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Abstract

Feedback is known to decrease the encoding effort and reduce the decoding

error for the single-user channel and it can even enlarge the capacity and the

achievable sum rate for the multiple access channel (MAC). Quantization is

a major aspect in modern communication systems as it is responsible for the

conversion from the analog to the digital domain and it is often modeled as

lossy source coding.

We focus on the limited blocklength, as it is very important in the communi-

cation nowadays due to complexity and delay constraints especially with the

increasing demand of the real-time communication such as audio and video

streaming for mobile devices.

We propose a quantized feedback scheme for the single-user AWGN channel

and the two-user MAC with additive Gaussian noise. The quantized feedback

link is modeled as an information bottleneck subject to a rate constraint.

Furthermore, we study the decoding error probability given a transmit rate and

the maximum achievable rate of the quantized feedback scheme and compare it

with other schemes like Schalkwjik-Kailath and Polyanskiy. Additionally, we

study in detail in what blocklength regions the quantized feedback is beneficial.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the demand for real-time data communication such as audio

and video streaming is hugely increased. This data communication requires

hard delay constraints on its delivery. This leads us to consider a limited

blocklength coding in the schemes discussed here. Noiseless feedback in com-

munication systems is known to reduce the coding effort and improves the

decoding over a Gaussian channel. It is also known to enlarge the channel

capacity and increases the achievable sum rate for the multiple access channel

[2].

Quantization is a very important process in modern communication as every

digital receiver has to do some kind of quantization in order to do the conver-

sion from analog to digital. So, we apply a quantization to the received signal

before being fed back and this feedback link is modeled as an information

bottleneck [3]. We will observe how useful this quantized feedback scheme is

for a limited blocklength compared with other feedback schemes. In addition,

we will examine in what blocklength region the quantized feedback scenario is

1



CHAPTER 1. INTRODUCTION

beneficial and what quantization rates are needed for a certain blocklength.

1.2 Aim of The Work

Perfect feedback without quantization is unrealistic due to the need of the

conversion from the analog domain to the digital domain in the modern com-

munication. Thus, we introduce a quantized feedback scheme and study the

decoding error probability and the achievable rate.

The main task is to study how valuable the quantized feedback scheme is for

a limited blocklength and in what blocklength region is it beneficial compared

to other schemes without feedback and with perfect feedback. We applied

this scheme in the case of single-user Gaussian channels and 2-user Gaussian

multiple access channels.

1.3 Previous Work

In [4] Shannon proved that the channel capacity of a memoryless noisy chan-

nel is not increased by noiseless feedback in the single user case. There are

still some advantages of the presence of the noiseless feedback such as that it

leads to a substantial reduction in the complexity of the coding and decoding

required to achieve a given performance over a noisy channel. In 1966 Schalk-

wijk and Kailath [5] introduced a feedback scheme based on Robbins-Monro

procedure [6] and illustrated simplifications when the noisy link is an addi-

tive Gaussian noise channel operated under average power constraint with no

restrictions on the signal bandwidth. Schalkwjik and Kailath extended their

work from the wideband regime to the band-limited channel with signal band-

width constraint in [7]. In [8] R. G. Gallager developed Schalkwijk and Kailath

2



CHAPTER 1. INTRODUCTION

scheme and introduced approximated expressions of the decoding error prob-

ability as it decreases as a second order exponent in the blocklength for rates

below the channel capacity. Ozarow [9] showed that the channel capacity can

be enlarged in the presence of feedback when two senders are considered in a

multiple access scenario.

In 2009, Polyanskiy [10] developed finite blocklength fundamental limits of the

achievable rate for the AWGN channel for a non-feedback system. As finite

blocklength is considered here, the transmit rate cannot achieve the channel

capacity as the capacity is only achievable when an infinite blocklength is con-

sidered. The key parameters of his approximation are the channel dispersion

and the channel capacity.

1.4 Background

In this section we will explain important concepts that are necessary to be

known before proceeding to the next chapters. [1]

1.4.1 Entropy and Mutual Information

1. Entropy is a measure of the uncertainty of a random variable, in other

words, it is a measure of the amount of information that is required on

average to describe a random variable. The entropy H(X) of a discrete

random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x), (1.1)

where p(x) is the probability mass function.

2. Relative Entropy is a measure of the distance between two distributions

3



CHAPTER 1. INTRODUCTION

denoted by D(p||q). The distance between the two probability mass

functions p(x) and q(x) can be described by

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (1.2)

The relative entropy is always non-negative, and it is equal to zero iff

p = q.

3. Mutual Information is a measure of the amount of information that one

random variable contains about the other random variable. Assume that

X and Y are two random variables with joint probability mass function

p(x, y). The mutual information I(X;Y ) is defined by

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y)||p(x)p(y)). (1.3)

4. Differential Entropy is the entropy of a continuous random variable. Let

X be a continuous random variable, the differential entropy h(X) is

defined as

h(x) = −
∫
S

f(x) log f(x)dx, (1.4)

where f(x) is the probability density function for X and S is called the

support set where f(x) > 0.

1.4.2 Channel Capacity

Channel capacity is described as the maximum amount of information that can

be reliably transmitted over a channel. In the context of information theory,

4
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+
Xi Yi

Zi

Figure 1.1: Gaussian Channel

it is known as the maximum mutual information. Consider a discrete channel

with input alphabet X and output alphabet Y and the transition probability

is given by p(x|y). The information channel capacity is defined by

C = max
p(x)

I(X;Y ). (1.5)

1.4.3 Gaussian Channel

One of the most important continuous channels is the Gaussian channel as it

is the basis for a large number of situations including radio and satellite links.

Figure 1.1 illustrates a time-discrete channel with input Xi, output Yi and

noise Zi ∼ N (0, σ2
z). The noise is Gaussian with variance σ2

z and it is assumed

to be independent of Xi. Yi can be described as follows:

Yi = Xi + Zi. (1.6)

The capacity of the Gaussian channel with signal power P and noise variance

σ2
z is defined by

C = max
E{X2}≤P

I(X;Y ) =
1

2
log(1 +

P

σ2
z

). (1.7)

And the average transmit power constraint is given by

1

n

n∑
i=1

E{x2i } ≤ P, (1.8)

for any transmitted codeword (x1, x2, ..., xn) transmitted over the channel.

5



CHAPTER 1. INTRODUCTION

1.4.4 Rate-Distortion Theory

To describe an arbitrary real number an infinite number of bits is required, so

it is impossible to perfectly represent a continuous random variable with a fi-

nite number of bits. Therefore, a distortion measure which is a measure of the

distance between the random variable and its representation is necessary. The

rate-distortion theory is based on the minimum expected distortion achievable

at a particular rate given a source distribution and a distortion measure. Or,

equivalently, the minimum rate required to achieve a particular distortion. It

can be applied to discrete and continuous random variables.

The rate distortion function for a source X with distribution p(x) and distor-

tion function d(x, y) is [1]

R(D) = min
p(y|x):

∑
(x,y) p(x)p(y|x)d(x,y)≤D

I(X;Y ), (1.9)

where the minimization is over all conditional distributions p(y|x) and y is the

estimate representation of x.

For a Gaussian source with zero mean and variance of σ2, the rate distortion

function can be described as [1]

R(D) =
1

2
log

σ2

D
. (1.10)

Figure 1.2 illustrates the relation between the rate and the distortion for a

Gaussian source.

