all v-ary t-tuples. Similarly, the density of a value x in a certain col-

umn p is the proportion of uncovered to total v-ary t-tuples ((x1, . . . , xt), (p1, . . . , pt))

containing this value-column assignment, i.e. ∃i ∈ {1, . . . , t} : xi = x ∧ pi = p. Ad-

ditionally, the density of a partially specified row, as well as the factor density are

introduced, enabling the algorithm to efficiently construct rows, one column at a

time. The reader may be referred to [7] for more details. We give a high-level algo-

rithmic description of DDA in Algorithm 7. Note that in [7, 6] additional layers of

algorithmic designs as well as variations of Algorithm 7 are discussed, one of which,

the 0-restricted version of DDA, is identical with the random greedy version of

AETG, which is commercial available.

Algorithm 7 DDA

1: INPUT: t, k, (v1, . . . , vk)

2: A← ∅
3: while There remain uncovered v-ary t-tuples do

4: r ← () . initially empty row

5: for i=1 to k do

6: Set an empty position of r to a value which density is above average

7: end for

8: append row r to A

9: end while

10: return A

95

The main advantage of DDA (Algorithm 7) over gAETG (Algorithm 6) arises from

the fact that the complexity of step 6 of Algorithm 7 is upper bounded by vt
(
k−1
t−1

)
up to a multiplicative constant, hence it runs in polynomial, instead of exponential

time in k which the gAETG algorithm takes.

The properties of DDA for the case of homogenous alphabet sizes, i.e. v = v1 =

. . . = vk is given in Theorem 2.2. of [7], which we restate next, and refer the reader

to [7] for the proof.

Theorem 4.30. For the input t and v = v1, . . . , vk, DDA produces a CA(N ; t, k, v)

with N ∈ O(log k) in O(k log(k)vt
(
k−1
t−1

)
) time complexity, which is polynomial in k.

We will provide an experimental comparison of gAETG and DDA in Section 4.4.

4.3.3. DDA for WBCAs

In [4] a modified version of the DDA algorithm is proposed in order to approximately

generate an `-biased array (see Section 4.2.3). The authors of [4] refer to such

approximations as biased covering arrays, being covering arrays that offer a “large”

total benefit in the first ` rows for every `. Due to the similarity to the problem of

approximating an optimal MCA, the necessary changes to DDA to produce biased

covering arrays are minor. In effect, the algorithmic design is the same as that of

DDA (Algorithm 7), with the main difference that the incremental benefit of v-ary

t-tuples is included in the computation of densities, yielding a notion of weighted

density. The initial benefits are computed from a given set T of importances of

of column-value assignments. Algorithm 8 gives a high-level description of this

algorithm. For details see [78], where the notions of [4] are also generalized to

higher strengths.

As already mentioned in Remark 4.25, the notions of `-biased covering arrays and

weighted budgeted covering arrays are very similar. One can therefore use Algorithm

8 as an sophisticated greedy heuristic algorithm for WBCAs by simply replacing the

while-loop in step 3 with a for-loop that limits the construction of rows to the given

budget B, see Algorithm 9.

4.3.4. Revisiting gAETG as a Greedy Heuristic for Set Covers

We are now going to use the established translations between CAs and SCs, to revisit

gAETG from the point of set covers. This enables us to make use of a bound for

96

Algorithm 8 biasedDDA

1: INPUT: t, k, (v1, . . . , vk), T
2: A← ∅
3: while There remain uncovered v-ary t-tuples do

4: r ← () . Initialize empty row

5: for i=1 to k do

6: Set an empty position of r to a value whose weighted density is above

average

7: end for

8: append row r to A

9: end while

10: return A

Algorithm 9 wbDDA

1: INPUT: t, k, (v1, . . . , vk), T , B
2: A← ∅
3: for j = 1 to B do

4: r ← () . Initialize empty row

5: for i = 1 to k do

6: Specify an unspecified position of r to a value whose weighted density is

above average

7: end for

8: A← (A; r) . Append row r to A

9: end for

10: return A

the size of the output of gAETG.

A known approach to approximate a solution for the SC problem is Algorithm 10.

For a given universe U and a set of blocks S, this algorithm iteratively selects a

block of S that covers the most currently uncovered elements of the universe, and

is greedy in that sense.

An analytical treatment of Algorithm 10 can be found in [45] and in a generalized

version in [12], which contains a result regarding the quality of the algorithm’s

output, which we restate in the following theorem.

Theorem 4.31. For any instance of an MSC problem (U,S), Algorithm 10 returns a

97

Algorithm 10 SC-greedy

1: INPUT: U,S
2: C ← ∅ . Initial Cover Set empty

3: while U 6= ∅ do

4: determine b = arg maxb∈S |b ∩ U |
5: C ← C ∪ {b}
6: U ← U \ b
7: end while

8: return C

set cover C of U with |C| ≤ H(d)·|MSC|, where d is the maximum of the cardinalities

of the blocks in S, H(n) denotes the n-th harmonic number and |MSC| the size of

a minimal set cover of U with blocks from S.

Proof :

To prove the assertion we follow the work in [12], considering the IP corresponding

to a given MSC problem (U,S), with U = {x1, . . . , xm} and S = {b1, b2, . . . , bn}.
So let A = (ind(b1), ind(b2), . . . , ind(bn)) = (ai,j) ∈ {0, 1}m×n be the binary matrix

of column-wise indicator vectors of the blocks of S. Let C be the output of SC-

greedy (Algorithm 10) applied to (U,S), and X ⊆ S an arbitrary set cover of U .

We show that |X | ·H(d) ≥ |C| from which the assertion follows immediately for X
being a minimal SC. Let x = (xi)

n
i=1 ∈ {0, 1}n×1 denote the indicator vector of X

and equivalently c = (ci)
n
i=1 ∈ {0, 1}n×1 that of C. Then we have A · x ≥ 1 and

A · c ≥ 1, or equivalentely

n∑
j=1

ai,jxj ≥ 1 ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1},

and the same for (ci)
n
i=1. We will show that the following holds,

|C| =
n∑
j=1

cj ≤
n∑
j=1

H
(m∑
i=1

ai,j

)
xj, (4.6)

and as

n∑
j=1

H
(m∑
i=1

ai,j

)
xj =

n∑
j=1

H(|Sj|)xj ≤
n∑
j=1

H(d)xj = H(d)|X |,

98

the assertion follows.

To prove (4.6) , it will suffice to find non-negative numbers y1, . . . , ym, with

H
(m∑
i=1

ai,j

)
≥

m∑
i=1

ai,jyi (4.7)

and

|C| =
m∑
j=1

cj =
m∑
i=1

yi. (4.8)

As from this we get the desired:

n∑
j=1

H
(m∑
i=1

ai,j

)
xj ≥

n∑
j=1

(m∑
i=1

ai,jyi

)
xj =

m∑
i=1

(n∑
j=1

ai,jxj

)
︸ ︷︷ ︸

≥1

yi

≥
m∑
i=1

yi = |C|.

The numbers y1, . . . , ym, satisfying equations (4.7) and (4.8), have an intuitive in-

terpretation, where yi is the price paid by the greedy heuristic for covering the point

i. To be more precise, let U (r) denote the universe at the beginning of the r-th

iteration of the algorithm, and b
(r)
i := bi ∩ U (r) the remaining uncovered elements

in block bi at the beginning of the r-th iteration, for all i = 1, . . . ,m. Further let

wri := |b(r)i | denote the number of these elements. Without loss of generality we

may assume that C = {b1, . . . , br} after r iterations, as renumbering the blocks does

not have any effect on the cardinality of a set cover. Assuming that there are `

iterations as a whole, i.e. Algorithm 10 returns C = {b1, . . . , b`} we have that each

xi ∈ U belongs to exactly one of the sets b
(1)
1 , b

(2)
2 , . . . , b

(`)
` as they are a partition of

U . Now we define for all i ∈ {1, . . . ,m}:

yi :=
1

wrr
⇔ xi ∈ b(r)r .

Informally speaking we define the price of an element lower, if it is covered with

many other elements by the same block. With this definition of y1, . . . , ym, we

immediately can establish equation (4.8), as

m∑
i=1

yi =
∑̀
r=1

∑
xi∈b

(r)
r

yi =
∑̀
r=1

wrr
1

wrr
= ` = |C|.

99

To prove (4.7) we note that bj ∩ b(r)r = b
(r)
j \ b

(r+1)
j , from which we get

m∑
i=1

ai,jyi =
∑̀
i=1

∑
xi∈bj∩brr

yi

=
∑̀
r=1

(wrj − wr+1
j)

1

wrr

=
s∑
r=1

(wrj − wr+1
j)

1

wrr
,

where s is the largest superscript such that wsj > 0. From this, as wrj ≤ wr+1
j , we

get

s∑
r=1

(wrj − wr+1
j)

1

wrr
≤ 1

wr+1
j + 1

+
1

wr+1
j + 2

+ . . .+
1

wrj

=
s∑
i=1

(H(wrj)−H(wr+1
j)) = H(w1

j),

where

w1
j = |bj| =

m∑
i=1

ai,j ≤ d = max{|bj| : j = 1, . . . , n},

and hence the assertion holds.

Being aware of the translation of the OMCA problem to the MSC problem (Section

4.2), it becomes apparent that the gAETG (Algorithm 6) is identical to the SC-

greedy Algorithm 10 applied to the outcome of the translation MCAP2SCP

(Algorithm 1) while transforming the output SC back to an MCA using SC2MCA

(Algorithm 2). This connection is depicted in Figure 4.6. This implies that the

number of rows of the array A returned by gAETG has the upper bound H
((
k
t

))
·

MCAN(t, k, (v1, . . . , vk)), which can be seen as a quality assurance for the output of

gAETG.

