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Kurzfassung

Obwohl die ganzzahlige lineare Programmierung (ILP) und die gemischte ganzzahlige
Programmierung (MILP) NP-vollständige Probleme sind, schaffen es moderne Solver diese
Probleme mit Millionen von Variablen oder Ungleichungen zu lösen. Trotzdem bleiben
bestimmte ILP-Instanzen mit einer relativ geringen Größe immer noch ungelöst. Neueste
Fortschritte haben gezeigt, dass manchmal die Struktur von graphischen Modellen der
ILP- und MILP-Instanzen (gemessen durch etablierte strukturelle Parameter wie die
Treewidth oder Tree-depth) ausgenutzt werden kann um diese effizient zu lösen. In dieser
Arbeit analysieren wir die Struktur von graphischen Repräsentationen von ILP- und
MILP-Instanzen aus der Praxis, indem wir die Werte von verschiedenen strukturellen
Parametern berechnen.

Unser Framework MILP-Struct stellt die Beziehungen zwischen den Variablen und
Ungleichungen mittels dem Primal-, Incidence- und Dual-Graphen der ILP- oder MILP-
Instanz dar. Auf diesen graphischen Modellen werden dann Unter- und Obergrenzen
von den strukturellen Parametern Treewidth, Tree-depth und Torso-width berechnet,
für welche in letzter Zeit Fest-Parameter-Algorithmen zum Lösen von ILP oder MILP
etabliert worden sind. Die Ergebnisse von MILP-Struct angewendet auf die MIPLIB
Bibliothek von praktischen ILP- und MILP-Instanzen zeigen, dass manche der berechneten
Parameter tatsächlich viel kleiner als die Anzahl der Variablen sind.
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Abstract

Even though Integer Linear Programming (ILP) and Mixed Integer Linear Programming
(MILP) are NP-complete problems, state-of-the-art solvers are able to solve instances
with millions of variables or constraints. However, certain ILP instances with a relatively
small size remain unsolved. Recent advances have shown that in some cases the structure
of graphical models of ILP and MILP instances (measured in terms of well-established
structural parameters such as treewidth and tree-depth) can be exploited to solve these
problems efficiently. In this thesis, we analyze the structure of graphical representations of
practical ILP and MILP instances by computing the value of these structural parameters.

We present our framework MILP-Struct that captures the variable-constraint interactions
by means of the primal, incidence and dual graph representation of the ILP or MILP
instance. On these graphical models, MILP-Struct computes bounds for the structural
parameters treewidth, tree-depth and torso-width, which have recently been shown to give
rise to fixed-parameter algorithms solving ILP or MILP. Results obtained by applying
MILP-Struct on the MIPLIB library of practical MILP and ILP instances show that
some of the computed parameters are much smaller than the number of variables.
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CHAPTER 1
Introduction

Besides the Boolean satisfiability problem (SAT) and the constraint satisfaction problem
(CSP), integer linear programming (ILP) is one of the most classical NP-complete prob-
lems [Kar72]. It is possible to naturally formulate problems as ILP instances; examples
include process scheduling [FL05], AI planning [VBS99] and vehicle routing [Lap92].
The ILP problem can be formulated as follows: Given a matrix A ∈ Zm×n and two
vectors b ∈ Zm, c ∈ Rn find a vector x ∈ Zn such that Ax ≤ b and cx is maximal. The
matrix A is called the constraint matrix and with the vector b the rows can be seen as
a set of constraints. When both integer and non-integer variables are considered, one
speaks of the Mixed Integer Linear Programming (MILP) problem.
During the last few years, the performance of ILP solvers increased massively. The
commercial CPLEX MILP solver, first released in 1991, has undergone a major speedup
in each newly released version [Bix12]. The runtime of a test set of about 2000 models
were compared on CPLEX Version 1.2 released in 1991, the first version supporting
mixed integer programming, with CPLEX 11, that appeared in 2007. Every new version
produced a speedup compared to the previous version. On average, the speedup in these
years exceeded a factor of two; in other words, each new version was at least two times
faster than the one before. In total, this results in a projected, machine-independent
improvement of a speedup factor of over 29,000 for CPLEX 11 compared to CPLEX
1.2 [Bix12]. Using the speed comparisons for the mixed integer programming solver
Gurobi, where a speedup factor of more than 20 between Gurobi 5.5 (2013) and Gurobi
1.0 (2009) is observed and the fact that Gurobi 1.0 had similar runtimes as CPLEX 11, an
impressive combined machine-independent speedup factor of 580,000 between 1991 and
2013 is obtained. The application of different theoretical results from the last 30 years,
like the development of branch-and-cut algorithms, are the reason for these software
improvements [BKM16].
In addition, in the years from 1993 to 2013 the hardware speedup amounts to approx-
imately a factor of 320,000 measured by the number of floating point operations per
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1. Introduction

second in supercomputers [BKM16]. Combining the two software improvements of the
solvers together with the hardware improvements over this time period, Bertsimas et al.
speak of an astonishing 200 billion factor speedup for solving MILP problems [BKM16].
As a result, many ILP and MILP instances that were classified as hard in the beginning
can now be solved with relative ease. In spite of these improvements, some ILP or MILP
instances are still not solvable by modern solvers, sometimes even when the size of the
instance is relatively small in terms of the number of variables and constraints. Koch
et al. [KMP13] categorize benchmark instances into three groups: easy instances which
may be solved in a few minutes, instances which cannot be solved at all (a specific time
limit is always exceeded) and those instances which take relatively long to obtain the
solution. The group of in-between instances is hereby relatively small compared to the
group of easy and not yet solved instances. A disappointing phenomenon that Koch et
al. observe is that even when computers are made faster, the same amount of instances
is solved. Some of the in-between instances become easy, but the number of unsolvable
instances remains nearly the same. One explanation for this behaviour may be that those
instances do not have a certain structure that the solvers can exploit. These instances
then need to be solved by “brute force”. The NP-completeness of ILP implies that it may
take exponential time in general (unless P equals NP).
In order to determine the source of the exponential blow-up in the running time of
an ILP instance, one may use the framework of parameterized complexity theory
(see [FG06, DF12, DF13, CFK+15]). This allows a more fine-grained investigation
of difficult algorithmic problems than classical complexity theory. In the classical setting,
time and space complexity is measured only in terms of input size. However, the difficulty
of a problem can sometimes be tied to certain structural properties. Parameterized
complexity theory may exploit such properties by considering an additional input di-
mension, a parameter of the problem instance. The parameter is a numerical value
depending on the input instance, for example the parameter may be the solution size
or some problem-specific structural property. Usually we are interested in instances
where the size of the parameter is small compared to the input size. The main notion of
interest in parameterized complexity theory is fixed-parameter tractability. This can be
seen as a tractable fragment of hard problems, an extension to polynomial-time solvable
algorithms by restricting the non-polynomial behaviour only to the parameter [FG06,
Preface]. More formally, a parameterized problem is fixed-parameter tractable if there
exists an algorithm with runtime f(k) ·poly(n) where f(k) is a function depending only on
the parameter and poly(n) is a polynomial of the problem input size n. If the parameter
is assumed to be fixed instead of being part of the input, a fixed-parameter tractable
algorithm runs in polynomial time.
In order to analyze the structure of an ILP or MILP instance, we consider the complexity
of variable-constraint interactions. This is achieved by measuring structural properties of
graphical representations of instances, in particular the primal, incidence and dual graph
representations, which were originally defined for the SAT problem.

1. The primal graph representation contains a vertex for every variable of the instance
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and an edge between two vertices, if there is a constraint that contains both variables
(with non-zero coefficients in the constraint matrix).

2. The incidence graph has a vertex for every variable and a vertex for every constraint
in the instance and an edge between a variable vertex and a constraint vertex if
the variable occurs in the constraint.

3. The dual graph contains a vertex for every constraint and has an edge between two
constraint vertices if there exists a variable that occurs in both constraints.

The primal and dual graph representations are like opposites to each other, whereas the
incidence graph is the only graph that reflects which variable occurs in which constraint.
Observe that neither the coefficients of the variables nor the right-hand side value of a
constraint is contained in any of the graph representations. However, the structure of the
instance is represented in an efficient and compact way. Analyzing structural properties
of these graphical representations may thus yield information about the hardness of the
ILP instance.
Treewidth is the most prominent structural measure for graphs. Apart from having
fundamental connections to graph theory [RS84], it has found an extensive range of
applications in many areas of computer science, including Boolean satisfiability [SS09],
constraint satisfaction [SS10], and naturally also graph algorithms [Cou90]. At its core,
treewidth captures how tree-like a graph (or graph representation of an instance) is.
This is very useful from an algorithmic standpoint since graphs of small treewidth often
allow the efficient solution of a range of problems; in particular, many problems that are
easy on trees can also be solved efficiently (by dynamic programming fixed-parameter
algorithms) parameterized by treewidth.
Due to the inherent generality of ILP, treewidth on its own is not sufficient to obtain
fixed-parameter tractability for ILP. In fact, there are only a few known cases when an
ILP instance is polynomial-time solvable using treewidth. The following two results are
thus the more important:

1. ILP feasibility is fixed-parameter tractable parameterized by the treewidth of
the primal graph and the domain size of the variables [JK15]

2. ILP is fixed-parameter tractable parameterized by the treewidth of the incidence
graph and the maximum absolute value that can be obtained from a constraint by
summing the left-hand side of a constraint over a variable assignment up [GOR17]

Note that for the second result, variable domains need to be bounded. Another well-
studied structural parameter is the tree-depth of a graph. This measures how close a
graph is to being a star [BDK12]. Unlike the results for treewidth, the following result
establishing fixed-parameter tractability of ILP does not depend on the domain size of
the variables:
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1. Introduction

3. ILP is fixed-parameter tractable parameterized by the tree-depth of the extended
primal graph of the constraint matrix and the maximum absolute value of a
coefficient occurring in the constraint matrix A or in the vector b [GO16].

With these three results for the fixed-parameter tractability of ILP we obtain that if
the graph has either bounded treewidth or bounded tree-depth (in case of the primal
graph) and some special conditions for the constraint matrix hold, the ILP instance can
be solved in polynomial time.
Unfortunately, these results for ILP do not generalize to MILP. For MILP, one natural
approach is to separate the polynomial-time solvable non-integer part from the intractable
integer part. For this, the primal graph of the MILP instance is considered with the
additional information whether a vertex corresponds to an integer or a non-integer
variable. With the idea that the integer vertices are the reason for the exponential
behaviour of the MILP problem instance, Ganian et al. [GOR17] construct a so called
torso of the primal graph, that is obtained by collapsing the non-integer vertices into the
integer vertices. The torso-width is then defined to be the treewidth of a torso satisfying
certain properties. Similarly as for ILP and the treewidth, MILP is fixed-parameter
tractable parameterized by torso-width.
The aim of this thesis is twofold:

1. We provide a framework for the computation of structural parameters of graphical
representations of ILP and MILP instances.

2. We then use this framework to compute structural parameters for practical ILP
and MILP instances and to analyze the correspondence between those parameters
and the hardness of solving the instances.

For the first task, the framework MILP-Struct is provided. It is published under the
LGPL license and can be accessed at https://github.com/kiqo/MILP-Struct.
It is based on the treewidth library LibTW [vDvdHS], that is a Java-based library able
to compute tree decompositions and the exact treewidth for small graphs, but also
has different implementations of upper and lower bound algorithms for the treewidth.
MILP-Struct takes as input a single or multiple ILP or MILP instances and computes one
or more graph representations of the programming instance. The graph representation is
then translated to the internal graph format of the LibTW library. Different structural
parameters may be computed, some of which use the LibTW library. Currently, the
following three are supported: The treewidth can be computed for all three graph
representations (the primal, incidence and dual graph), the tree-depth and the torso-
width can only be computed for primal graphs. In addition to the structural parameters,
different statistics about the ILP or MILP instance and its graph representations are
computed.
As for the second aim, we apply our framework MILP-Struct on practical instances from
the MIPLIB library [mipb, KAA+11] and present the obtained results. The MIPLIB
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library is a collection of real-world integer and mixed integer instances from different
academic and industrial applications. MILP-Struct is thus the first framework for
analyzing structural parameters of graphical representations of ILP or MILP instances.
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CHAPTER 2
Preliminaries

This chapter provides definitions for terms that are used throughout the thesis. At first
some basic graph notions are defined. Then, integer linear programs and variations of the
problem statement are introduced. The primal, incidence and dual graph representations
of integer linear programs are defined. After that, three structural parameters of graphs
are introduced: the treewidth of a graph [RS84] as the most prominent parameter on
which many dynamic programming algorithms are based, the tree-depth [NdM12, Chapter
6] which is also a widely studied parameter, and the torso-width [GOR17] which is a
parameter specific for primal graphs of mixed integer linear programs.

2.1 Graph definitions

We refer to the standard textbook by Diestel [Die12] for an in-depth overview of graph
terminology. A graph G = (V,E) consists of a set of vertices V and a set of edges E,
which is a subset of two-element subsets of V , the set

(V
2
)
. The vertices and edges of a

graph G are denoted by V (G) and E(G), respectively. Unless specified otherwise, each
graph is assumed to be undirected and simple (no loops and double-edges). An edge
e = {u, v} is called incident to the vertices u and v. A vertex u is called adjacent to
a vertex v if the two vertices are connected by an edge. A clique is a subset of the
vertices where there is an edge between any two distinct vertices. A complete graph on n
vertices, denoted by Kn, is a graph with n vertices in which there is an edge between
any two distinct vertices. If any two vertices of a graph are connected by a path, the
graph is connected. A connected component of a graph is a maximal subgraph where
every two vertices are connected by a path. A connected graph that does not contain
any cycle is a tree. A forest is a disjoint union of trees. The set of vertices that are
adjacent to a vertex v are called the neighbours of v. The degree of a vertex v is the
number of neighbours of v, denoted d(v). The neighbours of a set of vertices W , also
denoted as N(W ), is the set {v ∈ V (G)\W | ∃w ∈ W such that v is adjacent to w}.
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2. Preliminaries

The subgraph of G = (V,E) induced by a vertex set W , denoted G[W ], is defined by
G[W ] = (W, {{v, w} ∈ E(G) | v ∈W ∧w ∈W}). A bipartite graph G = (V ∪W,E) is a
graph that can be divided into two disjoint vertex sets V and W and every edge in G is
incident to a vertex in V and a vertex in W . A vertex set S ⊆ V is a separator of G if
G[V \S] has more than one connected component. The contraction of an edge {u, v} ∈ E
is the operation of removing the edge {u, v} and the two vertices u and v and replacing
it by a new vertex x which is adjacent to all neighbours of u and of v. A graph H is
a minor of a graph G if H is the result of applying one or more contractions to some
subgraph of G. This means that H can be obtained from G by vertex deletions, edge
deletions or edge contractions. A vertex set X in a graph G is collapsed, denoted G ◦X,
if X is deleted from the graph and an edge is added between each pair of neighbours of
X. In the resulting graph G ◦X, the neighbours of X form a clique. If the set X consists
of only one vertex v, then we also speak about the process of eliminating v from the
graph G. Note that eliminating every vertex v of a set of vertices X results in the same
graph as G ◦X and that the order of the elimination does not influence the result graph.