1.5 Structure of the Work

In this thesis several coding schemes are discussed starting from Polyanskiy

normal approximation in chapter 2 which introduces an approximation of the

6
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Figure 1.2: Rate-distortion function for Gaussian source

achievable rate and error probability of the direct transmission scenario over a

Gaussian channel without feedback. Then in chapter 3, the perfect feedback

schemes for single user and multiple users Gaussian channel are examined. In

chapter 4, the quantized feedback scheme is introduced and it is compared

with the perfect feedback and Polyanskiy schemes. Finally, a conclusion of the

overall work is given by chapter 5.

7



Chapter 2

Polyanskiy Normal

Approximation

Transmitter +

z ∼ N (0, σ2
z)

x
Receiver

y

Figure 2.1: Transmission without feedback single-user AWGN channel

In this chapter we start with the very simple scenario which is the transmission

without any feedback. So simply we have a transmitter, a Gaussian channel

and a receiver as shown in Fig. 2.1. Consider an AWGN channel has an input

vector x of length N and a Gaussian noise vector z ∼ N (0, σ2
z). So the output

vector y of length N is given as

y = x + z (2.1)

8



CHAPTER 2. POLYANSKIY NORMAL APPROXIMATION

The transition probability density function is given by the conditional proba-

bility P (y|x) : x → y. A codebook of M codewords {x1, x2, ..., xM} ⊂ X are

subject to the average power constraint of,

1

N

M∑
i=0

x2i ≤ P. (2.2)

The minimum blocklength required to reach a given rate and an error proba-

bility can be approximately calculated according to Polyanskiy [10] from the

channel capacity and the channel dispersion.

The performance limit for the channel in the finite blocklength regime is

M(N,Pe) which is the maximum cardinality of a codebook of blocklength

N which can be decoded with block error probability not greater than Pe and

channel capacity C. The following approximation is asymptotically tight for

channel that satisfies the strong converse,

logM(N,Pe)

N
≈ C. (2.3)

The converse bound is an upper bound on the size of any code with given

arbitrary blocklength and error probability.

In practical terms, for many channels, error rates and blocklength ranges the

approximation given by (2.3) is too optimistic as an infinite blocklength is

needed to achieve the channel capacity. In [11] Polyanskiy, Verdu and Poor

showed a much tighter approximation that can be obtained by introducing a

second parameter which is the channel dispersion. The channel dispersion V

(measured in squared information units per channel use) of a channel with

capacity C is given by,

V = lim
Pe→0

lim
N→∞

sup
1

N

(NC − logM(N,Pe))
2

2 ln 1
Pe

. (2.4)

For a simple memoryless channels the following approximation is given by [11],

logM(N,Pe) ≈ NC −
√
NV Q−1(Pe) +O(logN). (2.5)

9



CHAPTER 2. POLYANSKIY NORMAL APPROXIMATION

2.1 Single User Channel

Consider a single user AWGN channel with SNR γ = P
σ2
z

and error probability

Pe under the power constraint in (2.2) we have [10]

logM(N,Pe, γ) = NC(γ)−
√
NV (γ)Q−1(Pe) + ρN , (2.6)

where

ρN = O(logN), (2.7)

C(γ) =
1

2
log(1 + γ), (2.8)

V (γ) =
γ(γ + 2)

2(γ + 1)2
log2 e. (2.9)

The O(logN) used in (2.6) is bounded by

O(1) ≤ ρN ≤
1

2
logN +O(1). (2.10)

An approximation of (2.6) shown in [10] is given by,

logM(N,Pe, γ) ≈ NC −
√
NV Q−1(Pe) + α logN, (2.11)

for many practical scenarios for AWGN channels, α = 1/2 is found a valid

assumption. So we can simply rewrite equation (2.11) as

logM(N,Pe, γ) ≈ NC −
√
NV Q−1(Pe) +

1

2
logN. (2.12)

We are interested in finding an expression of the error probability of this

scheme. By using equations (2.3) and (2.12) we can find an expression of

Pe with fixed rate as follows,

NR = NC −
√
NV Q−1(Pe) +

1

2
logN, (2.13)

10
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100 101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 2.2: Pe without feedback with different rates for Gaussian channel.

C = 1, σ2
z = 1

Q−1(Pe) =
C −R + 1

2N
logN√

V
N

, (2.14)

Pe = Q

(
C −R + 1

2N
logN√

V
N

)
, (2.15)

Pe =
1

2
erfc

(
C −R + 1

2N
logN√

2V
N

)
, (2.16)

where R here is the transmit rate. So now we found an expression of error

probability in (2.16) by reformulating (2.11). Fig. 2.2 shows how the error

probabilities are affected by increasing the blocklength while using different

rates. It is clearly visible that by increasing blocklength the error probability

11



CHAPTER 2. POLYANSKIY NORMAL APPROXIMATION

is decreasing exponentially. Furthermore, we get a better performance when

the transmit rate is smaller as we operate at a bigger distance of the ultimate

limits.

2.2 Multiple User Channel

Transmitter 1

Transmitter 2

+

h1

h2

zn ∼ N (0, σ2
z)

Receiver

x1,n

x2,n

yn

Figure 2.3: Transmission without feedback for 2-user Gaussian MAC

We now consider a symmetric 2-user Gaussian MAC with two senders without

feedback as shown in the block diagram in figure 2.3. The transmitters send

the independent Gaussian user signals x1 and x2 and the received signal is

observed as follows

y = h1x1 + h2x2 + z, (2.17)

where h1 and h2 are the channel gains and they are assumed to be known by

the transmitters and the receiver and z ∼ N (0, σ2
z) is the Gaussian channel

noise. We have the average power constraint of

1

N

N∑
n=1

E{x21,n + x22,n} ≤ P1 + P2. (2.18)

12
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The sum-rate upper bound is given by [12]

R1 +R2 ≤ C(h21P1 + h22P2)−
√
V (h21P1 + h22P2)

N
Q−1(Pe) +

α

N
logN, (2.19)

Thus, we can find an error probability expression for this scheme by solving

equation (2.19)

Pe = Q

(
C(h21P1 + h22P2)−R + 1

2N
logN√

V (h21P1+h22P2)

N

)
. (2.20)

The capacity and dispersion for the MAC here will be equal to the capacity

and dispersion for the single user channel given by (2.8) and (2.9) respectively

as this scheme is without feedback and the SNR of the channel will remain

the same for the single and the multiple user cases. This will result in having

the same error probability for both cases and we can observe that figure 2.2

represents the error probability without feedback for the single and the multiple

user Gaussian channels.

13



Chapter 3

Perfect Feedback

Feedback is known to reduce the coding effort and improves the decoding by

decreasing the error probability. For single user channels, feedback cannot in-

crease the capacity of the channel but as we will see later the channel capacity

can be enlarged for multiple access channels.

Schalkwijk and Kailath [5] introduced a perfect feedback scheme in 1966. The

channel is considered additive noise Gaussian and the feedback is assumed

to be noiseless, or in other words, we call it perfect feedback scenario. In

1984 Ozarow [9] presented a feedback scheme for a 2-user Gaussian multiple

access channel and proofed that the capacity can be enlarged by such a system.

In 3.1 we will introduce the mathematical description of the Schalkwjik-Kailath

(S-K) scheme. The S-K scheme is motivated by Robbins-Monro algorithm

which is described in 3.2. Then in 3.3 the perfect feedback scheme is discussed

when no bandwidth constraint is considered. In 3.4 we consider the feedback

scheme in the band limited regime for single user and multiple user Gaussian

channels. Finally, a comparison of the perfect feedback scheme and Polyanskiy

scheme will be made in 3.5.