A short introduction to the complexity notions used in the sequel can also be found

in Chapter 11 of [49]. As complexity theory is not part of the main subject of this

thesis, we refer the interested reader to [49] and limit ourselves with the description

of a polynomial time algorithm as an algorithm that runs in a number of steps that

is polynomially bound in the size of the input to the algorithm.

Remark 4.32. In [28] in Theorem 4.4., it is shown that unless

NP ⊆ TIME(nO(log2 log2 n)),

100

gAETG

MCAP2SCP

SC-greedy

SC2MCA

=

(t, k,v)
↓

↓
MCA(N ; t, k,v)

(t, k,v)
↓

↓
MCA(N ; t, k,v)

Figure 4.6.: Structural decomposition of gAETG via SC-greedy.

there is no polynomial time algorithm that, for arbitrary input (U,S), outputs a set

cover C with |C| ≤ (1− ε)|MSC| log2 n for any ε > 0, where |MSC| denotes the size

of a minimal set cover.

In other words, SC-greedy (Algorithm 10) is likely to be an optimal poly-time

approximation algorithm for the minimal set cover problem. At this point, it is

important to point out that this does not by any means give evidence for the opti-

mality of gAETG. Our mapping, MCAP2SCP (Algorithm 1), generates output

that is exponential in k, constructing an exponentially large (in terms of the original

input) instance to a more general problem. Additionally, the blocks and universe

of SC instances generated via MCAP2SCP have a specific structure (see Remark

4.12), possibly making feasible the development of more efficient algorithms.

In fact, comparing DDA (Algorithm 7) to gAETG (the latter of which is equiv-

alent to the SC-greedy, applied to instances that are output of the mapping

MCAP2SCP), it becomes apparent that DDA makes use of the inner structure

of the problem at hand: v-ary t-tuples are treated as atomic elements in gAETG,

while DDA treats v-ary t-tuples as molecules composed of column-value assign-

ments. As a result, DDA is an algorithm that constructs (M)CAs of size O(log k)

101

in a number of steps that is bounded by a polynomial in k (see [7], Theorem 2.2).

4.3.5. A Weighted Budgeted Variant of gAETG for WBCAs

In this subsection, we propose a new weighted budgeted variant of gAETG, ob-

tained via our mappings from a greedy algorithm, for the weighted budgeted set

cover problem 4.27.

Just as Algorithm 8 generalizes Algorithm 7 to handle weighted budgeted problem

instances, there exists a generalization of the SC-greedy (Algorithm 10) and hence,

following the observations of the last subsection, of gAETG (Algorithm 6), that

approximates the weighted budgeted set cover problem (Problem 4.27). We provide

a brief description of the algorithm here, while for a more detailed discussion of the

topic see for example [39].

The weighted budgeted SC problem has been studied in a number of previous sci-

entific publications, e.g. [39, 51]. wbSC-greedy (Algorithm 11) takes as input a

universe U , a set of blocks S, a set of weights W with a weight for each element of

the universe and a budget B. The algorithm starts with an empty set C and in each

step adds a block with maximal weight to C. After each addition of a block to C,
the weights of all blocks in S need to be updated, i.e. the weight of a block gets the

sum of the weights of its elements that are uncovered by the current blocks in C. In

other words, elements already covered contribute zero to the weight of the blocks

they reside in. This process is iterated, until the whole universe is covered.

There exists a lot of literature on the weighted budgeted set cover problem and

variations thereof [39, 51]. An analysis of this problem for non-unary costs can be

found in [51].

Algorithm 11 wbSC-greedy

1: INPUT: U,S,W , B

2: C ← ∅ . Initial Cover empty

3: for i = 1 to B do

4: b = arg maxb∈S wb . Select block with max. weight

5: C ← C ∪ {b}
6: W ←W ′ . Update all weights

7: end for

Similar to the SC-greedy algorithm, there exists a quality assurance for the output

102

C of wbSC-greedy (Algorithm 11), which we restate next. See [39], Corollary 1

for a proof.

Theorem 4.33. Let U,S,W , B be an input to the weighted budgeted set cover prob-

lem. Then it holds that

ω(C)
ω(OPT)

> 1− 1

e
,

where ω(C) denotes the cumulative weight of the elements covered by the blocks in

the output C of Algorithm 11, and ω(OPT) is the maximal cumulative weight of

elements a subset of cardinality B of S can cover.

As Sc-greedy (Algorithm 10), also wbSC-greedy is optimal in some sense, as

the following theorem, which as has been proven in [28], shows.

Theorem 4.34. For any ε > 0, the weighted budgeted set cover problem cannot be

approximated in polynomial time within a ratio of (1− 1/e+ ε) unless P = NP .

Using the notation of Theorem 4.33, this means that (provided P 6= NP) there

is no polynomial time algorithm for the budgeted maximal set cover problem that

produces an output C with ω(C)
ω(OPT)

> 1− 1
e

+ ε for an arbitrary ε > 0.

In light of Subsection 4.3.4, it is natural to describe a weighted budgeted version

of gAETG (Algorithm 6) as a composition of wbCAP2wbSCP (Algorithm 5),

wbSC-greedy and SC2MCA (Algorithm 2), see Figure 4.7 for the structure. We

introduce wbgAETG (Algorithm 12) as follows.

Algorithm 12 wbgAETG

1: INPUT: t, k,v = (v1, . . . , vk), B,W
Require: t ≤ k

2: A← ∅ . Initial array empty

3: T ← Tv,t (the set of all v-ary t-tuples)

4: for i = 1 to B do

5: determine row r that covers the greatest weight of v-ary t-tuples in T

6: A← (A; r) . Append row r to A

7: T ← T \ ϕv,t(r)

8: end for

9: return A

103

wbgAETG

MCAP2SCP

wbSC-greedy

SC2MCA

=

(t, k,v,W , B)
↓

↓
WBCA(N ; t, k,v)

(t, k,v,W , B)
↓

↓
WBCA(N ; t, k,v)

Figure 4.7.: Structure of wbgAETG via SC-greedy.

Due to the structure of wbgAETG, the quality assurance for wbSC-greedy also

holds for wbgAETG, as the latter treats a subset of the instances to the former

and uses the same methodology.

Theorem 4.35. Let t, k,v = (v1, . . . , vk), B,W be an input to the WBCA generation

problem 4.26. Then it holds that

ω(A)

ω(OPT)
> 1− 1

e

where ω(A) denotes the cumulative weight of v-ary t-tuples covered by the output

array A of Algorithm 12, and ω(OPT) the maximal cumulative weight of v-ary t-

tuples an array over (v1, . . . , vk) with B rows, i.e. a WBCA(B; t, k, (v1, . . . , vk)), can

cover.

Analogue to the unweighted case, Theorem 4.34 does not apply to WBCAs, as

WBSC instances that are output of wbCA2wbSC (Algorithm 5), form a specialized

subset of all WBSC instances. Hence, we conclude that even if P 6= NP , Theorem

4.34 does not provide evidence for the optimality of wbgAETG.

104

4.4. Experiments

In this section we evaluate the performance of the algorithms discussed in previous

sections. As detailed in this chapter, CA problems can be viewed as special cases

of SC problems. We aim to give empirical evidence that CA solvers (which can be

considered as approximation algorithms for the OMCA Problem 1.16) benefit from

the additional structure of these problems. Additionally, we evaluate the theoreti-

cal bounds (referred to as upper bounds throughout the remainder of this section)

obtained through Theorem 4.31 and Corollary 1.28 (equation (1.6)) for CAs using

practical experiments. To this end, we run the algorithms against problem instances

with known covering array numbers (CANs) and compare the size of the generated

CAs to this lower bound represented by the CANs, to obtain an experimental mea-

sure for the quality of the greedy heuristic employed in gAETG (Algorithm 6) as

well as the more sophisticated heuristic used in DDA (Algorithm 7).

We compare implementations of gAETG (resp. wbgAETG, Algorithm 12) against

DDA (and wbDDA, Algorithm 9), developed in the scope of the work presented in

[47], in terms of runtime and output size. To put it differently, we compare heuristic

algorithms for CA problems against their counterparts for SC problems applied to

the same problem instances.

The algorithms DDA4, wbDDA, gAETG and wbgAETG were implemented in

Rust ([82]), a modern systems programming language. In all implementations,

columns are sorted in descending order of their alphabet sizes, i.e. for an MCA(N ; t,

k, (v1, . . . , vk)), vi ≥ vj ⇔ i ≥ j. In steps 6 of DDA respectively 6 of wbDDA,

values are always assigned from left to right of the partially constructed rows, as the

order of assignments does not affect the logarithmic guarantee (Theorem 1 in [7]).

For DDA and wbDDA, there are two variants implemented: In the variant referred

to as DDAavg, the first value whose density is above average is selected, whereas

the variant DDAmax chooses a value with maximal density (if several values achieve

maximal density, the last one is selected). Analogue is the case for wbDDAavg and

wbDDAmax for weighted densities.

The implementation of gAETG uses a deterministically generated list of all rows

that might appear in the CA to be constructed. Recall that in each step, a row that

covers the maximal number of yet uncovered (v1, . . . , vk)-ary t-tuples is selected. To

4Note that we exclusively implement the unrestricted variant of DDA, referring to [7], where also

a discussion of the effects of restricted density calculations is given.

105

enable the algorithm to find arrays with fewer rows, the starting point in the list of

potential rows is randomized and the algorithm is executed 10 times.

