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Kurzfassung

Das Ziel dieser Arbeit ist die Erweiterung der Analysis von adaptiven Algorithmen fiir Fi-
nite Elemente Methoden (FEM) und Randelementmethoden (BEM) von elliptischen Pro-
blemen im Rahmen des Lax—Milgram Lemmas zu elliptisch indefiniten und nichtlinearen
partiellen Differentialgleichungen. Diese unterschiedlichen Problemklassen teilen die Arbeit
in zwei Teile. Basierend auf einem a posteriori Fehlerschéitzer formulieren wir jeweils einen
adaptiven Algorithmus, welcher neben linearer Konvergenz auch zu optimalen Konvergenz-
verhalten des zugrunde liegenden Fehlerschitzers fiihrt. Die Analysis bedient sich dabei
eines komplett abstrakten Rahmens. Dieser erlaubt es, essentielle und hinreichende Eigen-
schaften des Fehlerschétzers und der zugrunde liegenden Netzverfeinerung zu bestimmen,
welche in weiterer Folge optimale Konvergenzraten und optimale Komplexitit garantieren.

Der Fokus des ersten Teils liegt auf kompakt gestorten Problemen. Diese Problemklas-
se beinhaltet allgemeine Diffusionsprobleme mit Konvektion und Reaktion, und im spe-
ziellen auch die Helmholtz-Gleichung. In bisherigen Resultaten fiir FEM und BEM mit
stiickweisen polynomiellen Ansatz- und Testrdumen, wird mit Hilfe des dualen Problems
die Existenz und Eindeutigkeit von diskreten Lodsungen fiir hinreichend feine Netze ga-
rantiert. Wie jedoch der abstrakte Rahmen dieser Arbeit zeigt, ist diese pessimistische
a priori Annahme bzw. Einschrinkung nicht notwendig. Die adaptive Netzverfeinerung
ist aufgrund von Stabilisierungseffekten in der Lage diese Startphase zu {iberwinden und
liefert, unabhéngig von der Netzweite des Startnetzes, asymptotisch optimales Abklingver-
halten des Fehlerschitzers. Als Anwendung der abstrakten Analysis beweisen wir optimale
Konvergenz von adaptiver FEM fiir kompakt gestorte elliptische Probleme.

Des Weiteren zeigen wir inverse Ungleichungen fiir alle fundamentalen Randintegralope-
ratoren der Helmholtz-Gleichung, welche bestehende Resultate fiir den Laplace Operator
auf beliebige Wellenzahlen verallgemeinern. Mit Hilfe dieser Abschitzung, gibt die Ar-
beit einen ersten Beweis fiir die Optimalitét der adaptiven Randelementmethode fiir die
Helmholtz-Gleichung. Eine andere Stéirke der BEM ist die Konvergenz des punktweisen
Fehlers mit hoherer Ordnung. Basierend auf Resultaten fiir elliptische Gleichungen zeigen
wir zusétzlich optimales Konvergenzverhalten fiir eine berechenbare obere Schranke fiir den
Punktfehler.

Im zweiten Teil betrachten wir nichtlineare Differentialgleichungen mit stark monotonen
Operatoren. Im Kontrast zu bestehenden Arbeiten betrachtet der abstrakte Rahmen neben
einer Picard-Iteration fiir das auftretende nichtlineare diskrete Problem, auch einen iterati-
ven PCG-Loser fiir lineare Gleichungssysteme. Zusétzlich zu optimalem Konvergenzverhal-
ten des Fehlerschétzers im Hinblick auf die Freiheitsgrade der verwendeten Diskretisierung
zeigen wir auch Optimalitdt in Bezug auf den kumulativen Rechenaufwand des adaptiven
Algorithmus.






Abstract

The goal of this work is to generalize the analysis of adaptive algorithms for finite element
methods (FEM) and boundary element methods (BEM) from elliptic problems, satisfying
the setting of the Lax—Milgram theorem, to certain classes of elliptic indefinite and nonlinear
problems. For each problem class, based on an a posteriori error estimator, we introduce
an adaptive algorithm and prove that these algorithms do not only lead to linear conver-
gence, but also guarantee optimal algebraic convergence behavior of the underlying error
estimator. The thesis is split into two parts, where each part analyzes one specific problem
class in an abstract framework. This general approach allows to formulate so-called axioms
of adaptivity for the error estimator as well as the underlying mesh-refinement strategy,
under which optimal algebraic convergence can be guaranteed.

First, we consider indefinite and compactly perturbed elliptic problems. This problem
class covers general diffusion problems with convection and reaction and in particular,
the Helmholtz equation. For a standard conforming FEM and BEM discretization by
piecewise polynomials, usual duality arguments show that the underlying triangulation
has to be sufficiently fine to ensure the existence and uniqueness of the Galerkin solution.
Extending the abstract approach of existing works, we prove that adaptive mesh-refinement
is capable of overcoming this preasymptotic behavior and eventually leads to convergence
with optimal algebraic rates. Unlike previous works, one does not have to deal with the
a priori assumption that the initial mesh is sufficiently fine. Due to stabilizing effects,
the adaptive algorithm can, in particular, overcome possibly pessimistic restrictions on
the meshes. As an application of the abstract framework, we prove optimal algebraic
convergence rates for adaptive FEM.

Further, we show inverse estimates for the most important boundary integral opera-
tors associated with the Helmholtz equation, which generalizes the existing results for the
Laplace equation to arbitrary wavenumbers. This allows us to give a first prove of optimal
convergence rates for adaptive BEM for the Helmholtz equation. One particular strength
of the boundary element methods is, that it allows for a higher-order point-wise approxima-
tion of the solution. As an application of the prior analysis, we generalize existing results
for the elliptic case and prove optimal convergence behavior with respect to an a posteriori
computable bound for the point error of the Helmholtz equation.

In the second part, we focus on nonlinear PDEs with strongly monotone operators.
Unlike prior works, the analysis includes the iterative and inexact solution of the arising
discrete nonlinear systems by means of the Picard iteration. We also consider an iterative
PCG-solver for the invoked linear system in the computation of each Picard step. Using
nested iteration, we show an improved linear convergence result as well as optimal algebraic
convergence behavior of the underlying error estimator. Improving existing results, we also
prove optimal convergence rates with respect to the cumulative computational costs of the
adaptive algorithm.






Danksagung

Diese Danksagung bietet mir Gelegenheit, jene Menschen zu wiirdigen, die mich seit Jahren
begleiten und mir damit ermdglichen, meine Ziele zu verwirklichen.

Zuerst mochte ich mich bei meinem Betreuer Dirk Praetorius bedanken. Dieser hat mich
wahrend meiner Promotionszeit nicht nur als Mentor, sondern inbesondere auch als Freund,
immer mit groflem Eifer und Hingabe unterstiitzt.

Grofler Dank gilt natiirlich auch Alex Bespalov und Timo Betcke sowohl fiir die Begut-
achtung der Dissertation als auch fiir ihre Expertise und Bemiihungen in der gemeinsamen
Forschung. Besonders mochte ich noch folgenden Personen danken:

e Meinen Arbeitskollegen Alex, Bernhard, Carl, Gregor, Giovanni, Markus, Michael,
Michele, Stefan und Thomas, dafiir, dass die Universitdt zu einem zweiten Zuhause
wurde und ich die Arbeitszeit mit Freunden verbringen durfte. Inbesondere auch
Ursula Schweigler fiir Berge an Schokolade und Hilfe beim Uberspringen so mancher
biirokratischer Hiirde.

e Allen Tarockierern und Freunden fiir unvergessliche Zeiten und Freundschaften seit
dem Kindesalter.

e Meinen Studienkollegen Fabian, Stefan und Stefanie, fiir unzihlige Losungen und
Erkldrungen im Studium.

e Meiner Familie, Angelika, Daniela, Martin, Peter, fiir den Riickhalt, die Unterstiitzung
und die Méglichkeiten, die sie mir gegeben haben.

Der groite Dank gilt meiner besseren Hélfte Anna. Ohne dich wére ich wohl nie soweit
gekommen. Danke fiir einfach Alles und noch vieles mehr.

Ich danke der TU Wien und dem FWF fiir die finanzielle Unterstiitzung meiner Forschungs-
arbeit im Zuge des Forschungsprojektes Optimal adaptivity in BEM and FEM-BEM coup-
ling (Grant P27005).






Eidesstattliche Erklarung

Ich erkldre an Eides statt, dass ich die vorliegende Dissertation selbststéindig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wortlich oder sinngeméfl entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 16. April 2018
Alexander Haberl






Contents

1 Introduction
1.1 Motivation . . .. ... ... ... ... ...,
1.2 State of the art and outline . . . . . ... ... ..
2 Sobolev spaces and basic notation
2.1 Basic notation . ... ... ... ... ... ...
2.2 Sobolevspaces . . .. .. .. ... ...
2.2.1 Sobolev spaces on a domain £ . . . .. ..
2.2.2  Sobolev spaces on the boundary 92 . . . .
2.2.3 Dualspaces . . . ... ... ...
2.2.4 Traceoperators . . . . . .. ... ... ...
3 Mesh-refinement
3.1 Triangulationsof . . . . . . . ... .. ... ..
3.2 Triangulations of @ . . . . . . .. ...
3.3 Axioms for the mesh-refinement . . . . . . . .. ..
3.4 Extended 1D bisection . . . . ... ... ... ...
3.4.1 Verification of the axioms . . ... ... ..
3.5 Newest Vertex bisection . . . ... ... ... ...
3.5.1 Verification of the axioms . . ... ... ..
3.5.2  Other refinement strategies . . . ... ...
3.6 Discrete function spaces . . . . ... ...
4 Abstract theory for compactly perturbed problems
4.1 State of the art and outline . . . .. ... ... ..
4.2 Abstract setting . ... ... oL
4.2.1 Existence of discrete solutions . . . . . . ..
4.2.2 Ellipticity of @(+, ) . . . . ... ... ...
4.3 A posteriori error estimator . . . . . ... ... ..
4.4 Adaptive algorithm . . . . . ... ... ... ...
4.5 Axioms of adaptivity . . . . . .. ... ...
4.5.1 Definiteness on the “discrete” limit space (E5)
4.6 Convergence . . . . . . . ..o e e
4.7 Linear convergence of adaptive algorithm . . . . .
4.7.1 Validity of the Céa lemma . . . . . . . . ..
4.8 Optimal convergence rates . . . . . . ... ... ..
4.8.1 Approximation classes . . . . ... ... ..
4.8.2 Data oscillations . . . . ... ... ... ..

[\)

© 00 0o o g~

10

11
11
12
14
15
16
16
16
18
18

21
21
22
22
25
26
27
28
29
31
34
37
37
38
41



Contents

4.8.3 Mainresult . . . . . . ... 42

5 Adaptive FEM for compactly perturbed problems 49
51 Model problem . . . . .. .. 49
5.1.1 Weighted-residual error estimator . . . . . . . ... ... ... .... 51
5.1.2 Adaptive algorithm . . . . . . .. ... ... 52

5.2 Verification of the axioms . . . . . . . ... .. .. ... ... ... ..., 52
5.2.1 Definiteness on the “discrete” limit space (E5) . . ... ... .. .. 57

5.3 Optimal convergence . . . . . . . . . . .o 58
5.4 Numerical experiments . . . . . . . . . ... L L L 59
5.4.1 Experiment with unknown solution . . . . . . . .. ... ... .... 60
5.4.2 Experiment with mixed boundary conditions . . .. .. .. .. ... 64

6 Adaptive BEM for the Helmholtz equation 69
6.1 State of the art and outline . . . . ... ... ... ... ........... 69
6.2 Boundary element method for the Helmholtz equation . . . . .. ... ... 70
6.2.1 Layer potential and boundary integral operators . . . .. ... ... 70

6.3 Model problem . . . . .. ... 72
6.3.1 Weighted-residual error estimator . . . . . . . ... ... ... . ... 75
6.3.2 Adaptive algorithm . . . . . . .. ... oo 76

6.4 Inverse estimates . . . . . . . . . . .. 76
6.4.1 Function spaces revisited . . . . ... ... ... ... ... 77
6.4.2 Potential decompositions . . . . . . ... Lo 77
6.4.3 Proof of Theorem 6.3 . . . . . . ... ... ... .. ... ...... 78

6.5 Verification of the axioms . . . . . . . . .. .. .. ... ... ... 82
6.5.1 Definiteness on the “discrete” limit space (E5) . .. ... ... ... 85

6.6 Optimal Convergence . . . . . . . . . . . . i 86
6.7 Hyper-singular integral equation . . . . . . .. ... ... ... ... ... 87
6.7.1 Framework . . . . .. . . ... 87
6.7.2 Weighted-residual error estimator . . . . . . . .. ... .. ... ... 88
6.7.3 Adaptive Algorithm and optimal convergence rates . . . . . . . . .. 88

6.8 Numerical experiments . . . . . . . . .. .. L L 90
6.8.1 Sound-soft scattering on an L-shaped domain . . . . . .. ... ... 90
6.8.2 Sound-hard scattering on a L-shaped domain . . . . . .. ... ... 92

7 Adaptive BEM for optimal convergence of point errors 101
7.1 Model problem . . . . ... ... ... e 101
7.1.1 Weakly-singular integral equation . . . . . . . ... ... .. ... .. 102
7.1.2  Weighted-residual error estimator . . . . . . .. ... ... ...... 103
7.1.3 Main idea and dual problem . . . . . . ... ... 103

7.2 Adaptive algorithm . . . . . . . .. ... 104
7.3 Optimal convergence . . . . . . . . . . . vt i 107
7.3.1 Separated linear convergence . . . . . . . . . . ... ... 108

7.4 Proof of Theorem 7.5 for Algorithm 7.1 . . . . . ... ... ... ...... 109
7.5 Proof of Theorem 7.5 for Algorithm 7.3 . . . .. ... ... ... ...... 112

ii



Contents

8 Abstract theory on strongly monotone nonlinear operators 115
8.1 State of the art and outline . . . . . .. .. ... ... .. L. 115
8.2 Abstract setting . . . . ... 116

8.2.1 Nonlinear discrete problem . . . . . .. ... ... ... .. ..... 117
8.2.2 Existence of solutions . . . . . . .. .. ... ... .. 117
8.3 Discretization and a priori error estimation . . . . ... ... ... ... .. 119
8.3.1 Linearized discrete problem . . . . . . . . ... ... ... ... .. 120
8.3.2 Inexact PCG solver for the Picard system . . . .. .. ... .. ... 121
8.4 A posteriori error estimator . . . . . . . . . ... 123
8.5 Adaptive algorithm . . . . . . . .. ... 123
8.6 Axioms of adaptivity . . . . . . ... 125
8.7 CONvergence . . . . . . . . o e 127
8.7.1 Lucky breakdown . . . . . . . . . ... 127
8.7.2 Estimator convergence . . . . . . .. ... oL 129
8.8 Linear convergence . . . . . . . . .. .o o e e e e e 133
8.9 Optimal convergence rates . . . . . . . . . . ... 135
8.9.1 Approximation class . . . . . ... ... 135
8.9.2 Mainresult . . . . . . . L 136
8.10 Optimal complexity . . . . . . . . . .. 138
8.10.1 Optimal convergence of the full estimator sequence . . . . . . . . .. 138
8.10.2 Linear convergence of the full estimator sequence . . . . . . . . . .. 143
8.10.3 Main result . . . . . . . . . .. 147

9 Adaptive FEM with fixpoint iteration 151

9.1 Model problem . . . . . ... 151
9.1.1 Weak formulation . . ... ... ... ... ... .. 152
9.1.2 Weighted-residual error estimator . . . . . . .. . ... ... ... .. 153

9.2 Verification of the axioms . . . . . . .. ... .. L L oo 153
9.2.1 Verification of (A1)—(A3) . . . ... ... .. ... 153
9.2.2 Verification of (E1)~(E4) . . ... ... ... ... ... .. ... 154

9.3 Optimal convergence . . . . . . . . . .. e 156

9.4 Numerical experiments . . . . . . . . .. .. Lo 156
9.4.1 Experiment with known solution (Ex. 1). . . . ... ... ... ... 157
9.4.2 Experiment with unknown solution (Ex. 2) . . ... ... ... ... 158

Bibliography 171

iii









1 Introduction

1.1 Motivation

The finite element method (FEM) is one of the most important tools in numerical analysis
to solve partial differential equations (PDEs). Over the last decades, it has shown its
potential by providing solutions to a variety of problems, arising in applications in natural
sciences as well as engineering. This overwhelming success gave a real impetus to the
numerical analysis of FEM and lead to the development of various numerical schemes
using the principal ideas of finite elements. The key ingredient in most of these methods
is based on the discretization of the domain of interest by a mesh of polygons, which
reduces the PDE to a finite dimensional linear system of equations and gives rise to a finite
dimensional approximation of the unknown solution. The quality of the thereby computed
approximation is controlled by the mesh-width of the underlying discretization. Hence, a
simple and commonly used technique to guarantee convergence of the error to zero is to
successively refine the corresponding mesh uniformly.

In general, geometry and data induced singularities of the unknown exact solution might
reduce the possible order of convergence significantly and thus spoil the accuracy of the
computed approximation. This leads to a dispensable increase of the underlying computa-
tional costs with respect to the quality of the achieved error. However, for many problems,
the reduction of the order of convergence as well as the additional computational costs can
be avoided by refining the mesh locally at these singularities. Doing this beforehand re-
quires a priori information of the unknown exact solution, which is in general not available.
This observation has led to the development of adaptive finite element methods (AFEM)
and adaptive mesh-refinement. Based on an a posteriori error estimator which reflects
the behavior of the approximation error, adaptive algorithms automatically steer the local
refinement to recover optimal rates of convergence.

In recent years, the analysis of convergence and optimal convergence behavior of adaptive
algorithms has matured. We refer to the seminal works [Dér96, MNS00, BDD04, Ste07,
CKNS08, FFP14] for some milestones of AFEM for linear elliptic PDEs as well as to
the works [FFK*14, FFK'15, FKMP13, AFF*17, Ganl13] for adaptive boundary element
methods (ABEM) in case of the Laplace equation.

The aim of this thesis is to extend the existing analysis on adaptive algorithms to certain
classes of indefinite or nonlinear elliptic problems. To that end, we develop suitable adaptive
algorithms and prove optimal algebraic convergence rates of the underlying error estimator.
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1.2 State of the art and outline

Chapter 2

First, we fix some basic notation and introduce Sobolev spaces on domains Q C R? as well
as on the corresponding boundaries 9€). Since these spaces are essential for the analysis
of the succeeding chapters, we recall the definitions and summarize their most important
properties.

Chapter 3

One essential ingredient of the analysis of adaptive algorithms is the underlying mesh-
refinement. In Chapter 3, we introduce meshes of domains Q@ C R? and boundaries 0.
Section 3.3 formulates the so-called axioms of refinement in the spirit of [CFPP14]. Then,
the a posteriori error analysis depends only on the refinement strategy properties (R3)—
(R6). This allows to formulate the upcoming chapters in a completely abstract setting,
independently of the actual refinement. Sections 3.4-3.5 recall that these axioms are sat-
isfied for newest vertex bisection (NVB) and extended bisection (EB), which are used in
specific settings for AFEM and ABEM later on.

Chapter 4

In the prior mentioned references, only linear problems satisfying the setting of the Lax—
Milgram theorem have been treated. In the more general case of compactly perturbed
elliptic problems, those works require a sufficiently fine initial mesh [MN05, CN12] or
strong monotonicity [FFP14] in order to guarantee optimal convergence. On the other
hand, numerical experiments show that adaptive algorithms recover the optimal rate of
convergence, independently of whether the initial mesh is sufficiently fine or not. Based
on the own work [BHP17], we introduce an abstract framework in the style of [CFPP14],
which is utilized to close this gap for conforming AFEM (Chapter 5) and enables a first
optimality proof for ABEM for the Helmholtz equation in Chapter 6.

To that end, let H be a Hilbert space and H* denote its dual space. Given f € H*, we
consider variational formulations of the type

a(u,v) + (Ku,v) = (f,v) forallveH, (1.1)

where a(+, ) is an elliptic and symmetric bilinear form on 4 and K : H — H* is a continuous
and compact linear operator. Given an initial triangulation 7y, a typical adaptive algorithm
consisting of the steps

(sote] — [mmwE] — (K] — [GFE] (2

generates a sequence of refined meshes 7, with corresponding nested spaces Xy C Xp11 C H
for all £ > 0. We stress that unlike to the prior works [MNO05, CN12, FFP14], Algorithm 4.4
in Section 4.4 will not be given any a priori information whether the mesh 7y is sufficiently
fine. Instead, we introduce an additional step in the algorithm, which performs uniform
refinement if the corresponding Galerkin solution of (1.1) does not exist. In Section 4.5,
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we define the axioms of adaptivity (E1)—(E4). These are a slight generalization of those
of [CFPP14] and collect all estimator dependencies of the analysis. We introduce an ad-
ditional axiom (E5). This ensures definiteness and therefore well-posedness of (1.1) on
the “discrete” limit space. We emphasize that (E5) sets no additional limitation to the
analysis and can be enforced by the adaptive algorithm using an expanded Dorfler marking
strategy (Proposition 4.7). Then, Section 4.7 proves linear convergence of Algorithm 4.4
(Theorem 4.14), and also addresses the validity of the Céa lemma with optimal constant 1
(Proposition 4.16). Section 4.8.1 introduces approximation classes in the spirit of [CFPP14]
and discusses their connection to other classes defined in [CKNSO08]. Finally, we prove opti-
mal algebraic convergence rates of Algorithm 4.4 in Theorem 4.21, independently of whether
the initial mesh is sufficiently fine or not.

Chapter 5

Chapter 5 applies the abstract framework of Chapter 4 to AFEM for general diffusion prob-
lems with convection and reaction; see Section 5.1. We consider piecewise polynomial ansatz
and test spaces with arbitrary but fixed polynomial degree p > 1. Section 5.2 introduces
the corresponding weighted-residual error estimator and proves that the axioms (E1)—(E4)
are satisfied (Proposition 5.3-5.5). Then, Algorithm 5.2 with the expanded Dorfler mark-
ing additionally guarantees (E5). Utilizing the abstract analysis of Chapter 4, we obtain
optimal convergence rates of the adaptive algorithm (Theorem 5.8). To underpin the the-
oretical findings, we conclude the chapter with numerical examples for the 2D Helmholtz
equation.

Chapter 6

Chapter 6 focuses on ABEM for the Helmholtz equation. First, Section 6.2 gives a brief
introduction to BEM, where we fix the notation and recall some basic properties of the
related boundary integral operators. This chapter generalizes existing results in [AFF*17,
FKMP13, FFK*14, FFK'15, Ganl3] for the Laplace equation to general wavenumbers
k > 0. To that end, we consider the weakly-singular integral equation: Given f € HY (1),
find ¢ € H/2(T") such that

(Vi ¢, ) = (f, ) forall e H'*(T), (1.3)

where ;. is the simple-layer operator for wavenumber k > 0. Building on a potential
decomposition from [Mell2], Section 6.4 proves an inverse estimate for the most important
boundary integral operators associated with the Helmholtz equation (Theorem 6.3). With
the help of the inverse estimate, Section 6.5 shows the validity of the estimator axioms (E1)-
(E4) for the weighted-residual error estimator corresponding to the model problem (1.3).
The main result of this chapter is Theorem 6.11. It proves that the adaptive algorithm
does not only lead to linear convergence, but also guarantees optimal algebraic convergence
rates. We emphasize that Theorem 6.11 is independent of, whether direct or indirect BEM
is used or the initial mesh is sufficiently fine. Section 6.7 transfers the main result to the
hyper-singular integral equation (Theorem 6.14) and highlights the occurring differences in
the proofs. We conclude this chapter with numerical experiments for 3D wave scattering
problems in Section 6.8.
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Chapter 7

As an extension of Chapter 6, the goal of Chapter 7 is the optimal computation of point-
values of solutions of the Helmholtz equation. Via the representation formula, BEM allows
for a high-order pointwise approximation of the underlying PDE solution. Utilizing Chap-
ter 4, we introduce two adaptive algorithms in Section 7.2 in the style of goal oriented
AFEM from [MS09] and [BET11]. Further, both Algorithms 7.1-7.3 incorporate the ex-
panded Dérfler marking from Proposition 4.7. Transferring ideas from [FGHT16] to the
Helmholtz setting, Theorem 7.5 proves optimal algebraic convergence of an a posteriori
computable upper bound for the point error. We emphasize, that the analysis of this
chapter covers in general also goal-oriented adaptivity for AFEM and thus transfers some
results of [FPZ16] to the Helmholtz setting.

Chapter 8

As for linear problems, the analysis of convergence and optimal convergence behavior of
AFEM for nonlinear problems has been a fertile field for research on numerical analysis,
cf. [Vee02, DK08, BDK12, GMZ12]. The interplay of adaptive mesh-refinement, opti-
mal convergence rates, and inexact solvers has already been addressed and analyzed, e.g.,
in [Ste07, AGL13, ALMS13, CFPP14] for FEM for linear PDEs and in [CG12] for linear
eigenvalue problems. The work [GMZ11] considers adaptive mesh-refinement in combina-
tion with a Kacanov-type iterative solver for strongly monotone operators. In the spirit
of [MSVO08, Siell], the focus is on a plain convergence result of the overall strategy, while
the proof of optimal convergence rates remains open. On the other hand, the influence
of inexact solvers for nonlinear equations on optimal convergence has only recently been
analyzed in our own work [GHPS17].

Chapter 8 considers elliptic nonlinear model problems with weak formulations of the
following type: Given F € H*, find u* € H such that

Ru*, vy =(F,v) forallveH, (1.4)

where 2 is a strongly monotone and Lipschitz continuous operator. Asin [GHPS17, CW17],
we consider an inexact Picard iteration to compute the discrete solution of (1.4) (Sec-
tion 8.3). Further, the computation of each Picard iteration requires to solve a discrete
Laplace problem (Section 8.3.2). Unlike the prior works [GHPS17, CW17], we do not
assume that the arising linear system is solved exactly. Instead, we consider an inexact it-
erative PCG solver. Section 8.5 introduces the adaptive strategy in Algorithm 8.7. Besides
the normal adaptive loop in (1.2), the a posteriori error estimator steers also the Picard
iteration as well as the PCG iteration. In the spirit of [CFPP14], the analysis is done in
a completely abstract setting. To this end, Section 8.6 reformulates the estimator axioms,
which slightly differ from Chapter 4. We first prove linear convergence of the adaptive algo-
rithm (Theorem 8.20) and optimal convergence rates in Theorem 8.21 for sufficiently small,
but independent control parameters Ap;c and Apcg. A more involved choice of the involved
parameters leads to stronger linear convergence result (Theorem 8.30), i.e., contraction of
the error estimator in each step of either PCG or Picard iteration. Although Algorithm 8.7
includes two nested iterative solvers, Theorem 8.32 proves that Algorithm 8.7 also guar-
antees optimal algebraic convergence with respect to the cumulative computational effort.
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This guarantees optimal computational complexity and improves and generalizes the ex-
isting result from [GHPS17].

Chapter 9

Chapter 9 is an application of Chapter 8. We consider AFEM for certain types of nonlinear
boundary value problems similar to those of [GMZ11, GMZ12, BSF*14, CW17] and show
that these problems fit in the strongly monotone setting of Chapter 8. We prove that the
corresponding weighted-residual error estimator satisfies the estimator axioms of Chapter 8.
Then, with the help of the abstract framework, we prove optimal convergence rates for the
underlying error estimator in Theorem 5.8. Finally, Section 9.4 underpins our theoretical
findings with numerical experiments for lowest-order AFEM in R2.






2 Saobolev spaces and basic notation

In this chapter, we introduce some basic notations and definitions. Section 2.2 defines the
necessary Sobolev spaces on domains Q C R? as well as on boundaries 9Q and Section 2.2.3
introduces the corresponding dual spaces. Last, Section 2.2.4 recalls the definition and
basic properties of the trace operators as well as of the conormal derivative. To abbreviate
notation, we use the following convention.

General notation. Throughout all statements, all constants as well as their depen-
dencies are explicitly given. In proofs, we may abbreviate the notation by use of the symbol
< which indicates < up to some multiplicative constant which is clear from the context.
Analogously, 2 indicates > up to a multiplicative constant. Moreover, the symbol ~ states
that both estimates < and 2 hold.

2.1 Basic notation

Let Q  R? with d = 2,3 be a bounded Lipschitz domain with piecewise C*°-boundary 9
and exterior normal vector n = n(y) for every y € 9Q; see, e.g., [SS11, Definition 2.2.10].
Further, let Q := R?\ Q denote the corresponding exterior domain. The Euclidean norm
of two points # € R is denoted by |z|. For measureable sets S C Q or S C 99 and if
it is clear from the context, we use the same notation |S| for the corresponding Lebesgue
measure and the surface measure.

For p > 0, let LP(Q) be the usual Lebesgue spaces on Q with corresponding norm
|- (). Analogously, Lebesgue spaces on the boundary 92 are denoted by LP(0€2) with
norm || - || z»(a0)- If a space H has additional Hilbert space structure, e.g., H = L?(€2), the
corresponding scalar product is denoted by (-, -).

Let v: Q C R — R. The weak gradient and the divergence of v are given by

d
Vv = (81 v,... ,8dv) and dive = Zajvj,
j=1
where, 0; := 8%, denotes the weak partial derivative (if it exists). This definition gives rise
to the Laplace operator

d
Av = div(Vv) = Z@?v.
1=1

Moreover, for n € N, let @ € Nfj be some multi index, where |a| := > " ; o;. Then, a
function v has a weak derivative g := 0% of order « if

/ gw dz = (=1)l / v0%w dz  for all w € C§°(9),
Q Q
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where C§°(Q2) is the space of all infinitely differentiable functions with compact support.
Note that if 0%v exists, e.g., v € L?(Q) and 0% € L?(f2), then the weak derivative is
unique.

2.2 Sobolev spaces

In this section, we give a short introduction on Sobolev spaces on domains ) as well as on
their boundaries 9€). In contrast to spaces on domains €2, which are needed throughout the
entire thesis, the usage of Sobolev spaces on boundaries is mostly restricted to the chapters
on adaptive boundary element methods, i.e., Chapter 6 and Chapter 7. We emphasize that,
although we recall just one definition, most spaces can be defined equivalently in different
ways. Therefore, we refer to the monographs [McL00, SS11, Tar07, Tri83, Tri95] for further
details.

2.2.1 Sobolev spaces on a domain 2

The Sobolev spaces on domains are defined in the usual sense; see, e.g., [McL00, p. 58]
or [SS11, Section 2.3]. To that end, for £ € Ny we define H*(Q2) by

HY Q) := {veL*Q) : 0% € L*(Q) exists in the weak sense for all |a| < ¢}.

The corresponding scalar product (-, -) He() Is given by
(u, v)peq) = Z (0%, 0%)2(q) for all u,v € HY(Q),

o<t

which induces the norm HUH?{‘(Q) 1= (v, v)ge(q)- For £ =1, the latter definition simplifies
to

H(Q):={vel*): Vve L*(Q)?  exists in the weak sense }

with scalar product

(u,v)Hl(Q):/uv dx—i—/Vu-Vv dz,
Q Q

and norm [u[%,, ) = (u, u) () = HuH%Q(Q)—i—HVuH%Q(Q . Fractional-order Sobolev spaces
are defined by the K-method of interpolation, i.e., for £ € Ny and 0 < s < 1, we define
H3(Q) = [HY(Q), HH(Q)]s2; see, e.g., [Tri95, SS11]. Further, the analysis of ABEM
for the Helmholtz equation additionally requires certain Besov spaces. Since these spaces
are only needed in Chapter 6, we postpone their definition to Section 6.4.

2.2.2 Sobolev spaces on the boundary 9f2

We emphasize that Sobolev spaces on the boundary can be defined in different ways; see,
e.g., [SS11, McL00, HWO08]. Suppose that I' = 9Q or ) # I' C 99 is a relative open set
which stems from a Lipschitz dissection 092 = T'U9T'U (0Q2\T") (see [McL00, p. 99]). Then,
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for s € {—1/2,0,1/2} the Sobolev spaces H'/?*5(9Q) are defined as in [McL00, p. 96-99]
via Bessel-potentials and local Lipschitz parametrizations of 0.
Ifr ; 051, let Eyr denote the extension operator which extends a function on I' to 9€2

by zero. Then, the spaces HY/2+5(I') and H'/2+$(T') are defined as in [AFF*17] by
HY23(D) .= {v|p : v € HY?+5(00)},
HY?+5(D) == {v : Boyrv € HY?T5(6Q)}.

The corresponding norms are given by

Feller ey = weHli/rzlis(aﬂ){HwHHl/uS(BQ) twlr = v},
[0l 17245 () 7= [ Eor 0ll g/e+s oy

Next, we recap some important properties of HY/ 2+5(T) and HY 2+5(T). For further details
as well as a rigorous proof, we refer to [AFFT17, Facts 2.1] or [SS11, Section 2.4]. Let
Vr(:) : HY(0Q) — L%(09) denote the usual surface gradient, i.e., for sufficiently smooth
functions u, it holds that Vru = Vu — (Vu - n)n.

e For s =1/2, there hold the following equivalences
||u\|%{1(aﬂ) = HU||%2(39) + ||Vr uH%Q(aQ) as well as
el gy = 30y + 195l

e For s =0, the norms [ul| f1/2(5) and ||u\|ﬁ1/2(r) can be equivalently described by the
Aronstein-Slobodeckii norms of v and FEyr u.

e For s = 0, the spaces H'/2(99) and HY/2(I') can equivalently be obtained by inter-
polation with the K-method, i.e.,

HY?(00Q) = [L*(09), H (09)] and HY*(T) = [L*(1), HY(T)]

1/2,2 1/2,2°

To simplify notation and if it is clear from the context, we identify any v € HY/2+s (") with
its extension Eyrv € HY/?2T5(9Q).

2.2.3 Dual spaces

Let (-, o and (-, -)opq denote the duality pairings which extend the L?(2) and L?(9Q)-
scalar product. For s € {—1/2,0,1/2}, the negative-order Sobolev spaces on the boundary
are defined by duality as
H-2H9)(90) .= HY* (00,
ﬁ—(1/2+5)(r) = H1/2+5(F)/,
H*(1/2+s)(r) — ﬁ1/2+3(r)/;
see, e.g, [AFFT17]. Note that for all 1) € L?(T"), it holds that Eqr € H'/2(9Q) as well

as Hw”ﬁ*/?(l‘) = [|Eo,r ¥l g-1/290); see, e.g., [AFFT17]. Further, we recall the continuous
inclusions

E[:I:(l/2+s) (F) C H:l:(l/2+s)(r) and ﬁi(1/2+s)(89) _ H:I:(l/2+s) (aQ)
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2.2.4 Trace operators

In this section, we recall the definitions of the interior and exterior trace operator as well
as the corresponding conormal derivative. To that end, let 2 be a Lipschitz domain and
1/2 < s < 3/2. Then there exists a linear and continuous interior trace operator

At HY(Q) — HV2(0Q)  such that 4™ w = wlpq  for all w e CO(Q);

see, e.g., [SS11, Theorem 2.6.8]. Let u € H) := {u € HY(Q) : —Au € L*(Q)}. We define
the interior conormal derivative operator via the first Green’s formula as
At Q) — H_l/Q((?Q) such that,
(Yt At ) o0 = (Vu, Vo)g — (—Au,v)q  for all v € HY(Q);

see, e.g., [AFF*17]. The exterior counterparts 7&*' and 7{** are defined analogously as

follows. Let U € R% be a bounded Lipschitz domain such that @ ¢ U ¢ R%. Then, there
exists a corresponding linear and continuous exterior trace operator

A&t H(U N\ Q) — HY2(80) such that,
Y w = wlaq for all w € CO(U \ Q).

