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Kurzfassung

Das Ziel dieser Arbeit ist die Erweiterung der Analysis von adaptiven Algorithmen für Fi-
nite Elemente Methoden (FEM) und Randelementmethoden (BEM) von elliptischen Pro-
blemen im Rahmen des Lax–Milgram Lemmas zu elliptisch indefiniten und nichtlinearen
partiellen Differentialgleichungen. Diese unterschiedlichen Problemklassen teilen die Arbeit
in zwei Teile. Basierend auf einem a posteriori Fehlerschätzer formulieren wir jeweils einen
adaptiven Algorithmus, welcher neben linearer Konvergenz auch zu optimalen Konvergenz-
verhalten des zugrunde liegenden Fehlerschätzers führt. Die Analysis bedient sich dabei
eines komplett abstrakten Rahmens. Dieser erlaubt es, essentielle und hinreichende Eigen-
schaften des Fehlerschätzers und der zugrunde liegenden Netzverfeinerung zu bestimmen,
welche in weiterer Folge optimale Konvergenzraten und optimale Komplexität garantieren.

Der Fokus des ersten Teils liegt auf kompakt gestörten Problemen. Diese Problemklas-
se beinhaltet allgemeine Diffusionsprobleme mit Konvektion und Reaktion, und im spe-
ziellen auch die Helmholtz-Gleichung. In bisherigen Resultaten für FEM und BEM mit
stückweisen polynomiellen Ansatz- und Testräumen, wird mit Hilfe des dualen Problems
die Existenz und Eindeutigkeit von diskreten Lösungen für hinreichend feine Netze ga-
rantiert. Wie jedoch der abstrakte Rahmen dieser Arbeit zeigt, ist diese pessimistische
a priori Annahme bzw. Einschränkung nicht notwendig. Die adaptive Netzverfeinerung
ist aufgrund von Stabilisierungseffekten in der Lage diese Startphase zu überwinden und
liefert, unabhängig von der Netzweite des Startnetzes, asymptotisch optimales Abklingver-
halten des Fehlerschätzers. Als Anwendung der abstrakten Analysis beweisen wir optimale
Konvergenz von adaptiver FEM für kompakt gestörte elliptische Probleme.

Des Weiteren zeigen wir inverse Ungleichungen für alle fundamentalen Randintegralope-
ratoren der Helmholtz-Gleichung, welche bestehende Resultate für den Laplace Operator
auf beliebige Wellenzahlen verallgemeinern. Mit Hilfe dieser Abschätzung, gibt die Ar-
beit einen ersten Beweis für die Optimalität der adaptiven Randelementmethode für die
Helmholtz-Gleichung. Eine andere Stärke der BEM ist die Konvergenz des punktweisen
Fehlers mit höherer Ordnung. Basierend auf Resultaten für elliptische Gleichungen zeigen
wir zusätzlich optimales Konvergenzverhalten für eine berechenbare obere Schranke für den
Punktfehler.

Im zweiten Teil betrachten wir nichtlineare Differentialgleichungen mit stark monotonen
Operatoren. Im Kontrast zu bestehenden Arbeiten betrachtet der abstrakte Rahmen neben
einer Picard-Iteration für das auftretende nichtlineare diskrete Problem, auch einen iterati-
ven PCG-Löser für lineare Gleichungssysteme. Zusätzlich zu optimalem Konvergenzverhal-
ten des Fehlerschätzers im Hinblick auf die Freiheitsgrade der verwendeten Diskretisierung
zeigen wir auch Optimalität in Bezug auf den kumulativen Rechenaufwand des adaptiven
Algorithmus.





Abstract

The goal of this work is to generalize the analysis of adaptive algorithms for finite element
methods (FEM) and boundary element methods (BEM) from elliptic problems, satisfying
the setting of the Lax–Milgram theorem, to certain classes of elliptic indefinite and nonlinear
problems. For each problem class, based on an a posteriori error estimator, we introduce
an adaptive algorithm and prove that these algorithms do not only lead to linear conver-
gence, but also guarantee optimal algebraic convergence behavior of the underlying error
estimator. The thesis is split into two parts, where each part analyzes one specific problem
class in an abstract framework. This general approach allows to formulate so-called axioms
of adaptivity for the error estimator as well as the underlying mesh-refinement strategy,
under which optimal algebraic convergence can be guaranteed.

First, we consider indefinite and compactly perturbed elliptic problems. This problem
class covers general diffusion problems with convection and reaction and in particular,
the Helmholtz equation. For a standard conforming FEM and BEM discretization by
piecewise polynomials, usual duality arguments show that the underlying triangulation
has to be sufficiently fine to ensure the existence and uniqueness of the Galerkin solution.
Extending the abstract approach of existing works, we prove that adaptive mesh-refinement
is capable of overcoming this preasymptotic behavior and eventually leads to convergence
with optimal algebraic rates. Unlike previous works, one does not have to deal with the
a priori assumption that the initial mesh is sufficiently fine. Due to stabilizing effects,
the adaptive algorithm can, in particular, overcome possibly pessimistic restrictions on
the meshes. As an application of the abstract framework, we prove optimal algebraic
convergence rates for adaptive FEM.

Further, we show inverse estimates for the most important boundary integral opera-
tors associated with the Helmholtz equation, which generalizes the existing results for the
Laplace equation to arbitrary wavenumbers. This allows us to give a first prove of optimal
convergence rates for adaptive BEM for the Helmholtz equation. One particular strength
of the boundary element methods is, that it allows for a higher-order point-wise approxima-
tion of the solution. As an application of the prior analysis, we generalize existing results
for the elliptic case and prove optimal convergence behavior with respect to an a posteriori
computable bound for the point error of the Helmholtz equation.

In the second part, we focus on nonlinear PDEs with strongly monotone operators.
Unlike prior works, the analysis includes the iterative and inexact solution of the arising
discrete nonlinear systems by means of the Picard iteration. We also consider an iterative
PCG-solver for the invoked linear system in the computation of each Picard step. Using
nested iteration, we show an improved linear convergence result as well as optimal algebraic
convergence behavior of the underlying error estimator. Improving existing results, we also
prove optimal convergence rates with respect to the cumulative computational costs of the
adaptive algorithm.
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1 Introduction

1.1 Motivation

The finite element method (FEM) is one of the most important tools in numerical analysis
to solve partial differential equations (PDEs). Over the last decades, it has shown its
potential by providing solutions to a variety of problems, arising in applications in natural
sciences as well as engineering. This overwhelming success gave a real impetus to the
numerical analysis of FEM and lead to the development of various numerical schemes
using the principal ideas of finite elements. The key ingredient in most of these methods
is based on the discretization of the domain of interest by a mesh of polygons, which
reduces the PDE to a finite dimensional linear system of equations and gives rise to a finite
dimensional approximation of the unknown solution. The quality of the thereby computed
approximation is controlled by the mesh-width of the underlying discretization. Hence, a
simple and commonly used technique to guarantee convergence of the error to zero is to
successively refine the corresponding mesh uniformly.

In general, geometry and data induced singularities of the unknown exact solution might
reduce the possible order of convergence significantly and thus spoil the accuracy of the
computed approximation. This leads to a dispensable increase of the underlying computa-
tional costs with respect to the quality of the achieved error. However, for many problems,
the reduction of the order of convergence as well as the additional computational costs can
be avoided by refining the mesh locally at these singularities. Doing this beforehand re-
quires a priori information of the unknown exact solution, which is in general not available.
This observation has led to the development of adaptive finite element methods (AFEM)
and adaptive mesh-refinement. Based on an a posteriori error estimator which reflects
the behavior of the approximation error, adaptive algorithms automatically steer the local
refinement to recover optimal rates of convergence.

In recent years, the analysis of convergence and optimal convergence behavior of adaptive
algorithms has matured. We refer to the seminal works [Dör96, MNS00, BDD04, Ste07,
CKNS08, FFP14] for some milestones of AFEM for linear elliptic PDEs as well as to
the works [FFK+14, FFK+15, FKMP13, AFF+17, Gan13] for adaptive boundary element
methods (ABEM) in case of the Laplace equation.

The aim of this thesis is to extend the existing analysis on adaptive algorithms to certain
classes of indefinite or nonlinear elliptic problems. To that end, we develop suitable adaptive
algorithms and prove optimal algebraic convergence rates of the underlying error estimator.
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1 Introduction

1.2 State of the art and outline

Chapter 2

First, we fix some basic notation and introduce Sobolev spaces on domains Ω ⊂ Rd as well
as on the corresponding boundaries ∂Ω. Since these spaces are essential for the analysis
of the succeeding chapters, we recall the definitions and summarize their most important
properties.

Chapter 3

One essential ingredient of the analysis of adaptive algorithms is the underlying mesh-
refinement. In Chapter 3, we introduce meshes of domains Ω ⊂ Rd and boundaries ∂Ω.
Section 3.3 formulates the so-called axioms of refinement in the spirit of [CFPP14]. Then,
the a posteriori error analysis depends only on the refinement strategy properties (R3)–
(R6). This allows to formulate the upcoming chapters in a completely abstract setting,
independently of the actual refinement. Sections 3.4–3.5 recall that these axioms are sat-
isfied for newest vertex bisection (NVB) and extended bisection (EB), which are used in
specific settings for AFEM and ABEM later on.

Chapter 4

In the prior mentioned references, only linear problems satisfying the setting of the Lax–
Milgram theorem have been treated. In the more general case of compactly perturbed
elliptic problems, those works require a sufficiently fine initial mesh [MN05, CN12] or
strong monotonicity [FFP14] in order to guarantee optimal convergence. On the other
hand, numerical experiments show that adaptive algorithms recover the optimal rate of
convergence, independently of whether the initial mesh is sufficiently fine or not. Based
on the own work [BHP17], we introduce an abstract framework in the style of [CFPP14],
which is utilized to close this gap for conforming AFEM (Chapter 5) and enables a first
optimality proof for ABEM for the Helmholtz equation in Chapter 6.

To that end, let H be a Hilbert space and H∗ denote its dual space. Given f ∈ H∗, we
consider variational formulations of the type

a(u, v) + 〈Ku, v〉 = 〈f, v〉 for all v ∈ H, (1.1)

where a(·, ·) is an elliptic and symmetric bilinear form onH and K : H → H∗ is a continuous
and compact linear operator. Given an initial triangulation T0, a typical adaptive algorithm
consisting of the steps

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE (1.2)

generates a sequence of refined meshes Tℓ with corresponding nested spaces Xℓ ⊆ Xℓ+1 ⊂ H
for all ℓ ≥ 0. We stress that unlike to the prior works [MN05, CN12, FFP14], Algorithm 4.4
in Section 4.4 will not be given any a priori information whether the mesh T0 is sufficiently
fine. Instead, we introduce an additional step in the algorithm, which performs uniform
refinement if the corresponding Galerkin solution of (1.1) does not exist. In Section 4.5,

2



1.2 State of the art and outline

we define the axioms of adaptivity (E1)–(E4). These are a slight generalization of those
of [CFPP14] and collect all estimator dependencies of the analysis. We introduce an ad-
ditional axiom (E5). This ensures definiteness and therefore well-posedness of (1.1) on
the “discrete” limit space. We emphasize that (E5) sets no additional limitation to the
analysis and can be enforced by the adaptive algorithm using an expanded Dörfler marking
strategy (Proposition 4.7). Then, Section 4.7 proves linear convergence of Algorithm 4.4
(Theorem 4.14), and also addresses the validity of the Céa lemma with optimal constant 1
(Proposition 4.16). Section 4.8.1 introduces approximation classes in the spirit of [CFPP14]
and discusses their connection to other classes defined in [CKNS08]. Finally, we prove opti-
mal algebraic convergence rates of Algorithm 4.4 in Theorem 4.21, independently of whether
the initial mesh is sufficiently fine or not.

Chapter 5

Chapter 5 applies the abstract framework of Chapter 4 to AFEM for general diffusion prob-
lems with convection and reaction; see Section 5.1. We consider piecewise polynomial ansatz
and test spaces with arbitrary but fixed polynomial degree p ≥ 1. Section 5.2 introduces
the corresponding weighted-residual error estimator and proves that the axioms (E1)–(E4)
are satisfied (Proposition 5.3–5.5). Then, Algorithm 5.2 with the expanded Dörfler mark-
ing additionally guarantees (E5). Utilizing the abstract analysis of Chapter 4, we obtain
optimal convergence rates of the adaptive algorithm (Theorem 5.8). To underpin the the-
oretical findings, we conclude the chapter with numerical examples for the 2D Helmholtz
equation.

Chapter 6

Chapter 6 focuses on ABEM for the Helmholtz equation. First, Section 6.2 gives a brief
introduction to BEM, where we fix the notation and recall some basic properties of the
related boundary integral operators. This chapter generalizes existing results in [AFF+17,
FKMP13, FFK+14, FFK+15, Gan13] for the Laplace equation to general wavenumbers
k > 0. To that end, we consider the weakly-singular integral equation: Given f ∈ H1/2(Γ),
find φ ∈ H̃−1/2(Γ) such that

〈Vk φ , ψ〉 = 〈f , ψ〉 for all ψ ∈ H̃−1/2(Γ), (1.3)

where Vk is the simple-layer operator for wavenumber k > 0. Building on a potential
decomposition from [Mel12], Section 6.4 proves an inverse estimate for the most important
boundary integral operators associated with the Helmholtz equation (Theorem 6.3). With
the help of the inverse estimate, Section 6.5 shows the validity of the estimator axioms (E1)–
(E4) for the weighted-residual error estimator corresponding to the model problem (1.3).
The main result of this chapter is Theorem 6.11. It proves that the adaptive algorithm
does not only lead to linear convergence, but also guarantees optimal algebraic convergence
rates. We emphasize that Theorem 6.11 is independent of, whether direct or indirect BEM
is used or the initial mesh is sufficiently fine. Section 6.7 transfers the main result to the
hyper-singular integral equation (Theorem 6.14) and highlights the occurring differences in
the proofs. We conclude this chapter with numerical experiments for 3D wave scattering
problems in Section 6.8.
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1 Introduction

Chapter 7

As an extension of Chapter 6, the goal of Chapter 7 is the optimal computation of point-
values of solutions of the Helmholtz equation. Via the representation formula, BEM allows
for a high-order pointwise approximation of the underlying PDE solution. Utilizing Chap-
ter 4, we introduce two adaptive algorithms in Section 7.2 in the style of goal oriented
AFEM from [MS09] and [BET11]. Further, both Algorithms 7.1–7.3 incorporate the ex-
panded Dörfler marking from Proposition 4.7. Transferring ideas from [FGH+16] to the
Helmholtz setting, Theorem 7.5 proves optimal algebraic convergence of an a posteriori
computable upper bound for the point error. We emphasize, that the analysis of this
chapter covers in general also goal-oriented adaptivity for AFEM and thus transfers some
results of [FPZ16] to the Helmholtz setting.

Chapter 8

As for linear problems, the analysis of convergence and optimal convergence behavior of
AFEM for nonlinear problems has been a fertile field for research on numerical analysis,
cf. [Vee02, DK08, BDK12, GMZ12]. The interplay of adaptive mesh-refinement, opti-
mal convergence rates, and inexact solvers has already been addressed and analyzed, e.g.,
in [Ste07, AGL13, ALMS13, CFPP14] for FEM for linear PDEs and in [CG12] for linear
eigenvalue problems. The work [GMZ11] considers adaptive mesh-refinement in combina-
tion with a Kačanov-type iterative solver for strongly monotone operators. In the spirit
of [MSV08, Sie11], the focus is on a plain convergence result of the overall strategy, while
the proof of optimal convergence rates remains open. On the other hand, the influence
of inexact solvers for nonlinear equations on optimal convergence has only recently been
analyzed in our own work [GHPS17].

Chapter 8 considers elliptic nonlinear model problems with weak formulations of the
following type: Given F ∈ H∗, find u⋆ ∈ H such that

〈Au⋆ , v〉 = 〈F , v〉 for all v ∈ H, (1.4)

where A is a strongly monotone and Lipschitz continuous operator. As in [GHPS17, CW17],
we consider an inexact Picard iteration to compute the discrete solution of (1.4) (Sec-
tion 8.3). Further, the computation of each Picard iteration requires to solve a discrete
Laplace problem (Section 8.3.2). Unlike the prior works [GHPS17, CW17], we do not
assume that the arising linear system is solved exactly. Instead, we consider an inexact it-
erative PCG solver. Section 8.5 introduces the adaptive strategy in Algorithm 8.7. Besides
the normal adaptive loop in (1.2), the a posteriori error estimator steers also the Picard
iteration as well as the PCG iteration. In the spirit of [CFPP14], the analysis is done in
a completely abstract setting. To this end, Section 8.6 reformulates the estimator axioms,
which slightly differ from Chapter 4. We first prove linear convergence of the adaptive algo-
rithm (Theorem 8.20) and optimal convergence rates in Theorem 8.21 for sufficiently small,
but independent control parameters λPic and λPCG. A more involved choice of the involved
parameters leads to stronger linear convergence result (Theorem 8.30), i.e., contraction of
the error estimator in each step of either PCG or Picard iteration. Although Algorithm 8.7
includes two nested iterative solvers, Theorem 8.32 proves that Algorithm 8.7 also guar-
antees optimal algebraic convergence with respect to the cumulative computational effort.
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1.2 State of the art and outline

This guarantees optimal computational complexity and improves and generalizes the ex-
isting result from [GHPS17].

Chapter 9

Chapter 9 is an application of Chapter 8. We consider AFEM for certain types of nonlinear
boundary value problems similar to those of [GMZ11, GMZ12, BSF+14, CW17] and show
that these problems fit in the strongly monotone setting of Chapter 8. We prove that the
corresponding weighted-residual error estimator satisfies the estimator axioms of Chapter 8.
Then, with the help of the abstract framework, we prove optimal convergence rates for the
underlying error estimator in Theorem 5.8. Finally, Section 9.4 underpins our theoretical
findings with numerical experiments for lowest-order AFEM in R2.
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2 Sobolev spaces and basic notation

In this chapter, we introduce some basic notations and definitions. Section 2.2 defines the
necessary Sobolev spaces on domains Ω ⊂ Rd as well as on boundaries ∂Ω and Section 2.2.3
introduces the corresponding dual spaces. Last, Section 2.2.4 recalls the definition and
basic properties of the trace operators as well as of the conormal derivative. To abbreviate
notation, we use the following convention.

General notation. Throughout all statements, all constants as well as their depen-
dencies are explicitly given. In proofs, we may abbreviate the notation by use of the symbol
. which indicates ≤ up to some multiplicative constant which is clear from the context.
Analogously, & indicates ≥ up to a multiplicative constant. Moreover, the symbol ≃ states
that both estimates . and & hold.

2.1 Basic notation

Let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain with piecewise C∞-boundary ∂Ω
and exterior normal vector n = n(y) for every y ∈ ∂Ω; see, e.g., [SS11, Definition 2.2.10].
Further, let Ωext := Rd \Ω denote the corresponding exterior domain. The Euclidean norm
of two points x ∈ Rd is denoted by |x|. For measureable sets S ⊆ Ω or S ⊆ ∂Ω and if
it is clear from the context, we use the same notation |S| for the corresponding Lebesgue
measure and the surface measure.

For p > 0, let Lp(Ω) be the usual Lebesgue spaces on Ω with corresponding norm
‖ · ‖Lp(Ω). Analogously, Lebesgue spaces on the boundary ∂Ω are denoted by Lp(∂Ω) with
norm ‖ · ‖Lp(∂Ω). If a space H has additional Hilbert space structure, e.g., H = L2(Ω), the
corresponding scalar product is denoted by (· , ·)H.

Let v : Ω ⊂ Rd → R. The weak gradient and the divergence of v are given by

∇v =
(
∂1 v, . . . , ∂d v

)
and div v =

d∑

j=1

∂jvj ,

where, ∂i :=
∂
∂xi

denotes the weak partial derivative (if it exists). This definition gives rise
to the Laplace operator

∆v := div(∇v) =
d∑

i=1

∂2i v.

Moreover, for n ∈ N, let α ∈ Nn0 be some multi index, where |α| := ∑n
i=1 αi. Then, a

function v has a weak derivative g := ∂αv of order α if
∫

Ω
g w dx = (−1)|α|

∫

Ω
v ∂αw dx for all w ∈ C∞

0 (Ω),

7



2 Sobolev spaces and basic notation

where C∞
0 (Ω) is the space of all infinitely differentiable functions with compact support.

Note that if ∂αv exists, e.g., v ∈ L2(Ω) and ∂αv ∈ L2(Ω), then the weak derivative is
unique.

2.2 Sobolev spaces

In this section, we give a short introduction on Sobolev spaces on domains Ω as well as on
their boundaries ∂Ω. In contrast to spaces on domains Ω, which are needed throughout the
entire thesis, the usage of Sobolev spaces on boundaries is mostly restricted to the chapters
on adaptive boundary element methods, i.e., Chapter 6 and Chapter 7. We emphasize that,
although we recall just one definition, most spaces can be defined equivalently in different
ways. Therefore, we refer to the monographs [McL00, SS11, Tar07, Tri83, Tri95] for further
details.

2.2.1 Sobolev spaces on a domain Ω

The Sobolev spaces on domains are defined in the usual sense; see, e.g., [McL00, p. 58]
or [SS11, Section 2.3]. To that end, for ℓ ∈ N0 we define Hℓ(Ω) by

Hℓ(Ω) :=
{
v ∈ L2(Ω) : ∂αv ∈ L2(Ω) exists in the weak sense for all |α| ≤ ℓ

}
.

The corresponding scalar product (· , ·)Hℓ(Ω) is given by

(u , v)Hℓ(Ω) =
∑

|α|≤ℓ

(∂αu , ∂αv)L2(Ω) for all u, v ∈ Hℓ(Ω),

which induces the norm ‖v‖2
Hℓ(Ω)

:= (v , v)Hℓ(Ω). For ℓ = 1, the latter definition simplifies
to

H1(Ω) :=
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)d exists in the weak sense

}

with scalar product

(u , v)H1(Ω) =

∫

Ω
u v dx+

∫

Ω
∇u · ∇v dx,

and norm ‖u‖2H1(Ω) = (u , u)H1(Ω) = ‖u‖2L2(Ω)+‖∇u‖2L2(Ω). Fractional-order Sobolev spaces
are defined by the K-method of interpolation, i.e., for ℓ ∈ N0 and 0 < s < 1, we define
Hℓ+s(Ω) := [Hℓ(Ω),Hℓ+1(Ω)]s,2; see, e.g., [Tri95, SS11]. Further, the analysis of ABEM
for the Helmholtz equation additionally requires certain Besov spaces. Since these spaces
are only needed in Chapter 6, we postpone their definition to Section 6.4.

2.2.2 Sobolev spaces on the boundary ∂Ω

We emphasize that Sobolev spaces on the boundary can be defined in different ways; see,
e.g., [SS11, McL00, HW08]. Suppose that Γ = ∂Ω or ∅ 6= Γ ⊂ ∂Ω is a relative open set
which stems from a Lipschitz dissection ∂Ω = Γ∪∂Γ∪ (∂Ω\Γ) (see [McL00, p. 99]). Then,
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2.2 Sobolev spaces

for s ∈ {−1/2, 0, 1/2} the Sobolev spaces H1/2+s(∂Ω) are defined as in [McL00, p. 96-99]
via Bessel-potentials and local Lipschitz parametrizations of ∂Ω.

If Γ $ ∂Ω, let E0,Γ denote the extension operator which extends a function on Γ to ∂Ω

by zero. Then, the spaces H1/2+s(Γ) and H̃1/2+s(Γ) are defined as in [AFF+17] by

H1/2+s(Γ) := {v|Γ : v ∈ H1/2+s(∂Ω)},
H̃1/2+s(Γ) := {v : E0,Γv ∈ H1/2+s(∂Ω)}.

The corresponding norms are given by

‖v‖H1/2+s(Γ) := inf
w∈H1/2+s(∂Ω)

{‖w‖H1/2+s(∂Ω) : w|Γ = v},

‖v‖H̃1/2+s(Γ) := ‖E0,Γ v‖H1/2+s(∂Ω).

Next, we recap some important properties of H1/2+s(Γ) and H̃1/2+s(Γ). For further details
as well as a rigorous proof, we refer to [AFF+17, Facts 2.1] or [SS11, Section 2.4]. Let
∇Γ(·) : H1(∂Ω) → L2(∂Ω) denote the usual surface gradient, i.e., for sufficiently smooth
functions u, it holds that ∇Γ u = ∇u− (∇u · n)n.

• For s = 1/2, there hold the following equivalences

‖u‖2H1(∂Ω) ≃ ‖u‖2L2(∂Ω) + ‖∇Γ u‖2L2(∂Ω) as well as

‖u‖2
H̃1(Γ)

≃ ‖u‖2L2(Γ) + ‖∇Γ u‖2L2(Γ).

• For s = 0, the norms ‖u‖H1/2(∂Ω) and ‖u‖H̃1/2(Γ) can be equivalently described by the

Aronstein-Slobodeckii norms of u and E0,Γ u.

• For s = 0, the spaces H1/2(∂Ω) and H̃1/2(Γ) can equivalently be obtained by inter-
polation with the K-method, i.e.,

H1/2(∂Ω) =
[
L2(∂Ω),H1(∂Ω)

]
1/2,2

and H̃1/2(Γ) =
[
L2(Γ), H̃1(Γ)

]
1/2,2

.

To simplify notation and if it is clear from the context, we identify any v ∈ H̃1/2+s(Γ) with
its extension E0,Γv ∈ H1/2+s(∂Ω).

2.2.3 Dual spaces

Let 〈· , ·〉Ω and 〈· , ·〉∂Ω denote the duality pairings which extend the L2(Ω) and L2(∂Ω)-
scalar product. For s ∈ {−1/2, 0, 1/2}, the negative-order Sobolev spaces on the boundary
are defined by duality as

H−(1/2+s)(∂Ω) := H1/2+s(∂Ω)′,

H̃−(1/2+s)(Γ) := H1/2+s(Γ)′,

H−(1/2+s)(Γ) := H̃1/2+s(Γ)′;

see, e.g, [AFF+17]. Note that for all ψ ∈ L2(Γ), it holds that E0,Γ ψ ∈ H−1/2(∂Ω) as well
as ‖ψ‖

H̃−1/2(Γ)
= ‖E0,Γ ψ‖H−1/2(∂Ω); see, e.g., [AFF

+17]. Further, we recall the continuous

inclusions

H̃±(1/2+s)(Γ) ⊆ H±(1/2+s)(Γ) and H̃±(1/2+s)(∂Ω) = H±(1/2+s)(∂Ω).
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2 Sobolev spaces and basic notation

2.2.4 Trace operators

In this section, we recall the definitions of the interior and exterior trace operator as well
as the corresponding conormal derivative. To that end, let Ω be a Lipschitz domain and
1/2 < s < 3/2. Then there exists a linear and continuous interior trace operator

γint0 : Hs(Ω) → Hs−1/2(∂Ω) such that γint0 w = w|∂Ω for all w ∈ C0(Ω);

see, e.g., [SS11, Theorem 2.6.8]. Let u ∈ H1
∆ := {u ∈ H1(Ω) : −∆u ∈ L2(Ω)}. We define

the interior conormal derivative operator via the first Green’s formula as

γint1 : H1
∆(Ω) → H−1/2(∂Ω) such that,

〈γint1 u , γint0 v〉∂Ω = 〈∇u,∇v〉Ω − 〈−∆u, v〉Ω for all v ∈ H1(Ω);

see, e.g., [AFF+17]. The exterior counterparts γext0 and γext1 are defined analogously as
follows. Let U ⊂ Rd be a bounded Lipschitz domain such that Ω ⊂ U ⊂ Rd. Then, there
exists a corresponding linear and continuous exterior trace operator

γext0 : Hs(U \ Ω) → Hs−1/2(∂Ω) such that,

γext0 w = w|∂Ω for all w ∈ C0(U \Ω).

The exterior conormal derivative operator γext1 : H1
∆(U \ Ω) → H−1/2(∂Ω) is defined by

〈γext1 u , γext0 v〉∂Ω := 〈∇u , ∇v〉U\Ω − 〈−∆u , v〉U\Ω

for all v ∈ H1(U \Ω) with γext0 v = 0 on ∂U . For bounded Ck-domains with k ∈ N∪∞, the
range of the trace operator can even be expanded to 1/2 < s ≤ k; see [SS11, Theorem 2.6.9]
or [Néd01, Chapter 4]. Moreover, accoring to [SS11, Remark 3.1.18 (d)] for piecewise
C∞-boundaries γint0 is continuous for −1/2 < s ≤ s0 with s0 > 1/2. A proof is found
in [BC01, Dau88].

The trace operators give rise to the following jump terms. If a function u admits an interior
and an exterior trace, we define the jump

[u]0 := γext0 u− γint0 u.

Analogously, if u admits an interior and an exterior conormal derivative, the corresponding
jump is given by

[u]1 := γext1 u− γint1 u.

For further details on trace operators, we refer to [SS11, Section 2.6–2.7]. The trace operator
also allows to incorporate boundary conditions to the function spaces. To this end, the
space of H1(Ω)-functions with zero boundary data is defined by

H1
0 (Ω) :=

{
v ∈ H1(Ω) : γint0 v = 0 for a.e. x ∈ ∂Ω

}
.

The definitions of the corresponding discrete function spaces are given in Section 3.6.
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3 Mesh-refinement

The analysis of adaptive algorithms heavily relies on the discretization as well as on the
underlying mesh-refinement strategy. To this end, Section 3.1 and Section 3.2 introduce
discretizations of domains Ω and boundaries ∂Ω. Section 3.3 formulates some essential
properties of the underlying refinement strategy, which are sufficient to prove optimal con-
vergence rates for certain adaptive algorithms in an abstract setting. Depending on the
dimension, we focus on (simplicial) triangulations for the discretization of Ω ⊂ Rd with
d = 2 or d = 3 as well as for boundaries ∂Ω with d = 3. In case of a one dimensional
boundary, the mesh is simply given by a partition. In Section 3.4 and 3.5, we state that the
refinement axioms of Section 3.3 are satisfied for extended 1D bisection (EB) and newest
vertex bisection (NVB). Finally, the discretizations give rise to corresponding discrete sub-
spaces, which are introduced in Section 3.6.

3.1 Triangulations of Ω

Let Ω ⊂ Rd with d = 2, 3 be a polygonal or polyhedral Lipschitz domain. Further, let
conv(S) denote the convex hull of a set S ⊂ Rd. The following definition gives rise to
conforming meshes T Ω on a domain Ω.

Definition 3.1. We call a set T Ω a conforming triangulation of Ω, if the following condi-
tions are satisfied:

i) Each element T ∈ T Ω is a (d+1)-simplex, i.e., there exist d+1 affinely independent
points x1, . . . , xd+1 ∈ Ω such that

T := conv{x1, . . . , xd+1}.

The set of vertices of an element T is denoted by N (T ) := {x1, . . . , xd+1}.

ii) The intersection of two elements is either empty, a joint node, a joint edge (d ≥ 2)
or a joint facet (d = 3), i.e., for two elements T, T ′ ∈ T Ω it holds that

T ∩ T ′ = conv
(
N (T ) ∩ N (T )

)
.

iii) The union of all elements cover Ω, i.e.,

Ω =
⋃

T∈T Ω

T.
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3 Mesh-refinement

Note that Definition 3.1 ii) guarantees that the triangulations do not contain any hanging
nodes. Further, we define the set of all nodes N of a triangulation T Ω by

NT Ω := N (T Ω) :=
⋃

T∈T Ω

N (T ).

For an element T ∈ T Ω and a set of elements U ⊆ T Ω, the element patch is given by

ω(T ) :=
⋃{

T ′ ∈ T Ω : T ′ ∩ T 6= ∅
}
⊆ Ω and ω(U) :=

⋃

T∈U

ω(T ) ⊆ Ω.

Similar, for x ∈ N (T Ω), we define the node patch by

ω(x) := ω({x}) :=
⋃{

T ′ ∈ T Ω : T ′ ∩ {x} 6= ∅
}
⊆ Ω.

Further, it holds that ω(T ) = ω(N (T )). For each mesh T Ω, the (local) mesh-size function
hT Ω ∈ L∞(T Ω) is denoted by

hT Ω(T ) := hT Ω |T := |T |1/d for all T ∈ T Ω,

where | · | denotes the volume (d = 3) or the area (d = 2) of an element. Next, we want to
measure the degeneracy of a given triangulation. This can be done by the shape regularity
constant given by

σ(T ) :=
diam(T )d

|T | with diam(T ) := sup
x,y∈T

|x− y|.

We call T Ω a γ-shape regular triangulation if it holds that

σ(T Ω) := max
T∈T Ω

σ(T ) ≤ γ.

3.2 Triangulations of ∂Ω

For boundary element methods, we additionally need to define regular triangulations of the
boundary ∂Ω. Let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain with piecewise C∞-
boundary ∂Ω; see, e.g., [SS11, Definition 2.2.10]. We suppose that Γ = ∂Ω or ∅ 6= Γ ⊂ ∂Ω
is a relative open set which stems from a Lipschitz dissection ∂Ω = Γ ∪ ∂Γ ∪ (∂Ω \ Γ); see,
e.g., [McL00, p. 99]. Let Tref denote the reference element defined by

Tref :=
{
x ∈ Rd−1 : 0 ≤ x1, . . . , xd−1 ≤ 1 and

d−1∑

j=1

xj ≤ 1
}
,

i.e., Tref = (0, 1) is the open unit interval for d = 2 or Tref = conv{(0, 0), (1, 0), (0, 1)} is
the open Kuhn simplex for d = 3. Analogously to Definition 3.1, we introduce conforming
triangulations on the boundary Γ as follows. A similar definition is also found in [SS11,
Section 4.1.2].
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3.2 Triangulations of ∂Ω

Definition 3.2. We call a set T Γ a regular triangulation of Γ if the following conditions
are satisfied:

i) Each T ∈ T Γ is a subset of Γ and there exists a corresponding bijective element map
gT ∈ C∞(Tref, T ) such that gT (Tref) = T . The set of nodes is given by N (T ) :=
gT (N (Tref)).

ii) For all T, T ′ ∈ T Γ, the intersection T ∩ T ′ is either empty, a joint node (d ≥ 2), or
a joint facet (d = 3).

iii) The union of all elements cover Γ, i.e.,

Γ =
⋃

T∈T Γ

T.

iv) In the case of d = 3, there holds the following: If T ∩ T ′ is a facet, there exist
facets f, f ′ ⊆ ∂Tref of Tref, such that T ∩ T ′ = gT (f) = gT ′(f ′), and the composition
g−1
T ◦ gT ′ : f ′ → f is even affine.

The definitions of the set of nodes and the element patches, are verbatim to Section 3.1.
Similarly, the (local) mesh-size function hT Γ ∈ L∞(T ) is given by

hT Γ(T ) := hT Γ |T := |T |1/(d−1),

where | · | denotes the surface measure of an element. To introduce shape regularity, let
GT (x) := D gT (x)

⊺D gT (x) ∈ R(d−1)×(d−1) be the symmetric Gramian matrix of gT and
λmin(GT (x)) and λmax(GT (x)) its extremal eigenvalues. We call T Γ a γ-shape regular
triangulation, if the following holds:

• For all T ∈ T Γ, the corresponding element maps gT (·) satisfy that

σ(T ) := sup
x∈Tref

( hT Γ(T )2

λmin(GT (x))
+
λmax(GT (x))

hT Γ(T )2

)
≤ γ. (3.1)

• If d = 2, it additionally holds that

σ̃(T Γ) := max
T,T ′∈T Γ

T ′∩T 6=∅

|T |
|T ′| ≤ γ. (3.2)

Note that the Gramian matrix GT (x) is symmetric and positive definite. This implies that
0 ≤ λmin(GT ) ≤ λmax(GT ) and hence, σ(T ) ≥ 0. The additional assumption for d = 2
ensures that the mesh-size of neighboring elements remains comparable.

If Γ is the union of (d−1)-dimensional hyperplanes, e.g., when Γ ⊆ ∂Ω with a polyhedral
domain Ω ⊂ Rd, all element maps gT (·) are affine. The corresponding Gramian matrix GT
of each element map gT (·) is constant and hence, the latter definition generalizes the concept
of γ-shape regularity on C∞ boundaries Γ. For further details, we refer to [AFF+17, SS11].
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3 Mesh-refinement

3.3 Axioms for the mesh-refinement

The next lemma recaps some important properties of γ-shape regular meshes. A proof for
boundary meshes is, e.g., found in [AFF+17, Lemma 2.6].

Lemma 3.3. Let T ∈ {T Ω,T Γ} be a γ-shape regular triangulation. Then, there exists a
constant Cmesh > 0, depending only on γ and in case of a boundary mesh, additionally on
the Lipschitz parametrization of ∂Ω, such that the following assertions i)–ii) hold:

i) For all T, T ′ ∈ T such that T ∩ T 6= ∅, it holds that hT (T ) ≤ CmeshhT (T
′).

ii) The number of elements in an element patch is bounded by Cmesh, i.e., #ω(T ) ≤ Cmesh

for all T ∈ T .

iii) It holds that maxT∈T
diam(T )
hT

≤ Cmesh.

To abbreviate the notation, we introduce the following convention. If (discrete) quantities
are related to some triangulation, this is explicitly stated by use of appropriate indices, e.g.,
h• is the local mesh-size function to the triangulation T•, v• is a generic discrete function
in the corresponding discrete space X•, and ηℓ(·) is the error estimator with respect to the
triangulation Tℓ.

From now on, suppose that T• ∈ {T Ω,T Γ} is a given regular and γ-shape regular tri-
angulation. Further, suppose that refine(·) is a fixed mesh-refinement strategy, such that
given a conforming triangulation T• and M• ⊆ T•, the call T◦ = refine(T•,M•) returns the
coarsest conforming refinement T◦ of T• such that all T ∈ M• have been refined, i.e.,

• T◦ is a conforming triangulation of Ω or Γ,

• for all T ∈ T•, it holds T =
⋃{

T ′ ∈ T◦ : T ′ ⊆ T
}
,

• M• ⊆ T•\T◦,

• the number of elements #T◦ is minimal amongst all other triangulations T ′ which
share the three foregoing properties.

Furthermore, we write T◦ ∈ refine(T•), if T◦ is obtained by a finite number of refinement
steps, i.e., there exists n ∈ N0 as well as a finite sequence T (0), . . . ,T (n) of triangulations
with corresponding sets M(j) ⊆ T (j) such that

• T• = T (0),

• T (j+1) = refine(T (j),M(j)) for all j = 0, . . . , n− 1,

• T◦ = T (n).

In particular, it holds that T• ∈ refine(T•). Suppose that T0 is a given regular and γ-
shape regular initial triangulation. To abbreviate notation, we define the set of all possible
triangulations which can be obtained by refining T0 as T := refine(T0). The analysis of
optimal convergence rates for adaptive algorithms heavily relies on the underlying mesh-
refinement strategy. To deal with this dependency, we formulate the following refinement
axioms.
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3.4 Extended 1D bisection

R1) local mesh-size reduction: Refinement yields a contraction of the local mesh-size
function on refined elements, i.e., there exits 0 < qmesh < 1 such that T◦ ∈ refine(T•)
implies that

h◦|T ≤ qmesh h•|T for all T ∈ T• \ T◦. (3.3)

R2) uniform γ-shape regularity: There exists a constant γref > 0 such that for all
triangulations T• ∈ T it holds that

σ(T•) = max
T∈T•

σ(T ) ≤ γref and σ̃(T•) ≤ γref if d = 2 and
⋃

T• ⊆ Γ. (3.4)

R3) splitting property: Each refined element is split in at least 2 and at most Cson ≥ 2
many sons, i.e., for all T• ∈ T and all M• ⊆ T•, the refined triangulation T◦ =
refine(T•,M•) satisfies that

#(T• \ T◦) + #T• ≤ #T◦ ≤ Cson #(T• \ T◦) + #(T• ∩ T◦). (3.5)

R4) overlay estimate: For all meshes T ∈ T and T•,T◦ ∈ refine(T ), there exists a
common refinement T• ⊕ T◦ ∈ refine(T•) ∩ refine(T◦) ⊆ refine(T ) which satisfies that

#(T• ⊕ T◦) ≤ #T• +#T◦ −#T . (3.6)

R5) mesh-closure estimate: There exists Cmesh > 0 such that for all sequences (Tℓ)ℓ∈N0

of successively refined meshes, i.e., Tℓ+1 := refine(Tℓ,Mℓ) with sets of marked ele-
ments Mℓ ⊆ Tℓ, it holds that

#Tℓ −#T0 ≤ Cmesh

ℓ−1∑

j=0

#Mj for all ℓ ∈ N. (3.7)

R6) permutability of refinement steps: For sequences (Mℓ)
n
ℓ=1 and (M̂ℓ)

m
ℓ=1 of

marked elements with Tj = refine(Tj−1,Mj−1) for all j = 1, . . . , n as well as T̂j =

refine(T̂j−1,M̂j−1) for all j = 1, . . . ,m, it holds that

n⋃

j=0

Mj =
m⋃

j=0

M̂j =⇒ Tn = T̂m. (3.8)

We emphasize that (R6) extends the refinement axioms in [CFPP14], but is necessary for
the analysis of compactly perturbed problems in Chapter 4.

3.4 Extended 1D bisection

First, we consider extended 1D bisection (EB) for refining meshes on a 1-dimensional
boundary Γ ⊆ ∂Ω with Ω ⊂ R2. The algorithm is well known and used, e.g., in [FLP08,
AFF+13, EFLFP09, EFGP13]. For sake of completeness we include the formulation of the
algorithm from [AFF+13].
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3 Mesh-refinement

Algorithm 3.4 (EB). Input: Mesh T•, set of marked elements M(0)
• := M• ⊆ T• and

i := 0.

(i) Define U (i) :=
⋃
T∈M

(i)
•

{
T ′ ∈ T• \M(i)

• : T ∩ T ′ 6= ∅ and h•|T ′ > σ(T0)h•|T
}
.

(ii) If U (i) 6= ∅, define M(i+1)
• := M(i)

• ∪ U (i), increase i→ i+ 1, and goto (i).

(iii) If U (i) = ∅, bisect all marked elements T ∈ M(i)
• to obtain T◦.

Output: Refined mesh T◦, with T• \ T◦ = M(i)
• .

In addition to simple bisection of the marked elements, Step (i) and Step (ii) of Algo-
rithm 3.4 guarantee that the ratio of the local mesh-size of neighboring elements remains
bounded. In particular, this implies (R2).

3.4.1 Verification of the axioms

First, (R1) is shown in Lemma 3.5 (Section 3.5.1). The remaining properties of EB are
proved in [AFF+13, Theorem 2.3]. [AFF+13, Theorem 2.3 (i)] guarantees that σ(T•) ≤
2σ(T0) for all T• ∈ T. This implies (R2) with γ := 2σ(T0). Since EB uses bisection, (R3)
follows directly from the definition of the refinement strategy with Cson = 2. Further, the
proofs of axiom (R4) and (R5) are found in of [AFF+13, Theorem 2.3 (ii)–(iii)]. Note that
NVB is a binary refinement rule. Hence, the order of refinement does not matter which
implies (R6).

3.5 Newest Vertex bisection

As second mesh-refinement strategy, we discuss newest vertex bisection (NVB); see, e.g.,
[Ste07] for d = 2 and [Ste08b] for d = 3. We use 2D NVB for refining triangulations of
Ω ⊂ R2 as well as for surface triangulations on Γ ⊆ ∂Ω with Ω ⊂ R3. Further, 3D NVB
is used for refinement of simplicial triangulations on Ω ⊂ R3. A heuristic for refinement
of an element with 2D NVB is illustrated in Figure 3.1. For an exact formulation we refer
to [Ste07] or [Ste08b] in the 3D case.

3.5.1 Verification of the axioms

First, we prove (R1) for surface triangulations of Γ ⊆ ∂Ω where Ω ⊆ Rd with d = 2, 3.
Note that in case of meshes on the boundary, the bisection of an element with EB or NVB
is understood in the following way. Let T ∈ T• be a marked element with element map
gT (Tref) = T . Bisection of the reference element Tref (in case of a triangle according to
2D-NVB (Figure 3.1)) produces sons T 1

ref, . . . , T
k
ref ⊆ Tref. Then, with the element map gT ,

we obtain two sons T1, . . . , Tn ⊂ T with T =
⋃k
i=1 Ti and Ti = gT (T

i
ref) for all i = 1, . . . , k.

We obtain the following lemma.

Lemma 3.5. There exist 0 < qmesh < 1, such that for all T•,T◦ ∈ T with T◦ ∈ refine(T•) it
holds that h◦|T ≤ qmesh h•|T on all T ∈ T• \ T◦. In particular, there holds reduction of the
local mesh-size (R1).
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3.5 Newest Vertex bisection

Figure 3.1: For each triangle T ∈ T•, there is one fixed reference edge, indicated by the
double line (top left). If T is marked for refinement, we mark its reference
edge. Then, refinement of T is done by bisecting the reference edge, where its
midpoint becomes a new vertex of the refined triangulation T◦. The reference
edges of the son triangles are opposite to this newest vertex (bottom left). To
avoid hanging nodes, one proceeds as follows: We assume that certain edges
of T , but at least the reference edge, are marked for refinement (top). Using
iterated newest vertex bisection, the element is then split into 2, 3, or 4 son
triangles (bottom).

Figure 3.2: Newest vertex bisection does only lead (up to similarity) to a finite number of
triangles. Above, the different colors represent similarity classes. Starting with
a triangle (left), iterative use of NVB does only create (up to similarity) new
triangles in the first two steps (mid left and mid right). Hence in following
steps, no new similarity classes are generated.

Proof. To prove the lemma, we argue by contradiction. To that end, let (T n
• )n∈N, (T n

◦ )n∈N ⊂
T, be sequences of refinements with T n

◦ ∈ refine(T n
• ) and elements T n• ∈ T n

• \ T n
◦ as well

as T n◦ ∈ T n
◦ \ T n

• such that

T n◦ $ T n• as well as
|T n• |
|T n◦ |

→ 1 as n→ ∞.

This implies that |T n• \ T n◦ |/|T n• | → 0 as n → ∞. Further, for all n ∈ N there exists
T ∈ T0 such T n◦ $ T n• ⊆ T . We obtain a corresponding sequence T̃ n◦ $ T̃ n• ⊆ Tref with

gT (T̃
n
• ) = T n• as well as gT (T̃

n
◦ ) = T n◦ . Since bisection is done at first on the reference

element, it holds that |T̃ n◦ | ≤ 1/2 |T̃ n• | for all n ∈ N0. Then, γ-shape regularity implies that
detGT (x) ≃ (h•(T ))

2(d−1) = |T |2 for all x ∈ Tref. This reveals the contradiction

1

2
≤ |T̃ n• \ T̃ n◦ |

|T̃ n• |
≃
∫
T̃n• \T̃n◦

|detGT (t)|1/2 dt
∫
T̃n•

|detGT (t)|1/2 dt
=

|T n• \ T n◦ |
|T n• |

n→∞−→ 0,

and concludes the proof.

In case of meshes on domains Ω for d ≥ 2 there holds (3.3) with qmesh = 2−1/d and
hence (R1). For a proof we refer to [CKNS08, Ste07]. Figure 3.2 illustrates for d = 2, that
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3 Mesh-refinement

(up to similarity) only a finite number of triangles can be constructed during refinement
of an initial mesh T0. A similar result for d = 3 and a rigorous proof of (R2) for arbitrary
d ≥ 2 can be found in [Ste08b].

The splitting property (R3) is proved in [GSS14] with 2 ≤ Cson <∞, where Cson depends
only on T0 and d. For d = 2, it holds Cson = 4 (see Figure 3.1).

The proof of the overlay estimate (R4) is found in [CKNS08, Ste07]. The mesh-closure
estimate (R5) has first been proved for d = 2 in [BDD04] and later for d ≥ 2 in [Ste08b].
Both works [BDD04, Ste08b] require an additional admissibility assumption on the initial
mesh T0. While for d = 2, [BDD04, Section 2.2] gives a proof that every conforming mesh
admits a labeling such that the admissibility condition is satisfied, a result for d = 3 is still
missing. On the other hand, [KPP13] shows that the admissibility condition is unnecessary
for d = 2.

Note that NVB is a binary refinement rule. Hence, the order of refinement does not
matter which implies (R6), see [Ste08b].

3.5.2 Other refinement strategies

Red-green-blue refinement (see, e.g., [Ver13]), fails (R4) even for d = 2; see [Pav10, Satz
4.15] (in German) or [Fei15] for a counterexample. For red-refinement with first-order hang-
ing nodes, the validity of (R3)–(R4) is shown in [BN10]. For mesh-refinement strategies
in isogeometric analysis, we refer to [MP15] for T-splines and to [BGMP16, GHP17] for
(truncated) hierarchical B-splines. A rigorous proof of (R1)–(R6) for (truncated) hierar-
chical B-splines is also found in [Gan17a]. For further details on mesh-refinement strategies
which satisfy (R3)–(R4), we refer to [BN10, MP15, Fei15] and to the discussion in [CFPP14,
Section 2.5].

3.6 Discrete function spaces

In this section, we introduce discrete function spaces on domains Ω and boundaries Γ. To
this end, let T Ω

• be a regular triangulation of Ω. For some fixed polynomial degree p ≥ 1,
let

SpΩ(T Ω
• ) :=

{
V• ∈ C(Ω) : ∀T ∈ T Ω

• V•|T is a polynomial of degree ≤ p
}

be the usual finite element space of globally continuous piecewise polynomials with the
inclusion SpΩ(T Ω

• ) ⊂ H1(Ω). The corresponding conforming subspace of H1
0 (Ω) will be

denoted by SpΩ,0(T Ω
• ) := SpΩ(T Ω

• ) ∩H1
0 (Ω).

In case of discrete spaces on the boundary, let T Γ
• be a regular triangulation of Γ. For a

fixed p ≥ 0, we define the space of (discontinuous) piecewise polynomials by

Pp
Γ(T Γ

• ) :=
{
Ψ• ∈ L∞(Γ) : ∀T ∈ T Γ

• , Ψ• ◦ gT is a polynomial of degree ≤ p
}
.

Further, let SpΓ(T Γ
• ) := Pp

Γ(T Γ
• ) ∩H1(Γ) resp. S̃pΓ(T Γ

• ) := Pp
Γ(T Γ

• ) ∩ H̃1(Γ) be the space of
continuous piecewise polynomials. We emphasize the following (compact) inclusions

Pp
Γ(T Γ

• ) ⊂ L2(Γ) ⊂ H̃−1/2(Γ) and S̃pΓ(T Γ
• ) ⊂ H̃1(Γ) ⊂ H̃1/2(Γ); (3.9)
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3.6 Discrete function spaces

see, e.g., [AFF+17]. In the case of Γ = ∂Ω, it even holds that S̃pΓ(T Γ
• ) = SpΓ(T Γ

• ) ⊂ H1(Γ).
To shorten notation and if its clear from the context, we further omit the additional index
and write Sp(T•) instead of SpΩ(T Ω

• ) or SpΓ(T Γ
• ) as well as Sp0 (T•) instead of SpΩ,0(T Ω

• ).

19





4 Abstract theory for compactly perturbed
problems

4.1 State of the art and outline

In recent years, the analysis of convergence and optimal convergence behavior of adaptive
finite element methods (AFEM) as well as adaptive boundary element methods (ABEM)
has matured. We refer to [Dör96, MNS00, BDD04, Ste07, CKNS08, FFP14, CFPP14] for
some milestones for AFEM and the works [FFK+14, FFK+15, FKMP13, AFF+17, Gan13]
for ABEM. In a more general case of compactly perturbed elliptic problems, existing results
have the limitation that the initial mesh has to be sufficiently fine see, e.g., [MN05, CN12,
FFP14] for AFEM. In the mentioned references, only problems satisfying the Lax–Milgram
theorem have been treated. On the other hand, numerical examples in the engineering
literature suggest that adaptive mesh-refinement for finite element methods performs well
even if the initial mesh is coarse; see, e.g., [SH96, BI98, BI99] in the case AFEM of the
Helmholtz equation.

In this chapter, we introduce a complete abstract setting in the spirit of [CFPP14].
This allows to formulate an adaptive Algorithm 4.4 and prove convergence with optimal
algebraic rate, without limitations on the initial mesh. The abstract framework is based
on some essential properties of the underlying error estimator and mesh-refinement, and
covers in particular AFEM as well as ABEM.

Given an initial triangulation T0, a typical adaptive algorithm (1.2) generates a sequence
of refined meshes Tℓ with corresponding nested spaces Xℓ ⊆ Xℓ+1 ⊂ H for all ℓ ≥ 0.
We stress that unlike the prior works [MN05, CN12, FFP14], Algorithm 4.4 will not be
given any information on whether the current mesh is sufficiently fine to allow for a unique
solution. In particular, we do not assume that the given initial mesh T0 and, in fact, any
adaptive mesh Tℓ generated by Algorithm 4.4 is sufficiently fine. Independent of the missing
a priori information, we derive similar results as for uniformly elliptic problems, see, e.g.,
[CKNS08, FFP14, CFPP14] and the references therein. Following some ideas of [FFP14],
we prove convergence (Proposition 4.9), linear convergence (Theorem 4.14), and optimal
algebraic convergence rates (Theorem 4.21). The main results of this chapter are based on
the recent own article [BHP17].

Outline of chapter. Section 4.2 introduces the model problem and provides the func-
tional analytic framework of the a posteriori analysis. The underlying error estimator and
the precise formulation of the adaptive algorithm are given in Section 4.3–4.4. Section 4.5
adapts [CFPP14] to the present setting and formulates the necessary estimator axioms.
Utilizing the estimator as well as the refinement axioms from Chapter 3, Section 4.6 gives
a first (plain-) convergence result for the adaptive algorithm. Linear convergence is shown
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4 Abstract theory for compactly perturbed problems

in Section 4.7, which also addresses the validity of the Céa lemma. In Section 4.8.1, we in-
troduce approximation classes with respect to the error estimator in the spirit of [CFPP14]
and discuss their connection to other definitions using the total error (see e.g., [CKNS08]).
Finally, we conclude the chapter with the proof of optimal algebraic convergence rates in
Section 4.8.

