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Abstract

The design of efficient algorithms for various problems is a fundamental part of computer
science. One significant obstacle in this area is the fact that many interesting problems
from areas such as Algorithmic Graph Theory, Artificial Intelligence, or Optimization
are known to be NP-hard on general instances. However, in the majority of applications
the instances of interest are the result or output of some other processes, and as such
inherently contain some form of structure. This structure can often be exploited to
efficiently find exact solutions for many NP-hard problems.

To capture the structure of the input instance, we use the framework of parameterized
complexity. In parameterized algorithms, the running time is analyzed in finer detail
than in classical complexity theory: instead of expressing the running time as a function
of the input size only, dependence on a parameter k is taken into account. We use
the parameter k to describe how “structured” the input instance is. Algorithms with
running time f(k)nc, where n is the input size and c is a constant independent of both n
and k, are called fixed-parameter algorithms or FPT algorithms. Typically the goal in
parameterized algorithms is to design FPT algorithms while minimizing both the f(k)
factor and the constant c in the bound on the running time.

We study a range of different problems under the paradigm of parameterized complexity.
More precisely, our research focuses on two approaches to analyze the structure of instances
and their combination. The first approach focuses on the notion of decomposition. The
idea is to decompose the given input into simpler parts and use this decomposition to
solve the problem more efficiently. The second approach is based on the established
notion of a modulator to a tractable class of instances, which applies to problem instances
that may be placed in a tractable class by a small number of local changes.

We design several algorithms that exploit some of the already established parameters.
However, our main focus is on designing and exploiting new kinds of structure. We
highlight here one of the results in particular. We develop a family of parameters that
combine the two approaches outlined above to capture forms of structure not accessible
to a single approach, and we show that these parameters give rise to efficient algorithms
for a plethora of NP-hard problems.
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Kurzfassung

Eine fundamentaler Aufgabe der Informatik ist die Entwicklung effizienter Algorithmen
für Probleme, die in verschiedenen Bereichen auftreten. Eine wesentliche Herausforde-
rung hierfür stellt die Tatsache dar, dass viele wichtige Probleme aus Bereichen wie
algorithmischer Graphentheorie, künstlicher Intelligenz, und Optimierung für allgemeine
Problemeingaben NP-schwer sind. Jedoch sind in vielen Anwendungen die relevanten
Problemeingaben das Resultat von Prozessen und weisen daher eine gewisse Form von
Struktur auf. Diese Struktur kann oft ausgenutzt werden um NP-schwere Problem effizient
zu lösen.

Um die Struktur in Problemeingaben zu erfassen, verwenden wir den theoretischen Rah-
men der parametrisierten Komplexitätstheorie. Die Laufzeit parametrisierter Algorithmen
wird in feinerem Detail analysiert als es die klassischen Komplexitätstheorie gestattet:
anstatt die Laufzeit nur als Funktion der Eingabegrösse zu bestimmen, wird hier auch
die Abhängigkeit von einem Parameter k berücksichtigt. Der Parameter dient dazu, den
Grad anzugeben, wie sehr die Eingabe eine Struktur aufweist. Algorithmen mit einer
Laufzeit von f(k)nc, wobei n für die Eingabegrösse und c für eine Konstante stehen,
werden als fest-Parameter-handhabbar (fixed-parameter tractable, FPT) bezeichnet. Das
Ziel in der parameterisierten Komplexitätstehorie ist es, FPT-Algorithmen zu entwickeln,
und dabei sowohl den Faktor f(k) als auch die Konstante c zu minimieren, um eine
möglichst geringe Laufzeit zu erhalten.

Wir untersuchen eine breite Palette von unterschiedlichen Problemen unter dem Paradig-
ma der parameterisierten Komplexitätstheorie. Hierbei legen wir besonderes Augenmerk
auf zwei fundamentale Ansätze, um die Struktur in Probleminstanzen zu erfassen und
algorithmischen auszunutzen: Der erste Ansatz zielt auf die Zerlegbarkeit von Proble-
meingaben ab. Die Grundidee ist es, die Problemeingabe in einfache Teile zu zerlegen,
aus deren Lösungen eine globalen Lösung erstellt werden kann. Der zweite Ansatz basiert
auf dem fundamentalen Begriff des Modulators in eine handhabbare Klasse. Hier ist die
Grundidee, dass die Problemeingabe nach bestimmten lokalen Modifikationen in eine als
handhabbar bekannte Klasse von Problemeingaben fällt.

Wir entwickeln verschiedene Algorithmen für bereits bekannte Parameter. Unser Hauptau-
genmerk liegt aber in der Entwicklung von neuen Parametern, welche das Ausnützen von
neunen Formen von Struktur ermöglichen. Zum Beispiel entwickeln wir eine Reihe von
Parametern welche die Kombination der beiden beschriebenen Ansätze darstellen. Hierbei
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können strukturelle Eigenschaften in Problemeingaben ausgenützt werden, die nicht
durch einen der beiden Ansätze alleine erfassbar sind. Wir zeigen, dass diese Parameter
zu FPT-Algorithmen für eine Fülle von NP-schweren Problemen führen.
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CHAPTER 1
Introduction

The notion of computation has existed in some form for thousands of years. In its
everyday meaning, this term refers to the process of producing an output from a set
of inputs in a finite number of steps and some kind of computational processes arise
in many different disciplines and also in nature. We focus on issues of computational
efficiency. Computational complexity theory asks the following simple question: how
much computational resources are required to solve a given computational task? A very
important limitation to solving the task is the time needed to obtain the answer. We
would like to know how long our computation takes before we assign resources towards
computing a task that might not terminate in our lifetime. This leads us to one of
fundamental parts of computer science that is the design of efficient algorithms. To
formalize the notion of efficient algorithm, Cobham and Edmonds in 1965 identified in
two separate papers the tractable problems to be exactly the problems in the complexity
class P, that is the ones solvable in polynomial time. One significant obstacle here is the
fact that many interesting problems from areas such as Artificial Intelligence, Algorithmic
Graph Theory, Optimization, Computational Logic are known to be NP-hard on general
instances and therefore believed to not allow an algorithm running in polynomial time.
However, in the majority of applications the instances of interest are the result or output
of some other processes, and as such inherently contain some form of structure. This
structure can often be exploited to efficiently find exact solutions for many NP-hard
problems.

We use the well-established framework of parameterized complexity, introduced by
Downey and Fellows [63], to capture the structure of instances. In this framework, we
add to each input a parameter k, which is simply a relevant secondary measurement that
encapsulates some aspect of the input instance, be it the size of the solution sought for or
a number describing how “structured” the input instance is. The smaller the parameter
k is, the more structured is the input instance. Therefore, the goal in parameterized
algorithms is to design an algorithm which performs well if the parameter k is small. It
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1. Introduction

turns out that a good definition for a tractable algorithm in the parameterized complexity
framework are the algorithms with running time f(k)nc, where n is the input size and c
is a constant independent of both n and k. Such algorithms are called fixed-parameter
algorithms, or shortly FPT algorithms.

However, sometimes it is observed with dismay that every proposed algorithm to solve
a given problem is not fixed-parameter tractable. In classical complexity, the theory
of NP-completeness gives us one common obstacle to tractability, and hence offers a
conditional lower bound on the running time for any NP-hard problem. The parameterized
complexity approach adapts this pragmatic viewpoint to algorithm design and develops
a similar lower bound theory. In many cases, it is very helpful to look at a problem from
both the algorithmic and the complexity viewpoint at the same time. A failed attempt
at finding an algorithm can highlight certain difficult situations, giving insight into the
structure of hard instances, which can be the starting point of a hardness proof.

1.1 General Goals

The general aim of this thesis is to study and exploit the structure of the input to solve
problems that are NP-hard in the general case. As our main tool we use to achieve this
is the parameterized complexity framework. We focus our research on two prominent
approaches to analyze the structure of instances and on possibilities of their combination.
The first approach focuses on the notion of decomposition. The idea is to decompose the
given input into simpler parts and use this decomposition to solve the problem more
efficiently. The second approach is based on the established notion of a modulator to a
tractable class of instances, which applies to problem instances that may be placed in a
tractable class by a small number of local changes. In addition, we study the possibilities
to combine these two approaches to capture the forms of structure not accessible to a
single approach.

We target various problems that naturally appear in the areas of Graph Theory, Artificial
Intelligence, and related fields and we highlight here three general goals we consider when
targeting a specific problem.

1. Identify useful problem-specific structure—this structure should not only be helpful
to design more efficient algorithms, but also efficiently recognizable;

2. Design FPT algorithms—once we identify structure that might be useful, we want
to exploit it to obtain efficient algorithms with good worst-case running time
guaranties; and

3. Develop matching lower bounds—either showing that an FPT algorithm does not
exist, or establishing that the obtained running times cannot be improved (under
established complexity assumptions).

2



1.2. Problems in Consideration

1.2 Problems in Consideration
In this thesis, we investigate how the structure of the given instance can help to solve a
variety of NP-hard problems more efficiently. This section serves to briefly introduce the
problems we consider in our thesis.

1.2.1 Counting problems

Counting the number of linear extensions of a partially ordered set (poset), or shortly
#LinExt, is a fundamental problem of order theory that has applications in a variety
of distinct areas such as sorting [171], sequence analysis [154], convex rank tests [157],
sampling schemes of Bayesian networks [163], and preference reasoning [153]. Determining
the exact number of linear extensions of a given poset is known to be #P-complete [34]
already for posets of height at least 3. Informally, #P-complete problems are as hard
as counting the number of accepting paths of any nondeterministic Turing machine,
implying that such problems are not tractable unless P = NP.

1.2.2 Vertex deletion problems

Vertex deletion problems ask whether it is possible to delete at most k vertices from a
graph so that the resulting graph belongs to a specified graph class. Over the past years,
the parameterized complexity of vertex deletion to a plethora of graph classes has been
systematically researched. We study two different vertex deletion problems.

Directed Feedback Vertex Set (DFVS) is the problem of finding a set of k vertices that
intersects all directed cycles in a given digraph. For over a decade resolving the fixed-
parameter tractability of DFVS was considered the most important open problem in
parameterized complexity. In fact, this problem was posed as an open problem in the
first few papers on fixed-parameter tractability [60, 62]. DFVS was shown to be fixed-
parameter tractable in a breakthrough paper by Chen, Liu, Lu, O’Sullivan and Razgon
[42] in 2008.

Distance-Hereditary Vertex Deletion is the vertex deletion problem where the target class
is the class of distance-hereditary graphs. A graph is distance-hereditary if the distances
between vertices are preserved in all connected induced subgraphs of the original graph.
Since its introduction by Howorka [119] in 1977, this graph class has been extensively
studied and several otherwise NP-hard problems has been shown to be polynomial
time solvable on the distance-hereditary graphs [44, 56, 123, 121, 124, 192, 158, 101].
Additionally, distance-hereditary graphs are precisely all graphs with rank-width at most
1 [167] and as a consequence, by Courcelle’s theorem, efficient dynamic programming
algorithms exist for many problems on these graphs [50].

1.2.3 Meta-problems

To be able to cope with many problems at once we also target several problems in
computer science that, by their nature, make it easier to encode other problems. An
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1. Introduction

efficient algorithm for such “meta-problem” gives us a good framework for solving many
problems. Namely, once we have a efficient algorithm for such a problem, we only need
to find an encoding of our problem and run the already implemented efficient algorithm
on the encoding. In the following we introduce three such problems that are often used
in practice to design algorithm for NP-hard problems.

Integer Linear Programming (ILP) is an archetypical representative of NP-complete
optimization problems and has a broad range of applications in various areas of artificial
intelligence. In particular, a wide variety of problems in Optimization and Artificial
Intelligence are efficiently solved in practice via a translation into an ILP, including
problems from areas such as planning [196, 197], process scheduling [84], packing [149],
vehicle routing [194], and network hub location [10]. For example, in Figure 1.1 we give
an encoding for the well-know NP-hard problem Vertex Cover, which is the vertex
deletion problem to the class of edgeless graphs.

minimize∑v∈V ·xv, where
xu + xv ≥ 1 ∀uv ∈ E,
xv ≥ 0; xv ∈ Z ∀v ∈ V .

Figure 1.1: ILP encoding the Vertex Cover problem for a graph G = (V,E).

The problem of evaluating quantified Boolean formulas, called also shortly QBF, is the
archetypical PSpace-complete problem and is therefore believed to be computationally
harder than the NP-complete problems such as ILP or SAT, which is the problem
of determining the satisfiability of a propositional formula and is closely related to
QBF [140, 169, 189]. Moreover, many important computational tasks such as verification,
planning, and several questions in knowledge representation and automated reasoning can
be naturally encoded as a QBF instance [69, 166, 175, 182]. In recent years quantified
Boolean formulas have become a very active research area.

∀a∃b∃c∀d(a ∨ ¬b ∨ d) ∧ (¬c ∨ ¬a ∨ d) ∧ (¬b ∨ c ∨ ¬d)

Figure 1.2: An example of a QBF formula.

The model checking problem, i.e., the problem to decide whether a given logical sentence
is true in a given structure, is a fundamental computational problem which appears in a
variety of areas in computer science, see for example [93], [26], or [97]. This problem in
its full generality is computationally intractable. However, if we fix a logical sentence in
first order logic, the model checking problem becomes polynomially tractable. Hence,
to express NP-hard problems we need more powerful logics. A prominent logic often
used in this setting is Monadic Second Order (MSO) logic [50] along with its extensions
such as Counting MSO and Optimization MSO. These provide a powerful tool capable of
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1.3. Background

expressing many NP-hard problems with constant size formulas. For example, Figure 1.3
gives a constant length formula expressing that the input graph is 3-colorable.

∃X∃Y ∃Z{∀x ∈ V (x ∈ X ∨x ∈ Y ∨x ∈ Z)∧∀x, y ∈ V (edge(x, y)→
[¬(x ∈ X ∧ y ∈ X) ∧ ¬(x ∈ Y ∧ y ∈ Y ) ∧ ¬(x ∈ Z ∧ y ∈ Z)])}

Figure 1.3: MSO formula encoding the 3-Coloring problem for a graph G = (V,E).

1.3 Background
In order to properly explain the techniques and results in this thesis, we first give a very
brief and somewhat informal introduction to the most important notions in parameterized
complexity.

1.3.1 Parameterized Complexity

Many useful problems in computer science are known to be NP-hard, for instance
Vertex Cover (given a graph G and an integer k, does the graph contain a vertex
cover of k vertices?) [98]. Thus, by standard complexity theory we expect that any exact
solution algorithm will run in exponential time.

The problem can be solved in worst-case time O(nk), simply by enumerating all k-element
subsets of the input graph. On classes of inputs where k is much smaller than n, a
solution algorithm with runtime of, e.g., 2k · n2 would vastly outperform the runtime of
the previous algorithm. For example, solving an instance of size n = 1000 with k = 10
may still be considered feasible with an algorithm requiring 2k · n2 operations, but an
nk algorithm would in this case require more operations than there are stars in the
observable universe.

This observation motivated the introduction of parameterized problems. A parameterized
problem is a computational problem whose instances have two parts, an input, say x (of
size n), and a parameter, say k. A parameterized problem which can be solved in time
f(k) ·nd, where d is a constant independent of k, is called fixed-parameter tractable (FPT
in short). Similarly, an algorithm running in time f(k) · nd is called an FPT algorithm.
The class FPT is then the class containing all problems that admit an FPT algorithm.
However, just like we cannot hope to obtain polynomial-time algorithms for all problems
in the classical complexity paradigm, in the parameterized paradigm we will not always
be able to obtain an FPT algorithm. In these cases obtaining an algorithm which runs
in time nk is still more desirable than an exponential algorithm running in time 2n.
Therefore, especially when we can show that an FPT algorithm is unlikely, we will try to
obtain at least so-called XP algorithms, that is, an algorithm running in time nf(k). The
class XP then contains all problems that have such XP algorithm.

5



1. Introduction

A great benefit of the parameterized notion of tractability is that a single problem can
have a variety of parameterizations, and the choice of the parameterization affects its
parameterized complexity. The example above uses the solution size as the parameter,
and so an FPT algorithm for, e.g., Vertex Cover will remain efficient on all graphs as
long as we only search for small vertex covers. However, we may also use the parameter to
capture the structure contained in our input graphs; these so-called structural parameters
have become a focal point of research in parameterized complexity. Structural parameters
such as treewidth [177] and rank-width [118] allow the efficient solution of a wide range of
problems regardless of their solution size (see for example [46, 93]); instead, the running
time depends on how “well-structured” the instances are.

1.3.2 Kernelization

Kernelization is another algorithmic technique that has become the subject of a very active
field in parameterized complexity, see, e.g., the references in [77, 110, 180]. Kernelization
can be considered as a preprocessing with performance guarantee that reduces an instance
of a parameterized problem in polynomial time to a decision-equivalent instance, the
kernel, whose size is bounded by a function of the parameter alone. Once a kernel is
obtained, the time required to solve the original instance is bounded by a function of the
parameter and therefore independent of the input size. Consequently one aims at kernels
that are as small as possible.

Every fixed-parameter tractable problem admits a kernel, but the size of the kernel
can have an exponential or even non-elementary dependence on the parameter [63, 86].
Thus research on kernelization is typically concerned with the question of whether a
fixed-parameter tractable problem under consideration admits a small, and in particular
a polynomial, kernel. For instance, the aforementioned Vertex Cover problem admits
a polynomial kernel containing at most 2k vertices [86].

1.3.3 Parameterized Intractibility

As we have no proof of P 6= NP, we cannot rule out the possibility that problems such
as Clique are polynomial-time solvable and hence FPT. Therefore, our lower bound
theory has to be conditional: we are proving statements of the form “if problem A has a
certain type of algorithm, then problem B has a certain type of algorithm as well”. If
we have accepted as a working hypothesis that B has no such algorithms (or we have
already proved that such an algorithm for B would contradict our working hypothesis),
then this gives evidence that problem A does not have this kind of algorithms either.
This leads us to the notion of parameterized reduction, which is roughly speaking a
polynomial time algorithm that reduces an input of the problem B to an input of problem
A, in a way that preserves the size of parameter. Using this notion of parameterized
reduction, Downey and Fellows [64] introduced the so-called W -hierarchy in order to
classify parameterized problems according to their hardness. Clique is an archetypical
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1.3. Background

example of a W[1]-complete problem, and as such it does not admit an FPT algorithm
unless FPT = W[1].

The Exponential Time Hypothesis (ETH) is a conjecture stating that, roughly speaking,
3-SAT cannot be solved in subexponential running time in terms of the number of
variables. ETH allows us to obtain stronger lower bounds. For example, we can prove
results saying that (assuming ETH) a problem cannot be solved in time 2o(n), or a
parameterized problem cannot be solved in time f(k)no(k), or a fixed-parameter tractable
problem does not admit a 2o(k)nO(1) time algorithm.

1.3.4 Decomposition Parameters

The most prominent example of a decomposition parameter is the treewidth of a graph,
introduced by Robertson and Seymour while developing the Graph Minors Theorem
[177]. Treewidth has now become one of the most frequently used tools in parameterized
algorithms with many applications in a range of important fields of theoretical computer
science, including artificial intelligence and parameterized complexity (see, e.g., [46, 190]).
Intuitively, treewidth measures how well the structure of a graph can be captured by a
tree-like structural decomposition. When the treewidth of a graph is small, or equivalently
the graph admits a good tree decomposition, then many problems intractable on general
graphs become efficiently solvable. Treewidth is widely used as a tool in various graph
algorithms. For example, tree decompositions can be exploited to design fast dynamic
programming algorithms which construct the solution from the leafs of the decomposition
to the root. There is also a powerful meta-theorem by Courcelle [46] which establishes the
tractability of decision problems definable in Monadic Second-Order logic on graphs of
bounded treewidth. Given all the applications of treewidth, it is natural to ask if one could
design other measures of structural complexity of graphs that would be algorithmically
useful in cases where treewidth fails.

One particular decomposition parameter that measures a different form of structure
is rank-width [168]. The motivation for rank-width comes from the observation that
although treewidth is high for any dense graph, many computational problems are
tractable on classes of graphs that are dense, but structured. An obvious example of
such graphs are complete graphs, but one can also allow a little bit more freedom in the
structure. Rank-width is related to the structural parameter clique-width, but supersedes
it in various algorithmic aspects.

1.3.5 Distance to Triviality

Another widely used approach in the design of structural parameters is to measure the
distance of the input from some known tractable class of inputs. The concept of distance
to triviality has appeared independently under various names in many different fields of
computer science, including Algorithmic Graph Theory, Reasoning, and Satisfiability.
The term modulator has been coined in a general setting by Cai [36]. Here we mostly
focus on the prevalent notion of modulators by vertex deletion. Specifically, for a fixed
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graph class C we say that a vertex set X ⊆ V (G) of a graph G is a modulator to C if
G−X ∈ C. The problem of finding modulators to various graph classes and also using
these to solve a number of problems has become a prominent research direction in the
past years. In particular, modulators allow FPT algorithms to exploit the structure of
graphs which are “near” a tractable graph class; the modulator size is often used as the
parameter in such algorithms. For historical reasons, modulators often carry different
names depending on the graph class C, such as vertex cover, feedback vertex set or odd
cycle transversal.

In the context of FPT algorithms on graphs, modulator-based algorithms are sometimes
superseded by decomposition-based algorithms, specifically by algorithms which use
treewidth or clique-width. As an example, graphs with small classical modulators to
acyclic graphs, outerplanar graphs, or edgeless graphs always have small treewidth (on
the other hand, this is not the case for, e.g., planar graphs or interval graphs). For
this reason, classical modulators were used almost exclusively in the context of difficult
problems which remain intractable on graphs of bounded treewidth [79, 83] and for
kernelization, where standard width-based decompositions do not provide polynomial
kernels [25].

1.4 Contributions

In this section, we describe the contributions of this thesis. We do not restrict our focus
to only one specific problem; instead, we investigate the possibilities of exploiting both
already established, but mainly new kinds of structure to obtain FPT algorithms and
lower bounds for a variety of problems that emerge from various areas of computer science
such as Algorithmic Graph Theory, Artificial Intelligence, or Optimization. In general,
structural parameters can be divided into two groups based on the way they are designed.
Namely, one can capture the structure of instances by decompositions or one can directly
measure the distance to triviality via modulators.

This thesis is divided into three parts. The first two parts are dedicated to decomposition
parameters and modulators. The third part then investigates how these two distinct
approaches can be combined to obtain “hybrid” parameters that can capture forms of
structure which are beyond the reach of a single approach.

1.4.1 Contributions towards Decomposition Parameters

Part I focuses on solving hard problems through the use of decomposition parameters.
The first chapter, Chapter 4, in this part investigates possibilities of exploiting the
well-known decomposition parameter treewidth to count the number of linear extensions
of a poset. As the treewidth is a graph parameter, we need to work with a graph
representation of the input posets. We study two different representations of these posets
and obtain the following results:
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• We provide the first evidence that the problem does not allow for an FPT algorithm
parameterized by the treewidth of the cover graph (also called the Hasse diagram)
unless FPT = W[1]. We remark that this complements the XP algorithm of Kangas
et al. [131] and resolves an open problem recently posed in the Dagstuhl seminar
on Exact Algorithms [125].

• We complement this negative result by obtaining an FPT algorithm for the problem
when the parameter is the treewidth of the incomparability graph of the poset.

Afterwards in Chapter 5, we switch our focus and study the use of decomposition
parameters for QBF. In spite of the close connection between QBF and SAT, many of
the tools and techniques which work for SAT are not known to help for QBF, and this is
especially true for decomposition-based techniques. Indeed, even though there are several
FPT algorithms for SAT parameterized by well-known decomposition parameters such as
treewidth, pathwidth, or rank-width [190, 94], the same is not true for QBF [15] under
well-established complexity assumptions.

• We introduce a novel parameter prefix pathwidth, which is an extension of pathwidth
that takes into account not only the structure of clauses in the formula, but also
the structure contained in the quantification of variables.

• We show that we can use a prefix path decomposition of width bounded by the
parameter k to solve the given QBF instance in FPT time.

• We develop new algorithmic techniques to obtain two distinct algorithms for com-
puting prefix path decompositions—one polynomial-time approximation algorithm
and an FPT algorithm.

1.4.2 Contributions towards Modulators

Part II is then devoted to investigating algorithmic applications of modulators for various
problems. We start our study in Chapter 7 by investigating the problem of finding
modulators (i.e., vertex deletion sets) to distance-hereditary graphs, a well-studied graph
class which is particularly important in the context of vertex deletion due to its connection
to the graph parameter rank-width.

• We present the first single-exponential FPT algorithm, specifically an algorithm
running in time O(ck · nO(1)) for input size n and some constant c, for vertex
deletion to distance-hereditary graphs.

• We complement our result with matching asymptotic lower bounds based on the
exponential time hypothesis.

• As an application of our algorithm, we show that a vertex deletion set to distance-
hereditary graphs can be used as a parameter which allows single-exponential FPT
algorithms for classical NP-hard problems.
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The second problem we study is Directed Feedback Vertex Set (DFVS); this is the
main topic of Chapter 8 . Once DFVS has been classified as fixed-parameter tractable by
Chen et al. [42], one of the most natural follow-up question in parameterized complexity
is “does it admit a polynomial kernel?”. We study the existence of a polynomial kernel
for this problem parameterized by the size of the feedback vertex set (or equivalently a
modulator to a forest) of the underlying undirected graph.

• We give a kernel with O(k4) vertices for DFVS parameterized by the size of the
feedback vertex set of the underlying undirected graph on general graphs.

• Moreover, we give a kernel with O(k) vertices for the same parameterized problem
when the input digraph is embeddable on a surface of constant genus.

Finally in Chapter 9, we initiate the study of modulators for ILP by analyzing modulators
which fracture the instance into small, easy-to-handle components.

• We introduce a novel parameter fracture modulator, which, if we represent the ILP
instance by its so-called incidence graph, is basically the size of the modulator to
components whose size is bounded by the parameter as well. Equivalently, one can
think about this parameter as the number of global variables or global constraints
in an otherwise “compact” instance.

• We identify and analyze three separate cases depending on whether we allow global
variables only, global constraints only, or both.

• We obtain a near-complete complexity landscape for the considered parameters: in
particular, we identify the circumstances under which they can be used to obtain
FPT and XP algorithms.

1.4.3 Contributions towards Hybrid Parameters

Finally in Part III, we focus on expanding classical graph modulators towards new,
more general classes. In particular, here we investigate what happens when a graph
contains a modulator which is large but “well-structured” (in the sense of having bounded
rank-width). Can such modulators still be exploited to obtain efficient algorithms? And
is it even possible to find such modulators efficiently?

• We introduce a family of “hybrid” parameters that combine the decomposition and
modulator approach.

Given a graph G and a fixed graph classH, the new parameters capture (roughly speaking)
the minimum number of “blocks”, which we call split-modules, of “small” rank-width
of any modulator of G into H. We call modulators with this structure well-structured
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modulators, and the minimum number of blocks in a well-structured modulator is then
the well-structure number of G or wsnH(G).

In Chapter 11, we start by exploring the boundaries of this parameter for fixed-parameter
tractability. Moreover, as with most structural parameters, virtually all algorithmic
applications of the well-structure number rely on having access to an appropriate decom-
position. Towards this goal we obtain following results:

• We develop an FPT algorithm for computing wsnH for any graph class H which
can be characterized by a finite set of forbidden induced subgraphs.

• We design FPT algorithms for Vertex Cover and Clique parameterized by
wsnH.

• We develop a meta-theorem to obtain fixed-parameter algorithms for problems
definable in Monadic Second Order (MSO) logic [50] parameterized by wsnH.

• We show that, in general, solving MSO-Opt problems [50, 93] is not FPT when
parameterized by wsnH.

In the subsequent Chapter 12, we shift our attention towards obtaining kernels using
the well-structure number as a parameter. Since wsnH lower bounds rank-width and
rank-width is known not to admit polynomial kernels for nearly any NP-hard problems,
one cannot hope to use wsnH for polynomial kernelization. Hence, to obtain kernels, we
need to restrict our parameter a little bit—instead of allowing the rank-width of split
modules to be bounded by a function of the parameter, we bound it by some constant c.
We call this the c-well-structure number of a graph G or wsnHc (G). Using this notion, we
obtain the following results:

• We develop a polynomial time approximation algorithms for computing wsnHc to a
range of graph classes.

• We show that whenever a modulator to a graph classH can be used to poly-kernelize
some MSO-definable problem, this problem also admits a polynomial kernel when
parameterized by the c-well-structure number for H as long as c-well-structured
modulators to H can be approximated in polynomial time.

• The remainder of Chapter 12 then deals with specific applications of these results.

Roadmap

After this introductory chapter, in Chapter 2, we provide an overview of relevant concepts
and results from the areas of graph theory, classical complexity theory, and parameterized
complexity theory, respectively. The remainder of this thesis, after the preliminaries
chapter, is divided into four parts. The first three parts are devoted towards obtaining
our main results discussed in the previous section and in the last part we summarize
once again our contributions and propose some questions for the future investigation.
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Notes
The results in this thesis appeared in conference papers in the proceedings of WADS
2015 [74], IPEC 2015 [73], MFCS 2016 [71], ESA 2016 [70] AAAI 2016 [72], MFCS
2017 [21] IJCAI 2017 [67], as well as in a journal paper in Algorithmica [75].
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CHAPTER 2
Preliminaries

In this chapter, we give concise introduction to the terminology and notation that we
use throughout the thesis.

For a set A, we denote by [A]` the set of all `-elements subsets of A. The set of
all integers is denoted by Z, the set of nonnegative integers by N0 , and the set of
natural numbers (that is, positive integers) by N. For integers n,m with n ≤ m, we let
[n,m] := {n, n+ 1, . . . ,m} and [n] := [1, n]. Unless mentioned explicitly otherwise, we
encode integers in binary.

Now we continue by introducing standard graph theoretic notions. Most of the terminology
and notation introduced in this Chapter is the same or similar to the book by Diestel [59].

2.1 Graph Theory
A graph is a pair G = (V,E), where V is a finite set, whose elements are referred to as
vertices of the graph G and E ⊆ [V ]2 is a set of 2-element subsets of V and its elements
are referred to as edges. The usual way to picture a graph is by drawing a dot for each
vertex and joining two of these dots by a line if the corresponding two vertices form an
edge. Just how these dots and lines are drawn is considered irrelevant: all that matters
is the information which pairs of vertices form an edge and which do not.

The vertex and edge set of a graph G are usually denoted by V (G) and E(G), respectively.
These conventions are independent of any actual names of these two sets: the vertex
set W of a graph H = (W,F ) is still referred to as V (H). We do not always strictly
distinguish between a graph and its vertex or edge set. For example, we may say that a
vertex v is in G instead of V (G).

A vertex v is incident with an edge e, if v ∈ e; then e is a edge at v. The two
vertices incident with an edge are its endvertices, or sometimes endpoints, or simply ends.
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An edge {x, y} is usually written as xy (or yx). We also sometimes say that xy is an
edge between vertices x and y. Two vertices x and y of G are adjacent, or neighbors, if
xy is an edge of G. The (open) neighborhood of a vertex x in G is the set of all neighbors
of x in G, or more formally the set {y ∈ V (G) : xy ∈ E(G)}, and is denoted by NG(x).
The closed neighborhood NG[x] of x is defined as NG(x) ∪ {x}. If the graph G is clear
from the contex, we often drop the subscript G. The degree dG(v) = d(v) of a vertex v is
the number of edges at v, which is equal (by the definition of the graph we are using in
this thesis) to the number of neighbors of v. The edges e 6= f are adjacent, if they have
a common endvertex. If all the vertices of G are pairwise adjacent, the G is complete.
A set of vertices is independent, if no two of its elements are adjacent.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. If V ′ ⊆ V and E′ ⊆ E, then G′ is
a subgraph of G (G is a supergraph of G′), written as G′ ⊆ G. In this case, we also
say that G contains G′. If G′ ⊆ G, and G′ contains precisely all the edges xy ∈ E
with x, y ∈ V ′, then G′ is an induced subgraph of G; we say V ′ induces the graph G′
in G, and write G′ = G[V ′]. For a subgraph H of G, if a vertex v is adjacent to some
vertex u ∈ V (H) in G, we sometimes say that u is adjacent to H or u is adjacent to
V (H). If U is a set of vertices of G, we write G − U (or G \ U) for G[V (G) \ U ]. If
U = {v} is a singleton, we write G− v rather then G− {v}. For a subset F ⊆ [V ]2, we
write G− F = (V,E \ F ) and G+ F = (V,E ∪ F ); as above, G− {e} and G+ {e} are
abbreviated to G− e, G+ e. The complement Ḡ of G is the graph (V, [V ]2 \ E).

Let G = (V,E) and G′ = (V ′, E′) be two graphs. We call G and G′ isomorphic, and
write G ' G′, if there exists a bijection φ : V → V ′ with xy ∈ E ⇔ φ(x)φ(y) ∈ E′ for all
x, y ∈ V . Such a map φ is called an isomorphism; if G = G′, it is called an automorphism.
We do not normally distinguish between isomorphic graphs. Thus, we usually write
G = G′ rather than G ' G, speak of the complete graph on 17 vertices, and so on.

2.1.1 Paths and Cycles

A path is a graph P = (V,E) of the form

V = {x0, x1, . . . , x`} and E = {x0x1, x1x2, . . . , x`−1x`}.

The vertices x0 and x` are linked by P and are called its ends; the vertices x1, . . . , x`−1
are the inner (or internal) vertices of P . The number of edges of a path is its length. We
often refer to a path by the natural sequence of its vertices, writing, P = x0x1 . . . x` and
calling P a path from x0 to x` or a path between x0 and x`. We denote by Pn the path
on n vertices. We say that a path P is in G, if P ⊆ G. A path P in G is an induced
path if P = G[V (P )], or in other words there is no edge e in G between two vertices in
P such that e /∈ E(P ). Given sets A,B of vertices, A-B path is a path from a vertex in
A to a vertex in B with all internal vertices disjoint from A ∪B.

If P = x0 . . . x` is a path and ` ≥ 2, then the graph C := P + x`x0 is called a cycle.
Similarly as with paths, we often denote a cycle by its (cyclic) sequence of the vertices;
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the above cycle C could be written as x0 . . . x`x0. The length of a cycle is the number of
its edges and we denote by C` the cycle with the length `.

The distance dG(x, y) = d(x, y) in G of two vertices x, y is the length of a shortest x-y
path in G; if no such path exists we set d(x, y) =∞.

2.1.2 Complete Graph

A graph is called complete if every pair of vertices is adjacent. If two complete graphs
have the same number of vertices, then they are isomorphic. The standard model for a
complete graph on n vertices is denoted Kn.

2.1.3 Connectivity

A non-empty graph G is called connected if every two of its vertices are linked by a
path in G. A maximal connected subgraph of G is called a (connected) component of
G. We denote by cc(G) the number of connected components of G. If A,B ⊆ V (G) and
X ⊆ V (G) ∪E(G) are such that every A-B path contains a vertex or an edge in X, we
say that X separates the sets A and B in G, or equivalently X is a A-B separator in G.
If A or B contains a single vertex x, then we often write x instead of {x}. We say that X
is a separator in G if there are two vertices a, b ∈ V (G)\X such that X is a a-b separator.
If X ⊆ V (G) or X ⊆ E(G), then we say that X is a vertex separator or an edge separator
in G, respectively. An edge e of a connected graph G is a cut edge if the graph obtained
from G by removing e is disconnected. Similarly, a vertex v of a connected graph G is a
cut vertex if the graph obtained from G by removing v is disconnected.

A graph G = (V,E) is said to be k-connected (for k ∈ N) if |V | > k and G − X is
connected for every set X ⊆ V such that |X| < k.

2.1.4 Trees and Forests

A graph that does not contain a cycle as a subgraph is acyclic. An acyclic graph is
also called a forest. A connected forest is called a tree. Thus a forest is a graph whose
components are trees. A star is a tree with a distinguished vertex, called the center ,
adjacent to all other vertices. The vertices of degree 1 are called leaves. Note that every
non-trivial tree has at least 2 leaves and if we remove a leave from a tree, then the
remaining graph is still a tree. The non-leaf vertices of a tree are called its internal nodes.
We mention here few important properties of a tree that follows straightforwardly from
the definition of tree.

Fact 2.1 ([59]). The following assertions are equivalent for a graph T :

• T is a tree;

• every two vertices of a tree T are linked by a unique path;

• T is connected and has n− 1 edges.
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Sometimes it is convenient to consider one vertex of a tree as special; such a vertex is then
called the root of this tree. A tree with a fixed root is a rooted tree. Note that choosing a
root r in tree T imposes a partial ordering on V (T ). For a vertex v, the vertices of the
unique v-r path other then v are called ancestors of v. The neighbor of v in this path is
a parent vertex of v. If u is the parent of v, then v is said to be a child of u.

2.1.5 Bipartite graphs

let r ≥ 2 be an integer. A graph G = (V,E) is called r-partite if V admits a partition into
r classes such that every edge in E has its endvertices in different partitions. Instead of
2-partite one usually says bipartite. Clearly, bipartite graphs cannot contain an odd cycle.

Fact 2.2. A graph is bipartite if and only if it does not contain an odd cycle.

An r-partite graph in which every two vertices from different partition classes are
adjacent is called complete; the complete r-partite graphs for all r together are the
complete multipartite graphs. The complete r-partite graph with the partition sizes
n1, . . . , nr, respectively, is denoted by Kn1,...,nr .

2.1.6 Contraction and Minors

Let e = xy be an edge of a graph G = (V,E). By G/e we denote the graph obtained
from G by contracting the edge e into a new vertex ve, which becomes adjacent to all
the former neighbors of x and of y. Formally, G/e is a graph (V0, E0) with vertex set
V0 := (V \ {x, y}) ∪ {ve} (where ve is the ‘new’ vertex, i.e., ve /∈ V ∪ E) and edge set
E0 := {vw ∈ E | {v, w} ∩ {x, y} = ∅} ∪ {vew | xw ∈ E \ {e} or yw ∈ E \ {e}}. A graph
H is said to be a minor of another graph G, if a graph isomorphic to H can be obtained
from G by contracting some edges, deleting some edges, and deleting some vertices. The
order in which a sequence of such contractions and deletions is performed on G does not
affect the resulting graph H. We say that a graph G is H-minor-free if G has no minor
isomorphic to H.

Fact 2.3. The minor relation is a partial ordering on the class of finite graphs, i.e., it is
reflexive, antisymmetric and transitive.

2.1.7 Other notions of graphs

We mention here some other notions of graphs which are mentioned or used in certain
parts of the thesis.

A multigraph is a pair (V,E), where V is a set of vertices and E is a multiset (each element
can appear multiple times) containing elements of V ∪ [V ]2. Note that a multigraph may
have several edges between the same two vertices x, y. Such edges are called multiple
edges. To express that x and y are the ends of an edge e we still write e = xy, though this
no longer determines e uniquely. The edges containing only one vertex are called loops.
A graph is thus essentially the same as a multigraph without loops or multiple edges.
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A directed graph (or simply digraph) is a pair (V,E) of disjoint sets, where E ⊆ V × V .
We call the set V the vertex set and its elements are vertices. The set E is the arc set and
its elements are called arcs or directed edges. Similarly, the definition of directed graph
can be extended to a directed multigraph, where we allow multiple edges between the
same set of vertices. Moreover, if these edges have the same direction (say from x to y),
they are parallel. For a directed edge e = (x, y) we call the vertex x the tail of the edge
e and y the head of the edged e.

Most of the notions defined in this section for graphs extend straightforwardly to multi-
graphs and digraphs. For a detailed treatment of multigraphs and directed graphs, the
reader is referred to books by Diestel [59] or Bang-Jensen and Gutin [18]. We introduce
here some notions that differ from the standard graph and will be useful throughout
the thesis.

In the following let D be a directed (multi)graph. We say that a vertex u is a neighbor
of a vertex v in D if at least one of (u, v) ∈ E(D) or (v, u) ∈ E(D) holds. We denote
by ND(v) (or by N(v) if D is clear from the context) the set of all neighbors of v in D.
A vertex u is an in-neighbor or out-neighbor of a vertex v in D if (v, u) ∈ E(D) or
(u, v) ∈ E(D), respectively. We denote by N−D (u) and N+

D (u) the set of all in-neighbors
and out-neighbors of v in D, respectively. Again we drop the subscript D if it can be
inferred from the context and for a vertex set A ⊆ V (D) we write N−D (A) and N+

D (A)
to denote the sets (

⋃
a∈AN

−
D (a)) \A and (

⋃
a∈AN

+
D (a)) \A, respectively. The in-degree

d−D(v) = d−(v) of vertex v is the number of edges with v being the head of the edge.
The out-degree d+

D(v) = d+(v) of vertex v is the number of edges with v being the tail of
the edge. The total degree dD(v) = d(v) of vertex v is the sum of its in-degree and its
out-degree. Note that loops are counted twice for the total degree, so if there is only the
arc (v, v) incident to v then its total degree is 2.

A directed path or simply path P in D from a vertex u to a vertex v is a sequence
(v0, . . . , vl) such that v0 = u, vn = vl, (vi, vi+1) ∈ E(D) for every i with 0 ≤ i < l, and
apart from the pair (v0, vl) all pairs of vertices in P are disjoint. We call v0 and vl the
endpoints of P and the vertices v1, . . . , vl−1 the internal vertices of P . For two vertex
sets A and B we say that there is a directed path from A to B if there are a ∈ A and
b ∈ B such that D has a directed path from a to b. We say that a set of paths is vertex
disjoint if no two paths in the set share an internal vertex.

In Chapter 8 the following definition of edge-contraction in directed graphs will be useful.
Given an arc (u, v) ∈ E(D), we say that the directed graph D′ is obtained from D after
contracting the arc (u, v) if D′ is obtained from D after replacing u and v in D with a
new vertex n and adding all arcs (w, n) for every arc (w, u) or (w, v) in D as well as all
arcs (n,w) for every arc (u,w) or (v, w) in D. We note that several notions of contraction
exist for directed graphs such as for example butterfly contraction [130].

Finally, a hypergraph is a pair (V,E) of disjoint sets, where the elements of E are non-
empty subsets (of any cardinality) of V . Thus, graphs are a special case of hypergraphs.
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2.2 Classical Complexity
In general we study the complexity of computing a function whose input and output are
finite strings over some fixed alphabet Σ (for example binary strings, i.e., Σ = {0, 1}).
We identify these functions with computational problems. More precisely, given a function
f , we define the computational problem Qf to be the question to compute the value f(x)
for a given input x (we will use the terms input and instance interchangeably). Note
that simple encodings can be used to represent general mathematical objects – integers,
pairs of integers, graphs, vectors, matrices, etc. – as strings. For example, we can
represent a graph as its adjacency matrix (i.e., for an n vertex graph G = (V,E), choose
an arbitrary ordering of vertices in V , given by a bijection ϕ : [n− 1]→ V , and represent
G by an n× n 0/1-valued matrix A such that Ai,j = 1 if and only if the edge ϕ(i)ϕ(j)
is present in G). However, we will avoid dealing explicitly with such low level issues of
representation, and will alway assume that we have some canonical (and unspecified)
string representation of the object.

We will work with several special cases of computational problems in this thesis. An im-
portant special case of functions mapping strings to strings is the case of functions whose
output is a single bit. We identify such a function f with the set Qf = {x | f(x) = 1} and
call such sets languages or decision problems. In this setting, the computational problem
of computing f (i.e., given x, compute f(x)) is equivalent to deciding whether x ∈ Qf .
If x ∈ Qf , we say that x is an Yes-instances of Qf , otherwise we say that x is a No-
instance. A search problem is a computational problem which is associated with a binary
relation R instead of a function. To solve a search problem for input x it suffices to
output an arbitrary y such that (x, y) ∈ R. A counting problem asks for the number of
solutions to a given search problem, i.e., given a binary relation R, the counting problem
associated with R is the function fR(x) = |{y : (x, y) ∈ R}|. An optimization problem
asks for finding a “best possible” solution among the set of all possible solutions to
a search problem. One example is the Vertex Cover problem: “Given a graph G, find
a vertex cover of G of minimum size.”

Given a problem Qf , we say that algorithm A solves Q if for all inputs x ∈ Σ∗ the
algorithm A outputs f(x). Complexity theory studies the number of steps required by an
optimal algorithm to solve such problems. Here, the number of steps is measured in terms
of the input size |x| = n. In most cases, a worst-case perspective is taken. This means
that for each input size n, we measure the maximum number of steps that the algorithm
takes on any input of size n. When expressing the running time of an algorithm, we
focus on upper bound guarantees. For instance, we say that an algorithm runs in time n2

if for each input x ∈ Σ∗, the algorithm takes at most (but possibly less than) |x|2 steps.

Moreover, when we express the running time of algorithms, we will often be more
interested in the rate of growth of functions upper bounding the running time than their
precise behavior. In order to explain this more precisely, we introduce “Big Oh” and
“little oh” notation. We also overview several related notions.

The Big Oh and little oh notations suppress unimportant details and allow us to focus
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on salient features of running times. Let f, g : N→ N be two arbitrary functions. Then
we say that f is of the order of g, f = O(g) or f(n) = O(g(n)), if there are constants
c, n0 ∈ N such that f(n) ≤ c ·g(n) for all n ≥ n0. Intuitively, if f(n) = O(g(n)), then f(n)
grows asymptotically at most as fast as g(n). Moreover, if for every ε > 0 there exists
n0 ∈ N such that f(n) ≤ ε · g(n) for all n ≥ n0, we say that f(n) = o(g(n)). Intuitively,
if f(n) = o(g(n)), it means that g(n) grows asymptotically faster than f(n). There also
exist counterparts to Big Oh and little oh that express lower bounds rather than upper
bounds. In particular, we have f(n) = Ω(g(n)) if g(n) = O(f(n)) and f(n) = ω(g(n)) if
g(n) = o(f(n)).

2.2.1 Turing Machines

To formally define what we mean by an algorithm and the running time of an algorithm, we
need to utilize the notion of Turing machines, which were introduced in the foundational
work of Alan Turing [195]. Roughly speaking a Turing machine is a machine with an
infinite tape (Turing machines with multiple tapes are also commonly considered) and
one head that can read from the tape, write on the tape, and either move on the tape one
cell left or right or stay at the position of the current cell. At the beginning we assume
that the head is on the first letter of the input word and all the cells not containing
letters of the input word are blank, which is marked by a special symbol B.

More formally, a non-deterministic Turing machine is a tuple M = (S,Σ,Γ, δ, s0, F ),
where:

• S is the finite, non-empty set of states;

• Γ is the finite, non-empty tape alphabet;

• Γ ∩ S = ∅;

• Σ ⊆ Γ is the finite, non-empty input alphabet;

• s0 ∈ S is the initial state;

• F ⊆ S is the set of accepting states; and

• δ : S × (Γ ∪ {B})→ 2S×Γ×{−1,0,1} is the transition function.

Here B /∈ Γ∪S is a special blank symbol. A configuration is a tuple (s, x, p), where s ∈ S,
x ∈ Γ∗, and p ∈ [0, |x| + 1]. Intuitively, x is the word currently on tape, disregarding
blanks, s is the state of the machine and p is the position of the head. Since the head is
not allowed to write down B, the head has to be either on a position somewhere inside x
or on the blank just before or just after x. The initial configuration for an input x ∈ Σ∗
is C0(x) = (s0, x, 1).

A computation step is a pair of configurations (C1, C2) such that if C1 = (s1, xay, p1),
x, y ∈ Γ∗, a ∈ Γ∪B and |x| = p1−1, then C2 = (s2, xby, p2) and (s2, b, p2 − p1) ∈ δ(s1, a).
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If (C1, C2) is a computation step of a Turing machine M, we call C2 a successor configura-
tion of C1. A halting configuration is a configuration that has no successor configuration.
A halting configuration is accepting if its state is in F . We say that the machine M
accepts an input x if there exists a sequence of configurations C0, C1, . . . , Cn such that
C0 = C0(x) is the initial configuration and (Ci−1, Ci) is a computation step for each
i ∈ [n]. We call such a sequence a computation. We identify non-deterministic algorithms
with non-deterministic Turing machines and the length of a shortest computation, if
there is one, ending with an accepting halting configuration is then the running time
of the algorithm on the input x. For a decision problem Q, we then say that Turing
machine M solves Q, if for each x ∈ Q the Turing machine M accepts x. We say that
the running time of M if f(n) if for each x ∈ Q such that |x| = n, the running time
of M on x is at most f(|x|). Similarly, for a function f : Σ∗ → Σ∗, we say that M
solves f (or equivalently the problem Qf associated with f), if for every x ∈ Σ∗ there
is a computation that ends in an accepting halting configuration C = (s, y, p), where
the restriction of y to Σ is exactly f(x).

A deterministic Turing machine machine is a Turing machine with |δ(s, x)| ≤ 1 for
all s ∈ S and all x ∈ Γ ∪ {B}. Note that in this case, each configuration C has at
most one possible successor configuration. Deterministic algorithm and running time
for a problem Q are then defined similarly to non-deterministic ones with a distinction
that the algorithm is required to end in a non-accepting halting configuration for all
x /∈ Q and the running time of the deterministic Turing machine M is f(n) if for every
x ∈ Σ∗ such that |x| = n the unique computation starting in the initial configuration
for x, C0(x), and ending in a halting configuration has length at most f(n). If we do not
specify otherwise, by an algorithm we always mean a deterministic algorithm.

2.2.2 Classical Complexity: P vs NP

Traditionally, the notions of tractability and tractable problems were identified with
the complexity class P. This complexity class contains precisely the decision problems
that have algorithms (deterministic Turing machines) with running time polynomial in
the input size (O(nc) for some constant c).

Using the notion of tractability, it is easy to define intractability: a problem is intractable
if it is not tractable. However, it turned out that this naive notion of intractability is
unproductive for a large class of problems from many areas of computer science. For
these problems, nobody has been able to find a polynomial-time algorithm, and nobody
has been able to prove that no such algorithm exists. For this reason, the concept of NP-
completeness was introduced. The complexity class NP consists of all decision problems
that are solvable in polynomial time using a non-deterministic Turing machine. There
are problems in the class NP for which the best known (deterministic) algorithms run in
time 2Ω(n). To substantiate the suspicion that a certain problem is not polynomial-time
solvable, one can relate this problem to other problems in NP using the concept of
reductions.
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Let Q1 and Q2 be two decision problems. A polynomial-time reduction from Q1 to Q2 is
a polynomial-time algorithm that for each input x1 ∈ Σ∗ produces an output x2 such that
x1 ∈ Q1 if and only if x2 ∈ Q2. (Such reductions are also called many-to-one reductions,
or Karp reductions.) We then say that a problem Q is NP-hard if for each problem
Q0 ∈ NP, there is a polynomial-time reduction from Q0 to Q. Intuitively, an NP-hard
problem Q is as hard as any other problem in NP, because if Q were polynomial-time
solvable, then each problem in NP would be polynomial-time solvable. A problem Q
is NP-complete if it is both in NP and NP-hard. A practically useful way of proving
NP-completeness is offered by the Cook-Levin Theorem [45, 147]. This seminal result
identified a first NP-complete problem: SAT. As a result, subsequent NP-hardness proofs
only need to provide a polynomial-time reduction from this single problem, rather than
providing that there is an reduction from all problems in NP.

There also exists another notion of reduction for computational problems. A Turing
reduction from a problem Q1 to Q2 is a polynomial algorithm A solving Q1, where A
is a deterministic Turing machine with an oracle for Q2. Such oracle Turing machine
in addition to the work tape and the read/write work head has also an oracle tape, an
oracle head and two special states ASK and RESPONSE. The oracle Turing machine is
allowed to go from a configuration in the state ASK to the state RESPONSE, in a single
computation step, replacing the non-blank part x of the oracle tape by the output of Q2
on input x and setting the oracle head to the first non-blank on the oracle tape.

2.2.3 List of NP-complete Problems

Throughout the thesis we deal with several well-studied NP-complete problems, here we
list some of them.

Problem 1: SAT

In our setting, a propositional formula is constructed from individual binary variables
using usual Boolean connectives (¬,∧,∨,→,↔).

Instance: A propositional formula ϕ.
Question: Can we assign truth values to the variables of ϕ such that formula
evaluates to true?
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Problem 2: d-CNF-SAT, for d ≥ 3.

For a set of propositional variables K, a literal is either a variable x ∈ K or its negation
¬x, where v(x) = v(¬x) = x denotes the variable of a literal. A clause is a disjunction
over literals. A propositional formula in conjunctive normal form (i.e., a CNF formula)
is a conjunction over clauses. We say that a CNF formula φ is over a variable set K if
each literal x in φ satisfies v(x) ∈ K, and denote the set of variables which occur in φ
by var(φ). For notational purposes, we will view a clause as a set of literals and a CNF
formula as a set of clauses.

Instance: A CNF formula ϕ such that each clause of ϕ contains at most d
literals.
Question: Can we assign truth values to the variables of ϕ such that formula
evaluates to true?

Problem 3: Vertex Cover

Instance: A graph G and an integer m.
Question: Is there a set S ⊆ V (G) of cardinality at most m such that G \S
does not contain any edge?

Problem 4: (Undirected) Feedback Vertex Set ((U)FVS)

Instance: A graph G and an integer m.
Question: Is there a set S ⊆ V (G) of cardinality at most m such that G \S
is forest?

Problem 5: Directed Feedback Vertex Set (DFVS)

Instance: A digraph D and an integer m.
Question: Is there a set S ⊆ V (D) of cardinality at most m such that G\D
is acyclic?

Problem 6: Independent Set

Instance: A graph G and an integer m.
Question: Is there an independent set in G of cardinality at least m?

Problem 7: Clique

Instance: A graph G and an integer m.
Question: Is there a clique in G of cardinality at least m?
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Problem 8: Dominating Set

Instance: A graph G and an integer m.
Question: Is there a set S ⊆ V (G) of cardinality at least m such that each
vertex in G is either in S or has a neighbor in S?

Problem 9: Hitting Set

Instance: A ground set U and a collection C of subsets of S, and integer m.
Question: Is there a set S ⊆ U of cardinality at most m, which intersects
each set in C?

Problem 10: d-Hitting Set

Instance: A ground set U and a collection C of subsets of S, each of
cardinality at most d, and integer m.
Question: Is there a set S ⊆ U of cardinality at most m, which intersects
each set in C?

Problem 11: Equitable Coloring

Instance: A graph G and an integer r.
Question: Does G admit a proper r-coloring such that the number of
vertices in any two color classes differ by at most one?

We note that, by definition, problems in NP are decision problems. However, as we can see
from the above examples, many of them ask if there exists some certificate (such as a set
of m vertices forming a clique). Therefore, throughout the thesis, we often consider the
search or the optimization variant of these problems under the same name. It is known
that both of these variants of a decision problem admit a polynomial algorithm if and
only if the decision problem does. Hence, considering the tractability of problems, this
does not cause any obstacles. For a further discussion about decision vs search problems
see for example the book by Arora and Barak [13] or any other book or undergraduate
text dealing with computational complexity.

2.2.4 Exponential Time Hypothesis

SAT is an archetypal NP-complete problem and it is commonly believed that there is no
algorithm solving SAT in time 2o(n). This assumption has been formalized by Impagliazzo
and Paturi as an Exponential Time Hypothesis [126].

Definition 2.4 (Exponential Time Hypothesis (ETH) [127]). There exists a constant
s > 0 such that 3-CNF-SAT with n variables and m clauses cannot be solved in time
2sn(n+m)O(1).
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We will use the fact that the classical Vertex Cover problem cannot be solved in
subexponential time under ETH.

Theorem 2.5 (Cai and Juedes [38]). There is no 2o(k) · |V (G)|O(1) algorithm for Vertex
Cover, unless ETH fails.

2.2.5 Polynomial Space

Next, we briefly consider the complexity class PSPACE , consisting of all decision problems
that can be solved by an algorithm that uses a polynomial amount of space (or memory).
The amount of space that a Turing machine uses for an input x ∈ Σ∗ is defined as the
number of tape cells to which it writes during the computation. In other words, the
class PSPACE consists of all problems that can be solved using space O(nc), for some
constant c ∈ N. As a consequence of Savitch’s Theorem [184], it is well-known fact that
NP ⊆ PSPACE.

2.2.6 Monadic Second Order Logic

Here we introduce monadic second order logic (MSO), which will play a crucial role
throughout the thesis. Roughly speaking, MSO is the fragment of second-order logic
where the second-order quantification is limited to quantification over sets. We refer to
the books by Courcelle and Engelfriet [48] or Libkin [148] for a more detailed foray into
monadic second order logic and related notions.

We assume that we have an infinite supply of individual variables, denoted by lowercase
letters x, y, z, and an infinite supply of set variables, denoted by uppercase letters X,Y, Z.
Formulas of MSO are built up from atomic formulas using the usual Boolean connectives
(¬,∧,∨,→,↔), quantification over individual variables (∀x, ∃x), and quantification over
set variables (∀X, ∃X).

When speaking about MSO over graphs, we in general distinguish two types of MSO,
notable MSO1 and MSO2.

MSO1 Individual variables range over vertices, and set variables range over sets of vertices.
The atomic formula Exy expresses adjacency, x = y expresses equality, and Xx
expresses that the vertex x is in the set X.

MSO2 Individual variables range over vertices or edges, and set variables range over sets
of vertices or edges. The atomic formula Ixy expresses that the vertex x is incident
with the edge y, x = y expresses equality, and Xx expresses that the vertex or the
edge x is in the set X.

Sometimes we also speak about MSO over labeled graphs, in which we assume that the
logic (MSO1 or MSO2) contains also an atomic formula Pax that expresses that “vertex or
edge x has label a”. Moreover, MSO2 over directed graphs contains atomic formulas Hxy
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expressing “vertex x is the head of the edge y” and Txy expressing “vertex x is the tail
of the edge y”. We remark here that MSO2 logic is more general of the two. In particular,
all formulas from MSO1 can be easily translated to equivalent formula in MSO2 by simply
replacing atomic formulas Exy by ∃e(Ixe ∧ Iye). However, some properties expressible
in MSO2 cannot be expressed in MSO1. An example of such property is that a simple
graph has a Hamiltonian cycle (see for example Proposition 5.13 in the book by Courcelle
and Engelfriet [48]).

Free and bound variables of a formula are defined in the usual way. A sentence is a
formula without free variables. We write ϕ(X1, . . . , Xn) to indicate that the set of free
variables of formula ϕ is {X1, . . . , Xn}. If G = (V,E) is a graph and S1, . . . , Sn ⊆ V we
write G |= ϕ(S1, . . . , Sn) to denote that ϕ holds in G if the variables Xi are interpreted
by the sets Si, for i ∈ [n]. For a fixed MSO sentence ϕ, the problem framework we are
mainly interested in is formalized below.

monadic second order logic!Model Checking2@MSO-MCϕ MSO Model
Checking (MSO-MCϕ)
Instance: A graph G.
Question: Does G |= ϕ hold?

While MSO model checking problems already capture numerous graph problems (e.g.,
3-Coloring), there are some well-known problems on graphs that cannot be captured in
this way, such as Vertex Cover, Dominating Set, and Clique. Many such problems
can be formulated in the form of MSO optimization problems. Let ϕ = ϕ(X) be an MSO
formula with one free set variable X and ♦ ∈ {≤,≥}.

MSO-Opt♦ϕ
Instance: A graph G and an integer r ∈ N.
Question: Is there a set S ⊆ V (G) such that G |= ϕ(S) and |S| ♦ r?

2.3 Parameterized Complexity

Parameterized complexity was first developed by Downey and Fellows, and expanded
in a series of papers [1, 37, 60, 61, 65] culminating in a monograph by Downey and
Fellow [63]. The area has since greatly expanded. In this section, we give a brief overview
of the area and the notions that are crucial for our thesis. For more detailed treatment
of parameterized complexity, we refer reader to several books on the topic by Downey
and Fellow [63, 64], Cygan et al. [53], Flum and Grohe [86], Niedermeier [162], or a
habilitation thesis by Fernau [82].
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2.3.1 Fixed-Parameter Tractability

The main idea behind fixed-parameter tractability is the observation that the worst-case
classically taken in the complexity theory measure the complexity of the problem only
by the size of the input. However, in many cases you know more about the input than
just its size. Parameterized complexity provides tools for a multi-dimensional complexity
analysis where you can take such additional information about the input into account.

The concept of identifying information about problem inputs that can be exploited
algorithmically is formally captured in parameterized complexity by the notions of
parameterized problems and fixed-parameter tractability. A parameterized problem Q is
a function q : Σ∗×N→ Σ∗. For an instance (x, k) of Q, we say that x is the main part of
the instance and k the parameter. A parameterized problemQ is fixed-parameter tractable
if there exists a computable function f : N→ N, a constant c ∈ N and and algorithm that
on input (x, k) runs in time f(k) · |x|c and outputs q(x, k). Such an algorithm is called a
fixed-parameter algorithm or shortly an FPT algorithm and such running time is called
fixed-parameter or FPT time. This definition of parameterized problem straightforwardly
generalizes also to parameterized decision/search/counting/optimization problems. The
class of all parameterized decision problems that are fixed-parameter tractable is denoted
by FPT. For a classical problem P , we use P [k] to denote the parameterized problem P
parameterized by the parameter k.

2.3.2 Polynomial Time Solvability for a Fixed Parameter and the
Class XP

Even though the name “fixed-parameter tractable” hints that the concept of fixed-
parameter tractability can be described by the fact that for every fixed constant value
of the parameter the problem is polynomial time tractable, it is not true in general.
More precisely, even though all FPT algorithms run in polynomial time if the value
of the parameter is some fixed constant, the converse does not necessarily hold. To
elaborate on this, we introduce the class XP, that consists of all parameterized decision
problems Q for which there exists a computable function f : N→ N and an algorithm
that decides whether (x, k) ∈ Q in time |x|f(k). We call such running time XP time
and an algorithm running in XP time an XP algorithm. Each problem Q ∈ XP can
also be solved in polynomial time for each fixed value of the parameter. However, the
order of the polynomial depends on the parameter value k, whereas for fixed-parameter
tractable problems the order of the polynomial is independent of the value k. To see
why we consider FPT to be the class of tractable parameterized problems instead of XP,
consider the following two running times 2k · n2 and nk. While solving an instance of
size n = 1000 with k = 10 may still be feasible with an algorithm with 2k · n2 running
time, an nk algorithm would in this case require more steps than there are stars in the
observable universe.
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2.3.3 Bounded Search Trees

The method of bounded search trees is fundamental to FPT algorithmic results in a
variety of ways. The main idea behind bounded search trees comes from the general
idea of backtracking. Basically, an algorithm tries to find a feasible solutions by making
guesses, such as for example which endpoint of an edge will go to a vertex cover. Whenever
the branching algorithm makes such guess, it branches into several subproblems and
solves all of them one by one independently. In this manner the execution of a branching
algorithm can be viewed as a search tree, which is traversed by the algorithm up to the
point when a solution is discovered in one of the leaves. In order to justify the correctness
of a branching algorithm, one needs to argue that in case of a Yes-instance some sequence
of decisions captured by the algorithm leads to a feasible solution. If the total size of
the search tree is bounded by a function of the parameter alone, and every step takes
polynomial time, then such a branching algorithm runs in FPT time. This is indeed the
case for many natural backtracking algorithms.

When designing such branching algorithms, we often recursively apply some reduction
and branching steps on the instance. A branching rule is an algorithm that takes as
an input an istance I = (x, k) of a parameterized problem Q and outputs instances
I1 = (x1, k1), . . . , I` = (x`, k`) of the same parameterized problem. We call the integer `
the branching factor of the branching rule. A branching rule with branching factor 1 is
called a reduction rule. We say that the branching rule is sound, if at least one of the
subinstances resulting from the has the same output as the original instance. In particular
for decision problems it means that there exists at least one subinstance resulting from
the rule which is a Yes-instance if and only if the original graph was a Yes-instance and
for reduction rules this means that the application of the rule preserves the property of
being a Yes-instance.

2.3.4 Kernelization

The study of kernelization has recently been one of the main areas of research in
parameterized complexity, yielding many important new contributions to the theory.
Kernelization investigates exact preprocessing algorithms with performance guarantees.

A bikernelization for a parameterized decision problem P ⊆ Σ∗ ×N into a parameterized
decision problem Q ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs in
time polynomial in |x|+ k a pair (x′, k′) ∈ Σ∗ × N such that

(i) (x, k) ∈ P if and only if (x′, k′) ∈ Q and

(ii) |x′|+ k′ ≤ g(k), where g is an arbitrary computable function.

The reduced instance (x′, k′) is the bikernel. If P = Q, the reduction is called a
kernelization and (x′, k′) a kernel. The function g is called the size of the (bi)kernel, and
if g is a polynomial then we say that P admits a polynomial (bi)kernel.
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The following fact links the existence of bikernels to the existence of kernels.

Fact 2.6 ([9]). Let P,Q be a pair of decidable parameterized problems such that Q is in
NP and P is NP-hard. If there is a bikernelization from P to Q producing a polynomial
bikernel, then P has a polynomial kernel.

It is relatively easy exercise to see that a parameterized decision problem has a kernel if
and only if it is in FPT (for more details see for example Chapter 2 in the book by Cygan
et al. [53]). However the size of such kernel can be arbitrary big. Therefore, especially if
the problem was already shown to be fixed-parameter tractable, we are mainly interested
in the existence of polynomial kernels, i.e., kernels whose size is polynomial in k.

The by far most prevalent type of parameter used in kernelization is the solution size.
Indeed, the existence of polynomial kernels and the exact bounds on their sizes have
been studied for a plethora of distinct problems under this parameter, and the rate
of advancement achieved in this direction over the past 10 years has been staggering.
However, also various structural parameters which have been used to obtain polynomial
kernels. A modulator of a graph G to a graph class H is a vertex set X ⊆ V (G) such that
G−X ∈ H. We denote the cardinality of a minimum modulator to H in G by modH(G).
The vertex cover number of a graph G (vcn(G)) is a special case of modH(G), specifically
for H being the set of edgeless graphs. The vertex cover number has been used to obtain
polynomial kernels for problems such as Largest Induced Subgraph [87] and Long
Cycle along with other path and cycle problems [27]. Similarly, a feedback vertex set is
a modulator to the class of acyclic graphs, and the size of a minimum feedback vertex
set has been used to kernelize, for instance, Treewidth [28] and Vertex Cover [128].
Important findings were also obtained in the area of meta-kernelization [26, 89, 138],
which is the study of general kernelization techniques and frameworks used to establish
polynomial kernels for a wide range of distinct problems.

2.3.5 Fixed-parameter intractability

Just as NP-hardness forms a basic tool to show that the problem is unlikely to have
a polynomial algorithm, parameterized complexity has also notion of fixed-parameter
intractability. Here the equivalent of the class NP is the class W[1], which is the first
class of infinite hierarchy of classes of parameterized decision problems. The W-hierarchy
consists of a series of classes W[t], t ∈ N such that W[t] ⊆ W[t+ 1] for all t and two
additional classes W[SAT] and W[P]. As the precise definitions of these classes are rather
technical and not necessary for this thesis, we will not define these classes here and we
refer reader for example to the book by Downey and Fellows [64] for the exact definition.
However, similarly as in traditional complexity, one can use the concept of reductions to
characterize problems that are unlikely to have an FPT algorithm. After, we introduce
the notions of parameterized reductions, we will give some natural problems that are
complete for classes in W-hierarchy.
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Let Q1, Q2 ⊆ Σ∗×N be two parameterized decision problems. A parameterized reduction
(or FPT reduction) from Q1 to Q2 is an FPT algorithm that on an input (x1, k1) ∈ Σ∗×N
produces an output (x2, k2) such that

(i) (x1, k1) ∈ Q1 if and only if (x2, k2) ∈ Q2, and

(ii) there is a computable function g such that k2 ≤ g(k1).

Based on this notion of parameterized reduction, it is straightforward to define the notion
of hardness and completeness for these classes in a similar manner as for the class NP.
We only need to replace the many-to-one reduction with the parameterized one.

To show that the problem does not have an FPT algorithm unless FPT = W[1], we can
however use also an equivalent of Turing reduction for traditional complexity called an
FPT Turing reduction to some W[1]-hard problem. An FPT Turing reduction from
a parameterized problem Q1 to Q2 is a deterministic algorithm solving Q1 with an oracle
to Q2 with the following properties:

(i) the algorithm is FPT, and

(ii) the parameter for Q2 in each oracle query is bounded by a function of the parameter
for Q1.

As it is strongly believed that FPT 6= W[1], to show that the problem is unlikely to
have an FPT algorithm, one can simply give a FPT (turing) reduction to some known
W[1]-hard problem. Here we list few problems that are often used to show W[1]-hardness
and W[2]-hardness, respectively.

Fact 2.7 ([63], Theorem 10.8). Clique and Independent Set parameterized by the
solution size are both W[1]-complete.

Fact 2.8 ([64], Corollary 23.2.2). Dominating Set and Hitting Set parameterized
by the solution size are W[2]-complete.

Finally, we introduce one more parameterized class. The class paraNP is defined as the
class of decision problems that are solvable by a non-deterministic Turing machine in
FPT time. Throughout the thesis, we will make use of the following characterization of
paraNP-hardness.

Fact 2.9 ([86], Theorem 2.14). If a parameterized decision problem Q becomes NP-hard
after setting the parameter to some fixed constant, then Q is paraNP-hard.

We note that showing paraNP-hardness of a parameterized version of a problem in NP rules
out the existence of algorithms with a running time of O(nf(k)). Finally, in Figure 2.1,
we depict relations between the parameterized classes mentioned in this section.
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FPT

W[1]

W[2]

W[SAT]

W[P]

paraNP XP

Figure 2.1: The relationships between major complexity classes.
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Decomposition Parameters
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CHAPTER 3
Background

This part is devoted to the investigation of the first approach towards the design of struc-
tural parameters considered in this thesis, namely, parameters based on decompositions.
Decomposition parameters such as treewidth [178], pathwidth [176], branchwidth [179],
clique-width [49, 50], and rank-width [167, 168] play an important role in many modern
investigations in algorithmic graph theory and have been a core part of the field of
parameterized algorithms already since its early beginnings. The main idea behind
decomposition parameters, as the name suggests, is to obtain some kind of decomposition
of the input, which in turn helps us solve the given problem more efficiently.

Before we proceed to the main results of this part, we will first introduce several useful
decomposition parameter, together with a notion of partially ordered sets that will be
crucial in the following chapter. Afterwards, in Chapter 4 we study the possibilities of
exploiting treewidth to solve the problem #LinExt. Finally, in Chapter 5 we introduce
a novel parameter prefix pathwidth that is a restriction of pathwidth which gives rise to
an FPT algorithm for QBF.

3.1 Treewidth and Pathwidth

As we already mentioned before, treewidth is a decomposition parameter that measures
how “close” the given graph is to a tree, and represents one of the most frequently used
tools in parameterized complexity. The notions of treewidth and tree decomposition were
introduced by Robertson and Seymour in their fundamental work on graph minors [178].
A tree decomposition of a graph G is a pair (T,X = {Xt}t∈V (T )), where T is a rooted
tree whose every vertex t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that
the following properties hold:

(T1)
⋃
t∈V (T )Xt = V (G),
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3. Background

(T2) for every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected subtree
of T (monotonicity), and

(T3) for each uv ∈ E(G) there exists t ∈ V (T ) such that u, v ∈ Xt.

a b

c

d e h

g

f b, e, g

b, f, g e, g, hb, c, e

c, d, ea, b, c

Figure 3.1: A graph (on the left) and its tree decomposition (on the right).

See Figure 3.1 for an example of a tree-composition. To distinguish between the vertices
of the tree T and the vertices of the graph G, we will refer to the vertices of T as nodes;
for brevity, we will also interchange T and V (T ) when the context is clear. The width of
the tree decomposition T is maxt∈T |Xt|− 1. The treewidth of G, tw(G), is the minimum
width over all tree decompositions of G. The purpose of the ’−1’ in the definition
of the width of a decomposition is to let trees have tree-width 1.

In some cases, we will make use of a well-established canonical form of tree decompositions.
A tree decomposition T = (T,X ) is nice if T contains a root r (introducing natural
ancestor-descendant relations in T ) and the following conditions are satisfied:

• Xr = ∅ and X` = ∅ for every leaf ` of T . In other words, all the leaves as well as
the root contain empty bags.

• Every non-leaf node of T is of one of the following three types:

– Introduce node: a note t with exactly one child t′ such that Xt = Xt′ ∪ {v}
for some vertex v 6∈ Xt′ ; we say that v is introduced at t. If u ∈ Xt′ and uv is
an edge in G, then we also say that uv is introduced at t (Figure 3.2a).

– Forget node: a note t with exactly one child t′ such that Xt = Xt′ \ {w} for
some vertex w ∈ Xt′ ; we say that v is forgotten at t (Figure 3.2b).

– Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2

(Figure 3.2c).