14



CHAPTER 3. PERFECT FEEDBACK

3.1 The Schalkwjik-Kailath Scheme

Transmitter +

zn ∼ N (0, σ2
z)

θ xn
Receiver

yn θ̂

yn

Figure 3.1: Transmission with perfect feedback for single user Gaussian channel

Schalkwjik-Kailath scheme is an iterative scheme based on determining the

transmitted message θ from the received message θ̂ after performing N it-

erations. Figure 3.1 clarifies the block diagram of the transmission over an

additive white Gaussian noise channel with noiseless feedback. The received

signal is observed as

yn = xn + zn, (3.1)

where xn ∈ R is the transmitted signal sent across the channel at each channel

use n = 1, 2, ..., N . And zn ∈ R is assumed to be i.i.d Gaussian noise such that

zn ∼ N (0, σ2
z). The received signal can be written as

y = x + z, (3.2)

15
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where the input vector x = [x1, x2, ...., xN ]T and N is the blocklength here.

The average power constraints of the transmitted signal is bounded by

1

N
E{xTx} ≤ P. (3.3)

The transmitter output x is given by [13]

x = Fz + gθ, (3.4)

where g ∈ RN is a unit vector,

g = [1, 0, ..., 0]T , (3.5)

and the encoding matrix F ∈ RN∗N is given as

F =



0 0 . . . 0

−r 0

−r
α

−r2
α

0

−r
α2

−r2
α2

−r2
α

0
...

−r
α3

−r2
α3

−r2
α2

−r2
α

0
...

...
...

...
. . . . . .

−r
αN−2

−r2
αN−2

−r2
αN−3 . . . −r

α
0



, (3.6)

where α2 = 1 +P and r =
√
P . From (3.4) we observe that each xn is a linear

function of past values of zn and the message θ.

Now, consider the decoding process at the receiver. The input of the receiver

y is given by (3.2) and can be reformulated using (3.4)

y = Fz + gθ + z = (I + F)z + gθ. (3.7)

After all the N transmissions, the receiver estimates the original message by

combining all the received values as a linear combination. The received mes-

sage is denoted by θ̂ and is given as

θ̂ = qTy, (3.8)

16
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where the vector q ∈ RN is called the combining vector and it is given by

q = [1,
r

α2
,
r

α3
, ...,

r

αN
]T , (3.9)

where α2 = 1 + P and r =
√
P

3.2 Robbins Monro Procedure

The Schalkwjik-Kailath coding scheme is motivated by Robbins-Monro proce-

dure [6]. Robbins-Monro procedure is a recursive scheme based on determining

the transmitted signal from the received signal. The idea is to determine the

message θ which is a zero of the function f(x) without knowing the shape of

this function. So we receive a noisy version of the transmitted signal x

y = f(x) + z, (3.10)

where z ∼ N (0, σ2
z) is an additive white Gaussian noise.

To estimate θ we should start with an initial guess x̂1 and make successive

guesses according to the following equation,

x̂n+1 = x̂n − anyn n = 1, 2, ... , (3.11)

where the coefficient an = 1/αn according to Sacks’ theorem [14].

Assume that the transmitter sends M messages to the receiver and a noiseless

feedback link is available. Pick the message point θ which is the midpoint of

the message interval. Through this message θ, draw the function f(x̂1) which

is a straight line and can be written as follows

f(x̂1) = α(x̂1 − θ), (3.12)

17
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with the slope α > 0. Start with an initial guess of x̂1 = 0.5 and send f(x̂1)

given by (3.12) to the receiver. The receiver obtains the the following signal

y1 = α(x̂1 − θ) + z1. (3.13)

Then the receiver will compute x̂2 according to equation (3.11), x̂2 = x̂1−ay1,

and it will retransmit this value to the transmitter. Afterwards, the transmitter

sends f(x̂2) = α(x̂2− θ) and the receiver will receive y2 and so on. In general,

the receiver receives

yn = f(x̂n) + zn, (3.14)

and computes

x̂n+1 = x̂n −
a

n
yn. (3.15)

Next, x̂n+1 is sent back to the transmitter which will send

f(x̂n+1) = α(x̂n+1 − θ). (3.16)

By solving equations (3.14) and (3.15) we will get

x̂n+1 = θ − 1

αn

n∑
i=1

zi, (3.17)

where zi ∼ N (0, σ2
z) are independent i.i.d additive Gaussian noise and x̂n+1 is

also Gaussian with mean θ and variance of σ2
z/α

2n.

Suppose that the transmitter has to send one of M possible messages and N

iterations are made before the receiver makes its decision. The length of the

message interval is 1/M and the probability of xN+1 ∼ N (θ, σ2
z/α

2N) is not

located in this interval (the probability of error) is

Pe = 2 erfc

(
1
2
M−1

σz
α

√
N

)
. (3.18)
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3.3 Perfect Feedback- No Bandwidth

Constraint

In [5] Schalkwijk and Kailath introduced a perfect feedback scheme with no

bandwidth limitations. The channel is assumed to be additive noise Gaussian

with no bandwidth constraint. Such channels are considered e.g. in space

communications. At this point, the feedback link is assumed to be noiseless

as the power from the ground to the satellite is much larger than the reverse

power from the satellite to the ground. Thus, the first link can be considered

to be approximately noiseless.

The channel is assumed to be white Gaussian with power spectral density N0/2

and the average power of the transmitted signal is Paverage with no constraints

imposed on the bandwidth. The channel capacity for this case is given by [5]

C =
Paverage
N0 ln 2

bits/second. (3.19)

Equation (3.18) shows that the probability of error Pe that can be driven to

zero by increasing N . The signaling rate can be described as follows

R = log
M

T
bits/second, (3.20)

where T is the time interval. If the number of iterations N increased without

increasing M the signaling rate will go to zero. A constant rate R can be main-

tained if M is increased along with T which is monotonically related to N . So

the question here is, how rapidly can we increase M with N while still enabling

the error probability to vanish for increasing N . Therefore, Schalkwijk-Kailath

[5] showed the following relation between M and N

M(N) = N
1
2
(1−ε). (3.21)
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Substituting by (3.21) in (3.18), the probability of error can then be written

as

Pe = 2 erfc

(
α

2σz
N ε/2

)
. (3.22)

The critical rate is determined when ε = 0 and it is given by

Rcritical =

(
logM(N)

T

)
ε=0

=
logN

2T
= A bits/second, (3.23)

where A is constant and it is limited by the average power constraint Paverage.

Therefore, A cannot be arbitrarily large and here it is approximately equal to

the channel capacity [5]

C ≈ A =
Paverage
N0 ln 2

. (3.24)

In order to keep the critical rate Rcritical finite as T → ∞, N must grow

exponentially with the time T , thus N = e2AT .

The value of the slope α that minimizes the error probability in (3.22) can be

determined by equivalently maximizing the square of the argument in (3.22)

α2

4σ2
N ε. (3.25)

The optimum value of α2 that maximizes (3.25) can be determined by differ-

entiating (3.25) with respect to α2 and yields [5]

α2
0 = 6N0

(C
R

)
. (3.26)

With a transmit rate of,

R = (1− ε)A, (3.27)

for which [5]

ε = 1− R

C

(
ε2

6N0

+
N−1∑
i=1

1

i

)
1

lnN
. (3.28)
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Now, α2
0 can be substituted in the error probability equation (3.22) and as a

result, we will get the following equation

Pe = 2 erfc

(√
3
C

R
N ε

)
. (3.29)

The asymptotic expression of the error probability is similar to the error prob-

ability given by (3.22) and by substituting σ2
z = N0/2, the probability of error

is

Pe = 2 erfc

(√
α2

2N0

N ε

)
. (3.30)

Substituting by the optimum α2
0 given by (3.28) and by using the asymptotic

formula of the complementary error function (erfc) shown below

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt, (3.31)

we can obtain the following expression for the error probability

Pe =

exp

(
− 3

2
C
R
N ε

)
√

6π

(
C
R
N ε

) , (3.32)

where, ε = 1− (1 + R
C

∑N−1
i=1

1
i
).