The exterior conormal derivative operator $<* : HA (U \ Q) — H~1/2(09) is defined by

(W u, A5 v)aq = (Vu, Vo)ing — (—Au, v)ine
for all v € HY(U \ Q) with 4§**v = 0 on 9U. For bounded C*-domains with k € NU oo, the
range of the trace operator can even be expanded to 1/2 < s < k; see [SS11, Theorem 2.6.9]
or [Néd01, Chapter 4]. Moreover, accoring to [SS11, Remark 3.1.18 (d)] for piecewise
C>®-boundaries ™ is continuous for —1/2 < s < so with sg > 1/2. A proof is found
in [BCO1, Daus8g].

The trace operators give rise to the following jump terms. If a function v admits an interior
and an exterior trace, we define the jump
int

[u)o == 26" u — 5" u.

Analogously, if u admits an interior and an exterior conormal derivative, the corresponding
jump is given by

[ul = 7P u = 91"

For further details on trace operators, we refer to [SS11, Section 2.6-2.7]. The trace operator
also allows to incorporate boundary conditions to the function spaces. To this end, the
space of H'(Q)-functions with zero boundary data is defined by

Hy(Q) == {ve H'(Q) : 7{"v =0 for a.e. z € 0Q}.

The definitions of the corresponding discrete function spaces are given in Section 3.6.

10
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The analysis of adaptive algorithms heavily relies on the discretization as well as on the
underlying mesh-refinement strategy. To this end, Section 3.1 and Section 3.2 introduce
discretizations of domains €2 and boundaries 9€). Section 3.3 formulates some essential
properties of the underlying refinement strategy, which are sufficient to prove optimal con-
vergence rates for certain adaptive algorithms in an abstract setting. Depending on the
dimension, we focus on (simplicial) triangulations for the discretization of Q@ C R? with
d =2 or d =3 as well as for boundaries 02 with d = 3. In case of a one dimensional
boundary, the mesh is simply given by a partition. In Section 3.4 and 3.5, we state that the
refinement axioms of Section 3.3 are satisfied for extended 1D bisection (EB) and newest
vertex bisection (NVB). Finally, the discretizations give rise to corresponding discrete sub-
spaces, which are introduced in Section 3.6.

3.1 Triangulations of (2

Let © C RY with d = 2,3 be a polygonal or polyhedral Lipschitz domain. Further, let
conv(S) denote the convex hull of a set S C RY The following definition gives rise to
conforming meshes 7% on a domain €.

Definition 3.1. We call a set T a conforming triangulation of Q, if the following condi-
tions are satisfied:

i) Each element T € T is a (d+ 1)-simplex, i.e., there exist d+ 1 affinely independent
points x1,...,xq11 € § such that

T :=conv{xy,...,Tq41}
The set of vertices of an element T is denoted by N(T') := {x1,...,2q11}-

ii) The intersection of two elements is either empty, a joint node, a joint edge (d > 2)
or a joint facet (d = 3), i.e., for two elements T, T' € T it holds that

TNT' = conv (N(T)NN(T)).
i11) The union of all elements cover 1, i.e.,

Q= U T.
TeTR

11
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Note that Definition 3.1 ii) guarantees that the triangulations do not contain any hanging
nodes. Further, we define the set of all nodes A of a triangulation 7% by

Nya = N(T) == | N(T)

TeT

For an element 7' € 7% and a set of elements U C T%, the element patch is given by

w(T) = U{T/ eTe: T'"NT#0} CQ and wlf) = U w(T) C Q.
Teu

Similar, for 2 € N(T%), we define the node patch by
wiz) =w({z}) = J{T" e T : T'n{z} £0} C Q.

Further, it holds that w(T) = w(N(T)). For each mesh T, the (local) mesh-size function
hra € L%®(TY) is denoted by

hra(T) := hyal|p == |T|Y? forall T € T%,

where | - | denotes the volume (d = 3) or the area (d = 2) of an element. Next, we want to
measure the degeneracy of a given triangulation. This can be done by the shape regularity
constant given by

diam(7')4

o(T):= —=—— with diam(7T) := sup |z —y|.
’T‘ z,y€T

We call T% a y-shape regular triangulation if it holds that

2y .= T) <
o(T7) = max o(T) <.

3.2 Triangulations of 0f2

For boundary element methods, we additionally need to define regular triangulations of the
boundary 0. Let © C R? with d = 2, 3 be a bounded Lipschitz domain with piecewise C'>°-
boundary 99; see, e.g., [SS11, Definition 2.2.10]. We suppose that T'=9Q or ) # T' C 99
is a relative open set which stems from a Lipschitz dissection 9 = T'U 9’ U (002 \ T'); see,
e.g., [McLO00, p. 99]. Let Tief denote the reference element defined by

d—1
Trer := {m eR¥1:0 <z,...,xq9-1 <1and ij < 1},
j=1
i.e., Trer = (0,1) is the open unit interval for d = 2 or Tyef = conv{(0,0),(1,0),(0,1)} is
the open Kuhn simplex for d = 3. Analogously to Definition 3.1, we introduce conforming

triangulations on the boundary I' as follows. A similar definition is also found in [SS11,
Section 4.1.2].

12
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Definition 3.2. We call a set TV a regular triangulation of T' if the following conditions
are satisfied:

i) Each T € TV is a subset of T' and there exists a corresponding bijective element map
gr € C®(Tyes, T) such that gr(Trep) = T. The set of nodes is given by N(T) :=
91N (Trep))-

i) For all T,T" € TV, the intersection T NT" is either empty, a joint node (d > 2), or
a joint facet (d = 3).

iii) The union of all elements cover T, i.e.,
r=Jr
TeTt

iv) In the case of d = 3, there holds the following: If T N'T" is a facet, there exist
facets f, f" C 0T et of Tref, such that T NT" = gr(f) = gr/(f'), and the composition
grtogr i f' — f is even affine.

The definitions of the set of nodes and the element patches, are verbatim to Section 3.1.
Similarly, the (local) mesh-size function hyr € L*(T) is given by

hre (T) = harlr = T/,

where | - | denotes the surface measure of an element. To introduce shape regularity, let
Gr(z) := Dgp(x)TD gp(z) € RE-D*@=1) he the symmetric Gramian matrix of gr and
Amin(Gr(2)) and Apax(Gr(z)) its extremal eigenvalues. We call 71 a y-shape regular
triangulation, if the following holds:

e For all T € TT, the corresponding element maps gr(-) satisfy that

hre(T)? | Amax(Gr(z))
o(T) := su + < ~. 3.1
( ) ZBGTIr)ef (Amln(GT(x)) hTF(T)2 ) v ( )
e If d = 2, it additionally holds that
~ (T T
= S 2
o(T") = max 7 < (3.2)

T'NT#Q

Note that the Gramian matrix G (z) is symmetric and positive definite. This implies that
0 < Ain(GT) < Amax(Gr) and hence, o(T) > 0. The additional assumption for d = 2
ensures that the mesh-size of neighboring elements remains comparable.

If T is the union of (d—1)-dimensional hyperplanes, e.g., when I' C 92 with a polyhedral
domain ©Q C R% all element maps gr(-) are affine. The corresponding Gramian matrix G
of each element map gr(-) is constant and hence, the latter definition generalizes the concept
of v-shape regularity on C*° boundaries I'. For further details, we refer to [AFF117, SS11].

13
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3.3 Axioms for the mesh-refinement

The next lemma recaps some important properties of y-shape regular meshes. A proof for
boundary meshes is, e.g., found in [AFFT17, Lemma 2.6].

Lemma 3.3. Let T € {T%, 7'} be a y-shape regular triangulation. Then, there exists a
constant Chesn > 0, depending only on v and in case of a boundary mesh, additionally on
the Lipschitz parametrization of OS2, such that the following assertions i)—ii) hold:

i) For all T,T" € T such that T NT # 0, it holds that h7(T) < Cpesnhr(T").

i1) The number of elements in an element patch is bounded by Cresh, i-€., #w(T) < Cesh
forall T €T.

ii1) It holds that maxper dl%T(T) < Cesh- O]

To abbreviate the notation, we introduce the following convention. If (discrete) quantities
are related to some triangulation, this is explicitly stated by use of appropriate indices, e.g.,
he is the local mesh-size function to the triangulation 7,, ve is a generic discrete function
in the corresponding discrete space X,, and 7,(+) is the error estimator with respect to the
triangulation 7y.

From now on, suppose that T, € {7'0, TF} is a given regular and vy-shape regular tri-
angulation. Further, suppose that refine(-) is a fixed mesh-refinement strategy, such that
given a conforming triangulation 7, and M, C 7, the call 7, = refine(7,, M, ) returns the
coarsest conforming refinement 7 of T4 such that all T € M, have been refined, i.e.,

e 7, is a conforming triangulation of Q or I,
e forall T € 7T,, it holdsT:U{T/Eﬁ, : T'QT}7
e Mo CT\T,

e the number of elements #7; is minimal amongst all other triangulations 7’ which
share the three foregoing properties.

Furthermore, we write 75 € refine(7,), if 75 is obtained by a finite number of refinement

steps, i.e., there exists n € Ny as well as a finite sequence 7@, ... 7T of triangulations
with corresponding sets M) C 70 such that

¢ 7.=T0,

o TUHY = refine(7W, MU) for all j =0,...,n—1,

In particular, it holds that 7, € refine(7,). Suppose that Ty is a given regular and ~-
shape regular initial triangulation. To abbreviate notation, we define the set of all possible
triangulations which can be obtained by refining 7y as T := refine(7y). The analysis of
optimal convergence rates for adaptive algorithms heavily relies on the underlying mesh-
refinement strategy. To deal with this dependency, we formulate the following refinement
axioms.

14
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R1) local mesh-size reduction: Refinement yields a contraction of the local mesh-size
function on refined elements, i.e., there exits 0 < gmpesn < 1 such that 7, € refine(7,)
implies that

ho’T < @mesh h.’T forall T € T, \ Ts. (3.3)

R2) uniform 7-shape regularity: There exists a constant s > 0 such that for all
triangulations T, € T it holds that

0(7e) = maxo(T) < Yot and  F(Te) < Yot if d =2 and U7ecr. (34

R3) splitting property: Each refined element is split in at least 2 and at most Cyo, > 2
many sons, i.e., for all 7, € T and all M, C 7,, the refined triangulation 7, =
refine(7,, M,) satisfies that

H#(Te\To) + #Te < #To < Coon #(Te \ To) + #(Te N To). (3.5)

R4) overlay estimate: For all meshes 7 € T and T,, 7, € refine(7T), there exists a
common refinement 7, & 75 € refine(7,) Nrefine(7;) C refine(7) which satisfies that

#H(Te®dTo) < #Te+#To —#T. (3.6)

R5) mesh-closure estimate: There exists Cpesp, > 0 such that for all sequences (7¢)sen,
of successively refined meshes, i.e., Ty41 = refine(7;, My) with sets of marked ele-
ments My C Ty, it holds that

/-1
#To — #To < Cumesh Y #M; forall £ €N, (3.7)

J=0

R6) permutability of refinement steps: For sequences (My)}_; and (M\g)znzl of
marked elements with 7; = refine(7;_1, M;_;) for all j = 1,...,n as well as ’7A; =
reﬁne(ﬁfl,ﬂjfl) for all j =1,...,m, it holds that

n m
UM=UM, = T=Tn (3.8)
§=0

=0

We emphasize that (R6) extends the refinement axioms in [CFPP14], but is necessary for
the analysis of compactly perturbed problems in Chapter 4.

3.4 Extended 1D bisection

First, we consider extended 1D bisection (EB) for refining meshes on a 1-dimensional
boundary I' C 99 with © C R2. The algorithm is well known and used, e.g., in [FLPOS,
AFF*13, EFLFP09, EFGP13]. For sake of completeness we include the formulation of the
algorithm from [AFF*13].

15
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Algorithm 3.4 (EB). INpUT: Mesh T,, set of marked elements MEO) = My C Ty and
1:=0.

(i) Define U = U {T" € TAMY - TOT' £ 0 and hlr > o(To) halr}-
(i) If UD # 0, define MY = ) UUD | increase i — i + 1, and goto (i).
(iii) If U = (0, bisect all marked elements T € Mﬁ” to obtain To.

OUTPUT: Refined mesh To, with T\ To = Msi).

In addition to simple bisection of the marked elements, Step (i) and Step (ii) of Algo-
rithm 3.4 guarantee that the ratio of the local mesh-size of neighboring elements remains
bounded. In particular, this implies (R2).

3.4.1 Verification of the axioms

First, (R1) is shown in Lemma 3.5 (Section 3.5.1). The remaining properties of EB are
proved in [AFF*13, Theorem 2.3]. [AFFT13, Theorem 2.3 (i)] guarantees that o(7,) <
20(To) for all 74 € T. This implies (R2) with v := 20(7p). Since EB uses bisection, (R3)
follows directly from the definition of the refinement strategy with Cson = 2. Further, the
proofs of axiom (R4) and (R5) are found in of [AFF*13, Theorem 2.3 (ii)—(iii)]. Note that
NVB is a binary refinement rule. Hence, the order of refinement does not matter which
implies (R6).

3.5 Newest Vertex bisection

As second mesh-refinement strategy, we discuss newest vertex bisection (NVB); see, e.g.,
[Ste07] for d = 2 and [Ste08b] for d = 3. We use 2D NVB for refining triangulations of
Q C R? as well as for surface triangulations on I' C 99 with Q C R3. Further, 3D NVB
is used for refinement of simplicial triangulations on € C R3. A heuristic for refinement
of an element with 2D NVB is illustrated in Figure 3.1. For an exact formulation we refer
to [Ste07] or [Ste08b] in the 3D case.

3.5.1 Verification of the axioms

First, we prove (R1) for surface triangulations of I' C 9Q where Q C R? with d = 2,3.
Note that in case of meshes on the boundary, the bisection of an element with EB or NVB
is understood in the following way. Let T € T, be a marked element with element map
gr(Tret) = T. Bisection of the reference element T (in case of a triangle according to
2D-NVB (Figure 3.1)) produces sons Tl ... ,Trkef C Tyef- Then, with the element map g7,
we obtain two sons T4,...,T, C T with T = Ule T, and T; = gT(Trief) forall:=1,... k.
We obtain the following lemma.

Lemma 3.5. There exist 0 < qumesh < 1, such that for all Te,To € T with T, € refine(7q) it
holds that ho|r < Gmesh he|T 0n all T € To \ To. In particular, there holds reduction of the
local mesh-size (R1).
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>~ A~ S~
N A o Ao

Figure 3.1: For each triangle T" € 7,, there is one fixed reference edge, indicated by the
double line (top left). If T is marked for refinement, we mark its reference
edge. Then, refinement of T is done by bisecting the reference edge, where its
midpoint becomes a new vertex of the refined triangulation 75. The reference
edges of the son triangles are opposite to this newest vertex (bottom left). To
avoid hanging nodes, one proceeds as follows: We assume that certain edges
of T, but at least the reference edge, are marked for refinement (top). Using
iterated newest vertex bisection, the element is then split into 2, 3, or 4 son
triangles (bottom).

M. - Lo

Figure 3.2: Newest vertex bisection does only lead (up to similarity) to a finite number of
triangles. Above, the different colors represent similarity classes. Starting with
a triangle (left), iterative use of NVB does only create (up to similarity) new
triangles in the first two steps (mid left and mid right). Hence in following
steps, no new similarity classes are generated.

Proof. To prove the lemma, we argue by contradiction. To that end, let (7*)nen, (T )nen C
T, be sequences of refinements with 7J* € refine(7.") and elements 7' € TJ* \ 7' as well
as T € 7'\ TJ* such that

‘ n

e

TSI as well as

This implies that |Tg' \ T2'|/|73'| — 0 as n — oo. Further, for all n € N there exists
T € Tg such T ; T3 C T. We obtain a corresponding sequence i? ; f.” C Trer with
gr(T?) = TP as well as gp(T7) = T7". Since bisection is done at first on the reference
element, it holds that |T7| < 1/2|T%| for all n € Ny. Then, y-shape regularity implies that
det Gr(z) =~ (he(T))?4=1) = |T|? for all = € Ty This reveals the contradiction

L _ [T \Ty| | Sz et Gr®)|? dt 17\ T 1yee

- ~ ] o — [ ] (o] _) O,
2 = T2 Sz | det Gr(t)[1/2 dt 73|
and concludes the proof. O
In case of meshes on domains 2 for d > 2 there holds (3.3) with gpesh = 2-1/d and

hence (R1). For a proof we refer to [CKNS08, Ste07]. Figure 3.2 illustrates for d = 2, that
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(up to similarity) only a finite number of triangles can be constructed during refinement
of an initial mesh 7y. A similar result for d = 3 and a rigorous proof of (R2) for arbitrary
d > 2 can be found in [Ste08b].

The splitting property (R3) is proved in [GSS14] with 2 < Cyon < 00, where Cyo depends
only on 7y and d. For d = 2, it holds Cyon = 4 (see Figure 3.1).

The proof of the overlay estimate (R4) is found in [CKNS08, Ste07]. The mesh-closure
estimate (R5) has first been proved for d = 2 in [BDDO04] and later for d > 2 in [SteO8b].
Both works [BDDO04, Ste08b] require an additional admissibility assumption on the initial
mesh 7p. While for d = 2, [BDDO04, Section 2.2] gives a proof that every conforming mesh
admits a labeling such that the admissibility condition is satisfied, a result for d = 3 is still
missing. On the other hand, [KPP13] shows that the admissibility condition is unnecessary
for d = 2.

Note that NVB is a binary refinement rule. Hence, the order of refinement does not
matter which implies (R6), see [Ste08b].

3.5.2 Other refinement strategies

Red-green-blue refinement (see, e.g., [Ver13)), fails (R4) even for d = 2; see [Pav10, Satz
4.15] (in German) or [Feil5] for a counterexample. For red-refinement with first-order hang-
ing nodes, the validity of (R3)—(R4) is shown in [BN10]. For mesh-refinement strategies
in isogeometric analysis, we refer to [MP15] for T-splines and to [BGMP16, GHP17] for
(truncated) hierarchical B-splines. A rigorous proof of (R1)—(R6) for (truncated) hierar-
chical B-splines is also found in [Ganl7a]. For further details on mesh-refinement strategies
which satisfy (R3)—(R4), we refer to [BN10, MP15, Feil5] and to the discussion in [CFPP14,
Section 2.5].

3.6 Discrete function spaces

In this section, we introduce discrete function spaces on domains €2 and boundaries I'. To
this end, let T8 be a regular triangulation of Q. For some fixed polynomial degree p > 1,
let

SP(TE) = {(Va€cC(Q) : VT € T Vi|r is a polynomial of degree < p}

be the usual finite element space of globally continuous piecewise polynomials with the
inclusion SH(7&) C HY(Q). The corresponding conforming subspace of HE(2) will be
denoted by SS’O(T,Q) = SH(TE) N HL(Q).

In case of discrete spaces on the boundary, let 7! be a regular triangulation of I'. For a
fixed p > 0, we define the space of (discontinuous) piecewise polynomials by

7312(7?) ={V, e L®T): VT € 7L, W, 0 gr is a polynomial of degree < p}.

Further, let SE(TF) := PR(TL) N HY(T) resp. §13(7:F) = PR(TH) N H'(T") be the space of
continuous piecewise polynomials. We emphasize the following (compact) inclusions

PE(TE) c L2(0) c HV2(T) and  SX(TY) ¢ HY(T) ¢ HY?(D); (3.9)
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3.6 Discrete function spaces

see, e.g., [AFFT17]. In the case of I' = €, it even holds that SP(TJ) = SX(TY) ¢ HY(T).
To shorten notation and if its clear from the context, we further omit the additional index

and write SP(7,) instead of Sh(TE) or SE(TY) as well as SJ(7,) instead of Sh0(T).
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4 Abstract theory for compactly perturbed
problems

4.1 State of the art and outline

In recent years, the analysis of convergence and optimal convergence behavior of adaptive
finite element methods (AFEM) as well as adaptive boundary element methods (ABEM)
has matured. We refer to [D6r96, MNS00, BDD04, Ste07, CKNS08, FFP14, CFPP14] for
some milestones for AFEM and the works [FFK'14, FFK*15, FKMP13, AFF*17, Gan13]
for ABEM. In a more general case of compactly perturbed elliptic problems, existing results
have the limitation that the initial mesh has to be sufficiently fine see, e.g., [MN05, CN12,
FFP14] for AFEM. In the mentioned references, only problems satisfying the Lax—Milgram
theorem have been treated. On the other hand, numerical examples in the engineering
literature suggest that adaptive mesh-refinement for finite element methods performs well
even if the initial mesh is coarse; see, e.g., [SH96, BI98, BI99] in the case AFEM of the
Helmholtz equation.

In this chapter, we introduce a complete abstract setting in the spirit of [CFPP14].
This allows to formulate an adaptive Algorithm 4.4 and prove convergence with optimal
algebraic rate, without limitations on the initial mesh. The abstract framework is based
on some essential properties of the underlying error estimator and mesh-refinement, and
covers in particular AFEM as well as ABEM.

Given an initial triangulation 7y, a typical adaptive algorithm (1.2) generates a sequence
of refined meshes 7, with corresponding nested spaces Xy C Xpy 1 C H for all £ > 0.
We stress that unlike the prior works [MNO05, CN12, FFP14], Algorithm 4.4 will not be
given any information on whether the current mesh is sufficiently fine to allow for a unique
solution. In particular, we do not assume that the given initial mesh 7y and, in fact, any
adaptive mesh 7, generated by Algorithm 4.4 is sufficiently fine. Independent of the missing
a priori information, we derive similar results as for uniformly elliptic problems, see, e.g.,
[CKNS08, FFP14, CFPP14] and the references therein. Following some ideas of [FFP14],
we prove convergence (Proposition 4.9), linear convergence (Theorem 4.14), and optimal
algebraic convergence rates (Theorem 4.21). The main results of this chapter are based on
the recent own article [BHP17].

Outline of chapter. Section 4.2 introduces the model problem and provides the func-
tional analytic framework of the a posteriori analysis. The underlying error estimator and
the precise formulation of the adaptive algorithm are given in Section 4.3—4.4. Section 4.5
adapts [CFPP14] to the present setting and formulates the necessary estimator axioms.
Utilizing the estimator as well as the refinement axioms from Chapter 3, Section 4.6 gives
a first (plain-) convergence result for the adaptive algorithm. Linear convergence is shown
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in Section 4.7, which also addresses the validity of the Céa lemma. In Section 4.8.1, we in-
troduce approximation classes with respect to the error estimator in the spirit of [CFPP14]
and discuss their connection to other definitions using the total error (see e.g., [CKNSO08]).
Finally, we conclude the chapter with the proof of optimal algebraic convergence rates in
Section 4.8.

4.2 Abstract setting

The model problem is set in the following abstract framework. Let ¢ R¢ with d = 2,3 be
a bounded Lipschitz domain with polyhedral, or in case of boundary elements, piecewise
C*-boundary 0€2. Let H denote a separable Hilbert space over K € {R,C} with norm
Il - |l%. Further, suppose that a(-, -) : H x H — K is a hermitian, continuous, and elliptic
sesquilinear form on H, i.e., there exists some constant a > 0 such that

a|v]3 < a(v,v) forallveH. (4.1)

Since the sesquilinear form a(-, -) is elliptic, the a(-, -)-induced energy norm || v ||? :=
a(v, v) is an equivalent norm on H, i.e., || v | ~ ||v|» for all v € H.

Let ‘H* denote the dual space of H, and let (-, -) denote the corresponding duality
pairing. Suppose that € : H — H* is a compact linear operator and f € H*. We consider
the following weak model problem: Given f € H* find u € H such that

b(u, v) :=a(u, v)+ (Cu, v) = (f,v) foralveH. (4.2)

We suppose that (4.2) admits a unique solution which is usually proved by the Fredholm
alternative. Let 7y be a given regular initial mesh and suppose that refine(-) is a fixed
refinement strategy satisfying the refinement axioms (R1)—(R6) of Chapter 3. For each
triangulation 74 € T := refine(7p), let Xo C H denote the corresponding conforming
finite-dimensional subspace. Further, suppose that refinement of the underlying meshes
Ts € refine(7,) leads to nestedness Xy C X, of the corresponding subspaces. Then, the
Galerkin formulation of (4.2) reads as: Given f € H*, find U, € X, such that

b(Us, Vo) = (f, Ve) forall V, € A,. (4.3)

We additionally assume that iterated uniform mesh-refinement leads to a dense subspace
of 7—[ i.e., for 76 := To and the inductively defined sequence 7}“ = reﬁne(ﬁ,/\/lg) with
Mg C ’72 for all £ € Ny, it holds the following: If #{E €Ny : ./\/lg 7}} oo (i.e., there
are infinitely many steps that perform uniform refinement), then H = [J,2, Xg. Note that
the latter assumption is satisfied in most generic situations and can be guaranteed by use
of suitable discrete spaces, see e.g., Chapter 5-6.

4.2.1 Existence of discrete solutions

In general, (4.3) may fail to allow for a (unique) solution U, € X,. However, existence
and uniqueness are guaranteed if the corresponding mesh 7, is sufficiently fine (see Corol-
lary 4.2), e.g.,

el o) < H < 1.
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4.2 Abstract setting

Therefore, if (4.3) does not allow for a unique solution U, € X,, we employ one step of
uniform refinement.

The next proposition is an improved version of [SS11, Theorem 4.2.9]. It guarantees the
existence and uniqueness of discrete solutions U, € X, for sufficiently fine meshes 7,. Even
though the result appears to be well-known, we did not find the precise statement in the
literature. We note that a similar result can be found in [BS08, Theorem 5.7.6], where
additional regularity assumptions for the dual problem are required. Instead, our proof
below proceeds without considering the dual problem, and hence no additional regularity
assumptions are needed.

Proposition 4.1. Suppose well-posedness of (4.2), i.e.,
VvweH [w=0 <= (WweH bw,v)=0)]. (4.4)
Suppose that (Xp)en, is a dense sequence of discrete subspaces Xy C H, i.e.,

lim min [jv — Vi|l% =0 lveH. 45
Jim min, {|v =Vl for allveH (4.5)

Then, there exists some index o € Ny such that for all discrete subspaces Xy C H with
Xe 2 Xy, , the following holds: There exists B > 0 which depends only on X, , such that the
inf-sup constant of Xe is uniformly bounded from below, i.e.,

PR bV , Va))|

_ 2 es Vel 5 350, 4.6
Wee\(0) v oy Tl Vel (4.6)

In particular, the discrete formulation (4.3) admits a unique solution U, € Xs. Moreover,
there holds uniform validity of the Céa lemma, i.e., there is a constant C' > 0 which depends
only on b(-,+) and B but not on X, such that

— Ul < i — Vil 4,
= Vsl < € min [l = Vall (@7)

If the spaces Xy are nested, i.e., Xy C Xpq1 for all ¢ € Ny, the latter guarantees convergence
llu —Upllg — 0 as £ — oo.

Proof. Suppose well-posedness (4.4) of (4.2). Ellipticity (4.1) of a(-, -) combined with the
Fredholm alternative imply existence and uniqueness of a solution u of (4.2) for all f € H*;
see [SS11, Theorem 4.2.7]. Let X, be an arbitrary discrete subspace of H with dual space
X¥. Then, the bilinear form b(-, -) induces the linear and continuous operator

By : Xo — XY, (BeWe, Vo) = b(W,, V,) forall V,,W, € A,.
For convenience of the reader, we split the remainder of the proof into four steps.

Step 1: Validity of (4.7). Since X, is finite dimensional and since we use the same
discrete ansatz and test space, well-posedness of the discrete problem (4.3) is equivalent to
the discrete inf-sup condition

b(We , Vs)| [Be We |l

.= inf sup o es Yol g 1P ellT 4.8
et (0} vee® o TWalllValln — weathio TWalls (4.8)
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4 Abstract theory for compactly perturbed problems

Note that (4.8) implies that B, is injective. Then, the finite dimension of Xy, i.e., dim Xy =
dim X} < oo implies surjectivity. Moreover according to [Dem06, Theorem 3|, there holds
for arbitrary W, € X, that

BullUe =Wl < sup 12U =We, Vo)l
VeeXa\{0} [Velln
b(u — W, , Ve
T e z ) < ||Bal | — Wal2
Ve, \{0} Vel

The triangle inequality yields that

LA
fe

Since the latter estimate holds for arbitrary functions W, € X,, we obtain inequality (4.7)
with

[u = Usllz < llu = Wellz + [[We = Us|l2 < (1 )Hu = Well

M b
C:=14 —, where |B.||<M:= sup M
Be verrfoy lwllallvlix
weH\{0}
Step 2: It remains to prove the following assertion:
[Be Wellxs

38 > 034, € NgVX, C H with X, D A, > 8. (4.9)

n
weed\ {0} [[Welln
We will prove (4.9) by contradiction. Let us assume that (4.9) is wrong and hence

[BeWe |l x;

VB> 0 Vi € Ny 3X, C H with X, D X,
0 “ wexn 0 [Welln

< B. (4.10)
For each ¢4 = ¢ > 0 and § = 1/¢, we can thus find a discrete subspace /i;g =X, C H as

well as an element W, € .)/C'\g such that

X2 Xy, [Welw=1, and |[BVi]g. <1/t (4.11)

Since the sequence /Wg is bounded, without loss of generality, we may assume weak conver-
gence Wy, — w € H as £ — oo.

Step 3: There holds w = 0. Let 13@ H — AA’g be the orthogonal projection onto /1/;[
and v € ‘H. Weak convergence Wy, — w as well as b(-, v) € H* imply that b(W,, v) —
b(w, v) as £ — co. Moreover, we employ |Wy|ly =1 and || Ppv|ly < ||v||x to estimate

bW, )| < [b(We, Pov)| + [6(We, v — )| < [(BWy, P)| + [6(Wy, v — Pp)l
< 1BeWell e llvllae + M |l — Pl
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4.2 Abstract setting

Recall density (4.5) and nestedness X, C /1/;[ C H. With the orthogonal projection, this
implies that

lv = Poll = min [jv— Vil < Joigy v — Valla 225 0.

Ve,

Recall that H%gWng* < 1/¢ form (4.11). With this, we thus conclude that ]b(Wg, v)| —
4

0 as £ — oo. Altogether, we obtain that b(w,v) = 0 for all v € H. Hence, well-
posedness (4.4) yields that w = 0.

Step 4: Assumption (4.10) yields a contradiction so that (4.9) follows. Recall
that ||Wy||yx = 1. Ellipticity of a(-, -) and the definition of b(-, -) yield that

B O —~ —~ ~ —~
IWell3e < alWe, We) < [b(We, We)| + (€W, We)| < IBeWell g + I EWell3--

Recall that compact operators turn weak convergence into strong convergence. Hence
W, = w = 0 in H implies that ||Q:Wg||%* — 0 as £ — oo. Together with H%gWgH <1/¢,

we thus obtain the contradiction 1 = HWgH’H —0as { — 0. O

We emphasize, that the proof of Proposition 4.1 heavily relies on definiteness of bilinear
form b(-, -) on the Hilbert space H (see assumption (4.4)). Usually, for adaptive algorithms
there holds | J,2, X # M and hence well-posedness of the discrete limit-space cannot be
guaranteed. In order to overcome this difficulty, we have to additionally ensure the definite-
ness of the discrete limit-space (see Section 4.5.1 and Axiom (E5)), which can be guaranteed
by modifying the marking strategy in Algorithm 4.4 (see Proposition 4.7).

Recall that uniform mesh-refinement leads to a sequence of dense subspaces H = |J;2, /'/L;g
Under the abstract assumptions, the following statement holds as an immediate conse-
quence of Proposition 4.1.

Corollary 4.2. Let To = 76 and 724_1 = reﬁne(ﬁ,Mg) with ./\/lg cT, for all £ € Ny.

Suppose that #{f €Ny : 72} = 00, i.e., uniform refinement is performed infinitely
many times. Then, there em’sts m € Ny and > 0 such that for all discrete spaces Xy C H
with Xe 2 Xy, it holds the following:

o The related inf-sup constant (4.6) satisfies Bo > > 0.

o X, admits a unique solution Us € Xy of (4.3) which is quasi-optimal in the sense of
inequality (4.7).

o For ¢ > m, the Galerkin solutions Uy € X, yield convergence Zlim ||lu— ﬁg”’H =0. O
—00

4.2.2 Ellipticity of a(-, )

The work [FFP14] considers problems, where the left-hand side of (4.2) is strongly elliptic
on H = H}() in the following sense: There exists & > 0 such that

a|[v]|3 < Re (a(v,v) + (€v, v)) forall v € H. (4.12)
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4 Abstract theory for compactly perturbed problems

The next lemma shows that the stronger assumption (4.12) already implies that a(-, -) is
elliptic in the sense of (4.1). Hence, the given abstract framework generalizes the analysis
of [FFP14].

Lemma 4.3. Let a > 0 and a(-, -) such that a(w, w) > 0 for all w € H \ {0} and (4.12)
is satisfied. Then there exists a constant a > 0 with

alvl3 <a(v,v) forallveH.

Proof. We argue by contradiction, i.e., we assume the following: For all € > 0, there is
some v € H with |a(v, v)| < €||v]|3,. Choosing ¢ = 1/n, we obtain sequences (v,)nen and
(Wn )nen in H with

2
anHH as well as  w,, := _Un .
n [[vnll#

la(vy , vy)| <

By definition, w, is bounded. Without loss of generality, we may thus suppose weak
convergence w, — w in H. Weakly lower semicontinuity yields that

la(w,w)| < liminf |a(w,, , wy,)| =0
n—oo
and hence w = 0. Compactness of the operator € implies strong convergence ||€wy, ||+ — 0
as n — oo. Finally, ellipticity (4.12) gives

n—oo

a = allwn|} < Re (a(wn, wy) + (Cwy, wy)) < 1/n + ||€wplgs ~— 0.

This contradicts & > 0 and concludes the proof. O

4.3 A posteriori error estimator

In order to define a suitable a posteriori error estimator, we have to ensure unique solvability
of the discrete problem (4.3) for the underlying meshes 74 € T and corresponding discrete
subspaces Xy C H.

To this end, suppose that for all T € T, € T such that a unique discrete solution
to (4.3) exists, there exists an associated refinement indicator with ne(-) : 7o — R such
that 1e(7T") > 0. The related a posteriori error estimator is given by

Ne := 1Ne(Ts), where

1/2
Ne(Us) 1= ( Z 77.(T)2> / for all subsets Uy C To.
TEU.