The following tables list the best and worst obtained result under the headings

gAETGbest respectively gAETGworst. The experiments were performed on a ma-

chine with an Intel Core i7-4770 CPU clocked at 3.40GHz with 24GB of RAM. Note

that memory usage is not listed below, as the difference between implementations

was negligible in all cases, due to the fact that all of them employ the same underly-

ing structure: A continuous chunk of memory containing vt
(
k
t

)
32-bit floating point

numbers indicating the benefit of covering a specific tuple (0 if the tuple is covered).

Instance # Rows Time (s)

(t, k, v) CAN BoundL BoundH
DDA gAETG DDA gAETG

avg max best worst avg max best worst

(2, 3, 2) 4 9 7 4 4 4 5 0.00003 0.00003 0.00002 0.00002

(2, 4, 2) 5 12 12 6 6 6 6 0.00003 0.00003 0.00003 0.00003

(2, 5, 2) 6 13 17 6 6 6 6 0.00003 0.00003 0.00004 0.00004

(2, 6, 2) 6 15 19 7 7 7 7 0.00004 0.00004 0.00008 0.00011

(2, 7, 2) 6 16 21 7 7 7 7 0.00005 0.00005 0.00017 0.00018

(2, 8, 2) 6 17 23 8 8 8 8 0.00006 0.00006 0.00045 0.00051

(2, 9, 2) 6 18 25 8 8 8 8 0.00008 0.00008 0.00103 0.00108

(2, 10, 2) 6 19 26 9 9 9 9 0.00010 0.00010 0.00270 0.00281

(2, 11, 2) 7 19 32 9 9 9 9 0.00011 0.00011 0.00622 0.00640

(2, 12, 2) 7 20 33 9 9 9 10 0.00013 0.00013 0.01568 0.01610

(2, 13, 2) 7 20 34 9 9 9 10 0.00016 0.00016 0.03329 0.03637

(2, 14, 2) 7 21 35 9 9 9 9 0.00018 0.00018 0.07365 0.07470

(2, 15, 2) 7 21 36 9 9 9 10 0.00021 0.00021 0.16930 0.18516

(2, 16, 2) 8 22 42 10 10 10 10 0.00025 0.00025 0.41498 0.42252

(2, 17, 2) 8 22 43 10 10 10 10 0.00030 0.00029 0.92479 0.96072

(2, 18, 2) 8 23 44 11 11 11 11 0.00037 0.00035 2.25963 2.35605

(2, 19, 2) 8 23 45 11 11 11 11 0.00040 0.00043 5.03183 5.68974

(2, 20, 2) 8 24 46 11 11 11 11 0.00045 0.00046 11.05169 12.24347

(2, 21, 2) 8 24 47 11 11 11 11 0.00049 0.00051 24.24262 25.30102

(2, 22, 2) 8 24 48 11 11 11 11 0.00057 0.00055 52.64991 54.75317

(2, 23, 2) 8 25 48 11 11 11 11 0.00063 0.00061 112.64090 117.66975

(2, 24, 2) 8 25 49 11 11 11 12 0.00071 0.00067 252.76384 276.35139

(2, 25, 2) 8 25 50 11 11 11 11 0.00074 0.00080 532.60420 575.33891

Table 4.1.: Comparison of gAETG (Algorithm 6) and DDA (Algorithm 7 Algo-

rithms by means of some instances of binary CAs of strength two. In the

columns under the header # Rows the number of rows of the generated

CAs is denoted, where smaller values are considered better.

106

Table 4.1 shows the results for various instances of the form CA(N ; 2, k, 2). The

CAN for these instances is known (see Corollary 2.52). The table additionally lists

the upper bound obtained from Corollary 4.29 respectively Corollary 1.28 equation

(1.6) (computed as b− log vt·(k
t)

log (1− 1
vt

)
+ 1c) in the column BoundL as well as the one

obtained from Theorem 4.31 (computed as bH
((
k
t

))
·CANc) in the column BoundH .

The results display some remarkable characteristics. While the CAN was only

reached for two very small configurations, all computed CAs stay well under the size

afforded by the upper bounds in the third and fourth column. Although gAETG

tends to construct slightly smaller arrays in the general case (while consuming much

more time), it is particularly badly suited for CA(N ; 2, k, 2) due to its constant

worst-case performance, i.e. a search over all 2k possible rows, as well as the lack of

a reduction of the output size, in comparison to DDA, for the small values of k in the

experiments in Table 4.1. Further experiments with DDAavg and DDAmax show a

similar deviation from both CAN and the upper bound, but were not included in

the table due to the infeasibility of executing the required runs with gAETG.

Instance # Rows Time (s)

(t, k, v) CAN BoundL BoundH
DDA gAETG DDA gAETG

avg max best worst avg max best worst

(3, 5, 4) 64 411 187 107 64 65 94 0.00038 0.00023 0.00590 0.00862

(3, 5, 8) 512 4369 1499 862 768 662 712 0.00636 0.00570 1.85988 2.08355

(3, 5, 16) 4096 43496 11997 6745 4096 4952 5048 0.25057 0.15362 456.94628 469.80281

(2, 6, 5) 25 146 82 46 40 32 34 0.00019 0.00017 0.05431 0.05824

(3, 6, 5) 125 975 449 250 241 186 195 0.00171 0.00166 0.44340 0.46224

(4, 6, 5) 625 5712 2073 1216 1145 963 972 0.01648 0.01565 1.94444 1.96441

(4, 13, 2) 32 145 228 54 54 45 49 0.00826 0.00839 1.57704 1.73014

(5, 8, 2) 52 236 239 72 72 64 70 0.00113 0.00114 0.00763 0.00855

(5, 9, 2) 54 262 292 85 85 72 79 0.00276 0.00276 0.03488 0.03721

Table 4.2.: Comparison of gAETG and DDA by means of some instances of or-

thogonal arrays and some new known values of CANs. In the columns

under the header # Rows the number of rows of the generated CAs is

documented, where smaller values are considered better.

Table 4.2 shows output in the same format for two additional types of CA config-

urations: CA(N ; 3, 5, v) where v ∈ {4, 8, 16} and CA(N ; t, 6, 5) where t ∈ {2, 3, 4},
for which the existence of an orthogonal array is guaranteed by Theorem 2.2. Ad-

ditionally experiments for three instances, where the CAN was recently determined

107

in [44] for CA(N ; 4, 13, 2), CA(N ; 5, 8, 2) and CA(N ; 5, 9, 2), were run. Results for

CA(N ; 3, 5, v) exhibit a similar pattern as those in Table 4.1, with drastically greater

runtime for gAETG when v is increased. However, a much more exciting result was

obtained for DDAmax, which produces either the orthogonal array (for log2(v) ≡ 0

mod 2) or a CA with exactly 3/2 ·CAN rows (for log2(v) ≡ 1 mod 2), in all tested

instances of the type CA(3, k, 2i) such that an orthogonal array exists due to Theo-

rem 2.2. A formal explanation for this behaviour is subject of future work. As the

results for CA(N ; t, 6, 5) show, gAETG fares much better when v and k are kept

constant and the strength is increased. For these configurations, the size advan-

tage versus DDA is significant while runtime only increases by a small factor. This

trend continues to exist also for the remaining of the test cases shown in Table 4.2.

Furthermore, the number of rows continues to keep well below the upper bounds

BoundL and BoundH , as 0.0941 ≤ min(N)
BoundL

≤ 0.5 and 0.1973 ≤ min(N)
BoundH

≤ 0.5715 in

all our experiments. This shows that, for the CA configurations we experimented

with, these upper bounds are not tight. Whether this holds in general and tighter

bounds can be found, is subject to further investigation.

Table 4.5 displays the results of experiments involving a weighted budgeted

MCA(N ; t, 10, (7, 6, 42, 32, 24)) with t ∈ {3, . . . , 6}. Weights are assigned individ-

ually to each value of a column. The weight of a (v1, . . . , vk)-ary t-tuple is the

product of the weights of each involved value. Three different patterns of weight

distributions were chosen: Unweighted (UN), just as for to the previous experi-

ments; random weights (RAND), detailed in Table 4.3, which were generated using

a pseudo-random number generator; and manual weights (MAN), shown in Table

4.4. Budgets were chosen based on preliminary experiments in order to restrict ar-

rays to approximately half their required size. The resulting weights in Table 4.5

are rounded to two decimal places. Note that unlike the tables previously described

(which list the number of rows output by the respective algorithm), higher values

in the columns under the label Weight, are better.

Figures 4.8a and 4.8b show the weight gain per row for strength 2 for the RAND and

MAN distributions (plots for higher strengths exhibit the same pattern). In term of

WBCAs, the x-axis reflects the budget (number of rows) while the y-axis displays

the cumulative weight.

The results are largely similar to unweighted versions, which leads to the hypothesis

that weights have no significant impact on the performance of either algorithm. One

108

Column Value Weights

1 2 3 4 5 6 7

1 0.81 0.56 0.14 0.41 0.8 0.32 0.86

2 0.06 0.44 0.7 0.91 0.81 0.56

3 0.14 0.41 0.8 0.32

4 0.86 0.06 0.44 0.7

5 0.91 0.81 0.67

6 0.02 0.78 0.03

7 0.44 0.21

8 0.9 0.74

9 0.73 0.2

10 0.44 0.43

Table 4.3.: Weights of column-value assignments under RAND weight distribution.