2.2 Integer linear programs

An integer linear program (ILP), also called an integer program, is the following problem:

Given An integer matrix A ∈ Zm×n and two vectors b ∈ Zm, c ∈ Rn

Task Find a vector x ∈ Zn such that Ax ≤ b and cx is maximal

Closely related to this problem is the ILP feasibility problem: Given an integer matrix
A ∈ Zm×n and a vector b ∈ Zm it asks whether there exists a vector x ∈ Zn such that
Ax ≤ b. Both ILP and ILP feasibility are well-known to be NP-complete [Kar72]. The
well-studied linear programming problem (LP) has the same formulation, but without the
restriction of the vector x to take integer values. The matrix A is called the constraint
matrix, cx is called the objective function.
A matrix is totally unimodular if every square submatrix has determinant 1,−1, or
0. This implies that a matrix can only be totally unimodular when every entry is in
{1,−1, 0} as every entry corresponds to a one by one square submatrix. If the constraint
matrix A of an ILP instance is totally unimodular, the ILP instance can be solved in
polynomial time [Sch86, Chapter 19]. Moreover, it can be tested in polynomial time
whether A is totally unimodular [Sch86, Chapter 19, 20]. This represents the most
classical example of a tractable ILP fragment.

For our purposes we will also use an equivalent, constraint-based representation of an
ILP instance adapted from [GOR17]. An ILP instance I is a tuple (F, η), where F is a
set of linear constraints over variables X = {x1, ..., xn}. Each constraint Ai ∈ F has the
form ai1x1 + ai2x2 + ...+ ainxn ≤ bi. The objective function η is a linear function over
X of the form η(X) = c1x1 + c2x2 + ...+ cnxn. As a convention, we omit variables from

8



2.2. Integer linear programs

constraints or the objective function whose coefficient is equal to zero. The variables
with non-zero coefficients of Ai ∈ F are denoted by var(Ai). The variables of I are also
written as var(I).

A mixed integer linear program (MILP) contains both real and integer variables and
is thus a “mix” of a LP and ILP. Formally, a MILP instance I is a tuple (F, η), where
F is a set of linear constraints over the disjoint variable set X ∪ Y , where X is the set
of integer variables, denoted by varZ(I), and Y is the set of real variables, denoted by
varR(I). η is a linear function over the variables X ∪ Y .

The following three graph representations can be defined on the constraint matrix of any
ILP or MILP instance. For simplicity it is stated only for ILP instances but can also be
defined on MILP instances.

Definition 2.1 (Primal graph). The primal graph GI = (V,E) of an ILP instance
I = (F, η) is the graph that has the variables of I as its vertices and contains an edge
for every two variables that occur with non-zero coefficients together in a constraint,
i.e. V = var(I) and E = {{xi, xj} | xi, xj ∈ var(I) and ∃Ak ∈ F with aki 6= 0 and
akj 6= 0}.
The extended primal graph of I = (F, η) has the variables of I as its vertices and contains
an edge for every two variables that occur with non-zero coefficients together in a constraint
or in the objective function η.

The primal graph of the ILP instance is sometimes also called the Gaifman-graph of the
constraint matrix in literature. However, similar to the approach in Boolean satisfiability,
we will further refer to it as the primal graph.

Definition 2.2 (Incidence graph). The incidence graph HI = (V,E) of an ILP instance
I = (F, η) is the graph that has the variables of I and the constraints F as its vertices and
contains an edge between a variable vertex and a constraint vertex if the variable has a
non-zero coefficient in the constraint, i.e. V = var(I)∪F and E = {{xi, Aj} | xi ∈ var(I)
and Aj ∈ F and aji 6= 0}.
The extended incidence graph of I is the graph that has the variables of I, the constraints
F and the objective function η as its vertices and contains an edge between a variable
vertex and a constraint vertex, or the objective function vertex if the variable has a
non-zero coefficient in the constraint or in the objective function.

The incidence graph gives a more refined view on the structure of the underlying problem
instance. The incidence graph of the constraint matrix contains information to determine
which variable occurs in which constraint. In contrast, the primal graph contains only
information about whether two variables appear together in a constraint, but not in
which specific constraint.

Definition 2.3 (Dual graph). The dual graph JI = (V,E) of an ILP instance I = (F, η)
is the graph that has the constraints F as its vertices and contains an edge between two
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2. Preliminaries

constraint vertices if there exists a variable that occurs in both constraints with a non-zero
coefficient, i.e. V = F and E = {{Ai, Aj} | Ai ∈ F and Aj ∈ F and ∃xk ∈ var(I) with
aik 6= 0 and ajk 6= 0}.
The extended dual graph of I is the graph that has the constraints F and the objective
function η as its vertices and contains an edge between a constraint vertex and the
objective function vertex or two constraint vertices if there exists a variable with a non-
zero coefficient that occurs in both constraints, in case both vertices are constraint vertices,
or in the constraint and the objective function otherwise.

When the objective function is not considered in the graph representation, we also speak
of the simplified primal, incidence or dual graph representation in order to distinguish
them of the extended graph representations (see also [GOR17]).

2.3 Parameterized complexity

Parameterized complexity theory (see [FG06, DF12, DF13, CFK+15]) gives a more
detailed view of hard algorithmic problems. As a rather new branch of complexity theory,
it was brought forward in a series of articles by Downey and Fellows [DF92, DF95a, DF95b]
in the mid-1990s. They defined the complexity class fixed-parameter tractable, introduced
reductions for parameterized problems and proved fundamental completeness results
for various problems [FG06, Preface]. In normal complexity theory, the runtime of a
problem instance is usually studied by its input size n. When an additional parameter k is
considered, one obtains parameterized complexity classes. This parameter is a numerical
value which is in a certain way dependent on the input. The parameter may either
correspond to the value of the problem objective function, or it may measure structural
properties of the input instance [FLM+08]. The parameter is usually small compared
to the input size of the instance. For example, consider the problem of evaluating a
query over a database. Whereas the size of the query is small, the size of the database is
usually much larger. A natural parameter for this problem is then the size of the input
query [FG06, Preface]. Formally, decision problems are described as languages over finite
nonempty alphabets Σ.

Definition 2.4 ([FG06, Chapter 1]). Let Σ be a finite alphabet.

1. A parameterization of Σ∗ is a mapping κ : Σ∗ → N that can be computed in
polynomial time.

2. A parameterized problem over Σ is a pair (Q,Σ∗) where Q ⊆ Σ∗ is a set of strings
over Σ and κ is a parameterization of Σ∗.

For a given parameterized problem (Q, κ), the strings x ∈ Σ∗ are called instances of Q or
(Q, κ), and the numbers κ(x) are called parameters. Such problems are represented in
the following form [FG06, Chapter 1]:
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2.4. Treewidth

Instance x ∈ Σ∗

Parameter κ(x)

Problem Decide whether x ∈ Q

Compared to classical complexity theory, an additional dimension is considered. This
leads to a more refined complexity hierarchy than in the classical complexity theory [FG06,
Preface].
For problems that are known to be NP-complete or harder, one hopes to obtain algorithms
that run in time f(κ(x)) · poly(|x|), where f is a computable function dependent only on
the parameter κ(x), and poly(|x|) is a polynomial in the length of the string (or size of
the input), i.e. poly(|x|) ∈ O(|x|c) for some constant c [FG06, Chapter 1].

Definition 2.5 (Fixed-parameter tractability [FG06, Chapter 1]). Let Σ be a finite
alphabet and κ : Σ∗ → N be a parameterization.

1. An algorithm A with an input alphabet Σ is a fixed-paramater tractable algorithm
with respect to the parameterization κ if the running time of the algorithm A on
every input x ∈ Σ∗ is bounded by

f(κ(x)) · poly(|x|)

where f : N→ N is a computable function.

2. A parameterized problem (Q, κ) is fixed-paramater tractable if there exists a fixed-
parameter tractable algorithm with respect to κ that decides Q. The complexity
class FPT is the class of fixed-paramater tractable problems.

For graph problems we will denote the size of the input graph as n and the parameter
as k. Consider the two runtimes nk and 2k · n. Even though both are exponential in
k, the first “blows up” the whole problem, whereas the second is only exponential in k
but in a way which is independent of the input size. The complexity class FPT keeps
the non-polynomial behaviour of a problem restricted by the parameter; it can thus also
be seen as a relaxation of classical tractability, the class of polynomial time solvable
algorithms [FG06, Chapter 1].

2.4 Treewidth
The treewidth is the most prominent structural parameter of a graph. Many graph prob-
lems can be solved efficiently by dynamic programming algorithms on graphs of bounded
treewidth. Often, they even turn out to be fixed-parameter tractable parameterized by
the treewidth. The concept of a tree decomposition and treewidth was introduced by
Robertson and Seymour [RS84].
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Definition 2.6. A tree decomposition of a graph G is a pair (T,X), where T is a tree
and X = {X(t) | t ∈ V (T )} is a family of subsets of V (G) with the following properties:

W1
⋃
t∈V (T )X(t) = V (G)

W2 For all edges {u, v} ∈ E(G) there exists t ∈ V (T ) such that u ∈ X(t) and v ∈ X(t)

W3 For all i, j, k ∈ V (T ): if j is on the path from i to k in V (T ), then X(i)∩X(k) ⊆
X(j)

When replacing the third property by the following, one obtains an equivalent definition
[Bod98]:

W3’ For all v ∈ V (G) the set of vertices {t ∈ V (T ) | v ∈ X(t)} forms a connected
subgraph (i.e. a subtree) of T

The elements of X, the sets X(t), are referred to as bags of the tree decomposition in
order to distinguish them of the set of vertices V (G) of the graph. The width of a tree
decomposition (T,X) is maxt∈V (T )|X(t)| − 1. The treewidth of a graph G, also denoted
as tw(G), is the minimum width w such that there is a tree decomposition of G of width
w.

An example of a tree decomposition can be found in Figure 2.1. On the left-hand side
a graph and on the right-hand side a tree decomposition (T,X) of it is displayed. T
clearly forms a tree. The set X corresponds to the contents of the bag, for example
{a, b, c} ∈ X. Note that the three conditions of a tree decomposition are fulfilled: Every
vertex of the graph occurs in one of the bags. For every edge there exists some bag in
the tree decomposition such that both endpoints are contained in the bag. For every
vertex x in the graph it holds that when looking at the subgraph of bags that contain x,
this subgraph is a tree. The tree decomposition contains three elements in every bag.
Therefore, the width of this tree decomposition is two.

Figure 2.1: An example graph on the left side and a possible tree decomposition on the
right side
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Some simple observations of the treewidth include the following: The treewidth is at
least one if the graph G = (V,E) contains an edge. A well known lower bound for
the treewidth is the degree of the lowest-degree vertex in G [BK11]. The trivial tree
decomposition, where there is a single bag that contains all the vertices, has as width the
number of vertices minus one. Thus, any graph has treewidth at most n− 1 if n is the
number of vertices in the graph. The treewidth of a forest, and thus also of a tree, is one.
The following result is widely known.

Lemma 2.1 ([Sze04]). Let (T,X) be a tree decomposition of a graph G and let K ⊆ V (G)
be a set of vertices that induces a complete subgraph in G. Then K ⊆ X(t) holds for
some t ∈ V (T ).

The treewidth of a graph that contains a clique of size n is thus at least n − 1. Note
that the degree of the lowest-degree vertex is at least n− 1 which also implies that the
treewidth is at least n− 1. For a complete bipartite graph G = (V ∪W,E) the treewidth
is min{|V |, |W |}. The lowest-degree vertex of G has degree min{|V |, |W |} and thus the
treewidth of a complete bipartite graph must be at least min{|V |, |W |}. By constructing
a tree decomposition that contains in every bag the vertices from the smaller side together
with one vertex from the other side, as depicted in Figure 2.2 (for a bipartite graph),
one obtains this optimal width. For graphs that are not connected, the following lemma

Figure 2.2: A bipartite graph on the left side and a tree decomposition of the graph with
the optimal width two on the right side

connects the treewidth of the connected components with the treewidth of the total
graph:

Lemma 2.2 ([Bod98]). Let G be a graph. Then the treewidth of G is equal to the
maximum treewidth of its connected components.

In general, the treewidth of a graph is not easy to compute. In particular, given a graph
G and an integer k, the problem of determining whether the treewidth of G is at most
k is NP-complete [ACP87]. We refer to the following parameterized problem as the
Treewidth problem.

13
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Input G, k

Parameter k

Task Obtain a tree decomposition for G of width at most k or correctly identify
that no such decomposition exists.

The following well-known treewidth result from Boolean satisfiability [Sze04] also applies
to ILP and MILP instances.

Theorem 2.1 (Following [Sze04, Lemma 4]). Let I = (F, η) be an ILP or MILP instance.
Let tw(GP ), tw(GI) and tw(GD) be the treewidth of the primal, incidence and dual graph
of I. Then

1. tw(GI) ≤ tw(GP ) + 1

2. tw(GI) ≤ tw(GD) + 1

Proof. 1. Let (T,X) be a tree decomposition of GP of width k. By Lemma 2.1 for every
constraint Ai ∈ F there exists a vertex tAi ∈ V (T ) such that var(Ai) ⊆ X(tAi). The
tree T ′ is obtained from T by adding for every constraint Ai ∈ F a new vertex t′Ai

and an edge {tAi , t
′
Ai
} to T ′. X ′ is obtained by extending X to include the new vertex

t′Ai
∈ V (T ′) with X ′(t′Ai

) = var(Ai) ∪ {Ai}. (T ′, X ′) is then a tree decomposition of GI
as the conditions W1–W3 are fulfilled. Let w(F ) be the maximum number |var(Ai)| over
all Ai ∈ F . The width of the (T ′, X ′) is then at most the maximum of tw(GP ) and w(F )
and w(F ) ≤ tw(GP ) + 1 by Lemma 2.1. Thus, tw(GI) ≤ tw(GP ) + 1.

2. The proof proceeds analogous as in 1. except that a tree decomposition of the dual
graph GD is given.

Note that Theorem 2.1 can also be applied to extended graph representations.

2.5 Tree-depth
Tree-depth is, like the treewidth, a structural parameter of graphs which appears under
different names in literature. The following definition from [NdM06] is based on the
height of rooted forests. A rooted forest is a disjoint union of rooted trees where a rooted
tree is a tree that has a distinguished vertex, the root vertex. For a vertex x in a rooted
forest F the height of x is the number of vertices of the path from x to the root. The
maximum height over all vertices of F is the height of F . Given two vertices x and y
of a rooted forest F , the vertex x is an ancestor of y in F if x appears on the (unique)
path from y to the root of the tree of F to which y belongs. The closure clos(F ) of a
rooted forest F is defined to be the graph that has the same vertex set V (F ) and has as
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edge set the same edges as in F and additional edges between two vertices if they are
ancestors, i.e. the edge set is the set {{x, y} | x is an ancestor of y in F and x 6= y}. The
tree-depth td(G) of a graph G is the minimum height over all rooted forests F such that
it holds that G ⊆ clos(F ) [NdM06].