(4.13)

In order to prove optimal rates of convergence of adaptive finite element or boundary
element schemes, we have to ensure additional properties of the error estimator. These so
called azioms of adaptivity from [CFPP14] play an essential role in the analysis later on
and are discussed in Section 4.5. We also refer to the Chapters 5-7 for different applications
of the weighted-residual error estimator concerning finite and boundary elements.
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4.4 Adaptive algorithm

4.4 Adaptive algorithm

Based on the a posteriori error estimator from the previous section, we consider the follow-
ing adaptive algorithm.

Algorithm 4.4. INPUT: Parameters 0 < 0 < 1, Cpark > 1, initial triangulation Ty and
parameters U_1 :==0 € Xy and n—1 := 1.

ADAPTIVE LOOP: For all £ =0,1,2,..., iterate the following steps (i)—(v):

(i) If  (4.3) does not admit a unique solution in Xp:
— Define Uy :=Uy_1 € Xy and np :=np_1,
— Let Tyyq := refine(Ty, Ty) be the uniform refinement of Ty,

— Increase ¢ — {+ 1, and continue with Step (i).
(ii) Else compute the unique solution U, € Xy to (4.3).
(iii) Compute the corresponding indicators ny(T) for all T € Ty.

(iv) Determine a set My C Ty of up to the multiplicative constant Cpare minimal cardi-
nality such that

o< S Ty (414)
TeM,;

(v) Compute Ty+q := refine(Ty, My), increase £ by 1, and continue with Step (i).

OuTPUT: Sequences of successively refined triangulations Ty, discrete solutions Uy, and
corresponding estimators 1.

Remark 4.5. e Apart from Step (i), Algorithm 4.4 is the usual adaptive loop based on
the Dorfler marking strategy [Dor96] in Step (iv) as used, e.g., in [CKNS08, FFP1/,
CFPP1}] for AFEM and in [FFK" 1}, FFK" 15, FKMP13] for ABEM.

o For Cpark = 1, the algorithmic construction of a set M), with minimal cardinality which
satisfies, for instance, the Dérfler criterion requires sorting of the refinement indicators
and thus results in logarithmic-linear complexity. Instead, Stevenson [Ste07] proposes an
approximate sorting based on binning. This allows the algorithmic construction of some
set My in real linear complexity which satisfies the Dorfler criterion and has minimal
cardinality up to the multiplicative factor Ca = 2.

The following lemma exploits the validity of Proposition 4.1 for uniform mesh-refinement
(Corollary 4.2) and recaps some important properties of the sequence of discrete solutions
produced by Algorithm 4.4.

Lemma 4.6. Let (Uy)een, be the sequence of discrete solutions generated by Algorithm 4.4.
Then, there exists a minimal index £y € Ng such that the discrete model problem (4.3)
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4 Abstract theory for compactly perturbed problems

e does not admit a unique solution in Xy for 0 < £ < fy,
e but admits a unique solution Uy, € Xy, .

In particular, the corresponding mesh Ty, is the {y-times uniform refinement of To. Fur-
thermore, there exists {1 € Ng, such that (4.3) admits a unique solution Uy € Xy for all
steps € > {1 of Algorithm 4.4.

Proof. Because of Corollary 4.2, the uniform refinement in Step (i) of Algorithm 4.4 will
only be performed at most finitely many times. This concludes the proof. O

4.5 Axioms of adaptivity

To prove convergence with optimal algebraic rates for Algorithm 4.4, we rely on the
following axioms of adaptivity which are slightly generalized when compared to those
of [CFPP14], since we always have to suppose solvability of the related discrete prob-
lem (4.3).

E1l) stability on non-refined element domains: There exists Cyy, > 0 such that for
all 7o € T and all 75 € refine(7,), the following holds: Provided there exist unique
discrete solutions U, € X, and U, € X, it holds that

176(Te N Ta) = 16(To N T2)| < Caty U — Ul

E2) reduction on refined element domains: There exist Cieq > 0 and 0 < greq < 1
such that for all 74 € T and all 75 € refine(7,), the following holds: Provided there
exist unique discrete solutions U, € X, and U, € A, it holds that

1o(To\Te)? < Grea Me(Te\To)? + Crig [Us — Usf3;.

E3) reliability: There exists 5rel > 0 such that for all 7, € T the following holds:
Provided there exists a unique discrete solutions U, € &, it holds that

Hu - U.H?-L < vavrel Te-

E4) discrete reliability: There exists C > 0 such that for all 7, € T and all 7, €
refine(7,), there exists a set Re,0 € To such that the following holds: Provided there
exist unique discrete solutions U, € X, and U, € A, it holds that

|Us — Uslltt < Cre1 85  e(Reo) aswellas To\ 7o € Rao,

with #Reo < Crel #(7Te \ T5), where 5, > 0 is the inf-sup constant (4.6) associated
with A,.
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4.5 Axioms of adaptivity

4.5.1 Definiteness on the “discrete” limit space (Eb5)

We need an additional assumption (see (E5) below) which goes beyond the axioms of
adaptivity in [CFPP14]. To this end, let us define the “discrete” limit space X := (Jpe ) X
Because of nestedness Xy C AXpyq for all £ > 0, X is a closed subspace of H and hence a
Hilbert space.

E5) definiteness of b(-,:) on X: For all w € X, the following implication holds: If
b(w,v) =0 for all v € X, then w = 0.

While (E1)—(E4) rely only on the a posteriori error estimation strategy, the property (E5)
involves the “discrete” limit space X = (Jjo, Xr generated by Algorithm 4.4 and is hence
less accessible for the numerical analysis. Clearly, (E5) is satisfied if b(-, -) is elliptic (4.12).
Moreover, note that well-posedness (4.4) of (4.2) implies that (E5) is satisfied, if X = H.
In many generic situations, the identity X, = H is automatically satisfied; see Section 5.2.1
in case of AFEM and Section 6.5.1 in case of ABEM.

The next proposition shows that ||h| ;<) — 0 and hence (E5) with X = H can
also be guaranteed by employing an expanded Dorfler marking strategy in Step (iv) of
Algorithm 4.4. We stress that this does not affect optimal convergence behavior in the
sense of Theorem 4.21 below.

Proposition 4.7 (expanded Doérfler marking). Suppose 0 < 6 < 1. Employ the notation
of Algorithm 4.4. Let C! ., > 0. For all { € Ny, we suppose that the set My, C Ty in
Step (iv) of Algorithm 4.4 is selected as follows:

o Let M), C Ty be a set of up to the multiplicative constant C!_ . minimal cardinality
such that 00} < ne(M})2.

o Suppose that Ty = {T1,...,Tn} is sorted such that |T1| > |To| > -+ > |Tn]|.
o With arbitrary 1 <n < #M, define My := M, U{T1,...,T,}.

Then, My C Ty is a set of up to the multiplicative constant Cyark = 2CY . minimal cardi-
nality such that the usual Dorfler marking criterion HW < ne(My)? is satisfied. Moreover,
Algorithm 4.4 with the expanded marking guarantees ||he|| oo (@) — 0 as £ — co. In partic-

ular, assumption (EB) is satisfied with Xoo = H.

Proof. The claims on My are obvious. Recall that uniform refinement leads to a sequence of
triangulations (’72) teN, With a corresponding dense sequence of discrete subspaces (Xg) 2eNo -
Let (7¢)¢en, denote the sequence of meshes, generated by Algorithm 4.4 with the expanded
marking. Axiom (3.3) guarantees that refinement of an element leads to a contraction of
the local mesh-size, i.e., hyi1|7 < qmesh he|7 for all T'€ M,y C Ty \ Tps1. Since each mesh Ty
is a finite set and each step of the adaptive algorithm guarantees that (at least) the element
T € T, with the largest size |T| ~ (hg|7)? is refined, this implies necessarily lhellpoo (@) — 0
as £ — oo.

Further, (R6) implies that the order of refinement does not matter. Hence, for all 7\; €
(ﬁ)geNo there exits a mesh 7;, € (ﬁ)geNo such that E c reﬁne(7}). Nestedness of the
corresponding subspaces implies Xj, D X Density of (Xg)geNO implies that H = Ue o Xe
and concludes the proof. O
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The following technical lemma exploits the validity of (E5) and collects some essential
properties of the meshes and solutions generated by Algorithm 4.4.

Lemma 4.8. Suppose (E1), (E2), (E4), and (E5). Employ the notation of Algorithm 4.4
for 0 < 0 < 1. Then, there exists {2 € Ny and § > 0 such that for all To € refine(Ty,) with
Xeo C Xoo, the following assertion (a) holds:

(a) The corresponding inf-sup constant (4.6) is bounded from below by Se > > 0. In
particular, there exists a unique Galerkin solution Uy € Xo to (4.3) which is quasi-
optimal in the sense of inequality (4.7).

Moreover, let To € T and T, € refine(T,)Nrefine(7y,) and suppose that the Galerkin solution
Us € X, exists. Then, there hold the following assertions (b)—(c) with some additional
constant Crmon > 0 which depends only on Cgy, Cred, Cral, and B:

(b) uniform discrete reliability, i.e., ||Us — Us|l3 < Cra f71 Ne(Reo)-
(¢) quasi-monotonicity of error estimator, i.e., 7o < Chon 7e-
If in addition Xoo = H, then the following assertion (d) holds:
(d) discrete reliability (E4) implies reliability (E3), i.e., ||[u — Us|l3 < Crel 71 e

Proof. Step 1: Proof of (a) and (b). Employ Proposition 4.1 with H replaced by X.
Axiom (Eb5) ensures well-posedness of (4.4) on the discrete limit space Xo. This proves (a)
and provides 2 € Ny and S > 0, such that the inf-sup constant (4.6) for all discrete
subspaces X, C X, with X, D A&}, is uniformly bounded from below by 3, > 5 > 0.
Together with (E4), this also proves (b).

Step 2: Proof of (c). To prove quasi-monotonicity (c), we follow the lines of [CFPP14,
Lemma 3.5]. Stability (E1) and reduction (E2) imply that

Mo < dreae(Te \ 7o)? + 210(To N Ta)? + (205, + Chea) 10 — Us3,
With discrete reliability, we obtain that
o < 205 + (205, + Crea) Ciat 557 e(Re o).
This concludes (c) with constant Cron = (2 4 (2C3, 4+ C2,) C%, 5*2)1/ 2,

Step 3: Proof of (d). We follow the proof of [CFPP14, Lemma 3.4]. Recall that
uniform refinement yields convergence (Corollary 4.2). Hence, given any ¢ > 0 and 7, € T,
there exists a uniform refinement 7o € refine(7,) with corresponding discrete solution
U, € X(T,) such that ||u — Us||3 < e. Discrete reliability (E4) implies that

Hu - UOH’H S Hu - ﬁH’H + Hﬁo - U.H’H S €+ Crel /80_1 770(720,0) S €+ Cfrelﬂ_1 WO(RO,O)'

Since £ > 0 is arbitrary, this implies (d) and concludes the proof. O
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4.6 Convergence

In this section, we show plain convergence ||u — Uy|lyy — 0 as £ — oo for Algorithm 4.4.
For the proof of linear convergence and convergence with optimal algebraic rates, we refer
to Section 4.7 resp. Section 4.8. The next proposition is the main result of this Section.

Proposition 4.9. Suppose (E1)~(E5) and 0 < 6 < 1. Employ the notation of Algo-
rithm 4.4. Then, the “discrete” limit space X = Ujoy Xy contains the exact solution to
problem (4.2), i.e., u € Xoo. Moreover, there holds

lim ||u— Ul = 0= lim n,.
£—00 £—00

The proof of Proposition 4.9 relies on the following estimator reduction which (in a
weaker form) is first found also in [CKNS08]. We use a slightly generalized version, which
is used in [FPZ16, Lemma 9] and follow ideas of [CFPP14, Lemma 4.7].

Lemma 4.10 (generalized estimator reduction). Stability (E1) and reduction (E2) together
with the Dérfler marking strategy from Step (iv) of Algorithm 4.4 imply the following per-
turbed contraction: For each € Ny and all Ts € refine(Ty41) such that the discrete solutions
Up € Xy and U, € X, exist, it holds that

N2 < qest M + Cest [|Us — Up||3-
The constants Cest > 0 and 0 < gest < 1 depend only on (E1)—(E2) and on 0 < 0 < 1.

Proof. Let § > 0 and Cest := C%, 4+ (1 + 67 1) C2,. The young inequality, stability (E1),
and reduction (E2) imply that

12 = 0o(To \ To)? + 16(To N T2)?
2
< Qred 774(72 \ 7?3)2 + CrQed HUo - UKH’QH + (W(% N 72) + CsthUo - UZHH)
< Grea e(Te \ T)2 4+ (14 8) 1e(To N T2) + Cost |Us — Ul

Note that 75 € refine(7y41) implies My C Ty \ Te41 € To \ 7o. In combination with the
Dorfler marking criterion, we obtain that

12 < (14 0) (0 — (1 = auea) WA (Ti \ To)?) + Cost [Us = Uil
S (1 + 5)(1 - (1 - Qred)a) 77[? + Cest ”Uo - U@H%—l

Choosing § > 0 sufficient small, such that gest := (1 + 5)(1 — (1 = qrea) 9) < 1, we conclude
the proof. O

With the estimator reduction of Lemma 4.10, we can proof plain convergence of Algo-
rithm 4.4.

Proof of Proposition 4.9. Let {5 € Ny be the index defined in Lemma 4.8. To simplify
notation and without loss of generality, we may assume ¢5 = 0 throughout the proof. In
order to prove that 7, — 0 as ¢ — oo, we show that each subsequence (1, )ren, of the
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4 Abstract theory for compactly perturbed problems

estimator sequence (1n¢)sen, contains a further subsequence (ngj )jeNo with e, — 0 as
j — 0. According to basic calculus, this is in fact equivalent to 7, — 0 as £ — co. We
split the proof into several steps.

Step 1: Boundedness of estimator sequence. We apply Lemma 4.8 with £5 = 0.
Then, quasi-monotonicity of the error estimator proves 7y < Chon 1o for all £ € Ny.

Step 2: Weak convergence of discrete solutions (subsequence).  Recall that
a(-, -) is elliptic and induces an energy norm || - ||. Reliability (E3) in combination with
Step 1 implies that

IUN < Bwll+llu—=Uell < Nl + sup n; < o,
£eNg

i.e., the sequence of discrete solutions is uniformly bounded in H. Let (7, )ken, be an

arbitrary subsequence of (1)¢en, With corresponding discrete solutions Uy, . Since U, €

Xy, € X, there exists a subsequence (Up, )jen, of (U, )ken, and some limit w € #H such
J

that Uy, — w weakly in H as j — oo. According to Mazur’s lemma (see, e.g., [Rud9l,
J

Theorem 3.12]), convexity and closedness imply that X is also closed with respect to the
weak topology and hence w € X,. Let v € X, and let Py : H — A, denote the orthogonal
projection with respect to || - ||, i.e.,

v =Pl = min ||Jv—V,| foralveH.
VeeX,

By definition of X, this also implies strong convergence ||v — Py || — 0 as £ — oco. Recall
that the product of a weakly convergent sequence and a strongly convergent sequence leads
to convergence of the scalar product. Moreover, compact operators turn weak convergence
into strong convergence, i.e., Qngj — Cw strongly in H* as j — oco. With these two
observations, we derive that

j—o0

4.3
0 (:) <fa ngj’U> - G(ngj ; Pfkjv) - <Q:ngj s Pfkjv> — <f’ U> - (Z(’U),U) - <Q:U}, U>.

This proves that the weak limit w € X, solves the Galerkin formulation

a(w,v)+ (€w,v) =(f,v) forallve Xy. (4.15)

Step 3: Strong convergence of discrete solutions (subsequence). Note that
| w — Un, I = [lw > — 2 Re a(w, ngj) + Un, II>. Therefore, strong convergence ||w —
Up, || — 0 is equivalent to weak convergence U;, — w plus convergence of the norm

J

I ngj I = llw]|. It thus only remains to prove the latter. With the previous observations,
it holds that
(4.3)
”’ Ufkj H‘Q = a(Ufkijékj) = <f7 Ufkj> - <¢U5kj ) Ufkj>

j—roo 4.15)

(s w) — (€w, wy "2 a(w,w) = w2

Step 4: Estimator reduction principle (subsequence). Let (ngj )jeN, denote
the estimator subsequence corresponding to (ngj )jeNo- With ﬁkjﬂ € reﬁne(ﬁkjﬂ) and
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4.6 Convergence

Lemma 4.10, it holds n%k_ﬂ < Qest n?kj + Cost HngHl — ngj H% Moreover, Step 3 implies

J
convergence ||Uy, ~ —Up, || =~ || Ue —Up, || — 0 as j — oco. Hence, the subsequence
kjt1 kj k kj

1
(ij )jeN, is contractive up to a sequence that converges to zero. Therefore, basic calculus

(see [AFLP12, Lemma 2.3]) proves convergence 1y, — 0 as j — oo.
J

Step 5: Estimator convergence (full sequence). We have shown that each subse-
quence (1, )ken, of (1¢)cen, has a further subsequence (1, )jen, wWith n,, — 0 as j — oo.
J J
As noted above, this already yields n;, — 0 as £ — oc.

Step 6: Strong convergence of discrete solutions (full sequence). Finally, reli-
ability (E3) implies that ||u — Uyl S m¢e — 0 as £ — oco. This concludes the proof. O

Remark 4.11. Note that the proof of Proposition 4.9 relies only on (E4)—(E5) to prove
boundedness of the estimator sequence (n¢)een, (see Step 1 of the proof). Instead, we can
also modify the marking Step (iv) of Algorithm 4.4 so that the assertion of Proposition 4.9
remains true, if (E1)—(E3) still hold, while (E4)—(E5) fail. To this end, consider the
following alternative criterion:

(iv) If me > maxj—g,._¢—1nj, define My :=T;. Otherwise, determine a set M, C Ty of up
to the multiplicative constant Care minimal cardinality such that 977% < me(My)2.

To see that this new marking criterion ensures that (n¢)sen, is bounded, we argue as follows:

Case 1: Suppose that there exists an M € N such that n, < max;j—q . ,—17; for all
> M. Then, it even follows that 1, < max;—g . v—17; for all £ € Np.

Case 2: If the assumption of Case 1 fails, the alternative Step (iv) of Algorithm 4.4
enforces infinitely many steps of uniform refinement. Therefore, Corollary 4.2 applies
and provides m € Ng and C > 0 such that all discrete subspaces Xo T H with
Xe 2 X, admit a unique solution Uy € Xo of (4.3) which is quasi-optimal in the
sense of inequality (4.7). Since (E1)~(E3) hold, [CFPP14, Lemma 3.5] applies and
proves quasi-monotonicity of the estimator, i.e.,

No < CmonNe  for all Te € refine(Ty,) and all T, € refine(T,).
In particular, this implies ny < Cion Nm for all £ > m, and therefore

ne < max{Cmon, 1} max n; for all { € Np.
=

Hence, Case 2 cannot happen.

Note that besides Step 1 all steps of the proof of Proposition 4.9 rely only on (E1)—(E3).
Therefore, we obtain ny — 0 as £ — oco. In particular, this implies that Case 1 above is
the generic case and that optimal convergence rates will not be affected by the new marking
strategy.
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4 Abstract theory for compactly perturbed problems

4.7 Linear convergence of adaptive algorithm

The analysis in this section adapts and extends some ideas from [FFP14]. We note that
the latter work uses strong ellipticity (4.12) of b(-,-), while we only rely on ellipticity (4.1)
of a(-,-) (see Section 4.2.2). The goal of this section is to prove linear convergence in
Theorem 4.14.

Lemma 4.12 ([FFP14, Lemma 3.5]). Suppose (E1)—(E5) and 0 < 6 < 1. Employ the
notation of Algorithm 4.4. Then, the sequences (eg)sen and (Ep)oen defined by

u—Uy
o= J Tt Joru s Ue
0 else,

0 else,

Upr1-Uy
Ey .= {||Ul+1Ul||H for U1 # Us,

converge weakly to zero, i.e.,

lim (¢, eg) =0 = lim (¢, Ey) for all ¢ € H*.
{— 00 {—00
Proof. We consider the sequence (ef)sen,. The proof of the claim for (Ep)pen, follows
along the same lines. To prove e, — 0 as £ — oo, we show that each subsequence (e, )xen,
admits a further subsequence (egkj )jeN, such that ety — 0 as j — co. Let (ef, )ren, be a
subsequence of (eg)¢en,. Because of boundedness ||, | < 1, there exists a further weakly
convergent subsequence (egkj )jen, such that ey, — W E H as j — oo. It thus remains to
show that w = 0.

Proposition 4.9 yields that Uy, u € Xo. This implies that e, € X, and hence w € X.
With Galerkin orthogonality we obtain that

0=0bu—U,, Vo) =a(u—U,, Vo) + (C(u—"U,), Vo) forall V, € A,. (4.16)

Let n € N be arbitrary and V;, € &;,. For £, > n and e, # 0, the Galerkin orthogonality
proves

b(u—Us, , Va)

=0.
Hu - Ufkj ”’H

b(efkj ) Vn) =

Hence, b(egkj ; V) = 0 for all £, > n. With weak convergence, this yields that

b(w, V,) = lim b(egkj , Vo) =0 forall V, € &, and all n € Ny.

J—00

Let v € Xs. By definition of X, there exists a sequence (V;,)nen, with V,, € X, and
lv = V|l — 0 as n — oco. Therefore the latter identity implies that

b(w,v)= lim b(w, V,) =0 forall v e X.

n—oo

Finally, definiteness of the discrete limit space (E5) concludes w = 0. O
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4.7 Linear convergence of adaptive algorithm

The following quasi-orthogonality (4.17) is a consequence of Lemma 4.12 and the Galerkin
orthogonality (4.16). For elliptic b(-, -), it is proved in [FFP14, Proposition 3.6]. Our proof
essentially follows those ideas, but since we lack ellipticity of the bilinear form b(-, -) and
since b(-, -) does therefore not induce an equivalent quasi-norm, we instead use the energy
norm || - || induced by a(-, -).

Lemma 4.13. Suppose (E1)—~(E5) and 0 < 6 < 1. Employ the notation of Algorithm 4.4.
Then, for any 0 < e < 1, there exists €3 € Ny such that
1
Ju—Usa I+ 10 = Ul € = Ju— Uil forall€> 65 (417)

Note that, {3 = l3(c) does depend on the given parameter .

Proof. Let € > 0. Further, let § > 0 be a free parameter which is fixed later. Consider the
sequences (eg)sen, and (Ey)een, of Lemma 4.12. Recall that the compact operator € turns
weak convergence ey, Fy — 0 in H into strong convergence Cey, CEy — 0 in H* as £ — oo.
For any § > 0, this provides some ¢35 € N such that

e

wr + [|€ Bl <6 forall £ > (3.
For any w € H, this gives
[(€(u = Ue), w)| = [(Cer, w)| lu = Uellr < 6 lu—Upllwfwlr,
as well as
(€ (Uetr = Up), w)| = KCEp, w)| [|Ups1 = Uplln < 6 [Upsr = Upllwlwliz-

Some basic computations in combination with the Galerkin orthogonality (4.16) show that

bu=Upp1,u=Ups1) + b(Upp1=Us, U1 =Up) + b(Upy1=Up, u—Upy1)
= blu—Ur, u=Upt1) + b(Uet1—Us, Upy1—Uy)

= bu—Up, u=Upp1 —Ur +Up) + b(Upt1—Up, Upy1—Up)
= b(u—Up, u—=Up) —b(u—Up, Upp1 =Up) + b(Ups1—Uy, Upy1 —Uy)
= b(u—Ur, u=Up) + b(Ues1—u, U1 —Uy)

I b=y, u—Uy)

Recall that || v ||*> = a(v, v) = b(v, v) — (€v, v) for all v € H. Then, the latter equality is
equivalent to

= Uer I + 1 Uer = U + (€ (u = Upsr) , w = Upya) + (€ (Upr — Ur), ey — Us)
+b(Uer1 = Upy u = Upr) = |u = U + (€ (u—Us), u—U).
The remaining term with the bilinear form b(Uyy1 — Uy, u — Up4q) is estimated as follows:
b(Up1 = Up,u = Upgr)] = |a(u —=Upr, Uppr = Up) +(€(Upr — Up) , u — Upq)|

4.16
C ) €= U), Usrs = Un) + (€(Upsr — Us), 1 — Upsy)|
< 26 |lu = Upgr ||| Ups1 — Uel|n-
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4 Abstract theory for compactly perturbed problems

With norm equivalence |[|v||3, < C'||v||? for all v € H, we thus see that
(1=0C) llw = Upsr [P + (1 = 6C) | Uer = Ue |1”
< (146C) lu = Ugl? +20C fu — Upsr 1l Uer = Ue .
Finally, recall the Young inequality 2cab < ca? + cb? for all a,b,c > 0. This yields that
(1=20C) flu = Uea I” + (1 = 20C) | Upsr = Ue JI* < (1 +6C) lu — Ue .

1+0C 1

F fficient] 11 <
or sufficiently sma 5>0and1_250_1_€

, this proves (4.17). O

The following result is found in [FFP14] for strongly elliptic problems (4.12). Our proof
follows the ideas of [CKNS08] and generalizes [FFP14] to a more general class of compactly
perturbed problems.

Theorem 4.14. Suppose (E1)—(E5) and 0 < 6 < 1. Then, there exist constants 0 < qin <
1 and Cyin > 0 such that the output of Algorithm 4.4 satisfies that

Netn < Clinqliyme  for all £,m € Ny with € > {3, (4.18)
where l3 € Ny is the index from Lemma 4.13.

In the proof of Theorem 4.14 we use the following generalized contraction property which
is inspired by [CKNS08, Theorem 4.1].

Lemma 4.15 (Generalized contraction). Suppose (E1)—(E5) and 0 < 6 < 1. Let ¢35 € Ny
be the index from Lemma 4.13. Further, let Ty, To € T with Ts € refine(T;) such that the
corresponding discrete solutions Uy, U, exist and the Dorfler marking criterion

On; <ne(Te\ To)?
is satisfied. Then, there exist 0 < qun, A < 1 such that for all £ > £3 it holds
Ao < qinA¢  where AZ:=|u—U, ||> + \n2. (4.19)

Proof. Recall norm equivalence || - || ~ || - ||. This guarantees that reliability (E3) and
estimator reduction (Lemma 4.10) also hold (up to a different constant) with respect to the
a(-, -)-induced energy norm || - ||. To simplify the notation and without loss of generality,
we therefore suppose that || - || = || - || throughout the proof.

Let e, A > 0 be free parameters which are fixed later. With estimator reduction from
Lemma 4.10 and Lemma 4.13, we obtain that, for all £ > l5 = l3(¢),

1
1-¢
For sufficiently small A, i.e., ACest < 1, and an additional free parameter § > 0, reliabil-
ity (E3) yields that

AZ=llu—Us|® + X2 < lw = U I? + X gest 77 + (ACest — 1) | Us — Ug |I°.

1 1 ~
A2 < 1= lw = U I? + X gess 7 < <1—_€ - 5>\> lw—Ue P + Agest + Coy6) nj

1 ~
S max {1——6 — 6)\, Gest + Cr2e16} A%
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4.8 Optimal convergence rates

Since 0 < gest < 1, we may choose & > 0 sufficiently small such that 0 < ges; + 53615 < 1.
Finally choose ¢ > 0 sufficiently small such that 0 < 1/(1 —¢) — d\ < 1. This concludes

the proof. O

Proof of Theorem 4.14. We employ the notation of Lemma 4.15 with 75 := Ty41. This
implies Ay11 < qiin A¢. Induction on n proves Ay, < i, Ay for all £ > /3 and all n € Ny.

Note that reliability (E3) yields that n2 ~ A2. Combining these two observations, we
conclude the proof. O

4.7.1 Validity of the Céa lemma

In this section, we show that the discrete solutions U, computed by Algorithm 4.4 are
quasi-optimal in the sense of the Céa lemma. Additionally, we obtain that the involved
constants converge to 1 as £ — oo.

Theorem 4.16. Suppose (E1)—(E5) and 0 < 6 < 1. Then, there exist C; > 1 with
elim Cy =1, and £y > 0 such that the output of Algorithm 4.4 satisfies that
— 00

~Up|| < Cr min [Ju—V, 10>ty 4.20
llw=Uell < Co min Jlu— Vel for all £= Ly (4.20)

Proof. Consider the sequences (ey) and (Ey) from Lemma 4.12. We follow the arguments
of the proof of Lemma 4.13. To this end, let V; € X, be arbitrary. Then, Galerkin
orthogonality (4.16) proves that

lu=Uell? = blu—Us,u—Us) = (€ (u—Up), u—Up)

(4.16) b(u—Us, u—Vi) — (€ (u—Uy), u—Up)

= a(u—=Up, u—Vo) +(C(u—Us), u—Vp) = (€ (u—Up), u—Up)
w—Uelllw = Vel + 1€ eellr 1w — Uellallu — Vellz + 1€ eqllo=lu — Uell3,.

IN

Recall norm equivalence [[v]|3, < C ||v||? for all v € H. This implies that
lu=Uell < (1 +Cli€eciz) v = Vel + Cli€erz-l w = Uell-

Rearranging the terms in the latter estimate, we prove that

1 + C H@egH'H*

u—Up| <
||| 4 ||| =1_C ||Q:6£H7-l*

I —Vell.

This concludes (4.20). Lemma 4.12 yields weak convergence ey — 0. Compactness of €
implies ||€ey|[y+ — 0 as £ — 0o and concludes the proof. O

4.8 Optimal convergence rates

In this section we prove optimal algebraic convergence rates for the sequence of estimators
generated by Algorithm 4.4. First, in order to quantify the optimal algebraic rate of con-
vergence, we introduce so-called approximation classes in the spirit of [CFPP14]. Further,
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4 Abstract theory for compactly perturbed problems

we discuss the incorporation of data oscillations (see, e.g., [CKNS08]) and show equivalence
to approximation classes defined with respect to the total error (see [CKNS08]). Secondly,
the main Theorem 4.21 is proved in Section 4.8.3. To this end, the next lemma recaps some
important properties regarding sequences of successively uniformed refined meshes.

Lemma 4.17. The mesh-refinement strategy guarantees the following properties (a)—(c)
which are exploited in our analysis of optimal convergence rates:

(a) There exists mynis € N such that the mypie-times uniform refinement ’76 of To satisfies
the assertions of Lemma 4.8 (with Ty, replaced by ’7A'0) In particular, there holds
the quasi-monotonicity of the estimator, i.e., there exists an independent constant
Cmon > 0 such that

Mo < CmonNe for all Te € T and all Ts € reﬁne('ﬁ)) N refine(7,),
provided that the Galerkin solution Uy € X, exists.

(b) Moreover, for all To € T, the myni-times uniform refinement Te of Te guarantees

To € refine(7y) and #T. < CManit 4T,

(c) Suppose that ||he|| () — 0 for £ — oo (e.g., the expanded Dérfler marking strategy
from Proposition 4.7 is used). Then, there exists an index {5 € Ny such that Ty €
refine(7y) for all £ > (5.

Proof. Assertion (a) is a direct consequence of Corollary 4.2 resp. Proposition 4.1, if we
argue as in the proof of Lemma 4.8.

Assertions (b) follows from the refinement axioms. For T, € T with the mypui-times
uniform refinement 7, (R6) implies 7, € refine(7;) and (3.5) gives #7y < CMunit 47T, .

For Assertions (c), note that hy — 0 for £ — oo guarantees an inaex l5 such that
lhes |z ) < (|77 |z (). Hence, (R6) implies 7¢; € refine(7o) and concludes the proof.

0

4.8.1 Approximation classes

For N € Ny and T € T, we define the set of all possible refinements which contain at most
N elements more than 7 by

Tn(T) := {Te € refine(T) : #Ta —#7T < N and solution U, € X, to (4.3) exists}.

We note that Tx(7) is finite, but may be empty. On the other hand, Lemma 4.17 guar-
antees Ty (7)) # 0 for sufficiently large N, e.g., N > Cllunit LT,

We use the convention ming, et (7) 7 = 0, if Tn(7) = 0. For s > 0, the corresponding
approximation class is given by

= s N +1)° mi . ), 4.21
fulauiry = sup (V41 min_n.) (4.21)

where 7, is the error estimator corresponding to the optimal triangulation 7, € Tn (7).
Note that [lu|a,(7) < oo means that starting from a mesh 7', a convergence behavior of
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4.8 Optimal convergence rates

Ne = (’)((#7’.)*3) is possible, if the optimal meshes are chosen. To abbreviate notation, we
let

Ty :=Tn(To) and ||ulla, = |lulla,(70)- (4.22)

The next lemma examines the relation between approximation classes |uls,(7) and
|lu|la,- It essentially shows that, if an algebraic rate of convergence is possible starting
with a mesh 7 € refine(7y), then the same rate can also be realized by starting with the
coarser initial mesh 7g.

Lemma 4.18. There exists Cy > 0 which depends only on Cson, Munit from Lemma 4.17,
and Ty, such that for all s > 0 and all T € T, it holds that

sup (N +1)* min 7 ) <2° Julla. 7, (4.23)
N>Cu #T Te€TN
as well as
su N +1)° min .> < Chion 2° ||u||a, - 4.24
o (V1) min ) < Coon2” Julls (424)

In particular, there holds equivalence
[ulla,ry <00 = |lulla, <oc. (4.25)

In the proof of Lemma 4.18 we exploit the following elementary observation.

Lemma 4.19. For all To € T and Ts € refine(T,), it holds
#To — #Te + 1 < #To <H#To (#To — #To +1). (4.26)
Proof. Note that (#7;—#7:+1) —#To/#Te = (#72—#7:) (1—1/#7:) > 0. Rearranging

the terms, we conclude the upper bound in (4.26), while the lower bound is obvious. [

Proof of Lemma 4.18 . We split the proof into three steps.