Column Value Weights

1 2 3 4 5 6 7

1 0.75 1 0.5 1 0.5 0.75 0.5

2 0.5 0.25 0.25 0.25 0.5 0.25

3 0.5 0.25 0.5 0.25

4 0.5 0.25 0.5 0.25

5 0.25 0.25 0.25

6 0.25 0.25 0.25

7 0.25 0.25

8 0.5 0.5

9 0.25 0.75

10 0.25 0.5

Table 4.4.: Weights of column-value assignments under MAN weight distribution.

109

surprising effect occurs in the case of RAND weights: Despite beginning its search at

random locations in the search space, it always produces arrays of the same size. This

is reflected in Table 4.5 by wbgAETGbest and wbgAETGworst always producing

arrays covering the same weight. One explanation for this behaviour would be

that the RAND weight distribution produces near-unique tuple weights (and the

sum of all tuples newly covered by a row becomes similarly near-unique) such that

their order of being selected by the algorithm essentially becomes deterministic.

This hypothesis is also supported by the fact that for the MAN distribution, most

executions of gAETG (but not all) result in the same output weight covered.

Instance Weight

t Distribution Budget
wbDDA wbgAETG

avg max best worst

2 UN 20 113.00 117.00 119.00 117.75

2 RAND 20 133.65 135.41 137.22 137.22

2 MAN 20 77.75 78.25 79.88 79.69

3 UN 100 545.63 545.75 554.00 552.63

3 RAND 100 640.72 641.78 648.32 648.32

3 MAN 100 281.03 282.88 285.81 285.45

4 UN 400 1582.81 1587.62 1602.50 1599.94

4 RAND 400 1870.93 1874.59 1883.77 1883.77

4 MAN 400 616.29 617.57 622.49 622.42

5 UN 1250 3001.44 3005.06 3035.22 3032.12

5 RAND 1250 3563.69 3567.04 3579.06 3579.06

5 MAN 1250 863.77 864.77 872.52 871.75

6 UN 3500 3844.27 3851.59 3891.84 3889.48

6 RAND 3500 4528.13 4531.45 4544.47 4544.47

6 MAN 3500 807.72 808.25 815.53 815.18

Table 4.5.: Results for WBCA Instances.

110

(a) Weight growth per test for random weights (RAND).

(b) Weight growth per test for manual weights (MAN).

Figure 4.8.: Weight growth per test for different algorithms applied to weighted in-

stances

111

5. A Family of Algorithms based on

IFSs

In this chapter we show yet another set-based method for constructing CAs, which in

this case is based on independent families of sets (IFSs). We make use of the equiv-

alence of IFSs and binary CAs, as shown in Chapter 2, so we can interchangeably

use these two structures in terms of the introduced concept and algorithmic design.

Using an idea presented in [30], this set-based method is extended with balancing

properties which can impose restrictions on the number of appearing tuples in the

array corresponding to an IFS. This, among other concepts, enables the definition of

different building blocks that give rise to the IFS-family of algorithms for construct-

ing IFSs (and consequently also for CAs), including two new algorithms extending

the method presented in [30]. Finally we give a comparison of these algorithms

against the widely used algorithms of the IPO-family (previously described in Sub-

section 3.1.3), which bare similarities with the presented approach for constructing

and extending CAs. The results show that that the IFS-family outperforms the

IPO-family in many of the documented cases in terms of generating CAs with less

rows.

Remark. Note that in this chapter we restrict our considerations to binary CAs and

carry out arguments only for this class of objects. As in Section 2.3 we use the

notation Ā for a variable that can either take the value A or AC , with respect to

the considered underlying set, to simplify the notation.

In this chapter we follow mainly the work in [48].

5.1. A Balancing Property

In [30] Freiman et al., proposed an algorithm that produces exponentially sized (in

terms of the cardinality of the underlying set) IFSs, one set at a time. Before we

112

formalize this approach in Section 5.2, let us first describe the idea behind it and

motivate the terminology needed to describe the algorithm formally.

It is well known that orthogonal arrays of index unity are optimal CAs (see Theorem

1.22 and also [21]), i.e. within each selection of t columns of the array each binary

t-tuple appears exactly once. Also when constructing a CA with as few rows as

possible, one tends to cover certain t-tuples only once rather than multiple times.

Hence the objective is to cover as few t-tuples as possible more than once. Let us

consider the case of a CA (a1, . . . , ar), where only few t-tuples appear more than

once within a certain choice (ai1 , . . . , ait) of t columns of that array. Since for each

(t − 1)-tuple (u1, . . . , ut−1) there are exactly two binary t-tuples, that start with

(u1, . . . , ut−1), namely (u1, . . . , ut−1, 0) and (u1, . . . , ut−1, 1). We know that within

(ai1 , . . . , ait−1) each (t−1)-tuple appears at least twice, and only few of them appear

more than twice. Of course this argumentation holds for each choice of (t − 1)

columns of (ai1 , . . . , ait).

Remark 5.1. Note as well that this argumentation can be iterated. From these

remarks we design a necessary condition, when a column is allowed to be added to

the current array. In particular, we want to ensure a minimum amount of balance

among the columns of the array, in the sense just described.

For this reason, we introduce the notion of α-balance.

Definition 5.2. Let A = (A1, . . . , Ak) be a family of sets Ai ⊆ [N], ∀i ∈ [k]

and α = (α1, . . . , αs) ∈ Ns, s ≤ k. We say that A is tuple-balanced with respect

to α (or α-balanced for short), if ∀i ∈ {1, . . . , s}, ∀{j1, . . . , ji} ⊆ {1, . . . , k} and

∀Ājr ∈ {Ajr , ACjr}, we have:

∣∣ i⋂
r=1

Ājr
∣∣ ≥ αi. (5.1)

Note that if a family of sets is tuple-balanced w.r.t. α = (α1, . . . , αs) and αs ≥ 1, it

is also s-independent.

Due to the one to one correspondence between subsets of [N] and binary vectors

of length N (see also Theorem 2.46), this definition translates naturally to the

language of binary arrays. Therefore, in the following, it makes sense to consider

α-balanced arrays. Inherited from the corresponding family of sets, (α1, . . . , αs)-

balanced arrays have the property that within each choice of i ≤ s columns, each

binary i-tuple appears at least αi times. We also introduce the following notion.

113

Definition 5.3. Let B ⊆ [N], A = (A1, . . . , Ak) be a family of sets Ai ⊆ [N], ∀i ∈
{1, . . . , k} and α = (α1, . . . , αs) ∈ Ns. We say that B is tuple-balanced with respect

to A and α (or simply B is α-balanced with respect to A), if the family of sets

(A1, . . . , Ak, B) is tuple-balanced with respect to α.

As above, we use the same terminology for binary arrays, i.e. we say a vector b is

tuple-balanced w.r.t. (a1, . . . , ak) and α if (a1, . . . , ak,b) is α-balanced. We illustrate

the introduced concepts with the following example.

Example 5.4. Let α = (6, 3, 1), A = (A1, A2) and

A1 = {1, 2, 3, 4, 9, 10},

A2 = {1, 2, 5, 6, 9, 11},

B1 = {1, 3, 5, 7, 10, 12},

B2 = {1, 3, 5, 7, 10, 11}

One can easily verify that A = (A1, A2) is an IFS over {1, . . . , 12} of strength 2

and is tuple-balanced with respect to α. One may also verify that the family of sets

(A1, A2, B1) is in fact 3-independent. Nevertheless B1 is not tuple-balanced with

respect to A and α, since |A2 ∩ B1| = |{1, 5}| < 3 = α2, which violates condition

(5.1). B2 provides an example that is tuple-balanced with respect to A and α, since

(A1, A2, B2) fulfills condition (5.1): each set as well as its complement has at least

6 elements, intersections of any two sets (or their complements) contain at least

3 elements, and the intersection of the three sets (where some of them might be

replaced by their complement) contains at least one element.

Vector notation might make this more visible. Let ai denote the indicator vector of

Ai for i = 1, 2 and bi that of Bi respectively. Therefore we can consider the array

(a1, a2,b1) of column-wise indicator vectors of A1, A2 and B1

(a1, a2,b1) =

1 1 1 1 0 0 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 0 1 0

1 0 1 0 1 0 1 0 0 1 0 1

T

,

114

and the array (a1, a2,b2) of column-wise indicator vectors of A1, A2 and B2

(a1, a2,b2) =

1 1 1 1 0 0 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 0 1 0

1 0 1 0 1 0 1 0 0 1 1 0

T

First of all one can verify that the arrays (a1, a2,b1) and (a1, a2,b2) both are binary

CAs of strength 3, but only b2 is a tuple-balanced vector w.r.t. (a1, a2) and (6, 3, 1),

since additionally within every selection of two columns of (a1, a2,b2), each 2-tuple

appears at least 3 times, and within every column each value appears at least 6

times.

The previous example exemplifies that (α1, . . . , αt)-balance with αt ≥ 1 is a stronger

property than t-independence. In the sequel we will use the notion of α-balance as

a decision criterion in a heuristic for constructing IFSs.

5.2. A Family of Algorithms for Generation of IFSs

In this section we propose a variety of algorithms, IFS-origin, IFS-greedy and

IFS-score, based on independent families of sets. We call these algorithms col-

lectively the family of IFS-Algorithms. In particular the method described earlier,

is formalized and extended, in terms of a combinatorial algorithmic design. The

design is composed of the following five building blocks : store, select, admissible,

extend and update, which we state below.

– Store: The store is a data structure that serves as a resource, from which the

sets to build the target IFS are chosen. It may be static or dynamic.

– Select: A procedure which returns one element of the store, e.g. randomly or

via a scoring function.