4.2 Abstract setting

The model problem is set in the following abstract framework. Let Ω ⊂ Rd with d = 2, 3 be
a bounded Lipschitz domain with polyhedral, or in case of boundary elements, piecewise
C∞-boundary ∂Ω. Let H denote a separable Hilbert space over K ∈ {R,C} with norm
‖ · ‖H. Further, suppose that a(· , ·) : H ×H → K is a hermitian, continuous, and elliptic
sesquilinear form on H, i.e., there exists some constant α > 0 such that

α ‖v‖2H ≤ a(v , v) for all v ∈ H. (4.1)

Since the sesquilinear form a(· , ·) is elliptic, the a(· , ·)-induced energy norm ||| v |||2 :=
a(v , v) is an equivalent norm on H, i.e., ||| v ||| ≃ ‖v‖H for all v ∈ H.

Let H∗ denote the dual space of H, and let 〈· , ·〉 denote the corresponding duality
pairing. Suppose that C : H → H∗ is a compact linear operator and f ∈ H∗. We consider
the following weak model problem: Given f ∈ H∗ find u ∈ H such that

b(u , v) := a(u , v) + 〈Cu , v〉 = 〈f , v〉 for all v ∈ H. (4.2)

We suppose that (4.2) admits a unique solution which is usually proved by the Fredholm
alternative. Let T0 be a given regular initial mesh and suppose that refine(·) is a fixed
refinement strategy satisfying the refinement axioms (R1)–(R6) of Chapter 3. For each
triangulation T• ∈ T := refine(T0), let X• ⊆ H denote the corresponding conforming
finite-dimensional subspace. Further, suppose that refinement of the underlying meshes
T◦ ∈ refine(T•) leads to nestedness X• ⊆ X◦ of the corresponding subspaces. Then, the
Galerkin formulation of (4.2) reads as: Given f ∈ H∗, find U• ∈ X•, such that

b(U•, V•) = 〈f , V•〉 for all V• ∈ X•. (4.3)

We additionally assume that iterated uniform mesh-refinement leads to a dense subspace
of H, i.e., for T̂0 := T0 and the inductively defined sequence T̂ℓ+1 := refine(T̂ℓ,M̂ℓ) with

M̂ℓ ⊆ T̂ℓ for all ℓ ∈ N0, it holds the following: If #
{
ℓ ∈ N0 : M̂ℓ = T̂ℓ

}
= ∞ (i.e., there

are infinitely many steps that perform uniform refinement), then H =
⋃∞
ℓ=0 X̂ℓ. Note that

the latter assumption is satisfied in most generic situations and can be guaranteed by use
of suitable discrete spaces, see e.g., Chapter 5–6.

4.2.1 Existence of discrete solutions

In general, (4.3) may fail to allow for a (unique) solution U• ∈ X•. However, existence
and uniqueness are guaranteed if the corresponding mesh T• is sufficiently fine (see Corol-
lary 4.2), e.g.,

‖h•‖L∞(Ω) ≤ H ≪ 1.
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Therefore, if (4.3) does not allow for a unique solution U• ∈ X•, we employ one step of
uniform refinement.

The next proposition is an improved version of [SS11, Theorem 4.2.9]. It guarantees the
existence and uniqueness of discrete solutions U• ∈ X• for sufficiently fine meshes T•. Even
though the result appears to be well-known, we did not find the precise statement in the
literature. We note that a similar result can be found in [BS08, Theorem 5.7.6], where
additional regularity assumptions for the dual problem are required. Instead, our proof
below proceeds without considering the dual problem, and hence no additional regularity
assumptions are needed.

Proposition 4.1. Suppose well-posedness of (4.2), i.e.,

∀w ∈ H
[
w = 0 ⇐⇒

(
∀v ∈ H b(w , v) = 0

)]
. (4.4)

Suppose that (Xℓ)ℓ∈N0 is a dense sequence of discrete subspaces Xℓ ⊂ H, i.e.,

lim
ℓ→∞

min
Vℓ∈Xℓ

‖v − Vℓ‖H = 0 for all v ∈ H. (4.5)

Then, there exists some index ℓ• ∈ N0 such that for all discrete subspaces X• ⊂ H with
X• ⊇ Xℓ•, the following holds: There exists β > 0 which depends only on Xℓ•, such that the
inf-sup constant of X• is uniformly bounded from below, i.e.,

β• := inf
W•∈X•\{0}

sup
V•∈X•\{0}

|b(W• , V•))|
‖W•‖H‖V•‖H

≥ β > 0. (4.6)

In particular, the discrete formulation (4.3) admits a unique solution U• ∈ X•. Moreover,
there holds uniform validity of the Céa lemma, i.e., there is a constant C > 0 which depends
only on b(·, ·) and β but not on X•, such that

‖u− U•‖H ≤ C min
V•∈X•

‖u− V•‖H. (4.7)

If the spaces Xℓ are nested, i.e., Xℓ ⊆ Xℓ+1 for all ℓ ∈ N0, the latter guarantees convergence
‖u− Uℓ‖H → 0 as ℓ→ ∞.

Proof. Suppose well-posedness (4.4) of (4.2). Ellipticity (4.1) of a(· , ·) combined with the
Fredholm alternative imply existence and uniqueness of a solution u of (4.2) for all f ∈ H∗;
see [SS11, Theorem 4.2.7]. Let X• be an arbitrary discrete subspace of H with dual space
X ∗
• . Then, the bilinear form b(· , ·) induces the linear and continuous operator

B• : X• → X ∗
• , 〈B•W• , V•〉 := b(W• , V•) for all V•,W• ∈ X•.

For convenience of the reader, we split the remainder of the proof into four steps.

Step 1: Validity of (4.7). Since X• is finite dimensional and since we use the same
discrete ansatz and test space, well-posedness of the discrete problem (4.3) is equivalent to
the discrete inf-sup condition

β• = inf
W•∈X•\{0}

sup
V•∈X•\{0}

|b(W• , V•)|
‖W•‖H‖V•‖H

= inf
W•∈X•\{0}

‖B•W•‖X ∗
•

‖W•‖H
> 0. (4.8)
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Note that (4.8) implies that B• is injective. Then, the finite dimension of X•, i.e., dimX• =
dimX ∗

• < ∞ implies surjectivity. Moreover according to [Dem06, Theorem 3], there holds
for arbitrary W• ∈ X• that

β• ‖U• −W•‖H ≤ sup
V•∈X•\{0}

|b(U• −W• , V•)|
‖V•‖H

= sup
V•∈X•\{0}

|b(u−W• , V•)|
‖V•‖H

≤ ‖B•‖‖u−W•‖H.

The triangle inequality yields that

‖u− U•‖H ≤ ‖u−W•‖H + ‖W• − U•‖H ≤
(
1 +

‖B•‖
β•

)
‖u−W•‖H.

Since the latter estimate holds for arbitrary functions W• ∈ X•, we obtain inequality (4.7)
with

C := 1 +
M

β•
, where ‖B•‖ ≤M := sup

v∈H\{0}
w∈H\{0}

|b(w , v)|
‖w‖H‖v‖H

.

Step 2: It remains to prove the following assertion:

∃β > 0∃ℓ• ∈ N0 ∀X• ⊂ H with X• ⊇ Xℓ• inf
W•∈X•\{0}

‖B•W•‖X ∗
•

‖W•‖H
≥ β. (4.9)

We will prove (4.9) by contradiction. Let us assume that (4.9) is wrong and hence

∀β > 0 ∀ℓ• ∈ N0 ∃X• ⊂ H with X• ⊇ Xℓ• inf
W•∈X•\{0}

‖B•W•‖X ∗
•

‖W•‖H
< β. (4.10)

For each ℓ• = ℓ ≥ 0 and β = 1/ℓ, we can thus find a discrete subspace X̂ℓ = X• ⊂ H as

well as an element Ŵℓ ∈ X̂ℓ such that

X̂ℓ ⊇ Xℓ, ‖Ŵℓ‖H = 1, and ‖B̂ℓŴℓ‖X̂ ∗
ℓ
< 1/ℓ. (4.11)

Since the sequence Ŵℓ is bounded, without loss of generality, we may assume weak conver-
gence Ŵℓ ⇀ w ∈ H as ℓ→ ∞.

Step 3: There holds w = 0. Let P̂ℓ : H → X̂ℓ be the orthogonal projection onto X̂ℓ
and v ∈ H. Weak convergence Ŵℓ ⇀ w as well as b(· , v) ∈ H∗ imply that b(Ŵℓ , v) →
b(w , v) as ℓ → ∞. Moreover, we employ ‖Ŵℓ‖H = 1 and ‖P̂ℓv‖H ≤ ‖v‖H to estimate

|b(Ŵℓ , v)| ≤ |b(Ŵℓ , P̂ℓv)|+ |b(Ŵℓ , v − P̂ℓv)| ≤ |〈B̂ℓŴℓ , P̂ℓv〉|+ |b(Ŵℓ , v − P̂ℓv)|
≤ ‖B̂ℓŴℓ‖X̂ ∗

ℓ
‖v‖H +M ‖v − P̂ℓv‖H.
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Recall density (4.5) and nestedness Xℓ ⊆ X̂ℓ ⊂ H. With the orthogonal projection, this
implies that

‖v − P̂ℓv‖H = min
V̂ℓ∈X̂ℓ

‖v − V̂ℓ‖H ≤ min
Vℓ∈Xℓ

‖v − Vℓ‖H ℓ→∞−−−→ 0.

Recall that ‖B̂ℓŴℓ‖X̂ ∗
ℓ
≤ 1/ℓ form (4.11). With this, we thus conclude that |b(Ŵℓ , v)| →

0 as ℓ → ∞. Altogether, we obtain that b(w , v) = 0 for all v ∈ H. Hence, well-
posedness (4.4) yields that w = 0.

Step 4: Assumption (4.10) yields a contradiction so that (4.9) follows. Recall

that ‖Ŵℓ‖H = 1. Ellipticity of a(· , ·) and the definition of b(· , ·) yield that

‖Ŵℓ‖2H
(4.1)

. a(Ŵℓ , Ŵℓ) ≤ |b(Ŵℓ , Ŵℓ)|+ |〈CŴℓ , Ŵℓ〉| ≤ ‖B̂ℓŴℓ‖X̂ ∗
ℓ
+ ‖CŴℓ‖H∗ .

Recall that compact operators turn weak convergence into strong convergence. Hence
Ŵℓ ⇀ w = 0 in H implies that ‖CŴℓ‖H∗ → 0 as ℓ → ∞. Together with ‖B̂ℓŴℓ‖X̂ ∗

ℓ
≤ 1/ℓ,

we thus obtain the contradiction 1 = ‖Ŵℓ‖H → 0 as ℓ→ ∞.

We emphasize, that the proof of Proposition 4.1 heavily relies on definiteness of bilinear
form b(· , ·) on the Hilbert space H (see assumption (4.4)). Usually, for adaptive algorithms
there holds

⋃∞
ℓ=0 Xℓ 6= H and hence well-posedness of the discrete limit-space cannot be

guaranteed. In order to overcome this difficulty, we have to additionally ensure the definite-
ness of the discrete limit-space (see Section 4.5.1 and Axiom (E5)), which can be guaranteed
by modifying the marking strategy in Algorithm 4.4 (see Proposition 4.7).

Recall that uniform mesh-refinement leads to a sequence of dense subspacesH =
⋃∞
ℓ=0 X̂ℓ.

Under the abstract assumptions, the following statement holds as an immediate conse-
quence of Proposition 4.1.

Corollary 4.2. Let T̂0 := T0 and T̂ℓ+1 := refine(T̂ℓ,M̂ℓ) with M̂ℓ ⊆ T̂ℓ for all ℓ ∈ N0.

Suppose that #
{
ℓ ∈ N0 : M̂ℓ = T̂ℓ

}
= ∞, i.e., uniform refinement is performed infinitely

many times. Then, there exists m ∈ N0 and β > 0 such that for all discrete spaces X• ⊂ H
with X• ⊇ X̂m, it holds the following:

• The related inf-sup constant (4.6) satisfies β• ≥ β > 0.

• X• admits a unique solution U• ∈ X• of (4.3) which is quasi-optimal in the sense of
inequality (4.7).

• For ℓ ≥ m, the Galerkin solutions Ûℓ ∈ X̂ℓ yield convergence lim
ℓ→∞

‖u− Ûℓ‖H = 0.

4.2.2 Ellipticity of a(· , ·)

The work [FFP14] considers problems, where the left-hand side of (4.2) is strongly elliptic
on H = H1

0 (Ω) in the following sense: There exists α̃ > 0 such that

α̃ ‖v‖2H ≤ Re
(
a(v, v) + 〈C v , v〉

)
for all v ∈ H. (4.12)

25



4 Abstract theory for compactly perturbed problems

The next lemma shows that the stronger assumption (4.12) already implies that a(· , ·) is
elliptic in the sense of (4.1). Hence, the given abstract framework generalizes the analysis
of [FFP14].

Lemma 4.3. Let α̃ > 0 and a(· , ·) such that a(w , w) > 0 for all w ∈ H \ {0} and (4.12)
is satisfied. Then there exists a constant α > 0 with

α ‖v‖2H ≤ a(v , v) for all v ∈ H.

Proof. We argue by contradiction, i.e., we assume the following: For all ε > 0, there is
some v ∈ H with |a(v , v)| < ε ‖v‖2H. Choosing ε = 1/n, we obtain sequences (vn)n∈N and
(wn)n∈N in H with

|a(vn , vn)| <
‖vn‖2H
n

as well as wn :=
vn

‖vn‖H
.

By definition, wn is bounded. Without loss of generality, we may thus suppose weak
convergence wn ⇀ w in H. Weakly lower semicontinuity yields that

|a(w,w)| ≤ lim inf
n→∞

|a(wn , wn)| = 0

and hence w = 0. Compactness of the operator C implies strong convergence ‖Cwn‖H∗ → 0
as n→ ∞. Finally, ellipticity (4.12) gives

α̃ = α̃ ‖wn‖2H ≤ Re
(
a(wn , wn) + 〈Cwn , wn〉

)
< 1/n+ ‖Cwn‖H∗

n→∞−−−→ 0.

This contradicts α̃ > 0 and concludes the proof.

4.3 A posteriori error estimator

In order to define a suitable a posteriori error estimator, we have to ensure unique solvability
of the discrete problem (4.3) for the underlying meshes T• ∈ T and corresponding discrete
subspaces X• ⊂ H.

To this end, suppose that for all T ∈ T• ∈ T such that a unique discrete solution
to (4.3) exists, there exists an associated refinement indicator with η•(·) : T• → R such
that η•(T ) ≥ 0. The related a posteriori error estimator is given by

η• := η•(T•), where

η•(U•) :=
( ∑

T∈U•

η•(T )
2
)1/2

for all subsets U• ⊆ T•. (4.13)

In order to prove optimal rates of convergence of adaptive finite element or boundary
element schemes, we have to ensure additional properties of the error estimator. These so
called axioms of adaptivity from [CFPP14] play an essential role in the analysis later on
and are discussed in Section 4.5. We also refer to the Chapters 5–7 for different applications
of the weighted-residual error estimator concerning finite and boundary elements.

26



4.4 Adaptive algorithm

4.4 Adaptive algorithm

Based on the a posteriori error estimator from the previous section, we consider the follow-
ing adaptive algorithm.

Algorithm 4.4. Input: Parameters 0 < θ ≤ 1, Cmark ≥ 1, initial triangulation T0 and
parameters U−1 := 0 ∈ X0 and η−1 := 1.

Adaptive loop: For all ℓ = 0, 1, 2, . . . , iterate the following steps (i)–(v):

(i) If (4.3) does not admit a unique solution in Xℓ:
– Define Uℓ := Uℓ−1 ∈ Xℓ and ηℓ := ηℓ−1,

– Let Tℓ+1 := refine(Tℓ,Tℓ) be the uniform refinement of Tℓ,
– Increase ℓ→ ℓ+ 1, and continue with Step (i).

(ii) Else compute the unique solution Uℓ ∈ Xℓ to (4.3).

(iii) Compute the corresponding indicators ηℓ(T ) for all T ∈ Tℓ.

(iv) Determine a set Mℓ ⊆ Tℓ of up to the multiplicative constant Cmark minimal cardi-
nality such that

θ η2ℓ ≤
∑

T∈Mℓ

ηℓ(T )
2. (4.14)

(v) Compute Tℓ+1 := refine(Tℓ,Mℓ), increase ℓ by 1, and continue with Step (i).

Output: Sequences of successively refined triangulations Tℓ, discrete solutions Uℓ, and
corresponding estimators ηℓ.

Remark 4.5. • Apart from Step (i), Algorithm 4.4 is the usual adaptive loop based on
the Dörfler marking strategy [Dör96] in Step (iv) as used, e.g., in [CKNS08, FFP14,
CFPP14] for AFEM and in [FFK+14, FFK+15, FKMP13] for ABEM.

• For Cmark = 1, the algorithmic construction of a set M′
ℓ with minimal cardinality which

satisfies, for instance, the Dörfler criterion requires sorting of the refinement indicators
and thus results in logarithmic-linear complexity. Instead, Stevenson [Ste07] proposes an
approximate sorting based on binning. This allows the algorithmic construction of some
set Mℓ in real linear complexity which satisfies the Dörfler criterion and has minimal
cardinality up to the multiplicative factor Cmark = 2.

The following lemma exploits the validity of Proposition 4.1 for uniform mesh-refinement
(Corollary 4.2) and recaps some important properties of the sequence of discrete solutions
produced by Algorithm 4.4.

Lemma 4.6. Let (Uℓ)ℓ∈N0 be the sequence of discrete solutions generated by Algorithm 4.4.
Then, there exists a minimal index ℓ0 ∈ N0 such that the discrete model problem (4.3)
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4 Abstract theory for compactly perturbed problems

• does not admit a unique solution in Xℓ for 0 ≤ ℓ < ℓ0,

• but admits a unique solution Uℓ0 ∈ Xℓ0 .

In particular, the corresponding mesh Tℓ0 is the ℓ0-times uniform refinement of T0. Fur-
thermore, there exists ℓ1 ∈ N0, such that (4.3) admits a unique solution Uℓ ∈ Xℓ for all
steps ℓ ≥ ℓ1 of Algorithm 4.4.

Proof. Because of Corollary 4.2, the uniform refinement in Step (i) of Algorithm 4.4 will
only be performed at most finitely many times. This concludes the proof.

4.5 Axioms of adaptivity

To prove convergence with optimal algebraic rates for Algorithm 4.4, we rely on the
following axioms of adaptivity which are slightly generalized when compared to those
of [CFPP14], since we always have to suppose solvability of the related discrete prob-
lem (4.3).

E1) stability on non-refined element domains: There exists Cstb > 0 such that for
all T• ∈ T and all T◦ ∈ refine(T•), the following holds: Provided there exist unique
discrete solutions U• ∈ X• and U◦ ∈ X◦, it holds that

∣∣η◦(T◦ ∩ T•)− η•(T◦ ∩ T•)
∣∣ ≤ Cstb ‖U◦ − U•‖H.

E2) reduction on refined element domains: There exist Cred > 0 and 0 < qred < 1
such that for all T• ∈ T and all T◦ ∈ refine(T•), the following holds: Provided there
exist unique discrete solutions U• ∈ X• and U◦ ∈ X◦, it holds that

η◦(T◦\T•)2 ≤ qred η•(T•\T◦)2 + C2
red ‖U◦ − U•‖2H.

E3) reliability: There exists C̃rel > 0 such that for all T• ∈ T the following holds:
Provided there exists a unique discrete solutions U• ∈ X•, it holds that

‖u− U•‖H ≤ C̃rel η•.

E4) discrete reliability: There exists Crel > 0 such that for all T• ∈ T and all T◦ ∈
refine(T•), there exists a set R•,◦ ⊆ T• such that the following holds: Provided there
exist unique discrete solutions U• ∈ X• and U◦ ∈ X◦, it holds that

‖U◦ − U•‖H ≤ Crel β
−1
◦ η•(R•,◦) as well as T• \ T◦ ⊆ R•,◦,

with #R•,◦ ≤ Crel#(T• \ T◦), where β◦ > 0 is the inf-sup constant (4.6) associated
with X◦.
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4.5 Axioms of adaptivity

4.5.1 Definiteness on the “discrete” limit space (E5)

We need an additional assumption (see (E5) below) which goes beyond the axioms of
adaptivity in [CFPP14]. To this end, let us define the “discrete” limit space X∞ :=

⋃∞
ℓ=0Xℓ.

Because of nestedness Xℓ ⊆ Xℓ+1 for all ℓ ≥ 0, X∞ is a closed subspace of H and hence a
Hilbert space.

E5) definiteness of b(·, ·) on X∞: For all w ∈ X∞, the following implication holds: If
b(w, v) = 0 for all v ∈ X∞, then w = 0.

While (E1)–(E4) rely only on the a posteriori error estimation strategy, the property (E5)
involves the “discrete” limit space X∞ =

⋃∞
ℓ=0Xℓ generated by Algorithm 4.4 and is hence

less accessible for the numerical analysis. Clearly, (E5) is satisfied if b(·, ·) is elliptic (4.12).
Moreover, note that well-posedness (4.4) of (4.2) implies that (E5) is satisfied, if X∞ = H.
In many generic situations, the identity X∞ = H is automatically satisfied; see Section 5.2.1
in case of AFEM and Section 6.5.1 in case of ABEM.

The next proposition shows that ‖hℓ‖L∞(Ω) → 0 and hence (E5) with X∞ = H can
also be guaranteed by employing an expanded Dörfler marking strategy in Step (iv) of
Algorithm 4.4. We stress that this does not affect optimal convergence behavior in the
sense of Theorem 4.21 below.

Proposition 4.7 (expanded Dörfler marking). Suppose 0 < θ ≤ 1. Employ the notation
of Algorithm 4.4. Let C ′

mark > 0. For all ℓ ∈ N0, we suppose that the set Mℓ ⊆ Tℓ in
Step (iv) of Algorithm 4.4 is selected as follows:

• Let M′
ℓ ⊆ Tℓ be a set of up to the multiplicative constant C ′

mark minimal cardinality
such that θ η2ℓ ≤ ηℓ(M′

ℓ)
2.

• Suppose that Tℓ = {T1, . . . , TN} is sorted such that |T1| ≥ |T2| ≥ · · · ≥ |TN |.

• With arbitrary 1 ≤ n ≤ #M′
ℓ, define Mℓ := M′

ℓ ∪ {T1, . . . , Tn}.
Then, Mℓ ⊆ Tℓ is a set of up to the multiplicative constant Cmark := 2C ′

mark minimal cardi-
nality such that the usual Dörfler marking criterion θ η2ℓ ≤ ηℓ(Mℓ)

2 is satisfied. Moreover,
Algorithm 4.4 with the expanded marking guarantees ‖hℓ‖L∞(Ω) → 0 as ℓ → ∞. In partic-
ular, assumption (E5) is satisfied with X∞ = H.

Proof. The claims onMℓ are obvious. Recall that uniform refinement leads to a sequence of
triangulations (T̂ℓ)ℓ∈N0 with a corresponding dense sequence of discrete subspaces (X̂ℓ)ℓ∈N0 .
Let (Tℓ)ℓ∈N0 denote the sequence of meshes, generated by Algorithm 4.4 with the expanded
marking. Axiom (3.3) guarantees that refinement of an element leads to a contraction of
the local mesh-size, i.e., hℓ+1|T ≤ qmesh hℓ|T for all T ∈ Mℓ ⊆ Tℓ \Tℓ+1. Since each mesh Tℓ
is a finite set and each step of the adaptive algorithm guarantees that (at least) the element
T ∈ Tℓ with the largest size |T | ≃ (hℓ|T )d is refined, this implies necessarily ‖hℓ‖L∞(Ω) → 0
as ℓ→ ∞.

Further, (R6) implies that the order of refinement does not matter. Hence, for all T̂j ∈
(T̂ℓ)ℓ∈N0 there exits a mesh Tk ∈ (Tℓ)ℓ∈N0 such that Tk ∈ refine(T̂j). Nestedness of the

corresponding subspaces implies Xk ⊇ X̂j. Density of (X̂ℓ)ℓ∈N0 implies that H =
⋃∞
ℓ=0 Xℓ

and concludes the proof.

29



4 Abstract theory for compactly perturbed problems

The following technical lemma exploits the validity of (E5) and collects some essential
properties of the meshes and solutions generated by Algorithm 4.4.

Lemma 4.8. Suppose (E1), (E2), (E4), and (E5). Employ the notation of Algorithm 4.4
for 0 < θ ≤ 1. Then, there exists ℓ2 ∈ N0 and β > 0 such that for all T• ∈ refine(Tℓ2) with
X• ⊆ X∞, the following assertion (a) holds:

(a) The corresponding inf-sup constant (4.6) is bounded from below by β• ≥ β > 0. In
particular, there exists a unique Galerkin solution U• ∈ X• to (4.3) which is quasi-
optimal in the sense of inequality (4.7).

Moreover, let T• ∈ T and T◦ ∈ refine(T•)∩refine(Tℓ2) and suppose that the Galerkin solution
U• ∈ X• exists. Then, there hold the following assertions (b)–(c) with some additional
constant Cmon > 0 which depends only on Cstb, Cred, Crel, and β:

(b) uniform discrete reliability, i.e., ‖U◦ − U•‖H ≤ Crel β
−1 η•(R•,◦).

(c) quasi-monotonicity of error estimator, i.e., η◦ ≤ Cmon η•.

If in addition X∞ = H, then the following assertion (d) holds:

(d) discrete reliability (E4) implies reliability (E3), i.e., ‖u− U•‖H ≤ Crel β
−1 η•.

Proof. Step 1: Proof of (a) and (b). Employ Proposition 4.1 with H replaced by X∞.
Axiom (E5) ensures well-posedness of (4.4) on the discrete limit space X∞. This proves (a)
and provides ℓ2 ∈ N0 and β > 0, such that the inf-sup constant (4.6) for all discrete
subspaces X◦ ⊆ X∞ with X◦ ⊇ Xℓ2 is uniformly bounded from below by β◦ ≥ β > 0.
Together with (E4), this also proves (b).

Step 2: Proof of (c). To prove quasi-monotonicity (c), we follow the lines of [CFPP14,
Lemma 3.5]. Stability (E1) and reduction (E2) imply that

η2◦ ≤ qred η•(T• \ T◦)2 + 2 η•(T◦ ∩ T•)2 + (2C2
stb + C2

red) ‖U◦ − U•‖2H

With discrete reliability, we obtain that

η2◦ ≤ 2 η2• + (2C2
stb + C2

red)C
2
rel β

−2
◦ η•(R•,◦)

2.

This concludes (c) with constant Cmon =
(
2 + (2C2

stb + C2
red)C

2
rel β

−2
)1/2

.

Step 3: Proof of (d). We follow the proof of [CFPP14, Lemma 3.4]. Recall that
uniform refinement yields convergence (Corollary 4.2). Hence, given any ε > 0 and T• ∈ T,
there exists a uniform refinement T̂◦ ∈ refine(T•) with corresponding discrete solution
Û◦ ∈ X (T̂◦) such that ‖u− Û◦‖H ≤ ε. Discrete reliability (E4) implies that

‖u− U•‖H ≤ ‖u− Û‖H + ‖Û◦ − U•‖H ≤ ε+ Crel β
−1
◦ η•(R•,◦) ≤ ε+ Crel β

−1 η•(R•,◦).

Since ε > 0 is arbitrary, this implies (d) and concludes the proof.
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4.6 Convergence

In this section, we show plain convergence ‖u − Uℓ‖H → 0 as ℓ → ∞ for Algorithm 4.4.
For the proof of linear convergence and convergence with optimal algebraic rates, we refer
to Section 4.7 resp. Section 4.8. The next proposition is the main result of this Section.

Proposition 4.9. Suppose (E1)–(E5) and 0 < θ ≤ 1. Employ the notation of Algo-
rithm 4.4. Then, the “discrete” limit space X∞ =

⋃∞
ℓ=0 Xℓ contains the exact solution to

problem (4.2), i.e., u ∈ X∞. Moreover, there holds

lim
ℓ→∞

‖u− Uℓ‖H = 0 = lim
ℓ→∞

ηℓ.

The proof of Proposition 4.9 relies on the following estimator reduction which (in a
weaker form) is first found also in [CKNS08]. We use a slightly generalized version, which
is used in [FPZ16, Lemma 9] and follow ideas of [CFPP14, Lemma 4.7].

Lemma 4.10 (generalized estimator reduction). Stability (E1) and reduction (E2) together
with the Dörfler marking strategy from Step (iv) of Algorithm 4.4 imply the following per-
turbed contraction: For each ℓ ∈ N0 and all T◦ ∈ refine(Tℓ+1) such that the discrete solutions
Uℓ ∈ Xℓ and U◦ ∈ X◦ exist, it holds that

η2◦ ≤ qest η
2
ℓ + Cest ‖U◦ − Uℓ‖2H.

The constants Cest > 0 and 0 < qest < 1 depend only on (E1)–(E2) and on 0 < θ ≤ 1.

Proof. Let δ > 0 and Cest := C2
red + (1 + δ−1)C2

stb. The young inequality, stability (E1),
and reduction (E2) imply that

η2◦ = η◦(T◦ \ Tℓ)2 + η◦(T◦ ∩ Tℓ)2

≤ qred ηℓ(Tℓ \ T◦)2 + C2
red ‖U◦ − Uℓ‖2H +

(
ηℓ(T◦ ∩ Tℓ) + Cstb‖U◦ − Uℓ‖H

)2

≤ qred ηℓ(Tℓ \ T◦)2 + (1 + δ) ηℓ(T◦ ∩ Tℓ) + Cest ‖U◦ − Uℓ‖2H.

Note that T◦ ∈ refine(Tℓ+1) implies Mℓ ⊆ Tℓ \ Tℓ+1 ⊆ Tℓ \ T◦. In combination with the
Dörfler marking criterion, we obtain that

η2◦ ≤ (1 + δ)
(
η2ℓ − (1− qred) η

2
ℓ (Tℓ \ T◦)2

)
+ Cest ‖U◦ − Uℓ‖2H

≤ (1 + δ)
(
1− (1− qred)θ

)
η2ℓ + Cest ‖U◦ − Uℓ‖2H.

Choosing δ > 0 sufficient small, such that qest := (1 + δ)
(
1− (1− qred) θ

)
< 1, we conclude

the proof.

With the estimator reduction of Lemma 4.10, we can proof plain convergence of Algo-
rithm 4.4.

Proof of Proposition 4.9. Let ℓ2 ∈ N0 be the index defined in Lemma 4.8. To simplify
notation and without loss of generality, we may assume ℓ2 = 0 throughout the proof. In
order to prove that ηℓ → 0 as ℓ → ∞, we show that each subsequence (ηℓk)k∈N0 of the
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estimator sequence (ηℓ)ℓ∈N0 contains a further subsequence (ηℓkj )j∈N0 with ηℓkj → 0 as

j → ∞. According to basic calculus, this is in fact equivalent to ηℓ → 0 as ℓ → ∞. We
split the proof into several steps.

Step 1: Boundedness of estimator sequence. We apply Lemma 4.8 with ℓ2 = 0.
Then, quasi-monotonicity of the error estimator proves ηℓ ≤ Cmon η0 for all ℓ ∈ N0.

Step 2: Weak convergence of discrete solutions (subsequence). Recall that
a(· , ·) is elliptic and induces an energy norm ||| · |||. Reliability (E3) in combination with
Step 1 implies that

|||Uℓ ||| ≤ |||u ||| + |||u− Uℓ ||| . |||u ||| + sup
ℓ∈N0

ηℓ <∞,

i.e., the sequence of discrete solutions is uniformly bounded in H. Let (ηℓk)k∈N0 be an
arbitrary subsequence of (ηℓ)ℓ∈N0 with corresponding discrete solutions Uℓk . Since Uℓk ∈
Xℓk ⊆ X∞, there exists a subsequence (Uℓkj )j∈N0 of (Uℓk)k∈N0 and some limit w ∈ H such

that Uℓkj ⇀ w weakly in H as j → ∞. According to Mazur’s lemma (see, e.g., [Rud91,

Theorem 3.12]), convexity and closedness imply that X∞ is also closed with respect to the
weak topology and hence w ∈ X∞. Let v ∈ X∞ and let Pℓ : H → Xℓ denote the orthogonal
projection with respect to ||| · |||, i.e.,

||| v − Pℓv ||| = min
Vℓ∈Xℓ

||| v − Vℓ ||| for all v ∈ H.

By definition of X∞, this also implies strong convergence ||| v−Pℓv ||| → 0 as ℓ → ∞. Recall
that the product of a weakly convergent sequence and a strongly convergent sequence leads
to convergence of the scalar product. Moreover, compact operators turn weak convergence
into strong convergence, i.e., CUℓkj → Cw strongly in H∗ as j → ∞. With these two

observations, we derive that

0
(4.3)
= 〈f , Pℓkj v〉 − a(Uℓkj , Pℓkj v)− 〈CUℓkj , Pℓkj v〉

j→∞−−−→ 〈f , v〉 − a(w, v) − 〈Cw , v〉.

This proves that the weak limit w ∈ X∞ solves the Galerkin formulation

a(w , v) + 〈Cw , v〉 = 〈f , v〉 for all v ∈ X∞. (4.15)

Step 3: Strong convergence of discrete solutions (subsequence). Note that
|||w − Uℓkj |||

2 = |||w |||2 − 2 Re a(w,Uℓkj ) + |||Uℓkj |||
2. Therefore, strong convergence |||w −

Uℓkj ||| → 0 is equivalent to weak convergence Uℓkj ⇀ w plus convergence of the norm

|||Uℓkj ||| → |||w |||. It thus only remains to prove the latter. With the previous observations,

it holds that

|||Uℓkj |||
2 = a(Uℓkj , Uℓkj )

(4.3)
= 〈f , Uℓkj 〉 − 〈CUℓkj , Uℓkj 〉

j→∞−−−→ 〈f , w〉 − 〈Cw , w〉 (4.15)
= a(w,w) = |||w |||2.

Step 4: Estimator reduction principle (subsequence). Let (ηℓkj )j∈N0 denote

the estimator subsequence corresponding to (Uℓkj )j∈N0 . With Tℓkj+1
∈ refine(Tℓkj+1) and
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Lemma 4.10, it holds η2ℓkj+1
≤ qest η

2
ℓkj

+ Cest ‖Uℓkj+1
− Uℓkj ‖

2
H. Moreover, Step 3 implies

convergence ‖Uℓkj+1
− Uℓkj ‖H ≃ |||Uℓkj+1

− Uℓkj ||| → 0 as j → ∞. Hence, the subsequence

(ηℓkj )j∈N0 is contractive up to a sequence that converges to zero. Therefore, basic calculus

(see [AFLP12, Lemma 2.3]) proves convergence ηℓkj → 0 as j → ∞.

Step 5: Estimator convergence (full sequence). We have shown that each subse-
quence (ηℓk)k∈N0 of (ηℓ)ℓ∈N0 has a further subsequence (ηℓkj )j∈N0 with ηℓkj → 0 as j → ∞.

As noted above, this already yields ηℓ → 0 as ℓ→ ∞.

Step 6: Strong convergence of discrete solutions (full sequence). Finally, reli-
ability (E3) implies that ‖u− Uℓ‖H . ηℓ → 0 as ℓ→ ∞. This concludes the proof.

Remark 4.11. Note that the proof of Proposition 4.9 relies only on (E4)–(E5) to prove
boundedness of the estimator sequence (ηℓ)ℓ∈N0 (see Step 1 of the proof). Instead, we can
also modify the marking Step (iv) of Algorithm 4.4 so that the assertion of Proposition 4.9
remains true, if (E1)–(E3) still hold, while (E4)–(E5) fail. To this end, consider the
following alternative criterion:

(iv) If ηℓ > maxj=0,...,ℓ−1 ηj, define Mℓ := Tℓ. Otherwise, determine a set Mℓ ⊆ Tℓ of up
to the multiplicative constant Cmark minimal cardinality such that θη2ℓ ≤ ηℓ(Mℓ)

2.

To see that this new marking criterion ensures that (ηℓ)ℓ∈N0 is bounded, we argue as follows:

Case 1: Suppose that there exists an M ∈ N such that ηℓ ≤ maxj=0,...,ℓ−1 ηj for all
ℓ ≥M . Then, it even follows that ηℓ ≤ maxj=0,...,M−1 ηj for all ℓ ∈ N0.

Case 2: If the assumption of Case 1 fails, the alternative Step (iv) of Algorithm 4.4
enforces infinitely many steps of uniform refinement. Therefore, Corollary 4.2 applies
and provides m ∈ N0 and C > 0 such that all discrete subspaces X• ⊆ H with
X• ⊇ Xm admit a unique solution U• ∈ X• of (4.3) which is quasi-optimal in the
sense of inequality (4.7). Since (E1)–(E3) hold, [CFPP14, Lemma 3.5] applies and
proves quasi-monotonicity of the estimator, i.e.,

η◦ ≤ Cmon η• for all T• ∈ refine(Tm) and all T◦ ∈ refine(T•).

In particular, this implies ηℓ ≤ Cmon ηm for all ℓ ≥ m, and therefore

ηℓ ≤ max{Cmon, 1} max
j=0,...,m

ηj for all ℓ ∈ N0.

Hence, Case 2 cannot happen.

Note that besides Step 1 all steps of the proof of Proposition 4.9 rely only on (E1)–(E3).
Therefore, we obtain ηℓ → 0 as ℓ → ∞. In particular, this implies that Case 1 above is
the generic case and that optimal convergence rates will not be affected by the new marking
strategy.
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4.7 Linear convergence of adaptive algorithm

The analysis in this section adapts and extends some ideas from [FFP14]. We note that
the latter work uses strong ellipticity (4.12) of b(·, ·), while we only rely on ellipticity (4.1)
of a(·, ·) (see Section 4.2.2). The goal of this section is to prove linear convergence in
Theorem 4.14.

Lemma 4.12 ([FFP14, Lemma 3.5]). Suppose (E1)–(E5) and 0 < θ ≤ 1. Employ the
notation of Algorithm 4.4. Then, the sequences (eℓ)ℓ∈N and (Eℓ)ℓ∈N defined by

eℓ :=

{
u−Uℓ

‖u−Uℓ‖H
for u 6= Uℓ,

0 else,

Eℓ :=

{
Uℓ+1−Uℓ

‖Uℓ+1−Uℓ‖H
for Uℓ+1 6= Uℓ,

0 else,

converge weakly to zero, i.e., lim
ℓ→∞

〈φ , eℓ〉 = 0 = lim
ℓ→∞

〈φ , Eℓ〉 for all φ ∈ H∗.

Proof. We consider the sequence (eℓ)ℓ∈N0 . The proof of the claim for (Eℓ)ℓ∈N0 follows
along the same lines. To prove eℓ ⇀ 0 as ℓ→ ∞, we show that each subsequence (eℓk)k∈N0

admits a further subsequence (eℓkj )j∈N0 such that eℓkj ⇀ 0 as j → ∞. Let (eℓk)k∈N0 be a

subsequence of (eℓ)ℓ∈N0 . Because of boundedness ‖eℓk‖H ≤ 1, there exists a further weakly
convergent subsequence (eℓkj )j∈N0 such that eℓkj ⇀ w ∈ H as j → ∞. It thus remains to

show that w = 0.
Proposition 4.9 yields that Uℓ, u ∈ X∞. This implies that eℓ ∈ X∞ and hence w ∈ X∞.

With Galerkin orthogonality we obtain that

0 = b(u− U• , V•) = a(u− U• , V•) + 〈C(u− U•) , V•〉 for all V• ∈ X•. (4.16)

Let n ∈ N be arbitrary and Vn ∈ Xn. For ℓkj ≥ n and eℓkj 6= 0, the Galerkin orthogonality
proves

b(eℓkj , Vn) =
b(u− Uℓkj , Vn)

‖u− Uℓkj ‖H
= 0.

Hence, b(eℓkj , Vn) = 0 for all ℓkj ≥ n. With weak convergence, this yields that

b(w , Vn) = lim
j→∞

b(eℓkj , Vn) = 0 for all Vn ∈ Xn and all n ∈ N0.

Let v ∈ X∞. By definition of X∞, there exists a sequence (Vn)n∈N0 with Vn ∈ Xn and
‖v − Vn‖H → 0 as n→ ∞. Therefore the latter identity implies that

b(w , v) = lim
n→∞

b(w , Vn) = 0 for all v ∈ X∞.

Finally, definiteness of the discrete limit space (E5) concludes w = 0.
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4.7 Linear convergence of adaptive algorithm

The following quasi-orthogonality (4.17) is a consequence of Lemma 4.12 and the Galerkin
orthogonality (4.16). For elliptic b(· , ·), it is proved in [FFP14, Proposition 3.6]. Our proof
essentially follows those ideas, but since we lack ellipticity of the bilinear form b(· , ·) and
since b(· , ·) does therefore not induce an equivalent quasi-norm, we instead use the energy
norm ||| · ||| induced by a(· , ·).
Lemma 4.13. Suppose (E1)–(E5) and 0 < θ ≤ 1. Employ the notation of Algorithm 4.4.
Then, for any 0 < ε < 1, there exists ℓ3 ∈ N0 such that

|||u− Uℓ+1 |||2 + |||Uℓ+1 − Uℓ |||2 ≤
1

1− ε
|||u− Uℓ |||2 for all ℓ ≥ ℓ3. (4.17)

Note that, ℓ3 = ℓ3(ε) does depend on the given parameter ε.

Proof. Let ε > 0. Further, let δ > 0 be a free parameter which is fixed later. Consider the
sequences (eℓ)ℓ∈N0 and (Eℓ)ℓ∈N0 of Lemma 4.12. Recall that the compact operator C turns
weak convergence eℓ, Eℓ ⇀ 0 in H into strong convergence C eℓ,CEℓ → 0 in H∗ as ℓ→ ∞.
For any δ > 0, this provides some ℓ3 ∈ N such that

‖C eℓ‖H∗ + ‖CEℓ‖H∗ ≤ δ for all ℓ ≥ ℓ3.

For any w ∈ H, this gives

|〈C(u− Uℓ) , w〉| = |〈Ceℓ , w〉| ‖u − Uℓ‖H ≤ δ ‖u− Uℓ‖H‖w‖H,
as well as

|〈C (Uℓ+1 − Uℓ) , w〉| = |〈CEℓ , w〉| ‖Uℓ+1 − Uℓ‖H ≤ δ ‖Uℓ+1 − Uℓ‖H‖w‖H.
Some basic computations in combination with the Galerkin orthogonality (4.16) show that

b(u−Uℓ+1 , u−Uℓ+1) + b(Uℓ+1−Uℓ , Uℓ+1−Uℓ) + b(Uℓ+1−Uℓ , u−Uℓ+1)

= b(u−Uℓ , u−Uℓ+1) + b(Uℓ+1−Uℓ , Uℓ+1−Uℓ)
= b(u−Uℓ , u−Uℓ+1 −Uℓ +Uℓ) + b(Uℓ+1−Uℓ , Uℓ+1−Uℓ)
= b(u−Uℓ , u−Uℓ)− b(u−Uℓ , Uℓ+1−Uℓ) + b(Uℓ+1−Uℓ , Uℓ+1−Uℓ)
= b(u−Uℓ , u−Uℓ) + b(Uℓ+1−u , Uℓ+1−Uℓ)

(4.16)
= b(u−Uℓ , u−Uℓ).

Recall that ||| v |||2 = a(v , v) = b(v , v)− 〈C v , v〉 for all v ∈ H. Then, the latter equality is
equivalent to

|||u− Uℓ+1 |||2 + |||Uℓ+1 − Uℓ |||2 + 〈C (u− Uℓ+1) , u− Uℓ+1〉+ 〈C (Uℓ+1 − Uℓ) , Uℓ+1 − Uℓ〉
+ b(Uℓ+1 − Uℓ , u− Uℓ+1) = |||u− Uℓ |||2 + 〈C (u− Uℓ) , u− Uℓ〉.

The remaining term with the bilinear form b(Uℓ+1 −Uℓ , u−Uℓ+1) is estimated as follows:

|b(Uℓ+1 − Uℓ, u− Uℓ+1)| = |a(u− Uℓ+1 , Uℓ+1 − Uℓ) + 〈C(Uℓ+1 − Uℓ) , u− Uℓ+1〉|
(4.16)
= | − 〈C(u− Uℓ+1) , Uℓ+1 − Uℓ〉+ 〈C(Uℓ+1 − Uℓ) , u− Uℓ+1〉|
≤ 2δ ‖u− Uℓ+1‖H‖Uℓ+1 − Uℓ‖H.
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4 Abstract theory for compactly perturbed problems

With norm equivalence ‖v‖2H ≤ C ||| v |||2 for all v ∈ H, we thus see that

(1− δC) |||u − Uℓ+1 |||2 + (1− δC) |||Uℓ+1 − Uℓ |||2

≤ (1 + δC) |||u − Uℓ |||2 + 2δC |||u− Uℓ+1 ||||||Uℓ+1 − Uℓ |||.

Finally, recall the Young inequality 2cab ≤ ca2 + cb2 for all a, b, c ≥ 0. This yields that

(1− 2δC) |||u − Uℓ+1 |||2 + (1− 2δC) |||Uℓ+1 − Uℓ |||2 ≤ (1 + δC) |||u− Uℓ |||2.

For sufficiently small δ > 0 and
1 + δC

1− 2δC
≤ 1

1− ε
, this proves (4.17).

The following result is found in [FFP14] for strongly elliptic problems (4.12). Our proof
follows the ideas of [CKNS08] and generalizes [FFP14] to a more general class of compactly
perturbed problems.

Theorem 4.14. Suppose (E1)–(E5) and 0 < θ ≤ 1. Then, there exist constants 0 < qlin <
1 and Clin > 0 such that the output of Algorithm 4.4 satisfies that

ηℓ+n ≤ Clin q
n
lin ηℓ for all ℓ, n ∈ N0 with ℓ ≥ ℓ3, (4.18)

where ℓ3 ∈ N0 is the index from Lemma 4.13.

In the proof of Theorem 4.14 we use the following generalized contraction property which
is inspired by [CKNS08, Theorem 4.1].

Lemma 4.15 (Generalized contraction). Suppose (E1)–(E5) and 0 < θ ≤ 1. Let ℓ3 ∈ N0

be the index from Lemma 4.13. Further, let Tℓ,T◦ ∈ T with T◦ ∈ refine(Tℓ) such that the
corresponding discrete solutions Uℓ, U◦ exist and the Dörfler marking criterion

θ η2ℓ ≤ ηℓ(Tℓ \ T◦)2

is satisfied. Then, there exist 0 < qlin, λ < 1 such that for all ℓ ≥ ℓ3 it holds

∆◦ ≤ qlin∆ℓ where ∆2
• := |||u− U• |||2 + λ η2• . (4.19)

Proof. Recall norm equivalence ‖ · ‖H ≃ ||| · |||. This guarantees that reliability (E3) and
estimator reduction (Lemma 4.10) also hold (up to a different constant) with respect to the
a(· , ·)-induced energy norm ||| · |||. To simplify the notation and without loss of generality,
we therefore suppose that ‖ · ‖H = ||| · ||| throughout the proof.

Let ε, λ > 0 be free parameters which are fixed later. With estimator reduction from
Lemma 4.10 and Lemma 4.13, we obtain that, for all ℓ ≥ ℓ3 = ℓ3(ε),

∆2
◦ = |||u− U◦ |||2 + λ η2◦ ≤ 1

1− ε
|||u− Uℓ |||2 + λ qest η

2
ℓ + (λCest − 1) |||U◦ − Uℓ |||2.

For sufficiently small λ, i.e., λCest ≤ 1, and an additional free parameter δ > 0, reliabil-
ity (E3) yields that

∆2
◦ ≤

1

1− ε
|||u− Uℓ |||2 + λ qest η

2
ℓ ≤

( 1

1− ε
− δλ

)
|||u− Uℓ |||2 + λ(qest + C̃2

relδ) η
2
ℓ

≤ max
{ 1

1− ε
− δλ , qest + C̃2

relδ
}
∆2
ℓ .
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4.8 Optimal convergence rates

Since 0 < qest < 1, we may choose δ > 0 sufficiently small such that 0 < qest + C̃2
rel δ < 1.

Finally choose ε > 0 sufficiently small such that 0 < 1/(1 − ε) − δλ < 1. This concludes
the proof.

Proof of Theorem 4.14. We employ the notation of Lemma 4.15 with T◦ := Tℓ+1. This
implies ∆ℓ+1 ≤ qlin∆ℓ. Induction on n proves ∆ℓ+n ≤ qnlin∆ℓ for all ℓ ≥ ℓ3 and all n ∈ N0.
Note that reliability (E3) yields that η2• ≃ ∆2

•. Combining these two observations, we
conclude the proof.

4.7.1 Validity of the Céa lemma

In this section, we show that the discrete solutions Uℓ computed by Algorithm 4.4 are
quasi-optimal in the sense of the Céa lemma. Additionally, we obtain that the involved
constants converge to 1 as ℓ→ ∞.

Theorem 4.16. Suppose (E1)–(E5) and 0 < θ ≤ 1. Then, there exist Cℓ ≥ 1 with
lim
ℓ→∞

Cℓ = 1, and ℓ4 > 0 such that the output of Algorithm 4.4 satisfies that

|||u− Uℓ ||| ≤ Cℓ min
Vℓ∈Xℓ

|||u− Vℓ ||| for all ℓ ≥ ℓ4. (4.20)

Proof. Consider the sequences (eℓ) and (Eℓ) from Lemma 4.12. We follow the arguments
of the proof of Lemma 4.13. To this end, let Vℓ ∈ Xℓ be arbitrary. Then, Galerkin
orthogonality (4.16) proves that

|||u− Uℓ |||2 = b(u− Uℓ , u− Uℓ)− 〈C (u− Uℓ) , u− Uℓ〉
(4.16)
= b(u− Uℓ , u− Vℓ)− 〈C (u− Uℓ) , u− Uℓ〉
= a(u− Uℓ , u− Vℓ) + 〈C (u− Uℓ) , u− Vℓ〉 − 〈C (u− Uℓ) , u− Uℓ〉
≤ |||u− Uℓ ||||||u− Vℓ |||+ ‖C eℓ‖H∗‖u− Uℓ‖H‖u− Vℓ‖H + ‖C eℓ‖H∗‖u− Uℓ‖2H.

Recall norm equivalence ‖v‖2H ≤ C ||| v |||2 for all v ∈ H. This implies that

|||u− Uℓ ||| ≤ (1 + C ‖C eℓ‖H∗) |||u− Vℓ |||+ C ‖C eℓ‖H∗ |||u− Uℓ |||.

Rearranging the terms in the latter estimate, we prove that

|||u− Uℓ ||| ≤
1 + C ‖C eℓ‖H∗

1− C ‖C eℓ‖H∗
|||u− Vℓ |||.

This concludes (4.20). Lemma 4.12 yields weak convergence eℓ ⇀ 0. Compactness of C
implies ‖C eℓ‖H∗ → 0 as ℓ→ ∞ and concludes the proof.

4.8 Optimal convergence rates

In this section we prove optimal algebraic convergence rates for the sequence of estimators
generated by Algorithm 4.4. First, in order to quantify the optimal algebraic rate of con-
vergence, we introduce so-called approximation classes in the spirit of [CFPP14]. Further,
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4 Abstract theory for compactly perturbed problems

we discuss the incorporation of data oscillations (see, e.g., [CKNS08]) and show equivalence
to approximation classes defined with respect to the total error (see [CKNS08]). Secondly,
the main Theorem 4.21 is proved in Section 4.8.3. To this end, the next lemma recaps some
important properties regarding sequences of successively uniformed refined meshes.

Lemma 4.17. The mesh-refinement strategy guarantees the following properties (a)–(c)
which are exploited in our analysis of optimal convergence rates:

(a) There exists munif ∈ N such that the munif-times uniform refinement T̂0 of T0 satisfies
the assertions of Lemma 4.8 (with Tℓ2 replaced by T̂0). In particular, there holds
the quasi-monotonicity of the estimator, i.e., there exists an independent constant
Cmon > 0 such that

η◦ ≤ Cmon η• for all T• ∈ T and all T◦ ∈ refine(T̂0) ∩ refine(T•),

provided that the Galerkin solution U• ∈ X• exists.

(b) Moreover, for all T• ∈ T, the munif-times uniform refinement T̂• of T• guarantees
T̂• ∈ refine(T̂0) and #T̂• ≤ Cmunif

son #T•.

(c) Suppose that ‖hℓ‖L∞(Ω) → 0 for ℓ → ∞ (e.g., the expanded Dörfler marking strategy
from Proposition 4.7 is used). Then, there exists an index ℓ5 ∈ N0 such that Tℓ ∈
refine(T̂0) for all ℓ ≥ ℓ5.

Proof. Assertion (a) is a direct consequence of Corollary 4.2 resp. Proposition 4.1, if we
argue as in the proof of Lemma 4.8.

Assertions (b) follows from the refinement axioms. For T• ∈ T with the munif -times
uniform refinement T̂•, (R6) implies T̂• ∈ refine(T̂0) and (3.5) gives #T̂• ≤ Cmunif

son #T•.
For Assertions (c), note that hℓ → 0 for ℓ → ∞ guarantees an index ℓ5 such that

‖hℓ5‖L∞(Ω) ≤ ‖hT̂0‖L∞(Ω). Hence, (R6) implies Tℓ5 ∈ refine(T̂0) and concludes the proof.