Step 1: The estimates (4.23)—(4.24) imply (4.25). For any M > 0, the sets
U%:O Ty and U%:o Tx(T) are finite. The estimate (4.23) implies that

U = su N +1)° min .)
Jule. = sup (¥ +1)° min

<  max <(N—i—1)s min 77.) + sup ((N—l—l)s min 77.)
N<Cr#T Te€Ty N>Cu #T Te€Tn

< <N 1)* mi ) 98 .
_Ngrg@,r( +1) uin 77 ) + lulla, )

This provides an upper bound to [lu||a, in terms of |[ul|s, ), up to some finite summand.
Therefore, [[ul|s, () < oo implies [luf|a, < oo. Using (4.24) instead of (4.23), the converse
implication follows analogously.
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4 Abstract theory for compactly perturbed problems

Step 2: Verification of (4.23). Let 7 € T be arbitrary and let N > 0. Apply
Lemma 4.17 to see that the Mypif-times uniform refinement 7 of T satisfies #7T < #7T <
Cionit# T =: C. This implies that T € Tc(T) C Ty {(7) and hence, T, 5(T) # 0.
Choose the optimal mesh 7, € TC+J\7(T) with 7, = min7—.61%+ﬁ(7-) Ne > 0. Then, we
estimate

HTo — #To = (#To — #T) + (#T — #T0) < (C+ N)+ #T <2C+ N,

ie, To € Ty, i- By choice of 7o € T, 5(T) and the definition of [lu|[4,(7), it follows

C+N

(2C + N +1)° _min

Te€Ty0 v

200 + N +1\s -
< () @ Ny
<2B(C+N+1)° i . <28 .
<2°(C+N+1) T-e%?f;(’r)n < 27 [Julla, (1)

Define Cy := 2Cuif | Since this estimate holds for all N > 0, we obtain with Cy #7T = 2C
that

_ (4.27)
sup ((N +1)° min 77.) = sup <(2€ +N+1)° min 77.) < 2°||ulla, (1)
N>Cn #T Te€Tn ]\720 7—'€TQC+N (7

This concludes the proof of (4.23) with Cy = 2Cunif,

Step 3: Verification of (4.24). Let N > 0andlet 7 € T be the Munif-times uniform

refinement of 7y. Adopt the notation from Step 2 and recall that T € Te CTe, 5 Choose

To € T, § with 7o = ming,er,, 7. Define 7. =T & T, to ensure that T € reﬁne(?)
and that the discrete solution U, € X, exists. Then, it holds that

(R4) . ~ ~ ~
#Tr —#T < (#T +#To —#To) —#T <#T +C+ N <20+ N,

Le, T+ € T, 5(T). Moreover, quasi-monotonicity of the estimator (Lemma 4.17) and
analogous argumentation as in Step 1 yield that

(2C + N +1)° min 7 < (2C + N +1)°n,

S 20+ﬁ( )
2C + N +1\5 -
< Chion (7~) (C+ N +1)* 10 < Crmon 2° ||ul|a,-
C+N+1
(4.28)
Since this estimate holds for all N > 0, we again obtain with Cy = 2 Clunif that
sup (N—i—ls min 77.) = sup(QC—i—]v—i—lS min 77.)
N>Cp#T ( ) Te€TN(T) N>0 ( ) Te€Ty0, 5(T)
(4.28)
< Cron 2° ||ul|a,-
This concludes the proof.
O
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4.8 Optimal convergence rates

4.8.2 Data oscillations

In this section we recap the definition of the approximation classes in the spirit of [CKNSO08].
To this end, one can also consider approximation classes based on the so-called total error,
e.g., error plus some suitable data-oscillations. Suppose that the Galerkin solution U, € X,
of (4.3) exists. Further, suppose that osce : X4 — R are suitable oscillation terms such that
the error estimator is reliable and efficient in the sense of

C’r_el1 lu — Usllg < Mo < Cog (Hu —Us|ln + osc.(U.)). (4.29)

Then, for 7 € T, the work [CKNSO08] considers approximation classes defined by

= sup ((N+1)°  mi inf ([lu— Valla + osca(Va)) ). 4.30
lullz, ) ;gg)« ) mn ot ([l = Vallz + osca ») (4.30)
#Te—#TN

Note that the definition of ||ul|g,(7) uses 7o € refine(T) with #7, — #7 < N and hence,
lullg, (1) also involves meshes for which the existence of the discrete solution may fail. The
following lemma is an adaptation of [CFPP14, Theorem 4.4]. Starting from some arbitrary
initial mesh 7T, it shows that under the additional assumption of efficiency (4.29), the total
error converges with the same algebraic rate as the error estimator.

Lemma 4.20. Let 0sce : Xo — R satisfy (4.29). Suppose that there exists Cose > 0, such
that for all Te € T for which the discrete solution Uy € Xo of (4.3) exists, it holds the
following:

® 05Ce := 08Ce(Us) < Cosc Mo,
o Closce(Va) < osce(Ws) + ||Vo — Wallzy  for all Vo, W € A,
Then, for all s >0 and all T € T, it holds that

[ullgry <00 == lulla, < oo

Proof. We show that |ullg () < oo if and only if ||lulls, ) < oo. Then, (4.25) from
Lemma 4.18 will conclude the proof. We split the proof into several steps.

Step 1: Let 7 € T and ’7A'0 € T be the mypj-times uniform reﬁngment of Ty from
Lemma 4.17. With C := (Clluit — 1)#7, the triangulation 7 := T & Ty satisfies that

#To <#T +#T0 — #To < #T +C,

and hence T} € To(T). This proves that Ty (T) # 0 for N > C.
Step 2: We prove that [|ul|a, () < oo implies that [lu[[g, ) < oo by showing that

~ N +1)° i inf — V|l + 0sce(Va)) ) < . 4.31
sup (V1) min - int (lu = Valla+ osca(V2)) ) 5 ) (431)
#Te—#TN

41



4 Abstract theory for compactly perturbed problems

For N > C, note that Step 1 guarantees T (7) # (). Hence, there exists 7o € Ty (7T) with
discrete solution Us € Xo and 7o = ming, ety (1) - With (4.29), we obtain that

. . (4.29) .
min inf U — V|l + 0sce(Va)) < |[u—Us|lyg +0sco(Us) =~ 1o = min o-
Te€refine(T) VeEXe (” HH ( )) H HH ( ) n ﬁETN(T)n
H#Te—#T<N

This proves (4.31).
Step 3: We prove that [|u||g,(7) < oo implies that [[u[/4, ) < oo by showing that

su N +1)® min o) < (C+1)%||u|lg,. 4.32
sup (V17 min n.) < (C+ 1) ull (4:32)

Let N > 0. Choose T; € refine(7T) with #7, — #7 < N and

(= Valloe + 0sea(V2)) = inf (lu = Valla + 0sca(V2)):

Define 75 = To & To and note that 7o € Tyio(T). Combining (4.29) with the Céa
lemma (4.7) and our assumptions on the data oscillations, we obtain that, for all V. € X,

(4.29)
N > flu=Uglln +oscp (Uy) S llu— Uyl +oseq (Vi) + [[Ux = Vil

S llu=Usls +osco(Vy) + [lu = Vil

(4.7)
S flu = Vil + oscq (V4).

This reveals that ny ~ infy, cx, (|lu— Villg +o0scp(V4)). Then, 7o € Tn4co(T) together
with X, D A&, reveals that

(N+C+1)° min _ ne<(N+C+1)°nt

Te€TN+c(T)
~(N+C+1)° erelzf\q (Jlu = V|l 4 ose (Vi)
< (FESED) V17 it (e Vol + osco (V%))
< (C+ 1) lulle. (7)-
This proves (4.32) and concludes the proof. O

4.8.3 Main result

The following theorem is the main result of this chapter. It states that Algorithm 4.4
does not only guarantee (linear) convergence, but also realizes the best possible algebraic
convergence rate for the error estimator.

To that end, suppose that [|ul|a, < oo for some s > 0. By definition (4.21) of the
approximation class, there exists a sequence of “optimal” meshes 7\2 € T = refine(7p) as
well as corresponding error estimators 7 such that 7, < (#’7} — #70+ 1) “* for all £ € Ny.
Note that these “optimal” triangulations are not necessarily successive refinements but
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4.8 Optimal convergence rates

in general even totally unrelated. Therefore, the important implication of the following
theorem is that indeed the adaptively generated triangulations 7, yield the same algebraic
decay s > 0 if the marking parameter 0 < 6 < 1 is sufficiently small. Overall, Algorithm 4.4
thus guarantees that the error estimator decays asymptotically with any possible algebraic
rate s > 0.

Theorem 4.21. Suppose (E1)—~(E5) with Xoo = H. Employ the notation of Algorithm 4.4.
Let ﬁo > 0 be the lower-bound of the inf-sup constant (4.6) for the uniform refinement
7A6 from Lemma 4.17. Let l3,05 € Ny be the indices from Lemma 4.13 and Lemma 4.17
respectively. Define lg := max{l3,l5}. Let 0 < 0 < Oopt := (1 + C’SibC’fel/gg)_l. Then, for
all s > 0, there exists a constant Copy > 0 such that

lulla, <00 = VU>ls ne < Copy (#Te—#To+1) " (4.33)

The constant Copt depends only on #7Tg, To, 0, s, |ulla,, and validity of (E1)—~(E5).

We emphasize that Axiom (E5) as well as X, = H can be enforced by the expanded
Dorfler marking strategy from Proposition 4.7. Hence, by using the expanded Dérfler
marking, Theorem 4.21 relies only on (E1)—(E4).

The proof of Theorem 4.21 requires the following two technical lemmas, which are
adapted versions of [CFPP14, Proposition 4.12] and [CFPP14, Proposition 4.14].

Lemma 4.22 (optimality of Dérfler marking). Under the assumptions of Theorem 4.21
and for all 0 < 0 < Oopt, there exists some 0 < Kopt < 1, such that for all Ty € refine(7y,)
and all Ts € refine(7,), it holds that

Mo S Ropt Tle - 9772 S no(Ro,o)2, (434)
where Re o is the (enlarged) set of refined elements from (E4).

Proof. Let Ty € refine(7y,) and 7T, € refine(7,). Then, Lemma 4.17 guarantees that the
discrete solutions U, € Xy and U, € X, exist. With stability on non-refined elements (E1)
and the Young inequality we obtain that, for all § > 0,
e = 1e(T\ To)* +1e(Te N T5)°
< (TATP 4 (1407 no(Ta N T + (1 4+ 9)C, U — Uulie

Recall that discrete reliability (E4) holds with the uniform constant Cye/ Bo. Together with
the assumption 7, < Kopt 70 and 7o \ 7o C Rae o, this yields that

e < Me(Reo)” + (1407 riop 1 + (1 +8) C, Cra By * e(Rayo)?
=(1+ 5_1) Kopt 77% + (1 +(1+9) Cs?tb Cr2el /80_2) 77.(73.,0)2.
Rearranging the terms in the latter estimate, we obtain that

- o —1
L U B L B S L) (4.35)
1+ (1+46)C3,, C2) By
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4 Abstract theory for compactly perturbed problems

It remains to prove that 6 > 6 and hence, (4.35) implies (4.34). To this end, choose § > 0
sufficiently small and determine 0 < kqpy < 1 such that

~ _ —1
0<6:= 1 (1+62 )KzoptA—2 12 252 < 21 7 72 = Oopt-
1+ (1 + 6) Cstb Crel 50 1+ (1 + 6)Cstbcrelﬁ(] I+ Cstb Crel 50
This concludes the proof. ]

Lemma 4.23. Suppose the assumptions of Theorem 4.21 and let 0 < 6 < Oypy. There exist
constants Cy,Co > 0 such that for all £ > L5, there exists a corresponding set Ry C Tp such
that the following holds: For all s > 0 with ||ul|a, (Toy) < 00, it holds that

s —1/s
#Ry < C1 (Co [lull (7, )M 0y 7°, (4.36)
as well as the Dorfler marking criterion
0n7 < ne(Re)*. (4.37)

The constants Cv,Co depends only on 6, 30, and (E1)—(E4).

Proof. 1f ny = 0, the claim (4.36)—(4.37) is satisfied with R, := T;. Thus, we may suppose
that 1, > 0. We split the remainder of the proof into three steps.

Step 1: Construction of mesh T, and Ry := Rye. Let{ > l5ande = col Kopt e >
0. Quasi-monotonicity of the estimator (Lemma 4.17) yields that

e < Kopt Tes < ||UHAS(7—55) < .

Choose the minimal N' € Ny such that [jul[s, (7, ) < (N +1)°. This implies that & <
ullay(7,) < €N +1)° and hence N > 1. Note that Ty, € Tn(7e;) and hence Ty (7e;) # 0.

Choose Tz € Tn(Ty,;) with . = minT.eTN(n5) Ne. Define To := T. @ Tp. Recall that all
75 € refine(7Ty,) and corresponding spaces X, O Ay, provide unique solutions of the discrete

formulation (4.3). Hence, we obtain existence of the Galerkin solution U, € X,. Last, we
define Ry := Ry o as the set provided by discrete reliability (E4).

Step 2: Optimality of Dorfler marking yields (4.37). With the quasi-monotonicity
of the estimator (Lemma 4.17) and the definition (4.21) of the approximation class, the
choice of N in Step 1 yields that

(4.21)

1
e < CrionMe = Crpop~ min o < Chon (N +1)"°llu < Chon€ = K .
Tle = Lmon 7Je o %GTN(H5)77 = on ( )2l HAS(T%) = ~mo opt ¢

Step 3: Verification of (4.36). Recall that 7,7 € refine(7y,) and 7z € Tn(Ty,).
The definition Ry = Ry together with discrete reliability (E4), splitting property (R3),
and the overlay estimate (R4) yields that

This implies 7¢ < Kopt 7¢ and hence Lemma 4.22 proves (4.37).

(R3 (RA)

(E4) )
#RZ < Cvl"el #(72 \ 7:) < Crel (#7: - #72) < Crel (#7:3 - #725) < Crel N. (438)
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4.8 Optimal convergence rates

Finally, minimality of N in Step 1 implies that |lul|,, (T5) > €IN* and hence
1 _ —1
N < ||u\|A/j(7735)6 Vs = oy, /s

with C3 := Hu||11<jm5) (CL Kopt) ™5 = (Crmon /@;plt Hu||As(77g5))1/S- Altogether, we thus see

(4.38) —1/s
#RZ < Crel N < Crel C13 My .

This proves (4.36) with C} = Cye and Cy = Chyon /sgplt. O

With optimality of Dorfler marking and Lemma 4.23 at hand, we can prove optimal
algebraic convergence rates for Algorithm 4.4. The proof follows arguments from [CFPP14,
Proposition 4.15] and corrects a small bug in the proof of [BHP17, Theorem 26].

Proof of Theorem 4.21. We split the proof into two steps.

Step 1: Implication “<=".  Suppose 1y < Copt (#7} —#T0+ 1)_8 for all ¢ > /.
According to Lemma 4.18 it is sufficient to prove [lulls,(7;,) < oo. For N € N with
N > #7,, choose the largest ¢/ such that #7,, — #7s, < N. Due to maximality of N,
we obtain with the splitting property (R3) that

(R3)
NA1<#To1 —#Toe +1 S #Toyy — #Tes + 1. (4.39)

Note that #7y, — #7T¢, < N directly implies Ty, € Tn(Ty,) and €y > lg. Together with
the assumption, this yields that

(4.39)

= N+1)° min_ n) < Toy — #Tig +1)°
lulla(7z) sup (( +1) ﬁe{;l;?ne)n) S ((# on = #Te + 1) WN)

S sup <(#72N - #720 + 1)8 TMN) S 1.

N>0
This concludes Step 1.

Step 2: Implication “=". To this end, suppose that ||u|ls, < co. Lemma 4.18
then implies ||ul|a,(7; ) < oco. For all £ > f5 = max{l3, {5}, let M, be the set of marked
elements in the ¢-th step of Algorithm 4.4. According to Lemma 4.23, there exists Ry C Ty
with (4.36)—(4.37). Because of the minimal cardinality of M, (cf. Step (iv) in Algo-
rithm 4.4), it follows that

(4.37) (4.36) Vs —1/s
#M; < Chak#Re < Chak Ch (02 HU’HAS(T%)) My :

The mesh-closure estimate (R5) yields that

/-1
#72 - #720 + 1 S Cmesh Z #M] (440)

Jj=to
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4 Abstract theory for compactly perturbed problems

Together with C' := max;_g g iM we obtain that

/-1
#To— #Tiy + 1 < Crmesh Y, #M,;

Jj=to

< Cmesh( f: #M; + ZZE #Mj>

g=to J=te
£—1
< Chnesh (66 C+ 1) Z #M]

Jj=4s

(4.41)

¢

< Cmesh (£6 C+ 1) Cmark Cl (02 ||uHAs(725))1/s Z 77;1/3.
Jj=4s

The linear convergence from Theorem 4.14 reads
e < Ciingpy,’ m; forall £3 < j < 0. (4.42)
Hence, this implies that

l/s <cls ql(mf D/ 77;1/8 for all /3 <j </,

lin

Since there holds 0 < ¢ := qllifls

be estimated by

< 1, the geometric series applies and the sum in (4.41) can

,’771/3 <Cl/s 71/3 Z (e—7) hn 7771/5‘

lin
J=Ls Jj=ls

Combining this estimate with (4.41), we derive

Cmesh (66 C + 1) Cmark Cl

1/s
1 - in

BTy — #To +1 < (Chin Co HUHAs(ﬁ5))1/S .

Rearranging these terms, we see that ny < (#7; — #7Tg, + 1)7°. Using the definitions of
C1,Cy > 0, this implies (4.33) with

C — <#726 mesh (EGC‘F 1) Ch
opt -—

(1— a1

lin

S
k Crel —
ar e ) Clin Cmon Koplt HUHAS (725) :

This concludes the proof. ]

As a consequence of Section 4.8.2, Theorem 4.21 transfers into the setting of [CKNSO08].
To that end, suppose osce : Xo — R such that (4.29) and the assumptions of Lemma 4.20
are satisfied. Then, Lemma 4.20 implies that [ul[s, < oo <= [[ul|g, () < co for all T € T.
This gives rise to the following remark.
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4.8 Optimal convergence rates

Remark 4.24. Under the assumptions of Theorem 4.21 and the assumptions on the data
oscillations in Lemma 4.20, there holds the following: For all 0 < 6 < Oop = (1 +

c2, Cfel/ﬁg)—l and for all s > 0, there exists a constant C/';;t > 0 such that
lulli, () <00 == VE>l5 np < Copt (#T0— #To+1) " (4.43)

The constant CT,;t depends only on #7Teg, To, 0, s, |lullg, (1), validity of (4.29), and (E1)-
(E5).
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5 Adaptive FEM for compactly perturbed
problems

In this chapter, we apply the abstract framework of Chapter 4 to adaptive finite elements.
To that end, we introduce the model problem in Section 5.1, which consists of a general
diffusion problem with convection and reaction. Further, Section 5.1 and Section 5.2 ensure
that the model problem fits in the abstract framework and that the corresponding error
estimator satisfies the estimator axioms (E1)—(E4). Further, Section 5.3 recaps the main
result of Chapter 4 in the current setting. At the end of this chapter (Section 5.4), we
underpin our theoretical findings with some numerical experiment for the two dimensional
Helmholtz equation.

This chapter is based on the work [BHP17]|, where besides the abstract framework of
Chapter 4, optimal algebraic rates of convergence for adaptive finite elements for compactly
perturbed problems are shown.

5.1 Model problem

Let © C R? with d = 2 or d = 3 be a polygonal resp. polyhedral Lipschitz domain with
boundary ' := 9Q. Recall that L?*(Q), H}(2) denote the usual Lebesgue and Sobolev
spaces and (f, g) := [, fgdz denotes the L?(2) scalar product; see Chapter 2. We
consider general diffusion problems with convection and reaction of the following type.

Let c € L®(Q), b € L™®(Q)%, and A € L>(Q2)%*9 be given coefficients such that A(z) €
R%xd js symmetric and uniformly positive definite, i.e., it holds that

sym
essinf min A€ >a>0. (5.1)
€0 gerd\{o} €]

Then, the model problem reads as follows: Given f € L?(), find u € H}(2) such that

—div(AVu) +b-Vu+cu=f in £,

5.2

u=20 on I (5:2)

Possible examples include the weak formulation of the Helmholtz equation
—Au—Fk*u=finQ subjectto u=0onT, (5.3)

where k£ > 0 denotes the wavenumber. We emphasize that homogeneous Dirichlet con-
ditions are only considered for the ease of presentation, while (inhomogeneous) mixed
Dirichlet-Neumann-Robin boundary conditions can be included as in [FPP14, AFK*13,
CFPP14].
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5 Adaptive FEM for compactly perturbed problems

The weak formulation of (5.2) reads as follows: Given f € L*(Q), find u € H{ () such
that

b(u, v) = (AVu, Vo) + (b-Vu+cu, v) = (f,v) forallve H} (). (5.4)

To guarantee unique solvability of the weak form (5.4), we suppose that (5.4) is well-posed
in the sense of (4.4). In order to fit in the abstract framework of Chapter 4, we define the
bilinear form a(-, -) : H}(Q) x H}(2) — R by

a(u, v) == (AVu, Vo) for all u,v € H}(Q). (5.5)
Furthermore, the linear operator € : H}(Q) — H~1(Q) is given by
Cu:=b-Vu+cu forall uec H(Q). (5.6)

The next proposition recaps some properties of the induced bilinear forms and the oper-
ator €. The proof follows the ideas of [FFP14, Lemma 3.4].

Proposition 5.1. The bilinear forms b(-, -), a(-, -) and the linear operator € satisfy the
following properties:

(a) The bilinear form b(-, -) is well defined and bounded with
b(w , v)| < Ceont [Vl 20 IVl 120 for all w,v € Hy(%),

where Ceont > 0 just depends on the coefficients A, b, c as well the Poincaré constant

of Q).
(b) The bilinear a(-, -) is symmetric, continuous, and elliptic with
la(w, v)| < Coont [Vl 2(0) VUl 12(0)  and  a|v]|gi(q) < alv, v)
for all u,v € Hé(Q) The constants Ceont > 0 and « just depend on A.

¢) The linear operator € : HYX(Q) — H~1(Q) is bounded and compact.
( ) 4 0 p

Proof. We split the proof into two steps.
Step 1: Proof of (a) and (b). Let w,v € H}(Q). We estimate with the Cauchy—
Schwarz inequality and the Poincaré inequality that

[b(w, v)| < AV W| 120 [IVVllL2(0) + 110 Vwl| 2y [Vl z20) + lewl[ 2@ 1Vl 20
< ([[All () + Callbll oo @) + C& llell L @) IIVwll 2 IVl 22 )

where Cq > 0 denotes the Poincaré constant of €. This implies (a).
Recall that, A(x) € ngxrg is symmetric and uniformly positive definite, hence a(-, -) is

elliptic in the sense of (4.1) resp. (4.12) (see Section 4.2.2). Continuity of a(-, -) follows
analogously to b(-, -) with constant Ceont = || A|| () and concludes (b).

Step 2: Proof of (c). We define the operator € : H}(Q) — L2(Q) by Cw:= Cw.
Clearly € is linear and continuous. According to the Rellich compactness theorem, the em-
bedding ¢ : H}(Q2) — L%(2) is a compact operator. Schauder’s theorem (see, e.g., [Rud91,
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5.1 Model problem

Theorem 4.19]) implies that the adjoint operator /* : L?(Q2) — H~1(Q) is also compact and
coincides with the natural embedding. Therefore, we may write € as

¢ =1 0C: H}(Q) = L*(Q) —» H Q).

Recall that the composition of bounded operator and a compact operator is compact. This
concludes the proof. O

For the discretization, we consider standard finite element spaces based on regular trian-
gulations (see Section 3.1). For mesh-refinement, we employ NVB (see Section 3.5), which
satisfies the refinement axioms (R1)—(R6).

Recall that, for a given initial mesh Tj, we denote the sets of all possible refinements
by T. Further, for a given 7, € T , let SP(7,) be the space of globally continuous piece-
wise polynomials. To abbreviate notation let S§(7s) := SP(T.) N HA(S2) denote the space
of continuous piecewise polynomials which vanish on the boundary. Then, the Galerkin
formulation of (5.2) reads as follows: Given f € L*(), find U, € S§(T,) such that

b({Us, Vo) = (f, Va) forall Vo € SE(Ts). (5.7)

Proposition 5.1 guarantees that the model problem (5.2) fits in the abstract framework
of Chapter 4 with # := H(Q) and X, := S}(7,). Further, NVB guarantees nestedness
of the discrete spaces S§(7s) C S§(Ts) for all Tg € refine(7,). We emphasize that iterated
uniform mesh-refinement guarantees [|he||zc(q) — 0 and hence, leads to a dense sequence
of subspaces. A rigorous proof is given in Lemma 5.6. Then, existence of solutions of (5.2)
is guaranteed by Proposition 4.1.

In order to utilize the analysis and hence, obtain optimal algebraic convergence rates,
it still remains to define a suitable a posteriori error estimator and validate the estimator
axioms (E1)—(E5).

5.1.1 Weighted-residual error estimator

According to Section 4.3, we define the local contributions of the usual weighted-residual
error estimator for the general diffusion problem (5.2) as follows. Suppose that A is a
piecewise Lipschitz diffusion coefficient with A|p, € W°(Ty) for all Ty € To. The space
WLeo(Ty) is given by

Whee(Ty) := {f € L™(Ty) : Vf € L*®(Tp) exists in the weak sense}.
For all T, € T and T € 7, the element contributions are given by
1e(T)? = b7 || + div(AVU.) = b- VU, — CU°”%2(T) + hr [[[(AVU,) - n]H%Q(BTmQ)v (5.8)

where [(-) - n] denotes the normal jump over interior facets and hp := |T|'/¢ ~ diam(T)
denotes the local mesh size (see Chapters 2-3). For the Helmholtz problem (5.3), these
local contributions simplify to

16(T)? = h |f + AUs + K2 Ua|| 22 () + hr [1[VUe - 1|72 (9700)- (5.9)

Moreover, the related error estimator is given by

1/2
Ne(Us) 1= < Z 77.(T)2) / for all subsets Uy C To.
Tele
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5 Adaptive FEM for compactly perturbed problems

5.1.2 Adaptive algorithm

In this section, we recap the adaptive algorithm in the current setting. It combines Algo-
rithm 4.4 with the expanded Doérfler marking strategy.

Algorithm 5.2. INPUT: Parameters 0 < 6 < 1 and Cpark = 1 as well as the initial
triangulation Ty with U_1 := 0 € S§(To) and n_q := 1.
ADAPTIVE LOOP: For all £ =0,1,2,..., iterate the following steps (i)—(vi):
(i) I (5.7) does not admit a unique solution in S§(Ty):
— Define Uy := Uy—1 € S§(To) and ng == np—1,
— Let Tyyq := refine(Ty, Ty) be the uniform refinement of Ty,
— Increase ¢ — £+ 1, and continue with Step (i).

(i) Else compute the unique solution Uy € S§(Tp) to (5.7).
(iii) Compute the corresponding indicators ne(T') for all T € Ty.

(iv) Determine a set M}, C Ty of up to the multiplicative factor Cyarx minimal cardinality
such that O n2 < ne(M})2.

(v) Find M} C Ty such that #M) = #M), as well as hy(T) > he(T") for all T € M/
and T" € Ty \ M. Define My := M, U M.

(vi) Generate Tyt = refine(Ty, My), increase £ — € + 1, and continue with Step (i).

OuTPUT: Sequences of successively refined triangulations Ty, discrete solutions Uy, and
corresponding estimators 1.

Apart from Step (iv) and Step (v), Algorithm 5.2 coincides with Algorithm 4.4 of Chap-
ter 4. This step realize the expanded Dorfler marking of from Proposition 4.7 which guar-
antees (E5).

5.2 Verification of the axioms

In this section, we prove that the weighted-residual error estimator from (5.8) satisfies the
estimator axioms (E1)—(E4). Further, we show that Algorithm 5.2 guarantees (E5) and
hence all assumptions of the abstract framework of Chapter 4 are met. We note that the
proofs of (E1)—(E4) are well known in the literature; see, e.g., [CKNS08, CFPP14, FFP14].
For the sake of completeness, we sketch the most important steps.

Proposition 5.3 (stability on non-refined element domains). There ezists Cyp, > 0 such
that for all Te € T and all Ts € refine(7T), the following holds: Provided there exist unique
discrete solutions U, € Sf(Ts) and Us € S5(7T5), it holds that

{no(uo) - 770(2/[0){ S Cstb HUO - U.HHl(Q) fOT’ all Z/[o g 7: N 7;-

In particular, there holds (E1). The constant Cgyp > 1 just depends on the given data, the
polynomial degree, and on ~y-shape reqularity.
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Proof. Let Tq,Ts € T such that 7, € refine(7,). Suppose that the corresponding discrete
solutions U, € S(T,) and U, € S{(Ts) exist. Let Us € To N To. The triangle inequality
reveals that

1/2

o) et = | (3 me)) = (X m) | < (3 mury?) "

Tl Tele Tele
where Ro(T') is given by

Ra(T) = hr || div(AV(Us = Ua)) = b- V(Us — Us) — e(Us — Ua)| 121
+ 12 [JAV(Us — Us) - 1|l 2070
< hy [|div(AV/(Us — Ua)) |l 22y + hr (16l 2o () + lell oo (@) [Uo = Usll 1 1)
+ 12 [JAV(Us — Us) - 0]l p2(arm0).
(5.10)

The product rule as well as the inverse estimate imply for the first term on the right-hand
side that

[ div(AV (Us = Ua))|z2(7) < IVA[[ 120 [IV(Uo = Us)llz2(7) + [[All 120 () [AUo = Us) | L2 (77
< (IVAl o) + Cinw h' |1 All o)) IV (Us = Us) |27

To estimate the jump term, we emphasize that each interior hyperface £ C 97 N is the
intersection of two elements T]%, T]% € T with Té N Tj% = FE. This leads to

IAV(Us = Ua) 02 0mmay = Y. IAV(Us = Ts) - nl|[72 (g
ECoTNQ

= 3 IAYWe — 0 02y e
ECOTNQ

With the Young inequality and a scaling argument, we estimate for each hyperface E that
NAY (s —Ua) 1l g1 2,

< A g (IV W = U Eaory) + IV (Us = U2 ors))

{ Bl |E]

) (5.11)
1T @}HV(UO —Uollz2raorz)

< O || Alff < () max

< C Al maX{h}g, h}%} 0o = Ul (rrurz),

where the constant C' > 0 depends only on 7. The v-shape regularity implies |E|/|T5| ~
hy! as well as [hall Lo () < diam(£2). Moreover, it guarantees |T| ~ |T| ~ |T3| and hence,
hr ~ hTé ~ th for all hyperfaces £ C 9T N 2. Combining the latter estimates, we obtain
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5 Adaptive FEM for compactly perturbed problems

that
Ro(T) < hr (|VA| () + Cinvhg [ All Lo () IV (Us = Ua) |l r2(7)
+ by (bl oo @) + el zoe (@) 1Us — Usll

1/92 1/2
+ 01/2 HAHLOO(Q) hT/ < Z C/ hT ”Uo - U.H?;II(TEUIT%))
EcCoTnQ

<(C" + hr) (I Allwreo () + 1Bl oo () + llell oo @) 1Uo = Ul r)s
where wp denotes the element patch of T and C” depends only on the y-shape regularity.

Recall that the number of elements in wr is uniformly bounded. Hence, summing over all
elements T € U, reveals that

e Us) = 1a(Us))| < € (€ + diam(@) U = Uull 110

This concludes the proof. O

Proposition 5.4 (reduction on refined element domains). There ezist Creq > 0 and 0 <
Gred < 1 such that for all Te € T and all Ts € refine(T,) the following holds: Provided there
exist unique discrete solutions Us € S§(Ts) and Us € S{(7Ts), it holds that

1o (To\Te)? < Grea e (Te\Te)? + Ciea [|Us — U-H%rl(sz)-
In particular, there holds (E2). The constants 0 < ¢req < 1 and Cieq > 1 just depend on
the given data, the polynomial degree, on ~y-shape regularity and on qumesn from (R1).

Proof. Let To,To € T, such that 75 € refine(7,) and the corresponding discrete solutions
Ue € S§(Te) and U, € S{(Ts) exist. Recall the notation of Proposition 5.3. Once again,
the triangle inequality implies that

(TAT) < (30 B3 If +div(AVUL) = b VU = Ul )
TeTo\Te
1/2 1/2
+hr AV - 0lleorng) + (D Re(@)?)
TeTo\Te
(5.12)

where Ro(T') is defined in (5.10). Analogously to the proof of Proposition 5.3, there holds

Z RO(T)2>1/

TeTo\Te
The first sum on the right-hand side of (5.12) can be treated as follows: Reduction of the
local mesh-size (R1) and the splitting property (R3) imply for the volume residual that

S° B3 f + div(AVUL) = b- VU, — cUs|3a(z

2
< C|Us = Usll (-

TeTo\Te
< Y Ghenhd Y If+diV(AVUL) = b- VU, = Ul 72
T'€Te\To TCT!
<Gmesh Y, B If + dV(AVUL) = b VUs = cUs|[72 (7
T'eTe\To
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5.2 Verification of the axioms

For the jump term, we additionally emphasize that AVU, is continuous inside an element
T'" € To. Hence for all 77 € To\ To with sons T' C T” there holds [AVU, -n] = 0 on 9T\ 971"
Similar to the latter estimate, we obtain that

Z hT H [AVU' : Il] ||%2(8TQQ) < Z Qmesh hT Z || [AVUO : Il] H%Q (0TNQ)
T€To\Te T'€Te\To TCT’

< Gmesh Z hr || [AVUO ’ Il] H%Q (0T'NQ)"
T'€Te\To

Combining the latter estimates with (5.12), we see that

1(To\ T2) < gy 1o(Te \ To) 4 C|Us = Us 1710,
With the Young inequality for § > 0, we obtain that
Mo(To\ To)? < (14 8) dunest e (Ta \ o) + (14671 €2 Vs = Ul 1 -
Choosing § > 0 such that greq := (1 + 9) gmesn < 1, we conclude the proof. O

Proposition 5.5 (discrete reliability). There exists Cye) > 0, such that for all T € T and
all Ts € refine(7,), there exists a set Reo C To such that the following holds: Provided
there exist unique discrete solutions U, € Sg(T.) and U, € 85(72), it holds that

HUo - U.HHI(Q) < Crel B;l 770(7: \7;)

where B, > 0 is the inf-sup constant (4.6) associated with S5(Ts). In particular, there
holds (E4). The constant Cye > 1 depends only on the given data, the initial mesh Tothe
polynomial degree, and ~y-shape regularity of Te.

Proof. Let T, To € T, such that 7, € refine(7,). Suppose that the corresponding discrete
solutions U, € S} (T,) and Us € S5(75) of (5.7) exist. Recall the discrete inf-sup condition
on 8§(7s) from Proposition 4.1

Bo = inf sup bW , Vo)l )
WoeSH(To) voest (7o) IWoll @) Vel 1 (e

Choosing W, :=U, — U, € 55(72) gives

b(U, —U,, V,
BollUs — Vsl < sup X ) (5.13)

veest(r)  WVellma)

Now, let Vo, € SJ(75) be arbitrary but fixed. Galerkin orthogonality implies for all V, €
SP(Te) that

b(Us — U, , Vi) = b(Us — Uy, Vs — V).

To estimate the right-hand side, define Q := interior(U(T. \ 7;)) with shape regular
triangulation T := Tolg- Let Jz: HY(Q) — SP(T) denote the Scott-Zhang projection, see

55



5 Adaptive FEM for compactly perturbed problems

e.g., [SZ90]. For a deeper discussion on the properties of the Scott—Zhang projection we
refer to [AFK ™13, Section 3]. We define

{VO on O\ Q
J=(Vo) on .