– Admissible: This procedure decides whether a certain element is allowed to be

added to the current IFS or not, under certain admissible criteria, which can

be based for example on the concept of α-balance.

– Extend: A procedure which extends the current IFS.

– Update: A procedure which updates the store in case it is dynamic.

115


``````````````````̀
Building blocks

Algorithm
IFS-origin IFS-greedy IFS-score

Store F2 F2 F2

Select SelectRandom SelectNext SelectScore

Admissible Admissibleα Admissibleα Admissible

Extend Extend Extend Extend

Update Updateα - Update

Table 5.1.: Composition of the IFS-family algorithms.

A comprehensive overview of the proposed algorithms via their building blocks, is

given in Table 5.1.

5.2.1. IFS-Origin

Initially we give a short algorithmic description of the method proposed in [30] and

extended in the previous subsection. We refer to it and its implementation as IFS-

origin (Algorithm 13). The algorithm takes as input the size N of the base set and

the strength t of the to be constructed IFS. The initial Store, S0, is set to be equal

to the maximal 2-independent family of sets F2(N), as described in Theorem 2.51,

as it contains all sets that are balanced w.r.t (bN/2c), i.e. each set individually is

optimally balanced. The initial set of the IFS, A1, is set to be a random element of

the Store. This random initialization is justified because picking a different initial

element comes down to permuting the elements of [N ], which respects Definition

2.43, and keeps F2(N) invariant. After the initialization step (i = 1), in the i-

th step, IFS-origin traverses through the whole Store Si−1 given at that time,

updating it by removing all non Admissibleα elements from it, which yields Si.

For the check of admissibility the algorithm requires a vector α = (α1, . . . , αt),

which encodes the desired balance of i-tuples for i = 1, . . . , t. When the target is

to construct a t-independent family of sets, then αt ≥ 1 has to be ensured. After

the update Si is left with only Admissibleα elements, a random element is chosen

and added to the IFS at hand, yielding Ai+1. The algorithm terminates when the

Store is empty. Using the building blocks from Table 5.1, we express IFS-origin

in pseudocode form (see Algorithm 13).

116



Note that the nature of this algorithm immediately yields an upper bound on the

number of calls of the subprocedure Update (line 15), occurring during one run of

the algorithm. Let k be the size of the returned IFS, A, then the number of calls

of Update is also exactly k, since the Store gets updated once after each element

that is added to the IFS, which is about to be constructed.

5.2.2. IFS-Greedy

When being familiar with IFS-origin described above, one will realize, that this

version, as was originally described in [30], lacks a method to decide which one

of the elements in the remaining Store should be added to the current array.

Particularly in IFS-origin this is done via a random pick, which in retrospect makes

the Update of the Store, determining all Admissibleα elements, unnecessary.

The newly proposed IFS-greedy version (see Algorithm 14) bypassess this decision

problem by simply picking the next found Admissibleα element of the Store,

with the advantage of the fact that the Store never needs to be updated. The

initialization stays the same as in IFS-origin. After that, IFS-greedy traverses

the Store only once, adding the first set that is Admissible with respect to the

already constructed IFS and α (recall Definition 5.3), i.e. the Store never gets

updated.

5.2.3. IFS-Score

The overall structure of IFS-score is the same as that of IFS-origin, but in lines

10 and 29 of Algorithm 15 different sub procedures SelectScore and Admissible

are defined. To circumvent the problem of IFS-origin of picking a random element

from the updated Store, we calculate a score for each element of the Store and add

the one (or one of them, since ties may occur) with the lowest score (see procedure

SelectScore of Algorithm 15). Each element is initialized with a score of zero.

In the i-th step of the algorithm an individual score for each element of the current

Store Si−1 is computed. This score can be based on the tuple-balance of the

family (Ai, b) for example. This also has the advantage that IFS-score does not

requiring an input for α. Since we compute a score for each element, we already

encounter the tuple balance of (Ai, b) to our selection, and we do not need to dictate

a-priori via α how often certain i-tuples have to appear. Therefore IFS-score is

117



Algorithm 13 IFS-origin(N, t)

1: S = F2(N) . S initializes a Store

2: A← SelectRandom(S)

3: while S 6= ∅ do
4: S ← Update(S,A, t)

5: if S 6= ∅ then
6: b← SelectRandom(S)

7: A← Extend(A, b)

8: end if

9: end while

return A

10: procedure SelectRandom(S)

return random element of S

11: end procedure

12: procedure Extend(A, b)

13: A← [A, b]

return A

14: end procedure

15: procedure Updateα(S,A, t)

16: for b in S do

17: if not Admissibleα(A, b, t) then

18: S ← S \ {b}
19: end if

20: end for

21: end procedure

22: procedure Admissibleα(A, b, t)

Require: α1×t with αt ≥ 1 . α is a vector of length t

23: if [A,b] is α-balanced then

return True

24: else

return False

25: end if

26: end procedure

118



Algorithm 14 IFS-greedy(N, t)

1: S = F2(N) . S initializes a Store

2: b← SelectNext(S, ∅)
3: A← [b]

4:

5: while b has next do

6: b← SelectNext(S, b)

7: if Admissibleα(A, b, t) then

8: A← Extend(A, b)

9: end if

10: end while

return A

11: procedure SelectNext(S, b)

12: if b = ∅ then
return first element of S

13: else

return next element to b from S

14: end if

15: end procedure

16: procedure Extend(A, b)

17: A← [A, b]

return A

18: end procedure

19: procedure Admissibleα(A, b, t)

Require: α1×t with αt ≥ 1 . α is a vector of length t

20: if [A,b] is α-balanced then

return True

21: else

return False

22: end if

23: end procedure

119



the only algorithm in the proposed IFS-family that does not require an input of α.

Consequently, in the decision criterion of Admissible, we require only that (A, b)

is t-independent, instead of it being α-balanced.

5.3. Results

As a proof of concept of the algorithmic design (presented in Section 5.2), we com-

pare the implementations of the IFS-family of algorithms for t = 3 to two of the

most commonly used greedy algorithms of the IPO-family, namely IPOG [66] and

IPOG-F [29]. In addition, we evaluate the results versus the current best known

upper bounds for CAK(N ; 3, 2) retrieved from [19]. To the best of the author’s

knowledge the algorithms of the IPO-family are the only ones that generate CAs

using a horizontal extension step similar to the one proposed in the IFS-family of

algorithms.

Table 5.2 shows the number of columns a binary CA of strength 3 can attain by

either the respective algorithm or according to [19]. The table starts with N = 8,

since there are at least eight rows needed to cover all eight binary 3-tuples. It shows

that the IFS-family of algorithms improves significantly over IPOG and IPOG-F in

almost every case presented, as well as IFS-greedy and IFS-score improve over

IFS-origin. It is also worth pointing out that during the computations larger fami-

lies were obtained, when running IFS-origin and IFS-greedy on more restrictive

α-vectors, than when running them on less restrictive α-vectors. We believe the con-

cept of admissibility via α-balance (and its requirement per different IFS algorithms)

makes the difference compared to IPOG and IPOG-F, since these algorithms lack

a balancing strategy during horizontal extension. Regarding our results, we want

to highlight that IFS-score is able to deliver almost the same size of output IFS

as IFS-greedy without the need of an α-vector as input. On the other hand,

IFS-score is more complex than IFS-greedy and even IFS-origin due to the

computation of scores.

We ran the algorithms IPOG and IPOG-F as they are implemented in ACTS (Ver-

sion 2.93), a CA generation tool provided by NIST [99], [76]. For the input values

of N in Table 5.2, IPOG and IPOG-F were considerably faster than all three al-

gorithms of the IFS-family. The extra computations are justified in so far that,

the IFS-family of algorithms outperforms IPOG and IPOG-F, in 14 out of the 18

120



Algorithm 15 IFS-score(N, t)

1: S = F2(N) . S initializes a Store

2: A← SelectScore(S)

3: while S 6= ∅ do
4: S ← Update(S,A, t)

5: if S 6= ∅ then
6: b← SelectScore(S)

7: A← Extend(A, b)

8: end if

9: end while

return A

10: procedure SelectScore(S,A,N, t)

11: M ← ∅
12: min←∞
13: for b ∈ S do

14: if Score(b, A,N, t) < min then

15: min← Score(b, A,N, t)

16: M ← [b]

17: else if Score(b, A,N, t) = min then

18: M ← [M, b]

19: end if

20: end for

return random element of M

21: end procedure

22: procedure Update(S,A, t)

23: for b in S do

24: if not Admissible(A, b, t) then

25: S ← S \ {b}
26: end if

27: end for

28: end procedure

29: procedure Admissible(A, b, t)

30: if [A,b] is t-independent then

return True

31: else

return False

32: end if

33: end procedure

34: procedure Score(A, b,N, t)

35: return score . score is calculated from the tuple-balance of (A, b)

36: end procedure

121



documented cases in terms of output size of produced IFS (or columns of produced

CAs, c.f. Theorem 2.46) and achieves the same size values in the other four.

N IPOG-F IPOG IFS-origin IFS-greedy IFS-score Colbourn Tables

8 4 4 4a 4a 4 4

9 4 4 4a 4a 4 4

10 4 4 4a 5a 5 5

11 5 4 4a 5a 5 5

12 5 6 11b 11b 11 11

13 5 6 6b 11b 11 11

14 6 6 6b 11b 11 11

15 6 6 7b 11b 11 12

16 7 7 8c 14c 14 14

17 9 7 10c 14c 14 16

18 11 8 12c 17c 16 20

19 12 8 13c 17c 16 22

20 13 10 11d 19d 19 23

21 15 10 15c 19c 19 25

22 16 12 18c 21c 21 26