4.8.1 Approximation classes

For N ∈ N0 and T ∈ T, we define the set of all possible refinements which contain at most
N elements more than T by

TN (T ) :=
{
T• ∈ refine(T ) : #T• −#T ≤ N and solution U• ∈ X• to (4.3) exists

}
.

We note that TN (T ) is finite, but may be empty. On the other hand, Lemma 4.17 guar-
antees TN (T ) 6= ∅ for sufficiently large N , e.g., N ≥ Cmunif

son #T .
We use the convention minT•∈TN (T ) η• = 0, if TN(T ) = ∅. For s > 0, the corresponding

approximation class is given by

‖u‖As(T ) := sup
N∈N0

(
(N + 1)s min

T•∈TN (T )
η•

)
, (4.21)

where η• is the error estimator corresponding to the optimal triangulation T• ∈ TN(T ).
Note that ‖u‖As(T ) < ∞ means that starting from a mesh T , a convergence behavior of
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4.8 Optimal convergence rates

η• = O
(
(#T•)−s

)
is possible, if the optimal meshes are chosen. To abbreviate notation, we

let

TN := TN (T0) and ‖u‖As := ‖u‖As(T0). (4.22)

The next lemma examines the relation between approximation classes ‖u‖As(T ) and
‖u‖As . It essentially shows that, if an algebraic rate of convergence is possible starting
with a mesh T ∈ refine(T0), then the same rate can also be realized by starting with the
coarser initial mesh T0.

Lemma 4.18. There exists CA > 0 which depends only on Cson, munif from Lemma 4.17,
and T0, such that for all s > 0 and all T ∈ T, it holds that

sup
N≥CA #T

(
(N + 1)s min

T•∈TN
η•

)
≤ 2s ‖u‖As(T ), (4.23)

as well as

sup
N≥CA #T

(
(N + 1)s min

T•∈TN (T )
η•

)
≤ Cmon 2

s ‖u‖As . (4.24)

In particular, there holds equivalence

‖u‖As(T ) <∞ ⇐⇒ ‖u‖As <∞. (4.25)

In the proof of Lemma 4.18 we exploit the following elementary observation.

Lemma 4.19. For all T• ∈ T and T◦ ∈ refine(T•), it holds

#T◦ −#T• + 1 ≤ #T◦ ≤ #T• (#T◦ −#T• + 1). (4.26)

Proof. Note that
(
#T◦−#T•+1

)
−#T◦/#T• =

(
#T◦−#T•

)(
1−1/#T•

)
≥ 0. Rearranging

the terms, we conclude the upper bound in (4.26), while the lower bound is obvious.

Proof of Lemma 4.18 . We split the proof into three steps.

Step 1: The estimates (4.23)–(4.24) imply (4.25). For any M > 0, the sets⋃M
N=0 TN and

⋃M
N=0 TN (T ) are finite. The estimate (4.23) implies that

‖u‖As = sup
N≥0

(
(N + 1)s min

T•∈TN
η•

)

≤ max
N≤CA #T

(
(N + 1)s min

T•∈TN
η•

)
+ sup
N≥CA #T

(
(N + 1)s min

T•∈TN
η•

)

≤ max
N≤CA #T

(
(N + 1)s min

T•∈TN
η•

)
+ 2s ‖u‖As(T ).

This provides an upper bound to ‖u‖As in terms of ‖u‖As(T ), up to some finite summand.
Therefore, ‖u‖As(T ) < ∞ implies ‖u‖As < ∞. Using (4.24) instead of (4.23), the converse
implication follows analogously.
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Step 2: Verification of (4.23). Let T ∈ T be arbitrary and let Ñ ≥ 0. Apply
Lemma 4.17 to see that the munif-times uniform refinement T̂ of T satisfies #T ≤ #T̂ ≤
Cmunif
son #T =: C. This implies that T̂ ∈ TC(T ) ⊆ T

C+Ñ
(T ) and hence, T

C+Ñ
(T ) 6= ∅.

Choose the optimal mesh T◦ ∈ T
C+Ñ

(T ) with η◦ = minT•∈TC+Ñ
(T ) η• > 0. Then, we

estimate

#T◦ −#T0 = (#T◦ −#T ) + (#T −#T0) ≤ (C + Ñ) + #T ≤ 2C + Ñ ,

i.e., T◦ ∈ T
2C+Ñ

. By choice of T◦ ∈ T
C+Ñ

(T ) and the definition of ‖u‖As(T ), it follows

(2C + Ñ + 1)s min
T•∈T2C+Ñ

η• ≤
(2C + Ñ + 1

C + Ñ + 1

)s
(C + Ñ + 1)s η◦

≤ 2s (C + Ñ + 1)s min
T•∈TC+Ñ

(T )
η• ≤ 2s ‖u‖As(T ).

(4.27)

Define CA := 2Cmunif
son . Since this estimate holds for all Ñ ≥ 0, we obtain with CA#T = 2C

that

sup
N≥CA #T

(
(N + 1)s min

T•∈TN
η•

)
= sup

Ñ≥0

(
(2C + Ñ + 1)s min

T•∈T2C+Ñ

η•

) (4.27)

≤ 2s ‖u‖As(T ).

This concludes the proof of (4.23) with CA = 2Cmunif
son .

Step 3: Verification of (4.24). Let Ñ ≥ 0 and let T̂ ∈ T be the munif -times uniform
refinement of T0. Adopt the notation from Step 2 and recall that T̂ ∈ TC ⊆ TC+Ñ . Choose

T◦ ∈ TC+Ñ with η◦ = minT•∈TC+Ñ
η•. Define T+ := T̂ ⊕ T◦ to ensure that T+ ∈ refine(T̂ )

and that the discrete solution U+ ∈ X◦ exists. Then, it holds that

#T+ −#T
(R4)

≤ (#T̂ +#T◦ −#T0)−#T ≤ #T̂ + C + Ñ ≤ 2C + Ñ ,

i.e., T+ ∈ T
2C+Ñ

(T ). Moreover, quasi-monotonicity of the estimator (Lemma 4.17) and
analogous argumentation as in Step 1 yield that

(2C + Ñ + 1)s min
T•∈T2C+Ñ

(T )
η• ≤ (2C + Ñ + 1)sη+

≤ Cmon

(2C + Ñ + 1

C + Ñ + 1

)s
(C + Ñ + 1)s η◦ ≤ Cmon 2

s ‖u‖As .
(4.28)

Since this estimate holds for all Ñ ≥ 0, we again obtain with CA = 2Cmunif
son that

sup
N≥CA #T

(
(N + 1)s min

T•∈TN (T )
η•

)
= sup

Ñ≥0

(
(2C + Ñ + 1)s min

T•∈T2C+Ñ
(T )

η•

)

(4.28)

≤ Cmon 2
s ‖u‖As .

This concludes the proof.
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4.8.2 Data oscillations

In this section we recap the definition of the approximation classes in the spirit of [CKNS08].
To this end, one can also consider approximation classes based on the so-called total error,
e.g., error plus some suitable data-oscillations. Suppose that the Galerkin solution U• ∈ X•

of (4.3) exists. Further, suppose that osc• : X• → R are suitable oscillation terms such that
the error estimator is reliable and efficient in the sense of

C−1
rel ‖u− U•‖H ≤ η• ≤ Ceff

(
‖u− U•‖H + osc•(U•)

)
. (4.29)

Then, for T ∈ T, the work [CKNS08] considers approximation classes defined by

‖u‖Es(T ) := sup
N∈N0

(
(N + 1)s min

T•∈refine(T )
#T•−#T ≤N

inf
V•∈X•

(
‖u− V•‖H + osc•(V•)

))
. (4.30)

Note that the definition of ‖u‖Es(T ) uses T• ∈ refine(T ) with #T• −#T ≤ N and hence,
‖u‖Es(T ) also involves meshes for which the existence of the discrete solution may fail. The
following lemma is an adaptation of [CFPP14, Theorem 4.4]. Starting from some arbitrary
initial mesh T , it shows that under the additional assumption of efficiency (4.29), the total
error converges with the same algebraic rate as the error estimator.

Lemma 4.20. Let osc• : X• → R satisfy (4.29). Suppose that there exists Cosc > 0, such
that for all T• ∈ T for which the discrete solution U• ∈ X• of (4.3) exists, it holds the
following:

• osc• := osc•(U•) ≤ Cosc η•,

• C−1
osc osc•(V•) ≤ osc•(W•) + ‖V• −W•‖H for all V•,W• ∈ X•.

Then, for all s > 0 and all T ∈ T, it holds that

‖u‖Es(T ) <∞ ⇐⇒ ‖u‖As <∞.

Proof. We show that ‖u‖Es(T ) < ∞ if and only if ‖u‖As(T ) < ∞. Then, (4.25) from
Lemma 4.18 will conclude the proof. We split the proof into several steps.

Step 1: Let T ∈ T and T̂0 ∈ T be the munif -times uniform refinement of T0 from
Lemma 4.17. With C := (Cmunif

son − 1)#T0, the triangulation T+ := T ⊕ T̂0 satisfies that

#T+ ≤ #T +#T̂0 −#T0 ≤ #T + C,

and hence T+ ∈ TC(T ). This proves that TN (T ) 6= ∅ for N ≥ C.

Step 2: We prove that ‖u‖As(T ) <∞ implies that ‖u‖Es(T ) <∞ by showing that

sup
N≥C

(
(N + 1)s min

T•∈refine(T )
#T•−#T ≤N

inf
V•∈X•

(
‖u− V•‖H + osc•(V•)

))
. ‖u‖As(T ). (4.31)
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4 Abstract theory for compactly perturbed problems

For N ≥ C, note that Step 1 guarantees TN (T ) 6= ∅. Hence, there exists T◦ ∈ TN (T ) with
discrete solution U◦ ∈ X◦ and η◦ = minT•∈TN (T ) η•. With (4.29), we obtain that

min
T•∈refine(T )
#T•−#T ≤N

inf
V•∈X•

(
‖u− V•‖H + osc•(V•)

)
≤ ‖u− U◦‖H + osc◦(U◦)

(4.29)≃ η◦ = min
T•∈TN (T )

η•.

This proves (4.31).

Step 3: We prove that ‖u‖Es(T ) <∞ implies that ‖u‖As(T ) <∞ by showing that

sup
N≥C

(
(N + 1)s min

T•∈TN (T )
η•

)
≤ (C + 1)s ‖u‖Es . (4.32)

Let N ≥ 0. Choose T◦ ∈ refine(T ) with #T◦ −#T ≤ N and

(
‖u− V◦‖H + osc◦(V◦)

)
= inf

V•∈X•

(
‖u− V•‖H + osc•(V•)

)
.

Define T+ := T◦ ⊕ T̂0 and note that T+ ∈ TN+C(T ). Combining (4.29) with the Céa
lemma (4.7) and our assumptions on the data oscillations, we obtain that, for all V+ ∈ X+,

η+
(4.29)≃ ‖u− U+‖H + osc+(U+) . ‖u− U+‖H + osc+(V+) + ‖U+ − V+‖H

. ‖u− U+‖H + osc◦(V+) + ‖u− V+‖H
(4.7)

. ‖u− V+‖H + osc+(V+).

This reveals that η+ ≃ infV+∈X+

(
‖u− V+‖H + osc+(V+)

)
. Then, T+ ∈ TN+C(T ) together

with X+ ⊇ X◦, reveals that

(N + C + 1)s min
T•∈TN+C(T )

η• ≤ (N + C + 1)s η+

≃ (N + C + 1)s inf
V+∈X+

(
‖u− V+‖H + osc+(V+)

)

≤
(N + C + 1

N + 1

)s
(N + 1)s inf

V◦∈X◦

(
‖u− V◦‖H + osc◦(V◦)

)

≤ (C + 1)s ‖u‖Es(T ).

This proves (4.32) and concludes the proof.

4.8.3 Main result

The following theorem is the main result of this chapter. It states that Algorithm 4.4
does not only guarantee (linear) convergence, but also realizes the best possible algebraic
convergence rate for the error estimator.

To that end, suppose that ‖u‖As < ∞ for some s > 0. By definition (4.21) of the
approximation class, there exists a sequence of “optimal” meshes T̂ℓ ∈ T = refine(T0) as

well as corresponding error estimators η̂ℓ such that η̂ℓ .
(
#T̂ℓ −#T0 + 1

)−s
for all ℓ ∈ N0.

Note that these “optimal” triangulations are not necessarily successive refinements but
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4.8 Optimal convergence rates

in general even totally unrelated. Therefore, the important implication of the following
theorem is that indeed the adaptively generated triangulations Tℓ yield the same algebraic
decay s > 0 if the marking parameter 0 < θ ≪ 1 is sufficiently small. Overall, Algorithm 4.4
thus guarantees that the error estimator decays asymptotically with any possible algebraic
rate s > 0.

Theorem 4.21. Suppose (E1)–(E5) with X∞ = H. Employ the notation of Algorithm 4.4.
Let β̂0 > 0 be the lower-bound of the inf-sup constant (4.6) for the uniform refinement
T̂0 from Lemma 4.17. Let ℓ3, ℓ5 ∈ N0 be the indices from Lemma 4.13 and Lemma 4.17
respectively. Define ℓ6 := max{ℓ3, ℓ5}. Let 0 < θ < θopt := (1 + C2

stbC
2
rel/β̂

2
0)

−1. Then, for
all s > 0, there exists a constant Copt > 0 such that

‖u‖As <∞ ⇐⇒ ∀ℓ ≥ ℓ6 ηℓ ≤ Copt

(
#Tℓ −#T0 + 1

)−s
. (4.33)

The constant Copt depends only on #Tℓ6, T0, θ, s, ‖u‖As , and validity of (E1)–(E5).

We emphasize that Axiom (E5) as well as X∞ = H can be enforced by the expanded
Dörfler marking strategy from Proposition 4.7. Hence, by using the expanded Dörfler
marking, Theorem 4.21 relies only on (E1)–(E4).

The proof of Theorem 4.21 requires the following two technical lemmas, which are
adapted versions of [CFPP14, Proposition 4.12] and [CFPP14, Proposition 4.14].

Lemma 4.22 (optimality of Dörfler marking). Under the assumptions of Theorem 4.21
and for all 0 < θ < θopt, there exists some 0 < κopt < 1, such that for all T• ∈ refine(Tℓ5)
and all T◦ ∈ refine(T•), it holds that

η◦ ≤ κopt η• =⇒ θ η2• ≤ η•(R•,◦)
2, (4.34)

where R•,◦ is the (enlarged) set of refined elements from (E4).

Proof. Let T• ∈ refine(Tℓ5) and T◦ ∈ refine(T•). Then, Lemma 4.17 guarantees that the
discrete solutions U• ∈ X• and U◦ ∈ X◦ exist. With stability on non-refined elements (E1)
and the Young inequality we obtain that, for all δ > 0,

η2• = η•(T• \ T◦)2 + η•(T• ∩ T◦)2

≤ η•(T• \ T◦)2 + (1 + δ−1) η◦(T• ∩ T◦)2 + (1 + δ)C2
stb ‖U◦ − U•‖2H.

Recall that discrete reliability (E4) holds with the uniform constant Crel/β̂0. Together with
the assumption η◦ ≤ κopt η• and T• \ T◦ ⊆ R•,◦, this yields that

η2• ≤ η•(R•,◦)
2 + (1 + δ−1)κopt η

2
• + (1 + δ)C2

stb C
2
rel β̂

−2
0 η•(R•,◦)

2

= (1 + δ−1)κopt η
2
• +

(
1 + (1 + δ)C2

stb C
2
rel β̂

−2
0

)
η•(R•,◦)

2.

Rearranging the terms in the latter estimate, we obtain that

θ̃ η2• :=
1− (1 + δ−1)κopt

1 + (1 + δ)C2
stb C

2
rel β̂

−2
0

η2• ≤ η•(R•,◦)
2. (4.35)
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4 Abstract theory for compactly perturbed problems

It remains to prove that θ̃ ≥ θ and hence, (4.35) implies (4.34). To this end, choose δ > 0
sufficiently small and determine 0 < κopt < 1 such that

θ ≤ θ̃ :=
1− (1 + δ−1)κopt

1 + (1 + δ)C2
stb C

2
rel β̂

−2
0

<
1

1 + (1 + δ)C2
stbC

2
relβ̂

−2
0

<
1

1 + C2
stbC

2
rel β̂

−2
0

= θopt.

This concludes the proof.

Lemma 4.23. Suppose the assumptions of Theorem 4.21 and let 0 < θ < θopt. There exist
constants C1, C2 > 0 such that for all ℓ ≥ ℓ5, there exists a corresponding set Rℓ ⊆ Tℓ such
that the following holds: For all s > 0 with ‖u‖As(Tℓ5 ) <∞, it holds that

#Rℓ ≤ C1 (C2 ‖u‖As(Tℓ5 ))
1/s η

−1/s
ℓ , (4.36)

as well as the Dörfler marking criterion

θ η2ℓ ≤ ηℓ(Rℓ)
2. (4.37)

The constants C1, C2 depends only on θ, β̂0, and (E1)–(E4).

Proof. If ηℓ = 0, the claim (4.36)–(4.37) is satisfied with Rℓ := Tℓ. Thus, we may suppose
that ηℓ > 0. We split the remainder of the proof into three steps.

Step 1: Construction of mesh T• and Rℓ := Rℓ,•. Let ℓ ≥ ℓ5 and ε := C−1
mon κopt ηℓ >

0. Quasi-monotonicity of the estimator (Lemma 4.17) yields that

ε ≤ κopt ηℓ5 < ‖u‖As(Tℓ5 ) <∞.

Choose the minimal N ∈ N0 such that ‖u‖As(Tℓ5 ) ≤ ε (N + 1)s. This implies that ε <

‖u‖As(Tℓ5 ) ≤ ε(N +1)s and hence N ≥ 1. Note that Tℓ5 ∈ TN (Tℓ5) and hence TN (Tℓ5) 6= ∅.
Choose Tε ∈ TN(Tℓ5) with ηε = minT•∈TN (Tℓ5 )

η•. Define T• := Tε ⊕ Tℓ. Recall that all

T◦ ∈ refine(Tℓ5) and corresponding spaces X◦ ⊇ Xℓ5 provide unique solutions of the discrete
formulation (4.3). Hence, we obtain existence of the Galerkin solution U• ∈ X•. Last, we
define Rℓ := Rℓ,• as the set provided by discrete reliability (E4).

Step 2: Optimality of Dörfler marking yields (4.37). With the quasi-monotonicity
of the estimator (Lemma 4.17) and the definition (4.21) of the approximation class, the
choice of N in Step 1 yields that

η• ≤ Cmon ηε = Cmon min
T◦∈TN (Tℓ5 )

η◦
(4.21)

≤ Cmon (N + 1)−s ‖u‖As(Tℓ5 ) ≤ Cmon ε = κopt ηℓ.

This implies η• ≤ κopt ηℓ and hence Lemma 4.22 proves (4.37).

Step 3: Verification of (4.36). Recall that Tℓ,Tε ∈ refine(Tℓ5) and Tε ∈ TN (Tℓ5).
The definition Rℓ = Rℓ,• together with discrete reliability (E4), splitting property (R3),
and the overlay estimate (R4) yields that

#Rℓ

(E4)

≤ Crel#(Tℓ \ T•)
(R3)

≤ Crel (#T• −#Tℓ)
(R4)

≤ Crel (#Tε −#Tℓ5) ≤ CrelN. (4.38)
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Finally, minimality of N in Step 1 implies that ‖u‖As(Tℓ5 ) > εN s and hence

N < ‖u‖1/sAs(Tℓ5 )
ε−1/s = C3 η

−1/s
ℓ ,

with C3 := ‖u‖1/sAs(Tℓ5 )
(C−1

mon κopt)
−1/s = (Cmon κ

−1
opt ‖u‖As(Tℓ5 ))

1/s. Altogether, we thus see

#Rℓ

(4.38)

≤ CrelN < CrelC3 η
−1/s
ℓ .

This proves (4.36) with C1 = Crel and C2 = Cmon κ
−1
opt.

With optimality of Dörfler marking and Lemma 4.23 at hand, we can prove optimal
algebraic convergence rates for Algorithm 4.4. The proof follows arguments from [CFPP14,
Proposition 4.15] and corrects a small bug in the proof of [BHP17, Theorem 26].

Proof of Theorem 4.21. We split the proof into two steps.

Step 1: Implication “⇐=”. Suppose ηℓ ≤ Copt

(
#Tℓ − #T0 + 1

)−s
for all ℓ ≥ ℓ6.

According to Lemma 4.18 it is sufficient to prove ‖u‖As(Tℓ6 ) < ∞. For N ∈ N with
N ≥ #Tℓ6 , choose the largest ℓN such that #TℓN −#Tℓ6 ≤ N . Due to maximality of N ,
we obtain with the splitting property (R3) that

N + 1 ≤ #TℓN+1 −#Tℓ6 + 1
(R3)

. #TℓN −#Tℓ6 + 1. (4.39)

Note that #TℓN −#Tℓ6 ≤ N directly implies TℓN ∈ TN (Tℓ6) and ℓN ≥ ℓ6. Together with
the assumption, this yields that

‖u‖As(Tℓ6 ) = sup
N≥0

(
(N + 1)s min

T•∈TN (Tℓ6 )
η•

) (4.39)

. sup
N≥0

(
(#TℓN −#Tℓ6 + 1)s ηℓN

)

≤ sup
N≥0

(
(#TℓN −#Tℓ0 + 1)s ηℓN

)
. 1.

This concludes Step 1.

Step 2: Implication “=⇒”. To this end, suppose that ‖u‖As < ∞. Lemma 4.18
then implies ‖u‖As(Tℓ5 ) < ∞. For all ℓ ≥ ℓ6 = max{ℓ3, ℓ5}, let Mℓ be the set of marked
elements in the ℓ-th step of Algorithm 4.4. According to Lemma 4.23, there exists Rℓ ⊆ Tℓ
with (4.36)–(4.37). Because of the minimal cardinality of Mℓ (cf. Step (iv) in Algo-
rithm 4.4), it follows that

#Mℓ

(4.37)

≤ Cmark #Rℓ

(4.36)

≤ CmarkC1 (C2 ‖u‖As(Tℓ5 ))
1/s η

−1/s
ℓ .

The mesh-closure estimate (R5) yields that

#Tℓ −#Tℓ0 + 1 ≤ Cmesh

ℓ−1∑

j=ℓ0

#Mj . (4.40)
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Together with C := maxj=0,...,ℓ6
#Mj

#Mℓ6
, we obtain that

#Tℓ −#Tℓ0 + 1 ≤ Cmesh

ℓ−1∑

j=ℓ0

#Mj

≤ Cmesh

( ℓ6∑

j=ℓ0

#Mj +
ℓ−1∑

j=ℓ6

#Mj

)

≤ Cmesh (ℓ6 C + 1)

ℓ−1∑

j=ℓ6

#Mj

≤ Cmesh (ℓ6 C + 1)Cmark C1 (C2 ‖u‖As(Tℓ5 ))
1/s

ℓ∑

j=ℓ6

η
−1/s
j .

(4.41)

The linear convergence from Theorem 4.14 reads

ηℓ ≤ Clin q
ℓ−j
lin ηj for all ℓ3 ≤ j ≤ ℓ. (4.42)

Hence, this implies that

η
−1/s
j ≤ C

1/s
lin q

(ℓ−j)/s
lin η

−1/s
ℓ for all ℓ3 ≤ j ≤ ℓ.

Since there holds 0 < q := q
1/s
lin < 1, the geometric series applies and the sum in (4.41) can

be estimated by

ℓ∑

j=ℓ6

η
−1/s
j ≤ C

1/s
lin η

−1/s
ℓ

ℓ∑

j=ℓ6

q(ℓ−j) ≤ C
1/s
lin

1− q
1/s
lin

η
−1/s
ℓ .

Combining this estimate with (4.41), we derive

#Tℓ −#Tℓ0 + 1 ≤ Cmesh (ℓ6 C + 1)Cmark C1

1− q
1/s
lin

(ClinC2 ‖u‖As(Tℓ5 ))
1/s η

−1/s
ℓ .

Rearranging these terms, we see that ηℓ . (#Tℓ − #Tℓ0 + 1)−s. Using the definitions of
C1, C2 > 0, this implies (4.33) with

Copt :=

(
#Tℓ6 Cmesh (ℓ6 C + 1)Cmark Crel

(1− q
1/s
lin )

)s
ClinCmon κ

−1
opt ‖u‖As(Tℓ5 ).

This concludes the proof.

As a consequence of Section 4.8.2, Theorem 4.21 transfers into the setting of [CKNS08].
To that end, suppose osc• : X• → R such that (4.29) and the assumptions of Lemma 4.20
are satisfied. Then, Lemma 4.20 implies that ‖u‖As <∞ ⇐⇒ ‖u‖Es(T ) <∞ for all T ∈ T.
This gives rise to the following remark.
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Remark 4.24. Under the assumptions of Theorem 4.21 and the assumptions on the data
oscillations in Lemma 4.20, there holds the following: For all 0 < θ < θopt := (1 +

C2
stbC

2
rel/β̂

2
0)

−1 and for all s > 0, there exists a constant C̃opt > 0 such that

‖u‖Es(T0) <∞ ⇐⇒ ∀ℓ ≥ ℓ6 ηℓ ≤ C̃opt

(
#Tℓ −#T0 + 1

)−s
. (4.43)

The constant C̃opt depends only on #Tℓ6, T0, θ, s, ‖u‖Es(T0), validity of (4.29), and (E1)–
(E5).
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5 Adaptive FEM for compactly perturbed
problems

In this chapter, we apply the abstract framework of Chapter 4 to adaptive finite elements.
To that end, we introduce the model problem in Section 5.1, which consists of a general
diffusion problem with convection and reaction. Further, Section 5.1 and Section 5.2 ensure
that the model problem fits in the abstract framework and that the corresponding error
estimator satisfies the estimator axioms (E1)–(E4). Further, Section 5.3 recaps the main
result of Chapter 4 in the current setting. At the end of this chapter (Section 5.4), we
underpin our theoretical findings with some numerical experiment for the two dimensional
Helmholtz equation.

This chapter is based on the work [BHP17], where besides the abstract framework of
Chapter 4, optimal algebraic rates of convergence for adaptive finite elements for compactly
perturbed problems are shown.

5.1 Model problem

Let Ω ⊂ Rd with d = 2 or d = 3 be a polygonal resp. polyhedral Lipschitz domain with
boundary Γ := ∂Ω. Recall that L2(Ω), H1

0 (Ω) denote the usual Lebesgue and Sobolev
spaces and (f , g) :=

∫
Ω f g dx denotes the L2(Ω) scalar product; see Chapter 2. We

consider general diffusion problems with convection and reaction of the following type.
Let c ∈ L∞(Ω), b ∈ L∞(Ω)d, and A ∈ L∞(Ω)d×d be given coefficients such that A(x) ∈

Rd×dsym is symmetric and uniformly positive definite, i.e., it holds that

ess inf
x∈Ω

min
ξ∈Rd\{0}

Aξ · ξ
|ξ|2 ≥ α > 0. (5.1)

Then, the model problem reads as follows: Given f ∈ L2(Ω), find u ∈ H1
0 (Ω) such that

− div(A∇u) + b · ∇u+ cu = f in Ω,

u = 0 on Γ.
(5.2)

Possible examples include the weak formulation of the Helmholtz equation

−∆u− k2u = f in Ω subject to u = 0 on Γ, (5.3)

where k > 0 denotes the wavenumber. We emphasize that homogeneous Dirichlet con-
ditions are only considered for the ease of presentation, while (inhomogeneous) mixed
Dirichlet–Neumann–Robin boundary conditions can be included as in [FPP14, AFK+13,
CFPP14].
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The weak formulation of (5.2) reads as follows: Given f ∈ L2(Ω), find u ∈ H1
0 (Ω) such

that

b(u , v) := (A∇u , ∇v) + (b · ∇u+ cu , v) = 〈f , v〉 for all v ∈ H1
0 (Ω). (5.4)

To guarantee unique solvability of the weak form (5.4), we suppose that (5.4) is well-posed
in the sense of (4.4). In order to fit in the abstract framework of Chapter 4, we define the
bilinear form a(· , ·) : H1

0 (Ω)×H1
0 (Ω) → R by

a(u , v) := (A∇u , ∇v) for all u, v ∈ H1
0 (Ω). (5.5)

Furthermore, the linear operator C : H1
0 (Ω) → H−1(Ω) is given by

Cu := b · ∇u+ cu for all u ∈ H1
0 (Ω). (5.6)

The next proposition recaps some properties of the induced bilinear forms and the oper-
ator C. The proof follows the ideas of [FFP14, Lemma 3.4].

Proposition 5.1. The bilinear forms b(· , ·), a(· , ·) and the linear operator C satisfy the
following properties:

(a) The bilinear form b(· , ·) is well defined and bounded with

|b(w , v)| ≤ Ccont ‖∇w‖L2(Ω) ‖∇v‖L2(Ω) for all w, v ∈ H1
0 (Ω),

where Ccont > 0 just depends on the coefficients A, b, c as well the Poincaré constant
of Ω.

(b) The bilinear a(· , ·) is symmetric, continuous, and elliptic with

|a(w , v)| ≤ Ccont ‖∇w‖L2(Ω) ‖∇v‖L2(Ω) and α ‖v‖H1
0 (Ω) ≤ a(v , v)

for all u, v ∈ H1
0 (Ω). The constants Ccont > 0 and α just depend on A.

(c) The linear operator C : H1
0 (Ω) → H−1(Ω) is bounded and compact.

Proof. We split the proof into two steps.
Step 1: Proof of (a) and (b). Let w, v ∈ H1

0 (Ω). We estimate with the Cauchy–
Schwarz inequality and the Poincaré inequality that

|b(w , v)| ≤ ‖A∇w‖L2(Ω)‖∇v‖L2(Ω) + ‖b · ∇w‖L2(Ω)‖v‖L2(Ω) + ‖cw‖L2(Ω)‖v‖L2(Ω)

≤
(
‖A‖L∞(Ω) + CΩ ‖b‖L∞(Ω) + C2

Ω ‖c‖L∞(Ω)

)
‖∇w‖L2(Ω) ‖∇v‖L2(Ω),

where CΩ > 0 denotes the Poincaré constant of Ω. This implies (a).
Recall that, A(x) ∈ Rd×dsym is symmetric and uniformly positive definite, hence a(· , ·) is

elliptic in the sense of (4.1) resp. (4.12) (see Section 4.2.2). Continuity of a(· , ·) follows
analogously to b(· , ·) with constant Ccont = ‖A‖L∞(Ω) and concludes (b).

Step 2: Proof of (c). We define the operator C̃ : H1
0 (Ω) → L2(Ω) by C̃w := Cw.

Clearly C̃ is linear and continuous. According to the Rellich compactness theorem, the em-
bedding ι : H1

0 (Ω) → L2(Ω) is a compact operator. Schauder’s theorem (see, e.g., [Rud91,
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Theorem 4.19]) implies that the adjoint operator ι⋆ : L2(Ω) → H−1(Ω) is also compact and
coincides with the natural embedding. Therefore, we may write C as

C = ι⋆ ◦ C̃ : H1
0 (Ω) → L2(Ω) → H−1(Ω).

Recall that the composition of bounded operator and a compact operator is compact. This
concludes the proof.

For the discretization, we consider standard finite element spaces based on regular trian-
gulations (see Section 3.1). For mesh-refinement, we employ NVB (see Section 3.5), which
satisfies the refinement axioms (R1)–(R6).

Recall that, for a given initial mesh T0, we denote the sets of all possible refinements
by T. Further, for a given T• ∈ T , let Sp(T•) be the space of globally continuous piece-
wise polynomials. To abbreviate notation let Sp0 (T•) := Sp(T•) ∩H1

0 (Ω) denote the space
of continuous piecewise polynomials which vanish on the boundary. Then, the Galerkin
formulation of (5.2) reads as follows: Given f ∈ L2(Ω), find U• ∈ Sp0 (T•) such that

b(U• , V•) = 〈f , V•〉 for all V• ∈ Sp0 (T•). (5.7)

Proposition 5.1 guarantees that the model problem (5.2) fits in the abstract framework
of Chapter 4 with H := H1

0 (Ω) and X• := Sp0 (T•). Further, NVB guarantees nestedness
of the discrete spaces Sp0 (T•) ⊆ Sp0 (T◦) for all T◦ ∈ refine(T•). We emphasize that iterated
uniform mesh-refinement guarantees ‖h•‖L∞(Ω) → 0 and hence, leads to a dense sequence
of subspaces. A rigorous proof is given in Lemma 5.6. Then, existence of solutions of (5.2)
is guaranteed by Proposition 4.1.

In order to utilize the analysis and hence, obtain optimal algebraic convergence rates,
it still remains to define a suitable a posteriori error estimator and validate the estimator
axioms (E1)–(E5).

5.1.1 Weighted-residual error estimator

According to Section 4.3, we define the local contributions of the usual weighted-residual
error estimator for the general diffusion problem (5.2) as follows. Suppose that A is a
piecewise Lipschitz diffusion coefficient with A|T0 ∈ W 1,∞(T0) for all T0 ∈ T0. The space
W 1,∞(T0) is given by

W 1,∞(T0) :=
{
f ∈ L∞(T0) : ∇f ∈ L∞(T0) exists in the weak sense

}
.

For all T• ∈ T and T ∈ T• the element contributions are given by

η•(T )
2 = h2T ‖f + div(A∇U•)− b · ∇U• − cU•‖2L2(T ) + hT ‖[(A∇U•) · n]‖2L2(∂T∩Ω), (5.8)

where [(·) · n] denotes the normal jump over interior facets and hT := |T |1/d ≃ diam(T )
denotes the local mesh size (see Chapters 2–3). For the Helmholtz problem (5.3), these
local contributions simplify to

η•(T )
2 = h2T ‖f +∆U• + k2 U•‖2L2(T ) + hT ‖[∇U• · n]‖2L2(∂T∩Ω). (5.9)

Moreover, the related error estimator is given by

η•(U•) :=
( ∑

T∈U•

η•(T )
2
)1/2

for all subsets U• ⊆ T•.
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5 Adaptive FEM for compactly perturbed problems

5.1.2 Adaptive algorithm

In this section, we recap the adaptive algorithm in the current setting. It combines Algo-
rithm 4.4 with the expanded Dörfler marking strategy.

Algorithm 5.2. Input: Parameters 0 < θ ≤ 1 and Cmark ≥ 1 as well as the initial
triangulation T0 with U−1 := 0 ∈ Sp0 (T0) and η−1 := 1.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , iterate the following steps (i)–(vi):

(i) If (5.7) does not admit a unique solution in Sp0 (Tℓ):
– Define Uℓ := Uℓ−1 ∈ Sp0 (T0) and ηℓ := ηℓ−1,

– Let Tℓ+1 := refine(Tℓ,Tℓ) be the uniform refinement of Tℓ,
– Increase ℓ→ ℓ+ 1, and continue with Step (i).

(ii) Else compute the unique solution Uℓ ∈ Sp0 (Tℓ) to (5.7).

(iii) Compute the corresponding indicators ηℓ(T ) for all T ∈ Tℓ.

(iv) Determine a set M′
ℓ ⊆ Tℓ of up to the multiplicative factor Cmark minimal cardinality

such that θ η2ℓ ≤ ηℓ(M′
ℓ)

2.

(v) Find M′′
ℓ ⊆ Tℓ such that #M′′

ℓ = #M′
ℓ as well as hℓ(T ) ≥ hℓ(T

′) for all T ∈ M′′
ℓ

and T ′ ∈ Tℓ \M′′
ℓ . Define Mℓ := M′

ℓ ∪M′′
ℓ .

(vi) Generate Tℓ+1 := refine(Tℓ,Mℓ), increase ℓ→ ℓ+ 1, and continue with Step (i).

Output: Sequences of successively refined triangulations Tℓ, discrete solutions Uℓ, and
corresponding estimators ηℓ.

Apart from Step (iv) and Step (v), Algorithm 5.2 coincides with Algorithm 4.4 of Chap-
ter 4. This step realize the expanded Dörfler marking of from Proposition 4.7 which guar-
antees (E5).

5.2 Verification of the axioms

In this section, we prove that the weighted-residual error estimator from (5.8) satisfies the
estimator axioms (E1)–(E4). Further, we show that Algorithm 5.2 guarantees (E5) and
hence all assumptions of the abstract framework of Chapter 4 are met. We note that the
proofs of (E1)–(E4) are well known in the literature; see, e.g., [CKNS08, CFPP14, FFP14].
For the sake of completeness, we sketch the most important steps.

Proposition 5.3 (stability on non-refined element domains). There exists Cstb > 0 such
that for all T• ∈ T and all T◦ ∈ refine(T•), the following holds: Provided there exist unique
discrete solutions U• ∈ Sp0 (T•) and U◦ ∈ Sp0 (T◦), it holds that

∣∣η◦(U•)− η•(U•)
∣∣ ≤ Cstb ‖U◦ − U•‖H1(Ω) for all U• ⊆ T• ∩ T◦.

In particular, there holds (E1). The constant Cstb ≥ 1 just depends on the given data, the
polynomial degree, and on γ-shape regularity.
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5.2 Verification of the axioms

Proof. Let T•,T◦ ∈ T such that T◦ ∈ refine(T•). Suppose that the corresponding discrete
solutions U• ∈ Sp0 (T•) and U◦ ∈ Sp0 (T◦) exist. Let U• ⊆ T• ∩ T◦. The triangle inequality
reveals that

∣∣∣η◦(U•)− η•(U•))
∣∣∣ =

∣∣∣
( ∑

T∈U•

η◦(U•)
)1/2

−
( ∑

T∈U•

η•(U•)
)1/2∣∣∣ ≤

( ∑

T∈U•

R•(T )
2
)1/2

,

where R•(T ) is given by

R•(T ) = hT ‖div(A∇(U◦ − U•))− b · ∇(U◦ − U•)− c(U◦ − U•)‖L2(T )

+ h
1/2
T ‖[A∇(U◦ − U•) · n]‖L2(∂T∩Ω)

≤ hT ‖div(A∇(U◦ − U•))‖L2(T ) + hT
(
‖b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖U◦ − U•‖H1(T )

+ h
1/2
T ‖[A∇(U◦ − U•) · n]‖L2(∂T∩Ω).

(5.10)

The product rule as well as the inverse estimate imply for the first term on the right-hand
side that

‖div(A∇(U◦ − U•))‖L2(T ) ≤ ‖∇A‖L∞(Ω)‖∇(U◦ − U•)‖L2(T ) + ‖A‖L∞(Ω)‖∆(U◦ − U•)‖L2(T )

≤
(
‖∇A‖L∞(Ω) + Cinv h

−1
T ‖A‖L∞(Ω)

)
‖∇(U◦ − U•)‖L2(T ).

To estimate the jump term, we emphasize that each interior hyperface E ⊆ ∂T ∩ Ω is the
intersection of two elements T 1

E, T
2
E ∈ T• with T 1

E ∩ T 2
E = E. This leads to

‖[A∇(U◦ − U•) · n]‖2L2(∂T∩Ω) =
∑

E⊂∂T∩Ω

‖[A∇(U◦ − U•) · n]‖2L2(E)

=
∑

E⊂∂T∩Ω

‖[A∇(U◦ − U•) · n]‖2L2(T 1
E∩T 2

E).

With the Young inequality and a scaling argument, we estimate for each hyperface E that

‖[A∇(U◦ − U•) · n]‖2L2(T 1
E∩T 2

E)

≤ ‖A‖2L∞(Ω)

(
‖∇(U◦ − U•)‖2L2(∂T 1

E) + ‖∇(U◦ − U•)‖2L2(∂T 2
E)

)

≤ C ‖A‖2L∞(Ω) max
{ |E|
|T 1
E |
,
|E|
|T 2
E |
}
‖∇(U◦ − U•)‖2L2(T 1

E∪T 2
E)

≤ C ‖A‖2L∞(Ω)max{h−1
T 1
E
, h−1
T 2
E
} ‖U◦ − U•‖2H1(T 1

E∪T 2
E),

(5.11)

where the constant C > 0 depends only on γ. The γ-shape regularity implies |E|/|T 2
E | ≃

h−1
T as well as ‖h•‖L∞(Ω) ≤ diam(Ω). Moreover, it guarantees |T | ≃ |T 1

E | ≃ |T 2
E | and hence,

hT ≃ hT 1
E
≃ hT 2

E
for all hyperfaces E ⊂ ∂T ∩Ω. Combining the latter estimates, we obtain
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5 Adaptive FEM for compactly perturbed problems

that

R•(T ) ≤ hT
(
‖∇A‖L∞(Ω) + Cinvh

−1
T ‖A‖L∞(Ω)

)
‖∇(U◦ − U•)‖L2(T )

+ hT
(
‖b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖U◦ − U•‖H1(T )

+ C1/2 ‖A‖L∞(Ω) h
1/2
T

( ∑

E⊂∂T∩Ω

C ′ hT ‖U◦ − U•‖2H1(T 1
E∪T 2

E)

)1/2

≤ (C ′′ + hT )
(
‖A‖W 1,∞(Ω) + ‖b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖U◦ − U•‖H1(ωT ),

where ωT denotes the element patch of T and C ′′ depends only on the γ-shape regularity.
Recall that the number of elements in ωT is uniformly bounded. Hence, summing over all
elements T ∈ U• reveals that∣∣∣η◦(U•)− η•(U•))

∣∣∣ ≤ C ′′′
(
C ′′ + diam(Ω)

)
‖U◦ − U•‖H1(Ω).

This concludes the proof.

Proposition 5.4 (reduction on refined element domains). There exist Cred > 0 and 0 <
qred < 1 such that for all T• ∈ T and all T◦ ∈ refine(T•) the following holds: Provided there
exist unique discrete solutions U• ∈ Sp0 (T•) and U◦ ∈ Sp0 (T◦), it holds that

η◦(T◦\T•)2 ≤ qred η•(T•\T◦)2 + C2
red ‖U◦ − U•‖2H1(Ω).

In particular, there holds (E2). The constants 0 < qred < 1 and Cred ≥ 1 just depend on
the given data, the polynomial degree, on γ-shape regularity and on qmesh from (R1).

Proof. Let T•,T◦ ∈ T, such that T◦ ∈ refine(T•) and the corresponding discrete solutions
U• ∈ Sp0 (T•) and U◦ ∈ Sp0 (T◦) exist. Recall the notation of Proposition 5.3. Once again,
the triangle inequality implies that

η◦(T◦ \ T•) ≤
( ∑

T∈T◦\T•

h2T ‖f + div(A∇U•)− b · ∇U• − cU•‖2L2(T )

+ hT ‖[A∇U• · n]‖2L2(∂T∩Ω)

)1/2
+
( ∑

T∈T◦\T•

R◦(T )
2
)1/2

,

(5.12)

where R◦(T ) is defined in (5.10). Analogously to the proof of Proposition 5.3, there holds
( ∑

T∈T◦\T•

R◦(T )
2
)1/2

≤ C ‖U◦ − U•‖H1(Ω).

The first sum on the right-hand side of (5.12) can be treated as follows: Reduction of the
local mesh-size (R1) and the splitting property (R3) imply for the volume residual that

∑

T∈T◦\T•

h2T ‖f + div(A∇U•)− b · ∇U• − cU•‖2L2(T )

≤
∑

T ′∈T•\T◦

q2mesh h
2
T ′

∑

T⊆T ′

‖f + div(A∇U•)− b · ∇U• − cU•‖2L2(T )

≤ q2mesh

∑

T ′∈T•\T◦

h2T ′ ‖f + div(A∇U•)− b · ∇U• − cU•‖2L2(T ′).
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5.2 Verification of the axioms

For the jump term, we additionally emphasize that A∇U• is continuous inside an element
T ′ ∈ T•. Hence for all T ′ ∈ T• \T◦ with sons T ⊂ T ′ there holds [A∇U• ·n] = 0 on ∂T \∂T ′.
Similar to the latter estimate, we obtain that

∑

T∈T◦\T•

hT ‖[A∇U• · n]‖2L2(∂T∩Ω) ≤
∑

T ′∈T•\T◦

qmesh hT
∑

T⊆T ′

‖[A∇U• · n]‖2L2(∂T∩Ω)

≤ qmesh

∑

T ′∈T•\T◦

hT ‖[A∇U• · n]‖2L2(∂T ′∩Ω).

Combining the latter estimates with (5.12), we see that

η◦(T◦ \ T•) ≤ q
1/2
mesh η•(T• \ T◦) +C ‖U◦ − U•‖H1(Ω).

With the Young inequality for δ > 0, we obtain that

η◦(T◦ \ T•)2 ≤ (1 + δ) qmesh η•(T• \ T◦)2 + (1 + δ−1)C2 ‖U◦ − U•‖2H1(Ω).

Choosing δ > 0 such that qred := (1 + δ) qmesh < 1, we conclude the proof.

Proposition 5.5 (discrete reliability). There exists Crel > 0, such that for all T• ∈ T and
all T◦ ∈ refine(T•), there exists a set R•,◦ ⊆ T• such that the following holds: Provided
there exist unique discrete solutions U• ∈ Sp0 (T•) and U◦ ∈ Sp0 (T◦), it holds that

‖U◦ − U•‖H1(Ω) ≤ Crel β
−1
◦ η•(T• \ T◦)

where β◦ > 0 is the inf-sup constant (4.6) associated with Sp0 (T◦). In particular, there
holds (E4). The constant Crel ≥ 1 depends only on the given data, the initial mesh T0the
polynomial degree, and γ-shape regularity of T•.

Proof. Let T•,T◦ ∈ T, such that T◦ ∈ refine(T•). Suppose that the corresponding discrete
solutions U• ∈ Sp0 (T•) and U◦ ∈ Sp0 (T◦) of (5.7) exist. Recall the discrete inf-sup condition
on Sp0 (T◦) from Proposition 4.1

β◦ = inf
W◦∈S

p
0 (T◦)

sup
V◦∈S

p
0 (T◦)

|b(W◦ , V◦)|
‖W◦‖H1(Ω)‖V◦‖H1(Ω)

.

Choosing W◦ := U◦ − U• ∈ Sp0 (T◦) gives

β◦ ‖U◦ − U•‖H1(Ω) ≤ sup
V◦∈S

p
0 (T◦)

|b(U◦ − U• , V◦)|
‖V◦‖H1(Ω)

. (5.13)

Now, let V◦ ∈ Sp0 (T◦) be arbitrary but fixed. Galerkin orthogonality implies for all V• ∈
Sp0 (T•) that

b(U◦ − U• , V◦) = b(U◦ − U• , V◦ − V•).

To estimate the right-hand side, define Ω̃ := interior
(⋃

(T• \ T◦)
)

with shape regular

triangulation T̃ := T•|Ω̃. Let JT̃ : H1(Ω̃) → Sp(T̃ ) denote the Scott–Zhang projection, see
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5 Adaptive FEM for compactly perturbed problems

e.g., [SZ90]. For a deeper discussion on the properties of the Scott–Zhang projection we
refer to [AFK+13, Section 3]. We define

V• :=

{
V◦ on Ω \ Ω̃
JT̃ (V◦) on Ω̃.

Since V◦ ∈ Sp0 (T◦), there holds V•|Γ\∂Ω̃ = V◦|Γ\∂Ω̃ = 0. Note that the Scott–Zhang pro-

jection preserves discrete boundary data on ∂Ω̃ (see [AFK+13, Section 3.1]). This implies
that V◦ − V• = 0 on Ω \ Ω̃ and hence V• ∈ Sp0 (T•). Integration by parts and the Cauchy
inequality yield that

b(U◦−U• , V◦ − V•) = 〈f , V◦ − V•〉 − b(U• , V◦ − V•)

=
∑

T∈T•\T◦

( ∫

T
f(V◦ − V•) dx−

∫

T
A∇U• · ∇(V◦ − V•) dx

−
∫

T

(
b · ∇U• + cU•

)
(V◦ − V•) dx

)

=
∑

T∈T•\T◦

( ∫

T

(
f + div(A∇U•)− b · ∇U• − cU•

)
(V◦ − V•) dx

+

∫

∂T
A∇U• · n (V◦ − V•) ds

)

≤
∑

T∈T•\T◦

(
‖hT (f + div(A∇U•)− b · ∇U• − cU•)‖L2(T ) ‖h−1

T (V◦ − V•)‖L2(T )

+ ‖h1/2[A∇U• · n]‖L2(∂T∩Ω) ‖h−1/2
T (V◦ − V•)‖L2(∂T∩Ω)

)
.

(5.14)

We recall some standard properties of the Scott–Zhang projection; see [SZ90]. Let ω̃T
denote the patch of T in T̃ . For an element T ∈ T• \ T◦, there holds that

‖V◦ − V•‖L2(T ) = ‖(1− JT̃ )V◦‖L2(T ) . hT ‖∇V◦‖L2(ω̃T ). (5.15)

In combination with the trace inequality, we obtain that

‖V◦ − V•‖2L2(∂T ) = ‖(1− JT̃ )V◦‖
2
L2(∂T )

. h−1
T ‖(1− JT̃ )V◦‖

2
L2(T ) + hT ‖∇(1 − JT̃ )V◦‖

2
L2(T )

. hT ‖∇V◦‖2L2(ω̃T )
.

(5.16)

We emphasize that the constants of (5.15) and (5.16) just depend on the γ-shape regularity,
the polynomial degree p and the dimension. Combining the latter estimates with (5.14),
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the Cauchy inequality yields that

b(U◦ − U• , V◦ − V•) .
∑

T∈T•\T◦

(
‖hT (f + div(A∇U•)− b · ∇U• − cU•)‖L2(T ) ‖∇V◦‖L2(ωT )

+ ‖h1/2[A∇U• · n]‖L2(∂T∩Ω) ‖∇V◦‖L2(ωT )

)

≤
( ∑

T∈T•\T◦

‖hT (f + div(A∇U•)− b · ∇U• − cU•)‖2L2(T )

+ ‖h1/2[A∇U• · n]‖2L2(∂T∩Ω)

)1/2
×
( ∑

T∈T•\T◦

‖∇V◦‖2L2(ωT )

)1/2
.

Recall that every element patch ωT consists only of finitely many elements. Since the latter
estimate holds for arbitrary V◦ ∈ Sp0 (T◦), we obtain with (5.13) that

β◦ ‖U◦ − U•‖H1(Ω) ≤ sup
V◦∈S

p
0 (T◦)

|b(U◦ − U• , V◦)|
‖V◦‖H1(Ω)

. sup
V◦∈S

p
0 (T◦)

η•(T• \ T◦) ‖V◦‖H1(Ω)

‖V◦‖H1(Ω)
= η•(T• \ T◦).

This concludes the proof of (E4) with R•,◦ = T• \ T◦.

It remains to prove reliability (E3). Since uniform refinement leads to convergence,
discrete reliability (E4) implies reliability. The proof follows analogously to Step 3 of the
proof of Lemma 4.8.

We emphasize that the error estimator can be extended to mixed Dirichlet–Neumann–
Robin boundary conditions, where inhomogeneous Dirichlet conditions are discretized by
nodal interpolation for d = 2 and p = 1, see [FPP14], or by Scott–Zhang interpolation for
d ≥ 2 and p ≥ 1, see [CFPP14]. In any case (E1)–(E4) remain valid [FPP14, CFPP14],
but R•,◦ consists of a fixed patch of T•\T◦ [AFK+13, CFPP14].

5.2.1 Definiteness on the “discrete” limit space (E5)

It remains to prove validity of (E5). Recall that H = H1
0 (Ω) and Xℓ = Sp0 (Tℓ) in the sense

of Section 4.5.1. We define the discrete limit space X∞ :=
⋃∞
ℓ=0 S

p
0 (Tℓ) and obtain the

following lemma.

Lemma 5.6. Let p ≥ 1. The triangulations Tℓ generated by Algorithm 5.2 are uniformly
γ-shape regular with ‖hℓ‖L∞(Ω) → 0 as ℓ → ∞. Further, there holds X∞ = H1

0 (Ω) and
hence assumption (E5) is satisfied.

Proof. Recall the notation of Algorithm 5.2. NVB guarantees γ-shape regularity (3.4) of
the generated meshes Tℓ. Further, ‖hℓ‖L∞(Ω) → 0 as ℓ → ∞ is enforced by the expanded
marking strategy in Step (iv) and Step (v) of Algorithm 5.2 (see Proposition 4.7).

For w ∈ D := H2(Ω) ∩H1
0 (Ω), recall the approximation property infVℓ∈Xℓ ‖w − Vℓ‖H .

‖hℓ‖L∞(Ω)‖D2 w‖L2(Ω) from, e.g., [BS08, Chapter 4]. This proves that

lim
ℓ→∞

inf
Vℓ∈S

p
0 (Tℓ)

‖w − Vℓ‖H = 0 for all w ∈ D. (5.17)
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Let v ∈ H1
0 (Ω) and ε > 0. Since D is dense within H1

0 (Ω), choose w ∈ D with ‖v −w‖H ≤
ε/2. According to (5.17), there exists an index ℓ• ∈ N0 such that infVℓ∈Xℓ ‖w−Vℓ‖H ≤ ε/2
for all ℓ ≥ ℓ•. In particular, the triangle inequality gives

inf
Vℓ∈Xℓ

‖v − Vℓ‖H ≤ ‖v − w‖H + inf
Vℓ∈Xℓ

‖w − Vℓ‖H ≤ ε for all ℓ ≥ ℓ•.

This proves v ∈ X∞ =
⋃∞
ℓ=0Xℓ and hence concludes X∞ = H1

0 (Ω).

The next remark shows that definiteness on the “discrete” limit space (E5) is already
satisfied for many generic situation, even without using the expanded Dörfler marking
strategy.