Nice tree decompositions are in particular useful for designing dynamic programing algo-
rithm along the tree decomposition. To see some simpler examples of such dynamic pro-
graming algorithms, the reader is referred for example to the Section 7.3 of the book by Cy-
gan et al. [53]. We note that there exists a polynomial-time algorithm that converts
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u, v, w

u, w

(a) Introduce

u,w

u, v, w

(b) Forget

u, v, w

u, v, w u, v, w

(c) Join

Figure 3.2: An example of three types of non-leaf nodes.

an arbitrary tree decomposition into a nice tree decomposition of the same width [141].
A path decomposition is a tree decomposition where each node of T has degree at most
2, and nice path decompositions are nice tree decompositions which do not contain
join nodes. Nice path decompositions can also be computed from standard path de-
compositions in polynomial time while preserving width [141]. Observe that any path
decomposition can be fully characterized by the order of appearance of its bags along T ,
and hence we will consider succinct representations of path decompositions in the form
Q = (Q1, . . . , Qd), where Qi is the i-th bag in Q. The pathwidth of G, pw(G), is the
minimum width of a path decomposition of G.

We list some useful facts about treewidth and pathwidth.

Fact 3.1 ([22, 30]). There exists an algorithm which, given a graph G and an integer k,
runs in time O(kO(k3)n) and either outputs a tree decomposition of G of width at most
k or correctly identifies that tw(G) > k. Furthermore, there exists an algorithm which,
given a graph G and an integer k, runs in time O(kO(k3)n) and either outputs a path
decomposition of G of width at most k or correctly identifies that pw(G) > k.

Fact 3.2 (Folklore). Let T be a tree decomposition of G and t ∈ T . Then each connected
component of G−Xt lies in a single subtree of T − t. In particular, for each connected
component C of G−Xt there exists a subtree T ′ of T − t such that for each vertex a ∈ C
there exists ta ∈ T ′ such that a ∈ Xta.

Fact 3.3 (Courcelle’s theorem [46]). Let ϕ and ψ = ψ(X) be fixed MSO2 formulas over
labeled (directed) graphs. There exists a computable function f and an algorithm such
that, given an n-vertex graph G and S ⊆ V (G), decides whether G |= ϕ and whether
there exists a set S such that G |= ψ(S) in time f(tw(G)) · n.

The following extension of the previous fact shows that if G has bounded treewidth then
we can count the number of sets S with G |= Φ(S). This result will be in particular
useful in Chapter 4.

Fact 3.4 ([12]). Let Φ(X) be an MSO2 formula with a free set variable X and w a
constant. Then there is a linear-time algorithm that, given a labeled (directed) graph
G = (V,E) of treewidth at most w, outputs the number of sets S ⊆ E such that G |= Φ(S).
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3.2 Treedepth
The treedepth of a graph is an intuitively easy and very useful invariant. It has been
defined by Nešetřil and Mendez [159], but equivalent or similar notions include the rank
function [161], the minimum height of an elimination tree [24], etc. Treedepth has been
also studied as a natural parameter for problems that remain W[1]-hard parameterized
by treewidth [95, 112].

A treedepth decomposition of a graph G is a pair (T, σ : V (G) → V (T )), where T is
a rooted forest and σ is a mapping of the vertices of G to the vertices of T such that
if uv ∈ E(G), then either σ(v) is an ancestor of σ(u) or σ(i) is an ancestor of σ(v)
in T . The depth of a treedepth decomposition (T, σ) is the length of a longest path from
a leaf to the root of T . Finally the treedepth of a graph G is the depth of a treedepth
decomposition with a minimum depth. Note that any depth-first search forest F of G
gives a treedepth decomposition, however this decomposition might not be optimal.

Fact 3.5. Let G be a graph with treedepth d, then it holds that

tw(G) ≤ pw(G) ≤ d− 1 ≤ (tw(G) + 1) · log(|V (G)|).

Fact 3.6 ([160], page 138). Let d ∈ N and H be the class of graphs of treedepth at most
d. Then H can be characterized by a finite set of forbidden induced subgraphs.

3.3 Rank-width
Rank-width was introduced by Oum and Seymour [168] and is closely related to clique-
width.

Fact 3.7 ([168]). For every graph G it holds that rw(G) ≤ cw(G) ≤ 2rw(G)+1, where
rw(G) is rank-width of G and cw(G) is clique-width of G.

To define rank-width, we first need to introduce the bipartite adjacency matrix AG[U,W ].
For a graph G and U,W ⊆ V (G), let AG[U,W ] denote the U ×W -submatrix of the
adjacency matrix over the two-element field GF(2), i.e., the entry au,w, u ∈ U and w ∈W ,
of AG[U,W ] is 1 if and only if {u,w} is an edge of G. The cut-rank function ρG of a graph
G is defined as follows: For a bipartition (U,W ) of the vertex set V (G), ρG(U) = ρG(W )
equals the rank of AG[U,W ] over GF(2). We note that ρG is a symmetric function, and
observe that a split-module X can be seen as a subgraph such that AG[X,V (G) \X] = 1.

A rank decomposition of a graph G is a pair (T, µ) where T is a tree of maximum
degree 3 and µ : V (G)→ {t : t is a leaf of T} is a bijective function. For an edge e of T ,
the connected components of T − e induce a bipartition (X,Y ) of the set of leaves of T .
The width of an edge e of a rank decomposition (T, µ) is ρG(µ−1(X)). The width of
(T, µ) is the maximum width over all edges of T . The rank-width of G, rw(G) in short, is
the minimum width over all rank decompositions of G. A graph class H is of unbounded
rank-width if for each i ∈ N there exists a graph G ∈ H such that rw(G) > i.
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An example of a rank decomposition is provided in Figure 3.3.

d

c

b

a e

d

e
a

c

b

( 0 0 1 1 )

( 1 0 0 1 )

( 0 0 1
1 0 0 )

( 1 0
0 1
0 0

)
( 1

0
0
1

)
( 0

1
1
0

)
( 1

1
0
0

)

Figure 3.3: A rank decomposition of the cycle C5.

Theorem 3.8 ([118]). Let k ∈ N and n ≥ 2. For an n-vertex graph G, we can output a
rank decomposition of width at most k or confirm that the rank-width of G is larger than
k in time f(k) · n3, where f is a computable function.

More properties of rank-width can be found, for instance, in [168].

It is known that MSO1 formulas can be checked in uniformly polynomial time on graphs
of bounded rank-width.

Fact 3.9 ([93],[50]). Let ϕ and ψ = ψ(X) be fixed MSO1 formulas. There exists a
computable function f and an algorithm such that, given an n-vertex graph G and
S ⊆ V (G), decides whether G |= ϕ and whether there exists a set S such that G |= ψ(S)
in time f(rw(G)) · n3.

3.4 Posets

A partially ordered set (poset) P is a pair (P,≤P ) where P is a set and ≤P is a reflexive,
antisymmetric, and transitive binary relation over P . The size of a poset P = (P,≤P ) is
|P| := |P |. We say that p covers p′ for p, p′ ∈ P , denoted by p′ CP p, if p′ ≤P p, p 6= p′,
and for every p′′ with p′ ≤P p′′ ≤P p it holds that p′′ ∈ {p, p′}. We say that p and p′ are
incomparable (in P), denoted p ‖P p′, if neither p ≤P p′ nor p′ ≤P p.

A chain C of P is a subset of P such that x ≤P y or y ≤P x for every x, y ∈ C. A chain
partition of P is a tuple (C1, . . . , Ck) such that {C1, . . . , Ck} is a partition of P and for
every i with 1 ≤ i ≤ k the poset induced by Wi is a chain of P. An antichain A of P
is a subset of P such that for all x, y ∈ A it is true that x ‖P y. A family C1, . . . , C` of
pairwise disjoint subsets of P forms a total order if for each i, j ∈ [`] and each a ∈ Ci,
b ∈ Cj , it holds that a ≤ b iff i < j. Furthermore, for each i ∈ [1, `− 1] we say that Ci
and Ci+1 are consecutive. The width (or poset-width) of a poset P , denoted by width(P)
is the maximum cardinality of any anti-chain of P. A subset A of P is downward-closed
if for every a ∈ A it holds that b ≤P a =⇒ b ∈ A. For brevity we will often write
≤P for the poset P := (P,≤P ). We call a poset P such that every two elements of P
are comparable a linear order. A linear extension of a poset P = (P,≤P ) is a reflexive,
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antisymmetric, and transitive binary relation � over P such that x � y whenever x ≤P y
and a poset P∗ = (P,�) is a linear order.

Proposition 3.10 ([81]). Let P be a poset. Then in time O(width(P)·‖P‖2), it is possible
to compute both width(P) = w and a corresponding chain partition (C1, . . . , Cw) of P.

We consider the following graph representations of a poset P = (P,≤P). The cover graph
of P , denoted C(P), is the directed graph with vertex set P and edge set {(a, b) | aC b}
(Figure 3.4a). The incomparability graph of P , denoted I(P), is the undirected graph with
vertex set P and edge set {{a, b} | a ‖ b} (Figure 3.4b). The combined graph of P , denoted
IC(P), is the directed graph with vertex set P and edge set {(a, b) | (a C b) ∨ (a ‖ b)}
(Figure 3.4c); observe that IC(P) can be obtained by taking disjoint union of the edge
sets of C(P) and I(P) and then replacing undirected edges by two directed ones. Finally,
the poset graph of P, denoted PG(P), is the directed graph with vertex set P and edge
set {(a, b) | a ≤ b}.

a b

c d e

f

(a) Cover graph

a b

c d e

f

(b) Incomparability graph

a b

c d e

f

(c) Combined graph

Figure 3.4: Graph representations of the poset with elements {a, b, c, d, e, f} and the
transitive closure of the following relations aC c, aC dC f, bC eC f .

We will use the following known fact about tree decompositions and path decompositions
of incomparability graphs.

Fact 3.11 ([114, Theorem 2.1]). Let P be a poset. Then tw(I(P)) = pw(I(P)).

Corollary 3.12 (of Fact 3.1 and 3.11). Let P be a poset and k = tw(I(P)). Then
it is possible to compute a nice path decomposition Q of I(P) of width at most k
in time O(kO(k3)n).
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CHAPTER 4
Counting Linear Extensions

Determining the exact number of linear extensions of a given poset is known to be
#P-complete [34] already for posets of height at least 3. The currently fastest known
method for counting linear extensions of a general n-element poset is by dynamic
programming over the lattice of downsets and runs in time O(2n · n) [152]. Polynomial
time algorithms have been found for various special cases such as series-parallel posets [156]
and posets whose cover graph is a (poly)tree [14]. Fully polynomial time randomized
approximation schemes are known for estimating the number of linear extensions [68, 35].

Due to the inherent difficulty of the problem, it is natural to study whether it can
be solved efficiently by exploiting the structure of the input poset. The first steps in
this general direction have been taken, e.g., in [113], using the decomposition diameter
as a parameter, in [80] using a parameter called activity for N -free posets, and very
recently in [131], where the treewidth of the so-called cover graph was considered as
a parameter. Also the exact dynamic programming algorithm [152] can be shown to
run in time O(nw · w) for a poset with n elements and width w (the size of the largest
anti-chain). Interestingly, none of these efforts has so far led to an FPT algorithm.

We believe that this uncertainty about the exact complexity status of counting linear
extensions with respect to these various parameterizations is at least partly due to the fact
that we deal with a counting problem whose decision version is trivial, i.e., every poset
has at least one linear extension. This fact makes it considerably harder to show that
the problem is fixed-parameter intractable; in particular, the usual approach based on
parsimonious reductions fails. On the other hand, the same predicament makes studying
the complexity of counting linear extensions significantly more interesting, as noted also
by Flum and Grohe [85]:

The theory gets interesting with those counting problems that are harder than
their corresponding decision versions.
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4. Counting Linear Extensions

Results

Before introducing our results, we provide a formal definition of the problem of counting
the number of linear extensions below. We denote the number of linear extensions of P
by e(P).

#LinExt
Instance: A poset P.
Task: Compute e(P).

In this chapter we study the complexity of counting linear extensions when the pa-
rameter is the treewidth. In particular, we settle the fixed-parameter (in)tractability
of the problem when parameterizing by the treewidth of two of the most prominent
graphical representations of posets, the cover graph (also called the Hasse diagram) and
the incomparability graph.

Our main result then provides the first evidence that the problem does not allow for
an FPT algorithm parameterized by the treewidth of the cover graph unless FPT = W[1].
We remark that this complements the XP algorithm of Kangas et al. [131] and resolves
an open problem recently posed in the Dagstuhl seminar on Exact Algorithms [125].
The result is based on an FPT Turing reduction from Equitable Coloring parameter-
ized by treewidth, and combines a counting argument with a fine-tuned construction to
link the number of linear extensions with the existence of an equitable coloring.

We complement this negative result by obtaining an FPT algorithm for the problem when
the parameter is the treewidth of the incomparability graph of the poset. To this end,
we use the so-called combined graph (also called the cover-incomparability graph [33])
of the poset. We employ a special normalization procedure on a decomposition of
the incomparability graph to show that the treewidth of the combined graph must
be bounded by the treewidth of the incomparability graph. Once this is established,
the result follows by giving a formulation of the problem in Monadic Second Order Logic
and applying an extension of Courcelle’s Theorem for counting.

Organization of the Chapter

The chapter is organized as follows. Section 4.1 is then dedicated to proving the fixed-
parameter intractability of the problem when parameterized by the treewidth of the cover
graph, and the subsequent Section 4.2 presents our positive results for the problem.

4.1 Fixed-Parameter Intractability of Counting Linear
Extensions

The goal of this section is to prove Theorem 4.1, stated below.
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Theorem 4.1. #LinExt parameterized by the treewidth of the cover graph of the input
poset does not admit an FPT algorithm unless W[1]=FPT.

The result is based on an FPT Turing reduction from Equitable Coloring parame-
terized by treewidth of input graph plus number of colors, which is fairly well-known
W[1]-hard decision problem.

Fact 4.2 ([78]). Equitable Coloring is W[1]-hard parameterized by tw(G) + r, where
G is the input graph and r is the number of colors.

We denote by #EC(G, r) the number of equitable colorings of graph G with r colors.
The following fact about prime numbers will be useful later in this chapter.

Fact 4.3 ([34]). For any n ≥ 4, the product of primes strictly between n and n2 is at
least n!2n.

Now, we are ready to give a brief overview of the proof, whose general outline follows the
#P-hardness proof of the problem [34]. However, since our parameter is treewidth, we
needed to reduce from a problem that is not fixed-parameter tractable parameterized
by treewidth. Consequently, instead of reducing from SAT, we will use Equitable
Coloring. This made the reduction considerably more complicated and required the
introduction of novel gadgets, which allow us to encode the problem without increasing
the treewidth too much.

The proof is based on solving an instance (G, r) of Equitable Coloring in FPT
time parameterized by tw(G) + r using an oracle that solves #LinExt in FPT time
parameterized by the treewidth of the cover graph (i.e., an FPT Turing reduction).
The first step is the construction of an auxiliary poset P(G, r) of size 2(r − 1)|V (G)|+
(r2 − 1)|E(G)|. Then, for a given sufficiently large (polynomially larger than |V (G)|)
prime number p, we show how to construct a poset P(G, r, p) such that e(P(G, r, p)) ≡
e(P(G, r)) · #EC(G, r) · Ap mod p, where Ap is a constant that depends on p and is
not divisible by p. Therefore, if we choose a prime p that does not divide e(P(G, r)) ·
#EC(G, r), then e(P(G, r, p)) will not be divisible by p. Using Fact 4.3 we show that if
#EC(G, r) 6= 0, then there always exists a prime p within a specified polynomial range
of |V | such that p does not divide e(P(G, r)) ·#EC(G, r).

From the above, it follows that there exists an equitable coloring of G with r colors if
and only if, for at least one prime p within a specified (polynomial) number range, the
number of linear extensions of P(G, r, p) is not divisible by p. Moreover, we show that
all inputs for the oracle will have size polynomial in the size of G and treewidth bounded
by polynomial in tw(G) + r. Before proceeding to a formal proof of Theorem 4.1, we
state two auxiliary lemmas which will be useful for counting linear extensions later in
the proof.
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Lemma 4.4. If a poset P is a disjoint union of posets P1, . . . ,Pk for some positive
integer k, then

e(P) = (
∑k
i=1 |Pi|)!∏k
i=1 |Pi|!

k∏
i=1

e(Pi).

Proof. We use induction on k, and observe that the lemma trivially holds for k = 1.
Let Q denote the disjoint union of posets P1, . . . ,Pk−1. For each combination of linear
extensions of Q and of Pk there are

(|Q|+|Pk|
|Pk|

)
linear extensions of P. Hence,

e(P) = e(Q)e(Pk)
(
|Q|+ |Pk|
|Pk|

)
= (

∑k−1
i=1 |Pi|)!∏k−1
i=1 |Pi|!

( k−1∏
i=1

e(Pi)
)
· e(Pk) ·

(∑k
i=1 |Pi|
|Pk|

)
=

(
∑k−1
i=1 |Pi|)!∏k−1
i=1 |Pi|!

(
∑k
i=1 |Pi|)!

(
∑k−1
i=1 |Pi|)!|Pk|!

k∏
i=1

e(Pi) = (
∑k
i=1 |Pi|)!∏k
i=1 |Pi|!

k∏
i=1

e(Pi).

Lemma 4.5. Let p be a prime number and Q be a connected component of a poset P
such that |Q| = p− 1. If the number of linear extensions of P is not divisible by p, then
the number of elements in each connected component of P other than Q is divisible by p.

Proof. Let P1 be a connected component of P different then Q. First note that from
Lemma 4.4, it is clear that e(P) will be divisible by the number of linear extensions of
the poset P ′ formed as a disjoint union of Q and P1. Now, by Lemma 4.4 it holds that

e(P ′) = (p− 1 + |P1|)!
(p− 1)!|P1|!

e(P1)e(Q).

Since e(P) is not divisible by p, it must follow that e(P ′) is also not divisible by p.
Furthermore, (p − 1)! cannot be divisible by p since p is prime. Hence it follows that
(p−1+|P1|)!
|P1|! cannot be divisible by p. Suppose that |P1| = ap+ b for some non-negative

integers a and b such that b < p; then we obtain that the expression (p−1+ap+b)!
(ap+b)! is not

divisible by p. But
(p− 1 + ap+ b)!

(ap+ b)! =
p−1∏
i=1

(ap+ b+ i),

which is clearly divisible by (a+ 1)p whenever b ≥ 1. Therefore b = 0 and hence |P1| is
divisible by p.

We now proceed to the proof of our main theorem.

Proof of Theorem 4.1. The proof is structured as follows. We begin by giving the con-
struction of P(G, r) and P(G, r, p), after which we establish the desired properties of
P(G, r, p) and P(G, r), and summarize in the conclusion.
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Construction of P(G, r) and the main gadget. Let (G, r) be an instance of Equi-
table Coloring such that |V (G)| is divisible by r (if this is not the case, then this can
be enforced by padding the instance with isolated vertices, see also [78]). We begin by
constructing the poset P(G, r), which will play an important role later on. For every ver-
tex v of V (G) we create 2(r−1) elements denoted vi,j , where 1 ≤ i ≤ r−1 and j ∈ {0, 1},
such that the only dependencies in the poset between these elements are vi,1 ≤ vi,0
for all v ∈ V (G), for all i ∈ {1, . . . , r − 1}. For every edge e = uv ∈ E(G) we create
r2 − 1 pairwise-incomparable elements ei,j , such that (i, j) ∈ ({0, . . . , r − 1}2 \ {(0, 0)}).
The dependencies of ei,j are: if i > 0 then ui,0 ≤ ei,j , and if j > 0 then vj,0 ≤ ei,j (see
also Fig. 4.1).

v1,0

v1,1

v2,0

v2,1

u1,0

u1,1

u2,0

u2,1

e1,0 e2,0 e1,1 e1,2 e2,1 e2,2 e0,1 e0,2

Figure 4.1: The cover graph for an edge e = uv of G in P(G, 3).

Construction of P(G, r, p). Let us now fix a prime number p such that p does not
divide e(P(G, r)) and p > 2r|V (G)| + r2|E(G)|. The main gadget in our reduction is
a so-called (a, b)-flower, which consists of an antichain of a vertices (called the petals)
covering a chain of p− b elements (called the stalk); an illustration is provided in Fig. 4.2.
Due to Lemma 4.5, (a, b)-flowers will later allow us to force a choice of exactly b vertices
out of a.

Let G be a graph, r be an integer and p be a prime number as above. Recall that |V (G)|
is divisible by r and let s = |V (G)|

r (note that this implies that each color in an equitable
coloring of G must occur precisely s times in G). We proceed with a description of
the poset P(G, r, p). The poset P(G, r, p) is split into r + 3 “levels” L1, . . . , Lr+3 by
linearly ordered elements a0 ≤ a1 ≤ · · · ≤ ar+2 ≤ ar+3, called the anchors. Each of these
levels, besides Lr+3, will consist of some flowers and a chain of p − 1 elements which
we call a stick; each of these flowers and the stick will always be pairwise incomparable.
The anchors a0 and ar+3 are the unique minimum and maximum elements, respectively.
The stick and all the stalks of flowers in level Li will always lie between two consecutive
elements ai−1 and ai, and the petals of these flowers will be incomparable with ai as well
as some anchors above that (as defined later). Observe that while the relative position of
any stalk and any anchor is fixed in every linear extension, petals can be placed above ai.
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a

p− b

Figure 4.2: An (a, b)-flower.

We say that a flower (or its stalk, petals, or elements) is associated with the level in
which it is constructed, i.e., with the level Li such that ai−1 ≤ c ≤ ai for stalk elements
c and ai−1 ≤ d and d ‖ ai for petals d. We denote the set of all petals associated with
level Li as Ai (see Fig. 4.3). For the construction, it will be useful to keep in mind the
following intended goal: whenever an (a, b)-flower is placed in level i, it will force the
selection of precisely b petals (from its total of a petals), where selected elements remain
on level i (i.e., between ai−1 and ai) in the linear extension and unselected elements are
moved to level r + 2 (i.e., between ar+2 and ar+3) in the linear extension. We will later
show that the total number of linear extensions which violate this goal must be divisible
by p, and hence such extensions can all be disregarded modulo p.

The first r levels are so-called color class levels, each representing one color class. We use
these levels to make sure that every color class contains exactly s vertices. Aside from the
stick, each such level contains a single (|V (G)|, s)-flower. Recall that the stalk and the
stick on level 1 ≤ i ≤ r both lie between anchors ai−1 and ai, and that the stalk and the
flower are incomparable. We associate each petal of the flower at level Li with a unique
vertex v ∈ V (G) and denote the petal vi. Each petal vi will be incomparable with all
anchors above ai−1 up to ar+3, i.e., vi ‖ aj for i ≤ j ≤ r + 2 and vi ≤ ar+3. Intuitively,
the flower in each color class level will later force a choice of s vertices to be assigned
the given color.

Level Lr+1 is called the vertex level and consists of one stick and |V (G)|-many
(r, 1)-flowers; the purpose of this level is to ensure that every vertex is assigned ex-
actly one color. Each flower is associated with one vertex v ∈ V (G) and we denote the
petals of the flower associated with vertex v as vi for 1 ≤ i ≤ r. We set vi ≤ vi for all
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p− 1

ai−1

ai Ai

Figure 4.3: Each level consists of a chain of length p− 1 and a few flowers. The set of
petals associated with level Li is denoted by Ai.

v ∈ V (G) and 1 ≤ i ≤ r.

Level Lr+2 is called the edge level, and its purpose is to ensure that the endpoints of
every edge have a different color. It consists of a stick and |E(G)|-many (r2, 1)-flowers.
Each flower is associated with one edge e = uv ∈ V (G) and we denote the petals of the
flower associated with e as ei,j for 1 ≤ i ≤ r and 1 ≤ j ≤ r. Moreover, for edge e = uv we
set ui ≤ ei,j , vj ≤ ei,j , and we set ar+2 ≤ ei,j whenever i = j. Observe that this forces
any petal ei,i to lie between ar+2 and ar+3 in every linear extension (i.e., prevents ei,i
from being “selected”).

Level Lr+3 is called the trash level. It does not contain any new elements in the poset,
but it plays an important role in the reduction: we will later show that any petals which
are interpreted as “not selected” must be located between ar+2 and ar+3 in any linear
extension that is not automatically “canceled out” due to counting modulo p.

A high-level overview of the whole constructed poset P(G, r, p) is presented in Fig. 4.4.

Establishing the desired properties of P(G, r, p) and P(G, r). We begin by
formalizing the notion of selection. Let a configuration be a partition φ of petals
of all flowers into r + 3 sets Lφ1 , . . . , L

φ
r+3. Let Φ denote a set of all configura-

tions. We say that a linear extension � of P(G, r, p) respects the configuration φ

if Lφ1 � a1 � Lφ2 � a2 � · · · � ar+2 � Lφr+3 and we denote the set of all linear extensions
of P(G, r, p) that respects φ by Lφ. We say that a configuration φ is consistent if Lφ is
non-empty; this merely means that Lφ1 ≤ a1 ≤ Lφ2 ≤ a2 ≤ · · · ≤ ar+2 ≤ Lφr+3 does not
violate any inequalities in P(G, r, p). Observe that if φ is consistent, then Lφ is exactly
the set of linear extension of the partial order Pφ(G, r, p), where Pφ(G, r, p) is obtained
by enriching P(G, r, p) with the relations Lφ1 ≤ a1 ≤ Lφ2 ≤ a2 ≤ · · · ≤ ar+2 ≤ Lφr+3 and
performing transitive closure (in other words, Pφ(G, r, p) is obtained by enforcing φ onto
P(G, r, p)).

45



4. Counting Linear Extensions

p− 1p− 1

p− 1 p− 1

p− 1 p− s

r
|V (G)|

|V (G)|

r

|E(G)|

r2

u1 v1

ur vr

u1 ur v1 vr

e1,1 e1,r er,1 er,r

ar+3

ar+2

ar+1

ar

ar−1

a1

a0

Figure 4.4: The cover graph of P(G, r, p). The edge e is the edge in G between vertices
u and v.

46



4.1. Fixed-Parameter Intractability of Counting Linear Extensions

Since every linear extension of P(G, r, p) respects exactly one configuration, it is easy to
see that e(P(G, r, p)) =

∑
φ∈Φ |Lφ| =

∑
φ∈Φ e(Pφ(G, r, p)). Intuitively, a configuration φ

contributes to the above sum modulo p if e(Pφ(G, r, p)) is not divisible by p. We shall
prove that the only configurations which contribute to this sum modulo p are those where
from every (a, b)-flower there are exactly b petals in the same level as the stalk, and
the remaining a− b petals are in the trash. Furthermore, in each configuration φ which
contributes to the above sum modulo p, the petals in Lφr+1 represent a proper equitable
coloring of G with r colors, and each such configuration is respected by the same number
of linear extensions.

Let us first remark that for any configuration φ, the anchors a0, a1, . . . , ar+3 are
comparable to all elements of Pφ(G, r, p). Now, let PφLi be the poset induced by
all elements e ∈ Pφ(G, r, p) such that ai−1 ≤ e ≤ ai. It is readily seen that
e(Pφ(G, r, p)) =

∏r+3
i=1 e(P

φ
Li

). We proceed by stating a series of claims about our con-
struction.

Claim 4.6. For each i ∈ {1, . . . , r}, it holds that either e(PφLi) ≡ 0 mod p, or e(PφLi) =
s!
(2p−1

p

)
and Lφi contains exactly s petals of Ai and no other petals.

Proof of the Claim. Assume that e(PφLi) 6≡ 0 mod p and recall that level Li contains
a stick, which is a chain of p − 1 elements that is incomparable with all elements
of PφLi in every configuration φ. By Lemma 4.5 this implies that every connected
component of PφLi has size divisible by p. Clearly, Lφi contains only those stalks that
are associated with the level Li, and it contains all such stalks. It is readily seen from
the construction that any petal in

⋃
j<iAj would necessarily form a component of

size one in PφLi . Hence, PφLi contains only elements associated with level Li, namely
elements of the chain with p−1 vertices and elements of a (|V (G)|, s)-flower. Moreover,
by Lemma 4.5 and the fact that |V (G)|+ p− s < 2p, each such flower has exactly p
elements in level PφLi . Since the p− s elements of the stalk must be in PφLi , the poset
PφLi contains exactly s elements of Ai. Clearly, the number of linear extensions of the
petals of the (|V (G)|, s)-flower in PφLi is s! and hence by Lemma 4.4 e(PφLi) = s!

(2p−1
p

)
.

♦

Claim 4.7. Either e(PφLr+1
) ≡ 0 mod p, or e(PφLr+1

) = (|V (G)|p+p−1)!
(p−1) !(p!)|V (G)| and Lφr+1

contains exactly |V (G)| elements of Ar+1, specifically one petal for each (r, 1)-flower on
level Lr+1.

Proof of the Claim. Assume e(PφLr+1
) 6≡ 0 mod p, and let us first examine elements

that are not associated with level Lr+1. Clearly, no element associated with level Lr+2
can appear in PφLr+1

and the only elements associated with any level i < r+ 1 that can
end up in PφLr+1

are petals. Each of these elements is smaller than exactly one petal at

47



4. Counting Linear Extensions

level Lr+1 and independent of all other elements associated with this level. It is easy
to see that largest possible size of a connected component of PφLr+1

is p− 1 + 2r < 2p.
By Lemma 4.5, every connected component in PφLr+1

(except for the stick) will have
size p, therefore PφLr+1

will contain exactly one element for every antichain associated
with Lr+1 and no other elements. Hence, PφLr+1

consists of |V (G)| chains of length
p and one chain of length p − 1. Then e(PφLr+1

) = (|V (G)|p+p−1)!
(p−1) !(p!)|V (G)| follows

from Lemma 4.4. ♦

Claim 4.8. Either e(PφLr+2
) ≡ 0 mod p, or e(PφLr+2

) = (|E(G)|p+p−1)!
(p−1)!(p!)|E(G)| and L

φ
r+2 contains

exactly |E(G)| elements of Ar+2, specifically one petal for each (r2, 1)-flower on level
Lr+2.

Proof of the Claim. The idea of the proof is similar to the proof of the previous
claim, with one additional obstacle: that several flowers can be connected with
petals from lower levels into one connected component on level Lr+2 through the
petals of flowers on level Lr+1. So, assume e(PφLr+2

) contains a connected component
C which contains at least a single stalk. For each stalk in C, there must be at
least one petal in the same flower (otherwise the stalk cannot be connected to
the rest of C); in other words, the intersection of each flower and C contains at
least p vertices. Let a denote the number of flowers which intersect C, b2 denote
|Ar+2 ∩ C|, b1 denote |Ar+1 ∩ C| and b0 denote

∑r
i=1 |Ar ∩ C|. Then it follows

that |C| = p · a + (b2 − a) + b1 + b0 ≤ p · a + r2|E| + r|V | + r|V |, and recall that
r2|E|+ r|V |+ r|V | < p. Furthermore, if b1 > 0 (and at least one petal from Ar+1 is
required unless C contains only a single flower), we have a ·p < |C| < (a+1) ·p. Hence
any such C cannot have size divisible by p and by Lemma 4.5 we have e(PφLr+2

) ≡ 0
mod p. Otherwise, if no two flowers are connected through a petal of a flower associated
with level Lr+1, then every connected component of PφLr+2

of size p must consist of a
stalk and exactly one petal and the claim follows analogously as the proof of Claim 4.7.
♦

Claim 4.9. If φ is a consistent configuration and for all i ∈ {1, . . . , r + 2} it holds
that e(PφLi) 6≡ 0 mod p, then the petals in Lφr+1 encode a proper equitable color-
ing of V (G) where vertex v receives color i iff the petal vi lies in Lφi and PφLr+3

is
isomorphic with P(G, r).

Proof of the Claim. From Claims 4.6, 4.7 and 4.8 together with the assumption that
e(PφLi) 6≡ 0 mod p, it follows that each of the levels Lφ1 , . . . , Lφr contains exactly s
petals associated with the corresponding level, level Lφr+1 contains exactly one petal
for each vertex of G and level Lφr+2 contains exactly one petal for each edge of G.
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For the first part of this claim, we observe that each pair of petals in Lφ1 , . . . , Lφr are
associated with distinct vertices of G. If this were not the case, then since |V (G)| = rs

there would exist a vertex v such that no element of Lφ1 , . . . , Lφr is associated with v. But
due to the construction at level r+1 there exists some i ∈ 1, . . . , r such that vi ∈ Lφr+1.
Then, since vi ≤ vi and vi can only occur either in level Lφi or Lφr+3 (the latter of
which lies above vi in the linear extension due to the configuration φ), this would lead
to a contradiction. In particular, we conclude that there is a matching between the
petals in level r + 1 (encoding the color for each vertex) and the union of petals in
levels 1, 2, . . . r (encoding the vertices assigned to each color class), and by Claim 4.6
it follows that there are exactly s petals in Lr+1 associated with each color class.
We now argue that the coloring is proper. Observe that by the same argument as
above, if an edge e = uv satisfies ei,j ∈ Lφr+2, then ui ∈ L

φ
r+1 and vj ∈ Lφr+1. From the

construction of P(G, r, p) it follows that if i = j, then ei,j 6∈ Lr+2. Combining these
two facts we get that the coloring encoded in Lφr+1 is indeed proper.

Now let us take a look at level Lφr+3. To prove the claim, we will construct an
isomorphism f from elements of PφLr+3

to elements of P(G, r). For every vertex
v ∈ V (G), precisely one element vi ∈ Lφr+1 and precisely one of the first r levels
contains an element associated with v; to be precise, vi ∈ Lφi and vj ∈ Lφr+3 and hence
also vj ∈ Lφr+3 for all j 6= i. We set f(vj) = vj,0 and f(vj) = vj,1, whenever j 6= i
and j < r. For the last remaining elements, we set f(vr) = vi,0 and f(vr) = vr,1.
Next, for every edge e = uv there is exactly one ea,b ∈ Lφr+2. Moreover, if ea,b ∈ Lφr+2
then ua ∈ Lφr+1 and vb ∈ Lφr+1, and all other petals for this edge e are in Lφr+3. Let
gi(r) = i, gi(i) = 0, and gi(k) = k otherwise. Then we set f(ei,j) = ega(i),gb(j). Observe
that, since ea,b does not lie in Lφr+3, no edge is mapped to the non-existent element
e0,0 in P(G, r). It is straightforward to verify that f is really a bijective mapping
between elements of PφLr+3

and P(G, r). Moreover, f(u) ≤ f(v) in P(G, r) if and only
if u ≤ v in PφLr+3

. Therefore, PφLr+3
is isomorphic with P(G, r). ♦

Claim 4.10. e(P(G, r, p)) 6≡ 0 mod p if and only if e(P(G, r)) ·#EC(G, r) 6≡ 0 mod p.

Proof of the Claim. From previous claims and in particular Claim 4.9, we already
know that e(Pφ(G, r, p)) 6= 0 mod p only if φ corresponds to an equitable coloring
of G with r colors. Moreover, we know that e(Pφ(G, r, p)) =

∏r+3
i=1 e(P

φ
Li

) and if
e(Pφ(G, r, p)) 6≡ 0 mod p, then

r+3∏
i=1

e(PφLi) =
(
s!
(

2p− 1
p

))r (|V (G)|p+ p− 1)!
(p− 1)!(p!)|V (G)|

(|E(G)|p+ p− 1)!
(p− 1)!(p!)|E(G)| e(P(G, r)).

It is readily seen that(
s!
(

2p− 1
p

))r (|V (G)|p+ p− 1)!
(p− 1)!(p!)|V (G)|

(|E(G)|p+ p− 1)!
(p− 1)!(p!)|E(G)|
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is not divisible by p. We will denote this latter expression as cp. Hence, it is easy to
see that if #EC(G, r) denotes actual number of equitable coloring of G with r colors,
then

P(G, r, p) ≡ cpe(P(G, r))#EC(G, r) mod p.

Since cp is not divisible by p, it is clear that P(G, r, p) 6≡ 0 mod p if and only if
P(G, r) ·#EC(G, r) 6≡ 0 mod p. ♦

Claim 4.11. If #EC(G, r) 6= 0, then there is a prime number p greater than 2r|V (G)|+
r2|E(G)| and smaller than (2r|V (G)|+r2|E(G)|)2 such that p does not divide e(P(G, r)) ·
#EC(G, r).

Proof of the Claim. Let us first upper bound e(P(G, r))#EC(G, r). Clearly, P(G, r)
contains m = 2(r − 1)|V (G)| + (r2 − 1)|E(G)| elements, hence e(P(G, r)) ≤ m!.
It can easily be verified that the number of possibilities of dividing |V (G)| = rs

vertices into r color classes with exactly s colors each is (rs)!
(s!)r . By Fact 4.3, the

product of all primes between 2r|V (G)| + r2|E(G)| and (2r|V (G)| + r2|E(G)|)2 is
at least (2r|V (G)| + r2|E(G)|)!22r|V (G)|+r2|E(G)|. However, 2(r − 1)|V (G)| + (r2 −
1)|E(G)|+ |V (G)| ≤ 2r|V (G)|+ r2|E(G)| and hence e(P(G, r))#EC(G, r) ≤ (2(r −
1)|V (G)| + (r2 − 1)|E(G)|)! + |V (G)|!

(s!)r is clearly less than the product of all primes
between 2r|V (G)| + r2|E(G)| and (2r|V (G)| + r2|E(G)|)2. Note that if a natural
number N is divisible by set of primes p1, . . . , p` then N is divisible by product of
these primes and in particular N is bigger than a product of these primes. Therefore,
e(P(G, r))#EC(G, r) cannot be divisible by all primes between 2r|V (G)|+ r2|E(G)|
and (2r|V (G)|+ r2|E(G)|)2. ♦

Claim 4.12. tw(C(P(G, r, p))) ≤ r · (tw(G) + 3) + 6.

Proof of the Claim. To distinguish vertices of G and C(P(G, r, p)) in this proof, we
will refer to the vertices of C(P(G, r, p)) as elements. So, let T = (T, {Xt}t∈V (T )) be
a nice tree decomposition of G of width tw(G). Using T , we show how to construct
a tree decomposition T ′ = (T ′, {X ′t}t∈V (T ′)) of C(P(G, r, p)) with treewidth at most
r · (tw(G) + 3) + 6. The construction can be summarized as follows:

1. All bags of T ′ will contain the anchors a0, . . . , ar+3 as well as the top-most
element of each stalk of the (|V (G)|, s)-flowers in the first r levels; let δ denote
this set of 2r + 4 elements.

2. For every bag t ∈ T , the tree decomposition T ′ will contain a node t′ such that
if v ∈ Xt then {v1, . . . , vr} ∈ X ′t.
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3. Afterwards, every introduce node t ∈ T that introduces a vertex v will be
replaced by a long path Pt which gradually introduces and subsequently forgets
all remaining elements associated with the flower of v at level r+1 (i.e., the stalk)
as well as every petal from the first r levels associated with v.

4. For each edge e, we pick an introduce node t ∈ T which contains both endpoints
of e and extend the path Pt by a new segment which introduces and subsequently
forgets all elements associated with the flower of e at level r + 2.

5. The root node is replaced by a path that takes care of all elements which are not
associated with any vertex or edge in G.

Let us now take a closer look what happens in T ′ when t ∈ T is an intro-
duce node. Let v ∈ V (G) be the vertex introduced at t. Since X ′t con-
tains elements a0, . . . , ar+2, v

1, . . . , vr, and the maximum element of each stalk of
the (|V (G)|, s)-flower in the first r levels, it is easily seen that every petal from the
first r levels associated with v as well as the stalk of the flower associated with v in
level Lr+1 each forms a separate connected component of C(P(G, r, p))\X ′t. Moreover,
for an edge e = uv such that Xt contains both endpoints of e, we have that X ′t also
contains elements u1, . . . , ur and one can see that also the flower associated with e
at level Lr+2 is a connected component of C(P(G, r, p)) \X ′t. It is readily seen that
the singleton, chain, and flower all have pathwidth 1 and hence there is a nice path
decomposition (B1, . . . , B`t) with B1 = B`t = ∅ of the graph containing every petal
element from first r levels associated with v, the stalk of the flower associated with v in
level Lr+1, and the flower associated with e in level Lr+2 for every edge e introduced
at t. We then replace X ′t by a path (Y1, . . . , Y`t) such that Yi = Bi ∪X ′t and for each
i ∈ {1, . . . , `t − 1} the node with bag Yi+1 is the parent of the node with the bag Yi.
It is easy to see now, that when we are forgetting vertex v in node t in T , we can
forget element v1, . . . , vr in T ′, because we already introduced all its adjacent edges
in C(P(G, r, p)) either in the path corresponding to the node of T introducing v or
the one introducing a neighbor of v.
Finally, when we get to the root node of T , we have already forgotten all elements
associated with any specific vertex or edge of G. Therefore, the only elements besides
δ which need to be included in T ′ are the remaining elements in the stalks in the first
r levels and the sticks in every level. However, it is easy to see that at this point they
all form separate chains in C(P(G, r, p)) \ δ. Hence there once again exists a path
decomposition of width at most |δ|+ 2 which gradually introduces and subsequently
forgets all of these elements.
One can readily see that the properties (T1), (T2), and (T3) are satisfied and we are
only left with computing the width of T ′. By construction, every join and forget node
in T will become a node in T ′ whose bag has size at most r · |Xt|+ 2r + 4. On the
other hand, every introduce node in T will become a path in T ′, and the largest bag
on this path has size at most r · |Xt|+ 2r + 6. ♦
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Concluding the proof. Let us summarize the FPT Turing reduction used to prove
Theorem 4.1. Given an instance (G, r) of Equitable Coloring, we loop over all primes
p such that 2r|V (G)|+ r2|E(G)| < p < (2r|V (G)|+ r2|E(G)|)2, and for each such prime
we construct the poset P(G, r, p); from Claim 4.11 it follows that if #EC(G, r) 6= 0, then
at least one such prime will not divide e(P(G, r)) ·#EC(G, r), and by Claim 4.12 each
of the constructed posets P(G, r, p) has bounded treewidth of the cover graph. For each
such poset P(G, r, p), we compute e(P(G, r, p)) by the black-box procedure provided
as part of the reduction. If for any prime p we get e(P(G, r, p)) 6≡ 0 mod p, then we
conclude that (G, r) is a yes-instance, and otherwise we reject (G, r), and this is correct
by Claim 4.10.

Remark. Note that the reduction above does not use the full power of the Turing reduction.
Namely, the calls to the oracle are independent of each other and could be asked at the
same time. Such a Turing reduction is also sometimes called a truth-table reduction.

4.2 Fixed-Parameter Tractability of Counting Linear
Extensions

This section is dedicated to proving our algorithmic result, stated below.

Theorem 4.13. #LinExt is fixed-parameter tractable parameterized by the treewidth
of the incomparability graph of the input poset.

The proof of Theorem 4.13 is divided into two steps. First, we apply a transformation
process to a path decomposition Q of small width (the existence of which is guaranteed by
Corollary 3.12) of I(P) which results in a tree decomposition T of I(P) satisfying certain
special properties. The properties of T are then used to prove that IC(P) has treewidth
bounded by the treewidth of I(P). In the second step, we construct an MSO2 formulation
which enumerates all the linear extensions of P using IC(P), and apply Fact 3.4.

4.2.1 The Treewidth of Combined Graphs

We begin by arguing a useful property of separators in incomparability graphs.

Lemma 4.14. Let S ⊆ V (I(P)). Then for each pair of distinct connected components
C1, C2 in I(P)−S, it holds that for any a1, b1 ∈ C1 and any a2, b2 ∈ C2 we have a1 ≤ a2
iff b1 ≤ b2. Namely, the poset contains a total order of all connected components in
I(P)− S.

Proof. See Figure 4.5 for an illustration of the proof. We begin by proving the following
claim.

Claim 4.15. Let a, b, c be three distinct elements of P such that a ‖ b and both pairs a,
c and b, c are comparable. Then a ≤ c iff b ≤ c.
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S

a
b1

C1 C2

C3

b2

Figure 4.5: Incomparability graph G with a separator S and components C1, C2, and C3
or G− S. The elements b1 and b2 in C2 has to be either both smaller or bigger than a,
otherwise the red edge would not be in the incomparability graph.

Proof of the Claim. Suppose that, w.l.o.g., a ≤ c and c ≤ b. Then by the transitivity
of ≤, we get a ≤ b which contradicts our assumption that a ‖ b. ♦

Now to prove Lemma 4.14, assume for a contradiction that, w.l.o.g., there exist a1, b1 ∈ C1
and a2, b2 ∈ C2 such that a1 ≤ b1 and b2 ≤ a2. Let Q1 be an a1-a2 path in I[C1]. By
Claim 4.15, a1 ≤ b1 implies that every element q on Q1 satisfies q ≤ b1, and in particular
a2 ≤ b1. Next, let Q2 be a b1-b2 path in I[C2]. Then Claim 4.15 also implies that each
element q′ on Q2 satisfies a2 ≤ q′. Since b2 lies on Q2, this would imply that a2 ≤ b2,
a contradiction.

To proceed further, we will need some additional notation (see Figure 4.6). Let T = (T,X )
be a rooted tree decomposition and t ∈ T . We denote by L(t) the set of all vertices which
occur in the “branch” of T − t containing the root r; formally, L(t) = {v ∈ Xt′ \Xt | t′ lies
in the same connected component as r in T − t}. We then set R(t) = V (G) \ (L(t)∪Xt).
We also let T rt denote the connected component of T − t which contains the root r.

Next, recall that each connected component of the graph obtained after deleting Xt must
lie in a subtree of T − t (Fact 3.2). A block of a bag Xt in a rooted tree decomposition
T = (T,X ) is a sequence of consecutive connected components in (I(P) − Xt) ∩ R(t)
(see Figure 4.7 for an illustration). We say that a node t ∈ T has z blocks if there exist
z distinct blocks of Xt. Blocks will play an important role in the tree decomposition
we wish to obtain from our initial path decomposition of I(P). The following lemma
captures the operation we will use to alter our path decomposition.
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t

r

R(t)L(t)

Figure 4.6: A tree decomposition of the incomparability graph with root r. For the bag t
the set L(t) are the vertices that appear in some of the blue bags but not in t. Similarly,
R(t) is the set of vertices that appear in the red bags but not in t. The green vertices
are the vertices in L(t) with an cover edge to R(t). After Lemma 4.17, we call them
cover-guard of t. The main point of the whole section is to show that we can obtain a
special type of tree decomposition of the incomparability graph, which has only small
number of cover-guards for every t that can be added to t to abtain a tree decomposition
of the combined graph of a small width.

Xt

a block in R(t)

Figure 4.7: A bag Xt in a tree decomposition of the incomparability graph. The blue
‘blobs’ represent the components of G−Xt with vertices in L(t) and the red ones with
the vertices in R(t). The maximal consecutive sets of red components are blocks. Note
that there are no cover edges between different blocks.
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Lemma 4.16. Let T = (T,X ) be a rooted tree decomposition of a graph G and let
t ∈ T be such that there are z blocks of Xt. Then there is a tree decomposition T ′(T ′,X ′)
satisfying:

1. The width of T ′ is at most the width of T .

2. The tree T ′ contains T rt as a subtree which is separated from the rest of T ′ by t.

3. The degree of t in T ′ is z + 1.

4. There exists a bijection α between the z blocks of Xt and the z trees in T ′ − t other
than T rt such that for each block B of Xt, we have

⋃
s∈α(B)X

′
s \Xt = B.

5. For each t′ ∈ N [t] \ T rt , we have Xt′ = Xt.

Proof. It will be useful to observe that T − T rt is a subtree of T and in particular it
is connected. Consider the following construction of T ′. First, we copy all nodes of
T rt ∪ {t} (along with their bags) into T ′, thus ensuring that Property 2 holds. Second,
for each block B of Xt we make a copy TB of the tree T − T rt , and connect the node tB
corresponding to t in T \ T rt by an edge to the node t in T ′. Moreover, for each node
s ∈ T \ T rt we set X ′

sB
= Xs ∩ (B ∪ Xt). It is easy to verify that all of the required

properties are now satisfied, and it remains to show that T ′ is indeed a tree decomposition.

We argue that T ′ satisfies all three properties of tree decompositions. Property (T1)
follows directly from fact that T was tree decomposition, and hence every vertex that
does not occur in a bag in T rt must occur in some bag Xs for some node s ∈ T \ T rt ;
then this vertex either also occurs in Xt or occurs in some block B and hence in X ′

sB
.

Property (T2) is also straightforward, since each vertex either does not occur in any block
or in exactly one block, and in both cases monotonicity follows from the monotonicity
of T and the construction. For the final Property (T3), we recall that there are no
edges between the blocks of Xt; in particular every edge e = ab in I(P)[Xt ∪ R(t)] is
either contained in Xt, goes between a vertex of Xt and a vertex of some block B, or
is contained in some block B. In all three cases, it holds that if a, b ∈ Xs for some
s ∈ T \ T rt , then e ∈ XsB for some block B. Therefore, T ′ is a tree decomposition.

We proceed by showing how we can apply Lemma 4.16 to transform a given path
decomposition.

Lemma 4.17. Let Q be a nice path decomposition of I(P). Then there is a rooted tree
decomposition T = (T,X ) of I(P) with the following properties. T is rooted at a leaf r
and Xr = ∅, the width of T is at most the width of Q, and for any node t ∈ T with z > 1
blocks:

1. The degree of t in T is z + 1.

55



4. Counting Linear Extensions

2. There exists a bijection α between the z blocks of Xt and the z trees in T ′ − t other
than T rt such that for each block B of Xt, we have

⋃
s∈α(B)Xs \Xt = B.

3. For t′ ∈ N(t)∩T rt there exists a vertex v such that Xt′ = Xt \ {v}, and furthermore
t′ has degree 2 and 1 block.

4. For each pair of neighbors t, t′ ∈ T , it holds that |Xt \Xt′ |+ |Xt′ \Xt| ≤ 1.

Proof. Let us order the vertices of I(P) in the order in which they were introduced in Q.
We set the first leaf of Q to be a root, and observe that Xr = ∅ since Q is nice. We then
process the vertices of I(P) in their order of introduction; when processing each such
vertex v, we apply Lemma 4.16 to the unique node t of the current tree decomposition
which is closest to r and contains v; with a slight abuse of terminology, we say that t is
the node where v is introduced. We show that the following invariants hold after (and
before) each step of this procedure:

1. For each pair of neighbors t, t′ ∈ T , it holds that |Xt \Xt′ |+ |Xt′ \Xt| ≤ 1.

2. For each vertex u that was already processed, the introduce node of u satisfies the
conditions of the lemma.

3. Any node t of degree greater than 2 is an introduce node of an already processed
vertex.

Clearly, all invariant conditions holds for Q rooted at r. For the induction step, suppose
that the conditions hold in a tree decomposition T obtained by inductively applying
Lemma 4.16 and the first unprocessed vertex is v. Let t be the unique node where v is
introduced, and let T ′ be the tree decomposition we obtained by applying Lemma 4.16
on T and t.

It is easy to verify that T ′ then satisfies the desired Conditions 1, 2, and 4 at the node
t by Lemma 4.16. As for Condition 3, since t is the introduce node of v and the first
invariant condition holds in T , it is clear that for t′ ∈ N(t) ∩ T rt it is the case that
Xt′ = Xt \ {v}. Moreover, t′ cannot be an introduce node, since then t′ would have to
introduce an already processed vertex, which would imply that Xt′ = Xt. So, let us
consider the node s on the unique t′-r path that is the closest introduce node to t′, and
let s′ be the neighbor of s on the s-t′ path. Since no vertex was introduced on the s′-t′
path, it follows that R(s′) = R(t′). Since s′ only has 1 block by the construction, it must
be the case that t′ also only has one block, and so Condition 3 also holds.

We proceed by arguing that the invariant conditions remain satisfied by T ′. Since Q
was nice and T satisfied the first invariant condition, it is readily seen that the first
invariant condition holds for all pairs of neighbors in T rt as well as for t with all of its
neighbors. If sB and s′B are neighbors in a tree α(B) of T ′−t, then by the construction in
Lemma 4.16 there exists a pair of neighbors s, s′ ∈ T \T rt such that X ′

sB
= Xs ∩ (B ∪Xt)

and X ′
s′B = Xs′ ∩ (B ∪Xt). But then |X ′sB \X

′
s′B |+ |X

′
s′B \X

′
sB
| = |(Xs ∩ (B ∪Xt)) \
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(Xs′ ∩ (B ∪ Xt))| + |(Xs′ ∩ (B ∪ Xt)) \ (Xs ∩ (B ∪ Xt))| ≤ |Xs \ Xs′ | + |Xs′ \ Xs| ≤ 1
and the first invariant condition follows. As for the second invariant condition, notice
that from the construction it follows that all the vertices that precede v in the order of
introduction in Q must have been introduced in some node of T rt , and the application
of Lemma 4.16 does not alter such introduce nodes for previously processed vertices.
Finally, by the induction hypothesis all nodes of T \ T rt have degree at most 2, therefore
from the construction in Lemma 4.16 it is clear that all nodes in T ′ \ (T rt {t}) also have
degree 2. Since all introduce nodes of unprocessed vertices lie in T ′ \ (T rt {t}), we conclude
that the third invariant condition also holds in T ′.

Now, let us consider the tree decomposition T obtained after processing all vertices of
I(P) according to the procedure described above. T satisfies Condition 4 due to the
first invariant of our procedure, and for all other conditions it suffices to consider nodes
with more than 1 block. In particular, it suffices to verify that all such nodes satisfy the
conditions of Lemma 4.16 and additionally also condition 3 of this Lemma. So, suppose
for a contradiction that there exists a node t which does not meet these conditions, but
all nodes on the unique t-r path do. Then there are two possibilities to consider for the
unique neighbor t′ of t on the t-r path. If t′ were to have more than 1 block, then by our
assumptions t′ would have to satisfy the conditions of Lemma 4.16, contradicting the fact
that t has more than 1 block. On the other hand, if t′ were to have only a single block,
then by construction t must be an introduce node of some vertex v and by our invariants
and the construction it follows that t in fact must satisfy all the required conditions. In
particular we conclude that all nodes t satisfy Conditions 1-4.

We call a tree decomposition rooted at a leaf with Xr = ∅ which satisfies the properties of
Lemma 4.17 a blocked tree decomposition. The next ingredient we will need for proving
that IC(P) has small treewidth is the notion of cover-guards (these are the green vertices
in Figure 4.6).

Let T = (T,X ) be a tree decomposition of I(P) rooted at r and let t 6= r. Then the
cover-guard of t, denoted At, is the set of vertices in L(t) which are incident to a cover
edge whose other endpoint lies in R(t); formally,

At = {v ∈ L(t) | ∃u ∈ R(t) : (uv ∈ E(C(P)) ∨ vu ∈ E(C(P)))}.

For a vertex v ∈ I(P), we let Av = {t ∈ T | v ∈ At} and Xv = {t ∈ T | v ∈ Xt}.

Our next aim is to add all the cover-guards into each bag. The following lemma will
allow us to argue that the result is still a tree decomposition; it is worth noting that the
assumption that the decomposition is blocked is essential for the lemma to hold.

Lemma 4.18. Let T = (T,X ) be a blocked tree decomposition of I(P) rooted at r and
let v ∈ I(P). Then T [Av ∪Xv] is a tree.

Proof. Since T is a tree decomposition, we have that T [Xv] must be a tree. Consider a
connected component A of T [Av] and its unique A-Xv path Q, with endpoints x ∈ Xv
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and a ∈ A. Since r is located at a leaf of T it must hold that r 6∈ Q. We consider two
cases: either r lies in the same connected component as Xv in T − Q, or it lies in a
different connected component.

In the former case, it follows that each internal vertex q of Q satisfies R(q) ⊆ R(a) and
v ∈ L(q). But then by the definition of Av and the fact that a ∈ Av, this would imply
q ∈ Av, contradicting our construction of Q. Hence if r lies in the same connected
component as Xv in T −Q, then A is adjacent to Xv.

In the latter case, there must exist a node q ∈ Q of degree at least 3 such that each of A,
Xv and r occur in different components of T − q. By the definition of Av, there exists a
vertex u ∈ R(a) such that v CP u or uCP v. Since u, v ∈ R(q) due to the location of the
root and there is a cover edge between them, it follows that either u, v occur in the same
connected component of Xq or in two consecutive ones, but in either case u, v must lie
in the same block of q, say block B. But since u, v 6∈ Xq, this contradicts Property 2
in Lemma 4.17; indeed, each tree in T − q contains at most one of v, u in its bags, and
hence there exists no tree T ′ in T − q satisfying

⋃
t′∈T ′ Xt′ \Xq = B. Hence r cannot

occur in a different connected component than Xv in T −Q.

We conclude that Q contains no internal vertices. In particular, every connected compo-
nent of T [Av] is adjacent to Xv.

Lemma 4.19. Let T = (T,X ) be a blocked tree decomposition of I(P) of width k. Then
for each t ∈ T it holds that |At| ≤ 2k + 2.

Proof. First, observe that if a node t ∈ T has 0 blocks, then R(t) = At = ∅. So, consider
a node t which has exactly 1 block consisting of connected components (D1, . . . , Dj) in
(I(P)−Xt) ∩R(t).

Claim 4.20. |At| ≤ 2k + 2.

Proof of the Claim. For an illustration of the proof see Figure 4.8. Assume for
a contradiction that |At| > 2k + 2. By Lemma 4.14 we have that (D1, . . . , Dj)
are consecutive connected components in a total order of connected components in
I(P) − Xt. Hence any edge in C(P) − Xt between R(t) and L(t) must necessarily
have one endpoint in D1 ∪Dj . Furthermore, an element in At cannot be adjacent to
both D1 and Dj in C(P)−Xt due to transitivity and acyclicity. So, we may partition
At into A1

t = {v ∈ At | ∃u ∈ D1 : v CP u} and A2
t = {v ∈ At | ∃u ∈ Dj : uCP v}.

By Lemma 4.14, it also follows that A1
t and A2

t must each lie in separate connected
components of I(P)−Xt, say C1 and C2, respectively. Furthermore, each element in
A1
t is maximal in C1 and each element in A2

t is minimal in C2. In particular, each of
A1
t , A2

t forms a clique in I(P). But by our assumption on the size of At, at least one of
A2
t and A1

t must have size greater than k+1, which implies that I(P) contains a clique
of size at least k + 2. It is well-known that each clique must be completely contained
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Xt

C1 C2

Figure 4.8: The case when there is only one block of the bag Xt. The cover guards can
be only in C1 and C2. Furthermore, in each of the two components they cannot be
comparable, hence they form a clique in both C1 and C2.

in at least one bag of a tree decomposition, and so we arrive at a contradiction with
tw(I(P)) ≤ k. Hence we conclude that |At| ≤ 2k + 2 and the claim holds. ♦

Finally, consider a node t which has at least 2 blocks. By Property 3 of Lemma 4.17,
it holds that t has a neighbor t′ in T rt such that Xt′ = Xt \ {v} and t′ has 1 block.
By Claim 4.20 we know that At′ ≤ 2k+ 2. Since L(t) = L(t′) and R(t) ⊆ R(t′), it follows
that At ⊆ At′ , and in particular |At| ≤ |At′ |. We have now proved the desired bound for
all nodes in T .

With Lemma 4.18 and Lemma 4.19, we have the tools necessary for arguing that there
exists a tree decomposition of the combined graph of small width.

Lemma 4.21. Let T = (T,X ) be a blocked tree decomposition of I(P) such that
tw(T ) ≤ k. Then there exists a tree decomposition T ′ of IC(P) of width at most 3k + 2.

Proof. Consider the tree decomposition T ′ = (T,X ′) where X ′ = {X ′t | t ∈ T} is defined
as follows. For each t ∈ T such that its unique neighbor s in T rt satisfies |Xt \Xs| = 1,
we set X ′t = Xt ∪As; it will be useful to observe that As ⊇ At. For all other nodes t ∈ T ,
we then set X ′t = Xt ∪At. We call nodes of the first type non-standard and nodes of the
second type standard.
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First, we note that the size of each bag in T ′ is at most 3k + 2, since every node t ∈ T
satisfies |At| ≤ 2k + 2 by Lemma 4.19. Furthermore, T ′ satisfies condition (T1) because
T was a tree decomposition of I(P). T ′ also satisfies condition (T2); indeed, for each
v ∈ P it holds that X ′v restricted to standard nodes is a connected tree by Lemma 4.18,
and by construction every non-standard node t such that v ∈ X ′t \Xt is adjacent to a
standard node containing v. So, it only remains to argue condition (T3).

Obviously, condition (T3) holds for any edge of I(P). So, consider two elements u, v of
P such that u CP v or v CP u. If there exists a node t ∈ T such that u, v ∈ Xt, then
u, v ∈ X ′t and the condition also holds for this edge in IC(P). So, assume that Xv and
Xu are disjoint and let Q be the unique Xv-Xu path in T . By Property 4, the Xv-Xu

path Q in T must contain at least one internal node.

Consider the case where one of these subtrees, say w.l.o.g. Xv, lies in the connected
component T rt of T −Q. Then for each internal node q ∈ Q, it holds that v ∈ L(q) and
u ∈ R(q), which in turn implies that v ∈ Aq. Let qu be the endpoint of Q in Xu and let
q0 be the neighbor of qu in Q. By Property 4 we have Xqu \Xq0 = {u}, which implies
that qu is a non-standard node and in particular Aq0 ⊆ X ′qu . Since q0 is an internal node
of Q, it follows that v ∈ X ′qu which means that condition (T3) also holds for any edge uv
in this case.

Finally, consider the case where there exists a node q ∈ Q of degree at least 3 such
that each of Xu, Xv and r occur in different components of T − q. Then we reach a
contradiction similarly as in the proof of Lemma 4.18. In particular, since u, v ∈ R(q)
due to the location of the root and there is a cover edge between them, it follows that
either u, v occur in the same connected component of Xq or in two consecutive ones, but
in either case u, v must lie in the same block of q, say block B. But since u, v 6∈ Xq, this
contradicts Property 2 in Lemma 4.17; indeed, each tree in T − q contains at most one of
v, u in its bags, and hence there exists no tree T ′ in T − q satisfying

⋃
t′∈T ′ Xt′ \Xq = B.

Hence this case in fact violates our assumptions and cannot occur.

Summarizing the above arguments, we conclude that each bag in T ′ has size at most
3k + 2 and that T ′ satisfies all of the conditions of a tree decomposition.

Corollary 4.22. Let P be a poset such that tw(I(P)) ≤ k. Then tw(IC(P)) ≤ 3k + 2.

Proof. By Corollary 3.12 we know that there exists a nice path decomposition of I(P) of
width at most k. By Lemma 4.17, it follows that there exists a blocked tree decomposition
of I(P) of width at most k. The corollary then follows by Lemma 4.21.

4.2.2 MSO Formulation

In this subsection, we use Fact 3.4 to prove the following result, which forms the second
ingredient required for our proof of Theorem 4.13.

Lemma 4.23. #LinExt is fixed-parameter tractable parameterized by the treewidth of
the combined graph of the input poset.
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Proof. Let P := (P,≤P ) be a poset. Let G be an (edge-)labeled directed graph obtained
from IC(P) by directing every bidirectional edge of IC(P), i.e., every edge of I(P), in an
arbitrary way and labeling it with the label ‖.

For a set of edges E ⊆ E(G) with label ‖, let G[E] be the graph obtained from G after
reversing every edge in E. Moreover, for a linear extension � of P let EG(�) be the set
of edges (u, v) of G such that v � u. Note that because every linear extension of P has
to respect the direction of the edges in G given by C, it holds that every edge in EG(�)
has label ‖.

Claim 4.24. EG(�) defines a bijection between the set of linear extensions of P and the
set of subsets E of edges of G with label ‖ such that G[E] is acyclic.

Proof of the Claim. Let � be a linear extension of P. Then, as observed above,
EG(�) is a set of edges of G with label ‖. Moreover, because G[EG(�)] is a subgraph
of PG(�) and PG(�) is acyclic so is G[EG(�)]. Hence, EG(�) is a function from the
set of linear extensions of P to the set of subsets E of edges of G with label ‖ such that
G[E] is acyclic. Towards showing that EG(�) is injective, assume for a contradiction
that this is not the case, i.e., there are two distinct linear extensions �1 and �2 of P
such that EG(�1) = EG(�2) and let u and v be two elements of P ordered differently
by �1 and �2. Then {u, v} ∈ I(P) and hence either (u, v) ∈ E(G) or (v, u) ∈ E(G).
The label of (u, v) or (v, u), respectively, is ‖. W.l.o.g., assume that (u, v) ∈ G with
label ‖. But then, because �1 and �2 differ on u and v, either (u, v) ∈ EG(�1) but
not (u, v) ∈ EG(�2) or (u, v) ∈ EG(�2) but not (u, v) ∈ EG(�1). In both cases we
get a contradiction to our assumption that EG(�1) = EG(�2).

It remains to show that EG(�) is surjective. To see this let E be a subsets of the
edges of G with label ‖ such that G[E] is acyclic. Because G[E] is acyclic it has a
topological ordering, say �, of its vertices. Because G[E] contains C(P) as a subgraph
and any topological ordering of C(P) is a linear extension of P , we obtain that � is a
linear extension and also E = EG(�). ♦

It follows from the above that instead of counting the number of linear extensions of P
directly, we can count the number of subsets E of the edges of G with label ‖ such that
G[E] is acyclic. We will show next that there is an MSO2 formula Φ(X), whose length
is independent of G and can hence be considered constant, such that G |= Φ(X) if and
only if X is a subset of the edges of G with label ‖ such that G[E] is acyclic. Because of
Fact 3.4, this implies that #LinExt is fixed-parameter tractable when parameterized
by tw(G) and hence also when parameterized by tw(IC(P)), concluding the proof of the
lemma.

Informally, Φ(X) will check that X is a set of edges of G with label ‖ and there is no
non-empty set of edges C of G[X] that forms a cycle. For the definition of Φ(X) we will
need the following auxiliary formulas.
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• The formula edgesin(X) := ∀xXx→ P‖x, which holds if and only if X is a set of
edges of G with label ‖.

• The formula edgesne(C) := ∃cCc ∧ ∀cCc→ Ec, which holds if and only if C is a
non-empty set of edges of G.

• The formula cyclic(C,X) := ∀vV v → degree(C,X, v), which holds if and only if
the set C of edges of G[X] contains a cycle.

• The formula degree(C,X, v) := degree0(C,X, v) ∨ degree2(C,X, v), which holds if
and only if either no edge in C is adjacent to v or there are exactly two edges in C
that are incident to v such that one of them corresponds to an edge in G[E] with
tail v and the other corresponds to an edge in G[E] with head v.

• The formula degree0(C,X, v) := ¬∃cCc→ Ivc, which holds if and only if no edge
in C is adjacent to v.

• The formula

degree2(C,X, v) :=∃ci∃coCci ∧ Cco ∧ in(X, ci, v) ∧ out(X, co, v)∧
∀c(Cc ∧ ¬c = ci ∧ ¬c = co)→ ¬(Hvc ∨ Tvc)

which holds if and only if there are exactly two edges in C that are incident to v
such that one of them corresponds to an edge in G[E] with tail v and the other
corresponds to an edge in G[E] with head v.

• The formula

in(X, c, v) := (¬P‖c ∧Hvc) ∨ (P‖c ∧ ¬Xc ∧Hvc) ∨ (P‖c ∧Xc ∧ Tvc)

which holds if and only if v is the head of the edge of G[X] represented by c.

• The formula

out(X, c, v) := (¬P‖c ∧ Tvc) ∨ (P‖c ∧ ¬Xc ∧ Tvc) ∨ (P‖c ∧Xc ∧Hvc)

which holds if and only if v is the tail of the edge of G[X] represented by c.

Then Φ(X) is the formula:

Φ(X) := edgesin(X) ∧ ¬ (∃Cedgesne(C) ∧ cyclic(C,X)) .

Proof of Theorem 4.13. Let P be the input poset and let k = tw(I(P)). Then
tw(IC(P)) ≤ 3k + 2 by Corollary 4.22, and the theorem follows by Lemma 4.23.
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4.3 Summary and Open Questions
We have given the first parameterized intractability result for counting linear extensions.
We hope that the employed techniques will inspire similar results and expand our
knowledge about the parameterized complexity of counting problems. In particular,
even for #LinExt there remain many open questions concerning other very natural
parameterizations such as the width of the poset or the treewidth of the poset graph.
Moreover, our intractability result for the treewidth of the cover graph poses the question
whether there are stronger parameterizations under which #LinExt becomes tractable,
e.g., the treewidth of the poset graph, the treedepth or even vertex cover number of the
poset- or cover graph, as well as combinations of these parameters with parameters such as
the width, the dimension, or the height of the poset. These numerous examples illustrate
that the parameterized complexity of #LinExt is still largely unexplored. As a side
note it would also be interesting to establish whether our hardness result for #LinExt
can be sharpened to #W[1]-hardness [85] and to obtain matching membership results.

Notes
The results in this chapter appeared in a conference paper in the proceedings of The
24th Annual European Symposium on Algorithms (ESA 2016) [70].
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CHAPTER 5
Decomposition Parameters for

QBF: Mind the Prefix!

After showing that QBF remains PSpace-complete even on instances of bounded
treewidth [15], Atserias and Oliva introduced a width parameter based on treewidth called
respectful treewidth which takes into account dependencies between the variables in a QBF
formula. They showed that QBF is fixed-parameter tractable parameterized by respectful
treewidth provided that a corresponding tree decomposition is given as part of the input.
Similar results using almost the same parameter have been obtained for first-order model
checking [4] and quantified constraint satisfaction [41]. Other structural parameters such
as backdoors have also been studied in the context of QBF [183]. Unfortunately, there
still remained fairly simple QBF instances which could not be efficiently solved by any of
these approaches (for instance, QBF instances whose graph representation is a star).

Here we develop prefix pathwidth, which is a novel decomposition-based parameter that
allows an FPT algorithm for QBF. Prefix pathwidth is an extension of pathwidth which
takes into account not only the structure of clauses in the formula, but also the structure
contained in the quantification of variables. To achieve the latter, we make use of the
dependency schemes introduced by Samer and Szeider [183, 186], see also the work of
Biere and Lonsing [151]. Dependency schemes capture how the assignment of individual
variables in a QBF depends on other variables, and research in this direction has uncovered
a large number of distinct dependency schemes. The most basic dependency scheme is
called the trivial dependency scheme [183], which stipulates that each variable depends
on all variables with distinct quantification, which come before it in the prefix. Prefix
pathwidth uses a completely different approach than previous notions to solve QBF
instances, and can in fact be used to efficiently evaluate quantified formulas that remained
beyond the reach of state-of-the-art techniques.
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Results

We start by introducing our new parameter Section 5.2, where we also show that respectful
treewidth is incomparable to prefix pathwidth. Informally, there are two main differences
between respectful treewidth and prefix pathwidth: (1) whereas respectful treewidth
requires the ordering in which the variables are introduced to be compatible with the
dependencies, prefix pathwidth needs the ordering in which the variables are forgotten
to be compatible with the dependencies and (2) respectful treewidth is solely defined
for the trivial dependency scheme, while prefix pathwidth allows the use of arbitrary
permutation dependency schemes.

Afterwards, we focus on developing FPT algorithms for our new measure. When using the
trivial dependency scheme, we obtain (by combining Theorem 5.2 with Theorem 5.37):

Theorem 5.1. QBF is FPT parameterized by the prefix pathwidth with respect to the
trivial dependency scheme.

However, prefix pathwidth can be used in conjunction with any permutation dependency
scheme [187], which holds for almost all known dependency schemes; this is reflected in all
of our technical results, where we do not fix any particular dependency scheme. In practice,
using different dependency schemes may lead to better prefix path decompositions, in
turn resulting in significantly faster algorithms.

In their full generality, our main results on solving QBF using prefix pathwidth can be
separated into two steps:

1. using a prefix path decomposition of small prefix pathwidth to solve the given QBF
I, and

2. finding a suitable prefix path decomposition to be used for step 1.

We resolve the first task by applying advanced dynamic programming techniques on
partial existential strategies for the Hintikka game (see e.g. the work of Grädel et
al. ([108])) played on the QBF. Essentially, the game approach allows us to translate
the question of whether a QBF is true to the question of whether there exists a winning
strategy for one player in the Hintikka game. We show that although the number of such
strategies is unbounded, at each point in the prefix path decomposition there is only a
small number of partial strategies on the processed vertices that need to be considered.
Thus we obtain:

Theorem 5.2. QBF is FPT parameterized by the width of a prefix path decomposition
w.r.t. any permutation dependency scheme, when such a decomposition is provided as
part of the input.

Resolving step 2 boils down to a graph-algorithmic problem which is related to the
problem of computing various established parameters of directed graphs, such as directed
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pathwidth or directed treewidth. It is an important open problem whether computing
these parameters is FPT or not [191] and the same obstacles seem to also be present
for computing our parameter in the general sense. To bypass this barrier, we develop
new algorithmic techniques to obtain three distinct algorithms for computing prefix
path decompositions. The first of these algorithms, presented in Theorem 5.37, works
for the trivial dependency poset as well as other posets which have a similar “layered”
structure. The latter two of our algorithms then focus on general posets, but their
performance depends on the poset-width (i.e., the size of a maximum anti-chain) of the
dependency relation; on a high level, the poset-width captures the density of dependencies
between variables. In particular, we obtain one polynomial-time approximation algorithm
(Theorem 5.35) and one FPT algorithm (Theorem 5.34). In combination with the
previous Theorem 5.2, Theorem 5.35 yields one of our main contribution, formalized in
Theorem 5.3 below. Observe that here we do not require a decomposition to be part of
the input.