Since V, € S§(7s), there holds V'|F\as~) = VO|F\8§~2 = 0. Note that the Scott-Zhang pro-

jection preserves discrete boundary data on o0 (see [AFK™13, Section 3.1]). This implies
that Vo — Vo = 0 on Q\ Q and hence V, € S§(7.). Integration by parts and the Cauchy
inequality yield that

b(Uo—Us , Vo — Vo) = (f, Vo = Va) = b(Us , Vo — Vi)
= > (/Tf(Vo—V.) dx—/TAVU.-V(VO_v.) dax

TeTe\To

—/ (b VU + cU) (Vo — V) dx)
T

- ¥ </(f+div(AVU.)—b-VU.—cU.)(Vo—V-) dz
T

TeTe\To
+ [ AVU,-n(V, - Vi) ds)
or
< 3 (Ibr(f + div(AVU) = b VUL = V)| 2y A7 (Vo = Vo)l 2y
TeTe\To

—-1/2

+ IAM2AVUL 0 2omen) b7 > (Ve = Vo)l 2orney )

(5.14)

We recall some standard properties of the Scott—Zhang projection; see [SZ90]. Let wr
denote the patch of T'in 7. For an element T' € T, \ 7, there holds that

Vo = Vallzzery = 11 = J#)Vollzz(r) S hr [VVoll 2@y (5.15)
In combination with the trace inequality, we obtain that

Ve = VellZoory = 11 = ) Vol 22y
S hpt (L= TR)VollFaey + hr V(L = J2) Vo T2y (5.16)
S hrlIVVol ez,

We emphasize that the constants of (5.15) and (5.16) just depend on the y-shape regularity,
the polynomial degree p and the dimension. Combining the latter estimates with (5.14),
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5.2 Verification of the axioms

the Cauchy inequality yields that

bV~ U, Vo= Va) S D (Ihr(f +div(AVTL) = b- VUL = cUl| g2y [V Vel
TeTe\To

+ [B2[AV UL - 0] 2700 IV Vol 20

wr)

< ( N hr(f + div(AVU) = b VU = cUs) |22
TeT\To

1/2
+ IR2AVTL 0lBaorng) % (D IVVelay)
TeTe\To

1/2

Recall that every element patch wr consists only of finitely many elements. Since the latter
estimate holds for arbitrary V, € Sf(7), we obtain with (5.13) that

b(U, — U, , V,
Bo lUs = Usllr(0) < sup ot 7 )
veest(rs)  WVellma)
o(Te \ T5) ||Vo
< BN Wl
VoeSE(Ts) Vol
This concludes the proof of (E4) with Reo = Ts \ To. O

It remains to prove reliability (E3). Since uniform refinement leads to convergence,
discrete reliability (E4) implies reliability. The proof follows analogously to Step 3 of the
proof of Lemma 4.8.

We emphasize that the error estimator can be extended to mixed Dirichlet—Neumann—
Robin boundary conditions, where inhomogeneous Dirichlet conditions are discretized by
nodal interpolation for d = 2 and p = 1, see [FPP14], or by Scott—Zhang interpolation for
d > 2 and p > 1, see [CFPP14]. In any case (E1)-(E4) remain valid [FPP14, CFPP14],
but R consists of a fixed patch of T\ 75 [AFKT13, CFPP14].

5.2.1 Definiteness on the “discrete” limit space (E5)

It remains to prove validity of (E5). Recall that # = H}(2) and Xy = S5(T;) in the sense
of Section 4.5.1. We define the discrete limit space Xoo := ;2 S§(7¢) and obtain the
following lemma.

Lemma 5.6. Let p > 1. The triangulations Ty generated by Algorithm 5.2 are uniformly
y-shape regular with ||hy||pe@) — 0 as £ — co. Further, there holds Xoo = H3(Q) and
hence assumption (E5) is satisfied.

Proof. Recall the notation of Algorithm 5.2. NVB guarantees «-shape regularity (3.4) of
the generated meshes 7;. Further, ||hy||zq) — 0 as £ — oo is enforced by the expanded
marking strategy in Step (iv) and Step (v) of Algorithm 5.2 (see Proposition 4.7).

For w € D := H?(Q) N H(Q), recall the approximation property infy,cx, [|[w — Vi||n <
[hell oo () 1D? w]| 12(q2) from, e.g., [BSO8, Chapter 4]. This proves that

lim inf |lw—Vylyx =0 forallweD. (5.17)
{00 V4 eS(To)
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5 Adaptive FEM for compactly perturbed problems

Let v € H}(Q) and € > 0. Since D is dense within H}(2), choose w € D with |[v — w|y <
/2. According to (5.17), there exists an index fo € Ng such that infy,cx, |w—Vi|ly < e/2
for all £ > {,. In particular, the triangle inequality gives

inf Vil < ||lv— inf —Villy <e forall £ >4,
Jnt o= Vil < flo = wllpe + inf o = Vil <& for all € £,

This proves v € Xo = [J;2, Az and hence concludes Xoo = Hg(€2). O

The next remark shows that definiteness on the “discrete” limit space (E5) is already
satisfied for many generic situation, even without using the expanded Doérfler marking
strategy.

Remark 5.7. In many generic situations, ||hel|peq) — 0 and hence (E5) with Xo =
H&(Q) 1s satisfied even without using the expanded Dorfler marking of Proposition 4.7. To
see that, suppose p > 1 and q > 0 are polynomial degrees and f € L*(2). Let f, € P4(Ty)
be the L?-best approzimation of f in P4(T;). Suppose further that the error estimator is
even reliable in the sense of

v = Ul () + [1he(f = fo)ll2@) < Crane  for all £ >0, (5.18)

where the constant Cye is independent of €. Note that (5.18) is well-known for residual
error estimators and elliptic PDEs with polynomial coefficients. Suppose that for all £ € N
and all T € Ty, it holds u|lr ¢ PP(T) or f|r ¢ PI(T), i.e., the continuous solution as well as
the given data are not locally polynomial. Using (5.18), a simply argument by contradiction
shows that convergence ny — 0 as £ — 0 already implies ||hy| ooy — 0 as £ — oo. Then,
Lemma 5.6 implies (E5) with Xoo = H} ().

5.3 Optimal convergence

In this section we show the main result of this chapter, which proves optimal algebraic
convergence rates for adaptive FEM for general second-order diffusion problems with con-
vection and reaction.

Section 5.2 proves that the model problem (5.2) fits in the abstract framework of Chap-
ter 4. Utilizing the previous sections, we can apply the abstract analysis of Sections 4.6—4.8
to obtain convergence of the adaptive algorithm (Sections 4.6). Further, as a direct conse-
quence of Theorem 4.14 and Theorem 4.21 we get the following result.

Theorem 5.8. Employ the notation of Algorithm 5.2. Suppose 0 < 0 < 1. Then, there
exist Ly, > 0 and constants 0 < qin < 1 as well as Cyn > 0, such that the output of
Algorithm 5.2 satisfies

Noan < Clinqiiyne  for all £,m € Ny with £ > lyy,. (5.19)

et/ 38 Y=L, where Bg is the inf-sup constant of
the munit-times uniform refinement of To; see Lemma 4.17. For all s > 0, it holds that

HUHAS <00 <= Hﬁopt >0 HCOpt >0V > gopt N < Copt (#72 — #T0 + 1)73.
(5.20)

The constant Copy depends only on #7Ty, ., To, 0, s, and validity of (E1)-(E5). ]

Further suppose 0 < 0 < Ogpy == (1 + C’SthC’2
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5.4 Numerical experiments

Theorem 5.8 does not only prove linear convergence, but also optimal algebraic con-
vergence rates for the sequence of estimators and solutions provided by Algorithm 5.2.
We emphasize that in many generic situations, Theorem 5.8 even holds without using the
expanded Dérfler marking in Algorithm 5.2 (see Remark 5.7).

To get optimal convergence in the spirit of [CKNS08] with approximation classes ||-[|g, (7
(cf. see Section 4.8.2), one can define suitable oscillation indicators in the following way.
For each element T' € T, € T, let Fr denote the set of its facets (i.e., edges for d = 2). For
arbitrary ¢ > p — 1, the data oscillations corresponding to the error indicators from (5.8)
are given by

0sce(Va)? := Z 0sce(T, Va)?. (5.21a)
TeT,

We define the element contributions for all 7' € T, and V, € Sg (Te) by

(T .2:h2 i div(AVV,) —b- o — CVe — 7
osce(T, Vs) TQEI%I‘II%T) If + div(AVVS) VVe —cVe = QllL2(r)
5.21b
+ hy min_|[[((AVVA) - n] = Q|72 pra- ( )
QEPY(T) e
FeFr

Then, osce(-)? satisfies the assumptions of Lemma 4.20 in Section 4.8.2 as well as (4.29)
with Xy := SJ(Te) = SP(Te) N HE () and estimator 7, from(5.8). Further details as well
as the exact proof is found in, e.g., [CKNS08, CN12, FFP14]. Note that the constant Copgc
in Lemma 4.20 depends on ¢ and p. We emphasize that, if A, b, c are piecewise polynomial
and if ¢ is chosen sufficiently large, the local contributions simplify to the well-known data
oscillations

osco(T,Va? =t min I = frllin

as for the Laplace problem. In any case, Lemma 4.20 applies and yields for all s > 0 that
[ullg, <00 <= [Julla, < oo.

Hence, Algorithm 5.2 guarantees optimal algebraic convergence rates with respect to the
total error.

5.4 Numerical experiments

In this section, we present two numerical experiments for the 2D Helmholtz equation (5.3)
that underpin our theoretical finding from the previous sections. The numerical experi-
ments are taken from [BHP17]. We use lowest-order FEM with X, := S}(7,) and employ
the weighted-residual error estimator. We also refer to [BISG97] for a first systematic a
posteriori error analysis for finite elements for the Helmholtz equation and [OPDO05] for an
overview on the state of the art and available error estimation techniques for this problem.
In the experiments, we compare the performance of Algorithm 5.2 with respect to
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5 Adaptive FEM for compactly perturbed problems

e different values of k € {1,2,4, 8,16},
e different values of § € {0.1,0.2,...,0.9},

e standard Dérfler marking strategy (with Chyaix = 1) as well as the expanded Dérfler
marking strategy of Proposition 4.7 with Cp a1 = 2.

We consider domains  C R? with a single re-entrant corner and corresponding interior
angle o > m, cf. Figure 5.1. Note that elliptic regularity thus predicts a generic convergence
order O(N~9/2) for the error on uniform meshes with N elements, where § = 7/a < 1. On
the other hand, the optimal convergence behavior for lowest-order elements is O(N~1/2) if
the mesh is appropriately refined.

5.4.1 Experiment with unknown solution

We consider the Z-shaped domain Q C R? from Figure 5.1 (upper left). The marked node
has the coordinates (—1,—t) = (—1,—0.5) and determines the angle « at the re-entrant
corner (0,0). This choice leads to a = 2m — arcsin (¢/v1 +2) and § &~ 0.5398. Consider
the constant right-hand side f = 1 in (5.3) so that the residual error estimator is equivalent
to the actual error, i.e., i = [[u — Usl[g1(q)-

For k = 2, Figure 5.1 shows a generically reduced convergence rate for the error estima-
tor on uniform meshes, while on the other hand, Algorithm 5.2 with # = 0.2 regains the
optimal convergence rate. Empirically, the results generated by employing the standard
Dorfler marking lead to similar results as for the expanded Doérfler marking from Propo-
sition 4.7. The same observation is made for all tested choices of # (not displayed), so
that we only consider the expanded Dorfler marking in the remaining plots. Figure 5.2
compares uniform vs. adaptive mesh-refinement for some fixed § € {0.2,0.5} but various
wavenumbers k € {1,2,4,8}. As expected, the preasymptotic phase increases with grow-
ing k. However, adaptive mesh-refinement results in asymptotically optimal convergence
behavior. Figure 5.3 compares uniform vs. adaptive mesh-refinement for fixed k € {2, 8}
but various 6 € {0.1,...,0.9}. Although Theorem 5.8 predicts optimal convergence rates
only for small marking parameters 0 < 6 < Oy = (1 + C2,.C2))7!, we observe that
Algorithm 5.2 is stable in 6, and any choice of 8 < 0.9 leads to the optimal convergence be-
havior. Even though this gap between analytical and computational results is well-known
and typical for adaptive algorithms, this problem is still open. Finally, we observe that
Algorithm 5.2 did never enforce uniform mesh-refinement in Step (i), i.e., throughout the
resulting discrete linear systems were indefinite but regular.
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T T T
Q
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d
<
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<
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02k —&— Dorfler i
—4— expanded Dorfler
—6— uniform
102 104 108

number of elements N

Figure 5.1: Geometry and initial partition 7y in the experiment from Section 5.4.1 (above).
The blue star indicates the node (—1,—t) := (—1,—0.5). Below, we compare
the error estimator for uniform vs. adaptive refinement with 6 = 0.2 and k =
2. Uniform mesh-refinement leads to a suboptimal convergence rate, while
Algorithm 5.2 with Dorfler marking and expanded Dorfler marking recovers
the optimal convergence rate.
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error estimator 7y

102 104 106
number of elements N

-
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error estimator 7
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1 1 1
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number of elements N

Figure 5.2: Convergence rates for 7, in the experiment from Section 5.4.1 for different values
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of k. We used 6 = 0.2 (above) as well as § = 0.5 (below). Dashed lines mark
uniform refinement, while solid lines mark the corresponding estimator 7y of
Algorithm 5.2 with expanded Dorfler marking. The latter recovers optimal
convergence rates, while uniform refinement does not.
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Figure 5.3: Convergence rates for 7y in the experiment from Section 5.4.1. We compare uni-
form and adaptive mesh-refinement for different values of # € {0.1,...,0.9} and
k = 2 (above) as well as k = 8 (below). For all § < 1, adaptive mesh-refinement
leads to optimal convergence behavior, while the preasymptotic behavior in-

creases with k.

63



5 Adaptive FEM for compactly perturbed problems

5.4.2 Experiment with mixed boundary conditions

We consider a Z-shaped domain with a symmetric opening at the re-entrant corner, see
Figure 5.7. The marked nodes read (—1,+t) = (—1,+£0.25). Analogously to the previous
example, we expect a reduced convergence order O(N —9/ 2) for uniform mesh-refinement
with 0 ~ 0.5423. We prescribe the exact solution of the Helmholtz equation in polar
coordinates (r, ¢) by

u(zx,y) = r’ cos (69) (5.22)

and define f := —k?u in Q and g := Oyu on I'. Note that u has a generic singularity at
the re-entrant corner (0,0) of Q. Further, there holds u|r, = 0 on the Dirichlet boundary
I'p := conv{(—1,=£t),(0,0)}. The Neumann boundary is given by I'y := 9Q\I'p. Thus, u
is the unique weak solution of the mixed boundary value problem

—Au—FKu=f inQ
u=0 onIp (5.23)

Ohu=g¢g only.

The weak formulation (5.23) can be written in the variational formulation (5.4) with Hilbert
space

H = H})(Q) = {v € Hl(Q) : yiont(v)|pD = 0},
where ~{"(-) denotes the interior trace operator (cf. Section 2.2). Note that assump-
tion (E5) is guaranteed by Remark 5.7 even for standard Dorfler marking. Moreover, since
the exact solution u is given, we can compute the error err, := ||u — Uy || g1(q) besides the
corresponding error estimator 7,.

Our empirical observations for mixed boundary value problem are similar to those of the
previous experiment in Section 5.4.1; see, e.g., Figure 5.4-5.6. Uniform mesh-refinement
leads to suboptimal convergence behavior with rate O(N~%2) for both the error as well as
the error estimator. On the other hand, adaptive mesh-refinement resolves the geometric
singularity at the re-entrant corner (Figure 5.7) and recovers the optimal convergence rate
O(N~Y2), see Figure 5.4.

As in the previous example, Algorithm 5.2 appears to be stable for all § € {0.1,...,0.9}
and always realizes the optimal rate (Figure 5.6). Different values for the wavenumber
k € {1,2,4,8,16} only affect the preasymptotic phase (Figure 5.5). Finally Figure 5.4
shows that there is no empirical difference between the standard Dorfler marking and
the expanded Dorfler marking, and therefore, both refinement strategies lead to optimal
convergence behavior for the error as well as the error estimator.
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Figure 5.4: Convergence of err, and 7, in the experiment of Section 5.4.2 for k = 2 (above)
and k = 16 (below). We compare uniform vs. adaptive mesh-refinement using
Dorfler marking as well as expanded Dorfler marking with 6 = 0.2.
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error estimator 7y
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Figure 5.5: Convergence rates for 7y in the experiment of Section 5.4.2 for different values
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of k and marking parameters § = 0.2 (above) as well as § = 0.5 (below).
Dashed lines indicate uniform refinement, while solid lines indicate the output
of Algorithm 5.2 with expanded Dorfler marking. The latter recovers optimal
convergence rates, while uniform refinement does not.
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Figure 5.6: Convergence rates for 7, in the experiment from Section 5.4.2 for uniform and
adaptive refinement with different values of 6 € {0.1,...,0.9} and k = 2 (above)
as well as k = 16 (below). Independent of the choice of § < 1, Algorithm 5.2
leads to optimal convergence behavior. As in Figure 5.5, the preasymptotic
phase increases with k.
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-1 -0.5 0 0.5

45 = 232 #Ti6 = 2368

-0.5 0 0.5 1

Figure 5.7: Initial mesh 7y (upper left) and adaptively generated meshes 7, in the exper-
iment from Section 5.4.2 for £k = 2 and # = 0.2. The nodes marked with blue
stars are given be (—1,+t) = (—1,+£0.25).
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6 Adaptive BEM for the Helmholtz equation

6.1 State of the art and outline

Adaptive boundary element methods with (dis)continuous piecewise polynomials for second
order elliptic problems are well understood if the boundary integral operator is strongly
elliptic. In particular, optimal algebraic rates of convergence have been proved in [FFK*14,
FFK*15, FKMP13] for polyhedral boundaries and in [Gan17b] for smooth boundaries. An
abstract framework is also found in [CFPP14, Feil5]. With [AFFT17] these results can
also be extended to piecewise smooth boundaries.

In recent years, isogeometric analysis has lead to a variety of works proving optimal
rates for ABEM using spline basis functions; see, e.g., [FGP15, FGHP16, FGHP17] for the
Laplace problem in two dimension as well as [Ganl17a] for a generalization to second-order
linear elliptic PDEs in three dimensions.

On the other hand, boundary element methods for the Helmholtz equation are very
popular and used in many applications; see, e.g., [CWGLS12, CK83] for an overview of
techniques in acoustic scattering. To our knowledge, there are no results concerning optimal
convergence of ABEM for indefinite problems, even for sufficiently fine initial meshes.

As second application of the abstract framework presented in Chapter 4, we consider
ABEM for the Dirichlet or Neumann boundary value problem for the Helmholtz equation,
ie.,

—Au—k*u=0inQ subject to
u=gonl or
Onu=¢onT.

where k& € R denotes the wavenumber. Using a Potential decomposition from [Mell2], we
generalize the inverse estimates in [AFF117] for the Laplacian to the Helmholtz case. Using
the inverse estimate, we prove the estimator axioms (E1)-(E5). Hence, we can apply the
abstract framework of Chapter 4. Then, the latter provides the main results of this chapter
(Theorem 6.11 and Theorem 6.14), where linear convergence as well as optimal algebraic
convergence behavior is proved for the weakly-singular as well as the hyper-singular integral
equation.

Outline of chapter. First, in Section 6.2.1 we give a short introduction into BEM,
where we recap the most important properties of the involved integral operators. As model
problem serves the weakly-singular integral equation, which is introduced in Section 6.3.
There, we also discuss the weighted-residual error estimator and recall the adaptive Al-
gorithm 4.4 in the current setting. In Section 6.4, we prove the inverse estimates in the
style of [AFFT17] for the Helmholtz operators. To that end, we introduce Besov spaces in
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6 Adaptive BEM for the Helmholtz equation

Section 6.4.1 and decompositions of the corresponding potential operators in Section 6.4.2.
Utilizing the inverse estimates, Section 6.5 verifies the estimator axioms. The main result
(Theorem 6.11) of this chapter is given in Section 6.6. Further, in Section 6.7, we focus
on the hyper-singular integral equation and prove optimal convergence rates also in this
setting. In the last Section 6.8, we underpin our theoretical findings with some experiments.

6.2 Boundary element method for the Helmholtz equation

This section gives a short introduction into boundary element methods. Our focus is on the
Helmholtz equation and the related integral operators. The interior Helmholtz equation
reads

—Au—Ku=0 inQ, (6.1a)
where k € R denotes the wavenumber. The corresponding outer problem reads
—~Au—k*u=0 inRY\Q, (6.1b)
where we additionally impose the Sommerfeld radiation condition

ju(@)] < Cla|™!

, Ly for |x| — oo. (6.1c)
|Ou/0r —iku| < C'|z|

Here Ou/0r = x/|z| - Vu denotes the radial derivative. Note that, (6.1c) is needed to
guarantee unique solvability for the outer problem (6.1b). The next section introduces the
corresponding integral operators.

6.2.1 Layer potential and boundary integral operators

Recall the notation of Chapter 2. Let Q € R? with d = 2,3 be a bounded Lipschitz domain
with piecewise C*°-boundary 0. For d = 2, we additionally assume that diam(£2) < 1.
Let Q.= R%\ Q be the exterior domain and n(y) denote the exterior normal vector for
all z € 9Q. For k > 0, the Helmholtz kernel function and the fundamental solution of (6.1)
are given by

iH(l)(k\x—yD for d =2

_ Jaltto ’

Gk(%y) = {4 ‘1 ‘ etklz—yl ford =3 (6.2)
T|T—Y ’

where Ho(l) denotes the first-kind Hankel function of order zero; see, e.g., [Ste08a, Chapter
5.4]. For k = 0, the kernel Gy(z,y) coincides with the fundamental solution of the Laplace
operator and reads

— L log |z — y| for d =2
Go(z,y) := { T ’ (6.3)
m fOI' d = 3
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6.2 Boundary element method for the Helmholtz equation

In case of a negative wavenumber k£ < 0, we define G} := G_j. For smooth solutions
u € C%(Q) of equation (6.1a), there holds the representation formula

u(x) = - Gr(z,y) 8n(y)u(y) dy — /BQ an(y)Gk(x,y) u(y)dy for all z € Q. (6.4)

Hence, in oder to get the solution u(z) in 2, depending on the given boundary conditions,
one has to compute either d, u or u on the boundary. We emphasize that the represen-
tation formula (6.4) holds, up to a different sign, also for smooth solutions of the exterior
problem (6.1b) with the Sommerfeld radiation condition (6.1c). Without (6.1c), one can
prove a similar result with an additional Helmholtz-harmonic function on the right hand
side; see, e.g., [SS11, Theorem 3.1.8].

The representation formula motivates the definition of the following potential operators.
For all k € R, we define the corresponding simple-layer potential by

(i]kgb)(x) = - Gr(z,y)o(y)dy for all z € RY\ 69, (6.5)

and double-layer potential by

(Rt (z) = /aQ On(y)Gr(z,y)p(y)dy for all x € R\ 9Q. (6.6)

For —1/2 < s < 1/2, these potentials give rise to bounded linear operators
By : HY245(0Q) — HL (RY) and  §, € H/?>T5(0Q) — HL_(R?), (6.7)

where Hlloc(Rd) denotes the space of H!-functions with compact support; see [SS11, The-
orem 3.1.16].

Recall the interior and exterior trace operators v, 7§ as well as the conormal deriva-
tives i 4$*t from Section 2.2.4. For —1/2 < s < 1/2, application of this trace operators
gives rise to the following linear and continuous boundary integral operators:

e simple-layer operator

Uy, : HV/205(0Q) — HY?F5(0Q)  with 0y := ~i0t0y,; (6.8)

e double-layer operators
RY : HV/?H5(0Q) — HY?**5(0Q)  with &7 :=~JR;  and o € {int, ext},

1 .
Ry HY/75(0Q) — HY?+5(0Q)  with &y, == 3 (Rint 4 gext).
e adjoint double-layer operator

1 L~
& HY23(00) —» H™Y2H5(0Q)  with &), := —5ld+ At g, (6.9)
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6 Adaptive BEM for the Helmholtz equation

e hyper-singular operator

Wy, : H/2H5(0Q) - H-V?15(0Q)  with  20), := —™ &, (6.10)

A proof of the stated mapping properties is given in [SS11, Theorem 3.1.16] resp. [SS11,
Section 3.1.2]. We emphasize that the simple-layer operator Uy is symmetric and even
continuous for s = 1/2 (see Theorem 6.3). For k = 0, U is a well-defined isomorphism for
—1/2 < s < 1/2, and elliptic and symmetric for s = 0. Further, for k£ # 0, it is well-known
that the simple-layer operator 2y, is invertible, if and only if k2 is not an eigenvalue of the
interior Dirichlet problem (IDP) for the Laplace operator, i.e., it holds that

Vu € H'Y(Q) (— Au=ku with +™u=0 = wu=0 in Q); (IDP)

see, e.g., [SS11, Theorem 3.9.1]. Hence, to ensure solvability, we assume throughout this
chapter that k? is not an eigenvalue of (IDP).

Similar to the simple-layer operator, it can be shown that the double-layer operator is
continuous for s = 1/2 (see Theorem 6.3). In case of the Laplace equation, i.e., kK = 0, the
operators R, R{, as well as 2 are even well defined for s = £1/2; see [SS11, Remark
3.1.18]). For further properties on the hypersingular operator 20y, we refer to Section 6.7.

For ease of presentation, the main part of this chapter (Sections 6.3-6.6) focuses on
the weakly-singular integral equation. The hyper-singular integral equation is discussed in
Section 6.7.

According to the representation formula (6.4), the solution u(x) in €2 is given in terms of
the normal derivative d,u and the trace u on the boundary 0f2. For the Dirichlet problem,
i.e., (6.1a) subject to u = g on 0f, the missing normal derivative ¢ = Jyu is given by
Symm’s intgral equation

Vi = (R + %Id) g on OS). (6.11)

For ease of presentation, we restrict ourself to an indirect formulation, where the solution
u of the Dirichlet problem is given in terms of the simple-layer potential

u = Ty, o, where ¢ is the solution of Vrop =g on 0. (6.12)

Note that in the indirect formulation, the density ¢ has no direct physical meaning. How-
ever, we stress that all results of Sections (6.3)—(6.6) also holds for direct boundary element
methods; cf. Remark 6.12. For the Neumann problem, i.e., (6.1a) subject to Ohu = ¢ on
0Q, we refer to Section 6.7.

6.3 Model problem

Let Q € R? with d = 2,3 be a bounded Lipschitz domain with piecewise C'*°-boundary
9. For d = 2, we additionally assume that diam(Q2) < 1. Suppose I' = 9Q or ) AT C 99
is a relative open set which stems from a Lipschitz dissection I' U 9" N (09 \ I).
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6.3 Model problem

To simplify notation, we make the following convention: If I' & 09, and it is clear
from the context, we identify any v € H'/?+5(T") with its extension Eprv € HY?+5(9Q).
Further, the operators Uy, Uy, K. are often applied to functions in L2(T), resp. Ry, Ky, Wi

are applied to functions in HY 2(T"). To ease notation, we use the following convention: For
Y € LX) and v € HY2(I'), we implicitly extend with zero, e.g., we write U1 instead of
U (Eory) and Ko instead of Ry (Eorv).

As model problem, we consider the weakly-singular integral equation: Given an f €
HY2(T'), find ¢ € H~'/2(T) such that

Vro=f onl. (6.13)

Recall the notation of Section 2.2, and let (-, -) denote the duality pairing which extends
the L?(8Q)-scalar product. The weak formualtion of (6.13) reads as. Given f € H 12(),
find ¢ € H~'/2(T) such that

(B b, ) = (f, ) forall ¢y € HY>T). (6.14)

In case of £ = 0, Uy corresponds with the simple-layer operator of the Laplace equation.
Adaptive algorithms for the Laplace equations are well studied and understood. In this
case, the proof of optimal algebraic rates of convergence for the weakly-singular integral
equation (6.13) is found in [FKMP13, FFK*14, Gan13].

In order to fit in the abstract framework of Chapter 4, we recast the model prob-
lem (6.13) in the following functional analytic setting. The bilinear form a(-, -) : H-12(I')x
H=Y2(I') = R is given by

a(x, ¥) == (Vo x, v) forall x,v € H VA(T). (6.15)
Further more, we define the linear operator
¢ =), — Vo : H V() — HY2(T). (6.16)

Then, the model problem (6.13) can equivalently be reformulated as follows: Given f €
HY2(I'), find ¢ € H~'/2(T) such that

(Vo+€)op=f onT. (6.17)

The weak formulation of (6.17) thus reads as: Given f € HY/2(I'), find ¢ € H~Y/2(T") such
that

b, V) = ald, V) + (o, ) = (f,¥) forally e HVA(I). (6.18)

The following Proposition recaps some important properties of a(-, -), and € and ensures
that (6.17) fits in the compactly perturbed setting of Chapter 4.

Proposition 6.1. There exist constants o, Ceont > 0 such that the bilinear form a(-, -)
from (6.15) and € from (6.16) satisfy:
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6 Adaptive BEM for the Helmholtz equation

(i) a(-, -) is symmetric, continuous and elliptic with
|a(X, T;Z))| < Ceont ||X||ﬁ71/2(p) ||71Z)Hﬁ71/2(p) and « H¢HH 1/2(F) (¢ 1,[))

for all x,y € fI‘l/Q(F). Hence, a(-, -) defines a scalar product and induces an
equivalent energy norm || || :== a(, ¥)/? ~ HwHﬁ_l/g(F) on H-1/2().

(i) The operator €, : H=Y/2(T') — HY2(T) is bounded and compact.

Proof. We split the proof into two steps.
Step 1: Proof of (i). Recall that U is a symmetric isomorphism. This yields that

a(x, ¥) = (Vox, ¥) = (x, Vo) =a(y, x) forall x,4» € H(I).

Hence, a(-, -) is symmetric. Recall the extension operator Eyr from Section 2.2. Continuity
of Vo : H™ 1/2+S(as2) HY2+5(9Q) further implies that

laCx, )| = KDox, )| < B0 xll g2 191 172y
= [1D0 (Eo.0) vz oy 191l =172 )
< 1ol Eo,0x 17200 11l 1721y
= 1ol =172 0y 10Nl G172 1y -

This proves continuity of a(-, -). In case of d = 3, Y is elliptic and we directly obtain that
la(x )| = [{(Bo (Borx) , Eorx)| 2 I1Bor ¥ l7-1/2000) = U151 g

where the hidden constant depends only on 092. For d = 2, note that diam(2) < 1 implies
ellipticity of Up; see, e.g., [Ste08a, Section 6.6]. This concludes the proof of (i).

Step 2: Proof of (ii). Boundedness of € follows directly from the definition.
On Lipschitz boundaries 09, the operator € := Uy — Vo : H-Y2(0Q) — HY/?(0Q) is
compact; see, e.g., [SS11, Lemma 3.9.8] or [Ste08a, Section 6.9]. This implies compactness
of ¢ : H-Y2(I') — HY2(I). O

For mesh-refinement, we consider extended 1D bisection (see Section 3.4) in the case of
d = 2. For d = 3, we use NVB (Section 3.5) on the two dimensional boundary I". Then,
Section 3.4 and Section 3.5 prove the refinement axioms (R1)-(R6) for both strategies.

For discretization, we consider standard piecewise polynomial ansatz and test spaces,
based on regular triangulations of I' (see Section 3.2). To that end, let 7y be a given
regular and v-shape regular initial triangulation on I'. Further, let p € Ny be an arbitrary
but fixed polynomial degree. For each admissible mesh 7,, the corresponding 7,-piecewise
polynomial space is denoted by PP(7,). Then, the Galerkin discretization of (6.17) reads
as follows: Find ®, € PP(7,) such that

a(Py, Uy) + (€1 o, Vo) = (f, U,) forall ¥q € PP(T,). (6.19)
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6.3 Model problem

It remains to prove that iterated uniform refinement leads to a dense subspace of H~1/2 (I).
To that end, let I1, : L?(I") — PY(7,) denote the L?(T')- orthogonal projection onto P°(Ty).
For all ¢ € L*(T), it holds that

10 = TLa) 0l ooy S 10 (1= Ty, (6.20)

where the hidden constant depends on the shape regularity of T; see, e.g., [AFFT17,
Corollary 3.3] or [SS11, Section 4.3.4]. Note that there also holds nestedness P%(7,) C
PP(T,) for p > 0. For v € L?(T'), we thus obtain that

(6.20)

. 1/2 1/2
\Ij‘elngm) 1V = Yellgmrroy S 0™ (1 =Te)¥llL2(r) S 7o [l Loy 19l 2(r)-

Recall that the embedding L2(I') ¢ H~Y2(T") is dense. Uniform mesh-refinement guar-
antees ||he|roo () — 0 and hence, leads to a dense sequence of subspaces. Note that the
involved constants only depend on the shape regularity of 7, and I'. Thus, the above
argumentation holds for every refinement strategy satisfying (R2).

Proposition 6.1 proves that model problem (6.13) as well as (6.17) and (6.19) fit in the
compactly perturbed framework of Section 4.2 with H := H~Y2(I') and X, := PP(T.).
Hence, existence and uniqueness of solutions of (6.19) is guaranteed in the sense of Propo-
sition 4.1.

6.3.1 Weighted-residual error estimator

In this subsection, we introduce the weighted-residual error estimator for the weakly-
singular integral equation (6.13). To that end, suppose f € H*(T') and T, € refine(7p),
such that the discrete solution ®, € PP(7,) of (6.19) exists. To guarantee well posedness
of the estimator, we note that there holds Uy, : L*(T) — H(T) (see Theorem 6.3). For all
T € T,, the local contributions are defined by

1e(T) == ||ha? Vi (Ve — f)ll 201

The corresponding a posteriori error estimator is given by

me= (%) with )= (3 w@?)” oratucm 620
TEUs

Further, for a set of elements U, C 7o, we define
UU.::{xEF:EITGT.:UET}.
Then, it holds that 7e(Us) = ||/ Vr (VpPe — Ile2ue)- The weighted-residual error

estimator (6.21) has first been proposed for a posteriori BEM error control for the weakly-
singular integral equation in 2D in [CS95, Car96] and later in 3D in [CMSO01].
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6 Adaptive BEM for the Helmholtz equation

6.3.2 Adaptive algorithm

With the a posteriori error estimator n, at hand, we consider the following adaptive algo-
rithm which consists of Algorithm 4.4 combined with the expanded Dérfler marking from
Proposition 4.7.

Algorithm 6.2. INPUT: Parameters 0 < 0 <1 and Cpark > 1 as well as initial triangu-
lation Ty with ®_1 := 0 € PP(Ty) and n_1 := 1.
ADAPTIVE LOOP: For all £ =0,1,2,..., iterate the following Steps (1)—(vi):
(i) If  (6.19) does not admit a unique solution in PP(Ty):
— Define ®y:= ®y_1 € PP(To) and ng := np—1.
— Let Tyyq := refine(Ty, Ty) be the uniform refinement of Ty,

— Increase ¢ — £+ 1 and continue with Step (1).
(ii) Else compute the unique solution ®, € PP(Ty) to (6.19).
(iii) Compute the corresponding indicators ne(T') for all T € Ty.

(iv) Determine a set M}, C Ty of up to the multiplicative factor Crarx minimal cardinality
such that On7 < ng(M})2.

(v) Find M} C Ty such that # M} = #M;, as well as hy(T) > he(T") for all T € M
and T' € T; \ M. Define My := M), U M.

(vi) Generate Tyyq := refine(Ty, My), increase £ — £+ 1, and continue with Step (i).

OuTPUT: Sequences of successively refined triangulations Ty, discrete solutions ®p, and
corresponding estimators 1.

Apart from the model problem and involved discrete spaces, Algorithm 6.2 coincides
with Algorithm 5.2 for adaptive finite elements.