Remark 5.7. In many generic situations, ‖hℓ‖L∞(Ω) → 0 and hence (E5) with X∞ =
H1

0 (Ω) is satisfied even without using the expanded Dörfler marking of Proposition 4.7. To
see that, suppose p ≥ 1 and q ≥ 0 are polynomial degrees and f ∈ L2(Ω). Let fℓ ∈ Pq(Tℓ)
be the L2-best approximation of f in Pq(Tℓ). Suppose further that the error estimator is
even reliable in the sense of

‖u− Uℓ‖H1(Ω) + ‖hℓ(f − fℓ)‖L2(Ω) ≤ Crel ηℓ for all ℓ ≥ 0, (5.18)

where the constant Crel is independent of ℓ. Note that (5.18) is well-known for residual
error estimators and elliptic PDEs with polynomial coefficients. Suppose that for all ℓ ∈ N
and all T ∈ Tℓ, it holds u|T /∈ Pp(T ) or f |T /∈ Pq(T ), i.e., the continuous solution as well as
the given data are not locally polynomial. Using (5.18), a simply argument by contradiction
shows that convergence ηℓ → 0 as ℓ → 0 already implies ‖hℓ‖L∞(Ω) → 0 as ℓ → ∞. Then,
Lemma 5.6 implies (E5) with X∞ = H1

0 (Ω).

5.3 Optimal convergence

In this section we show the main result of this chapter, which proves optimal algebraic
convergence rates for adaptive FEM for general second-order diffusion problems with con-
vection and reaction.

Section 5.2 proves that the model problem (5.2) fits in the abstract framework of Chap-
ter 4. Utilizing the previous sections, we can apply the abstract analysis of Sections 4.6–4.8
to obtain convergence of the adaptive algorithm (Sections 4.6). Further, as a direct conse-
quence of Theorem 4.14 and Theorem 4.21 we get the following result.

Theorem 5.8. Employ the notation of Algorithm 5.2. Suppose 0 < θ ≤ 1. Then, there
exist ℓlin > 0 and constants 0 < qlin < 1 as well as Clin > 0, such that the output of
Algorithm 5.2 satisfies

ηℓ+n ≤ Clin q
n
lin ηℓ for all ℓ, n ∈ N0 with ℓ ≥ ℓlin. (5.19)

Further suppose 0 < θ < θopt := (1 + C2
stbC

2
rel/β̂

2
0)

−1, where β̂20 is the inf-sup constant of
the munif-times uniform refinement of T0; see Lemma 4.17. For all s > 0, it holds that

‖u‖As <∞ ⇐⇒ ∃ℓopt > 0 ∃Copt > 0 ∀ℓ ≥ ℓopt ηℓ ≤ Copt

(
#Tℓ −#T0 + 1

)−s
.

(5.20)

The constant Copt depends only on #Tℓopt, T0, θ, s, and validity of (E1)–(E5).
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5.4 Numerical experiments

Theorem 5.8 does not only prove linear convergence, but also optimal algebraic con-
vergence rates for the sequence of estimators and solutions provided by Algorithm 5.2.
We emphasize that in many generic situations, Theorem 5.8 even holds without using the
expanded Dörfler marking in Algorithm 5.2 (see Remark 5.7).

To get optimal convergence in the spirit of [CKNS08] with approximation classes ‖·‖Es(T•)
(cf. see Section 4.8.2), one can define suitable oscillation indicators in the following way.
For each element T ∈ T• ∈ T, let FT denote the set of its facets (i.e., edges for d = 2). For
arbitrary q ≥ p − 1, the data oscillations corresponding to the error indicators from (5.8)
are given by

osc•(V•)
2 :=

∑

T∈T•

osc•(T, V•)
2. (5.21a)

We define the element contributions for all T ∈ T• and V• ∈ Sp0 (T•) by

osc•(T, V•)
2 =h2T min

Q∈Pq(T )
‖f + div(A∇V•)− b · ∇V• − c V• −Q‖2L2(T )

+ hT
∑

F∈FT

min
Q∈Pq(T )

‖[(A∇V•) · n]−Q‖2L2(F∩Ω).
(5.21b)

Then, osc•(·)2 satisfies the assumptions of Lemma 4.20 in Section 4.8.2 as well as (4.29)
with X• := Sp0 (T•) = Sp(T•) ∩H1

0 (Ω) and estimator ηℓ from(5.8). Further details as well
as the exact proof is found in, e.g., [CKNS08, CN12, FFP14]. Note that the constant Cosc

in Lemma 4.20 depends on q and p. We emphasize that, if A, b, c are piecewise polynomial
and if q is chosen sufficiently large, the local contributions simplify to the well-known data
oscillations

osc•(T, V•)
2 = h2T min

fT∈Pq(T )
‖f − fT ‖2L2(T )

as for the Laplace problem. In any case, Lemma 4.20 applies and yields for all s > 0 that

‖u‖Es <∞ ⇐⇒ ‖u‖As <∞.

Hence, Algorithm 5.2 guarantees optimal algebraic convergence rates with respect to the
total error.

5.4 Numerical experiments

In this section, we present two numerical experiments for the 2D Helmholtz equation (5.3)
that underpin our theoretical finding from the previous sections. The numerical experi-
ments are taken from [BHP17]. We use lowest-order FEM with X• := S1

0 (T•) and employ
the weighted-residual error estimator. We also refer to [BISG97] for a first systematic a
posteriori error analysis for finite elements for the Helmholtz equation and [OPD05] for an
overview on the state of the art and available error estimation techniques for this problem.
In the experiments, we compare the performance of Algorithm 5.2 with respect to
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5 Adaptive FEM for compactly perturbed problems

• different values of k ∈ {1, 2, 4, 8, 16},

• different values of θ ∈ {0.1, 0.2, . . . , 0.9},

• standard Dörfler marking strategy (with Cmark = 1) as well as the expanded Dörfler
marking strategy of Proposition 4.7 with Cmark = 2.

We consider domains Ω ⊂ R2 with a single re-entrant corner and corresponding interior
angle α > π, cf. Figure 5.1. Note that elliptic regularity thus predicts a generic convergence
order O(N−δ/2) for the error on uniform meshes with N elements, where δ = π/α < 1. On
the other hand, the optimal convergence behavior for lowest-order elements is O(N−1/2) if
the mesh is appropriately refined.

5.4.1 Experiment with unknown solution

We consider the Z-shaped domain Ω ⊂ R2 from Figure 5.1 (upper left). The marked node
has the coordinates (−1,−t) = (−1,−0.5) and determines the angle α at the re-entrant
corner (0, 0). This choice leads to α = 2π − arcsin

(
t/
√
1 + t2

)
and δ ≈ 0.5398. Consider

the constant right-hand side f ≡ 1 in (5.3) so that the residual error estimator is equivalent
to the actual error, i.e., η⋆ ≃ ‖u− U⋆‖H1(Ω).

For k = 2, Figure 5.1 shows a generically reduced convergence rate for the error estima-
tor on uniform meshes, while on the other hand, Algorithm 5.2 with θ = 0.2 regains the
optimal convergence rate. Empirically, the results generated by employing the standard
Dörfler marking lead to similar results as for the expanded Dörfler marking from Propo-
sition 4.7. The same observation is made for all tested choices of θ (not displayed), so
that we only consider the expanded Dörfler marking in the remaining plots. Figure 5.2
compares uniform vs. adaptive mesh-refinement for some fixed θ ∈ {0.2, 0.5} but various
wavenumbers k ∈ {1, 2, 4, 8}. As expected, the preasymptotic phase increases with grow-
ing k. However, adaptive mesh-refinement results in asymptotically optimal convergence
behavior. Figure 5.3 compares uniform vs. adaptive mesh-refinement for fixed k ∈ {2, 8}
but various θ ∈ {0.1, . . . , 0.9}. Although Theorem 5.8 predicts optimal convergence rates
only for small marking parameters 0 < θ < θopt := (1 + C2

stbC
2
rel)

−1, we observe that
Algorithm 5.2 is stable in θ, and any choice of θ ≤ 0.9 leads to the optimal convergence be-
havior. Even though this gap between analytical and computational results is well-known
and typical for adaptive algorithms, this problem is still open. Finally, we observe that
Algorithm 5.2 did never enforce uniform mesh-refinement in Step (i), i.e., throughout the
resulting discrete linear systems were indefinite but regular.
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Figure 5.1: Geometry and initial partition T0 in the experiment from Section 5.4.1 (above).
The blue star indicates the node (−1,−t) := (−1,−0.5). Below, we compare
the error estimator for uniform vs. adaptive refinement with θ = 0.2 and k =
2. Uniform mesh-refinement leads to a suboptimal convergence rate, while
Algorithm 5.2 with Dörfler marking and expanded Dörfler marking recovers
the optimal convergence rate.
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Figure 5.2: Convergence rates for ηℓ in the experiment from Section 5.4.1 for different values
of k. We used θ = 0.2 (above) as well as θ = 0.5 (below). Dashed lines mark
uniform refinement, while solid lines mark the corresponding estimator ηℓ of
Algorithm 5.2 with expanded Dörfler marking. The latter recovers optimal
convergence rates, while uniform refinement does not.

62



5.4 Numerical experiments

10 2 10 4 10 6

10 -2

10 -1

10 0

er
ro
r
es
ti
m
at
or
η ℓ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
uniform

number of elements N

O
(
N−1/2

)

O
(
N−δ/2

)

10 2 10 4 10 6

10 -2

10 -1

10 0

10 1

er
ro
r
es
ti
m
at
or
η ℓ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
uniform

number of elements N

O
(
N−1/2

)

O
(
N−δ/2

)

Figure 5.3: Convergence rates for ηℓ in the experiment from Section 5.4.1. We compare uni-
form and adaptive mesh-refinement for different values of θ ∈ {0.1, . . . , 0.9} and
k = 2 (above) as well as k = 8 (below). For all θ < 1, adaptive mesh-refinement
leads to optimal convergence behavior, while the preasymptotic behavior in-
creases with k.
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5.4.2 Experiment with mixed boundary conditions

We consider a Z-shaped domain with a symmetric opening at the re-entrant corner, see
Figure 5.7. The marked nodes read (−1,±t) = (−1,±0.25). Analogously to the previous
example, we expect a reduced convergence order O(N−δ/2) for uniform mesh-refinement
with δ ≈ 0.5423. We prescribe the exact solution of the Helmholtz equation in polar
coordinates (r, φ) by

u(x, y) = rδ cos
(
δφ
)

(5.22)

and define f := −k2u in Ω and g := ∂nu on Γ. Note that u has a generic singularity at
the re-entrant corner (0, 0) of Ω. Further, there holds u|ΓD = 0 on the Dirichlet boundary
ΓD := conv{(−1,±t), (0, 0)}. The Neumann boundary is given by ΓN := ∂Ω\ΓD. Thus, u
is the unique weak solution of the mixed boundary value problem

−∆u− k2 u = f in Ω

u = 0 on ΓD

∂nu = g on ΓN .

(5.23)

The weak formulation (5.23) can be written in the variational formulation (5.4) with Hilbert
space

H := H1
D(Ω) =

{
v ∈ H1(Ω) : γint0 (v)|ΓD = 0

}
,

where γint0 (·) denotes the interior trace operator (cf. Section 2.2). Note that assump-
tion (E5) is guaranteed by Remark 5.7 even for standard Dörfler marking. Moreover, since
the exact solution u is given, we can compute the error err⋆ := ‖u− U⋆‖H1(Ω) besides the
corresponding error estimator η⋆.

Our empirical observations for mixed boundary value problem are similar to those of the
previous experiment in Section 5.4.1; see, e.g., Figure 5.4–5.6. Uniform mesh-refinement
leads to suboptimal convergence behavior with rate O(N−δ/2) for both the error as well as
the error estimator. On the other hand, adaptive mesh-refinement resolves the geometric
singularity at the re-entrant corner (Figure 5.7) and recovers the optimal convergence rate
O(N−1/2), see Figure 5.4.

As in the previous example, Algorithm 5.2 appears to be stable for all θ ∈ {0.1, . . . , 0.9}
and always realizes the optimal rate (Figure 5.6). Different values for the wavenumber
k ∈ {1, 2, 4, 8, 16} only affect the preasymptotic phase (Figure 5.5). Finally Figure 5.4
shows that there is no empirical difference between the standard Dörfler marking and
the expanded Dörfler marking, and therefore, both refinement strategies lead to optimal
convergence behavior for the error as well as the error estimator.

64



5.4 Numerical experiments

10 2 10 4 10 6

10 -3

10 -2

10 -1

10 0

number of elements N

er
ro
r
an

d
er
ro
r
es
ti
m
at
or

ηℓ, Dörfler
ηℓ, exp. Dörfler
ηℓ, uniform
errℓ, Dörfler
errℓ, exp. Dör.
errℓ, uniform

O(N−1/2)

O(N−δ/2)

10 2 10 4 10 6

10 -3

10 -2

10 -1

10 0

10 1

10 2

number of elements N

er
ro
r
an

d
er
ro
r
es
ti
m
at
or

ηℓ, Dörfler
ηℓ, exp. Dörfler
ηℓ, uniform
errℓ, Dörfler
errℓ, exp. Dör.
errℓ, uniform

O(N−1/2)

O(N−δ/2)

Figure 5.4: Convergence of errℓ and ηℓ in the experiment of Section 5.4.2 for k = 2 (above)
and k = 16 (below). We compare uniform vs. adaptive mesh-refinement using
Dörfler marking as well as expanded Dörfler marking with θ = 0.2.
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Figure 5.5: Convergence rates for ηℓ in the experiment of Section 5.4.2 for different values
of k and marking parameters θ = 0.2 (above) as well as θ = 0.5 (below).
Dashed lines indicate uniform refinement, while solid lines indicate the output
of Algorithm 5.2 with expanded Dörfler marking. The latter recovers optimal
convergence rates, while uniform refinement does not.
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Figure 5.6: Convergence rates for ηℓ in the experiment from Section 5.4.2 for uniform and
adaptive refinement with different values of θ ∈ {0.1, . . . , 0.9} and k = 2 (above)
as well as k = 16 (below). Independent of the choice of θ < 1, Algorithm 5.2
leads to optimal convergence behavior. As in Figure 5.5, the preasymptotic
phase increases with k.
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Figure 5.7: Initial mesh T0 (upper left) and adaptively generated meshes Tℓ in the exper-
iment from Section 5.4.2 for k = 2 and θ = 0.2. The nodes marked with blue
stars are given be (−1,±t) = (−1,±0.25).
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6 Adaptive BEM for the Helmholtz equation

6.1 State of the art and outline

Adaptive boundary element methods with (dis)continuous piecewise polynomials for second
order elliptic problems are well understood if the boundary integral operator is strongly
elliptic. In particular, optimal algebraic rates of convergence have been proved in [FFK+14,
FFK+15, FKMP13] for polyhedral boundaries and in [Gan17b] for smooth boundaries. An
abstract framework is also found in [CFPP14, Fei15]. With [AFF+17] these results can
also be extended to piecewise smooth boundaries.

In recent years, isogeometric analysis has lead to a variety of works proving optimal
rates for ABEM using spline basis functions; see, e.g., [FGP15, FGHP16, FGHP17] for the
Laplace problem in two dimension as well as [Gan17a] for a generalization to second-order
linear elliptic PDEs in three dimensions.

On the other hand, boundary element methods for the Helmholtz equation are very
popular and used in many applications; see, e.g., [CWGLS12, CK83] for an overview of
techniques in acoustic scattering. To our knowledge, there are no results concerning optimal
convergence of ABEM for indefinite problems, even for sufficiently fine initial meshes.

As second application of the abstract framework presented in Chapter 4, we consider
ABEM for the Dirichlet or Neumann boundary value problem for the Helmholtz equation,
i.e.,

−∆u− k2u = 0 in Ω subject to

u = g on Γ or

∂n u = φ on Γ.

where k ∈ R denotes the wavenumber. Using a Potential decomposition from [Mel12], we
generalize the inverse estimates in [AFF+17] for the Laplacian to the Helmholtz case. Using
the inverse estimate, we prove the estimator axioms (E1)–(E5). Hence, we can apply the
abstract framework of Chapter 4. Then, the latter provides the main results of this chapter
(Theorem 6.11 and Theorem 6.14), where linear convergence as well as optimal algebraic
convergence behavior is proved for the weakly-singular as well as the hyper-singular integral
equation.

Outline of chapter. First, in Section 6.2.1 we give a short introduction into BEM,
where we recap the most important properties of the involved integral operators. As model
problem serves the weakly-singular integral equation, which is introduced in Section 6.3.
There, we also discuss the weighted-residual error estimator and recall the adaptive Al-
gorithm 4.4 in the current setting. In Section 6.4, we prove the inverse estimates in the
style of [AFF+17] for the Helmholtz operators. To that end, we introduce Besov spaces in
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6 Adaptive BEM for the Helmholtz equation

Section 6.4.1 and decompositions of the corresponding potential operators in Section 6.4.2.
Utilizing the inverse estimates, Section 6.5 verifies the estimator axioms. The main result
(Theorem 6.11) of this chapter is given in Section 6.6. Further, in Section 6.7, we focus
on the hyper-singular integral equation and prove optimal convergence rates also in this
setting. In the last Section 6.8, we underpin our theoretical findings with some experiments.

6.2 Boundary element method for the Helmholtz equation

This section gives a short introduction into boundary element methods. Our focus is on the
Helmholtz equation and the related integral operators. The interior Helmholtz equation
reads

−∆u− k2u = 0 in Ω, (6.1a)

where k ∈ R denotes the wavenumber. The corresponding outer problem reads

−∆u− k2u = 0 in Rd \ Ω, (6.1b)

where we additionally impose the Sommerfeld radiation condition

|u(x)| ≤ C |x|−1

|∂u/∂r − iku| ≤ C |x|−2

}
for |x| → ∞. (6.1c)

Here ∂u/∂r = x/|x| · ∇u denotes the radial derivative. Note that, (6.1c) is needed to
guarantee unique solvability for the outer problem (6.1b). The next section introduces the
corresponding integral operators.

6.2.1 Layer potential and boundary integral operators

Recall the notation of Chapter 2. Let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain
with piecewise C∞-boundary ∂Ω. For d = 2, we additionally assume that diam(Ω) < 1.
Let Ωext := Rd \ Ω be the exterior domain and n(y) denote the exterior normal vector for
all x ∈ ∂Ω. For k > 0, the Helmholtz kernel function and the fundamental solution of (6.1)
are given by

Gk(x, y) :=

{
i
4H

(1)
0 (k|x− y|) for d = 2,
1

4π|x−y| e
ik|x−y| for d = 3,

(6.2)

where H
(1)
0 denotes the first-kind Hankel function of order zero; see, e.g., [Ste08a, Chapter

5.4]. For k = 0, the kernel G0(x, y) coincides with the fundamental solution of the Laplace
operator and reads

G0(x, y) :=

{
− 1

2π log |x− y| for d = 2,
1

4π|x−y| for d = 3.
(6.3)
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In case of a negative wavenumber k < 0, we define Gk := G−k. For smooth solutions
u ∈ C2(Ω) of equation (6.1a), there holds the representation formula

u(x) =

∫

∂Ω
Gk(x, y) ∂n(y)u(y) dy −

∫

∂Ω
∂n(y)Gk(x, y)u(y) dy for all x ∈ Ω. (6.4)

Hence, in oder to get the solution u(x) in Ω, depending on the given boundary conditions,
one has to compute either ∂n u or u on the boundary. We emphasize that the represen-
tation formula (6.4) holds, up to a different sign, also for smooth solutions of the exterior
problem (6.1b) with the Sommerfeld radiation condition (6.1c). Without (6.1c), one can
prove a similar result with an additional Helmholtz-harmonic function on the right hand
side; see, e.g., [SS11, Theorem 3.1.8].

The representation formula motivates the definition of the following potential operators.
For all k ∈ R, we define the corresponding simple-layer potential by

(Ṽkφ)(x) :=

∫

∂Ω
Gk(x, y)φ(y) dy for all x ∈ Rd \ ∂Ω, (6.5)

and double-layer potential by

(K̃kφ)(x) :=

∫

∂Ω
∂n(y)Gk(x, y)φ(y) dy for all x ∈ Rd \ ∂Ω. (6.6)

For −1/2 < s < 1/2, these potentials give rise to bounded linear operators

Ṽk : H
−1/2+s(∂Ω) → H1

loc(R
d) and K̃k ∈ H1/2+s(∂Ω) → H1

loc(R
d), (6.7)

where H1
loc(R

d) denotes the space of H1-functions with compact support; see [SS11, The-
orem 3.1.16].

Recall the interior and exterior trace operators γint0 , γext0 as well as the conormal deriva-
tives γint1 , γext1 from Section 2.2.4. For −1/2 < s < 1/2, application of this trace operators
gives rise to the following linear and continuous boundary integral operators:

• simple-layer operator

Vk : H
−1/2+s(∂Ω) → H1/2+s(∂Ω) with Vk := γint0 Ṽk; (6.8)

• double-layer operators

K
σ
k : H1/2+s(∂Ω) → H1/2+s(∂Ω) with K

σ
k := γσ0 K̃k and σ ∈ {int, ext},

Kk : H
1/2+s(∂Ω) → H1/2+s(∂Ω) with Kk :=

1

2
(Kint

k + K
ext
k );

• adjoint double-layer operator

K
′
k : H

−1/2+s(∂Ω) → H−1/2+s(∂Ω) with K
′
k := −1

2
Id + γint1 Ṽk, (6.9)
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• hyper-singular operator

Wk : H
1/2+s(∂Ω) → H−1/2+s(∂Ω) with Wk := −γint1 K̃k (6.10)

A proof of the stated mapping properties is given in [SS11, Theorem 3.1.16] resp. [SS11,
Section 3.1.2]. We emphasize that the simple-layer operator Vk is symmetric and even
continuous for s = 1/2 (see Theorem 6.3). For k = 0, V0 is a well-defined isomorphism for
−1/2 ≤ s ≤ 1/2, and elliptic and symmetric for s = 0. Further, for k 6= 0, it is well-known
that the simple-layer operator Vk is invertible, if and only if k2 is not an eigenvalue of the
interior Dirichlet problem (IDP) for the Laplace operator, i.e., it holds that

∀u ∈ H1(Ω)
(
−∆u = k2u with γint0 u = 0 =⇒ u = 0 in Ω

)
; (IDP)

see, e.g., [SS11, Theorem 3.9.1]. Hence, to ensure solvability, we assume throughout this
chapter that k2 is not an eigenvalue of (IDP).

Similar to the simple-layer operator, it can be shown that the double-layer operator is
continuous for s = 1/2 (see Theorem 6.3). In case of the Laplace equation, i.e., k = 0, the
operators K0, K

′
0, as well as W0 are even well defined for s = ±1/2; see [SS11, Remark

3.1.18]). For further properties on the hypersingular operator Wk, we refer to Section 6.7.
For ease of presentation, the main part of this chapter (Sections 6.3–6.6) focuses on

the weakly-singular integral equation. The hyper-singular integral equation is discussed in
Section 6.7.

According to the representation formula (6.4), the solution u(x) in Ω is given in terms of
the normal derivative ∂nu and the trace u on the boundary ∂Ω. For the Dirichlet problem,
i.e., (6.1a) subject to u = g on ∂Ω, the missing normal derivative φ = ∂nu is given by
Symm’s intgral equation

Vkφ =
(
Kk +

1

2
Id
)
g on ∂Ω. (6.11)

For ease of presentation, we restrict ourself to an indirect formulation, where the solution
u of the Dirichlet problem is given in terms of the simple-layer potential

u = Ṽk φ, where φ is the solution of Vk φ = g on ∂Ω. (6.12)

Note that in the indirect formulation, the density φ has no direct physical meaning. How-
ever, we stress that all results of Sections (6.3)–(6.6) also holds for direct boundary element
methods; cf. Remark 6.12. For the Neumann problem, i.e., (6.1a) subject to ∂nu = φ on
∂Ω, we refer to Section 6.7.

6.3 Model problem

Let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain with piecewise C∞-boundary
∂Ω. For d = 2, we additionally assume that diam(Ω) < 1. Suppose Γ = ∂Ω or ∅ 6= Γ ⊂ ∂Ω
is a relative open set which stems from a Lipschitz dissection Γ ∪ ∂Γ ∩ (∂Ω \ Γ).
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To simplify notation, we make the following convention: If Γ $ ∂Ω, and it is clear

from the context, we identify any v ∈ H̃1/2+s(Γ) with its extension E0,Γv ∈ H1/2+s(∂Ω).

Further, the operators Ṽk,Vk,K
′
k are often applied to functions in L2(Γ), resp. K̃k,Kk,Wk

are applied to functions in H̃1/2(Γ). To ease notation, we use the following convention: For
ψ ∈ L2(Γ) and v ∈ H̃1/2(Γ), we implicitly extend with zero, e.g., we write Vkψ instead of
Vk(E0,Γψ) and Kkv instead of Kk(E0,Γv).

As model problem, we consider the weakly-singular integral equation: Given an f ∈
H1/2(Γ), find φ ∈ H̃−1/2(Γ) such that

Vk φ = f on Γ. (6.13)

Recall the notation of Section 2.2, and let 〈· , ·〉 denote the duality pairing which extends
the L2(∂Ω)-scalar product. The weak formualtion of (6.13) reads as. Given f ∈ H1/2(Γ),
find φ ∈ H̃−1/2(Γ) such that

〈Vk φ , ψ〉 = 〈f , ψ〉 for all ψ ∈ H̃−1/2(Γ). (6.14)

In case of k = 0, V0 corresponds with the simple-layer operator of the Laplace equation.
Adaptive algorithms for the Laplace equations are well studied and understood. In this
case, the proof of optimal algebraic rates of convergence for the weakly-singular integral
equation (6.13) is found in [FKMP13, FFK+14, Gan13].

In order to fit in the abstract framework of Chapter 4, we recast the model prob-
lem (6.13) in the following functional analytic setting. The bilinear form a(· , ·) : H̃−1/2(Γ)×
H̃−1/2(Γ) → R is given by

a(χ , ψ) := 〈V0 χ , ψ〉 for all χ,ψ ∈ H̃−1/2(Γ). (6.15)

Further more, we define the linear operator

Ck := Vk −V0 : H̃
−1/2(Γ) → H1/2(Γ). (6.16)

Then, the model problem (6.13) can equivalently be reformulated as follows: Given f ∈
H1/2(Γ), find φ ∈ H̃−1/2(Γ) such that

(
V0 + Ck

)
φ = f on Γ. (6.17)

The weak formulation of (6.17) thus reads as: Given f ∈ H1/2(Γ), find φ ∈ H̃−1/2(Γ) such
that

b(φ , ψ) := a(φ , ψ) + 〈Ck φ , ψ〉 = 〈f , ψ〉 for all ψ ∈ H̃−1/2(Γ). (6.18)

The following Proposition recaps some important properties of a(· , ·), and C and ensures
that (6.17) fits in the compactly perturbed setting of Chapter 4.

Proposition 6.1. There exist constants α,Ccont > 0 such that the bilinear form a(· , ·)
from (6.15) and Ck from (6.16) satisfy:
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6 Adaptive BEM for the Helmholtz equation

(i) a(· , ·) is symmetric, continuous and elliptic with

|a(χ , ψ)| ≤ Ccont ‖χ‖H̃−1/2(Γ) ‖ψ‖H̃−1/2(Γ) and α ‖ψ‖2
H̃−1/2(Γ)

≤ a(ψ , ψ),

for all χ,ψ ∈ H̃−1/2(Γ). Hence, a(· , ·) defines a scalar product and induces an
equivalent energy norm |||ψ ||| := a(ψ , ψ)1/2 ≃ ‖ψ‖

H̃−1/2(Γ)
on H̃−1/2(Γ).

(ii) The operator Ck : H̃
−1/2(Γ) → H1/2(Γ) is bounded and compact.

Proof. We split the proof into two steps.
Step 1: Proof of (i). Recall that V0 is a symmetric isomorphism. This yields that

a(χ , ψ) = 〈V0 χ , ψ〉 = 〈χ , V0 ψ〉 = a(ψ , χ) for all χ,ψ ∈ H̃−1/2(Γ).

Hence, a(· , ·) is symmetric. Recall the extension operator E0,Γ from Section 2.2. Continuity
of V0 : H

−1/2+s(∂Ω) → H1/2+s(∂Ω) further implies that

|a(χ , ψ)| = |〈V0 χ , ψ〉| ≤ ‖V0 χ‖H1/2(Γ)‖ψ‖H̃−1/2(Γ)

= ‖V0(E0,Γχ)‖H1/2(Γ)‖ψ‖H̃−1/2(Γ)

≤ ‖V0‖‖E0,Γχ‖H−1/2(∂Ω)‖ψ‖H̃−1/2(Γ)

= ‖V0‖‖χ‖H̃−1/2(Γ)‖ψ‖H̃−1/2(Γ).

This proves continuity of a(· , ·). In case of d = 3, V0 is elliptic and we directly obtain that

|a(χ , χ)| = |〈V0 (E0,Γχ) , E0,Γχ〉| & ‖E0,Γ ψ‖2H−1/2(∂Ω)
= ‖ψ‖2

H̃−1/2(Γ)
,

where the hidden constant depends only on ∂Ω. For d = 2, note that diam(Ω) < 1 implies
ellipticity of V0; see, e.g., [Ste08a, Section 6.6]. This concludes the proof of (i).

Step 2: Proof of (ii). Boundedness of Ck follows directly from the definition.
On Lipschitz boundaries ∂Ω, the operator Ck := Vk − V0 : H−1/2(∂Ω) → H1/2(∂Ω) is
compact; see, e.g., [SS11, Lemma 3.9.8] or [Ste08a, Section 6.9]. This implies compactness
of Ck : H̃

−1/2(Γ) → H1/2(Γ).

For mesh-refinement, we consider extended 1D bisection (see Section 3.4) in the case of
d = 2. For d = 3, we use NVB (Section 3.5) on the two dimensional boundary Γ. Then,
Section 3.4 and Section 3.5 prove the refinement axioms (R1)–(R6) for both strategies.

For discretization, we consider standard piecewise polynomial ansatz and test spaces,
based on regular triangulations of Γ (see Section 3.2). To that end, let T0 be a given
regular and γ-shape regular initial triangulation on Γ. Further, let p ∈ N0 be an arbitrary
but fixed polynomial degree. For each admissible mesh T•, the corresponding T•-piecewise
polynomial space is denoted by Pp(T•). Then, the Galerkin discretization of (6.17) reads
as follows: Find Φ• ∈ Pp(T•) such that

a(Φ• , Ψ•) + 〈Ck Φ• , Ψ•〉 = 〈f , Ψ•〉 for all Ψ• ∈ Pp(T•). (6.19)
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It remains to prove that iterated uniform refinement leads to a dense subspace of H̃−1/2(Γ).
To that end, let Π• : L

2(Γ) → P0(T•) denote the L2(Γ)- orthogonal projection onto P0(T•).
For all ψ ∈ L2(Γ), it holds that

‖(1−Π•)ψ‖H̃−1/2(Γ)
. ‖h1/2• (1−Π•)ψ‖L2(Γ), (6.20)

where the hidden constant depends on the shape regularity of T•; see, e.g., [AFF+17,
Corollary 3.3] or [SS11, Section 4.3.4]. Note that there also holds nestedness P0(T•) ⊆
Pp(T•) for p ≥ 0. For ψ ∈ L2(Γ), we thus obtain that

inf
Ψ•∈Pp(T•)

‖ψ −Ψ•‖H̃−1/2(Γ)

(6.20)

. ‖h1/2• (1−Π•)ψ‖L2(Γ) . ‖h1/2• ‖L∞(Γ) ‖ψ‖L2(Γ).

Recall that the embedding L2(Γ) ⊂ H̃−1/2(Γ) is dense. Uniform mesh-refinement guar-
antees ‖h•‖L∞(Ω) → 0 and hence, leads to a dense sequence of subspaces. Note that the
involved constants only depend on the shape regularity of T• and Γ. Thus, the above
argumentation holds for every refinement strategy satisfying (R2).

Proposition 6.1 proves that model problem (6.13) as well as (6.17) and (6.19) fit in the
compactly perturbed framework of Section 4.2 with H := H̃−1/2(Γ) and X• := Pp(T•).
Hence, existence and uniqueness of solutions of (6.19) is guaranteed in the sense of Propo-
sition 4.1.

6.3.1 Weighted-residual error estimator

In this subsection, we introduce the weighted-residual error estimator for the weakly-
singular integral equation (6.13). To that end, suppose f ∈ H1(Γ) and T• ∈ refine(T0),
such that the discrete solution Φ• ∈ Pp(T•) of (6.19) exists. To guarantee well posedness
of the estimator, we note that there holds Vk : L

2(Γ) → H1(Γ) (see Theorem 6.3). For all
T ∈ T•, the local contributions are defined by

η•(T ) := ‖h1/2• ∇Γ (VkΦ• − f)‖L2(T ).

The corresponding a posteriori error estimator is given by

η• := η•(T•) with η•(U•) :=
( ∑

T∈U•

η•(T )
2
)1/2

for all U• ⊆ T•. (6.21)

Further, for a set of elements U• ⊆ T•, we define

⋃
U• := {x ∈ Γ : ∃T ∈ T• x ∈ T}.

Then, it holds that η•(U•) = ‖h1/2 ∇Γ (VkΦ• − f)‖L2(
⋃

U•). The weighted-residual error
estimator (6.21) has first been proposed for a posteriori BEM error control for the weakly-
singular integral equation in 2D in [CS95, Car96] and later in 3D in [CMS01].
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6 Adaptive BEM for the Helmholtz equation

6.3.2 Adaptive algorithm

With the a posteriori error estimator η• at hand, we consider the following adaptive algo-
rithm which consists of Algorithm 4.4 combined with the expanded Dörfler marking from
Proposition 4.7.

Algorithm 6.2. Input: Parameters 0 < θ ≤ 1 and Cmark ≥ 1 as well as initial triangu-
lation T0 with Φ−1 := 0 ∈ Pp(T0) and η−1 := 1.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , iterate the following Steps (i)–(vi):

(i) If (6.19) does not admit a unique solution in Pp(Tℓ):
– Define Φℓ := Φℓ−1 ∈ Pp(T0) and ηℓ := ηℓ−1.

– Let Tℓ+1 := refine(Tℓ,Tℓ) be the uniform refinement of Tℓ,
– Increase ℓ→ ℓ+ 1 and continue with Step (i).

(ii) Else compute the unique solution Φℓ ∈ Pp(Tℓ) to (6.19).

(iii) Compute the corresponding indicators ηℓ(T ) for all T ∈ Tℓ.

(iv) Determine a set M′
ℓ ⊆ Tℓ of up to the multiplicative factor Cmark minimal cardinality

such that θη2ℓ ≤ ηℓ(M′
ℓ)

2.

(v) Find M′′
ℓ ⊆ Tℓ such that #M′′

ℓ = #M′
ℓ as well as hℓ(T ) ≥ hℓ(T

′) for all T ∈ M′′
ℓ

and T ′ ∈ Tℓ \M′′
ℓ . Define Mℓ := M′

ℓ ∪M′′
ℓ .

(vi) Generate Tℓ+1 := refine(Tℓ,Mℓ), increase ℓ→ ℓ+ 1, and continue with Step (i).

Output: Sequences of successively refined triangulations Tℓ, discrete solutions Φℓ, and
corresponding estimators ηℓ.

Apart from the model problem and involved discrete spaces, Algorithm 6.2 coincides
with Algorithm 5.2 for adaptive finite elements.

6.4 Inverse estimates

The main result of this section is the following inverse-type estimate. In case of the Laplace
equation (k = 0), similar estimates are shown in [FKMP13, Gan13] for polyhedral or
smooth boundaries. In [AFF+17], the analysis has been lifted to piecewise C1-boundaries.

The proof of Theorem 6.3 uses ideas from [AFF+17, Mel12] and generalizes the existing
results in [FKMP13, Theorem 3.1] and in [AFF+17, Theorem 3.1] from k = 0 to general
k > 0. We note that, Theorem 6.3 is an essential tool to prove the estimator Axioms (E1)–
(E4) in Section 6.5.

Theorem 6.3. The simple-layer and double-layer operator satisfy

Vk ∈ L
(
L2(Γ),H1(Γ)

)
resp. Kk ∈ L

(
H̃1(Γ),H1(Γ)

)
. (6.22)
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6.4 Inverse estimates

Additionally, let T• be a γ-shape regular triangulation of Γ. Then, there exists a constant
Cinv > 0 which depends only on Γ, Ω, and γ, such that for all k > 0, it holds that

C−1
inv ‖h

1/2
• ∇ΓVkψ‖L2(Γ) ≤ (1 + k3) ‖ψ‖

H̃−1/2(Γ)
+ ‖h1/2• ψ‖L2(Γ), (6.23)

C−1
inv ‖h

1/2
• ∇Γ Kkv‖L2(Γ) ≤ (1 + k3) ‖v‖

H̃1/2(Γ)
+ ‖h1/2• ∇Γv‖L2(Γ), (6.24)

C−1
inv ‖h

1/2
• K

′
kψ‖L2(Γ) ≤ (1 + k3) ‖ψ‖

H̃−1/2(Γ)
+ ‖h1/2• ψ‖L2(Γ), (6.25)

C−1
inv ‖h

1/2
• Wkv‖L2(Γ) ≤ (1 + k3) ‖v‖

H̃1/2(Γ)
+ ‖h1/2• ∇Γv‖L2(Γ), (6.26)

for all ψ ∈ L2(Γ) and v ∈ H̃1(Γ). Furthermore, there exists C̃inv > 0 which depends only
on Ω, Γ, γ, and p, such that

‖h1/2• ∇ΓVkΨ•‖L2(Γ) + ‖h1/2• K
′
kΨ•‖L2(Γ) ≤ C̃inv (1 + k3) ‖Ψ•‖H̃−1/2(Γ), (6.27)

‖h1/2• ∇Γ KkV•‖L2(Γ) + ‖h1/2• WkV•‖L2(Γ) ≤ C̃inv (1 + k3) ‖V•‖H̃1/2(Γ), (6.28)

for all Ψ• ∈ Pp(T•) and V• ∈ S̃p+1(T•). In particular, the constants Cinv, C̃inv are indepen-
dent of the wavenumber k > 0.

6.4.1 Function spaces revisited

The proof of Theorem 6.3 involves certain Besov spaces on domains Ω̃. Therefore, we
recap the definitions and some important properties. Besov spaces can be defined by the
K-method of interpolation; see, e.g., [Tar07, Tri83, Tri92]. To that end, let Ω̃ ⊂ Rd be a
bounded Lipschitz domain, s ∈ N0 and s

′ ∈ (0, 1). Then, the Besov space Bs+s′

2,∞ (Ω̃) is given
by

Bs+s′

2,∞ (Ω̃) :=
[
Hs(Ω̃),Hs+1(Ω̃)

]
s′,∞

.

Moreover, according to [Tar07, Lemma 22.2], there holds the continuous embeddingHs+s′(Ω̃) ⊂
Bs+s′

2,∞ (Ω̃).

6.4.2 Potential decompositions

The proof of Theorem 6.3 is based on the decomposition of the layer potentials into a
singular part, which consists of the layer potentials Ṽ0, resp., K̃0 of the Laplacian, and two
smoothing operators. We employ the following notation

|∇nψ(x)|2 :=
∑

α∈Nd0
|α|=n

n!

α!
|Dαψ(x)|2 with α! := α1! · α2! . . . · αd! and |∇0ψ(x)|2 := |ψ(x)|2.

Lemma 6.4 provides a decomposition for the simple-layer potential, while Lemma 6.5 states
a similar result for the double-layer potential. Both results are proved in [Mel12].
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6 Adaptive BEM for the Helmholtz equation

Lemma 6.4 ([Mel12, Theorem 5.1.1]). Let R > 0 with Ω $ BR := {x ∈ Rd : |x| < R}. Let
0 < ρ < 1. Then, it holds that

Ṽk = Ṽ0 + S̃V,k + ÃV,k, (6.29)

with linear potential operators S̃V,k : H
−1/2+s(∂Ω) → H3+s(BR) and ÃV,k : H

−1/2+s(∂Ω) →
H3+s(BR)∩C∞(BR) for all −1/2 < s < 1/2. Moreover, there exist constants CV1 , C

V
2 , C

V
3 >

0 such that

‖S̃V,k ψ‖Hs′ (BR)
≤ CV1 ρ2 (ρk−1)1+s−s

′‖ψ‖H−1/2+s(∂Ω) for all 0 ≤ s′ ≤ 3 + s, (6.30)

‖∇n
ÃV,k ψ‖L2(BR) ≤ CV2 k

n+1‖Ṽ0 ψ‖L2(BR) ≤ CV3 k
n+1‖ψ‖H−1(∂Ω) for all n ∈ N0. (6.31)

The constants CV1 , C
V
2 , and CV3 depend only on ρ, R, Ω , but not on the wavenumber k.

Similar to the simple-layer potential, the double-layer potential can be split in the fol-
lowing way.

Lemma 6.5 ([Mel12, Theorem 5.2]). Let R > 0 with Ω $ BR := {x ∈ Rd : |x| < R}. Let
0 < ρ < 1. Then, it holds that

K̃k = K̃0 + S̃K,k + ÃK,k, (6.32)

with linear potential operators S̃K,k : L
2(∂Ω) → B

5/2
2,∞(BR) and ÃK,k : L

2(∂Ω) → B
5/2
2,∞(BR)∩

C∞(BR). Moreover, there exist constants CK1 , C
K
2 , C

K
3 > 0, such that

‖S̃K,k v‖B5/2
2,∞(BR)

≤ CK1 k ‖v‖L2(∂Ω), (6.33)

‖∇n
ÃK,k v‖L2(BR) ≤ CK2 kn+1 ‖K̃0v‖L2(BR) ≤ CK3 kn+1 ‖v‖L2(∂Ω) for all n ∈ N0. (6.34)

The constants CK1 , C
K
2 , and CK3 depend only on ρ, R, Ω, but not on the wavenumber k.

6.4.3 Proof of Theorem 6.3

With the potential decompositions of Lemma 6.4 and Lemma 6.5, we can prove the inverse
estimate.

Proof of Theorem 6.3. Let k > 0 and R > 0 with BR % Ω. For convenience of the
reader, we split the proof into several steps.

Step 1: Proof of (6.22) for Vk. Let ψ ∈ L2(Γ) and recall that ‖ψ‖H̃−1/2(Γ) =

‖ψ‖H−1/2(∂Ω), where we identify ψ identified with its extension E0,Γ ψ. With Lemma 6.4

and the definition of Vk := γint0 Ṽk, we decompose Vk = V0 +SV,k + AV,k, where

SV,k := γint0 S̃V,k and AV,k := γint0 ÃV,k.

For all 1/2 < s′ ≤ 3 + s ≤ 3 + 1/2, equation (6.30) implies that

‖S̃V,k ψ‖Hs′ (BR)

(6.30)

. ρ2 (ρ k−1)1+s−s
′‖ψ‖H−1/2+s(∂Ω). (6.35)
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6.4 Inverse estimates

For s′ = 2, this reveals that S̃V,k ψ ∈ H2(BR). Further, stability of γint0 yields that

‖SV,kψ‖H1(Γ) ≤ ‖SV,kψ‖H1(∂Ω)

. ‖S̃V,kψ‖H3/2(BR)
. ‖S̃V,kψ‖H2(BR)

(6.35)

. ρk ‖ψ‖
H̃−1/2(Γ)

.
(6.36)

Next, note that equation (6.31) proves that AV,kψ ∈ H2(BR). With the (compact) embed-
ding H−1/2(∂Ω) ⊂ H−1(∂Ω) with ‖ · ‖H−1(∂Ω) . ‖ · ‖H−1/2(∂Ω), this yields that

‖ÃV,k ψ‖H2(BR)

(6.31)

. (k + k2 + k3) ‖ψ‖H−1(∂Ω) . (1 + k3) ‖ψ‖H̃−1/2(Γ). (6.37)

Similarly to (6.36), continuity of the trace operator proves that

‖AV,k ψ‖H1(Γ) ≤ ‖AV,k ψ‖H1(∂Ω)

. ‖ÃV,k ψ‖H3/2(BR)
≤ ‖ÃV,k ψ‖H2(BR)

(6.37)

. (1 + k3) ‖ψ‖
H̃−1/2(Γ)

.
(6.38)

Combining the estimates (6.36) and (6.38) with the (compact) embedding L2(Γ) ⊂ H̃−1/2(Γ),
we see that AV,k,SV,k ∈ L

(
L2(Γ),H1(Γ)

)
. With V0 ∈ L

(
L2(Γ),H1(Γ)

)
, we conclude that

Vk = V0 +SV,k + AV,k ∈ L
(
L2(Γ),H1(Γ)

)
.

Step 2: Proof of equation (6.23). Recall that Vk = V0 + SV,k + AV,k. This
decomposition directly yields that

‖h1/2• ∇ΓVkψ‖L2(Γ) ≤ ‖h1/2• ∇ΓV0 ψ‖L2(Γ) + ‖h1/2• ∇ΓSV,kψ‖L2(Γ) + ‖h1/2• ∇Γ AV,kψ‖L2(Γ).

(6.39)

We treat each term on the right-hand side separately. First, [AFF+17, Theorem 3.1] yields
that

‖h1/2• ∇ΓV0 ψ‖L2(Γ) . ‖ψ‖H̃−1/2(Γ) + ‖h1/2• ψ‖L2(Γ).

Second, ‖h•‖L∞(Γ) . diam(Ω) . 1 and equation (6.36) imply that

‖h1/2• ∇ΓSV,k ψ‖L2(Γ) . ‖SV,k ψ‖H1(Γ)

(6.36)

. k ‖ψ‖
H̃−1/2(Γ)

.

Third, we use equation (6.38) to estimate the last term on the right hand side of (6.39) by

‖h1/2• ∇Γ AV,kψ‖L2(Γ) . ‖AV,kψ‖H1(Γ)

(6.38)

. (1 + k3) ‖ψ‖
H̃−1/2(Γ)

.

Combining the latter four estimates, we prove that

‖h1/2• ∇ΓVkψ‖L2(Γ) . (1 + k3) ‖ψ‖
H̃−1/2(Γ)

+ ‖h1/2• ψ‖L2(Γ).

This concludes the proof of (6.23).
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6 Adaptive BEM for the Helmholtz equation

Step 3: Proof of equation (6.25). Recall the definition of the adjoint double-layer
operator. This gives rise to K

′
k = −1

2Id + γint1 Ṽk = K
′
0 + γint1 S̃V,k + γint1 ÃV,k and hence

implies that

‖h1/2• K
′
k ψ‖L2(Γ) ≤ ‖h1/2• K

′
0 ψ‖L2(Γ) + ‖h1/2• γint1 S̃V,k ψ‖L2(Γ) + ‖h1/2• γint1 ÃV,k ψ‖L2(Γ).

Again, we treat each term on the right-hand side separately. First, [AFF+17, Theorem 3.1]
yields that

‖h1/2• K
′
0 ψ‖L2(Γ) . ‖ψ‖H̃−1/2(Γ) + ‖h1/2• ψ‖L2(Γ).

Recall from Step 1 that S̃V,k ψ, ÃV,k ψ ∈ H2(BR). Therefore, [SS11, Remark 2.7.5] implies

that γint1 S̃V,kψ, γ
int
1 ÃV,kψ ∈ H1/2(∂Ω). With ‖h•‖L∞(Γ) . diam(Ω) . 1, the (compact)

embeddingH1/2(∂Ω) ⊂ L2(∂Ω) and stability ([SS11, Remark 2.7.5]) of the conormal deriva-
tive yield that

‖h1/2• γint1 S̃V,k ψ‖L2(Γ) . ‖γint1 S̃V,k ψ‖H1/2(∂Ω) . ‖S̃V,k ψ‖H2(BR)

(6.36)

. k ‖ψ‖
H̃−1/2(Γ)

.

Third, we argue as before and prove that

‖h1/2• γint1 ÃV,kψ‖L2(Γ) . ‖γint1 ÃV,k ψ‖H1/2(∂Ω) . ‖ÃV,k ψ‖H2(BR)

(6.37)

. (1 + k3) ‖ψ‖
H̃−1/2(Γ)

.

Combining all right-hand side estimates, we obtain that

‖h1/2• K
′
kψ‖L2(Γ) . (1 + k3)‖ψ‖H̃−1/2(Γ) + ‖h1/2• ψ‖L2(Γ),

and conclude the proof of (6.25).

Step 4: Proof of (6.22) for Kk. Let v ∈ H̃1(Γ). Analogously to Step 1, Lemma 6.5
gives rise to the decomposition Kk = K0 + SK,k + AK,k, where SK,k := γint0 S̃K,k and

AK,k := γint0 ÃK,k.
For −∞ < σ < s < ∞, 0 < q < ∞, and 0 < r, t ≤ ∞, there holds the continu-

ous embedding Bs
q,r(BR) ⊂ Bσ

q,t(BR); see, e.g., [Tri92, Section 2.32]. This implies that

B
5/2
2,∞(BR) ⊂ B2

2,2(BR) = H2(BR) with ‖ · ‖H2(BR) . ‖ · ‖
B

5/2
2,∞(BR)

. Analogously to (6.36),

continuity of the interior trace operator γint0 and inequality (6.33) reveal that

‖SK,kv‖H1(Γ) ≤ ‖SK,kv‖H1(∂Ω) . ‖S̃K,kv‖H2(BR)

. ‖S̃K,kv‖B5/2
2,∞(Br)

(6.33)

. k ‖v‖L2(∂Ω) = k ‖v‖L2(Γ).
(6.40)

The operator AK,k is treated analogously to Step 1 and hence satisfies that

‖AK,k v‖H1(Γ) . ‖ÃK,k v‖H3/2(BR)
≤ ‖ÃK,k v‖H2(BR) . (1 + k3) ‖v‖L2(Γ). (6.41)

Then, the estimates (6.40) and (6.41) prove that SK,k, AK,k ∈ L
(
L2(Γ),H1(Γ)

)
. With

K0 ∈ L
(
H̃1(Γ),H1(Γ)

)
, we conclude that Kk = K0 +SK,k + AK,k ∈ L

(
H̃1(Γ),H1(Γ)

)
.
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Step 5: Proof of equation (6.24). Let v ∈ H̃1(Γ). Analogously to Step 2, the
decomposition Kk = K0 +SK,k + AK,k implies that

‖h1/2• ∇Γ Kkv‖L2(Γ) ≤ ‖h1/2• ∇Γ K0v‖L2(Γ) + ‖h1/2• ∇ΓSK,kv‖L2(Γ) + ‖h1/2• ∇ΓAK,kv‖L2(Γ).

We treat each term on the right-hand side separately. First, [AFF+17, Theorem 3.1] yields
that

‖h1/2• ∇Γ K0 v‖L2(Γ) . ‖v‖H̃1/2(Γ) + ‖h1/2• ∇Γ v‖L2(Γ).

Second, ‖h•‖L∞(Γ) . diam(Ω) . 1 and equation (6.40) imply that

‖h1/2• ∇ΓSK,k v‖L2(Γ) . ‖SK,k v‖H1(Γ)

(6.40)

. k ‖v‖L2(Γ).

Third, we use equation (6.41) to see that

‖h1/2• ∇ΓAK,kv‖L2(Γ) . ‖AK,k v‖H1(Γ)

(6.41)

. (1 + k3) ‖v‖L2(Γ).

Combining the latter estimates, we obtain that

‖h1/2• ∇Γ Kkv‖L2(Γ) . ‖v‖H̃1/2(Γ) + (1 + k3) ‖v‖L2(Γ) + ‖h1/2• ∇Γ v‖L2(Γ)

. (1 + k3) ‖v‖H̃1/2(Γ) + ‖h1/2• ∇Γ v‖L2(Γ).

This concludes the proof of (6.24).

Step 6: Proof of equation (6.26). Recall the definition of Wk. With K̃k =
K̃0 + S̃K,k + ÃK,k there holds Wk = −γint1 K̃k = W0 − γint1 S̃K,k − γint1 ÃK,k. This yields that

‖h1/2• Wkv‖L2(Γ) ≤ ‖h1/2• W0 v‖L2(Γ) + ‖h1/2• γint1 S̃K,k v‖L2(Γ) + ‖h1/2• γint1 ÃK,k v‖L2(Γ),

We treat each term on the right-hand side separately. First, [AFF+17, Theorem 3.1] yields
that

‖h1/2• W0 v‖L2(Γ) . ‖v‖H̃1/2(Γ) + ‖h1/2• ∇Γ v‖L2(Γ).

Recall from Step 4 that S̃K,kv, ÃK,kv ∈ H2(BR) and hence γint1 S̃K,k v, γ
int
1 ÃK,kv ∈ H1/2(∂Ω).

As in Step 3, stability of γint1 gives

‖h1/2• γint1 S̃K,k v‖L2(Γ) . ‖S̃K,k v‖H2(BR)

(6.40)

. k ‖v‖L2(Γ),

‖h1/2• γint1 ÃK,k v‖L2(Γ) . ‖ÃK,k v‖H2(BR)

(6.41)

. (1 + k3) ‖v‖L2(Γ).

Combining the latter four estimates, we conclude the proof of (6.26).
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Step 7: Proof of equations (6.27)–(6.28). According to [GHS05, Geo08] or
[AFF+17, Lemma A.1], there hold the following inverse estimates

‖h1/2• (p + 1)−1 Ψ•‖L2(Γ) . ‖Ψ•‖H−1/2(Γ) for all Ψ• ∈ Pp(T•), (6.42)

‖h1/2• (p+ 1)−1 ∇ΓV•‖L2(Γ) . ‖V•‖H̃1/2(Γ) for all V• ∈ S̃p(T•), (6.43)

where p is the fixed polynomial degree. The hidden constant depends only on ∂Ω, Γ, and
the shape regularity of T•. Applying (6.42)–(6.43) to the right-hand side of equation (6.23)
and (6.26), we conclude (6.27). Using (6.42)–(6.43) to estimate the right-hand side of (6.24)
and (6.26), we reveal (6.28). This concludes the proof.