Theorem 5.3. Let τ be a fixed permutation dependency scheme. There exists an
FPT algorithm which takes as input a QBF I and decides whether I is true in time
f(k,w) · |I|O(1), where f is a computable function, k is the prefix pathwidth and w is the
poset-width of I w.r.t. τ .

Organization of the Chapter

The chapter is organized as follows. We start by formally introducing the QBFs together
with dependency schemes and respectful treewidth in Section 5.1. Afterwards in Sec-
tion 5.2, we formally define our novel parameter — prefix pathwidth — and compare it
to respectful treewidth. In Section 5.3, we develop the machinery for efficiently solving
QBFs, when a prefix pathwidth decomposition of small with is provided. Finally, in
Section 5.4 we develop efficient algorithms for finding suitable prefix pathwidth decom-
positions for trivial dependency poset as well as in case when the width of dependency
poset is bounded.

5.1 Quantified Boolean Formulas
A quantified Boolean formula is a tuple (φ, τ) where φ is a CNF formula and τ is a
sequence of quantified variables, denoted var(τ), which satisfies var(τ) ⊇ var(φ); then φ
is called the matrix and τ is called the prefix. A QBF (φ, τ) is true if the formula τφ is
true. An assignment is a mapping from (a subset of) the variables to {0, 1}.

Given a QBF I = (φ, τ) and a partial assignment ω : Q→ {0, 1} where Q ⊆ var(φ), we
denote by Iω the subinstance obtained by applying the partial assignment ω; similarly,
for a clause c ∈ φ we let cω denote the clause obtained from c by applying ω.

The primal graph of a QBF I = (φ, τ) is the graph GI defined as follows. The vertex set
of GI consists of every variable which occurs in φ, and st is an edge in GI iff there exists
a clause in φ containing both s and t.
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5.1.1 Dependency Schemes and Posets for QBF

We use dependency posets to provide a general and formal way of speaking about the
various dependency schemes introduced for QBF [183].

We begin by formally defining dependency schemes. For a binary relation R over some
set V we write R̄ to denote its inverse , i.e., R̄ = {(y, x) : (x, y) ∈ R}, and we write
R∗ to denote the reflexive and transitive closure of R i.e., the smallest set R∗ such
that R∗ = R ∪ {(x, x) : x ∈ V } ∪ {(x, y) : ∃z such that (x, z) ∈ R∗ and (z, y) ∈ R}.
Moreover, we let R(x) = {y : (x, y) ∈ R} for x ∈ V and R(X) =

⋃
x∈X R(x) for X ⊆ V .

Given a QBF I = (φ, τ) we will also need the following binary relation over var(τ):
RI = { (x, y) | x, y ∈ var(τ), x is before y in the prefix }.

To define dependency schemes we need also the notion of shifting, which takes some
subset of variables of QBF I in prefix and puts them together with their quantification,
in the same relative order, to the end (down-shifting) or to the beginning (up-shifting) of
the prefix.

Definition 5.4 (Shifting [183]). Let I = (φ, τ) be a QBF and A ⊆ var(τ). We say that
I ′ = (φ, τ ′) is obtained from I by down-shifting (up-shifting) A, in symbols I ′ = S↓(I, A)
(I ′ = S↑(I, A)), if I ′ is obtained from I by reordering quantifiers in the prefix such that
the following holds:

1. A = RI′(x) (A = RI′(x)) for some x ∈ var(τ) and

2. (x, y) ∈ RI′ iff (x, y) ∈ RI for all x, y ∈ A and

3. (x, y) ∈ RI′ iff (x, y) ∈ RI for all x, y ∈ var(τ) \A

Definition 5.5 (Dependency Scheme [183]). A dependency scheme D assigns to each
QBF I a binary relation DI ⊆ RI such that I and S↓(I,D∗I (x)) are equivalent for every
variable x of I.

It is important to note that dependency schemes in general are too broad a notion for
our purposes. Namely, for our algorithm for QBF using prefix pathwidth, we require
dependency schemes that lead to satisfiability equivalent QBF instances even after several
shifting operations. This is why we will focus our attention on so-called permutation
dependency schemes [187], which are known to satisfy this condition.

Definition 5.6 (Permutation [187]). A dependency scheme D is a permutation depen-
dency scheme if for every QBF I = (φ, τ) and every linear extension D′ of D∗, it holds
that the QBF obtained by permuting the prefix τ according to D′ is equivalent with I.

Note that the definition above implies that permutation dependency schemes preserve
satisfiability after several shifting operations because each shifting operation leads to an
ordering of the prefix that is a linear extension of the original dependency scheme.
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Given a QBF I = (φ, τ) and a permutation dependency scheme D, a dependency poset
V = (var(φ),≤I) of I is a poset over var(φ) with the following properties:

1. x ≤I y iff (x, y) ∈ D∗I for all x, y ∈ var(φ) and

2. for every linear extension < of V, it holds that I and the QBF instance obtained
from I after reordering its prefix according to < are equivalent.

The trivial dependency scheme assigns to each variable x the closest variables on the
right of x with different quantification. This gives rise to the trivial dependency poset,
which has a certain “layered” structure; more details about these posets are presented in
Subsection 5.4.2. However, more refined dependency posets are known to exist and can
be computed efficiently [183].

To illustrate these definitions, consider the following QBF I:

∀x∃y∀u∃v(x ∨ ¬y ∨ v) ∧ (¬u ∨ ¬v ∨ y) ∧ (¬x ∨ u ∨ ¬v).

As an example, consider the following dependency poset on variables of I: x ≤I u ≤I v,
and y is incomparable to all other variables. Up-shifting of the downward-closed set
{x, u} yields the QBF I ′:

∀x∀u∃y∃v(x ∨ ¬y ∨ v) ∧ (¬u ∨ ¬v ∨ y) ∧ (¬x ∨ u ∨ ¬v).

One can readily see that I and I ′ are both true. The trivial dependency poset over I is
the poset given by the chain x ≤I y ≤I u ≤I v, where every downward-closed set cannot
be further up-shifted.

5.1.2 Respectful Treewidth

For our comparison to prefix pathwidth, we need to define respectful treewidth as it has
for instance been introduced in [41, 4, 15].

We start by giving an alternative definition of treewidth in terms of so-called elimination
orderings as this characterization is more suited to our definition of respectful treewidth.

Definition 5.7 (Elimination ordering). An elimination ordering of a graph is a linear
order of its vertices. Given an elimination ordering φ of the graph G, the fill-in graph H
of G w.r.t. φ is the unique minimal graph such that:

• V (G) = V (H).

• E(H) ⊇ E(G).

• If 0 ≤ k < i < j ≤ n and vi, vj ∈ NH(vk), then vivj ∈ E(H).
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The width of elimination ordering φ is the maximum number of neighbors of any vertex
v that are larger than v (w.r.t. φ) in H.

The following proposition shows that tree decompositions and elimination orderings are
two equivalent characterizations of treewidth.

Proposition 5.8 ([141]). Let G be a graph. The following three claims are equivalent:

• G has treewidth k,

• G has an elimination ordering of width k,

Let I = (φ, τ) be an QBF instance. An elimination ordering of GI is respectful if it
is a linear extension of the reverse of the trivial dependency scheme for I; intuitively,
this corresponds to being forced to eliminate variables that have the most dependencies
first. The respectful treewidth is then defined as the minimum width of any respectful
elimination ordering of GI .

5.2 Prefix Pathwidth for QBF
Let G = (V,E) be a graph and ≤V be a partial order of V . For a vertex v ∈ V , we denote
by D≤V (v) the downward closure of v w.r.t. ≤V , i.e., the set {u ∈ V (G) | u ≤V v }.
Similarly, for W ⊆ V we let D≤V (W ) =

⋃
v∈W D≤V (v).

Let T = (T, {Xt}t∈V (T )) be a tree decomposition of G. For a node t of T we denote
by Tt the subtree of T with t as a root, by T≤t the set

⋃
s∈Tt Xs, and by T<t the set

T≤t \Xt. For a vertex v ∈ V (G) we denote by fT (v) the unique node t satisfying v ∈ Xt

and v 6∈ Xs, where s is the parent of t in T . For a path decomposition P = (P1, . . . , Pn)
of G we define Pi, P≤i, P<i, and fP(v) analogously.

A prefix tree decomposition of G = (V,E) w.r.t. ≤V is a tree decomposition T =
(T, {Xt}t∈V (T )) that has the downward closure property, i.e., for every vertex v ∈ V it
holds that D≤V (v) ⊆ T≤fT (v). Analogously, a prefix path decomposition of G = (V,E)
w.r.t. ≤V is a path decomposition P that has the downward closure property. The prefix
treewidth of G w.r.t. ≤V , denoted by otw≤V (G), is then the minimum width over all
prefix tree decompositions of G. The prefix pathwidth, denoted by opw(G), is then
defined analogously.

We note that using the same technique as for path decomposition, one can show that
every prefix path decomposition of G can be turned into a nice prefix path decomposition
of the same width in polynomial time.

The following theorem shows us that if the width of the dependency poset is small, then
prefix pathwidth is actually a good approximation of the prefix treewidth w.r.t. the same
dependency poset and hence by using the simpler path decompositions we can get the
same result.
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Theorem 5.9. Let G = (V,E) be a graph and w the width of the poset (V,≤V ). Then
opw≤V (G) ≤ w · otw≤V (G).

Proof. Let T = (T, {Xt}t∈T ) be an optimal prefix tree decomposition of G w.r.t. ≤V .
We begin our proof by showing the following claim:

Claim 5.10. Let W be a chain of the poset (V,≤V ). Then there exists a leaf-to-root
path in T that contains each fT (v) for every v ∈W .

Proof of the Claim. Suppose for a contradiction that the set { fT (v) | for all v ∈W }
does not lie on a path. This means that there exist two vertices u, v ∈ W such
that fT (v) 6∈ TfT (u) and fT (u) 6∈ TfT (v). W.l.o.g., we can assume that u ≤V v.
The downward closure property of T then implies that u ∈ T≤fT (v), but then either
u ∈ XfT (v) and fT (v) ∈ TfT (u), or u 6∈ XfT (v) and by then the downward closure
property also fT (u) ∈ TfT (v), in either case leading to a contradiction. ♦

From the above claim it follows that if T does not contain unnecessary nodes, i.e., a
node t of T is unnecessary if Xt ⊆ Xp for the parent p of t in T , then T has at most w
leaves. Hence, the prefix path decomposition P := (P1, . . . , Ph), where h is the height of
T , defined by Pi = { v | v ∈ B, where B is a bag of distance i from the root of T } is a
prefix path decomposition of G w.r.t. ≤V of width at most w times the width of T .

We build on the above definitions to define the notions we need on QBFs. A prefix path
decomposition of a QBF I = (φ, τ) w.r.t. a dependency poset V = (var(φ),≤I) is a prefix
path decomposition of the primal graph GI w.r.t. ≤I . The prefix pathwidth of I is then
the minimum width over all prefix path decompositions of GI w.r.t. V.

5.2.1 Comparison to Respectful Treewidth

Respectful treewidth is based on Q-resolution and thus decomposes the dependency
structure beginning from variables that have the most dependencies (i.e., may appear last
in the prefix). Proposition 5.11 shows that both approaches are, in principle, incomparable:
there exist classes of QBF instances where one approach leads to polynomial-time
algorithms and the other does not, and vice-versa. In contrast, our parameter prefix
pathwidth is based on bounding the number of viable strategies in the classical two-player
game characterization of the QBF problem. As such, it decomposes the dependency
structure of a QBF instance beginning from variables that have the least dependencies
(i.e., may appear earlier in the prefix). Proposition 5.11 shows that both approaches
are, in principle, incomparable: there exist classes of QBF instances where one approach
leads to polynomial-time algorithms and the other does not, and vice-versa.

Lemma 5.11. Let us fix the trivial dependency poset. There exist infinite classes A,B
of QBF instances such that:
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a. A has unbounded respectful treewidth but prefix pathwidth at most 1;

b. B has unbounded prefix pathwidth (and prefix treewidth) but respectful treewidth at
most 1.

Proof. a. Let

Ai = ∃x1, . . . , xi∀y∃x(y ∨ x) ∧
i∧

j=1
(xj ∨ x).

The trivial dependency poset Pi for Ai would be {x1, . . . , xi} ≤ y ≤ x. Hence every
respectful elimination ordering must start with x, and then the width of such an ordering
would be i + 1. On the other hand, it is straightforward to verify that the path
decomposition Q = (Q1, . . . , Qi+1), where Qj = {xj , x} for 1 ≤ j ≤ i and Qi+1 = {y, x},
is a prefix path decomposition w.r.t. Pi of width 1.

b. Consider the following formula with alternating prefix:

Bi = ∃x1∀x2 . . . ∀x2i∃x2i+1

2i−1∧
j=1

((xj ∨ x2j) ∧ (xj ∨ x2j+1).

Since the quantifiers in the prefix of Bi alternate, the trivial dependency poset Pi for
Bi would be the linear order x1 ≤ x2 ≤ · · · ≤ x2i . It is readily observed that the primal
graph of Bi is a balanced binary tree of depth i, and it is known that the pathwidth of
such trees is i− 1 [58]. From the fact that pathwidth is a trivial lower bound for prefix
pathwidth together with Theorem 5.9, it follows that i− 1 is a lower bound on the prefix
treewidth of Bi.

On the other hand, since Pi is linear order, the only respectful elimination ordering is the
reverse of Pi. Moreover, from the definition of Bi, it is easily seen that xj has at most 1
neighbor that is smaller w.r.t. Pi, namely xbj/2c. Therefore, the respectful treewidth of
Bi is one.

Before we continue with the main technical part of this Chapter, we provide one specific
example illustrating that our parameter cover some natural classes of instances not covered
by previous approaches. Recall that the vertex cover number of G is the minimum size
of a vertex cover in G. The vertex cover number has often been used as a structural
parameter for graph problems which do not have FPT algorithms parameterized by
treewidth (see for instance [79]).

Theorem 5.12. QBF is fixed-parameter tractable parameterized by the vertex cover
number of the primal graph.

Proof. Let I = (φ, τ) be an instance of QBF and let k be the vertex cover number of
GI . Let n = |var(τ)| and let Z be a vertex cover of GI of cardinality k; recall that a
vertex cover of cardinality k can be computed in time at most O(2k · n) [64]. For each
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i ∈ [1, n], let vi be the i-th variable in the prefix of I, and let Pi = Z ∪{vi}. Now consider
P = (P1, . . . , Pn). We claim that P is a prefix path decomposition of width at most k.

Indeed, clearly each Pi in P contains at most k + 1 vertices. It is straightforward to
verify that conditions (T1) and (T2) hold, and condition (T3) must also hold since every
edge has at most one endpoint outside of Z. Finally, P also has the downward closure
property, since for each vertex vi the set D≤V (vi) is a subset of Z ∪ { vj | j < i }, and
hence D≤V (v) ⊆ P≤fP (v).

It follows that I has prefix pathwidth at most k. To conclude the proof, we merely need
to use the construction above to obtain a prefix path decomposition of small width and
then apply the main result of the following section, namely Theorem 5.27.

5.3 Using Prefix Pathwidth

In this section we will show that deciding the satisfiability of a QBF is fixed-parameter
tractable parameterized by the width of a prefix path decomposition which is assumed
to be provided as part of the input. The next section will then show how such a prefix
path decomposition can be computed efficiently.

5.3.1 Section Overview

The route to the main goal of this section, i.e., an FPT algorithm for QBF, can be
conceptually separated into three parts, each corresponding to one subsection. First, our
techniques essentially rely on the well-known Hintikka Games [108], which we introduce
in the next subsection. In particular, the notion of a “winning existential strategy” will be
crucial for the algorithm; a QBF instance is true if and only if the existential player has a
winning strategy. Second, we show that even though the number of existential strategies
can be potentially unbounded, they can be grouped into a small (i.e., bounded by k)
number of equivalence classes. This equivalence is formalized in Definition 5.18 via the use
of so-called “signatures”. The final subsection then presents the dynamic programming
algorithm itself; the algorithm maintains and dynamically computes records of relevant
signatures, which contain all the needed information about existential strategies on the
dynamically processed variables.

5.3.2 Hintikka Games

Alternating prenex form For the definition of Hintikka Games (and in particular
their strategies), it will be convenient to use an equivalent but more structured rep-
resentation of QBFs. A QBF is in alternating prenex form if the prefix has the form
∀y1∃x1, . . . ,∀y`∃x`. Any QBF in alternating prenex form can then be represented as
a tuple (φ, Y,X) where φ is the matrix and Y = (y1, . . . , y`) and X = (x1, . . . , x`) are
disjoint ordered sets of the variables in the prefix.
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We remark that any QBF can be transformed into alternating prenex form in linear time
by the addition of dummy variables, i.e., variables which do not occur in the matrix. It is
readily observed that if two dummy variables occur consecutively in the prefix, then they
can both be deleted without changing the truth value of the QBF. As a consequence,
we may freely assume that the number of dummy variables will never be greater than
2 · |var(φ)|+ 1. Moreover, adding the dummy variables does not change the prefix path
decomposition since the dummy variables do not occur in the matrix but solely in the
prefix of the QBF formula. In the remainder of this section, we will assume that every
QBF is in alternating prenex form.

Hintikka Games Given a QBF (φ, Y,X) such that |X| = |Y | = `, a strategy for Eloise
(an existential strategy) is a sequence of mappings T = (τi : {0, 1}i → {0, 1})i=1,...,`.
An existential strategy T is winning if, for any mapping δ : {y1, . . . , yn} → {0, 1}, the
formula φ is true under the assignment yi 7→ δ(yi) and xi 7→ τi(δ(y1), . . . , δ(yi)) for
1 ≤ i ≤ `. A partial existential strategy is a sequence of mappings T = (τi : {0, 1}i →
{0, 1})i=1,...,`′ , for some `′ ≤ `.

A strategy for Abelard (a universal strategy) is defined analogously, whereas the mappings
δ and τ are swapped, and we call a universal strategy winning if φ is not true. Formally,
it is a sequence of mappings Λ = (λi : {0, 1}i−1 → {0, 1})i=1,...,`. A universal strategy
Λ is winning if, for any mapping δ : {x1, . . . , xn} → {0, 1}, the formula φ is false under
the assignment xi 7→ δ(xi) for 1 ≤ i ≤ `, y1 7→ λ1, and yi 7→ λi(δ(x1), . . . , δ(xi−1)) for
2 ≤ i ≤ `.

A mapping δ from a subset of Y to {0, 1} is called a universal play, and similarly a
mapping δ from a subset of X to {0, 1} is called an existential play. It will sometimes be
useful to view plays as binary strings, and in this context we will use the symbol ◦ to
denote the concatenation of two strings; for instance, if δ(x1) = 1 and δ(x2) = 0, then
one can represent δ as (1, 0), and (1, 0) ◦ (0) = (1, 0, 0). It is easily observed that plays on
dummy variables do not need to be taken into account by a winning existential strategy.

Proposition 5.13 (folklore). A QBF I is true iff there exists a winning existential
strategy on I iff there exists no winning universal strategy on I.

Let α be a partial existential strategy restricted to X ′ = (x1, . . . , xa) and let β be a
universal play over Y ′ = {y1, . . . , yb}. Then the pair (β, α) results in a partial assignment
δ of X ′ ∪ Y ′, formally given as follows (for i up to min(a, b)): δ(yi) = β(yi) and
δ(xi) = α(β(y1), β(y2), . . . , β(yi)). We denote this as (β, α)  δ. For brevity, we also
sometimes just write (β, α) for the assignment δ given by (β, α) δ.

For the remainder of this section, we fix the following notions. Let I = (φ, Y,X) be a
QBF, let ≤I be a partial order forming a dependency poset of I (w.r.t. some permutation
dependency scheme), and let P := (P1, . . . , Pn) be a prefix path decomposition of I
w.r.t. ≤I of width k. Moreover, for every i with 1 ≤ i ≤ n, let Bi = Pi be a bag in P,
Di = D≤I (P<i), Ci = P<i (see Figure 5.1), and let I be up-shifted on D.
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Bi

Ci

Di

GI \ (Bi ∪Ci)

Figure 5.1: Bi is a bag in P that separates Ci, i.e., vertices forgotten in some bag before
Bi, from the rest of the graph. Di is the downward closure of Ci w.r.t. ≤I .

Observation 5.14. For any i with 1 ≤ i ≤ n, Bi forms a separator in GI and hence
each clause in φ either contains only variables in P≤i or only variables in (Y ∪X) \ Ci.
Furthermore, Di ⊆ P≤i.

Hintikka games allow us to decide the truthfulness of a QBF by computing all strategies
for the existential player. We will show next that even though the number of possible
strategies that can be used for the variables in each P≤i is huge, it is sufficient to only
remember a small number of “representative strategies” that can be used on P≤i to allow
dynamic programming along the prefix path decomposition. The proof of this claim is
based on considering two layers of equivalences and showing that they both only have a
small number of equivalence classes.

5.3.3 Equivalence of Assignments

The first equivalence, which serves as the building block for the latter one, considers
assignments of the variable set Di.

Definition 5.15. Let δ1 and δ2 be two partial assignments of Di. Then δ1 ≈ δ2 iff
Iδ1 = Iδ2 .

It is readily observed that ≈ is an equivalence.

Lemma 5.16. ≈ has at most 22O(k) equivalence classes.

Proof. Consider two partial assignments δ1, δ2 of Di. Let U be the set of all possible
clauses over Bi \Di (including the empty clause); clearly |U | ≤ 3k. Let U1 contain the
clauses from U which occur in Iδ1 , and similarly for U2 and Iδ2 . Let δ′i be the restriction
of δi to variables from Di ∩Bi.
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Claim 5.17. If U1 = U2 and δ′1 = δ′2, then δ1 ≈ δ2.

Proof of the Claim. Clearly, Iδ1 and Iδ2 are defined on the same variables. It remains
to show that both contain the same clauses. Let c be a clause of I. Because of
Observation 5.14 either c ⊆ (X ∪ Y ) \ Ci or c ⊆ P≤i. In the first case, it follows from
δ′1 = δ′2 that cδ1 = cδ2 and hence Iδ1 contains cδ1 if and only if so does Iδ2 . In the
later case, we obtain that cδ1 ⊆ Bi \Di. Hence, because U1 = U2, we obtain that Iδ1

contains cδ1 if and only if so does Iδ2 . ♦

The Lemma then follows from the above claim because there are at most 2|U | = 23k

possible choices of Ui and at most 2k possible choices of δ′i.

5.3.4 Equivalence of Strategies

For a partial existential strategy α on Di, we denote by Sα (referred to as the signature)
the set containing each instance I such that there exists a universal play β which together
with α results in I; formally, Sα = { Iδ | ∃ universal play β such that (β, α) δ }.

Definition 5.18. Let α1 and α2 be two partial existential strategies on Di. Then
α1 ≡ α2 iff Sα1 = Sα2 .

Once again, it is easy to verify that ≡ is transitive, reflexive and symmetric, and hence is
an equivalence relation. We show that its index is also upper-bounded by a function of k.

Lemma 5.19. For any partial existential strategy α on Di it holds that |Sα| ≤ 22O(k).
Furthermore, ≡ has at most 222O(k)

equivalence classes.

Proof. By Lemma 5.16 each partial assignment δ of Di results in one of at most 22O(k)

many distinct QBF instances Iδ. Because Sα is a subset of the set of all these instances
for any partial existential strategy α, it follows that |Sα| ≤ 22O(k) and moreover that
there are at most 222O(k)

distinct choices for Sα.

Lemma 5.20. Let I be a QBF and let α be a winning existential strategy for I. Then,
for any partial existential strategy α′ which is a subset of α, it holds that I ′ is true for
any I ′ ∈ Sα′.

Proof. Assume for a contradiction that this is not case and let α′ be a defined on the
variables in X ′∪Y ′, where X ′ ⊆ X and Y ′ ⊆ Y and let I ′ ∈ Sα′ be a no-instance. Because
I ′ ∈ Sα′ there is a universal play β0 on the variables in Y ′ such that I ′ = Iδ0 , where
(β0, α

′) δ0. Because I ′ is a no-instance there is an universal play β1 on the variables
in Y \ Y ′ such that the instance Iδ, where (β0 ◦ β1, α) δ, contains the empty clause.
Hence, the universal play β0 ◦ β1 wins against α on I, contradicting our assumption that
α is a winning strategy.
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We will also need the converse of the above claim, formulated below.

Observation 5.21. If there exists a partial existential strategy α on Di such that each
I ′ ∈ Sα is true, then I is true.

Proof. A winning existential strategy for I can simply apply α until it reaches a true
subinstance I ′ ∈ Sα. From there on, it can continue with a winning existential strategy
for I ′.

5.3.5 The Algorithm

In this subsection, we develop a dynamic programming algorithm on a nice prefix path
decomposition P = (P1, . . . , Pn) of I to decide whether I is true. Recall that by the
above, for each partial existential strategy α on Di there is a signature Sα. For each
Di, we will compute the set Ki of all signatures corresponding to any partial existential
strategy on Di; formally, Ki = {Sα | α is an existential strategy on Di }. We call Ki the
signature set of Di, and the algorithm proceeds by computing the sets K1, . . . ,Kn for
the bags P1, . . . Pn. One key observation is that for the construction of the sets Ki one
only needs to consider a special type of partial existential strategies on Di, which we will
call oblivious.

A (partial) existential strategy α on X0 = (x1, . . . , xj) is oblivious if it does not distinguish
between universal plays that lead to the same reduced instance. More precisely, if two
universal plays on the first l universal variables result in the same reduced instance,
then an oblivious (partial) existential strategy α shall not distinguish between these two
universal plays in the moves following after l. Formally, α is oblivious if it satisfies the
following condition for every partial existential strategy α′ obtained as a restriction of α
to (x1, . . . , xl), l < j, and for every two universal plays β1, β2 on (y1, . . . , yl) such that
Iδ1 = Iδ2 where (β1, α

′)  δ1 and (β2, α
′)  δ2. Let p satisfy l < p ≤ j, and for each

βp = {0, 1}p−l let (β1 ◦ βp, α)  δ′′1 and similarly (β2 ◦ βp, α)  δ′′2 . Then, for every xi
where l < i ≤ p, it holds that δ′′1(xi) = δ′′2(xi). The following shows we can compute Ki,
by merely considering signatures of oblivious partial existential strategies.

Lemma 5.22. Let I be a QBF. For any partial existential strategy there is an oblivious
partial existential strategy that has the same signature.

Proof. Let α be a partial existential strategy of I. If α is oblivious, then the claim
of the lemma holds. So assume that α is not oblivious. We will show how to trans-
form α into an oblivious partial existential strategy without changing the signature.
Let l be the smallest number such that the restriction α′ of α to (x1, . . . , xl) vio-
lates the definition of obliviousness for some universal plays β1, β2 on (y1, . . . , yl). Let
S = { Iδ | ∃β′ ∈ {0, 1}l : (β′, α′) δ }, and for each Iδ ∈ S let us choose an arbitrary
representative βδ such that (βδ, α′) δ.

Now consider the strategy α′′ which copies α in all mappings except for the follow-
ing. For each universal play β1 on (y1, . . . , yl) such that β1 is distinct from each of
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the representatives βδ, for each p where l < p, and for each βp ∈ {0, 1}p−l, we set
α′′p(β1 ◦ βp) := αp(βδ ◦ βp), where δ satisfies Iδ = I(β1,α). Observe that α′′ no longer
violates the condition of obliviousness for any β1 on (y1, . . . , yl). Additionally, if the
condition of obliviousness was satisfied by α for a pair of universal plays β′1, β′2 then
it remains satisfied also by α′′. For now, assume α′′ has the same signature as α; then
by repeating the above procedure until we obtain an oblivious strategy would proof the
claim of the lemma.

To complete the proof, we argue that α′′ has the same signature as α. Let β be an
assignment of Y partitioned into β1 (on (y1, . . . , yl)) and βr (on the remaining universal
variables) and let δ1 be the assignment obtained as (β1, α

′′) δ1. Moreover, let βδ be
the representative of Iδ1 and let δ2 be the assignment obtained as (βδ, α) δ2. Then,
Iδ1 = Iδ2 and (β1 ◦ βr, α′′) is equal to (βδ ◦ βr, α) on all variables xi, yi with i > l (by
definition of α′′). Hence, Iδ′1 = Iδ′2 , where (β1 ◦ βr, α′′)  δ′1 and (βδ ◦ βr, α)  δ′2, as
required.

The algorithm then consists of the following four procedures, each tied to a specific claim:

1. Initialization(Observation 5.23): this is the procedure that is called at the beginning
of the algorithm, i.e., for the empty bag P1.

2. Introduce (Observation 5.24): this is the procedure that is called whenever we have
computed Ki−1 and Pi is an introduce node.

3. Forget (Lemma 5.25): this is the procedure that is called whenever we have
computed Ki−1 and Pi is a forget node.

4. Termination (Observation 5.26): this is the procedure that is called when we have
computed Kn.

The claims are provided below. We remark that each procedure not only computes the
next signature set, but also implicitly ensures that I is up-shifted on Di.

Observation 5.23. There exists a constant-time algorithm which takes as input a QBF
instance I and a prefix path decomposition P and outputs K1.

Proof. Since D1 is empty, K1 contains only a single signature (the signature of the empty
strategy), which contains I. In other words, K1 = {{I}}. Observe that I is up-shifted
on D1.

Observation 5.24. There exists a constant-time algorithm which takes as input a QBF
instance I, a prefix path decomposition P and the signature set Ki−1 and outputs Ki

when Pi is an introduce node.
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Proof. Assume Pi = Pi−1 ∪ {z}, where z ∈ X ∪ Y . Then P<i−1 = P<i and in particular
z 6∈ Di. Hence Ki = Ki−1. Observe that if I was up-shifted on Di−1, then I will also be
up-shifted on Di.

Lemma 5.25. There exists an FPT algorithm which takes as input a QBF I, a prefix
path decomposition P such that I is up-shifted on Di−1 and the signature set Ki−1 and
outputs Ki when Pi is a forget node.

Proof. Assume Pi = Pi−1 \ {z}, where z ∈ X ∪ Y . Then z ∈ P<i but z 6∈ P<i−1, which
implies that Di = Di−1 ∪ D≤I (z). The algorithm checks whether z ∈ Di−1 or not.
If z ∈ Di−1, then D≤I (z) ⊆ Di−1 and hence Di = Di−1. This means that Ki = Ki−1.

If z 6∈ Di−1, then let Z = D≤I (z) \Di−1 = Di \Di−1. Observe that Z ⊆ Pi and hence
|Z| ≤ k. We apply up-shifting on Di; since I was already up-shifted on Di−1, this means
that after up-shifting the prefix of I will contain first the variables in Di−1, followed
by the variables in Z, and then all remaining variables. Our goal is now to expand
the signature set Ki−1 by considering all possible results of an existential strategy and
universal play on Z. We first formalize the notion of extended signature below, and then
describe how the algorithm proceeds.

Let S be a signature in Ki−1 and let Iδ ∈ S. Let A be the set of all partial existential
strategies in Iδ on the variable set Z ∩X. Since Z forms a prefix of Iδ and |Z| ≤ k, it
follows that |A| ≤ 22O(k) . Similarly, let B be the set of all universal plays in Iδ on the
variable set Z ∩ Y , and observe |B| ≤ 2k. The extended signature w.r.t. Iδ and α0 ∈ A
is the set SIδα0 = { Iω | ω = δ ∪ δ′, whereas ∃β0 ∈ B : (β0, α0)  δ′ within Iδ }. Observe
that, by the bound on |B|, it follows that each extended signature can be computed from
a given Iδ and α0 in 2k · |φ| time.

The algorithm begins by settingK ′i := ∅ and iteratively processes each S ∈ Ki−1 as follows.
Let S = {I1, . . . , Im}. The algorithm branches over all m-tuples of (possibly non-distinct)
partial existential strategies from A, and for each such τ = (α1, α2, . . . , αm) ∈ Am it
produces m pair-wise extended signatures SI1

α1 , S
I2
α2 , . . . , S

Im
αm . It then computes their

union Sτ =
⋃
j∈[m] S

Ij
αj , and sets K ′i := K ′i ∪ {Sτ}. The procedure specified in this

paragraph can be carried out in FPT time, since

a) the number of distinct elements in Ki and also in Ki−1 is bounded by the number
of equivalence classes of ≡, which is at most 222O(k)

by Lemma 5.19, and

b) the cardinality of each S ∈ Ki−1 is at most 22O(k) , also by Lemma 5.19.

It remains to show that K ′i = Ki. We first show that if S ∈ K ′i, then S ∈ Ki. Because
S ∈ K ′i, there exists S0 ∈ Ki−1, where S0 = {I1, . . . , Im}, along with an m-tuple
τ := (α1, . . . , αm) of partial existential strategies such that S =

⋃
j∈[m] S

Ij
αj . Let us fix

one arbitrary partial existential strategy α0 on Di−1 with the signature S0. Then, α0
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partitions all possible assignments B of Y ∩Di−1 into sets B1, . . . ,Bm where β ∈ Bj iff
(β, α0) Ij .

Consider the partial existential strategy α on Di which proceeds as follows. On Di−1, it
copies α0. On Di \Di−1, it takes each universal play β and decomposes it into β0 ◦ βz,
where β0 is the universal play on Di−1 and βz is the universal play on the remaining
variables, i.e., a subset of Di \Di−1 and copies αj on βz. By construction, it follows that
α has the signature S, which implies that S ∈ Ki, as required.

Now assume that S ∈ Ki. Because of Lemma 5.22, it holds that S is the signature of
an oblivious partial existential strategy α on Di. Let α0 be the restriction of α to Di−1,
and let S0 = {I1, . . . , Im} be the signature of α0 in Ki−1. Then α0 once again partitions
all possible assignments B of Y ∩Di−1 into sets B1, . . . ,Bm where β ∈ Bj iff I(β,α0) = Ij .

For any j ∈ [m], let βj be an arbitrary universal play in Bj . Moreover, let αj be the
partial existential strategy (operating on Ij) defined as follows. For each universal play
βz on (a subset of) Y ∩Z, we let αj copy the move of α against the universal play βj ◦βz.
Observe that because α is oblivious, αj is independent of the actual choice of βj in Bj .

We claim that S = Sτ for τ = (α1, . . . , αm), which implies that S ∈ K ′i. We first show
that if I ∈ S then I ∈ Sτ . Hence, let I ∈ S. Then, there is a universal play β on Di such
that I = I(β,α). Let β0 be the restriction of β to Di−1 ∩ Y , let β1 be the restriction of
β to Z ∩ Y , and let j be such that β0 ∈ Bj . Then, because α is oblivious, it holds that
I = I(βj◦β1,α) ∈ S

Ij
αj . This shows that I ∈ Sτ , as required.

For the reverse direction let I ∈ Sτ . Then, there is a j ∈ [m] such that I ∈ SIjαj . Hence,
there is a universal play βz on Z ∩ Y such that I = I(βj◦βz ,α), which implies I ∈ S, as
required.

Observation 5.26. There exists a constant-time algorithm which takes as input a QBF
instance I and a prefix path decomposition P = {P1, . . . , Pn} and the signature set Kn

and decides whether I is true.

Proof. After processing the last bag Pn of P, it holds that D = X ∪ Y and hence every
signature in Kn can only contain two possible instances: the trivial true instance IT which
contains no variables and no clauses, and the trivial false instance IF , which contains
no variables and the empty clause. If {IT } ∈ Kn, then the algorithm outputs true, and
otherwise it outputs false. Correctness follows from Lemma 5.20 and Observation 5.21.

Having established the procedures for the individual nodes of the path decomposition,
we can now prove the correctness of the whole dynamic programming algorithm. We
note that the following theorem applies to arbitrary QBF instances (not only those in
alternating prenex form).

Theorem 5.27. There exists an FPT algorithm which takes as input a QBF I, an
integer parameter k, and a prefix path decomposition P of I of width at most k and
decides whether I is true.
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Proof. If I is not already in alternating prenex form, we convert it by adding dummy
variables as described in Subsection 5.3.2. As mentioned in the preliminaries, it is
possible to transform a prefix path decomposition P into a nice prefix path decomposition
P ′ containing at most O(k|I|) bags; let n = |P ′|. It then computes the signature
set K1 by Observation 5.23 and proceeds by iteratively computing K2,K3, . . . ,Kn by
Observation 5.24 and Lemma 5.25. Once the algorithm computes the signature set Kn,
it outputs based on Observation 5.26.

5.4 Computing Prefix Pathwidth
This section is devoted to parameterized and approximation algorithms for computing
the prefix pathwidth. Observe that if the given partial ordering is empty, then the prefix
pathwidth of the graph G is the same as the pathwidth of G. Moreover, the downward
closure property is checkable in polynomial. time Thus, computing the prefix pathwidth
is NP-complete.

Before we present our algorithms, we will state some interesting observations about prefix
path decompositions. For the remainder of this section let G be a graph and (V (G),≤V )
a poset on V (G) of width w. The first observation relates prefix pathwidth with a
well-known decomposition parameter for directed graphs, i.e., directed pathwidth [19].

Definition 5.27.1 (Directed path decomposition ([19])). Let D be a directed graph. A
directed path decomposition is a sequence P := (P1, . . . , Pn) of subsets of vertices of D
such that:

(D1)
⋃

1≤i≤n Pi = V (D),

(D2) for every u ∈ V (D), the set Du = { i ∈ {1, . . . , n} | u ∈ Wi } induces an interval,
and

(D3) for each uv ∈ E(D) there are i and j with 1 ≤ i ≤ j ≤ n such that u ∈ Wi and
v ∈Wj .

The width of a directed path decomposition and the directed pathwidth of D, denoted by
dpw(D) are defined analogously to the corresponding notions for path decompositions.

Observation 5.28. Let D be the directed graph obtained from G by replacing every edge
by two anti-parallel arcs and adding an arc uv for every u, v ∈ V (G) such that u ≤V v.
Then, opw≤V (G) = dpw(D).

Proof. We will show an even stronger statement, namely we show that any prefix path
decomposition of G w.r.t. ≤V is also a directed path decomposition of the graph D and
vice versa.

Suppose that P := (P1, . . . , Pn) is a prefix path decomposition of G w.r.t. ≤V . Then,
P satisfies Properties (D1) and (D2), because P satisfies Properties (T1) and (T2).
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Towards showing Property (D3), let uv be any arc in D. If uv is also an edge of G, then
Property (D3) follows because P satisfies Property (T3). Otherwise, u ≤V v and because
of the downward closure property of P , we obtain that u ∈ P≤fP (v). Hence, there is an i
with i ≤ fP(v) and u ∈ Pi, which because v ∈ PfP (v) implies Property (D3).

On the other hand, let P be a directed path decomposition of D. Then, properties (T1)
and (T2) follow immediately from properties (D1) and (D2) of P. Towards showing
Property (T3), let uv ∈ E(G) be an edge of G. Then, both uv and vu are arcs in D
and it follows from Property (D3) that there are i, j, i′, and j′ with 1 ≤ i < j ≤ n and
1 ≤ i′ ≤ j′ ≤ n such that u ∈ Pi, v ∈ Pj , v ∈ Pi′ , and u ∈ Pj′ . Because of Property D2,
we obtain that u ∈ Pl for every l between i and j′ and v ∈ Pl for every l between i′ and
j. Hence, because i < j and i′ < j′ there exists an h with 1 ≤ h ≤ n such that u, v ∈ Ph,
showing Property (T3).

Towards showing the downward closure property for P , recall that for every u ∈ D≤V (v)
there exists a directed edge uv in D. It hence follows from Property (D3) that either
there exists i with 1 ≤ i ≤ n such that u, v ∈Wi, or there are i and j with 1 ≤ i < j ≤ n
such that u ∈Wi and v ∈Wj . Therefore, u ∈ P≤fP (v) for every u ∈ D≤V (v) and P has
the downward closure property.

Since it has been shown [191] that deciding whether the directed pathwidth of a digraph
is at most k is solvable in polynomial-time for every fixed k, the above observation implies
that the same holds for the prefix pathwidth. It is an important open question, however,
whether computing directed pathwidth is fixed-parameter tractable.

Let G be a graph and ≤ a linear order on V (G). We call the pair (G,≤) an ordered
graph. We say that an ordered graph (G,≤) is an ordered minor of an ordered graph
(G′,≤′), if (G,≤) can be obtained from (G′,≤′) by a sequence of operations of any of
the following kind: (1) vertex deletion, (2) edge deletion, or (3) ordered edge-contraction,
i.e., an edge-contraction for which the resulting vertex can take the place of any of the
endpoints of the contracted edge in the ordering ≤′. Let X be a set and ≤ a reflexive and
transitive binary relation on X. Then, X is well-quasi ordered w.r.t. ≤ if every infinite
sequence x1, x2, . . . of elements of X contains an increasing pair xi ≤ xj where i < j.
If the set of ordered graphs of prefix-pathwidth at most k was well-quasi ordered w.r.t.
the ordered minor relation, this would be an important step towards a FPT algorithm for
determining whether a graph has prefix-pathwidth at most k [134]. However, we show
that this is actually not the case.

Observation 5.29. The set of ordered graphs is not well-quasi ordered w.r.t. the ordered
minor relation.

Proof. It has been shown that the set of all permutations of the natural numbers is
not well-quasi ordered w.r.t. the removal of entries [188]. In particular, Bóna and
Spielman [188] constructed an infinite antichain of permutations for this setting. We will
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make use of this antichain to construct an infinite antichain of ordered graphs w.r.t. the
ordered minor relation.

Let P = (p1, p2, . . . ) be the infinite sequence of permutations (also called an antichain)
witnessing that the set of all permutations is not well-quasi ordered w.r.t. to the removal
operation as defined by Bóna and Spielman [188]. We define a corresponding sequence
G = (g1, g2, . . . ) of ordered graphs as follows: for every permutation p ∈ P, let g(p) be
the ordered graph (G,≤), where G is a path given by the sequence (v0, v1, . . . , v|P |) of
vertices (with endpoints v0 and v|P |) and the partial ordering ≤ is defined by vi ≤ vj if
and only if p−1[i] ≤ p−1[j] for every 0 < i, j ≤ n. Note that because G is a path and
the endpoint v0 is the only vertex of G, which is not comparable (w.r.t. ≤) to any other
vertex, it holds that g(p) = g(p′) if and only if p = p′ (hence g is a bijection). We set
G := (g(p1), g(p2), . . . ). It remains to show that G is an infinite antichain w.r.t. to the
ordered minor relation, i.e., there is no pair i, j with i < j such that gi is an ordered
minor of gj .

Suppose for a contradiction that there is such a pair say i, j such that i < j and
gi := (Gi,≤i) is an ordered minor of gj := (Gj ,≤j). Then, in particular, Gi is a minor of
Gj and because both Gi and Gj are paths we can assume, w.l.o.g., that gi is obtained
from gj by a sequence of ordered edge-contractions. Moreover, because any ordered
edge-contraction of an edge e = {u, v} ∈ Gj for which the resulting vertex takes the
place of say u in the ordering leads to an ordered graph isomorphic to g(p′j), where p′j
is the permutation obtained from pj after removing the element corresponding to v in
pj , we obtain that any permutation p such that gi = g(p) is can be obtained from any
permutation p′ such that gj = g(p′). Finally, because g(p) is a bijection, we obtain that
pi can be obtained from pj via the removal of elements, contradicting our assumption
that the set of all permutations is well-quasi ordered under removal of elements.

The above observations suggest that fixed-parameter tractability for computing prefix
pathwidth is a difficult question.

5.4.1 Algorithms for Posets of Bounded Width

In the following we will give two algorithms that compute the prefix path decomposition
of a graph that are efficient in the case that the given poset has small width. Our
first algorithm shows that if the width of the poset ≤V is bounded by a constant, then
deciding whether G has a prefix path decomposition w.r.t. ≤V of width at most k is
fixed-parameter tractable (in k).

For a subset V ′ ⊆ V , let P≤V (V ′) be the prefix of V ′ w.r.t. ≤V , i.e., the set of all vertices
v in V ′ with D≤V (v) ⊆ V ′, and let S≤V (V ′) be the suffix of V ′ w.r.t. ≤V , i.e., the set
V ′ \ P≤V (V ′). Finally, we let δ(V ′) be the vertices in V ′ with at least one neighbor in
V \ V ′. We call the set δ(V ′) guards of V ′.

Let B(V ′) be the bipartite graph with bipartition (δ(V ′), N(δ(V ′)) \ V ′) containing all
edges of G with one endpoint in δ(V ′) and the other endpoint in N(δ(V ′))\V ′. Moreover,
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for a prefix path decomposition P := (P1, . . . , Pn) of G w.r.t. ≤V and for every i with
1 ≤ i ≤ n, let BP(i) be the bipartite graph B(P≤V (P≤i)).

Before we proceed to proof the required statements for the algorithm, let us first provide
an informal overview of the algorithm. The main observation behind the algorithm
(which is shown in Lemma 5.30 below) is that in any prefix path decomposition of G
w.r.t. ≤V , the intersection between any two bags, say Pi and Pi+1, can be characterized
by a pair (D,C), where D is a downward closed set of vertices of G equal to P≤V (P≤i)
and C is a minimal vertex cover of the bipartite graph between the guards of D and the
neighbors of these guards in the remainder of G, i.e., the bipartite graph BP(i). Given
this crucial observation, it is then straightforward to define simple conditions for deciding
whether a pair (D,C) can be the intersection of two bags in a prefix path decomposition
of width at most k as well as conditions for deciding whether the intersection of two bags
corresponding to a pair (D,C) can be followed by (in some prefix path decomposition of
width at most k) the intersection of two bags corresponding to the pair (D′, C ′) (these
conditions are defined in Lemma 5.31). Computing a prefix path decomposition then
boils down to deciding whether there is a directed path from the pair (∅, ∅) to the pair
(V (G), ∅) in the digraph whose vertex set consists of all pairs (D,C) such that (D,C)
can be the intersection between two bags in some prefix path decomposition of width at
most k and whose arcs are defined using the above mentioned conditions (see the proof
of Theorem 5.34). Because the number of downward closed sets is bounded by |V (G)|w
and one can show (see Lemma 5.33) that the number of possible minimal vertex covers
(for each downward closed set) is bounded by k2k, this then leads to the required result.

We are now ready to proof the formal statements required by the algorithm as outlined
above.

Lemma 5.30. Let P := (P1, . . . , Pn) be a prefix path decomposition of G w.r.t. ≤V of
width at most k, which is minimal in the sense that no bag of P contains unnecessary
vertices. Then, for every i with 1 ≤ i < n, it holds that Pi ∩ Pi+1 is a minimal vertex
cover of BP(i).

Proof. We first show that Pi ∩ Pi+1 contains a vertex cover of BP(i) for every i with
1 ≤ i < n. Suppose not, then there is an i with 1 ≤ i < n such that Pi ∩ Pi+1 is
not a vertex cover of BP(i). Hence, there is an edge {v, u} ∈ E(BP(i)) ⊆ E(G) with
v ∈ P≤V (P≤i) and u ∈ N(δ(P≤V (P≤i))) \ (P≤V (P≤i)) such that v, u /∈ Pi ∩ Pi+1. Hence,
either u /∈ P≤i or u ∈ S≤V (P≤i). In the former case, because v ∈ P≤i but v /∈ Pi+1, we
obtain that property (T3) of P is violated. In the latter case, because S≤V (P≤i) ⊆ Pi,
we obtain that u /∈ Pi+1 and hence fP(u) = i. Consequently, D≤V (u) 6⊆ P≤i = P≤f(u),
contradicting the downward closure property of P.

Towards showing the minimality of the vertex cover, assume for a contradiction that this
is not the case and there is an i with 1 ≤ i < n such that Pi ∩ Pi+1 is not a minimal
vertex cover of BP(i). Then, there is a vertex v ∈ Pi ∩Pi+1 such that (Pi ∩Pi+1) \ {v} is
still a vertex cover of BP(i). Then, either v ∈ P≤V (P≤i) or v ∈ S≤V (P≤i).
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In the first case, let P ′ := (P ′1, . . . , P ′n) be obtained from P after removing v from every
bag Pj with j ≥ i+ 1. We show that P ′ is still a prefix path decomposition, contradicting
our assumption that no bag of P contained unnecessary vertices. It is easy to verify
that conditions (T1) and (T2) as well as the downward closure property still hold for P ′.
Towards showing (T3), let {v, u} ∈ E(G). Because (Pi ∩ Pi+1) \ {v} is a vertex cover of
BP(i), we obtain that if {v, u} ∈ BP(i), then u ∈ P ′i , as required. If {v, u} /∈ BP(i), then
u ∈ P≤V (P≤i) and because P satisfies condition (T3), it follows that {u, v} is covered by
some bag Pj with j ≤ i, as required.

In the second case, let P ′ := (P ′1, . . . , P ′n) be obtained from P after removing v from every
bag Pj with j ≤ i. We show that P ′ is still a prefix path decomposition, contradicting
our assumption that no bag of P contained unnecessary vertices. It is easy to verify
that conditions (T1) and (T2) as well as the downward closure property still hold for P ′.
Towards showing (T3), let {v, u} ∈ E(G). Because (Pi ∩ Pi+1) \ {v} is a vertex cover of
BP(i), we obtain that if {v, u} ∈ BP(i), then u ∈ P ′i+1, as required. If {v, u} /∈ BP(i),
then either u ∈ S≤V (P≤i) in which case because of the downward closure property of
P also u ∈ Pi+1 and hence u ∈ P ′i+1, as required, or u ∈ V (G) \ P≤i and because P
satisfies condition (T3), we obtain that {v, u} is covered by some bag Pj with j ≥ i+ 1,
as required.

Lemma 5.31. There is a prefix path decomposition of G w.r.t. ≤V of width at most k if
and only if there is a sequence S := ((D0, C0), . . . , (Dn, Cn)) of pairs (Di, Ci) such that:

C1 D0 = C0 = ∅, Dn = V (G), Cn = ∅,

C2 for every i with 0 ≤ i ≤ n:

C2A Di is downward closed,

C2B Ci is a minimal vertex cover of B(Di),

C3 for every i with 0 ≤ i < n:

C3A |(Di+1 \Di) ∪ Ci ∪ Ci+1| ≤ k,

C3B Ci \ Ci+1 ⊆ Di+1,

C3C Di ⊆ Di+1.

Proof. For the forward direction, suppose there is a prefix path decomposition P :=
(P1, . . . , Pn) of G w.r.t. ≤V of width at most k. W.l.o.g., we can assume that P is
minimal (in the sense that no bag contains unnecessary vertices). It hence follows from
Lemma 5.30 that Pi ∩ Pi+1 is a minimal vertex cover of BP(i) for every i with 1 ≤ i < n.

We claim that S := ((D0, C0), (D1, C1), . . . , (Dn, Cn)) with D0 := ∅, C0 := ∅, Di :=
P≤V (P≤i), Ci := Pi ∩ Pi+1 for every i with 1 ≤ i < n, Dn = V (G), and Cn = ∅ is the
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required sequence. Conditions C1 and C2A are trivially satisfied. Condition C2B follows
from Lemma 5.30 applied to P. Towards condition C3A observe that

|(Di+1 \Di) ∪ Ci ∪ Ci+1|
= |((P≤V (P≤i+1)) \ (P≤V (P≤i))) ∪

(Pi ∩ Pi+1) ∪ (Pi+1 ∩ Pi+2)|
≤ |((P≤V (P≤i+1)) \ (P≤V (P≤i))) ∪ Pi+1|
≤ |((P≤i+1) \ (P≤V (P≤i))) ∪ Pi+1|
≤ |Pi+1 ∪ Pi+1|
≤ k

The second to last inequality follows because P≤i+1 \P≤V (P≤i) ⊆ Pi+1, which in turn can
be seen as follows. Let v ∈ P≤i+1\P≤V (P≤i), then either v ∈ P≤i+1\P≤i or v ∈ S≤V (P≤i).
In the former case v ∈ Pi+1 (due to the definition of P≤i+1) and in the later case v ∈ Pi+1
because of the downward closure property of P.

Towards showing C3B, it suffices to show that v ∈ Ci \ Ci+1 implies v ∈ Di+1 for every
v ∈ V (G). Because Ci \Ci+1 = (Pi ∩Pi+1) \ (Pi+1 ∩Pi+2) = (Pi ∩Pi+1) \Pi+2, we obtain
that v ∈ Ci \ Ci+1 implies that fP(v) = i+ 1. Hence, using the fact that P satisfies the
downward closure property, we obtain that D≤V (v) ⊆ Di+1. In particular, v ∈ Di+1, as
required.

Condition C3C, i.e., Di ⊆ Di+1 or equivalently P≤V (P≤i) ⊆ P≤V (P≤i+1) is satisfied
because P≤i ⊆ P≤i+1 and the downward closed subset of a set contains the downward
closed subset of any subset of the set.

For the reverse direction suppose that we are given S := ((D0, C0), . . . , (Dn, Cn)) satisfy-
ing the conditions given in the statement of the lemma. We claim that P := (P1, . . . , Pn)
with Pi := Di \ Di−1 ∪ Ci−1 ∪ Ci for every i with 1 ≤ i ≤ n is a prefix path decom-
position of G w.r.t. ≤V of width at most k. Because of condition C1, it holds that
P≤i =

⋃
1≤j≤iDj \Dj−1 ∪Cj−1 ∪Cj =

⋃
1≤j≤iDj ∪Cj and again using condition C1, we

obtain P≤n = V (G). It follows that P satisfies property T1.

To show the remaining properties for P, we need the following claim.

Claim 5.32. Let v ∈ V (G) be any vertex such that v ∈ Pi \ Pi+1, then v ∈ Di, v /∈ Ci,
and all neighbors of v outside of Di are in Ci.

Proof of the Claim. Let v ∈ V (G) be any vertex such that v ∈ Pi \ Pi+1 =
(Di \Di−1 ∪ Ci−1 ∪ Ci) \ (Di+1 \Di ∪ Ci ∪ Ci+1) for some i with 1 ≤ i < n, i.e., v is
forgotten at position i. There are two cases for this to happen, i.e., either v ∈ Di\Di−1
or v ∈ Ci−1. Note that in both cases v /∈ Ci. In the latter case, we obtain from
C3B that v ∈ Di. Hence, we have already shown that v ∈ Di and v /∈ Ci. Moreover,
because v /∈ Ci we obtain from C2B that Ci contains all the neighbors of v outside of
Di. This completes the proof of the above claim. ♦
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To show property (T2) for P , it suffices to show that for any v ∈ V (G) with v ∈ Pi \Pi+1
for some position i with 1 ≤ i < n, it holds that v /∈ Pj = Dj \ Dj−1 ∪ Cj−1 ∪ Cj for
any j > i+ 1. From Claim 5.32, we obtain that v ∈ Di, v /∈ Ci, and all the neighbors
of v outside of Di are in Ci. Because v ∈ Di, we obtain from C3C that v /∈ Dj \Dj−1.
Consequently, it is sufficient to show that v /∈ Cj for any j > i+ 1. Because Ci contains
all the neighbors of v outside of Di, we obtain from C3B that for every j > i + 1 it
holds that Cj contains all the neighbors of v outside of Dj . Using C2B (in particular the
minimality of Cj), we obtain that Cj does not contain v, as required.

We will show property (T3) for P by showing (by induction on the index of the forgotten
vertices) that whenever a vertex is forgotten at position i, then every edge incident to it
is contained in some bag j ≤ i. This clearly holds if v is the first vertex that is forgotten,
because all neighbors of v in Di must still be in Pi and all neighbors of v outside of Di are
in Ci ⊆ Pi (because of Claim 5.32). So assume that v is the l-th vertex that is forgotten
and v is forgotten at some position i. Again, all neighbors of v in Di are either still in
Pi or have been forgotten before v and hence (by the induction hypotheses) every edge
incident to the forgotten neighbors is contained in some bag Pj with j ≤ i. Moreover,
because of Claim 5.32 all the neighbors of v outside of Di are in Ci and hence also in Pi,
as required.

We show next that P has the downward closure property. Again, because of Claim 5.32,
if a vertex v is forgotten at some position i, then v ∈ Di. The downward closure property
for P, then follows from C2A.

Because of C3A, we have that the width of P is at most k. Hence, P is a prefix path
decomposition of G w.r.t. ≤V of width at most k, as required.

Lemma 5.33 (Damaschke [55], Theorem 4.). Let D ⊆ V (G) be a downward closed set
w.r.t. ≤V , then there are at most 2k minimal vertex covers of B(D) of size at most k
and these can be enumerated in time O(|E(B(D))|+ k22k).

In the following let w = width((V (G),≤V ) and let (W1, . . . ,Ww) be a chain partition of
(V (G),≤V ) (which due to Proposition 3.10 can be computed in polynomial-time). For
a vector v ∈ [0, |W1|] × . . . × [0, |Ww|], let D≤V (v) be the set of vertices of V (G) that
contains the first v[i] vertices from every chain Wi. Note that for every downward closed
set V ′ there is a vector v ∈ [0, |W1|]× . . .× [0, |Ww|] such that V ′ = D≤V (v), which we
denote by v≤V (V ′).

Let P := (P1, . . . , Pn) be a prefix path decomposition of G w.r.t. ≤V of width at most k.
Note that because P≤V (P≤i) is downward closed the vector v(P≤V (P≤i)) is well-defined.

Theorem 5.34. There is an algorithm that finds a prefix path decomposition of G
w.r.t. ≤V of width at most k or decides that no such prefix path decomposition exists
in time O((|V (G)|w2k)2|V (G)|). Hence, for any constant w computing a prefix path
decomposition is fixed-parameter tractable parameterized by k.
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Proof. To decide whether G has a prefix path decomposition w.r.t. ≤V of width at most
k, we first build an auxiliary directed graph H as follows.

The vertex set of H consists of all pairs (D,C) such that D ⊆ V (G) is a downward closed
set and C is a minimal vertex cover of B(D) of size at most k. Furthermore, there is an
arc from (D,C) to (D′, C ′) of H if and only if (D,C) and (D′, C ′) satisfy the conditions
C3A-C3C given in Lemma 5.31 (with Di = D, Ci = C, Di+1 = D′, and Ci+1 = C ′).
This completes the construction of H. Because of Lemma 5.31, we obtain that G has a
prefix path decomposition w.r.t. ≤V of width at most k if and only if there is a directed
path in H from (∅, ∅) to (V (G), ∅). Hence, given H we can decide whether G has a prefix
path decomposition w.r.t. ≤V of width at most k (and output such a path decomposition
if it exists) in time O(|V (H)| log(|V (H)|) + E(H)) (e.g., by using Dijkstra’s algorithm).
It remains to analyze the time required to construct H (as well as its size).

Because every downward closed set D can be characterized by a vector
v ∈ [0, |W1|]× . . .× [0, |Ww|] (namely by the vector v(D)), there are at most |V (G)|w such
sets D. Moreover, due to Lemma 5.33 for each such D there are at most 2k minimal vertex
covers of B(D) of size at most k. Hence, H has at most O(|V (G)|w2k) vertices and again
using Lemma 5.33, the vertex set of H can be constructed in time O(|V (G)|w+2k22k). To
compute the arc set of H, we go over all of the at most O((|V (G)|w2k)2) pairs of vertices
of H and check the conditions C3A–C3C, which can be done in time O(|V (G)|) (for each
of these pairs). Hence, the total time required to construct H is O((|V (G)|w2k)2|V (G)|)
and since this dominates the time required to find a shortest path in H, this is also the
total running time of the algorithm.

Theorem 5.35. There is a polynomial-time algorithm that outputs a prefix path-decom-
position of G w.r.t. ≤V of width at most 2w(2k2 + k) + 1 or outputs correctly that no
prefix path decomposition of G w.r.t. ≤V of width at most k exists.

Proof. For a vector v ∈ [0, |W1|]×. . .×[0, |Ww|] and i with 1 ≤ i ≤ w, let A(v, i) be the set
of vertices δ(D≤V (v))∩Wi, let B(v, i) be the set of vertices N(δ(D≤V (v))∩Wi)\D≤V (v)),
and let G(v, i) be the bipartite graph with bipartition (A(v, i), B(v, i)) containing all
edges of G between A(v, i) and B(v, i). Let H(G(v, i)) be the set of vertices of G(v, i)
with degree larger than k and let C(G(v, i)) consists of H(G(v, i)) and all vertices in
A(v, i) \H(G(v, i)) with at least one neighbor in G(v, i) \H(G(v, i)). We also set P (v)
to be the set of vertices

⋃
1≤i≤w C(G(v, i)).

We are now ready to describe the algorithm that outputs a prefix path decomposition
of G w.r.t. to ≤V of width at most 2w(2k2 + k) + 1 or outputs “No” if no prefix path
decomposition of G w.r.t. ≤V of at width at most k exists. The algorithms tries to
iteratively construct a sequence (v1, . . . , vn) of vectors vi ∈ [0, |W1|]× . . .× [0, |Ww|] such
that v1 is the all zero vector, vn is the vector (|W1|, . . . , |Ww|), vi+1 is obtained from
vi by increasing exactly one component of vi by one, and |C(G(vi, j))| ≤ 2k2 + k for
every i and j with 1 ≤ i ≤ n and j with 1 ≤ j ≤ w. The algorithm tries to find the
sequence in a greedy manner, i.e., after having constructed the sequence (v1, . . . , vi)
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it first checks whether vi is the vector (|W1|, . . . , |Ww|) (in which case the algorithm
has succeeded). Otherwise it goes over all j with 1 ≤ j ≤ w and checks whether the
vector v′ obtained from vi by increasing the j-th entry by one satisfies v′[j] ≤ |Wj | and
|C(G(v′, j))| ≤ 2k2 + k. If so it continues on the sequence (v1, . . . , vi, v

′). Otherwise, it
outputs that G does not have a prefix path decomposition w.r.t. ≤V of width at most k.

If the algorithm succeeds, it outputs P := (P1, . . . , Pn) with P1 = ∅ and Pi :=
P (vi) ∪ P (vi−1) ∪ (D≤V (vi) \ D≤V (vi−1)) for every i with 1 < i ≤ n as the prefix
path decomposition of G w.r.t. ≤V . Otherwise, it returns that G does not have a prefix
path decomposition w.r.t. of width at most k. This completes the description of the
algorithm.

It is straightforward to check that the algorithm runs in polynomial-time. It remains to
show correctness of the algorithm.

We start by showing that if the algorithm succeeds and outputs the sequence P :=
(P1, . . . , Pn), then P is a prefix path decomposition of G w.r.t. ≤V of width at most
2w(2k2 + k) + 1. Let (v1, . . . , vn) be the sequence of vectors computed by the algorithm.
Recall that v1 is the all-zero vector, vn is the vector (|W1|, . . . , |Wn|), vi+1 is obtained
from vi by increasing exactly one entry by one, and |C(G(vi, j)| ≤ 2k2 + k for every i and
j with 1 ≤ i ≤ n and j with 1 ≤ j ≤ w. Because for every i with 1 < i ≤ n, Pi contains
(at least) the vertex D≤V (vi) \D≤V (vi−1), it holds that

⋃
1≤i≤n Pi = V (G), which shows

property (T1) for P.

Claim 5.36. Let v ∈ V (G) be any vertex such that v ∈ Pi \Pi+1, then v ∈ D≤V (vi), and
all neighbors of v outside of D≤V (vi) are in Pi and have degree more than k in G(vi, j)
for every 1 ≤ j ≤ w.

Proof of the Claim. We first show that v ∈ D≤V (vi). Assume for a contradiction that
v /∈ D≤V (vi). Then, because v ∈ Pi, it holds that v ∈ P (vi) ∪ P (vi−1). If v ∈ P (vi),
then v ∈ Pi+1 contradicting our assumption. Hence, v ∈ P (vi−1). In particular, there
is some j with 1 ≤ j ≤ w such that v ∈ B(vi−1, j) and either v has degree larger than
k in G(vi−1, j). Note that because v /∈ Pi+1, we obtain that v /∈ D≤V (vi+1) \D≤V (vi)
and hence also v /∈ D≤V (vi+1). It follows that v ∈ B(vi+1, j). Furthermore, if v had
degree more than k in G(vi−1, j), then because vi−1 ≤ vi+1, v still has degree more
than k in G(vi+1, j) and hence v ∈ C(vi+1, j) ⊆ Pi+1 contradicting our assumption.
This shows that v ∈ D≤V (vi).
We show next that all neighbors of v outside of D≤V (vi) are in Pi. Because v /∈ Pi+1,
we obtain that v /∈ P (vi). Consequently, for every j with 1 ≤ j ≤ w, all neighbors of
v in G(vi, j) have degree more than k. Hence, all neighbors of v outside of D≤V (vi)
are in C(vi, j) ⊆ Pi. ♦

To show property (T2) for P , it suffices to show that for any v ∈ V (G) with v ∈ Pi \Pi+1
for some position i with 1 ≤ i < n, it holds that

v /∈ Pj = D≤V (vj) \D≤V (vj−1) ∪ P (vj−1) ∪ P (vj)
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for any j > i+ 1. From Claim 5.36, we obtain that v ∈ D≤V (vi), and all the neighbors
of v outside of D≤V (vi) have degree more than k in G(vi, l) for every l with 1 ≤ l ≤ w.
Because v ∈ D≤V (vi) and vi ≤ vj , we obtain that v /∈ D≤V (vj)\D≤V (vj−1). Consequently,
it is sufficient to show that v /∈ P (vj) for any j > i+ 1. Because all the neighbors of v
outside of D≤V (vi) have degree more than k in G(vi, l) for every l with 1 ≤ l ≤ w and
vi ≤ vj , we obtain that for every j > i+ 1 and every l with 1 ≤ l ≤ w, it holds that all
the neighbors of v outside of D≤V (vj) have degree more than k in G(vj , l). It follows
that v /∈ P (vj), as required.

We will show property (T3) for P by showing (by induction on the index of the forgotten
vertices) that whenever a vertex is forgotten at position i, then every edge incident to it
is contained in some bag j ≤ i. This clearly holds if v is the first vertex that is forgotten,
because all neighbors of v in D≤V (vi) must still be in Pi and all neighbors of v outside of
D≤V (vi) are in Pi by Claim 5.36. So assume that v is the l-th vertex that is forgotten
and v is forgotten at some position i. Again, all neighbors of v in D≤V (vi) are either
still in Pi or there have been forgotten before v and hence (by the induction hypotheses)
the edges incident to the forgotten neighbors are contained in some bag Pj with j ≤ i.
Moreover, because of Claim 5.36 all the neighbors of v outside of D≤V (vi) are in Pi.

The downward closure property of P follows immediately from Claim 5.32 and the fact
that D≤V (vi) is downward closed for every i with 1 ≤ i ≤ n.

By construction the width of P is at most 2w(2k2 + k) + 1. This shows that P is a prefix
path decomposition of G w.r.t. ≤V of width at most 2w(2k2 + k) + 1.

We show next that if the algorithm is not successful, then G does not have a prefix path
decomposition w.r.t. ≤V of width at most k. Because the algorithm is not successful,
there is a vector v ∈ [0, |W1|] × . . . × [0, |Ww|] with v 6= (|W1|, . . . , |Ww|) such that for
every j with 1 ≤ j ≤ w either v′[j] > |Wj | or |C(G(v′, j))| > 2k2 + k, where v′ is
the vector obtained from v by increasing the j-th entry of v by one. Assume for a
contradiction that there is a prefix path decomposition P := (P1, . . . , Pn) of G w.r.t.
≤V of width at most k. W.l.o.g., we will assume that |Pi4Pi+1| ≤ 1. Let i be the
smallest integer with 1 ≤ i ≤ n such that there is a l with 1 ≤ l ≤ w with vP [l] > v[l],
where vP := v(P≤V (P≤i)). Observe that because |Pi4Pi+1| ≤ 1, the integer l is unique
and moreover vP [l] ≤ v[l] + k. Hence, vP [l′] ≤ v[l′] for any l′ 6= l and 1 ≤ l′ ≤ w and
v[l] < vP [l] ≤ v[l] + k. It follows that there is a set D of at most k vertices of G(v, l) in
B(v, l) such that G(v, l) \D is an induced subgraph of G(vP , l). Because every vertex in
D can reduce the size of C(v, l) by at most k, i.e., if its degree in G(v, l) is exactly k, we
obtain that |C(vP , l)| ≥ |C(v, l)| − k2 > 2k2 + k − k2 = k2 + k.

Because of Lemma 5.30, Pi has to contain a vertex cover of BP(i). In particular, because
G(vP , l) is a subgraph of BP(i), Pi has to contain a vertex cover of G(vP , l). It remains
to show that because |C(vP , l)| > k2 + k, G(vP , l) cannot have a vertex cover of size at
most k. Assume for a contradiction that G(vP , l) has a vertex cover C of size at most
k. Clearly, H(vP , l) ⊆ C. Furthermore, because every vertex in G(vP , l) \H(vP , l) has
degree at most k, any such vertex can cover the edges of at most k non-isolated vertices
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in A(vP , l) ∩ C(vP , l). It follows that |C(vP , l)| ≤ k + k2 a contradiction.

5.4.2 FPT Algorithm for Trivial Dependency Scheme

We say that a dependency poset ≤V is layered if it there is a partition of the elements
into layers V1, . . . , V` such that for every xi ∈ Vi, xj ∈ Vj we have xi < xj if and only
if i < j. Informally, such posets are divided into a chain of layers of incomparable
elements. We note that every trivial dependency poset is a layered poset; however, other
dependency posets may in some cases also be layered.

The remainder of this section is devoted to a proof of the following theorem.

Theorem 5.37. Let ≤V be a layered dependency poset and k a natural number. There
exists an FPT algorithm (parameterized by k) that either finds a prefix path decomposition
of G w.r.t. ≤V of width at most k or determines that no such path decomposition exists.

Our general proof strategy will be to first show that any prefix path decomposition
w.r.t. a layered dependency poset has a simple structure, which then can be exploited
for an FPT algorithm that finds such a decomposition of small width. In particular,
we will show that any prefix path decomposition can be naturally divided into path
decompositions of the parts (V1, . . . , Vl) given by a layered dependency poset that are
held together via (minimal) separators between these parts.

In the following let G be a graph, ≤V be a layered dependency poset, let (V1, . . . , Vl)
be the ordered partition associated with ≤V , and let P = (P1, . . . , Pm) be a prefix path
decomposition of G w.r.t. ≤V . Moreover, for every layer i with 1 ≤ i ≤ l, we denote by
V≤i the set

⋃
1≤j≤i Vj and similarly by V>i the set V>i =

⋃
i<j≤l Vj . We will be interested

in (minimal) separators between V≤i and V>i in G. In particular, we will show that
any such separator corresponds to a vertex cover in the bipartite graph B(i) defined as
follows.

• V (B(i)) contains the vertices of G that either lie in V≤i and have at least one
neighbor in V>i, or are in V>i and have at least one neighbor in V≤i.

• {a, b} ∈ E(B(i)) if and only if {a, b} ∈ E(G) and a ∈ V≤i and b ∈ V>i.

Proposition 5.38. For every i with 1 ≤ i ≤ l, it holds that a set C of vertices of G is a
separator between V≤i and V>i in G if and only if C is a vertex cover of B(i).

Proof. Towards showing the forward direction, let C be a separator between V≤i and
V>i in G. Then C is also a vertex cover of B(i) since otherwise there would be an edge
e between V≤i and V>i in G with C ∩ e = ∅, contradicting our assumption that C is a
separator .

Towards showing the reverse direction, let C be a vertex cover of B(i). Then C is also a
separator between V≤i and V>i in G since otherwise there would be an edge e between
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V≤i and V>i in B(i) with C ∩ e = ∅, contradicting our assumption that C is a vertex
cover of B(i).

In the following we will show that for every i with 1 ≤ i ≤ l, P contains at least one bag
that contains all vertices of a minimal separator between V≤i and V>i in G. Namely, we
will show that this holds for the first bag of P which precedes a bag that forgets a vertex
from V>i. We will denote this bag by p(i); formally, we set p(i) = min{ fP(v) | v ∈ V>i }
where “min” returns the left-most bag out of the set.

Lemma 5.39. For every i with 1 ≤ i ≤ l, it holds that the bag p(i) of P contains a
minimal separator between V≤i =

⋃
1≤j≤i Vj and V>i =

⋃
i<j≤l Vj in G.

Proof. Because of Proposition 5.38 it is sufficient to show that the bag p(i) contains
a vertex cover of the bipartite graph B(i). Towards showing this consider an edge
{a, b} ∈ E(B(i)) with a ∈ V≤i and b ∈ V>i. It follows from the choice of p(i) that:

O1 Every vertex in V (B(i)) ∩ V>i that has been introduced in some bag of P to the
left of p(i) or in p(i) is also in the bag p(i),

O2 Every vertex in V (B(i)) ∩ V≤i has been introduced in some bag of P to the left of
p(i) or in p(i).

If b is contained in the bag p(i) then there is nothing to show. So suppose that b is not in
the bag p(i). It follows from Observation O1 that b has not yet been introduced. Hence,
because of Property (T3) of a path decomposition, we obtain that the vertex a needs to
occur in some bag to the right of p(i) and it now follows from Observation O2 together
with Property (T2) of a path decomposition that a is contained in the bag p(i).