23 16 13 19c 23c 22 30

24 19 13 23d 26d 25 38

25 21 14 24c 28a 26 44

Table 5.2.: Comparison of the number of columns attained for N rows by different

CA algorithms. The (currently) best lower bound for CAK(N ; 3, 2) is

provided by the Tables provided by Colbourn [19], and is given in the

last column. The superscripts are representing the different α-vectors,

which were used as input for the computation that yield the output IFS,

where a=(4,2,1), b=(6,3,1), c=(8,4,1), d=(10,5,1).

122



6. Conclusion and Future Work

This thesis provided an introductory overview of the topic of covering arrays (CAs)

and generalizations, highlighting specific aspects of this field. The first part of this

thesis concerned theoretical results related to CAs and furthermore connections to

other fields of discrete mathematics, such as two constructions for special classes of

optimal CAs, binary CAs of strength two and CAs over prime fields. Other results,

such as the logarithmic growth of the covering array number (CAN) in the number

of columns, were proven for the general case. As so often in mathematics, the former

mentioned result only proves the existence of an optimal CA with O(log k) rows and

k columns, but gives no method of construction for such a CA. Thus, in the second

part of this thesis, the focus is shifted to algorithms for CA generation. After a brief

summary of popular CA generation methods, two of them were analyzed in detail.

In particular, after the preliminaries given in Chapter 1, in Chapter 2 we described

various combinatorial constructions for CAs. A construction for orthogonal arrays

OA1(q
t; t, q + 1, q) for prime powers q, based on properties of finite fields, was de-

scribed first. Next, we presented a construction of CAs using group actions that act

on certain matrices, which essentially reduces the problem of generating the desired

CA to the problem of finding an appropriate group G and a matrix M with the nec-

essary properties, such that after developing M by G a CA can easily be constructed.

Finding other constructions involving groups acting on matrices, such that CAs with

a possibly small number of rows are generated, is subject to future work, especially

considering that such constructions can help determining covering array numbers.

After that, we shifted the focus to plug-in constructions, proving that the plug-in

of a family of CAs into a given CA yields again a CA. This property enabled us to

formulate two constructions for nested CAs and refined nested CAs, where the lat-

ter makes use of a more sophisticated plug-in construction. Additionally, analogues

and applications of such nested CAs to modular software designs were explained. A

second plug-in construction making use of perfect hash families revealed connections

123



of CAs to other classes of designs and to the field of Error-Correcting Codes. The

last combinatorial construction considered in Chapter 2 makes use of the represen-

tation of binary CAs as independent families of sets. We gave a theorem which

determines the size of a maximal 2-independent family of sets and also describes

how such families can be constructed. Due to the proven equivalence of binary CAs

and independent families of sets, the problem of generating CA(N ; 2, k, 2) with the

smallest possible N is solved completely for arbitrary k.

In Chapter 3 we gave an overview of popular algorithms for CA generation, depict-

ing greedy algorithms growing CAs horizontally, vertically or in two dimensions,

metaheuristic algorithms based on hill climbing, simulated annealing or tabu search,

as well as hybrid and exact approaches.

In Chapter 4 we discussed connections between CAs and set covers (SCs) and showed

how the former can be considered a special instance of the latter using the appropri-

ate mappings and translation algorithms. This enabled us to apply known results

for SCs to CAs and to their respective generalizations. A number of experiments

show that the CA specific algorithms – DDA (Algorithm 7) and wbDDA (Algo-

rithm 9) – generate solutions similar in quality (number of rows respectively weight

of covered tuples under budget constraints) to the algorithms obtained from SC

heuristics, namely gAETG (Algorithm 6) and wbgAETG (Algorithm 12). While

the latter tend to produce slightly smaller (or higher weighted) output, producing

arrays that would generally be regarded as better, the CA specific strategies con-

sume significantly less time, particularly for CAs with a large number of columns

or values. Experiments with the weighted versions of the algorithms led to similar

observations. A formal explanation for the behavior of DDAmax for the tested CA

parameters (3, 5, 2i), i ∈ N can be regarded as future work, just as the question of

the existence of tighter upper bounds for general covering array numbers is subject

to further investigation.

In Chapter 5 we presented a family of combinatorial algorithms for constructing

independent families of sets, and hence, due to Theorem 2.46, binary covering ar-

rays. As the presented algorithmic design is modular, its building blocks can give

rise to further algorithms not presented in this thesis. We introduced the concept

of α-balance, which can impose certain restrictions on the number of tuples that

can appear in such arrays, as a means of generating higher quality covering arrays.

As a proof of concept of this approach, the implementations of the proposed family

124



were compared against existing greedy algorithms. Enhancing the functionality of

the presented algorithms via improving the scoring function based on α-balance,

generalizations for larger and mixed alphabet sizes as well as conducting more ex-

periments for higher strength covering arrays are considered part of future work.

To conclude, the results presented in the first part of this thesis raise the question of

further connections between (optimal) CA constructions and other fields of mathe-

matics. Similarly, improvements of the algorithms discussed in the second part can

be considered as part of future work. The fact that the complexity of the optimal

CA generation problem is yet unknown poses interesting additional challenges and

is subject to future investigation. The fact that CAs find applications in automated

software testing and other domains further reinforces the need to answer these ques-

tions, especially considering the growing amount of software artifacts in modern

information society.

125



List of Acronyms

CA(s) Covering Array(s)

CAN Covering Array Number

IFP Independent Family of Partitions

IFS Independent Family of Sets

IFSs Independent Families of Sets

MCA(s) Mixed level Covering Array(s)

MCAN mixed level Covering Array Number

OA(s) Orthogonal Array(s)

PHF Perfect Hash Family

VCA Variable strength Covering Array

VCAN Variable strength Covering Array Number

WBCA Weighted Budgeted Covering Array

126



List of Tables

2.1. Refined plug-in: Experiments . . . . . . . . . . . . . . . . . . . . . . 49

4.1. Comparison of Algorithms: binary CAs of strength 2 . . . . . . . . . 106

4.2. Comparison of Algorithms: OAs and CANs . . . . . . . . . . . . . . 107

4.3. Weights of RAND weight distribution. . . . . . . . . . . . . . . . . . . 109

4.4. Weights of MAN weight distribution. . . . . . . . . . . . . . . . . . . 109

4.5. Results for WBCA Instances. . . . . . . . . . . . . . . . . . . . . . . 110

5.1. IFS-family of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2. IPO-family vs IFS-family vs Best Bound . . . . . . . . . . . . . . . . 122

127



List of Figures

1.1. An MCA(16; 3, 12, (42, 33, 27)). . . . . . . . . . . . . . . . . . . . . . . 10

2.1. Structure of plug-in result . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2. Example for plug-in: Seed arrays . . . . . . . . . . . . . . . . . . . . 35

2.4. Example for plug-in: Result . . . . . . . . . . . . . . . . . . . . . . . 35

2.3. Example for plug-in: Meta array and maps . . . . . . . . . . . . . . . 36

2.5. Structure of refined plug-in result . . . . . . . . . . . . . . . . . . . . 42

2.6. Example refined plug-in: Seed arrays . . . . . . . . . . . . . . . . . . 43

2.7. Example refined plug-in: Meta array and maps . . . . . . . . . . . . . 43

2.8. Example for plug-in: Seeds . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9. Composed SUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10. CA as Abstract Test Suite . . . . . . . . . . . . . . . . . . . . . . . . 51

2.11. CA× PHF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.12. MCA and IFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1. (3, 2, 2)-ary 2-tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2. CAs as SCs: Example . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3. CAs as SCs: Visualization . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4. VCAs as SCs: Example . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5. WBCAs as wbSCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6. Structure of gAETG . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7. Structure of wbgAETG . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8. Weighted Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 111

128



List of Algorithms

1. MCAP2SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2. SC2MCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3. VCAP2SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4. SC2VCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. wbCAP2wbSCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6. gAETG (for MCAs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7. DDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8. biasedDDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9. wbDDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10. SC-greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11. wbSC-greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