6.5 Verification of the axioms

In this section, we prove the estimator axioms (E1)–(E4) for the weighted-residual error
estimator defined in (6.21). Further, we show that Algorithm 6.2 ensures (E5). Therefore,
the current setting fits in the abstract framework of Chapter 4.

For the validity of (E1)–(E4) for the Laplace equation, we refer to [FFK+14, FKMP13,
Gan13] as well as the overview in [CFPP14]. In case of the Helmholtz equation, most of
the proofs are similar to the Laplace case. For the sake of completeness, we include the
most important steps.

Proposition 6.6 (stability on non-refined element domains). There exists Cstb > 0 such
that for all T• ∈ T and all T◦ ∈ refine(T•), the following implication holds: Provided that
the discrete solutions Φ• ∈ Pp(T•) and Φ◦ ∈ Pp(T◦) exist, it holds that

∣∣η◦(T◦ ∩ T•)− η•(T◦ ∩ T•)
∣∣ ≤ Cstb ‖Φ◦ − Φ•‖H̃−1/2(Γ)

. (6.44)

In particular, there holds (E1). The constant Cstb > 0 depends only on Γ, γ-shape regular-
ity, p, and k.

Proof. Let T•,T◦ ∈ T such that T◦ ∈ refine(T•) and the corresponding discrete solutions
Φ• ∈ Pp(T•) and Φ◦ ∈ Pp(T◦) exist. For all non-refined elements T ∈ T• ∩ T◦, it holds
that h•(T ) = h◦(T ). Together with the inverse triangle inequality and the inverse esti-
mate (6.27), we obtain that

|η•(T• ∩ T◦)− η◦(T• ∩ T◦)| =
∣∣‖h1/2• ∇Γ (Vk Φ• − f)‖L2(

⋃
(T•∩T◦))

− ‖h1/2◦ ∇ΓVk (Φ◦ − f)‖L2(
⋃
(T•∩T◦))

∣∣

≤ ‖h1/2• ∇ΓVk (Φ• − Φ◦)‖L2(Γ)

≤ C̃inv (1 + k3) ‖Φ• − Φ◦‖H̃−1/2(Γ)
.

This concludes (6.44) with Cstb := (1 + k3) C̃inv.
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Proposition 6.7 (reduction on refined element domains). There exist Cred > 0 and 0 <
qred < 1 such that for all T• ∈ T and all T◦ ∈ refine(T•), the following implication holds:
Provided that the discrete solutions Φ• ∈ Pp(T•) and Φ◦ ∈ Pp(T◦) exist, it holds that

η◦(T◦\T•)2 ≤ qred η•(T•\T◦)2 + C2
red ‖Φ◦ − Φ•‖2H̃−1/2(Γ)

. (6.45)

In particular, there holds (E2). The constants qred and Cred depend only on qmesh, Γ,
γ-shape regularity, p, and k.

Proof. Let T•,T◦ ∈ T such that T◦ ∈ refine(T•) and the corresponding discrete solutions
Φ• ∈ Pp(T•) and Φ◦ ∈ Pp(T◦) exist. For all T ∈ T◦ \ T•, reduction of the local mesh
size (R1) implies that h◦|T ≤ qmesh h•|T . Using the Young inequality with arbitrary δ > 0,
we estimate

η◦(T◦ \ T•)2 =
∑

T∈T◦\T•

‖h1/2◦ ∇Γ (VkΦ◦ − f)‖2L2(T )

≤
∑

T∈T◦\T•

(
‖h1/2◦ ∇Γ (VkΦ• − f)‖L2(T ) + ‖h1/2◦ ∇ΓVk(Φ◦ − Φ•)‖L2(T )

)2

≤
∑

T∈T◦\T•

(
(1 + δ) qmesh ‖h1/2• ∇Γ (VkΦ• − f)‖2L2(T )

+ (1 + δ−1) ‖h1/2◦ ∇ΓVk(Φ◦ − Φ•)‖2L2(T )

)
.

Next, the inverse inequality (6.27) yields that

η•(T◦ \ T•)2 ≤ (1 + δ) qmesh η•(T• \ T◦)2 + (1 + δ−1) (1 + k3)2 C̃2
inv ‖Φ• −Φ◦‖2H̃−1/2(Γ)

.

Choosing δ > 0 sufficiently small such that qred := (1 + δ) qmesh < 1, we conclude (6.45)
with Cred = (1 + δ−1) (1 + k3)2 C̃2

inv.

Proposition 6.8 (discrete reliability). There exists Crel > 0, such that for all T• ∈ T
and all T◦ ∈ refine(T•), there exists a set R•,◦ ⊆ T• with T•\T◦ ⊆ R•,◦ and #R•,◦ ≤
Crel#(T•\T◦), such that the following implication holds: Provided that the discrete solutions
Φ• ∈ Pp(T•) and Φ◦ ∈ Pp(T◦) exist, it holds that

‖Φ◦ − Φ•‖H̃−1/2(Γ) ≤ Crel β
−1
◦ η•(R•,◦), (6.46)

where β◦ > 0 is the inf–sup constant associated with Pp(T◦). In particular, there holds (E4).
The constant Crel ≥ 1 depends only on the given data, the polynomial degree p, the initial
mesh T0, and γ-shape regularity.

Proof. We follow the arguments from [FKMP13, Theorem 5.3] for the case of k = 0.
Recall that notation of Proposition 4.1. Then, existence and uniqueness of Φ◦ ∈ Pp(T◦)
is equivalent to β◦ > 0. The discrete inf–sup condition (4.8) for X◦ := Pp(T◦) and W◦ :=
Φ◦ − Φ• reads as

β◦ ‖Φ◦ − Φ•‖H̃−1/2(Γ)
≤ sup

Ψ◦∈X◦\{0}

〈Vk(Φ◦ − Φ•) , Ψ◦〉
‖Ψ◦‖H̃−1/2(Γ)

. (6.47)

83



6 Adaptive BEM for the Helmholtz equation

Let N• denote the set of nodes corresponding to a triangulation T•. Let ρz ∈ S1(T•) denote
the hat function associated with a node z ∈ N•. Further, let NR

• := N• ∩
(⋃

(T• \ T◦)
)
be

the set of all nodes which belong to the refined elements. Define R•,◦ := ω•(T• \ T◦) and
Q• := R•,◦ \ (T• \ T◦). These definitions give rise to disjoint decompositions

R•,◦ := (T• \ T◦)
•∪ Q• and T• = (T• \ R•,◦)

•∪ (T• \ T◦)
•∪ Q•.

Define χ :=
∑

z∈NR
•
ρz. Then, χ ∈ S1(T•) satisfies supp(χ) =

⋃R•,◦ and χ|⋃(T•\T◦) ≡ 1.
We define the operator π• : Pp(T◦) → Pp(T•) by

π•(Ψ◦) :=

{
0 on

⋃(T• \ T◦
)
,

Ψ◦ elsewhere.

For any Ψ◦ ∈ Pp(T◦) and Ψ• ∈ Pp(T•), the Galerkin orthogonality yields that

〈Vk (Φ◦ − Φ•) , Ψ◦〉 = 〈f −Vk Φ• , Ψ◦〉 = 〈f −Vk Φ• , Ψ◦ −Ψ•〉. (6.48)

Choose Ψ• := π•(Ψ◦) ∈ Pp(T•) and note that supp
(
(1−π•)Ψ◦

)
⊆ ⋃(T•\T◦). Using (6.48),

we derive that

〈Vk (Φ◦ − Φ•) , Ψ◦〉 = 〈f −VkΦ• , (1− π•)Ψ◦〉
=
〈 ∑

z∈NR
•

ρz (f −Vk Φ•) , (1− π•)Ψ◦

〉

=
〈 ∑

z∈NR
•

ρz (f −Vk Φ•) , Ψ◦

〉
−
〈 ∑

z∈NR
•

ρz (f −Vk Φ•) , Ψ◦|⋃Q•

〉
.

Since Q• ⊂ T• ∩ T◦, we obtain that h•(T ) = h◦(T ) for all T ∈ Q•. We estimate

|〈Vk(Φ◦ − Φ•) , Ψ◦〉| ≤
∥∥ ∑

z∈NR
•

ρz (f −VkΦ•)
∥∥
H1/2(Γ)

‖Ψ◦‖H̃−1/2(Γ)

+
∥∥h−1/2

•

∑

z∈NR
•

ρz (f −Vk Φ•)
∥∥
L2(Γ)

‖h1/2• Ψ◦‖L2(
⋃

Q•)

≤
∥∥ ∑

z∈NR
•

ρz (f −Vk Φ•)
∥∥
H1/2(Γ)

‖Ψ◦‖H̃−1/2(Γ)

+
∥∥h−1/2

•

∑

z∈NR
•

ρz (f −Vk Φ•)
∥∥
L2(Γ)

‖h1/2◦ Ψ◦‖L2(Γ).

Applying the inverse estimate (6.42) to the right-hand side, we see that

|〈Vk(Φ◦ − Φ•) , Ψ◦〉| .
(∥∥ ∑

z∈NR
•

ρz(f −VkΦ•)
∥∥
H1/2(Γ)

+
∥∥h−1/2

•

∑

z∈NR
•

ρz(f −VkΦ•)
∥∥
L2(Γ)

)
‖Ψ◦‖H̃−1/2(Γ)

.
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The terms in the parentheses are estimated as in [CMS01]. The sole difference is that
compared to [CMS01, Theorem 3.2] only hat functions associated with nodes z ∈ NR

• are
involved. Hence, the upper bound affects only

⋃R•,◦ ⊂ Γ and reads

|〈Vk(Φ◦ − Φ•) , Ψ◦〉| . ‖h1/2• ∇Γ (f −VkΦ•)‖L2(
⋃

R•,◦) ‖Ψ◦‖H̃−1/2(Γ)
. (6.49)

Altogether, the combination of (6.47)–(6.49) proves that

‖Φ◦ − Φ•‖H̃−1/2(Γ)
≤ 1

β◦
sup

Ψ◦∈X◦

〈Vk(Φ◦ − Φ•) , Ψ◦〉
‖Ψ◦‖H̃−1/2(Γ)

. β−1
◦ ‖h1/2• ∇Γ (f −VkΦ•)‖L2(

⋃
R•,◦).

This concludes the proof.

Corollary 6.9 (reliability). There exists C ′
rel > 0 such that for all T• ∈ T, the following

implication holds: Provided that there exists a discrete solution Φ• ∈ Pp(T•), it holds that

‖φ− Φ•‖H̃−1/2(Γ) ≤ C ′
rel η•.

In particular, there holds (E3).

Sketch of proof. Reliability can be shown analogously to discrete reliability. UsingNR
• :=

N• as well as the techniques from [CMS01], we obtain analogously to Proposition 6.8 that

‖φ−Φ•‖H̃−1/2(Γ)
≤ 1

β
sup

Ψ◦H̃−1/2(Γ)

〈Vk(φ− Φ•) , Ψ◦〉
‖Ψ◦‖H̃−1/2(Γ)

. β−1 ‖h1/2• ∇Γ (f −VkΦ•)‖L2(Γ),

where β > 0 is the continuous inf–sup constant associated with H̃−1/2(Γ). This concludes
the proof.

6.5.1 Definiteness on the “discrete” limit space (E5)

It remains to prove validity of (E5). Recall that H = H̃−1/2(Γ) and Xℓ = Pp(Tℓ) in the
sense of Section 4.5.1. We define the discrete limit space X∞ :=

⋃∞
ℓ=0Pp(Tℓ) and obtain

the following lemma. The lemma is an analogon to Lemma 5.6 for finite elements.

Lemma 6.10. Let p ≥ 0. The triangulations Tℓ generated by Algorithm 6.2 are uniformly
γ-shape regular with ‖hℓ‖L∞(Ω) → 0 as ℓ→ ∞. Moreover, there holds X∞ = H̃−1/2(Γ) and
hence assumption (E5) is satisfied.

Proof. Recall the notation of Algorithm 6.2. We emphasize that both, EB and NVB
guarantee uniform γ-shape regularity (3.4). The expanded Dörfler marking in Step (iv)
and Step (v) of Algorithm 6.2 enforces ‖hℓ‖L∞(Ω) → 0 as ℓ → ∞. It remains to show that

X∞ = H̃−1/2(Γ). Let Πℓ : L
2(Γ) → Pp(Tℓ) denote the L2(Γ)-orthogonal projection onto

P0(Tℓ). For all ψ ∈ L2(Γ), it holds that

‖(1−Πℓ)ψ‖H̃−1/2(Γ) . ‖h1/2ℓ (1−Πℓ)ψ‖L2(Γ); (6.50)

85



6 Adaptive BEM for the Helmholtz equation

see [AFF+17, Corollary 3.3] or [SS11, Section 4.3.4]. For ψ ∈ L2(Γ), nestedness P0(Tℓ) ⊂
Pp(Tℓ) implies that

inf
Ψℓ∈Pp(Tℓ)

‖ψ −Ψℓ‖H̃−1/2(Γ) . ‖h1/2ℓ (1−Π•)ψ‖L2(Γ) . ‖h1/2ℓ ‖L∞(Γ) ‖ψ‖L2(Γ).

Recall that the embedding L2(Γ) ⊂ H̃−1/2(Γ) is dense. Hence, with ‖hℓ‖L∞(Ω) → 0 as

ℓ→ ∞, we conclude X∞ = H̃−1/2(Γ).

6.6 Optimal Convergence

The next theorem is the main result of this chapter. It states that Algorithm 6.2 does not
only lead to linear convergence, but also guarantees optimal algebraic convergence rates for
the sequence of a posteriori error estimators. Recall that either NVB or EB guarantee (R3)–
(R6) and the estimator satisfies (E1)–(E4). Then, the theorem is a direct consequence of
Theorem 4.14 and Theorem 4.21.

Theorem 6.11. Employ the notation of Algorithm 6.2. Suppose 0 < θ ≤ 1. Then, there
exist ℓlin > 0 as well as constants 0 < qlin < 1 and Clin > 0 such that Algorithm 6.2
guarantees that

ηℓ+n ≤ Clin q
n
lin ηℓ for all ℓ, n ∈ N with ℓ ≥ ℓlin. (6.51)

The constants ℓlin, qlin, Clin depend only on qest, Crel, and ℓ3 from Lemma 4.13. Moreover,
there exists β0 > 0, ℓopt > 0, as well as θopt := (1 + C2

stbC
2
rel/β̂

2
0)

−1 such that for all
0 < θ < θopt and all s > 0, it holds that

‖φ‖As <∞ ⇐⇒ ∃Copt > 0 ∀ℓ ≥ ℓopt ηℓ ≤ Copt (#Tℓ −#T0 + 1)−s. (6.52)

The constants ℓopt, Copt depend only on Cson, T0, θ, s, ‖φ‖As , and on the constants in (E1)–
(E4).

Remark 6.12. For the presentation, we focused on the model problem (6.13) for some
indirect boundary element method. In the case of a direct boundary element approach, the
model problem reads

Vkφ =
(
Kk +

1

2
Id
)
g on Γ, (6.53)

where g ∈ H1/2(∂Ω) are the given Dirichlet data and φ = ∂nu ∈ H−1/2(∂Ω) is the sought
normal derivative of the solution u ∈ H1(Ω) of the (equivalent) boundary value problem

−∆u− k2 u = 0 in Ω subject to u = g on Γ.

The implementation of the right-hand side requires to approximate g ≈ G• ∈ Sp+1(T•).
Suitable approximations G• = I• g together with some local data oscillations which control
the additional approximation error ‖g−G•‖H1/2(∂Ω) are discussed and analyzed in [FFK+14]

for the Laplace problem. Provided that g ∈ H1(∂Ω), it is shown that the adaptive algorithm
then still leads to optimal convergence behavior. Together with the present analysis, the
results of [FFK+14] transfer immediately to the direct boundary element approach (6.53).
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6.7 Hyper-singular integral equation

In this section, we briefly comment on the extension of our analysis to the hyper-singular
integral equation. In case of the Laplace equation (k = 0), a proof of optimal algebraic
convergence rates is found in [FFK+15, Gan13]. Throughout this section, we additionally
suppose that ∂Ω is connected.

We define the spaces H
±1/2
⋆ (∂Ω) consisting of H±1/2(∂Ω)-functions with integral mean

zero by

H
−1/2
⋆ (∂Ω) :=

{
φ ∈ H−1/2(∂Ω) : 〈φ , 1〉 = 0

}
and

H
1/2
⋆ (∂Ω) :=

{
v ∈ H1/2(∂Ω) : 〈1 , v〉 = 0

}
.

First, we recap some important properties of the hyper-singular operator Wk := −γint1 K̃k.
For k = 0, the operator W0 is symmetric and positive semi-definite on H1/2(∂Ω), i.e.,

〈W0 v , w〉 = 〈W0 w , v〉 and 〈W0 v , v〉 ≥ 0 for all v,w ∈ H1/2(∂Ω).

Since ∂Ω is connected, the kernel of W0 consists of the constant functions. Hence, the

bilinear form 〈W0(·) , ·〉 provides a scalar product on H
1/2
⋆ (∂Ω). This can be extended to

a(u , v) := 〈W0v , w〉+ 〈1 , v〉〈1 , w〉 for all v,w ∈ H1/2(∂Ω), (6.54)

which defines a scalar product onH1/2(∂Ω). According to the Rellich compactness theorem,
there holds the norm equivalence ||| v |||2 := a(v , v) ≃ ‖v‖2

H1/2(∂Ω)
for all v ∈ H1/2(∂Ω).

For k 6= 0, it is well-known that the hyper-singular integral operator Wk is invertible, if
and only if k2 is not an eigenvalue of the interior Neumann eigenvalue problem (see [Ste13,
Proposition 2.5]), i.e., it holds that

∀u ∈ H1(Ω)
(
∆u = k2u with γint1 u = 0 and

∫

Γ
u dx = 0 =⇒ u = 0 in Ω

)
. (INP)

To ensure solvability, we assume throughout this section that k2 is not an eigenvalue of
the (INP). Then, the model problem for the hyper-singular operator Wk reads as follows:

Given f ∈ H
−1/2
⋆ (∂Ω), find u ∈ H

1/2
⋆ (∂Ω) such that

Wk u = f on ∂Ω. (6.55)

6.7.1 Framework

The proofs of the abstract properties of Section 4.2 and the estimator axioms (E1)–(E4) for
model problem (6.55) are very similar to the weakly-singular case in Section 6.3 and Sec-
tion 6.5. Therefore, we focus only on the occurring differences and highlight the necessary
modifications. We define the operator

C̃Wk
: H1/2(∂Ω) → H−1/2(∂Ω) C̃Wk

:= Wk −W0.
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On Lipschitz boundaries, C̃Wk
is compact, (see [SS11, Lemma 3.9.8]). For all v,w ∈

H1/2(∂Ω), define CWk
by

〈CWk
v , w〉 := 〈C̃Wk

v , w〉 − 〈1 , v〉〈1 , w〉

Note that, CWk
is uniquely defined and compact; see, e.g., [Ste08a, Section 6.9]. Refor-

mulation of (6.55) yields the following equivalent formulation: Given f ∈ H
−1/2
⋆ (∂Ω), find

u ∈ H1/2(∂Ω) such that

(W0 + CWk
)u = f. (6.56)

With the bilinear form a(· , ·), from (6.54), the corresponding discrete formulation of (6.56)
reads as follows: Find U⋆ ∈ Sp(T⋆) such that

a(U⋆ , V⋆) + 〈CWk
U⋆ , V⋆〉 = 〈f , V⋆〉 for all V⋆ ∈ Sp(T⋆). (6.57)

Then, the discrete formulation (6.57) fits in the abstract framework of Section 4.2. It re-
mains to show that uniform refinement leads to a dense sequence of subspaces. Since we use
globally continuous and piecewise polynomials Sp(T⋆), the proof follows the same lines as
the proof of Lemma 5.6, where we additionally exploit the density of H1(∂Ω) ⊆ H1/2(∂Ω).
Then, Proposition 4.1 with H = H1/2(∂Ω) and X• = Sp(T•) guarantees existence and
uniqueness of discrete solutions of (6.57).

6.7.2 Weighted-residual error estimator

Analogously to H
±1/2
⋆ (∂Ω), we define L2

⋆(∂Ω) :=
{
φ ∈ L2(∂Ω) :

∫
Γ φds = 0

}
. Let

T• ∈ T := refine(T0) such that the corresponding discrete solution U• ∈ Sp(T•) of (6.57)
exists. Suppose that f ∈ L2

⋆(∂Ω). Then, the local contributions of the weighted-residual
error estimator for hyper-singular integral equation are defined by

η•(T ) := ‖h1/2• (f −Wk U•)‖L2(T ) for all T ∈ T•. (6.58)

The proofs of stability on non-refined domains (E1), reduction on refined element do-
mains (E2), discrete reliability (E4) as well as reliability (E3) are similar to Section 6.5
and can be found in [FFK+15, Proposition 3.5]. The sole difference is in the use of inverse
inequality (6.26) instead of (6.23).

6.7.3 Adaptive Algorithm and optimal convergence rates

For the hyper-singular integral equation (6.57), we seek a solution Uℓ ∈ Sp(Tℓ) and use the
a posteriori error estimator from (6.58). Then, Algorithm 6.2 transfers into the following
formulation:

Algorithm 6.13. Input: Parameters 0 < θ ≤ 1 and Cmark ≥ 1 as well as initial triangu-
lation T0 with U−1 := 0 ∈ Sp(T0) and η−1 := 1.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , iterate the following Steps (i)–(vi):

(i) If (6.57) does not admit a unique solution in Sp(Tℓ):
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6.7 Hyper-singular integral equation

– Define Uℓ := Uℓ−1 ∈ Sp(Tℓ) and ηℓ := ηℓ−1,

– Let Tℓ+1 := refine(Tℓ,Tℓ) be the uniform refinement of Tℓ,
– Increase ℓ→ ℓ+ 1 and continue with Step (i).

(ii) Else compute the unique solution Uℓ ∈ Sp(Tℓ) to (6.57).

(iii) Compute the corresponding indicators ηℓ(T ) for all T ∈ Tℓ.

(iv) Determine a set M′
ℓ ⊆ Tℓ of up to the multiplicative factor Cmark minimal cardinality

such that θη2ℓ ≤ ηℓ(M′
ℓ)

2.

(v) Find M′′
ℓ ⊆ Tℓ such that #M′′

ℓ = #M′
ℓ as well as hℓ(T ) ≥ hℓ(T

′) for all T ∈ M′′
ℓ

and T ′ ∈ Tℓ \M′′
ℓ . Define Mℓ := M′

ℓ ∪M′′
ℓ .

(vi) Generate Tℓ+1 := refine(Tℓ,Mℓ), increase ℓ→ ℓ+ 1, and continue with Step (i).

Output: Sequences of successively refined triangulations Tℓ, discrete solutions Uℓ, and
corresponding estimators ηℓ.

Note that Steps (iii)–(vi) are verbatim to Algorithm 6.2. Recall that both refinement
strategies, NVB and EB guarantee the refinement axioms (R3)–(R6). Therefore, the op-
timal convergence behaviour of Algorithm 6.13 relies only on the validity of the estimator
axioms (E1)–(E4). Further, definiteness of the discrete limit space (E5) can be shown ver-
batim to Lemma 5.6. Hence, the following theorem for the hyper-singular integral equation
is direct consequence of Theorem 4.14 and Theorem 4.21.

Theorem 6.14. Employ the notation of Algorithm 6.13. Suppose 0 < θ ≤ 1. Then, there
exist ℓlin > 0 as well as constants 0 < qlin < 1 and Clin > 0 such that Algorithm 6.13
guarantees that

ηℓ+n ≤ Clin q
n
lin ηℓ for all ℓ, n ∈ N with ℓ ≥ ℓlin. (6.59)

The constants ℓlin, qlin, Clin depend only on qest, Crel, and ℓ3 from Lemma 4.13. Moreover,
there exists β̂0 > 0, ℓopt > 0, as well as θopt := (1 + C2

stbC
2
rel/β̂

2
0)

−1, such that for all
0 < θ < θopt and all s > 0, it holds that

‖φ‖As <∞ ⇐⇒ ∃Copt > 0 ∀ℓ ≥ ℓopt ηℓ ≤ Copt (#Tℓ −#T0 + 1)−s. (6.60)

The constants ℓopt, Copt depend only on Cson, T0, θ, s, ‖φ‖As , and on the constants in (E1)–
(E4).

Remark 6.15. Similar to Remark 6.12, one may consider a direct formulation for the
Neumann boundary-value problem. In this case, the model problem reads as follows: Given
Neumann data φ ∈ H−1/2(∂Ω), find u ∈ H1/2(∂Ω) such that

Wku = (
1

2
Id− K

′
k)φ on ∂Ω. (6.61)

In practice, the implementation of the right-hand side requires to approximate φ ≈ Φ• ∈
Pp−1(T⋆). Provided that φ ∈ L2(∂Ω), a suitable approximation Φ• := Π•φ is given by
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6 Adaptive BEM for the Helmholtz equation

the L2-orthogonal projection onto Pp−1(T•). The local data oscillations which control the
additional approximation error ‖φ − Φ•‖H−1/2(Γ) are discussed and analyzed in [FFK+15]
for the Laplace problem. There, it is shown that the adaptive algorithm then still leads to
optimal convergence behavior. Together with the present analysis, the results of [FFK+15]
transfer immediately to the direct boundary element approach (6.61).

6.8 Numerical experiments

In this section, we present some numerical experiments for the 3D Helmholtz equation that
underpin the theoretical findings of this chapter. We use lowest order BEM and consider
X• = P0(T•) for the weakly-singular integral equation and X• = S1(T•) for the hyper-
singular equation. The numerical computations were done with help of BEM++, which
is an open-source Galerkin boundary element library. We refer to [SBA+15, GBB+15,
vtWGBA15] for details on BEM++.

We consider sound-soft (exterior Dirichlet) and sound-hard (exterior Neumann) acoustic
scattering problems in R3 \Ω where Ω ⊂ R3 denotes the scatterer. Let a ∈ R3 with |a| = 1
denote the directional vector of the incident wave. Then, the incident (plane-) wave is
given by uinc = exp(ika · x). Let uscat be the scattered field and the resulting total field is
defined by utot = uinc + uscat.

For sake of simplicity we restrict the numerical examples to an indirect approach, in
which the solution is in the form of a layer potential with some unknown density. For the
sound-soft scattering problem, we obtain: Find uscat = Ṽk(φ) such that

Vk φ = g subject to g = −uinc on Γ. (6.62)

The indirect approach for the sound-hard reads: Find uscat = K̃k(φ) such that

Wk φ = g subject to g = −∂nuinc on Γ. (6.63)

6.8.1 Sound-soft scattering on an L-shaped domain

As first numerical example we consider the so called L-shaped domain in x − y-direction
and expand it on the z-axis up to [−1, 1], see Figure 6.1. We compare two directions of the
incident wave. One with a = (−1/

√
2, 1/

√
2, 0)T (Figure 6.2, left) hitting the scatterer on

the non-convex part vs. a = (1/
√
2,−1/

√
2, 0)T hitting the convex part of Ω (Figure 6.2,

right).
First, we comment on the non-convex case. Figure 6.3 (top), shows the convergence rate

of η2ℓ for k = 1, and different marking strategies. We compare uniform refinement to normal
Dörfler marking as well as to the expanded Döfler marking from Proposition 4.7, both using
θ = 0.4. The experiments show that uniform mesh-refinement leads to a suboptimal rate
of O(N−2/3) for η2ℓ , while adaptive refinement with Algorithm 6.2 regains the improved
rate O(N−δ) with δ = 1.075, independently of the actual marking. Empirically, the results
generated by employing the standard Dörfler marking are of no difference compared to the
results generated by employing the expanded Dörfler marking. The same observation is
made for all computations (not desplayed), so that we only focus on the expanded marking
in the remaining plots.
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Figure 6.1: Geometry and initial mesh T0 with 56 elements (left: top view, right: 3D view).
The reentrant edge has the coordinates (0, 0, t) with t ∈ [−1, 1].

Figure 6.3 (bottom) compares uniform vs. adaptive refinement for fixed θ = 0.4 but
various k ∈ {1, 2, 4, 8, 16}. As expected, the pre-asymptotic phase increases with k, but
adaptive mesh-refinement asymptotically regains improved convergence rates for every k.

Figure 6.5 compares the convergence of the estimator for different values of the marking
parameter θ ∈ {0.2, 0.4, 0.6, 0.8} as well as uniform mesh-refinement. Again, uniform mesh-
refinement leads to a suboptimal rate of convergence for the error estimator, while adaptive
refinement with Algorithm 6.2 regains the improved rate of convergence, independently of
the actual choice of the marking parameter. Although Theorem 6.11 predicts optimal
convergence rates only for small marking parameters 0 < θ < θopt := (1 + C2

stbC
2
rel/β̂

2
0)

−1,
we observe that Algorithm 6.2 is stable in θ, and any choice of θ ≤ 0.8 leads to the improved
convergence behavior. In Figure 6.4, one can see some of the obtained adaptive meshes Tℓ
with ℓ = 4, 8, 12, 16. The mesh-refinement is focused around the facets and edges hit by
the incoming wave, while all facets in the shadow remain coarse.

In the second case, i.e., the scatterer is hit on the convex part of the domain (Figure 6.3,
right), we compute very similar results as in the non-convex case. As shown in Figure 6.6
above, expanded as well as normal Dörfler marking lead to improved rates of O(N−1.06)
for the squared error estimator, while uniform refinement leads only to O(N−2/3). The
rate of convergence is independent of the wavelength k > 0, but increasing k leads to a
longer preasymtotic phase. Figure 6.7 shows the triangulations T12 and T16. Again, the
mesh-refinement is focused around the facets and edges hit by the incoming wave, all facets
in the shadow remain coarse.

Finally, we emphasize that Algorithm 6.2 never enforced uniform mesh-refinement in
Step (i).
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Figure 6.2: Ex. 6.8.1: Total field utot at the plane z = 0 for different directions of uinc with
k = 8. The incident wave hits the scatterer on the non-convex part (left), and
on the convex part (right).

6.8.2 Sound-hard scattering on a L-shaped domain

For the second example we consider sound-hard scattering on an L-shaped domain given in
Figure 6.1. The direction of the incident wave is given by a = (−1/

√
2, 1/

√
2, 0)T , hitting

the scatterer on a the non-convex part; see Figure 6.8.
Figure 6.9 compares uniform vs. adaptive mesh-refinement for fixed k = 1 and various

θ = {0.2, 0.4, 0.6, 0.8}. Again, Algorithm 6.2 realizes the improved rate O(N−1) for the
squared estimator η2ℓ , while the uniform strategy leads to a reduced rate of O(N−2/3).
Figure 6.10 shows the adaptive rate for various k ∈ {1, 2, 4, 5} and fixed θ = 0.2 (above)
as well as θ = 0.4 (below). A higher wavenumber k just influences the invoked constants
and the length of the pre-asymptotic phase, but does not effect the rate of convergence.
For k = 16, we admit that the computed range is not sufficient to observe a better rate
of convergence for the adaptive scheme. Finally, we emphasize that Algorithm 6.2 never
enforced uniform mesh-refinement in Step (i).
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Figure 6.3: Ex. 6.8.1: Convergence of η2ℓ for standard Dörfler marking vs. expanded Dörfler
and uniform refinement with k = 1 (above). Below, expanded Dörfler marking
(squares) vs. uniform refinement (circles) for different values of k > 0. Both
plots are computed in the non-convex setting with θ = 0.4.
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Figure 6.4: Ex. 6.8.1: Triangulations T4, T8, T12 and T16 with 208, 766, 2332 and 6746 el-
ements. The color indicates the element contribution of the error estimator
ηℓ(T )

2 for all T ∈ Tℓ.
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Figure 6.5: Ex. 6.8.1: Convergence of η2ℓ for different values of θ ∈ {0.2, 0.4, 0.6, 0.8} as well
as uniform refinement. Both plots use expanded Dörfler marking with k = 1
(above) and k = 16 below.
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Figure 6.6: Ex. 6.8.1: Convergence of η2ℓ for standard Dörfler marking vs. expanded Dörfler
with θ = 0.4 and uniform refinement (above) in the convex case. Below, ex-
panded Dörfler marking (squares) vs. uniform refinement (circles) for different
values of k > 0.
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Figure 6.7: Ex. 6.8.1: Triangulations T12 and T16 with 2446 and 7472 elements in the convex
case. The refinement focuses on the surface hit by the incoming wave (right),
where instead all parts in the shadow remain relatively coarse (left).
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Figure 6.8: Ex. 6.8.2: Total field utot for sound-hard scattering with wavenumber k = 8.
The incident wave uinc hits the scatterer on the non-convex part of the domain.
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Figure 6.9: Ex. 6.8.2: Convergence of η2ℓ for different values of θ ∈ {0.2, 0.4, 0.6, 0.8} as well
as uniform refinement. The plot uses expanded Dörfler marking with k = 1.
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Figure 6.10: Ex. 6.8.2: Convergence of η2ℓ for expanded Dörfler (squares) vs. uniform re-
finement (circles) for different values of k ∈ {1, 2, 4, 8, 16}. The computations
use θ = 0.2 (above) as well as θ = 0.4 (below).
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7 Adaptive BEM for optimal convergence of
point errors

One particular strength of the boundary element method is, that it allows for a higher-
order point-wise approximation of the solution of the underlying PDE via the representation
formula (6.4). As an extension of the previous Chapters 4 and 6, we propose two adap-
tive algorithms and prove quasi-optimal convergence behavior with respect an a posteriori
computable bound for the point error of the Helmholtz equation.

For boundary elements based on piecewise polynomials of degree p and a smooth solution

φ, it holds that ‖φ − Φℓ‖H−1/2(Γ) = O(h
p+3/2
ℓ ) for the energy-error, where hℓ denotes the

mesh-size of Tℓ. On the other, hand the point error decays with a higher rate |u(x̃)−uℓ(x̃)| =
O(h2p+3

ℓ ). However, these convergence rates are usually spoiled by singularities of the
(unknown) solution u and hence lack of regularity.

For the Laplace equation, earlier works [AFF+13, FKMP13, FFK+14, FFK+15, Gan13]
focused on h-adaptive strategies which aim to recover the optimal rate of convergence of the
energy error ‖φ−Φℓ‖H−1/2(Γ). Using ideas for goal oriented adaptivity for finite elements,

see e.g, [MS09, BET11, FPZ16], our own work [FGH+16] proposes and analyzes optimal
adaptive strategies for the point-wise error |u(x̃)− uℓ(x̃)| for x̃ ∈ Ω in case of BEM for the
Laplace equation. Using Chapters 4 and 6, we extend the analysis in [FGH+16] from k = 0
to the Helmholtz equation for arbitrary wavenumber k ≥ 0.

Outline. Section 7.1 introduces the model problem and some key ideas. Section 7.2
formulates two adaptive algorithms (Algorithm 7.1, Algorithm 7.3) and states the main
result (Theorem 7.5) of this chapter which yields optimal convergence for both algorithms.
While Algorithm 7.1, follows ideas from [MS09] and employs a separate Dörfler marking
strategy, Algorithm 7.3 is inspired by [BET11] and uses a combined Dörfler marking instead.
Besides the marking strategies from [MS09, BET11], both algorithms employ the extended
Dörfler marking from [BHP17] or Chapter 4 to ensure (E5). The proof of the main result
for Algorithms 7.1 and 7.3 is found in Section 7.4 and 7.5 respectively.

This chapter extends the work [FGH+16], where we developed a similar results for the
Laplace equation.

7.1 Model problem

Let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain with polygonal (not necessarily
connected) boundary Γ = ∂Ω. In this chapter, we consider the interior Helmholtz–Dirichlet
problem

−∆u− k2 u = 0 in Ω subject to u = g on Γ, (7.1)
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7 Adaptive BEM for optimal convergence of point errors

with wavenumber k ≥ 0 and given Dirichlet data g ∈ H1/2(Γ). Recall the notation of
Section 6.2. To guarantee solvability of (7.1), we assume throughout this chapter that k2

is not an eigenvalue of the (IDP), cf. Section 6.2.1.
We recall some properties of Section 6.2. The solution u ∈ H1(Ω) of (7.1) is given by

the representation formula (6.4) as

u(x) = Ṽk φ(x)− K̃k g(x) for all x ∈ Ω, (7.2)

where φ = ∂nu is the normal derivative of the solution u. Further, φ ∈ H−1/2(Γ) can be
obtained by the weakly-singular integral equation

Vk φ =
(
Kk +

1

2
Id
)
g (7.3)

where Vk denotes the simple-layer and Kk the double-layer integral operator corresponding
to the wavenumber k > 0. For the definition and some fundamental properties of the
integral operators we refer to Section 6.2.1. Further details can be found in, e.g., [McL00,
SS11].

7.1.1 Weakly-singular integral equation

We recap some important properties of the weakly-singular integral equation Vk ξ = f
from Section 6.3. For any given f ∈ H1/2(Γ), the variational formulation reads as: Find
ξ ∈ H−1/2(Γ) such that

〈Vk ξ , χ〉 = 〈f , χ〉L2(Γ) for all χ ∈ H−1/2(Γ). (7.4)

Since k2 is not an eigenvalue of the (IDP), the variational formulation (7.4) is well-posed
in the sense of (4.4). Let T0 be an admissible initial mesh and T := refine(T0) be the
set of possible refinements. As in Chapter 6, we use extended 1D bisection (Section 3.4)
in case of d = 2 and newest vertex bisection (Section 3.5) in case of d = 3. For the
discretization, we consider standard piecewise polynomial ansatz and test spaces based on
regular triangulations of Γ; see Section 3.6. Then, the Galerkin discretization of (7.4) reads
as follows: Find Ξ• ∈ Pp(T•) such that

〈Vk Ξ• , X•〉 = 〈f , X•〉L2(Γ) for all X• ∈ Pp(T•). (7.5)

According to Section 6.3, the variational formulation (7.4) as well as the Galerkin formu-
lation (7.5) can be recast in the following way

〈V0 Ξ• , X•〉+ 〈Ck Ξ• , X•〉 = 〈f , Ψ•〉L2(Γ) for all X• ∈ Pp(T•), (7.6)

where the operator V0 is symmetric and elliptic and Ck is a compact operator. Since we
use a verbatim (analytic and discrete) setting as in Section 6.3, existence and uniqueness
of the solutions of (7.6) and (7.5) are guaranteed by Proposition 4.1 with H := H−1/2(Γ)
and sufficiently fine X• = Pp(T•).
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7.1.2 Weighted-residual error estimator

For any f ∈ H1(Γ), let ξ := V
−1
k f be the solution of (7.4) and Ξ• ∈ Pp(T•) denote the

corresponding Galerkin solution. For any U• ⊆ T• and any T ∈ T•, the weighted-residual
error estimator is given by

ηξ,•(T )
2 := h

1/2
• ‖∇(f −Vk Ξ•)‖2L2(T ),

ηξ,• := ηξ,•(T⋆), where ηξ,•(U•) :=
( ∑

T∈U•

ηξ,•(T )
2
)1/2

.
(7.7)

According to Section 6.5 the error estimator ηξ,• satisfies the following properties:

• Stability on non refined element domains (E1), see Proposition 6.6.

• Reduction on refined element domains (E2), see Proposition 6.7.

• Reliability (E3), see Corollary 6.9.

• Discrete reliability (E4), see Proposition 6.8.

7.1.3 Main idea and dual problem

The main idea of the following adaptive strategies reads as follows: Let φ ∈ H−1/2(Γ) be
the unique solution of the weakly-singular integral equation (7.3) with f = (Kk+1/2) g. Let
T• ∈ T and suppose that the corresponding Galerkin approximation Φ• ∈ Pp(T•) of (7.5)
exists. Having obtained Φ•, the representation formula gives rise to an approximation
U• ∈ H1(Ω) of u by

U•(x) := Ṽk Φ•(x)− K̃k g(x) for all x ∈ Ω. (7.8)

Recall that Vk is symmetric. Then, the Galerkin orthogonality directly implies that

〈VkX• , φ− Φ•〉 = 〈Vk (φ− Φ•) , X•〉 = 0 for all X• ∈ Pp(T•). (7.9)

Suppose that x̃ ∈ Ω is an arbitrary but fixed evaluation point. With the representation
formula (7.2) and (7.8), it thus holds that

u(x̃)− U•(x̃) = Ṽk (φ−Φ•)(x̃). (7.10)

Since x̃ ∈ Ω, the fundamental solution Gk(x̃, ·) is a smooth function on Γ; see, e.g., [SS11,
Chapter 3.1]. Further, Vk is invertible if and only if k2 is not an eigenvalue of the (IDP).
Galerkin orthogonality (7.9) and the definition of Vk yield for any X• ∈ Pp(T•) that

Ṽk (φ− Φ•)(x̃)
(6.8)
= 〈Gk(x̃, ·) , φ− Φ•〉

(7.9)
= 〈Gk(x̃, ·)−VkX• , φ− Φ•〉. (7.11)

Suppose that ψ[x̃] solves the following dual problem: Given x̃ and Gk(x̃, ·) ∈ H1/2(Γ) find
ψ[x̃] ∈ H−1/2(Γ) such that

Vk ψ
[x̃] = Gk(x̃, ·). (7.12)
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Note that, the dual problem is a weakly-singular integral equation in the sense of (7.5)
with right-hand side f = Gk(x̃, ·). The corresponding Galerkin discretization of (7.12) is

given by: Find Ψ
[x̃]
• ∈ Pp(T•) such that

〈Vk Ψ
[x̃]
• , X•〉 = 〈Gk(x̃, ·) , X•〉 for all X• ∈ Pp(T•). (7.13)

We emphasize that the right hand side Gk(x̃, ·) and therefore, ψ[x̃] as well as Ψ
[x̃]
• depend

on the arbitrary but fixed evaluation point x̃ ∈ Ω. Since the only difference of the primal

and dual problem is the right hand side f , existence and uniqueness of solutions Ψ
[x̃]
• ∈

Pp(T•) of (7.13) is equivalent to solvability of the primal problem (7.6) and guaranteed by
Proposition 4.1 even with the same index ℓ0.

Now, suppose that T• ∈ T admits discrete solutions Φ•,Ψ
[x̃]
• ∈ Pp(T•) to the corre-

sponding Galerkin formulation (7.6). With (7.10) and (7.11), we derive for X• := Ψ
[x̃]
•

that

|u(x̃)− U•(x̃)| =
∣∣〈Gk(x̃, ·)−VkΨ

[x̃]
• , φ− Φ•〉

∣∣

≤ ‖Gk(x̃, ·)−VkΨ
[x̃]
• ‖H1/2(Γ) ‖φ−Φ•‖H−1/2(Γ)

≃ ‖ψ[x̃] −Ψ
[x̃]
• ‖H−1/2(Γ) ‖φ− Φ•‖H−1/2(Γ),

where the hidden constants depend only on Γ. Either of these Galerkin errors will be
controlled by the respective weighted-residual error estimator which requires additional
regularity g ∈ H1(Γ) for the Dirichlet data. To this end, let ηφ,•, ηψ[x̃],• denote the corre-
sponding error estimators for the primal and the dual problem. With reliability (E3), the
latter estimate turns into

|u(x̃)− U•(x̃)| . ‖ψ[x̃] −Ψ
[x̃]
• ‖H−1/2(Γ) ‖φ− Φℓ‖H−1/2(Γ) . ηφ,• ηψ[x̃],•. (7.14)

To abbreviate notation and if its clear from the context, we omit the dependence on x̃ and
use ψ instead of ψ[x̃] as well as Ψ instead of Ψ[x̃].

7.2 Adaptive algorithm

The previous section gives rise to the following two adaptive algorithms. These have been
proposed and analyzed by [MS09, BET11] for goal-oriented adaptivity in the context of
FEM for the Poisson problem and in [FGH+16] for ABEM for point-wise approximation
of the solutions of the Laplace equation. The first algorithm goes back to [MS09].

Algorithm 7.1. Input: Parameters 0 < θ ≤ 1 and Cmark ≥ 1 as well as initial triangu-
lation T0 with Ψ−1 := Φ−1 := 0 ∈ Pp(T0) and ηφ,−1 = ηψ,−1 := 1.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , iterate the following Steps (i)–(vii):

(i) If (7.3) does not admit a unique solution Φℓ ∈ Pp
0 (Tℓ):

– Define Φℓ := Φℓ−1 ∈ Pp(T0) and ηφ,ℓ := ηφ,ℓ−1,

– Define Ψℓ := Ψℓ−1 ∈ Pp(T0) and ηψ,ℓ := ηψ,ℓ−1,
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7.2 Adaptive algorithm

– Let Tℓ+1 := refine(Tℓ,Tℓ) be the uniform refinement of Tℓ,
– Increase ℓ→ ℓ+ 1, and continue with Step (i).

(ii.a) Else Compute Galerkin approximation Φℓ to φ.

(ii.b) Compute Galerkin approximation Ψℓ to ψ.

(iii.a) Compute refinement indicators ηφ,ℓ(T ) for all T ∈ Tℓ.

(iii.b) Compute refinement indicators ηψ,ℓ(T ) for all T ∈ Tℓ.

(iv.a) Determine a set Mφ,ℓ ⊆ Tℓ of up to the multiplicative factor Cmark minimal cardinality
such that

θ η2φ,ℓ ≤
∑

T∈Mφ,ℓ

ηφ,ℓ(T )
2. (7.15)

(iv.b) Determine a set Mψ,ℓ ⊆ Tℓ of up to the multiplicative factor Cmark minimal cardi-
nality such that

θ η2ψ,ℓ ≤
∑

T∈Mψ,ℓ

ηψ,ℓ(T )
2. (7.16)

(v) Choose M′
ℓ ∈ {Mφ,ℓ,Mψ,ℓ} as the set of minimal cardinality.

(vi) Find M′′
ℓ ⊆ Tℓ such that #M′′

ℓ = #M′
ℓ as well as hℓ(T ) ≥ hℓ(T

′) for all T ∈ M′′
ℓ

and T ′ ∈ Tℓ \M′′
ℓ . Define Mℓ := M′

ℓ ∪M′′
ℓ .

(vii) Let Tℓ+1 := refine(Tℓ,Mℓ) be the coarsest refinement of Tℓ such that all marked ele-
ments T ∈ Mℓ have been refined. Increase ℓ→ ℓ+ 1 and continue with Step (i).

Output: Discrete approximations Φℓ,Ψℓ and corresponding error estimators ηφ,ℓ, ηψ,ℓ for
all ℓ ∈ N0.

Remark 7.2. i) Besides Step (i) and Step (vi), Algorithm 7.1 coincides with the adap-
tive Algorithm proposed in [MS09, FGH+16].

ii) Recall that, the discrete problem (7.5) in general does not admit a unique solution
for all T• ∈ T. Instead, Proposition 4.1 guarantees an index ℓ0, such that for all
ℓ ≥ ℓ0 the mesh Tℓ admits unique solutions Φℓ,Ψℓ ∈ Pp(Tℓ); see also Lemma 4.6 and
Lemma 4.17. Therefore, Step (i) will be only carried out at most ℓ0-times.

iii) Step (vi) is found verbatim in Algorithm 6.2 and applies the expanded Dörfler marking
strategy of Proposition 4.7. According to Section 4.5.1 and Section 6.5.1 this ensures
definiteness on the “discrete” limit space (E5).

The second algorithm has been analyzed in [BET11] in the context of finite elements
and in [FGH+16] for ABEM for the Laplacian. Note that both algorithms only differ in
the used marking strategy. While Algorithm 7.1 employs a separate Dörfler marking in
Step (v)–(vii), Algorithm 7.3 computes a combined refinement indicator ρℓ in Step (iv) and
employs the expanded Dörfler marking for ρℓ in Steps (v)–(vi).
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7 Adaptive BEM for optimal convergence of point errors

Algorithm 7.3. Input: Parameters 0 < θ ≤ 1 and Cmark ≥ 1 as well as initial triangu-
lation T0 with Ψ−1 := Φ−1 := 0 ∈ Pp(T0) and ηφ,−1 = ηψ,−1 := 1.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , iterate the following Steps (i)–(vii):

(i) If (7.3) does not admit a unique solution Φℓ ∈ Pp
0 (Tℓ):

– Define Φℓ := Φℓ−1 ∈ Pp(T0) and ηφ,ℓ := ηφ,ℓ−1,

– Define Ψℓ := Ψℓ−1 ∈ Pp(T0) and ηψ,ℓ := ηψ,ℓ−1,

– Let Tℓ+1 := refine(Tℓ,Tℓ) be the uniform refinement of Tℓ,
– Increase ℓ→ ℓ+ 1, and continue with Step (i).

(ii.a) Else Compute Galerkin approximation Φℓ to φ.

(ii.b) Compute Galerkin approximation Ψℓ to ψ.

(iii.a) Compute indicators ηφ,ℓ(T ) for all T ∈ Tℓ.

(iii.b) Compute indicators ηψ,ℓ(T ) for all T ∈ Tℓ.

(iv) Assemble refinement indicators ρℓ(T )
2 := ηφ,ℓ(T )

2η2ψ,ℓ + η2φ,ℓηψ,ℓ(T )
2 for all T ∈ Tℓ.

(v) Determine a set M′
ℓ ⊆ Tℓ of up to the multiplicative factor Cmark minimal cardinality

such that

θ ρ2ℓ ≤ ρℓ(M′
ℓ)

2, (7.17)

(vi) Find M′′
ℓ ⊆ Tℓ such that #M′′

ℓ = #M′
ℓ as well as hℓ(T ) ≥ hℓ(T

′) for all T ∈ M′′
ℓ

and T ′ ∈ Tℓ \M′′
ℓ . Define Mℓ := M′

ℓ ∪M′′
ℓ .

(vii) Let Tℓ+1 := refine(Tℓ,Mℓ) be the coarsest refinement of Tℓ such that all marked ele-
ments T ∈ Mℓ have been refined. Increase ℓ→ ℓ+ 1 and continue with Step (i).

Output: Discrete approximations Φℓ,Ψℓ and corresponding error estimators ηφ,ℓ, ηψ,ℓ for
all ℓ ∈ N0.

Since Step (i) and Step (vi) of Algorithm 7.1 coincide with Step (i) and Step (vi) of
Algorithm 7.3, Remark 7.2 holds verbatim for Algorithm 7.3.

Remark 7.4. We note that the Algorithms 7.1 and 7.3 as well as Theorem 7.5 are in-
dependent of whether we use direct BEM for the interior or exterior problem (based on
the representation formula (6.4)), or indirect BEM, where we solve Vk φ = f for some
given right-hand side f ∈ H1(Γ) and aim to approximate Ṽk φ(x̃) ≈ Ṽk Φℓ(x̃) for some
x̃ ∈ Rd\Γ. Moreover, all results hold accordingly if the Dirichlet data g are given, while the
hyper-singular integral equation is employed to approximate the (unknown) Neumann data,
cf. Section 6.7.
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7.3 Optimal convergence

7.3 Optimal convergence

The main result of this chapter is that Algorithm 7.1 as well as Algorithm 7.3 lead to optimal
convergence of the estimator product ηφ,ℓ ηψ,ℓ. Throughout, to indicate that a result holds
for the primal as well as the dual problem, we use the abbreviate notation ξ ∈ {φ,ψ}, with
corresponding Galerkin solution Ξ• ∈ {Φ•,Ψ•}. Further, we write ηξ,• ∈ {ηφ,•, ηψ,•} for
the associated error estimator.

For the statement of the main result, recall the abstract approximation class from Sec-
tion 4.8.1. For s > 0 and T ∈ T, we write ξ ∈ As(T ) if

‖ξ‖As(T ) := sup
N∈N0

(
(N + 1)s min

T•∈TN (T )
ηξ,•
)
<∞, (7.18)

where ηξ,• is the weighted-residual error estimator associated with the optimal mesh T• ∈
TN . The following main theorem states that both adaptive algorithms do not only lead to
linear convergence, but also that each possible algebraic rate s > 0 will asymptotically be
realized.

Theorem 7.5. Suppose (E1)–(E5). For all 0 < θ ≤ 1, there exists constants 0 < qlin < 1
and Clin > 0 and an index ℓlin > 0 such that the sequences of estimators (ηξ,ℓ)ℓ∈N0 generated
by Algorithm 7.1 and Algorithm 7.3 guarantee

ηφ,ℓ+n ηψ,ℓ+n ≤ Clin q
n
lin ηφ,ℓ ηψ,ℓ for all ℓ, n ∈ N0 with ℓ ≥ ℓlin. (7.19)

Let β̂0 > 0 be the lower-bound of the inf-sup constant (4.6) for the uniform refinement T̂0
from Lemma 4.17. Moreover, let 0 < θ < θopt := (1 + C2

stbC
2
rel/β̂

2
0)

−1 for Algorithm 7.1
and 0 < θ < θopt/2 in case of Algorithm 7.3. Then, for all s, t > 0 it holds that

‖φ‖As ‖ψ‖At <∞ =⇒ ∃ℓopt ∈ N0 ∃Copt > 0∀ℓ ≥ ℓopt ηφ,ℓ ηψ,ℓ ≤ Copt (#Tℓ −#T0)−(s+t).
(7.20)

i.e., Algorithm 7.1 as well as Algorithm 7.3 guarantee that the product of the error estima-
tors decays with any possible algebraic rate. The constant Copt depends only on #Tℓopt, T0,
θ, s, t, and validity of (E1)–(E5).