(a) A 2× 3 grid graph G and a rooted forest F for G

(b) The graph G is a subgraph of the closure of F

Figure 2.3: Example for the tree-depth of a 2× 3 grid graph

A rooted forest F for a 2× 3 grid graph G can be seen in Figure 2.3. When rearranging
the graph G in 2.3b, one can see that it is a subgraph of the closure of F . The height of
the rooted forest F is four. Thus, the tree-depth of G is at most four.

Another definition of the tree-depth is based on elimination trees [NdM06]. The elimi-
nation tree Y of a connected graph G is defined recursively in the following way. If G
consists of a single vertex x then the rooted tree Y is {x}. Otherwise choose a vertex
r ∈ V (G) to be the root of Y . Let G1, ..., Gp bet the connected components of G − r.
Construct recursively for every component Gi the elimination tree Yi of Gi. Y is then
constructed by adding an edge {r, ri} between the root ri of every Yi and r [NdM06]. By
the following lemma we obtain that the two definitions of tree-depth are equivalent:

Lemma 2.3 ([NdM06]). Let G be a connected graph. A rooted tree Y is an elimination
tree for G if and only if G ⊆ clos(Y ). Hence td(G) is the minimum height of an
elimination tree for G.

From this lemma we can obtain the following inductive definition:

Lemma 2.4 ([NdM06]). Let G be a graph with connected components G1, ..., Gp. Then

td(G) =


1, if |V (G)| = 1;
1 +minv∈V (G) td(G− v), if p = 1 and |V (G)| > 1;
maxi=1,..,p td(Gi), otherwise
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We remark that the concept of minimum elimination trees is well-studied in literature
and appears under different notions like the rank function, vertex ranking number or
cycle rank (see [NdM12, Chapter 6]). Every depth-first search tree of a connected graph
G is also an elimination tree for G [NdM12, Chapter 6].

2.6 Torso-width
Torso-width is a structural parameter specifically designed for MILP instances introduced
by Ganian et al. [GOR17]. Given a MILP instance I = (F, η). Let q be an arbitrary
constant. An integer variable xi has bounded domain if xi has a lower bound c and an
upper bound d, i.e. x ≤ c and x ≥ d are constraints in F . Moreover, xi has q-bounded
domain if c − d ≤ q. Let Bq(I) be the set of all q-bounded domain variables and let
Uq(I) = var(I) \Bq(I) be the set of q-unbounded domain variables. Note that the set of
non-integer variables are a subset of Uq(I).
Let GI be the primal graph representation of I. A graph G is a q-torso of I iff there
exists a set S ⊇ Uq(I), such that G = GI ◦ S. A q-torso corresponds to the graph that
is obtained after collapsing at least all non-integer variables and those integer variables
that are not q-bounded, and possibly some q-bounded integer variables.
Let G = GI ◦ S be a q-torso of I obtained by collapsing the vertex set S and H a
connected component of GI [S]. The fitness of H is the number of integer variables in H.
The fitness of G, denoted τ(G), is the maximum fitness over all connected components
of GI [S]. The torso-width of the q-torso G is defined as torw(G) = max{tw(G), τ(G)}
where tw(G) is the treewidth of G [GOR17].

Definition 2.7 (q-torso-width). The q-torso-width of a MILP instance I is the minimum
torw(G) over all q-torsos G of I.

A concrete example for the torso-width of a MILP instance can be found in Figure 2.4.
Here the filled vertices correspond to q-bounded variables, while the non-filled vertices
correspond to variables which are not q-bounded. Figure 2.4b is a q-torso obtained from
the primal graph of a MILP instance in Figure 2.4a. Observe that the degree of some
vertices increases. In this case also the treewidth increases from two to three as the torso
in Figure 2.4b contains a clique of size four as a subgraph. The q-torso in Figure 2.4c is
obtained by collapsing all the vertices that correspond to the q-unbounded variables plus
the bottom-left q-bounded variable vertex. The treewidth of this torso is two, therefore
the q-torso-width of the MILP instance is at most two.

For the purposes of this thesis, we will also define and consider the notion of ∞-torso
and ∞-torso-width, which naturally correspond to the case where we consider q to
be unbounded. The ∞-torso of a MILP instance I is a graph that is obtained after
collapsing at least all vertices that correspond to the non-integer variables in the instance
I. For simplicity, we call the vertices in the primal graph of a MILP instance integer
and non-integer vertices. Observe that when a ∞-torso G is obtained by only collapsing
the non-integer vertices, the ∞-torso-width of G is precisely tw(G). Furthermore, the
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(a) The primal graph of a MILP instance. The filled
vertices correspond to q-bounded variables, the non-
filled vertices to q-unbounded variables.

(b) A possible q-torso obtained by collapsing the set
of vertices that correspond to q-unbounded variables

(c) A possible q-torso obtained by collapsing the set
of vertices that correspond to q-unbounded variables
plus one of the q-bounded variables

Figure 2.4: Example for possible q-torsos

∞-torso-width of a MILP instance I is clearly a lower bound for its q-torso-width, for
any finite q, as the ∞-torso-width may consider the width of more torsos than in the
case of the q-torso-width.
Finally, from the proof of [GOR17, Lemma 4] it follows that any q-torso of I is a 2-
approximation of an optimal q-torso. For the ∞-torso-width of I this implies that for the
torso G obtained by collapsing the non-integer vertices, it holds that the ∞-torso-width
is at least 0.5 · tw(G).
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CHAPTER 3
Related Work

This chapter gives an overview over the state-of-the-art results for structural parameters,
computing them, and the associated complexity results. At first, results for the com-
putation time of the Treewidth problem and its membership in the complexity class
FPT are presented. We also provide an overview of implementations for computing tree
decompositions or treewidth heuristics. These often rely on practically more time-efficient
lower and upper bound methods for treewidth, which are presented and compared in
the following sections. After that, lower and upper bound methods for tree-depth are
elaborated. State-of-the-art results from the application of structural parameters for the
ILP and MILP problems are presented in the last section.

3.1 Fixed-parameter tractability of treewidth
Most applications of treewidth assume that a tree decomposition of small width is provided
as part of the input. For this reason, the efficient computation of a tree decomposition
with small width is important. Bodlaender [Bod93] presented a fixed-parameter tractable
algorithm for Treewidth; in particular, his algorithm computes a tree decomposition of
width at most k or outputs that the treewidth is larger than k with a linear dependency
on the size of the input graph. This algorithm can be used for theoretical results, but in
practical applications the dependency on the parameter is very large, such that even for
small values of k the algorithm is not applicable. Fomin et al. [FKT04] give an algorithm
that uses minimal separators and potential maximal cliques and computes the treewidth
in time O(1.9601n poly(n)). With combinatorial proofs Fomin et al. [FKTV08] show
that this algorithm even runs in time O(1.8899n poly(n)). Bodlaender et al. [BFK+12]
present a theoretical algorithm based on balanced separators that has runtime O(2.9512n
poly(n)) and uses polynomial space.

Feige et al. [FHL05] present an approximation algorithm, which runs in polynomial time
and finds a tree decomposition of width O(k

√
log k) if the treewidth of the graph is k.
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Name Year Downloadable Open-Source Description
QuickTree 1997 No - Algorithm for computing a min-

imal triangulation of the graph
QuickBB 2004 Yes No Anytime branch and bound al-

gorithm for finding perfect elim-
ination orderings

Hypertree 20051 Yes No Methods for computing hyper-
tree decompositions, some of
which include the computation
of tree decompositions

LibTW 2006 Yes Yes Library that provides several
implementations for existing al-
gorithms to compute treewidth
lower and upper bounds, as well
as exact methods

dlib 2009 Yes Yes Machine-learning toolkit that
contains graph tools including
a method for computing a tree
decomposition

Toto 2017 No - Open database for tree decompo-
sitions accessible via a website;
Services for computing bounds
or the exact treewidth including
the corresponding tree decompo-
sition

Table 3.1: Methods for computing exact or bounds on treewidth

More recently, a 5-approximation algorithm for treewidth presented by Bodlaender et
al. [BDD+13] runs in time single-exponential in k and linear in n. It either tells that the
treewidth is larger than k, or returns a tree decomposition of width at most 5k + 4.

Many different implementations of algorithms for treewidth or treewidth bounds exist. An
overview of some implementations can be found in Table 3.1, sorted chronologically. The
column ‘Year’ notes hereby the year of the appearance of the scientific paper about the
treewidth method. ‘Downloadable’ notes whether we were able to find a downloadable
version of it; ‘Open-Source’ means whether the implementation that is available for
download also provides the program’s source code. Some of these libraries include the
computation of tree decompositions whereas others are aiming for the computation of
lower and upper bounds for treewidth.
QuickTree [SG97] is an algorithm for the triangulation of a graph. It outputs a triangu-
lated graph, where the size of the largest clique is the minimum, and a perfect elimination

1Denotes the year where the basis for the implementation-framework was completed [hyp]
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sequence. The size of the largest clique in the result graph minus one is the treewidth
of the graph, thus the algorithm computes the exact treewidth. It was tested against
graphs of up to 100 vertices that have a treewidth up to 10.
QuickBB [GD04] is an algorithm for finding perfect elimination orderings of a graph and
implemented as a branch and bound algorithm. In terms of cpu time, it performs up to
50 times better than Quicktree tested on randomly generated graphs with 100 vertices
and treewidth up to 10. Instances with a high treewidth are preferred over instances with
low treewidth as its runtime is O(nn−k). Its advantage is that it is an anytime algorithm:
after the algorithm exceeds a specified time limit, it still returns valid results of lower
and upper bounds for treewidth. If the time limit is increased, QuickBB will give better
results.
The focus of Hypertree [hyp] are hypertree decompositions, which are generalizations of
tree decompositions. Hypertree offers many possibilities to compute hypertree decompo-
sitions, some of which include the computation of tree decompositions. For an overview
of hypertree decomposition computation methods and how tree decompositions are used
for it, see [DGG+08].
Compared to the other methods, LibTW [vDvdHS06] is a library with many implemen-
tations of lower and upper bound heuristics as well as exact computation algorithms. It
is an open-source library implemented in Java [vDvdHS] licensed with the LGPL license,
that allows for modification of the source code. There are five upper bound heuristics and
five lower bound heuristics implemented including several variants of the lower bound
heuristics. In addition, two exact algorithms, a dynamic programming algorithm and
the branch and bound algorithm QuickBB (with some adaptations) are implemented
and tested on graphs with up to 50 vertices [vDvdHS06]. The large pool of implemented
algorithms allows to decide whether only lower and upper bounds, the exact treewidth,
or a tree decomposition of optimal width are computed. If GraphViz [GN00] is installed,
LibTW may also show a graphical representation of the input graph or computed tree
decomposition [vDvdHS].
Dlib [Kin09, dli] is an open-source library written in C++ for providing machine-learning
algorithms. In addition, it contains many graph tools for handling both undirected and
directed graphs. The create_join_tree method in <dlib/graph_utils.h> finds
a tree decomposition of a given graph. However, dlib does not state any properties about
the width of the tree decomposition that is returned by this method.
Relatively new is the open database Toto [vWK17] which offers several services related to
tree decompositions: it provides a graph database with known lower and upper bounds
for treewidth and the best existing tree decomposition, allows for the upload of better
tree decompositions, and offers a service to compute a tree decomposition for an arbitrary
graph. At the moment, the database only stores graphs with up to 150 vertices, but the
computation can also be applied to graphs that exceed this size. For the computation of
lower bounds, it uses the MMD+(least-c) method. The Greedy-Fill-In heuristic is used
as upper bound algorithm. For the exact computation of treewidth QuickBB is used.
Whereas the lower and upper bound heuristics are executed at server-side, the QuickBB
algorithm runs in the web browser of the user. The services are accessible by a website or
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may be accessed via an API for programming languages such as Java or PHP [vWK17].

3.2 Lower bound algorithms for treewidth
In practical applications the graphs may have a much larger number of vertices and edges
and thus computing the exact treewidth may not be possible. For such large graphs
the treewidth may also be very large, in the worst case the number of vertices minus
one. As a consequence, algorithms which have a runtime exponential in the treewidth
usually do not terminate. In some cases the tree decomposition of a graph itself is not
necessary, but one may want to have an approximate value of the treewidth. Hence, one
may consider lower and upper bounds for the treewidth, which are faster to compute than
exact methods or approximations and thus may be applicable for larger graph instances.
Good lower bounds play an important role for branch and bound algorithms like
QuickBB [BK11]. With high lower bounds more branches can be cut off and the
search space decreases. In addition, when given a good lower bound on the treewidth of
a graph it may be possible to determine that using a dynamic programming algorithm
will take much time. Also some preprocessing steps are only applicable for graphs, when
the treewidth is large enough [BK11].
Bodlaender and Koster [BK11] give a summary of approaches for obtaining lower bound
algorithms, some of which are explained here. A lower bound on the treewidth can be
obtained by the degrees of the vertices in the graph. Let δ(G) denote the degree of the
lowest-degree vertex in G and δ2(G) denote the degree of the second-lowest-degree vertex
in G.

Lemma 3.1 ([BK11]). Let G = (V,E) be a graph of treewidth at most k. Then

i. k ≥ δ(G)

ii. If G contains at least two vertices, then k ≥ δ2(G).

iii. If G is not a clique, then G contains at least two vertices v, w of degree at most k
such that v and w are not adjacent.

The first property is a well known lower bound on the treewidth. It is often referred
to as Min-Degree-Lemma. Ramachandramurthi [Ram97] proposed a new lower bound,
based on the third property: Let γ(G) be defined as min{v,w}6∈Emax{d(v), d(w)} if G is
not a clique and else |V | − 1. Then the following holds:

Corollary 3.1 ([BK11, Ram97]). For each graph G, tw(G) ≥ γ(G) ≥ δ2(G) ≥ δ(G).

γ(G), δ2(G) and δ(G) can be computed in linear time [BK11, KWB05]. However, the
obtained lower bounds are usually bad since one or two low-degree vertices make the
lower bound very low even though the graph may contain a large clique. Using the
following two corollaries one can obtain better lower bounds.
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Corollary 3.2 ([BK11]). Let H be a subgraph of G. Then tw(H) ≤ tw(G).

Corollary 3.3 ([BK11]). Let H be a minor of G. Then tw(H) ≤ tw(G).