Fig. 3.2 illustrates the relation between probability of error and the block

length given a fixed capacity and different rates. The capacity is normalized

to 1 and the noise power σ2 = 1.

As seen from Fig. 3.2 the probability of error is decreasing exponentially with

increasing blocklength.
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Figure 3.2: Pe for single user Gaussian channel with perfect feedback using

different rates in the wide-band regime. C = 1, σ2
z = 1

3.4 Perfect Feedback- Band-limited

The previous scheme was in the wide-band regime. Now, we will consider

band-limited channel [7] with noiseless feedback. The signal bandwidth is

restricted to (−W,W ). Accordingly, we have a fixed bandwidth of W which

the transmission is not supposed to exceed. The channel capacity is no longer

Paverage/N0 ln 2 as before, but it will be given by [7]

C = W log(1 +
Paverage
N0W

) bits/second. (3.33)

In order to achieve a constant rate in the case of wide-band, one had to choose

N = e2AT , which means that the number of transmission had to increase

exponentially with time (as discussed before in 3.3). Now we have to meet the
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bandwidth constraint W . In this case the number of transmissions can only

increase linearly with time according to the following equation

N = 2WT, (3.34)

as the highest number of transmission is approximately equal to 2W .

3.4.1 Single User Channel

In the beginning, the perfect feedback scheme will be applied to the single user

scenario represented by the block diagram in figure 3.1. The received signal

yn = xn + zn, where zn is considered additive Gaussian noise with zero mean

and variance of σ2
z . Robert Galleger [8] introduced an approximation of the

error probability Pe

Pe = 2Q

(
exp

(
N(C −R)

))
, (3.35)

where the channel capacity C = 1
2
log(1 + γ) and γ is the signal to noise ratio

(SNR).

Fig. 3.3 illustrates the probabilities of error for the single user perfect feedback

scenario given by (3.35) when using different transmit rates. The channel ca-

pacity C is normalized to 1 bit/second and the noise variance σ2
z = 1. As shown

the error probability is decreasing doubly exponentially with the blocklength.

3.4.2 Multiple User Channel

The work is extended now to multiple user channel. Therefore, a Gaussian

multiple access channel will be considered here. Feedback can enlarge the

capacity of the multiple access channels as proven by Gaarder and Wolf [2].
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Figure 3.3: Pe with perfect feedback single-user Gaussian channel, C = 1,

σ2
z = 1

Figure 3.4 illustrates the block diagram of the perfect feedback scheme powered

by Ozarow [9] when a Gaussian MAC with two senders is considered. The

two transmitters are communicating with a common receiver using the same

channel which is considered AWGN with noise z ∼ N (0, σ2
z). The channel

output y is related to the input pair (x1, x2) by the conditional probability

p(y|x1x2).

Consider a continuous amplitude version of the MAC where the nth output is

given by

yn = h1x1,n + h2x2,n + zn, (3.36)

24



CHAPTER 3. PERFECT FEEDBACK

Transmitter 1

Transmitter 2

+

h1

h2

zn

Receiver
θ̂1

θ̂2

x1,n

x2,n

yn

yn

yn

θ1

θ2

Figure 3.4: Perfect feedback for 2-User Gaussian MAC

where the zn are a sequence of i.i.d zero mean Gaussian noise with variance

σ2
z . The average transmit power constraint with blocklength N is

1

N

N∑
n=1

E{x21,n + x22,n} ≤ P. (3.37)

The capacity region without feedback for a Gaussian MAC given rate pair

(R1, R2) with transmit powers P1 and P2 and channel gains h1 and h2 is given

by [15][16]

C =
{

(R1, R2) : 0 ≤ R1 ≤
1

2
log
(
1 +

h21P1

σ2
z

)
,

0 ≤ R2 ≤
1

2
log
(
1 +

h22P2

σ2
z

)
,

0 ≤ R1 +R2 ≤
1

2
log
(
1 +

h21P1 + h22P2

σ2
z

)}
.

(3.38)

Ozarow [9] showed that the capacity region of the system when the feedback
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is applied can be enlarged to

Cfb =
{

(R1, R2) : 0 ≤ R1 ≤
1

2
log
(
1 +

h21P1

σ2
z

(1− ρ2)
)
,

0 ≤ R2 ≤
1

2
log
(
1 +

h22P2

σ2
z

(1− ρ2)
)
,

0 ≤ R1 +R2 ≤
1

2
log
(
1 +

h21P1 + h22P2 + 2
√
h21P1h22P2ρ

σ2
z

)}
,

(3.39)

where 0 ≤ ρ ≤ 1.

The correlation coefficient ρ is the crucial part in (3.39) as the achievable sum

capacity can be enlarged according to the value of ρ. If there is no correlation

between the two transmit signals, ρ = 0, the feedback link will be useless and

eq. (3.39) yields eq. (3.38).

For what follows, a symmetric Gaussian MAC is considered for simplicity.

Hence, P1 = P2 and the noise variance σ2
z is normalized to 1. To find the

optimum value of ρ (ρ∗) for a given channel, all three conditions in (3.39) must

be satisfied. Simply, R1 in the first condition is added to R2 in the second

condition and then it will be equalized with the third condition and thereby

we get the optimum ρ∗. We can observe from Fig. 3.5 that the curve of the

first condition added to the second condition in (3.39) is strictly decreasing

while the curve of the third condition in the same equation is strictly increas-

ing. The intersection point of the two curves leads to ρ∗. The left y-axis of

figure 3.5 represents R1 added to R2 which are the first and the second condi-

tions respectively: 0 ≤ R1 + R2 ≤ log
(
1 + P1

σ2 (1− ρ2)
)

while the right y-axis

represents the third condition R1 +R2. The x-axis shows the correlation coef-

ficient ρ. The channel capacity here for the non-feedback system is normalized

to 1 bit/second.

At the beginning of a block of N transmissions, each transmitter picks a mes-

sage θi (i = 1, 2) from the message alphabet Mi. θi is uniformly distributed

over Mi equally spaced values in [−1
2
, 1
2
] [9]. For large Mi, θi have a vari-
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Figure 3.5: Finding the optimum correlation coefficient ρ∗

ance approximately equal to 1
12

. After the nth transmission (n = 1, 2, ...) the

receiver estimates θ̂ni and computes the estimation error

εi,n = θ̂ni − θi. (3.40)

The estimated error εi,n is a zero mean Gaussian random variable with variance

αi,n = σ2
z/12Pi.

Now, after finding the optimum correlation coefficient ρ∗, Ozarow [9] achieved

an expression of the error probability for a 2-user Gaussian MAC and it is

given by

Pe,i = 2Q

[
σ2
z

2
√
αi,2(σ2

z + Pi(1− ρ∗2))
eN
(
Cfb−Ri

)]
. (3.41)

Substituting by the Cfb given by (3.39) in (3.41) we get

Pe,i = 2Q

[
σ2
z

2
√
αi,2(σ2

z + Pi(1− ρ∗2))
e
N

(
1
2
log
(
1+

P1+P2+2
√
P1P2ρ

∗

σ2

)
−Ri

)]
. (3.42)
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Figure 3.6: Pe perfect feedback for symmetric 2-user Gaussian MAC, Cfb =

1.185, σ2
z = 1

Fig. 3.6 shows the probability of error of the perfect feedback for symmetric

2-user Gaussian MAC given a various transmit rates. The channel capacity C

of the non-feedback is always normalized to 1 and the feedback capacity for

the MU system Cfb is calculated by Eq. (3.39). The channel is assumed to be

symmetric thus, P1 = P2 = 1.5. Therefore, Cfb approximately equals to 1.185

bits/second.