6.4 Inverse estimates

The main result of this section is the following inverse-type estimate. In case of the Laplace
equation (k = 0), similar estimates are shown in [FKMP13, Ganl3] for polyhedral or
smooth boundaries. In [AFFT17], the analysis has been lifted to piecewise C''-boundaries.

The proof of Theorem 6.3 uses ideas from [AFFT17, Mel12] and generalizes the existing
results in [FKMP13, Theorem 3.1] and in [AFF17, Theorem 3.1] from k = 0 to general
k > 0. We note that, Theorem 6.3 is an essential tool to prove the estimator Axioms (E1)—
(E4) in Section 6.5.

Theorem 6.3. The simple-layer and double-layer operator satisfy

Uy € L(L*(D), HY(T)) resp. 8Ky, € L(HY(T), H(T)). (6.22)
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6.4 Inverse estimates

Additionally, let T be a ~y-shape regular triangulation of I'. Then, there exists a constant
Cinv > 0 which depends only on I', ), and v, such that for all k > 0, it holds that

Ve B oy < (14 K 9l =172y + 1ha’ |2y,

an )

L+ k) [0l 1o oy + 1" Vel 2y

14+ &%) 10l g-172ry + 3 ¢HL2(F)7
)

e 12 Wyl 2wy < 1+ K2 [0ll ey + 108 Vol 2y

“11ha? Ve Ryol| 2y <

an

HlV

(

(
2Rl ey < (
(

an

for all € L*(T) and v € I:TI(I‘). Furthermore, there exists Ciny > 0 which depends only
on Q, I', v, and p, such that

1/2

1ha"> Ve VWl 2y + 7’ R Well 20y < Cin (14 k) [[Wall 51/ (6.27)

()
R VAN - V4 nLZ9m, v < Cow (14K IVall 5 6.28
[he'* Vr 8k Vel L2(r) + || kVellL2(ry < Ciny (14 K7) [Vell a2y, (6.28)

for all Wy € PP(Tq) and V, € §p+1(7:). In particular, the constants Ciny, Ciny are indepen-
dent of the wavenumber k > 0.

6.4.1 Function spaces revisited

The proof of Theorem 6.3 involves certain Besov spaces on domains Q. Therefore, we
recap the definitions and some important properties. Besov spaces can be defined by the
K-method of interpolation; see, e.g., [Tar07, Tri83, Tri92]. To that end, let Q C R be a
bounded Lipschitz domain, s € Ny and s’ € (0,1). Then, the Besov space Bs:;j (Q) is given
by

Byt (Q) = [HY(Q), HH Q)] .
Moreover, according to [Tar07, Lemma 22.2], there holds the continuous embedding H s+'(Q)
B3 ().

6.4.2 Potential decompositions

The proof of Theorem 6.3 is based on the decomposition of the layer potentials into a
singular part, which consists of the layer potentials Uy, resp., Ko of the Laplacian, and two
smoothing operators. We employ the following notation

|V™p(2)]? = Z %\Do‘zp(x)]Q with ! :=a;!-ag!...-ag! and |V%(x)]* := |[¢(x)*

d
aeNg

la=n

Lemma 6.4 provides a decomposition for the simple-layer potential, while Lemma 6.5 states
a similar result for the double-layer potential. Both results are proved in [Mell2].
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6 Adaptive BEM for the Helmholtz equation

Lemma 6.4 ([Mel12, Theorem 5.1.1]). Let R > 0 with Q G B := {x € R?: |z| < R}. Let
0 < p < 1. Then, it holds that

%k = sﬁo + ém,k + ﬁ%,k, (6.29)

with linear potential operators ém,k : H-1/245(9Q) — H3t5(BR) and ﬁm,k c H1/245(0Q) —
H3+3(BR)NC>®(BR) for all —1/2 < s < 1/2. Moreover, there exist constants CY ,CY ,CY >
0 such that

||ém,k Vg By < oy p? (pk:fl)HS*S/||1/)HH71/2+S(BQ) forall0 <s <3+s, (6.30)
V™ A i ¥l r2 () < CF K" B0 ¢l 2y < CF K"l ir-1(00) for all n € No. (6.31)
The constants CY, Cg/, and C?Y depend only on p, R, Q) , but not on the wavenumber k. [J

Similar to the simple-layer potential, the double-layer potential can be split in the fol-
lowing way.

Lemma 6.5 ([Mel12, Theorem 5.2]). Let R > 0 with Q & Bg := {z € R?: [z] < R}. Let
0 < p < 1. Then, it holds that

Ek = Eo + éﬁk + glﬁk, (6.32)
with linear potential operators éﬁk : L2(09) — BS,/OQO(BR) and 5[52{7]4; : L2(09) — B;ﬁi(BR)ﬂ
C>(BR). Moreover, there exist constants CX,CK CK >0, such that

1Sk U||B§(;(BR) < CF kol r2a0), (6.33)
V™ Ak vl 2 < Cof K" |1Rovll 2y < C5F K" |vllz2(a0)  for allm € No.  (6.34)

The constants C,CX | and Cgf( depend only on p, R, €, but not on the wavenumber k. [J

6.4.3 Proof of Theorem 6.3

With the potential decompositions of Lemma 6.4 and Lemma 6.5, we can prove the inverse
estimate.

Proof of Theorem 6.3. Let £k > 0 and R > 0 with Bp 2 Q. For convenience of the
reader, we split the proof into several steps.

Step 1: Proof of (6.22) for Wy. Let o € L*(T) and recall that HT’Z)Hﬁ‘I/Q(F) =
191 gr-1/2(96), Where we identify 1 identified with its extension Eo,r¢. With Lemma 6.4

and the definition of U := (i]nt ‘ﬁk, we decompose Uy, = Vo + Gy 1, + Agy i, where
Sy i = 78“ Gy and RAyp = 78“ Asg 1.

For all 1/2 < s’ <34 s <3+ 1/2, equation (6.30) implies that

~ (6.30) ,
Hg‘ﬂ,kaHs'(BR) S PpkT e HT/JHH—l/Hs(aQ)- (6.35)
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For s’ = 2, this reveals that ém,k Y € H?(Bpg). Further, stability of 4{" yields that

1Sw1 | gy < 1Skl 190
_ _ (6.35) (6.36)
S IGuxtllsrz gy S N1Surtllnzey S PRI G-12p)-

Next, note that equation (6.31) proves that 2y x1) € H?(Bg). With the (compact) embed-
ding H1/2(0Q) ¢ H~'(99Q) with | - lz-100) S || - [[g-1/2(90), this yields that

B (6.31)
Ry V2 S (k+E +E) [Ylg-100) S (1+E) 191l =172 ) (6.37)

Similarly to (6.36), continuity of the trace operator proves that

1209,k ¥l 2 ry < 12w,k 2 962
- - (6.37) , (6.38)
S ok Vllgsrzpy < Bor¥lzie S Q+E) 101 g-120):

Combining the estimates (6.36) and (6.38) with the (compact) embedding L2(I") ¢ H~Y/2(I"),
we see that gk, Sy € L(L*(D), HY(T)). With Uy € L(L*(I'), H(I)), we conclude that
Ui, = Vo + Gy + Ay i € L(LZ(F), H! (F))

Step 2: Proof of equation (6.23).  Recall that ), = Uy + Sy + Ay k. This
decomposition directly yields that

1ha? Ve B 2y < Iha’> Ve Bo Gl 2y + 1he’> Vi S sl 2y + 1ha’ Vi A ]| 12 (1
(6.39)

We treat each term on the right-hand side separately. First, [AFFT17, Theorem 3.1] yields
that

15 V1 Dol ary S 1l osyoqry + Iha’? ¢ll ).
Second, [|hel| ooy S diam(€2) < 1 and equation (6.36) imply that

(6.36)
1he? Vr Sk ¥l 2wy S 16wk Ul < k10—

Third, we use equation (6.38) to estimate the last term on the right hand side of (6.39) by

(6.38)
15 Vo g sl 2y S IRowtlliny S 0+ K 0] gy

Combining the latter four estimates, we prove that
1/2 1/2
152 Ve Bitbllroqry S (14 K (9l oy + b Gl 22r)-

This concludes the proof of (6.23).
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Step 3: Proof of equation (6.25).  Recall the definition of the adjoint double-layer
operator. This gives rise to &) = — 1Id + yint B, = R + int GW g+ it le r and hence
implies that

1/25‘3/01/1”L2 + [|ha/? Aint Ga e Yllp2(r) + || e o7 A Ry Yl 22y

Again, we treat each term on the right-hand side separately. First, [AFF*17, Theorem 3.1]
yields that

1ha!? & 0 20y < 1B

1/2 1/2
15’ 8 ¥llz2ey S 19l gssoqry + 1ha’> Gll22ry-

Recall from Step 1 that éﬂk P, fQVlQLk Y € H*(Bg). Therefore, [SS11, Remark 2.7.5] implies
that ’ythQ] XUR ’ythlm,kzb e H'Y?(99). With [hellLoo(ry S diam(Q2) < 1, the (compact)
embedding H'/2(9Q) c L?(99) and stability ([SS11, Remark 2.7.5]) of the conormal deriva-
tive yield that

~ (6.36)
Hhi/Z int 6‘1]k7/}HL2 < H,ylnt 661]7k wHHl/Q(aﬂ) S HGm,k 1/}HH2(BR) S k ”IbHﬁ_l/Q(F).

Third, we argue as before and prove that

. (6.37)
1P’ 41 Asg bl ey S 1™ Dok Yll 120y S 1F Ul () S (14 B [l forsogry.

Combining all right-hand side estimates, we obtain that

1/2
1he'? Bl L2y S A+ Bl ooy + 1he? ¢ll 2y,

and conclude the proof of (6.25).

Step 4: Proof of (6.22) for K. Letv e fIl(I‘). Analogously to Step 1, Lemma 6.5
gives rise to the decomposition £, = Ko + Ggp + ™Ag i, where Gz = ~yint Sgr and
Ag k= Yot Qlﬁ,k-

For —c0o < 0 < s < o0, 0 < ¢ < 00, and 0 < r,t < oo, there holds the continu-
ous embedding B; . (Br) C Bf;(Br); see, e.g., [Tri92, Section 2.32]. This implies that

By (Br) C B3(Br) = HX(Bg) with || - || 25 S | I 5372 () Amalogously to (6.36),

and inequality (6.33) reveal that

continuity of the interior trace operator ’ymt

1Sg kvl () < 1Sarvllrio) S 1S68kvllH2(B)
_ (6.33) (6.40)
< \\6ﬁ,kv|’Bg(;(Br) S kllvlizzan) = kvl r)-
The operator g j is treated analogously to Step 1 and hence satisfies that

126k vl iy S 10k vl vz sy < 12k vllmr2 (s S 1+ K [0l 2y (6.41)

Then, the estimates (6.40) and (6.41) prove that Ggy, Agr € L(L*(T),HY(')). With
Ro € L(HY(T), H(T)), we conclude that £ = & + Gy, + gy € L(HYT), HY(T)).
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Step 5: Proof of equation (6.24). Let v € H'(I'). Analogously to Step 2, the
decomposition R, = Ko + Gg i + Ag x implies that

1he!? Ve Ryoll 2y < [1ha? Vi Kovll 2y + [ha"> Vi S vl 2y + [1ha!? Ve g 0]l 22y

We treat each term on the right-hand side separately. First, [AFFT17, Theorem 3.1] yields
that

152 Vo 8o vl 2y S 0]l 1oy + I10a? Ve oll ().
Second, [|he||re0 ) S diam(£2) < 1 and equation (6.40) imply that

s (6.40)
1he’ "V Ggrvll2ry S 1Sak vl S Kklvllzzm-

Third, we use equation (6.41) to see that

(6.41)
1ha> Ve soll oy S ek ol < (14K o]l z2 ).

Combining the latter estimates, we obtain that

102 Vp Rl o < [oll 172y + (L + £2) Joll 2oy + 1he'* Vol 22y
1/2
S WK ol ooy + 108 Fr o]l

This concludes the proof of (6.24).

__Step 6: Proof of equation (6.26).  Recall the definition of 20;. With R =
Ro + Gg i + Ag i there holds W, = —Wilnt R =Wy — vilnt Sgr— vilnt Ag . This yields that

1he’? 20| L2y < [1he!? 2Wo vl p2ry + 1! A S vl L2y + 1! 41 A s 0]l 2y

We treat each term on the right-hand side separately. First, [AFFT17, Theorem 3.1] yields
that

1/2 1/2
Hh./ W, U”L2(F) N HUHﬁW(r) + Hh°/ VF”HL2(F)'

Recall from Step 4 that éﬁkv, évlﬁ,kv € H?(Bpg) and hence 'Yilntéﬁ7k v, int évlﬁ,kv e H'2(09).

As in Step 3, stability of 71" gives

1/2 int = <& (6é0)
[he "M Gar vl SISk vy S kvl m,
1/2 _int & < |19 (6é1) 3
[he " ™ Aarvlirzwy S IRak a2y < (L+E) [vllp2m.-

Combining the latter four estimates, we conclude the proof of (6.26).
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6 Adaptive BEM for the Helmholtz equation

Step 7: Proof of equations (6.27)—(6.28). According to [GHS05, Geo08] or
[AFF*17, Lemma A.1], there hold the following inverse estimates

1he? (0 + D)7 el oy S [Wall 1oy for all Uy € PP(TS), (6.42)
182 (0 + 1) ViVallay S Vel guseqy  for all Va € SP(T2), (6.43)

where p is the fixed polynomial degree. The hidden constant depends only on 0f2, T, and
the shape regularity of 7,. Applying (6.42)—(6.43) to the right-hand side of equation (6.23)
and (6.26), we conclude (6.27). Using (6.42)—(6.43) to estimate the right-hand side of (6.24)
and (6.26), we reveal (6.28). This concludes the proof.

U

6.5 Verification of the axioms

In this section, we prove the estimator axioms (E1)—(E4) for the weighted-residual error
estimator defined in (6.21). Further, we show that Algorithm 6.2 ensures (E5). Therefore,
the current setting fits in the abstract framework of Chapter 4.

For the validity of (E1)-(E4) for the Laplace equation, we refer to [FFK*14, FKMP13,
Ganl3] as well as the overview in [CFPP14]. In case of the Helmholtz equation, most of
the proofs are similar to the Laplace case. For the sake of completeness, we include the
most important steps.

Proposition 6.6 (stability on non-refined element domains). There ezists Cyp, > 0 such
that for all Te € T and all Ty € refine(7s), the following implication holds: Provided that
the discrete solutions ®o € PP(Ts) and ®, € PP(Ts) exist, it holds that

|770(7:> N 7:) o 77-(7:) N 7:)| < Csp ||(I)o - ‘1%”1;71/2@)- (6'44)

In particular, there holds (E1). The constant Cgp > 0 depends only on T', v-shape regular-
ity, p, and k.

Proof. Let To,To € T such that 7, € refine(7,) and the corresponding discrete solutions
o, € PP(T,) and &, € PP(T;) exist. For all non-refined elements T' € Tg N 7o, it holds
that he(T) = ho(T). Together with the inverse triangle inequality and the inverse esti-
mate (6.27), we obtain that

16(Te N To) = 1o(Te N To)| = [[|ha” Ve (Vi @0 — Pl 27
— |h VB (D, — NezTnny|
< [lhe/* Vr By (@0 — Do)l 2y
< Ciny (14 5) [0 = Dol 712

This concludes (6.44) with Cyp, == (1 + k3) Cipy- O
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6.5 Verification of the axioms

Proposition 6.7 (reduction on refined element domains). There exist Cieq > 0 and 0 <
Gred < 1 such that for all Te € T and all T5 € refine(T,), the following implication holds:
Provided that the discrete solutions ®4 € PP(Te) and ®, € PP(T5) exist, it holds that

1o(To\Te)® < trea Ma(Te\To)? + Crig [0 — P (6.45)

2
H-1/2(T)"
In particular, there holds (E2). The constants greq and Cieq depend only on Gmesh, I,
~v-shape regularity, p, and k.

Proof. Let To,To € T such that 7, € refine(7,) and the corresponding discrete solutions
o, € PP(T,) and @, € PP(T;) exist. For all T' € T, \ T,, reduction of the local mesh
size (R1) implies that ho|7 < Gmesh he|7. Using the Young inequality with arbitrary 6 > 0,
we estimate

(TAT)? = Y [h'> Vi (Be®o — )22

TeTo\Te
1/2 1/2 2
< Y (I (B0 = Nl + 1057 Vo Bi(@o = Do)l 1201 )
TeTo\Te
< Z <(1 + 6) Gmesh ||hl/2 Vr (mkq)O - f)“%Q(T)
TeTo\Te

F (140N RV V(P — @.)yyigm).
Next, the inverse inequality (6.27) yields that

770(7; \7:)2 S (1 + 5) Gmesh 770(7: \ 72)2 + (1 + 571) (1 + k3)2 512nv HQ). - q)OH?;j—l/Q(F)'
Choosing ¢ > 0 sufficiently small such that greq := (1 4 0) Gmesh < 1, we conclude (6.45)
with Crea = (14+671) (1 + k3)2 C? O

mv*

Proposition 6.8 (discrete reliability). There exists Crq > 0, such that for all Tq € T
and all Ts € refine(7,), there exists a set Reo C To with Toé\To C Reo and #Reo <

Crel #(Te\T5), such that the following implication holds: Provided that the discrete solutions
P, € PP(T,) and @, € PP(T5) exist, it holds that

H(I)o — cI)oHﬁ—lm(p) < Cral 50_1 770(7?470)7 (6'46)

where Bo > 0 is the inf-sup constant associated with PP(7Ts). In particular, there holds (E4).
The constant Crq > 1 depends only on the given data, the polynomial degree p, the initial
mesh Toy, and y-shape reqularity.

Proof. We follow the arguments from [FKMP13, Theorem 5.3] for the case of k = 0.
Recall that notation of Proposition 4.1. Then, existence and uniqueness of ®, € PP(7T;)
is equivalent to B, > 0. The discrete inf-sup condition (4.8) for X, := PP(T;) and W, :=
o, — O, reads as

(Vp(Po — Do), Vo)
Bo |0 = Poll g-r/ory < sup .

6.47
voex\ {0y [Wollg-1/2¢py (6.47)
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6 Adaptive BEM for the Helmholtz equation

Let N, denote the set of nodes corresponding to a triangulation 7,. Let p, € S*(7,) denote
the hat function associated with a node z € N,. Further, let N := N, N (U(Te \ T5)) be
the set of all nodes which belong to the refined elements. Define Re o := we(7e \ 7o) and
Qe :=Reo \ (Te \ T5). These definitions give rise to disjoint decompositions

Rew = (T \T) U Qs and To= (T \Reo) U (Te\Ts) U Qa.

Define x := > .y p.- Then, x € S1(T,) satisfies supp(x) = [JRe.0 and Xy = 1.
We define the operator m, : PP(75) — PP(T,) by

To(Us) 1= {0 on U (7ATo),

B U, elsewhere.
For any ¥, € PP(7,) and ¥, € PP(7,), the Galerkin orthogonality yields that
(B (Bo — Ba), Uo) = (f — BVp @u, Uo) = (f — By, &o, Uo — V). (6.48)

Choose ¥, := 7e(¥s) € PP(T,) and note that supp((1—ms) ¥s) C J(Te\T5). Using (6.48),

we derive that
(B, (Do — D), Wo) = (f — VP, (1 —m) Wo)
= < Z pz(f_mkq)o)’ (1_7To)\llo>

ZENF
= < > e (f - Vi @), \I’o> —< > (f - Vi @), ‘1’o|UQ.>-
ZzENF 2eENF

Since Qo C Te NT5, we obtain that he(T") = ho(T') for all T € Q,. We estimate

00— Ba) W) < | S e (F = B0 | ooy 1ol vz,

zEN.R
+ 03T o (F = D@0y e Toll 2 )
ZE./V:R
<1 > 2o (f =B ®a)| oy 1¥oll 7172
zEN.R
{7 D" e (F = B )| oy 158 o2
ZE./V:R

Applying the inverse estimate (6.42) to the right-hand side, we see that

(B(o = @), O S (| 0 220 = Bh®a)| 1oy
zGN.R

oo A DIV UL N1 (B | A Papps
zGN.R
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6.5 Verification of the axioms

The terms in the parentheses are estimated as in [CMSO01]. The sole difference is that
compared to [CMS01, Theorem 3.2] only hat functions associated with nodes z € N} are
involved. Hence, the upper bound affects only | JRe o C I' and reads

1/2
(D@ — ), W] S B2 V0 (F = D)z e Well ooy (6.49)
Altogether, the combination of (6.47)—(6.49) proves that

1 (ij(q)o - ‘1).), \Ilo> 1 1/2
b, — D5 < — su S B he TV — . D, .
H HH 1/2(T) Bo \I/oegfo H\Ilon_j—l/Q(F) B H r (f k )HLQ(UR.,o)

This concludes the proof. O

Corollary 6.9 (reliability). There exists C, > 0 such that for all Ty € T, the following

implication holds: Provided that there exists a discrete solution ®4 € PP(T,), it holds that
o — ‘I)on{’—lﬂ(r) < C;el Te-

In particular, there holds (E3).

Sketch of proof. Reliability can be shown analogously to discrete reliability. Using N7¥ :=
N, as well as the techniques from [CMS01], we obtain analogously to Proposition 6.8 that

1 RY - o, y v,
o — (b.Hﬁ_l/Q(F) < E sup (Ur(o ) )

I ST, S B 1A Ve (f = @)l 2y,
U, H-1/2(T) || °||H*1/2(F)

where 8 > 0 is the continuous inf-sup constant associated with H~Y/ 2(T"). This concludes
the proof. O

6.5.1 Definiteness on the “discrete” limit space (E5)

It remains to prove validity of (E5). Recall that H = H~Y/2(I') and X, = PP(T;) in the
sense of Section 4.5.1. We define the discrete limit space X = J;=, PP(7¢) and obtain
the following lemma. The lemma is an analogon to Lemma 5.6 for finite elements.

Lemma 6.10. Let p > 0. The triangulations Ty generated by Algorithm 6.2 are uniformly
7y-shape regular with ||k pec @) — 0 as £ — oo. Moreover, there holds Xo = H~'2(T) and
hence assumption (E5) is satisfied.

Proof. Recall the notation of Algorithm 6.2. We emphasize that both, EB and NVB
guarantee uniform v-shape regularity (3.4). The expanded Dérfler marking in Step (iv)
and Step (v) of Algorithm 6.2 enforces ||h|[1q) — 0 as £ — oo. It remains to show that

Xoo = H-Y2(T'). Let I, : L2(I') — PP(T;) denote the L2(I')-orthogonal projection onto
PO(T;). For all ¢ € L2(T), it holds that

101 =T @ ey S Iy (1= T0) 9 21y (6.50)
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6 Adaptive BEM for the Helmholtz equation

see [AFFT17, Corollary 3.3] or [SS11, Section 4.3.4]. For ¢ € L?(T), nestedness P°(7;) C
PP(T,) implies that

i — ~ < pl/21 _ < 1pl/2
Ml?gfm) 1 =Wl g-rs2ry S 1h"™ (1 = Ta) ¥llL2(ry S W "l poe (ry 1Ml 22(r)-
Recall that the embedding L2(I') ¢ H~Y/2(I) is dense. Hence, with lhellLoe @) — 0 as
¢ — o0, we conclude Xy, = HY/2(I). O

6.6 Optimal Convergence

The next theorem is the main result of this chapter. It states that Algorithm 6.2 does not
only lead to linear convergence, but also guarantees optimal algebraic convergence rates for
the sequence of a posteriori error estimators. Recall that either NVB or EB guarantee (R3)—
(R6) and the estimator satisfies (E1)—(E4). Then, the theorem is a direct consequence of
Theorem 4.14 and Theorem 4.21.

Theorem 6.11. Employ the notation of Algorithm 6.2. Suppose 0 < 6 < 1. Then, there
exist Uiy > 0 as well as constants 0 < qun < 1 and Cyn > 0 such that Algorithm 6.2
guarantees that

Notn < Clinqliyne  for all £,m € N with £ > lyy,. (6.51)

The constants lin, qin, Clin depend only on qest, Crel, and €3 from I/l\emma 4.13. Moreover,
there exists Bo > 0, lopt > 0, as well as Oopy, == (1 + C2,C2,/B2)~1 such that for all
0 <8 <bopt and all s > 0, it holds that

HQSHAS <0 — EIC’opt > 0 Vﬂ Z fopt Te S Copt (#72 - #76 + 1)73' (6'52)
The constants opt, Copt depend only on Cson, To, 0, s, ||¢||a,, and on the constants in (E1)—
(E4). O

Remark 6.12. For the presentation, we focused on the model problem (6.13) for some
indirect boundary element method. In the case of a direct boundary element approach, the
model problem reads

1
Vi = (R + 3 Id)g onT, (6.53)

where g € HY2(9Q) are the given Dirichlet data and ¢ = O,u € H=Y2(0Q) is the sought
normal derivative of the solution u € HY(Q) of the (equivalent) boundary value problem

—Au—Ku=0 1inQ subject to u=g onl.

The implementation of the right-hand side requires to approzimate g ~ Go € SPTYT,).
Suitable approximations Ge = I4 g together with some local data oscillations which control
the additional approzimation error [|g—Gal| g1/2(5q) are discussed and analyzed in [FFK*14]
for the Laplace problem. Provided that g € H*(9S2), it is shown that the adaptive algorithm
then still leads to optimal convergence behavior. Together with the present analysis, the
results of [FFKY 14] transfer immediately to the direct boundary element approach (6.53).
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6.7 Hyper-singular integral equation

6.7 Hyper-singular integral equation

In this section, we briefly comment on the extension of our analysis to the hyper-singular
integral equation. In case of the Laplace equation (k = 0), a proof of optimal algebraic
convergence rates is found in [FFK*15, Gan13]. Throughout this section, we additionally
suppose that 02 is connected.

We define the spaces Hy '/ ?(89) consisting of H/2(0Q)-functions with integral mean
zero by

H?00) = {p e H209) : (p,1) =0}  and
Hi/2(3Q) ={ve HY2(0Q) : (1,0) = 0}.

First, we recap some important properties of the hyper-singular operator 2, := —vin* :ék
For k = 0, the operator 20, is symmetric and positive semi-definite on H'/ 2(00), i.e.,

Wov, w) = (Wow, v) and (Wov, v) >0 for all v,w € H/?(0Q).

Since 02 is connected, the kernel of 2y consists of the constant functions. Hence, the
bilinear form (2Wy(-), -) provides a scalar product on Y 2(69). This can be extended to

a(u, v) = (Wov, w) + (1, v){1, w) for all v,w € H/?(09), (6.54)

which defines a scalar product on H'/ 2(0€2). According to the Rellich compactness theorem,
there holds the norm equivalence ||v||? := a(v, v) ~ HUH?{W(@Q) for all v € HY2(99Q).

For k # 0, it is well-known that the hyper-singular integral operator 20 is invertible, if
and only if k2 is not an eigenvalue of the interior Neumann eigenvalue problem (see [Stel3,
Proposition 2.5]), i.e., it holds that

vu € H'(Q) (Au:k2uwithfyilntu:0and/udx:O = u:OinQ). (INP)
r

To ensure solvability, we assume throughout this section that k? is not an eigenvalue of
the (INP). Then, the model problem for the hyper-singular operator 20, reads as follows:

Given f € H; ?(09), find u € H}/*(09) such that

Wi u=f on . (6.55)

6.7.1 Framework

The proofs of the abstract properties of Section 4.2 and the estimator axioms (E1)—(E4) for
model problem (6.55) are very similar to the weakly-singular case in Section 6.3 and Sec-
tion 6.5. Therefore, we focus only on the occurring differences and highlight the necessary
modifications. We define the operator

Cy, : H2(00) = H200) &y, := 205 — W,
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6 Adaptive BEM for the Helmholtz equation

On Lipschitz boundaries, &Wk is compact, (see [SS11, Lemma 3.9.8]). For all v,w €
H'Y2(09), define €y, by

<Q:ka’ w> = <€ka’ w> - (1’ U><1’ w>

Note that, €y, is uniquely defined and compact; see, e.g., [SteO8a, Section 6.9]. Refor-

mulation of (6.55) yields the following equivalent formulation: Given f € H, Y 2(8(2), find
u € HY?(9Q) such that

(Wo + Cw ) u = f. (6.56)

With the bilinear form a(-, -), from (6.54), the corresponding discrete formulation of (6.56)
reads as follows: Find U, € SP(7,) such that

a(Ue, Vi) + (Cw, Us, Vi) = (f, Vi) for all V, € SP(T,). (6.57)

Then, the discrete formulation (6.57) fits in the abstract framework of Section 4.2. It re-
mains to show that uniform refinement leads to a dense sequence of subspaces. Since we use
globally continuous and piecewise polynomials SP(7y), the proof follows the same lines as
the proof of Lemma 5.6, where we additionally exploit the density of H*(9) C HY/2(d%).
Then, Proposition 4.1 with # = HY2(0Q) and X, = SP(T,) guarantees existence and
uniqueness of discrete solutions of (6.57).

6.7.2 Weighted-residual error estimator

Analogously to Hitl/Q(aQ), we define L2(8Q) = {¢ € L*(0Q) : [.¢ds = 0}. Let
Te € T := refine(7y) such that the corresponding discrete solution U, € SP(T,) of (6.57)
exists. Suppose that f € L2(99Q). Then, the local contributions of the weighted-residual
error estimator for hyper-singular integral equation are defined by

e(T) == |3/ (f = W U)[| 2y forall T € Ta. (6.58)

The proofs of stability on non-refined domains (E1), reduction on refined element do-
mains (E2), discrete reliability (E4) as well as reliability (E3) are similar to Section 6.5
and can be found in [FFK'15, Proposition 3.5]. The sole difference is in the use of inverse
inequality (6.26) instead of (6.23).

6.7.3 Adaptive Algorithm and optimal convergence rates

For the hyper-singular integral equation (6.57), we seek a solution U, € SP(7;) and use the
a posteriori error estimator from (6.58). Then, Algorithm 6.2 transfers into the following
formulation:

Algorithm 6.13. INPUT: Parameters 0 < 6 <1 and Cyar > 1 as well as initial triangu-
lation Ty with U_y :== 0 € SP(Ty) and n—; = 1.
ADAPTIVE LOOP: For all ¢ =0,1,2,..., iterate the following Steps (i)—(vi):

(i) If  (6.57) does not admit a unique solution in SP(Ty):
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— Define Uy := Uy_1 € SP(Ty) and ng == ny—1,
— Let Tyyq := refine(Ty, Ty) be the uniform refinement of Ty,
— Increase ¢ — {+ 1 and continue with Step (i).

(ii) Else compute the unique solution U, € SP(Ty) to (6.57).
(iii) Compute the corresponding indicators ny(T) for all T € Ty.

(iv) Determine a set M}, C Ty of up to the multiplicative factor Ciarx minimal cardinality
such that On? < ny(M})2.

(v) Find M} C Ty such that # M} = #M, as well as hy(T) > he(T") for all T € M/
and T" € Ty \ M. Define My := M, UM].

(vi) Generate Ty = refine(Ty, My), increase £ — £+ 1, and continue with Step (i).

OuTPUT: Sequences of successively refined triangulations Ty, discrete solutions Uy, and
corresponding estimators 1.

Note that Steps (iii)—(vi) are verbatim to Algorithm 6.2. Recall that both refinement
strategies, NVB and EB guarantee the refinement axioms (R3)—(R6). Therefore, the op-
timal convergence behaviour of Algorithm 6.13 relies only on the validity of the estimator
axioms (E1)—(E4). Further, definiteness of the discrete limit space (E5) can be shown ver-
batim to Lemma 5.6. Hence, the following theorem for the hyper-singular integral equation
is direct consequence of Theorem 4.14 and Theorem 4.21.

Theorem 6.14. Employ the notation of Algorithm 6.13. Suppose 0 < 8 < 1. Then, there
exist fin > 0 as well as constants 0 < qiin < 1 and Cyn, > 0 such that Algorithm 6.13
guarantees that

Notn < Clinqiiyne  for all £,n € N with £ > lyy,. (6.59)

The constants Din, Qiin, Ciin depend only on qest, Crel, and £3 from /l\/emma 4.13. Moreover,
there exists By > 0, Lopy > 0, as well as Oopy := (1 + C2,C2,/B3)~1, such that for all
0 <8 <bopt and all s >0, it holds that

HQSHAS < 00 — EICopt >0 VE Z Eopt Tle S Copt (#72 - #76 + 1)_8' (6'60)

The constants Lops, Cops depend only on Cson, To, 0, s, ||¢]la,, and on the constants in (E1)-
(E4). O

Remark 6.15. Similar to Remark 6.12, one may consider a direct formulation for the
Neumann boundary-value problem. In this case, the model problem reads as follows: Given
Neumann data ¢ € H=Y/2(9Q), find u € H'/?(0Q) such that
1
Wi = (5 1d - R) ¢ on 9. (6.61)

In practice, the implementation of the right-hand side requires to approximate ¢ ~ P, €
PP=YT,). Provided that ¢ € L%*(0N), a suitable approvimation ®, := Il4¢ is given by
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6 Adaptive BEM for the Helmholtz equation

the L?-orthogonal projection onto PP~(T,). The local data oscillations which control the
additional approzimation error || — Pal|-1/2(p) are discussed and analyzed in [FFK*15]
for the Laplace problem. There, it is shown that the adaptive algorithm then still leads to
optimal convergence behavior. Together with the present analysis, the results of [FFK'15]
transfer immediately to the direct boundary element approach (6.61). U

6.8 Numerical experiments

In this section, we present some numerical experiments for the 3D Helmholtz equation that
underpin the theoretical findings of this chapter. We use lowest order BEM and consider
X, = PYT,) for the weakly-singular integral equation and X, = S(7,) for the hyper-
singular equation. The numerical computations were done with help of BEM++, which
is an open-source Galerkin boundary element library. We refer to [SBAT15, GBB'15,
vtWGBA15] for details on BEM++.

We consider sound-soft (exterior Dirichlet) and sound-hard (exterior Neumann) acoustic
scattering problems in R3\  where 2 C R? denotes the scatterer. Let a € R3 with |a| = 1
denote the directional vector of the incident wave. Then, the incident (plane-) wave is
given by u'" = exp(ika - z). Let u*® be the scattered field and the resulting total field is
defined by utot = /"¢ 4 53¢,

For sake of simplicity we restrict the numerical examples to an indirect approach, in
which the solution is in the form of a layer potential with some unknown density. For the
sound-soft scattering problem, we obtain: Find u** = % (¢) such that

V¢ =g subjectto g=—u" onT. (6.62)

The indirect approach for the sound-hard reads: Find u5' = J;lk(qﬁ) such that

W, ¢=g subjectto g¢g=—0,u" onTl. (6.63)

6.8.1 Sound-soft scattering on an L-shaped domain

As first numerical example we consider the so called L-shaped domain in x — y-direction
and expand it on the z-axis up to [—1, 1], see Figure 6.1. We compare two directions of the
incident wave. One with a = (—1/v/2,1/v/2,0)T (Figure 6.2, left) hitting the scatterer on
the non-convex part vs. a = (1/v/2, —1/v/2,0)T hitting the convex part of Q (Figure 6.2,
right).