Using Lemma 5.39, we are ready to show that there always exists an optimal prefix path
decomposition of a graph G w.r.t. a dependency poset that is layered, which contains a
minimal separator between V≤i and V>i (for each i ≤ l) in G as a bag.

Lemma 5.40. There exists an optimal prefix path decomposition Q of G w.r.t. ≤V , such
that Q = (P1, . . . , Pn1 , . . . , Pn2 , . . . , Pni , . . . , Pnl), where for every i:

Q1 Pni is a minimal separator between V≤i and V>i;

Q2 (Pni−1 , . . . , Pni) is a path decomposition of Vi ∪ Pni−1 ∪ Pni;

Q3 every vertex in V>i is forgotten after the bag Pni, and V≤i ⊆ P≤ni.

Proof. We start with a given optimal prefix path decomposition P0 = P and we transform
it inductively to prefix path decompositions P1,P2, . . . ,Pl such that Pj satisfies properties
Q1, Q2 and Q3 up to index j. Clearly, P0 satisfies the conditions Q1, Q2 and Q3 up to
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index 0. As our inductive hypothesis, we assume we are given a prefix path decomposition
Pi−1 = (P1, . . . , Pn1 , . . . , Pn2 , . . . , Pni−1 , . . . Pr) which satisfies the conditions Q1, Q2 and
Q3 up to i− 1.

We proceed by showing how to construct Pi from Pi−1. Let Pi′ be the bag p(i) (i.e., the
first bag of Pi−1 that precedes the bag forgetting a vertex from V>i). Since Q3 holds for
i− 1, it is easy to see that i′ ≥ ni−1.

By Lemma 5.39 Pi′ contains a minimal separator Xi between V≤i and V>i. We set
X≤i = Pi′∩(V≤i \Xi), and X>i = Pi′∩(V>i \Xi). Next, we construct Pi = (P ′1, . . . , P ′r+2)
such that

• P ′j = Pj for j ≤ ni−1,

• P ′j = Pj \X>i for ni−1 < j ≤ i′,

• P ′i′+1 = Xi, and

• P ′j+2 = Pj \X≤i for j ≥ i′.

Moreover, we set ni = i′ + 1, hence Q1 holds for i. Since we do not change the path
decomposition up to Pni−1 , it is easy to see that Q1, Q2, Q3 still hold for all j < i. From
the choice of Pi′ it follows that all vertices of V>i are forgotten after the bag P ′i′+1 and
all vertices of V≤i are introduced before the bag P ′i′+1 (because of the downward closure
property). Hence, Q3 holds for i as well. Now we show that Q2 holds. Since Q3 holds
for both i− 1 and i, it follows that P ′ni−1 ∪ P

′
ni−1+1 ∪ · · · ∪ P ′ni = Vi ∪ P ′ni−1 ∪ P

′
ni . From

the construction of Pi, it follows that for every vertex x in Vi ∪ P ′ni−1 ∪ P
′
ni it holds that

if x ∈ Pj for ni−1 ≤ j ≤ i′, then x ∈ P ′j . Hence, the bags containing x form an interval.
We are left to show that every edge in Vi ∪ P ′ni−1 ∪ P

′
ni is contained in some bag Pj

for ni−1 ≤ j ≤ i′, hence it is also in the bag P ′j . Let e be an arbitrary edge with both
endpoints in Vi ∪ P ′ni−1 ∪ P

′
ni . Since Pi−1 is a path decomposition, there is a bag, say

Pje , that contain both endpoints of e. However note that all vertices of Vi ∪ P ′ni−1 ∪ P
′
ni

are forgotten in Pi−1 after the bag Pni−1 and introduced before the bag Pi′ . Hence if
je < ni−1, then e is contained also in Pni−1 and similarly if je > i′ then e is also in the
bag Pi′ . Therefore, Pi satisfies all the conditions Q1, Q2, Q3 for i.

We are left to verify that Pi is also a prefix path decomposition w.r.t. ≤V . It is easy to
verify that since each vertex of G is in a bag of Pi−1, the same holds for Pi as well.

Next, we show that property (T2) holds. The only way our operations could have
violated monotonicity is by deletion of X>i from a certain interval of the prefix path
decomposition, and in particular only for a vertex x ∈ X>i which occurs in Pni−1 and also
in Pi′ . By minimality of the separator in Pni−1 and Q3, there must exist a neighbor y of
x in V≤i−1 which has already been forgotten in Pni−1 . But then every minimal separator
between V≤i and V>i that is contained in Pi′ has to also contain x, since it has to cover
the edge xy. As a consequence, x ∈ Xi which contradicts x ∈ X>i.
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We proceed by showing that property (T3) holds. Since Xi is a minimal separator
between V>i and V≤i, all edges between X≤i and V>i are contained in the edges between
X≤i and Xi, and hence these are in the bag P ′i′ . Similarly, all edges between X>i and
V≤i are in P ′i′+2. Furthermore, all vertices of V>i are forgotten after P ′i′+2 and all vertices
of V≤i are introduced before P ′i′ . Therefore, the fact that every edge of G is in a bag of
Pi follows from the construction of Pi and the fact that Pi−1 is a path decomposition.

Finally, we show that Pi has the downward closure property. We consider three pos-
sibilities. If v ∈ V≤i \ Pi′ , then clearly fPi(v) = P ′j for some j < i′ and P ′≤j = P≤j or
P ′≤j = P≤j \ X>i. Since v ∈ V≤i and all vertices in X>i are from V>i, D≤(v) ⊆ P≤j
implies D≤(v) ⊆ P ′≤j . If v ∈ X≤i, then fPi(v) = P ′i′ and D≤(v) ⊆ V≤i ⊆ P ′≤i′ follows from
Q3. Otherwise, if fPi(v) = P ′j , then fPi−1(v) = Pj−2 and D≤(v) ⊆ P ′≤j = P≤j−2.

To later be able to compute a prefix path decomposition, we need to be able to enumerate
all possible minimal separators between V≤i and V>i for any i with 1 ≤ i ≤ l. The next
lemma shows that this is indeed possible.

Lemma 5.41. For every i with 1 ≤ i ≤ l, there are at most 2k minimal separators
between V≤i and V>i in G and these can be enumerated in time O(|E(B(i))|+ k22k).

Proof. Follows immediately by combination of Proposition 5.38 and Lemma 5.33.

Our proof requires one last technical observation, which states that it is possible to find
path decompositions starting and ending with a specific bag.

Observation 5.42. Given a graph G, integer k, and vertex subsets P, P ′ of size at most
k + 1, there exists an FPT algorithm (parameterized by k) which either constructs a path
decompositions which starts with a bag P and ends with a bag P ′ of width at most k or
determines that no such path decompositions exists.

Proof. Let us represent an instance (G,P, P ′) as a labeled graph G′ obtained from G by
the addition of two labels: the label P denotes vertices in P and the label P ′ denotes
vertices in P ′. We will show that the existence of a path decomposition P with the required
properties is closed under the minor operation on the labeled graph G′. Indeed, any path
decomposition of G′ can be modified to a path decomposition for any minor of G′ in
exactly the same way as in the case of standard path decompositions. Hence, it is sufficient
to check (G,P, P ′) against some f(k), for some function f , many forbidden labeled minors
and the claim then follows from Corollary 7.2 of Kawarabayashi et al. [134].

We remark that a more efficient algorithm for Observation 5.42 could be obtained by
adapting Bodlaender’s algorithm [22]; however, a formal proof of this claim is outside
the scope of this thesis.
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Proof of Theorem 5.37. By Lemma 5.40 we can just concentrate on finding a prefix path
decomposition such that P = (∅ = P0, . . . , Pn1 , . . . , Pn2 , . . . , Pni , . . . , Pnl = ∅), where
Pni is a minimal separator between V≤i and V>i and (Pni−1 , . . . , Pni) is a prefix path
decomposition of Vi ∪Pni−1 ∪Pni . We say that minimal separators C between V≤i−1 and
V>i−1 and D between V≤i and V>i are compatible if

• if C contains a vertex v ∈ V>i, then D contains v.

• if D contains a vertex v ∈ V<i, then C contains v.

Since by Lemma 5.40 (property Q3) all vertices in V>i are forgotten in P after the bag Pni
and V≤i ⊆ P≤ni it follows that Pni−1 and Pni are compatible for all i. Since all vertices
of Vi are incomparable, every proper path decomposition of Vi ∪ Pni−1 ∪ Pni starting
with the bag Pni−1 and ending with the bag Pni−1 is also a prefix path decomposition.
To decide whether G has such prefix path decomposition w.r.t. V of width k we first
construct an auxiliary directed graph H as follows. H contains a vertex (i, P, P ′,P) for
every natural number i with 1 ≤ i ≤ l and for every two compatible minimal separators
P, P ′ of size at most k between V≤i−1 and V>i−1 and between V≤i and V>i, respectively,
and P is a path decomposition of Vi ∪ P ∪ P ′ of width at most k that starts with P and
ends with P ′.

Moreover, there are two special vertices (0, ∅, ∅, ∅) and (l + 1, ∅, ∅, ∅). There is an edge
in H from every vertex (i, P, P ′,P) to any vertex (i+ 1, P ′, P ′′,P ′), where 0 ≤ i ≤ l + 1.
By Lemma 5.41 there are at most 2k minimal separators between V≤i and V>i in G
and these can be enumerated in time O(k22k + |E(B(i))|). Therefore, H has O(l · 4k)
vertices. Moreover, for each i, we can enumerate all pairs P and P ′ and check their
compatibility in time O(4k + |E(G)|). Furthermore, for each such pair P , P ′, we
can compute an optimal path decomposition of of Vi ∪ P ∪ P ′ starting with P and
ending with P ′ by Observation 5.42. Once H is constructed, it is easily observed
that each path from (0, ∅, ∅, ∅) to (l + 1, ∅, ∅, ∅) gives us a prefix path decomposition
of G w.r.t. ≤V of width at most k. On the other hand, if there exists a prefix path
decomposition of G w.r.t. ≤V , then by Lemma 5.40 there exists one of the form
P = (∅ = P0, . . . , Pn1 , . . . , Pn2 , . . . , Pni , . . . , Pnl = ∅), where Pni−1 and Pni are compatible
minimal separators for all i. But then H contains a path (0, ∅, ∅, ∅), (0, ∅, Pn1 ,P1),
(0, Pn1 , Pn2 ,P2),. . . , (l + 1, Pnl , ∅, ∅). Finally, finding such a path in H takes time time
at most |V (H)|2.

5.5 Summary and Open Questions
Our results push the frontiers of tractability for QBF to new natural classes of instances.
A number of interesting research questions still remain open in the area, and perhaps
the most prominent of these is whether one can lift our results towards prefix treewidth.
This would be especially interesting for posets of unbounded width, since on bounded-
width posets these parameters differ only by a constant factor. The exact complexity of
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computing prefix treewidth and prefix pathwidth on general posets remains a challenging
open problem.

Notes
The results in this chapter appeared in a conference paper in the proceedings of The
Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016) [72].
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CHAPTER 6
Background

Over the past years, the parameterized complexity of finding a modulator to a plethora
of graph classes has been systematically researched. In particular, the most attention
has been devoted to the modulators to classes that admit efficient algorithms for many
NP-hard problems with a hope to lift the algorithmic properties of these classes to obtain
FPT algorithms [88, 92]. Therefore, problems such as Vertex Cover or Feedback
Vertex Set are of immediate interest in this setting as modulators to edgeless graph and
forests, respectively. These classes can be viewed as classes of graphs having treewidth 0
and 1, respectively. Furthermore, many problems are known to be solvable in polynomial
time on graphs of a constant treewidth [46]. For this reason, classes of graphs of constant
treewidth have been studied in detail, and Fomin et al. [88] and Kim et al. [138] showed
that the corresponding Treewidth-t Vertex Deletion1 problem is solvable in single-
exponential FPT time and it even admits a linear kernel. This leads us to the first
technical chapter of Part II, where we achieve the first step towards extending these
results to modulators to graphs of constant rank-width. Namely, we design a single
exponential FPT algorithm for Rank-width-1 Vertex Deletion.

Afterwards, we switch our attention towards directed graphs. Here the situation is more
complicated. Even though there exists an equivalent notion of directed treewidth for
directed graphs [19, 130, 135], an FPT algorithm for Directed Feedback Vertex Set,
which is the problem of finding a modulator to directed acyclic graph (graphs of directed
treewidth 0), was a longstanding open problem in the area of parameterized algorithms.
Following the resolution of the fixed-parameter tractability in 2008 by Chen et al. [42],
two prominent questions were raised: can the problem be solved in single-exponential
FPT time, and does a polynomial kernel exist for the problem? These problems have
since become two of the main open problems in the area of parameterized complexity.
We address the latter question in Chapter 8. However, we were not able to answer the

1Treewidth-t Vertex Deletion asks whether it is possible to delete k vertices so that the resulting
graph has treewidth at most t.
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question in its full generality; instead, we give a polynomial kernel for a parameter that
is always at least the size of directed feedback vertex set. Namely, we parameterized by
the size of the feedback vertex set of the underlying undirected graph.

Finally, in the last chapter of Part II, we study an application of modulator-based
techniques towards obtaining FPT algorithms for ILP. More precisely, we investigate
what happens if the incidence graph of a given ILP instance has a small modulator to
small components. Note that this parameter is another natural generalization of vertex
cover, since vertex cover is precisely the modulator to components of size 1.
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CHAPTER 7
Modulators to

Distance-Hereditary Graphs

The successful development of single-exponential FPT algorithms for Treewidth-t
Vertex Deletion motivates us to study Rank-width-t Vertex Deletion, which
is analogous to Treewidth-t Vertex Deletion but replaces treewidth with the
structural parameter rank-width. Kanté et al. [133] observed that Rank-width-t
Vertex Deletion is fixed-parameter tractable using the general framework of Courcelle,
Makowsky, and Rotics [50]. However, this algorithm does not provide any reasonable
function for k. Thus Kanté et al. naturally asked whether it is solvable in reasonably
better running time. For instance, it is actually open whether Rank-width-t Vertex
Deletion can even be solved in time 22O(k)

nO(1), where k is the size of the deletion set.

In this chapter, we focus on graphs of rank-width at most 1, which are precisely distance-
hereditary graphs [167]. Bandelt and Mulder [17] found all the minimal induced subgraph
obstructions for distance-hereditary graphs. Distance-hereditary graphs are naturally
related to split decompositions, where they are exactly the graphs that are completely
decomposable into stars and complete graphs [31].

Given the above, we view the vertex deletion problem for distance-hereditary graphs as a
first step towards handling Rank-width-t Vertex Deletion.

Results

Recall that a graph G is called distance-hereditary if for every connected induced subgraph
H of G and every v, w ∈ V (H), the distance between v and w in H is the same as the
distance between v and w in G. We study the following parameterized problem.
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Distance-Hereditary Vertex Deletion
Instance: A graph G and an integer k.
Parameter: k.
Task: Is there a vertex set Q ⊆ V (G) with |Q| ≤ k such that G − Q is distance-
hereditary?

The main result of this chapter is a single-exponential FPT algorithm for Distance-
Hereditary Vertex Deletion.

Theorem 7.1. Distance-Hereditary Vertex Deletion can be solved in time
O(37k · |V (G)|7(|V (G)|+ |E(G)|)).

We note that this solves an open problem of Kanté, Kim, Kwon, and Paul [133]. The
core of our approach exploits two distinct characterizations of distance-hereditary graphs:
one by forbidden induced subgraphs (obstructions), and the other by admitting a special
kind of split decomposition [51].

The algorithm can be conceptually divided into three parts.

1. Iterative Compression. This technique allows us to reduce the problem to the
easier Disjoint Distance-Hereditary Vertex Deletion, where we assume
that the instance additionally contains a certain form of advice to aid us in our
computation. Specifically, this advice is a vertex deletion set S to distance-hereditary
graphs which is disjoint from and slightly larger than the desired solution.

2. Branching Rules. We exhaustively apply two branching rules to simplify the given
instance of Disjoint Distance-Hereditary Vertex Deletion. At a high level,
these branching rules allow us to assume that the resulting instance contains no small
obstructions and furthermore that certain connectivity conditions hold on G[S].

3. Simplification of Split Decomposition. We compute the split decomposition
of G − S and exploit the properties of our instance G guaranteed by branching
to prune the decomposition. In particular, we show that the connectivity con-
ditions and non-existence of small obstructions mean that S must interact with
the split decomposition of G − S in a special way, and this allows us to identify
irrelevant vertices in G− S. This is by far the most technically challenging part of
the algorithm.

A more detailed explanation of our algorithm is provided in Section 7.3, after the
definition of required notions. We complement this result with an algorithmic lower
bound which rules out a subexponential FPT algorithm for Distance-Hereditary
Vertex Deletion under well-established complexity assumptions. We also note that
the naive approach of simply hitting all known “obstructions” (i.e., forbidden induced
subgraphs) for distance-hereditary graphs does not lead to an FPT algorithm. Indeed,
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the set of induced subgraph obstructions for distance-hereditary graphs includes induced
cycles of length at least 5. Heggernes et al. [115] showed that the problem asking whether
it is possible to delete k vertices so that the resulting graph has no induced cycles of length
at least 5 is W[2]-hard. Therefore, unless W[2]=FPT, it is not straightforward to obtain
a single-exponential FPT algorithm for Distance-Hereditary Vertex Deletion by
simply finding and hitting all forbidden induced subgraphs for the class.

Organization of the Chapter

The Chapter is organized as follows. We begin with a short section introducing distance-
hereditary graphs. Afterwards, in Section 7.2, we define splits and split decompositions.
In Section 7.3, we set the stage for the process of simplifying the split decomposition,
which entails the definition of Disjoint Distance-Hereditary Vertex Deletion,
introduction of our branching rules, and a few technical lemmas which will be useful
throughout the later sections. Section 7.4 then introduces and proves the soundness
of five polynomial-time reduction rules; crucially, the exhaustive application of these
rules guarantees that the resulting instance will have a certain “inseparability” property.
Using this structural result, we prove that one of reduction rules is applicable until
the remaining instance is trivial. Finally, the proof of our main result as well as the
corresponding lower bound are presented in Section 7.5. Section 7.5 also illustrates that
once we have an single-exponential FPT algorithm for finding the vertex deletion set to
distance-hereditary graphs, it can be used as a parameter which allows single-exponential
FPT algorithms for classical NP-hard problems.

7.1 Distance-Hereditary Graphs

A graph G is called distance-hereditary if for every connected induced subgraph H of G
and every v, w ∈ V (H), the distance between v and w in H is the same as the distance
between v and w in G. For instance, the induced cycle c1c2c3c4c5c1 is not distance-
hereditary, because the distance from c1 to c3 is 2, but if we take an induced subgraph
on {c1, c3, c4, c5}, then the distance becomes 3. This graph class was first introduced by
Howorka [119], and deeply studied by Bandelt and Mulder [17]. There are several other,
equivalent characterizations of distance-hereditary graphs. Here we will exploit two other
characterizations of the graph class: one by forbidden induced subgraphs (given below),
and one via split decompositions (given in the following subsection).

The house, the gem, and the domino graphs are depicted in Figure 7.1. A graph
isomorphic to one of the house, the gem, the domino, and induced cycles of length at
least 5 will be called a distance-hereditary obstruction or shortly a DH obstruction. A
DH obstruction with at most 6 vertices will be called a small DH obstruction. Two
vertices v and w in a graph G are called twins if they have the same set of neighbors in
V (G) \ {v, w}. Note that every DH obstruction does not contain any twins.
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house gem domino

Figure 7.1: Small DH obstructions which are not cycles.

Theorem 7.2 (Bandelt and Mulder [17]). A graph is distance-hereditary if and only if
it contains no DH obstructions as induced subgraphs.

We state an observation which will be useful later on.

Observation 7.3. For any DH obstruction H and any edge e in H, it holds that the
graph H ′ obtained by subdividing e also contains a DH obstruction as an induced subgraph.

The following lemma will be used to find DH obstructions later on.

Lemma 7.4 (Kantè, Kim, Kwon, and Paul, Lemma 4.3 of [133]). Let G be a graph
obtained from an induced path of length at least 3 by adding a vertex v adjacent to its
end vertices where v may be adjacent to some internal vertices of the path. Then G has a
DH obstruction containing v. In particular, if the given path has length at most 4, then
G has a small DH obstruction containing v.

Proof. The first statement was shown in Lemma 4.3 of [133]. If the given path has length
at most 4, then G has at most 6 vertices, and thus G contains a small DH obstruction
containing v.

7.2 Split decompositions
We follow the notations used by Bouchet [31].

For two vertex sets A and B, we say that

• A is complete to B if for every a ∈ A, b ∈ B, a is adjacent to b,

• A is anti-complete to B if for every a ∈ A, b ∈ B, a is not adjacent to b.

A split of a connected graph G is a vertex partition (X,Y ) of G such that |X| ≥ 2, |Y | ≥ 2,
and NG(Y ) is complete to NG(X). See Figure 7.2 for an example. Splits are also called
1-joins, or simply joins [91]. A connected graph G is called a prime graph if |V (G)| ≥ 5
and it has no split. A bipartition is trivial if one of its parts is the empty set or a
singleton. Cliques and stars are called degenerate graphs; notice that every non-trivial
bipartition of their vertices is a split.
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X Y X Y

Figure 7.2: An example of a split (X,Y ) of a graph. Its simple decomposition is presented
in the second picture, where the red edge is the newly introduced marked edge.

A connected graph D with a distinguished set of edges M(D) is called a marked graph
if the edges in M(D) form a matching and each edge in M(D) is a cut edge. An edge
in M(D) is called a marked edge, and every other edge is called an unmarked edge. A
vertex incident with a marked edge is called a marked vertex, and every other vertex is
called an unmarked vertex. Each connected component of D −M(D) is called a bag of
D.

When a connected marked graph G, which will be a bag of a marked graph, admits a
split (X,Y ), we construct a marked graph D on the vertex set V (G) ∪ {x′, y′} such that

• for vertices x, y with {x, y} ⊆ X or {x, y} ⊆ Y , xy ∈ E(G) if and only if xy ∈ E(D),

• x′y′ is a new marked edge,

• X is anti-complete to Y ,

• {x′} is complete to NG(Y ) and {y′} is complete to NG(X) (with unmarked edges).

The marked graph D is called a simple decomposition of G. A split decomposition of a
connected graph G is a marked graph D defined inductively to be either G or a marked
graph defined from a split decomposition D′ of G by replacing a connected component
H of D′ −M(D′) with a simple decomposition of H. See Figure 7.3 for an example of a
split decomposition. The following lemma provides an important property. An example
of an alternating path described in Lemma 7.5 is presented in Figure 7.3.

Lemma 7.5 (See Lemma 2.10 of Adler, Kanté, and Kwon [3]). Let D be a split decom-
position of a connected graph G and u, v be two vertices in G. Then uv ∈ E(G) if and
only if there is a path from u to v in D where its first and last edges are unmarked, and
an unmarked edge and a marked edge alternatively appear in the path.

Naturally, we can define a reverse operation of decomposing into a simple decomposition;
for a marked edge xy of a split decomposition D, recomposing xy is the operation of
removing two vertices x and y and making ND(x) \ {y} complete to ND(y) \ {x} with
unmarked edges. It is not hard to observe that if D is a split decomposition of G, then
G can be obtained from D by recomposing all marked edges.
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G

C1

C2

B1 B2

B3

B4 B5

D

v

w

Figure 7.3: A graph G and its canonical split decomposition D. Marked edges are
represented by dashed edges, and bags are indicated by circles. Note that path(B1, B5) =
{B1, B2, B4, B5} and {B4, B5} is the set of (C1, C2)-separator bags, and {B4} is the set
of (B1, B5)-separator bags. The shortest path from v to w in D is a path from v to w
where its first and last edges are unmarked, and an unmarked edge and a marked edge
alternatively appear in the path. The existence of such a path exactly corresponds to
the adjacency relation in the original graph. The distance between C1 and C2 in G is 3,
and there are two (C1, C2)-separator bags.

Note that there are many ways of decomposing a complete graph or a star, because every
non-trivial vertex partition of these graphs is a split. Cunningham and Edmonds [52]
developed a canonical way to decompose a graph into a split decomposition by not
allowing to decompose a bag which is a star or a complete graph. A split decomposition
D of G is called a canonical split decomposition if each bag of D is either a prime graph,
a star, or a complete graph, and every recomposing of a marked edge in D results in a split
decomposition without the same property. It is not hard to observe that every canonical
split decomposition has no marked edge linking two complete bags, and no marked edge
linking a leaf of a star bag and the center of another star bag [31]. Furthermore, for each
pair of twins a and b in G, it holds that a and b must both be located in the same bag of
the canonical split decomposition.

Theorem 7.6 (Cunningham and Edmonds [52]). Every connected graph has a unique
canonical split decomposition, up to isomorphism.

Theorem 7.7 (Dahlhaus [54]). The canonical split decomposition of a graph G can be
computed in time O(|V (G)|+ |E(G)|).

We can now give the second characterization of distance-hereditary graphs that is crucial
for our results. For convenience, we call a bag a star bag or a complete bag if it is a star
or a complete graph, respectively.

Theorem 7.8 (Bouchet [31]). A graph is a distance-hereditary graph if and only if every
bag in its canonical split decomposition is either a star bag or a complete bag.

We will later on also need a little bit of additional notation related to split decompositions
of distance-hereditary graphs. Let D be a canonical split decomposition of a distance-
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hereditary graph. For two distinct bags B1 and B2, we denote by comp(B1, B2) the
connected component of D−V (B1) containing B2. Technically, when B1 = B2, we define
comp(B1, B2) to be the empty set. For two bags B1 and B2, we denote by path(B1, B2)
the set of all bags containing a vertex in a shortest path from B1 to B2 in D. In other
words, when we obtain a tree from D by contracting every bag B into a node v(B),
path(B1, B2) is the set of all bags corresponding to nodes of the unique path from v(B1)
to v(B2) in the tree. See Figure 7.3.

Let C1 and C2 be two disjoint vertex subsets of D such that C1 and C2 are sets of
unmarked vertices contained in (not necessarily distinct) bags B1 and B2, respectively.
A bag B is called a (C1, C2)-separator bag if B is a star bag contained in path(B1, B2)
whose center is adjacent1 to neither comp(B,B1) nor comp(B,B2). We remark that
B can be Bi for some i ∈ {1, 2}, and especially when B = B1 = B2, B is a star bag
and each Ci consists of leaves of B and B1 is the unique (C1, C2)-separator bag. For
convenience, we also say that a bag B is a (B1, B2)-separator bag if B is a star bag
contained in path(B1, B2) \ {B1, B2} whose center is adjacent to neither comp(B,B1)
nor comp(B,B2). For this notation, B cannot be B1 nor B2.

Observation 7.9. The distance between C1 and C2 in the original graph is exactly
the same as one plus the number of (C1, C2)-separator bags.

7.3 Setting the Stage
We begin by applying the iterative compression technique, first introduced by Reed,
Smith and Vetta [174] to show that Odd Cycle Transversal can be solved in
single-exponential FPT time. This technique allows us to transform our original target
problem to one that is easier to handle, which we call Disjoint Distance-Hereditary
Vertex Deletion. Our goal for the majority of the chapter will be to obtain a single-
exponential FPT algorithm for Disjoint Distance-Hereditary Vertex Deletion;
this is then used to obtain an algorithm for Distance-Hereditary Vertex Deletion
in Section 7.5.

Disjoint Distance-Hereditary Vertex Deletion
Instance : A graph G, an integer k, and S ⊆ V (G) such that G − S is distance-
hereditary.
Task : Is there Q ⊆ V (G) \ S with |Q| ≤ k such that G−Q is distance-hereditary?

We will denote an instance of Disjoint Distance-Hereditary Vertex Deletion as
a tuple (G,S, k). The major part of our result is to prove that this problem can be solved
in time 2O(k+cc(G[S]))nO(1), where cc(G[S]) denotes the number of connected components
of G[S]. We note that any instance of Disjoint Distance-Hereditary Vertex
Deletion such that G[S] is not distance-hereditary must clearly be a No-instance; hence
we will assume that we reject all such instances immediately.

1Recall that a vertex v is adjacent to S ⊆ V (G), if it is adjacent to some vertex u ∈ S.
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Before explaining the general approach for solving Disjoint Distance-Hereditary
Vertex Deletion, it will be useful to introduce a few definitions. Since the canonical
split decomposition guaranteed by Theorem 7.8 only helps us classify twins in G− S and
not in G, we explicitly define an equivalence ∼ on the vertices of G− S which allows us
to classify twins in G:

for two vertices u, v ∈ V (G− S), u ∼ v iff they are twins in G.

We denote by tc(G − S) the set of equivalence classes of ∼ on V (G − S), and each
individual equivalence class will be called a twin class in G− S. We can observe that if
U ∈ tc(G− S) lies in a single connected component of G− S, then U must be contained
in precisely one bag of the split decomposition of this connected component of G− S,
as U is a set of twins in G− S as well. A twin class is S-attached if it has a neighbor
in S, and non-S-attached if it has no neighbors in S. Similarly, we say that a bag in
the canonical split decomposition of G− S is S-attached if it has a neighbor in S, and
non-S-attached otherwise.

We frequently use a special type of star bags. A star bag B is called simple if its center
is either unmarked or adjacent to a connected component of D − V (B) consisting of one
non-S-attached bag.

7.3.1 Overview of the Approach

Now that we have introduced the required terminology, we can provide a high-level
overview of our approach for solving Disjoint Distance-Hereditary Vertex Dele-
tion.

1. We exhaustively apply the branching rules described in Section 7.3.2. Branching
rules will be applied when G has a small subset X ⊆ V (G− S) such that S ∪X
induces a DH obstruction, or there is a small connected subset X ⊆ V (G−S) such
that adding X to S decreases the number of connected components in G[S].

2. We exhaustively apply the initial reduction rules described in Section 7.4. Each of
these rules runs in polynomial time, finds a part in the canonical split decomposition
of a connected component of G − S that can be simplified, and modifies the
decomposition. Each application of a reduction rule from Section 7.4 either reduces
the number of vertices in G−S or reduces the total number of bags in the canonical
split decomposition (of a connected component of G−S). It is well known that the
total number of bags in the canonical split decomposition of a graph is linear in
the number of vertices. Therefore, the total number of application of these initial
reduction rules will also be at most linear in the number of vertices.

3. We say that G and the canonical split decompositions of G− S are reduced if the
branching rules in Section 7.3.2 and reduction rules in Section 7.4 cannot be applied
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anymore. We will obtain the following simple structure of the decompositions in
the reduced instance:

• Each canonical split decomposition D of a connected component of G − S
contains at least two distinct S-attached twin classes (Reduction Rule 7.1).
• Each bag contains at most one S-attached twin class (Lemma 7.18).
• When B is a bag and D′ is a connected component of D − V (B) containing
no bags having a neighbor in S, D′ consists of one bag and B is a star bag
whose center is adjacent to D′ (Lemma 7.19). In this case, B is a simple star
bag whose center is adjacent to D′.

• When B is a bag and D′ is a connected component of D − V (B) such that
D′ contains exactly one S-attached bag B′, there is no (B′, B)-separator bag
(Lemma 7.26).

4. Using these structures, we prove in Subsection 7.4.4 that if a split decomposition
of a connected component of G − S contains two S-attached twin classes, then
one of reduction rules should be applied. For this, we assign any bag as a root
bag R of D and choose a bag B with maximum |path(B,R)| such that there are
two descendant bags of B having S-attached twin classes C1 and C2, respectively.
Then the distance from C1 to C2 in G− S is at most 2, and thus their neighbors
on S should be close to each other, as branching rules cannot be applied further.
Depending on the type of B and the distance from C1 to C2, we show separately
that one of reduction rules can be applied.
It will imply that we can apply one of all rules recursively until G−S is empty or k
becomes 0. Then we can test whether the resulting instance is distance-hereditary
or not in polynomial time, and output an answer.

Let us also say a few words about the running time of the algorithm. Let µ := k+cc(G[S]).
Each of our branching rules will reduce µ and branch into at most 6 subinstances. Each
reduction rule takes polynomial time, and the reduction rules will be applied at most
O(|V (G)|) times. Whenever we introduce a new rule, we also show that it is sound.

A vertex v in G − S is called irrelevant if (G,S, k) is a Yes-instance if and only if
(G− v, S, k) is a Yes-instance. We will be identifying and removing irrelevant vertices
in several of our reduction rules. When removing a vertex v from G− S, it is easy to
modify the canonical split decomposition containing v, and thus it is not necessary to
recompute the canonical split decomposition of the resulting graph from scratch. More
details regarding such modifications of split decompositions can be found in the work of
Gioan and Paul [105].

7.3.2 Branching Rules

We state our two branching rules below.

109



7. Modulators to Distance-Hereditary Graphs

Branching Rule 7.1. For every vertex subset X of G− S with |X| ≤ 5, if G[S ∪X] is
not distance-hereditary, then we remove one of the vertices in X, and reduce k by 1.

Branching Rule 7.2. For every vertex subset X of G− S with |X| ≤ 5 such that G[X]
is connected and the set NG(X) ∩ S is not contained in a connected component of G[S],
then we either remove one of the vertices in X and reduce k by 1, or put all of them into
S (which reduces the number of connected components of G[S]).

The soundness of Branching Rules 7.1 and 7.2 are clear, and these rules can be performed
in polynomial time. The exhaustive application of these branching rules guarantees the
following structure of the instance.

Lemma 7.10. Let (G,S, k) be an instance reduced under Branching Rules 7.1 and 7.2.

(1) G has no small DH obstructions.

(2) Let v ∈ V (G− S). For every two vertices x, y ∈ NG(v) ∩ S, they are contained in
the same connected component of G[S] and there is no induced path of length at
least 3 from x to y in G[S]. Specifically, if xy /∈ E(G), then there is an induced
path xpy for some p ∈ S.

(3) There is no induced path v1 · · · v5 of length 4 in G−S where v1 and v5 have neighbors
in S but v2 and v4 have no neighbors in S.

(4) There is no induced path v1 · · · v4 of length 3 in G−S where v1 and v4 have neighbors
in S but v2 has no neighbors in S.

Proof. (1) Suppose G has a small DH obstruction H. Since G− S is distance-hereditary,
V (H) ∩ S 6= ∅. Thus, |V (H) \ S| ≤ 5, and it can be reduced under Branching Rule 7.1.

(2) First, by Branching Rule 7.2, x and y are contained in the same connected component
of G[S]. Suppose there is an induced path of length at least 3 from x to y in G[S]. Then
by Lemma 7.4, G[S ∪ {v}] contains a DH obstruction, contradicting our assumption that
G is reduced under Branching Rule 7.1. So, if xy /∈ E(G), then there is an induced path
of length 2 from x to y in G[S].

(3) Suppose there is an induced path v1 · · · v5 of length 4 in G− S where v1 and v5 have
neighbors on S but v2 and v4 have no neighbors on S. By Branching Rule 7.2, we know
that NG(v1)∩S and NG(v5)∩S are contained in the same connected component of G[S].
Let P be a shortest path from NG(v1) ∩ S to NG(v5) ∩ S (if v1 and v5 have a common
neighbor, then we choose a common neighbor). Then v2v1Pv5v4 is an induced path of
length at least 4 and v3 is adjacent to its end vertices. So, G[S∪{v1, . . . , v5}] contains a DH
obstruction, contradicting our assumption that G is reduced under Branching Rule 7.1.

(4) The same argument in (3) holds.
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Lemma 7.10, and especially point (2) in the lemma, is used in many parts of our proofs.
Since we will apply the branching rules exhaustively at the beginning and also after each
new application of a reduction rule, these properties will be implicitly assumed to hold
in subsequent sections.

We will make use of two more lemmas based on our branching rules. These will be used
in Section 7.4.4 as well as in the proof of Lemma 7.18 in Section 7.4.3.

Lemma 7.11. Let (G,S, k) be an instance reduced under Branching Rules 7.1 and 7.2.
Let C1, C2 be two distinct S-attached twin classes of G− S such that C1 is anti-complete
to C2, and (NG(C1) ∩NG(C2)) ∩ V (G− S) 6= ∅. Then:

(1) (NG(C1) ∩NG(C2)) ∩ S 6= ∅.

(2) For every x ∈ NG(C1) \ NG(C2) and every y1, y2 ∈ NG(C1) ∩ NG(C2), if x is
adjacent to y1, then x is adjacent to y2 as well. It implies that x is adjacent to
either all of vertices in NG(C1) ∩NG(C2) or neither of them.

(3) For every x ∈ NG(C1) \NG(C2) and every y1, y2 ∈ NG(C1) ∩NG(C2), if there is a
path xpy1 for some p ∈ S \NG(C1) (not necessarily induced), then p is adjacent to
y2 as well. It implies that p is adjacent to either all of vertices in NG(C1)∩NG(C2)
or neither of them.

Proof. For each i ∈ {1, 2} let ai ∈ Ci and let Ti = NG(Ci).

(1) Suppose T1∩S and T2∩S are disjoint. Let us choose a vertex z in (T1∩T2)∩V (G−S),
which is not an empty set by assumption. Thus, {a1, a2, z} induces a connected subgraph
of G. If T1 ∩ S and T2 ∩ S are not contained in one connected component of G[S], then
we can apply Branching Rule 7.2. As our instance was reduced under Branching Rule 7.2,
we know that T1 ∩ S and T2 ∩ S are contained in the same connected component of G[S].

Let P be a shortest path from T1 ∩ S to T2 ∩ S in G[S]. Clearly, P contains at most one
vertex from each Ti∩S. As C1 is anti-complete to C2, a1Pa2 is an induced path of length
at least 3 and z is adjacent to its end vertices. By Lemma 7.4, G[V (P ) ∪ {a1, a2, z}]
contains a DH obstruction, contradicting the assumption that G is reduced under
Branching Rule 7.1.

(2) For contradiction, suppose xy1 ∈ E(G) and xy2 /∈ E(G). Then xa1y2a2 is an induced
path of length 3 and y1 is adjacent to its end vertices. By Lemma 7.4, G contains a small
DH obstruction, contradiction.

(3) Suppose there is a path xpy1 for some p ∈ S \ T1 and p is not adjacent to y2. First
assume that p ∈ S \ (T1 ∪ T2). If xy2 ∈ E(G), then pxy2a2 is an induced path, and
otherwise, pxa1y2a2 is an induced path. Since y1 is adjacent to p and a2, by Lemma 7.4,
G contains a small DH obstruction, contradiction. When p ∈ (T2 \ T1) ∩ S, a1xpa2
becomes an induced path of length 3 and y1 is adjacent to its end vertices, and thus G
contains a small DH obstruction. We conclude that p is adjacent to y2.
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Lemma 7.12. Let (G,S, k) be an instance reduced under Branching Rules 7.1, and 7.2.
Let C1, C2 be two distinct twin classes of G− S such that C1 is complete to C2. Then:

(1) For every x ∈ NG(C1) \ (C2 ∪NG(C2)) and every y1, y2 ∈ NG(C1) ∩NG(C2), if x
is adjacent to y1, then either it is adjacent to y2 as well, or y1 is adjacent to y2.

(2) For every x ∈ NG(C1) \ (C2 ∪NG(C2)) and every y ∈ NG(C1) ∩NG(C2), if there
is a path xpy for some p ∈ V (G) \ (C1 ∪NG(C1)) (not necessarily induced), then
p ∈ NG(C2) \NG(C1).

Proof. For each i ∈ {1, 2} and let ai ∈ Ci and let Ti = NG(Ci).

(1) Suppose xy1 ∈ E(G) and xy2, y1y2 /∈ E(G). Then G[{x, y1, y2, a1, a2}] is isomorphic
to the gem, contradiction.

(2) Suppose there is a path xpy for some p ∈ V (G) \ (C1 ∪ NG(C1) ∪ NG(C2)). Then
pxa1a2 is an induced path of length 3, and y is adjacent to its end vertices. By Lemma 7.4,
G[{x, p, y, a1, a2}] contains a small DH obstruction, contradiction.

7.4 Reduction Rules in Split Decompositions
In this section, we assume that the given instance (G,S, k) is reduced under Branching
Rules 7.1 and 7.2. The reduction rules introduced here either remove some irrelevant
vertex, move some vertex into S, or reduce the number of bags in the decomposition by
modifying the instance into an equivalent instance. After we apply any of these reduction
rules, we will run the two branching rules from Section 7.3 again.

In Subsection 7.4.1, we introduce the notion of a bypassing vertex, which is a crucial
concept that will frequently appear in our proofs. In Subsection 7.4.2, we present five
reduction rules and prove their correctness. Then in Subsection 7.4.3, we discuss structural
properties of the obtained instance after exhaustive application of all of the presented
branching rules and reduction rules. These properties will be used in Section 7.4.4 to
argue that if the instance is non-trivial, then one can apply one of reduction rules.

7.4.1 Bypassing Vertices

We introduce a generic way of finding an irrelevant vertex which will be used in many
reduction rules. For a vertex v in G−S and an induced path H = p1p2p3p4p5 in G where
p3 = v, a vertex x in S is called a bypassing vertex for H and v if x is adjacent to p2
and p4 (see Figure 7.4). When H is clear from the context, we simply say that x is a
bypassing vertex for v. If such a vertex x exists, it is clear that x is not contained in H.
The following property is essential.

Lemma 7.13. Let (G,S, k) be an instance reduced under Branching Rules 7.1 and 7.2.
Let v be a vertex in G−S such that for every induced path P = p1p2p3p4p5 where v = p3,
there is a bypassing vertex for P and v. Then v is irrelevant.
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S

p1 p2 p4 p5

x

H
v p3

Figure 7.4: A bypassing vertex x for the induced path H = p1p2p3p4p5 and the vertex v.

Proof. We claim that (G,S, k) is a Yes-instance if and only if (G − v, S, k) is a Yes-
instance. The forward direction is clear. Suppose that G− v has a vertex set T such that
S∩T 6= ∅, |T | ≤ k, and (G−v)−T is distance-hereditary. If G−T is distance-hereditary,
then we are done. Suppose that G−T has a DH obstruction H. Since Branching Rule 7.1
does not apply, G has no small DH obstructions, and therefore H is an induced cycle
of length at least 7. Let P = p1p2p3p4p5 be the subpath of H such that p3 = v. By
the assumption, there is a bypassing vertex v′ for P and v. Note that v′ /∈ V (H), as
v′p2p3p4v

′ would be a cycle of length 4. Also, H−v is an induced path of length at least 5.
Thus G[(V (H) \ {v}) ∪ {v′}] contains another DH obstruction by Lemma 7.4. Note that
v′ ∈ S and hence also v′ ∈ G−T and, in particular, (V (H)\{v})∪{v′} ⊆ V ((G−v)−T ).
This contradicts the fact that (G− v)− T is distance-hereditary.

Lemma 7.14. Let (G,S, k) be an instance reduced under Branching Rules 7.1 and 7.2.
Let v be a vertex in G − S and P = p1p2p3p4p5 be an induced path where p3 = v. If
p2, p4 ∈ S, then there is a bypassing vertex for P and v.

Proof. Note that p2p4 /∈ E(G). Thus, by (2) of Lemma 7.10, there is an induced path
p2pp4 for some p ∈ S, and p is a bypassing vertex.

7.4.2 Five Reduction Rules

We are now ready to start with our reduction rules. For the remainder of this section, let
us fix a canonical split decomposition D of a connected component of G− S.

We start with a simple reduction rule that can be applied when D contains at most one
S-attached twin class.

Reduction Rule 7.1. If D has at most one S-attached twin class, then we remove all
unmarked vertices of D from G.

Proof of soundness. If D has no S-attached twin class, then its underlying graph is
a distance-hereditary connected component of G. Thus, we can safely remove all its
unmarked vertices. We may assume that D has one S-attached twin class C.
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S S

B B

Figure 7.5: Reduction Rule 7.2.

Since C is the only S-attached twin class and every induced cycle of length at least 5
contains no twins, no induced cycle of length at least 5 contains an unmarked vertex in
V (D) \ C. Thus, we can safely remove all of unmarked vertices other than vertices in C.
Now we assume that V (D) = C. We claim that every vertex in C is also irrelevant.

To apply Lemma 7.13, suppose there is an induced path P = p1p2p3p4p5 where p3 ∈ C.
Since there are no twins in P , P contains at most one vertex of C. Thus, p2 and p4 are
contained in S. Since p2p4 /∈ E(G) and (G,S, k) is reduced under Branching Rules 7.1
and 7.2, by Lemma 7.14, there is a bypassing vertex for P and v. Since P was arbitrarily
chosen, by Lemma 7.13, v is irrelevant.

The next rule deals with a vertex of degree 1 in G− S. See Figure 7.5 for an illustration.

Reduction Rule 7.2. Let B be a star bag whose center is unmarked, and let v be an
unmarked leaf in B. If v has no neighbor in S, then we remove v. If v has a neighbor in
S, then we move v into S.

Proof of soundness. Let x be the center of B and let v be an unmarked leaf in B. If v
has no neighbor in S, then v has degree 1 in G, and we can safely remove it. We assume
that v has a neighbor in S. We claim that (G,S, k) is a Yes-instance if and only if
(G,S ∪{v}, k) is a Yes-instance. The converse direction is easy. Suppose that G contains
a vertex set T where S ∩ T = ∅, |T | ≤ k, and G− T is distance-hereditary. Let T ′ = T if
v /∈ T , and otherwise, we remove v from T and add x to T , and call it T ′. We claim that
G− T ′ is distance-hereditary, which implies that (G,S ∪ {v}, k) is a Yes-instance.

Suppose G−T ′ is not distance-hereditary. Since G has no small DH obstructions, G−T ′
contains an induced cycle H of length at least 7. First assume that H contains x.
Then x is not contained in T ′, and therefore, v was not contained in T , and we have
T = T ′ by the construction. Thus G − T also contains H, contradiction. Thus, we
have x /∈ V (H). If v /∈ V (H), then H is an induced subgraph of G− T because T and
T ′ only differ at {v, x}. This implies that v ∈ V (H) and v ∈ T . Thus T ′ contains x.

Let P = p1p2p3p4p5 be the subpath of H where p3 = v. As T ′ contains x, p2 and p4 are
contained in S. As (G,S, k) is reduced under Branching Rules 7.1 and 7.2, by Lemma 7.14,
there is a bypassing vertex for P and v. Thus, (G − T ′)[(V (H) \ {v}) ∪ S] contains
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another DH obstruction. This contradicts the fact that G− T is distance-hereditary, as
(G− T ′)[(V (H) \ {v}) ∪ S] is an induced subgraph of G− T .

We remark that when we move v into S in Reduction Rule 7.2, k + cc(G[S]) does
not increase, and the size of V (G) \ S decreases. After applying Reduction Rule 7.2
exhaustively, we obtain that if the center of a star bag is unmarked, then this bag contains
no unmarked leaves.

The next reduction rule arises directly from the definition of bypassing vertices.

Reduction Rule 7.3. Let v be a vertex in G − S such that for every induced path
P = p1p2p3p4p5 with p3 = v, there is a bypassing vertex for P and v. Then we remove v.
In particular, when there is no such an induced path, we remove v.

Proof of soundness. This follows from Lemma 7.13.

For fixed v, we can apply Reduction Rule 7.3 in time O(|V (G)|5) by considering all vertex
subsets of size 4, and testing whether p2 and p4 have a common neighbor in S.

We proceed by introducing a reduction rule which sequentially arranges bags containing
exactly one twin class. The operation of swapping the adjacency between two vertices x
and y in a graph is to remove xy if xy was an edge, and otherwise add an edge between
x and y. The number of bags in D is strictly reduced when applying Reduction Rule 7.4.

Reduction Rule 7.4. Let B be a leaf bag and B′ be the neighbor bag of B.

(1) See Figure 7.6. If B is a complete bag having exactly one twin class in G−S and B′
is a star bag whose leaf is adjacent to B, then we swap the adjacency between every
two unmarked vertices in B. By swapping the adjacency, B becomes a star whose
center is adjacent to B′, and thus we can recompose the marked edge connecting
B and B′. We recompose the marked edge connecting B and B′.

(2) See Figure 7.7. If B is a star bag having exactly one twin class in G−S, the center
of B is adjacent to B′, and B′ is a complete bag, then we swap the adjacency
between every two unmarked vertices in B. By swapping the adjacency, B becomes
a complete graph, and thus we can recompose the marked edge connecting B and
B′. We recompose the marked edge connecting B and B′.

The soundness of Reduction Rule 7.4 follows from the following lemma.

Lemma 7.15. Let A be a set of vertices that are pairwise twins in G. Let G′ be the graph
obtained from G by swapping the adjacency relation between every pair of two distinct
vertices in A. Then (G,S, k) is a Yes-instance if and only if (G′, S, k) is a Yes-instance.
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S

B′

BC

S

B ∪B′
C

Figure 7.6: An illustration of Reduction Rule 7.4 Case 1. If C is the only twin class in B,
we swap the adjacencies between vertices in C and recompose the marked edge between
B and B′.

S

B′

BC

S

B ∪B′
C

Figure 7.7: An illustration of Reduction Rule 7.4 Case 2.

Proof. Note that either G[A] is a complete graph or it has no edges. Therefore, A
is again a set of vertices that are pairwise twins in G′. Since each DH obstruction
contains at most one vertex from a set of twins (and hence, at most one vertex from A),
swapping the adjacency on A will neither introduce nor remove DH obstructions from
G. Hence it is easy to check that (G,S, k) is a Yes-instance if and only if (G′, S, k) is
a Yes-instance.

The last rule consider bags near to some leaf bag (see Figure 7.8 for an illustration). Recall
that a star bag B is simple if its center is either unmarked or adjacent to a connected
component of D − V (B) consisting of one non-S-attached bag.

Reduction Rule 7.5. Let B1, B2, B3 be distinct bags in D such that

• B1 is a non-S-attached leaf bag whose neighbor bag is B2, and it is not a star
whose leaf is adjacent to B2,

• B2 has exactly two neighbor bags B1 and B3, it is a star whose center is adjacent
to B1, and the set of unmarked vertices in B2 is the unique S-attached twin class
C2 in B2, and
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C1
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C3

S

g

C

S

Figure 7.8: Reduction Rule 7.5.

• B3 is a simple star bag.

Let C1 be the set of unmarked vertices in B1. Then we remove B1 and B2, and add a
leaf set of unmarked vertices C̃ with min(|C1|, |C2|) vertices to B3, that is complete to
NG(C2) ∩ S and has no other neighbors in S.

Note that this rule can potentially create an induced cycle of length 6. So, we need to
run Branching Rule 7.1 after applying Reduction Rule 7.5.

Proof of soundness. As B3 is a simple star bag and C1 has no neighbors in S, NG(C1)\C2
is exactly the center of B3 if it is unmarked, and otherwise, the set of unmarked vertices
in the bag where the center of B3 is adjacent. Let C3 = NG(C1) \ C2. We remark that
C3 is a twin class.

Let G′ be the resulting graph obtained by applying Reduction Rule 7.5. Note that C̃ is a
set of pairwise twins in G′ (it may not be a twin class), and G− (C1 ∪ C2) = G′ − C̃.

We claim that (G,S, k) is a Yes-instance if and only if (G′, S, k) is a Yes-instance.
Suppose G has a minimum vertex set T such that |T | ≤ k, S ∩ T = ∅, and G − T is
distance-hereditary. We divide cases depending on whether T contains a vertex of C1∪C2
or not.

Case 1. T contains a vertex in C1 ∪ C2: We observe that since Ci is a twin
class and T is a minimum solution, if T contains a vertex of Ci, then T contains all
vertices in Ci. Thus, T fully contains one of C1 and C2. Since C̃ = min(|C1|, |C2|), the
set T ′ = (T \ (C1 ∪ C2)) ∪ C̃ has size at most k. Moreover, we conclude that G′ − T ′ is
distance-hereditary, as it is an induced subgraph of G− T .

Case 2. T contains no vertex in C1 ∪ C2: Suppose that G′ − T contains a DH
obstruction H. If H does not contain a vertex in C̃, then H is an induced subgraph of
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G− T , contradicting our assumption. Thus, H contains a vertex in C̃, and as every pair
of two distinct vertices in C̃ is a twin, we have |V (H) ∩ C̃| = 1. Let v be the vertex in
V (H) ∩ C̃, and let w, z be the two neighbors of v in H. As C3 is a twin class in G′ − S,
at least one of w and z is contained in S. Without loss of generality, we assume w ∈ S.

If z ∈ S, then we can obtain a DH obstruction by replacing v with a vertex of C2 in G,
which implies that G− T contains a DH obstruction. Thus, we may assume that z is
contained in V (G− S), and henceforth we have z ∈ C3.

For two vertices c1 ∈ C1 and c2 ∈ C2, we can obtain a DH obstruction in G− T from H
by removing v and adding c1, c2, which is equivalent (up to isomorphism) to subdividing
the unique edge in H incident to v and a vertex in C3. By Observation 7.3, we know
that the resulting graph G− T must then also contain a DH obstruction, contradicting
our assumption.

For the converse direction, suppose that G′ has a minimum vertex set T ′ such that
|T ′| ≤ k, S ∩ T ′ = ∅, and G′ − T ′ is distance-hereditary. Similar to the forward direction,
we divide cases depending on whether T ′ contains a vertex in C̃ or not.

Case 1. T ′ contains no vertex in C̃: Suppose G− T ′ has a DH obstruction H.
Since G has no small DH obstructions due to the application of branching rules, H should
be an induced cycle of length at least 7. We have V (H) ∩ (C1 ∪ C2) 6= ∅, otherwise H is
an induced subgraph of G′ − T ′, which is contradiction. As C1 and C2 are twin classes,
H contains at most one vertex from each of C1 and C2.

We claim that H contains one vertex from each of C1 and C2. Suppose V (H) ∩ C1 6= ∅
and V (H) ∩ C2 = ∅. Then the two neighbors of the vertex on C1 ∩ V (H) belong to C3,
since C3 = NG(C1) \ C2. But C3 forms a twin class, and an induced cycle of length at
least 7 cannot contain two vertices from the same twin class; a contradiction. Suppose
V (H)∩C1 = ∅ but V (H)∩C2 6= ∅. Then the two neighbors of the vertex v in V (H)∩C2
in H are contained in S. Let P = p1p2p3p4p5 be the subpath of H where p3 = v. By
Lemma 7.14, there is a bypassing vertex for P and v, and thus G[(V (H)\{v})∪S] contains
a DH obstruction, which is also contained in G′ − T ′. This constitutes a contradiction.
We conclude that H contains one vertex from each of C1 and C2.

It further implies that H contains one vertex from each of C3 = NG(C1) \ C2 and
NG(C2) ∩ S, because NG(C2) \ C1 ⊆ S. Since H has length at least 7, we can obtain an
induced cycle of length at least 6 in G′ − T from H by removing the vertices in C1 ∪ C2
and adding one vertex of C̃, which is contradiction.

Case 2. T ′ contains a vertex in C̃: As C̃ is a twin class and T ′ is a minimum
solution for G′, we have C̃ ⊆ T ′. We obtain a set T from T ′ by removing C̃, and adding
C1 if |C1| = |C̃| and adding C2 if |C2| = |C̃|. If |C1| = |C2|, then we add one of them
chosen arbitrarily. Clearly, |T | ≤ |T ′| ≤ k. We claim that G− T is distance-hereditary.
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In case when C2 ⊆ T , we observe that every induced cycle of length at least 7 containing
a vertex in C1 has to contain two vertices in C3, which is not possible. Thus, we may
assume C1 ⊆ T . Note that NG(C2) ⊆ S∪C1. Thus, whenever there is an induced cycle of
length at least 7 in G− T containing a vertex in C2, by Lemma 7.14 there exists another
DH obstruction which does not contain any vertex in C2, contradicting the assumption
that G′ − T ′ = G − (T ∪ C2) is distance-hereditary. Hence we conclude that G − T is
distance-hereditary.

Proposition 7.16. Let (G,S, k) be an instance reduced under Branching Rules 7.1 and
7.2. Given a connected component H of G− S, we can in time O(|V (G)|6) either apply
one of Reduction Rules 7.1–7.5, or correctly answer that Reduction Rules 7.1–7.5 cannot
be applied anymore.

Proof. We first compute the canonical split decomposition D of H in time O(|V (G)|+
|E(G)|) using Theorem 7.7. Then we classify twin classes in D by testing two unmarked
vertices in a bag have the same neigbhorhood in S or not. This can be done in time
O(|V (G)|2). At the same time, we can also test whether a twin class is S-attached or
not. Note that the total number of bags in canonical split decompositions of connected
components of G− S is O(|V (G)|).

We can apply Reduction Rules 7.1, 7.2, 7.4 in time O(|V (G)|), if one of them can be
applied. We can apply Reduction Rule 7.3 in time O(|V (G)|5) for fixed vertex v, and
thus, we can test for all vertices v ∈ V (G) \ S in time O(|V (G)|6). For Reduction
Rule 7.5, we need to consider three bags, which are uniquely identified by the first
(leaf) bag among them, to check whether they satisfy preconditions of the rule. We
can verify the preconditions of Reduction Rule 7.5 in constant time and thus this step
takes time O(|V (G)|). We conclude that we can in time O(|V (G)|6) either apply one of
Reduction Rules 7.1–7.5, or correctly answer that Reduction Rules 7.1–7.5 cannot be
applied anymore.

7.4.3 Structural Properties obtained after Exhaustive Application of
Rules

In this subsection, we discuss structural properties obtained after the exhaustive appli-
cation of both branching and reduction rules. We say that G and the canonical split
decompositions of connected components of G−S are reduced if Branching Rules 7.1–7.2
and Reduction Rules 7.1–7.5 cannot be applied anymore. We assume that the given
instance is reduced in this subsection.

The following observation is a direct consequence of the exhaustive application of Reduc-
tion Rule 7.2.

Observation 7.17. If the center of a star bag in D is unmarked, then this bag contains
no unmarked leaves.

Our next goal is to establish the following lemma.
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Lemma 7.18. Every bag of D contains at most one S-attached twin class.

Before we formally prove Lemma 7.18, we briefly explain how the argument works. Let
C1 and C2 be two distinct S-attached twin classes in a bag B such that neither of them
consists of the center of a star and (NG(C1)\NG(C2))∩S is non-empty. If B is a star, then
C1 is anti-complete to C2 and C1, C2 have a common neighbor in G−S, and thus, C1 and
C2 satisfy preconditions of Lemma 7.11. Lemma 7.11 implies that (NG(C1)∩NG(C2))∩S
is non-empty. Let x ∈ (NG(C1)\NG(C2))∩S and y ∈ (NG(C1)∩NG(C2))∩S. We argue
that whenever there is an induced path w′wvzz′ with v ∈ C1 there is a bypassing vertex
for v. We describe an example case. For instance, when w and z are both contained
in V (G− S), they are contained in NG(C1) ∩NG(C2). So, x ∈ NG(C1) \NG(C2) while
w, z, y ∈ NG(C1) ∩NG(C2). Thus, by (2) of Lemma 7.11, if x is adjacent to y, then x
should be adjacent to w and z, which means that x is a bypassing vertex for v. If x is
not adjacent to y, then we could apply (3) of Lemma 7.11 to find a bypassing vertex
for v. We do a careful analysis depending on the places of w and z, and also consider
the case when B is a complete bag.

Proof of Lemma 7.18. Suppose there is a bag containing two distinct S-attached twin
classes C1 and C2. By Observation 7.17, if Ci consists of the center of a star, then there
are no other unmarked vertices in the bag, and thus it is not possible. Therefore, Ci
does not consist of the center of a star bag. As C1 and C2 are distinct twin classes,
NG(C1) ∩ S 6= NG(C2) ∩ S, and thus we have either (NG(C1) \ NG(C2)) ∩ S 6= ∅ or
(NG(C2)\NG(C1))∩S 6= ∅. Without loss of generality, we assume (NG(C1)\NG(C2))∩S
is non-empty.

For each i ∈ {1, 2}, let ci ∈ Ci and let Ti = NG(Ci) \ C3−i. Let x ∈ (T1 \ T2) ∩ S.
We observe that (T1 \T2)∩V (G−S) = (T2 \T1)∩V (G−S) = ∅. This is because C1 and
C2 are contained in B, which is a complete bag or a star bag whose center is marked.

We claim that for every v ∈ C1 and every induced path H = w′wvzz′, there is a bypassing
vertex for H and v. This will imply that we can apply Reduction Rule 7.3, which leads
to a contradiction.

If w, z ∈ S, then by Lemma 7.14, there is a bypassing vertex for v. We may assume that
w or z is contained in G− S. Without loss of generality, we assume that w is contained
in G− S. We distinguish two cases depict in Figures 7.9 and 7.10.

Case 1. B is a star bag: In this case, C1 is anti-complete to C2 and
w ∈ (T1 ∩ T2) ∩ V (G− S). By (1) of Lemma 7.11, we have (T1 ∩ T2) ∩ S 6= ∅. Let
y ∈ (T1 ∩ T2) ∩ S. We divide into two cases depending on whether z ∈ (T1 \ T2) ∩ S or
z ∈ T1 ∩ T2.

Suppose z ∈ (T1 \ T2) ∩ S. Note that both y and w are contained in T1 ∩ T2. Since
zw /∈ E(G), by (2) of Lemma 7.11, z is not adjacent to y. Since y and z are neighbors of
v and y, z are not adjacent, by (2) of Lemma 7.10, there is an induced path zpy for some
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(b) z ∈ (T1 ∩ T2) ∩ V (G− S)

Figure 7.9: When B is a star bag in Lemma 7.18. The red thick edges illustrate the
edges whose existence is guaranteed by Lemma 7.11.

p ∈ S. Then by (3) of Lemma 7.11, p is adjacent to w, and therefore, p is a bypassing
vertex.

Suppose z ∈ T1 ∩ T2. Recall that x is a vertex in (T1 \ T2)∩ S. If x is adjacent to y, then
by (2) of Lemma 7.11, x is adjacent to both w and z, and thus x is a bypassing vertex.
We may assume that xy /∈ E(G). Then by (2) of Lemma 7.10, there is an induced path
xpy for some p ∈ S. By (3) of Lemma 7.11, p is adjacent to both w and z, and therefore,
p is a bypassing vertex, as required.

Case 2. B is a complete bag: Note that C1 is complete to C2, and w is contained
in either C2 or (T1 ∩ T2) ∩ V (G− S). We first discuss when w is contained in C2.

Suppose w ∈ C2. As w is not adjacent to z, z cannot be in T1 ∩ T2, and furthermore
z cannot be in B as B is a complete bag. Thus z ∈ (T1 \ T2) ∩ S. If z has a neighbor
in T2 ∩ S, then the neighbor is a bypassing vertex, because it is adjacent to both w
and z. We may assume that z has no neighbors in T2 ∩ S. Observe that z and T2 ∩ S
are contained in the same connected component of G[S], otherwise, Branching Rule 7.2
can be applied. Let us take a shortest path P from z to T2 ∩ S in G[S]. Then Pw
is an induced path of length at least 3 and v is adjacent to its end vertices, and thus
G[S ∪ {v, w}] has a DH obstruction by Lemma 7.4, which contradicts the assumption
that (G,S, k) is reduced under Branching Rule 7.1.

Now, suppose w ∈ (T1 ∩ T2) ∩ V (G − S). In this case, z is not in C2. We distinguish
subcases by the placement of z. We illustrate cases in Figure 7.10.

Case 2-1. z ∈ (T1 \ T2) ∩ S : Let P be a shortest path from z to T2 ∩ S. If P has
length at least 2, then Pc2 is an induced path of length at least 3 and v is adjacent to
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(a) z ∈ (T1 \ T2) ∩ S.
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(c) z ∈ (T1 ∩ T2) ∩ V (G− S).

Figure 7.10: When B is a complete bag and w ∈ (T1 ∩ T2) ∩ V (G− S) in Lemma 7.18.
The red thick edges illustrate the edges whose existence is guaranteed by Lemma 7.12 or
non-existence of small DH obstructions.

its end vertices. So, G[S ∪ {v, c2}] contains a DH obstruction, which is a contradiction.
Thus, z has a neighbor in T2∩S, say t. If w is not adjacent to t, then ztc2w is an induced
path and v is adjacent to its end vertices. This contradicts the assumption that (G,S, k)
is reduced under Branching Rule 7.1. Thus, wt ∈ E(G) and t is a bypassing vertex.

Case 2-2. z ∈ (T1 ∩ T2) ∩ S : Recall that x is a vertex in (T1 \ T2) ∩ S. If x is
adjacent to z, then by (1) of Lemma 7.12, w is adjacent to x because w is not adjacent
to z. Thus, x is a bypassing vertex. So, we may assume that x is not adjacent to z.
By (2) of Lemma 7.10, there is an induced path xpz for some p ∈ S.

If p ∈ (T1 \ T2) ∩ S, then p is adjacent to w by (1) of Lemma 7.12, and thus p is a
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bypassing vertex. Assume p ∈ (T1 ∩ T2) ∩ S. If p is adjacent to w, then p is a bypassing
vertex, and we are done. Otherwise, by (1) of Lemma 7.12, x should be adjacent to
both w and z, since wz /∈ E(G). Therefore, we may assume that p /∈ T1. Then by
(2) of Lemma 7.12, we have p ∈ (T2 \ T1) ∩ S, and again by (1) of Lemma 7.12, either
wz ∈ E(G) or wp ∈ E(G). Since wz /∈ E(G), p becomes a bypassing vertex.

Case 2-3. z ∈ (T1 ∩ T2) ∩ V (G − S) : If x is adjacent to w or z, then by (1) of
Lemma 7.12, x is adjacent to both w and z, because wz /∈ E(G). Then x is a bypassing
vertex. Therefore, we may assume x is adjacent to neither w nor z. We take a shortest
path P from x to T2 ∩ S. If P has length at least 2, then Pc2 is an induced path of
length at least 3, and since v is adjacent to its end vertices, G[V (P ) ∪ {v, c2}] contains a
DH obstruction by Lemma 7.4. But this contradicts the assumption that G is reduced
under Branching Rule 7.1. We may assume that P has length 1, and let t be a neighbor
of x in T2 ∩ S. Observe that if t is not adjacent to w or z, then xtc2w or xtc2z is an
induced path, respectively, and v is adjacent to its end vertices. This contradicts the
assumption that (G,S, k) is reduced under Branching Rule 7.1. Therefore t is adjacent
to both w and z, which implies that t is a bypassing vertex.

We conclude that, for every induced path w′wvzz′, there exists a bypassing vertex for v.
This contradicts the assumption that D is reduced under Reduction Rule 7.3. Therefore,
every bag of D contains at most one S-attached twin class.

Lemma 7.19. Let B be a bag and D1 be a connected component of D−V (B) containing
no S-attached bags. Then B is a simple star bag whose center is adjacent to D1.

Proof. Let B1 be the neighbor bag of B contained in D1. First claim that D1 = B1.
Suppose D1 contains at least one bag other than B1. We regard B1 as the root bag of D1,
and choose a bag Y in D1 with maximum |path(Y,B1)|. Clearly, Y is a leaf bag in D.
Let X be the neighbor bag of Y .

Suppose X is a star. As we choose Y with maximum |path(Y,B1)|, every child of X is a
leaf bag. We claim that there is no leaf bag of D pending to a leaf of X. Suppose for
contradiction there exists such a bag Y1. Since D is canonical, Y1 is not a star whose
center is adjacent to X. If Y1 is a star whose leaf is adjacent to X, then it can be
reduced under Reduction Rule 7.2. If Y1 is a complete graph, then it can be reduced
under Reduction Rule 7.4, which is a contradiction. Therefore, there is no leaf bag of D
pending to a leaf of X, and it implies that the center of X is adjacent to Y , and Y is the
unique child of X.

Let v be an unmarked vertex of X. As NG(v) is the set of unmarked vertices in Y which
is a twin class, any induced path of length 4 could not contain v as the third vertex.
Therefore, Reduction Rule 7.3 can be applied to remove v, which is a contradiction.

Suppose X is a complete graph. Since D is canonical, Y is not a complete graph. If Y
is a star whose leaf is adjacent to X, then all unmarked leaves in Y can be removed by

123



7. Modulators to Distance-Hereditary Graphs

B1

B2

S

Figure 7.11: Illustration for the case treated in Lemma 7.20.

Reduction Rule 7.2. If Y is a star whose center is adjacent to X, then we can apply
Reduction Rule 7.4 to X and Y .

We conclude that D1 = B1. Moreover, if B is not a star whose center is adjacent to B1,
then we can reduce B1 using Reduction Rule 7.2 or 7.4. Thus B is a star whose center is
adjacent to B1.

The following structure is illustrated in Figure 7.11.

Lemma 7.20. Let B1 be a leaf bag containing at most one S-attached twin class and
B2 be a bag distinct from B1 such that

• B2 is a star bag whose center is adjacent to comp(B2, B1).

• every bag in path(B1, B2)\{B1, B2} is not a (B1, B2)-separator bag, and has exactly
two neighbor bags, and

• for every bag B in path(B1, B2)\{B1, B2} that is not a star whose center is adjacent
to comp(B,B1), B is non-S-attached.

Then B2 contains no non-S-attached twin class C.

Proof. Suppose B2 contains a non-S-attached twin class, and let v be a vertex in the class.
We claim that there is no induced path w′wvzz′, which implies that Reduction Rule 7.3
can be applied. Suppose there is such a path.

We claim that either NG(w) ⊆ NG(z) or NG(z) ⊆ NG(w). If NG(w) ⊆ NG(z) then w′
should be adjacent to z, which contradicts the fact that w′wvzz′ is an induced path.
The same argument holds when NG(z) ⊆ NG(w).

Let Pw and Pz be the bags containing w and z, respectively. As B2 is a star whose center
is adjacent to comp(B2, B1), Pw and Pz are bags in path(B1, B2) \ {B2}.
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First assume Pw = Pz = B1. In this case, since w is not adjacent to z, B1 is a star bag.
Note that no DH obstruction contains two twins, and therefore, w and z are contained in
distinct twin classes. Since B1 contains at most one S-attached twin class by Lemma 7.18,
one of w and z is contained in the non-S-attached twin class in B1. Say w is such a vertex.
Then we have NG(w) ⊆ NG(z), because w and z are twins in G− S.

Now, we assume at least one of Pw and Pz is not equal to B1. We further assume Pz is
contained in path(Pw, B2) \ {B2}. The same argument holds when Pw is contained in
path(Pz, B2) \ {B2}.

Since Pz ∈ path(Pw, B2) \ {B2} and wz /∈ E(G), Pz is not a complete bag. Thus, Pz is a
star bag whose center is adjacent to comp(Pz, B2). As Pz 6= B1 and it is not S-attached
by the assumption, all neighbors of z in G are neighbors of w. Then z′ should be adjacent
to w, which is a contradiction.

We conclude that there is no such path w′wvzz′, and Reduction Rule 7.3 can be applied
to remove v. Therefore, B2 contains no non-S-attached twin class C.

The following structure is illustrated in Figure 7.12.

Lemma 7.21. Let B1 be a leaf bag having exactly one S-attached twin class and B2 be
a simple star bag distinct from B1 such that

• B1 is not a star whose leaf is adjacent to a neighbor bag,

• every bag in path(B1, B2) \ {B1, B2} is non-S-attached, not a (B1, B2)-separator
bag and has exactly two neighbor bags.

Then B1 contains no non-S-attached twin class.

Proof. We claim that if B1 contains a non-S-attached twin class, then we can apply a
reduction rule to remove it. Suppose B1 contains a non-S-attached twin class C1, and
let C2 be the S-attached twin class in B1.

Let v ∈ C1 and we claim that there is no induced path w′wvzz′. If this is true, then we
can apply Reduction Rule 7.3. Suppose there is such an induced path.

Assume that w ∈ V (B1). In this case, B1 should be a complete bag. Therefore, z is
adjacent to w, because z ∈ V (G− S), and w, v are twins in G− S. This contradicts the
assumption that w′wvzz′ is an induced path. Thus, we can assume that w /∈ V (B1), and
similarly, z /∈ V (B1).

By symmetry, we assume |path(B1, Bw)| ≤ |path(B1, Bz)|, where Bw and Bz are bags
containing w and z, respectively. Since w is not adjacent to z, Bw should be a star bag
whose center is adjacent to the component comp(Bw, B1). Therefore, every neighbor
of w in G− S is adjacent to z, and in particular, w′ is adjacent to z. This contradicts
the assumption that w′wvzz′ is induced. This proves the claim. This contradicts the
assumption that D is reduced.
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Figure 7.12: Illustration for the case treated in Lemma 7.21.

Lemma 7.22. Let B be a simple star bag, and let D1 be a connected component of
D − V (B) such that

• D1 contains exactly one S-attached bag B1, and

• there is no (B1, B)-separator bag.

Then B1 is a star whose leaf is adjacent to comp(B1, B) and there is a leaf bag B2 where
the center of B1 is adjacent to B2.

Proof. We first claim that B1 is a star whose leaf is adjacent to comp(B1, B). We prove
this by a sequence of auxiliary claims. Suppose for contradiction that B1 does not satisfy
the property; that is, either B1 is a complete bag or a star bag whose center is adjacent
to comp(B1, B).

Claim 7.23. There is no connected component of D − V (B1) other than comp(B1, B).