12. wbgAETG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13. IFS-origin(N, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

14. IFS-greedy(N, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

15. IFS-score(N, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

129



Bibliography

[1] N Alon. Explicit construction of exponential sized families of k-independent

sets. Discrete Mathematics, 58(2):191 – 193, 1986.

[2] Ian Anderson. Combinatorics of finite sets. Courier Corporation, 1987.

[3] Egon Balas and Manfred W. Padberg. Set partitioning: A survey. SIAM

review, 18(4):710–760, 1976.

[4] Renée C. Bryce and Charles J. Colbourn. Test prioritization for pairwise

interaction coverage. In Proceedings of the 1st International Workshop on

Advances in Model-based Testing, A-MOST ’05, pages 1–7, New York, NY,

USA, 2005. ACM.

[5] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing for

pair-wise coverage with seeding and constraints. Information and Software

Technology, 48(10):960 – 970, 2006. Advances in Model-based Testing.

[6] Renée C. Bryce and Charles J. Colbourn. The density algorithm for pairwise

interaction testing. Software Testing, Verification and Reliability, 17(3):159–

182, 2007.

[7] Renée C. Bryce and Charles J. Colbourn. A density-based greedy algorithm

for higher strength covering arrays. Softw. Test. Verif. Reliab., 19(1):37–53,

March 2009.

[8] Renée C. Bryce, Charles J. Colbourn, and Myra B. Cohen. A framework

of greedy methods for constructing interaction test suites. In Proceedings of

the 27th International Conference on Software Engineering, ICSE ’05, pages

146–155, New York, NY, USA, 2005. ACM.

130



[9] Renée C. Bryce, Charles J. Colbourn, and Myra B. Cohen. A framework

of greedy methods for constructing interaction test suites. In Proceedings of

the 27th International Conference on Software Engineering, ICSE ’05, pages

146–155, New York, NY, USA, 2005. ACM.

[10] Kenneth A Bush et al. Orthogonal arrays of index unity. The Annals of

Mathematical Statistics, 23(3):426–434, 1952.

[11] M. A. Chateauneuf, Charles J. Colbourn, and D. L. Kreher. Covering arrays of

strength three. Designs, Codes and Cryptography, 16(3):235–242, May 1999.

[12] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of

Operations Research, 4(3):233–235, 1979.

[13] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C.

Patton. The aetg system: An approach to testing based on combinatorial

design. IEEE Transactions on Software Engineering, 23(7):437–444, 1997.

[14] G. D. Cohen, S. Litsyn, and C. Zemor. On greedy algorithms in coding theory.

IEEE Transactions on Information Theory, 42(6):2053–2057, Nov 1996.

[15] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. Con-

structing test suites for interaction testing. In 25th International Conference

on Software Engineering, 2003. Proceedings., pages 38–48, May 2003.

[16] Myra B. Cohen, Charles J. Colbourn, and Alan C.H. Ling. Constructing

strength three covering arrays with augmented annealing. Discrete Mathemat-

ics, 308(13):2709 – 2722, 2008. Combinatorial Designs: A tribute to Jennifer

Seberry on her 60th Birthday.

[17] Myra B Cohen, Peter B Gibbons, Warwick B Mugridge, Charles J Colbourn,

and James S Collofello. A variable strength interaction testing of components.

In Computer Software and Applications Conference, 2003. COMPSAC 2003.

Proceedings. 27th Annual International, pages 413–418. IEEE, 2003.

[18] Charles J Colbourn. Covering Array Tables for t=2,3,4,5,6. Available

at http://www.public.asu.edu/~ccolbou/src/tabby/catable.html, Ac-

cessed on 2018-01-09.

131

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html


[19] Charles J Colbourn. Table for CAN(3,k,2) for k up to 10000. Avail-

able at http://www.public.asu.edu/~ccolbou/src/tabby/3-2-ca.html,

Accessed on 2018-01-09.

[20] Charles J. Colbourn. Combinatorial aspects of covering arrays. Le Mathe-

matiche, LIX(I-II):125–172, 2004.

[21] Charles J Colbourn and Jeffrey H Dinitz. Handbook of combinatorial designs.

CRC press, 2006.

[22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Np-completeness. In Introduction to algorithms, pages 1048–1053. The MIT

Press, 3rd edition, 1990.

[23] Jacek Czerwonka. Pairwise testing in the real world: Practical extensions to

test-case scenarios. In Proceedings of 24th Pacific Northwest Software Quality

Conference, Citeseer, pages 419–430, 2006.

[24] S. R. Dalal, A. Jain, G. Patton, M. Rathi, and P. Seymour. Aetgsm web:

a web based service for automatic efficient test generation from functional

requirements. In Proceedings. 2nd IEEE Workshop on Industrial Strength

Formal Specification Techniques, pages 84–85, 1998.

[25] Siddhartha R. Dalal and Colin L. Mallows. Factor-covering designs for testing

software. Technometrics, 40(3):234–243, 1998.

[26] Peter Danziger, Eric Mendelsohn, Lucia Moura, and Brett Stevens. Covering

Arrays Avoiding Forbidden Edges, pages 296–308. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.

[27] P. Erdös, CHAO KO, and R. Rado. Intersection theorems for systems op finite

sets. Quart. J. Math. Oxford Ser.(2), 12:313–320, 1961.

[28] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM,

45(4):634–652, July 1998.

[29] Michael Forbes, Jim Lawrence, Yu Lei, Raghu N Kacker, and D Richard

Kuhn. Refining the in-parameter-order strategy for constructing covering ar-

rays. Journal of Research of the National Institute of Standards and Technol-

ogy, 113(5):287, 2008.

132

http://www.public.asu.edu/~ccolbou/src/tabby/3-2-ca.html


[30] G. Freiman, E. Lipkin, and L. Levitin. A polynomial algorithm for construct-

ing families of k-independent sets. Discrete Mathematics, 70(2):137 – 147,

1988.

[31] Fred Glover. Tabu search–part I. ORSA Journal on computing, 1(3):190–206,

1989.

[32] Fred Glover. Tabu search–part II. ORSA Journal on computing, 2(1):4–32,

1990.

[33] Mats Grindal and Jeff Offutt. Input parameter modeling for combination

strategies. In Proceedings of the 25th Conference on IASTED International

Multi-Conference: Software Engineering, SE’07, pages 255–260, Anaheim, CA,

USA, 2007. ACTA Press.

[34] Alan Hartman. Software and hardware testing using combinatorial covering

suites. In MartinCharles Golumbic and IrithBen-Arroyo Hartman, editors,

Graph Theory, Combinatorics and Algorithms, volume 34 of Operations Re-

search/Computer Science Interfaces Series, pages 237–266. Springer US, 2005.

[35] Alan Hartman and Leonid Raskin. Problems and algorithms for covering

arrays. Discrete Mathematics, 284(1):149 – 156, 2004. Special Issue in Honour

of Curt Lindner on His 65th Birthday.

[36] Refael Hassin and Asaf Levin. A better-than-greedy approximation algorithm

for the minimum set cover problem. SIAM Journal on Computing, 35(1):189–

200, 2005.

[37] A Samad Hedayat, Neil James Alexander Sloane, and John Stufken. Orthog-

onal arrays: theory and applications. Springer Science & Business Media,

2012.

[38] Brahim Hnich, Steven D. Prestwich, Evgeny Selensky, and Barbara M. Smith.

Constraint models for the covering test problem. Constraints, 11(2):199–219,

Jul 2006.

[39] Dorit S. Hochbaum and Anu Pathria. Analysis of the greedy approach in

problems of maximum k-coverage. Naval Research Logistics (NRL), 45(6):615–

627, 1998.

133



[40] Iiro Honkala. A graham-sloane type construction for s-surjective matrices.

Journal of Algebraic Combinatorics, 1(4):347–351, Dec 1992.

[41] W Cary Huffman and Vera Pless. Fundamentals of error-correcting codes.

Cambridge university press, 2010.

[42] Thomas W Hungerford. Algebra. 1974. Grad. Texts in Math, 1974.

[43] IEEE. IEEE standard for software unit testing. ANSI/IEEE Std 1008-1987,

pages 1–28, June 1987.

[44] Idelfonso Izquierdo-Marquez and Jose Torres-Jimenez. New covering array

numbers. arXiv preprint arXiv:1711.10040, 2017.

[45] David S. Johnson. Approximation algorithms for combinatorial problems. In

Proceedings of the Fifth Annual ACM Symposium on Theory of Computing,

STOC ’73, pages 38–49, New York, NY, USA, 1973. ACM.

[46] L. Kampel, B. Garn, and D. E. Simos. Combinatorial methods for mod-

elling composed software systems. In 2017 IEEE International Conference

on Software Testing, Verification and Validation Workshops (ICSTW), pages

229–238, March 2017.

[47] Ludwig Kampel, Manuel Leithner, Bernhard Garn, and Dimiris E. Simos.

Problems and algorithms for covering arrays via set covers. Preprint, 2017.

[48] Ludwig Kampel and Dimitris E. Simos. Set-based algorithms for combinato-

rial test set generation. In Franz Wotawa, Mihai Nica, and Natalia Kushik,

editors, Testing Software and Systems, pages 231–240, Cham, 2016. Springer

International Publishing.

[49] Petteri Kaski, Patric RJ Österg̊ard, and RJ Patric. Classification algorithms

for codes and designs, volume 15. Springer, 2006.

[50] Gy Katona. Intersection theorems for systems of finite sets. Acta Mathematica

Hungarica, 15(3-4):329–337, 1964.

[51] Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum

coverage problem. Information Processing Letters, 70(1):39–45, 1999.

134



[52] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

[53] P. Kitsos, D. E. Simos, J. Torres-Jimenez, and A. G. Voyiatzis. Exciting

fpga cryptographic trojans using combinatorial testing. In 2015 IEEE 26th

International Symposium on Software Reliability Engineering (ISSRE), pages

69–76, Nov 2015.

[54] K. Kleine and D. E. Simos. Coveringcerts: Combinatorial methods for x.509

certificate testing. In 2017 IEEE International Conference on Software Test-

ing, Verification and Validation (ICST), pages 69–79, March 2017.

[55] Kristoffer Kleine and Dimitris E. Simos. An efficient design and implementa-