So one can compute the lowest vertex degree, second-lowest vertex degree and γ(G) over
all subraphs or minors of the graph and obtain lower bounds on the treewidth of the
original graph. For example, if a graph contains a clique, all three lower bound values
are then at least the size of the clique minus one.
The degeneracy of a graph is the maximum of δ(H) over all subgraphs H of G. It can be
computed with the Maximum Minimum Degree (MMD) algorithm by repeatedly deleting
the vertex with the current lowest degree. The degeneracy is set to the maximum of all
vertex degrees at the time of their deletion (see [BK11] for the exact algorithm). The
contraction degeneracy of G is the maximum of δ(H) over all minors H of G. Computing
the contraction degeneracy is NP-complete [BKW04]. Instead, one may use a heuristic
for computing a lower bound on it as any lower bound on the contraction degeneracy is
also a lower bound for the treewidth. The algorithm MMD+ [BK11, GD04, BKW04]
computes a lower bound on the contraction degeneracy by repeatedly contracting the
vertex that has the current lowest degree with some neighbour vertex. The contraction
degeneracy is set to the maximum of all vertex degrees at the time of their contraction
with a neighbour vertex. There are different strategies to choose the neighbour vertex:
either one chooses the neighbour of lowest degree, called min-d strategy, the neighbour
of largest degree, the max-d strategy, or the neighbour that has a minimum of common
neighbours, the least-c strategy [BK11]. The last heuristic, MMD+(least-c), performs
better than the other two in an experimental evaluation [BKW04].

The Maximum Cardinality Search (MCS) algorithm introduced by Tarjan and Yan-
nakakis [TY84] is a different approach for obtaining a lower bound on the treewidth.
First, it was used for obtaining an upper bound on the treewidth, Lucena [Luc03] then
showed how it can be used as a lower bound [BK11]. MCS is a certain way to visit the
vertices in a graph. In the beginning no vertex is visited. In each step an unvisited
vertex with the largest number of already visited neighbours is chosen to be visited. This
order is clearly not unique: choosing the starting vertex and choosing one of the possible
vertices, if there are more vertices with the same number of already visited neighbours,
may produce different orderings. Such an ordering can be used for obtaining a lower
bound: If a vertex v is adjacent to k already visited neighbours according to the MCS
ordering, then the treewidth of the graph is at least k. Consequently, the best lower
bound that can be obtained by a given MCS ordering is by considering the vertex that
has the largest number of already visited neighbours at the time of its visit. The lower
bound obtained is then called the MCS lower bound [Luc03, BK11].

Another lower bound method can be obtained from improved graphs, first used as a lower
bound by Clautiaux et al. [CCMN03, BK11]. These graphs are obtained by repeatedly
adding an edge between two non-adjacent vertices v and w if there are k + 1 vertex
disjoint paths going from v to w. The graph obtained Gp is then called the (k + 1)-path
improved graph of G, with the property that the treewidth of Gp equals the treewidth of
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G [Bod00, BK11].
The LBP algorithm that computes a lower bound on the treewidth of a graph [CCMN03,
BK11] uses a different lower bound algorithm (e.g. MMD or MMD+). It starts by using
this lower bound algorithm and computes a lower bound l for the current graph. It then
computes the (l + 1)-improved graph and recomputes the lower bound. If the lower
bound obtained is larger, then l is increased by one. This is done until the lower bound l
does not change any more. Instead of considering (k+ 1)-path improved graphs, one may
also consider (k + 1)-neighbour improved graphs, where an edge is added between two
non-adjacent vertices v and w if they have at least k + 1 common neighbours. The LBN
algorithm is analogous to the LBP algorithm with the difference that the (k+1)-neighbour
improved graph is constructed [BK11]. In general, the better the lower bound algorithm
used as a subroutine, the better the obtained lower bounds, but more time is spent for
obtaining a result. The same holds for the LBP and LBN algorithm: The LBP algorithm
gives better results, but it is also slower [BK11].

If the graph is very dense, then all of these algorithms give good results. One class of
graphs where this is not the case is the class of planar graphs. Bodlaender et al. [BGK05]
presented a lower bound algorithm which is based on the concept of brambles that works
well on planar graphs.

Definition 3.1 ([BGK05]). Let G = (V,E) be a graph and W1,W2 ⊆ V . W1 and W2 are
touching if they have a vertex in common or if there is an edge which connects them. A
set B is called a bramble if it contains mutually touching connected vertex sets. A hitting
set H ⊆ V for B is a set of vertices such that for all W ∈ B it holds that W ∩H 6= ∅.
The order of a bramble B is the minimum size of a hitting set for B. The bramble number
of G is the maximum order of all brambles of G.

The following theorem shows that the bramble number corresponds to the treewidth
(plus one).

Theorem 3.1 ([BGK05, ST93] for a proof). Let k be a non-negative integer. A graph
has treewidth k if and only if it has bramble number k + 1.

This implies that if a bramble of order k is found, then the treewidth of the graph is at
least k − 1. Bodlaender et al. present [BGK05] two lower bound algorithms that are
based on this: the first can be applied to general graphs, whereas the second is for planar
graphs. Both algorithms perform well for planar and nearly-planar graphs, compared to
the contraction degeneracy of a graph [BGK05].

Bodlaender and Koster [BK11] compare the algorithms MMD, MCS lower bound and LBN
together with MMD+ as a subroutine. Each of the algorithms is considered once without
contraction and once with it. In general, the algorithms with contraction outperform
these without contraction. The LBN+(MMD+) algorithm, i.e. the LBN algorithm with
contraction and MMD+ used as a subroutine, gives the best lower bounds but may take
considerably more cpu time. MMD and MMD+ are the fastest algorithms. MMD+ gives
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like the other contraction algorithms good results. Bodlaender and Koster propose to use
MMD+ for very large graphs if the other contraction algorithms are too slow. However,
when the graph is planar, one should use one of the two brambles algorithms because the
degree-based methods give worse results [BK11].

3.3 Upper bound algorithms for treewidth
In this section treewidth upper bound algorithms are presented. Note that any approx-
imation algorithm also gives an upper bound on the treewidth. Most of the results
presented here can be found in further detail also in Bodlaender and Koster [BK10]. At
first, the concepts of chordal graphs and elimination orderings and their connection to tree
decompositions are introduced. Those concepts form the foundation for the upper bound
algorithms based on elimination orderings. Then, the two kinds of elimination ordering
construction methods are explained: chordal graph recognition heuristics and greedy
degree heuristics. At the end of this section, the results of an experimental comparison
of the upper bound algorithms by Bodlaender and Koster [BK10] are presented.
One approach for computing tree decompositions which is not discussed here in further
detail relies on finding small separators in the graph. Recall that a separator is a set of
vertices S ⊆ V which separates the graph G, i.e. G[V \S] has more than one connected
components. This approach works as follows: it recursively decomposes the graph by
finding small separators and then uses these to construct a tree decomposition. However,
this approach is slow and may result in bounds which are higher than those obtained by
simpler methods [BK10]. Thus, it will not be further considered here.

3.3.1 Chordal graphs and elimination orderings

We begin with a few necessary definitions.

Definition 3.2 ([BK10]). A graph G = (V,E) is chordal if every cycle in G with length
at least four has a chord, that is an edge which connects two non-successive vertices in the
cycle. An elimination ordering of a graph G = (V,E) is a bijection f : V → {1, 2, ..., n}.
An elimination ordering f is perfect if for all v ∈ V the set of its higher numbered
neighbours {w | {v, w} ∈ E ∧ f(w) > f(v)} forms a clique. A triangulation of a graph G
is a chordal graph that is obtained by adding zero or more edges to G. A triangulation H
is a minimal triangulation of G if no proper subgraph of H is also a triangulation.

The following theorem shows the equivalence between a graph that is chordal, a graph
that has a perfect elimination ordering and a tree decomposition where every bag forms
a clique in the graph.

Theorem 3.2 ([BK10]). Let G = (V,E) be a graph. The following statements are
equivalent:

i. G is chordal.
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ii. G has a perfect elimination ordering.

iii. There is a tree decomposition (T,X) of G such that every bag Xt of t ∈ T forms a
clique in G

Note that this theorem may not be used to obtain an upper bound on the treewidth of
a graph. Algorithm 3.1 Fill [BK10, BBHP04], presented below, takes as input a graph
G and an elimation ordering π and adds edges to G such that the returned graph H is
chordal. The returned graph H is also called the filled graph of G and π, denoted also as
G+
π . Since H has a perfect elimination ordering (specifically, the ordering π used for its

construction), by Theorem 3.2 H is also chordal and thus a triangulation of G [BK10].

Algorithm 3.1: Fill [BK10]
Input: A graph G, elimination ordering π
Output: A chordal graph H

1 begin
2 H = G
3 for i = 1 to n do
4 Let v = π−1(i), i.e. the ith vertex in the ordering π
5 for each pair of neighbours x,y of v s.t. x 6= y and π(x) > π(v) and

π(y) > π(v) do
6 if x and y are not adjacent then
7 Add edge {x, y} to H

8 return H

The following theorem by Bodlaender and Koster [BK10] is a consequence of Theo-
rem 3.2 and forms the bases for the upper bound algorithms. It gives an alternative
characterisation of the treewidth.

Theorem 3.3 ([BK10]). Let G = (V,E) be a graph and let k ≤ n be a non-negative
integer. The following statements are equivalent.

i. G has treewidth at most k.

ii. G has a triangulation H such that the maximum size of a clique in H is at most
k + 1.

iii. There is an elimination ordering π such that the maximum size of a clique of the
filled graph G+

π is at most k + 1.

iv. There is an elimination ordering π such that no vertex v ∈ V has more than k
neighbours with a higher number in π in G+

π .
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Statement iv. of Theorem 3.3 can be used for obtaining upper bounds on the treewidth.
By constructing some elimination order π of a graph G, one can check what is the maximal
number of neighbours with a higher number in G+

π . This number then provides an upper
bound for the treewidth, without the need to construct a tree decomposition [BK10]. Even
though Bodlaender and Koster [BK10] show that given G and π, the tree decomposition
of G+

π can be constructed without building the graph G+
π first, here we will focus our

attention merely on obtaining upper bounds for treewidth (without considering the
construction of tree decompositions). The upper bound algorithms that are based
on elimination orderings can be classified into two kinds of algorithms: chordal graph
recognition algorithms and greedy triangulation algorithms.

3.3.2 Chordal graph recognition algorithms

The MCS algorithm by Tarjan and Yannakakis [TY84] was first introduced as a chordal
graph recognition algorithm. The constructed vertex ordering (see Section 3.2) can be
used for obtaining an upper bound. If the underlying graph is chordal, MCS guarantees
to yield a perfect elimination ordering. When the goal is to recognize chordal graphs,
the selection of the starting vertex of the MCS does not influence the result. However,
in order to obtain tree decompositions of low width, choosing the first vertex may have
a high impact. Therefore, one may run the algorithm with all possible vertices as the
starting vertex with an added complexity of O(n). An adaptation to the MCS algorithm
is the MCS-Min algorithm that produces an ordering such that the filled graph is a
minimal triangulation [BK10].
Another algorithm by Rose et al. [RTL76] is based on breadth-first search using a
lexicographic ordering scheme. It is often called Lexicographic Breadth First Search
(Lex-BFS) and can also recognize triangulated graphs [BK10].

3.3.3 Greedy triangulation algorithms

Greedy triangulation algorithms produce a vertex elimination ordering by considering a
certain heuristic to choose the next vertex. If in the i-th step some vertex v is chosen
by a heuristic, it is then eliminated from the graph. In the elimination ordering π the
vertex is then assigned the number π(v) = i. This process is repeated until all vertices
are eliminated from the graph [BK10]. An upper bound for the treewidth is then the
maximum of the vertex degrees at the time of their elimination [CCMN03].
The most simple heuristic is the Greedy-Degree heuristic [BK10]. It chooses the vertex
with lowest degree in the current graph. Another heuristic is the Greedy-Fill-In heuristic
that chooses the vertex that has the smallest number of non-adjacent neighbour pairs,
where the idea is to generate as few edges as possible [BK10]. Those heuristics are
compared by Bodlaender and Koster [BK10], see also Section 3.3.4. A different heuristic
was presented by Clautiaux et al. [CCMN03]: Before choosing the next vertex in the
elimination ordering, for each vertex v a lower bound on the treewidth of the graph
obtained by eliminating v is computed. Then, the vertex is chosen that has the lowest sum
of two times the lower bound plus the degree of the vertex in the current graph [BK10].
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3.3.4 Evaluation of upper bound heuristics

The following performance results of upper bound heuristics were obtained in an experi-
mental evaluation by Bodlaender and Koster [BK10]. There, the authors compared two
greedy based heuristics, Greedy-Degree and Greedy-Fill-In, and the two chordal graph
recognition heuristics discussed above, specifically MCS and Lexicographic Breadth First
Search. We summarize their results below.
Usually graphs from applications are used as inputs, but for these graphs it is hard
to obtain the exact treewidth. As it is important for the analysis of upper bound
heuristics to know the exact treewidth of a graph, the algorithms were run on randomly
generated partial-k-trees instead. A k-tree is a triangulation of a graph G such that
all maximal cliques are of size k + 1. Note that by Theorem 3.3 this means that G
has treewidth at most k. If a graph is a subgraph of a k-tree, it is a partial-k-tree.
When creating a partial-k-tree, one first creates a k-tree with the specified number of
vertices n and the size of the maximal clique k and then deletes p-percentage of the
edges. 50 instances of partial-k-trees for each of the combinations of the parameters
of n ∈ {100, 200, 500, 1000}, k ∈ {10, 20} and p ∈ {30, 40, 50} were constructed. The
contraction degeneracy lower bound is computed with the MMD+ algorithm (see Section
3.2) for ensuring that the treewidth of the partial-k-tree is at least k [BK10]. This graph
creation method was taken from the evaluation of the Quicktree algorithm [SG97].
Both the Greedy-Degree and the Greedy-Fill-In method obtain results that are close
to the optimum. For k = 20 the upper bound averages of 50 instances obtained by the
Greedy-Fill-In heuristic lie between 20.50 and 23.50, by the Greedy-Degree heuristic in
between 20.00 and 22.50, so the Greedy-Degree heuristic obtains better upper bounds
than the Greedy-Fill-In heuristic. If an additional post-processing step is added to both
heuristics, then Greedy-Fill-In obtains better results. A combination of both heuristics,
taking the sum of both heuristic values, performs slightly better than the Greedy-Degree
heuristic for k = 20. Regarding computation time, Greedy-Degree is much faster than
the other methods [BK10].
When comparing the chordal graph recognition heuristics on partial-k-trees (here for
k = 10 only), MCS outperforms the Lexicographic Breadth First Search. Surprisingly,
the greedy heuristics obtain much better results: the best widths obtained by the MCS
is 15. An explanation for the bad performance of MCS is that even when only a small
amount of edges is removed, none of the start vertices produce an elimination ordering
with the optimal treewidth [BK10].