Proof of the Claim. If there is such a component C1, then by the assumption, it
contains no S-attached bag. By Lemma 7.19, B1 is a star whose center is adjacent
to C1, contradicting our assumption. Thus, there is no connected component of
D − V (B1) other than comp(B1, B). ♦

We observe that B1 contains one S-attached twin class by Lemma 7.18. Also, all bags in
path(B,B1) \ {B,B1} have exactly two neighbor bags. This follows from Lemma 7.19
and the fact that every bag in path(B1, B) \ {B,B1} is not a (B,B1)-separator bag.
Now, we can observe that B and B1 satisfy the conditions of Lemma 7.21. Therefore, B1
contains no non-S-attached twin class.
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Claim 7.24. There is no star bag B2 ∈ path(B,B1) \ {B,B1} whose center is adjacent
to comp(B2, B1).

Proof of the Claim. Suppose there is such a star bag B2. Then B1 and B2 satisfy the
conditions in Lemma 7.20. Thus, B2 has no non-S-attached twin class. But this is
impossible as B2 has only two neighbor bags and B2 has no S-attached twin class. ♦

By Claim 7.24, we observe that B1 and its parent bag satisfy the condition (1) or (2) of
Reduction Rule 7.4, and thus we can apply the rule. This contradicts the assumption
that D is reduced. Thus, B1 is a star whose leaf is adjacent to comp(B1, B).

Now, suppose there is no bag B2 where the center of B1 is adjacent to B2. Since there is
no bag pending to a leaf of B1 by Lemma 7.19, B1 is a leaf bag. In this case, we can
reduce using Reduction Rule 7.2, which is a contradiction. Therefore, there is a leaf bag
B2 where the center of B1 is adjacent to B2, as required.

Lemma 7.25. Let B1 and B2 be two simple star bags in D such that

• every bag in path(B1, B2) \ {B1, B2} is a non-S-attached bag, has two neighbor
bags, and is not a (B1, B2)-separator bag.

Then B1 and B2 are neighbor bags.

Proof. Suppose for contradiction that path(B1, B2) \ {B1, B2} 6= ∅. Let B be a bag in
path(B1, B2) \ {B1, B2} and v be an unmarked vertex of B.

We claim that there is no induced path w′wvzz′. Suppose there is such an induced
path. By symmetry, we assume |path(B1, Bw)| ≤ |path(B1, Bz)|, where Bw and Bz are
bags containing w and z, respectively. First, assume that w and z are contained in the
different connected components of D − V (B). Since B is the not (B1, B2)-separator bag,
v cannot be a center of a star bag. Hence, the only possibility for v to be a neighbor
of both w and z is if B is a complete bag. But then w is adjacent to z, contradiction.
Thus, w and z are contained in the same connected component of D − V (B). Without
loss of generality, we may assume that such a connected component contains B1.

Suppose there is a bag B′1 where the center of B1 is adjacent to B′1. Since B1 is simple,
B′1 contains only one non-S-attached twin class. Thus one of w and z are not contained
in B′1, as they are not twins in the path w′wvzz′.

We may assume w is in path(B1, B) \ {B1, B}. Then, every neighbor of w in G− S is
adjacent to z, in particular, w′ is adjacent to z. This contradicts the assumption that
w′wvzz′ is induced.

This proves the claim. Since there is no such a path w′wvzz′, we can apply Reduction
Rule 7.3 to remove v. This contradicts the assumption that D is reduced. We conclude
that B1 and B2 are neighbor bags.
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Finally, we claim that our instance has the desired inseparability property. We formalize
and prove this property below.

Lemma 7.26. Let B be a bag and let D1 be a connected component of D − V (B) such
that D1 contains exactly one S-attached bag B1. Then there is no (B1, B)-separator bag.

Proof. For contradiction, suppose that there is a (B1, B)-separator bag. We choose such
a bag B2 with minimum |path(B1, B2)|. From the choice of B2, there is no (B1, B2)-
separator bag.

We verify preconditions of Lemma 7.22 for B1 and B2. Clearly, comp(B2, B1) has exactly
one S-attached bag B1, and there is no (B1, B2)-separator bag. To see that B2 is a
simple star bag, let us assume that there is a connected component D2 of D − V (B2)
where the center of B2 is adjacent to D2; if there is no such a component, it is clear by
definition. As D2 contains no S-attached bag, by Lemma 7.19, D2 consists of one bag
and B2 is a simple star bag.

By applying Lemma 7.22 for B1 and B2, we can observe that B1 is a star whose leaf is
adjacent to comp(B1, B2), and there is a leaf bag B` where the center of B1 is adjacent
to B`. We can also observe that B1 is a simple star bag. By Lemma 7.19, there is no
connected component of D − V (B1) pending to leaves of B1 other than the leaf adjacent
to its parent.

Note that every bag A in path(B1, B2) \ {B1, B2} has two neighbor bags, because it is
not a (B1, B2)-separator bag and by Lemma 7.19 there is no other component D − V (A)
pending to A. Therefore by Lemma 7.25, B2 is a neighbor bag of B1.

Now, by Lemma 7.20, there is no non-S-attached twin class in B1, which means that
the unmarked vertices of B1 form a unique S-attached twin class. Then, we can apply
Reduction Rule 7.5 to B`, B1, B2, a contradiction.

7.4.4 Connected components with two S-attached bags

This section is devoted to showing that if D is reduced and contains two distinct S-
attached classes, then we can apply a reduction rule. Suppose D is reduced and contains
two distinct S-attached classes, and we choose a root bag of D. Let B be a farthest
bag from the root bag such that there are two descendant bags B1 and B2 of B having
distinct S-attached twin classes C1 and C2, respectively.

First, we verify that the distance from C1 to C2 in G− S is at most 2.

Lemma 7.27. The distance from C1 to C2 in G− S is at most 2.

Proof. Let us take a shortest sequence of twin classes
(C1 = U0)− U1 − · · · − Ut − (C2 = Ut+1) from C1 to C2 in G − S such that for
i, j ∈ {0, 1, . . . , t + 1} with i 6= j, Ui is complete to Uj if |i − j| = 1 and they are
anti-complete, otherwise. We note that each Ui except U0 and Ut+1 corresponds to a
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(B1, B2)-separator bag. Clearly, at most one of U1, . . . , Ut possibly has a neighbor in S
because Ci is the unique S-attached twin class in comp(B,Bi) if Bi 6= B. By (3) and (4)
of Lemma 7.10, the length from C1 to C2 in G− S cannot be 3 or 4, and thus t cannot
be 2 or 3. Also, by Lemma 7.26, we know that there is no (Bi, B)-separator bag when
Bi 6= B. Thus, t cannot be larger than 3. So, the distance from C1 to C2 in G− S is at
most 2.

Proposition 7.28. The bag B is not a (C1, C2)-separator bag.

Proof. For each i ∈ {1, 2} let Ti = NG(Ci). Since by Lemma 7.27 the distance from
C1 to C2 is at most 2, it follows from Observation 7.9 that there exists at most one
(C1, C2)-separator bag. Suppose that B is the (C1, C2)-separator bag. Note that Bi 6= B
for some i ∈ {1, 2} because B1 and B2 are distinct. Without loss of generality, we assume
that B1 6= B. We verify the proposition by a sequence of claims.

Claim 7.29. B1 is not a star bag whose leaf is adjacent to comp(B1, B).

Proof of the Claim. Suppose B1 is a star bag whose leaf is adjacent to comp(B1, B).
As B1 is the unique S-attached bag in comp(B,B1), by Lemma 7.19, there is no bag
pending to a leaf of B1. Also, the center of B1 is marked, otherwise, we can apply
Reduction Rule 7.2, and by Lemma 7.19, B1 is a simple star bag. Therefore, C1
consists of leaves of B1, and B1 is a (C1, C2)-separator bag. But this contradicts the
assumption that B 6= B1 and B is the only (C1, C2)-separator bag. ♦

Note that B1 is either a complete graph, or a star whose center is adjacent to comp(B1, B).
We observe that B1 contains a non-S-attached twin class.

Claim 7.30. B1 contains a non-S-attached twin class.

Proof of the Claim. Suppose for contradiction that B1 contains no non-S-attached
twin class, that is, C1 is exactly the set of unmarked vertices of B1. Let B3 be the
parent bag of B1. If B3 is not a star whose center is adjacent to B1, then we can apply
Reduction Rule 7.4. We may assume B3 is a star whose center is adjacent to B1. But
in this case, B 6= B3, and thus, B3 has no S-attached twin classes. By Lemma 7.19,
B3 has exactly two neighbor bags, and by Lemma 7.20, it contains no non-S-attached
twin class. But this is impossible. We conclude that B1 contains a non-S-attached
twin class. ♦

Claim 7.31. There is a vertex x in (T1 \ T2) ∩ V (G− S) contained in a complete bag
such that x has no neighbors in S.
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Proof of the Claim. If B1 is a complete bag, then the non-S-attached twin class
is contained in (T1 \ T2) ∩ V (G− S). Assume B1 is a star. Since B is a star whose
leaf is adjacent to comp(B,B1), there is at least one bag in path(B1, B) \ {B1, B}.
Moreover, there is no star bag B′ in path(B1, B) \ {B1, B} whose center is adjacent
to comp(B′, B1) by Lemma 7.20. Therefore, there is at least one complete bag in
path(B1, B) \ {B1, B}, which contains a vertex in (T1 \ T2) ∩ V (G− S). We choose x
to be such a vertex. Then x is a vertex in (T1 \ T2) ∩ V (G− S) having no neighbors
in S, and also contained in a complete bag. ♦

Since x is contained in a complete bag, x has a neighbor in (T1 ∩ T2)∩ V (G− S). By (1)
of Lemma 7.11, we have (T1 ∩T2)∩S 6= ∅. Since x ∈ T1 \T2 and x is adjacent to a vertex
in T1 ∩ T2, by (2) of Lemma 7.11, x should be adjacent to all vertices in (T1 ∩ T2) ∩ S,
which contradicts the fact that x has no neighbors in S.

The following lemma describes all possible cases.

Lemma 7.32. Let B be a farthest bag from the root bag such that there are two descendant
bags B1 and B2 of B having distinct S-attached twin classes C1 and C2, respectively.
Then B1 6= B2 and one of the following happens:

1. The distance from C1 to C2 in G− S is 2 and the unique (C1, C2)-separator bag is
contained in comp(B,Bi) for some i ∈ {1, 2}.

2. C1 is complete to C2 and either

• B is a star bag and Ci is the set consisting of the center of B for some
i ∈ {1, 2}, or

• B is a star bag whose center is adjacent to comp(B,Bi) for some i ∈ {1, 2}.

3. C1 is complete to C2 and B is a complete bag.

Proof. By Lemma 7.18, each bag contains at most one S-attached twin class and it
follows that B1 6= B2. By Lemma 7.27 the distance from C1 to C2 in G− S is at most
2. Suppose that the distance from C1 to C2 in G − S is 2. Then, there is a unique
(C1, C2)-separator bag in D. By Proposition 7.28, B cannot be the (C1, C2)-separator
bag. Thus, the unique (C1, C2)-separator bag in contained in comp(B,Bi) for some
i ∈ {1, 2}. If the distance from C1 to C2 is 1, then C1 is complete to C2, and in this
case if B is a star, then its center either consists of one class Ci or is adjacent to one of
comp(B,B1) and comp(B,B2).

We show that in each of three cases in Lemma 7.32, we can apply a reduction rule.
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Proposition 7.33. Suppose the distance from C1 to C2 in G− S is 2 and the unique
(C1, C2)-separator bag is contained in comp(B,B2). Then for every induced path P =
p1p2p3p4p5 with p3 ∈ C2, there is a bypassing vertex for P and p3.

Proof. Let Ti = NG(Ci) for each i ∈ {1, 2}. We start by proving the following claim.

Claim 7.34. The bag B2 is the (C1, C2)-separator bag.

Proof of the Claim. For a contradiction, suppose that B2 is not the (C1, C2)-separator
bag and let B′ 6= B2 be the (C1, C2)-separator bag. Then B′ is a (B2, B)-separator
bag. However, since comp(B,B2) has exactly one S-attached bag B2, by Lemma 7.26,
there is no (B2, B)-separator bag, which is a contradiction. ♦

By Lemma 7.19, B2 has no child pending to a leaf of B2. If the center of B2 is unmarked,
then we can reduce it using Reduction Rule 7.2. Thus there is component attached to the
center of B2, and by Lemma 7.19 this component is a single leaf bag. We call the leaf bag
B3, and let C3 be the set of unmarked vertices of B3. Note that C3 is a non-S-attached
twin class. Also, by Lemma 7.20, B2 contains no non-S-attached twin class.

Suppose there is an induced path P = p1p2p3p4p5 with p3 ∈ C2. We want to show that
there is a bypassing vertex for P and p3. Observe that every neighbor of p3 in G is either
in S or in C3. As C3 is a twin class, it contains at most one of p2 and p4. If p2 and p4
are contained in S, then by Lemma 7.14, there is a bypassing vertex for p3. Thus, we
may assume that one of p2 and p4 is contained in S and the other is contained in C3.

By symmetry, we may assume that p2 ∈ C3 and p4 ∈ S. Note that since p2 ∈ C3, p2
has no neighbors in S. Furthermore, as the distance from C1 to C2 is exactly 2, C3 is
complete to C1. This implies that p2 ∈ (T1 ∩ T2) ∩ V (G− S).

By (1) of Lemma 7.11, we have (T1 ∩ T2)∩ S 6= ∅. Let t ∈ (T1 ∩ T2)∩ S. We divide cases
depending on whether p4 is in T2 \ T1 or T1 ∩ T2.

Case 1. p4 ∈ (T2 \ T1) ∩ S: Note that p4 ∈ T2 \ T1 and p2, t ∈ T1 ∩ T2. Since p4 is
not adjacent to p2, by (2) of Lemma 7.11, p4 is not adjacent to t as well. As p4 and t are
neighbors of p3 and (G,S, k) is reduced under Branching Rule 7.2, p4 and t are contained
in the same connected component of G[S]. Moreover, since (G,S, k) is reduced under
Branching Rule 7.1, there is no induced path of length at least 3 from p4 to t in G[S],
and thus the distance from p4 to t in G[S] is exactly 2. Let p4pt be an induced path for
some p ∈ S.

If p is contained in T1 ∩T2, then p4 should be adjacent to p2 by (2) of Lemma 7.11. Thus,
p is not contained in T1 ∩ T2. If p ∈ T2 \ T1, then by (2) of Lemma 7.11, p is adjacent to
p2, but p2 has no neighbors in S, a contradiction. Lastly, assume that p ∈ S \ T2. In this
case, by (3) of Lemma 7.11 with (p, x, y1, y2) = (p, p4, t, p2), p is adjacent to p2, again a
contradiction.
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Case 2. p4 ∈ (T1 ∩ T2) ∩ S: Let c1 ∈ C1. If p2 and c1 have a common neighbor c
in G− S that is adjacent to neither p3 nor p4, then G[{p2, p3, p4, c, c1}] is isomorphic to
the house. So, there are no such vertices. This implies that for each i ∈ {1, 2}, there
is no complete bag in path(Bi, B) \ {B,Bi}, and if B1 or B is a complete bag, then it
contains no non-S-attached twin class.

Claim 7.35. path(B,B1) contains at most 3 bags, and when it contains 3 bags, the bag
in path(B,B1) is a star bag whose center is adjacent to B.

Proof of the Claim. Suppose path(B,B1) contains more than 3 bags, and let B′1 be
the parent bag of B1 and B′′1 be the parent of B′1. As path(B,B1) \ {B} contains no
complete bags, both B′1 and B′′1 are star bags. Thus, B′′1 is a star bag whose center is
adjacent to B′1. Such a bag B′′1 does not exist by Lemma 7.20. ♦

In particular, Claim 7.35 implies that every neighbor of C3 is either in C2 or not contained
in the component of D − V (B) containing B2.

We divide into subcases depending on the shape of B1.

Case 2-1. B1 is a complete bag: First assume that B1 = B. As B1 contains no
non-S-attached twin class and p1p4 /∈ E(G), p1 is in the neighborhood of C1 in G− S.
Then c1 is adjacent to end vertices of p1p2p3p4, and by Lemma 7.4, G contains a small
DH obstruction. This is a contradiction. We may assume B1 6= B.

As D is canonical, the parent bag B′1 of B1 is a star bag. We claim that B = B′1.
Suppose B 6= B′1, that is, B′1 is contained in path(B,B1) \ {B,B1}. Since there is no
(B,B1)-separator bag, the center of B′1 is adjacent to either comp(B′1, B) or B1. As B1 is
the unique S-attached bag in comp(B,B1), by Lemma 7.19, B′1 has exactly two neighbor
bags. Also, again by Lemma 7.19, B1 is a leaf bag. Therefore, by Lemma 7.20, the
center of B′1 is not adjacent to B1. On the other hand, if the center of B′1 is adjacent to
comp(B′1, B1), then we can apply Reduction Rule 7.4, as B1 contains no non-S-attached
twin class, which is a contradiction. Thus, we have B = B′1, and the same argument
using Reduction Rule 7.4 implies that the center of B′1 is adjacent to B. Then p1 should
be contained in B1 and adjacent to p4, which is impossible.

Case 2-2. B1 is a star bag: First assume that B1 = B. As C1 is complete to
C3, the center of B1 is adjacent to comp(B,B2). If B and B2 are neighbor bags, then
the marked edge connecting them can be recomposed. Thus, in this case, path(B,B2)
contains 3 bags. Let B4 be the bag in path(B,B2) \ {B,B2}, and b be an unmarked
vertex in B4. It is not difficult to observe that p1 should be adjacent to b, since p1 cannot
be in C2. Then bp1p2p3p4 is an induced path and c1 is adjacent to its end vertices, and
thus G contains a small DH obstruction. It is a contradiction. We may assume B1 6= B.

Similar to the case when B1 is a complete bag, we can show that the parent of B1 is
B and B is a star whose center is adjacent to B1. In this case, p1 is contained in the
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non-S-attached twin class, as p1 is not adjacent to p4. As B has at least 3 vertices, there
is a vertex x ∈ V (G − S) where x is adjacent to p1, but not adjacent to p2, p3, p4. If
x is adjacent to p4, then we have a small DH obstruction. Otherwise, xp1p2p3p4 is an
induced path, and c is adjacent to its end vertices. This contradicts the non-existence of
a small DH obstruction.

We conclude that for every induced path P = p1p2p3p4p5 with p3 ∈ C2, there is a
bypassing vertex for P and p3.

Next, we deal with the case when C1 is complete to C2. We prove the case when B is a
star bag in Proposition 7.36, and the case when B is a complete bag in Proposition 7.40.

Proposition 7.36. Suppose C1 is complete to C2, and either

• B2 = B and C2 consists of the center of B2 or

• B 6= B2, and B is a star bag whose center is adjacent to comp(B,B2).

Then for every induced path P = p1p2p3p4p5 with p3 ∈ C1, there is a bypassing vertex for
P and p3.

Proof. For each i ∈ {1, 2} and let ci ∈ Ci and Ti = NG(Ci) \ (C1 ∪ C2). We first observe
that there is no child bag B′1 pending to B1 except the possible child in path(B,B2)
when B = B1. Suppose there is such a bag, and let D′ be the connected component of
D − V (B1) containing B′1. As D′ has no S-attached bags by the choice of B,B1, B2, by
Lemma 7.19, B1 is a star whose center is adjacent to D′. Then B1 becomes a (C1, C2)-
separator bag, contradicting the assumption that C1 is complete to C2. We conclude the
claim.

As Bi is the unique S-attached bag in comp(B,Bi) when B 6= Bi, by Lemma 7.19, every
bag in path(B,Bi) \ {B,Bi} has exactly two neighbor bags. Since either

• B2 = B and C2 consists of the center of B2 or

• B is a star bag whose center is adjacent to comp(B,B2),

every neighbor of a vertex in C1 is contained in comp(B,B1) or comp(B,B2).

Suppose there is an induced path P = p1p2p3p4p5 with p3 ∈ C1. We will show that there
is a bypassing vertex for p3. If p2, p4 ∈ S, then it follows from Lemma 7.14. Without
loss of generality, we assume p2 ∈ V (G− S). We distinguish cases depending on whether
(T1 ∩ T2) ∩ V (G− S) = ∅ or not.
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Case 1. (T1 ∩ T2) ∩ V (G− S) 6= ∅ : We choose a vertex x ∈ (T1 ∩ T2) ∩ V (G− S).
Since every neighbor of a vertex in C1 is contained in comp(B,B1) or comp(B,B2), x is
contained in comp(B,B1) or comp(B,B2). Since x is not contained in C1 ∪C2, x has no
neighbors in S.

Claim 7.37. (T1 ∩ T2) ∩ S 6= ∅.

Proof of the Claim. Suppose T1 ∩ S and T2 ∩ S are disjoint. As C1 is complete to C2
and (G,S, k) is reduced under Branching Rule 7.2, T1 ∩ S and T2 ∩ S are contained in
the same conncected component of G[S]. Let P be a shortest path from T1 ∩ S to
T2∩S in G[S]. Since Pc2x is an induced path of length at least 3 and c1 is adjacent to
its end vertices, G[V (P )∪{c1, c2, x}] contains a DH obstruction, which contradicts the
assumption that G is reduced under Branching Rule 7.1. Therefore, (T1 ∩ T2)∩ S 6= ∅.
♦

Let y ∈ (T1 ∩ T2) ∩ S. Clearly, x is not adjacent to y.

Claim 7.38. ((T1 \ T2) ∪ (T2 \ T1)) ∩ S = ∅.

Proof of the Claim. Suppose there is a vertex u in ((T1 \ T2) ∪ (T2 \ T1)) ∩ S. Since
xy /∈ E(G), if uy ∈ E(G), then ux ∈ E(G) by (1) of Lemma 7.12. But x has no
neighbors in S. Thus, we have uy /∈ E(G). Since {u, y} ⊆ T1 ∩ S or {u, y} ⊆ T2 ∩ S,
there is an induced path upy for some p ∈ S. We assume {u, y} ⊆ T1 ∩ S; the
symmetric argument holds when {u, y} ⊆ T2 ∩ S. If p ∈ T1 ∪ T2, then by (1) of
Lemma 7.12, u or p should be adjacent to x, which is a contradiction. On the
other hand, by (2) of Lemma 7.12, p cannot be in S \ (T1 ∪ T2). We conclude that
((T1 \ T2) ∪ (T2 \ T1)) ∩ S = ∅. ♦

Suppose that p4 ∈ V (G − S). We know that p2 and p4 are contained in some bags in
path(B1, B2). By symmetry, we assume |path(B1, A1)| ≤ |path(B1, A2)|, where A1 and
A2 are bags containing p2 and p4, respectively.

Since p2p4 /∈ E(G), A1 is not a complete bag, and thus it is a star whose center is adjacent
to comp(A1, B1). In case when P1 = P2 = B2, we may assume that p2 is contained in
the non-S-attached twin class. Then p1 should be adjacent to p4, contradiction.

We may assume that p2 ∈ V (G−S) and p4 ∈ (T1∩T2)∩S, because ((T1\T2)∪(T2\T1))∩
S = ∅. Since p4 ∈ T1 ∩ T2, we have p2 /∈ C2. We can observe that p2 has no neighbors
in S as p2 is contained in some bag in path(B1, B2) \ {B}, and it is not contained in
C1 ∪ C2.

If p1 is adjacent to c2, then c2 is adjacent to the end vertices of an induced path p1p2p3p4,
implying that G has a small DH obstruction, which is a contradiction. We may assume
that p1 is not adjacent to c2. One can observe that in this case, p1 is in some bag of
path(B1, B2), and thus p1 is adjacent to p3. This is a contradiction.
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S

C2

C1

Figure 7.13: The case when (T1 ∩ T2) ∩ V (G− S) = ∅ in Proposition 7.36.

Case 2. (T1 ∩ T2) ∩ V (G− S) = ∅ : This implies that there are no complete bags
in path(B1, B2) \ {B1, B2}, and especially, if B1 or B2 is a complete bag, then it has no
non-S-attached twin class. We first claim that B = B1, B 6= B2 and B is the parent bag
of B2.

Claim 7.39. B = B1, B 6= B2 and B is the parent bag of B2.

Proof of the Claim. Suppose B 6= B1, and let B′1 be the parent bag of B1. As C1 is
complete to C2, B1 is a star whose center is adjacent to B′1 or a complete bag. By
Lemma 7.19, there is no child of B1, and thus B1 is a leaf bag. Also, by Lemma 7.19,
B′1 has exactly two neighbor bags unless B′1 = B.
We observe that B′1 should be a star whose center is adjacent to B1. When B1 is
a star, B′1 is a star whose center is adjacent to B1, as there is no complete bag
in path(B1, B2) \ {B1, B2}. When B1 is a complete bag, if B′1 is a star whose leaf
is adjacent to B1, then we can apply Reduction Rule 7.4 because B1 contains no
non-S-attached twin class. Thus B′1 is a star whose center is adjacent to B1. Due to
Lemma 7.20, such a bag B′1 cannot exist. Therefore, we have B = B1.
Since B1 6= B2 by Lemma 7.32, we have B 6= B2. In the same reason, there are no
bags in path(B,B2) \ {B,B2}. This implies that B is the parent of B2. ♦

See Figure 7.13 for an illustration. Recall that p2 is contained in G− S. Thus, p2 should
be contained in C2 or B2 has the non-S-attached twin class and p2 is contained in this
class.

Suppose p2 ∈ C2. Then p4 ∈ (T1 \ T2) ∩ S. If p4 has a neighbor in T2, then we have
a bypassing vertex. So, we may assume that p4 has no neighbors in T2 ∩ S. As C1
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is complete to C2 and Branching Rule 7.2 is exhaustively applied, p4 and T2 ∩ S are
contained in the same connected component of G[S]. Let P be a shortest path from p4 to
T2 ∩S in G[S]. Then Pp2 is an induced path of length at least 3 and p3 is adjacent to its
end vertices, and therefore G[S ∪ {p2, p3}] contains a DH obstruction which contradicts
the exhaustive application of Branching Rule 7.1.

Now, suppose p2 /∈ C2. This implies that B2 is a star bag having a non-S-attached twin
class, and p2 is contained in the set. Then p1 should be a common neighbor of c2 and p2.
Let P be the shortest path from p4 to T2∩S in G[S]. First assume that p1 has a neighbor
in P . Among neighbors of p1 in P , we choose the vertex q such that the distance between
p4 and q in P is shortest. Let Q be the subpath of P from p4 to q. Then p2p1Q is an
induced path of length at least 3 since p1 is not adjacent to p4, and p3 is adjacent to its
end vertices. Therefore, G[S ∪ {p1, p2, p3}] contains a DH obstruction, contradicting our
assumption that G is reduced under Branching Rule 7.1. We may assume that p1 has no
neighbors in P . In this case, p2p1c2P is an induced path of length at least 3, and p3 is
adjacent to its end vertices. Therefore, G[S ∪ {p1, p2, p3, c2}] contains a DH obstruction,
contradicting our assumption that G is reduced under Branching Rule 7.1.

We conclude that for every induced path P = p1p2p3p4p5 with p3 ∈ C2, there is a
bypassing vertex for P and p3.

Proposition 7.40. Suppose C1 is complete to C2, B 6= B1, and B is a complete
bag. Then B1 contains a non-S-attached twin class C ′1 and for every induced path
P = p1p2p3p4p5 with p3 ∈ C ′1, there is a bypassing vertex for P and p3.

Proof. For each i ∈ {1, 2} and let ci ∈ Ci and Ti = NG(Ci). Let B3 be the parent bag of
B1. As C1 is complete to C2, B1 is either a complete bag or a star whose center is adjacent
to B3. We observe that B1 has a non-S-attached class, and (T2 \ T1) ∩ V (G− S) 6= ∅.

Claim 7.41. B1 contains a non-S-attached class.

Proof of the Claim. Suppose for contradiction that B1 has no non-S-attached class,
that is, its unmarked vertices form one S-attached twin class. We verify that there is no
child bag of B1. Suppose for contradiction that there is a child B′1 of B1 and let D′ be
the component comp(B1, B

′
1). Since D′ contains no S-attached bag, by Lemma 7.19,

B1 should be a star whose center is adjacent to B′1, which is a contradiction. Also,
every bag in path(B,B1)\{B,B1} is not a (B,B1)-separator bag, and by Lemma 7.19,
it has exactly two neighbor bags.
Assume B1 is a complete bag. Then its parent B3 is a star and thus B 6= B3. By
Lemma 7.20, the center of B3 is not adjacent to B1. Thus, the center of B3 is adjacent
to its parent. As B1 has no non-S-attached class, we can apply Reduction Rule 7.4 to
reduce the split decomposition, which is a contradiction. Assume B1 is a star whose
center is adjacent to its parent. Similarly, by Lemma 7.20, B3 is not a star whose
center is adjacent to B1. Thus, we may assume the parent of B1 is a complete bag,
but in this case, we can apply Reduction Rule 7.4. ♦
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Let C ′1 be the non-S-attached twin class in B1. As C1 and C ′1 have the same neighborhood
in G− S, C ′1 is complete to C2.

Claim 7.42. (T2 \ T1) ∩ V (G− S) contains a vertex that has no neighbors in S.

Proof of the Claim. If B1 is a star bag, then C ′1 ⊆ (T2 \ T1) ∩ V (G− S) and y ∈ C ′1.
If B1 is a complete bag, then since B is a complete bag, B3 6= B and the unmarked
vertices in B3 are contained in (T2 \ T1) ∩ V (G− S). Let y be an unmarked vertex in
B3. By the choice of y, y has no neighbors in S. ♦

Let y be a vertex in (T2 \ T1) ∩ V (G− S) having no neighbors in S.

Suppose there is an induced path P = p1p2p3p4p5 with p3 ∈ C ′1. We will prove that there
is a bypassing vertex for P and p3. Let D′ be the connected component of D − V (B)
containing the parent of B.

Claim 7.43. p2 and p4 are contained in (T1 ∩ T2) ∩ V (G− S).

Proof of the Claim. Note that p2 or p4 is contained in either D′ or path(B1, B2). If
both p2 and p4 are contained in D′, then this is clear. If both p2 and p4 are contained
in path(B1, B2), then without loss of generality, we assume that |path(B1, A1)| ≤
|path(B1, A2)| where A1 and A2 are bags containing p2 and p4, respectively. Since
there is no (B1, B2)-separator bag, p1 should be adjacent to p4, a contradiction. Lastly,
we assume that one of p2 and p4 is in D′, but the other is in path(B1, B2). By
symmetry we assume p2 ∈ V (D′). If p4 ∈ path(B1, B), then p4 is contained in a
complete bag, and thus p2 is adjacent to p4. If p4 ∈ path(B,B2), then p4 is clearly
adjacent to p2, as B is a complete bag. Both cases are not possible. ♦

Suppose (T1∩T2)∩S 6= ∅. Let x ∈ (T1∩T2)∩S. Since we know that p3 has no neighbors
in S, we have p3x /∈ E(G), and by (1) of Lemma 7.12, x should be adjacent to both p2
and p4. Thus, x is a bypassing vertex, as required. We may assume that (T1∩T2)∩S = ∅.

Since C1 is complete to C2, by Branching Rule 7.2, we know that T1 ∩ S and T2 ∩ S are
contained in the same connected component of G[S]. Let P be a shortest path from
T1 ∩ S to T2 ∩ S. If P has length at least 2, then G[V (P ) ∪ {c1, c2}] is an induced cycle
of length at least 5, contradicting our assumption that G is reduced under Branching
Rule 7.1. Thus, P has length 1. Let q1q2 be the path where qi is a neighbor of ci for each
i ∈ {1, 2}.

Note that q1 ∈ T1 \ T2, q2 ∈ T2 \ T1 and p2, p4 ∈ T1 ∩ T2. If q1 or q2 is adjacent to one
of p2 and p4, the by (1) of Lemma 7.12, it is adjacent to both p2 and p4. This means
that it becomes a bypassing vertex, as required. Therefore, we may assume that for each
i ∈ {1, 2}, qi is adjacent to neither p2 nor p4. So, p2c1q1q2 is an induced path of length 3,
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and c2 is adjacent to its end vertices. This implies that G has a small DH obstruction,
which is a contradiction.

We conclude that for every induced path P = p1p2p3p4p5 with p3 ∈ C2, there is a
bypassing vertex for P and p3.

Proposition 7.44. If D is a reduced canonical split decomposition of a connected
component of G− S, then D is empty.

Proof. Suppose a reduced canonical split decomposition D of a connected component of
G−S contains a vertex. If it contains at most one S-attached twin class, then Reduction
Rule 7.1 can be applied. We may assume that D contains at least two S-attached twin
classes.

We choose a root bag, and let B be a farthest bag from the root bag such that there are
two descendant bags B1 and B2 of B having distinct S-attached twin classes C1 and C2,
respectively. By Lemma 7.32, B1 6= B2, and one of the following happens:

(1) The distance from C1 to C2 in G− S is 2 and the unique (C1, C2)-separator bag is
contained in comp(B,Bi) for some i ∈ {1, 2}.

(2) C1 is complete to C2 and either

– B is a star bag and Ci is the set consisting of the center of B for some i ∈ {1, 2},
or

– B is a star bag whose center is adjacent to comp(B,Bi) for some i ∈ {1, 2}.

(3) C1 is complete to C2 and B is a complete bag.

If (1) happens, then by Proposition 7.33, Reduction Rule 7.3 is applied to remove Ci.
If (2) happens, then by Proposition 7.36, Reduction Rule 7.3 is applied to remove C3−i.
If (3) happens, then by Proposition 7.40, Reduction Rule 7.3 is applied to remove the
non-S-attached twin class in one of B1 and B2. But this contradicts the assumption that
D is reduced.

7.5 The Algorithm, Lower Bounds and Applications
Our goal in this section is to give a proof of our main result, Theorem 7.46, and obtain
corresponding lower bounds.

7.5.1 The Algorithm

Below, we use the presented reduction and branching rules to give an algorithm for
Disjoint Distance-Hereditary Vertex Deletion. This is then followed by a proof
of our main algorithmic result.
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Theorem 7.45. Disjoint Distance-Hereditary Vertex Deletion can be solved
in time O(6k+cc(G[S]) · |V (G)|6(|V (G)|+ E(G))).

Proof. Let (G,S, k) be an instance of Disjoint Distance-Hereditary Vertex Dele-
tion. We exhaustively apply Branching Rules 7.1–7.2 and Reduction Rules 7.1–7.5. We
prove that one of rules can be applied until G−S is empty or k becomes 0. In both cases,
we can test whether the resulting instance is distance-hereditary or not in polynomial
time, and output an answer. Suppose k does not reach 0. Then by Proposition 7.44,
G−S contains no vertices. Therefore, the resulting instance satisfies that G−S is empty,
as mentioned.

We argue that the runtime bounds hold. For convenience, we will denote |V (G)| by n
and |E(G)| by m. First notice that each branching rule reduces either k or the number of
connected components in G[S] and branches into at most 6 subinstances. Moreover, none
of the reduction rules change k or the number of components in S. Hence a branching
rule is applied at most k + cc(G[S]) times. Similarly, every reduction rule reduces either
the number of vertices in G− S or the number of bags in canonical split decomposition
of G− S. Therefore, it is not hard to observe that the branching tree of the algorithm
will have at most 6k+cc(G[S]) leaves and each leaf will be in depth at most O(n) and
hence the branching tree will have at most O(6k+cc(G[S]) · n) nodes. In the following
we will discuss that the runtime in every node will not exceed O(n5(n+m)). In each
node, we go through the branching and reduction rules, in the order they are introduced,
and apply the first rule that can be applied. Let us start with detecting and applying
Branching Rule 7.1. Our algorithm is going through all sets X ⊆ G− S of size at most 5
and checking, whether G[S ∪X] is distance-hereditary. It follows from Theorems 7.7 and
7.8 that we check whether a graph is distance-hereditary in time O(n+m). If the graph
is not distance-hereditary, application of the rule can be done in constant time. Hence,
the Branching Rule 7.1 can be verified in time O(n5(n+m)). Similarly, for Branching
Rule 7.2 for every set X ⊆ V (G − S) of size at most 5, we can in time O(n + m), e.g.
using breadth-first search, verify that the neighborhood of X is in the same connected
component and the same running time bound follows. After verifying that the graph is
actually reduced under Branching Rules 7.1 and 7.2 it follows from Proposition 7.16 that
we can in time O(n6) either apply one of Reduction Rules 7.1–7.5 or correctly deduce that
the graph is reduced also under Reduction Rules 7.1–7.5. Hence, the whole algorithm
for Disjoint Distance-Hereditary Vertex Deletion can be implemented in time
O(6k+cc(G[S]) · n6(n+m)).

Theorem 7.46. Distance-Hereditary Vertex Deletion can be solved in time
O(37k · |V (G)|7(|V (G)|+ |E(G)|)).

Proof. We apply the standard iterative compressing technique. The algorithm involves
a two-step reduction of Distance-Hereditary Vertex Deletion: we first reduce
Distance-Hereditary Vertex Deletion to the Compression problem, which
reduces to Disjoint Distance-Hereditary Vertex Deletion.
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For convenience, we denote for this proof |V (G)| = n and |E(G)| = m. Fix an arbitrary
labeling v1, . . . , vn of V (G) and let Gi be a the graph G[{v1, . . . , vi}] for 1 ≤ i ≤ n. From
i = 1 up to n, we consider the following the Compression problem for Distance-
Hereditary Vertex Deletion: given a graph Gi and Si ⊆ V (Gi) such that Gi−Si is
distance-hereditary and |Si| ≤ k+ 1, we aim to find a set S′i ⊆ V (Gi) such that Gi−S′i is
distance-hereditary and |S′i| ≤ k, if one exists, and output No otherwise. Since distance-
hereditary graphs are closed under taking induced subgraphs, (G, k) is Yes-instance of
Distance-Hereditary Vertex Deletion if and only if (Gi, Si) is a Yes-instance
for Compression for all i, where (Gi, Si) is a legitimate instance. Hence we correctly
output that (G, k) is No-instance of Distance-Hereditary Vertex Deletion if
(Gi, Si) is a No-instance for some i. Moreover, if S′i is a solution to the i-th instance of
Compression, then (Gi+1, S

′
i ∪ {vi+1}) is a legitimate instance for (i+ 1)-th instance of

Compression.

Given an instance (G,S) of Compression, we enumerate all possible intersections I
of S and a desired solution to (G,S). For each guessed set I, we solve the instance
(G − I, S \ I, k − |I|) of Disjoint Distance-Hereditary Vertex Deletion using
Theorem 7.45. Note that (G,S) is Yes-instance if and only if (G− I, S \ I, k − |I|) is
Yes-instance for some I ⊆ S. If S′ is a solution to (G − I, S \ I, k − |I|), then clearly
S′ ∪ I is a solution to the instance (G,S) of Compression. Conversely, if S′ is a
solution to the instance (G,S) of Compression then for the set I = S ∩ S′ the instance
(G − I, S \ I, k − |I|) is Yes-instance for Disjoint Distance-Hereditary Vertex
Deletion. Therefore, using the algorithm from Theorem 7.45 we can correctly solve
Distance-Hereditary Vertex Deletion.

It remains to prove the complexity of the algorithm. Given an instance (G,S) we guess at
most

(k+1
i

)
sets I ⊆ S of size i for each 1 ≤ i ≤ k. Note that S\I has size at most k+1−i,

and in particular G[S] has at most k + 1− i connected components. Therefore, we can
solve the resulting instance (G − I, S \ I, k − i) of Disjoint Distance-Hereditary
Vertex Deletion in time O(62k−2i+1 · n6(n+m)) = O(36k−i · n6(n+m)). Summing
up, Distance-Hereditary Vertex Deletion can be solved by running an algorithm
for Compression at most n times, which yields the claimed running time

n ·
k∑
i=0

(
k + 1
i

)
· O(36k−i · n6(n+m)) = O(37k · n7(n+m)).

Note that the equality follows from the use of the binomial theorem, which states that∑n
i=0

(n
i

)
aibn−i = (a+ b)n (see, e.g., Chapter 10 in Cygan et al. [53]).

7.5.2 Lower Bounds

Here we present our tight lower bound result based on the fact that the classical
Vertex Cover problem cannot be solved in subexponential time unless ETH fails
(recall Theorem 2.5).
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Theorem 7.47. There is no 2o(k) · |V (G)|O(1) algorithm for Distance-Hereditary
Vertex Deletion unless ETH fails.

Proof. For a graph G, we will denote |V (G)| by n and |E(G)| by m. For contradiction
suppose there exists an algorithm for solving the Distance-Hereditary Vertex
Deletion problem in time 2o(k) · nO(1). We show that we can solve Vertex Cover in
time 2o(k) · nO(1). Let (G, k) be an instance of Vertex Cover problem. We construct
a graph G′ as follows. We replace every edge uv of G with two vertex disjoint paths
of length 3 between u and v. Note that for every edge uv in G the two disjoint paths
of length 3 in G′ form an induced subgraph isomorphic to C6. Moreover we have
|V (G′)| = |V (G)|+ 4|E(G)|. We claim that G has a vertex set S of size at most k such
that G− S has no edges if and only if G′ has a vertex deletion set of size at most k to a
distance-hereditary graph. Suppose that G has such a vertex cover S. It is easy to confirm
that G′ − S is a disjoint union of subdivisions of stars, which is distance-hereditary.

For the converse direction, suppose G′ has a distance-hereditary vertex deletion set S
of size at most k. Let us fix an arbitrary edge uv in G. Note that no DH obstruction
contains a pendant vertex. Hence we observe that if H is a DH obstruction containing a
vertex t on a shortest u− v path in G′, then H contains both vertices u and v as well.
Therefore, if t ∈ S, then also graphs G′ − (S \ {t} ∪ {u}) and G′ − (S \ {t} ∪ {v}) are
distance-hereditary. Since the choice of the edge uv was arbitrary, we can find a set
T , such that T ⊆ V (G), |T | ≤ |S|, and G′ − T is a distance-hereditary graph. Clearly
for every edge uv in G, T contains u or v, otherwise G′ − T contains an induced C6.
We conclude that T is a vertex cover of G.

7.5.3 Example Applications

There is an established line of research studying the algorithmic applications of vertex
deletion sets to specific graph classes [92, 79]. In this context, it is natural to ask whether
Theorem 7.46 allows the development of single-exponential algorithms for problems
parameterized by the size of a vertex deletion set to distance-hereditary graphs.

Clearly, any problem that is FPT when parameterized by clique-width (and rank-
width) must also be FPT when parameterized by the size of a vertex deletion set to
distance-hereditary graphs. However, the existence of a single-exponential FPT algorithm
parameterized by clique-width does not immediately imply that the problem also admits
a single-exponential FPT algorithm parameterized by our parameter, since the addition
of k vertices to a graph may increase clique-width by a factor of up to 2k [111]. On the
other hand, known FPT algorithms parameterized by rank-width usually do not have a
single-exponential dependency on the parameter. As a consequence, one cannot obtain
the following examples of single-exponential algorithms by simply solving these problems
via known FPT algorithms parameterized by rank-width or clique-width.
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Lemma 7.48. Vertex Cover and 3-Coloring admit a single-exponential FPT
algorithm when parameteried by the size of a vertex deletion set to distance-hereditary
graphs.

Proof. For each of the presented problems, we always begin by invoking Theorem 7.46 to
compute a vertex deletion set X to distance-hereditary graphs of size at most k.

In the case of Vertex Cover, we can apply standard branching algorithms to solve
the problem. In particular, we begin by branching over the at most 2k options of how
X intersects with a (hypothetical) solution; let X1 be one such subset of X and let
X2 = X \ X1. After branching we proceed by testing the validity of a branch (i.e.,
whether each edge with both endpoints in X is covered by X1). For each valid branch,
we delete X and the set Z of all neighbors of X2 in G−X. Next, we find a minimum
vertex cover C in the remaining distance-hereditary subgraph of G in polynomial time.
Finally, for each branch we compare the desired solution size with |C ∪X1 ∪ Z|; clearly,
a graph is a YES-instance of Vertex Cover if and only if at least one selection of X1
results in a value of |C ∪X1 ∪ Z| which is at most the desired solution size.

For 3-Coloring, we also begin by branching over the at most 3k 3-colorings of X. For
each such proper 3-coloring of X, we construct an instance of 3-List Coloring as
follows: the input graph is G − X, and the list of admissible colors for each vertex v
contains all colors that are not used by a neighbor of v in X. The 3-List Coloring
problem can be solved in polynomial time on distance-hereditary graphs: indeed, the
problem can easily be reduced to the MSO1 model checking problem over labeled graphs
with (at most) 8 labels. Since G −X has rank-width at most 1, the polynomial-time
tractability of the problem follows for instance from Courcelle’s Theorem [50]. All that
remains now is to test whether at least one of the considered 3k branches gives rise to a
yes-instance of 3-List Coloring on G−X.

7.6 Summary and Open Questions
We conclude with a few remarks on why we believe that the presented algorithm is of high
interest. First, it intrinsically exploits the properties guaranteed by distinct, seemingly
unrelated characterizations of distance-hereditary graphs; this approach can likely be
used to design or improve algorithms for other vertex deletion problems. Second, it uses
highly nontrivial reduction rules which simplify canonical split decompositions, and an
adaptation or extension of the presented rules could be highly relevant for other graph
classes characterized by special canonical split decompositions, such as parity graphs [43]
or circle graphs [91]. Third, it is the first of its kind which targets a “full” class of graphs
of bounded rank-width (contrasting previous results for specific subclasses of graphs of
rank-width 1 [122, 5, 136, 133]).

It is worth noting that there remains a number of interesting open problems in this
general area. Perhaps the most prominent one is the question of whether vertex deletion
to graphs of rank-width c, for any constant c, admits a single-exponential FPT algorithm.
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7.6. Summary and Open Questions

Our algorithm represents the first steps in this general direction. Recently, Kim and
Kwon [137] gave a polynomial kernel for Distance-Hereditary Vertex Deletion.
The existence of a polynomial kernel or an approximation algorithm for such vertex
deletion problems for c > 1 remains open.

Notes
The results in this chapter appeared in a conference paper in the proceedings of
42nd International Symposium on Mathematical Foundations of Computer Science
(MFCS 2016) [71].
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CHAPTER 8
Towards a Polynomial Kernel for

Directed Feedback Vertex Set

The existence of a polynomial kernel for DFVS is a challenging open problem in the area
of parameterized algorithms. In particular, since the breakthrough result of Chen, Liu, Lu,
O’Sullivan and Razgon [42] which showed that DFVS is FPT, virtually no progress has
been made towards settling the existence of a polynomial kernel for this problem. Given
the apparent difficulty of this question, it makes sense to investigate more restrictive
parameterizations, which may make it easier to obtain a kernel for DFVS. Here, we
investigate the existence of a polynomial kernel for DFVS under natural parameters
which upper-bound the size of the directed feedback vertex set; in particular, we consider
the size of a feedback vertex set of the underlying undirected graph of the DFVS instance.

Results

Before, we get to the results, we point out that in this chapter we actually consider
undirected and directed multigraphs, since they are more suitable for dealing with
reduction rules for DFVS. Therefore in the course of this chapter we will refer to
multigraphs simply as graphs. Furthermore, throughout this chapter, for a directed graph
D we denote by D the undirected multigraph obtained from D after replacing every arc
(u, v) ∈ E(D) with an edge {u, v}; note that if there are arcs in both directions between
u and v, in this case we also say that there is a bidirectional arc between u and v, then
D will contain two edges between u and v. We call D the underlying undirected graph
of D. The problem we are interested in can be formally stated as follows.
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Directed Feedback Vertex Set parameterized by FVS (DFVS[FVS])

Instance: A digraph D, an integer p, and a set F such that F is
an UFVS of D.

Parameter: |F |
Question: Does there exist a vertex subset of size at most p that intersects

every cycle in D?

Since every UFVS (undirected feedback vertex set) of D is also a DFVS (directed
feedback vertex set) of D, we may assume without loss of generality that p ≤ |F | for
every instance of DFVS[FVS]. Furthermore, we use k to denote the size of F . Our first
result is a polynomial kernel for DFVS[FVS], formally stated below. We note that this
may be viewed as an intermediate step towards resolving the existence of a polynomial
kernel for DFVS.

Theorem 8.1. There is a kernel with O(k4) vertices for DFVS[FVS].

Interestingly, the existence of a polynomial kernel for DFVS parameterized by the solution
size remains open even in the restricted setting of planar graphs. While our Theorem 8.1
naturally also provides a polynomial kernel for DFVS[FVS] on planar graphs, as our
second main contribution we show that one can in fact obtain a significantly stronger
result not only on planar graphs, but on all graphs embeddable on orientable surfaces.

Theorem 8.2. There is a kernel with O(k) vertices for DFVS[FVS] when the input
digraph is embeddable on a surface of constant genus.

Organization of the Chapter

First, in Section 8.1, we deal with the polynomial kernel for the case of the general
directed graphs. Afterwards, in Section 8.2 we give a linear kernel for digraphs that
can be embedded in a given fixed surface. In both section, in order to describe our
kernelization algorithm, we present a series of reduction rules. We prove the soundness
of each reduction rule immediately after presenting its description, unless the soundness
is obvious. Moreover, the reduction rules we present will be executed in the order in
which they appear. That is, if at any point we may apply Reduction Rule i as well as
Reduction Rule j where i < j, we will execute Reduction Rule i.

8.1 A Polynomial Kernel for DFVS[FVS]
Note that every FVS of D is also a DFVS of D. Given an instance D of DFVS, our
kernelization algorithm for DFVS parameterized by FVS first computes a 2-approximate
FVS S of D (using for instance the algorithm given in [16]) and then uses S to reduce the
instance in polynomial-time into an equivalent instance with at most O(|S|4) vertices.
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Hence in the following we will assume that D is a directed graph and S is a FVS of D
(and hence also a DFVS of D) of size k. Our first two reduction rules are sound because
(a) neither sinks nor sources can appear on a directed cycle and (b) if a vertex v has
exactly one in-neighbor u in D then every directed cycle containing v has to use the arc
(u, v) (a symmetric statement holds for vertices with exactly one out-neighbor).

Reduction Rule 8.1. Delete all sources and sinks from D.

Reduction Rule 8.2. Let l be an arbitrary vertex in D.

• If l has exactly one out-neighbor p ∈ V (D), then we contract the arc (l, p) into a
new vertex l∗.

• If l has exactly one in-neighbor p ∈ V (D), then we contract the arc (p, l) into a
new vertex l∗.

After the exhaustive application of these two rules, we may assume, w.l.o.g , that the
digraph D has no sinks or sources, and furthermore that every vertex has at least 2
in-neighbors and at least 2 out-neighbors. We now state one of our main reduction rules.

Reduction Rule 8.3. Let u and v be two (not necessarily distinct) vertices in S such
that there are at least k + 1 internally vertex-disjoint directed u-v paths in D. Then,

• if u 6= v, we add an arc from u to v to D, or

• if u = v, we remove u from D and decrease the parameter k by one.

Proof of soundness. Let u, v ∈ S be as above and let D′ be the digraph obtained from
D after applying the reduction rule. If u = v then clearly every DFVS for D of size at
most k contains u, which shows the soundness of the reduction rule.

If on the other hand u 6= v, we will show that a set S′ ⊆ V (D) = V (D′) of size at most
k is a DFVS for D if and only if it is also a DFVS for D′. The backward direction is
trivial because D is a subgraph of D′. For the forward direction let S′ be a DFVS for D
of size at most k and assume for a contradiction that S′ is not a DFVS for D′. Then
D′ \ S′ contains a directed cycle C that contains the arc (u, v). Hence D′ \ S′ and thus
also D \ S′ contains a directed v-u path P . Moreover, since S′ has size at most k and
there are at least k + 1 vertex-disjoint directed u-v paths in D, we conclude that there is
a u-v path P ′ in D \ S′. But then P ∪ P ′ must contain a directed cycle, which is also a
directed cycle in D \ S′, a contradiction to our assumption that S′ is a DFVS of D.

We will use Reduction Rule 8.3 to reduce the number of vertices in D \ S that ‘directly
contribute’ to (pairs of) vertices in S. The following definition will allow us to formalize
this idea.
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Definition 8.3. Let (u, v) be an ordered pair of vertices in S. If u 6= v, then we refer to
(u, v) as a potential arc in D[S] and if additionally (u, v) /∈ D then we refer to (u, v) as a
non-arc. If on the other hand u = v, then we refer to (u, v) as a self-loop. We say that a
vertex v ∈ V (D) \ S contributes to a potential arc or self-loop (u,w) , if (u, v) ∈ E(D)
and (v, w) ∈ E(D).

After the exhaustive application of Reduction Rule 8.3, we have the following structural
observation regarding the input.

Observation 8.4. For every u ∈ S there are at most k internally vertex-disjoint u-u
paths in D; moreover for every two distinct vertices u and v in S with (u, v) /∈ E(D),
there are at most k vertex disjoint u-v paths in D. As a result, for every non-arc or
self-loop (u, v), there are at most k vertices that contribute to (u, v).

Since S has at most k vertices and at most k(k − 1) ordered pairs of vertices, Observa-
tion 8.4 implies the following.

Observation 8.5. There are at most k2(k− 1) vertices in D \S that contribute to some
non-arc of D[S]. Moreover, there are at most k2 vertices in D \S that contribute to some
self-loop of D[S].

Our next aim is to bound the number of vertices in A = D \ S in terms of k. Towards
achieving this we will distinguish these vertices in terms of size of their neighborhood
in D \ S. We therefore denote by A0, A1, A2, and A≥3 the sets of all vertices in A that
have 0, 1, 2, and at least 3 neighbors, respectively, in D \ S.

8.1.1 Bounding A0, A1 and A≥3.

Note that Observation 8.5 already provides a bound for the number of vertices in A0
that contribute to some self-loop of D[S]. Hence, in order to bound A0, it is sufficient
to provide a bound for the remaining vertices, in the following denoted by A′0, in A0.
In the following let v be a vertex in A′0. Because of Rule 8.1 v must have at least one
in-neighbor and one out-neighbor in S. Consequently, v contributes to at least one
potential arc of D[S].

Reduction Rule 8.4. If v does not contribute to a non-arc of D[S], then we remove v
from D.

Proof of soundness. Let v be as above and let D′ be the directed graph obtained from
D after deleting v. We show that a set S′ ⊆ V (D) is a DFVS for D if and only if S′ is a
DFVS for D′. The forward direction of this claim is trivial because D′ is a subgraph of
D. Towards showing the backward direction let S′ be a DFVS for D′ and assume for a
contradiction that S′ is not a DFVS for D. Then there must exist a directed cycle C in
D \ S′ that contains v as well as two arcs (s, v) and (v, s′) for some s, s′ ∈ S. Because
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v does not contribute to a self-loop of D[S], we have that s 6= s′. Because v does not
contribute to a non-arc of D[S], it follows that (s, s′) ∈ E(D). Hence the arc (s, s′)
together with the directed path from s′ to s contained in C forms a directed cycle in
D′ \ S′, a contradiction to our assumption that S′ is a DFVS for D′.

After the exhaustive application of the above rule, we obtain that v contributes to some
non-arc of D[S] and hence together with Observation 8.5, we obtain the following.

Observation 8.6. There are at most k2(k − 1) vertices in A′0.

Bounding A1. We now present the reduction rules we use to bound the size of A1, i.e.,
the number of leaves in A. Again it is sufficient to bound the number of vertices in A1
that do not contribute to some self-loop of D[S], in the following denoted by A′1. Namely,
we will introduce a reduction rule that ensure that every vertex in A′1 contributes to
at least one non-arc in D[S]. Together with Observation 8.5 this then bounds the size
of A′1. Recall that at this point every vertex in D has at least two in-neighbors and at
least two out-neighbors and since moreover every vertex in A′1 does not contribute to a
self-loop, we obtain that every vertex in A′1 has at least one in-neighbor and at least one
out-neighbor in S that are distinct. Hence we obtain:

Observation 8.7. Every vertex in A′1 has at least one in-neighbor and at least one
out-neighbor in S and hence every vertex in A′1 contributes to a potential arc of D[S].

The next reduction rule reduces leaves that do not contribute to a non-arc of D[S].

Reduction Rule 8.5. Let l ∈ A′1 and let p be the unique neighbor of l in D \ S.
If l does not contribute to a non-arc of D[S], then:

• if (l, p) ∈ E(D), then we delete all arcs from l to vertices in S,

• if (p, l) ∈ E(D), then we delete all arcs from vertices in S to l.

Proof of soundness. We only show the soundness of the first part since the proof for
the soundness of the second part is analogous. Let D′ be the directed graph obtained
from D after deleting all arcs from l to vertices in S. We will show that any set
S′ ⊆ V (D) = V (D′) is a DFVS of D if and only if S′ is a DFVS of D′. The forward
direction of this claim is trivial because D′ is a subgraph of D. Towards showing the
backward direction let S′ be a DFVS for D′ and assume for a contradiction that S′ is
not a DFVS for D. Then there is a cycle C in D \ S′ that contains exactly one of the
deleted arcs, say the arc (l, s′) with s′ ∈ S, from l to some vertex in S. Because the only
incoming arcs of l in D are arcs from vertices in S, the cycle C must also contain exactly
one arc from some vertex say s ∈ S to l. Because l does not contribute to any non-arc of
D[S], we conclude that (s, s′) ∈ E(D). But then the directed path from s′ to s contained
in C together with the arc (s, s′) forms a directed cycle in D′ \ S′, a contradiction to our
assumption that S′ is a DFVS for D′.
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Note that after application of Rule 8.5, l will only have either in-neighbors or out-neighbors
in S and can hence be reduced further using Rule 8.2. Consequently, after the exhaustive
application of the above rules, we conclude that every vertex in A′1 contributes to at
least one non-arc of D[S]. Due to Observation 8.5 we conclude that there are at most
k2(k − 1) vertices in A′1. Finally, since D \ S is a forest and the number of vertices of
degree at least 3 in a forest is at most equal to the number of leaves minus two, we get
the following.

Observation 8.8. There are at most k3 − 2 vertices in A≥3.

Note that at this point, we have bounded the size of the sets A0, A1 and A≥3 and the
only set that remains is A2.

8.1.2 Bounding A2

Our next aim is to bound the number of vertices in A2.

Definition 8.9. Let v be a vertex in A2. We say that v is a sink-vertex or a source-vertex
if the two arcs of D\S incident on it are both incoming arcs or outgoing arcs, respectively.
Otherwise we say that v is a balanced-vertex.

Note that due to Reduction Rule 8.2, there are no balanced vertices in D \ S which have
no neighbors in S. This is because otherwise, we would have already contracted one of
the two arcs incident to v in D \ S. Therefore, at this point, we infer the following.

Observation 8.10. Every vertex in A2 has at least one neighbor in S.

Definition 8.11. Let P = (v1, . . . , vr) be a directed path of maximum length in D \ S
whose internal vertices are in A2. Then we say that P is a path segment in D \ S. We
say that P is an outer path segment if at least one of its endpoints is not in A2, otherwise
we say that P is an inner path segment.

Note that path segments are by definition directed paths. Our strategy now is to obtain a
bound on the total number of path segments and then proceed to bound the length of
each path segment.

We first bound the number of outer path segments in D \ S as follows. Let G be the
undirected graph obtained from D \ S after contracting all edges which are incident to
at least one vertex of degree 2. Then the number of outer path segments in D \ S is
equal to two times the number of edges of G. Because G is a forest without degree two
vertices it holds that the number of edges of G is equal to the number of leaves plus the
number of non-leaves in G minus one. Hence the number of outer path segments is at
most 2(|A′1 ∪A≥3| − 1), which together with the already obtained bound on these sets
and Observation 8.8 allows us to infer the following.
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Observation 8.12. The number of outer path segments in D \ S is at most
4k2(k − 1) + 2k2 − 6.

In order to bound the number of inner path segments, we need to introduce a new
reduction rule. We begin by defining the notion of a path segment ‘contributing’ to
a potential arc.

Definition 8.13. We say that a path segment P = (v1, . . . , vr) contributes to a potential
arc (s, s′) of D[S] if there are i and j with 1 ≤ i ≤ j ≤ r such that (s, vi) ∈ E(D) and
(vj , s′) ∈ E(D). Moreover, we say that P contributes to a self-loop if there are i and j
with 1 ≤ i ≤ j ≤ r such that (s, vi) ∈ E(D) and (vj , s) ∈ E(D) for some s ∈ S.

Reduction Rule 8.6. If an inner path segment does not contribute to a non-arc or to
a self-loop of D[S], then we remove all internal vertices of P .

Proof of soundness. Let P = (v1, . . . , vr) and let D′ be the directed graph obtained from
D after deleting all internal vertices of P . We claim that a set S′ of size at most k is
a DFVS for D if and only if it is a DFVS for D′. The forward direction is trivial since
D′ is a subgraph of D. For the backward direction let S′ be a DFVS for D′ of size at
most k and suppose for a contradiction that S′ is not a DFVS for D. Then there is a
directed cycle C in D \ S′ that contains at least one internal vertex of P . Moreover,
because P is an inner path segment (and hence both of its endpoints are either sink- or
source-vertices) the path P can only be entered and left by the cycle C via vertices in
S. Hence C contains at least one directed subpath that enters P from some vertex say
s ∈ S and leaves P through some vertex say s′ ∈ S. Because P does not contribute to a
self-loop, we infer that s 6= s′ for every such directed subpath of P . Furthermore, because
P does not contribute to a non-arc of D[S], we have that (s, s′) ∈ E(D) for every such
directed subpath of C. It follows that we can replace all directed s-s′ subpaths in C
with s, s′ ∈ S and all internal vertices from P , with the arc (s, s′) which we know by our
assumption, exists in D[S] and thereby obtain a cycle C ′ in D′ \ S′, a contradiction to
our assumption that S′ is a DFVS for D′.

After the exhaustive application of the above rule, we obtain:

Observation 8.14. Every inner path segment contributes to at least one non-arc or
self-loop of D[S].

Because every pair of inner path segments that contribute to some non-arc or self-loop
(s, s′) of D[S] increase the number of disjoint paths between s and s′ in D by at least
one, Observation 8.4 implies that for every non-arc or self-loop (s, s′) of D[S] there are
at most 2k inner path segments that contribute to (s, s′). Finally, because S has at most
k vertices and at most k(k − 1) ordered pairs of vertices, we conclude that there are at
most 2k2(k − 1) + 2k2 inner path segments in D \ S. Having obtained a bound on the
number of inner path segments too, we conclude the following.
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Observation 8.15. The number of path segments in D\S is at most 6k2(k−1)+4k2−6.

Our next aim is to provide a bound on the overall length of path segments and use it to
bound the size of A2. Towards this aim we introduce reduction rules that allow us to
bound the in-degree and the out-degree w.r.t. S of any vertex occurring internally in
path segments.

Definition 8.16. Let s ∈ S and let P = (v1, . . . , vr) be an induced directed path in D\S,
whose internal vertices are in A2 and that satisfies:

• (s, v1) ∈ E(D) and (s, vr) ∈ E(D) and v1 is a balanced vertex in A2,

• for every i with 1 < i < r, it holds that (s, vi) /∈ E(D).

If P satisfies the above properties we call P an out-segment for s. We say that P
contributes to a potential arc or self-loop (s, s′) in D[S] if there is an index i with
1 ≤ i < r such that (vi, s′) ∈ E(D) for some s′ ∈ S.

We now introduce a reduction rule that allows us to preprocess and reduce certain
out-segments.

Reduction Rule 8.7. Let s ∈ S and let P = (v1, . . . , vr) be an out-segment for s. If P
does not contribute to any non-arc or self-loop of D[S], then we remove the arc (s, v1).

Proof of soundness. Let D′ be the directed graph obtained from D after removing the
arc (s, v1). We show that a set S′ of size at most k is a DFVS for D if and only if it is a
DFVS for D′. The forward direction is trivial because D′ is a subgraph of D.

For the backward direction let S′ be a DFVS for D′ and assume for a contradiction that
S′ is not a DFVS for D. Then there is a directed cycle C in D \ S′ that uses the arc
(s, v1). Because v1 is a balanced vertex the cycle C has to continue on P after using the
arc (s, v1). That is, there is a subpath of C which is (s, v1, . . . , vq) for some q < r. We
now consider the following two exhaustive cases.

Case 1: The cycle leaves P at some vertex vi with 1 ≤ i < r . Then, C leaves P and
enters some vertex s′ ∈ S. In other words, C has a subpath PC = (s, v1, . . . , vi, s

′).
Because P does not contribute to a self-loop of D[S], we have that s 6= s′. Moreover,
because P does not contribute to a non-arc of D[S] we obtain that (s, s′) ∈ E(D).
Hence we can replace the subpath PC in C with the arc (s, s′) and thereby obtain
a cycle C ′ that is also a cycle in D′ \ S′ contradicting our assumption that S′ is
a DFVS for D′.

Case 2: The cycle leaves P only at vr. In the second case we obtain a cycle C ′ from C by
replacing the arc (s, v1) plus the segment of C in P with the arc (s, vr). Because C ′
is also a cycle in D′ \ S′, this contradicts our assumption that S′ is a DFVS for D′.
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Having obtained a contradiction in either case, we conclude that S is indeed a DFVS for D.

After the exhaustive application of the above rule, we obtain the following.

Lemma 8.17. For each s ∈ S, there are at most k2 out-segments for s.

Proof. Since Rule 8.7 does not apply, every out-segment for s contributes to at least
one non-arc or self-loop of D[S]. Furthermore, every out-segment for s that contributes
to some non-arc or self-loop (s, s′) of D[S] increases the number of internally vertex-
disjoint paths s-s′ paths in D by one. Observation 8.4 implies that for every non-arc
or self-loop (s, s′) of D[S], there are at most k out-segments for s in D \ (S ∪ B) that
contribute to (s, s′).

Finally, because every vertex s is contained in at most a single self-loop and in at most
k−1 non-arcs of D[S], we infer that there are at most k(k−1)+k out-segments for s.

We are now ready to bound the size of the set A2.

Lemma 8.18. The number of vertices in A2 is at most 12k4 − 2k3 − 12k.

Proof. We begin by arguing that for every s ∈ S, s has at most
(6k2(k − 1) + 4k2 − 6 + k(k − 1) + k) neighbors in A2. Since the number of out-neighbors
of s in A2 is at most the number of path segments (bounded by Observation 8.15) plus
the number of out-segments for s (bounded by Lemma 8.17), we obtain an upper bound
of 6k2(k − 1) + 4k2 − 6 + k2 on the size of the out-neighborhood (and by symmetry, the
in-neighborhood) of s in A2.

Consequently, the total number of neighbors of vertices in S to vertices in A2 and
thus (because of Observation 8.10) the total number of vertices in A2 is at most
2k · (6k2(k − 1) + 4k2 − 6 + k2).

We are now ready to prove a bound on the size of the kernel. Recall that thus far we
have obtained the following bounds:

• there are at most k2 vertices in D \ S contributing to a self-loop in D[S] (Observa-
tion 8.5),

• |A′0| ≤ k2(k − 1) (Observation 8.6),

• |A′1| ≤ k2(k − 1) (see paragraph before Observation 8.8),

• |A2| ≤ 12k4 − 2k3 − 12k (Lemma 8.18),

• |A≥3| ≤ k3 − 2 (Observation 8.8),
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It follows that the total number of vertices in the reduced
graph is at most k2 + |A′0 ∪A′1 ∪A2 ∪A≥3 ∪ S| which is at most
k2 + 2k2(k − 1) + k3 − 2 + 12k4 − 2k3 − 12k + k, thus proving Theorem 8.1. This
completes the description of our kernel for general instances of the problem; we now
proceed to the linear kernel on graphs of bounded genus.

8.2 A Linear Kernel for DFVS[FVS] on Bounded Genus
graphs

We note that we do not formally define the genus of a graph here. However, to obtain
our results, we only need the following result that can be found for example in the book
Topological Graph Theory by Gross and Tucker [109]. For a more detailed treatment of
topological graph theory the reader is referred for example to the aforementioned book.

Proposition 8.19 ([109]). The orientable and nonorientable genus, denoted by γ and γ̃,
of complete bipartite graphs is given by the following formulae:

γ(Km,n) =
⌈(m− 2)(n− 2)

4

⌉
,m, n ≥ 2; γ̃(Km,n) =

⌈(m− 2)(n− 2)
2

⌉
,m, n ≥ 2.

Corollary 8.20. If G is a graph such that γ(G) ≤ g and γ̃(G) ≤ h for some constants
g and h, then G does not contain K3,4g+3 nor K3,2h+3 as a minor.

Throughout this section we will use D to denote a directed graph of genus at most some
fixed bound g. We let S be a feedback vertex set of D and let c be a constant such that
D is a K3,c-minor-free graph, where c depends only on g as per Corollary 8.20. We begin
with the following lemma, which follows directly from [92, Lemma 4.3] and from the fact
that D is K3,c-minor-free.

Lemma 8.21. Let G = (X,Y,E) be a bipartite graph and c a constant such that G is
K3,c-minor-free. Then,

• there are O(|X|) subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y and

• for any subset X ′ ⊆ X such that |X ′| ≥ 3, the set Y ′ = {y ∈ Y : N(y) ⊇ X ′} has
size at most c− 1.

We will need a few additional notions to provide a concise presentation of the results
in this section. A digraph H is called a road iff H is a path; the first and last vertex
on a road are called its endpoints, and all other vertices on a road are called internal
vertices. Moreover, for a directed graph G consider a connected component of G with
vertex set A such that G[A] is acyclic. Then G[A] (and, equivalently, the set A) is called
an acyclic component of G. Since every component of D \ S is a tree, observe that
there is a one-to-one correspondence between connected components of D \ S and acyclic
components of D \ S.
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For each distinct x, y ∈ S, we denote by Cx,y the set of all acyclic components C of D \ S
with N(C) = {x, y}. Finally, we use C→x,y to denote the subset of Cx,y of components C
with the property that D[C ∪ {x, y}]:

• contains a directed path from x to y, but

• contains neither an x-x directed path nor a y-y directed path intersecting C.

Observe that any road within D that is disjoint from a feedback vertex set of D may
only contain simple edges. Furthermore, in any instance where Reduction Rule 8.1 is not
applicable, the input digraph D itself does not contain an acyclic component. That is,
every connected component of D contains a directed cycle.

Observation 8.22. If Reduction Rule 8.1 is not applicable and C is an acyclic component
of D \ S, then there is a directed N(C)-N(C) path in D[C ∪N(C)] containing at least
one vertex of C.

Crucially, Observation 8.22 implies that for each component C in Cx,y, either D[C ∪ {x}]
(or D[C ∪ {y}] by symmetry) contains a cycle, or C ∈ C→x,y ∪ C→y,x.

Reduction Rule 8.8. If C is an acyclic component of D \ S where ND(C) = {x} for
some x ∈ S and C ∪ {x} contains a cycle, then we remove C ∪ {x} from D and reduce k
by 1.

The soundness of the above rule follows from the fact that any DFVS which does not
contain x must necessarily intersect C, and hence there also exists a DFVS of at most
the same size which contains x but does not intersect C.

By expanding the above argument, we observe that if there exists a DFVS T containing
at least two vertices from Cx,y ∪ {x, y}, then the set T ′ = (T \ Cx,y)∪ {x, y} is also clearly
a solution of at most the same size as T . Hence every minimum DFVS contains at
most two vertices from Cx,y ∪ {x, y}. Consequently, if we have a minimum DFVS T and
Z1, Z2, Z3 ∈ Cx,y, then at least one of Z1, Z2 or Z3 has an empty intersection with T .
The soundness of the following three Reduction Rules follows simply from the fact that
one of the tree acyclic components is not hit by a minimum-size solution and hence forces
the flow in reduction rules.

Reduction Rule 8.9. If Cx,y contains at least 3 acyclic components C1, C2, C3 such
that D[C1 ∪ x], D[C2 ∪ x] and D[C3 ∪ x] each contains a cycle, we remove x and decrease
k by 1.

Reduction Rule 8.10. If C→x,y ∩ C→y,x contains at least 3 components, then we remove
all components of C→x,y ∪ C→y,x from D and add the arcs (x, y) and (y, x) to D.

Reduction Rule 8.11. If C→x,y contains at least 3 components and C→x,y \ C→y,x is not
empty, then we remove all components of C→x,y \ C→y,x from D and add the arc (x, y) to D.

155



8. Towards a Polynomial Kernel for Directed Feedback Vertex Set

Lemma 8.23. After applying Reduction Rule 8.1 and Reduction Rules 8.8 to 8.11, the
resulting digraph is also K3,c-minor-free.

Proof. Since Reduction Rule 8.1 and Reduction Rule 8.8 only remove vertices, it clearly
does not affect the fact that D is K3,c-minor-free. Furthermore, the operations in
Reduction Rule 8.10 and Reduction Rule 8.11 result in a graph D′ such that D′ is a minor
of D. Hence, the graph resulting from these reduction rules is also K3,c-minor-free.

We now argue the main structural consequence of applying the reduction rules stated up
to this point.

Lemma 8.24. Suppose that Reduction Rule 8.1 and Reduction Rules 8.8 to 8.11 do not
apply. Then D \ S has O(|S|) acyclic components.