28



CHAPTER 3. PERFECT FEEDBACK

3.5 Comparing the Perfect Feedback

with Polyanskiy scheme

Next, we compare the perfect feedback scheme with Polyanskiy scheme dis-

cussed in the previous chapter. We will observe the advantage of feedback over

the non-feedback system by showing the improvement in the error probability

that feedback offers compared to Polyanskiy scheme. Figure. 3.7 compares

the difference between the two schemes by using different transmit rates for a

single user Gaussian channel. As shown the error probability of the transmis-

sion without feedback using Polyanskiy normal approximation is exponentially

decreasing with increasing blocklength while the error probability of the per-

fect feedback is decreasing doubly exponentially with increasing blocklength.

Therefore, the gap between the two curves is increased when the blocklength is

increased. Figure 3.8 shows the difference between the error probability with

perfect feedback and the error probability without feedback for single user

Gaussian channel by calculating ∆Pe{norm} = Pe{Nofb}/Pe{fb}.

Next, we compare the perfect feedback with polyanskiy scheme for 2-user Gaus-

sian MAC. Figure 3.9 compares the two schemes with different transmit rates.

As observed in the single user case, the performance of the perfect feedback

scenario is much better than the performance of the non-feedback scenario.

And figure 3.10 shows how the gap between the error probability curves is

increasing by increasing blocklength.
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Figure 3.7: Pe perfect feedback Vs Pe no feedback for single user Gaussian

channel. C = 1, σ2
z = 1
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Figure 3.8: ∆Pe{norm} for single user Gaussian channel, C = 1, σ2
z = 1
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Figure 3.9: Pe perfect feedback Vs Pe no feedback for symmetric 2-user Gaus-

sian MAC. Cfb = 1.185, P1 = P2 = 1.5, σ2
z = 1
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Figure 3.10: ∆Pe{norm} for symmetric 2-user Gaussian channel. Cfb = 1.185,

P1 = P2 = 1.5, σ2
z = 1
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Quantized Feedback

In this chapter we will introduce the main part of the thesis which is the quan-

tized feedback for finite blocklength.

The idea is to apply the quantization to the received signal before being fed

back to the transmitter. The quantized feedback link is modeled as an infor-

mation bottleneck [3].

In section 4.1 the Gaussian information bottleneck method is described. Then

we will explain the quantized feedback for the single user Gaussian channel in

the wide-band regime in 4.2. After that, the quantized feedback in the band-

limited regime will be explained in 4.3 for the single user Gaussian channel

and for the 2-user Gaussian MAC and it is compared with the perfect feed-

back and the non-feedback systems. Finally, we study the achievable rates for

the quantized feedback, the perfect feedback and the non-feedback schemes

in 4.4.
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4.1 Gaussian Information Bottleneck

The information bottleneck method (IBM)[3] [17] was introduced as an infor-

mation theoretic principle for extracting relevant information that an input

random variable x ∈ X contains about an output random variable y ∈ Y . The

relevant information is defined as the mutual information I(x; y) given the joint

distribution p(x; y), where x and y is assumed to be statistically dependent. In

this case, y implicitly determines the relevant and the irrelevant features in

x. The optimal representation of x would capture the relevant features and

compress x by dismissing the irrelevant parts which do not contribute to the

prediction of y.

Let x− y− ŷ be a Markov chain where ŷ is the quantized version of y and the

joint distribution of x and y is assumed to be known. x and y are assumed to

be jointly Gaussian random vectors with full rank covariance matrices. The

information bottleneck method solves the variational problem

min
p(ŷ|y)

I(y; ŷ)− βI(x; ŷ), (4.1)

where x is called the relevance variable, I(x; ŷ) is the relevant information

and I(y; ŷ) is the compression rate. β determines the trade-off between the

compression rate and the relevant information. It was shown in [17] that the

optimal ŷ is jointly Gaussian with y and can be written as

ŷ = Ay + ξ, (4.2)

where A is a particular matrix and ξ ∼ N (0,Cξ) is independent on y. Equa-

tion (4.1) can be rewritten using (4.2) as

min
A,Cξ

I(y;Ay + ξ)− βI(x;Ay + ξ). (4.3)
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In [17] a solution of (4.3) has been found

A =



[0; ...;0] 0 ≤ β ≤ βc1

[α1v
t
1;0; ...;0] βc1 ≤ β ≤ βc2

[α1v
t
1;α2v

t
2;0; ...;0] βc2 ≤ β ≤ βc3

. .

. .

. .


, (4.4)

where {vt1,vt2, ...,vtn} are the the left eigenvectors of Cy|xC
−1
y sorted by their

corresponding eigenvalues λ1, λ2, ..., λn, βci = 1
1−λi are critical β values and the

coefficients αi are given by

αi =∧

√
β(1− λi)
λiv

t
iCyvi

. (4.5)

By using (4.4) and (4.5) the rate information trade-off can be expressed by

I(x; ŷ) = I(y; ŷ)− 1

2

n∑
i=1

log(1− λi). (4.6)

By the data processing inequality, equation (4.6) is bounded by

I(x; ŷ) ≤ min{I(y; ŷ), I(x; y)}. (4.7)

In order to formalize the trade-off between the relevant information and the

compression rate, the information-rate function I(Rq) and the rate-information

function Rq(I) have to be defined where Rq is the quantization rate.

Let x − y − ŷ be a Markov chain. The information-rate function I: R+ →

[0, I(x; y)] is defined by:

I(Rq) , max
p(ŷ|y)

I(x; ŷ) subject to I(y; ŷ) ≤ Rq. (4.8)

The rate-information function Rq : [0, I(x; y)]→ R+ is defined as follows:

Rq(I) , min
p(ŷ|y)

I(y; ŷ) subject to I(x; ŷ) ≥ I. (4.9)
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I(Rq) allows us to quantify the maximum of the relevant information that can

be preserved when the compression rate is at most Rq and Rq(I) quantifies the

minimum compression rate required when the relevant information is at least

I.

The scalar Gaussian channel case is summarized in [8]. The received signal y

is given as

y = x + z, (4.10)

where z ∼ N (0, σ2) is independent of x ∼ N (0, P ). The quantized version of y

is ŷ = Q(y). Let x−y− ŷ be a Markov chain, the transition probability density

function (pdf) of the overall channel is

p(ŷ|x) =

∫ ∞
−∞

p(ŷ|y)p(y|x)dy, (4.11)

where p(y|x) is the transition pdf of the Gaussian channel and p(ŷ|y) describes

the probabilistic quantization mapping Q.

The capacity of the Gaussian channel p(y|x) with average transmit power

constraint P with no quantization is [18]

C(γ) ,
1

2
log(1 + γ), (4.12)

where γ here is the signal-to-noise ratio.

The rate-information function according to [8] is equal to:

I(Rq) = C(γ)− 1

2
log(1 + 2−2Rqγ). (4.13)

So the rate-information function reaches the channel capacity when the quan-

tization rate Rq goes to infinity.

Since x and y are jointly Gaussian, the overall channel p(ŷ|x) is Gaussian too.