Remark 7.6. In principle, the analysis covers goal-oriented adaptivity if the goal function
u(x̃) and its approximation Uℓ(x̃) satisfy (7.14), where the error estimators satisfy the prop-
erties (E1)–(E4). For instance, this is the case for goal-oriented FEM for symmetric and
elliptic PDEs with L2-goal functional; see Chapter 5 resp. [CFPP14] for the verification of
the properties (E1)–(E4). Thus, our analysis also extends the results of [MS09, BET11]
beyond the Poisson problem to the problem class of [CKNS08]. An abstract approach and
analysis of goal-oriented adaptivity for finite elements is found in [FPZ16], where also
non-symmetric differential operators are considered. In addition, our analysis avoids any
(discrete) efficiency estimates (which are open for BEM) and allows for simple newest ver-
tex bisection, while [MS09, BET11] required local bisec5-refinement in the spirit of [Ste07].

For goal-oriented FEM for the Poisson problem with polynomial data, [BET11] proves
that Algorithm 7.3 leads to linear convergence errℓ+1 ≤ q errℓ, where instead Algorithm 7.1
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7 Adaptive BEM for optimal convergence of point errors

leads only to a weaker contraction errℓ+1 ≤ q1/2 errℓ. Here, 0 < q < 1, and err• is the
product of the energy errors with respect to some mesh T• ∈ T; see [BET11, eq. (2.12)]
and [BET11, eq. (2.20)].

Hence, at least in particular situations, the combined Dörfler marking (7.17) leads to a
reduction of adaptive steps and therefore appears to be more effective overall. To our best
knowledge, no such result for goal-oriented adaptivity with boundary elements is known.
Although we did not succeed to prove such a statement in the present case, this aspect is
empirically addressed by appropriate numerical experiments in [FGH+16]. Finally, we note
that our proof of Theorem 7.5 provides an upper bound 0 < θopt < 1 such that optimal
convergence rates (7.20) are guaranteed for Algorithm 7.1 for all 0 < θ < θopt, but for
Algorithm 7.3 only for all 0 < θ < θopt/2.

7.3.1 Separated linear convergence

In order to prove linear convergence (7.19), we first show that each of the involved estimators
satisfies a slightly generalized form of linear convergence. To that end let ξ ∈ {φ,ψ}. The
following corollary recaps the generalized reduction property from Chapter 4 in the current
notation and is an immediate consequence of Lemma 4.15.

Corollary 7.7 (generalized contraction). Let 0 < θ ≤ 1. Suppose that the corresponding
error estimator ηξ satisfies (E1)–(E5). Let Tℓ ∈ T and T◦ ∈ refine(Tℓ) be given meshes
such that the corresponding discrete solutions Ξℓ,Ξ◦ exist. Further, suppose that the set of
refined elements satisfies the Dörfler marking criterion, i.e., θ η2ξ,ℓ ≤ ηξ,ℓ(Tℓ\T◦)2. Then,
there exist constants 0 < qctr,ξ, λξ < 1 such that

∆ξ,◦ ≤ qctr,ξ∆ξ,ℓ, for all ℓ ≥ ℓ3,ξ, where ∆ξ,• := ||| ξ − Ξ• |||2 + λξ η
2
ξ,•, (7.21)

and ℓ3,ξ ∈ N0 is the index from Lemma 4.13. The constants qctr,ξ and λξ depend on Crel

and qest.

The next proposition generalizes the concept of linear convergence (cf. Theorem 4.14) in
the way that in n steps of the adaptive algorithm, Dörfler marking for an estimator ηξℓ is
performed only k ≤ n times.

Proposition 7.8. Suppose (E1)–(E4). Let 0 < θ ≤ 1 and ℓ3,ξ, ℓ2,ξ ∈ N0 be the indices
from Lemma 4.13 and Lemma 4.8. Let Tℓ be a sequence of successively refined meshes
such that (E5) is satisfied and the corresponding discrete solutions Ξℓ ∈ Pp(Tℓ) exist for
all ℓ ≥ ℓ3,ξ. Then, there are constants 0 < qctr,ξ < 1 and Clin,ξ > 0 such that the following
holds:

Let ℓ ≥ max{ℓ2,ξ, ℓ3,ξ}, n ∈ N0 and suppose that there are at least k ≤ n indices ℓ ≤
j1 < j2 < · · · < jk < ℓ+ n such that the Dörfler marking for ηξ is satisfied on the refined
elements, i.e.,

θ η2ξ,jm ≤ ηξ,jm(Tjm \ Tjm+1)
2 for all m = 1, . . . , k. (7.22)

Then, the error estimator satisfies

η2ξ,ℓ+n ≤ Clin,ξ q
k
ctr,ξ η

2
ξ,ℓ for all ℓ ≥ max{ℓ2,ξ, ℓ3,ξ}. (7.23)

The constant Clin,ξ depends only on λξ, Cmon,ξ and Crel.
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7.4 Proof of Theorem 7.5 for Algorithm 7.1

Proof. Recall the definition of the quantities ∆ξ,• from Corollary 7.7. With reliability (E3)
as well as ||| · ||| ≃ ‖ · ‖H−1/2(Γ), we obtain that

λξ η
2
ξ,• ≤ ∆ξ,• and ∆ξ,• ≤ (C2

rel,ξ + λξ) η
2
ξ,•.

Since ℓ ≥ ℓ2,ξ, quasi-monotonicity from Lemma 4.8 applies. With C ′
mon,ξ := (C2

rel,ξ +

λξ)Cmon,ξ λ
−1
ξ , we obtain quasi-monotonicity for all ∆ξ,◦ corresponding to T◦ ∈ refine(Tℓ),

∆ξ,◦ ≤ (C2
rel,ξ + λξ) η

2
ξ,◦ ≤ (C2

rel,ξ + λξ)Cmon,ξ η
2
ξ,ℓ

≤ (C2
rel,ξ + λξ)Cmon,ξ λ

−1
ξ ∆ξ,ℓ = C ′

mon,ξ∆ξ,ℓ.
(7.24)

Note that, Dörfler marking in Step jk for Tjk \Tjk+1 implies Dörfler marking on Tjk \Tℓ+n ⊆
Tjk \ Tjk+1. Then, (7.24) with ∆ξ,◦ = ∆ξ,ℓ+n and Corollary 7.7 yield that

λξ η
2
ξ,ℓ+n ≤ ∆ξ,ℓ+n

(7.21)

≤ qctr,ξ∆ξ,jk.

Iterative application of (7.21) gives

λξ η
2
ξ,ℓ+n ≤ qctr,ξ∆ξ,jk

(7.21)

≤ · · ·
(7.21)

≤ qkctr,ξ∆ξ,j1

(7.24)

≤ qkctr,ξ C
′
mon,ξ∆ξ,ℓ

= qkctr,ξ C
′
mon,ξ (C

2
rel,ξ + λξ) η

2
ξ,ℓ.

Hence, we obtain (7.23) with Clin,ξ = λ−1
ξ C ′

mon,ξ (C
2
rel,ξ + λξ) = (C2

rel,ξ + λξ)
2 Cmon,ξ λ

−2
ξ .

This concludes the proof.

7.4 Proof of Theorem 7.5 for Algorithm 7.1

Throughout this section and for the ease of presentation, we suppose without loss of
generality that ηφ,ℓ and ηψ,ℓ satisfy (E1)–(E4) even with the same constants. Then, for
ξ ∈ {φ,ψ} and T◦,T• ∈ T such that T◦ ∈ refine(T•), Lemma 4.8 implies quasi-monotonicity
ηξ,• ≤ Cmon ηξ,◦ even with the same constant. With the help of Proposition 7.8, we first
prove linear convergence.

Proof of linear convergence (7.19) of Algorithm 7.1. Recall the notation of Al-
gorithm 7.1. In each adaptive step, the set M′

ℓ and hence Mℓ satisfies either the Dörfler
marking (7.15) for ηφ,ℓ or (7.16) for ηψ,ℓ. With Mℓ ⊆ Tℓ\Tℓ+1, this guarantees that within
n successive steps j = ℓ, . . . , ℓ+ n of the adaptive algorithm, Tj\Tj+1 satisfies

• k-times the Dörfler marking for ηφ,ℓ and

• (n− k)-times the Dörfler marking for ηψ,ℓ.

Define ℓlin := max{ℓ2,φ, ℓ2,ψ, ℓ3,φ, ℓ3,ψ}. Then, Proposition 7.8 implies that

η2φ,ℓ+n ≤ Clin,φ q
k
ctr,φ η

2
φ,ℓ as well as η2ψ,ℓ+n ≤ Clin,ψ q

n−k
ctr,ψ η

2
ψ,ℓ for all ℓ ≥ ℓlin.

Altogether, with Clin := max{Clin,φ, Clin,ψ} and q2lin := max{qctr,φ, qctr,ψ} this proves that

η2φ,ℓ+n η
2
ψ,ℓ+n ≤ C2

lin q
2n
lin η

2
φ,ℓ η

2
ψ,ℓ for all ℓ ≥ ℓlin

and concludes the proof of (7.19).
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The proof of optimal convergence rates (7.20) in Theorem 7.5 is similar to Section 4.8,
but we additionally have to deal with the product structure ηφ,• ηψ,• of the underlying
error indicator. We obtain the following two technical lemmas, which are an analogon of
Lemma 4.23 in the current setting.

Lemma 7.9. Under the assumptions of Theorem 7.5, let ℓ5 be the index from Lemma 4.17
and 0 < κ < 1. There exist a refinement T◦ ∈ refine(Tℓ) for all ℓ ≥ ℓ5 such that the
following holds: For all s, t > 0 with ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 ) <∞, it holds

#T◦ −#Tℓ ≤ 2
(
C2
mon κ

−1/2 ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 )
)1/(s+t)

(ηφ,ℓ ηψ,ℓ)
−1/(s+t) (7.25)

as well as

η2φ,◦ η
2
ψ,◦ ≤ κ η2φ,ℓ η

2
ψ,ℓ. (7.26)

Proof. Recall the notation of Lemma 4.17. There exists munif ∈ N0 and an index ℓ5 > 0
such that Tℓ ∈ refine(T̂0) for all ℓ ≥ ℓ5, where T̂0 denotes themunif -times uniform refinement
of T0. Further, any refinement T• ∈ refine(T̂ℓ5), admits unique solutions Φ•,Ψ• ∈ Pp(T•)
of the primal and dual problem. Hence, there holds TN (Tℓ5) 6= ∅ for all N ∈ N0. We split
the remainder of the proof into three steps.

Step 1: Construction of the mesh T◦. Let ℓ ≥ ℓ5, 0 < κ < 1 and define
ε := C−2

mon κ
1/2 ηφ,ℓ ηψ,ℓ. Then quasi-monotonicity implies that

ε ≤ κ1/2 ηφ,ℓ5 ηψ,ℓ5 ≤ ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 ) <∞.

Choose the minimal N ∈ N0 with ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 ) ≤ ε (N + 1)s+t. Since TN (Tℓ5) 6= ∅,
choose Tε1 ,Tε2 ∈ TN (Tℓ5) with

ηφ,ε1 = min
T⋆∈TN (Tℓ5 )

ηφ,⋆ and ηψ,ε2 = min
T⋆∈TN (Tℓ5 )

ηψ,⋆. (7.27)

Define Tε := Tε1 ⊕ Tε2 as well as T◦ := Tε ⊕ Tℓ. Note that T◦ ∈ refine(Tℓ5) and hence, the
corresponding Galerkin solutions Ξ◦ ∈ Pp(T◦) exists.

Step 2: Proof of (7.26). Quasi-monotonicity, the definition of the approximation
classes (7.18), and minimality of N give

ηφ,◦ ηψ,◦ ≤ C2
mon ηφ,ε1 ηψ,ε2

(7.27)
= C2

mon min
T⋆∈TN (Tℓ5 )

ηφ,⋆ min
T⋆∈TN (Tℓ5 )

ηψ,⋆

(7.18)

≤ C2
mon (N + 1)−(s+t) ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 )

≤ C2
mon ε = κ1/2 ηφ,ℓ ηψ,ℓ.

(7.28)

This concludes the proof of (7.26).

Step 3: Proof of (7.25). Application of the overlay estimate (R4) for T◦ as well as
Tε yields that

#T◦ −#Tℓ
(R4)

≤ #Tε −#Tℓ5
(R4)

≤ #Tε1 +#Tε2 − 2#Tℓ5 ≤ 2N. (7.29)
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Since N is minimal, it holds that

N <
(
‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 )

)1/(s+t)
ε−1/(s+t)

=
(
C2
mon κ

−1/2 ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 )
)1/(s+t) (

ηφ,ℓ ηψ,ℓ
)−1/(s+t)

.
(7.30)

Combining the estimates (7.29) and (7.30), we see that

#T◦ −#Tℓ ≤ 2N ≤ 2
(
C2
monκ

−1/2 ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 )
)1/(s+t) (

ηφ,ℓηψ,ℓ
)−1/(s+t)

.

This concludes the proof.

Lemma 7.10. Under the assumptions of Theorem 7.5. Let ℓ5 be the index from Lemma 4.17
and let 0 < θ < θ⋆ := (1 + C2

stbC
2
rel/β̂

2
0)

−1. There exist constants C1, C2 > 0 such that the
following holds: For all s, t > 0 with ‖φ‖As(Tℓ5 )‖ψ‖At(Tℓ5 ) <∞, the set of marked elements
Mℓ generated by Algorithm 7.1 satisfies that

#Mℓ ≤ C1 (C2‖φ‖As(Tℓ5 )‖ψ‖At(Tℓ5 ))
1/(s+t) (ηφ,ℓηψ,ℓ)

−1/(s+t). (7.31)

The constant C1, C2 depend only on θ, β̂0, and (E1)–(E4).

Proof. Adopt the notation of Lemma 4.22 and Lemma 7.9. Choose κ := κ4opt in Lemma 7.9.
Then, equation (7.26) shows that the constructed mesh T◦ ∈ refine(Tℓ) satisfies η2φ,◦ η2ψ,◦ ≤
κ4opt η

2
φ,ℓ η

2
ψ,ℓ. This implies that

η2φ,◦ ≤ κ2opt η
2
φ,ℓ or η2ψ,◦ ≤ κ2opt η

2
ψ,ℓ.

According to Lemma 4.22, this already implies Dörfler marking for either ηφ,ℓ and Rφ,ℓ,◦

or ηψ,ℓ and Rψ,ℓ,◦, where Rξ,ℓ,◦ ⊆ Tℓ \ T◦ denotes the extended set of refined elements from
discrete reliability (E4). Recall, that the expanded Dörfler marking strategy guarantees
#Mℓ ≤ Cmark#M′

ℓ. Then, minimality of M′
ℓ and the splitting property (R3) imply that

#Mℓ ≤ Cmark#M′
ℓ ≤ 2Cmark min{#Mφ,ℓ , #Mψ,ℓ} ≤ 2Cmark max{#Rφ,ℓ,◦ , #Rψ,ℓ,◦}

≤ 2Cmark Crel#(Tℓ \ T◦)
(R3)

≤ 2CmarkCrel (#Tℓ −#T◦).

In combination with Lemma 7.9, we obtain that

#Mℓ ≤ 2Cmark Crel (#Tℓ −#T◦) ≤ C1 (C2‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 )
(
ηφ,ℓ ηψ,ℓ

)−1/(s+t)
,

where C1 = 4CmarkCrel and C2 = C2
monκ

−2
opt. This concludes the proof.

With the help of Lemma 7.10, the proof of optimal convergence follows analogously to
the proof of Theorem 4.21. For the sake of completeness, we recap the important steps.
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7 Adaptive BEM for optimal convergence of point errors

Proof of optimal convergence (7.20) of Algorithm 7.1. Let ℓopt := max{ℓlin, ℓ5}.
Analoguosly to the proof of Theorem 4.21, for all ℓ ≥ ℓopt the mesh-closure estimate (R5)
and Lemma 7.10 imply that

#Tℓ −#T0 + 1
(R5)

≤ Cmesh (ℓ6 C + 1)

ℓ−1∑

j=ℓopt

#Mj

(7.25)

≤ Cmesh (ℓ6 C + 1)C1 (C2‖φ‖As‖ψ‖At)1/(s+t)
ℓ−1∑

j=ℓopt

(ηφ,j ηψ,j)
−1/(s+t),

(7.32)

where C := maxj=0,...,ℓopt
#Mj

#Mℓopt
. Then, linear convergence (7.19) yields that

ηφ,ℓ ηψ,ℓ ≤ Clin q
ℓ−j
lin ηφ,j ηψ,j for all ℓlin ≤ j ≤ ℓ.

Hence,

(ηφ,j ηψ,j)
−1/(s+t) ≤ C

1/(s+t)
lin q

(ℓ−j)/(s+t)
lin (ηφ,ℓ ηψ,ℓ)

−1/(s+t) for all ℓopt ≤ j ≤ ℓ.

With 0 < q := q
1/(s+t)
lin < 1, the geometric series applies and yields that

ℓ−1∑

j=ℓopt

(ηφ,j ηψ,j)
−1/(s+t) ≤ C

1/(s+t)
lin (ηφ,ℓ ηψ,ℓ)

−1/(s+t)
ℓ−1∑

j=ℓopt

qℓ−j

≤ C
1/(s+t)
lin

1− q
1/(s+t)
lin

(ηφ,ℓ ηψ,ℓ)
−1/(s+t).

Combining the latter estimate with (7.32), we prove that

#Tℓ −#T0 + 1 ≤ Cmesh(ℓ6 C + 1)C1

1− q
1/(s+t)
lin

(ClinC2 ‖φ‖As(Tℓ5 )‖ψ‖At(Tℓ5 ))
1/(s+t) (ηφ,ℓ ηψ,ℓ)

−1/(s+t).

Rearranging the terms in the estimate above, we see ηφ,ℓ ηψ,ℓ . (#Tℓ − #Tℓ0 + 1)−(s+t).
Using the definitions of C1, C2 > 0, this implies (7.20) with

Copt :=

(
2#Tℓopt Cmesh (ℓ6C + 1)C2

markCrel

1− q
1/(s+t)
lin

)(s+t)

ClinC
2
mon κ

−2
opt ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 ).

Finally, recall from Lemma 4.18 that ‖φ‖As(Tℓ5 )‖ψ‖At(Tℓ5 ) <∞ if and only if ‖φ‖As‖ψ‖At <
∞. This concludes the proof.

7.5 Proof of Theorem 7.5 for Algorithm 7.3

As in the previous section, we suppose that ηφ,ℓ and ηψ,ℓ satisfy the properties (E1)–(E4)
even with the same constants. We start with the proof of linear convergence.
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7.5 Proof of Theorem 7.5 for Algorithm 7.3

Proof of linear convergence (7.19) of Algorithm 7.3. Suppose that ℓ ≥ ℓlin :=
max{ℓφ,3, ℓψ,3} and hence the discrete solutions ξℓ ∈ Pp(Tℓ) and corresponding error
estimators ηξ,ℓ exist. Recall the definition of the combined error indicator ρℓ(T )

2 :=
ηφ,ℓ(T )

2η2ψ,ℓ + η2φ,ℓηψ,ℓ(T )
2. Summing over all elements T ∈ Tℓ, we see that

ρ2ℓ = η2ψ,ℓ
∑

T∈Tℓ

ηφ,ℓ(T )
2 + η2φ,ℓ

∑

T∈Tℓ

ηψ,ℓ(T )
2 = 2 η2φ,ℓ η

2
ψ,ℓ.

Therefore, the Dörfler marking criterion (7.17) of Algorithm 7.3 reads as

2 θ η2φ,ℓη
2
ψ,ℓ = θ ρ2ℓ ≤ ρℓ(Mℓ)

2 ≤ ηφ,ℓ(Mℓ)
2 η2ψ,ℓ + η2φ,ℓ ηψ,ℓ(Mℓ)

2.

In particular, this shows that (7.17) implies that

θ η2φ,ℓ ≤ ηφ,ℓ(Mℓ)
2 or θ η2ψ,ℓ ≤ ηψ,ℓ(Mℓ)

2.

Hence, in each adaptive step, either Dörfler marking for the primal or the dual problem
is satisfied. As we have seen in the proof of linear convergence for Algorithm 7.1 with
separate marking, this already implies linear convergence

η2φ,ℓ+n η
2
ψ,ℓ+n ≤ C2

lin q
n
lin η

2
φ,ℓ η

2
ψ,ℓ for all ℓ ≥ ℓlin,

and concludes (7.19) for Algorithm 7.3.

The proof of optimal convergence rates (7.20) for Algorithm 7.3 is essentially a conse-
quence of the following elementary observation.

Lemma 7.11. Let 0 < θ ≤ 1/2 and ℓ ∈ N0 such that Tℓ admits unique Galerkin solutions
Ξℓ. Suppose Rℓ ⊆ Tℓ such that

2θ η2φ,ℓ ≤ ηφ,ℓ(Rℓ)
2 or 2θ η2ψ,ℓ ≤ ηψ,ℓ(Rℓ)

2.

Then, the combined indicator ρℓ satisfies that,

θ ρ2ℓ ≤ ρℓ(Rℓ)
2, (7.33)

i.e., if Rℓ satisfies Dörfler marking for the primal or dual problem with parameter 2θ, then
Rℓ satisfies the combined Dörfler marking with parameter θ.

Proof. Using the definition of ρℓ in Step (iv) of Algorithm 7.3, an elementary calculation
yields that

θ ρ2ℓ = 2θ η2φ,ℓ η
2
ψ,ℓ ≤ ηφ,ℓ(Rℓ)

2 η2ψ,ℓ + η2φ,ℓ ηψ,ℓ(Rℓ)
2 = ρℓ(Rℓ)

2. (7.34)

This concludes the proof.

Note that, Lemma 7.9 does not rely on the specific marking strategy and holds for the
present setting as well. Then, the key idea of Lemma 7.11 yields that the upper bound
θopt for optimal marking parameters in Algorithm 7.3 is half that for optimal marking
parameter in Algorithm 7.1.
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7 Adaptive BEM for optimal convergence of point errors

Lemma 7.12. Under the assumptions of Theorem 7.5. Let ℓ5 be the index from Lemma 4.17
and let 0 < θ < θopt/2 := 1/2 (1 + C2

stbC
2
rel/β̂

2
0)

−1. There exist constants C1, C2 > 0 such
that the following holds: For all s, t > 0 with ‖φ‖As(Tℓ5 )‖ψ‖At(Tℓ5) < ∞, the set of marked
elements Mℓ generated by Algorithm 7.3 satisfies

#Mℓ ≤ C1 (C2‖φ‖As(Tℓ5 )‖ψ‖At(Tℓ5 ))
1/(s+t) (ηφ,ℓηψ,ℓ)

−1/(s+t). (7.35)

The constant C1, C2 depends only on θ, β̂0, and (E1)–(E4).

Proof. Adopt the notation of Lemma 4.22 and Lemma 7.9. Apply Lemma 4.22 with 0 <
2 θ < θopt to obtain κopt and choose κ := κ4opt in Lemma 7.9. Then, equation (7.28) shows
that the constructed mesh T◦ ∈ refine(Tℓ5) satisfies η2φ,◦η2ψ,◦ ≤ κ4opt η

2
φ,ℓη

2
ψ,ℓ.

This implies that η2φ,◦ ≤ κ2opt η
2
φ,ℓ or η

2
ψ,◦ ≤ κ2opt η

2
ψ,ℓ. Hence, according to Lemma 4.22,

there holds Dörfler marking

2 θ η2φ,ℓ ≤ ηφ,ℓ(Rφ,ℓ,◦)
2 or 2 θ η2ψ,ℓ ≤ ηψ,ℓ(Rψ,ℓ,◦)

2.

Therefore, Lemma 7.11 implies Dörfler marking (7.33), i.e.,

θ ρ2ℓ ≤ ρℓ(Rφ,ℓ,◦)
2 or θ ρ2ℓ ≤ ρℓ(Rψ,ℓ,◦)

2

Similarly to the proof of Lemma 7.10, this implies that

#Mℓ ≤ Cmark#M′
ℓ ≤ 2Cmark max{#Rφ,ℓ,◦ , #Rψ,ℓ,◦} ≤ CmarkCrel#(Tℓ \ T◦).

Note that Lemma 7.9 holds independently of the marking strategy. With the splitting
property (R3), we conclude that

#(Tℓ \ T◦)
(R3)

≤ #T◦ −#Tℓ ≤ C1 (C2 ‖φ‖As(Tℓ5 ) ‖ψ‖At(Tℓ5 ))
1/(s+t) (ηφ,ℓ ηψ,ℓ)

−1/(s+t),

with constants C1 = 2C2
markCrel and C2 = C2

monκ
−2
opt.

Proof of optimal convergence (7.20) of Algorithm 7.3. Since that proof of (7.20)
in case of Algorithm 7.1 essentially relies only on the validity of Lemma 7.10, the proof
of (7.20) for Algorithm 7.3 follows verbatim, where Lemma 7.10 is replaced by Lemma 7.12.
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8 Abstract theory on strongly monotone
nonlinear operators

8.1 State of the art and outline

As for linear problems, the analysis of convergence and optimal convergence behavior
of AFEM for nonlinear problems has been a fertile field for new publications. We re-
fer to [Vee02, DK08, BDK12, GMZ12] for some major contributions and to [CFPP14]
for some general abstract framework. While the interplay of adaptive algorithms, opti-
mal convergence rates, and inexact solvers is already well understood and analyzed, e.g.,
in [Ste07, AGL13, ALMS13, CFPP14] for linear PDEs and in [CG12] for eigenvalue prob-
lems, the influence of inexact solvers for nonlinear equations has not been analyzed yet.
The work [GMZ11] considers adaptive mesh-refinement in combination with a Kačanov-
type iterative solver for strongly monotone operators. Following [MSV08, Sie11], the work
focuses on plain convergence, whereas the proof of optimal convergence rates remains open.

On the other hand, there is a rich body on a posteriori error estimation which also
includes the iterative and inexact solution for nonlinear problems; see, e.g., [EV13]. Based
on our own work [GHPS17], we aim to close this gap between numerical analysis (e.g.,
[CFPP14]) and empirical evidence of optimal convergence rates (e.g., [GMZ11, EV13]) by
analyzing an adaptive algorithm from [CW17].

We consider nonlinear elliptic equations in their variational formulation: Given F ∈ H∗,
find u⋆ ∈ H such that

〈Au⋆ , v〉 = 〈F , v〉 for all v ∈ H, (8.1)

where A is a strongly monotone (A1) and Lipschitz continuous (A2) operator. In view of
applications, we admit that (A1)–(A2) exclude the p-Laplacian [Vee02, DK08, BDK12], but
cover the same problem class as, e.g., [CW17, GMZ11, GMZ12]. We refer also to [BSF+14]
for strongly monotone nonlinearities arising in magnetostatics.

The discrete formulation of (8.1) reads: Find u⋆ℓ ∈ Xℓ such that

〈Au⋆ℓ , vℓ〉 = 〈F , vℓ〉 for all vℓ ∈ Xℓ. (8.2)

We emphasize that the discrete nonlinear system (8.2) cannot be solved exactly in practice.
Instead, [CW17, GHPS17] use a Picard approximate unℓ := Φℓ(u

n−1
ℓ ) ≈ u⋆ℓ , where u

⋆
ℓ ∈ Xℓ is

the exact solution of (8.2) and the involved nonlinear mapping Φ : H → H is a contraction
(see Section 8.2 for details). Unlike [GMZ12, BDK12], there holds unℓ 6= u⋆ℓ in general.

The computation of each Picard step requires to solve a discrete Laplace problem. In
contrast to [GHPS17, CW17], we do not assume that these arising linear systems are
solved exactly and use an inexact iterative PCG-solver instead. Therefore, the proposed
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8 Abstract theory on strongly monotone nonlinear operators

algorithm steers not only the local mesh-refinement and the Picard iteration, but also the
inexact solver for the invoked linear system, where we employ nested iteration to lower the
number of iterative steps.

The algorithm generates a sequence of conforming nested subspaces Xℓ ⊆ Xℓ+1 ⊂ H, cor-
responding discrete solutions un,kℓ ∈ Xℓ, and estimators ηℓ(u

n,k
ℓ ) such that ‖u⋆ − un,kℓ ‖H ≤

C⋆rel ηℓ(u
n,k
ℓ ) → 0 as ℓ → ∞ with optimal algebraic rate in the sense of certain approxima-

tion classes [CKNS08, FFP14, CFPP14]. Moreover, under an additional assumption, we
prove optimal convergence rates with respect to the cumulative computational costs, which
implies optimal computational complexity and improves the existing result of [GHPS17].
While the plain convergence from [GMZ11] applies to various marking strategies, the con-
vergence analysis in this chapter is tailored to the Dörfler marking strategy. We emphasize
that the whole analysis is done in a complete abstract setting in the spirit of [CFPP14].

Outline of tis chapter. Section 8.2 recalls the well-known proof that (8.1) admits a
unique solution. Section 8.3 comments on the discrete problem (8.2) and introduces the
corresponding Picard mapping Φℓ. Section 8.3.2 introduces the PCG-solver for the arising
linear system. The adaptive strategy (Algorithm 8.7) is given in Section 8.5. There, we
also formulate the estimator axioms in the current setting. Linear convergence of the pro-
posed algorithm is proved in Section 8.8 (Theorem 8.20). Optimal algebraic convergence
behavior, is proved in Section 8.9 (Theorem 8.21). As a consequence of the preceding re-
sults and with an additional assumption, we also obtain optimal computational complexity
(Theorem 8.32), i.e., the error estimator converges optimal with respect to the cumulative
computational effort.

8.2 Abstract setting

Let Ω ⊂ Rd be a bounded Lipschitz domain with d ≥ 2. Further, let H be a Hilbert space
over K ∈ {R,C} with dual space H∗. The H-scalar product is given by (· , ·)H . Let 〈· , ·〉
denote the corresponding duality bracket. We consider nonlinear elliptic equations in the
following abstract setting with variational formulation: Given F ∈ H∗, find u⋆ ∈ H such
that

〈Au⋆ , v〉 = 〈F , v〉 for all v ∈ H. (8.3)

In order to guarantee solvability, we additionally suppose that the operator A : H → H∗

satisfies the following conditions:

A1) A is strongly monotone: There exists α > 0 such that

α ‖w − v‖2H ≤ Re 〈Aw − Av , w − v〉 for all v,w ∈ H.

A2) A is Lipschitz continuous: There exists L > 0 such that

‖Aw − Av‖H∗ ≤ L ‖w − v‖H for all v,w ∈ H.
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8.2 Abstract setting

A3) A has a potential: There exists a Gâteaux differentiable function P : H → K such
that its derivative dP : H → H∗ coincides with A, i.e., for all v,w ∈ H, it holds that

〈Aw , v〉 = 〈dP (w) , v〉 = lim
r→0
r∈R

P (w + rv)− P (w)

r
. (8.4)

We note that (A1)–(A2) are sufficient to guarantee existence and uniqueness of the solution
u⋆ ∈ H of (8.3) (see Section 8.2.2). On the other hand, Assumption (A3) is used to prove
linear convergence in Section 8.8.

8.2.1 Nonlinear discrete problem

Let T0 be a given regular initial mesh. Suppose that refine(·) is a fixed refinement strategy
satisfying the axioms (R1)–(R6); see Chapter 3. For each T• ∈ T = refine(T0), let X• ⊂ H
denote the related conforming finite-dimensional subspace of H. Further, suppose that
refinement T◦ ∈ refine(T•) leads to nestedness X• ⊂ X◦ of the corresponding subspaces.
Then, the discrete formulation of (8.3) reads as: Find u⋆• ∈ X• such that

〈Au⋆• , v•〉 = 〈F , v•〉 for all v• ∈ X•. (8.5)

Note that, if (A1)–(A2) are satisfied, the restriction A• : X• → X ∗
• of A is also strongly

monotone and Lipschitz continuous, even with the same constants α,L > 0 as in the
continuous case.

8.2.2 Existence of solutions

In this section, we prove that the model problem (8.3) as well as its discrete version (8.5)
admit unique solutions u⋆ ∈ H and u⋆• ∈ X•. The proof follows essentially from the Banach
fixpoint theorem and relies only on the validity of (A1)–(A2). To that end, recall the Riesz
mapping

IH : H → H∗ with IHw := (· , w)H.

We emphasize that IH is (up to complex conjugation) an isometric isomorphism; see
e.g, [Yos80, Chapter III.6]. Further, the Banach–Picard iteration Φ : H → H is given
by

Φ(v) := v − (α/L2) I−1
H (Av − F ). (8.6)

We obtain the following proposition.

Proposition 8.1. Let A satisfy (A1)–(A2) with constants 0 < α,L ≤ ∞. Then, Φ : H →
H defined in (8.6) is a contraction with Lipschitz constant

0 ≤ qpic := (1− α2/L2)1/2 < 1. (8.7)
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8 Abstract theory on strongly monotone nonlinear operators

There exist unique solutions u⋆ ∈ H to (8.3) as well as u⋆• ∈ X• to (8.5). Moreover, for
any initial guess u0 ∈ H, the Picard iteration un,⋆ := Φ(un−1,⋆) converges to u⋆ as n→ ∞
with

‖u⋆ − un,⋆‖H ≤ qpic
1− qpic

‖un,⋆ − un−1,⋆‖H ≤
qnpic

1− qpic
‖u1,⋆ − u0‖H (8.8a)

as well as

‖un,⋆ − un−1,⋆‖H ≤ (1 + qpic)‖u⋆ − un−1,⋆‖H (8.8b)

Proof. We split the proof into two steps.
Step 1: Existence of solutions. Let v,w ∈ H. Note that (A1)–(A2) immediately

imply that

α‖v − w‖2H
(A1)

≤ Re 〈Av − Aw , v −w〉 ≤ ‖Av − Aw‖H∗ ‖v − w‖H
(A2)

≤ L ‖v − w‖2H,

and hence, α ≤ L as well as 0 ≤ qpic < 1. Using the definition of Φ(·) and ‖v‖2H := (v , v)H,
we obtain that

‖Φv − Φw‖2H =
∥∥v − (α/L2) I−1

H (Av − F )−
(
w − (α/L2) I−1

H (Aw − F )
)∥∥2

H

=
(
v − w − (α/L2) I−1

H (Av − Aw) , v − w − (α/L2) I−1
H (Av −Aw)

)
H

= ‖v − w‖2H − 2
α

L2
Re
(
v − w , I−1

H (Av − Aw)
)
H
+
α2

L4

∥∥I−1
H (Av − Aw)

∥∥2
H
.

We treat each term on the right hand side separately. First, by definition of IH, it holds
that

Re
(
v − w , I−1

H (Av − Aw)
)
H
= Re 〈Av − Aw , v − w〉

(A1)

≥ α ‖v − w‖2H.

Second, since IH is an isometric isomorphism, we obtain that

‖I−1
H (Av − Aw)‖2H = ‖Av − Aw‖2H∗

(A2)

≤ L2 ‖v − w‖2H.

Combining these observations, we see that

‖Φv − Φw‖2H ≤
(
1 +

α2

L2

)
‖v − w‖2H − 2

α

L2
Re 〈Av − Aw , v −w〉

≤
(
1− α2

L2

)
‖v − w‖2H

(8.7)
= q2pic ‖v − w‖2H.

(8.9)

Hence, Φ : H → H is a contraction with Lipschitz constant 0 ≤ qpic < 1. According to the
Banach fixpoint theorem, Φ has a unique fixpoint u⋆ ∈ H, i.e., u⋆ = Φ(u⋆). By definition
of Φ, the fixpoint u⋆ satisfies

0 =
(
v , (α/L2) I−1

H (Au⋆ − F )
)
H
=

α

L2
〈Au⋆ − F , v〉 for all v ∈ H, (8.10)
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and hence, u⋆ = Φ(u⋆) is equivalent to the strong form (8.3). Overall, we conclude that (8.3)
admits a unique solution. Recall that the restriction A• : X• → X ∗

• of A satisfies (A1)– (A2)
even with the same constants. Hence, the proof also applies to the discrete setting and
yields existence and uniqueness of the solution u⋆• ∈ X• to (8.5).

Step 2: Proof of (8.8a) and (8.8b) . The Banach fixpoint theorem guarantees for
each initial guess u0 ∈ H, that the Picard iteration un,⋆ := Φ(un−1,⋆) converges to u⋆ as
n→ ∞. For all n ∈ N, we obtain that

‖u⋆ − un,⋆‖H = ‖Φ(u⋆)− Φ(un−1,⋆)‖H
(8.9)

≤ qpic ‖u⋆ − un−1,⋆‖H
≤ qpic ‖u⋆ − un,⋆‖H + qpic ‖un,⋆ − un−1,⋆‖H.

Rearranging this estimate and aguing by induction on n with (8.9), we derive the following
well-known a posteriori and a priori estimate for the Picard iterates,

‖u⋆ − un,⋆‖H ≤ qpic
1− qpic

‖un,⋆ − un−1,⋆‖H
(8.9)

≤
qnpic

1− qpic
‖u1,⋆ − u0‖H. (8.11)

This concludes (8.8a). Moreover, it holds that

‖un,⋆ − un−1,⋆‖H ≤ ‖u⋆ − un,⋆‖H + ‖u⋆ − un−1,⋆‖H
(8.9)

≤ (1 + qpic) ‖u⋆ − un−1,⋆‖H. (8.12)

This concludes (8.8b). Thus, the a posteriori computable term ‖un − un−1‖H provides an
upper bound for ‖u⋆ − un‖H as well as a lower bound for ‖u⋆ − un−1‖H.

Recall the following well-known Céa-type estimate for strongly monotone operators. For
the sake of completeness we include its proof.

Lemma 8.2. Suppose that the operator A satisfies (A1)–(A2). Then, it holds that

‖u⋆ − u⋆•‖H ≤ L

α
min
w•∈X•

‖u⋆ − w•‖H. (8.13)

Proof. Note the Galerkin orthogonality 〈Au⋆ − Au⋆• , v•〉 = 0 for all v• ∈ X•. For w• ∈ X•

and u⋆ 6= u⋆•, this results in

α ‖u⋆ − u⋆•‖H
(A1)

≤ Re 〈Au⋆ − Au⋆• , u
⋆ − u⋆•〉

‖u⋆ − u⋆•‖H

=
Re 〈Au⋆ − Au⋆• , u

⋆ − w•〉
‖u⋆ − u⋆•‖H

(A2)

≤ L ‖u⋆ −w•‖H.

Finite dimension concludes that the infimum over all w• ∈ X• is, in fact, attained.

8.3 Discretization and a priori error estimation

We emphasize that the nonlinear system (8.5) can hardly be solved exactly even on the
discrete level. Instead, we introduce the exact discrete Picard iterates un,⋆• := Φ(un−1,⋆

• ),
with un,⋆• → u⋆• as n→ ∞.
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8 Abstract theory on strongly monotone nonlinear operators

8.3.1 Linearized discrete problem

Let I• : X• → X ∗
• denote the discrete Riesz mapping. Define the restriction F• ∈ X ∗

• of F
to X•. Then, the discrete Picard function is given by

Φ• : X• → X• with Φ•(v•) := v• − (α/L2)I−1
• (A•v• − F•).

Given un−1,⋆
• ∈ X•, the discrete Picard iterate un,⋆• := Φ•(u

n−1,⋆
• ) can be computed as

follows:

(P.i) Solve the linear system

(v•, w
n,⋆
• )H = 〈Aun−1,⋆

• − F , v•〉 for all v• ∈ X•. (8.14)

(P.ii) Define un,⋆• := un−1,⋆
• − α/L2 wn,⋆• .

Then, Proposition 8.1 holds verbatim for Φ• instead of Φ and implies that Φ• is a con-
traction on X•. For each discrete initial guess u0• ∈ X•, the discrete Picard iteration
un+1,⋆
• = Φ•(u

n,⋆
• ) converges to u⋆• as n → ∞. Moreover, the error estimates (8.8a)–(8.8b)

also hold for the discrete Picard iteration, i.e., for all n ∈ N, it holds that

‖u⋆• − un,⋆• ‖H ≤ qpic
1−qpic

‖un,⋆• − un−1,⋆
• ‖H

≤ min
{ qnpic
1−qpic

‖u1,⋆• − u0•‖H,
qpic(1+qpic)

1−qpic
‖u⋆• − un−1,⋆

• ‖H
}
.

(8.15)

To simplify the notation, and if it is clear from the context, we write Φ(·) instead of Φ•(·).
Finally, we recall the following a priori estimate for the discrete Picard iteration from
[CW17, Proposition 2.1]. We also include its simple proof for the sake of completeness.

Lemma 8.3. Suppose that the operator A satisfies (A1)–(A2). Then, it holds that

‖u⋆ − un,⋆• ‖H ≤ L

α
min
w•∈X•

‖u⋆ − w•‖H +
qnpic

1− qpic
‖u1,⋆• − u0•‖H for all n ∈ N. (8.16)

Proof. With (8.15), we estimate that

‖u⋆ − un,⋆• ‖H ≤ ‖u⋆ − u⋆•‖H + ‖u⋆• − un,⋆• ‖H
(8.15)

≤ ‖u⋆ − u⋆•‖H +
qnpic

1− qpic
‖u1,⋆• − u0•‖H.

Then, (8.16) follows from the Céa-type estimate of Lemma 8.2.

Remark 8.4. Note that, for any u0• ∈ X• and u1,⋆• = Φ•(u
0
•), there holds that

(u1,⋆• , v•)H = (u0• , v•)H − α

L2
〈Au0• − F , v•〉 for all v• ∈ X•.

For v• = u1,⋆• − u0•, this reveals that

‖u1,⋆• − u0•‖2H = − α

L2
〈Au0• − F , u1,⋆• − u0•〉 ≤

α

L2
‖Au0• − F‖H∗ ‖u1,⋆• − u0•‖H.
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Consequently, we get

‖u1,⋆• − u0•‖H ≤ α

L2
‖Au0• − F‖H∗

(8.3)
=

α

L2
‖Au0• − Au⋆‖H∗

(A2)

≤ α

L
‖u0• − u⋆‖H. (8.17)

Therefore, boundedness of ‖u1,⋆• − u0•‖H in the a priori estimate of Lemma 8.3 can be
guaranteed independently of the space X• ⊂ H by choosing, e.g., u0• := 0. If minw•∈X• ‖u⋆−
w•‖H = O(N−s) for some s > 0 and with N > 0 being the degrees of freedom associated
with X•, this suggests the choice n = O(logN) in Lemma 8.3; see the discussion in [CW17,
Remark 3.7]. Moreover, we shall see below that the choice of u0• by nested iteration leads
to optimal computational complexity; see Section 8.10.

8.3.2 Inexact PCG solver for the Picard system

To solve the linearized discrete system (8.14) in Step (P.i) of each discrete Picard iteration,
we use a preconditioned conjugate gradient method (PCG); see, e.g., [FP17] where PCG
is used for an Uzawa-type solver for transmission problems.

To this end, let {ξ1• , . . . , ξN• } ⊆ X• denote a basis of X•. Given initial guess un−1,◦
• ≈

un−1,⋆
• , we define the stiffness matrix S• and right hand side as

S• :=
(
(ξk• , ξ

j
•)H

)
j,k=1,...,N

∈ RN×N and bn• =
(
〈Aun−1,◦

• − F , ξj〉
)
j=1,...,N

∈ RN .

Let wn,⋆• denotes the exact solution of the linear system (8.14) with representation wn,⋆• =∑N
j=1 xjξ

j
• and coefficient vector x = (x1, . . . , xn). Then, the linear system (8.14) is equiv-

alent to solve S•x = bn• . Note that S• is symmetric and positive definite. This allows to
use PCG as inexact solver to approximate the exact Picard iterate wn,j• ≈ wn,⋆• ; see, e.g.,
[GVL13, Saa03, FP17].

Instead of solving S•x = b•, the PCG iteration considers the preconditioned system

P
−1/2
• S• P

−1/2
• x̃ = P

−1/2
• bn• , (8.18)

and formally applies the conjugate gradient method to (8.18); see e.g., [GVL13, Algorithm

11.3.2]. Further, we note that x and x̃ are connected through x = P
−1/2
• x̃. We suppose

that the matrix P• ∈ RN×N in (8.18) is symmetric and positive definite. Additionally, P•

is called an optimal preconditioner for S•, if there exists constants cP, CP > 0 which are
independent of the space X•, such that

cP y
T P• y ≤ yT S• y ≤ CP y

T P• y for all y ∈ RN ,

i.e., P• is spectrally equivalent to S•. The latter assumption implies that

cond2(P
−1/2
• S• P

−1/2
• ) ≤ CPCG, (8.19)

where CPCG > 0 depends only on cP, CP and is independent of the discrete subspace
X• ⊂ H. For details on optimal preconditioners for finite and boundary elements we refer
to [FFPS17a, FFPS17b, WC06, XCH10]. To solve the preconditioned system (8.18), we
use the PCG algorithm proposed in [GVL13, Algorithm 11.5.1].
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To that end, let wn,0• ∈ X• be an initial guess with corresponding coefficient vector
xn,0 ∈ RN and representation wn,0• =

∑N
j=0 x

n,0
j ξj•. For all k = 1, . . . , N , let xn,k ∈ RN

denote the approximate solution of (8.18) and S• x = bn• after k iterations of the PCG
algorithm. This gives rise to approximate discrete solutions

wn,k• ∈ X• and wn,k• :=

N∑

j=1

xn,kj ξj•.

Recall, that wn,⋆• denote the exact solution of the linear system (8.14). The next lemma
summarizes some important properties of the PCG iteration; see [GVL13, Theorem 11.3.3].

Lemma 8.5. Let wn,0• be given. For all k = 1, . . . , N , the approximate solution wn,k• ∈ X•

in the k-th step of the PCG algorithm satisfies

∥∥wn,⋆• − wn,k•

∥∥
H
≤ qpcg

∥∥wn,⋆• − wn,k−1
•

∥∥
H
, with qpcg :=

(
1− C−1

PCG

)1/2
< 1 (8.20)

as well as

∥∥wn,⋆• − wn,k•

∥∥
H
≤ 2κkpcg

∥∥wn,⋆• − wn,0•

∥∥
H
, with κpcg :=

(√
CPCG − 1√
CPCG + 1

)
< 1, (8.21)

where wn,⋆• ∈ X• denotes the exact solution of the linear system (8.14). In particular, given
any tolerance ε > 0, there exists a constant CCG ∈ N such that

∥∥wn,⋆• − wn,k•

∥∥
H
≤ ε

∥∥wn,⋆• − wn,0•

∥∥
H

for all CCG ≤ k ≤ N.

The constant CCG is independent of the discrete space X• and depends only on cP, CP as
well as ε.

We approximate one step of the discrete Picard iteration as follows. Given an initial
guess un−1,◦

• ≈ un−1,⋆
• and wn,0• := 0, let wn,k• be the solution after the k-th step of the PCG

iteration to (8.14). Then, wn,k• gives rise to an approximation un,k• ≈ un,⋆• where

un,⋆• := Φ•(u
n−1,◦
• ) = un−1,◦

• − α

L2
wn,⋆• and un,k• := un−1,◦

• − α

L2
wn,k• , (8.22)

for all k ≥ 0. Note that, (8.22) with wn,0• = 0 leads to nested iteration un,0• = un−1,◦
• .

Further, we emphasize the preconditioner P• ∈ RN×N has only to be computed once for
each adaptive step and is independent of the Picard iteration.

The contraction property for the PCG iterations wn,k• in Lemma 8.5 directly transfers to
approximations un,k• and gives the following corollary.

Corollary 8.6. Given an initial guess un−1,◦
• , the approximative solutions un,k• ∈ X• defined

in (8.22) satisfy

‖un,⋆• − un,k• ‖H ≤ qpcg
1− qpcg

‖un,k• − un,k−1
• ‖H, (8.23)

as well as

‖un,⋆• − un,k• ‖H ≤ min
{
qpcg ‖un,⋆• − un,k−1

• ‖H , 2κkpcg ‖un,⋆• − un,0• ‖H
}
. (8.24)
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Proof. Recall the definition of un,⋆• := Φ•(u
n,◦
• ) = un,◦• − α

L2w
n,⋆
• . For all k ≥ 1, Lemma 8.5

implies that

‖un,⋆• − un,k• ‖H
(8.22)
=

∥∥un,◦• − α

L2
wn,⋆• − un,◦• +

α

L2
wn,k•

∥∥
H

=
α

L2
‖wn,⋆• − wn,k• ‖H

(8.20)

≤ qpcg
α

L2
‖wn,⋆• − wn,k−1

• ‖H
(8.22)
= qpcg ‖un,⋆• − un,k−1

• ‖H
≤ qpcg ‖un,⋆• − un,k• ‖H + qpcg ‖un,k• − un,k−1

• ‖H.

This directly gives (8.23) and the first estimate in (8.24). Analogous argumentation
with (8.21) yields that

‖un,⋆• − un,k• ‖H =
α

L2
‖wn,⋆• − wn,k• ‖H ≤ 2κkpcg

α

L2
‖wn,⋆• − wn,0• ‖H = 2κkpcg ‖un,⋆• − un,0• ‖H.

This concludes the proof.

8.4 A posteriori error estimator

Suppose that for each T ∈ T• ∈ T and each discrete function v• ∈ X•, one can compute an
associated error estimator η•(T, v•) ≥ 0. To abbreviate notation, we define

η•(v•) := η•(T•, v•), where

η•(U•, v•) :=
( ∑

T∈U•

η•(T, v•)
2
)1/2

for all U• ⊆ T•. (8.25)

We emphasize, that in contrast to the error estimator for indefinite problems in Chapter 4
(see e.g, (4.13)), the estimator (8.25) is defined for arbitrary discrete functions v• ∈ X•.

8.5 Adaptive algorithm

We analyze the following adaptive algorithm which is based on the works [CW17] and
[GHPS17]. In contrast to [CW17], where the algorithm is considered with a different
a posteriori error estimation based on elliptic reconstruction, the following algorithm works
for general error estimators satisfying the estimator axioms in Section 8.6. Algorithm 8.7
also considers an iterative PCG-solver to compute the discrete Picard iteration and hence
expands the adaptive scheme in [GHPS17].

Algorithm 8.7. Input: Initial triangulation T0, parameters 0 < θ ≤ 1, λPCG, λPic > 0,
Cmark ≥ 1, counters ℓ = 0 as well as n = k = 1 and arbitrary initial guess, e.g. u1,00 := 0.

Adaptive loop: Iterate the following Steps (i)–(v).
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8 Abstract theory on strongly monotone nonlinear operators

(i) Compute iterative solution un,kℓ as in (8.22) via one step of the PCG algorithm.

(ii) Compute the error estimators ηℓ(T, u
n,k
ℓ ) for all T ∈ Tℓ.

(iii) If ‖un,kℓ − un,k−1
ℓ ‖H > λPCG ηℓ(u

n,k
ℓ ):

(iii.a) Update (ℓ, n, k) → (ℓ, n, k + 1) and go to (i).

(iv) Elseif ‖un,kℓ − un,0ℓ ‖H > λPic ηℓ(u
n,k
ℓ ):

(iv.a) Define un+1,0
ℓ := un,kℓ .

(iv.b) Update (ℓ, n, k) → (ℓ, n+ 1, 1) and go to (i).

(v) Else

(v.a) Determine a set Mℓ ⊆ Tℓ of marked elements which has minimal cardinality
up to the multiplicative constant Cmark and which satisfies the Dörfler marking
criterion

θ ηℓ(u
n,k
ℓ ) ≤ ηℓ(Mℓ, u

n,k
ℓ ).

(v.b) Generate the new triangulation Tℓ+1 := refine(Tℓ,Mℓ) by refinement of (at least)
all marked elements T ∈ Mℓ.

(v.c) Define u1,0ℓ+1 := un,kℓ ∈ Xℓ ⊆ Xℓ+1.

(v.d) Update (ℓ, n, k) → (ℓ+ 1, 1, 1) and go to (i).

Output: Sequence of discrete solutions un,kℓ and corresponding error estimators ηℓ(u
n,k
ℓ ).

Remark 8.8. Recall that u⋆• ∈ X• denote the exact solution of (8.5) and un,⋆• ∈ X• denotes
the exact solution of one discrete Picard iteration; see (8.22). The PCG algorithm computes

the exact solution wn,⋆ℓ to (8.14) in at most dim(Xℓ) steps. This directly implies un,k+1
ℓ =

un,kℓ = un,⋆ℓ for all k ≥ dim(Xℓ). Hence, after at most dim(Xℓ) + 1 steps it holds that

‖un,kℓ − un,k−1
ℓ ‖H ≤ λPCG ηℓ(u

n,k
ℓ ), (8.26)

and Step (iv) in Algorithm 8.7 is executed.

To abbreviate notation, we make the following notational convention. We emphasize
that in an actual finite element implementation of Algorithm 8.7 the triple index (ℓ, n, k)
will be replaced by one single index j which will be increased in Step (iii.a), Step (iv.b)
and Step (v.d). However, the above statement of Algorithm 8.7 is more intuitive and leads
to an easier access for the analysis.

Definition 8.9. Let I :=
{
(ℓ, n, k) : un,kℓ is defined by Algorithm 8.7

}
be the set off all

triple indices. Then, we make the following definitions:

1. k(ℓ, n) := max
{
k ∈ N : (ℓ, n, k) ∈ I

}
, i.e, k(ℓ, n) is the smallest index such that the

PCG approximation u
n,k
ℓ ≈ un,⋆ℓ is sufficiently accurate.
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2. n(ℓ) := max
{
n ∈ N0 : (ℓ, n, 0) ∈ I

}
, i.e, n(ℓ) is the smallest index such that Picard

iterate u
n,k
ℓ ≈ u⋆ℓ is sufficiently accurate.

To shorten the notation and if it is clear from the context, we omit the dependencies and
write k := k(ℓ, n) and n := n(ℓ).

Remark 8.10. With the definition of n and k, there holds un+1,0
ℓ := u

n,k
ℓ and u1,0ℓ+1 := u

n,k
ℓ

in Algorithm 8.7. Then, Step (iv) reads for all n ≥ 2 as

Elseif ‖un,kℓ − u
n−1,k
ℓ ‖H > λPic ηℓ(u

n,k
ℓ ).