3.4 Tree-depth computation

The computation of the tree-depth of a graph is, similarly as for treewidth, NP-complete
[Pot88]. On the other hand, given a constant t and a graph G, it is possible to answer in
linear time whether the tree-depth of G is at most t [NdM12, Chapter 6]. However, since
we focus on large graphs with possibly large tree-depth values, we will concentrate on
lower and upper bounds instead of using exact methods (like in the case of treewidth).
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Recall that every depth-first search tree of a connected graph G is an elimination tree for
G [NdM12, Chapter 6]. This implies that any depth-first search tree provides a simple
and efficiently computable upper bound on the tree-depth of the graph.
Regarding lower bounds, let us first consider the tree-depth of a path graph Pn of length
n [NdM12, Chapter 6]:

td(Pn) = dlog2(n+ 1)e

This implies that if a path of length n exists in a graph G, the tree-depth of G is at
least dlog2(n + 1)e. This provides a fairly crude but easy to compute lower bound on
the tree-depth. A better lower bound can be obtained from the following result by
Bodlaender et al. [BGHK95] which connects treewidth and tree-depth:

tw(G) ≤ td(G)− 1

This result allows us to translate treewidth lower-bounds to tree-depth lower bounds.

3.5 Structural parameters for ILP and MILP

Even though LP instances are solvable in polynomial time (see for example the poly-
nomial time algorithm by Karmarkar [Kar84]), the integrality restriction results in
NP-completeness for ILP (a proof for the NP-membership of ILP feasibility by Pa-
padimitriou can be found in [Pap81], for the NP-hardness by Karp [Kar72]). A polynomial
time algorithm for the problem of ILP feasibility is therefore unlikely to exist. How-
ever, if the number of variables is fixed, ILP feasibility can be solved in polynomial
time [Len83].
Considering structural parameters has yielded many positive results for the standard
NP-complete problem Boolean satisfiability (SAT). With the goal to construct efficient
fixed-parameter tractable algorithms for SAT, one considers a graphical representation
like the primal or incidence graph of the problem instance. As SAT is fixed-parameter
tractable by different structural parameters like the treewidth [Sze04], applying structural
parametrizations to ILP may yield similar results [GO16]. For the time being, relatively
few results are known for ILP and ILP feasibility. Jansen and Kratsch [JK15] study
how subsystems of the constraint matrix, that either are totally unimodular or have
bounded treewidth, may be used to obtain kernels for the ILP feasibility problem.
They also show that ILP feasibility is fixed-parameter tractable when paramaterized
by the treewidth of the primal graph and the domain size of the variables, more exactly
with runtime O(dk+1k poly(n)), where d is the domain size of the variables and k the
width of a tree decomposition of the primal graph.
Ganian and Ordyniak [GO16] show that parameterizing by the treewidth of the extended
primal graph and the maximum absolute value of a coefficient does not result in fixed-
parameter tractability (assuming that FPT 6= paraNP): ILP feasibility is NP-hard
when the treewidth of the extended primal graph is at most three and the maximum
absolute value of a coefficient does not exceed two. Those hardness results also carry
over to the more general parameter clique-width [CMR00]. On the other hand, ILP is
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fixed-parameter tractable parameterized by the tree-depth of the extended primal graph
of the constraint matrix A and the maximum absolute value of a coefficient occurring in
the constraint matrix A or the vector b of the ILP instance. When parameterized only
by the tree-depth, they show that already ILP feasibility is W [1]-hard [GO16].
In their follow-up work, Ganian et al. [GOR17] consider the incidence graph of the con-
straint matrix of an ILP instance. In comparison to the primal graph, the incidence graph
provides information in which constraints a variable appears in. This information is used
to construct an efficient bottom-up dynamic programming algorithm on the tree decompo-
sition. More exactly, they show that ILP is solvable in time O(γ2tw(HI)+2tw(HI)(n+m)),
provided that a tree decomposition of minimal width tw(HI) of the incidence graph
HI is given. n and m are the number of variables and constraints, γ is the maximum
absolute value that can be obtained from a constraint by summing the left-hand side
of a constraint over a variable assignment up. γ may thus only be defined when the
domains of the variables are bounded. A consequence of this result is that on non-
negative ILP instances, i.e. instances where neither the coefficients in the constraint
matrix A nor the domain values of the variables are negative, ILP can be solved in time
O((Bmax)tw(HI)+1(n+m)) when a tree decomposition of minimal width tw(HI) of the
incidence graph HI is given [GOR17]. Bmax is here the maximum absolute value in the
vector b. In addition, they obtain hardness results for ILP when parameterized by the
treewidth and either the maximum absolute value of the coefficients of the constraint ma-
trix or the maximum of the domain values of all variables. For more details see [GOR17].

Unfortunately, the fixed-parameter tractable algorithms for integer linear programming
mentioned above do not generalize to MILP. Ganian and Ordyniak [GOR17] introduce
the structural parameter torso-width which is specifically constructed for MILP instances.
The idea underlying torso-width is to focus on obtaining a decomposition for the parts
of the graph representation that will be handled by dynamic programming, namely the
integer variables which have bounded domain size. Outside of the torso, no assumption
about the structure may be made. The following result is obtained by applying a dynamic
programming algorithm on the tree decomposition of a q-torso:

Theorem 3.4 ([GOR17]). Let q be a fixed integer and I be an input MILP instance.
Then I is fixed-parameter tractable parameterized by q-torso-width.

These results show that structural parameters may help solve ILP and MILP. Furthermore,
it would be interesting to know how the difficulty of ILP or MILP instances reflects in
structural parameters like the treewidth or the tree-depth. For industrial SAT instances,
the treewidth parameter is not a recommendable metric for practical hardness as given
by their solving time [Mat11], though for a more specific problem, the analysis of feature
models for validity based on SAT, it is a good indicator for the hardness of the analysis
run [PSP13]. A more positive result is obtained for CSP: Béjar [BFM05] predicts the
runtime of CSP solving algorithms by analyzing parameters, with the result that the
lower and upper bounds on the treewidth of the constraint graph gave some of the better
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results in this respect. To the best of our knowledge, there has been no analysis of the
correlation of structural parameters and the solving time of state-of-the-art ILP solvers
until now.
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CHAPTER 4
Methodology

In this chapter we describe the methods that were used to construct the framework
MILP-Struct for computing structural parameters of graphical representations of ILP
and MILP instances. MILP-Struct builds on the two libraries MIPLIB [KAA+11] and
LibTW [vDvdHS06], which are described in the first two sections. The MIPLIB library is a
collection of practical MILP instances. In Chapter 5, the results of applying MILP-Struct
on the MIPLIB benchmark and challenge instances are presented. LibTW provides the
algorithms for computing lower and upper bounds for treewidth and builds the foundation
for MILP-Struct. The main contribution of the thesis, the MILP-Struct framework, is
described extensively in Section 4.3.

4.1 MIPLIB

Before the implementation of the framework MILP-Struct, it is feasible to first search for
a suitable benchmark set of ILP and MILP instances. We are interested in instances that
are used in practical applications and that are not constructed in an artificial setting. In
practical applications, one might first measure structural parameters to determine the
difficulty of solving the ILP or MILP instance and then solve the instance if it has small
structural parameters. Therefore, it is important to use instances from practice.
Even though there exist many different benchmark sets for SAT (for example the
benchmark set of the yearly SAT competition [Bal16]) and CSP [csp99], in the case
of ILP it is hard to find publicly available benchmark instances of practical nature.
For this reason, instead of using a benchmark set of ILP instances, the MIPLIB library
[mipb, KAA+11] is used. It is a collection of both mixed and normal integer programming
instances. First created in 1992, it tried to meet the needs of researchers for a collection of
mixed and integer programming instances. Over the years, many researchers contributed
to its growth and topicality, the latest update of 2010 also in collaboration with academia
and industry [mipb]. MIPLIB 2010, the fifth version, is an assortment of real-world mixed
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integer programming instances fitted for benchmarking and testing of MILP solvers and
solution algorithms [KAA+11].
It consists of 361 instances in total. These are sorted into different test sets to fulfill
researchers’ particular studies. The benchmark and challenge set is classified by the
runtime of the instances. The benchmark set consists of instances where at least one
solver can obtain an optimal solution within two hours. The challenge set contains
instances that have not been solved to optimality, some of which may also be infeasible.
Other test sets include the infeasible or the XXL set, that contains instances with a large
number of variables or constraints. At the release of MIPLIB 2010, the 361 instances
were categorized into 185 easy, 42 hard and 134 open instances. The runtime of a solver
on a modern PC was taken to classify an instance. If an instance can be solved within one
hour, the instance is classified as easy. If it can be solved but not within this time limit
or requires special algorithms, it is classified as hard. If the instance cannot be solved
to optimality, either because the optimality for a feasible solution cannot be proven or
it is still unclear whether the instance is infeasible, it is considered as open [KAA+11].
During the last seven years, many instances switched from hard to easy and from open
to hard or easy. Only 75 instances remain which are not solved, 54 instances that are
classified as hard and the remaining 232 instances are now easy [mipb].
The size of the instances ranges from 101 to 107 columns and rows – the larger instances
usually with a ratio of non-zero elements to zero-elements (the density of the constraint
matrix) below 0.05. The average density is 1.6%, so also for smaller instances most of
the values in the constraint matrix are zero. Even though instances usually vary in
their size and density, they show a specific structure [KAA+11]. On the homepage of
MIPLIB [mipb], for every instance a sparsity pattern of the structure of the instance
can be found. The sparsity patterns show the positions of non-zero coefficients in the
constraint matrix. In Figure 4.1 the sparsity patterns taken from the MIPLIB homepage
of the two instances glass4 and ns1830653 are shown.

The problems submitted in different formats were all translated to a unique format,
the MPS format that is also used in industry [KAA+11]. In contrast to other existing
formats, it is column based. This means that the format specifies information about the
individual variables and not about the individual constraints. Figure 4.2 below provides
an example of a MILP problem formulated in the MPS file format and its corresponding
mathematical representation.
The MPS file format [mipa] is structured as follows. Each file is separated into six

fields, that start and end at certain specified columns (in Figure 4.2a only five are visible
whereas keywords like ‘NAME’ or ‘ROWS’ start in the first column which is not counted
as a field). At the top of the file, the name of the instance is stated. Then, the ‘ROWS’
definitions follow. Here, ‘N’ denotes the objective function. However, the MPS file format
cannot specify whether the objective function needs to be maximized or minimized. ‘G’,
‘L’ or ‘E’ denotes respectively a constraint with a greater or equal, less or equal, or equal
symbol. The type of the constraint is followed by its name. After the ‘COLUMNS’ line,
the coefficients of the variables occurring in a certain constraint are described. The first
‘COLUMNS’ line describes that the variable ‘X0’ (field two) occurs with coefficient seven
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Figure 4.1: The sparsity patterns of the glass4 and ns1830653 instances. The sparsity
patterns show the location of non-zero coefficients in the constraint matrix. The sparsities
in these representations are amplified, so they are drawn more densely than they truly
are [KAA+11].

(field four) in the objective function (field three). The ‘INTORG’ marker in line eleven
denotes the beginning of integer variables. All following variables are integer variables
until a line containing the ‘INTEND’ marker follows. The ‘RHS’ line denotes the end
of the ‘COLUMNS’ part and defines the value on the right-hand side of a constraint.
In a ‘RHS’ or ‘COLUMNS’ line, it is possible to use the last two fields to combine two
individual lines. The optional ‘BOUNDS’ part may declare different bound types, for
example ‘LB’, ‘UB’ or ‘BV’. In the case of ‘BV’, the variable is defined to be binary.
More bound types like fixed variable or free variable are possible, depending on the MILP
solver used. The ‘ENDATA’ is the mandatory last line of the file [mipa].

The main problem of the MPS format is that there is no standard specification. Therefore,
a MPS file can be interpreted by solvers in different ways. The MPS files in the MIPLIB
library also do not follow one clear pattern of defining the problem instance. Especially
the ‘BOUNDS’ section contains sometimes unspecified bound types. The MPS files
also differ with respect to the start and end columns of the fields. These differences
complicate the parsing of the MILP instances. In addition, a row-based format would
be more compact because the sometimes long variable names would not be repeated as
often. This may play an important role when parsing the MPS files since a smaller file
generally implies less time and memory needed.
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(a) A MILP instance formulated in the MPS file format

{min, max} cost : 7x0 + 3x1 + 149y0 + 221y1
s.t. row0 : x0 + x1 = 22

row1 : −11y0 + 12y1 ≤ 24
y0, y1 ∈ {0, 1}

(b) The same MILP instance in a mathematical representation

Figure 4.2: Example of a MILP instance in the MPS file format

4.2 LibTW as a library for treewidth

Since one of our goals (and, in some sense, the main goal) of MILP-Struct was to
compute the treewidth of graph representations of ILP and MILP instances, one of the
existing libraries described in Table 3.1 was used rather than implementing algorithms for
computing treewidth from scratch. As such a library had to be included in our framework,
the library also has had an influence on the programming language of MILP-Struct. The
requirements for such a library were the following:

• It needs to be possible to compute lower and upper bounds for treewidth. As
the instances in MIPLIB have up to 107 rows or columns in the constraint ma-
trix [KAA+11], one cannot hope to compute the exact treewidth. Lower and upper
bound algorithms for treewidth only provide heuristics, so it would be useful to have
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a library that supports different algorithms to try out some of these implementations
on an instance.

• Another important aspect is ease of use: understanding and maybe extending the
library is essential for integrating it into a larger framework. Especially a good
documentation is of utmost importance for using the library in a correct and efficient
manner.

• Most importantly, the software license needs to allow the usage and linking of the
library. In addition, a software license that allows the modification and distribution
is needed for publishing the library or in the case that smaller changes need to be
made.

Out of the six libraries in Table 3.1, only QuickBB, LibTW and Toto provide means
for computing lower and upper bounds for treewidth. Of these three, LibTW is the
only library that is open-source and provides good documentation of how to use it in
a Java-based application. In addition, LibTW provides several lower and upper bound
algorithms for treewidth. Therefore, the decision was made to use LibTW as a library
for computing bounds on treewidth.

In Section 3.2 and 3.3 state-of-the-art methods for computing lower and upper bounds
for treewidth are presented. Out of these, the following lower bound algorithms are
implemented in LibTW [vDvdHS06]:

• Min-Degree, the degree of the vertex that has the least degree

• Ramachandramurthi, that computes γ(G)

• MCS, a specific order in which vertices are visited

• MMD, based on vertex degrees and deleting vertices

• MMD+, based on vertex degrees and contracting vertices

Some of these algorithms do not state explicitly which vertex is chosen to be handled
next in case of a draw [vDvdHS06]. For computational reasons, LibTW does not
offer the possibility to branch on all such vertices, but instead offers the variant All-
Start that branches only on the first vertex. For the MMD+ algorithm, LibTW offers
the strategies least-c, max-d and min-d. Altogether, there are twelve lower bound
algorithms [vDvdHS06]:

• Min-Degree

• Ramachandramurthi

• MCS
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• All-Start MCS

• MMD

• All-Start MMD

• MMD+(least-c)

• MMD+(min-d)

• MMD+(max-d)

• All-Start MMD+(least-c)

• MinorMinWidth

• All-Start MinorMinWidth

The evaluation of [vDvdHS06] shows that whereas the runtimes of the algorithms are
quite similar, some of these algorithms produce better lower bounds than others. The
MMD+(least-c), the MinorMinWidth (a variant of the MMD+(min-d) algorithm) and
their All-Start variants produce the highest lower bounds. Using one of those algorithms
is therefore recommended. This result is analogous to the evaluation from [BKW04].