Proof. Let G be the bipartite graph obtained from D by leaving only a single copy of all
multiple edges, removing all edges between vertices of S, and contracting every connected
component of D \ S into a single vertex. Since G is a minor of D, it is K3,c-minor-free as
well; moreover, there is a one-to-one correspondence between connected components of
D \ S and vertices of G \ S.

We now partition the connected components of D \ S as follows. For each non-empty
X ⊆ S, let TX be the set of all connected components of D \ S whose neighborhood is
precisely X. By applying Lemma 8.21 to G (with bipartition S and V (G) \ S), it follows
that there are O(|S|) subsets X ⊆ S such that TX is non-empty. Furthermore, for every
X ⊆ S of size at least 3, the size of TX is at most c− 1.

Hence, in order to prove the lemma, it suffices to bound the number of connected
components of D \ S with at most two neighbors in S. In particular, we will show that
D does not have ‘too many’ acyclic components with the same neighborhood of size at
most 2. Since there are no sinks or sources in D and no acyclic component of D \ S has
a single neighbor in S (due to Reduction Rule 8.8), every acyclic component of D \ S
has at least 2 neighbors in S.

Let us fix distinct x, y ∈ S and consider the set Cx,y. Since Reduction Rule 8.9 is not
applicable, there are at most 2 components C in Cx,y such that D[C ∪ {x}] contains
a cycle and analogously for D[C ∪ {y}]. Since Reduction Rule 8.10 is not applicable,
C→x,y ∩C→y,x contains at most 2 components. Furthermore, since Reduction Rule 8.11 is not
applicable, the sets C→x,y \ C→y,x and C→y,x \ C→x,y both contain at most 2 components. Finally,
from Observation 8.22, it follows that Cx,y does not contain any other components and
hence |Cx,y| ≤ 10.

Lemma 8.25. Let C be a connected component of D\S, and ` be the number of neighbors
of C in S. If Reduction Rules 8.1 and 8.2 are not applicable, then D[C] has O(`) leaves.
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Proof. Recall that when the first two reduction rules do not apply, every vertex in D
is incident to at least 4 arcs and thus every leaf of C is incident to at least 3 arcs with
endpoints in S. However, since there can be bidirectional arcs between C and S, every
leaf of C has at least 2 neighbors in S. From Lemma 8.21 it follows that there are only
O(`) vertices in C with at least 3 neighbors in S. Hence it suffices to obtain an O(`)
bound on the leaves of C with exactly two neighbors in S.

Recalling Lemma 8.21, we observe that each of the leaves of C has one of O(`) possible
neighborhoods in S. Let us fix two distinct vertices x and y in N(C). We will show
that there are at most c − 1 leaves of C with both x and y as neighbors. Suppose for
a contradiction that there is a set L of at least c leaves of D[C] which are adjacent
to x and y. Since D[C] is a tree and L is a subset of its leaves, the graph D[C \ L]
is also a tree. If we contract D[C \ L] into a single vertex, say z, then the subgraph
induced on the vertices in L ∪ {x, y, z} would be isomorphic to K3,c, contradicting the
fact that D is K3,c-minor-free. We conclude that C can have at most c− 1 leaves with
neighbors x and y.

Lemma 8.26. If none of Reduction Rules 8.1, 8.2, 8.8-8.11 apply, then D \ S has at
most O(|S|) vertices of degree at least 3.

Proof. Let C be the set of all components of D \ S. Since none of the aforementioned
reduction rules apply, we can invoke Lemma 8.24 and Lemma 8.25. That is, we conclude
that there are only O(|S|) components in C and that the number of leaves in a component
C ∈ C is O(|N(C)|).

Since the number of leaves in a tree gives an upper bound on the number of vertices of
degree at least 3, this implies that the number of vertices of degree at least 3 in D[C]
is also bounded by O(|N(C)|). Thus it suffices to show that

∑
C∈C |N(C)| = O(|S|).

However,
∑
C∈C |N(C)| is the same as the number of edges in the graph G which we

obtain from D by contracting each component of C to a single vertex and removing all
edges between vertices in S. Since G is clearly a minor of D, it is also K3,c-minor-free
and hence |E(G)| is at most O(|V (G)|) = O(|S|+ |C|) = O(|S|).

The main consequence of the above lemma is that we can now add all the vertices of
degree at least 3 to the set S in order to get a set S′ which is also a feedback vertex set
of D of size O(|S|) = O(k). At the same time, the graph D \ S′ is significantly more
structured: every connected component of this graph is in fact a path and this will
play a crucial role in the rest of this section. Since |S′| ∈ O(|S|), it suffices to obtain a
reduced instance of size linear in |S′|, and so for ease of presentation we will hereinafter
set S := S′.

Reduction Rule 8.12. If none of the Reduction Rules 8.1-8.2, 8.8-8.11 apply, then we
add all vertices of total degree three in D \ S to S.
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Observe that after applying Reduction Rule 8.12, D \ S is a set of roads. Furthermore,
once we ensure that D \ S is a set of roads, none of the reduction rules in this section
will ever create a new degree 3 vertex in D \ S. Hence we can exhaustively apply all the
reduction rules in this section once again to ensure that the number of roads in D \ S is
O(|S|). In the rest of the section, we present reduction rules to handle the roads in D \S.

8.2.1 Dealing with roads

Our first step will be to transform our instance so that all roads in D \ S are even more
structured with respect to their adjacencies with S.

Definition 8.27. A road P is nice if N(P ′) \ V (P ) ⊆ S and |N(P ′) \ V (P )| ≤ 2, where
P ′ are the internal vertices of P .

In other words, nice roads are roads whose internal vertices are all adjacent to at most
two specific vertices from S (other than the endpoints of the road); observe that this is
equivalent to requiring that |N(P ′)| ≤ 4, where P ′ is the set of internal vertices of the
nice road P . In order to achieve this transformation, we will iteratively construct an
auxiliary vertex set Q to store certain vertices that form separators between nice road
segments in D − S. In the course of this procedure, we will also construct an injective
mapping δ from Q to the connected components of D \ (S ∪Q). We initialize by setting
δ = Q = ∅.

Reduction Rule 8.13. Let A be a connected component which is road in D \ (S ∪Q)
that is not nice. Moreover, let A′ be a maximal nice subroad of A which contains a leaf
in D \ (S ∪Q) and let a′ be the unique neighbor of A′ in A. Then add a′ to Q and add
a′ 7→ A′ to δ.

For each vertex q ∈ Q, let Rq = {q} ∪ δ(q). Observe that Rq is a road which contains at
least 3 neighbors in S. Furthermore, for any q, q′ ∈ Q our construction of δ ensures that
Rq and Rq′ are vertex-disjoint.

Lemma 8.28. After the exhaustive application of Reduction Rule 8.13, we have
|Q| = O(|S|).

Proof. Let R be the set {Rq|q ∈ Q} and let G be the graph, which we obtain from D
by deleting all vertices in V (D) \ (

⋃
R∈R V (R) ∪ S), contracting each R ∈ R to a single

vertex vR, and deleting all the edges besides the edges between S and vR for some R ∈ R.
Clearly, G is a minor of D and hence K3,c-minor-free. Moreover, G is a bipartite graph
with partitions S and T = {vR|R ∈ R} such that N(vR) = N(R) ∪ S for each R ∈ R
and hence |N(v)| ≥ 3 for all vertices v in T . Therefore, it follows from (1) in Lemma 8.21
that there are O(|S|) different sets X ⊆ S such that X = N(v) for some vertex v ∈ T .
Furthermore, from (2) in Lemma 8.21 follows that for each set X ⊆ S there are at most
c− 1 vertices v ∈ T such that X = N(v).
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The next rule is only applied once after the exhaustive application of Reduction Rule 8.13.
Note that it does not increase the parameter by more than a linear factor due to
Lemma 8.28.

Reduction Rule 8.14. Set S := S ∪Q.

Observe that after the exhaustive application of Reduction Rule 8.13 and the application
of Reduction Rule 8.14, each road in D − S is nice. Furthermore, the number of roads in
D − S is still linear in S, since removing |Q| vertices from a set of roads only increases
the number of roads in the set by at most |Q|. Our next task is to deal with nice roads,
but we first state a useful observation about general roads.

Observation 8.29. Let P be a road in D \ S and let P ′ be the internal vertices of P .
For any DFVS T of D, the set (T \ P ′) ∪ N(P ′) is also a DFVS of D. In particular,
every minimum DFVS contains at most |N(P ′)| vertices of P ∪N(P ′).

Reduction Rule 8.15. Let P be a nice road in D \ S, P ′ internal vertices of P , and
x a vertex in N(P ′) \ V (P ). If D[P ′ ∪ {x}] contains at least |N(P ′)| directed cycles
intersecting only in x, then we remove x from D and set k = k − 1.

Proof of soundness. In order to prove that this reduction rule is sound, we show that
there is always an optimal solution that contains x. Let T be an optimal solution that
does not contain the vertex x. Clearly, T contains a vertex for each of at least |N(P ′)|
cycles in D[P ′ ∪ {x}] intersecting in x. However, then T ′ = (T \ P ′) ∪N(P ′) is also a
solution. Moreover, |T ′| ≤ |T |. Hence T ′ is an optimal solution, which concludes the
proof.

For internal vertices of a road P , we define an equivalence relation ∼P such as a ∼P b if
and only if N+(a) \ V (P ) = N+(b) \ V (P ) and N−(a) \ V (P ) = N−(b) \ V (P ) (i.e., a
and b have same out- and in- neighborhoods outside of P ). We are now ready to state
our final reduction rule, which will later allow us to bound the length of each nice road
by a constant.

Reduction Rule 8.16. Let P be a nice road in D \ S, and let P ′ be internal vertices
of P with ` = |N(P ′)|. If P ′ contains a directed subpath Q = (q1, . . . , q`+2), such that
qi ∼P qj for all 1 ≤ i, j ≤ `+ 1, then we remove q` from D and add the arc (q`−1, q`+1).

Proof of soundness. We now prove the soundness of this reduction rule. Let D denote
the input digraph before application of Reduction Rule 8.16 and D′ the digraph after.
First, let T ′ be an optimal solution for D′. We will show that T ′ is a solution for D as
well. Suppose otherwise, and let C be a cycle in D \T ′. Clearly, C contains the vertex q`,
since otherwise C would lie also in D′ \ T ′. There are 4 possibilities for the combination
of the predecessor p and successor s of q` in this cycle.

• p = q`−1, s = q`+1
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• p = q`−1, s ∈ N+(q`) \ {q`+1}

• p ∈ N−(q`) \ {q`−1}, s = q`+1

• p ∈ N−(q`) \ {q`−1}, s ∈ N+(q`) \ {q`+1}

However, from the definition of Q it follows that in the first 3 cases, there is a (p, s) arc
in D′ and hence a cycle in D \ T ′ as well, a contradiction. On the other hand, it follows
from Observation 8.29 that T ′ contains at most ` vertices of Q, and hence there exists a
vertex q ∈ Q \ (T ∪ {q`}). But q ∼P q`, implying that there is a (p, q) arc and a (q, s) arc
in D′, implying the presence of a directed p-s path (p, q, s) in D′ \ T ′. This path can be
used in place of the path (p, q`, s) to construct a cycle from C, which is disjoint from T ′

in D′, a contradiction. Therefore, we conclude that T ′ is a solution for D as well.

Conversely, let T be an optimal solution for D and let T ′ = T if T does not contain q`
and T ′ = (T \ {q`}) ∪ {q`+1} otherwise. Suppose for contradiction that D′ \ T ′ contains
a cycle C. Clearly C contains the arc (q`−1, q`+1), since otherwise C is contained also in
D \ T . As a result, it must be the case that T ′ does not contain q`−1 and q`+1, the latter
of which can happen only if T does not contain q`. But then D \T contains a cycle, which
we get from C by replacing the arc (q`−1, q`+1) with the directed path (q`−1, q`, q`+1).

We are now ready to complete the proof of our linear kernelization by bounding the size
of an instance after the exhaustive application of our reduction rules.

Lemma 8.30. If none of Reduction Rules 8.1, 8.2 and 8.8-8.16 apply, then |D| = O(|S|).

Proof. Let P be the set of all acyclic component of D \ S. Recall that we have already
established that since Reduction Rules 8.13 and 8.14 do not apply, every connected
component in P is a nice road in D and there are at most |P| = O(|S|) such nice roads.
Therefore, it suffices to show that there is a constant d such that every nice road in P
has at most d vertices.

Let us fix a nice road P ∈ P , with internal vertices P ′. Let us denote the vertices of P as
p1, . . . , pt such that either (pi, pi+1) or (pi+1, pi) is an arc in D for every 1 ≤ i < t. Recall
that a road itself is not necessarily a directed path. Since Reduction Rule 8.15 does
not apply, there are at most 3 vertices in P with bidirectional arcs to the same vertex
of N(P ). In particular, that means that if |N(P ′) \ V (P )| = 1, then P ′ has at most 3
vertices. Recall that from the definition of nice roads it follows that |N(P ′) \ V (P )| ≤ 2.
Therefore, in the rest of the proof we assume that |N(P ′) \ V (P )| = 2, and we refer to
the vertices in this set as x and y.

Since Reduction Rules 8.1 and 8.2 do not apply, it follows that all vertices in P ′ have at
least 2 in-neighbors and 2 out-neighbors. In particular, if pi ∈ P ′ is a sink in D[V (P )],
then D contains arcs (pi, x) and (pi, y). Similarly, if pi ∈ P ′ is a source in D[V (P )], then
D contains arcs (x, pi) and (y, pi). Therefore, if for i < j is pi a source (sink) and pj
a sink (source) in D[V (P )] such that for all i < k < j the vertex pk is not source nor
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sink in D[V (P )], then y, pi, . . . , pj , y (y, pj , . . . , pi, y) is a directed cycle. Since sinks and
sources have to alternate on the road P and Reduction Rule 8.15 does not apply, there
are at most 7 sinks and sources in total in P ′. We already showed that P ′ contains are
at most 3 vertices with bidirectional arc to x, 3 vertices with bidirectional arc to y and
7 vertices that are either sink or source in D[V (P )]. Let T denote this set of at most
13 vertices of P ′. Furthermore, it must be the case that for every pi ∈ P ′ \ T either
N+(pi) = x and N−(pi) = y, or otherwise N+(pi) = y and N−(pi) = x. We will say that
pi satisfying former condition has Type 1 and the latter condition Type 2.

Note that if for 2 ≤ i ≤ t− 2 the vertex pi has Type 1 (Type 2) and pi+1 has Type 2 (Type
1), then if D contains the arc (pi, pi+1), then pi, pi+1, y (pi, pi+1, y) is a directed cycle.
Otherwise, D contains the arc (pi+1, pi) and pi+1, pi, x (pi+1, pi, y) is a directed cycle.
Now let 1 < i < j < t be such that pi, pj ∈ T and pk ∈ P ′ \ T for all i < k < j. It follows
that pk has either Type 1 or Type 2 for all k with i < k < j. Moreover, each time pk
and pk+1 have distinct types, either D[{pk, pk+1, x}] or D[{pk, pk+1, y}] contains a cycle.
Since Reduction Rule 8.15 does not apply, there are can be at most 7 alternations of the
type. Finally, since Reduction Rule 8.16 does not apply, there are at most 5 vertices of
the same type in a row. It follows that between every pair of consecutive vertices of T
on P , there are at most 35 vertices and hence P ′ contains at most 13 · 35 vertices. Since
P was chosen arbitrarily, the argument holds for every nice road in D \ S.

8.3 Summary and Open Questions
Our results provide a stepping stone towards resolving the existence of a polynomial
kernel for DFVS, and to the best of our knowledge also represent the first kernelization
results for DFVS with respect to any natural parameter. They also open up several new
directions for future research. For instance, can we find reasonable parameters that lie
“between” DFVS number and FVS number, and would it be possible to generalize our
polynomial kernel to these? What about parameters which are incomparable to the FVS
number but also upper-bound the DFVS number? Can our linear kernel be lifted to
graph classes of bounded expansion or nowhere dense graphs? Another related problem
of interest is whether DFVS can be solved in time 2O(k) ·nO(1), which remains open even
on planar graphs.

Notes
The results in this chapter appeared in a conference paper in the proceedings of 43nd
International Symposium on Mathematical Foundations of Computer Science (MFCS
2017) [21].
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CHAPTER 9
Modulators for ILPs

In spite of recent advances [95, 96, 129], we still lack a deep understanding of which
structural restrictions make ILP tractable. The goal of this line of research is to identify
structural properties (parameters) which allow us to solve ILP efficiently. Here, we
initiate the study of distance to triviality for ILP by analyzing modulators which fracture
the instance into small, easy-to-handle components. Such fracture modulators (also
called fracture backdoors) can equivalently be viewed as measuring the number of global
variables or global constraints in an otherwise “compact” instance; in fact, we identify
and analyze three separate cases depending on whether we allow global variables only,
global constraints only, or both.

Results

We obtain a near-complete complexity landscape for the considered parameters: in
particular, we identify the circumstances under which they can be used to obtain fixed-
parameter and XP algorithms for ILP, and otherwise prove that such algorithms would
violate well-established complexity assumptions. Our results are summarized in the
following Table 9.1 (formal definitions are given in Section 9.2).

Variable Constraint Mixed

param. FPT (Cor. 9.15) FPT (Cor. 9.15) XP (Cor. 9.14)
unary paraNP-c XP, W[1]-h paraNP-c

(Th 9.23) (Th 9.22, 9.24) (Th 9.23)
arbitrary paraNP-c paraNP-c (Th 9.25) paraNP-c

Table 9.1: Complexity landscape for fracture modulators. Columns distinguish whether
we consider variable modulators, constraint modulators, or mixed modulators. Rows
correspond to restrictions placed on coefficients in the ILP instance.
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As is evident from the table, modulator size on its own is not sufficient to break the NP-
hardness of ILP; this is far from surprising, and the same situation arose in previous work
on treewidth. However, while positive results on treewidth (as well as other considered
decomposition parameters such as torso-width [96]) required the imposition of domain
restrictions on variables, in the case of modulators one can also deal with instances with
unrestricted variable domains—by instead restricting the values of coefficients which
appear in the ILP instance. Here, we distinguish three separate cases (corresponding
to three rows in Table 9.1): coefficients bounded by the parameter value, coefficients
which are encoded in unary, and no restrictions. It is worth noting that in the case of
treewidth, ILP remains NP-hard even when coefficients are restricted to ±1 and 0.

Our results in row 1 represent a direct generalization of three extensively studied classes
of ILP, specifically n-fold ILP, two-stage stochastic ILP and 4-block N -fold ILP [57, 165].
These classes have been used to obtain faster algorithms for a wide range of problems.
For example a range of transportation and logistic problems have been encoded as a
two-stage stochastic ILP [173, 120]. Furthermore, some state-of-the art algorithms for
some problems in scheduling and computational social choice are obtained by encoding
the problem as N -fold ILP [142, 143]. The distinction in our approach lies in the fact
that while in the case of all three previously mentioned special cases of ILP the ILP
matrix must be completely uniform outside of its global part, here we impose no such
restriction. The only part of our complexity landscape which remains incomplete, the case
of mixed modulators combined with bounded coefficients, then corresponds to resolving
a challenging open problem in the area of N -folds: the fixed-parameter (in)tractability
of 4-block N -fold ILP [116]. A fixed-parameter algorithm for 4-block N -fold would
also provide significant algorithmic improvements for problems in areas such as social
choice [143].

In the intermediate case of coefficient values encoded in unary (row 2), we surprisingly
show that ILP remains polynomially tractable when the number of global constraints is
bounded by a constant, but becomes NP-hard if we use global variables instead. To be
precise, we obtain an XP algorithm parameterized by constraint modulators, rule out the
existence of a fixed-parameter algorithm for this case, and also rule out XP algorithms
for variable and mixed modulators. These also represent our most technical results:
especially the XP algorithm requires the combination of deep linear-algebraic techniques
with tools from the parameterized complexity toolbox.

Last but not least, all our algorithmic results first require us to compute a fracture
modulator. It turns out that computing fracture modulators in ILP is closely related
to solving the Vertex Integrity problem [66] on bipartite graphs; unfortunately,
while the problem has been studied on numerous graph classes including cobipartite
graphs, its complexity remained open on bipartite graphs. Here we obtain both an exact
fixed-parameter algorithm as well as a polynomial time approximation algorithm for
finding fracture modulators. As an additional result, we also show that the problem is
NP-complete using a novel reduction.

164



9.1. Integer Linear Programming

Organization of the Chapter

The chapter is structured as follows. After introducing the Integer Linear Programing
in Section 9.1, we proceed to formally define our parameter in Section 9.2 and develop
algorithms for computing the desired modulators in Section 9.3. We then present our
results separated by the type of restrictions put on the size of the matrix coefficients in
the remaining sections.

9.1 Integer Linear Programming

In the following let A be a n×m matrix and let C and R be a subset of columns and rows
of A, respectively. We denote by A(R,C) the submatrix of A restricted to the columns in
C and the rows in R. We also denote by A(∗,C) and A(R,∗) the submatrix of A restricted
to the columns in C and the submatrix of A restricted to the rows in R, respectively.
We denote by cA the maximum absolute value of any entry of A and by det(A) the
determinant of A. For a vector b of size n, we will use b[i] to denote its i-th entry and
we denote by cb the maximum absolute value of any entry of b. We will also use the two
following well-known facts [185].

Proposition 9.1. Let A be an integer k × k matrix. Then det(A) is integer and
|det(A)| ≤ k!Π1≤i≤kcA(∗,{i}).

Proposition 9.2 (Cramer’s rule). Let A be a k × k non-singular (i.e., with non-zero
determinant) matrix and b a vector. Then the equation Ax = b has a unique solution
such that x[i] = det(A(i))

det(A) , where A(i) is the matrix formed by replacing the i-th column
of A with the vector b.

For our purposes, it will be useful to consider ILP instances which are in equation form.
Formally, let an ILP instance I be a tuple (A,x,b, l,u, η), where:

• A is a n×m matrix of integers (the constraint matrix),

• x is a vector of variables of size m,

• b is an integer vector of size m (the right-hand side),

• l,u are vectors of elements of Z∪{±∞} (the lower and upper bounds, respectively),
and

• η is an integer vector of size m (the optimization function).

Let A be the i-th row of A; then we will call Ax = b[i] a constraint of I. We will use
var(I) to denote the set of variables (i.e., the elements of x), and F(I) (or just F) to
denote the set of constraints. For a subset U of var(I) ∪ F(I), we denote by C(U) the
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columns of A corresponding to variables in U and by R(U) the rows of A corresponding
to constraints in U .

A (partial) assignment α is a mapping from some subset of var(I), denoted by var(α), to
Z. An assignment α is called feasible if

1. satisfies every constraint in F , i.e., if Aα(x) = b[i] for each i-th row A of A, and

2. satisfies all the upper and lower bounds, i.e., l[i] ≤ α(x[i]) ≤ u[i].

Furthermore, α is called a solution if the value of ηα(x) is maximized over all feasible
assignments; observe that the existence of a feasible assignment does not guarantee the
existence of a solution (there may exist an infinite sequence of feasible assignments α
with increasing values of ηα(x); in this case, we speak of unbounded instances). Given
an instance I, the task in the ILP problem is to compute a solution for I or correctly
determine that no solution exists. We remark that other formulations of ILP exist (e.g.,
a set of inequalities over variables); it is well-known that these are equivalent and can be
transformed into each other in polynomial time [185]. Moreover, such transformations
will only change our parameters (defined in Section 9.2) by a constant factor.

Aside from general integer linear programming, we will also be concerned with two
subclasses of the problem.

1. ILP-feasibility is formulated equivalently as ILP, with the restriction that η
must be the 0-vector. All hardness results for ILP-feasibility immediately carry
over to ILP.

2. Unary ILP is the class of all ILP instances which are supplied in a unary bit
encoding; in other words, the input size of Unary ILP upper-bounds not only the
number of variables and constraints, but also the absolute values of all numbers in
the input. Unary ILP remains NP-complete in general, but in our setting there
will be cases where its complexity will differ from general ILP.

Combining both restrictions gives rise to Unary ILP-feasibility.

There are several ways of naturally representing ILP instances as graphs. The represen-
tation that will be most useful for our purposes will be the so-called incidence graph: the
incidence graph GI of an ILP instance I is the graph whose vertex set is var(I) ∪ F(I)
and two vertices s, t are adjacent iff s ∈ var(I), t ∈ F and s occurs in t with a non-zero
coefficient. An instance I′ is a connected component of I if it is the subinstance of I
corresponding to a connected component of GI; formally, F(I′) ⊆ F(I) is the set of
constraints that occur in a connected component of GI and η(I′) is the restriction of
η(I) to var(F(I′)). For a set Z ⊆ F(I) ∪ var(I), we will also use I \ Z to denote the ILP
instance obtained by removing all constraints in Z from F(I) and removing all variables
in Z from all constraints in F(I) \ Z and from η.
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9.2. The Fracture Number

For our algorithms, we will use the following result as a subroutine. Note that this is
a streamlined version of the original statement of the theorem, as used in the area of
parameterized algorithms [79].

Proposition 9.3 ([146, 132, 90]). There is an algorithm that solves an input ILP instance
I = (F , η) in time pO(p) · |I|, where p = |var(I)|.

9.1.1 ILP with Structured Matrices

Our results build on and extend the classical variable-dimension ILP techniques detailed
for instance in the work of [57, 165, 116]. Below, we provide a basic introduction to these

techniques and related results. Let A =
(

A1 A2
A3 A4

)
be a 2× 2 block integer matrix. The

N -fold 4-block product of A (denoted by A(N)) is the following integer matrix

A(N) =


A1 A2 A2 · · · A2
A3 A4 0 · · · 0
A3 0 A4 · · · 0
...

...
... . . . ...

A3 0 0 · · · A4

 .

Here A(N) contains N copies of matrices A2,A3, and A4. Furthermore, A1 is an r × s
matrix, A2 is an r × t matrix, A3 is an u × s matrix, and A4 is an u × t matrix; for
convenience, we let bA = max(r, s, t, u). We call an instance (A,x,b, l,u, η) of ILP an
N -fold 4-block if A is an N -fold 4-block product of some 2 × 2 block integer matrix.
Observe that in such instances the vector x is naturally partitioned into a global part
(consisting of s variables) and a local part.

Theorem 9.4 ([116]). Let a and z be constants and let I be an N -fold 4-block ILP
instance with cA ≤ a, bA ≤ z, then I can be solved in polynomial time.

In the parameterized complexity setting, the above theorem yields an XP algorithm
solving ILP parameterized by max(bA, cA) if the matrix is a N -fold 4-block product.
We note that the existence of a fixed-parameter algorithm for this problem remains a
challenging open problem [116]. However, the problem is known to be fixed-parameter
tractable when either A1 = 0 and A3 = 0 or A1 = 0 and A2 = 0; these variants are
called the N -fold ILP problem and the 2-stage stochastic ILP problem, respectively.

Theorem 9.5 ([117], [57]). N -fold ILP and 2-stage stochastic ILP are FPT parameterized
by cA and bA.

9.2 The Fracture Number
We are now ready to formally introduce the studied parameter and related notions. An
ILP instance I is called `-compact if each connected component of I contains at most `
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maximize
∑7

i=1 i · xi, where∑7
i=1 xi = 32,

1x1 + y = 6, 2x2 + y = 9,
3x3 + y = 14, 4x4 + y = 21,
5x5 + y = 30, 6x6 + y = 41.

Figure 9.1: The constraints and optimization function of a simple ILP instance with
p = 2, witnessed by a modulator containing y and the first constraint.

variables and constraints; equivalently, each connected component of GI contains at most
` vertices. It is not difficult to observe that any `-compact ILP instance can be solved in
time at most `O(`) · |I| due to Proposition 9.3; indeed, we can compute a solution for I by
combining solutions for each connected component of I, and hence it suffices to apply
Proposition 9.3 independently on each component.

A set Z ⊆ F ∪ var(I) is called a modulator to `-compactness if I \ Z is `-compact;
moreover, if Z ∩ F = ∅ then Z is called a variable-modulator to `-compactness, and if
Z ∩ var(I) = ∅ then Z is a constraint-modulator to `-compactness. We use b`(I) to denote
the cardinality of a minimum modulator to `-compactness, and similarly bV` (I) and bC` (I)
for variable-modulators and constraint-modulators to `-compactness, respectively. It is
easy to see that, depending on the instance, bV` (I) can be arbitrarily larger or smaller
than bC` (I). On the other hand, b`(I) ≤ min(bV` (I), bC` (I)).

Clearly, the choice of ` has a major impact on the size of modulators to `-compactness; in
particular, b`(I) could be arbitrarily larger than b`+1(I), and the same of course also holds
for variable- and constraint-modulators. Since we will be interested in dealing with cases
where both ` and b`(I) are small, we will introduce the fracture number p which provides
bounds on both ` and b`; in particular, we let p(I) = min`∈N(max(`, b`(I))). Furthermore,
we say that a modulator witnesses p(I) if |Z| ≤ p(I) and I \ Z is p(I)-compact. We
define pC(I) and pV (I) similarly, with b`(I) replaced by bC` (I) and bV` (I), respectively.
If the instance I is clear from the context, we omit the reference to I; see Figure 9.1
for an example.

We remark that the fracture number represents a strict generalization of the parameter
bA used in Theorems 9.4 and 9.5; in particular, p ≤ 2bA (and similarly for pV and
pC for the latter two theorems). Moreover, the fracture number is well-defined for all
ILP instances, not only for N -fold 4-block products. In this respect, N -fold 4-block
products with bounded bA form the subclass of instances with bounded p such that each
component must contain precisely the same submatrix. It is not difficult to see that this
is indeed a very strong restriction.
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9.3 Computing the Fracture Number
Our evaluation algorithms for ILP require a modulator set as a part of their input. In
this section we show how to efficiently compute small modulator sets, i.e., we show how
to solve the following problem.

Fracture Backdoor Detection (BD)
Instance: An ILP instance I and a natural number k.

Parameter: k
Question: Determine whether p(I) ≤ k and if so output a modulator set

witnessing this.

We also define the variants V-BD and C-BD that are concerned with finding a variable
or a constraint modulator, respectively, in the natural way. Observe that at its core
the above problem and its variants are really a problem on the incidence graph of the
ILP instance. Namely, the problems can be equivalently stated as the following graph
problem.

Fracture Vertex Deletion (FVD)
Instance: An undirected bipartite graph G with bipartition {U,W}, a

set D ∈ {U, V (G)}, and an integer k.
Parameter: k
Question: Is there a set B ⊆ D of at most k vertices such that every

connected component of G \B has size at most k?

It is worth noting that this graph problem is closely related to the so-called Vertex
Integrity problem, which has been studied on a variety of graph classes, including
co-bipartite graphs [66]. Unfortunately, to the best of our knowledge nothing is known
about its complexity on bipartite graphs.

To see that each variant of BD is equivalent to a specific subcase of the FVD problem
(in particular depending on the choice of D in the instance), consider the following
polynomial time reductions in both directions. Given an instance (I, k) of BD, then
the instance (GI, V (GI), k) of FVD is easily seen to be equivalent. Similarly, if (I, k)
is an instance of V-BD or C-BD, then (GI, var(I), k) and (GI,F(I), k) are equivalent
instances of FVD. Moreover, if I = (G,V (G), k) is an instance of FVD, then (I, k),
where I is any ILP instance such that GI is isomorphic with G is an equivalent instance
of BD. Similarly, if I = (G,U, k) is an instance of FVD, then (I, k), where I is any ILP
instance such that GI is isomorphic with G and var(I) = U , is an equivalent instance of
V-BD. Note that such an instance I can for instance be obtained as follows:

• for every vertex v ∈ U , I has one variable v with arbitrary domain,
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• for every vertex v ∈W , I has one constraint with arbitrary non-zero coefficients on
the variables in NG(v),

To justify a parameterized complexity analysis of our detection problems, we first show
NP-completeness of our problems. It is worth noting that the NP-completeness of
Fracture Vertex Deletion was far from obvious at first glance due to the restriction
to bipartite graphs; indeed, for instance the related problem of deleting at most k vertices
such that the remaining graph only contains isolated vertices (Vertex Cover) is well-
known to be polynomial on bipartite graphs. We note that BD and its variants are
closely related to the so-called Vertex Integrity problem on bipartite graphs [66].
We use this connection to obtain our complexity result for BD and as a side result show
that Vertex Integrity is NP-complete even on bipartite graphs, which has not been
known so far.

Theorem 9.6. BD, V-BD, and C-BD are NP-complete.

The proof follows from a reduction from 3-SAT where every literal occurs in exactly two
clauses; this variant is well-known to be NP-complete [98]). At its core, the reduction
utilizes variable gadgets as well as clause gadgets, and the main difficulty lies in designing
these in order to ensure that the graph remains bipartite.

Proof of Theorem 9.6. Because of the equivalence between BD, V-BD, C-BD and the
FVD problem, it is sufficient to show that FVD is NP-complete for both choices of D.
Because any solution to FVD can be verified in polynomial time, it holds that FVD
is in NP. Towards showing NP-hardness of FVD we give a polynomial time reduction
from a known variant of the 3-Satisfiability problem. Given a 3-CNF formula Φ with
variables x1, . . . , xn and clauses C1, . . . , Cm such that every literal occurs in exactly two
clauses (this variant of 3-Satisfiability is known to be NP-complete [98]), we construct
the instance 〈G,D, k〉 of FVD as follows. We set k = n+2m and the graph G will be the
disjoint union of certain variable and clause gadgets introduced below plus connections
between these variable and clauses gadgets. Namely, for every variable xi, the graph G
contains the variable gadget G(xi) with the following vertices and edges:

• two vertices xi and xi,

• k − 5 vertices c1
i , . . . , c

k−5
i ,

• for every j with 1 ≤ j ≤ k − 5 the two edges {xi, cji} and {xi, c
j
i}.

Moreover for every clause Cj of Φ with literals l1j , l2j , l3j , the graph G contains a clause
gadget G(CJ) with the following vertices and edges:

• three vertices l1j , l2j , and l3j ,
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Figure 9.2: The interaction between clause and vertex gadgets for the clause
Cj = x1 ∨ x5 ∨ x7.

• k − 3 vertices b1j , . . . , bk−3
j ,

• for every i with 1 ≤ i ≤ k − 3 the three edges {bij , l1j}, {bij , l2j}, and {bij , l3j}.

Note that G(Cj) is simple a complete bipartite graph with bipartition {{l1j , l2j , l3j},
{ bij | 1 ≤ i ≤ k − 3 }}. Now G consists of the disjoint union of G(x1), . . . , G(xn),
G(C1), . . . , G(Cm) plus the following vertices and edges, which ensure the required
connections between the variable and clause gadgets (see Figure 9.2 for an example):

• For every clause Cj (for some j with 1 ≤ j ≤ m) with literals l1j , l2j , and l3j and
every a ∈ {1, 2, 3} we add the vertices daj and eaj and the edges {laj , daj} and {laj , eaj}
to G. Moreover, if laj = xi for some i with 1 ≤ i ≤ n, we additionally add the edges
{xi, daj} and {xi, eaj} to G and if on the other hand laj = xi for some i as above,
then we add the edges {xi, daj} and {xi, eaj} to G.

This completes the construction of G, which is clearly bipartite as for instance witnessed
by the bipartition {U, V (G) \ U}, where U = {xi, xi, l1j , l2j , l3j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m }.
We will show below that there is always a solution that is entirely contained in U , which
implies that the hardness result holds for D ∈ {U, V (G)}, and hence all versions of the
fracture modulator set problem, i.e., BD, V-BD, and C-BD, are NP-complete. Note
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that the reduction can be computed in polynomial time and it remains to show the
equivalence between the two instances.

Towards showing the forward direction, assume that α : {x1, . . . , xn} → {0, 1} is a satis-
fying assignment for Φ. Because α satisfies Φ it follows that for every clause Cj with
literals l1j , l2j , and l3j there is at least one index a(Cj) ∈ {1, 2, 3} such that the literal
l
a(Cj)
j is satisfied by α. We claim that the set B defined by:

• for every i with 1 ≤ i ≤ n, B contains xi if α(xi) = 1 and xi, otherwise,

• for every j with 1 ≤ j ≤ m, B contains the vertices in { lbj | b ∈ {1, 2, 3} \ {a(Cj)} }.

is a solution for (G,U, k). Because B contains exactly one vertex for every variable
of Φ and exactly two vertices for every clause of Φ, it holds that |B| = k = n + 2m,
as required. Moreover, B ⊆ U . It hence only remains to show that every component
of G \ B has size at most k. Towards showing this first consider a component C of
G \B that contains at least one vertex from a variable gadget G(xi) for some i with
1 ≤ i ≤ n. Then G(xi) ∩B ∈ {{xi, xi}} and hence G(xi) \B is connected, which implies
that G(xi) \B ⊆ C. W.l.o.g., assume that G(xi) ∩ B = {xi}. Then α(xi) = 1 and it
follows that all literal vertices of clause gadgets that correspond to the literal xi are
contained in B. Since moreover xi is contained in exactly two clauses, we obtain that C
consists of exactly k − 4 vertices in G(xi) \B plus the four vertices da1

j1
, ea1

j1
, da2

j2
and ea2

j2
defined by la1

j1
= xi and la2

j2
= xi. Hence in total C contains exactly k vertices as required.

Now consider a component C that contains at least one vertex from a clause gadget
G(Cj) for some j with 1 ≤ j ≤ m. Then |G(Cj) ∩B| = 2 and moreover B contains all
but exactly one literal vertex say laj for some a ∈ {1, 2, 3} from G(Cj). W.l.o.g., let xi
be the literal of Cj corresponding to laj . Then α(xi) = 1 and hence xi ∈ B. It follows
that C consists of the exactly k− 2 vertices in G(Cj) \B plus the two vertices daj and eaj .
Hence in total C contains exactly k vertices, as required. Because every component of
G \B that neither contains a vertex from a vertex gadget nor from a clause gadget has
size exactly one, this shows that B is indeed a solution for (G,U, k) and hence also for
(G,V (G), k).

Towards showing the reverse direction, let B be a solution for (G,V (G), k). We first show
that, w.l.o.g., we can assume that B ⊆ U . So assume that B * U . We distinguish three
cases: B contains a vertex daj or eaj for some j and a with 1 ≤ j ≤ m and 1 ≤ a ≤ 3. Let
u and v be the two vertices adjacent to daj and eaj . If B contains both daj and eaj , then it
is straightforward to verify that B \ {daj , eaj} ∪ {u, v} is also a solution. So assume that
B contains only daj (the case that B contains only eaj is analogous). If {u, v} ⊆ B, then
B \ {daj} is still a solution. Hence assume that, w.l.o.g., u /∈ B. But then (B \ {daj})∪{u}
is a solution. Hence in all cases we could transform B into a solution that does not
contain a vertex daj or eaj . Next consider the case that B contains some vertex cji for some
i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ k− 5. In this case one can use an argumentation very
similar to the previous case to transform B into a solution not containing such a vertex.
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Hence there only remains the case that B contains some vertex bij for some i and j with
1 ≤ i ≤ k − 3 and 1 ≤ j ≤ m. In this case it is straightforward to verify that removing
all vertices from B ∩ {b1j , . . . , b

k−3
j } and replacing those with an equal (or less) amount of

vertices in {l1j , l2j , l3j} will again give a solution. Hence we can assume that B ⊆ U .

We show next that B contains at least one of xi and xi from every variable gadget G(xi).
Suppose not and consider the component C of G \B containing xi. Because B ⊆ U , we
obtain that C contains all k − 3 vertices in G(xi) and additionally at least the 8 vertices
adjacent to xi and xi. Hence |C| ≥ k − 3 + 8 > k a contradiction to our assumption that
B is a solution.

We show next that B contains at least two of {l1j , l2j , l3j} from every clause gadget G(Cj).
Suppose not and consider a component C of G \B containing at least one vertex from
G(Cj). Because B ⊆ U , we obtain that C contains all of the at least k − 3 + 2 = k − 1
vertices in G(Cj) \B and additionally the at least four vertices adjacent to the (at least
two) literal vertices in {l1j , l2j , l3j} \B. Hence |C| ≥ k − 1 + 4 > k a contradiction to our
assumption that B is a solution.

Hence B contains at least one vertex for every variable of Φ and at least two vertices
for every clause of Φ. Moreover, because B is a solution it holds that |B| ≤ k = n+ 2m.
Hence |B| = n+ 2m and B contains exactly one vertex from every variable gadget and
exactly two vertices from every clause gadget. We claim that the assignment α with
α(xi) = 1 if and only if xi ∈ B is a satisfying assignment for Φ. Suppose not and let
Cj be a clause of Φ that is not satisfied by Φ and let laj be the (unique) literal vertex
of G(Cj) that is not in B. Consider the component C of G \ B that contains laj and
assume, w.l.o.g., that laj = xi for some i with 1 ≤ i ≤ n. Because α does not satisfy Cj ,
we obtain that xi /∈ B. Because furthermore B ⊆ U we obtain that C contains all of the
k− 3 + 1 = k− 2 vertices in G(Cj) \B and additionally at least the two vertices adjacent
to laj as well as the vertex xi. Hence in total C contains at least k − 2 + 3 > k vertices, a
contradiction to our assumption that B is a solution.

Even though BD is NP-complete, here we provide two efficient algorithms for solving
it: we show that the problem is fixed-parameter tractable parameterized by k and can
be approximated in polynomial time within a factor of k. Both of these algorithms are
based on the observation that any modulator has to contain at least one vertex from
every connected subgraph of the instance of size k + 1.

Theorem 9.7. BD, V-BD, and C-BD can be solved in time O((k + 1)k|E(G)|) and
are hence FPT.

Proof. Because of the equivalence of the problems BD, V-BD, and C-BD with the FVD
problem, it is sufficient to show the result for FVD.

We will show the lemma by providing a depth-bounded search tree algorithm for any
instance I = 〈G,D, k〉 of FVD, which is based on the following observations.
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O1 If G is not connected then a solution for I can be obtained as the disjoint union of
solutions for every component of G.

O2 If G is connected and C is any set of k+1 vertices of G such that G[C] is connected,
then any solution for I has to contain at least one vertex from C.

These observations lead directly to the following recursive algorithm that given an instance
I = 〈G,D, k〉 of FVD either determines that the instance is a No-instance or outputs a
solution B ⊆ D of minimal size for I. The algorithm also remembers the maximum size
of any component in a global constant c, which is set to k for the whole duration of the
algorithm. The algorithm first checks whether G is connected. If G is not connected the
algorithm calls itself recursively on the instance (C,D∩C, k) for each component C of G.
If one of the recursive calls returns No or if the size of the union of the solutions returned
for each component exceeds k, the algorithm returns that I is a No-instance. Otherwise
the algorithm returns the union of the solutions returned for each component of G.

If G is connected and |V (G)| ≤ c, the algorithm returns the empty set as a solution.
Otherwise, i.e., if G is connected but |V (G)| > c the algorithm first computes a set C of
c + 1 vertices of G such that G[C] is connected. This can for instance be achieved by
a depth-first search that starts at any vertex of G and stops as soon as c + 1 vertices
have been visited. If C ∩D = ∅ then the algorithm returns No. Otherwise the algorithm
branches on the vertices in C ∩D, i.e., for every v ∈ C ∩D the algorithm recursively
computes a solution for the instance (G \ {v}, k − 1). It then returns the solution of
minimum size returned by any of those recursive calls, or No-if none of those calls return
a solution. This completes the description of the algorithm. The correctness of the
algorithm follows immediately from the above observations. Moreover the running time
of the algorithm is easily seen to be dominated by the maximum time required for the
case that at each step of the algorithm G is connected. In this case the running time can
be obtained as the product of the number of branching steps times the time spent on
each of those. Because at each recursive call the parameter k is decreased by at least
one and the number of branching choices is at most c+ 1, we obtain that there are at
most (c+ 1)k = (k + 1)k branching steps. Furthermore, the time at each branching step
is dominated by the time required to check whether G is connected, which is linear in
the number of edges of G. Putting everything together, we obtain O((k + 1)k|E(G)|) as
the total time required by the algorithm, which completes the proof of the lemma.

We note that the depth-first search algorithm in the above proof can be easily transformed
into a polynomial time approximation algorithm for BD and its variants that exhibits
an approximation ratio of k + 1. In particular, instead of branching on the vertices of a
connected subgraph C of G with k + 1 vertices, this algorithm would simply add all the
vertices of C into the current solution. This way we obtain:

Theorem 9.8. For each of BD, V-BD, and C-BD, there exists a polynomial time
algorithm that either finds a (variable-,constraint-) modulator to k-compactness of size at
most k2 + k or correctly outputs that the corresponding fracture number is at least k + 1.
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9.4 The Case of Bounded Coefficients

The goal of this section is to obtain the algorithmic results presented on the first row
of Table 9.1. Recall that in this case we will be parameterizing also by cA, which is
the maximum absolute value of a coefficient occurring in A. Before we proceed to the
results themselves, we first need to introduce a natural notion of “equivalence” among
the components of an ILP instance.

Let Z be a modulator to `-compactness for an ILP instance I. We define the equivalence
relation ∼ on the components of I\Z as follows: two components C1 and C2 are equivalent
iff there exists a bijection γ between var(C1) and var(C2) such that the ILP instance
obtained from I after renaming the variables in var(C1) and var(C2) according to γ
and γ−1, respectively, is equal to I. In other words, if for all x ∈ var(C1) we swap the
columns corresponding to x and γ(x) in A, we obtain the same instance I. We say that
components C1 and C2 have the same type if C1 ∼ C2.

Lemma 9.9. Let I be an ILP instance and k = p(I). For any modulator witnessing p(I),
∼ has at most

(
2cA(I) + 1

)2k2
equivalence classes. Moreover, one can test whether two

components have the same type in time O(k!k2).

Proof. Let Z be the modulator witnessing p(I) and fix a component C of I \ Z. First
observe that there are only 3 submatrices of the constraint matrix of I that can contain
nonzero coefficients and containing an element of C; we refer to Fig. 9.3, where we denote
these matrices QC ,QV

C , and QC
C . We will now bound the number of these possibly nonzero

coefficients. In order to do this we denote by gv = |var(Z)|, gc = |Z| − gv, cv = |var(C)|,
cc = |C| − cv, and c = max{cc, cv}. Observe that c ≤ k. Now the number of possibly
nonzero coefficients is bounded by gvcc + gccv + cccv ≤ (gv + gc)c+ c2 ≤ 2k2. We finish
the proof of the first part by observing that the number of possible coefficients is bounded
by 2cA(I) + 1.

Observe that two components C1 and C2 have the same type if their number of con-
straints and variables is the same and there exist a permutation of variables of C1 and a
permutation of constraints of C1 such that the three submatrices of I containing nonzero
elements are exactly the same. Again as |C| ≤ k one can check all pairs of permutations
in time k! and for each pair we are checking O(k2) entries.

We now proceed to the main tool used for our algorithms.

Theorem 9.10. Let I be an ILP instance with matrix A, Z be a modulator set witnessing
p(I), and let n be the number of components of I \ Z. There is an algorithm which runs

in time O(n2(p(I) + 1)! + |I|) and computes an (r + u)× (s+ t) matrix A =
(

A1 A2
A3 A4

)
,

a positive integer N ≤ n, and a 4-block N -fold instance I = (A(N),x,b, l,u, η) such that:
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QCQVC

QCC

0

0

00

xC

con(C)

Figure 9.3: A situation for a component C.

(P1) any solution for I can be transformed (in polynomial time) into a solution for I
(and vice versa), and

(P2) max{r, s} ≤ p(I) and max{t, u} ≤ f
(
cA, p(I)

)
for some computable function f .

Proof. Let C be the set of connected components of I \ Z. We define a triple of matrices
(QV

C ,QC
C ,QC) for a component C. Please refer to Figure 9.3.

• The matrix QV
C is the part of constraints in C dealing with variables in Z, that is,

AF(C),var(Z),

• the matrix QC
C is the part of the constraints in Z dealing with var(C), that is,

AF(Z),var(C), and

• the matrix QC is the part of constraints in C dealing with var(C), that is,
AcF (C),var(C).

Observe that this totally decomposes all constraints and variables contained in C as
all coefficient for other variables are 0 and variables of C cannot appear in other com-
ponents. For a triple of matrices T = (QV ,QC ,Q) a component C has type T if
QV = QV

C ,QC = QC
C , and Q = QC holds. The set of all possible types is the set

T = {T = (QV ,QC ,Q) | ∃C ∈ C with type T }.

The multiplicity mult(T ) of type T ∈ T is the number of components in C having type
T . We set N = maxT∈T mult(T ).

The idea of the proof is to build the matrix A1 from Z and matrices A2,A3,A4 as
representatives of the types in such a way that the resulting N -fold 4 block ILP is
equivalent to the given ILP instance I.

The matrix A1 is simply the submatrix of Z that is the part of global constraints of A
containing var(Z) only.
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Claim 9.11. There is an ILP instance Î that is equivalent to ILP instance Ī with
multÎ(T ) = N for all T ∈ TÎ. Moreover, cÎ = cĪ and the sizes of the matrices Q can only
double.

In this case we put all possible matrices on a diagonal of the relevant matrix A4, next to
each other in the matrix A2, and under each other in the matrix A3. That is we set A2
to horizontal concatenation of all (QC

T )T∈T , A3 to vertical concatenation of (QV
T )T∈T ,

and finally A4 has matrices (QT )T∈T on its diagonal. The bound on size of the matrix
A follows from Lemma 9.9 and Claim 9.11.

Proof of Claim 9.11. The idea here is to take a type with less representatives and add
a new one as a copy of a previous one. But this has to be done carefully in order to
maintain equivalence of intermediate ILPs. For the local part we start by observing that
if we add a copy of some previous component, then the set of solutions for these two
components is the same. However, as these components also interact with the global
constraints we would like to have to restrict the set of solutions of the newly added
component to all 0 solution only. Note that this cannot be done using lower and upper
bounds only as the former set of solutions does not have to contain such a solution. That
is, the (optimal) setting of global variables together with setting all component local
variables to 0 can violate the right-hand side. In order to achieve the claim, we extend
the matrices we have obtained from the component C in the following way. Let C be of
type T = (QV

C ,QC
C ,QC) then the extension of type T if

T̂ =
(
QV
C , [QC

C | 0], [QC | QC ]
)
.

We denote the former C-variables as xC and the new C-variables as x̂C . We say that the
extension is of

• first kind if `C ≤ xC ≤ uC and 0 ≤ x̂C ≤ 0, and

• second kind if 0 ≤ xC ≤ 0 and `C ≤ x̂C ≤ uC .

Note that with this we have only doubled the number of local variables of component C.

Claim 9.12. Let I be an ILP instance and let T be a type of I. Denote IT→T̂ the ILP
instance I where components of type T are replaced with components of T̂ of the first
kind. Then, there is a bijection between solutions of ILP instances I and IT→T̂ .

Proof of the Claim. Note that it holds that x̂C = 0 for every component C of type
T̂ . Now a solution for IT→T̂ has a natural projection to a solution of I (forget all x̂C
variables). Furthermore, a solution for I can be extended to a solution of IT→T̂ by
setting x̂C = 0 for each component C of type T . This yields a bijection between the
solution sets. ♦
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We say that a component C is extended if it has been created by the extension of the first
kind. We transform all components with multiplicity less than N to extended components
and denote IE the resulting ILP instance. Note that by Claim 9.12 the ILP instances I
and IE are in equivalent.

Claim 9.13. Let I be an ILP instance, let C be a component of I, and let C ′ be an
extension of C of the second kind. Denote I′ the ILP instance I with C ′ added (i.e., it
has one more component) then instances I and I′ are equivalent.

Proof of the Claim. First we argue that I does have a solution if and only if I′
does. To see this take a solution x of I and let xC be the part of x corresponding to
C-variables. We build a solution to I′ follows. We copy the solution of every variable
but the variables of C ′. We set variables xC′ = 0 and x̂C′ = xC .
Note that by this we have actually build a natural correspondence between the set of
solutions to I and the set of solutions to I′. Observe that this correspondence is not
one-to-one as in general there can be more possibilities how to extend the solution
to variables x̂C′ . We say that all these solutions project to the same solution x to
instance I. However, as all the C ′-variables do not occur in the objective function the
value of the objective function of all solutions that project to x is the same. ♦

By combining the two claims it is possible to transform ILP instance I to Î with the
following properties.

• all components of Î are either extended or for their type T it holds that
multI(T ) = N ,

• for each type T̂ of Î it holds that multÎ(T̂ ) = N ,

• b`(Î) = b`(I),

• the number of variables in Î is at most twice the number of variables in I.

Let us now discuss algorithmic consequences of Theorem 9.10 for all types of modulators.
Together with Theorems 9.4 and 9.7, we obtain the following corollary.

Corollary 9.14. Let a and z be constants and let I be an ILP instance with cA(I) ≤ a
and p(I) ≤ z, then I can be solved in polynomial time.

For variable and constraint modulators, using Theorem 9.5 instead of Theorem 9.4 yields
the following results.

Corollary 9.15. ILP is FPT when parameterized by max{cA, p
V } and also when pa-

rameterized by max{cA, p
C}.
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9.5 Unary ILP
Here we will prove that Unary ILP is polynomial time solvable when pC is bounded by
a constant; this contrasts the case of general ILP, which remains NP-hard in this case
(see Theorem 9.25 later). In particular, we will give an XP algorithm for Unary ILP
parameterized by pC . We will also present lower bounds showing that such an algorithm
cannot exist for Unary ILP parameterized by pV or p, and rule out the existence of a
fixed-parameter algorithm for pC .

9.5.1 The Algorithm

The crucial, and also most technically demanding, part of this result is showing that it
suffices to restrict our search space to assignments over polynomially bounded variable
domains.

Before showing this we need some preparation.

Proposition 9.16. Let A be an integer k × k non-singular matrix and b an integer
vector. Then |x[i]| ≤ k!cb(cA)k−1 for the unique x such that Ax = b.

Proof. Because of Proposition 9.2 it holds that

x[i] = det(A(i))
det(A) .

Moreover, since A is a non-singular integer matrix, we have that |det(A)| ≥ 1 and
thus |x[i]| ≤ | det(A(i))| and |x[i]| ≤ |det(A(i))| ≤ k!cb(cA)k−1 follows from applying
Proposition 9.1, as required.

Lemma 9.17. Let Q be a k × n matrix of rank k, y be a vector of n variables, d
be a vector of size k, I be a set of k linearly independent columns of Q, V be their
corresponding variables in var(y), and let β be an assignment of the variables in var(y)
such that Qβ(y) = d. Then for every v ∈ V, it holds that

|β(v)| ≤ k!
(
cd + cQ

∑
u∈var(y)\V

β(u)
)(
cQ
)k−1

.

Proof. Let y′ be y restricted to the variables in var(y) \ V and let J be the set of all
columns of Q that are not in I. We will now apply the assignment β for the variables in
y′ to Q. This will give us a set of equations that need to be satisfied for the variables in
V allowing us to obtain a bound on β for these variables. Namely, the right-hand side
denoted by d′ of our equations is obtained from d by subtracting the application of β to
Q(∗,J), i.e., d′ = d−Q(∗,J)β(y′), which after restricting Q to the columns I and using
the restriction y′′ of y to the variables in V gives us the following equations that are
satisfied by β:
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Q(∗,I)β(y′′) = d′ (9.1)

Note that because I is a set of k linearly independent columns the matrix Q(∗,I) is
non-singular. Moreover, observe that d′[i] ≤ cd + cQ

∑
u∈var(y)\V β(u) for every i with

1 ≤ i ≤ k. Because β satisfies 9.1 we obtain from Proposition 9.16 that

|β(v)| ≤ k!
(
cd + cQ

∑
u∈var(y)\V

β(u)
)(
cQ
)k−1

,

for every variable v ∈ V .

The following lemma provides an important ingredient for Lemma 9.20 below. Its proof
crucially makes use of the specific structure of our ILP instance.

Lemma 9.18. Let I be an instance of Unary ILP with matrix A. Then for any set
D of linearly dependent columns of A, it holds that A(∗,D) contains a subset of at most
pC(I)(pC(I) + 1) linearly dependent columns.

Proof. Let Z ⊆ F(I) be a constraint modulator for I of size at most pC(I) and let s be a
non-zero vector satisfying A(∗,D)s = 0. Let C1, . . . , Cp be all components of I \ Z that
contain at least one variable corresponding to a column in D and let Di be the set of
all columns in D that correspond to variables in Ci. Moreover, let sCi be the restriction
of s to the entries corresponding to variables in Ci. Note that if p ≤ pC(I) + 1, then D
already contains at most pC(I)(pC(I) + 1) linearly dependent columns and the lemma
follows. So we can assume in the following that p > pC(I) + 1. Denote by wCi the vector
A(∗,Di)sCi . If wCi = 0, then the variables in Ci that s does not assign to 0 correspond to
at most pC(I) linearly dependent columns and the lemma follows. Otherwise, it is easy
to observe that if wCi [j] 6= 0 then j corresponds to a constraint in Z. Hence for every Ci
all non-zero entries of the vector wCi correspond to constraints in Z. Consequently any
subset of pC(I)+1 vectors from wC1 , . . . ,wCp in particular the vectors wC1 , . . . ,wC

pC (I)+1

are linearly dependent (since all their non-zero entries correspond to constraints in Z
and |Z| ≤ pC(I)), which implies that the set

⋃
1≤i≤pC(I)+1Di is the required subset of at

most pC(I)(pC(I) + 1) linearly dependent columns of A(∗,D).

Lemma 9.19. Let I = (A,x,b, l,u, η) be an ILP instance, α a solution for I, and δ a
non-zero integer vector such that α+ δ and α− δ are feasible assignments for I. Then
ηδ = 0 and moreover α+ δ and α− δ are also solutions for I.

Proof. Assume for a contradiction that ηδ 6= 0, then either η(α+ δ) > η(α) or η(α− δ) >
η(α), contradicting that α is a solution.

We are now ready to show that we only need to consider solutions with polynomially
bounded variable domain.
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Lemma 9.20. Let I be a feasible instance of Unary ILP-Feasibility of size n. Then,
there exists a solution α with |α(v)| ≤ mL for every v ∈ var(I), where

mL = 8
(
2(pC(I) + 2)2)!(n)2(pC(I)+2)2

.

Proof. Let I = (A,x,b, l,u, η) be the provided instance of Unary ILP and let Z ⊆ F(I)
be a constraint modulator witnessing pC(I).

Let
mS =

(
(pC(I) + 1)2)!(n)(pC(I)+1)2

,

mM = 4
(
(pC(I) + 2)2)!(n)(pC(I)+2)2

.

For a solution α of I, let V (α) be the set of all variables v of I such that |α(v)| ≥ 2mS.
Let us now consider a solution α which minimizes the size of V (α). Observe that because
mL ≥ 2mS it holds that if |V (α)| = 0 then the lemma holds, and so we may assume that
V (α) is non-empty.

In the following we consider the submatrix B = A(∗,V (α)). Let us first consider the case
where the columns of B are linearly dependent. We show that in this case, we can find a
solution α′ such that |V (α′)| < |V (α)|, which contradicts the choice of α.

Because of Lemma 9.18 there is a non-empty set O of linearly dependent columns of B of
size at most pC(I)(pC(I) + 1). Consider a subset Y = {v1, . . . ,v|Y |} of linearly dependent
columns of O such that the columns of each proper subset of Y are linearly independent
and let X = Y \{v|Y |}. Because Y is a minimal set of linearly dependent columns, it holds
that there is a vector a without any zero entries such that B(∗,Y )a = 0, which implies the
existence of a vector aX , again without zero entries, such that B(∗,X)aX = v|Y |. We will
show that there is a vector a that is integer and satisfies |a[i]| ≤ mS for every 1 ≤ i ≤ |Y |.
We start by solving B(∗,X)aX = v|Y | using Cramer’s rule. Because the columns in X
are linearly independent, it follows that B(∗,X) has a set R of linearly independent rows
with |R| = |X|. Then because the matrix B(R,X) is non-singular, we have that there
is a unique aX such that B(R,X)aX = v|Y |R , where v|Y |R denotes the restriction of the
vector v|Y | to the entries associated with the columns in R. Moreover, because there
is a non-zero vector aX with B(∗,X)aX = v|Y |, it follows that the unique vector aX
satisfying B(R,X)aX = v|Y |R also satisfies B(∗,X)aX = v|Y |. Using Cramer’s Rule, we
obtain aX [i] = det(B(R,X)(i))

det(B(R,X)) for every i with 1 ≤ i ≤ |X| as the unique vector satisfying

B(R,X)aX = v|Y |R .

Hence the vector d with d[i] = aX [i] det(B(R,X)) = det(B(R,X)(i)) for every i with
1 ≤ i ≤ |X| and d[|Y |] = −det(B(R,X)) is a non-zero integer vector that satisfies
B(∗,Y )d = 0. From Proposition 9.1, we obtain that
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|d[i]|
≤
(
pC(I)(pC(I) + 1)

)
!(cA)pC(I)(pC(I)+1)

≤
(
(pC(I) + 1)2)!(n)(pC(I)+1)2

= mS,

as required.

For notational convenience we will in the following assume that A starts with the columns
v1, . . . ,v|Y | from Y . Let w be the vector defined by:

• w[i] = d[i], if i ≤ |Y |, and

• w[i] = 0 otherwise

Note that Aw = 0. For an integer ∆, let α∆ : var(I) → Z denote the assignment
α∆ = α+ ∆w. Note that α∆ is an integral assignment, moreover because

Aα∆(x) = Aα(x) + ∆Aw = Aα(x)

it follows that α∆ is a feasible integral assignment for Ax = b for every ∆ ∈ Z. Let ∆ be
the integer with smallest absolute value such that there is at least one variable v ∈ V (α)
with |α∆(v)| ≤ 2mS. We claim that for every |δ| ≤ |∆|, αδ is a solution for I. We first
show that l[i] ≤ αδ(x[i]) ≤ u[i] for every i with 1 ≤ i ≤ |var(I)|. If x[i] corresponds to
a column that is not in Y , then αδ(x[i]) = α(x[i]), which implies l[i] ≤ αδ(x[i]) ≤ u[i].
Otherwise, assume, w.l.o.g., that α(x[i]) ≥ 0 (the case that α(x[i]) < 0 is symmetric).
Because α(x[i]) ≥ 2mS and |d[j]| ≤ mS for every j with 1 ≤ j ≤ |Y | together with the
choice of ∆, we obtain that mS ≤ αδ(x[i]). Because mS > n and since α is a feasible
solution it follows that u[i] =∞ and l[i] ≤ mS, which shows that l[i] ≤ αδ(x[i]) ≤ u[i].
Hence in particular α∆ and also α1 = α+ w and α−1 = α−w are feasible assignments,
which together with Lemma 9.19 (after setting δ to w) implies that ηw = 0 and hence
ηα = ηα∆. Consequently α∆ is a solution for I with |V (α∆)| < |V (α)|, contradicting our
choice of α.

We conclude that the columns of B must be linearly independent, which implies that
there is a set R of |V (α)| linearly independent rows in B. Consider the set S of all
components of I\Z that have a non-empty intersection with either V (α) or the constraints
corresponding to the rows in R. Let C1, . . . , Cp be the restrictions of the components in
S to the variables in V (α) and the constraints in R.

Observe that for every component Ci, it holds that the rows in R that correspond to
constraints in Ci are zero everywhere but at the entries corresponding to variables in Ci.
Because the rows in R are independent it follows that every component must have at
least as many variables as constraints. Moreover, because B(R,∗) is a square matrix and
the only rows in R that do not correspond to constraints in components, correspond to
the constraints in Z, we obtain that there are at most |Z| ≤ pC(I) components that have
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strictly more variables than constraints, all other components have the same number of
rows and columns. Let Ci be a component with the same number of rows as columns
and let C ′i be the unique component of I \Z containing Ci. Let Q = A(C(C′i),R(Ci)) and y
be the subvector of x restricted to the variables of C ′i, d be the subvector of b restricted
to entries that correspond to the constraints of Ci, V = var(Ci), I the set of columns of
Q corresponding to the variables in V , and β the assignment α restricted to the variables
in y. Because the rows in Q are independent its rank is |F(Ci)|, because α satisfies
Aα(x) = b and all but the columns corresponding to the variables in var(C ′i) of A∗,F(Ci)
are zero everywhere, it holds that Qβ(y) = d. Hence we can apply Lemma 9.17 for Q,
y, d, V , I, and β and obtain:

|α(v)| ≤ pC(I)!
(
cb + cA

∑
u∈var(C′i)\var(Ci)

α(u)
)(
cA
)pC(I)−1 (9.2)

≤ pC(I)!
(
cb + cApC(I)2mS

)
(cA)pC(I)−1 (9.3)

≤ pC(I)!4mSp
C(I)(n)pC(I) (9.4)

≤ 4
(
(pC(I) + 2)2)!(n)(pC(I)+2)2 (9.5)

= mM (9.6)

for every variable v ∈ V . Inequality 9.3 follows because |α(v)| ≤ 2mS for every v in
var(C ′i) \ var(Ci), which is because (var(C ′i) \ var(Ci)) ⊆ (var(I) \V (α)). This shows that
the assignment α is bounded by mM for all variables contained in components Ci that
have the same number of variables and constraints. Consider the remaining components
D1, . . . , Ds among C1, . . . , Cp, i.e., the components among C1, . . . , Cp that have more
variables than constraints. Recall that s ≤ |Z| ≤ pC(I). Let V =

⋃
1≤i≤s var(Di) and let

J be the corresponding columns of V in A. Note that |J | ≤ (pC(I))2. Because V ⊆ V (α)
it holds that J is a set of linearly independent columns. Hence there is a set R′ of |J |
linearly independent rows in A(∗,J).

Let Q = A(R′,∗), y = x, d be the subvector of b restricted to entries that correspond to
the rows in R′, I be the columns in J restricted to the rows in R′, and β = α. Because the
rows in Q are independent its rank is |I|, because Q is a submatrix of A only restricted
in rows, we have Qβ(y) = d. Hence we can apply Lemma 9.17 for Q, y, d, V , I, and β
and obtain:

|α(v)| ≤
(
pC(I)2)!(cb + cA

∑
u∈var(I)\V

α(u)
)(
cA
)(pC(I))2−1) (9.7)

≤
(
pC(I)2)!(cb + cA|var(I)|mM

)
(cA)(pC(I))2−1) (9.8)

≤ 8
(
2(pC(I) + 2)2)!(n)2(pC(I)+2)2 (9.9)

= mL (9.10)

for every variable v ∈ V . Inequality 9.8 follows because |α(v)| ≤ mM for every v in
var(I) \ V , as shown previously.
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To complete the proof of the desired statement, we use a recent result of [96, Proposition
2 and Theorem 11] on solving ILP using treewidth (which is always at most p) and
obtain:

Proposition 9.21 (Proposition 2 and Theorem 11 in [96]). Let I = (A,x,b, l,u, η) be
an ILP with incidence treewidth ω and such that l[i] 6= −∞ and u[i] 6= ∞ for every
entry i. Then I can be solved in time O((cA ·∆ · |var(I)|)ω)(|var(I)| + |F(I)|), where
∆ = maxi{|l[i]|, |u[i]|}.

Theorem 9.22. Unary ILP is polynomial time solvable for any fixed value of pC(I),
where I is the input instance.

Proof. Let I be an input instance of Unary ILP encoded in n bits and let I′ be the
instance obtained from I by replacing −∞ and ∞ entries in l and u with −mL and mL,
respectively (for the definition of mL see the statement of Lemma 9.20). It follows from
Lemma 9.20 that I and I′ are equivalent ILP instances. Now let ω be the incidence
treewidth of I′ (which is equal to the incidence treewidth of I). Observe that ω ≤ pC(I)
and hence it follows from Proposition 9.21 that I′ (and thus also I) can be solved in time
O((cA ·mL · |var(I)|)pC(I))(|var(I)|+ |F(I)|).

9.5.2 Lower Bounds

We complement our algorithm with matching lower bounds: strong NP-hardness for
variable and mixed modulators, W[1]-hardness in the case of constraint modulators, and
weak NP-hardness for constraint and mixed modulators.

Theorem 9.23. Unary ILP-feasibility is paraNP-hard parameterized by pV (I).

Proof. We prove the theorem by a polynomial time reduction from the well-known
NP-hard 3-Colorability problem [98]: given a graph, decide whether the vertices of G
can be colored with three colors such that no two adjacent vertices of G share the same
color.

The main idea behind the reduction is to represent a 3-partition of the vertex set of
G (which in turn represents a 3-coloring of G) by the domain values of three “global”
variables. The value of each of these global variables will represent a subset of vertices
of G that will be colored using the same color. To represent a subset of the vertices of
G in terms of domain values of the global variables, we will associate every vertex of
G with a unique prime number and represent a subset by the value obtained from the
multiplication of all prime numbers of vertices contained in the subset. To ensure that
the subsets represented by the global variables correspond to a valid 3-partition of G we
will introduce constraints which ensure that:

C1 For every prime number representing some vertex of G exactly one of the global
variables is divisible by that prime number. This ensures that every vertex of G is
assigned to exactly one color class.
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C2 For every edge {u, v} of G it holds that no global variable is divisible by the prime
numbers representing u and v at the same time. This ensures that no two adjacent
vertices of G are assigned to the same color class.

Thus let G be the given instance of 3-Coloring and assume that the vertices of G are
uniquely identified as elements of {1, . . . , |V (G)|}. In the following we denote by p(i) the
i-th prime number for any positive integer i, where p(1) = 2. We construct an instance
I of ILP-feasibility in polynomial time with pV (I) ≤ 25, and coefficients bounded
by a polynomial in V (G) such that G has a 3-coloring if and only if I has a feasible
assignment. This instance I has the following variables:

• The global variables c1, c2, and c3 with an arbitrary positive domain, whose values
will represent a valid 3-Partitioning of V (G).

• For every i and j with 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ 3, the variables mi,j , sl1i,j ,
and sl2i,j (with an arbitrary non-negative domain), ri,j (with domain between 0
and p(i)− 1), and ui,j (with binary domain). These variables are used to secure
condition C1.

• For every e ∈ E(G), i ∈ e, and j with 1 ≤ j ≤ 3, the variables me,i,j , sl3e,i,j , sl4e,i,j ,
and sl5e,j (with an arbitrary non-negative domain), re,i,j (with domain between 0
and p(i)− 1), and ue,i,j (with binary domain). These variables are used to secure
condition C2.

Note that the variables sl1i,j , sl2i,j , sl3e,i,j , sl4e,i,j , and sl5e,i are so-called “Slack” variables,
whose sole purpose is to obtain an ILP instance that is in equation normal form. The
instance I has the following constraints (in the following let α be any feasible assignment
of I):

• domain restrictions for all variables as given above, i.e.:

– for every i and j with 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ 3, the constraints cj ≥ 0,
mi,j ≥ 0, sl1i,j ≥ 0, sl2i,j ≥ 0, 0 ≤ ri,j ≤ p(i)− 1, and 0 ≤ ui,j ≤ 1.

– for every e ∈ E(G), i ∈ e, and j with 1 ≤ j ≤ 3, the constraints me,i,j ≥ 0,
sl3e,i,j ≥ 0, sl4e,i,j ≥ 0, sl5e,j ≥ 0, 0 ≤ re,i,j ≤ p(i)− 1, and 0 ≤ ue,i,j ≤ 1.

• The following constraints, introduced for each 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ 3,
together guarantee that condition C1 holds:

– Constraints that ensure that α(ri,j) is equal to the remainder of α(cj) divided
by p(i), i.e., the constraint cj = p(i)mi,j + ri,j .

– Constraints that ensure that α(ui,j) = 0 if and only if α(ri,j) = 0, i.e., the
constraints ui,j + sl1i,j = ri,j and ri,j + sl2i,j = (p(i)− 1)ui,j . Note that together
the above constraints now ensure that α(ui,j) = 0 if and only if cj is divisible
by p(i).
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– Constraints that ensure that exactly one of α(ui,1), α(ui,2), and α(ui,3) is
equal to 0, i.e., the constraints ui,1 + ui,2 + ui,3 = 2. Note that together all
the above constraints now ensure condition C1 holds.

• The following constraints, introduced for each 1 ≤ j ≤ 3, together guarantee that
condition C2 holds:

– Constraints that ensure that for every e ∈ E(G) and i ∈ e, it holds that
α(re,i,j) is equal to the remainder of cj divided by p(i), i.e., the constraint
cj = p(i)me,i,j + re,i,j .

– Constraints that ensure that for every e ∈ E(G), i ∈ e, and j with 1 ≤ j ≤ 3
it holds that α(ue,i,j) = 0 if and only if α(re,i,j) = 0, i.e., the constraints
ue,i,j + sl3e,i,j = re,i,j and re,i,j + sl4e,i,j = (p(i)− 1)ue,i,j . Note that together the
above constraints now ensure that α(ue,i,j) = 0 if and only if cj is divisible by
p(i).

– Constraints that ensure that for every e = {i, k} ∈ E(G) and j with 1 ≤ j ≤ 3
it holds that at least one of α(ue,i,j) and α(ue,k,j) is non-zero, i.e., the constraint
ue,i,j + ue,k,j − sl5e,j = 1. Note that together with all of the above constraints
this now ensures condition C2.