Further, by definition of un,kℓ = u
n−1,k
ℓ − α

L2w
n,k
ℓ , we obtain that

‖un,kℓ − un,k−1
ℓ ‖H =

α

L2
‖wn,kℓ − wn,k−1

ℓ ‖H.

Hence with λ′PCG = L2/α λPCG, Step (iii) can be equivalently written as

If ‖wn,kℓ − wn,k−1
ℓ ‖H > λ′PCG ηℓ(u

n,k
ℓ ).

8.6 Axioms of adaptivity

Since the error estimator η•(T, v•) is defined for arbitrary functions v• ∈ X•, the following
axioms (E1)–(E4) are a slight generalization of Chapter 4 resp. [CFPP14]. We suppose that
the estimator satisfies the properties (E1)–(E4) with fixed constants Cstb ≥ 1, Cred ≥ 1,
C⋆rel ≥ 1, C⋆drel ≥ 1 and 0 < qred < 1.

E1) stability on non-refined element domains: For all triangulations T• ∈ T and
T◦ ∈ refine(T•), arbitrary discrete functions v• ∈ X• and v◦ ∈ X◦, and an arbitrary
set U ⊆ T• ∩ T◦ of non-refined elements, it holds that

|η◦(U , v◦)− η•(U , v•)| ≤ Cstb ‖v• − v◦‖H.

E2) reduction on refined element domains: For all triangulations T• ∈ T and T◦ ∈
refine(T•), and arbitrary v• ∈ X• and v◦ ∈ X◦, it holds that

η◦(T◦\T•, v◦)2 ≤ qred η•(T•\T◦, v•)2 + Cred ‖v◦ − v•‖2H.

E3) reliability: For all triangulations T• ∈ T, the error of the exact discrete solution
u⋆• ∈ X• to (8.5) is controlled by

‖u⋆ − u⋆•‖H ≤ C⋆rel η•(u
⋆
•).

E4) discrete reliability: For all T• ∈ T and all T◦ ∈ refine(T•), there exists a set
R•,◦ ⊆ T• with T•\T◦ ⊆ R•,◦ as well as #R•,◦ ≤ C⋆drel#(T•\T◦) such that the
difference of the exact discrete solutions u⋆• ∈ X• and u⋆◦ ∈ X◦ is controlled by

‖u⋆◦ − u⋆•‖H ≤ C⋆drel η•(R•,◦, u
⋆
•).
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For convenience of the reader, we used the same notation for (E1)–(E4) as for the axioms
in Chapter 4. But for the rest of this thesis, all references to axioms will use the latter
definition.

Remark 8.11. Suppose the following approximation property of u⋆ ∈ H: For all T• ∈ T
and all ε > 0, there exists a refinement T◦ ∈ refine(T•) such that ‖u⋆ − u⋆◦‖H ≤ ε. Then,
discrete reliability (E4) already implies reliability (E3), see (d) of Lemma 4.8 or [CFPP14,
Lemma 3.4].

We note that (E3)–(E4) are formulated for the non-computable exact Galerkin solution

u⋆• ∈ X• to (8.5), while Algorithm 8.7 generates approximations un,k• ≈ u⋆• ∈ X•. The
following lemma proves that reliability (E3) transfers to certain approximations.

Lemma 8.12. Suppose (A1)–(A2) for the operator A as well as stability (E1) and reli-
ability (E3) for the a posteriori error estimator. Let λPCG, λPic > 0. Then, there exists
Crel > 0 such that for all (ℓ, n, k) ∈ I, it holds that

∥∥u⋆ − un,k•

∥∥
H
≤ Crel η•(u

n,k
• ). (8.27)

The constant Crel depends only on C⋆rel, qpic, qpcg, as well as λPCG, λPic.

Proof. Recall that the approximation u
n,k
ℓ generated by Algorithm 8.7 satisfies

∥∥un,k• − un,k−1
•

∥∥
H
≤ λPCG η•(u

n,k
• ) and

∥∥un,k• − un,0•

∥∥
H
≤ λPic η•(u

n,k
• ). (8.28)

The triangle inequality implies that

‖u⋆• − un,k• ‖H ≤ ‖u⋆• − un,⋆• ‖H + ‖un,⋆• − un,k• ‖H. (8.29)

Using the definition un,⋆• = Φ(un,0• ) = Φ(u
n−1,k
• ), we estimate the first term on the right

hand side of (8.29) by

‖u⋆• − un,⋆• ‖H = ‖Φ(u⋆•)− Φ(un,0• )‖H ≤ qpic ‖u⋆• − un,0• ‖H
≤ qpic ‖u⋆• − un,⋆• ‖H + qpic ‖un,⋆• − un,0• ‖H.

Rearranging the terms gives

‖u⋆• − un,⋆• ‖H ≤ qpic
1− qpic

‖un,⋆• − un,0• ‖H

≤ qpic
1− qpic

(
‖un,⋆• − un,k• ‖H + ‖un,k• − un,0• ‖H

)
.

The latter estimate in combination with (8.29) gives

‖u⋆• − un,k• ‖H ≤ qpic
1− qpic

‖un,k• − un,0• ‖H +
(
1 +

qpic
1− qpic

)
‖un,⋆• − un,k• ‖H. (8.30)

We treat each term in (8.30) separately. Then, (8.28) implies for the first term that

‖un,k• − un,0• ‖H ≤ λPic η•(u
n,k
• ).
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The last term in the right hand side of (8.30), we see that

‖un,⋆• − un,k• ‖H
(8.23)

≤ qpcg
1− qpcg

‖un,k• − un,k−1
• ‖H

(8.28)

≤ λPCG
qpcg

1− qpcg
η•(u

n,k
• ).

Combining the latter estimates, we obtain that

‖u⋆• − un,k• ‖H ≤
( qpic
1− qpic

λPic +
(
1 +

qpic
1− qpic

)
λPCG

qpcg
1− qpcg

)
η•(u

n,k
• ). (8.31)

With reliability (E3) and stability (E1), we estimate that

‖u⋆ − un,k• ‖H ≤ ‖u⋆ − u⋆•‖H + ‖u⋆• − un,k• ‖H
(E3)

≤ C⋆rel η•(u
⋆
•) + ‖u⋆• − un,k• ‖H

(E1)

≤ C⋆rel η•(u
n,k
• ) + (1 + C⋆relCstb) ‖u⋆• − un,k• ‖H

(8.31)

. η•(u
n,k
• ).

This concludes the proof.

8.7 Convergence

8.7.1 Lucky breakdown

The following two results analyze the possible (lucky) breakdown of Algorithm 8.7. The
first proposition shows that, if max

{
ℓ′ ∈ N0 : (ℓ′, 1, 0) ∈ I

}
< ∞, i.e., there exists an

index ℓ ∈ N such that Algorithm 8.7 does not reach Step (v) in the ℓ-th adaptive step, then
the exact solution u⋆ = u⋆ℓ belongs to the discrete space Xℓ.

Proposition 8.13. Suppose (A1)–(A2) for the nonlinear operator A as well as stabil-
ity (E1) and reliability (E3) for the a posteriori error estimator. Let λPic > 0 and assume

that Step (v) in Algorithm 8.7 is never reached for some ℓ ∈ N0, i.e., ‖un,kℓ − un,0ℓ ‖H >

λPic ηℓ(u
n,k
ℓ ) for all n ∈ N. Further, suppose that λPCG is sufficiently small (in particular,

with respect to λPic) such that

q1 := λPCG
qpcg

1− qpcg
λ−1
Pic < 1 and qlucky :=

(q1 + qpcg)

(1− q1)
< 1. (8.32)

Then, it holds that limn→∞ un,⋆ℓ = u⋆ = u⋆ℓ ∈ Xℓ and

ηℓ(u
n,k
ℓ ) ≤ qn−1

lucky ‖u
1,k
ℓ − u1,0ℓ ‖H n→∞−−−→ 0 = ηℓ(u

⋆). (8.33)

Proof. We prove the assertion in two steps. First note, that Step (iii) of Algorithm 8.7
implies that, for (ℓ, n, k) ∈ I,

‖un,⋆ℓ − u
n,k
ℓ ‖H

(8.23)

≤ qpcg
1− qpcg

‖un,kℓ − u
n,k−1
ℓ ‖H ≤ qpcg

1− qpcg
λPCG ηℓ(u

n,k
ℓ ). (8.34)
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Step 1: Proof of ηℓ(u
n,k

ℓ ) ≤ q
n−1
lucky ‖u

1,k

ℓ − u
1,0
ℓ ‖H. Let n ≥ 2. The definition of

un,0ℓ := u
n−1,k
ℓ , the triangle inequality, and Step (iv) of Algorithm 8.7, (i.e., ‖un,kℓ −un,0ℓ ‖H >

λPic ηℓ(u
n,k
ℓ )), yield that

‖un,kℓ − un,0ℓ ‖H ≤ ‖un,⋆ℓ − u
n,k
ℓ ‖H + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H + ‖un−1,⋆
ℓ − u

n−1,k
ℓ ‖H

(8.34)

≤ λPCG
qpcg

1− qpcg
ηℓ(u

n,k
ℓ ) + λPCG

qpcg
1− qpcg

ηℓ(u
n−1,k
ℓ ) + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H
(iv)
< λPCG

qpcg
1− qpcg

λ−1
Pic‖u

n,k
ℓ − un,0ℓ ‖H + λPCG

qpcg
1− qpcg

ηℓ(u
n−1,k
ℓ ) + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H.

For sufficiently small λPCG such that λPCG
qpcg

1−qpcg
λ−1
Pic ≤ q1 < 1, we obtain that

(1− q1)‖un,kℓ − un,0ℓ ‖H ≤ λPCG
qpcg

1− qpcg
ηℓ(u

n−1,k
ℓ ) + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H.

Recall the definition of un,⋆ℓ := Φ(un,0ℓ ) = Φ(u
n−1,k
ℓ ). We estimate the last term on the right

hand side by

‖un,⋆ℓ − un−1,⋆
ℓ ‖H = ‖Φ(un−1,k

ℓ )− Φ(un−1,0
ℓ )‖H ≤ qpic ‖un−1,k

ℓ − un−1,0
ℓ ‖H.

Step (iv) of Algorithm 8.7 implies that ηℓ(u
n−1,k
ℓ ) < λ−1

Pic ‖u
n−1,k
ℓ − un−1,0

ℓ ‖H. With (8.32),
the latter estimate yields that

(1− q1)‖un,kℓ − un,0ℓ ‖H ≤ λPCG
qpcg

1− qpcg
η(u

n−1,k
ℓ ) + qpic‖un−1,k

ℓ − un−1,0
ℓ ‖H

≤ (q1 + qpcg) ‖un−1,k
ℓ − un−1,0

ℓ ‖H.
(8.35)

Rearranging the terms, we obtain that

‖un,kℓ − un,0ℓ ‖H ≤ (q1 + qpcg)

(1− q1)
‖un−1,k

ℓ − un−1,0
ℓ ‖H. (8.36)

By assumption (8.32), there holds that qlucky = (q1+q)
(1−q1)

< 1. Recall that u1,⋆ℓ = Φ(u1,0ℓ ) =

Φ(u
n,k
ℓ−1). Now, for any n ≥ 2, inductive application of (8.36) finally reveals that

‖un,kℓ − un,0ℓ ‖H ≤ qn−1
lucky ‖u

1,k
ℓ − u1,0ℓ ‖H. (8.37)

With Step (iv) of Algorithm 8.7, this implies that

η(u
n,k
ℓ )

(iv)
< λ−1

Pic‖u
n,k
ℓ − un,0ℓ ‖H ≤ qn−1

lucky ‖u
1,k
ℓ − u1,0ℓ ‖H → 0 as n→ ∞. (8.38)

Step 2: Proof of u
n,⋆
ℓ → u⋆

ℓ = u⋆ ∈ Xℓ. Note that u⋆ℓ is a fixpoint of Φ(·). By
definition of un,⋆ℓ , we obtain that

‖u⋆ℓ − un,⋆ℓ ‖H = ‖Φ(u⋆ℓ )− Φ(u
n−1,k
ℓ )‖H ≤ qpic‖u⋆ℓ − u

n−1,k
ℓ ‖H

≤ qpic‖u⋆ℓ − un−1,⋆
ℓ ‖H + qpic‖un−1,⋆

ℓ − u
n−1,k
ℓ ‖H.
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With (8.34), this implies that

‖u⋆ℓ − un,⋆ℓ ‖H
(8.34)

≤ qpic ‖u⋆ℓ − un−1,⋆
ℓ ‖H + qpic

qpcg
1− qpcg

λPCG η(u
n,k
ℓ ).

The sequence ‖u⋆ℓ −u
n,⋆
ℓ ‖H is contractive up to a non-negative perturbation which tends to

zero. Basic calculus (e.g., [AFLP12, Lemma 2.3]) proves that ‖u⋆ℓ −u
n,⋆
ℓ ‖H → 0 as n→ ∞.

The triangle inequality and Step 1 further imply that

‖u⋆ℓ − u
n,k
ℓ ‖H ≤ ‖u⋆ℓ − un,⋆ℓ ‖H + ‖un,⋆ℓ − u

n,k
ℓ ‖H

(8.34)

≤ ‖u⋆ℓ − un,⋆ℓ ‖H +
qpcg

1− qpcg
λPCG ηℓ(u

n,k
ℓ )

n→∞−−−→ 0.
(8.39)

It remains to show that u⋆ℓ = u⋆. According to (E1), ηℓ(vℓ) depends Lipschitz continuously
on vℓ ∈ Xℓ. Reliability (E3) and stability (E1) imply that

‖u⋆ − u⋆ℓ‖H
(E3)

. ηℓ(u
⋆
ℓ )

(8.39)

≤ lim
n→∞

ηℓ(u
n,k
ℓ )

Step 1
= 0. (8.40)

This concludes that u⋆ = u⋆ℓ ∈ Xℓ and ηℓ(u⋆) = ηℓ(u
⋆
ℓ) = 0.

The second proposition shows that, if max
{
ℓ′ ∈ N0 : (ℓ′, 1, 0) ∈ I

}
= ∞ and additionally

ηℓ(u
n,k
ℓ ) = 0 for some ℓ in Step (v) of Algorithm 8.7, then it holds that u

n,k
ℓ = u⋆ as well

as ηj(u
n,k
j ) = 0 and u

n,k
j = u1,0j = u⋆ for all j > ℓ.

Proposition 8.14. Suppose (A1)–(A2) for the nonlinear operator A as well as stabil-
ity (E1) and reliability (E3) for the error estimator. Suppose that max

{
ℓ′ ∈ N0 : (ℓ′, 1, 0) ∈

I
}
= ∞ and that ηℓ(u

n,k
ℓ ) = 0 for some (ℓ, n, k) ∈ I (or equivalently Mℓ = ∅ in Step (v.a)

for some ℓ ∈ N0). Then, u
n,k
j = u1,0j = u⋆ as well as Mj = ∅ for all j ≥ ℓ.

Proof. Clearly, Mℓ = ∅ implies that ηℓ(u
n,k
ℓ ) = 0. Conversely, ηℓ(u

n,k
ℓ ) = 0 also implies

Mℓ = ∅. In this case, Lemma 8.12 yields that ‖u⋆ − u
n,k
ℓ ‖H . ηℓ(u

n,k
ℓ ) = 0 and hence,

u
n,k
ℓ = u⋆. Moreover, Mℓ = ∅ implies that Tℓ+1 = Tℓ. Nested iteration guarantees that

u1,0ℓ+1 = u
n,k
ℓ = u⋆ and hence concludes the proof.

8.7.2 Estimator convergence

In this section, we show that, if max{ℓ′ : (ℓ′, 1, 0) ∈ I} = ∞, i.e., Step (v) of Algorithm 8.7

is executed for every ℓ ∈ N, then Algorithm 8.7 yields convergence ηℓ(u
n,k
ℓ ) → 0 as ℓ→ ∞.

We first show that the iterates un,k• of Algorithm 8.7 are close to the non-computable
exact Galerkin approximation u⋆• ∈ X• to (8.5). Then, the corresponding error estimators
are equivalent.

Lemma 8.15. Suppose (A1)–(A2) for the nonlinear operator A and stability (E1) for the
a posteriori error estimator. There exists a constant Cλ > 0 given by

Cλ :=
(
λPic

qpic
1− qpic

+ λPCG

(
1 +

qpic
1− qpic

) qpcg
1− qpcg

)
, (8.41)
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such that for all sufficiently small λPic, λPCG < 1 with Cλ Cstb < 1, it holds that

‖u⋆• − un,k• ‖H ≤ Cλ η•(u
n,k
• ), (8.42)

‖u⋆• − un,k• ‖H ≤ Cλ
1− CλCstb

η(u⋆•). (8.43)

Moreover, there holds equivalence

(1− CλCstb) η•(u
n,k
• ) ≤ ηℓ(u

⋆
•) ≤ (1 + CλCstb) η•(u

n,k
• ). (8.44)

Proof. For convenience of the reader, we split the proof into two steps.
Step 1: Proof of (8.42). The proof is similar to the proof of Lemma 8.12. Recall

that the approximation u
n,k
ℓ generated by Algorithm 8.7 satisfies that

∥∥un,k• − un,k−1
•

∥∥
H
≤ λPCG η•(u

n,k
• ) and

∥∥un,k• − un,0•

∥∥
H
≤ λPic η•(u

n,k
• ). (8.45)

The triangle inequality implies that

‖u⋆• − un,k• ‖H ≤ ‖u⋆• − un,⋆• ‖H + ‖un,⋆• − un,k• ‖H. (8.46)

Using the definition un,⋆ℓ = Φ(un,0ℓ ) = Φ(u
n−1,k
ℓ ), we estimate the first term on the right-

hand side of (8.46) by

‖u⋆• − un,⋆• ‖H = ‖Φ(u⋆•)− Φ(un,0• )‖H ≤ qpic ‖u⋆• − un,0• ‖H
≤ qpic ‖u⋆• − un,⋆• ‖H + qpic ‖un,⋆• − un,0• ‖H.

Rearranging the terms, we see that

‖u⋆• − un,⋆• ‖H ≤ qpic
1− qpic

‖un,⋆• − un,0• ‖H

≤ qpic
1− qpic

(
‖un,⋆• − un,k• ‖H + ‖un,k• − un,0• ‖H

)
.

The latter estimate in combination with (8.46) gives

‖u⋆• − un,k• ‖H ≤ qpic
1− qpic

‖un,k• − un,0• ‖H +
(
1 +

qpic
1− qpic

)
‖un,⋆• − un,k• ‖H. (8.47)

We treat each term in (8.47) separately. For the first term, (8.28) implies that

‖un,k• − un,0• ‖H ≤ λPic η•(u
n,k
• ).

The last term in the right hand side of (8.47) is estimated by

‖un,⋆• − un,k• ‖H
(8.23)

≤ qpcg
1− qpcg

‖un,k• − un,k−1
• ‖H

(8.45)

≤ λPCG
qpcg

1− qpcg
η•(u

n,k
• ).

Combining the latter estimates, we conclude (8.42).
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Step 2: Proof of (8.43) and (8.44). Choose λPCG, λPic sufficiently small such that
CλCstb < 1. This implies that

η(un,k• ) ≤ η(u⋆•) + Cstb‖u⋆• − un,k• ‖H
(8.42)

≤ η(u⋆•) +CλCstb η(u
n,k
• )

and hence

(1− CλCstb) η(u
n,k
• ) ≤ η(u⋆•). (8.48)

This concludes the first estimate in (8.44). Combining (8.48) and (8.42), we see that

‖u⋆• − un,k• ‖H ≤ Cλ η(u
n,k
• ) ≤ Cλ

1− CλCstb
η(u⋆•).

This proves (8.43). With (8.42), we see that

η•(u
⋆
•)

(E1)

≤ η•(u
n,k
• ) + Cstb‖u⋆• − un,k• ‖H

(8.42)

≤ (1 + CλCstb) η•(u
n,k
• ).

This verifies (8.44) and concludes the proof.

The following proposition gives a first convergence result for Algorithm 8.7. Unlike the
stronger convergence result of linear convergence in Theorem 8.20, plain convergence only
relies on (A1)–(A2), but avoids the use of (A3).

Proposition 8.16. Suppose (A1)–(A2) for the nonlinear operator A and (E1)–(E2) for
the error estimator. Let 0 < θ ≤ 1 and let Cλ be the constant from Lemma 8.15. Choose
λPCG, λPic sufficiently small such that 0 < CλCstb < θ ≤ 1. Then, there exist constants
0 < qest < 1 and Cest > 0 which depend only on (E1)–(E2) as well as Cλ, λPCG, λPic, and
θ, such that the following implication holds: If max{ℓ′ : (ℓ′, 1, 0) ∈ I} = ∞, then

ηℓ+1(u
⋆
ℓ+1)

2 ≤ qest ηℓ(u
⋆
ℓ)

2 + Cest ‖u⋆ℓ+1 − u⋆ℓ‖2H for all ℓ ∈ N0, (8.49)

where u⋆• ∈ X• in the (non-computable) Galerkin solution to (8.5). Moreover, there holds

estimator convergence ηℓ(u
n,k
ℓ ) → 0 as ℓ→ ∞.

Proof. We prove the assertion in three steps.
Step 1: Proof of (8.49). Arguing as in the proof of Lemma 8.15, stability (E1)

proves that

ηℓ(Mℓ, u
n,k
ℓ )

(E1)

≤ ηℓ(Mℓ, u
⋆
ℓ ) + Cstb ‖u⋆ℓ − u

n,k
ℓ ‖H

(8.42)

≤ ηℓ(Mℓ, u
⋆
ℓ ) + CλCstb ηℓ(u

n,k
ℓ ).

Together with the Dörfler marking strategy in Step (v.a) of Algorithm 8.7, this proves that

θ′ ηℓ(u
⋆
ℓ ) :=

θ − CλCstb

1 + CλCstb
ηℓ(u

⋆
ℓ )

(8.44)

≤ (θ − CλCstb) ηℓ(u
n,k
ℓ )

(v.a)

≤ ηℓ(Mℓ, u
n,k
ℓ )− CλCstb ηℓ(u

n,k
ℓ ) ≤ ηℓ(Mℓ, u

⋆
ℓ ).
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Note that 0 < CλCstb < θ ≤ 1 implies that θ′ > 0. Hence, the letter estimate shows
the Dörfler marking for u⋆ℓ with parameter 0 < θ′ < θ. Therefore, [CFPP14, Lemma 4.7]
proves (8.49).

Step 2: Next, we adopt an argument from [BV84, MSV08] to prove a priori convergence
of the sequence (u⋆ℓ )ℓ∈N0 : Since the discrete subspaces are nested, X∞ :=

⋃∞
ℓ=0 Xℓ is a closed

subspace of H and hence a Hilbert space. Arguing as above (for the continuous and discrete
problem), there exists a unique solution u⋆∞ ∈ X∞ of

〈Au⋆∞ , v∞〉 = 〈F , v∞〉 for all v∞ ∈ X∞.

Note that Xℓ ⊆ X∞ implies that u⋆ℓ is a Galerkin approximation to u⋆∞. Hence, the Céa
lemma (Lemma 8.2) is valid with u⋆ ∈ H replaced by u⋆∞ ∈ X∞. Together with the
definition of X∞, this proves that

‖u⋆∞ − u⋆ℓ‖H ≤ L

α
min
wℓ∈Xℓ

‖u⋆∞ − wℓ‖H ℓ→∞−−−→ 0.

In particular, we infer that ‖u⋆ℓ+1 − u⋆ℓ‖2H → 0 as ℓ→ ∞.

Step 3: According to (8.49) and Step 2, the sequence
(
ηℓ(u

⋆
ℓ )
)
ℓ∈N0

is contractive up to a

non-negative perturbation which tends to zero. Basic calculus (e.g., [AFLP12, Lemma 2.3])
proves that ηℓ(u

⋆
ℓ ) → 0 as ℓ → ∞. Lemma 8.15 guarantees the equivalence ηℓ(u

⋆
ℓ ) ≃

ηℓ(u
n,k
ℓ ). This concludes the proof.

Note that, λPCG, λPic in Lemma 8.15 and Proposition 8.16 can be chosen independently
of each other. To see this, we pick λPCG, λPic > 0 sufficiently small such that

λPic < θ
1− qpic
2Cstb qpic

and λPCG < θ
(1− qpcg) (1 − qpic)

2Cstb qpcg
. (8.50)

In combination with (8.41), this implies that Cλ Cstb < θ ≤ 1.

Remark 8.17. As in Proposition 8.16, the linear convergence result of Theorem 8.20 below
allows arbitrary 0 < θ ≤ 1, but requires sufficiently small parameters λPCG, λPic ≪ 1 such
that 0 < CλCstb < θ with Cλ > 0 being the constant from Lemma 8.15. In many situations,
the weaker constraint 0 < CλCstb < 1 which avoids any coupling of θ to λPCG, λPic, appears
to be sufficient to guarantee plain convergence. To see this, note that usually the error
estimator is equivalent to error plus data oscillations

ηℓ(u
⋆
ℓ ) ≃ ‖u⋆ − u⋆ℓ‖H + oscℓ(u

⋆
ℓ ).

If the “discrete limit space” X∞ :=
⋃∞
ℓ=0Xℓ satisfies X∞ = H, possible smoothness of A

guarantees ‖u⋆ − u⋆ℓ‖H +oscℓ(u
⋆
ℓ ) → 0 as ℓ→ ∞; see e.g., Section 4.5.1 or the argumenta-

tion in [EP16, Proof of Theorem 3]. Moreover, X∞ = H follows either implicitly if u⋆ is
“nowhere discrete”, or can explicitly be ensured by the marking strategy without deteriorat-
ing optimal convergence rates; see Section 4.5.1 or Section 5.2.1. Since 0 < CλCstb < 1,
Lemma 8.15 guarantees estimator equivalence ηℓ(u

n,k
ℓ ) ≃ ηℓ(u

⋆
ℓ ). Overall, such a situation

leads to ηℓ(u
n,k
ℓ ) → 0 as ℓ→ ∞.
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8.8 Linear convergence

Suppose that A additionally satisfies (A3). For v ∈ H, we define the energy functional E
by

E : H → R with E(v) := Re (P − F )v,

where P (·) denotes the potential associated with A from (8.4) and F ∈ H∗ is the right-hand
side of (8.3). The next lemma generalizes [DK08, Lemma 16] and [GMZ12, Theorem 4.1]
and states equivalence of the energy difference and the difference in norm.

Lemma 8.18. Suppose (A1)–(A3). Let X• be a closed subspace of H (which also allows
X• = H). If u⋆• ∈ X• denotes the corresponding Galerkin approximation (8.2), it holds that

α

2
‖v• − u⋆•‖2H ≤ E(v•)− E(u⋆•) ≤

L

2
‖v• − u⋆•‖2H for all v• ∈ X•. (8.51)

Proof. Since H is also a Hilbert space over R, we interpret E as an R-functional. Since F
is linear with Gâteaux derivative 〈dF (v) , w〉 = 〈F , w〉 for all v,w ∈ H, the energy E is
also Gâteaux differentiable with

〈dE(v) , w〉 = Re〈dP (v)− F , w〉 = Re〈Av − F , w〉.

Define ψ(t) := E(u⋆• + t(v• − u•)) for t ∈ [0, 1]. We first prove that ψ is differentiable. For
t ∈ [0, 1], it holds that

ψ′(t) = lim
r→0
r∈R

E
(
u⋆• + t(v• − u⋆•) + r(v• − u⋆•)

)
− E

(
u⋆• + t(v• − u⋆•)

)

r

= 〈dE
(
u⋆• + t(v• − u⋆•)

)
, v• − u⋆•〉

= Re 〈A
(
u⋆• + t(v• − u⋆•)

)
− F , v• − u⋆•〉.

(8.52)

Hence, ψ is differentiable. For s, t ∈ [0, 1], Lipschitz continuity (A2) of A proves that

|ψ′(s)− ψ′(t)| =
∣∣Re

〈
A
(
u⋆• + s(v• − u⋆•)

)
− A

(
u⋆• + t(v• − u⋆•)

)
, v• − u⋆•

〉∣∣

≤ L‖(s− t)(v• − u⋆•)‖H‖v• − u⋆•‖H = L‖v• − u⋆•‖2H|s − t|,

i.e., ψ′ is Lipschitz continuous with constant L‖v• − u⋆•‖2H. By Rademacher’s theorem, ψ′

is almost everywhere differentiable and there additionally holds |ψ′′| ≤ L‖v•−u⋆•‖2H almost
everywhere. Moreover, the fundamental theorem of calculus applies and integration by
parts yields that

E(v•)− E(u⋆•) = ψ(1) − ψ(0) = ψ′(0) +

∫ 1

0
ψ′′(t)(1 − t) dt .

Since X• ⊂ H is a closed subspace, there also holds dP • = A• with the restriction P• :=
P |X• . Hence, we may also define the restricted energy E• := E|X• . With (8.52) and
dE• u

⋆
• = A•u

⋆
• − F• = 0, we see that ψ′(0) = 0. Hence, we obtain that

E(v•)− E(u⋆•) =

∫ 1

0
ψ′′(t)(1− t) dt. (8.53)
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Since |ψ′′| ≤ L‖v•−u⋆•‖2H almost everywhere, we get the upper bound in (8.51). To see the
lower bound, we compute for almost every t ∈ [0, 1] that

ψ′′(t)
(8.52)
= lim

r→0
r∈R

1

r

(
Re
〈
A
(
u⋆• + (t+ r)(v• − u⋆•)

)
− F , v• − u⋆•

〉

− Re
〈
A
(
u⋆• + t(v• − u⋆•)

)
− F , v• − u⋆•

〉)

= lim
r→0
r∈R

1

r2
Re
〈
A
(
u⋆• + (t+ r)(v• − u⋆•)

)
− A

(
u⋆• + t(v• − u⋆•)

)
, r(v• − u⋆•)

〉

(A1)

≥ lim
r→0
r∈R

α

r2
‖r(v• − u⋆•)‖2H = α‖v• − u⋆•‖2H.

Together with (8.53), we conclude the proof.

Remark 8.19. Lemma 8.18 immediately implies that the Galerkin solution u⋆• ∈ X• to (8.5)
minimizes the energy E in X•, i.e., E(u⋆•) ≤ E(v•) for all v• ∈ X•. On the other hand,
if w• ∈ X• is a minimizer of the energy in X•, we deduce E(w•) = E(u⋆•). Lemma 8.18
thus implies w• = u⋆•. Therefore, solving the Galerkin formulation (8.5) is equivalent to
the minimization of the energy E in X•.

Next, we prove a contraction property as in [DK08, Theorem 20], [BDK12, Theorem 4.7],
and [GMZ12, Theorem 4.2] and, in particular, obtain linear convergence of Algorithm 8.7 in
the sense of [CFPP14]. The proof is similar to the proof of linear convergence for compactly
perturbed problems ( see Theorem 4.14 in Chapter 4).

Theorem 8.20. Suppose (A1)–(A3) for the nonlinear operator A and (E1)–(E3) for the
error estimator. Let Cλ be the constant from Lemma 8.15 and 0 ≤ θ ≤ 1. Let 0 <
λPCG, λPic ≤ 1 be sufficiently small such that 0 < CλCstb ≤ θ. Then, there exist constants
0 < qlin < 1 and ρ > 0 which depend only on (A1)–(A2) and (E1)–(E3) as well as on Cλ,
λPCG, λPic, and θ, such that the following implication holds: If max{ℓ′ : (ℓ′, 1, 0) ∈ I} = ∞,
then there holds contraction

∆ℓ+1 ≤ qlin∆ℓ for all ℓ ∈ N0, where ∆• := E(u⋆•)− E(u⋆) + ρ η•(u
⋆
•)

2. (8.54)

Moreover, there exists a constant Clin > 0 such that

ηℓ+j(u
n,k
ℓ+j)

2 ≤ Clin q
j
lin ηℓ(u

n,k
ℓ )2 for all j, ℓ ∈ N0. (8.55)

Proof. Recall that refinement of meshes Tℓ+1 ∈ refine(Tℓ) leads to nestedness of the corre-
sponding discrete spaces Xℓ ⊆ Xℓ+1 ⊂ H. Then, Lemma 8.18 proves that

α

2
‖u⋆j − u⋆ℓ‖2H ≤ E(u⋆j )− E(u⋆ℓ ) ≤

L

2
‖u⋆j − u⋆ℓ‖2H for all j, ℓ,∈ N0 with j ≤ ℓ. (8.56)

Verbatim argumentation yields that

α

2
‖u⋆ℓ − u⋆‖2H ≤ E(u⋆ℓ )− E(u⋆) ≤ L

2
‖u⋆ℓ − u⋆‖2H for all ℓ ∈ N0. (8.57)
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We set ρ := α/(2Cest). Together with (8.56), estimator reduction (8.49) gives

∆ℓ+1 = E(u⋆ℓ+1)− E(u⋆) + ρ ηℓ+1(u
⋆
ℓ+1)

2

(8.49)

≤
(
E(u⋆ℓ )−E(u⋆)

)
−
(
E(u⋆ℓ )− E(u⋆ℓ+1)

)
+ ρ

(
qestηℓ(u

⋆
ℓ )

2 + Cest‖u⋆ℓ − u⋆ℓ+1‖2H
)

(8.56)

≤ E(u⋆ℓ )− E(u⋆) + ρ qest ηℓ(u
⋆
ℓ )

2.

Let ε > 0. Combining this estimate with reliability (E3) and (8.57), we see that

∆ℓ+1 ≤ E(u⋆ℓ )− E(u⋆) + ρ (qest + ε) ηℓ(u
⋆
ℓ)

2 − ρ ε ηℓ(u
⋆
ℓ )

2

(E3)

≤ E(u⋆ℓ )− E(u⋆) + ρ (qest + ε) ηℓ(u
⋆
ℓ )

2 − ρ ε (C⋆rel)
−2 ‖u⋆ℓ − u⋆‖2H

(8.57)

≤ E(u⋆ℓ )− E(u⋆) + ρ (qest + ε) ηℓ(u
⋆
ℓ )

2 − ρ
2ε

L(C⋆rel)
2

(
E(u⋆ℓ )− E(u⋆)

)

= (1− ρ
2ε

L(C⋆rel)
2
)
(
E(u⋆ℓ )− E(u⋆)

)
+ ρ (qest + ε) ηℓ(u

⋆
ℓ )

2

≤ max
{
(1− ρ

2ε

L(C⋆rel)
2
), (qest + ε)

}
∆ℓ.

This proves (8.54) with

0 < qlin := inf
ε>0

max
{
(1− ρ

2ε

L(C⋆rel)
2
) , (qest + ε)

}
< 1

Moreover, induction on j proves that ∆ℓ+j ≤ qjlin∆ℓ for all j, ℓ ∈ N0. In combination with
(8.57) and reliability (E3), the estimator equivalence (8.44) of Lemma 8.15 proves that, for
all j, ℓ ∈ N0,

ηℓ+j(u
n,k
ℓ+j)

2 (8.44)≃ ηℓ+j(u
⋆
ℓ+j)

2 ≃ ∆ℓ+j ≤ qjlin∆ℓ ≃ qjlin ηℓ(u
⋆
ℓ )

2 (8.44)≃ qjlin ηℓ+j(u
n,k
ℓ+j)

2.

This concludes the proof.

8.9 Optimal convergence rates

8.9.1 Approximation class

Similar to Section 4.8.1, we define the following approximation class in the sense of [CFPP14].
For N ∈ N0, we define the set

TN :=
{
T• ∈ refine(T0) : #T• −#T0 ≤ N

}
, (8.58)

of all refinements of T0 which have at most N elements more than T0. For s > 0, we define
the approximation norm ‖ · ‖As by

‖u⋆‖As := sup
N∈N0

(
(N + 1)s min

T•∈TN
η•(u

⋆
•)
)
, (8.59)

where η•(u
⋆
•) is the error estimator corresponding to the optimal triangulation T• ∈ TN .

Note that ‖u⋆‖As < ∞ implies the existence of a (not necessarily nested) sequence of
triangulations, such that the error estimator η•(u

⋆
•) corresponding to the (non-computable)

Galerkin approximation u⋆• decays at least with algebraic rate s > 0.
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8.9.2 Main result

The following theorem is the main result of this section. It proves that Algorithm 8.7
does not only lead to linear convergence, but also guarantees the best possible algebraic
convergence rate for the error estimator ηℓ(u

n,k
ℓ ).

Theorem 8.21. Suppose (A1)–(A3) for the nonlinear operator A and (E1)–(E4) for the
error estimator. Let Cλ > 0 be the constant from Lemma 8.15. Suppose that 0 < θ ≤ 1,
λPCG and λPic are chosen sufficiently small, such that

0 < CλCstb < θ as well as θ′′ :=
θ + CλCstb

1− CλCstb
< θopt :=

1

1 + C2
stb(C

⋆
drel)

2
(8.60)

(which is satisfied, e.g., for 0 < θ < θopt and sufficiently small λPCG, λPic). Suppose that
max{ℓ′ : (ℓ′, n, 0) ∈ I} = ∞, i.e, both iterations (over n and k) terminate for all ℓ ∈ N0.
Then, for all s > 0, there holds the equivalence

‖u⋆‖As <∞ ⇐⇒ ∃Copt > 0∀ℓ ∈ N0 ηℓ(u
n,k
ℓ ) ≤ Copt

(
#Tℓ −#T0 + 1

)−s
. (8.61)

Moreover, there holds Copt = C ′
opt‖u⋆‖As , where C ′

opt > 0 depends only on T0, θ, Cλ, λPCG,
λPic, s, (E1)–(E4), (A1)–(A2), and on the refinement axioms (R1)–(R6).

The following comparison lemma is very similar to Lemma 4.23 and is found in [CFPP14].
For sake of completeness we include its formulation in the current setting. The proof is
verbatim to Lemma 4.23 where ℓ5 and θ are replaced by ℓ0 and θ′′.

Lemma 8.22. Suppose (E1), (E2), and (E4). Let 0 < θ′′ < θopt. Then, there exist
constants C1, C2 > 0, such that for all s > 0 with ‖u⋆‖As < ∞ and all ℓ ∈ N0, there exists
Rℓ ⊆ Tℓ which satisfies

#Rℓ ≤ C1

(
C2‖u⋆‖As

)1/s
ηℓ(u

⋆
ℓ )

−1/s, (8.62)

as well as the Dörfler marking criterion

θ′′ηℓ(u
⋆
ℓ ) ≤ ηℓ(Rℓ, u

⋆
ℓ ). (8.63)

The constants C1, C2 depend only on θ′′, s, and the constants in (E1), (E2), and (E4).

With Lemma 8.22 at hand, we can proof the main result of this section. The proof of
Theorem 8.21 is similar to that of Theorem 4.21 and follows ideas from [CFPP14, Theo-
rem 4.1].

Proof of Theorem 8.21. We prove the assertion in three steps.
Step 1: The implication “⇐=” follows by definition of the approximation class, the

equivalence ηℓ(u
⋆
ℓ ) ≃ ηℓ(uℓ) from Lemma 8.15, and the upper bound of (R3); see Step 1 of

the proof of Theorem 4.21 or [CFPP14, Proposition 4.15]). We thus focus on the converse,
more important implication “=⇒”.
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Step 2: Suppose ‖u⋆‖As < ∞. By Assumption (8.60), Lemma 8.22 provides a set
Rℓ ⊆ Tℓ with (8.62)–(8.63). Arguing as in the proof of Proposition 8.16, stability on non
refined elements (E1) proves that

ηℓ(Rℓ, u
⋆
ℓ )

(E1)

≤ ηℓ(Rℓ, u
n,k
ℓ ) + Cstb ‖u⋆ℓ − u

n,k
ℓ ‖H

(8.42)

≤ ηℓ(Rℓ, u
n,k
ℓ ) + CλCstb ηℓ(u

n,k
ℓ ),

where Cλ > 0 with CλCstb < 1 denotes the constant from Lemma 8.15. Together with
θ′′ηℓ(u

⋆
ℓ ) ≤ ηℓ(Rℓ, u

⋆
ℓ ), this proves that

(1− CλCstb)θ
′′ ηℓ(u

n,k
ℓ )

(8.44)

≤ θ′′ ηℓ(u
⋆
ℓ ) ≤ ηℓ(Rℓ, u

⋆
ℓ ) ≤ ηℓ(Rℓ, u

n,k
ℓ ) + CλCstb ηℓ(u

n,k
ℓ ).

Using the definition in θ′′ in (8.60), the latter estimate results in

θ ηℓ(u
n,k
ℓ )

(8.60)
=

(
(1− CλCstb)θ

′′ − CλCstb

)
ηℓ(u

n,k
ℓ ) ≤ ηℓ(Rℓ, u

n,k
ℓ ). (8.64)

Hence, Rℓ satisfies the Dörfler marking for the computed solution u
n,k
ℓ with parameter θ.

By minimality (up to constant Cmark > 0) of Mℓ in Step (v) of Algorithm 8.7, we thus
infer that, for all ℓ ∈ N0,

#Mℓ

(8.64)

≤ Cmark#Rℓ

(8.62)

≤ CmarkC1

(
C2 ‖u⋆‖As)1/sηℓ(u⋆ℓ )−1/s

(8.44)≃ ‖u⋆‖1/sAs ηℓ(u
n,k
ℓ )−1/s.

(8.65)

The mesh-closure estimate (R5) guarantees that

#Tℓ −#T0 + 1 .

ℓ−1∑

j=0

#Mj

(8.65)

. ‖u⋆‖1/sAs

ℓ−1∑

j=0

ηj(u
n,k
j )−1/s for all ℓ > 0. (8.66)

Step 3: Recall linear convergence of Theorem 8.20. This implies that

ηℓ(u
n,k
ℓ )2 ≤ Clin q

ℓ−i
lin ηi(u

n,k
i )2 for all 0 ≤ i ≤ ℓ.

In particular, this leads to

ηi(u
n,k
i )−1/s ≤ C

1/(2s)
lin q

(ℓ−i)/(2s)
lin ηℓ(u

n,k
ℓ )−1/s for all 0 ≤ i ≤ ℓ.

By use of the geometric series with 0 < q
1/(2s)
lin < 1, we obtain that

ℓ−1∑

j=0

ηj(u
n,k
j )−1/s ≤ C

1/(2s)
lin ηℓ(u

n,k
ℓ )−1/s

ℓ−1∑

j=0

(
q
1/(2s)
lin

)ℓ−j ≤ C
1/(2s)
lin

q
1/(2s)
lin

1− q
1/(2s)
lin

ηℓ(uℓ)
−1/s.

Combining the latter estimate with (8.66), we derive that

#Tℓ −#T0 + 1 . ‖u⋆‖1/sAs ηℓ(u
n,k
ℓ )−1/s for all ℓ > 0.

Since η0(u
1,0
0 ) ≃ η0(u

⋆
0) . ‖u⋆‖As , the latter inequality holds, in fact, for all ℓ ≥ 0. Rear-

ranging this estimate, we conclude the proof of (8.61).
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Remark 8.23. We emphasize that linear convergence in Theorem 8.20 and optimal conver-
gence in Theorem 8.21 hold for sufficiently small, but independent parameters λPCG, λPic >
0; see (8.50). On the other hand, a more subtle choice of λPCG > 0, i.e., λPCG depending
on λPic, implies even linear convergence (Theorem 8.30) and optimal convergence of the

full estimator sequence ηℓ(u
n,k
ℓ ) (Proposition 8.27).

8.10 Optimal complexity

Throughout this section, we suppose that there holds max
{
ℓ′ ∈ N0 : (ℓ′, 1, 0) ∈ I

}
= ∞,

i.e., the Picard iteration in Step (iv) of Algorithm 8.7 terminates with ηℓ(u
n,k
ℓ ) > 0 for

all ℓ ∈ N0. The main result of this section is that Algorithm 8.7 does not only lead to
linear convergence with optimal convergence rates with respect to the degrees of freedom
(Theorem 8.20, Theorem 8.21), but also guarantees linear convergence of the full estimator

sequence
(
ηℓ(u

n,k
ℓ )
)
(ℓ,n,k)∈I

(Theorem 8.30) and optimal convergence rates with respect to

the overall computational effort (Theorem 8.32).

8.10.1 Optimal convergence of the full estimator sequence

In order to prove the main results (Theorem 8.30, Theorem 8.32), we first prove optimal

convergence of the full estimator sequence ηℓ(u
n,k
ℓ ) for all (ℓ, n, k) ∈ I (Proposition 8.27).

With (8.23) and Step (iii) of Algorithm 8.7, there holds the following observation for all
n ≥ 1

‖un,⋆ℓ − u
n,k
ℓ ‖H

(8.23)

≤ qpcg
1− qpcg

‖un,kℓ − u
n,k−1
ℓ ‖H ≤ qpcg

1− qpcg
λPCG ηℓ(u

n,k
ℓ ). (8.67)

To prove Proposition 8.27, we need the following two technical lemmas. We emphasize that
both lemmas hold for all λPic > 0, but sufficiently small λPCG > 0 depending on λPic.

Lemma 8.24. Suppose (A1)–(A2) for the operator A as well as stability (E1) and relia-
bility (E3) for the a posteriori error estimator. Let 0 < θ ≤ 1 and λPic > 0 be arbitrary.
Suppose that λPCG is sufficiently small with

q2 := λPCG
qpcg

1− qpcg
max{λ−1

Pic, Cstb} < 1 and qctr :=
(q2 + qpic)

(1− q2)
< 1, (8.68)

where qpic < 1 is the contraction constant for the Picard iteration Φ(·). Then, there exists
C1 > 0 such that for all (ℓ, n, k) ∈ I with n < n, the discrete solutions of Algorithm 8.7
satisfy that

‖un,kℓ − un,0ℓ ‖H ≤ qctr ‖un−1,k
ℓ − un−1,0

ℓ ‖H for all 2 ≤ n < n. (8.69)

Moreover, it holds that

‖un,kℓ − un,0ℓ ‖H ≤ C1 q
n−1
ctr ηℓ−1(u

n,k
ℓ−1) for all n = 1, . . . , n− 1, (8.70)
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as well as

ηℓ(u
n,k
ℓ ) ≤ λ−1

PicC1 q
n−1
ctr ηℓ−1(u

n,k
ℓ−1) for all n = 1, . . . , n− 1. (8.71)

Note that in (8.70), there holds that ‖un,kℓ − un,0ℓ ‖H = ‖un,kℓ − u
n−1,k
ℓ ‖H for all n ≥ 2. The

constant C1 depends on qpcg, λPCG, α, L, Cstb, as well as Crel.

Proof. Recall that by definition, it holds that un,0ℓ = u
n−1,k
ℓ and consequently ‖un,kℓ −

un,0ℓ ‖H = ‖un,kℓ − u
n−1,k
ℓ ‖H for all n ≥ 2. We split the remainder of the proof into three

steps.

Step 1: Proof of (8.69). Let 2 ≤ n < n. The proof is similar to Step 1 in
the proof of Proposition 8.13. The triangle inequality and Step (iv) of Algorithm 8.7, i.e.

‖un,kℓ − un,0ℓ ‖H > λPic ηℓ(u
n,k
ℓ ), yield that

‖un,kℓ − un,0ℓ ‖H ≤ ‖un,⋆ℓ − u
n,k
ℓ ‖H + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H + ‖un−1,⋆
ℓ − u

n−1,k
ℓ ‖H

(8.67)

≤ λPCG
qpcg

1− qpcg
ηℓ(u

n,k
ℓ ) + λPCG

qpcg
1− qpcg

ηℓ(u
n−1,k
ℓ ) + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H
(iv)

≤ λPCG
qpcg

1− qpcg
λ−1
Pic‖u

n,k
ℓ − un,0ℓ ‖H + λPCG

qpcg
1− qpcg

ηℓ(u
n−1,k
ℓ ) + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H.

For sufficiently small λPCG such that λPCG
qpcg

1−qpcg
λ−1
Pic ≤ q2 < 1, we obtain that

(1− q2)‖un,kℓ − un,0ℓ ‖H ≤ λPCG
qpcg

1− qpcg
ηℓ(u

n−1,k
ℓ ) + ‖un,⋆ℓ − un−1,⋆

ℓ ‖H.

Recall the definition of un,⋆ℓ := Φ(un,0ℓ ) = Φ(u
n−1,k
ℓ ). We estimate the last term on the right

hand side as

‖un,⋆ℓ − un−1,⋆
ℓ ‖H = ‖Φ(un−1,k

ℓ )− Φ(un−1,0
ℓ )‖H ≤ qpic‖un−1,k

ℓ − un−1,0
ℓ ‖H

Since n−1 < n, Step (iv) of Algorithm 8.7 yields that ‖un−1,k
ℓ −un−1,0

ℓ ‖H > λPicηℓ(u
n−1,k
ℓ ).

With (8.68), the latter estimate implies that

(1− q2)‖un,kℓ − un,0ℓ ‖H ≤ λPCG
qpcg

1− qpcg
η(u

n−1,k
ℓ ) + qpic‖un−1,k

ℓ − un−1,0
ℓ ‖H

≤ (q2 + qpic) ‖un−1,k
ℓ − un−1,0

ℓ ‖H.
(8.72)

Hence,

‖un,kℓ − un,0ℓ ‖H ≤ (q2 + qpic)

(1− q2)
‖un−1,k

ℓ − un−1,0
ℓ ‖H = qctr ‖un−1,k

ℓ − un−1,0
ℓ ‖H. (8.73)

This proves (8.69).

Step 2: Proof of (8.70). Recall that u1,⋆ℓ = Φ(u1,0ℓ ) = Φ(u
n,k
ℓ−1). For any 1 ≤ n < n,

inductive application of (8.73) reveals that

‖un,kℓ − un,0ℓ ‖H ≤ qn−1
ctr ‖u1,kℓ − u1,0ℓ ‖H

≤ qn−1
ctr

(
‖u1,⋆ℓ − u

1,k
ℓ ‖H + ‖u1,⋆ℓ − u1,0ℓ ‖H

)
.

(8.74)
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Estimate (8.67) and stability (E1) yield for the first term on the right hand side

‖u1,⋆ℓ − u
1,k
ℓ ‖H

(8.67)

≤ qpcg
1− qpcg

λPCG ηℓ(u
1,k
ℓ ).

(E1)

≤ qpcg
1− qpcg

λPCG

(
ηℓ(u

n,k
ℓ−1) + Cstb‖u1,kℓ − u

n,k
ℓ−1‖H

)
.

(8.75)

Reduction on refined elements (E2) and stability yield that ηℓ(vℓ−1) ≤ ηℓ−1(vℓ−1) for all

vℓ−1 ∈ Xℓ−1. Recall that u
n,k
ℓ−1 = u1,0ℓ . Using (8.74) for n = 1, we obtain that

(
1− qpcg

1− qpcg
λPCG Cstb

)
‖u1,kℓ − u1,0ℓ ‖H ≤ qpcg

1− qpcg
λPCG ηℓ−1(u

n,k
ℓ−1) + ‖u1,⋆ℓ − u1,0ℓ ‖H.

Note that by assumption (8.68) there holds
qpcg

1−qpcg
λPCG Cstb ≤ q2 < 1 For the second term

on the right-hand side, Remark 8.4 applies. With reliability of Lemma 8.12, we see that

‖u1,⋆ℓ − u1,0ℓ ‖H
(8.17)

≤ α

L
‖u⋆ − u1,0ℓ ‖H =

α

L
‖u⋆ − u

n,k
ℓ−1‖H

(8.27)

≤ α

L
Crel ηℓ−1(u

n,k
ℓ−1).

Combining the latter estimates with the first inequality in (8.74), we obtain that

‖un,kℓ − un,0ℓ ‖H ≤ qn−1
ctr

(
1− qpcg

1− qpcg
λPCG Cstb

)−1( qpcg
1− qpcg

λPCG +
α

L
Crel

)
ηℓ−1(u

n,k
ℓ−1).

This proves (8.70).

Step 3: Proof of (8.71). To see (8.71), recall that Step (iv) of Algorithm 8.7 implies

that ‖un,kℓ − u
n−1,k
ℓ ‖H > λPicηℓ(u

n,k
ℓ ) for all n < n. With (8.70), this yields that

ηℓ(u
n,k
ℓ ) < λ−1

Pic‖u
n,k
ℓ − u

n−1,k
ℓ ‖H . qn−1

ctr ηℓ−1(u
n,k
ℓ−1).

This concludes the proof.

Remark 8.25. Note that assumption (8.68) is similar to (8.32), but q2 additionally relies
on the constant Cstb. For λ

−1
Pic ≥ Cstb, it holds that q2 = q1 and qctr = qlucky. Further, (8.69)

implies that for sufficiently small λPCG > 0, we even get a contraction in each step of the
perturbed Picard iteration.

The next lemma shows a similar result including also the PCG iteration.

Lemma 8.26. Suppose the same assumptions as in Lemma 8.24. Then, there exist con-
stants C2, C

′
2 > 0 such that for all (ℓ, n, k) ∈ I with ℓ ≥ 1, it holds that

‖un,kℓ − un,k−1
ℓ ‖H ≤ C ′

2 q
k−1
pcg q

n−1
ctr ηℓ−1(u

n,k
ℓ−1) if n, k ≥ 1. (8.76)

Moreover, it holds that

ηℓ(u
n,k
ℓ ) ≤ C2 q

k−1
pcg q

n−1
ctr ηℓ−1(u

n,k
ℓ−1) for all k = 0, . . . , k − 1. (8.77)

The constants C2, C
′
2 depend on λPCG,λPic, qpic,qpic, C1, α, and L.
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Proof. For k ≥ 1, the triangle inequality and Corollary 8.6 imply that

‖un,kℓ − un,k−1
ℓ ‖H ≤ ‖un,⋆ℓ − un,k−1

ℓ ‖H + ‖un,⋆ℓ − un,kℓ ‖H
(8.24)

≤ (1 + qpcg) ‖un,⋆ℓ − un,k−1
ℓ ‖H

(8.24)

≤ (1 + qpcg) q
k−1
pcg ‖un,⋆ℓ − un,0ℓ ‖H.