The following five upper bound algorithms are implemented in LibTW [vDvdHS06]:

• Greedy-Degree

• Greedy-Fill-In

• Lex-BFS

• MCS

• MCS-Min

Some of these algorithms do not return an upper bound for treewidth directly but only
compute the permutation that allows to construct the tree decomposition. LibTW can
then transform this permutation to a tree decomposition and thus obtain an upper
bound for treewidth [vDvdHS]. Greedy-Degree and Greedy-Fill-In always compute an
upper bound at least as low as one of the other three algorithms, thus choosing one of
those two algorithms is recommended [vDvdHS06] (see also Section 3.3.4 for performance
comparisons).

The main graph structure of LibTW is NGraph, that is a generic type like most of the
classes in LibTW. It contains as type parameter the same type parameter as the vertices
NVertex that are contained in the graph. Usually, the type argument is InputData,
which is also the type that the algorithms are expecting as type. NGraph does not

38



4.2. LibTW as a library for treewidth

contain any references to the edges in the graph. Instead, every NVertex stores a list
of neighbour vertices. This implies that when an edge is added or deleted, the list of
neighbour relations must be changed in both vertices.
There are different possibilities of how a NGraph can be constructed: it can either be
read from an input file or one of the graph generator classes can be used. When the
graph is read from an input file, only the DGF file format is supported [vDvdHS].

This is also one of the disadvantages of using LibTW: LibTW itself offers no possibility
of generating a NGraph out of a graph instance that is not written in a DGF file. How-
ever, it is possible to implement the interface GraphInput to create its own version
of generating a NGraph, which is the method of how a NGraph instance is obtained in
MILP-Struct (see Section 4.3).
Another problem of LibTW is that it assumes that the input graphs are connected. In
general, this is a reasonable assumption as publicly available graph instances usually are
connected. In our case, we create the graph representations of ILP and MILP instances.
Depending on whether the objective function is included in the construction of the graph
representation, it may happen that the graph is disconnected. The treewidth of the
graph is then equal to the maximum treewidth over its components [Bod98]. In such a
case, the algorithms in LibTW may not necessarily consider this and may produce worse
or, in general, even wrong treewidth bounds. For example, the Min-Degree lower bound
returns the degree of the lowest-degree vertex. If a graph consists of two components,
the Min-Degree algorithm, that does not consider that the graph is disconnected, returns
as lower bound the degree of the lowest-degree vertex in the whole graph. A better
lower bound could be obtained if the Min-Degree algorithm is first applied on the first
component and then on the second, and then returns as lower bound of the whole graph
the maximum of both obtained lower bounds.
The LibTW library was originally used to find out which algorithms produce the best re-
sults, with regard to lower and upper bounds and also with regard to the exact algorithms.
The graphs that were used for comparing the algorithms were relatively small, i.e. at
most 1,000 vertices, such that differences in the runtime were not observed [vDvdHS06].
The implementations are however not very fast for graphs of larger size, for example
graphs with 50,000 vertices. This is however the size range that we need to consider when
we want to compute bounds for the structural parameters of instances of the MIPLIB
library. Some of the comments in the source code explain how the algorithm could have
been implemented in a more efficient way. This shows that the implementations are not
optimal with respect to the algorithmic runtime.
Even though LibTW provides many good lower and upper bound algorithms, it does not
consider lower and upper bound methods that appeared during the last ten years, some
of which are described in Section 3.2 and 3.3. Although these algorithms probably do
not return much better bounds, it still might be interesting to learn how these perform.
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4.3 MILP-Struct framework

In the following, we present the MILP-Struct framework which is able to compute
structural parameters of graphical representations of ILP and MILP instances. The
MILP-Struct framework implemented in Java provides functionality for parsing ILP and
MILP instances, computing graph representations and obtaining lower and upper bounds
for different structural parameters. This is the first framework of its kind, i.e. the first
framework that combines ILP and MILP with structural parameters such as treewidth.
Published under the LGPL license, it may be used and modified by other libraries. It is
based upon the LibTW library for the computation of treewidth related properties. It also
uses SLF4J bound to log4j [slf, log] for providing logging functionality and Wagu [wag]
for presenting output in table format. Before explaining the tasks of specific components
of the software system, the general structure of the framework is outlined.

4.3.1 Structure

MILP-Struct consists of different modules for starting the overall computation, handling
the parsing and conversion of the linear program to the graph representations and finally
computing structural parameters and general statistics of the graph representations and
the linear program.

Figure 4.3: The program sequence of the computation of structural parameters for one
MILP instance

The program sequence for one single MILP or ILP instance can be seen in Figure 4.3.
It starts by reading the MILP instance in the MPS format from a file and generating a
LinearProgram instance out of it. Note that in the complete computation there is no
differentiation between a MILP instance or an ILP instance since both are stored in the
same file format and converted also in the same manner. We thus use the term MILP
instance for including both ILP and MILP instances. In this step, some statistics about
the MILP instance, like the number of variables and constraints, are computed. Out of the
LinearProgram instance at least one primal, incidence or dual graph representation is
computed. The class that stores the graph representation is Graph, which is an internal
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format of the MILP-Struct framework.
Then, the Graph instance for every graph representation is translated to the graph
format of LibTW, the abstract class NGraph. In this step, the interface GraphInput of
LibTW is implemented to create the NGraph from the Graph instance. Instead of first
creating a Graph instance, we could have directly computed the graph representation
as an instance of NGraph. But since the Graph class is more easy to handle than the
abstract class NGraph and since the conversion of Graph to NGraph only takes a small
fraction of the whole program runtime, it was decided against this option.
The NGraph representation with the computed graph statistics is then serialized to
a predefined file. At every execution of MILP-Struct it is checked whether the graph
representation was previously serialized. If that is the case, the graph representation is
deserialized and does not need to be recomputed.
One or more structural parameters are then computed on the NGraph representations.
For the primal graph representation, the computation of lower and upper bounds for
treewidth and torso-width, and an upper bound for tree-depth are supported. For the
incidence and dual graph representation, only the treewidth bounds can be computed.
In addition to the structural parameters, statistics about the graph representations are
computed. The results of the MILP instance are then converted to a text line in the CSV
format.

The process of computing the structural parameters for one MILP instance is embedded
in a larger sequence of steps of the overall framework. The execution sequence of a
complete program run is represented in Figure 4.4. The program starts by parsing the
program arguments and setting configurations for the run. One of those input arguments
is the input file. This may either be a path to a text file or MPS file. If it is a text file,
the text file is assumed to contain multiple file paths to MPS files. A list that contains
these MPS files, or a single MPS file in the case that a MPS file is provided as the input
file argument, is constructed.
For all of these MPS file paths, the structural parameters for each single MILP instance
are computed as explained in Figure 4.3. The computation is started asynchronously
but single-threaded using the Java ExecutorService. After a specified time limit,
the computation may be interrupted in case it takes too long and the computation for
the next MILP instance is started. After finishing the computation for the last MILP
instance, the results are written to a CSV file.

Figure 4.4: The program sequence for the computation of structural parameters of one
MILP instance
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4.3.2 Parsing of MPS files

MILP-Struct parses MILP instances in the MPS file format. However, as there does not
exist one uniform MPS file format standard, the parser is made to support the MPS
format from the MIPLIB library [mipa]. Even the instances within the MIPLIB library
are not in the same format. Sometimes one of the fields in the ‘COLUMNS’, ‘RHS’
or ‘BOUNDS’ section is completely empty. The content is then just contained in the
next field. In order to parse these differences, the six fields and their bounds are mostly
ignored. Instead, every line of the MPS file is searched for white spaces and content. The
content is then extracted by removing subsequent white spaces. For performance reasons,
a regular expression is used for this. In this way, the contents of the fields are returned
and empty fields are discarded. We can find out the kind of content, for example whether
it is a variable or constraint name, by looking at the position of the contents.
The LinearProgram class stores the information that is needed for computing the three
types of graph representations. This means that it stores the variables, the objective
function and the constraints, so we can determine which constraints or objective function
contains which variable (with a non-zero coefficient). The coefficients of the constraint
matrix and the bound types for the variables are however not parsed with the consequence
that less working memory is needed for the parsing.

4.3.3 Timeouts

The runtime for the computation of the structural parameters varies for the individual
MILP instances. Whereas some instances are finished after seconds, others may run
for hours without terminating. Hence it is not possible to estimate the runtime of the
program in advance. In order to have a guarantee upon the runtime, MILP-Struct offers
the possibility to specify a configurable time limit after which the current computation
of a MILP-instance is set to be cancelled.
The Java ExecutorService is used for implementing this functionality. It provides
methods for the creation of asynchronous tasks. These tasks may then be cancelled
after a certain time limit. More specifically, the method invokeAll(Collection<?
extends Callable<T>> tasks, long timeout, TimeUnit unit) is used. It
starts the tasks asynchronously and interrupts the threads after the specified timeout.
It has the return type List<Future<T>>, that can be used to extract the result
of the computation. The Collection of tasks is in this case a single instance of
StructuralParametersComputation wrapped in a list that implements the inter-
face Callable<String>. The timeout is a configuration value provided in seconds.
The invokeAll method then executes the computation of structural parameters for
one MILP instance and cancels the thread after the timeout occurs. However, the thread
is not stopped directly. Instead, the thread’s status is set to interrupted. By calling
Thread.currentThread().isInterrupted() one can check whether the thread
was interrupted. If it was interrupted, an InterruptedException is thrown. This
exception is caught and the normal program flow continues, i.e. the computation for the
next MILP instance begins.
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This implies that Thread.currentThread().isInterrupted() needs to be checked
regularly, otherwise the thread runs until it is checked the next time.
The returned list of Future<T> objects contains the status of the thread and the result
of the computation as type <T>. By calling Future.isCancelled(), it can be dis-
tinguished whether the task was cancelled or completed. With Future.get() the type
parameter T of the Future is returned. In our case, the type argument is a String
that contains the statistics including the structural parameters in the CSV format.

4.3.4 Treewidth

The treewidth remains the most prominent structural parameter for many graph related
problems. Because of its growing prominence during the last years, there exist many
implementations for computing tree decompositions and treewidth. These libraries and
tools were described in Section 3.1 and why LibTW was chosen as a library for computing
treewidth lower and upper bounds in Section 4.2.
Even though the LibTW source code is available and allows for modifications, it is mainly
treated as a black box for computing bounds for treewidth. However, some changes were
necessary in order to improve the obtained results.
First, the LibTW library assumes that the input graph NGraph is connected. This,
however, is not always the case when MILP instances from the MIPLIB library are parsed.
There are two possibilities of how the objective function is handled when generating the
graph representations. If the input argument --obj is specified, the extended versions
of the graph representations are constructed. The objective function is then handled like
any other constraint. Without this input argument the simplified graph representations
are considered. Here it may happen that the resulting graph is not connected. For
example, if a constraint only contains variables that occur in the objective function or in
the constraint itself (with non-zero coefficients), the simplified dual graph representation
would have a vertex without any neighbours.
The reason why both methods are supported in MILP-Struct is that in literature results
for both variations of the graph representations exist [GO16, GOR17]. There is also a
performance advantage when the objective function is not considered. For some instances,
the objective function can be the “binding element” of the whole MILP instance. The
simplified graph representations may then contain much fewer edges than the extended
graph representations. It may thus be possible to obtain results and not run into a
timeout – where the extended graph representations would fail.
In order to obtain better lower and upper bounds for disconnected graph, we can adapt
the algorithms to graphs that are not connected. By Lemma 2.2, the treewidth of the
graph is equal to the maximum treewidth of its connected components. Observation 4.1
applies this result for treewidth bounds.

Observation 4.1. Let G be a graph.

1. Let k be the maximum of lower bounds for treewidth over all connected components
of the graph G. Then the treewidth of G is at least k.
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2. Let k be the maximum of upper bounds for treewidth over all connected components
of the graph G. Then the treewidth of G is at most k.

In the case of lower bounds for treewidth, this implies that a lower bound of any connected
component is already a lower bound of the whole graph. On the other hand, an upper
bound for treewidth of a connected component is not always an upper bound of the
whole graph. An upper bound for treewidth of every connected component needs to be
computed such that an upper bound of the overall graph can be determined. Figure 4.5
represents this property with a simple example.

Figure 4.5: Treewidth bounds of connected components and the bound of the overall
graph. In the first example, a lower bound for treewidth of three of the first connected
component and of five of the second implies that five is a lower bound of the overall
graph. For the upper bound, the larger upper bound six has to be taken as treewidth
upper bound of the overall graph since two is not a valid upper bound if the treewidth of
the second connected component is three or larger.

The data type NGraph of LibTW is adapted to graphs which are not connected. For
this, NGraph stores its connected components in a list of NGraphs. It is then possible
to apply the lower and upper bound algorithms of LibTW on each connected component
and, in the case of lower bounds, obtain a better bound than without considering the
connected components.
In the Algorithm 4.1 below, it is shown how the connected components are handled in
MILP-Struct to obtain a lower bound of the overall graph. First, the lower bound is
initialized to zero. Then, for every connected component of the graph a lower bound is
computed by using a lower bound algorithm of LibTW. If the lower bound of the current
component is larger than the current lower bound, it is taken as new lower bound of the
overall graph. When computing the upper bound for treewidth, the only change is to
initialize the upper bound to be the number of vertices of the graph (minus one). An
upper bound algorithm is then used on every connected component. The upper bound for
treewidth of the input graph is also the maximum over all the computed upper bounds
of the connected components.
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Algorithm 4.1: Treewidth lower bound with components
Input: A graph G
Output: A lower bound for tw(G)

1 begin
2 lowerBound = 0
3 for every connected component of the graph do
4 lowerBoundComponent = computeLowerBound(component)
5 if lowerBoundComponent > lowerBound then
6 lowerBound = lowerBoundComponent

7 return lowerBound

By default, the MMD+(least-c) algorithm is used for computing the lower bound for
treewidth, and the Greedy-Degree algorithm is used as upper bound algorithm. Both
algorithms were chosen because of their expected good results and runtimes. A small
improvement was hereby added to the Greedy-Degree algorithm. Remember that the
algorithm works by choosing the lowest-degree vertex to be the next vertex that is
eliminated [BK10]. The upper bound is set to the largest number of neighbours of a
lowest-degree vertex at the time of its elimination. This corresponds to the following
upper bound update in the GreedyDegree class of LibTW:
upperBound = Math .max( upperBound , lowestDegreeVertex . getNumberOfNeighbors ( ) )

;

The lowestDegreeVertex is then eliminated. After the elimination of the vertex, the
following code is added:
i f ( graph . getNumberOfVertices ( ) <= upperBound ) {

return ;
}

This allows the upper bound algorithm to terminate earlier without changing the result: if
the graph contains at most n vertices and n is the current upperBound, then any vertex
in the graph can have at most n− 1 neighbours. Thus, the upper bound will not increase
anymore. This change may improve the runtimes of certain graphs immensely. For
example, consider the complete graph Kn. The best possible upper bound for treewidth
is already obtained in the first iteration, i.e. the lowest-degree vertex is a vertex with
n−1 neighbours. The vertex is then eliminated and the resulting graph has n−1 vertices
and thus less or equal than the current upper bound. The algorithm then terminates in
the first iteration with the early termination change, whereas it would do n iterations
without it.
Another change in the GreedyDegree class is that in every iteration it is checked
whether the current thread was interrupted. This is necessary as the Greedy-Degree
algorithm can take much time for larger graph instances. The run() method was thus
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changed to throw an InterruptedException in case that the thread is cancelled
during the computation.