First, we comment on the non-convex case. Figure 6.3 (top), shows the convergence rate
of 77? for k = 1, and different marking strategies. We compare uniform refinement to normal
Dorfler marking as well as to the expanded Dofler marking from Proposition 4.7, both using
0 = 0.4. The experiments show that uniform mesh-refinement leads to a suboptimal rate
of O(N -2/ 3) for 773, while adaptive refinement with Algorithm 6.2 regains the improved
rate O(N~?) with § = 1.075, independently of the actual marking. Empirically, the results
generated by employing the standard Dorfler marking are of no difference compared to the
results generated by employing the expanded Doérfler marking. The same observation is
made for all computations (not desplayed), so that we only focus on the expanded marking
in the remaining plots.
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6.8 Numerical experiments

Figure 6.1: Geometry and initial mesh 7y with 56 elements (left: top view, right: 3D view).
The reentrant edge has the coordinates (0,0,t) with ¢ € [—1,1].

Figure 6.3 (bottom) compares uniform vs. adaptive refinement for fixed # = 0.4 but
various k € {1,2,4,8,16}. As expected, the pre-asymptotic phase increases with k, but
adaptive mesh-refinement asymptotically regains improved convergence rates for every k.

Figure 6.5 compares the convergence of the estimator for different values of the marking
parameter 6 € {0.2,0.4,0.6,0.8} as well as uniform mesh-refinement. Again, uniform mesh-
refinement leads to a suboptimal rate of convergence for the error estimator, while adaptive
refinement with Algorithm 6.2 regains the improved rate of convergence, independently of
the actual choice of the marking parameter. Although Theorem 6.11 predicts optimal
convergence rates only for small marking parameters 0 < 6 < Oy == (1 + C2,C2,/53) 7L,
we observe that Algorithm 6.2 is stable in 6, and any choice of 8 < 0.8 leads to the improved
convergence behavior. In Figure 6.4, one can see some of the obtained adaptive meshes 7
with ¢ = 4,8,12,16. The mesh-refinement is focused around the facets and edges hit by
the incoming wave, while all facets in the shadow remain coarse.

In the second case, i.e., the scatterer is hit on the convex part of the domain (Figure 6.3,
right), we compute very similar results as in the non-convex case. As shown in Figure 6.6
above, expanded as well as normal Dérfler marking lead to improved rates of O(N 1)
for the squared error estimator, while uniform refinement leads only to O(N~2/3). The
rate of convergence is independent of the wavelength & > 0, but increasing k leads to a
longer preasymtotic phase. Figure 6.7 shows the triangulations 715 and 716. Again, the
mesh-refinement is focused around the facets and edges hit by the incoming wave, all facets
in the shadow remain coarse.

Finally, we emphasize that Algorithm 6.2 never enforced uniform mesh-refinement in
Step (i).
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>

Figure 6.2: Ex. 6.8.1: Total field u'°! at the plane z = 0 for different directions of 4™¢ with
k = 8. The incident wave hits the scatterer on the non-convex part (left), and
on the convex part (right).

6.8.2 Sound-hard scattering on a L-shaped domain

For the second example we consider sound-hard scattering on an L-shaped domain given in
Figure 6.1. The direction of the incident wave is given by a = (—1/v/2,1/+/2,0)T, hitting
the scatterer on a the non-convex part; see Figure 6.8.

Figure 6.9 compares uniform vs. adaptive mesh-refinement for fixed £ = 1 and various
6 = {0.2,0.4,0.6,0.8}. Again, Algorithm 6.2 realizes the improved rate O(N~—!) for the
squared estimator n?, while the uniform strategy leads to a reduced rate of O(N -2/ 3).
Figure 6.10 shows the adaptive rate for various k € {1,2,4,5} and fixed § = 0.2 (above)
as well as § = 0.4 (below). A higher wavenumber k& just influences the invoked constants
and the length of the pre-asymptotic phase, but does not effect the rate of convergence.
For k = 16, we admit that the computed range is not sufficient to observe a better rate
of convergence for the adaptive scheme. Finally, we emphasize that Algorithm 6.2 never
enforced uniform mesh-refinement in Step (i).
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Figure 6.3: Ex. 6.8.1: Convergence of n% for standard Dérfler marking vs. expanded Dorfler
and uniform refinement with £ =1 (above). Below, expanded Dorfler marking
(squares) vs. uniform refinement (circles) for different values of k¥ > 0. Both
plots are computed in the non-convex setting with 8 = 0.4.
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Figure 6.4: Ex. 6.8.1: Triangulations 7y, Ts, T12 and T1g with 208, 766,2332 and 6746 el-
ements. The color indicates the element contribution of the error estimator
ne(T)? for all T € Ty.
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with @ = 0.4 and uniform refinement (above) in the convex case. Below, ex-
panded Dérfler marking (squares) vs. uniform refinement (circles) for different
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Figure 6.7: Ex. 6.8.1: Triangulations 712 and T1g with 2446 and 7472 elements in the convex
case. The refinement focuses on the surface hit by the incoming wave (right),
where instead all parts in the shadow remain relatively coarse (left).
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Figure 6.8: Ex. 6.8.2: Total field u'°* for sound-hard scattering with wavenumber k = 8.
The incident wave u'™ hits the scatterer on the non-convex part of the domain.
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Figure 6.9: Ex. 6.8.2: Convergence of 17 for different values of € {0.2,0.4,0.6,0.8} as well
as uniform refinement. The plot uses expanded Dorfler marking with £ = 1.
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7 Adaptive BEM for optimal convergence of
point errors

One particular strength of the boundary element method is, that it allows for a higher-
order point-wise approximation of the solution of the underlying PDE via the representation
formula (6.4). As an extension of the previous Chapters 4 and 6, we propose two adap-
tive algorithms and prove quasi-optimal convergence behavior with respect an a posteriori
computable bound for the point error of the Helmholtz equation.

For boundary elements based on piecewise polynomials of degree p and a smooth solution
¢, it holds that [|¢ — || y-1/2r) = O(h§+3/2) for the energy-error, where hy denotes the
mesh-size of Ty. On the other, hand the point error decays with a higher rate |u(Z) —u,(Z)| =
(’)(h?p +3). However, these convergence rates are usually spoiled by singularities of the
(unknown) solution u and hence lack of regularity.

For the Laplace equation, earlier works [AFF*13, FKMP13, FFK*14, FFK*15, Gan13]
focused on h-adaptive strategies which aim to recover the optimal rate of convergence of the
energy error ||¢ — @yl -1/2 (r)- Using ideas for goal oriented adaptivity for finite elements,
see e.g, [MS09, BET11, FPZ16], our own work [FGH'16] proposes and analyzes optimal
adaptive strategies for the point-wise error |u(Z) — ug(7)| for €  in case of BEM for the
Laplace equation. Using Chapters 4 and 6, we extend the analysis in [FGH'16] from k = 0
to the Helmholtz equation for arbitrary wavenumber k > 0.

Outline. Section 7.1 introduces the model problem and some key ideas. Section 7.2
formulates two adaptive algorithms (Algorithm 7.1, Algorithm 7.3) and states the main
result (Theorem 7.5) of this chapter which yields optimal convergence for both algorithms.
While Algorithm 7.1, follows ideas from [MS09] and employs a separate Dorfler marking
strategy, Algorithm 7.3 is inspired by [BET11] and uses a combined Dérfler marking instead.
Besides the marking strategies from [MS09, BET11], both algorithms employ the extended
Dorfler marking from [BHP17] or Chapter 4 to ensure (E5). The proof of the main result
for Algorithms 7.1 and 7.3 is found in Section 7.4 and 7.5 respectively.

This chapter extends the work [FGH™16], where we developed a similar results for the
Laplace equation.

7.1 Model problem

Let Q € R? with d = 2,3 be a bounded Lipschitz domain with polygonal (not necessarily
connected) boundary I' = 0€2. In this chapter, we consider the interior Helmholtz—Dirichlet
problem

~Au—Kku=0 inQ subject to u=gonl, (7.1)
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with wavenumber k& > 0 and given Dirichlet data g € H'/?(T'). Recall the notation of
Section 6.2. To guarantee solvability of (7.1), we assume throughout this chapter that &2
is not an eigenvalue of the (IDP), cf. Section 6.2.1.

We recall some properties of Section 6.2. The solution v € H'(Q) of (7.1) is given by
the representation formula (6.4) as

w(z) = Uy d(x) — R g(z) for all z € Q, (7.2)

where ¢ = dyu is the normal derivative of the solution u. Further, ¢ € H~/2(I') can be
obtained by the weakly-singular integral equation

By o = (K + %Id) g (7.3)

where U, denotes the simple-layer and K the double-layer integral operator corresponding
to the wavenumber k£ > 0. For the definition and some fundamental properties of the
integral operators we refer to Section 6.2.1. Further details can be found in, e.g., [McL00,
SS11].

7.1.1 Weakly-singular integral equation

We recap some important properties of the weakly-singular integral equation U, & = f
from Section 6.3. For any given f € H'/ 2(T), the variational formulation reads as: Find
¢ € H-'/2(I) such that

(V& x) =(f X)r2r) forall x € H /*(I). (7.4)

Since k? is not an eigenvalue of the (IDP), the variational formulation (7.4) is well-posed
in the sense of (4.4). Let 7y be an admissible initial mesh and T := refine(7y) be the
set of possible refinements. As in Chapter 6, we use extended 1D bisection (Section 3.4)
in case of d = 2 and newest vertex bisection (Section 3.5) in case of d = 3. For the
discretization, we consider standard piecewise polynomial ansatz and test spaces based on
regular triangulations of I'; see Section 3.6. Then, the Galerkin discretization of (7.4) reads
as follows: Find Z, € PP(7T,) such that

(Vy e, Xo) = (f, Xo) 2y for all Xy € PP(T4). (7.5)

According to Section 6.3, the variational formulation (7.4) as well as the Galerkin formu-
lation (7.5) can be recast in the following way

(Vo Ze, Xeo) + (€ Ze, Xo) = (f, Yo)r2(ry for all Xq € PP(Ts), (7.6)

where the operator Uy is symmetric and elliptic and € is a compact operator. Since we
use a verbatim (analytic and discrete) setting as in Section 6.3, existence and uniqueness
of the solutions of (7.6) and (7.5) are guaranteed by Proposition 4.1 with H := H~1/?(T)
and sufficiently fine Xy = PP(T,).
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7.1.2 Weighted-residual error estimator

For any f € HY(I), let & := B, f be the solution of (7.4) and Z, € PP(T,) denote the
corresponding Galerkin solution. For any U, C T, and any T € 7T,, the weighted-residual
error estimator is given by

N (T)? = b |V (f = B o) 32y,

1/2
M i=Nea(T), Where nea(th) i= (Y mea(T)?)
Tcle

According to Section 6.5 the error estimator 7 o satisfies the following properties:
e Stability on non refined element domains (E1), see Proposition 6.6.
e Reduction on refined element domains (E2), see Proposition 6.7.
e Reliability (E3), see Corollary 6.9.

e Discrete reliability (E4), see Proposition 6.8.

7.1.3 Main idea and dual problem

The main idea of the following adaptive strategies reads as follows: Let ¢ € H~1/ 2(T) be
the unique solution of the weakly-singular integral equation (7.3) with f = (Rx+1/2) g. Let
Te € T and suppose that the corresponding Galerkin approximation ®4 € PP(7,) of (7.5)
exists. Having obtained ®,, the representation formula gives rise to an approximation
U, € H'(Q) of u by

Ua() := V), Po(a) — Ry g(z) for all z € Q. (7.8)
Recall that Uy is symmetric. Then, the Galerkin orthogonality directly implies that
(U Xe, ¢ — Do) = (Vi (¢ — Ps), Xo) =0 for all X, € PP(T,). (7.9)

Suppose that T € Q is an arbitrary but fixed evaluation point. With the representation
formula (7.2) and (7.8), it thus holds that

W(Z) — Ug(7) = By (¢ — Do) (T). (7.10)

Since z € (Q, the fundamental solution G (7, -) is a smooth function on T'; see, e.g., [SS11,
Chapter 3.1]. Further, 0, is invertible if and only if k2 is not an eigenvalue of the (IDP).
Galerkin orthogonality (7.9) and the definition of Uy, yield for any X, € PP(7,) that

Ty (6 — )(3) 2 (Gr(F, ), 6 — Ba)

Suppose that 1 solves the following dual problem: Given Z and Gr(z,) € Hl/Q(F) find
Yl e H=1/2(T) such that

) (GL(F, ) — By X, 6 — D). (7.11)

0 6 = Gi(3, ). (7.12)
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Note that, the dual problem is a weakly-singular integral equation in the sense of (7.5)
with right-hand side f = Gg(z,-). The corresponding Galerkin discretization of (7.12) is

given by: Find vl e pr (7s) such that
(0, O X)) = (Gy(T, ), Xa) for all X, € PP(Ta). (7.13)

We emphasize that the right hand side G (z,-) and therefore, Yl as well as \If[.%] depend

on the arbitrary but fixed evaluation point z € §2. Since the only difference of the primal
and dual problem is the right hand side f, existence and uniqueness of solutions \If[fc1 €
PP(T,) of (7.13) is equivalent to solvability of the primal problem (7.6) and guaranteed by

Proposition 4.1 even with the same index £. -
Now, suppose that 7, € T admits discrete solutions <1>.,\I’[.m] € PP(T,) to the corre-
sponding Galerkin formulation (7.6). With (7.10) and (7.11), we derive for X, := ol

that
[u(@) ~ V(@) = [(G(@.") - T, 6 — )]
< 1Gw(@. ") = BT asaqr 16 = Rl r-v2qr)
~ T — w2y 16— @all g1/
where the hidden constants depend only on I'. Either of these Galerkin errors will be
controlled by the respective weighted-residual error estimator which requires additional
regularity g € H'(T') for the Dirichlet data. To this end, let N0, NMyla) o denote the corre-

sponding error estimators for the primal and the dual problem. With reliability (E3), the
latter estimate turns into

[u(@) = Us@)] S 107 = O fmrsaqry 16 = @l g-/2(0y S Moo Myt (7.14)

To abbreviate notation and if its clear from the context, we omit the dependence on = and
use ¢ instead of Y7 as well as U instead of U

7.2 Adaptive algorithm

The previous section gives rise to the following two adaptive algorithms. These have been
proposed and analyzed by [MS09, BET11] for goal-oriented adaptivity in the context of
FEM for the Poisson problem and in [FGH"16] for ABEM for point-wise approximation
of the solutions of the Laplace equation. The first algorithm goes back to [MS09].

Algorithm 7.1. INPUT: Parameters 0 < 0 <1 and Cpak > 1 as well as initial triangu-
lation Ty with W_q := ®_1 := 0 € PP(To) and ng 1 = ny,—1 := 1.
ADAPTIVE LOOP: For all £ =0,1,2,..., iterate the following Steps (i)—(vii):
(i) I (7.3) does not admit a unique solution ®, € P (T):
— Define @4 := ®,_1 € PP(To) and ng,¢ = 1g,0-1,
— Define Wy :=Vy_1 € PP(To) and 0y = nye—1,
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7.2 Adaptive algorithm

— Let Tyyq := refine(Ty, Ty) be the uniform refinement of Ty,

— Increase ¢ — {4+ 1, and continue with Step (i).
Else Compute Galerkin approzimation @4 to ¢.
Compute Galerkin approzimation Wy to 1.

)
)
(iii.a) Compute refinement indicators ng ¢(T') for all T € Ty.
)
)

(iii.b) Compute refinement indicators ny o(T) for all T € Ty.
(iv.a) Determine a set My ¢ C Ty of up to the multiplicative factor Cark minimal cardinality
such that
Onge < D mpu(T). (7.15)
TeMy,

(iv.b) Determine a set My C Ty of up to the multiplicative factor Cparx minimal cardi-
nality such that

Omse < D mpe(T) (7.16)
TeMy

(v) Choose M € {Myo, My ¢} as the set of minimal cardinality.

(vi) Find M} C Ty such that #M{ = #M} as well as hy(T) > he(T") for all T € M)
and T" € Ty \ M. Define My := M, UM].

(vii) Let Typy1 := refine(Ty, My) be the coarsest refinement of Ty such that all marked ele-
ments T € My have been refined. Increase { — ¢+ 1 and continue with Step (i).

Output: Discrete approzimations ®¢, U, and corresponding error estimators n¢.¢,My.e for
all £ € Ng. O

Remark 7.2. i) Besides Step (i) and Step (vi), Algorithm 7.1 coincides with the adap-
tive Algorithm proposed in [MS09, FGH' 16].

i1) Recall that, the discrete problem (7.5) in general does not admit a unique solution
for all Tq € T. Instead, Proposition 4.1 guarantees an index £y, such that for all
¢ >ty the mesh Ty admits unique solutions ®y, W, € PP(Ty); see also Lemma 4.6 and
Lemma 4.17. Therefore, Step (i) will be only carried out at most ly-times.

ii1) Step (vi) is found verbatim in Algorithm 6.2 and applies the expanded Dorfler marking
strategy of Proposition 4.7. According to Section 4.5.1 and Section 6.5.1 this ensures
definiteness on the “discrete” limit space (E5).

The second algorithm has been analyzed in [BET11] in the context of finite elements
and in [FGH'16] for ABEM for the Laplacian. Note that both algorithms only differ in
the used marking strategy. While Algorithm 7.1 employs a separate Dérfler marking in
Step (v)—(vii), Algorithm 7.3 computes a combined refinement indicator py in Step (iv) and
employs the expanded Dérfler marking for p; in Steps (v)—(vi).
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Algorithm 7.3. INPUT: Parameters 0 < 0 <1 and Cpark > 1 as well as initial triangu-
lation To with W_q := ®_1 :=0 € PP(Ty) and ng,—1 = ny,—1 = 1.
ADAPTIVE LOOP: For all £ =0,1,2,..., iterate the following Steps (i)—(vii):
(i) I (7.3) does not admit a unique solution ®, € P (T):
— Deﬁne b=y 1 € Pp(%) and Np,e = Ngp,e—1,
— Deﬁne \I/g = \I/g,1 S Pp(%) and My 0 = Thp e—1,
— Let Tyyq := refine(Ty, Ty) be the uniform refinement of Ty,

— Increase ¢ — ¢+ 1, and continue with Step (i).
Else Compute Galerkin approrimation ®y to ¢.
Compute Galerkin approximation W, to 1.
Compute indicators ng o(T) for all T € Ty.

)
)
)
(ili.b) Compute indicators ny o(T) for all T € Ty.
) Assemble refinement indicators py(T)? := 77¢,€(T)277@2z),£ + ni,mw,g(T)Q for all T € Ty.
)

Determine a set M), C Ty of up to the multiplicative factor Cparx minimal cardinality
such that

0 < pe(M})?, (7.17)

(vi) Find M} C Ty such that #M] = #M} as well as he(T) > he(T') for all T € M/
and T' € T; \ M. Define My := M), U M.

(vii) Let Tpyq := refine(Ty, My) be the coarsest refinement of Ty such that all marked ele-
ments T' € My have been refined. Increase ¢ — ¢+ 1 and continue with Step (i).

Output: Discrete approximations ®p, Wy and corresponding error estimators 1g ¢, My.e for

all ¢ € Ny.

Since Step (i) and Step (vi) of Algorithm 7.1 coincide with Step (i) and Step (vi) of
Algorithm 7.3, Remark 7.2 holds verbatim for Algorithm 7.3.

Remark 7.4. We note that the Algorithms 7.1 and 7.3 as well as Theorem 7.5 are in-
dependent of whether we use direct BEM for the interior or exterior problem (based on
the representation formula (6.4)), or indirect BEM, where we solve Uy ¢ = f for some
given right-hand side f € HY(T') and aim to approvimate Uy, () ~ By, ®¢(Z) for some
T € R\T. Moreover, all results hold accordingly if the Dirichlet data g are given, while the
hyper-singular integral equation is employed to approzimate the (unknown) Neumann data,
cf. Section 6.7. U
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7.3 Optimal convergence

The main result of this chapter is that Algorithm 7.1 as well as Algorithm 7.3 lead to optimal
convergence of the estimator product 74 ¢1y.¢. Throughout, to indicate that a result holds
for the primal as well as the dual problem, we use the abbreviate notation £ € {¢, v}, with
corresponding Galerkin solution Z, € {®,, V,}. Further, we write 1ze € {7)ge,7pe} for
the associated error estimator.

For the statement of the main result, recall the abstract approximation class from Sec-
tion 4.8.1. For s > 0 and T € T, we write { € Ay(T) if

Elagm = Sup(N—{—ls min _ 7¢.) < 00, 7.18
Jellcr = sup ((V+1)° mminnc.) (7.18)
where 7¢ o is the weighted-residual error estimator associated with the optimal mesh 7T, €
Tpx. The following main theorem states that both adaptive algorithms do not only lead to
linear convergence, but also that each possible algebraic rate s > 0 will asymptotically be
realized.

Theorem 7.5. Suppose (E1)—(E5). For all 0 < 0 < 1, there exists constants 0 < gy, < 1
and Cin > 0 and an index i, > 0 such that the sequences of estimators (77575)561\10 generated
by Algorithm 7.1 and Algorithm 7.8 guarantee

N tn M b4n < Clin Qi Mg, Mpe for all £,n € No with £ > by, (7.19)

Let Bo > 0 be the lower-bound of the inf-sup constant (4.6) for the uniform refinement ’7A'0
from Lemma 4.17. Moreover, let 0 < 0 < Oop := (1 + C2,C2,/B3)L for Algorithm 7.1
and 0 < 0 < Oopt/2 in case of Algorithm 7.3. Then, for all s,t > 0 it holds that

HQSHAS H¢||At <00 = EIEopt S NO EIC’opt > 0V/ > Eopt T8 Thp e < Copt (#72 - #76)7(s+t)'
(7.20)

i.e., Algorithm 7.1 as well as Algorithm 7.3 guarantee that the product of the error estima-

tors decays with any possible algebraic rate. The constant Copy depends only on #7Ty,,., To,
0, s,t, and validity of (E1)—(E5).

Remark 7.6. In principle, the analysis covers goal-oriented adaptivity if the goal function
u(Z) and its approzimation Uy(T) satisfy (7.14), where the error estimators satisfy the prop-
erties (E1)—(E4). For instance, this is the case for goal-oriented FEM for symmetric and
elliptic PDEs with L?-goal functional; see Chapter 5 resp. [CFPP1}] for the verification of
the properties (E1)~(E4). Thus, our analysis also extends the results of [MS09, BET11]
beyond the Poisson problem to the problem class of [CKNS08]. An abstract approach and
analysis of goal-oriented adaptivity for finite elements is found in [FPZ16], where also
non-symmetric differential operators are considered. In addition, our analysis avoids any
(discrete) efficiency estimates (which are open for BEM) and allows for simple newest ver-
tex bisection, while [MS09, BET11] required local bisec5-refinement in the spirit of [Ste07].

For goal-oriented FEM for the Poisson problem with polynomial data, [BET11] proves
that Algorithm 7.3 leads to linear convergence erryy; < qerry, where instead Algorithm 7.1
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7 Adaptive BEM for optimal convergence of point errors

leads only to a weaker contraction errp;; < ¢*/? err;. Here, 0 < ¢ < 1, and err, is the
product of the energy errors with respect to some mesh 7, € T; see [BET11, eq. (2.12)]
and [BET11, eq. (2.20)].

Hence, at least in particular situations, the combined Dérfler marking (7.17) leads to a
reduction of adaptive steps and therefore appears to be more effective overall. To our best
knowledge, no such result for goal-oriented adaptivity with boundary elements is known.
Although we did not succeed to prove such a statement in the present case, this aspect is
empirically addressed by appropriate numerical experiments in [FGH'16]. Finally, we note
that our proof of Theorem 7.5 provides an upper bound 0 < ,,; < 1 such that optimal
convergence rates (7.20) are guaranteed for Algorithm 7.1 for all 0 < 6 < f,p¢, but for
Algorithm 7.3 only for all 0 < 6 < pt/2.

7.3.1 Separated linear convergence

In order to prove linear convergence (7.19), we first show that each of the involved estimators
satisfies a slightly generalized form of linear convergence. To that end let £ € {¢,1}. The
following corollary recaps the generalized reduction property from Chapter 4 in the current
notation and is an immediate consequence of Lemma 4.15.

Corollary 7.7 (generalized contraction). Let 0 < 6 < 1. Suppose that the corresponding
error estimator ne satisfies (E1)~(E5). Let T, € T and To € refine(7y) be given meshes
such that the corresponding discrete solutions Zy, 2, exist. Further, suppose that the set of
refined elements satisfies the Dorfler marking criterion, i.e., 9772,5 < ne.o(Te\To)?. Then,
there exist constants 0 < qetr e, Ae < 1 such that

Ago < etrg Dep,  for all £ > Uz, where Agqi=||& —Za || + A 12, (7.21)

and l3¢ € Ny is the index from Lemma 4.13. The constants qeir e and Ae depend on Cie
and Qest . O

The next proposition generalizes the concept of linear convergence (cf. Theorem 4.14) in
the way that in n steps of the adaptive algorithm, Dorfler marking for an estimator 7, is
performed only k < n times.

Proposition 7.8. Suppose (E1)~(E4). Let 0 < 0 < 1 and l3¢,02¢ € Ny be the indices
from Lemma 4.13 and Lemma 4.8. Let Ty be a sequence of successively refined meshes
such that (E5) is satisfied and the corresponding discrete solutions Zy € PP(Ty) exist for
all £ > l3¢. Then, there are constants 0 < qeire < 1 and Ciine > 0 such that the following
holds:

Let £ > max{ly¢,l3¢}, n € Ng and suppose that there are at least k < n indices £ <

J1 < Jjo < -+ < jp <L+ n such that the Dorfler marking for ne is satisfied on the refined
elements, i.e.,

07727]»7” <N jm T \7}m+1)2 forallm=1,... k. (7.22)
Then, the error estimator satisfies

M opm < Cling aFpeniy  for all € > max{log, U3¢}, (7.23)

The constant Chin e depends only on A¢, Chone and Crel.
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7.4 Proof of Theorem 7.5 for Algorithm 7.1

Proof. Recall the definition of the quantities A¢ o from Corollary 7.7. With reliability (E3)
as well as || - [| = | - [| g-1/2(r), We obtain that
Ag 772- <Age and  Ag, < (Cr2e1,§ + Ae) 772,.-

Since ¢ > {3 ¢, quasi-monotonicity from Lemma 4.8 applies. With C/

mon,§

= (Crae +
A¢) Cron ¢ )\6_1, we obtain quasi-monotonicity for all A¢ , corresponding to 7, € refine(7y),

A§70 < (CrQeLf + Af) 7720 < (CrQeLf + )‘f) Cmomf 772,4 (7 24)
< (CrQel,g + )\5) Cmon@ )\gl Ag,g = Cr/non,ﬁ Ag,g.

Note that, Dorfler marking in Step ji, for 7, \ 7;,+1 implies Dorfler marking on 7j, \ To4r €
Tie \ Tjp+1- Then, (7.24) with A¢ o = A¢ ¢4, and Corollary 7.7 yield that

) (7.21)
ANz pon < Deotn < ot Dg -

Iterative application of (7.21) gives

) (7.21) (7.21) (T24) )
AeNgprn < detrgDeje < 0 < Qe Deji < detre Cmone Dee

k
Aetr ¢ C’rlnon,g (Cr2e1,§ + )‘5) 772,@'

Hence, we obtain (7.23) with Cliye = )\gl C! (01"261,5 + Xe) = (CrQel,g + A¢)? Crnon g )\gQ.
]

mon,&
This concludes the proof.

7.4 Proof of Theorem 7.5 for Algorithm 7.1

Throughout this section and for the ease of presentation, we suppose without loss of
generality that 74, and ny, satisfy (E1)-(E4) even with the same constants. Then, for
¢ €{¢,v} and To, Te € T such that 7, € refine(7,), Lemma 4.8 implies quasi-monotonicity
Ne,e < Chon Ne,0 even with the same constant. With the help of Proposition 7.8, we first

prove linear convergence.

Proof of linear convergence (7.19) of Algorithm 7.1. Recall the notation of Al-
gorithm 7.1. In each adaptive step, the set M) and hence M, satisfies either the Dorfler
marking (7.15) for 7y, or (7.16) for 1y . With My C T\ Te41, this guarantees that within
n successive steps j = ¢,...,¢ +n of the adaptive algorithm, 7;\7;;1 satisfies

e k-times the Dorfler marking for 14, and
e (n — k)-times the Dorfler marking for 7y 4.
Define lii, := max{ls ¢, {2, 03,4,¢3,}. Then, Proposition 7.8 implies that
77<2M+n < Ciing (Jfftr,¢ 77<2M as well as 7712p7g+n < Cliny q?t;,]fp ni’g for all £ > .
Altogether, with Cli, := max{Ciin 4, Ciin, } and qﬁn := max{qetr,¢, Gotr,p y this proves that
Mo Moo < Citn @it 15,0 M for all £ by
and concludes the proof of (7.19). O
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7 Adaptive BEM for optimal convergence of point errors

The proof of optimal convergence rates (7.20) in Theorem 7.5 is similar to Section 4.8,
but we additionally have to deal with the product structure 74 ¢y of the underlying
error indicator. We obtain the following two technical lemmas, which are an analogon of
Lemma 4.23 in the current setting.

Lemma 7.9. Under the assumptions of Theorem 7.5, let U5 be the index from Lemma 4.17
and 0 < kK < 1. There exist a refinement T, € refine(Ty) for all ¢ > U5 such that the
Jollowing holds: For all s,t > 0 with [|¢]|a, (7, ) [¥lla,(7;,) < o0, it holds

— 1/(s+t —1/(s
BT — #Ti < 2 (Coon 572 [ Sllan 7y 1llacrs, ) (semos) V0 (7.25)

as well as

Moo Mo < K050 - (7.26)

Proof. Recall the notation of Lemma 4.17. There exists munit € Ng and an index f5 > 0
such that 7, € reﬁne(%) for all £ > /5, where 7\6 denotes the my;r-times uniform refinement
of Ty. Further, any refinement 7, € reﬁne(’?@), admits unique solutions ®,, ¥, € PP(7T,)
of the primal and dual problem. Hence, there holds Txn(7p,) # 0 for all N € Ny. We split
the remainder of the proof into three steps.

Step 1: Construction of the mesh 7g. Let £ > /5, 0 < kK < 1 and define
e:=C 2 kl/? N0 My,e- Then quasi-monotonicity implies that

mon
e < kY0005 Moty < N10]lau () 18 ]las (73, ) < 00-

Choose the minimal N € No with [|¢]|a, (7 ) [[¥]la,(7;,) < € (N + 1)**t. Since T (Ts,) # 0,
choose Tz, 7z, € Tn(Ts,) with

= min and = min . 7.27
Moo = 0 I (rg) 10 e = o ey (7.27)

Define 7; := T;, & Tz, as well as 75 := T- & Ty. Note that 75 € refine(7y,) and hence, the
corresponding Galerkin solutions =, € PP(7s) exists.

Step 2: Proof of (7.26).  Quasi-monotonicity, the definition of the approximation
classes (7.18), and minimality of N give
(7.27) 9 . .
oMo < C2 0 ="Cron _ Win min
77¢7 m/}, — O: T’¢,€1 77111)752 O 7;6’]1‘]\/ (725) 77¢7* 7:(€TN(725) 771/17*

(T18) est)
< Cmon (N+ 1) ||¢HAS(725) ||71Z)‘|At(7—z5)

< CEone =k ng 00

(7.28)

This concludes the proof of (7.26).

Step 3: Proof of (7.25). Application of the overlay estimate (R4) for 7, as well as
Te yields that

(R4) (R4)
#HTo—#To < #Tc—#Toey < #Toy +#Toy — 2#Ty; < 2N. (7.29)
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7.4 Proof of Theorem 7.5 for Algorithm 7.1

Since N is minimal, it holds that

1/(s+t) —1/(s
N < (I8llan ) [9lla, 7y, ) e/ 650

_ 1/(s+t —1/(s+t
= (Con 5 210N a7z 18010 (7a)) ) (mgemge) .

Combining the estimates (7.29) and (7.30), we see that

(7.30)

_ 1/(s+t —1/(s+t
#To = #Te < 2N <2 (Chons™ 2 10llau7,) 191au7i) 0 (ngm) /.
This concludes the proof. ]

Lemma 7.10. Under the assumptions of Theorem 7.5. Let €5 be the index from Lemma 4.17
and let 0 < 0 < 0, := (1 + C2,C2,/B3)"'. There exist constants Cy,Cs > 0 such that the
Jollowing holds: For all s,t > 0 with ||¢[|a, (1) 1¥]la,(7;,) < 00, the set of marked elements
My generated by Algorithm 7.1 satisfies that

£ M < O (Callllay i) Il a7, )+ ) 4. (7.31)

The constant Cy,Ca depend only on 6, By, and (E1)—(E4).

Proof. Adopt the notation of Lemma 4.22 and Lemma 7.9. Choose k := mﬁpt in Lemma 7.9.
Then, equation (7.26) shows that the constructed mesh 7, € refine(7y) satisfies 773570 7712!&0 <
népt ni , ni - This implies that
Moo < Fopt ot OF o < Kot Ty g

According to Lemma 4.22, this already implies Dérfler marking for either 74, and Ry 00
or Ny ¢ and Ry 4.0, where Re s C T\ To denotes the extended set of refined elements from
discrete reliability (E4). Recall, that the expanded Dérfler marking strategy guarantees
#M < Cark #M,. Then, minimality of M} and the splitting property (R3) imply that

#MZ < Cmark #Mlg < 2Cfmark min{#M¢>,Z7 #Mw,é} 2Cfmark max{#R¢>,Z,oa #Rw,é,o}

2Cfmark Crel #(72 \ 7;)

2C’mark Crel (#ﬁ - #7;)

|/\§ IN A

In combination with Lemma 7.9, we obtain that

%My < 2Cmark Crot T2 — #T5) < C1 (Calllla (i) 19]ae i,y (o) ™7,

where C] = 4C ok Crel and Cy = C? k2. This concludes the proof. O

mon'vopt

With the help of Lemma 7.10, the proof of optimal convergence follows analogously to
the proof of Theorem 4.21. For the sake of completeness, we recap the important steps.

111



7 Adaptive BEM for optimal convergence of point errors

Proof of optimal convergence (7.20) of Algorithm 7.1.  Let lop 1= max{l}y, {5}
Analoguosly to the proof of Theorem 4.21, for all £ > £, the mesh-closure estimate (R5)
and Lemma 7.10 imply that

/-1

(R5)
#To—#To+1 < Crmesn (lsC +1) Y #M,
j:Zopt
(7.25) -1
< Cumesh (06 C + 1)C1 (Colldlla. [9l1a) >~ (ng,5m,5) 7,

j:Zopt

(7.32)

where C' 1= max;—g,... ¢, fTA& Then, linear convergence (7.19) yields that

—j ,
Nt Mt < Clin Gy’ Mg M,y for all by < j < L.

Hence,

(6.5 W,j)_l/(ert) < Cllir/l(s+t)ql(i€n—j)/(s+t) (e 77711)76)—1/(s+t) for all Lopy < j < .