(8.78)

Step 1: Proof of (8.76) for n ≥ 2. Let n ≥ 2. The triangle inequality implies
that

‖un,⋆ℓ − un,0ℓ ‖H ≤ ‖un,⋆ℓ − un−1,⋆
ℓ ‖H + ‖un−1,⋆

ℓ − un,0ℓ ‖H.

The definition of un,⋆ℓ = Φ(un,0ℓ ) = Φ(u
n−1,k
ℓ ) and Step (iv) of Algorithm 8.7 yield that

‖un,⋆ℓ − un−1,⋆
ℓ ‖H = ‖Φ(un−1,k

ℓ )− Φ(un−1,0
ℓ )‖H ≤ qpic ‖un−1,k

ℓ − un−1,0
ℓ ‖H.

Together with (8.78), (8.67), and un,0ℓ = u
n−1,k
ℓ , this proves that

‖un,kℓ − un,k−1
ℓ ‖H

(8.67)

≤ (1 + qpcg) q
k−1
pcg

(
qpic‖un−1,k

ℓ − un−1,0
ℓ ‖H

+
qpcg

1− qpcg
λPCG ηℓ(u

n−1,k
ℓ )

) (8.79)

Let C1 > 0 be the constant from Lemma 8.24. Since n− 1 < n, Lemma 8.24 yields that

‖un−1,k
ℓ − un−1,0

ℓ ‖H ≤ C1 q
n−2
ctr ηℓ−1(u

n,k
ℓ−1) and ηℓ(u

n−1,k
ℓ ) ≤ C1 λ

−1
Pic q

n−2
ctr ηℓ−1(u

n,k
ℓ−1).

In combination with (8.79) we obtain that

‖un,kℓ − un,k−1
ℓ ‖H

≤ qk−1
pcg (1 + qpcg)

(
qpicC1 q

n−2
ctr ηℓ−1(u

n,k
ℓ−1) +

qpcg
1− qpcg

λPCG λ
−1
PicC1 q

n−2
ctr ηℓ−1(u

n,k
ℓ−1)

)

= qk−1
pcg q

n−2
ctr (1 + qpcg)C1

(
qpic +

qpcg
1− qpcg

λPCG λ
−1
Pic

)
ηℓ−1(u

n,k
ℓ−1)

= qk−1
pcg q

n−1
ctr (1 + qpcg)C1

(
q−1
ctr qpic + q−1

ctr

qpcg
1− qpcg

λPCG λ
−1
Pic

)
ηℓ−1(u

n,k
ℓ−1),

and concludes Step 1.

Step 2: Proof of (8.76) for n = 1. Analogously to the proof of Lemma 8.6, the

definition u1,0ℓ = u
n,k
ℓ−1 and reliability of Lemma 8.12 imply that

‖u1,⋆ℓ − u1,0ℓ ‖H
(8.17)

≤ α

L
‖u⋆ − u1,0ℓ ‖H =

α

L
‖u⋆ − u

n,k
ℓ−1‖H

(8.27)

≤ α

L
Crel ηℓ−1(u

n,k
ℓ−1).

With (8.78) we obtain that

‖u1,kℓ − u1,k−1
ℓ ‖H ≤ (1 + qpcg) q

k−1
pcg ‖u1,⋆ℓ − u1,0ℓ ‖H ≤ qk−1

pcg (1 + qpcg)
α

L
Crel ηℓ−1(u

n,k
ℓ−1).
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This concludes (8.76) with

C ′
2 := (1 + qpcg) max

{
q−1
ctr

(
qpicC1 +

qpcg
1− qpcg

λ−1
Pic λPCGC1

)
,
α

L
Crel

}

Step 3: Proof of (8.77). According to Step (iii) of Algorithm 8.7, it holds that

ηℓ(u
n,k
ℓ ) < λ−1

PCG ‖un,kℓ − un,k−1
ℓ ‖H for all 1 ≤ k < k.

This yields (8.77) for all k ≥ 1. For k = 0, it holds by definition that ηℓ(u
n,0
ℓ ) = ηℓ(u

n−1,k
ℓ )

if n− 1 < n. Hence, analogously to Step 1, Lemma 8.24 implies that,

ηℓ(u
n,0
ℓ ) = ηℓ(u

n−1,k
ℓ )

(8.71)

≤ C1 λ
−1
Pic q

n−2
ctr ηℓ−1(u

n,k
ℓ−1).

Recall k = 0. Multiplying the right-hand side with qk−1
pcg = q−1

pcg > 1 concludes the proof.

Next, we show a generalization of Theorem 8.21, which proves optimal convergence even
for the full estimator sequence ηℓ(u

n,k
ℓ ). The proposition is a consequence of Theorem 8.21

combined with Lemma 8.5 and Lemma 8.24.

Proposition 8.27. Suppose the assumptions of Theorem 8.21. Let λPCG > 0 is sufficiently
small such that (8.68) be satisfied. Then, it holds that

‖u⋆‖As <∞ ⇐⇒ ∃Copt,f > 0∀(ℓ, n, k) ∈ I ηℓ(u
n,k
ℓ ) ≤ Copt,f

(
#Tℓ −#T0 + 1

)−s
(8.80)

There holds Copt,f = C ′
opt,f ‖u⋆‖As , where C ′

opt,f > 0 depends only on θ, λPCG, λPic, s, qpcg,
(E1)–(E4), (A1)–(A2), and (R1)–(R5), as well as on T0.

Proof. With stability (E1) and the triangle inequality, we make the following observation

ηℓ(u
n,k
ℓ )

(E1)

≤ ηℓ(u
n,k
ℓ ) + Cstb ‖un,kℓ − un,kℓ ‖H

≤ ηℓ(u
n,k
ℓ ) + Cstb ‖un,kℓ − un,kℓ ‖H +Cstb

n(ℓ)−1∑

m=n

‖um+1,k
ℓ − u

m,k
ℓ ‖H

≤ ηℓ(u
n,k
ℓ ) + Cstb

k(ℓ,n)−1∑

r=k

‖un,r+1
ℓ − un,rℓ ‖H + Cstb

n(ℓ)−1∑

m=n

‖um+1,k
ℓ − u

m,k
ℓ ‖H.

(8.81)

For the last sum on the right-hand side, Lemma 8.24 yields that

‖um+1,k
ℓ − u

m,k
ℓ ‖H = ‖um+1,k

ℓ − um+1,0
ℓ ‖H

(8.70)

. qmctr ηℓ−1(u
n,k
ℓ−1) for all m+ 1 < n(ℓ).

Hence, the geometric series proves that

n(ℓ)−2∑

m=n

‖um+1,k
ℓ − u

m,k
ℓ ‖H . ηℓ−1(u

n,k
ℓ−1)

n(ℓ)−2∑

m=n

qmctr ≤
1

1− qctr
ηℓ−1(u

n,k
ℓ−1). (8.82)
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Further, for m + 1 = n(ℓ), Step (iv) of Algorithm 8.7 implies that ‖un,kℓ − u
n−1,k
ℓ ‖H ≤

λPicηℓ(u
n,k
ℓ ). Combining this estimate with (8.81), we obtain that

ηℓ(u
n,k
ℓ ) . ηℓ(u

n,k
ℓ ) +

k(ℓ,n)−1∑

r=k

‖un,r+1
ℓ − un,rℓ ‖H + ηℓ−1(u

n,k
ℓ−1). (8.83)

For the remaining sum, Lemma 8.26 reveals that

‖un,r+1
ℓ − un,rℓ ‖H

(8.76)

. qrpcg ηℓ−1(u
n,k
ℓ−1).

With ‖un,kℓ − u
n,k−1
ℓ ‖H ≤ λPCG ηℓ(u

n,k
ℓ ), this further implies that

k(ℓ,n)−1∑

r=k

‖un,r+1
ℓ − un,rℓ ‖H . ηℓ(u

n,k
ℓ ) + ηℓ−1(u

n,k
ℓ−1)

k(ℓ,n)−2∑

r=k

qrpcg

. ηℓ(u
n,k
ℓ ) + ηj−1(u

n,k
j−1).

(8.84)

Combining the latter estimates with (8.81), Theorem 8.20 proves that

ηℓ(u
n,k
ℓ ) . ηℓ(u

n,k
ℓ ) + ηℓ−1(u

n,k
ℓ−1)

(8.55)

. ηℓ−1(u
n,k
ℓ−1).

The splitting property (R3) directly implies that #Tℓ−1 ≤ #Tℓ ≤ Cson#Tℓ−1 for all ℓ ≥ 1.
With Lemma 4.19 or [BHP17, Lemma 22], this translates to

#Tℓ−1 −#T0 + 1 ≤ #Tℓ −#T0 + 1 ≤ (Cson#T0)(#Tℓ−1 −#T0 + 1). (8.85)

Then, optimal convergence rates of Theorem 8.21 for ηℓ(u
n,k
ℓ ) imply that

ηℓ(u
n,k
ℓ ) . ηℓ−1(u

n,k
ℓ−1)

(8.61)

. (#Tℓ−1 −#T0 + 1)−s ≃ (#Tℓ −#T0 + 1)−s.

This concludes the proof.

8.10.2 Linear convergence of the full estimator sequence

In this section, we show linear convergence of the full estimator sequence (see Theo-
rem 8.30). We first prove the following technical lemma.

Lemma 8.28. Let λPic, λPCG < Cstb such that (8.68) is satisfied. For C3 > max{(1 −
Cstb λPic)

−1, (1 − Cstb λPCG)
−1} > 1, it holds that

ηℓ(u
n,k
ℓ ) ≤ C2

3 ηℓ(u
n,k
ℓ ) for all (ℓ, n, k) ∈ I. (8.86)
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Proof. For (ℓ, n, k) = (ℓ, n, k) the statement is trivial. Hence we focus on (ℓ, n, k) 6= (ℓ, n, k).
Stability (E1) and the Step (iv) of Algorithm 8.7 yield

ηℓ(u
n,k
ℓ ) ≤ ηℓ(u

n−1,k
ℓ ) + Cstb ‖un,kℓ − u

n−1,k
ℓ ‖H ≤ ηℓ(u

n−1,k
ℓ ) + Cstb λPic ηℓ(u

n,k
ℓ ).

This directly implies

ηℓ(u
n,k
ℓ ) ≤ 1

1− Cstb λPic
ηℓ(u

n−1,k
ℓ ). (8.87)

Verbatim argumentation for with Step (iii) of Algorithm 8.7 yields for (ℓ, n, k) that

ηℓ(u
n,k
ℓ ) ≤ 1

1− Cstb λPCG
ηℓ(u

n,k−1
ℓ ). (8.88)

Step 1: Let n < n. We first prove ηℓ(u
n,k
ℓ ) ≤ C3 ηℓ(u

n,k
ℓ ) by contradiction. Therefore,

suppose C3 ηℓ(u
n,k
ℓ ) < ηℓ(u

n,k
ℓ ). With Step (iv) of Algorithm 8.7 and the definition of C3,

we obtain that

C3 ηℓ(u
n,k
ℓ ) < ηℓ(u

n,k
ℓ )

(8.87)

≤ C3 ηℓ(u
n−1,k
ℓ )

(iv)
< C3 λ

−1
Pic ‖u

n−1,k
ℓ − u

n−2,k
ℓ ‖H

(8.69)

≤ C3 λ
−1
Pic ‖u

n,k
ℓ − u

n−1,k
ℓ ‖H.

The latter estimate directly implies that

λPic ηℓ(u
n,k
ℓ ) ≤ ‖un,kℓ − un−1,0

ℓ ‖H.

This implies n = n and contradicts n < n. Hence, the contradiction proves ηℓ(u
n,k
ℓ ) ≤

C3 ηℓ(u
n,k
ℓ ).

Step 2: Analogous argumentation as in Step 1 in combination with Step (iii) of

Algorithm 8.7 and (8.88) yields that ηℓ(u
n,k
ℓ ) ≤ C3 ηℓ(u

n,k
ℓ ). Combining this with Step 1,

we obtain that

ηℓ(u
n,k
ℓ ) ≤ C3 ηℓ(u

n,k
ℓ ) ≤ C2

3 ηℓ(u
n,k
ℓ ) for all (ℓ, n, k) ∈ I.

This concludes the proof.

In order to prove linear convergence of the full estimator sequence, we need the following
assumption.

E5) finite improvement: There exists C4 > 0 such that for all (ℓ, n, k) ∈ I with
(ℓ, n, k) 6= (ℓ, n, k), it holds that

ηℓ−1(u
n,k
ℓ−1) ≤ C4 ηℓ(u

n,k
ℓ ).

Remark 8.29. Even though, we cannot thoroughly prove this fact, such a behavior is
observed in practice. In particular, assumption (E5) is satisfied in the following cases:
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• Linear convergence proves, in particular, that ηℓ(u
n,k
ℓ ) ≤ Clin qlin ηℓ−1(u

n,k
ℓ−1) for all

(ℓ, n, k) ∈ I. In practice, we observe that ηℓ(u
n,k
ℓ ) is only improved by a fixed factor,

i.e., there also holds the converse estimate ηℓ−1(u
n,k
ℓ−1) ≤ C̃ ηℓ(u

n,k
ℓ ) for all (ℓ, n, k) ∈ I.

In this case, Lemma 8.28 implies that

ηℓ−1(u
n,k
ℓ−1) . ηℓ(u

n,k
ℓ )

(8.86)

. ηℓ(u
n,k
ℓ ) for all (ℓ, n, k) ∈ I.

• Optimal convergence (see Theorem 8.27) proves ηℓ(u
n,k
ℓ ) .

(
#Tℓ−#T0+1

)−s
for all

(ℓ, n, k) ∈ I. In numeric experiments, we observe that there also holds the converse

estimate
(
#Tℓ −#T0 + 1

)−s
. ηℓ(u

n,k
ℓ ) for all ℓ ∈ N. This implies that

ηℓ−1(u
n,k
ℓ−1)

(8.80)

.
(
#Tℓ−1 −#T0 + 1

)−s (8.85)

.
(
#Tℓ −#T0 + 1

)−s
. ηℓ(u

n,k
ℓ ),

and guarantees (E5).

To simplify notation in the upcoming theorem, we introduce the following notation. For
all (ℓ′, n′, k′), (ℓ, n, k) ∈ I, we define the ordering

(ℓ′, n′, k′) < (ℓ, n, k)
def⇐⇒





either: ℓ′ < ℓ
or: ℓ′ = ℓ and n′ < n
or: ℓ′ = ℓ and n′ = n and k′ < k



 .

Let |(ℓ, n, k)| := 0 for the initial index (0, 1, 0). For ℓ ≥ 0 or n ≥ 1 or k ≥ 0, we define

|(ℓ, n, k)| := #
{
(ℓ′, n′, k′) ∈ Q : (ℓ′, n′, k′) < (ℓ, n, k)

}
. (8.89)

The next theorem shows, that each step of Algorithm 8.7 (i.e., every time the counter
is increased in any way), leads to a contraction of the corresponding error estimator. This
linear convergence thus applies to the full estimator sequence and hence improves the result
of Theorem 8.20.

Theorem 8.30. Suppose (A1)–(A2) for the operator A as well as stability (E1), reliabil-
ity (E3) and (E5) for the error estimator. Suppose λPic, λPCG are sufficiently small such
that the assumptions of Proposition 8.27 are satisfied. Then, for all 0 < θ ≤ 1 and all
s > 0, the estimator satisfies the inverse summability

(ℓ′,n′,k′)∑

(ℓ,n,k)=(1,1,0)

ηℓ(u
n,k
ℓ )−1/s ≤ C ηℓ′(u

n′,k′

ℓ′ )−1/s for all (ℓ′, n′, k′) ∈ I, (8.90)

where C > 0 is independent of (ℓ′, n′, k′) ∈ I. Moreover, there exist 0 < qslin < 1 and
Cslin > 0, such that for all (1, 1, 0) ≤ (ℓ′, n′, k′) ≤ (ℓ, n, k)

ηℓ(u
n,k
ℓ ) ≤ Cslin q

|(ℓ,n,k)|−|(ℓ′,n′,k′)|
slin ηℓ′(u

n′,k′

ℓ′ ). (8.91)
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Proof. We split the proof into two steps.
Step 1: According to [CFPP14, Lemma 4.9], inverse summability (8.90) for all s > 0

is equivalent to linear convergence (8.91) and also equivalent to the following summability
condition

∑

(ℓ,n,k)>(ℓ′,n′,k′)

ηℓ(u
n,k
ℓ )2 . ηℓ′(u

n′,k′

ℓ′ )2 for all (1, 1, 0) ≤ (ℓ′, n′, k′) ∈ I, (8.92)

where the involved constant is independent of (ℓ′, n′, k′) ∈ I.
Step 2: It thus remains to prove (8.92). Let (ℓ′, n′, k′) ∈ I with ℓ′ > 0. Recall that

nested iteration in Algorithm 8.7 yields that u
n,k
ℓ = u1,0ℓ+1 as well as u

n,k
ℓ = un+1,0

ℓ for all

(ℓ, n, 0) ∈ I. This directly implies that ηℓ(u
n,k
ℓ ) = ηℓ(u

n+1,0
ℓ ) for all n < n. Combining this

observation with Lemma 8.26, we obtain that
∑

(ℓ,n,k)>(ℓ′,n′,k′)

ηℓ(u
n,k
ℓ )2 ≤

∑

(ℓ,n,k)≥(ℓ′,1,0)

ηℓ(u
n,k
ℓ )2

=

∞∑

j=ℓ′

n(j)∑

m=1

k(j,m)∑

r=0

ηj(u
m,r
j )2

≤
∞∑

j=ℓ′

(
ηj(u

n,k
j )2 + 2

n(j)∑

m=1

k(j,m)−1∑

r=0

ηj(u
n,k
j )2

)

(8.77)

≤ 2

∞∑

j=ℓ′

(
ηj(u

n,k
j )2 + C2

n(j)∑

m=1

k(j,m)−1∑

r=0

q2(r−1)
pcg q

2(m−1)
ctr ηj−1(u

n,k
j−1)

2
)

= 2

∞∑

j=ℓ′

(
ηj(u

n,k
j )2 + ηj−1(u

n,k
j−1)

2
(
C2

n(j)∑

m=1

q
2(m−1)
ctr

k(j,m)−1∑

r=0

q2(r−1)
pcg

))
.

By use of the geometric series, we estimate the inner sums by

k(j,m)−1∑

r=0

q2(r−1)
pcg ≤ q2pcg

∞∑

r=0

q2rpcg =
q2pcg

1− q2pcg
and

n(j)∑

m=1

q
2(m−1)
ctr ≤ q2ctr

1− q2ctr
.

With this, the previous estimate turns into

∑

(ℓ,n,k)>(ℓ′,n′,k′)

ηℓ(u
n,k
ℓ )2 .

∞∑

j=ℓ′

(
ηj(u

n,k
j )2 + ηj−1(u

n,k
j−1)

2
)
.

∞∑

j=ℓ′−1

ηj(u
n,k
j )2.

With linear convergence (Theorem 8.20), we obtain that

∑

(ℓ,n,k)>(ℓ′,n′,k′)

ηℓ(u
n,k
ℓ )2 ≤

∞∑

j=ℓ′−1

ηj(u
n,k
j )2

(8.55)

≤ Clinηℓ′−1(u
n,k
ℓ′−1)

2
∞∑

j=ℓ′−1

q
j−(ℓ′−1)
lin . ηℓ′−1(u

n,k
ℓ′−1)

2.
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Finally, assumption (E5) guarantees that

∑

(ℓ,n,k)>(ℓ′,n′,k′)

ηℓ(u
n,k
ℓ )2 . ηℓ′−1(u

n,k
ℓ′−1)

2
(E5)

. ηℓ′(u
n,k
ℓ′ )2.

This concludes the proof.

8.10.3 Main result

We show that Algorithm 8.7 does not only lead to optimal algebraic convergence rates for
the error estimator ηℓ(u

n,k
ℓ ), but also guarantees optimal convergence behavior with respect

to the computational complexity.
Optimal convergence behavior of Algorithm 8.7 means that, given ‖u⋆‖As <∞, the error

estimator ηℓ(u
n,k
ℓ ) for (ℓ, n, k) ∈ I decays with rate s > 0 with respect to the degrees of

freedom O(#Tℓ).
Optimal computational complexity means that, given ‖u⋆‖As < ∞, the error estimator

ηℓ(u
n,k
ℓ ) for (ℓ, n, k) ∈ I decays with rate s > 0 with respect to the computational cost; see,

e.g, [Fei15] for linear problems.
Given a mesh T• ∈ T, we define single-step complexity by

work(T•) := computational effort to compute exact solution u⋆• of (8.5) and η•(u
⋆
•).

Then, a single-step complexity rate of s > 0 is possible, if and only if, there exists a
sequence of successively refined meshes

(
T opt
j

)
j∈N ⊂ T with T opt

j+1 = refine(T opt
j ,Mj) for

some Mℓ ⊆ T opt
ℓ such that

‖u⋆‖Ws := sup
ℓ∈N0

(
work(T opt

j )s ηj(u
opt,⋆
j )

)
<∞. (8.93)

Here for T opt
j , the corresponding exact solution of (8.5) and the estimator are given by

uopt,⋆j ∈ X opt
ℓ and ηj(u

opt,⋆
j ).

Then, there holds the following correlation between the approximation class ‖u⋆‖As and
the complexity class ‖u⋆‖Ws .

Lemma 8.31. Suppose linear single-step complexity work(T•) ≃ T• for all T• ∈ T, i.e.,
given T• ∈ T, the exact solution u⋆• of (8.5) and corresponding estimator η•(u

⋆
•) can be

computed in linear complexity. Then, it holds that

‖u⋆‖Ws <∞ ⇐⇒ ‖u⋆‖As <∞.

Proof. The implication “⇐=” follows directly from Theorem 8.32 or Proposition 8.27.
Hence, we focus on the implication “=⇒”. To that end, let ‖u⋆‖Ws <∞ and

(
T opt
j

)
j∈N ⊂ T

denote the corresponding sequence. For all N ∈ N, there exist T opt
j(N),T

opt
j(N+1) such that
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#T opt
j(N)

≤ N ≤ N + 1 ≤ #T opt
j(N)+1

. With work(T ) = O(T ) as well as the splitting prop-

erty (R3), it follows that

‖u⋆‖As = sup
N∈N

(N + 1)s min
T•∈TN

η•(u
⋆
•)

≤ sup
N∈N

(#T opt
j(N)+1)

s ηj(N)(u
opt,⋆
j(N) )

(3.5)

≤ Csson sup
N∈N

(#T opt
j(N)

)s ηj(N)(u
opt,⋆
j(N)

)

. sup
j∈N0

(
work(T opt

j )s ηj(u
opt,⋆
j )

)
<∞

This concludes the proof.

On the other hand, the computational complexity of Algorithm 8.7 to compute an ap-
proximation u

n,k
ℓ depends on the number of preceding adaptive steps as well as on the

number of PCG and Picard iterations in each step.

• From now on, we assume that the preconditioner as well as each step of the PCG
iteration can be computed in linear complexity O(#Tℓ). This can be guaranteed
by using a multilevel additive-Schwarz preconditioner; see, e.g., [FFPS17a, Füh14].

Moreover, we suppose that the evaluation of 〈Aun−1,k
ℓ − F , vℓ〉 and ηℓ(T, vℓ) for one

fixed vℓ ∈ Xℓ and T ∈ Tℓ is of order O(1). Recall that k(ℓ, n) > 0 and n(ℓ) > 0 denote
the number of PCG resp. Picard steps in the ℓ-th adaptive step of Algorithm 8.7. In
total, we thus require

O
( n(ℓ)∑

m=1

k(m, ℓ)#Tℓ
)
= O

( n(ℓ)∑

m=1

k(ℓ,m)∑

r=1

#Tℓ
)

operations to compute the discrete solution u
n,k
ℓ ∈ Xℓ.

• We suppose that the construction of the set Mℓ in Step (v.a) as well as the local
mesh-refinement Tℓ+1 := refine(Tℓ,Mℓ) in Step (v.b) of Algorithm 8.7 are performed
in linear complexity O(#Tℓ); see, e.g., [Ste07] with Cmark = 2 for Step (v.a).

Since one step of the adaptive algorithm depends on the full history of the adaptive meshes,
the overall computational cost for un,kℓ in the ℓ-th step of Algorithm 8.7 thus amounts to

O
( ∑

(ℓ′,n′,k′)≤(ℓ,n,k)

#Tℓ
)
. (8.94)

The next theorem shows that Algorithm 8.7 realizes every possible single-step complexity
rate with respect to the cumulative effort (8.94).

Theorem 8.32. Suppose (A1)–(A2) for the operator A as well as stability (E1), reliabil-
ity (E3) and (E5) for the error estimator. Suppose λPic, λPCG are sufficiently small such
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that (8.68) and the assumptions of Theorem 8.21 are satisfied. Then, for all s > 0, it holds
that

‖u⋆‖As <∞ =⇒ ∃Cwork > 0 ∀(ℓ, n, k) ∈ I ηℓ(u
n,k
ℓ ) ≤ Cwork

( ∑

(ℓ′,n′,k′)≤(ℓ,n,k)

#Tℓ′
)−s

(8.95)

There holds Cwork = C ′
work ‖u⋆‖As, where C ′

work > 0 depends only on θ, λPCG, λPic, s, qpcg,
(E1)–(E4), (A1)–(A2), and (R3)–(R5), as well as on T0, n(0) and k(1, 0).

Proof. Let ‖u⋆‖As <∞. First, we note that is holds that n(0) k(1, 0)#T0 . #T1 for some
constant depending on n(0), k(1, 0) and #T0. Using #Tj ≤ #T0(#Tj −#T0 +1) (see, e.g.,
Lemma 4.19), we obtain that

∑

(ℓ′,n′,k′)≤(ℓ,n,k)

#Tℓ′ .
(ℓ,n,k)∑

(ℓ′,n′,k′)=(1,1,0)

#Tℓ′
(4.26)

.

(ℓ,n,k)∑

(ℓ′,n′,k′)=(1,1,0)

(#Tℓ′ −#T0 + 1). (8.96)

Optimal convergence in Proposition 8.27 implies further

ηℓ′(u
n′,k′

ℓ′ )
(8.80)

. (#Tℓ′ −#T0 + 1)−s for all (ℓ′, n′, k′) ∈ I.

In combination with (8.96) and inverse summability from Theorem 8.30, we obtain that

∑

(ℓ′,n′,k′)≤(ℓ,n,k)

#Tℓ′ .
(ℓ,n,k)∑

(ℓ′,n′,k′)=(1,1,0)

ηℓ′(u
n′,k′

ℓ′ )−1/s
(8.90)

. ηℓ(u
n,k
ℓ )−1/s.

This concludes the proof.

Remark 8.33. In order to interpret the result of Theorem 8.32, we want to consider the
following heuristic comparison. Suppose we have an oracle, which can do the following:

• Given N , the oracle produces the optimal mesh Topt,N ∈ TN with ηN,opt := η(Topt, u⋆opt) =
minT◦∈TN η(T◦, u⋆◦) without any computational cost.

• The oracle can compute the exact solution of the nonlinear equation and the corre-
sponding estimator in linear complexity O(Topt).

Theorem 8.32 shows that every single-step complexity rate s > 0 which can be achieved
by using the oracle, is also realized by Algorithm 8.7, even with respect to the cumulative
effort (8.94).
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9 Adaptive FEM with fixpoint iteration

In this chapter, we focus once again on AFEM. As an application of the preceding analysis,
we show that certain types of nonlinear PDEs fit in the abstract framework of Chap-
ter 8. As model problems serve nonlinear boundary value problems similar to those
of [GMZ11, GMZ12, BSF+14, CW17]; see (9.1). Then, applying Algorithm 8.7 leads
to optimal algebraic convergence rates and optimal complexity for the underlying error
estimator.

Outline of this chapter. Section 9.1 introduces the model problem and Section 9.1.2
the corresponding a posteriori error indicator. In Section 9.2, we prove that all operator
axioms (A1)–(A3) and estimator axioms (E1)–(E4) of Chapter 8 are met. Section 9.3
recaps the main results on linear and optimal algebraic convergence. Finally, Section 9.4
underpins our theoretical findings with numerical experiments for AFEM in R2.

9.1 Model problem

Let Ω ⊂ Rd with d ∈ {2, 3} be a bounded Lipschitz domain with polyhedral boundary
Γ = ∂Ω. To include also mixed boundary conditions, suppose that Γ := ΓD∪ΓN is split into
relatively open and disjoint Dirichlet and Neumann boundaries ΓD,ΓN ⊆ Γ with |ΓD| > 0.
For given f ∈ L2(Ω), we consider second-order nonlinear problems of the following type:

− div(µ(x, |∇u⋆(x)|2)∇u⋆(x)) = f(x) in Ω,

u⋆(x) = 0 on ΓD,

µ(x, |∇u⋆(x)|2)∂nu⋆(x) = g(x) on ΓN .

(9.1)

As in [GMZ12], we suppose that the scalar nonlinearity µ : Ω × R≥0 → R satisfies the
following properties (M1)–(M4).

M1) There exist constants 0 < γlow < γup <∞ such that

γlow ≤ µ(x, t) ≤ γup ∀x ∈ Ω and ∀t ≥ 0. (9.2)

M2) There holds µ(x, ·) ∈ C1(R≥0,R) for all x ∈ Ω, and there exist 0 < γ̃low < γ̃up < ∞
such that

γ̃low ≤ µ(x, t) + 2t
d

dt
µ(x, t) ≤ γ̃up for all x ∈ Ω and all t ≥ 0. (9.3)

M3) Lipschitz-continuity of µ(x, t) in x, i.e., there exists Lµ > 0 such that

|µ(x, t)− µ(y, t)| ≤ Lµ|x− y| ∀x, y ∈ Ω and ∀t ≥ 0. (9.4)
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M4) Lipschitz-continuity of t ddtµ(x, t) in x, i.e., there exists L̃µ > 0 such that

∣∣∣t d
dt
µ(x, t)− t

d

dt
µ(y, t)

∣∣∣ ≤ L̃µ|x− y| ∀x, y ∈ Ω and ∀t ≥ 0. (9.5)

9.1.1 Weak formulation

To obtain the weak formulation of (9.1), we introduce the space of H1(Ω)-functions with
homogeneous Dirichlet data

H1
D(Ω) := {w ∈ H1 : (γint0 w)|ΓD = 0},

where γint0 : H1(Ω) → H1/2(Ω) denotes the interior trace operator, cf. Section 2.2. The
weak formulation of (9.1) reads as follows: Given f ∈ L2(Ω) and g ∈ L2(Γ), find u ∈ H1

D(Ω)
such that

∫

Ω
µ(x, |∇u⋆(x)|2)∇u⋆ · ∇v dx =

∫

Ω
fv dx+

∫

ΓN

gv ds for all v ∈ H1
D(Ω). (9.6)

Recall the abstract framework from Chapter 8. We define H := H1
D(Ω) with corresponding

norm ‖v‖H := ‖∇v‖L2(Ω) and let 〈· , ·〉 denote the extended L2(Ω) scalar product. This
gives rise to the operators

〈Aw , v〉 :=
∫

Ω
µ(x, |∇w(x)|2)∇w(x) · ∇v(x) dx, (9.7a)

〈F , v〉 :=
∫

Ω
fv dx+

∫

Ω
gv ds . (9.7b)

In the framework of the abstract setting of Chapter 8, the weak formulation (9.6) can
equivalently be stated as

〈Au⋆ , v〉 = 〈F , v〉 for all v ∈ H1
D(Ω). (9.8)

Let T0 be an initial conforming triangulation of Ω. Analogously to Chapter 5, we use
NVB for mesh-refinement. Then, Section 3.5 guarantees the validity of the refinement
axioms (R1)–(R6). Let T• ∈ T := refine(T0) be a conforming triangulation of Ω. We
employ lowest-order finite element spaces

X• := S1
D(T•) := P1(T•) ∩H1

D(Ω).

The discrete formulation corresponding to (9.8) reads as follows: Given f and g, find
u⋆• ∈ S1

D(T•) such that

〈Au⋆• , v•〉 = 〈F , v•〉 for all v• ∈ S1
D(T•).

In order to apply the abstract analysis of Chapter 8, it remains to prove the operator
properties (A1)–(A3) of Section 9.2.
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9.1.2 Weighted-residual error estimator

Once again we consider the weighted-residual error estimator. To abbreviate notation, let
µv(x) := µ(x, |∇v(x)|2) for all v ∈ H1

D(Ω). The element contributions for an arbitrary
discrete function v• ∈ S1

D(T•) are given by

η•(T, v•)
2 := h2T ‖f + div(µv•∇v•)‖2L2(T ) + hT ‖[µv•v• · n]‖2L2(∂T∩Ω)

+ hT ‖g − µv•∇v• · n‖2L2(∂T∩ΓN ).
(9.9)

where [(·) · n] denotes the normal jump over interior facets and hT := |T |1/d ≃ diam(T )
denotes the local mesh-size (see Chapter 2–3).

9.2 Verification of the axioms

In this section we prove that the model problem (9.1) as well as the a posteriori error
estimator of (9.9) fit in the abstract framework of Chapter 8. To that end, we first show
the operator axioms (A1)–(A3) for the nonlinear operator A. Afterwards, we verify the
axioms (E1)–(E4).

9.2.1 Verification of (A1)–(A3)

To prove (A1)–(A3), we first recall an auxiliary lemma which is just a simplified version of
[LB96, Lemma 2.1] with p := 2 and δ := 0.

Lemma 9.1. Let C1 > 0 as well as 0 < C2 ≤ C3 < ∞. Further, suppose that κ(x, ·) ∈
C1(R≥0,R≥0) satisfies that κ(x, t) ≤ C1 for all x ∈ Ω and t ≥ 0 as well as

C2 ≤ d

dt
(tκ(x, t)) ≤ C3 ∀x ∈ Ω and ∀t ≥ 0. (9.10)

Then, it holds that

(
κ(x, |y|)y − κ(x, |z|)z

)
·
(
y − z

)
≥ C2 |y − z|2 ∀x ∈ Ω and ∀y, z ∈ Rd, (9.11)

as well as

∣∣κ(x, |y|)y − κ(x, |z|)z
∣∣ ≤ C1 |y − z| ∀x ∈ Ω and ∀y, z ∈ Rd. (9.12)

Lemma 9.1 gives rise to the following proposition, which proves (A1)–(A3).

Proposition 9.2. Suppose that µ : Ω × R≥0 → R satisfies (M1)–(M4). Then, the cor-
responding (nonlinear) operator A satisfies the operator axioms (A1)–(A3) with constants
α := γlow and L := γ̃up.

153



9 Adaptive FEM with fixpoint iteration

Proof. We split the proof into two steps.
Step 1: Proof of (A1)–(A2). Define κ(x, t) := µ(x, t2). Note that (M1)–(M2)

with d
dt(tκ(x, t)) = µ(x, t2) + 2t2∂2µ(x, t

2) yield that

κ(x, t) ≤ γup and γ̃low ≤ d

dt
(tκ(x, t)) ≤ γ̃up.

Hence, the assumptions of Lemma 9.1 are satisfied. The lemma implies for all v,w ∈ H1
D(Ω)

that

α|∇v −∇w|2
(9.11)

≤
(
µ(·, |∇v|2)∇v − µ(·, |∇w|2

)
∇w) ·

(
∇v −∇w

)
a.e. in Ω, (9.13)

as well as

∣∣µ(·, |∇v|2)∇v − µ(·, |∇w|2)∇w)
∣∣2 (9.12)

≤ L2
∣∣∇v −∇w

∣∣2 a.e. in Ω. (9.14)

Integration over Ω proves strong monotonicity (A1) and Lipschitz continuity (A2).

Step 2: Proof of (A3). Analogously to [Has10], we define

P : H1
D(Ω) → R≥0 : w 7→ 1

2

∫

Ω

∫ |∇w|2

0
µ(x, ζ) dζ dx . (9.15)

Note that boundedness (M1) implies well-posedness of P . Next, we show that A is the
Gâteaux-derivative dP of P . To that end, let r > 0 and v,w ∈ H1

D(Ω). Define

H(r) := P (w + rv)
(9.15)
=

1

2

∫

Ω

∫ |∇w+r∇v|2

0
µ(x, ζ) dζ dx .

With the Leibniz rule, we get

H ′(r) =
1

2

∫

Ω
µ(x, |∇w + r∇v|2) d

dr

(
|∇w + r∇v|2

)
dx

=

∫

Ω
µ(x, |∇w + r∇v|2) (∇w + r∇v) · ∇v dx .

With this, we obtain that

〈dP (w) , v〉 = H ′(0) =

∫

Ω
µ(x, |∇w|2)∇w · ∇v dx (9.7a)

= 〈Aw , v〉.

This concludes the proof.

9.2.2 Verification of (E1)–(E4)

The verification of stability (E1) and reduction (E2) requires the validity of a certain inverse
estimate. We recall the following result from [GMZ12, Lemma 3.7].
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Lemma 9.3. Let T• ∈ T. Define ρ• : T• × S1
D(T•) × S1

D(T•) for all T ∈ T• and all
v•, w• ∈ S1

D(T•) by
ρ•(T, v•, w•) := hT ‖div(µv• ∇v•)− div(µw• ∇w•)‖L2(T )

+ h
1/2
T ‖[µv•v• · n]− [µw•w• · n]‖L2(∂T ).

Then, there exists Cinv > 0 such that for all T ∈ T• and v•, w• ∈ S1
D(T•) it holds that

ρ•(T, v•, w•) ≤ Cinv‖∇v• −∇w•‖L2(ω(T )). (9.16)

Moreover, there exists CE > 1, which depends only on d and γ-shape regularity such that
∑

T∈T•

ρ•(T, v•, w•) ≤ CE‖∇v• −∇w•‖L2(Ω). (9.17)

The inverse estimate gives rise to the estimator axioms (E1)–(E4). We emphasize that
the proofs are similar to the linear case; see, e.g., Section 5.2 or [CFPP14, CKNS08].
A proof for scalar nonlinearities can be found in [GMZ12, Lemma 3.7]. For sake of the
completeness, we include the proof of stability (E1).

Proposition 9.4 (stability on non-refined element domains). Suppose (M1)–(M4). Then
the error estimator defined in (9.9) satisfies axiom (E1).

Proof. Let T•,T◦ ∈ T with T◦ ∈ refine(T•). Let U• ⊆ T• ∩ T◦, and v• ∈ S1
D(T•) as well as

v◦ ∈ S1
D(T◦). Analogously to the proof of Proposition 5.3 we obtain

|η◦(U•, v◦)− η•(U•, v•)| ≤
( ∑

T∈U•

R•(v◦, v•, T )
2
)1/2

.

Using ρ• from Lemma 9.3, the function R•(·, ·, ·) is given by

R•(T, v◦, v•) := ρ•(T, v◦, v•) + h
1/2
T ‖µv◦v◦ · ∇n− µv•∇v• · n‖L2(∂T∩ΓN ).

Recall that each element patch contains at most finitely many elements. Note that nested-
ness of the discrete spaces implies that v• ∈ S1

D(T•) ⊆ S1
D(T◦). The inverse estimate (9.16)

applied to the first term on the right-hand side yields that

∑

T∈U•

ρ•(T, v◦, v•)
2
(9.16)

.
∑

T∈U•

‖∇(v◦ − v•)‖2L2(ω(T )) . ‖∇(v◦ − v•)‖2L2(Ω)

The remaining term right-hand side is estimated analogously to (5.11). Using Lemma 9.1
and the trace inequality, we obtain for an edge E ⊂ ∂TE ∩ ΓN that

‖(µv◦∇v◦ − µv•∇v•) · n‖2L2(E) ≤ ‖µv◦∇v◦ − µv•∇v•‖2L2(E)

(9.12)

≤ L2‖∇(v◦ − v•)‖2L2(E)

. h−1
TE

‖v◦ − v•‖2L2(TE).

Combining this with the latter estimate, we end up with
∑

T∈U•

R•(T, v◦, v•)
2 . ‖v◦ − v•‖2H1(Ω),

which concludes the proof.
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With the inverse inequality (9.16), the proof of (E2) follows analogously to the linear
case in Proposition 5.4. The Neumann term in the estimator (9.9) is estimated similarly
to the proof of Proposition 9.4, where we additionally use the reduction of the local mesh
size (3.3) on refined elements.

The well-posedness of the error estimator requires that the nonlinearity µ(x, t) is Lip-
schitz continuous in x, i.e. (M3). Then, reliability (E3) and discrete reliability (E4) are
proved as in the linear case. We refer to, e.g., [CKNS08] for the linear case or [GMZ12,
Theorem 3.3] and [GMZ12, Theorem 3.4] for strongly monotone nonlinearities. We empha-
size that the arising constants in (E1)–(E4) depend also on the uniform γ-shape regularity
of the triangulations generated by NVB.

9.3 Optimal convergence

Recall that NVB bisection guarantees the refinement axioms (R1)–(R6). With the operator
axioms (A1)–(A3) as well as the estimator axioms (E1)–(E4) at hand, we can apply the

abstract framework and analysis of Chapter 8. Let un,kℓ ∈ S1
D(Tℓ) denote the sequence

generated by Algorithm 8.7 applied to model problem (9.1). The following theorem recaps
the main results of the previous chapter and is a direct consequence of Proposition 8.27,
Theorem 8.30, and Theorem 8.32.

Theorem 9.5. Suppose (M1)–(M4) for µ(·, ·). Let 0 < λPic, λPCG, θ < 1 be sufficiently
small such that (8.68) and the assumptions of Theorem 8.21 are satisfied. Then, the se-

quence un,kℓ ∈ S1
D(Tℓ) produced by Algorithm 8.7 satisfies linear convergence

ηℓ+j(u
n,k
ℓ+j) ≤ Clin q

j
lin ηℓ(u

n,k
ℓ ) for all (ℓ, n, k) ∈ I. (9.18)

Moreover, for all s > 0 with ‖u⋆‖As < ∞, there holds optimal algebraic convergence w.r.t.
the degrees of freedom

ηℓ(u
n,k
ℓ ) .

(
#Tℓ −#T0 + 1

)−s
for all (ℓ, n, k) ∈ I. (9.19)

If we additionally assume (E5), we obtain optimal complexity

ηℓ(u
n,k
ℓ ) .

( ∑

(ℓ,n,k)≥(0,1,0)

#Tℓ
)−s

for all (ℓ, n, k) ∈ I. (9.20)

The involved constants depends only on θ, λPCG, λPic, s, qpic, qpcg, the constants in (E1)–
(E4), (A1)–(A2), (R1)–(R5). The constant in (9.20) additionally depends on T0, n(0), and
k(1, 0).

9.4 Numerical experiments

In this section, we present two numerical experiments in 2D to underpin our theoretical
findings. In the experiments, we compare the performance of Algorithm 8.7 for

• different values of λ2Pic ∈ {1, 0.1, 0.01, 0.001},
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• different values of λ2PCG ∈ {λ2Pic, 0.1λ2Pic, 0.01λ2Pic, 0.001λ2Pic},

• different values of θ ∈ {0.2, 0.4, . . . , 1},

• PCG with multilevel additive-Schwarz preconditioning vs. non preconditioned CG,

• nested iteration u1,0ℓ := u
n,k
ℓ−1 compared to a naive initial guess u1,0ℓ := 0.

As model problems serve nonlinear boundary value problems from [GHPS17], which are
similar to those of [GMZ11, GMZ12, BSF+14, CW17]. If it is not stated otherwise, we
employ the multi-level additive-Schwarz (MLAS) preconditioner for the PCG-iteration;
see, e.g., [Füh14].

9.4.1 Experiment with known solution (Ex. 1)

We consider the Z-shaped domain Ω ⊂ R2 from Figure 9.1 (above) with mixed Dirichlet–
Neumann boundary and the nonlinear problem (9.1), where the function µ(·, ·) is given
by

µ(x, |∇u⋆(x)|2) := 2 +
1√

1 + |∇u⋆(x)|2
.

This choice of µ leads to α = 2 and L = 3 in (O1)–(O2). We prescribe the solution u⋆ in
polar coordinates by

u⋆(x, y) = rβ cos
(
β φ
)
, (9.21)

where β = 4/7 and f as well as g in (9.1) are chosen accordingly. We note that u⋆ has a
generic singularity at the reentrant corner (x, y) = (0, 0). Figure 9.1 (below) shows that in
order to produce optimal rates, Algorithm 8.7 heavily refines towards the singularity.

Our empirical observations are the following: Due to the singular behavior of u⋆, uni-
form refinement leads to a reduced convergence rate O(N−β) for both, the energy error

err(un,kℓ )2 := ‖∇u⋆ −∇un,kℓ ‖2L2(Ω) as well as the error estimator ηℓ(u
n,k
ℓ )2; see Figure 9.2.

On the other hand, the adaptive refinement of Algorithm 8.7 regains the optimal con-
vergence rate O(N−1), independently of the actual choice of θ ∈ {0.2, 0.4, 0.6, 0.8} and
λ2Pic ∈ {1, 0.1, 0.01, 0.001} if λPCG is chosen accordingly; see Figure 9.4–9.5. As it turns
out, only λ2Pic ∈ {1, 0.1} and λ2PCG ≥ 0.1λ2Pic lead to reduced orders of convergence. All
other pairings recover the optimal convergence rate of O(N−1).

Further, Figure 9.3 shows that Algorithm 8.7 leads to optimal rate with respect to the
cumulative complexity (8.94), for u

n,k
ℓ , where instead uniform refinement leads to reduced

order even for linear single step complexity.
Throughout all adaptive steps, Algorithm 8.7 guarantees that the number of Picard

and PCG iterations remains bounded for all tested choices of λPCG, λPic; see Figure 9.6.
Moreover, we compare the performance of the PCG iteration with MLAS preconditioning
and without any preconditioning. According to (8.50), λPCG has to be chosen sufficiently
small in order to guarantee optimal rates. Note that λPCG depends on qpcg and hence,
on the condition number of the linear system. Figure 9.8 (top) shows that the condition
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number of the non-preconditioned system increases with O(N), where instead the MLAS
preconditioner leads to a bounded condition number. This leads to qpcg → 1 as ℓ → ∞
for the non-preconditioned CG iteration. As shown in Figure 9.7 and in contrast to PCG,
non-preconditioned CG leads to stagnation of the energy error ‖∇u⋆ − ∇un,kℓ ‖2L2(Ω) for

ℓ ≥ ℓλ depending on λPCG and λPic. Further, Figure 9.8 (bottom) shows that up to ℓ = ℓλ,
the number of CG-iterations increases with ℓ.

As expected from Remark 8.4, for the naive initial guess u1,0ℓ+1 := 0, the number of
Picard iterations grows logarithmically with the number of elements #Tℓ, while we observe
a bounded number of Picard iterations for nested iteration u1,0ℓ+1 := u

n,k
ℓ−1; see Figure 9.9.

9.4.2 Experiment with unknown solution (Ex. 2)

We consider the Z-shaped domain Ω ⊂ R2 from Figure 9.1 (above). Moreover, we consider
the nonlinear Dirichlet problem (9.1) with Γ = ΓD and constant right-hand side f ≡ 1,
where µ(·, ·) is given by

µ(x, |∇u⋆|2) = 1 + arctan(|∇u⋆|2).

According to [CW17, Example 1], there holds (O1)–(O2) with α = 1 and L = 1 +
√
3/2 +

π/3.
The exact solution is unknown. Therefore, our empirical observations are concerned with

the error estimator only; see Figure 9.10–9.12. We derive similar results as in the previous
example with known solution. Since we use the same geometry containing a reentrant
corner, uniform mesh-refinement leads to a suboptimal rate of convergence O(N−β) for

ηℓ(u
n,k
ℓ )2, while the use of Algorithm 8.7 regains the optimal rate of convergence O(N−1).

Figure 9.10 shows the convergence of the estimator sequence ηℓ(u
n,k
ℓ )2 with respect to the

degrees of freedom for different values of θ ∈ {0.2, 0.4, 0.6, 0.8, 1}. Moreover, the estimator
even realizes the optimal rate with respect to the cumulative effort (8.94); see Figure 9.12
(top). According to Figure 9.11, the optimal rate is achieved for all choices of λPic. A naive
initial guess u1,0ℓ := 0 for the iterative solver leads to a logarithmic growth of the number

of Picard iterations, while the proposed use of nested iteration u1,0ℓ := u
n,k
ℓ−1 again leads to

bounded iteration numbers for all tested choices of λPic, see Figure 9.12 (below).
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Figure 9.1: Geometry and initial partition T0 in the experiment from Section 5.4.1 (top).
The Dirichlet boundary ΓD ⊂ Γ is marked by a thick red line. In addition
we plot the mesh T18 with #T18 = 4543 generated by Algorithm 8.7 (bottom),
where we used λ2Pic = 10−2, λ2PCG = 10−4, and θ = 0.2.
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Figure 9.2: Ex. 1: Convergence rates of the full sequence ηℓ(u
n,k
ℓ )2 (solid lines) and

err(un,kℓ )2 (dashed lines) for different values of θ and λ2Pic = 10−2 as well as
λ2PCG = 10−4 (top) and λ2Pic = 1 and λ2PCG = 10−3 (bottom).
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Figure 9.3: Ex. 1: Convergence rates of ηℓ(u
n,k
ℓ )2 (solid lines) and err(u

n,k
ℓ )2 (dashed lines)

for different values of θ with respect to the cumulative complexity (8.94). For

uniform refinement, we just plot the single step complexity, i.e., ηℓ(u
k,k
ℓ )2 w.r.t.

#Tℓ. We used λ2Pic = 0.1, λPCG = 10−2 λ2Pic (top) as well as λ2Pic = 10−3,
λPCG = 10−3 λ2Pic (bottom).
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Figure 9.4: Ex. 1: Convergence rates of ηℓ(u
n,k
ℓ )2 (solid lines) and err(un,kℓ )2 (dashed lines)

for different values of λPic. We used θ = 0.4 as well as λ2PCG = 0.1λ2Pic (top)
and λ2PCG = 10−3 λ2Pic (bottom). For λPic = 1, the parameter λPCG has to be
sufficiently small in order to get optimal rates.
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Figure 9.5: Ex. 1: Convergence rates of ηℓ(u
n,k
ℓ )2 (solid lines) and err(un,kℓ )2 (dashed lines)

for θ = 0.4 as well as different values of λPCG depending on λPic = 0.1 (top)
and λPic = 10−3 (bottom).
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Figure 9.6: Ex. 1: Number of total PCG iterations
∑n(ℓ)

m=1 k (solid lines) and number total
Picard iterations n(ℓ) (dashed lines) in each adaptive step for θ = 0.4, λ2Pic = 0.1
(top) resp. λ2Pic = 10−3 (bottom) and different values of λ2PCG.
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Figure 9.7: Ex. 1: Convergence rates of ηℓ(u
n,k
ℓ )2 (solid lines) and err(un,kℓ )2 (dashed lines)

for different values of λPCG depending on λPic = 0.1 (top) and λPic = 10−3

(bottom) and θ = 0.2. Additionally, we compare PCG to a non-preconditioned
CG iteration to solve the linear system in (8.14).
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(bottom) compared to non-preconditioned CG in (8.14).
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Figure 9.9: Ex. 1: Comparison of the number of Picard steps n(ℓ) for nested iteration

u1,0ℓ+1 = u
n,k
ℓ (solid lines) to u1,0ℓ+1 = 0 (dashed lines). We used λ2PCG = 10−3 λPic

as well as θ = 0.2 (top) and θ = 0.8 (bottom).
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Figure 9.10: Ex. 2: We plot the convergence of the full estimator sequence ηℓ(u
n,k
ℓ )2 for

different values of θ with λ2Pic = 10−2 and λ2PCG = 10−4 (top) as well as
λ2Pic = 10−4 and λPCG = 10−2λPic (bottom).
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Figure 9.11: Ex. 2: Convergence rates of ηℓ(u
n,k
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on λPic = 0.1 (top) and λPic = 10−3 (bottom) for θ = 0.4
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Figure 9.12: Ex. 2: Convergence rates of ηℓ(u
n,k
ℓ )2 for different values of θ with respect to

the cumulative complexity (8.94), where λ2Pic = 10−2 and λPCG = 10−4 (top).

For uniform refinement, we plot the single step complexity, i.e., ηℓ(u
k,k
ℓ )2 with

respect to #Tℓ. In addition, we compare the number of Picard steps n(ℓ) for

nested iteration u1,0ℓ+1 = u
n,k
ℓ (solid lines) to u1,0ℓ+1 = 0 (dashed lines) for θ = 0.2

and λ2Pic = 10−2 λ2PCG (bottom).
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boundary element method for light scattering by ice crystals and its imple-
mentation in bem++. Journal of Quantitative Spectroscopy and Radiative
Transfer, 167(Supplement C):40 – 52, 2015.

[Geo08] Emmanuil H. Georgoulis. Inverse-type estimates on hp-finite element spaces
and applications. Math. Comp., 77(261):201–219, 2008.

[GHP17] Gregor Gantner, Daniel Haberlik, and Dirk Praetorius. Adaptive IGAFEM
with optimal convergence rates: Hierarchical B-splines. Math. Models Meth-
ods Appl. Sci., 27(14):2631–2674, 2017.

[GHPS17] Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Bernhard Stiftner.
Rate optimal adaptive fem with inexact solver for nonlinear operators. IMA
J. Numer. Anal., 2017. DOI: 10.1093/imanum/drx050.

[GHS05] Ivan G. Graham, Wolfgang Hackbusch, and Stefan A. Sauter. Finite elements
on degenerate meshes: inverse-type inequalities and applications. IMA J.
Numer. Anal., 25(2):379–407, 2005.

175



Bibliography

[GMZ11] Eduardo M. Garau, Pedro Morin, and Carlos Zuppa. Convergence of an
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