From [8] and [19] we can write I(Rq) = C(γq) and

γq = γ
1− 2−2Rq

1 + 2−2Rqγ
≤ γ, (4.14)
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Transmitter +

zn ∼ N (0, σ2
z)

θ xn
Receiver

yn θ̂

ŷn

Figure 4.1: Quantized feedback single user AWGN channel

where γq is the SNR of the overall channel p(ŷ|x) and Rq is the quantization

rate. Therefore, we can model the optimal channel output quantization by an

additive white Gaussian noise with variance

σ2
q = σ2

z

1 + γ

22Rq − 1
. (4.15)

4.2 Quantized Feedback- No Bandwidth

Constraint

Schalkwjik and Kailath introduced a perfect feedback scheme in the wide-band

regime [5] and we discussed it in the previous chapter. Now, we will apply the

quantization scheme modeled by the information bottleneck method to the

S-K scheme.

Figure 4.1 shows the quantized feedback scenario as the quantization is applied

to the received signal y before being fed back to the transmitter. ŷ is the
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quantized version of the received signal y. The channel model is as follows

yn = xn + zn, (4.16)

where zn is an additive Gaussian noise with zero mean and variance of σ2
z . We

impose here the average transmit power constraint Paverage.

The SNR of the overall system p(ŷ|x) after applying the quantization to the

feedback is given by (4.14). By substituting γq in the channel capacity equation

given by (4.12) we get the new capacity of the overall channel

Cq(γq) =
1

2
log(1 + γq). (4.17)

We can now substitute by this capacity in the error probability given by

eq. (3.32) so the probability of error expression for the quantized feedback

system becomes as follows

Peq =

exp

(
− 3

2

1
2
log (1+γq)

R
N ε

)
√

6π

(
1
2
log (1+γq)

R
N ε

) . (4.18)

The comparison between the error probability with perfect feedback and the

error probability with quantized feedback using quantization rates of 1,3 and

5 are shown in figures 4.2, 4.3 and 4.4 respectively. It is clearly illustrated

by the figures that the performance is improved when the quantization rate

is increased and the curves of the error probabilities with the same transmit

rates become closer to each other. In the example, approximately the same

performance is reached when quantization rate of 5 is used as seen in figure 4.4.

This is simply because the quantizer introduces a quantization noise and this

noise decreases when the quantization rate increases. We can also observe
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Figure 4.2: Pe perfect feedback Vs Pe quantized feedback at Rq = 1 for WB

Gaussian Channel, C = 1, γ = 3, Cq = 0.596, γq = 1.286

that by increasing blocklength, the difference between the error probability of

the quantized feedback Peq and the error probability of the perfect feedback Pe

increases. So we can calculate the normalized difference by obtaining ∆Pe{norm}

∆Pe{norm} =
Peq − Pe

Pe
. (4.19)

Figures 4.5, 4.6 and 4.7 show how the gap between Peq and Pe is increasing with

the blocklength when quantization rates of 1,3 and 5 are applied respectively.

The capacity of the system without quantization is normalized to 1 bit/second

and the noise variance σ2
z is normalized to 1 as well therefore the SNR would be

equal to 3. The SNR of the quantized feedback γq given by (4.14) is decreased

due to the quantization noise introduced by the quantizer. Therefore, the

capacity of the overall channel in (4.17) is decreased as well.
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Figure 4.3: Pe perfect feedback Vs Pe quantized feedback at Rq = 3 for WB

Gaussian Channel, C = 1, γ = 3, Cq = 0.967, γq = 2.821
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Figure 4.4: Pe perfect feedback Vs Pe quantized feedback at Rq = 5 for WB

Gaussian Channel, C = 1, γ = 3, Cq = 0.998, γq = 2.988
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Figure 4.5: ∆Pe{norm} at Rq = 1 for WB Gaussian Channel, C = 1, γ = 3,

Cq = 0.596, γq = 1.286
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Figure 4.6: ∆Pe{norm} at Rq = 3 for WB Gaussian Channel, C = 1, γ = 3,

Cq = 0.967, γq = 2.821
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Figure 4.7: ∆Pe{norm} at Rq = 5 for WB Gaussian Channel, C = 1, γ = 3,

Cq = 0.998, γq = 2.988
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4.3 Quantized Feedback- Band Limited

Here, we will introduce the quantized feedback scheme for the single user and

the multiple user Gaussian channel in the band-limited regime.

4.3.1 Single User Channel

Transmitter +

z ∼ N (0, σ2
z)

xn
Receiver

yn

ŷn

Figure 4.8: Quantized feedback single user AWGN channel

Figure 4.8 shows the block diagram of the quantized feedback system for single

user channel. The channel is also considered additive white Gaussian with noise

z ∼ N (0, σ2
z) and the received signal y = x + z.

The error probability given by equation (3.35) [8] will be reformulated by

substituting the overall capacity Cq in equation (4.17) instead of the channel

capacity C of the perfect feedback system. So the error probability equation

will be as follows

Peq = 2Q

(
exp

(
N(Cq −R)

))
, (4.20)

Peq = 2Q

(
exp

[
N

(
1

2
log(1 + γq)−R

)])
. (4.21)
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Figures 4.9, 4.10 and 4.11 show a comparison between the quantized and the

perfect feedback schemes using quantization rates of 1, 3 and 5 respectively.

In figure 4.9 a low quantization rate is used and the error probability of the

quantized feedback is not decreasing anymore when high transmit rates are

used (see the transmit rates of R = 0.8, R = 0.7 and R = 0.6 the black, pink

and red dashed curves respectively). This happens when the transmit rates

become larger than the reduced channel capacity due to the quantization er-

ror. But when the quantization rate is increased again as shown in figure 4.10

the error probability of the quantized feedback decreases by increasing block-

length. By increasing the quantization rate, the probability of error of the

quantized feedback system becomes more closer to the error probability of the

perfect feedback scheme and we reached almost the same performance when a

high quantization rate is used as shown in figure 4.11.

In addition, the gap between the error probability of the quantized feedback

and the perfect feedback increases by increasing blocklength and this is shown

in figures 4.12, 4.13 and 4.14 for the quantization rates of 1, 3, and 5 respec-

tively.

Figure 4.15 combines the probabilities of error without feedback, with per-

fect feedback and with quantized feedback using different quantization rates.

There is a big gap between the blue solid curve and the blue dashed curve

representing the error probability without feedback and with perfect feedback

respectively. The error probabilities of the quantized feedback scheme are lo-

cated between the two blue curves and since the quantization rate increases,

we get a very close performance to the perfect feedback scenario.
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Figure 4.9: Pe perfect feedback Vs Pe quantized feedback at Rq = 1 for single

user Gaussian channel, C = 1, γ = 3, Cq = 0.596, γq = 1.286
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Figure 4.10: Pe perfect feedback Vs Pe quantized feedback at Rq = 3 for single

user Gaussian channel, C = 1, γ = 3, Cq = 0.967, γq = 2.821
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Figure 4.11: Pe perfect feedback Vs Pe quantized feedback at Rq = 5 for single

user Gaussian channel, C = 1, γ = 3, Cq = 0.998, γq = 2.988
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Figure 4.12: ∆Pe{norm} at Rq = 1 for single user Gaussian channel, C = 1,

γ = 3, Cq = 0.596, γq = 1.286
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Figure 4.13: ∆Pe{norm} at Rq = 3 for single user Gaussian channel, C = 1,

γ = 3, Cq = 0.967, γq = 2.821
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Figure 4.14: ∆Pe{norm} at Rq = 5 for single user Gaussian channel, C = 1,

γ = 3, Cq = 0.998, γq = 2.988
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Figure 4.15: Comparing the error probability without feedback, with perfect

feedback and with quantized feedback at different quantization rates, C = 1,

σ2
z = 1. (a) R = 0.5. (b) R = 0.6. (c) R = 0.7. (d) R = 0.8.
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Figure 4.16: Quantization rate Rq Vs blocklength N for single user Gaus-

sian channel with C = 1 and σ2
z = 1 using different transmit rates for fixed

∆Pe{norm}. (a) ∆Pe{norm} = 10−1, (b) ∆Pe{norm} = 10−2

Figure 4.16 shows the quantization rate needed in a certain blocklength region

for a specific ∆Pe{norm}

∆Pe{norm} =
Peq − Pe

Pe
. (4.22)

The previous results demonstrated that, for a higher blocklength we need a

higher quantization rate in order to keep a specific difference between the error

probability of the quantized feedback and the perfect feedback. We can also

observe that a higher quantization rate is needed when a lower transmit rate

is used as the ∆Pe{norm} is increasing faster than when higher transmit rates

are used.