This completes the construction of I. Clearly I can be constructed in polynomial time,
and the largest coefficient used by I is equal to p(|V (G)|). It is well-known that p(i) is
upper-bounded by O(i log i) due to the Prime Number Theorem, and so this in particular
implies that the numbers which occur in I are bounded by a polynomial in |V (G)|.

Following the construction and explanations provided above, it is not difficult to see that I
has a feasible assignment if and only if G has a 3-coloring. Indeed, for any 3-coloring of G,
one can construct a feasible assignment of I by computing the prime-number encoding for
vertices that receive colors 1, 2, 3 and assign these three numbers to c1, c2, c3, respectively.
Such an assignment allows us to straightforwardly satisfy the constraints ensuring C1
holds (since each prime occurs in exactly one global constraint), the constraints ensuring
C2 holds (since each edge is incident to at most one of each color) while maintaining the
domain bounds.

On the other hand, for any feasible assignment α, clearly each of α(c1), α(c2), α(c3) will
be divisible by some subset of prime numbers between 2 and p(|V (G)|). In particular,
since α is feasible it follows from the construction of our first group of constraints that
each prime between 2 and p(|V (G)|) divides precisely one of α(c1), α(c2), α(c3), and so
this uniquely encodes a corresponding candidate 3-coloring for the vertices of the graph.
Finally, since α also satisfies the second group of constraints, this candidate 3-coloring
must have the property that each edge is incident to at exactly 2 colors, and so it is in
fact a valid 3-coloring.

It remains to show that pV (I) ≤ 25. We show this by showing that the set B = {c1, c2, c3}
is a variable modulator set to 25-compactness. Note that the graph GI \ {c1, c2, c3} has
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only two types of components (all other components are isomorphic to one of the two
types):

• for every i, 1 ≤ i ≤ |V (G)|, one component containing the variables mi,1,mi,2,mi,3,
sl1i,1, sl1i,2, sl1i,3, sl2i,1, sl2i,2, sl2i,3, ri,1, ri,2, ri,3, ui,1, ui,2, ui,3. Moreover, these 15 variables
occur in exactly 10 constraints together; these are the constraints introduced above
to ensure condition C1. Hence the total size of these components is 25.

• for every e = {w, v} ∈ E(G) and j with 1 ≤ j ≤ 3, one component on the vertices
me,w,j , me,v,j , sl3e,w,j , sl4e,v,j , re,w,j , re,v,j , ue,w,j , ue,v,j , and sl5e,j . Moreover, these 9
variables occur in exactly 7 constraints together; these are the constraints introduced
above to ensure condition C2. Hence the total size of these components is 16.

This show that B is a variable modulator to 25-compactness, as required.

Theorem 9.24. Unary ILP-feasibility is W[1]-hard parameterized by pC(I).

Proof. We prove the theorem by a parameterized reduction from Multicolored Clique,
which is well-known to be W[1]-complete [172]. Given an integer k and a k-partite graph G
with partition V1, . . . , Vk, the Multicolored Clique problem asks whether G contains
a k-clique. In the following we denote by Ei,j the set of all edges in G with one endpoint
in Vi and the other endpoint in Vj , for every i and j with 1 ≤ i < j ≤ k. To show the
lemma, we will construct an instance I of ILP-feasibility in polynomial time that has a
constraint modulator set of size 2k+ 2

(k
2
)
to 3-compactness and coefficients bounded by a

polynomial in |V (G)| such that G has a k-clique if and only if I has a feasible assignment.

The main idea behind the reduction is to first guess one vertex from each part Vi and
one edge between every two parts Vi and Vj and to then verify that the selected vertices
and edges form a k-clique in G.

The first step is achieved by introducing one binary variable for every vertex and edge
of G together with 2k + 2

(k
2
)
global constraints that ensure that (1) exactly one of the

variables representing the vertices in Vi is set to one and (2) exactly one of the variables
representing the edges between Vi and Vj is set to one. The second step, i.e., verifying
that the chosen vertices and edges indeed form a k-clique of G, is achieved by identifying
each vertex of G with a unique number such that the sum of any two numbers assigned to
two vertices of G is unique. By identifying each edge of G with the sum of the numbers
assigned to its endpoints, it is then possible to verify that the selected vertices and edges
form a k-clique by checking whether the number assigned to the selected edge e is equal
to the sum of the numbers assigned to the selected vertices in Vi and Vj . Sets of numbers
for which the sum of every two numbers from the set is unique are also known as Sidon
sequences. Indeed a Sidon sequence is a sequence of natural numbers such that the
sum of every two distinct numbers in the sequence is unique. For our reduction we will
need a Sidon sequence of |V (G)| natural numbers, i.e., containing one number for each
vertex of G. Since the numbers in the Sidon sequence will be used as coefficients of
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I, we need to ensure that the largest of these numbers is bounded by a polynomial in
G. Indeed [76] shows that a Sidon sequence containing n elements and whose largest
element is at most 2p2, where p is the smallest prime number larger or equal to n can be
constructed in polynomial time. Together with Bertrand’s postulate [6], which states
that for every natural number n there is a prime number between n and 2n, we obtain
that a Sidon sequence containing |V (G)| numbers and whose largest element is at most
8|V (G)|2 can be found in polynomial time. In the following we will assume that we are
given such a Sidon sequence S and we denote by S(i) the i-th element of S for any i
with 1 ≤ i ≤ |V (G)|. Moreover, we denote by max(S) and max2(S) the largest element
of S respectively the maximum sum of any two numbers in S.

We are now ready to construct the instance I of ILP-feasibility such that G has a
k-clique if and only if I has a feasible assignment. This instance I has the following
variables:

• For every v ∈ V (G) a binary variable v (with domain {0, 1}) that is 1 if v is selected
to be in the k-clique and 0 otherwise.

• For every e ∈ E(G) a binary variable e (with domain {0, 1}) that is 1 if e is selected
to be in the k-clique and 0 otherwise.

• For every i with 1 ≤ i ≤ k, a variable vi (with unrestricted domain), which will be
set to S(v) if the vertex v ∈ Vi was selected to be in the k-clique.

• For every i and j with 1 ≤ i < j ≤ k, a variable ei,j (with unrestricted domain),
which will be set to S(v) + S(u) if the edge e ∈ Ei,j with e = {u, v} was selected to
be in the k-clique.

I has the following constraints:

• Constraints that restrict the domains of all variables as specified above, i.e.:

– for every v ∈ V (G), the constraints 0 ≤ v ≤ 1.

– for every e ∈ E(G), the constraints 0 ≤ e ≤ 1.

We will denote by D the set of all these constraints.

• for every i with 1 ≤ i ≤ k, the constraint
∑
v∈Vi v = 1, which ensures that from

every part Vi exactly one vertex is selected to be in the k-clique. We will denote by
VSEL the set of all these constraints.

• for every i and j with 1 ≤ i < j ≤ k, the constraint
∑
e∈Ei,j e = 1, which ensures

that between any two parts Vi and Vj exactly one edge is selected to be in the
k-clique. We will denote by ESEL the set of all these constraints.
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• for every i with 1 ≤ i ≤ k, the constraint
∑
v∈Vi S(v)v = vi, which ensures that vi

is equal to S(v) whenever v is selected for the k-clique. We will denote by VASS
the set of all these constraints.

• for every i and j with 1 ≤ i < j ≤ k, the constraint
∑
e={u,v}∈Ei,j (S(u) + S(v))e =

ei,j , which ensures that ei,j is equal to S(u) +S(v) whenever the edge e ∈ Ei,j with
endpoints u and v is selected for the k-clique. We will denote by EASS the set of
all these constraints.

• for every i and j with 1 ≤ i < j ≤ k, the constraint vi + vj = ei,j , which ensures
that between any two parts Vi and Vj the vertices selected for the clique are equal
to the endpoints of the edge chosen between the two parts. We will denote by
V ECHECK the set of all these constraints.

This completes the construction of I. Clearly I can be constructed in polynomial
time, and the largest coefficient used by I is equal to max2(S), which is at most
2 max(S) ≤ 16|V (G)|2. We first show that I has a small constraint modulator to 3-
compactness, and hence our parameter can bounded in terms of k. Namely, we claim
that the set B = VSEL ∪ ESEL ∪ VASS ∪ EASS ∪ V ECHECK of constraints of I is a
constraint modulator of size at most 2k+ 3

(k
2
)
to 3-compactness. Clearly, the components

of GI \B have size at most 3, i.e., GI has one component of size one for every variable in
{v1, . . . , vk, e1,2, . . . , ek−1,k} as well as one component of size 3 for every a ∈ V (G)∪E(G),
containing the variable a together with the two constraints 0 ≤ a and a ≤ 1. More-
over, the sets VSEL, ESEL, VASS , EASS , and V ECHECK have sizes at most k,

(k
2
)
, k,(k

2
)
, and

(k
2
)
, respectively, which implies that |B| ≤ 2k + 3

(k
2
)
.

It remains to show that G has k-clique if and only if I is feasible. For the forward
direction suppose that G has a k-clique on the vertices c1, . . . , ck, where ci ∈ Vi for every
i with 1 ≤ i ≤ k. Then it is straightforward to verify that the assignment α with:

• α(ci) = 1 for every i with 1 ≤ i ≤ k and α(v) = 0 for every v ∈ V (G) \ {c1, . . . , ck},

• α({ci, cj}) = 1 for every i and j with 1 ≤ i < j ≤ k and α(e) = 0 for every
e ∈ E(G) \ { {ci, cj} | 1 ≤ i < j ≤ k },

• α(vi) = S(ci) for every i with 1 ≤ i ≤ k, and

• α(ei,j) = S(ci) + S(cj) for every i and j with 1 ≤ i < j ≤ k

is a feasible assignment for I.

For the reverse direction suppose that we are given a feasible assignment α for I. Then
because α satisfies the constraints in D ∪ VSEL ∪ ESEL we obtain that for every i and
j with 1 ≤ i < j ≤ k it holds that exactly one of the variables in Vi and exactly one of
the variables in Ei,j is set to one. Let ci denote the unique vertex in Vi with α(ci) = 1
and similarly let di,j denote the unique edge in Ei,j with α(di,j) = 1. It follows from the
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constraints in VASS that α(vi) = S(ci) and similarly using the constraints in EASS we
obtain that α(ei,j) = S(u) + S(v), where u and v are the endpoints of the edge di,j in
G. Moreover, we obtain from the constraints in V ECHECK that vi + vj = ei,j and hence
S(ci) + S(cj) = S(u) + S(v), where again u and v are the endpoints of the edge di,j in
G. Because S is a Sidon sequence, it follows that this can only hold if S(ci) = S(u) and
S(cj) = S(v), which implies that ci = u and cj = v. This shows that the endpoints of
the selected edges d1,2, . . . , dk−1,k are the vertices in c1, . . . , ck and hence G[{c1, . . . , ck}]
is a k-clique of G.

We conclude with a simple reduction ruling out an extension of our XP algorithm to
general ILPs parameterized by pc.

Theorem 9.25. ILP is NP-hard even if pC = 1.

Proof. We show the result by a polynomial reduction from the Subset Sum problem,
which is well-known to be weakly NP-complete. Given a set S := {s1, . . . , sn} of integers
and an integer s, the Subset Sum problem asks whether there is a subset S′ ⊆ S such that∑
s∈S′ s

′ = s. Let I := (S, s) with S := {s1, . . . , sn} be an instance of Subset Sum. We
will construct an equivalent ILP instance I with pC(I) = 1 in polynomial time as follows.
The instance I has n binary variables x1, . . . , xn and apart from the domain constraints
for these variables only one global constraint defined by

∑
1≤i≤n sixi = s. Because I

has only one constraint, it holds that pC(I) = 1 and moreover it is straightforward
to verify that I is equivalent to (S, s) (this has also for instance been shown in [129,
Theorem 1]).

9.6 Summary and Open Questions
In order to overcome the complexity barriers of ILP, a wide range of problems have been
encoded in restricted variants of ILP such as 2-stage stochastic ILP and N -fold ILP;
examples for the former include a range of transportation and logistic problems [173, 120],
while examples for the latter range from scheduling [142] to, e.g., computational social
choice [143]. Our framework based on fracture modulators provides a unified platform
which generalizes 2-stage stochastic ILP, N -fold ILP and also 4-block N -fold ILP. More
importantly though, it represents a natural measure of the complexity of ILPs which
can be applied to any ILP instance, including those which lie outside of the scope of all
previously known algorithmic frameworks. In fact, one may view our algorithmic results
as “algorithmic meta-theorems” for ILP, where previously known algorithms for 2-stage
stochastic ILP, N -fold ILP and 4-block N -fold ILP only represent a simple base case.

Our algorithms are complemented with matching lower bounds showing that the con-
sidered restrictions are, in fact, necessary in order to obtain fixed-parameter or XP
algorithms. The only remaining blank part in the presented complexity map is the
question of whether mixed fracture modulators admit a fixed-parameter algorithm in
case of bounded coefficients; we believe that this is in fact a major open problem in the
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area. A first step towards settling this question would be to resolve the fixed-parameter
(in)tractability of 4-block N -fold ILP, which was also left open in previous work; progress
in this direction seems to require new techniques and insights [116].

Notes
The results in this chapter appeared in a conference paper in the proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI 2017) [67].
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CHAPTER 10
Well-Structured Modulators

The primary goal in this part is to push the boundaries of tractability for a wide range of
problems beyond the state of the art for both of the approaches introduced in Parts I and II.
More precisely, we investigate what happens when a graph contains a modulator which
is large but “well-structured” (in the sense of having bounded rank-width). Can such
modulators still be exploited to obtain efficient algorithms? And is it even possible to
find such modulators efficiently?

Organization of the Chapter

This Chapter is devoted to introducing our novel family of parameters that combine the
approaches introduced in Parts I andII. We start in the Section 10.1 by introducing the
well-structured modulators to some class of graphs H and showing that they are more
general then both standard modulator to H and rank-width of the input graph. Next,
in Sections 10.2 and 10.3, we focus on building some crucial machinery that helps us
find optimal well-structured modulators in FPT time (Chapter 11) or good approximate
well-structured modulators (Chapter 12).

10.1 (k, c)-Well-Structured Modulators
Before we can formalize well-structured modulators, we need to further introduce some
necessary notions.

Recall that a modulator to a graph class H is a vertex-subset of a graph G such that
its deletion puts G into H. Furthermore, recall the definition of rank-width from the
Section 3.3. A graph class is called hereditary if it is closed under vertex deletion. Let F
be a finite set of graphs; then the class of F-free graphs is the class of all graphs which
do not contain any graph in F as an induced subgraph. We will often refer to elements
of F as obstructions, and we say that the class of F-free graphs is characterized by F .
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10.1.1 Splits and Split-Modules

The notions of split and split decomposition (recall the Section 7.2) play an important
role in particular when formally defining our parameters and for computing them. Recall
that a split of a connected graph G = (V,E) is a vertex bipartition (A,B) of V such that
every vertex of A′ = N(B) has the same neighborhood in B′ = N(A). Let G = (V,E)
be a graph. To simplify our exposition, we will use the notion of split-modules instead of
splits where suitable. A set A ⊆ V is called a split-module of G if there exists a connected
component G′ = (V ′, E′) of G such that A ⊆ V ′ and (A, V ′ \ A) forms a split of G′.
Notice that if A is a split-module then A can be partitioned into A1 and A2 such that
N(A2) ⊆ A and for each v1, v2 ∈ A1 it holds that N(v1)∩ (V ′ \A) = N(v2)∩ (V ′ \A). We
call the set A1 a frontier of the split-module A and we denote it by λ(A). For technical
reasons, ∅ as well as V (G′), V (G′) \ {v}, and v, for all connected components G′ of G
and all vertices v ∈ V (G′), are also considered split-modules. We say that two disjoint
split-modules X,Y ⊆ V are adjacent if there exist x ∈ X and y ∈ Y such that x and y
are adjacent.

We are now ready to define well-structured modulators.

Definition 10.1. Let H be a graph class and let G be a graph. A set ~X of pairwise-
disjoint split-modules of G is called a (k, c)-well-structured modulator to H if

1. | ~X| ≤ k, and

2.
⋃
Xi∈ ~X Xi is a modulator to H, and

3. for each Xi ∈ ~X:

• if G[Xi] is a connected component of G, then rw(G[Xi]) ≤ c+ 1;
• if G[Xi] is not a connected component of G, then rw(G[Xi]) ≤ c.

Figure 10.1: A graph with a (2, 1)-well-structured modulator to forests (in the two shaded
areas).

For the sake of brevity and when clear from context, we will sometimes identify ~X
with

⋃
Xi∈ ~X Xi (for instance G− ~X is shorthand for G−

⋃
Xi∈ ~X Xi). To allow a concise

description of our parameters, for any hereditary graph class H we let the c-well-structure
number (wsnHc in short) denote the minimum k such that G has a (k, c)-well-structured
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modulator to H. Moreover, we let the well-structure number (wsnH in short) denote the
minimum k such that G has a (k, k)-well-structured modulator to H. Moreover, we refer
to (k, k)-well-structured modulator to H simply as k-well-structured modulator to H.
See Figure 10.1 for an illustration of a well-structured modulator.

Proposition 10.2. Let H be an arbitrary hereditary graph class of unbounded rank-width.

1. rw(G) ≥ wsnH(G) for every graph G. Furthermore, for every i ∈ N there exists a
graph Gi such that rw(Gi) ≥ wsnH(Gi) + i, and

2. modH(G) ≥ wsnH(G) for every graph G. Furthermore, for every i ∈ N there exists
a graph Gi such that modH(Gi) ≥ wsnH(Gi) + i.

Proof. 1. For rw(G) ≥ wsnH(G) notice that for every graph G of rank-width k, the
set {V (G)} is a k-well-structured modulator to the empty graph. For the second
claim, since H has unbounded rank-width, for every i ∈ N it contains some graph
Gi such that rw(Gi) > i; by definition, wsnH(Gi) = 0.

2. For modH(G) ≥ wsnH(G), let G be a graph containing a modulator X = {v1, . . . ,
vk} to H. It is easy to check that ~X = {{v1}, . . . , {vk}} is a k-well-structured
modulator to H. For the second claim, let G′ 6∈ H and let k = rw(G′). Consider
the graph Gi consisting of i+ 1 + k disjoint copies of G′ and a vertex q which is
adjacent to every other vertex of G. Since H is hereditary, we may assume without
loss of generality that it contains the single-vertex graph. It is then easy to check
that {V (G) \ {q}} forms a k-well-structured modulator in G to H. Now consider
an arbitrary set X ⊆ V (G) of cardinality at most i+ k. Clearly, there must exist
some copy of G′, say G′j , such that X ∩ V (G′j) = ∅. Since G′j 6∈ H, it follows from
the hereditarity of H that G−X 6∈ H and hence X cannot be a modulator to H.
We conclude modH(Gi) > i+ k = i+ wsnH(Gi).

Note that Proposition 10.2 implies that, since wsnH lower-bounds rank-width and rank-
width is known not to admit polynomial kernels for nearly any NP-hard problems [25],
one cannot hope to use wsnH for polynomial kernelization. The above is however not
true if we consider wsnHc for some fixed constant c. Therefore, we use k-well-structured
modulators when developing FPT algorithms and (k, c)-well-structured modulators for
developing polynomial kernels.

We conclude this section with a brief discussion on the choice of the parameter. The
specific conditions restricting the contents of the modulator

⋃ ~X have been chosen as the
most general means which allow both (1) the efficient finding of a suitable well-structured
modulator, and (2) the efficient use of this well-structured modulator for FPT algorithm
and kernelization. In this sense, we do not claim that there is anything inherently special
about rank-width or split-modules, other than being the most general notions which are
currently known to allow the achievement of these two goals.
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10.2 Structural Properties of Split-Modules
The objective of this section is develop the main machinery that helps us develop various
FPT and approximation algorithms for finding well-structured modulators in the following
chapters.

Our first course of action is the statement of several useful properties of splits in graphs.
We remark that for most of this section we will restrict ourselves to connected graphs,
and show how to deal with general graphs later on; this allows us to use the following
result by Cunningham.

Theorem 10.3 ([51]). Let (A,C), (B,D) be splits of a connected graph G such that
|A ∩B| ≥ 2 and A ∪B 6= V (G). Then (A ∩B,C ∪D) is a split of G.

Two vertex sets A,B are overlapping if A ∩B, A \B, and B \A are all nonempty.

Lemma 10.4. If A and B are overlapping split-modules of a connected graph G = (V,E),
then A∪B is also a split-module. Moreover, if A∪B 6= V , then also A∩B is a split-module.

Proof. If V = A ∪B, then A ∪B is clearly a split-module. So, assume A ∪B 6= V and
let C = V \ A and D = V \ B; note that C ∪D 6= V since A,B are overlapping. We
make the following exhaustive case distinction:

• if |A ∩ B| = 1 and |C ∩D| = 1, then both A ∩ B and A ∪ B = V \ (C ∩D) are
easily seen to be split-modules;

• if |A ∩B| ≥ 2 and |C ∩D| = 1, then A ∩B is a split-module by Theorem 10.3 and
A ∪B is also a split-module because C ∩D is a split-module;

• if |A ∩ B| = 1 and |C ∩D| ≥ 2, then A ∩ B is a split-module and A ∪ B is also
a split-module because C,D satisfy the conditions of Theorem 10.3 and hence
C ∩D = V \ (A ∪B) forms a split-module;

• if |A ∩B| ≥ 2 and |C ∩D| ≥ 2, then A ∩B is a split-module by Theorem 10.3 and
A ∪B is also a split-module because C,D satisfy the conditions of Theorem 10.3,
as in the previous case.

Lemma 10.5. Let G = (V,E) be a connected graph and A,B be overlapping split-modules.
Then A \B is also a split-module.

Proof. The lemma clearly holds if |A \ B| ≤ 1, so we may assume that |A \ B| ≥ 2.
Let Z = V \ B; since B is a split module, so is Z. Furthermore, since A and B are
overlapping, it holds that B \A is nonempty and hence V 6= Z ∪A. Since Z ∩A = A \B,
we have |Z ∩ A| ≥ 2 and hence we conclude that Z ∩ A = A \ B is a split module by
Theorem 10.3.
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Lemma 10.6. Let k ∈ N, G = (V,E) be a graph, and A, B, C be pairwise disjoint
split-modules such that A∪B∪C = V . Let a, b, c be arbitrary vertices such that a ∈ N(A),
b ∈ N(B), and c ∈ N(C). If max

(
rw(G[A ∪ {a}]), rw(G[B ∪ {b}]), rw(G[C ∪ {c}])

)
≤ k,

then rw(G) ≤ k.

Proof. Let TA = (TA, µA), TB = (TB, µB), and TC = (TC , µC) be witnessing rank
decompositions of G[A], G[B], and G[C], respectively.

We construct a rank decomposition T = (T, µ) of G as follows.

Let la be the leaf (note that µA is bijective) of TA such that µA(a) = la. Similarly, let lb
and lc be the leaves such that µB(b) = lb and µC(c) = lc, respectively. We obtain T from
TA by adding disjoint copies of TB and TC and then identifying la with the copies of lb
and lc. Since TA, TB, and TC are subcubic, so is T .

We define the mapping µ : V (G)→ { t | t is a leaf of T } by

µ(v) =


µa(v) if v ∈ A,
g(µb(v)) if v ∈ B,
g(µc(v)) otherwise,

where g maps internal nodes in TB ∪ TC to their copies in T . The mappings µA, µB,
and µC are bijections and g is injective, so µ is injective. By construction, the image
of V (G) under µ is the set of leaves of T , so µ is a bijection. Thus T = (T, µ) is a rank
decomposition of G.

We prove that the width of T is at most k. Given a rank decomposition T ∗ = (T ∗, µ∗)
and an edge e of T ∗, the connected components of T ∗ − e induce a bipartition (X,Y ) of
the leaves of T ∗. We set f : (T ∗, e) 7→ (µ∗−1(X), µ∗−1(Y )). Take any edge e of T . There
is a natural bijection β from the edges in T to the edges of TA ∪ TB ∪ TC . Accordingly,
we distinguish three cases for e′ = β(e):

1. e′ ∈ TA. Let (U,W ) = f(TA, e′). Without loss of generality assume that a ∈ W .
Then by construction of T , we have f(T , e) = (U,W ∪ B ∪ C). Let u ∈ A and
v ∈ B ∪C. Since A is split-module either v /∈ N(A) and AG(u, v) = 0 for all u ∈ A,
or v ∈ N(A) in which case AG(u, v) = AG(u, a) for all u ∈ A. Therefore, to obtain
AG(U,W ∪B∪C) one can simply copy the column corresponding to a in AG(U,W )
or add some empty columns. This does not increase the rank of the matrix.

2. e′ ∈ TB. This case is symmetric to case 1, with A and B switching their roles and
b taking the role of a.

3. e′ ∈ TC . This case is symmetric to case 1, with A and C switching their roles and
c taking the role of a.
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Since β is bijective, this proves that the rank of any bipartite adjacency matrix induced
by removing an edge e ∈ T is bounded by k. We conclude that the width of T is at most
k and thus rw(G) ≤ k.

By repeating the proof technique of Lemma 10.6 without the set C, we obtain the
following corollary.

Corollary 10.7. Let k ∈ N, G = (V,E) be a graph, and A, B pairwise disjoint split-
modules such that A ∪ B = V . Let a, b ∈ V be such that a ∈ N(A) and b ∈ N(B). If
max

(
rw(G[A ∪ {a}]), rw(G[B ∪ {b}])

)
≤ k, then rw(G) ≤ k.

Lemma 10.8. Let k ∈ N and let G = (V,E) be a connected graph having split-modules
M1,M2 where M1 ∪M2 = V and max(rw(G[M1]), rw(G[M2])) ≤ k. Then rw(G) ≤ k+ 1.

Proof. LetM22 = M2\M1. Clearly, (M1,M22) is a split. Since rank-width is preserved by
taking induced subgraphs, the graph G[M22] has rank-width at most k. Let v1 ∈ N(M22)
and v2 ∈ N(M1). It is easy to see that graphs G1 = G[M1∪{v2}] and G2 = G[M22∪{v1}]
have rank-width at most k + 1. We finish the proof by applying Corollary 10.7, using
M1, M22 in roles of A, B and v1, v2 in roles of a, b, respectively.

The following lemma in essence shows that the relation of being in a split-module of
small rank-width is transitive (assuming sufficiently high rank-width). The significance
of this will become clear later on.

Lemma 10.9. Let k ∈ N. Let G = (V,E) be a connected graph of rank-width at
least k + 2 and let M1,M2 be split-modules of G such that M1 ∩ M2 6= ∅ and it
holds that max(rw(G[M1]), rw(G[M2])) ≤ k. Then M1 ∪ M2 is a split-module of G
and rw(G[M1 ∪M2]) ≤ k.

Proof. If M1 ⊆M2 or M2 ⊆M1 the result is immediate, hence we may assume that they
are overlapping. Lemma 10.8 and rw(G) ≥ k + 2 together imply that M1 ∪M2 6= V .
Let M11 = M1 \M2,M22 = M2 \M1, and M12 = M1 ∩M2. It follows from Lemma 10.4
and Lemma 10.5 that these sets are split-modules of G. Let v11 ∈ N(V \M11), v22 ∈
N(V \M22), and v12 ∈ N(V \M12). We show that rw(G[M1 ∪M2]) ≤ k. By assumption,
both G[M1] and G[M2] have rank-width at most k. Since rank-width is preserved by
taking induced subgraphs, the graphs G11 = G[M11 ∪ {v12}], G12 = G[M12 ∪ {v22}], and
G22 = G[M22 ∪ {v12}] also have rank-width at most k. We finish the proof by applying
Lemma 10.6, where M11, M22, M12 take the roles of A, B, and C and v12, v12, and v22
take the roles of a, b, and c, respectively.

Definition 10.10. Let k ∈ N and let G be a graph. We define a relation ∼Gk on V (G)
by letting v ∼Gk w if and only if at least one of the following conditions holds:

• there is a connected component G′ of G such that v, w ∈ V (G′) and rw(G′) ≤ k+ 1,
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• there is a split-module M of G such that v, w ∈M and rw(G[M ]) ≤ k.

We drop the superscript from ∼Gk if the graph G is clear from context.

If ∼ is an equivalence relation over a set A, then for a ∈ A we use [a]∼ to denote the
equivalence class containing a. Using Lemma 10.9 to deal with transitivity, we prove the
following.

Proposition 10.11. For every k ∈ N and a connected graph G = (V,E), the relation
∼k is an equivalence relation, and each equivalence class U of ∼k is a split-module of G
such that rw(G[U ]) ≤ k + 1.

Proof. If rw(G) ≤ k + 1, then ∼k contains exactly one equivalence class containing all of
the vertices of G and the proposition trivially holds. Therefore, for the rest of the proof
assume that rw(G) ≥ k + 2.

For every v ∈ V , the singleton {v} is a split-module of G, so ∼k is reflexive. Sym-
metry of ∼k is trivial. For transitivity, let u, v, w ∈ V be such that u ∼k v and
v ∼k w. Then there are split-modules M1,M2 of G such that u, v ∈M1, v, w ∈M2, and
rw(G[M1]), rw(G[M2]) ≤ k.By Lemma 10.9, M1 ∪M2 is a split-module of G such that
rw(G[M1 ∪M2]) ≤ k. In combination with u,w ∈ M1 ∪M2 that implies u ∼k w. This
concludes the proof that ∼k is an equivalence relation.

Now let v ∈ V and let U = [v]∼k . For each u ∈ U there is a split-module Wu of G such
that u, v ∈Wu and rw(G[Wu]) ≤ k. By Lemma 10.9, W =

⋃
u∈U Wu is a split-module of

G and rw(G[W ]) ≤ k. Clearly, [v]∼k ⊆W . On the other hand, u ∈W implies v ∼k u by
definition of ∼k, so W ⊆ [v]∼k . That is, W = [v]∼k .

Since every split-module of a graph G is a subset of some connected component of G, it
is easy to see the following simple but useful observation.

Observation 10.12. Let k ∈ N, G be a disconnected graph, and C(G) be the set of
connected components of G. Then ∼Gk =

⋃
G′∈C(G) ∼G

′
k .

From Observation 10.12 and Proposition 10.11 it immediately follows that ∼k is an
equivalence relation, and each equivalence class U of ∼k is a split-module of G such that
rw(G[U ]) ≤ k + 1 holds even for disconnected graphs.

Corollary 10.13. Every graph G has its vertex set uniquely partitioned by the equivalence
classes of ∼k into inclusion-maximal split-modules of rank-width at most k and connected
components of G or rank-width at most k + 1.

Now that we know ∼k is an equivalence relation, we show how to compute it in FPT
time. Before we give an FPT algorithm for computing ∼k, we need to state the following
useful result.
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Theorem 10.14 ([51, 104, 105, 106]). Let D be the canonical split decomposition of a
connected graph G. Every split of G is the bipartition (of unmarked vertices) induced by
removing an marked edge from D′, where D′ = D or D′ is obtained from D by exactly
one simple decomposition of a degenerate bag (i.e., a bag that is a clique or a star).

Furthermore, it will be useful to recall Theorem 7.7 from Section 7.2.

Proposition 10.15. Let k ∈ N. Given an n-vertex graph G and two vertices v, w, we
can decide whether v ∼k w in time f(k) · n3 for some computable function f .

Proof. From Observation 10.12 it follows that if the proposition holds for connected
graphs, then it holds for disconnected graphs as well. Moreover, if rw(G) ≤ k + 1, it
follows from the definition of the equivalence relation ∼k that v ∼k w for all pairs of
vertices in G. Hence, we may assume that G is connected and rw(G) ≥ k + 2.

By Theorem 7.7 we can compute the unique canonical split decomposition D in
O(|V (G)|+ |E(G)|) time. Due to Theorem 10.14, every split in G is the bipartition of
unmarked vertices induced by removing an marked edge from D′, where D′ = D or D′ is
obtained from D by exactly one simple decomposition of a degenerate bag.

All vertices of G are precisely the unmarked vertices of D and we can find a path P
between the bag B1 containing v and the bag B2 containing w in D in time linear in the
number of bags of D. Since the number of bags in a split decomposition is linear in the
number of vertices of the original graph [102], there are at most linearly many bags on
the path. Moreover, if B is a degenerate node on P , then we can split it, by computing
its simple decomposition, into two bags B1, B2 in a way such that B1 contains exactly
the two marked vertices of B incident to a marked edge of D on P and a new marker
vertex connecting it to B2. We split all degenerate bags on P in this way and denote the
marked graph by D′. Note that now every degenerate bag on a new path P ′ between u
and v has 3 vertices.

Now every edge between P ′ and D′ \P ′ corresponds to a minimal split-module containing
v and w. Conversely, as a consequence of Theorem 10.14 every minimal split-module
containing v and w is induced by removing a marked edge between P ′ and D′ \ P ′, and
let Mvw be the set containing all of these at most |D| minimal split modules. Hence,
v ∼k w if and only if there is a split-module X in Mvw such that rw(G[X]) ≤ k. By
Theorem 3.8 we can decide, for each such X, whether rw(G[X]) ≤ k in time f(k) · n3,
where f is some computable function.

10.3 MSO Machinery for Well-Structured Modulators
We first review MSO-types roughly following the presentation in the textbook by
Libkin [148]. The quantifier rank of an MSO formula ϕ is defined as the nesting depth of
quantifiers in ϕ. For non-negative integers q and l, let MSOq,l consist of all MSO formulas
of quantifier rank at most q having at most l free set variables.
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Let ϕ = ϕ(X1, . . . , Xl) and ψ = ψ(X1, . . . , Xl) be MSO formulas. We say ϕ and ψ are
equivalent, written ϕ ≡ ψ, if for all graphs G and U1, . . . , Ul ⊆ V (G), G |= ϕ(U1, . . . , Ul)
if and only if G |= ψ(U1, . . . , Ul). Given a set F of formulas, let F/≡ denote the set
of equivalence classes of F with respect to ≡. A system of representatives of F/≡ is
a set R ⊆ F such that R ∩ C 6= ∅ for each equivalence class C ∈ F/≡. The following
statement has a straightforward proof using normal forms (see [148, Proposition 7.5 and
Lemma 3.13] for details).

Fact 10.16 ([97]). Let q and l be fixed non-negative integers. The set MSOq,l/≡ is finite,
and one can compute a finite system of representatives of MSOq,l/≡.

Note that the system of representatives obtained in this way need not be inclusion-
minimal, and we do not assume to have a mapping from this system of representatives to
elements of MSOq,l/≡. We will assume that for every pair of non-negative integers q and
l the system of representatives of MSOq,l/≡ given by Fact 10.16 is fixed.

Definition 10.17 (MSO Type). Let q, l be non-negative integers. For a graph G and
an l-tuple ~U of sets of vertices of G, we define MSO-typeq(G, ~U) as the set of formulas
ϕ ∈ MSOq,l such that G |= ϕ(~U). We call MSO-typeq(G, ~U) the MSO q-type of ~U in G.

Since we will only be dealing with MSO logic, throughout the Part III we will refer to
MSO-types simply as types. It follows from Fact 10.16 that up to logical equivalence,
every type contains only finitely many formulas. This allows us to represent types using
MSO formulas, as formalized in the next lemma. We remark that the statement of the
next lemma used in previous work [97] did not specify the (“fixed-parameter”) dependence
of the running time on the rank-width, and so here we give a proof of the lemma for
completeness.

Lemma 10.18 ([97]). Let q and l be non-negative integer constants. Let G be a graph, and
let ~U be an l-tuple of sets of vertices of G. One can compute a formula Φ ∈ MSOq,l such
that for any graph G′ and any l-tuple ~U ′ of sets of vertices of G′ we have G′ |= Φ(~U ′) if and
only if typeq(G, ~U) = typeq(G′, ~U ′). Moreover, Φ can be computed in time f(rw(G)) · |V |3.

Proof. Let R be a system of representatives of MSOq,l/≡ given by Fact 10.16. Because
q and l are constant, we can consider both the cardinality of R and the time required
to compute it as constants. Let Φ ∈ MSOq,l be the formula defined as Φ =

∧
ϕ∈S ϕ ∧∧

ϕ∈R\S ¬ϕ, where S = {ϕ ∈ R | G |= ϕ(~U) }. We can compute Φ by deciding G |= ϕ(~U)
for each ϕ ∈ R. Since the number of formulas in R is a constant, this can be done in
time f(rw(G)) · |V |3 (for some computable function f) as checking whether G satisfied
ϕ(~U) can be done in time q(rw(G)) · |V |3 (for some computable function q).

Let G′ be an arbitrary graph and let ~U ′ be an l-tuple of subsets of V (G′). We claim that
typeq(G, ~U) = typeq(G′, ~U ′) if and only if G′ |= Φ(~U ′). Since Φ ∈ MSOq,l the forward
direction is trivial. For the converse, assume typeq(G, ~U) 6= typeq(G′, ~U ′). First suppose
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ϕ ∈ typeq(G, ~U) \ typeq(G′, ~U ′). The set R is a system of representatives of MSOq,l/≡ ,
so there has to be a ψ ∈ R such that ψ ≡ ϕ. But G′ |= Φ(~U ′) implies G′ |= ψ(~U ′) by
construction of Φ and thus G′ |= ϕ(~U ′), a contradiction. Now suppose ϕ ∈ typeq(G′, ~U ′)\
typeq(G, ~U). An analogous argument proves that there has to be a ψ ∈ R such that ψ ≡ ϕ
and G′ |= ¬ψ(~U ′). It follows that G′ 6|= ϕ(~U ′), which again yields a contradiction.

The remainder of the section introduces the classical notion of MSO games (Defini-
tion 10.20) and their relation to MSO types (Theorem 10.21). However, to formally
define MSO games, we first need the notion of partial isomorphism.

Definition 10.19 (Partial isomorphism). Let G,G′ be graphs, and let ~V = (V1, . . . , Vl)
and ~U = (U1, . . . , Ul) be tuples of sets of vertices such that Vi ⊆ V (G) and Ui ⊆ V (G′)
for each i ∈ [l]. Let ~v = (v1, . . . , vm) and ~u = (u1, . . . , um) be tuples of vertices such that
vi ∈ V (G) and ui ∈ V (G′) for each i ∈ [m]. Then (~v, ~u) defines a partial isomorphism
between (G, ~V ) and (G′, ~U) if the following two conditions hold:

• For every i, j ∈ [m],

vi = vj ⇔ ui = uj and vivj ∈ E(G) ⇔ uiuj ∈ E(G′).

• For every i ∈ [m] and j ∈ [l],

vi ∈ Vj ⇔ ui ∈ Uj .

In the definition of MSO games given below, we denote the concatenation of tuple ~A by
tuple ~B as ~A _ ~B.

Definition 10.20 ([148], Definition 7.6). Let G and G′ be graphs, and let ~V0 be a
k-tuple of subsets of V (G) and let ~U0 be a k-tuple of subsets of V (G′). Let q be a
non-negative integer. The q-round MSO game on G and G′ starting from ( ~V0, ~U0) is
played as follows. The game proceeds in rounds, and each round consists of one of
the following kinds of moves.

Point move: The Spoiler picks a vertex in either G or G′; the Duplicator responds by
picking a vertex in the other graph.

Set move: The Spoiler picks a subset of V (G) or a subset of V (G′); the Duplicator
responds by picking a subset of the vertex set of the other graph.

Let ~v = (v1, . . . , vm), vi ∈ V (G) and ~u = (u1, . . . , um), ui ∈ V (G′) be the point
moves played in the q-round game, and let ~V = (V1, . . . , Vl), Vi ⊆ V (G) and ~U =
(U1, . . . , Ul), Ui ⊆ V (G′) be the set moves played in the q-round game, so that l +m = q
and moves belonging to same round have the same index. Then the Duplicator wins
the game if (~v, ~u) is a partial isomorphism of (G, ~V0 _ ~V ) and (G′, ~U0 _ ~U). If the
Duplicator has a winning strategy, we write (G, ~V0) ≡MSO

q (G′, ~U0).
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Theorem 10.21 ([148], Theorem 7.7). Given two graphs G and G′ and two l-tuples
~V0, ~U0 of sets of vertices of G and G′, respectively, we have

typeq(G, ~V0) = typeq(G′, ~U0) ⇔ (G, ~V0) ≡MSO
q (G′, ~U0).

Our strategy for proving our most general results for an arbitrary fixed MSO1 formula in
the following chapters relies on a replacement technique, where each split-module in the
well-structured modulator is replaced by a small representative. We use the notion of
similarity defined below to prove that this procedure does not change the outcome of
MSO-MCϕ.

Definition 10.22 (Similarity). Let q and k be non-negative integers, H be a graph class,
and let G and G′ be graphs having k-well-structured modulators ~X = {X1, . . . , Xk} and
~X ′ = {X ′1, . . . , X ′k} to H, respectively. For 1 ≤ i ≤ k, let Si contain the frontier of split
module Xi and similarly let S′i contain the frontier of split module X ′i. We say that
(G, ~X) and (G′, ~X ′) are q-similar if all of the following conditions are met:

1. There exists an isomorphism τ between G− ~X and G′ − ~X ′.

2. For every v ∈ V (G) \ ~X and i ∈ [k], it holds that v is adjacent to Si if and only if
τ(v) is adjacent to S′i.

3. If k ≥ 2, then for every 1 ≤ i < j ≤ k it holds that every si ∈ Si is adjacent to
every sj ∈ Sj if and only if every s′i ∈ S′i is adjacent to every s′j ∈ S′j .

4. For each i ∈ [k], it holds that typeq(G[Xi], Si) = typeq(G′[X ′i], S′i).

Lemma 10.23. Let q, k, and c be non-negative integers, H be a graph class, and let
G and G′ be graphs having (k, c)-well-structured modulators ~X = {X1, . . . , Xk} and
~X ′ = {X ′1, . . . , X ′k} to H, respectively. If (G, ~X) and (G′, ~X ′) are q-similar, then it holds
that typeq(G, ∅) = typeq(G′, ∅).

Proof. For i ∈ [k], we write Gi = G[Xi] and G′i = G′[X ′i]. Let X0 = V (G) \ ~X and
X ′0 = V (G′) \ ~X ′. By Theorem 10.21, Condition 4 of Definition 10.22 is equivalent to
(Gi, Si) ≡MSO

q (G′i, S′i). That is, for each i ∈ [k], Duplicator has a winning strategy πi
in the q-round MSO game played on Gi and G′i starting from (Si, S′i). We construct a
strategy witnessing (G, ∅) ≡MSO

q (G′, ∅) in the following way:

1. Suppose Spoiler makes a set move W and assume without loss of generality that
W ⊆ V (G). For i ∈ [k], let Wi = Xi ∩W , and let W ′i be Duplicator’s response to
Wi according to πi. Furthermore, let W ′0 = { τ(v) | v ∈W ∩X0 }. Then Duplicator
responds with W ′ = W ′0 ∪

⋃k
i=1W

′
i .
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2. Suppose Spoiler makes a point move s and again assume without loss of generality
that s ∈ V (G). If s ∈ Xi for some i ∈ [k], then Duplicator responds with s′ ∈ X ′i
according to πi; otherwise, Duplicator responds with τ(s) as per Definition 10.22
item 1.

Assume Duplicator plays according to this strategy and consider a play of the q-round
MSO game on G and G′ starting from (∅, ∅). Let ~v = (v1, . . . , vm) and ~u = (u1, . . . , um)
be the point moves in V (G) and V (G′), respectively, and let ~V = (V1, . . . , Vl) and
~U = (U1, . . . , Ul) be the set moves in V (G) and V (G′), respectively, so that l +m = q
and the moves made in the same round have the same index. We claim that (~v, ~u) defines
a partial isomorphism between (G, ~V ) and (G′, ~U).

• Let j1, j2 ∈ [m] and let vj1 , vj2 ∈ X0. Since τ is an isomorphism as per Defini-
tion 10.22 item 1, it follows that vj1 = vj2 if and only if uj1 = uj2 and vj1vj2 ∈ E(G)
if and only if uj1uj2 ∈ E(G′).

• Let j1, j2 ∈ [m] and let i ∈ [k] be such that vj1 ∈ X0 and vj2 ∈ Xi. Then clearly
vj1 6= vj2 and uj1 6= uj2 . Consider the case vj1vj2 ∈ E(G). Then vj2 must lie in the
frontier of Xi, and hence vj2 ∈ Si. Since Duplicator’s strategy πi is winning for
(Gi, Si) and (G′i, S′i), it must hold that uj2 ∈ S′i. By Definition 10.22 item 2, it then
follows that τ(vj1)uj2 ∈ E(G′). So, consider the case vj1vj2 6∈ E(G). Then either
vj2 6∈ Si, in which case it holds that uj2 6∈ S′i because of the choice of πi and hence
there cannot be an edge uj2uj1 in G′, or vj2 ∈ Si, in which case it holds once again
that uj2uj1 6∈ E(G′) by Definition 10.22 item 2.

• Let j1, j2 ∈ [m] and let i ∈ [k] be such that vj1 , vj2 ∈ Xi. Since Duplicator plays
according to a winning strategy πi in the game on Gi and G′i, the restriction (~v|i, ~u|i)
defines a partial isomorphism between (Gi, (~V )|i) and (G′i, (~U)|i). It follows that
(vj1 , vj2) ∈ E(G) if and only if (uj1 , uj2) ∈ E(G′) and vj1 = vj2 if and only if
uj1 = uj2 .

• Let j1, j2 ∈ [m] and let i1, i2 ∈ [k] be pairwise distinct numbers such that vj1 ∈ Xi1

and vj2 ∈ Xi2 . Then vj1 6= vj2 and also uj1 6= uj2 since uj1 ∈ X ′i1 and uj2 ∈ X ′i2 by
the Duplicator’s strategy. Suppose vj1vj2 ∈ E(G). Then vj1 ∈ Si1 , and vj2 ∈ Si2 ,
and Si1 and Si2 are adjacent in G. From the correctness of πi1 and πi2 it follows
that uj1 ∈ S′i1 and uj2 ∈ S′i2 , and from Definition 10.22 item 3 it follows that S′i1
and S′i2 are adjacent in G′, which together implies uj1uj2 ∈ E(G′). On the other
hand, suppose vj1vj2 6∈ E(G). Then either vj1 6∈ Si1 , or vj2 6∈ Si2 , or Si1 and Si2
are not adjacent in G. In the first case we have uj1 6∈ S′i1 , in the second case we
have uj2 6∈ S′i2 , and in the third case it holds that S′1 and S′2 are not adjacent in G′;
any of these three cases imply uj1uj2 6∈ E(G′).

• Let j ∈ [m] such that vj ∈ X0. Then by the Duplicator’s strategy on X0 it follows
that for any Vq such that vj ∈ Vq it holds that uj ∈ Uq and for any Vq such that
vj 6∈ Vq it holds that uj 6∈ Uq.
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• Let j ∈ [m] and i ∈ [k] such that vj ∈ Xk. Let Vq be such that vj ∈ Vq. Since πi is
a winning strategy for Duplicator, it must be the case that uj ∈ Uq. Similarly, if
vj 6∈ Vq then the correctness of πi guarantetes that uj 6∈ Uq.

Next, we show that small representatives can be computed efficiently.

Lemma 10.24. Let q ∈ N0. There exist functions f, g such that one can compute, for
an input graph G of rank-width at most k and S ⊆ V (G), in time f(k) · |V (G)|O(1) a
graph G′ and a set S′ ⊆ V (G′) such that |V (G′)| ≤ g(q) and typeq(G,S) = typeq(G′, S′).

Proof. By Lemma 10.18 we can compute a formula Φ(Q) capturing the type T of (G,S)
in time f(k) · |V (G)|O(1). Given Φ(Q), a constant-size model (G′, S′) satisfying Φ(Q)
can be computed as follows. We start enumerating all graphs (by brute force and in any
order with a non-decreasing number of vertices), and check for each graph G∗ and every
vertex-subset S∗ ⊆ V (G∗) whether G∗ |= Φ(S∗). If this is the case, we stop and output
(G∗, S∗). Since G |= Φ(S) this procedure must terminate eventually. Fixing the order
in which graphs are enumerated, the number of graphs we have to check depends only
on T . By Fact 10.16 the number of q-types is finite for each q, so we can think of the
total number of checks and the size of each checked graph G∗ as bounded by a constant.
Moreover the time spent on each check depends only on T and the size of the graph G∗.
Consequently, after we compute Φ(Q) it is possible to find a model for Φ(Q) in constant
time.

Finally, in Lemma 10.25 below we use Lemma 10.24 to replace any well-structured
modulator by a small but “equivalent” modulator.

Lemma 10.25. Let q be a non-negative integer constant and H be a graph class. Then
given a graph G and a (k, c)-well-structured modulator ~X = {X1, . . . Xk} of G into H,
there exists a function f such that one can in time f(c) · |V (G)|O(1) compute a graph G′
with a (k, c)-well-structured modulator ~X ′ = {X ′1, . . . X ′k} into H such that (G, ~X) and
(G′, ~X ′) are q-similar and for each i ∈ [k] it holds that |X ′i| is bounded by a constant.

Proof. For i ∈ [k], let Si ⊆ Xi be the frontier of split-module Xi (that is Si = λ(Xi)), let
Gi = G[Xi] and let G0 = G \G[ ~X]. We compute a graph G′i of constant size and a set
S′i ⊆ V (G′i) having the same MSO q-type as (Gi, Si). By Lemma 10.24, this can be done
in time f(c) · |V (G)|O(1) for some function f . Now let G′ be the graph obtained by the
following procedure:

1. We construct a disjoint union of G0 and G′i for each i ∈ [k];

2. If k ≥ 2 then for each 1 ≤ i < j ≤ k such that Si and Sk are adjacent in G, we add
edges between every v ∈ S′i and w ∈ S′j .
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3. for every v ∈ V (G0) and i ∈ [k] such that Si and {v} are adjacent, we add edges
between v and every w ∈ S′i.

It is easy to verify that (G, ~X) and (G′, ~X ′), where ~X ′ = {V (G′1), . . . , V (G′k)}, are
q-similar.

10.4 Summary
In this chapter, we defined a novel family of parameters called well-structured modulators.
Proposition 10.2 indicates that this family generalizes both rank-width and size of a
modulator to a fixed graph class. Furthermore, we developed some machinery that will be
important in the following tho chapters. Namely, the equivalence relation ∼Gk introduced
in Section 10.2 plays a crucial role in algorithms for finding a well-structure modulator to
various graph classes. On the other hand the notion of similarity and Lemma 10.25 allows
us to replace the (k, c)-well-structured modulator by a modulator of size O(k), which
allows us to obtain for many MSO definable problems FPT algorithms parameterized by
wsnH(G) and even kernels parameterized by wsnHc (G).

The results in this chapter appeared in a journal paper in Algorithmica [75] as well
as in a conference paper in the proceedings of Algorithms and Data Structures 14th
International Symposium (WADS 2015) [74].
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CHAPTER 11
Fixed-Parameter Algorithms

using Well-Structured Modulators

Here we further study the well-structured modulators introduced in the previous chapter.
The main goal is to push the boundaries of tractability for many problems to also cover
instances that have unbounded treewidth and even rank-width. In particular, we establish
that under two necessary conditions, namely

1. we can find a good well-structured modulator for a class H, and

2. there is an FPT algorithm for the given MSO1 definable problem parameterized by
the size of the modulator to H,

the MSO1 definable problem is FPT parameterized by wsnH.

Results

1. We develop a fixed-parameter algorithm for computing wsnH.

As with most structural parameters, virtually all algorithmic applications of the well-
structure number rely on having access to an appropriate decomposition. We provide
a fixed-parameter algorithm for computing the wsnH along with the corresponding
decomposition for any graph class H which can be characterized by a finite set of
forbidden induced subgraphs (obstructions). Furthermore, we provide additional FPT
algorithms for computing the wsnH along with the corresponding decomposition if H is
the class of all forests or the class of all chordal graphs. This is achieved by building on
the structural results for split-modules from the previous chapter.

2. We design fixed-parameter algorithms for Vertex Cover and Clique parameter-
ized by wsnH.
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Specifically,we show that for any graph class H characterizable by a finite obstruction
set and admitting a polynomial-time algorithm for Vertex Cover or Clique, there
is a fixed-parameter algorithm solving Vertex Cover or Clique (respectively) when
parameterized by wsnH. We also give an overview of possible choices of H for Vertex
Cover and Clique.

3. We develop a meta-theorem to obtain fixed-parameter algorithms for problems
definable in MSO1 parameterized by wsnH.

The meta-theorem requires that the problem is FPT when parameterized by the cardinality
of a modulator to H. We prove that this condition is not only necessary but also tight,
in the sense that the weaker condition of polynomial-time tractability on H used for
Vertex Cover and Clique is not sufficient for FPT-time MSO model checking.

4. We show that, in general, solving MSO-Opt problems is not FPT when parame-
terized by wsnH.

We give a proof that these problems remain NP-hard even on graphs of fixed wsnH under
the same conditions as those used for MSO model checking. This is somewhat surprising,
since the fixed-parameter tractability of MSO optimization problems usually follows from
the methods used for MSO model checking. On the other hand, there are strictly more
classes of bounded width for our parameter than for rank-width and hence one cannot
expect that every problem which is FPT parameterized by rank-width would remain
FPT when parameterized by the well-structure number.

Organization of the Chapter

We begin the Chapter in Section 11.1 by designing FPT algorithm for finding k-well-
structured modulators. Afterwards in Section 11.2, we give two examples how we can
obtain FPT algorithms parameterized by wsnH for specific problems, where an FPT
algorithm parameterized by the size of an minimum modulator to H is known. Then, we
switch our focus on problems definable by constant size MSO1 formula and in Section 11.3
we develop an FPT algorithm that can be used with any MSO1 definable problem that is in
FPT when parameterized by the cardinality of a modulator to H. Finally, in Section 11.4
we show that this result does not extend towards MSO optimization problems.

11.1 Finding Well-Structured Modulators

The objective of the first part of this section is to prove the following theorem.

Theorem 11.1. Let H be a graph class characterized by a finite obstruction set F . There
exists a fixed-parameter algorithm parameterized by k which for every input graph G
either finds a k-well-structured modulator to H, or detects that no such k-well-structured
modulator exists.

210



11.1. Finding Well-Structured Modulators

We first present the algorithm and then show its running time and correctness.

Algorithm 11.1: FindWSMF

Input : k ∈ N0, n-vertex graph G, equivalence ∼ over a superset of V (G)

Output :A k-cardinality set ~X of subsets of V (G), or False

1 if G does not contain any D ∈ F as an induced subgraph then
2 return ∅

3 else
4 D′ := an induced subgraph of G isomorphic to some D ∈ F ;

5 end

6 if k = 0 then return False;

7 foreach [a]∼ of G which intersects with V (D′) do
8 ~X = FindWSMF (k − 1, G− [a]∼,∼);

9 if ~X 6= False then
10 return ~X ∪ {[a]∼}

11 end

12 end

13 return False

We will use ∼k (recall Definition 10.10) as the input for FindWSMF , however considering
general equivalence relations as inputs is useful for proving correctness. Recall that the
equivalence relation ∼k (or, more precisely, the set of its equivalence classes) can be
computed in time n2 · f(k) · n3 for some function f thanks to Proposition 10.15, and this
only needs to be done once before starting the algorithm. The following two lemmas
show that Algorithm 11.1 is correct and runs in FPT time. For fixed F , let cF denote
the maximum number of vertices of a graph in F .

Lemma 11.2. FindWSMF runs in time O(ckF · ncF ).

Proof. The time required to perform the steps on lines 2-6 is O(ncF ) since F is finite.
Similarly, it holds that |V (D′)| and hence also the number of times the procedure on
lines 8-13 is called are bounded by cF .

For the rest of the proof, we proceed by induction on k. First, if k = 0, then the algorithm
is polynomial by the above. So assume that k ≥ 1 and the algorithm for k − 1 runs in
time at most ck−1

F · ncF . Then the algorithm for k will run in polynomial time up to lines
8-13, where it will make at most cF calls to the algorithm for k − 1, which implies that
the running time for k is bounded by O(ckF · ncF ).
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Lemma 11.3. Let k ≥ 0, G be a graph and ∼ be an equivalence relation over a superset
of V . Then FindWSMF (k,G,∼) outputs a set ~X of at most k equivalence classes of ∼
such that G− ~X is F-free.

Proof. If G does not contain any D as an induced subgraph, then we correctly return
the empty set. So, assume there exists an induced subgraph D′ of G isomorphic to D.
We prove the lemma by induction on k.

Clearly, if k = 0 but there exists some obstruction, then the algorithm outputs False and
this is correct; if k = 0 and no obstruction exists, then the algorithm correctly outputs ∅.
Let k ≥ 1 and assume that the algorithm is correct for k − 1. If G does not contain any
such ~X, then for any equivalence class [a]∼, FindWSMF (k − 1, G− [a]∼,∼) will correctly
output False.

On the other hand, assume G does contain some ~X with the desired properties. In
particular, this implies that ~X must intersect V (D′). Let Xi be an arbitrary equivalence
class of ~X which intersects V (D′). Then ~X ′ \ {Xi} is a set of at most k − 1 equivalence
classes of ∼ in G−Xi, and hence FindWSMF (k−1, G−X ′i,∼) will output some solution
~X ′′ for G−X ′i by our inductive assumption. Since any obstruction in G intersecting X ′i
is removed by X ′i and G−X ′i is made F -free by ~X ′′, we observe that ~X ′′ ∪X ′i intersects
every obstruction in G and hence the proof is complete.

From Lemma 11.3 and Corollary 10.13 we obtain the following.

Corollary 11.4. Let k ∈ N, G be a graph and ∼k be the equivalence relation computed
by Proposition 10.15. Then FindWSMF(k,G,∼k) either outputs a k-well-structured
modulator to H or correctly detects that no such modulator exists.

Proof of Theorem 11.1. The theorem follows by using Proposition 10.15 and then Algo-
rithm 11.1 in conjunction with Lemma 11.2 and Corollary 11.4.

11.1.1 Results for Other Graph Classes

Next, we turn our attention to computing k-well-structured modulators to examples of
graph classes which are not characterized by a finite obstruction set (i.e., by a finite set of
forbidden induced subgraphs). In the following lemmas, n denotes the size of the vertex
set of the input graph.

Lemma 11.5. It is possible to compute a k-well-structured modulator to the class of
forests in time f(k) · n5 for some computable function f .

Proof. We begin by describing our algorithm A, and then proceed to argue correctness
and runtime bounds. A begins by checking whether the rank-width of the input graph
G is at least k + 2; if not, then a k-well-structured modulator can be computed using
Courcelle’s Theorem in time at most f(k) · n3 for some computable function f . A then
proceeds in four steps.
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• First, it uses Proposition 10.15 to partition V (G) into equivalence classes of ∼k
in time at most f(k) · n5 for some computable function f , and sets j := k; S := ∅;
∼:=∼k.

• Second, for each tuple (X,Y, Z) of equivalence classes of ∼, A checks whether
G[X ∪ Y ∪ Z] is acyclic. If this is not the case, then A chooses (by branching)
one class out of {X,Y, Z} to delete from ∼, saves the deleted equivalence class in
S, and restarts the second step with j := j − 1. If j = −1, then the algorithm
terminates the given branch.

• Third, A constructs an auxiliary graph G′ = (V ′, E′) by setting V ′ to be the set
of equivalence classes of ∼ and E′ to contain an edge between A,B ∈ V ′ iff there
exist vertices a ∈ A, b ∈ B such that ab ∈ E(G).

• Finally, A tries to find a feedback vertex set in G′ of size at most j in time
O(3.83j · j|V ′|2) [39]. If no such feedback vertex set exists, then A terminates the
given branch; otherwise it adds the feedback vertex set to ~S and outputs ~S.

It is easy to verify that the steps two to four can be implemented in time O(n4+3.83k ·kn2).
Hence, the running time of A is upper-bounded by O(f(k) · n5) for some computable
function f . As for correctness, let us assume for a contradiction that A outputs a set ~S
and the graph H obtained from G after deleting all vertices in elements of ~S contains a
cycle C. Clearly, neither C nor any other cycle in H intersects less than 4 equivalence
classes of ∼k, since otherwise such a cycle would have been detected and removed in step
2 of A.

Moreover, assume |C ∩X| > 1 for some equivalence class X of ∼k. Since C spans at least
4 equivalence classes, H must contain at least two neighbors of X in C \X which are
adjacent to at least two vertices in X (indeed, recall that X is a split-module and hence
all vertices of X with a neighbor outside X have the same neighborhood outside X); let
us denote these vertices y, z, x1, x2, respectively. Since x1, x2 are in the frontier of X,
the vertices y, x1, z, x2 must form a cycle in H which spans at most 3 equivalence classes,
contradicting our previous conclusion that no such cycles are present in H. Hence we
may conclude that |C ∩X| ≤ 1 for every equivalence class X.

The only case we are left with now is that C intersects each equivalence class at most
once. But then it must be the case that C also forms a cycle in G′, which would have
necessarily been removed in step 4 of A, a contradiction. So H must indeed be acyclic.

For the other direction, assume that G contains a minimal k-well-structured modulator
~X = {X1, . . . , Xj} to the class of forests. Then consider the branch of step 2 of A which
hits a maximal number of elements of ~X, and let us denote the elements removed by A
in this way ~Y . By the same argument as above, each cycle remaining in G after deleting
~Y intersects each equivalence class at most once and hence corresponds to a cycle in
the graph G′ constructed by A. In particular, the equivalence classes in ~X \ ~Y form a
feedback vertex set of size ` = | ~X \ ~Y | in G′. By the correctness of the feedback vertex
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set algorithm used in step 4, at least one branch of A is guaranteed to output a solution
~S ⊃ ~Y of size at most j.

For the next result, recall that a cycle is chordless if it is also an induced cycle of length
at least 4, and a graph is chordal if it contains no chordless cycles.

Lemma 11.6. It is possible to compute a k-well-structured modulator to the class of
chordal graphs in time f(k) · nO(1).

Proof. We once again first describe our algorithm A. A begins by checking whether
the rank-width of the input graph G is at least k + 2; if not, then a k-well-structured
modulator can be computed using Courcelle’s Theorem in time at most f(k) ·n3 for some
computable function f . A then proceeds in four steps.

• First, it uses Proposition 10.15 to partition V (G) into equivalence classes of ∼k in
time at most f(k) · n5, and sets j := k; S := ∅; ∼:=∼k.

• Second, for each tuple (X,Y, Z) of equivalence classes of ∼, A checks whether
G[X ∪ Y ∪Z] is chordal in linear time [181]. If this is not the case, then A chooses
(by branching) one class out of {X,Y, Z} to delete from ∼, saves the deleted
equivalence class in S, and restarts the second step with j := j− 1. If j = −1, then
the algorithm terminates the given branch.

• Third, A constructs an auxiliary graph G′ = (V ′, E′) by setting V ′ to be the set
of equivalence classes of ∼ and E′ to contain an edge between A,B ∈ V ′ iff there
exist vertices a ∈ A, b ∈ B such that ab ∈ E(G).

• Finally, A tries to find a modulator to chordal graphs of size at most j in G′

using the algorithm by Marx [40], which takes time at most 2O(k log k) · |V ′|O(1). If
no such modulator exists, then A terminates the given branch; otherwise it adds
the modulator to ~S and outputs ~S.

It is easy to verify that the running time of A is upper-bounded by f(k) · nO(1) for some
computable function f . As for correctness, let us assume for a contradiction that A
outputs a set ~S and the graph H obtained from G after deleting all vertices in elements
of ~S contains a chordless cycle C; without loss of generality, let us assume C is such a
chordless cycle of minimum length. Clearly, neither C nor any other chordless cycle in H
intersects less than 4 equivalence classes of ∼k, since otherwise such a cycle would have
been detected and removed in step 2 of A.

We now claim that C contains at most one vertex from each equivalence class of ∼k. To
see this, assume for a contradiction that C contains two vertices in some equivalence class
Z. Since C must also intersect other equivalence classes, it follows that C must in fact
contain at least two vertices, say x, y, in the frontier of Z which have distinct neighbors,
say x′, y′, respectively, in C \Z. First, observe that x, y cannot occur consecutively along
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C, as that would violate the assumption that C is a minimum-length chordless cycle.
Hence by the chordality of C we also see that xy cannot be an edge of G, and the same
also applies for the non-edge of x′y′. But then x′, x, y′, y forms a chordless cycle which
intersects at most 3 equivalence classes, contradicting our previous assumptions.

Let us now consider the set C ′ of equivalence classes which intersect C; recall that
|C ′| > 3. By the above claim, it follows that C ′ would also be a chordless cycle in V (G′),
contradicting the correctness of the chordal vertex deletion algorithm [40]. Hence we
conclude that H must in fact be chordal.

For the other direction, assume that G contains a minimal k-well-structured modulator
~X = {X1, . . . , Xj} to the class of chordal graphs. Then consider the branch of step 2
of A which hits a maximal number of elements of ~X, and let us denote the elements
removed by A in this way ~Y . By the same argument as above, each chordless cycle
remaining in G after deleting ~Y intersects each equivalence class at most once and hence
corresponds to a chordless cycle in the graph G′ constructed by A. In particular, the
equivalence classes in ~X \ ~Y form a modulator to chordal graphs of size ` = | ~X \ ~Y | in
G′. By the correctness of the chordal vertex deletion algorithm used in step 4, at least
one branch of A is guaranteed to output a solution ~S ⊃ ~Y of size at most j.

11.2 Examples of Algorithmic Applications
This section contains two examples of how the notion of k-well-structured modulators
can be used to design fixed-parameter algorithms. Our examples deal with two classical
NP-hard graph problems, specifically Vertex Cover and Clique. Establishing the
following theorem is the main objective of this subsection.

Theorem 11.7. Let P ∈ {Vertex Cover,Clique} and H be a graph class character-
ized by a finite obstruction set. Then P is FPT parameterized by wsnH if and only if P
is polynomial-time tractable on H.

Since wsnH(G) = 0 for any F -free graph G, the “only if” direction is immediate; in other
words, being polynomial-time tractable on H is clearly a necessary condition for being
fixed-parameter tractable when parameterized by wsnH(G). Below we prove that for the
selected problems this condition is also sufficient.

Lemma 11.8. If Vertex Cover is polynomial-time tractable on a graph class H char-
acterized by a finite obstruction set, then Vertex Cover parameterized by wsnH is FPT.

Proof. Let G = (V,E) be a graph and let k = wsnH(G). We start by using Theorem 11.1
to compute a k-well-structured modulator ~X = {X1, . . . , Xk} in FPT time. For each
i ∈ [k], we let Ai = λ(Xi) (i.e., Ai is the frontier of Xi) and we let Bi = N(Ai).

Since for each i ∈ [k] the graph G[Ai∪Bi] contains a complete bipartite graph, any vertex
cover of G must be a superset of either Ai or Bi. We can branch over these options for
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each i in 2k time; formally, we branch over all of the at most 2k functions f : [i]→ {A,B},
and refer to these as signatures. Each vertex cover Y of G can be associated with at least
one signature f , constructed in the following way: for each i ∈ [k] such that Ai ⊆ Y , we
set f(i) = A, and otherwise we set f(i) = B.

Our algorithm then proceeds as follows. For a graph G and a signature f , we construct
a partial vertex cover Z =

⋃
i∈[k] f(i). We let G′ = G − Z. Consider any connected

component C of G′. If C intersects some Xi, then by the construction of Z it must
hold that C ⊆ Xi. Hence it follows that C either has rank-width at most k + 1 (in
the case C ⊆ Xi for some i), or C is in H (if C does not intersect ~X), or both. Then
we find a minimum vertex cover for each connected component of G′ independently, by
either calling the known fixed-parameter algorithm [93] (if C has bounded rank-width)
or the polynomial algorithm (if C is in H) at most |C| times. Let Z ′ be the union of
the obtained minimum vertex covers over all the components of G′, and let Yf = Z ∪ Z ′.
After branching over all possible functions f , we compare the obtained cardinalities of Yf
and choose any Yf of minimum cardinality. Finally, we compare |Yf | and the value of m
provided in the input.

We argue correctness in two steps. First, assume for a contradiction that G contains an
edge e which is not covered by Yf for some f . Then e cannot have both endpoints in G′,
since Yf contains a (minimum) vertex cover for each connected component of G′, but e
cannot have an endpoint outside of G′, since Z ⊆ Yf . Hence each Yf is a vertex cover of
G.

Second, assume for a contradiction that there exists a vertex cover Y ′ of G which has a
lower cardinality than the vertex cover found by the algorithm described above. Let f
be the signature of Y ′. Then it follows that Z ⊆ Y ′, and since Z ⊆ Yf , there would exist
a component C of G \ Z such that |Y ′ ∩ C| ≤ |Yf ∩ C|. However, this would contradict
the minimality of Z ′ ∩ C = Yf ∩ C. Hence we conclude that no such Y ′ can exist, and
the algorithm is correct.

We deal with the second problem below.

Lemma 11.9. If Clique is polynomial-time tractable on a graph class H characterized
by a finite obstruction set, then Clique parameterized by wsnH is FPT.

Proof. We begin in the same way as for Vertex Cover: let G = (V,E) be a graph and
let k = wsnH(G). If rw(G) ≤ k + 2, then we simply use known algorithms to solve the
problem in FPT time [93]. Otherwise, we proceed by using Theorem 11.1 to compute
a k-well-structured modulator ~X = {X1, . . . , Xk} in FPT time. For each i ∈ [k], we let
Ai = λ(Xi) and we let Bi = N(Ai).

Let X0 = G− ~X and let s ⊆ {0}∪ [k]. Then any clique C in G can be uniquely associated
with a signature s by letting i ∈ s if and only if Xi ∩ C 6= ∅. The algorithm proceeds
by branching over all of the at most 2k+1 possible non-empty signatures s. If |s| = 1,
then the algorithm simply computes a maximum-cardinality clique in Xs (by calling
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the respective FPT or polynomial algorithm at most a linear number of times) and
stores it as Ys.

If |s| ≥ 2, then the algorithm makes two checks before proceeding. First, if 0 ∈ s then
it constructs the set X ′0 of all vertices x ∈ X0 such that x is adjacent to every Ai for
i ∈ s\{0}. If X ′0 = ∅ then the current choice of s is discarded and the algorithm proceeds
to the next choice of s. Second, for every a 6= b such that a, b ∈ s \ {0} it checks that
X ′a = Aa and X ′b = Ab are adjacent; again, if this is not the case, then we discard this
choice of s and proceed to the next choice of s. Finally, if the current choice of s passed
both tests then for each i ∈ s we compute a maximum clique in each G[X ′i] and save
their union as Ys. In the end, we choose a maximum-cardinality set Ys and compare its
cardinality to the value of m provided in the input.

We again argue correctness in two steps. First, assume for a contradiction that Ys is not
a clique, i.e., there exist distinct non-adjacent a, b ∈ Ys. Since Ys consists of a union of
cliques within subsets of X ′i∈s, it follows that there would have to exist distinct c, d ∈ s
such that a ∈ X ′c and b ∈ X ′d. This can however be ruled out for c or d equal to 0 by the
construction of X ′0. Similarly, if c and d are both non-zero, then this is impossible by the
second check which tests adjacency of every pair of X ′c and X ′d for every c, d ∈ s.

Second, assume for a contradiction that there exists a clique Y ′ in G which has a higher
cardinality than the largest clique obtained by the above algorithm. Let s be the signature
of Y ′. If |s| = 1 then |Ys| ≥ |Y ′| by the correctness of the respective FPT or polynomial
algorithm used for each Xs. If |s| ≥ 2 then Y ′ may only intersect the sets X ′ constructed
above for s. Moreover, if there exists i ∈ [k]∪{0} such that |Y ′ ∩X ′i| > |Ys ∩X ′i| then we
again arrive at a contradiction with the correctness of the respective FPT or polynomial
algorithms used for X ′i. Hence we conclude that no such Y ′ can exist, and the algorithm
is correct.

Finally, let us review some concrete graph classes for use in Theorem 11.7. We use Ki,
Ci and Pi to denote the i-vertex complete graph, cycle, and path, respectively. 2K2
denotes the disjoint union of two K2 graphs. The fork, K3,3-e, banner, twin-house and
T2,2,2 graphs are depicted in Figure 11.1.

Figure 11.1: From left to right: 2K2, fork, K3,3-e, banner, twin-house, and T2,2,2.
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Fact 11.10. Vertex Cover is polynomial-time tractable on the following graph classes:

1. (2K2, C4, C5)-free graphs (split graphs);

2. P5-free graphs;

3. fork-free graphs;

4. (banner, T2,2,2)-free graphs and (banner,K3,3-e, twin-house)-free graphs.

Proof. For item 1, recall that split graphs are graphs whose vertex set can be partitioned
into one clique and one independent set, and such a partitioning can be found in linear
time. If each vertex in the clique is adjacent to at least one independent vertex, then the
clique is a minimum vertex cover, otherwise the clique without a pendant-free vertex is a
minimum vertex cover. Item 2 follows from [150]. Item 3 follows from [7]. Item 4 follows
from [103] and [32].

Fact 11.11. Clique is polynomial-time tractable on the following graph classes:

1. Any complementary graph class to the classes listed in Fact 11.10 (such as cofork-free
graphs and split graphs);

2. Graphs of bounded degree.

Proof. 1. It is well-known that each maximum clique corresponds to a maximum
independent set (and vice-versa) in the complement graph.