tion of the in-parameter-order algorithm. Mathematics in Computer Science,

Dec 2017.

[56] Daniel J Kleitman and Joel Spencer. Families of k-independent sets. Discrete

Mathematics, 6(3):255–262, 1973.

[57] János Körner and Gábor Simonyi. A sperner-type theorem and qualitative

independence. Journal of Combinatorial Theory, Series A, 59(1):90 – 103,

1992.

[58] R. Krishnan, S. Murali Krishna, and P. Siva Nandhan. Combinatorial testing:

Learnings from our experience. SIGSOFT Softw. Eng. Notes, 32(3):1–8, May

2007.

[59] D.R. Kuhn, R.N. Kacker, and Y. Lei. Practical combinatorial testing. NIST

Special Publication 800-142, 2010.

[60] D.R. Kuhn, R.N. Kacker, and Y. Lei. Introduction to Combinatorial Testing.

Chapman & Hall/CRC Innovations in Software Engineering and Software De-

velopment Series. Taylor & Francis, 2013.

[61] V. V. Kuliamin and A. A. Petukhov. A survey of methods for constructing

covering arrays. Programming and Computer Software, 37(3):121, 2011.

[62] Victor Kuliamin and Alexander Petukhov. Covering arrays generation meth-

ods survey. In Proceedings of the 4th International Conference on Leveraging

135



Applications of Formal Methods, Verification, and Validation - Volume Part

II, ISoLA’10, pages 382–396. Springer-Verlag, 2010.

[63] B. Garn L. Kampel and D. E. Simos. Covering arrays via set covers. to appear

in Electronic Notes in Discrete Mathematics, 2018.

[64] B. Stevens L. Moura, S. Raaphorst. The lovász local lemma and variable

strength covering arrays. to appear in Electronic Notes in Discrete Mathemat-

ics, 2017.

[65] Jim Lawrence, Raghu N Kacker, Yu Lei, D Richard Kuhn, and Michael Forbes.

A survey of binary covering arrays. the electronic journal of combinatorics,

18(1):P84, 2011.

[66] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog: A gen-

eral strategy for t-way software testing. In 14th Annual IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems

(ECBS’07), pages 549–556, March 2007.

[67] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence.

Ipog/ipog-d: efficient test generation for multi-way combinatorial testing.

Software Testing, Verification and Reliability, 18(3):125–148, 2008.

[68] Robert Mandl. Orthogonal latin squares: An application of experiment design

to compiler testing. Commun. ACM, 28(10):1054–1058, October 1985.

[69] Sosina Martirosyan and van Tran Trung. On t-covering arrays. Designs, Codes

and Cryptography, 32(1):323–339, May 2004.

[70] Karen Meagher, Lucia Moura, and Latifa Zekaoui. Mixed covering arrays on

graphs. Journal of Combinatorial Designs, 15(5):393–404, 2007.

[71] Karen Meagher and Brett Stevens. Group construction of covering arrays.

Journal of Combinatorial Designs, 13(1):70–77, 2005.

[72] Lucia Moura, John Stardom, Brett Stevens, and Alan Williams. Covering ar-

rays with mixed alphabet sizes. Journal of Combinatorial Designs, 11(6):413–

432, 2003.

136



[73] Peyman Nayeri, Charles J. Colbourn, and Goran Konjevod. Randomized post-

optimization of covering arrays. European Journal of Combinatorics, 34(1):91

– 103, 2013. Combinatorics and Stringology.

[74] George L Nemhauser and Laurence A Wolsey. Integer programming and com-

binatorial optimization. Wiley, Chichester. GL Nemhauser, MWP Savels-

bergh, GS Sigismondi (1992). Constraint Classification for Mixed Integer Pro-

gramming Formulations. COAL Bulletin, 20:8–12, 1988.

[75] Kari J. Nurmela. Upper bounds for covering arrays by tabu search. Discrete

Applied Mathematics, 138(1):143 – 152, 2004. Optimal Discrete Structures

and Algorithms.

[76] National Institute of Standards and Technology (NIST).

Downloadable tools. Available at https://csrc.nist.gov/

Projects/Automated-Combinatorial-Testing-for-Software/

Downloadable-Tools#acts, Accessed on 2018-01-21.

[77] Martyn A Ould and Charles Unwin. Testing in software development. Cam-

bridge University Press, 1986.

[78] X. Qu and M. B. Cohen. A study in prioritization for higher strength com-

binatorial testing. In 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation Workshops, pages 285–294, March 2013.

[79] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial interaction regression

testing: A study of test case generation and prioritization. In 2007 IEEE

International Conference on Software Maintenance, pages 255–264, Oct 2007.

[80] Sebastian Raaphorst. Variable strength covering arrays. University of Ottawa

(Canada), 2013.

[81] Derek JS Robinson. A Course in the Theory of Groups, volume 80. Springer

Science & Business Media, 2012.

[82] Rust. The Rust Programming Language. Available at https://www.

rust-lang.org/en-US/, Accessed on 2018-02-01.

137

https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software/Downloadable-Tools#acts
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software/Downloadable-Tools#acts
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software/Downloadable-Tools#acts
https://www.rust-lang.org/en-US/
https://www.rust-lang.org/en-US/


[83] Jennifer Seberry and Mieko Yamada. Hadamard matrices, sequences, and

block designs. Contemporary design theory: a collection of surveys, pages

431–560, 1992.

[84] Gadiel Seroussi and Nader H Bshouty. Vector sets for exhaustive testing of

logic circuits. IEEE Transactions on Information Theory, 34(3):513–522, 1988.

[85] Dennis E. Shasha, Andrei Y. Kouranov, Laurence V. Lejay, Michael F. Chou,

and Gloria M. Coruzzi. Using combinatorial design to study regulation by

multiple input signals. a tool for parsimony in the post-genomics era. Plant

Physiology, 127(4):1590–1594, 2001.

[86] D. E. Simos, R. Kuhn, A. G. Voyiatzis, and R. Kacker. Combinatorial methods

in security testing. IEEE Computer, 49:40–43, 2016.

[87] Neil J. A. Sloane. A library of orthogonal arrays. Available at http://

neilsloane.com/oadir/, Accessed on 2018-01-09.

[88] Neil JA Sloane. Covering arrays and intersecting codes. Journal of combina-

torial designs, 1(1):51–63, 1993.

[89] Emanuel Sperner. Ein satz über untermengen einer endlichen menge. Mathe-

matische Zeitschrift, 27(1):544–548, Dec 1928.

[90] M. H. Stone. The theory of representation for boolean algebras. Transactions

of the American Mathematical Society, 40(1):37–111, 1936.

[91] G. Tassey. The economic impacts of inadequate infrastructure for software

testing. National Institute of Standards and Technology, 2002.

[92] J. Torres-Jimenez and I. Izquierdo-Marquez. Survey of covering arrays. In

2013 15th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, pages 20–27, Sept 2013.

[93] Jose Torres-Jimenez and Eduardo Rodriguez-Tello. New bounds for binary

covering arrays using simulated annealing. Information Sciences, 185(1):137

– 152, 2012.

[94] Walter D Wallis. A beginner’s guide to graph theory. Springer Science &

Business Media, 2010.

138

http://neilsloane.com/oadir/
http://neilsloane.com/oadir/


[95] A. W. Williams and R. L. Probert. A practical strategy for testing pair-

wise coverage of network interfaces. In Software Reliability Engineering, 1996.

Proceedings., Seventh International Symposium on, pages 246–254, Oct 1996.

[96] Alan W. Williams and Robert L. Probert. Formulation of the Interaction

Test Coverage Problem as an Integer Program, pages 283–298. Springer US,

Boston, MA, 2002.

[97] J. Yan and J. Zhang. Backtracking algorithms and search heuristics to generate

test suites for combinatorial testing. In 30th Annual International Computer

Software and Applications Conference (COMPSAC’06), volume 1, pages 385–

394, Sept 2006.

[98] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial test

generation tool. In 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation, pages 370–375, March 2013.

[99] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A combinatorial test

generation tool. In 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation, pages 370–375, March 2013.

[100] Eric R Ziegel. Experimental design for combinatorial and high throughput

materials development. Technometrics, 45(4):365–365, 2003.

139


	Abstract
	Zusammenfassung
	Publications arisen from this Thesis
	Acknowledgments
	Introduction
	Theoretical Constructions
	Preliminaries and Definitions
	Covering Arrays (CAs)
	Mixed Level Covering Arrays (MCAs)
	Some Basic Properties of CAs and MCAs
	Basic Properties of Binary CAs
	Basic Properties of MCAs

	Asymptotics for Covering Array Numbers

	Combinatorial Constructions
	Constructions Based on Algebraic Structures
	Orthogonal Arrays over Finite Fields
	CAs via Group Actions

	Plug-In Constructions
	Nested CAs
	A Refinement of the Nested CA Construction
	Relevance of Nested CA Constructions for Applications in Combinatorial Testing
	CAs from Perfect Hashfamilies

	CAs as Families of Sets
	Independent Families of Sets (IFSs)
	Maximal 2-Independent Families of Sets

	MCAs as Families of Partitions


	Algorithms for Covering Arrays
	An Overview of Algorithms for CA generation
	Greedy Algorithms for CA Generation
	Vertical Greedy Algorithms
	Horizontal Greedy Algorithms
	Two Dimensional Growth

	Metaheuristic Methods
	Hybrid Methods
	Exact Approaches

	CAs as Cover Problems
	Set Covers and Integer Programming
	Set Covers
	Integer Programming
	Set Covers and Integer Programming

	Formulating Covering Arrays as Set Covers
	Mapping MCAs to SCs
	Mapping Variable Strength CAs to SCs
	Mapping Weighted Budgeted CAs to Budgeted SCs

	Algorithms
	gAETG: A Greedy Heuristic for MCA Generation
	A Review of the Deterministic Density Algorithm
	DDA for WBCAs
	Revisiting gAETG as a Greedy Heuristic for Set Covers
	A Weighted Budgeted Variant of gAETG for WBCAs

	Experiments

	A Family of Algorithms based on IFSs
	A Balancing Property
	A Family of Algorithms for Generation of IFSs
	IFS-Origin
	IFS-Greedy
	IFS-Score

	Results

	Conclusion and Future Work
	List of Acronyms
	List of Tables
	List of Figures
	List of Algorithms