Figure 4.17 illustrates the quantization rate needed for a fixed transmit rate

using different ∆Pe{norm}. We can note that, once we go lower with ∆Pe{norm}

we will definitely need a higher quantization rate.

Now, we compare the quantized feedback scheme with the no feedback scheme.
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Figure 4.17: Quantization rate Rq Vs blocklength N for single user Gaussian

channel with C = 1 and σ2
z = 1 using different ∆Pe{norm} for fixed transmit

rates. (a) R = 0.96, (b) R = 0.99

The ∆Pe{norm} for this case is as follows,

∆Pe{norm} =
Peq − Pe{Nofb}

Pe{Nofb}
. (4.23)

Figure 4.18 shows what quantization rate is needed in order to keep the dif-

ference of the error probability ∆Pe{norm} = 0 for increasing blocklength. We

need a higher quantization rate when a higher transmit rate is used. We can

also can observe that for very high transmit rates the quantized feedback is

not beneficial for low blocklength region as we will need infinite quantization

rate Rq →∞ (see the red curve in figure 4.18).
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Figure 4.18: Quantization rate Rq Vs blocklength N for single user Gaussian

channel with C = 1 and σ2
z = 1 using different transmit rates for ∆Pe{norm} = 0
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4.3.2 Multiple User Channel

Transmitter 1

Transmitter 2

+

h1

h2

zn

Receiver

x1,n

x2,n

yn

ŷn

ŷn

Figure 4.19: Quantized feedback for 2-User Gaussian MAC

In this section the quantized feedback scheme for the Gaussian multiple access

channel will be discussed. We study the 2-user symmetric Gaussian MAC

with quantized feedback shown in figure 4.19. Here the transmitters send

independent Gaussian user signals x1,n and x2,n for (n = 1, 2, ..., N) and the

receiver observes the signal

yn = h1x1,n + h2x2,n + zn, (4.24)

where the channel introduces additive Gaussian noise z ∼ N (0, σ2
z). The

average sum power constraint given by [12] is

1

N

N∑
n=1

E{x21,n + x22,n} ≤ P1 + P2. (4.25)

Considering the symmetric case, P1 = P2 = P .

As mentioned in section 3.4.2, Ozarow introduced an error probability expres-

sion for the 2-user Gaussian MAC when perfect feedback is applied [9]

Pe = 2Q

[
σ2
z

2
√
α(σ2

z + P (1− ρ∗2))
eN
(
Cfb−R

)]
, (4.26)
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where α = σ2
z/12P is the variance of the estimated error described by equa-

tion (3.40) and R = R1 = R2 is the transmit rate.

The capacity region of the system when the quantized feedback is applied is

given by [9]

Cfbq =
{

(R1, R2) : (1)0 ≤ R1 ≤
1

2
log
(
1 +

h21P1

σ2
(1− ρ2q)

)
,

(2)0 ≤ R2 ≤
1

2
log
(
1 +

h22P2

σ2
(1− ρ2q)

)
,

(3)0 ≤ R1 +R2 ≤
1

2
log
(
1 +

h21P1 + h22P2 + 2
√
h21P1h22P2ρq

σ2

)}
,

(4.27)

where σ2 = σ2
z + σ2

q is the noise power of the overall channel p(ŷ|x). And σ2
q is

the variance of the quantization noise given by equation (4.15). To obtain the

optimum correlation coefficient ρ∗q, all the three conditions in equation (4.27)

must be satisfied. Thus, R1 and R2 in conditions (1) and (2) respectively are

added to each other and the result should be equalized to R1 +R2 in condition

(3) (for more details, see section 3.4.2). The capacity of the overall channel

after applying the quantizer given ρ∗q, can be obtained from equations (4.27)

and (4.17)

Cfbq = log
(

1 +
γq
2

(
1− ρ∗2q

))
, (4.28)

where here γq is the signal to noise ration given by (4.14).

Now, we can substitute by Cfbq in equation (4.26) so we get an expression of

the error probability of the quantized feedback for 2-user MAC

Peq = 2Q

[
σ2

2
√
α(σ2 + P (1− ρ∗2q ))

eN
(
Cfbq−R

)]
, (4.29)

Peq = 2Q

[
σ2

2
√
α(σ2 + P (1− ρ∗2q ))

e
N

[
log

(
1+

γq
2

(
1−ρ∗2q

))
−R

]]
. (4.30)
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Figure 4.20: Pe perfect feedback Vs Pe quantized feedback for symmetric 2-user

Gaussian MAC at Rq=1, C = 1, σ2
z = 1, Cfbq = 0.535, σ2

q = 1.33, ρ∗q = 0.55

Figures 4.20, 4.21 and 4.22 compare the error probability of the perfect feed-

back with the error probability of the quantized feedback using quantization

rates of 1,3 and 5 respectively for a symmetric 2-user Gaussian MAC. When

a low quantization rate is used like in figure 4.20, a big difference in the per-

formance of the two schemes can be clearly seen due to the high quantization

error. By increasing the quantization rate, the quantization error decreases.

Thus, the performance of the quantized feedback scheme becomes more closer

to the perfect feedback scenario as shown in figures 4.21 and 4.22. In fig-

ures 4.23, 4.24 and 4.25 we can observe how the difference between the per-

formance of the quantized feedback and the perfect feedback increases by in-

creasing blocklength. The normalized difference ∆Pe{norm} between the error

probabilities has been calculated according to equation (4.19).
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Figure 4.21: Pe perfect feedback Vs Pe quantized feedback for symmetric 2-user

Gaussian MAC at Rq=3, C = 1, σ2
z = 1, Cfbq = 1.12, σ2

q = 0.064, ρ∗q = 0.41
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Figure 4.22: Pe perfect feedback Vs Pe quantized feedback for symmetric 2-user

Gaussian MAC at Rq=5, C = 1, σ2
z = 1, Cfbq = 1.18, σ2

q = 0.004, ρ∗q = 0.392
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Figure 4.23: ∆Pe{norm} at Rq = 1 for symmetric 2-user Gaussian channel,

C = 1, σ2
z = 1, Cfbq = 0.535, σ2

q = 1.33, ρ∗q = 0.55

Figure 4.26 combines the probabilities of error without feedback, with perfect

feedback and with quantized feedback using different transmit rates. There is

a big gap between the blue solid curve and the blue dashed curve representing

the error probability without feedback and with perfect feedback respectively.