4.3.5 Tree-depth

For the computation of the tree-depth of the graph representations, we use the fact that
any depth-first search (DFS) tree is an elimination tree of the graph [NdM12, Chapter
6]. Thus, the height of any DFS tree of the graph is an upper bound for tree-depth.
The algorithm for computing an upper bound for tree-depth is based on this property
– with some improvements to obtain better upper bounds. First, remember that the
graph may not be connected if the objective function is not considered when building
the graph representation of the MILP instance. Note that by computing a DFS tree, it
is automatically detected whether the graph is not connected in the case that the DFS
cannot find every vertex in the graph. Special attention should be paid to the selection
of the first and every following vertex in the DFS tree as this influences the height of the
resulting tree.

In Algorithm 4.2 the pseudo code of the algorithm used for computing an upper bound
for tree-depth can be found. It starts with finding the start vertex, the first root vertex,

Algorithm 4.2: Tree-depth upper bound with components
Input: A graph G
Output: An upper bound for the tree-depth of G

1 begin
2 path = findMaximalPath(G)
3 startV ertex = path.get(path.length() / 2)
4 verticesFound = ∅
5 maxHeight = 0
6 rootV ertex = startV ertex
7 while verticesFound.size() 6= graph.size() do
8 height = constructDFSTree(rootV ertex, verticesFound)
9 if height > maxHeight then

10 maxHeight = height

11 rootV ertex = first vertex in G that is not contained in verticesFound
12 upperBound = maxHeight
13 return upperBound

of the DFS tree. This is accomplished by searching a random maximal path, i.e. first
a random vertex is taken, and then random neighbours not yet in the path are added
until the last chosen vertex has every neighbour already in the path. The start vertex
is then taken to be the vertex in the middle of the path. This method is inspired by
the property of tree-depth that if a path of length n exists in the graph, the tree-depth
is at least dlog2(n + 1)e. For obtaining an elimination tree of this height, the path of
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length n is “folded” into the elimination tree, and the vertex in the middle of the path
corresponds to the root vertex [NdM12, Chapter 6]. Note that in this step a lower
bound for tree-depth is computed. However, the lower bound is usually very weak as it
corresponds to the logarithm of the length of a path. For example, a path of length 1000
would just correspond to a lower bound of ten. As the tree-depth of a graph is always
at least the treewidth of the graph plus one [BGHK95], the treewidth of the graph can
thus be used as lower bound for tree-depth. This property does not appear explicitly in
MILP-Struct, i.e. the tree-depth class provides no lower bound computation method.
After choosing the root vertex, DFS trees are repeatedly constructed until every vertex
in the graph is found, i.e. the set of verticesFound contains every vertex in the graph.
The method constructDFSTree(rootVertex, verticesFound) hereby builds
up the DFS tree and stores the vertices that are found in the set verticesFound.
The height of the DFS tree is returned after the construction of the DFS tree. If this
height is larger than the maxHeight found, the maximal height is updated to be the
larger value. The next rootVertex is set to be a vertex that has not been found by
any DFS tree, i.e. a vertex that is not contained in the set verticesFound. After
every vertex of the graph has been found by a DFS tree (every connected component
was handled), the upper bound maxHeight is returned.

When constructing the DFS tree, one may use different strategies of how to select the
next vertex. At first, the strategy to select the next neighbour vertex returned by an
Iterator was used. Two other possibilities are to select the vertex with the current
lowest or largest degree. Choosing the lowest-degree vertex leads to worse results for the
height of the DFS tree. An explanation is that choosing the lowest-degree vertex puts
low-degree vertices higher up in the DFS tree (if the root is at the top), even though
these vertices should occur at the bottom of the DFS tree. The path graph Pn is an
example for this bad behaviour. This strategy would always select one of the two border
vertices which results in a DFS tree with the largest height n – a major difference to the
height of the minimum elimination tree dlog2(n+ 1)e.
The second selection strategy, choosing the vertex with the largest degree, results in
DFS trees with smaller height. For star graphs, that are graphs that have exactly one
vertex that is connected to every other vertex, this method produces a DFS tree of the
smallest height two. Note that also for path graphs, choosing the largest-degree strategy
results in a smaller height of the elimination tree than the lowest-degree strategy. Also
in comparison to a random selection strategy, choosing the vertex with largest degree
produces seemingly slightly better results, even though the difference is not as large as
between the lowest and largest-degree vertex strategy. In MILP-Struct, the DFS tree
is therefore constructed by always choosing the vertex with the largest degree as next
vertex.

There is one last improvement added to the tree-depth upper bound computation in
Algorithm 4.2. As the computation of a DFS tree is very fast, the algorithm is not
only executed once. Instead, the algorithm is repeated for a specific number of times
NUM_DFS_TREE_GENERATION. By default, this value is set to 100. The tree-depth
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upper bound is then set to the minimum of the upper bounds returned. By changing the
NUM_DFS_TREE_GENERATION field, we can influence the runtime and performance of
the upper bound. If the number of iterations is increased, better results are returned
in general (even though there is some randomness involved), but it takes more time to
obtain the results. It would also be possible to adapt the number of iterations to the size
of the instance. For example, the number of iterations could be set to a smaller value for
large instances in order to obtain a faster algorithm.

4.3.6 Torso-width

In the context of mixed ILP instances, that contain both integer and non-integer variables,
the torso-width is the only structural parameter for which results for the fixed-parameter
tractability of MILP exist. The MILP-Struct framework can compute an upper bound
for the ∞-torso-width. More specifically, it computes the ∞-torso T that is obtained
by collapsing exactly the non-integer vertices in the primal graph of the MILP instance.
Remember that the torso-width of the torso T is then exactly the treewidth of T and
that it is an upper bound for the ∞-torso-width. The ∞-torso-width could be computed
by taking the minimum of the torso-width over any torso that is obtained by collapsing
at least all non-integer vertices. For computational reasons, we only compute one such
torso, namely the torso that collapses exactly the non-integer vertices.

Regarding the computation of the torso T , that is obtained by collapsing exactly the non-
integer vertices, we stick to its definition. Because collapsing a set of vertices X results
in the same graph as eliminating every vertex in X, one easy approach for computing T
is to eliminate every vertex in the set of non-integer vertices.
However, implementing the construction of the torso in this way is very inefficient with
regard to time and space spent at the computation. Consider the example primal graph
in Figure 4.6. Here the white vertices correspond to non-integer variables and the black
vertices to integer variables in the MILP instance. In the example, in each step a vertex
is eliminated according to its number. Since the result graph at the bottom does not
contain any non-integer vertices, it corresponds to a ∞-torso. The first two elimination
steps only produce edges which do not appear in the resulting graph. Altogether nine
edges are added of which six are removed again during the elimination process. In total,
there are only three edges that must be added to the graph because they also appear in
the result graph. However, the intermediate steps add and remove a lot of unnecessary
edges.
This small example shows that instead of eliminating one vertex after another in a graph
G, we should rather “collect” the set of neighbour integer vertices I from a connected set
of non-integer vertices N and then do two steps to obtain the graph G ◦N :

1. Delete the set N of the graph, i.e. obtain the graph G[V (G) \N ]

2. Make I form a clique in the graph G[V (G) \N ]
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Figure 4.6: Primal graph of a MILP instance where the four non-integer vertices are
eliminated

This procedure needs to be repeated until all connected sets of non-integer vertices have
been handled. We apply this approach in the MILP-Struct framework for constructing
the torso T . The pseudo code of the implementation is presented in Algorithm 4.3.
The algorithm starts by checking whether there still exists a non-integer vertex not yet
handled. If this is the case, this vertex is put into the nodesToHandle set, that only
contains non-integer vertices where the handled flag was already set to true.
The two sets curNonIntSet and curIntSet are initialized in line five and six. The
curNonIntSet is a connected set of non-integer vertices that needs to be collapsed. The
curIntSet contains the integer vertices adjacent to the vertices in curNonIntSet.
These two sets are filled within the while block of line seven.
While the nodesToHandle set is not empty, the first vertex w is removed from the set
and added to the set curNonIntSet. Then, for every neighbour n of w it is checked
whether the neighbour is an integer vertex. In that case, it is added to the set of current
integer vertices. Otherwise, it must be a non-integer vertex, and it is checked whether
the handled flag was already set. If it has not been handled, the handled flag is set
to true and added to the list of vertices that need to be handled.
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Algorithm 4.3: ∞-torso of G
Input: A graph G
Output: The ∞-torso of G that is obtained by collapsing the set of non-integer

vertices
1 begin
2 while there exists a non-integer vertex v in G with v.handled = false do
3 v.handled = true
4 nodesToHandle = {v}
5 curIntSet = ∅
6 curNonIntSet = ∅
7 while nodesToHandle is not empty do

/* Handle non-integer vertex w */
8 remove a vertex w from nodesToHandle
9 curNonIntSet = curNonIntSet ∪ {w}

10 for every neighbour n of w do
11 if n is an integer vertex then
12 curIntSet = curIntSet ∪ {w}
13 else if n.handled = false then
14 n.handled = true
15 nodesToHandle = nodesToHandle ∪ {n}

16 delete the vertices in curNonIntSet from G
17 add edges to the vertices in curIntSet such that curIntSet forms a clique

After every vertex in the current part of connected non-integer vertices is handled, the
vertices in curNonIntSet are deleted from the graph G, and the set curIntSet is
made adjacent to form a clique. Note that the handled flag is set to true whenever a
non-integer vertex is added to the set nodesToHandle. This has the advantage that
while the vertex is in the set nodesToHandle, i.e. it has not yet been handled, the
check for its handled flag in line 13 implies that it will not be tried to be added again
to the nodesToHandle set. From a computational perspective, this implies that the
vertex is not searched unnecessarily in the nodesToHandle set.
In the implementation of the algorithm, the vertices are not deleted directly from the
graph G. They are only stored in a set which marks their deletion. The reason for this
is that while iterating over the vertices of the graph G (in line two), vertices cannot be
deleted from the graph. Therefore, the vertices marked for deletion are removed after
every non-integer vertex has been handled.

As we want to compute an upper bound for the∞-torso-width, the treewidth of the torso
that is obtained by Algorithm 4.3 must be computed. The treewidth lower and upper
bound algorithm from Section 4.3.4, which consider that the graph may be disconnected,
are used for this. Note that the upper bound algorithm for treewidth then returns an
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upper bound for the ∞-torso-width. Unfortunately, we cannot state such a property for
the result of the treewidth lower bound algorithm.
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CHAPTER 5
Results

This chapter presents the computed results of MILP-Struct on the instances from the
MIPLIB library. After explaining the evaluation setup in Section 5.1, the results of
applying our framework on the benchmark set of the MIPLIB library are presented in
Section 5.2. In the last section, we analyze two specific instances from the challenge set
of the MIPLIB library in more detail and evaluate the computed structural parameters
with respect to the difficulty of the two instances.

5.1 Evaluation setup
All results were run on an Windows 10 Acer Aspire VN7-571G-77Q2. It has an Intel(R)
Core(TM) i7-5500U 2.4 GHz Dual Core CPU and 8 GB physical memory. The Java
version used is 1.8.0_101. The results in the following two sections were obtained by
increasing the available memory of the JVM; the maximum heap size was set to 7 GB
and the maximum stack size to 2 GB.

5.2 Benchmark set
In this section we present the results of MILP-Struct applied on the benchmark set of
the MIPLIB library. The benchmark test set contains only instances that are solvable
and classified as easy [mipb]. The results of applying MILP-Struct on the benchmark
set are presented in Table 5.1. The extended graph representations are here considered;
recall that this is a prerequisite for using some of the known algorithms [GO16].
The first four columns correspond to information about the linear program instance. The
following five columns are about the extended primal graph representation, and the last
four columns contain the computed bound values of the extended incidence and dual
graph representation.
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5.2. Benchmark set

The linear program section contains information about the number of variables, the
number of constraints and the proportion of integer variables to non-integer variables. The
proportion is rounded to four decimal places. The columns ‘LB TW’ and ‘UB TW’ denote
the lower and upper bound for treewidth of the corresponding graph representation. The
columns ‘LB TO’ and ‘UB TO’ contain the lower and upper bounds for the torso-width
of the ∞-torso that is obtained by collapsing the non-integer vertices in the primal graph
representation. The column ‘TD’ contains the computed primal tree-depth upper bounds.
If a table cell is empty, the time or memory limit was exceeded. The timeout configuration
for each of the three graph representations was set to one hour. For each individual
computation of the treewidth lower bound, treewidth upper bound and tree-depth upper
bound, the timeout was set to 15 minutes. As the torso-width bounds are computed
together, the timeout was set to 30 minutes for computing the torso and the treewidth
lower and upper bound of the torso. By default, the number of iterations in the tree-depth
upper bound algorithm is set to 100.
Note that the algorithms for computing lower or upper bounds are only heuristics. The
use of efficient data structures like hash sets may produce different iteration orderings; two
runs of MILP-Struct thus do not necessarily return the same bound values. MILP-Struct
only guarantees that a correct bound value is returned. However, the computed bound
values usually do not differ much.

The results presented in Table 5.1 are the raw data output computed by MILP-Struct.
Some of these bounds may be improved by exploiting the relations between the structural
parameters.

1. The incidence treewidth is at most the primal treewidth plus one (Theorem 2.1).

2. The incidence treewidth is at most the dual treewidth plus one (Theorem 2.1).

3. The primal treewidth is at most the primal tree-depth minus one (Section 3.4).

4. If the proportion of integer variables is one, the primal graph and the torso obtained
by collapsing exactly the set of non-integer vertices are the same (Section 2.6).