2. The degree bounds the size of a maximum clique, again resulting in a simple folklore
branching algorithm. The class of graphs of degree at most d is exactly the class of
F-free graphs for F containing all (d+ 1)-vertex supergraphs of the star having d
leaves.

11.3 MSO Model Checking with Well-Structured
Modulators

Here we show how well-structured modulators can be used to solve the MSO model
checking problem, as formalized in Theorem 11.12 below. Note that our meta-theorem
captures not only the generality of MSO model checking problems, but also applies to a
potentially unbounded number of choices of the graph class H. Thus, the meta-theorem
supports two dimensions of generality.

Theorem 11.12. Let φ be a MSO1 sentence, f, g be computable functions, and H be
a graph class such that there exists an algorithm which finds a g(wsnH)-well-structured
modulator to H in time f(k) · |V |O(1). If MSO-MCφ is FPT parameterized by modH(G),
then MSO-MCφ is also FPT parameterized by wsnH(G).
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Proof. Let G be a graph, k = wsnH(G) and q be the nesting depth of quantifiers in φ.
By our assumption it is possible to find a g(k)-well-structured modulator to H in time
f(k) · |V |O(1). We proceed by constructing (G′, ~X ′) by Lemma 10.25. Since each X ′i ∈ ~X ′

has size bounded by a constant and | ~X ′| ≤ g(k), it follows that
⋃ ~X ′ is a modulator to

the class of F-free graphs of cardinality O(g(k)). Hence MSO-MCφ can be decided in
FPT time on G′. Finally, since G and G′ are q-similar, it follows from Lemma 10.23 that
G |= φ if and only if G′ |= φ.

Combining Theorem 11.12 with the results from Section 11.1, we obtain following
corollaries.

Corollary 11.13. Let φ be an MSO1 sentence and H a graph class characterized by
a finite obstruction set such that MSO-MCφ is FPT parameterized by modH(G), the
problem MSO-MCφ is FPT parameterized by wsnH(G).

Corollary 11.14. Let φ be an MSO1 sentence and H the graph class of all forests such
that MSO-MCφ is FPT parameterized by modH(G), the problem MSO-MCφ is FPT
parameterized by wsnH(G).

Corollary 11.15. Let φ be an MSO1 sentence and H the graph class of all chordal graphs
such that MSO-MCφ is FPT parameterized by modH(G), the problem MSO-MCφ is
FPT parameterized by wsnH(G).

The condition that MSO-MCφ is FPT parameterized by modH(G) is a necessary condi-
tion for the theorem to hold by Proposition 10.2. However, it is natural to ask whether
it is possible to use a weaker necessary condition instead, specifically that MSO-MCφ

is polynomial-time tractable on H (as was done for specific problems in Section 11.2).
Before proceeding towards a proof of Theorem 11.12, we make a digression and show
that the weaker condition used in Theorem 11.7 is in fact not sufficient for the general
case of MSO model checking.

Theorem 11.16. There exists an MSO1 sentence φ and a graph class H characterized
by a finite obstruction set such that MSO-MCφ is polynomial-time tractable on H but
NP-hard on the class of graphs having wsnH(G) ≤ 2 and even modH(G) ≤ 2.

Proof. Consider the sentence φ which describes the existence of a proper 5-coloring of
the vertices of G, and let H be the class of graphs of degree at most 4 (in other words,
let F contain all 6-vertex supergraphs of the star having 5 leaves). There exists a trivial
greedy algorithm to obtain a proper 5-coloring of any graph of degree at most 4, hence
MSO-MCφ is polynomial-time tractable on H. Now consider the class of graphs obtained
from H by adding, to any graph in H, two adjacent vertices y, z which are both adjacent
to every other vertex in the graph. By construction, any graph G′ from this new class
satisfies modH(G′) ≤ 2 and hence also wsnH(G′) ≤ 2. However, G′ admits a proper
5-coloring if and only if G′ − {y, z} admits a proper 3-coloring. Testing 3-colorability on
graphs of degree at most 4 is known to be NP-hard [144].
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We conclude the section by showcasing an example application of Theorem 11.12.
c-Coloring asks whether the vertices of an input graph G can be colored by c col-
ors so that each pair of neighbors have distinct colors. From the connection between
c-Coloring, its generalization List c-Coloring and modulators [36, Theorem 3.3] and
tractability results for List c-Coloring [107, Page 5], we obtain the following.

Corollary 11.17. For each c ∈ N, c-Coloring parameterized by wsnP5-free is FPT.

11.4 Hardness of MSO Optimization
In the wake of Theorem 11.12 and the positive results for the two problems in Sec-
tion 11.2, one would expect that it should be possible to strengthen Theorem 11.12 to
also cover MSO-Opt problems [50, 93], which extend MSO model checking by allowing
the minimization/maximization. Surprisingly this is not possible if we wish to retain the
same necessary conditions, as will be shown in this section.

We say that S ⊆ V (G) is a dominating set if every vertex in G either is in S or has a
neighbor in S. We will need the following lemma before we proceed to the main result of
this secton.

Lemma 11.18. The problem of finding a p-cardinality dominating set in a graph G
having a k-cardinality modulator X ⊆ V (G) to the class of graphs of degree at most 3 is
FPT when parameterized by p+ k.

Proof. Let L = V (G) \X and consider the following algorithm. We begin with D = ∅,
and choose an arbitrary vertex v ∈ L which is not yet dominated by D. We branch over
the at most k + 4 vertices q in {v} ∪N(v), and add q to D. If |D| = p and there still
exists an undominated vertex in G, we discard the current branch; hence this procedure
produces a total of at most (k + 4)p branches.

Now consider a branch where |D| < p but the only vertices left to dominate lie in X. For
a, b ∈ L, we let a ≡ b if and only if N(a) ∩X = N(b) ∩X. Notice that ≡ has at most
2k equivalence classes and that these may be computed in polynomial time. For each
non-empty equivalence class of ≡, we choose an arbitrary representative and construct
the set P of all such chosen representatives. We then branch over all subsets Q of P ∪X
of cardinality at most p− |D|, and add Q into D. Since |P ∪X| ≤ 2k + k, this can be
done in time bounded by O(2p·k). Finally, we test whether this D is a dominating set,
and output the minimum dominating set obtained in this manner.

It is easily observed from the description that the running time is FPT. For correctness,
from the final check it follows that any set output by the algorithm will be a dominating
set. It remains to show that if there exists a dominating set of cardinality p, then the
algorithm will find such a set. So, assume there exists a p-cardinality dominating set D′
in G. Consider the branch arising from the first branching rule obtained as follows. Let
v1 be the first undominated vertex in L chosen by the algorithm, and consider the branch
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where an arbitrary q ∈ D′ ∩ N(v1) is placed into D. Hence, after the first branching,
there is a branch where D ⊆ D′. Similarly, there exists a branch where D ⊆ D′ for each
vi chosen in the i-th step of the first branching. If D′ = D after the first branching,
then we are done; so, let D′1 = D′ \ D be non-empty. Let D1 be obtained from D′1
by replacing each w ∈ D′1 by the representative of [w]≡ chosen to lie in P . Since D′
dominates all vertices in L and D1 dominates the same vertices in X as D′1, it follows that
D∗ = (D′ \D′1) ∪D1 is also a dominating set of G. Furthermore, |D∗| = |D′|. However,
since D1 ⊆ P and |D1| ≤ p − |D|, there must exist a branch in the second branching
which sets Q = D1. Hence there exists a branch in the algorithm which obtains and
outputs the set D∗ = D ∪D1.

Theorem 11.19. There exists an MSO1 formula ϕ and a graph class H characterized
by a finite obstruction set such that MSO-Opt≤ϕ is FPT parameterized by modH but
paraNP-hard parameterized by wsnH.

Proof. To prove Theorem 11.19, we let dom(S) express that S is a dominating set in G,
and let cyc(S) express that S intersects every C4 (cycle of length 4). Then we set
ϕ(S) = dom(S) ∨ cyc(S) and let H be the class of C4-free graphs of degree at most 3
(obtained by letting the obstrucion set F contain C4 and all 5-vertex supergraphs of K1,4).

Claim 11.20. MSO-Opt≤ϕ is FPT parameterized by the cardinality of a modulator to H.

To argue that the above claim holds, let (G = (V,E), r) be the input of MSO-Opt≤ϕ and
k be the cardinality of a modulator in G to H. We begin by computing some modulator
X ⊆ V of cardinality k in G to H; this can be done in FPT time by a simple branching
algorithm on any of the obstructions from F located in G. Let L = V \X. Next, we
compare r and k, and if r ≥ k then we output YES. This is correct, since each C4 in G
must intersect X and hence setting S = X satisfies ϕ(S).

So, assume r < k. Then we check whether there exists a set A of cardinality at most r
which intersects every C4; this can be done in time O∗(4r) by a simple FPT branching
algorithm. Next, we check whether there exists a dominating set B in G of cardinality at
most r; this can also be done in FPT time by Lemma 11.18.

Finally, if A or B exists, then we output YES and otherwise we output NO. Hence the
claim is indeed true.

Claim 11.21. MSO-Opt≤ϕ is paraNP-hard parameterized by wsnH(G).

We proceed by arguing that this claim is also correct. It is known that the Dominating
Set problem, which takes as input a graph G and an integer j and asks to find a
dominating set of size at most j, is NP-hard on C4-free graphs of degree at most 3 [145]
(see also subsequent work [8, Theorem 8]). We use this fact as the basis of our reduction.
Let (G, j) be a C4-free instance of Dominating Set of degree at most 3. Then we
construct G′ from G by adding (|G|+ 2)-many copies of C4, a single vertex q adjacent
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to every vertex of every such C4, and a single vertex q′ adjacent to q and an arbitrary
vertex of G. It is easy to check that wsnH(G′) ≤ 2.

We claim that (G, j) is a YES-instance of Dominating Set if and only if (G′, j + 1) is a
yes-instance of MSO-Opt≤ϕ . For the forward direction, assume there exists a dominating
set D in G of cardinality j. Then the set D ∪ {q} is a dominating set in G′, and hence
satisfies ϕ.

On the other hand, assume there exists a set D′ of cardinality at most j + 1 which
satisfies ϕ. If j + 1 ≥ |G|+ 2 then clearly (G, j) is a YES-instance of Dominating Set,
so assume this is not the case. But then D′ cannot intersect every C4, and hence D′
must be a dominating set of G′ of cardinality at most j + 1. But this is only possible if
q ∈ D′. Furthermore, if q′ ∈ D′, then replacing q′ with the neighbor of q′ in G is also a
dominating set of G′. Hence we may assume, w.l.o.g., that D′ ∩V (G) is a dominating set
of cardinality at most j in V (G). Consequently, (G, j) is a YES-instance of Dominating
Set and the claim holds. The theorem now follows from the two claims proved above.

11.5 Summary and Open Questions
We showed here that well-structured modulators push the frontiers of fixed-parameter
tractability beyond rank-width and modulator size for a wide range of problems. In
particular, the well-structure number can be computed efficiently (Theorem 11.1) and used
to design fixed-parameter algorithms for Vertex Cover and Clique (Theorem 11.7) as
well as any problem which can be described by a sentence in MSO1 logic (Theorem 11.12).
We remark that while our results are of a theoretical nature, there is hope that some of
the ideas behind the presented algorithms may be useful in practice once faster algorithms
for computing rank-width become available.

For future work, it would be interesting to see whether the notion of split-modules
introduced in this work can be naturally generalized. In particular, a split-module X can
be seen as a subgraph such that AG[X,G−X] = 11, and in this sense split decompositions
naturally correspond to rank-width 1. It is easy to define corresponding decompositions
also for higher values of rank-width, however it is not at all clear how such decompositions
could be computed. We believe this is an interesting question on its own; furthermore,
obtaining such decompositions would allow an immediate extension of our framework to
the arising more general notions of split-modules.

Notes
The results in this chapter appeared in a journal paper in Algorithmica [75] as well
as in a conference paper in the proceedings of Algorithms and Data Structures 14th
International Symposium (WADS 2015) [74].

1Recall that AG[X, G−X] is the rank of the submatrix of the adjacency matrix of G over the field
GF(2), where rows are restricted to the vertices in X and columns to the vertices in V (G) \X.
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CHAPTER 12
Meta-Kernelization using

Well-Structured Modulators

In this chapter, we follow up on the recent line of research which studies meta-kernelization
in terms of structural parameters. Gajarský et al. [92] developed a meta-kernelization
framework parameterized by the size of a modulator to the class of graphs of bounded
treedepth on sparse graphs. Ganian, Slivovsky and Szeider [97] independently developed
a meta-kernelization framework using a different parameter based on rank-width and
modular decompositions. Our results build upon both of the aforementioned papers by
fully subsuming the meta-kernelization framework of Ganian, Slivovsky, and Szeider [97]
and lifting the meta-kernelization framework of Gajarský et al. [92] to more general
graph classes.

Results
1. We showcase applications of c-well-structured modulators on two special cases of

graph classes generalizing meta-kernelization frameworks of Gajarsky et al. [92]
and Ganian, Slivovsky, and Szeider [97].

We start by considering c-well-structured modulators to edgeless graphs, which generalize
the vertex cover number. While it is known that there exist MSO1-definable problems
which do not admit a polynomial kernel parameterized by the vertex cover number on
general graphs, on graphs of bounded expansion this is no longer the case (as follows for
instance from the result by Gajarský et al. [92]). We prove that every MSO1-definable
problem admits a linear kernel parameterized by the well-structure number for edgeless
graphs. In relation to the above, we also show in Theorems 12.1 and 12.4 that every
MSO1-definable problem admits a linear kernel parameterized by the c-well-structure
number for the empty graph (without restriction on the expansion). We remark that
these results represent a direct generalization of the meta-kernelization results by Ganian,
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Slivovsky, and Szeider [97]. The proof is based on a combination of the replacement
techniques developed in Chapter 10 together with the annotation framework used by
Ganian, Slivovsky, and Szeider [97].

2. We develop constant approximation algorithms for finding well-structured modula-
tors to a plethora of graph classes.

Before we can proceed to wider applications of our parameter in kernelization, it is first
necessary to deal with the subproblem of finding a suitable well-structured modulator in
polynomial time. We resolve this question for well-structured modulators to a vast range
of graph classes: We develop a 3-approximation algorithm for finding well-structured
modulators to acyclic graphs. Furthermore, We give constant-factor approximation
algorithms for well-structured modulators to graph classes characterized by a finite set of
forbidden induced subgraphs. Armed with the approximation algorithms, we develop our
most general result, which is the key for lifting kernelization results from modulators to
well-structured modulators.

3. We prove that whenever a modulator to a graph class H can be used to obtain a
polynomial kernel for some MSO1-definable problem, this problem also admits a
polynomial kernel when parameterized by the well-structure number for H as long
as well-structured modulators to H can be approximated in polynomial time.

4. Finally, we show several applications of this theorem.

Since the class of graphs of treedepth bounded by some fixed integer can be characterized
by a finite set of forbidden induced subgraphs, we use well-structured modulators to lift
the results of Gajarsky et al. [92] from modulators to well-structured modulators for
all MSO1-definable decision problems (Theorem 12.27). Furthermore, by applying the
protrusion machinery of Bodlaender et al. [26] and Kim et al. [138] we show that, in the
case of bounded degree graphs, parameterization by a modulator to acyclic graphs (i.e.,
a feedback vertex set) admits the computation of a linear kernel for all MSO1-definable
decision problems. By our framework it then follows that such modulators can also be
lifted to well-structured modulators (Theorem 12.30).

Organization of the Chapter

We start our investigations by a case study of well-structured modulators to two specific
classes in Section 12.1, namely the class of edgeless graphs and class containing only
the empty graph. Afterwards in Section 12.2, we develop approximation algorithms for
finding well-structured modulators. Finally, Section 12.3 is devoted to showing our main
kernelization results together with some applications.

Since wsnH generalizes rank-width, we cannot hope to obtain kernels for k-well-structured
modulators. Therefore, for the remainder of the chapter, we fix a constant c and focus
our attention at (k, c)-well-structured modulators.
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12.1 Case Studies
In this section we showcase how well-structured modulators can be used to obtain
polynomial kernels for various problems.

12.1.1 Modulators to Empty Graphs

Let Z be the graph class containing only the empty graph. We remark that while modZ
represents a very weak parameter as it is equal to the order of the graph, this is not
the case for wsnZc . The goal of this subsection is to show how wsnZc can be used for
kernelization of MSO1 Model Checking problems; this will later on be used to obtain
a generalization of vertex cover as a parameter. This strictly generalizes the results
of Ganian, Slivovsky, and Szeider [97], as their parameter, rank-widthc cover number
of a graph G (rwcc(G)), is the smallest number of modules the vertex set of G can be
partitioned into such that each module induces a subgraph of rank-width at most c. Here
module is a split-module such that every vertex in the split-module lies in its frontier. A
wide range of problems, and in particular all MSO1-definable problems, have been shown
to admit linear kernels when parameterized by the rank-widthc cover number [97].

Our proof strategy for this special case of well-structured modulators closely follows
the replacement techniques used to obtain the kernelization results for the rank-width
cover number [97], with the distinction that many of the tools and techniques had to be
generalized to cover split-modules instead of modules.

Before we continue in this section, the reader is encouraged to recall the notion of
similarity (Definition 10.22) together with Lemmas 10.25 and 10.23 which will be used in
the proof of the following theorem.

Theorem 12.1. Let Z be the class of empty graphs and c ∈ N. For every MSO1 sentence
ϕ the problem MSO-MCϕ admits a linear kernel parameterized by wsnZc .

Proof. Let G be a graph, k = wsnZc (G), and q be the nesting depth of quantifiers in φ.
We use Proposition 10.15 to find the set ~X of equivalence classes of ∼Gc in polynomial
time (f(c) · n3). Since equivalence classes of ∼Gc are unique and inclusion-maximal (see
Corollary 10.13), the set ~X is a (k, c)-well-structured modulator to the empty graph.

We proceed by constructing (G′, ~X ′) by Lemma 10.25. Since each X ′i ∈ ~X ′ has size
bounded by a constant, | ~X ′| ≤ k, and

⋃ ~X ′ = V (G′), it follows that G′ is an instance
of MSO-MCϕ of size O(k). Finally, since G and G′ are q-similar, it follows from
Lemma 10.23 that G |= φ if and only if G′ |= φ.

Next, we combine the approaches used by Ganian, Slivovsky, and Szeider [97] and
in Chapter 11 to handle MSO-Opt♦ϕ problems by using our more general parameter.
Similarly as Ganian, Slivovsky, and Szeider [97], we use a more involved replacement
procedure which explicitly keeps track of the original cardinalities of sets and results
in an annotated version of MSO-Opt♦ϕ . However, some parts of the framework (in
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12. Meta-Kernelization using Well-Structured Modulators

particular the replacement procedure) had to be reworked using the techniques developed
in Chapter 11, since we now use split-modules instead of simple modules. Given a graph
G = (V,E), an annotation W is a set of triples (X,Y,w) with X ⊆ V, Y ⊆ V,w ∈ N. For
every set Z ⊆ V we define

W(Z) =
∑

(X,Y,w)∈W,X⊆Z,Y ∩Z=∅w.

The idea is that a triple (X,Y,w) assigns weight w to a vertex set X. Specifying the set
Y allows us to control which subsets of Z the above sum is taken over. In the kernel,
each set X will be a subset of a module M (with weight w corresponding to the optimum
cardinality of a set in the matching module of the original graph). Setting Y = M \X
ensures that the sum W(Z) contains at most one term for each module M . Each MSO
formula ϕ(X) and ♦ ∈ {≤,≥} gives rise to an annotated MSO-optimization problem.

aMSO-Opt♦ϕ
Instance: A graph G with an annotation W and an integer r ∈ N.
Question: Is there a set Z ⊆ V (G) such that G |= ϕ(Z) and W(Z)♦ r?

Note that an instance of MSO-Opt♦ϕ can be represented as an instance of aMSO-Opt♦ϕ
with the annotationW = { ({v}, ∅, 1) | v ∈ V (G) }. We call the pair (G,W) an annotated
graph. If the integer w is represented in binary, we can represent a triple (X,Y,w) in
space |X|+ |Y |+ log2(w). Consequently, we may assume that the size of the encoding of
an annotated graph (G,W) is polynomial in |V (G)|+ |W|+ max(X,Y,w)∈W log2w.

Lemma 12.2. Let ϕ = ϕ(X) be a fixed MSO1 formula. Then given an instance (G, r)
of MSO-Opt≤ϕ and a (k, c)-well-structured modulator ~X = X1, . . . , Xk to Z of G, an an-
notated graph (G′,W) satisfying the following properties can be computed in polynomial
time.

1. (G, r) ∈MSO-Opt≤ϕ if and only if (G′,W, r) ∈ aMSO-Opt≤ϕ .

2. |V (G′)| ∈ O(k).

3. The encoding size of (G′,W) is O(k log(|V (G)|)).

Proof. Using Lemma 10.25 we compute a graph G′ with a (k, c)-well-structured modulator
{X ′1, . . . , X ′k} to Z such that (G, ~X) and (G′, ~X ′) are (q+1)-similar and |X ′i| is bounded by
a constant for each i ∈ [k]. To compute the annotationW , we proceed as follows. For each
i ∈ [k], we go through all subsets W ′ ⊆ X ′i. By Lemma 10.18, we can compute a formula
Φ such that for any graph H and W ⊆ V (H) we have typeq(G′[X ′i],W ′) = typeq(H,W )
if and only if H |= Φ(W ). Since |X ′i| has constant size for every i ∈ [k], this can be done
within a constant time bound. Moreover, since (G, ~X) and (G′, ~X ′) are (q + 1)-similar,
there has to exist a W ⊆ Xi such that G[Xi] |= Φ(W ). Using Fact 3.9, we can compute
a minimum-cardinality subset W ∗ ⊆ Xi with this property in polynomial time. We then
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add the triple (W ′, X ′i \W ′, |W ∗|) to W. In total, the number of subsets processed is in
O(k). From this observation we get the desired bounds on the total runtime, |V (G′)|,
and the encoding size of (G′,W).

We claim that (G′,W, r) ∈ aMSO-Opt≤ϕ if and only if (G, r) ∈MSO-Opt≤ϕ . Suppose
there is a set W ⊆ V (G) of vertices such that G |= ϕ(W ) and |W | ≤ r. Since X1, . . . , Xk

is a partition of V (G), we have W =
⋃
i∈[k]Wi, where Wi = W ∩ Xi. For each i ∈

[k], let W ∗i ⊆ Xi be a subset of minimum cardinality such that typeq(G[Xi],Wi) =
typeq(G[Xi],W ∗i ). From the (q + 1)-similarity of (G, ~U) and (G′, ~U ′), there is W ′i ⊆ X ′i
for each i ∈ [k] such that typeq(G′[X ′i],W ′i ) = typeq(G[Xi],W ∗i ). By construction, W
contains a triple (W ′i , X ′i \W ′i , |W ∗i |). Observe that (X,Y,w) ∈ W and (X,Y,w′) ∈ W
implies w = w′. Let W ′ =

⋃
i∈[k]W

′
i . Then by (q + 1)-similarity of (G, ~X) and (G′, ~X ′)

and Lemma 10.23, we must have typeq(G,W ) = typeq(G′,W ′). In particular, G′ |= ϕ(W ′).
Furthermore,

W(W ′) =
∑

(W ′i ,X
′
i\W

′
i ,|W

∗
i |)∈W,X′i∩W ′=W

′
i
|W ∗i | ≤

∑
i∈[k] |Wi| = |W | ≤ r.

For the converse, let W ′ ⊆ V (G′) such that W(W ′) ≤ r and G′ |= ϕ(W ′), let W ′i denote
W ′ ∩ X ′i for i ∈ [k]. By construction, there is a set Wi ⊆ Xi for each i ∈ [k] such
that typeq(G[Xi],Wi) = typeq(G′[X ′i],W ′i ) and W(W ′) =

∑
i∈[k] |Wi|. Let W =

⋃
i∈[k]Wi.

Then by congruence and Lemma 10.23 we get typeq(G,W ) = typeq(G′,W ′) and thus
G |= ϕ(W ). Moreover, |W | =W(W ′) ≤ r.

The last thing we need to handle MSO-Opt≤ϕ problems is a win-win argument based on
the following fact.

Fact 12.3 (Folklore). Given an MSO1 sentence ϕ and a graph G, one can decide whether
G |= ϕ in time O(2nl), where n = |V (G)| and l = |ϕ|.

Theorem 12.4. Let Z be the graph class containing only the empty graph and c ∈ N. For
every MSO1 formula ϕ the problem MSO-Opt≤ϕ admits a linear bikernel parameterized
by wsnZc .

Proof. We begin by proceeding similarly as in Theorem 12.1 to compute a (k, c)-well-
structured modulator of the input graph G. Let H1, . . . ,Hj be the set of connected
components of G. Then for each Hi of rank-width at least c+2, we can use Corollary 10.13
to find the set ~Xi of equivalence classes of ∼Hc in polynomial time. On the other hand, for
each Hi of rank-width at most c+ 1, we set ~Xi = V (Hi). Clearly, the set ~X =

⋃
i∈[j]

~Xi

is a (k, c)-well-structured modulator to the empty graph.

Let (G′,W) be the annotated graph computed from G and ~X according to Lemma 12.2.
Let n = |V (G)| and suppose 2k ≤ n. Then we can solve (G′,W, r) in time nO(1). To do
this, we go through all 2O(k) subsets W of V (G′) and test whether W(W ) ≤ r. If that
is the case, we check whether G′ |= ϕ(W ). By Fact 12.3 this check can be carried out
in time c12c2k ≤ c1n

c2 for suitable constants c1 and c2 depending only on ϕ. Thus we
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12. Meta-Kernelization using Well-Structured Modulators

can find a constant t such that the entire procedure runs in time nt whenever n is large
enough. If we find a solution W ⊆ V (G′) we return a trivial yes-instance; otherwise, a
trivial no-instance (of aMSO-Opt≤ϕ ). Now suppose n < 2k. Then log(n) < k and so the
encoding size of W is polynomial in k. Thus (G′,W, r) is a polynomial bikernel.

12.1.2 Modulators to Edgeless Graphs

Our next order of business is to use well-structured modulators to generalize the use of
vertex cover number as a structural parameter for kernelization. Let E be the graph class
containing all edgeless graphs and c ∈ N. It is easy to observe that wsnEc is always upper-
bounded by the vertex cover number (see also the following Proposition 12.5), and hence
kernelization results obtained by using wsnEc as a parameter represent a generalization of
results obtained using the vertex cover number [87, 27]. We begin with a comparison to
known structural parameters.

Proposition 12.5. Let E be the graph class of edgeless graphs. Then:

1. rwcc(G) ≥ wsnEc (G) for any graph G. Furthermore, for every i ∈ N there exists a
graph Gi such that rwcc(Gi) ≥ 2i and wsnEc ≤ 2.

2. vcn(G) ≥ wsnE1 (G) for any graph G. Furthermore, for every i ∈ N there exists a
graph Gi such that vcn(G) ≥ i and wsnE1 = 1.

Proof. The first claim follows from the fact that rank-width cover is also a well-structured
modulator to the empty graph. For the second claim, let G′c be a graph of rank-width
c + 1, of bounded degree and of order at least i containing at least one vertex, say v,
such that G′c − v has rank-width c. Next, we construct the graph Gc from G′c − v by
exhaustively applying the following operation: for each module in the graph containing
more than a single vertex, we create a new pendant and attach it to a single vertex in
that module. Observe that this operation preserves the rank-width of the graph, and
moreover the resulting graph only contains trivial modules (i.e., modules which contain a
single vertex). Finally, let G∗c be obtained from 2 disjoint copies of Gc, say G1

c and G2
c ,

and making the vertices which were adjacent to v in G1
c adjacent to the vertices which

were adjacent to v in G2
c . Then wsnEc (G∗c) ≤ 2, since G1

c and G2
c are each a split-module

of rank-width at most c. However, since G∗c is a (vertex-)supergraph of G′c, it follows that
rw(G∗c) ≥ c+ 1 and furthermore G∗c only contains trivial modules. Hence rwcc(G∗c) ≥ 2i.

The third claim follows from the fact that any vertex cover of G is also a well-structured
modulator to E . For the fourth and final claim, consider a path P of length 2i+ 1. Then
vcn(P ) ≥ i but wsnE1 (P ) = 1.

As we have established that already wsnE1 ≤ vcn(G), it is important to mention that
an additional structural restriction on the graph is necessary to allow the polynomial
kernelization of MSO-Opt problems in general (as is made explicit in the following
Fact 12.6).
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Fact 12.6 ([29]). Clique parameterized by the vertex cover number does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

However, it turns out that restricting the inputs to graphs of bounded expansion com-
pletely changes the situation: under this condition, it is not only the case that all
MSO-MC and MSO-Opt problems admit a linear kernel when parameterized by the
vertex cover number, but also when parameterized by the more general parameter wsnEc .
Before we can formally prove these claim, we need introduce the notion of sparseness
and of bounded expansion.

Graph Sparsity

Definition 12.7 (Shallow minor [160], [92]). For any graphs H and G and any integer
d, the graph H is said to be shallow minor of G at depth d if there exists a collection P
of disjoint subsets V1, . . . , Vp of V (G) such that:

1. Each graph G[Vi] has radius at most d: there exists in each set Vi a vertex xi (a cen-
ter) such that every vertex in Vi is at distance at most d from xi in G[Vi],

2. H is a subgraph of the graph resulting from G after contracting all edges in P:
There is an bijection ψ : V (H)→ P, such that any two adjacent vertices u and v
of H correspond to two sets ψ(u) and ψ(v) linked by at least one edge.

The set of all shallow minors of G at depth d is denoted by GOd. In particular, GO0
is the set of all subgraphs of G. This notation is extended to graph classes G as well:
GOd =

⋃
G∈G GOd.

Definition 12.8 (Greatest reduced average density (grad) [160], [92]). Let G be a graph
class. Then the greatest reduced average density of G with rank d is defined as

∇d(G) = sup
H∈GOd

|E(H)|
|V (H)| .

Definition 12.9 (Bounded expansion [160]). A graph class G has bounded expansion if
there exists a function f : N→ R (called the expansion function) such that for all d ∈ N,
∇d(G) ≤ f(d).

We remark that on graphs of bounded expansion, our results could equivalently be stated
in terms of treewidth (instead of rank-width) and MSO2 logic (instead of MSO1 logic).
We briefly formalize this claim below.

We say that a class H of graphs is uniformly k-sparse if there exists k such that for every
G ∈ H every finite subgraph of G has a number of edges bounded by k times the number
of vertices. We note that uniformly k-sparse graphs are also studied under the name
k-degenerate graphs [160].
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Fact 12.10 ([47]). For each integer k, one can effectively transform a given MSO2
formula into an equivalent MSO1 formula on finite, uniformly k-sparse, simple, directed
or undirected graphs.

Fact 12.11 ([47]). A class of finite, uniformly k-sparse, simple, directed or undirected
graphs has bounded tree-width if and only if it has bounded rank-width.

Observation 12.12. Every class of graphs of bounded expansion is uniformly k-sparse
for some positive integer constant k.

Proof. Let H be a class of graphs of bounded expansion and let f be the expansion
function of H. Then f(0) or equivalently the greatest reduced average density of H with
rank 0 is constant and is an exact upper bound on the ratio between the number of edges
and vertices of any subgraph of a graph in H. Therefore, H is uniformly f(0)-sparse.

Fact 12.13 ([92]). Let K be a graph class with bounded expansion. Suppose that for
G ∈ K and S ⊆ V (G), C1, . . . , Cs are sets of connected components of G−S such that for
all pairs C,C ′ ∈

⋃
i Ci it holds that C,C ′ ∈ Cj for some j if and only if NS(C) = NS(C ′).

Let δ ≥ 0 be a constant bound on the diameter of these components, i.e., for all C ∈
⋃
i Ci,

diam(G[V (C)]) ≤ δ. Then there can be only at most O(|S|) such sets Ci.

We note that δ in the above fact is a constant which is suppressed in O(|S|). This allows
us to establish a key link between wsnEc and wsnZc on graphs of bounded expansion.

Lemma 12.14. Let K be a graph class with bounded expansion. Then there exists a
constant d such that for every G ∈ K it holds that wsnZc (G) ≤ d · wsnEc (G).

Proof. Let k = wsnEc (G) and let ~H be a (k, c)-well-structured modulator to E . Let S be
a set of vertices containing exactly one vertex from the frontier of every split-module
in ~H. The graph G′ = G − ( ~H − S) is a graph with bounded expansion and S is its
vertex cover. Clearly, the diameter of every connected component of G′ \ S is at most
1 (every connected component is a singleton). Therefore, by Fact 12.13 there exists a
constant d′ such that there are at most d′ · |S| = d′ ·wsnEc (G) sets of vertices C1, . . . , Cs in
G′ − S such that for all pairs v, v′ ∈

⋃
i Ci it holds that v, v′ ∈ Cj for some j if and only if

NS(v) = NS(v′). Clearly each such Ci is a split-module in G′; furthermore, since each
vertex in V (G) \ V (G′) has the same neighbors in Ci as some s ∈ S (or alternatively may
have no neighbors at all in Ci), Ci is also a split-module in G. Moreover, each such Ci has
rank-width at most 1. Hence wsnZc (G) ≤ wsnEc (G) + d′ · wsnEc (G).

The above lemma allows us to shift our attention from modulators to E to a partition of the
vertex set into split-modules of bounded rank-width, i.e., to well-structured modulators
to Z. In combination with Theorems 12.1 and 12.4, Lemma 12.14 immediately leads to
the following.
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Corollary 12.15. Let K be a graph class of bounded expansion, E be the class of edgeless
graphs and c ∈ N. For every MSO1 or MSO2 sentence ϕ the problem MSO-MCϕ admits
a linear kernel parameterized by wsnEc on K. Furthermore, the problem MSO-Opt≤ϕ
admits a linear bikernel parameterized by wsnEc on K.

12.2 Finding (k, c)-Well-Structured Modulators

In this section we revisit the results of Section 11.1 and show that we can also find
approximate well-structured modulators in polynomial time. Note that the algorithms
in Section 11.1 could be easily modified to obtain approximation algorithms by simply
replacing branching on which split-module of a constant number of split-modules intersect
a solution by taking all of these split-modules to an approximate solution. However, we
present here an alternative algorithms for approximating the c-well-structured number
for the class of forests and then for any graph class which can be characterized by a finite
set of forbidden induced subgraphs.

12.2.1 Finding (k, c)-Well-Structured Modulators to Forests

Our starting point is the following lemma, which shows that long cycles which hit a
non-singleton frontier imply the existence of short cycles.

Lemma 12.16. Let C be a cycle in G such that C intersects at least three distinct
equivalence classes of ∼c, one of which has a frontier of cardinality at least 2. Let Z be
the set of equivalence classes of ∼c which intersect C. Then there exists a cycle C ′ such
that the set Z ′ of equivalence classes it intersects is a subset of Z and |Z ′| ≤ 3.

Proof. Let B be an equivalence class in Z such that b1, b2 ∈ λ(B) are two distinct vertices.
By assumption, C must contain two distinct vertices a, c 6∈ B which are adjacent to λ(B).
Then a, b1, c, b2 forms a C4 in G[B ∪ {a, c}].

We will use the following observation to proceed when Lemma 12.16 cannot be applied.

Observation 12.17. Assume that for each equivalence class B of ∼c it holds that G[B]
is acyclic, and that no cycle intersects B if |λ(B)| ≥ 2. Then for every cycle C in G and
every vertex a ∈ C, it holds that a is in the frontier of some equivalence class of ∼c.

Fact 12.18 below is the last ingredient needed for the algorithm.

Fact 12.18 ([20]). Feedback Vertex Set can be 2-approximated in polynomial time.

Theorem 12.19. Let c ∈ N and F be the class of forests. There exists a polynomial
algorithm which takes as input a graph G and computes a set ~X of split-modules such
that ~X is a (k, c)-well-structured modulator to F and k ≤ 3 · wsnFc .
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Proof. First, consider the case that G is not connected. For a connected component H
of G, let ~XH be the restriction of ~X to split-modules contained in H. Then clearly each
set ~X is a (| ~X|, c)-well-structured modulator to F in G if and only if, for each connected
component H of G, ~XH is a (| ~XH |, c)-well-structured modulator to F in H. Therefore
each connected component of G can be handled separately. Moreover, each connected
component H of G of rank-width at most c + 1 forms a single maximal split-module
in any optimal (k, c)-well-structured modulator; if H is a tree, then we do not add it
to ~X, and otherwise we must add it to ~X. Hence we can restrict our attention only to
connected graphs G of rank-width at least c+ 2.

We now describe the algorithm for connected graphs G of rank-width at least c+ 2 and
then argue its correctness. The algorithm proceeds in three steps.

I By deciding a ∼c b for each pair of vertices in G as per Fact 10.15, we compute
the equivalence classes of ∼c.

II For each set of up to three equivalence classes {A1, A2, A3} of ∼c, we check if
G[A1 ∪ A2 ∪ A3] is acyclic; if it’s not, then we add A1, A2 and A3 to ~X and set
G := G− (A1 ∪A2 ∪A3).

III We use Fact 12.18 to 2-approximate a feedback vertex set S of G in polynomial
time; let S′ contain every equivalence class of ∼c which intersects S. We then set
~X := ~X ∪ S′, and output ~X.

For correctness, observe that Step III guarantees that G− ~X is acyclic. Hence we only
need to argue that | ~X| ≤ 3 · wsnFc . So, assume for a contradiction that there exists a
(`, c)-well-structured modulator ~X ′ to F such that | ~X| > 3 · | ~X ′|. Let Λ be the set of all
equivalence classes of ∼c which were added to ~X in Step II of the algorithm. Since for
each such {A1, A2, A3} the graph G[A1 ∪A2 ∪A3] is not acyclic, ~X ′ must always contain
at least one split-module A′ such that A′ ∩Ai 6= ∅ for some i ∈ [3]. By Corollary 10.13
the relation ∼c is an equivalence and hence it follows that all the vertices in A′ ∪Ai are
contained in a split-module of rank-width at most c. However, Ai is an inclusion-maximal
split-module of rank-width at most c by Corollary 10.13 and therefore it follows that
A′ ⊆ Ai. Let Λ′ contain all such split-modules A′, i.e., all elements of ~X ′ which form
a subset of a split-module added to ~X in Step II.

Let ~X3 = ~X \ Λ and ~X ′3 = ~X ′ \ Λ′. Since |Λ| ≤ 3 · |Λ′| by the argument above,
from our assumption it would follow that | ~X3| > 3 · | ~X ′3|. Let us consider the graphs
G3 = G − Λ and G′3 = G − Λ′; observe that G3 ⊆ G′3. Furthermore, by Lemma 12.16
a cycle C in G3 cannot intersect any equivalence class B of ∼c such that λ(B) ≥ 2.
Hence we can apply Observation 12.17, from which it follows that there is a one-to-one
correspondence between any minimal feedback vertex set in G3 and the equivalence
classes of ∼c in G3. Let z be the cardinality of a minimum feedback vertex set in G3;
by the correctness of the algorithm of Fact 12.18, we have z ≤ | ~X3| ≤ 2z. Since G′3 is
a supergraph of G3, it follows that | ~X ′3| ≥ z, and hence from our assumption we would
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obtain 2z ≥ | ~X3| > 3 · | ~X ′3| ≥ 3z. We have thus reached a contradiction, and conclude
that there exists no (`, c)-well-structured modulator to F such that | ~X| > 3 · `.

12.2.2 Finding (k, c)-Well-Structured Modulators via Obstructions

Here we will show how to efficiently find a sufficiently small (k, c)-well-structured modu-
lator to any graph class which can be characterized by a finite set of forbidden induced
subgraphs. Let us fix a graph class H characterized by a set R of forbidden induced
subgraphs, and let r be the maximum order of a graph in R. Our first step is to reduce
our problem to the classical Hitting Set problem.

Given a graph G, we construct an instance WG of r-Hitting Set as follows. For
each connected component H of G of rank-width at most c + 1, we add an element
sH representing H to the ground set S of WG. On the other hand, for each connected
component H of G of rank-width at least c+2, we add an element sA for each equivalence
class A ⊆ V (G) of ∼c into S. Observe that S represents a partition of V (G). Finally,
for each induced subgraph R ⊆ G isomorphic to an element of R, we add the set
CR = { sD ∈ S | D ∩R 6= ∅ } of elements which intersect R into C. This completes the
construction of WG; we let hit(WG) denote the cardinality of a solution of WG.

Lemma 12.20. For any graph G, the instance WG is unique and can be constructed in
polynomial time. Every hitting set Y in WG is a (|Y |, c)-well-structured modulator to H
in G. Moreover, wsnHc = hit(WG).

Proof. The uniqueness of WG, as well as the fact that WG can be constructed in polyno-
mial time, follow from Corollary 10.13 together with the observation that all subgraphs
R ⊆ G isomorphic to an element of R can be enumerated in polynomial time.

For the second claim, consider a hitting set Y and let ~Y be the set equivalence classes of
∼c corresponding to the elements in Y . The graph G− ~Y cannot contain any obstruction
for H, and hence G− ~Y ∈ H.

For the third claim, assume G contains a (hit(WG)− 1, c)-well-structured modulator ~X
to H. By Corollary 10.13, each element A of ~X forms either a subset of an equivalence
class A′ of ∼c for some connected component of G, or a subset of a connected component
of rank-width at most c+ 1; in particular, this means that each such element A has a
unique superset A′ such that the element sA′ is in the ground set of WG. Let ~X ′ be
obtained by replacing each element of A by its respective superset A′. Then G− ~X ′ is a
subgraph of G− ~X, and hence by our assumption G− ~X ′ cannot contain any subgraph
isomorphic to an element of R. However, this would imply that the set of elements of
the ground set that correspond precisely to the equivalence classes in ~X ′ is a hitting set
in WG of cardinality hit(WG)− 1, which is a contradiction.

The final ingredient we need for our approximation algorithm is the following folklore
result.
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Fact 12.21 (Folklore, [139]). There exists a polynomial-time algorithm which takes as
input an instance W of r-Hitting Set and outputs a hitting set Y of cardinality at most
r · hit(W ).

We can now proceed to the main result of this subsection.

Theorem 12.22. Let c ∈ N and H be a class of graphs characterized by a finite set of
forbidden induced subgraphs of order at most r. There exists a polynomial algorithm
which takes as input a graph G and computes a (k, c)-well-structured modulator to H
such that k ≤ r · wsnHc .

Proof. We proceed in two steps: first, we compute the r-Hitting Set instance WG, and
then we use Fact 12.21 to compute an r-approximate solution Y of WG in polynomial
time. We then set ~X := Y and output. Correctness follows from Lemma 12.20. In
particular, the hitting set Y computed by Fact 12.21 has cardinality at most r · hit(WG)
and hence | ~X| ≤ r · wsnHc (G) by Lemma 12.20.

12.3 Applications of (k, c)-Well-Structured Modulators
We now proceed by outlining the general applications of our results. Our algorithmic
framework is captured by the following Theorem 12.23.

Theorem 12.23. Let p, q be polynomial functions, φ an MSO1 sentence and H a graph
class such that

1. MSO-MCφ admits a (bi)kernel of size p(modH(G)), and

2. there exists a polynomial algorithm which finds a (q(wsnHc ), c)-well-structured mod-
ulator to H.

Then MSO-MCφ admits a (bi)kernel of size p(q(wsnHc (G))).

Proof. Let G be a graph, k = wsnHc (G) and s be the nesting depth of quantifiers in φ.
We begin by computing a (q(wsnHc ), c)-well-structured modulator to H, denoted ~X, in
polynomial time by using Condition 2. We then proceed by constructing (G′, ~X ′) by
Lemma 10.25. Since each X ′i ∈ ~X ′ has size bounded by a constant and | ~X ′| ≤ k, it follows
that

⋃ ~X ′ is a modulator to H graphs of cardinality O(q(k)). Then, using Condition 1,
MSO-MCφ admits a kernel of size p(q(k)) on G′. Finally, since G and G′ are q-similar,
it follows from Lemma 10.23 that G |= φ if and only if G′ |= φ.

Similarly, as in the previous chapter, Theorem 11.16 implies that the condition that
MSO-MCφ admits a polynomial (bi)kernel parameterized by modH(G) is indeed neces-
sary and it is not sufficient that MSO-MCφ is polynomial-time tractable on H. Con-
dition 2 is also necessary for our approach to work, as we need some (approximate)
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well-structured modulator; luckily, Section 12.2 shows that a wide variety of studied
graph classes satisfy this condition. Finally, it is easy to see that Theorem 11.19 rules out
an extension of Theorem 12.23 to MSO-Opt problems (which was possible in the special
case considered in Section 12.1). We provide in the following lemma another example of
an MSO-Opt problem that is NP-hard on the class of graphs with wsnH1 ≤ 1.

Lemma 12.24. There exists an MSO1 formula ϕ and a graph class H characterized by
a finite obstruction set such that MSO-Opt≤ϕ admits a bikernel parameterized by modH

but is NP-hard on the class of graphs with wsnH1 ≤ 1.

Proof. Consider the formula ϕ(S) = fvs(S) ∨ deg(S), where fvs(S) expresses that S is
a feedback vertex set in G and deg(S) expresses that S is a modulator to graphs with
maximum degree 4. Let H be the class of graphs of maximum degree 4.

First, we prove that MSO-Opt≤ϕ admits a polynomial bikernel parameterized by
k = modH(G). Consider the following algorithm: given an instance (G, r) of MSO-Opt≤ϕ ,
we check if r ≥ k. If this is the case, we can immediately output YES, since k is the
minimum size of a set S satisfying deg(S). If r < k, we compute a polynomial kernel
(G1, r1) of MSO-Opt≤fvs from (G, r), and a polynomial kernel (G2, r2) for MSO-Opt≤deg
from (G, r). Both (G1, r1) and (G2, r2) have size bounded by a polynomial of k, G1 can
be constructed by using any kernelization algorithm for Feedback Vertex Set [193],
and G2 can be constructed by enumerating all obstructions (supergraphs of K1,5) and
then using a kernelization algorithm for 6-Hitting Set [2]. Now it is easily observed
that (G, r) is a YES instance of MSO-Opt≤ϕ if and only if ((G1, r1), (G2, r2)) is a YES
instance of the following problem: given an instance (A, a) of Feedback Vertex Set
and an instance (B, b) of 6-Hitting Set, answer YES if and only if at least one of (A, a)
and (B, b) is a YES instance.

To conclude the proof, we show that MSO-Opt≤ϕ is NP-hard even when G has
a (1, 1)-well-structured modulator to H. We reduce from the (unparameterized) Feed-
back Vertex Set problem on graphs of degree at most 4, which is known to be
NP-hard [98]. Let (G, r) be an instance of Feedback Vertex Set where G is an
n-vertex graph of degree at most 4. We construct the graph G′ from G by adding a single
vertex x and a disjoint union of n+ 1 stars with five leaves, denoted S1, . . . , Sn+1, and
then adding an edge from x to the center of each star and from x to a single arbitrary
vertex in G. Observe that any feedback vertex set in G is also a feedback vertex set in G′,
and that any set S sayisfying deg(S) must have cardinality at least n+ 1. Hence (G, r)
is a YES-instance of Feedback Vertex Set if and only if (G′, r) is a YES-instance
of MSO-Opt≤ϕ . Since x together with the stars added in G′ forms a tree (which has
rank-width 1), it follows that this forms a (1, 1)-well-structured modulator to H.

12.3.1 Applications of Theorem 12.23

As our first general application, we consider the results of Gajarský et al. [92]. Their
main result is summarized below.
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Fact 12.25 ([92]). Let Π be a problem with finite integer index, K a class of graphs of
bounded expansion, d ∈ N, and H be the class of graphs of treedepth at most d. Then
there exists an algorithm that takes as input (G, ξ) ∈ K × N and in time O(|G|+ log ξ)
outputs (G′, ξ′) such that

1. (G, ξ) ∈ Π if and only if (G′, ξ′) ∈ Π;

2. G′ is an induced subgraph of G; and

3. |G′| = O(modH(G)).

The following fact provides a link between the notion of finite integer index used in the
above result and the MSO-MCϕ problems considered in this part.

Fact 12.26 ([11], see also [26]). For every MSO1 sentence ϕ, it holds that MSO-MCϕ

is finite-state and hence has finite integer index.

Theorem 12.27. Let c, d ∈ N and H be the class of graphs of treedepth at most d. For
every MSO2 sentence ϕ, it holds that MSO-MCϕ admits a linear kernel parameterized
by wsnHc on any class of graphs of bounded expansion.

Proof. Since G belongs to some fixed class of bounded expansion, it follows by Ob-
servation 12.12 that G is uniformly `-sparse for some constant ` and by Fact 12.10
we can translate ψ to an equivalent MSO1 sentence. Our proof then relies on Theo-
rem 12.23. From Fact 12.26 and Fact 12.25 it follows that MSO-MCψ admits a kernel
of size O(modH(G)). Hence the assumptions of the theorem satisfy Condition 1 of
Theorem 12.23, where the polynomial p is a linear function.

By Fact 3.6H can be characterized by finite set of forbidden induced subgraphs. Therefore,
by Theorem 12.22 there exists a polynomial algorithm that can find a (k, c)-well-structured
modulator to H and k ≤ r · wsnHc , where r ∈ N is a constant (depending on d).
Therefore, Condition 2 of Theorem 12.23 is also satisfied, where the polynomial q
is also linear function. Hence we conclude that MSO-MCψ and hence admits a kernel of
size r · wsnHc (G).

As our second general application, we consider well-structured modulators to the class
of forests. Lemma 12.29 shows that feedback vertex set may be used to kernelize any
MSO-definable decision problem on graphs of bounded degree. However, before we
proceed to the lemma itself, we need to briefly introduce the protrusion replacement rule.

Given a graph G, an r-protrusion is a set of vertices L ⊆ V (G) such that |N(G−L)| ≤ r
and the treewidth of G[L] is at most r. The set N(G − L) is called the boundary
of L. A much more in-depth explanation of protrusion replacement can be found,
e.g., in [26] or [138].
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Fact 12.28 ([26, 138]). Let r ∈ N be a constant, φ be a fixed MSO2 formula and G be a
graph containing an r-protrusion L. Then there exists a constant-size graph G′L such that
the graph G′ obtained by deleting L and making at most r vertices of G′L adjacent to the
neighbors of L satisfies G′ |= ϕ iff G |= ϕ. Furthermore the graph G′L may be computed
from G and L in polynomial time.

The graph G′L is sometimes called a representative; we remark that the algorithm
above computing G′L is constructive, but contains huge constants. We note that the
following lemma could also be obtained by a straightforward application of a result
by Kim et al. [138]. However, we provide an alternative proof of this lemma for the
completeness.

Lemma 12.29. Let F be the class of forests and d ∈ N. For every MSO2 sentence ϕ, it
holds that MSO-MCϕ admits a linear kernel parameterized by modF on every class of
graphs of degree at most d.

Proof. Let G′ be the input graph. We first use Fact 12.18 to compute a feedback vertex
set X ⊆ V (G) of cardinality k ≤ 2modF (G). Let G′0 denote the graph containing all the
connected components of G′ −X which are not adjacent to X. Since G′0 has treewidth 1
and an empty boundary, by Fact 12.28 we can find a constant-size graph G∗0 such that
the graph G∗ obtained from G′ by replacing G′0 with G∗0 satisfies the following: G∗ |= ϕ
iff G′ |= ϕ.

Let G be obtained from G∗ by deleting G∗0. Then the number of connected components
in H = G−X is bounded by k · d, since each tree in H is adjacent to at least one vertex
in X. We proceed by marking each vertex in H which is adjacent to some vertex in
X; note that this process marks at most dk vertices. This is followed by a secondary
marking procedure, where we mark each vertex v ∈ V (H) of degree at least 3 with the
following property: deleting v separates its connected component in H into at least 3
connected components of H, each containing at least 1 marked vertex. We argue that
this secondary marking procedure does not mark more than dk vertices as well. Observe
that if we remove all non-marked leaves of H, then we would mark a superset of vertices
marked by the secondary mark procedure. Therefore, for the sake of this argument, we
can consider a subgraph of H, with all leaves marked that preserve reachability of marked
vertices. Since, the number of vertices of degree 3 is at most the number of leaves in a
forest, it follows that the secondary marking procedure marks at most dk vertices and
the total number of marked vertices is bounded by 2dk. Let us denote the set of all
marked vertices M .

Let u be the order of the largest representative G′L as per Fact 12.28 for treewidth 1,
boundary-size 2 and ϕ. Now assume that H contains a tree T with z marked vertices.
Observe, that T −M has at most z · d connected components. Moreover, every connected
component of T −M is adjacent with at most 2 marked vertices, otherwise a vertex
inside this component would be marked. Let C be a connected component in T −M
and let TC be the subtree of T containing precisely C and the, at most 2, marked
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12. Meta-Kernelization using Well-Structured Modulators

vertices adjacent to C. Clearly, TC forms a subgraph in G with a boundary size of 2
and treewidth 1. Therefore, if |TC | > u, then by Fact 12.28 we can in polynomial time
replace TC by a smaller representative of TC and obtain an equivalent instance. The step
outlined in this paragraph takes polynomial time and is guaranteed to reduce the order
of G by at least 1.

It follows that if the replacement procedure is not applicable, then T has at most
z + z · d · u = (d · u+ 1)z vertices. Since the total number of marked vertices in H is at
most 2dk, it follows that V (H) ∈ O(k). In particular, this implies that V (G∗) ∈ O(k),
which means that we have a linear kernel.

With Lemma 12.29, the proof of the following theorem is analogous to the proof of
Theorem 12.27.

Theorem 12.30. Let c ∈ N and F be the class of forests. For every MSO2 sentence ϕ,
it holds that MSO-MCϕ admits a linear kernel parameterized by wsnFc on every class of
graphs of bounded degree.

Proof. Since the degree of the input graph G is bounded by some constant d, it follows
that G is uniformly d

2 -sparse. The theorem now once again follows from Theorem 12.23.
In particular, Condition 1 follows directly from Lemma 12.29 with a linear function p.
Theorem 12.19 then gives us a polynomial time algorithm to find a 3-approximation of
wsnFc , satisfying Condition 2 with q also linear. Therefore we conclude by Theorem 12.23
that MSO-MCϕ admits a linear kernel parameterized by wsnHc on any class of graphs of
bounded degree.

12.4 Summary and Open Questions
Our results in last two chapters show that measuring the structure of modulators
can lead to an interesting and, as of yet, relatively unexplored spectrum of structural
parameters. Such parameters have the potential of combining the best of decomposition-
based techniques and modulator-based techniques, and can be applied both in the context
of kernelization and FPT algorithms. We believe that further work in the direction of
modulators will allow us to push the frontiers of tractability towards new, uncharted
classes of inputs.

One possible direction for future research is the question of whether the class of MSO1-
definable problems considered in Theorem 12.23 can be extended to other finite-state
problems. It would of course also be interesting to see more applications of Theorem 12.23
and new methods for approximating well-structured modulators. Last but not least, we
mention that the split-modules used in the definition of our parameters could in principle
be refined to less restrictive notions (for instance cuts of constant cut-rank [168]); such a
relaxed parameter could still be used to obtain polynomial kernels, as long as there is a
way of efficiently approximating or computing such modulators.
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Notes
The results in this chapter appeared in a conference paper in the proceedings of 10th
International Symposium on Parameterized and Exact Computation (IPEC 2015) [73].
The results in this chapter will also appear in a journal publication in a special issue of
Discrete Applied Mathematics.
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CHAPTER 13
Summary

In this chapter we summarize our results. In this thesis we explored possibilities how
structure can help us solve NP-hard problems more efficiently. To mathematically cap-
ture the structure of input instance, we used the paradigm of parameterized complexity.
We established several fixed-parameter tractability results for a variety of problems ex-
ploiting already established as well as new kinds of structural parameters. More precisely,
we studied two different approaches to design of structural parameters, decompositions
and modulators, and we developed a novel combined approach that allows us to push
the boundaries of tractability for many problems.

13.1 Decomposition Parameters
We began by an investigation of decomposition parameters.

13.1.1 Counting Linear Extensions

Here, we first establish parameterized complexity of #LinExt parameterized
by the treewidth of two different graph representations of a poset.

• We showed that there is no FPT algorithm for solving #LinExt parameterized
by the treewidth of the cover graph, unless FPT = W[1].

• We gave an FPT algorithm for #LinExt, where parameter is the treewidth
of incomparability graph.

13.1.2 Decomposition Parameters for QBF

Afterwards, we switched our focus to the archetypal PSPACE-complete problem QBF.
QBF is know to remain PSPACE-complete even when restricted to the instances with
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the pathwidth of the primal graph at most 4. However, we showed that if the path
decomposition is forced to abide to the restrictions imposed by dependencies between the
variables, we can still use such path decompositions to efficiently solve QBF instances.

• We introduced the parameter prefix pathwidth, which is an extension of the path-
width that takes into account not only the structure of clauses in the formula, but
also dependencies between the variables given by some dependency scheme.

• We showed that we can use a prefix path decomposition of width bounded by the pa-
rameter k to solve the given QBF instance in FPT time.

• Finally, we develop several FPT and polynomial time approximation algorithms for
computing prefix path decomposition of small width for given combination of QBF
formula and dependency scheme.

13.2 Modulators
In the second part, we focused on the investigation of algorithmic applications of modu-
lators for various problems.

13.2.1 Modulators to Distance-Hereditary Graphs

We started by the study of modulators to distance-hereditary graphs, which is a well-
studied graph class that is especially important because it is exactly the class of graphs
with rank-width 1.

• We presented the first single-exponential FPT algorithm for vertex deletion to
distance-hereditary graphs. This is particularly important, as it is the first single-
exponential FPT algorithm for a modulator to a “full” class of graphs of bounded
rank-width.

• We complemented our result with matching asymptotic lower bounds based on ETH.

• We showed that we can use modulators to distance-hereditary graphs as a parameter
for solving classical NP-hard problems in a single-exponential FPT time.

13.2.2 Towards a Polynomial Kernel for
Directed Feedback Vertex Set

The second problem we studied in this part is DFVS. It is a long standing open question
in parameterized complexity whether DFVS admits a polynomial kernel parameterized
by the solution size. Our results provide a stepping stone towards resolving the existence
of a polynomial kernel for DFVS, and to the best of our knowledge also represent the first
kernelization results for DFVS with respect to any natural parameter.
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• We gave a kernel with O(k4) vertices for DFVS parameterized by the size of
the feedback vertex set of the underlying undirected graph.

• Moreover, we gave a kernel with O(k) vertices for DFVS with the same parameter,
when the input is embeddable on a surface of constant genus.

13.2.3 Modulators for ILPs

The last problem we examine in the modulators part is ILP. In order to overcome
the complexity barriers of ILP, a wide range of problems have been encoded in restricted
variants of ILP such as 2-stage stochastic ILP and N -fold ILP; examples for the former
include a range of transportation and logistic problems [173, 120], while examples for the
latter range from scheduling [142] to, e.g., computational social choice [143].

• We introduced a novel parameter fracture modulator, which provides a unified
platform which generalizes 2-stage stochastic ILP, N -fold ILP and also 4-block
N -fold ILP.

• We identified and analyzed tree separate cases depending on whether we allow only
global variables, only global constrains, or both.

• We identified under which circumstances we can use these parameters to obtain
FPT and XP algorithms.

• One may view our algorithmic results as “algorithmic meta-theorems” for ILP,
where previously known algorithms for 2-stage stochastic ILP, N -fold ILP, and
4-block N -fold ILP only represent a simple base case.

13.3 Hybrid Parameters

In the last technical part of the thesis, we concentrated our attention towards combining
the two approaches to a single hybrid approach. Here we presented a family of parameters,
which are based on the following idea. Similarly as in the modulator approach, for an input
graph G, we are looking for vertex set S, such that G\S belongs to some tractable class H.
However, instead of parameterizing by the size of a smallest modulator to H, we measure
its structure by some decomposition parameter and consequently, we parameterize by
the minimum value of this decomposition parameter over all modulators to H in G.

13.3.1 Well-Structured Modulators

• We introduced (k, c)-well-structured modulators to a graph class H, which are
basically modulators that consist of k disjoint split-modules each of rank-width at
most c.
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13.3.2 FPT Algorithms for Well-Structured Modulators

Afterwards, we studied algorithmic applications of well-structured modulators. We started
by the investigation of FPT algorithms using well-structured modulators.

• We developed FPT algorithms for computing wsnH for many graph classes H.
In particular, for H being the class of forests, chordal graphs, or any class charac-
terized by a finite set of forbidden induced subgraphs.

• We designed FPT algorithms for Vertex Cover and Clique parameterized by
wsnH, for any class H, such that 1) the given problem is solvable in polynomial
time on H and 2) k-well-structured modulator to H can be approximated in FPT
time.

• We developed a meta-theorem to obtain FPT algorithms for problems definable in
MSO1 logic parameterized by wsnH.

• We showed that, in general, solving MSO-Opt problems [50, 93] is not FPT when
parameterized by wsnH.

13.3.3 Meta-Kernelization using Well-Structured Modulators

Finally, in the last chapter of the third part we studied the possibility of using well-
structured modulators for obtaining polynomial kernels. We showed that for a fixed
constant c, (k, c)-well-structured modulators can be used to obtain kernels for a plethora
of problems.

• We developed polynomial time approximation algorithms for computing wsnH for
various graph classes H.

• We developed a meta-theorem to obtain kernels for problems definable in MSO1
logic parameterized by wsnH.

• We showed that our results subsume the framework of Ganian, Slivovsky, and
Szeider [97] and lift the framework by Gajarský et al. [92] to more general graph
classes.
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CHAPTER 14
Open Problems and Future

Directions

The theoretical investigation that we performed in this thesis leaves a number of open
questions and brings forth plenty of topics for future research. In this chapter, we first
briefly summarize open questions for specific problems we studied. Afterwards, we give
some possible directions for developing new kinds of structure that can be exploited for
obtaining FPT algorithms.

14.1 Summary of Open Questions for Individual
Problems

Counting Linear Extensions

The parameterized complexity of #LinExt under other very natural parameterizations
such as the width of the poset or the treewidth of the poset graph is still open. Moreover,
our intractability result for the treewidth of the cover graph gives rise to the question for
whether the problems becomes tractable for some stronger parameterizations such as the
treewidth of the poset graph, the treedepth or even vertex cover number of the poset- or
cover graph, or a combinations of these parameters with other natural parameters for
posets such as the width, the dimension, or the height of the poset. As a side note it
would also be interesting to establish whether our hardness result for #LinExt can be
sharpened to #W[1]-completeness [85] and to obtain matching membership results.

Finally, we think that techniques employed in our hardness result might be valuable for
other counting problems. It would be interesting to see if we can combine fpt turing
reductions with counting modulo some (prime) number to obtain similar hardness results
for other parameterized counting problems.
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Prefix Pathwidth for QBF

Our results push the frontiers of tractability for QBF to new natural classes of instances.
A number of interesting research questions still remain open in the area, and perhaps
the most prominent of these is whether one can lift our results towards prefix treewidth.
This would be especially interesting for posets of unbounded width, since on bounded-
width posets these parameters differ only by a constant factor. The exact complexity of
computing prefix treewidth and prefix pathwidth on general posets remains a challenging
open problem.

Distance-Hereditary Vertex Deletion

As distance-hereditary graphs are exactly graphs of rankwith 1, our algorithm represents
a first step in resolving the following prominent open question. “Does Rank-width-c
Vertex Deletion admit a single-exponential FPT algorithm parameterized by the
solution size?”. Moreover, the existence of a polynomial kernel or an approximation
algorithm for such vertex deletion problems for c > 1 remains open as well.

Directed Feedback Vertex Set

A possible direction for future work is to ask if we can find reasonable parameters
“between” DFVS number and FVS number, for which we can generalize our polynomial
kernel. Similarly, one can study also other parameters that are incomparable to the FVS
number but also upper-bound the DFVS. Regarding our result for bounded genus graphs,
one can ask if the linear kernel can be lifted to other sparse graph classes such as graph
classes of bounded expansion or nowhere dense graphs?

Another related problem of interest is whether DFVS can be solved in time 2O(k) · nO(1),
which remains open even on planar graphs.

Fractured Modulators for ILP

The only remaining blank part in the complexity map that we presented in Chapter 9 is
the question of whether mixed fracture modulators admit a fixed-parameter algorithm in
case of bounded coefficients; we believe that this is in fact a major open problem in the
area. A first step towards settling this question would be to resolve the fixed-parameter
(in)tractability of 4-block N -fold ILP, which was also left open in previous work; progress
in this direction seems to require new techniques and insights [116].

Well-Structured Modulators

We believe that further work in the direction of structured modulators will allow us to
push the frontiers of tractability towards new, uncharted classes of inputs. One possible
direction for future research is the question of whether the results for MSO1-definable
problems can be extended to other finite-state problems. It would also be interesting to
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see more applications for our meta-theorems as well as new algorithms for computing
well-structured modulators to new graph classes. Last but not least, a split-module can
be seen as a subset X of vertices of G such that the adjacency matrix of the bipartite
subgraphs of G induced by the bipartition X and V (G) \ S has rank 1. In principle this
could be refined to obtain a less restrictive notions of split-modules; using our techniques
it is possible to obtain similar meta-theorems for using the well-structured modulators
even when the cut-rank [168] between the split-module and the rest of the graph is some
fixed constant instead of 1. However, it is not clear whether we can find, or at least
approximate, such more general well-structured modulators efficiently.

14.2 General Directions for Future work

Tweaking Standard Structural Parameters

We have seen in Chapter 5, that even though QBF remains PSPACE-complete for
instances with pathwidth of the primal graph at most 4, it is possible to obtain an FPT
algorithms if we enrich the path decomposition in a way that it is also required to abide
to restrictions imposed by dependencies between variables. It would be interesting to see,
if we can obtain similar results for other problems that are known to be fixed-parameter
intractable with respect to established structural parameters. Especially, we would
like to concentrate on high-impact problems emerging from the areas such as Artificial
Intelligence or Reasoning.

Modulators with a Certain Structure

In Part III, we introduced well-structured modulators to some fixed graph class, where
we measured the structure of modulator as the minimum number of split-modules with
bounded rank-width. However, in general, one can define any measure that describes how
structured the modulator is. This leads us to the question of identifying algorithmically
useful measures τ and finding modulators of small τ efficiently. For such measure to be
useful, we should be both able to find modulators with small measure efficiently and
once provided a modulator of small measure, we should be able to use it obtain efficient
algorithm.

Another possible direction for future work is to study the structured modulators to
Satisfiability and Reasoning. Modulators in the setting of Satisfiability and other
reasoning problems such as CSP or QBF were studied under the notion of backdoors (see,
e.g., [183, 100, 99]). Structured modulators translate naturally to backdoor sets, and
again the fundamental tractable classes of SAT, Horn and 2CNF, form natural base
classes for an initial study. Moreover, there are multiple ways how to assign a graph
to an instance of various reasoning problems and study structured backdoor sets. For
example, previous work shows that the modular structure of variables in the so-called
signed incidence graph can be used to speed up SAT decision [94, 170], and we expect
interesting results in the new context of structured backdoors.
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A further promising direction is to study what we call recursive modulators. Roughly
speaking, a recursive modulator is a vertex set that decomposes the graph into several
tractable regions. We use an instance of Independent Set to showcase one potential
application of our approach. Consider an input graph with the structure depicted by
Figure 14.1. Independent Set is known to be solvable in polynomial time, e.g., on

Distance-hereditary

Claw-free
Chordal

Series parallel

Claw-free

Chordal

Distance-hereditary

Claw-free

Chordal

Figure 14.1: An example of recursive modulator.

series parallel graphs [23], claw-free graphs [155], distance-hereditary graphs [50] and
chordal graphs [164]. But the input graph need not contain a small modulator to any
of these classes—in fact, even the modulator depicted in our example may be large in
general. Yet, if the modulator decomposes the graph into a tree-like structure, and the
neighborhood of each component outside of the modulator is bounded by, for instance,
k = 6, then we may apply recursive techniques on such a decomposition-like structure to
solve the whole instance in FPT time parameterized by k. In particular, it is possible to
apply an FPT leaf-to-root dynamic programming algorithm which solves the instance as
long as such a decomposition is provided.
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hereditary, 191
Hintikka games, 72

existential play, 72
existential strategy, 72
partial strategy, 72
universal play, 72
universal strategy, 72
winning strategy, 72
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Hitting Set, 23
hypergraph, 17

ILP, see Integer Linear Programing
assignment, 161
connected component, 162
type, 171

constraint matrix, 161
equation form, 161
feasible assignment, 161
`-compact, 163
lower bounds, 161
optimization function, 161
right-hand side, 161
solution, 162
unbounded instance, 162
upper bounds, 161
variables, 161

incidence graph, 162
incident, 13
incomparability graph, 38
independent, 14
Independent Set, 22
induced path, 14
induced subgraph, 14
input, 18
instance, 18

No-, 18
Yes-, 18

irrelevant vertex, 107
isomorphic, 14
isomorphism, 14
Iteger Linear Programing, 161
iterative compression technique, 105

kernel, 27
polynomial, 27
size, 27

kernelization, 27

`-compact, see ILP, `-compact
language, 18
levels, 43

color class, 44

edge, 45
trash, 45
vertex, 44

linear extension, 37
linear order, 37
linked vertices, 14
literal, 22

marked edge, 103
marked graph, 103

bag, 103
marked vertex, 103
meta-kernelization, 28
modulator, 28
modulator to `-compactness

constraint-, 164
variable-, 164

modulator to `-compactness, 164
module, 221
monadic second order logic, 24

equivalent formulas, 199
Model Checking, 25
MSO, 24
MSO game, 200
Optimization problem, 25
MSO-Opt♦ϕ , 25
over graphs, 24
q-type of ~U , 199
types, 198

multigraph, 16
loop, 16
multi-edge, 16

N -fold 4-block, 163
N -fold ILP, 163
neighbor

in-, 17
out-, 17

neighborhood, 14
closed, 14
open, 14

neighbors, 14
non-arc, 144
non-S-attached, 106
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obstructions, 191
optimization problem, 18
oracle Turing machine, 21
ordered graph, 80
ordered minor, 80
out-segment, 148
output, 18
overlapping, 194

parallel edges, 17
parameter, 26
parameterized problem, 26
paraNP, 29
partially ordered set, 37
path, 14

ends, 14
internal vertices, 14
length, 14

path segment, 146
contributes, 147
inner, 146
outer, 146

pathwidth, 35
permutation dependency schemes, 66
petals, 43
poset, see partially ordered set

antichain, 37
chain, 37
chain partition, 37
covers, 37
incomparability, 37
layered, 89
layers, 89
size, 37
width, 37, 65

poset graph, 38
potential arc, 144
prefix, 81
prefix path decomposition, 68
prefix pathwidth, 68
prefix tree decomposition, 68
prefix treewidth, 68
primal graph, 65
prime graph, 102

propositional formula, 22
conjunctive normal form, 22

protrusion, 232
protrusion replacement, 232
PSPACE, 24

QBF, see also quantified Boolean formula
alternating prenex form, 71
assignment, 65
matrix, 65
partial assignment, 65
Iδ, 65
prefix, 65

quantified Boolean formula, 65
quantifier rank, 198

rank decomposition, 36
width, 36

rank-width, 36
recomposing edge, 103
reduced, 116
reduction rule, 27
representative, 233
respectful treewidth, 67
respects, 45
road, 150

endpoints, 150
internal vertices, 150
nice, 154

rooted tree, 16
ancestors, 16
child, 16
parent, 16
root, 16

running time, 18

S-attached, 106
SAT, 21
search problem, 18
self-loop, 144
sentence, 25
separator, 15
shallow minor, 225

depth, 225
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Sidon sequence, 183
signature, 212
signature set, 75
similarity, 201

q-similar, 201
simple decomposition

seealsomarked grap, 103
simple star bag, 106
sink-vertex, 146
small DH obstruction, 101
source-vertex, 146
split, 102, 192
split decomposition, 103
split-module, 192

adjacent, 192
frontier, 192
λ(A), 192

stalk, 43
star, 15

center, 15
star bag, 104
stick, 43
subgraph, 14
supergraph, 14
swapping the adjacency, 112
system of representatives, 199

total order, 37
tree, 15

internal nodes, 15
leaf, 15

tree decomposition, 33
bag, 33
monotonicity, 34
nice, 34
node, 34
width, 34

treedepth, 36
treedepth decomposition, 36

depth, 36
treewidth, 34
trivial bipartition, 102
trivial dependency poset, 67
trivial dependency scheme, 67

Turing machine, 19
accepting configuration, 20
alphabet, 19
computation, 20
computation step, 19
configuration, 19
deterministic, 20
states, 19
transition function, 19

Turing reduction, 21
twin class, 106
twin-house, 213
twins, 101

underlying undirected graph, 141
D, 141

uniformly k-sparse, 225
unmarked edge, 103
unmarked vertex, 103
upper bound, 18

vertex, 13
degree, 14
in-degree, 17
out-degree, 17
total degree, 17

Vertex Cover, 22
vertex cover number, 28
vertex separator, 15

W-hierarchy, 28
well-quasi ordered, 80
well-structure number, 192, 193
well-structured modulator, 192
witnesses, 164
worst-case, 18
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