The error probabilities of the quantized feedback scheme are located between

the two blue curves and since the quantization rate is increased we get a

performance closer to the perfect feedback scenario.
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Figure 4.24: ∆Pe{norm} at Rq = 3 for symmetric 2-user Gaussian channel,

C = 1, σ2
z = 1, Cfbq = 1.12, σ2

q = 0.064, ρ∗q = 0.41
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Figure 4.25: ∆Pe{norm} at Rq = 5 for symmetric 2-user Gaussian channel,

C = 1, σ2
z = 1, Cfbq = 1.18, σ2

q = 0.004, ρ∗q = 0.392
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Figure 4.26: Comparing error probability without feedback, with perfect feed-

back and with quantized feedback for Gaussian MAC. (a) R = 0.5. (b)

R = 0.6. (c) R = 0.7. (d) R = 0.8.
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Figure 4.27: Quantization rate Rq Vs blocklength N for symmetric 2-user

Gaussian channel with Cfb = 1.185 and σ2
z = 1 using different transmit rates

for fixed ∆Pe{norm}. (a) ∆Pe{norm} = 1, (b) ∆Pe{norm} = 2

Figure 4.27 shows the quantization rate needed in a certain blocklength region

for a specific ∆Pe{norm}. We can observe that, for a higher blocklength we need

a higher quantization rate in order to keep a constant difference between the

error probabilities of the quantized feedback and the perfect feedback until we

reach a threshold where an infinite quantization rate Rq → ∞ is needed to

keep this constant ∆Pe{norm}. We can also observe that a higher quantization

rate is needed when a lower transmit rate is used as the ∆Pe{norm} is increasing

faster when higher transmit rates are used.

Continuing now with the comparison between the quantized feedback scheme

and the no feedback scheme for the Gaussian MAC. The ∆Pe{norm} for this

case is as follows,

∆Pe{norm} =
Peq − Pe{Nofb}

Pe{Nofb}
. (4.31)

Figure 4.28 shows which quantization rate is needed in order to keep the

∆Pe{norm} = 0 for increasing blocklength. We need a higher quantization rate
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Figure 4.28: Quantization rate Rq Vs blocklength N for symmetric 2-user

Gaussian MAC with C = 1 and σ2
z = 1 using different transmit rates for

∆Pe{norm} = 0

when a higher transmit rate is used. We can also observe that for increasing

blocklength the quantization rate decreases.

4.4 Achievable Rates

Here we study the maximum achievable rates of the non-feedback scenario,

the perfect feedback scenario and the quantized feedback scenario. We will

introduce the achievable rate expressions for the three schemes for single and

multiple user Gaussian channels. Then a comparison between the achievable

rates of the mentioned schemes will be discussed.
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4.4.1 Single User Channel

The achievable rate for the single user Gaussian channel was introduced by

Polyanskiy [10] and is represented by

R ≈ C −
√
V

N
Q−1(Pe) +

α

N
logN, (4.32)

In order to get the achievable rate of the perfect feedback scheme we can

just recall the error probability equation (3.35) and reformulate it. The rate

equation will be as follows

R = C −
ln
(
Q−1(Pe

2
)
)

N
. (4.33)

The achievable rate of the quantized feedback scheme can be calculated by

substituting the capacity of the quantized feedback Gaussian channel given

by (4.17) in (4.33)

R = Cq −
ln
(
Q−1(Pe

2
)
)

N
. (4.34)

Figures (4.29) and (4.30) compare the maximum rates that can be achieved

when system without feedback, with perfect feedback and with quantized feed-

back is considered for single user Gaussian channel given error probability

Pe = 10−3 for linear and logarithmic x-axis scale respectively. The channel

capacity here is normalized to 1 and the noise variance σ2
z is assumed to be 1.

60



CHAPTER 4. QUANTIZED FEEDBACK

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

Figure 4.29: Achievable rates for single user Gaussian MAC with error prob-

ability Pe = 10−3, C = 1, σ2
z = 1
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Figure 4.30: Achievable rates for single user Gaussian MAC with error prob-

ability Pe = 10−3, C = 1, σ2
z = 1
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4.4.2 Multiple User Channel

Now we will consider the 2-user Gaussian MAC and study the achievable rates

of the three mentioned schemes. The achievable sum rate of the channel with-

out feedback when a symmetric 2-user MAC is considered stays the same

because the channel capacity will remain the same as in the single user case

R1 +R2 ≈ C −
√
V

N
Q−1(Pe) +

α

N
logN. (4.35)

Moving on to the achievable sum rate of the perfect feedback scenario, equa-

tion (3.41) showed the error probability of the perfect feedback for the 2-user

Gaussian MAC. By reformulating this equation we can get an expression of

the achievable sum rate

R1 +R2 = Cfb −
1

N
ln

[
2
√
α
(
σ2
z + P (1− ρ∗2)

)
σ2
z

Q−1
(Pe

2

)]
. (4.36)

The achievable sum rate of the quantized feedback channel can be found by

reformulating the error probability equation (4.29)

R1 +R2 = Cfbq −
1

N
ln

[
2
√
α
(
σ2 + P (1− ρ∗2q )

)
σ2

Q−1
(Pe

2

)]
, (4.37)

where σ2 = σ2
z + σ2

q and P = P1 + P2.

Figures 4.31 and 4.32 illustrate a comparison between the achievable sum rates

of the three schemes: without feedback, with perfect feedback and with quan-

tized feedback for a symmetric 2-user Gaussian channel. As shown the sum

rate of the perfect feedback (the dashed blue curve) exceeds the channel capac-

ity of a system without feedback at a certain blocklength value which means

that the capacity is enlarged when we use a blocklength above this value (ap-

proximately 200). Almost the same applies to the quantized feedback with a
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Figure 4.31: Achievable rates for symmetric 2-user Gaussian MAC with error

probability Pe = 10−3. σ2
z = 1

high quantization rate (the pink curve). In contrast, when very low quantiza-

tion rates are applied the achievable rate decreases and becomes even worse

than the non-feedback scheme (see the cyan curve).
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Figure 4.32: Achievable rates for symmetric 2-user Gaussian MAC with error

probability Pe = 10−3. σ2
z = 1
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Conclusion and Outlook

We studied the decoding error probability and the achievable rates for the

system without feedback, with perfect feedback and with quantized feedback

considering a finite blocklength for a Gaussian single user and 2-user multiple

access channel. We confirmed that the error probability of the non-feedback

scheme decreases exponentially with the blocklength while the error probability

of the perfect feedback scheme decreases doubly exponentially with increasing

blocklength. Furthermore, we confirmed that for the Gaussian MAC, the feed-

back can enlarge the sum achievable rate compared to the achievable rate of

the non-feedback scenario.

Moreover, we introduced a quantized feedback scheme for finite blocklength

coding for a Gaussian single user channel and multiple user channel. When

the quantization rate increases the quantization error decreases and the per-

formance of the quantized feedback scheme becomes closer to the perfect feed-

back scenario. We showed in what blocklength regions the quantized feedback

is beneficial. For small blocklengths, only low quantization rates are needed

to get a performance that is close to the perfect scenario but when the block-

length increases we will need higher quantization rates.
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A symmetric 2-user Gaussian MAC is considered for all schemes discussed in

the thesis. It is interesting in the future to see the results when asymmet-

ric 2-user MAC is applied. In addition, it is very interesting to see how can

we make this quantized feedback scheme practical. An approach will be to

apply a practical quantizers and compare them with our quantized feedback

scheme which is modeled as an information bottleneck method. Furthermore,

we showed that for a higher blocklength, a higher quantization rate is needed to

keep the performance very close to the perfect feedback scenario until a certain

threshold then an infinite quantization rate is needed. So an important topic

is, how can we increase this threshold and still get a very close performance to

the perfect feedback for a larger blocklength.
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