In general, the incidence treewidth bounds are already much smaller than the primal
treewidth bounds, especially for graphs where the bounds are quite high. Nevertheless,
for a single instance, the ash608gpia-3col instance, we can exploit the relation between
the primal and incidence treewidth. As the incidence treewidth upper bound is 511 and
the primal treewidth upper bound is 502, the incidence treewidth can be at most 503.
In the same way, the incidence treewidth upper bound can be improved when the
dual treewidth upper bound is larger. Here, it happens more often that the incidence
treewidth upper bound is more than one larger than the dual treewidth upper bound.
Some examples include the enlight13, ns1208400 and roll3000 instance, whereas the
ns1208400 instance produces a notably much higher incidence treewidth upper bound
than dual upper bound (2135 and 1220). Again, we can improve the incidence treewidth
upper bound by taking the dual treewidth upper bound value plus one.
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5. Results

Regarding the treewidth lower bounds of the three graph representations, the incidence
treewidth lower bound is always at most one larger than the primal or dual treewidth
lower bound. Thus, it is not possible to improve one of the lower bounds. This may be a
sign that the used lower bound algorithm produces tight lower bounds for the treewidth.
The primal tree-depth upper bound of every instance in the benchmark set is larger
than the primal treewidth upper bound. Sometimes, the tree-depth upper bound is even
significantly larger than the treewidth or treewidth upper bound. Examples include
the two instances aflow40b and ash608gpia-3col. In other cases, like the enlight13 or
binkar10_1 instance, the tree-depth is very close to the treewidth.

The torso-width of the torso that is obtained by collapsing the set of non-integer vertices
is often strongly dependent on the number of integer variables of the MILP instance. The
computed torso-width lower and upper bound are usually equal to the number of integer
variables minus one (which do not appear directly in Table 5.1 but can be computed
approximately by the proportion of integer variables). This means that in the primal
graph representation of the MILP instance no parts of the graph exist which are separated
solely by an integer vertex. If the MMD+(least-c) algorithm, that is used for obtaining
the treewidth lower bound, returns the same value as the number of integer variables
minus one, the vertices of the constructed torso form a clique. Thus, if the number of
integer variables is smaller or larger than the treewidth (bounds), then the torso-width
of this specific torso is also smaller or larger than the treewidth. This property might
be exploited in MILP instances which have a low proportion of integer variables to
non-integer variables.
In those cases where the computed torso-width lower and upper bounds are not equal to
the number of integer variables, two cases can be distinguished. Either the proportion
of integer variables is one, and as a consequence the torso-width bounds are equal to
the treewidth bounds, or the proportion is not one. This happens for ten instances
altogether. For some of these instances, for example the mcsched and ns1830653 instance,
the torso-width lower bound equals the torso-width upper bound.

5.3 Detailed analysis

In order to obtain a more detailed view on the structural parameters and their influence
on the practical difficulty of a MILP problem, two instances from the MIPLIB challenge
set are analyzed [mipb]. Those two instances are the liu and usAbbrv.8.25_70 instance.
Whereas the benchmark set only contains instances which are classified as easy, the
liu instance is still unsolved, and the usAbbrv.8.25_70 is classified as hard. Those
two instances are of relatively small size compared to other instances in the challenge
set [mipb]. The hardness or unsolvability of the instance may thus not solely stem from
its size but may have different causes that we try to explore.
The liu problem instance is from the domain of the physical design of VLSI circuits; the
second instance usAbbrv.8.25_70 is a railway optimization problem, which was solved
for the first time by Gurobi 7.0 (32 threads) in about 29 hours in November 2016 [mipb].
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5.3. Detailed analysis

Linear Program
Name Vars Cons Non-

Zeroes
Int Vars Prop Int Size Obj

Fun
liu 1156 2178 10626 1089 0.9420 1
usAbbrv.8.25_70 2312 3291 9628 1681 0.7271 106

Extended Primal Graph
Name Density TW LB TW UB TD TO LB TO UB
liu 0.0149 79 97 100 1086 1086
usAbbrv.8.25_70 0.0055 105 152 675 793 1190

Extended Incidence Graph
Name Vertices Edges Density TW LB TW UB
liu 3333 10627 0.0042 68 97
usAbbrv.8.25_70 5604 9734 0.0013 39 125

Extended Dual Graph
Name Vertices Edges Density TW LB TW UB
liu 2179 173283 0.0730 250 1638
usAbbrv.8.25_70 3292 36216 0.0067 84 630

Table 5.2: The results of the two instances liu (which is still unsolved) and usAb-
brv.8.25_70 (classified as hard) from the MIPLIB challenge set

The detailed properties of the two instances are shown in Table 5.2. The same setup and
timeouts as described in Section 5.1 and 5.2 are used, the extended graph representations
are again considered. The first two rows describe the properties of the MILP instances.
The number of variables and constraints is similar for the two instances, with both
having more constraints than variables. They also have a similar number of about 10,000
non-zero coefficients in the constraint matrix (column ‘Non-Zeroes’, the values are taken
from [mipb]). The liu instance has less integer variables than the second instance but
a higher proportion of integer variables to the total number of variables (column ‘Prop
Int’). The last column denotes the number of variables with a non-zero coefficient in the
objective function. The liu instance only contains one such variable.
The following three subtables show information about the extended primal, incidence
and dual graph representation of the two instances. The number of vertices can be
computed by the number of variables and constraints. In the primal graph representation
the number of vertices is equal to the number of variables. In the incidence graph
representation it is equal to the number of variables plus the number of constraints plus
one for the objective function. The liu instance contains two less vertices than expected
because two variables only occur with a zero coefficient in the objective function. Those
two variables are counted in the number of variables, but they are not considered in the
size of the objective function or in the construction of the graph representations. The
number of vertices in the dual graph representation is equal to the number of constraints
plus one.
The density is computed in the following way: the number of edges in the graph are
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5. Results

divided by the maximum possible number of edges. In the primal and dual graph
representation, this is simply two times the number of edges divided by the number of
vertices times the number of vertices minus one. As the incidence graph is a bipartite
graph, the incidence graph density is computed by dividing the number of edges by the
number of constraints times the number of variables.
The remaining columns contain the computed bound values for the treewidth, tree-depth
and torso-width.

The density for the (until now) unsolved instance liu is in general higher than for the
usAbbrv instance. Especially the dual graph representation has a much larger number of
edges and a higher density. The large number of edges in the dual graph representation
of the liu instance means that the constraints share a lot of variables. This observation
can also be made when we look at the density patterns of the two instances shown in
Figure 5.1. Recall that only the constraint matrix and not the objective function is
represented in the density pattern. The shape of the liu instance is formed like the letter

Figure 5.1: The density patterns of the liu instance (left) and usAbbrv.8.25_70 instance
(right) [mipb]

‘N’. Because of the almost vertical right line formed by many smaller diagonals, a few
number of variables occur in a lot of constraints; hence the large number of edges in the
dual graph representation of the liu instance. The density pattern of the usAbbrv also
consists of diagonals, but these are not distributed in such a connected way. Instead, the
density pattern rather consists of several individual parts.

The tree-depth upper bound of the liu instance is only slightly larger than the treewidth
upper bound, with an absolute value of three. Considering that the treewidth is at most
the tree-depth minus one, this is a rather tight bound. In contrast, the tree-depth of the
second instance usAbbrv is a lot larger than its treewidth upper bound and only slightly
smaller than the torso-width lower bound. Even increasing the number of iterations for
the tree-depth upper bound algorithm (with linear more time effort) does not result in
much better bounds, which can be seen in the following table.
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5.3. Detailed analysis

Name Number of iterations Tree-depth upper bound

liu

100 100
1000 100
10000 100
100000 100

usAbbrv.8.25_70

100 675
1000 675
10000 666
100000 666

The torso-width bounds of the two instances, more exactly the torso-width of the torso
that is obtained by collapsing the set of non-integer vertices, is for the liu instance exactly
1086. This means that the integer vertices form a clique in the torso (the two variables
that appear with a zero coefficient in the objective function are not contained in the
primal graph representation). Except for the dual graph, the torso-width is thus for sure
larger than the treewidth of the graph representations. The torso-width of the usAbbrv
instance is in between 793 and 1190. It is therefore larger than the treewidth of all three
graph representations and the tree-depth of the primal graph representation.

In order to show how the objective function influences the structural parameters, the
results for the simplified graph representations of the two challenge instances are shown
in Table 5.3. The size of the objective function influences how the values change.

Linear Program
Name Vars Cons Non-

Zeroes
Int Vars Prop Int Size Obj

Fun
liu 1156 2178 10626 1089 0.9420 1
usAbbrv.8.25_70 2312 3291 9628 1681 0.7271 106

Primal Graph
Name Density TW LB TW UB TD TO LB TO UB
liu 0.0149 78 97 100 1086 1086
usAbbrv.8.25_70 0.0036 44 122 710 794 1182

Incidence Graph
Name Vertices Edges Density TW LB TW UB
liu 3332 10626 0.0042 68 97
usAbbrv.8.25_70 5603 9628 0.0013 38 119

Dual Graph
Name Vertices Edges Density TW LB TW UB
liu 2178 173217 0.0731 251 1621
usAbbrv.8.25_70 3291 35547 0.0066 83 643

Table 5.3: The results for the two instances liu and usAbbrv.8.25_70 where the structural
parameters are computed on the simplified graph representations
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5. Results

The results of the liu instance mostly remain the same. The number of vertices and
edges of the incidence graph representation decreases by one as expected. The number of
vertices of the dual graph representation is also decreased by one, and the number of
edges is reduced from 173283 to 173217 edges. This implies that the one variable that
occurs in the objective function is the only “binding” variable for 66 constraint links.
However, the dual treewidth bounds do not decrease significantly.

For the usAbbrv instance the objective function plays a more significant role in the
structure of the MILP instance. 106 out of the 2312 variables have a non-zero coefficient
in the objective function. Whereas the number of components is one in the extended
graph representations, the number of components is two in all three simplified graph
representations. The minimum degree of the primal and dual graph representation
changes to zero (computed by MILP-Struct but does not appear in Table 5.3). For this
reason, there must be a variable vertex in the extended primal graph that is only due
to the objective function connected to another vertex. There also must be a constraint
in the MILP instance such that its variables only occur in the objective function (with
non-zero coefficients).
For the primal graph representation the amount of edges is reduced approximately to
two thirds of the amount of edges of the extended primal graph. The primal treewidth
bounds also decrease significantly. At the same time, the tree-depth and torso-width
bounds almost stay the same. The values of the simplified incidence graph representation
again change in the way one would expect. The number of vertices is decreased by one
and the number of edges is decreased by the size of the objective function. Meanwhile,
the treewidth bounds almost remain the same. The simplified dual graph has about 700
less edges than the extended dual graph but with almost no decrease in the density or
treewidth bounds.
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CHAPTER 6
Conclusion

Even though ILP is one of the most famous NP-complete problems [Kar72], in comparison
to SAT or CSP very little is known about the structure of ILP instances. The same also
holds for MILP instances – while this problem can be viewed as a mixture of ILP and LP,
it is far from being easier to solve than ILP. In order to analyze the structure of ILP and
MILP instances, the variable-constraint interactions of the instance are considered by
means of the primal, incidence and dual graph representation. This approach originally
stems from SAT but has also been successfully applied to ILP.
Theoretical results show that ILP and ILP feasibility are fixed-parameter tractable
parameterized by the primal treewidth, incidence treewidth and primal tree-depth with
some additional conditions [JK15, GO16, GOR17]. MILP is fixed-parameter tractable by
the torso-width, a structural parameter specific for MILP instances [GOR17]. Therefore,
as long as these structural parameters are assumed to be small, it is possible to solve the
instances in reasonable time.

Whereas for SAT and CSP there already exist studies that show how structural parame-
ters correlate with the solving time of the problem instance [Mat11, BFM05], very little is
known in the setting of ILP. In this thesis, we try to close this research gap by analyzing
the values of these structural parameters in graph representations of practical ILP and
MILP instances. Our goal was to construct a framework which is able to compute a
variety of structural parameters of the graphical representations of ILP or MILP instances.
With this framework, we wanted to measure structural parameters of practical ILP and
MILP instances to analyze the correspondence between the computed parameters and
the practical difficulty to solve the instance.
This goal is achieved by our framework MILP-Struct. Being the first of its kind,
it can parse ILP or MILP instances in the MPS format, construct the primal, inci-
dence, and dual graph representations and compute the structural parameters of these
graph representations. As the treewidth and tree-depth are NP-complete problems
themselves [ACP87, Pot88], only lower and upper bounds for the parameters are com-
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6. Conclusion

puted. For the treewidth, many different lower and upper bound methods like degree-
based lower bounds or elimination ordering upper bounds exist. The treewidth library
LibTW [vDvdHS06], which provides implementations of many of these algorithms, is
used for the computation of treewidth bounds; improvements for handling disconnected
graphs have been added. For the torso-width, we first construct a torso by collapsing the
set of non-integer vertices and then compute treewidth bounds on the resulting torso.
For the tree-depth, we use the fact that the height of any tree obtained by a depth-first
search is an upper bound on the tree-depth. MILP-Struct can thus compute bounds for
the theoretically most significant parameters treewidth, tree-depth and torso-width.

In order to apply our framework on practical integer and mixed integer programs,
instances from the well-established MIPLIB library [KAA+11] are used. This library
contains a wide range of practical ILP and MILP instances with additional information
about the instances and is continuously updated to match the speed improvements of ILP
solvers. We present and analyze the computed structural parameters of the benchmark
set from the MIPLIB 2010 library. Whereas the incidence treewidth and density is in
general quite low for all the analyzed instances, the torso-width for the one specific torso
that we analyze is often exactly the number of integer variables of the instance minus
one. For the other structural parameters, the computed bound values seldom allow for
a fixing of the bound values, i.e. the bounds usually are not very tight. In general, the
structural parameters are much smaller than the number of variables though this may
not be enough for algorithms that run with time exponential in the parameter.
For two specific instances from the challenge set the influence of the objective function
on the structural parameters is analyzed in detail. The construction of the simplified
graph representations may result in smaller structural parameters, but the improvement
depends upon the size of the objective function and whether the variables also occur
in the constraint matrix. Until now it is still an open problem whether the objective
function is really needed in the construction of the graph representations so that some
theoretical results can be applied [GO16]. As MILP-Struct is able to compute the graph
representations with and without the objective function considered, it may also be used
if more results in that research area are obtained.

Of course, even given the exact structural parameters one should not expect theoretical
algorithms to beat state-of-the-art solvers for ILP. However, MILP-Struct can be used
for obtaining an informative overview of the problem instance and structure. This
information may then help to estimate whether the ILP or MILP instance can be solved
to optimality – and in what time.
Moreover, there is hope that the state-of-the-art heuristics used for finding optimal
solutions of ILP or MILP can be enhanced to take into account the tree-like structure or
other structural parameters of instances; this would specifically target instances which
our framework found to have low treewidth, tree-depth or torso-width. Hence, our tool
may be of further use for researchers and practitioners trying to solve specific sets of ILP
or MILP instances.
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