With 0 < g := qlln/1 (s+) 1, the geometric series applies and yields that

-1 -1
—1/(s 1/(s —1/(s —J
S gy )T < O (g gy ) VDS gt
j:Zopt j:Zopt
1/(s+t)
lin —1/(s+t)
< P (g, 0) = ).
Qin

Combining the latter estimate with (7.32), we prove that

Cmesh E C+ 1 C S - S
#Ti = #To+1< =8 6 O O (Gl 10, 72 1 a7y )M ) 1)),
-9

lin

Rearranging the terms in the estimate above, we see ng Ny S (#7T0 — # Ty + 1)*(3“).
Using the definitions of C,Cy > 0, this implies (7.20) with

(s+t)
2#720 Cmesh (£6 C+ 1) C?nar Crel _
Copt 1= < = . Clin Con Fope 101l as(73,) ¥l a4 (72,)-

1 ql/(s+t)

lin

Finally, recall from Lemma 4.18 that [|¢[|s, (7, ) [1¥lla,(7;,) < o0 if and only if [[¢]|a, [|¢]|a, <
00. This concludes the proof. U

7.5 Proof of Theorem 7.5 for Algorithm 7.3

As in the previous section, we suppose that 74 ¢ and 1, ¢ satisfy the properties (E1)—(E4)
even with the same constants. We start with the proof of linear convergence.
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7.5 Proof of Theorem 7.5 for Algorithm 7.3

Proof of linear convergence (7.19) of Algorithm 7.3. Suppose that ¢ > f, =

max{ly 3,0y 3} and hence the discrete solutions & € PP(7;) and corresponding error

estimators ¢, exist. Recall the definition of the combined error indicator p,(T)? :=

77¢7g(T)27’]12p )+ 773) Meo(T)%. Summing over all elements T € Ty, we see that
0t =m0 Y et T? 4030 > mpe(T)? =203 14
TeT, TeT,

Therefore, the Dorfler marking criterion (7.17) of Algorithm 7.3 reads as
2003 iy = 07 < pe(Me)?* < g e(Me)> 15 + 130 g0 (M)
In particular, this shows that (7.17) implies that
6?77;75 < 77¢1(Mg)2 or 677@2075 < 771/,,5(./\/(@)2.

Hence, in each adaptive step, either Dorfler marking for the primal or the dual problem
is satisfied. As we have seen in the proof of linear convergence for Algorithm 7.1 with
separate marking, this already implies linear convergence

n?ﬁ,f—f—n ni,f—i—n < CIZm qlrlbn 7735,( 7712M for all £ > glin’
and concludes (7.19) for Algorithm 7.3. O

The proof of optimal convergence rates (7.20) for Algorithm 7.3 is essentially a conse-
quence of the following elementary observation.

Lemma 7.11. Let 0 < 0 < 1/2 and ¢ € Ny such that T; admits unique Galerkin solutions
Z¢. Suppose Ry C Ty such that

2003, < npe(Re)? or 2013, < nye(Re)>.
Then, the combined indicator p, satisfies that,
007 < po(Re)?, (7.33)

i.e., if Ry satisfies Dorfler marking for the primal or dual problem with parameter 20, then
Ry satisfies the combined Dorfler marking with parameter 0.

Proof. Using the definition of py in Step (iv) of Algorithm 7.3, an elementary calculation
yields that

0 pi =205 017 0 < 16,0 (Re)> 150 + 150 e (Re)? = pe(Re)?. (7.34)
This concludes the proof. O

Note that, Lemma 7.9 does not rely on the specific marking strategy and holds for the
present setting as well. Then, the key idea of Lemma 7.11 yields that the upper bound
Oopt for optimal marking parameters in Algorithm 7.3 is half that for optimal marking
parameter in Algorithm 7.1.
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7 Adaptive BEM for optimal convergence of point errors

Lemma 7.12. Under the assumptions of Theorem 7.5. Let {5 be the index from Lemma 4.17
and let 0 < 0 < Ogpt/2 :=1/2(1 + C2,C2,/B2)~L. There exist constants Cy,Co > 0 such
that the following holds: For all s,t > 0 with H(bHAs(n5)H1/}HAt(7—[5) < 00, the set of marked
elements My generated by Algorithm 7.3 satisfies

#H My < Cr (Col|ll a7 190 a7 )T (g empe) = EH. (7.35)

The constant C1,Cs depends only on 6, Bo, and (E1)—(E4).

Proof. Adopt the notation of Lemma 4.22 and Lemma 7.9. Apply Lemma 4.22 with 0 <

20 < Oypt to obtain kgpy and choose K = nﬁpt in Lemma 7.9. Then, equation (7.28) shows

that the constructed mesh 75 € refine(7y,) satisfies 7735 Oni o < ngt 773) mi -
This implies that 7735 o < “gpt 7735 ; Or ni o < ﬁgpt ni ;- Hence, according to Lemma 4.22,
there holds Dérfler marking

205 < Ne(Reeo)®  or  20n7, < nye(Ryeo)’
Therefore, Lemma 7.11 implies Dorfler marking (7.33), i.e.,
007 < pe(Roeo)® or  0p; < pe(Ryo)?
Similarly to the proof of Lemma 7.10, this implies that
#M < Crark #M) < 2Cark max{#Rp 0.0, #Ry 1.0} < Crark Cret #(Te \ To).

Note that Lemma 7.9 holds independently of the marking strategy. With the splitting
property (R3), we conclude that

(R3) —1/(s
#(T\To) < #To—#T0 < C1(C2[|8llay(7s,) ||¢\|At(7z5))l/(s+t) (Mg, M) T,
with constants C = 2 C’éarkCrel and Cy = CIQIIODI{(:[)QV O

Proof of optimal convergence (7.20) of Algorithm 7.3.  Since that proof of (7.20)
in case of Algorithm 7.1 essentially relies only on the validity of Lemma 7.10, the proof
of (7.20) for Algorithm 7.3 follows verbatim, where Lemma 7.10 is replaced by Lemma 7.12.

O
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8 Abstract theory on strongly monotone
nonlinear operators

8.1 State of the art and outline

As for linear problems, the analysis of convergence and optimal convergence behavior
of AFEM for nonlinear problems has been a fertile field for new publications. We re-
fer to [Vee02, DKO08, BDK12, GMZ12] for some major contributions and to [CFPP14]
for some general abstract framework. While the interplay of adaptive algorithms, opti-
mal convergence rates, and inexact solvers is already well understood and analyzed, e.g.,
in [Ste07, AGL13, ALMS13, CFPP14] for linear PDEs and in [CG12] for eigenvalue prob-
lems, the influence of inexact solvers for nonlinear equations has not been analyzed yet.
The work [GMZ11] considers adaptive mesh-refinement in combination with a Kacanov-
type iterative solver for strongly monotone operators. Following [MSV08, Siell], the work
focuses on plain convergence, whereas the proof of optimal convergence rates remains open.

On the other hand, there is a rich body on a posteriori error estimation which also
includes the iterative and inexact solution for nonlinear problems; see, e.g., [EV13]. Based
on our own work [GHPS17], we aim to close this gap between numerical analysis (e.g.,
[CFPP14]) and empirical evidence of optimal convergence rates (e.g., [GMZ11, EV13]) by
analyzing an adaptive algorithm from [CW17].

We consider nonlinear elliptic equations in their variational formulation: Given F' € H*,
find u* € H such that

(Au*, v) =(F,v) foralveH, (8.1)

where 2 is a strongly monotone (Al) and Lipschitz continuous (A2) operator. In view of
applications, we admit that (A1)—(A2) exclude the p-Laplacian [Vee02, DK08, BDK12], but
cover the same problem class as, e.g., [CW17, GMZ11, GMZ12]. We refer also to [BSF114]
for strongly monotone nonlinearities arising in magnetostatics.

The discrete formulation of (8.1) reads: Find u} € A} such that

(Auy , ve) = (F, vg) for all vy € Ay (8.2)

We emphasize that the discrete nonlinear system (8.2) cannot be solved exactly in practice.
Instead, [CW17, GHPS17] use a Picard approximate uj := @g(u?_l) ~ uj, where uj € Xy is
the exact solution of (8.2) and the involved nonlinear mapping ® : H — H is a contraction
(see Section 8.2 for details). Unlike [GMZ12, BDK12], there holds u} # u} in general.
The computation of each Picard step requires to solve a discrete Laplace problem. In
contrast to [GHPS17, CW17], we do not assume that these arising linear systems are
solved exactly and use an inexact iterative PCG-solver instead. Therefore, the proposed
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8 Abstract theory on strongly monotone nonlinear operators

algorithm steers not only the local mesh-refinement and the Picard iteration, but also the
inexact solver for the invoked linear system, where we employ nested iteration to lower the
number of iterative steps.

The algorithm generates a sequence of conforming nested subspaces X, C X1 C H, cor-
responding discrete solutions u}" € X, and estimators ny(u}™*) such that [Ju* — u)"*||3 <
Chy m(u?’k) — 0 as £ — oo with optimal algebraic rate in the sense of certain approxima-
tion classes [CKNS08, FFP14, CFPP14]. Moreover, under an additional assumption, we
prove optimal convergence rates with respect to the cumulative computational costs, which
implies optimal computational complexity and improves the existing result of [GHPS17].
While the plain convergence from [GMZ11] applies to various marking strategies, the con-
vergence analysis in this chapter is tailored to the Doérfler marking strategy. We emphasize
that the whole analysis is done in a complete abstract setting in the spirit of [CFPP14].

Outline of tis chapter. Section 8.2 recalls the well-known proof that (8.1) admits a
unique solution. Section 8.3 comments on the discrete problem (8.2) and introduces the
corresponding Picard mapping ®,. Section 8.3.2 introduces the PCG-solver for the arising
linear system. The adaptive strategy (Algorithm 8.7) is given in Section 8.5. There, we
also formulate the estimator axioms in the current setting. Linear convergence of the pro-
posed algorithm is proved in Section 8.8 (Theorem 8.20). Optimal algebraic convergence
behavior, is proved in Section 8.9 (Theorem 8.21). As a consequence of the preceding re-
sults and with an additional assumption, we also obtain optimal computational complexity
(Theorem 8.32), i.e., the error estimator converges optimal with respect to the cumulative
computational effort.

8.2 Abstract setting

Let © € R? be a bounded Lipschitz domain with d > 2. Further, let # be a Hilbert space
over K € {R,C} with dual space #*. The H-scalar product is given by (-, )3 . Let (-, -)
denote the corresponding duality bracket. We consider nonlinear elliptic equations in the
following abstract setting with variational formulation: Given F' € H*, find v* € H such
that

Qu*, v) = (F,v) foralveH. (8.3)

In order to guarantee solvability, we additionally suppose that the operator 24 : H — H*
satisfies the following conditions:

A1) 2 is strongly monotone: There exists a > 0 such that

allw—v|3, < Re(w —Av, w—wv) for all v,w € H.

A2) 2 is Lipschitz continuous: There exists L > 0 such that

|2w — Av||y+ < L|lw—v|p forall v,w € H.
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8.2 Abstract setting

A3) A has a potential: There exists a Gateaux differentiable function P : H — K such
that its derivative dP : H — H* coincides with 2, i.e., for all v,w € H, it holds that

RAw, v) =(dP(w), v) = li_I)I(l) Plw+ rz;) — P(w).
reR

(8.4)

We note that (A1)-(A2) are sufficient to guarantee existence and uniqueness of the solution
u* € H of (8.3) (see Section 8.2.2). On the other hand, Assumption (A3) is used to prove
linear convergence in Section 8.8.

8.2.1 Nonlinear discrete problem

Let Tp be a given regular initial mesh. Suppose that refine(-) is a fixed refinement strategy
satisfying the axioms (R1)—(R6); see Chapter 3. For each 74 € T = refine(7p), let Xy C H
denote the related conforming finite-dimensional subspace of H. Further, suppose that
refinement 75 € refine(7,) leads to nestedness X, C A, of the corresponding subspaces.
Then, the discrete formulation of (8.3) reads as: Find uj € &, such that

(Quy, ve) = (F, ve) for all ve € X,. (8.5)

Note that, if (A1)—(A2) are satisfied, the restriction 2 : Xo — X of 2 is also strongly
monotone and Lipschitz continuous, even with the same constants «,L > 0 as in the
continuous case.

8.2.2 Existence of solutions

In this section, we prove that the model problem (8.3) as well as its discrete version (8.5)
admit unique solutions u* € H and u} € X,. The proof follows essentially from the Banach
fixpoint theorem and relies only on the validity of (A1)-(A2). To that end, recall the Riesz

mapping
Iy :H —H" with Iyw:=(, w)y.

We emphasize that I is (up to complex conjugation) an isometric isomorphism; see
e.g, [Yos80, Chapter I11.6]. Further, the Banach—Picard iteration ® : H — H is given
by

®(v) i==v — (/L*) I,' (Av — F). (8.6)
We obtain the following proposition.

Proposition 8.1. Let 2 satisfy (A1)—(A2) with constants 0 < o, L < oo. Then, & : H —
H defined in (8.6) is a contraction with Lipschitz constant

0 < gpic := (1 — ?/LHY? < 1. (8.7)
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8 Abstract theory on strongly monotone nonlinear operators

There exist unique solutions u* € H to (8.3) as well as u} € X, to (8.5). Moreover, for
any initial guess u® € H, the Picard iteration u™* := ®(u"~1*) converges to u* asn — oo
with

n

Hu* _ un,*H,H < 13& Hun,* _ unfl,*H,H < %“ul,* _ UOH’H (8.8&)
pic pic
as well as
™ — a2y < (1 gpic) ™ — u" T gy (8.8b)

Proof. We split the proof into two steps.
Step 1: Existence of solutions. Let v,w € H. Note that (A1)-(A2) immediately
imply that

(A1)
allo—wlff; < Re (@ —2Aw, v—w) < |0 —Aw|ys v —wly <" Lo —wll,

and hence, a < L as well as 0 < gpic < 1. Using the definition of ®(-) and |[v[|3, := (v, v)xn,
we obtain that

v — @wl3, = [jv — (a/L?) L' (v — F) — (w — (a/L?) I} (Qw — F)) |3,
=(v—w- (o) L%) Iﬁl(le —Aw), v —w — (a/L?) Iﬁl(ﬂv - Qlw))H

2
=|v—w|3 -2 % Re (v —w, Iﬁl(ﬂv — Qlw))H + % HIﬁl(Q[v — Q[w)Hi

We treat each term on the right hand side separately. First, by definition of Iy, it holds
that

(A1)
Re (v —w, I&l(le —Qlw))H =Re v —Aw, v —w) > allv—w|3.

Second, since [y is an isometric isomorphism, we obtain that

- (A2)
15 (v — Aw) |3 = [[Av — Aw|Fpe < L [Jv — wlf3,.

Combining these observations, we see that

2
[P0 — dw|3, < (1+a_) Hv—wH%—Q%Re(ﬂv—ﬂw,v—w>

L2
2
— )y — wl2 (8.9)
< (1-75) lo—wl
(8.7) 9

2
=" pic lv —wli3-
Hence, ® : H — H is a contraction with Lipschitz constant 0 < gpic < 1. According to the
Banach fixpoint theorem, ® has a unique fixpoint u* € H, i.e., u* = ®(u*). By definition
of @, the fixpoint u* satisfies

0= (v, (a/L2)I;L1(Qlu* - F)) Au, — F,v) forallveH, (8.10)

(0]
H:ﬁ<
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8.3 Discretization and a priori error estimation

and hence, u* = ®(u*) is equivalent to the strong form (8.3). Overall, we conclude that (8.3)
admits a unique solution. Recall that the restriction 2, : Xy — X of A satisfies (Al)- (A2)
even with the same constants. Hence, the proof also applies to the discrete setting and
yields existence and uniqueness of the solution uj € Xy to (8.5).

Step 2: Proof of (8.8a) and (8.8b) . The Banach fixpoint theorem guarantees for
each initial guess u® € #H, that the Picard iteration u™* := ®(u"~*) converges to u* as
n — oo. For all n € N, we obtain that

(8.9)
Ju* —u™* |y = | @) — DU )l < gpie lu — u |y

Gpic [[u* — 1™ g + gpic [u™* — 1" .

N

Rearranging this estimate and aguing by induction on n with (8.9), we derive the following
well-known a posteriori and a priori estimate for the Picard iterates,

. (8.9) qgic

i .
" = ™ lpy < 52— [l =Ty < ™ — 3. (8.11)
1- Qpic 1- pic

This concludes (8.8a). Moreover, it holds that

(8.9)
% —u P gy <t = w g + = e < (1 gpie) lut — u Tl (8.12)

This concludes (8.8b). Thus, the a posteriori computable term ||u™ — u"~!||3; provides an
upper bound for ||u* —u"||y as well as a lower bound for ||u* — u™~!|%. O

Recall the following well-known Céa-type estimate for strongly monotone operators. For
the sake of completeness we include its proof.

Lemma 8.2. Suppose that the operator A satisfies (A1)~(A2). Then, it holds that
lu* —uy|ly < L min [[u* — wel|x- (8.13)
* e We EXe
Proof. Note the Galerkin orthogonality (Au* — Au} , ve) = 0 for all ve € Xs. For we € X

and u* # uf, this results in

e wn AD Re (RAur — Auy, uF — uf)
alu —uglln <

flur — ujllx

Re (Au* — Auk , u* — w,e) (A2)
= ||u* _ U*HH < L Hu* - on’H-

Finite dimension concludes that the infimum over all w, € X, is, in fact, attained. O

8.3 Discretization and a priori error estimation

We emphasize that the nonlinear system (8.5) can hardly be solved exactly even on the
discrete level. Instead, we introduce the exact discrete Picard iterates ud” = @(u?fl’*)
with ul”™ — uy as n — oo.

)
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8 Abstract theory on strongly monotone nonlinear operators

8.3.1 Linearized discrete problem

Let I : Xy — X denote the discrete Riesz mapping. Define the restriction F, € X of F
to X,. Then, the discrete Picard function is given by

Dy : Xy > Xy with Pg(ve) := ve — (a/LZ)I._l(Q[.v. — F,).
Given uffl’* € AX,, the discrete Picard iterate uy* = @.(uffl’*) can be computed as
follows:

(P.i) Solve the linear system

(Ve, W3y = (Aul ™1 — F v,)  for all v, € X. (8.14)

(P.ii) Define ug¢™ := ul b a/L?we™.

Then, Proposition 8.1 holds verbatim for ®, instead of ® and implies that ®, is a con-
traction on A,. For each discrete initial guess u? € A,, the discrete Picard iteration
ud ™ = @4 (ud™) converges to u} as n — co. Moreover, the error estimates (8.8a)—(8.8b)
also hold for the discrete Picard iteration, i.e., for all n € N, it holds that

*

lug = ug™ I3 <

Tl (RS Ol

l—q
- (8.15)

n

. dpi
< min { 72 lul* — .

Qpic(1+QPiC) Hu* n—1,%
—{pic 1- Apic

o — Ug HH

To simplify the notation, and if it is clear from the context, we write ®(-) instead of @, (-).
Finally, we recall the following a priori estimate for the discrete Picard iteration from
[CW17, Proposition 2.1]. We also include its simple proof for the sake of completeness.

Lemma 8.3. Suppose that the operator U satisfies (A1)—(A2). Then, it holds that

n

L . s
" —ul* e < = min [l — walls + ﬁ lua* —udlle  for alln eN.  (8.16)
We . - piC

Proof. With (8.15), we estimate that

n
T
1- pic

(8.15)
0" —ug™a < [lu” = uglln + llug —ud™lln < llu” —uglln +
Then, (8.16) follows from the Céa-type estimate of Lemma 8.2. O
Remark 8.4. Note that, for any ud € X, and ue* = ®q(ul), there holds that

(u}*, U.)H = (u(o]’ ’U.)?—L o % (Q[u(o) - F’ ’U.> fOT all Ve € X"

For ve = ui’* — u?, this reveals that
« «
b Bl = 2 (Wl — P bt —ud) < o 20l — Flle ul* — ulle
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8.3 Discretization and a priori error estimation

Consequently, we get

A2

k=l < O 200 = Flee % o0l — e € L o~ (817)
Therefore, boundedness of |us™ — ul||; in the a priori estimate of Lemma 8.3 can be
guaranteed independently of the space Xy C H by choosing, e.g., ud := 0. If ming,cx, ||u* —
Welly = O(N~%) for some s > 0 and with N > 0 being the degrees of freedom associated
with X, this suggests the choice n = O(log N) in Lemma 8.53; see the discussion in [CW17,
Remark 3.7]. Moreover, we shall see below that the choice of ul by nested iteration leads
to optimal computational complexity; see Section 8.10. ]

8.3.2 Inexact PCG solver for the Picard system

To solve the linearized discrete system (8.14) in Step (P.i) of each discrete Picard iteration,
we use a preconditioned conjugate gradient method (PCG); see, e.g., [FP17] where PCG
is used for an Uzawa-type solver for transmission problems.

To this end, let {£1,...,¢N} C X, denote a basis of X,. Given initial guess ul ° ~

u?_l’*, we define the stiffness matrix S, and right hand side as

S ::( kgl ) eRVN  and b"z(Qlu"‘l’o—F, ) e RV,
. (50 50)7‘[ ik=1,..N . < . §j> =1, N
Let we™ denotes the exact solution of the linear system (8.14) with representation we =
ijzl z;€% and coefficient vector z = (x1,...,x,). Then, the linear system (8.14) is equiv-
alent to solve Sexz = b]}. Note that S, is symmetric and positive definite. This allows to

. . . . n,j n,x
use PCG as inexact solver to approximate the exact Picard iterate we” =~ we™™; see, e.g.,

[GVL13, Saa03, FP17].

Instead of solving Sez = b,e, the PCG iteration considers the preconditioned system
P s, P e = P P, (8.18)

and formally applies the conjugate gradient method to (8.18); see e.g., [GVL13, Algorithm
11.3.2]. Further, we note that x and Z are connected through x = P._l/ ’F. We suppose
that the matrix P, € RV*V in (8.18) is symmetric and positive definite. Additionally, P,
is called an optimal preconditioner for S,, if there exists constants c¢p,Cp > 0 which are

independent of the space X,, such that
cpy Poy <y’ Sey < Cpy’ Poy forally € RY,
i.e., P, is spectrally equivalent to S,. The latter assumption implies that
(:ondg(P._l/2 Se P._l/z) < Cpca, (8.19)

where Cpcg > 0 depends only on cp,Cp and is independent of the discrete subspace
Xo C H. For details on optimal preconditioners for finite and boundary elements we refer
to [FFPS17a, FFPS17b, WC06, XCH10]. To solve the preconditioned system (8.18), we
use the PCG algorithm proposed in [GVL13, Algorithm 11.5.1].
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8 Abstract theory on strongly monotone nonlinear operators

To that end, let wr® € X, be an initial guess with corresponding coefficient vector

2™ € RN and representation wir? = Z;VZO x?’ogi. For all k = 1,...,N, let 2™* ¢ RN
denote the approximate solution of (8.18) and Sex = b7 after k iterations of the PCG
algorithm. This gives rise to approximate discrete solutions

N
w* e X, and wlF = Zx?kfﬁ
j=1

Recall, that we™* denote the exact solution of the linear system (8.14). The next lemma
summarizes some important properties of the PCG iteration; see [GVL13, Theorem 11.3.3].

Lemma 8.5. Let wi° be giwen. For all k=1,..., N, the approrimate solution w?’k € X,
in the k-th step of the PCG algorithm satisfies

Hw?’* — w,”’kHH < Gpeg Hw?’* — w,”’kilHH, with peg = (1 - CEéG)l/Q <1 (8.20)

as well as

VCpca — 1
vVCpca + 1

where we™ € X, denotes the exact solution of the linear system (8.14). In particular, given
any tolerance € > 0, there exists a constant Ccqc € N such that

o 2w o 2, it e

) <1, (8.21)

Jwe* — wi||,, < e |lwi* = wiP||,,  for all Cog < k < N.

The constant Ccg is independent of the discrete space Xy and depends only on cp,Cp as
well as €. O

We approximate one step of the discrete Picard iteration as follows. Given an initial
guess u?_l’o = u?_l’* and w?’o =0, let w?’k be the solution after the k-th step of the PCG
iteration to (8.14). Then, wa'* gives rise to an approximation us™ ~ ul™ where

nyx . n—1,0y _ , n—1,0 aQ Nk nk ._ . n—10 a n,k
ug™ = Po(ug™ %) = uy ~ 73w and  up" :=ul — W’ (8.22)

for all £ > 0. Note that, (8.22) with w? = 0 leads to nested iteration u° = u?1°.

Further, we emphasize the preconditioner P, € RV*Y has only to be computed once for
each adaptive step and is independent of the Picard iteration.

The contraction property for the PCG iterations w* in Lemma 8.5 directly transfers to
approximations u*® and gives the following corollary.

Corollary 8.6. Given an initial guess u?_l’o, the approximative solutions ur* e X, defined
in (8.22) satisfy

q _
lug* — ugFly < %HU?”“ — uPF |y, (8.23)
- Qpcg
as well as
Jug* — ul™® |l < min {gpeg [Jue™ — ul g, 2600, ue™ — ul®a}. (8.24)
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8.4 A posteriori error estimator

Proof. Recall the definition of ue™ := ®q(ue’®) = ue’® — %w?’*. For all £ > 1, Lemma 8.5
implies that

(8.22) « «
s = e 2 JJul® — Tl - u® + Spult,

«
= ﬁ”wf’* - w?’kHH

(8.20) o B
< peg 7 2 — 0l

(8.22) _
= dpcg |ug™ — u?’k 1”?—[

< dpog 1l = ug |3 + dpog Ul — o

This directly gives (8.23) and the first estimate in (8.24). Analogous argumentation
with (8.21) yields that

k
p

k

pcg ||u?7* - u:L’OHH'

! o)
e = gl = 75 lwe™ = wt oy < 2hpeg 75 0™ — willa = 26

This concludes the proof. O

8.4 A posteriori error estimator

Suppose that for each T' € T, € T and each discrete function v, € X,, one can compute an
associated error estimator ne(T,ve) > 0. To abbreviate notation, we define

Ne(Ve) := Ne(Te, Ve ), where

1/2
Ne(Ue, Vo) := Z ne (T, v.)2> / for all Uy C T,. (8.25)

We emphasize, that in contrast to the error estimator for indefinite problems in Chapter 4
(see e.g, (4.13)), the estimator (8.25) is defined for arbitrary discrete functions ve € X.

8.5 Adaptive algorithm

We analyze the following adaptive algorithm which is based on the works [CW17] and
[GHPS17]. In contrast to [CW17], where the algorithm is considered with a different
a posteriori error estimation based on elliptic reconstruction, the following algorithm works
for general error estimators satisfying the estimator axioms in Section 8.6. Algorithm 8.7
also considers an iterative PCG-solver to compute the discrete Picard iteration and hence
expands the adaptive scheme in [GHPS17].

Algorithm 8.7. INPUT: Initial triangulation Ty, parameters 0 < 0 < 1, Apca, Apic > 0,
Chark > 1, counters £ =0 as well as n =k =1 and arbitrary initial guess, e.g. u(l]’o = 0.

ADAPTIVE LOOP: lterate the following Steps (i)-(v).
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8 Abstract theory on strongly monotone nonlinear operators

(i) Compute iterative solution u?’k as in (8.22) via one step of the PCG algorithm.
(ii) Compute the error estimators ny(T, u?’k) for all T € T,.

(if) 1 ™ = "l > Apog me(u™):
(ii.a) Update (4,n,k) — (¢,n,k+1) and go to (i).

() Elseif [lu}" — o)l > Apieme(up™):
(iv.a) Define u?“’o = u?’k.

(iv.b) Update (¢,n,k) — ({,n+1,1) and go to (i).
(v) Else

(v.a) Determine a set My C Ty of marked elements which has minimal cardinality
up to the multiplicative constant Cyare and which satisfies the Dérfler marking
criterion

0 ne(up®) < (Mg, up®).

(v.b) Generate the new triangulation Toyq = refine(Ty, My) by refinement of (at least)
all marked elements T € M.

(v.c) Define uéfl = u?’k e Xy C Xpyq.

(v.d) Update (¢,n,k) — (£+1,1,1) and go to (i).
OUuTPUT: Sequence of discrete solutions u?’k and corresponding error estimators ng(u?’k).

Remark 8.8. Recall that ul € X, denote the exact solution of (8.5) and ue™ € X, denotes

the ezact solution of one discrete Picard iteration; see (8.22). The PCG algorithm computes
the exact solution w,”™ to (8.14) in at most dim(Xy) steps. This directly implies u?’kﬂ =

up® = u* for all k > dim(X;). Hence, after at most dim(Xy) + 1 steps it holds that

k o k
g™ = up ™ g < Apca ne(ug™), (8.26)

and Step (iv) in Algorithm 8.7 is executed.

To abbreviate notation, we make the following notational convention. We emphasize
that in an actual finite element implementation of Algorithm 8.7 the triple index (¢, n, k)
will be replaced by one single index j which will be increased in Step (iii.a), Step (iv.b)
and Step (v.d). However, the above statement of Algorithm 8.7 is more intuitive and leads
to an easier access for the analysis.

Definition 8.9. Let T := {(ﬁ,n,k) : u?’k is defined by Algorithm 8.’7} be the set off all
triple indices. Then, we make the following definitions:

1. k(6,n) :=max{k € N : ({,n,k) € I}, i.e, k(¢,n) is the smallest index such that the

ok mex :
PCG approximation u,™ ~ u,” is sufficiently accurate.
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8.6 Axioms of adaptivity

2. n(l) :=max {n € Ny : ((,n,0) € I}, i.e, n(f) is the smallest index such that Picard

. nyk ~ *x .
iterate w,~ ~ uj is sufficiently accurate.

To shorten the notation and if it is clear from the context, we omit the dependencies and
write k := k(¢,n) and n := n(¥).

Remark 8.10. With the definition of n and k, there holds u?“’o = u?’k and uéfl = uf’k
in Algorithm 8.7. Then, Step (iv) reads for all n > 2 as

. k 1k &
Elseif [lu,"" —uy  |li > Apic me(uy™).
Further, by definition of u?’k = u?fl’k — %w?’k, we obtain that
n,k n,k—1 @ n,k n,k—1
Jug™ —ug™ I = ﬁ”we Wy -

Hence with Npaq = L?/a Apca, Step (iii) can be equivalently written as
k k—1 k
If [Jwy ™ —w ™l > Apeg me(uy ™).

8.6 Axioms of adaptivity

Since the error estimator 7e(7, ve) is defined for arbitrary functions ve € X,, the following
axioms (E1)—(E4) are a slight generalization of Chapter 4 resp. [CFPP14]. We suppose that
the estimator satisfies the properties (E1)—(E4) with fixed constants Cyt, > 1, Creq > 1,
Ciy=>1,054=>1and 0 < greq < 1.

rel =

E1l) stability on non-refined element domains: For all triangulations 7, € T and
7o € refine(7,), arbitrary discrete functions ve € Xy and v, € X,, and an arbitrary
set U C To N T, of non-refined elements, it holds that

|770(uyvo) - n.(u7v0)| < Cyp ||Uo - UOHH'

E2) reduction on refined element domains: For all triangulations 7, € T and 7 €
refine(7,), and arbitrary ve € Xy and v, € X, it holds that

No(To\Tes06)? < red e (Te\To, Ve)? + Cred |[vo — vel|3;-

E3) reliability: For all triangulations 7, € T, the error of the exact discrete solution
uy € X, to (8.5) is controlled by

[l = uglln < Clame(ug)-
E4) discrete reliability: For all 7, € T and all 75 € refine(7,), there exists a set
Reo € To with T\To € Reo as well as #Reo < CF #(Te\To) such that the

difference of the exact discrete solutions uy € X, and u} € X, is controlled by

||UZ - U:HH < C;rel n'(R',O’u:)'
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8 Abstract theory on strongly monotone nonlinear operators

For convenience of the reader, we used the same notation for (E1)—(E4) as for the axioms
in Chapter 4. But for the rest of this thesis, all references to axioms will use the latter
definition.

Remark 8.11. Suppose the following approximation property of u* € H: For all T, € T
and all € > 0, there exists a refinement T, € refine(T,) such that |[u* — u}||ly < e. Then,
discrete reliability (E4) already implies reliability (E3), see (d) of Lemma 4.8 or [CFPP14,
Lemma 3.4].

We note that (E3)—(E4) are formulated for the non-computable exact Galerkin solution
uy € Xo to (8.5), while Algorithm 8.7 generates approximations u?’k ~ uy € X,. The
following lemma proves that reliability (E3) transfers to certain approximations.

Lemma 8.12. Suppose (A1)—(A2) for the operator 2 as well as stability (E1) and reli-
ability (E3) for the a posteriori error estimator. Let A\pca, Apic > 0. Then, there exists
Crel > 0 such that for all (¢,n,k) € Z, it holds that

Hu* - u?’EHH < Crel e (U’%E) (827)

The constant Cye depends only on Cl, qpic, Qpegs a5 well as Apca, Apic.

Proof. Recall that the approximation uf’ﬁ generated by Algorithm 8.7 satisfies

Hufk — uf’kil HH < Apca 7N (ufk) and Hu%k — u%’OHH < Apic n.(u?’k). (8.28)
The triangle inequality implies that
lus — gl <l = ud |l + llue™ — wd{la. (8.29)

Using the definition us™* = ®(ul?) = @(u?il’k), we estimate the first term on the right

hand side of (8.29) by
s — g™l = 1@ (ul) — @(ug®) I < gpic lus — gl
< gpic [lug — u |l + apie [lue™ — ug |3
Rearranging the terms gives

"
s =3l < 72— g = w3

- 1- Gpic
< I (g + = ).
— Qpic

The latter estimate in combination with (8.29) gives

luad — g < I g — 2Ol 4 (14 ) fudt . (8.30)
pic pic

We treat each term in (8.30) separately. Then, (8.28) implies for the first term that

HU%’E - u%’OHH < APic e (U?E)
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The last term in the right hand side of (8.30), we see that

(8.28)

(823) ¢ B q
luz* = uzbll <RIt - < Ao TR ()
1-— Gpcg 1-— Gpcg
Combining the latter estimates, we obtain that
g = w2t < (225 Apie + (14 2 ) Apca 25— ) ma(uh).  (8.31)
1-— pic - Qpic 1- Qpcg

With reliability (E3) and stability (E1), we estimate that

lu* =gl < flu = ullly + lug — ug (|
(E3)
< Clae(ug) + |[ug — ul®||
(E1)
< Craame(ue®) + (1+ ClCam) [Jus — wd™|3
(8.31) -
S ne(ug™).

This concludes the proof. O

8.7 Convergence

8.7.1 Lucky breakdown

The following two results analyze the possible (lucky) breakdown of Algorithm 8.7. The
first proposition shows that, if max {6’ e Ny : (¢,1,0) € Z} < 00, i.e., there exists an
index ¢ € N such that Algorithm 8.7 does not reach Step (v) in the ¢-th adaptive step, then
the exact solution u* = uj belongs to the discrete space Aj.

Proposition 8.13. Suppose (A1)—(A2) for the nonlinear operator A as well as stabil-
ity (E1) and reliability (E3) for the a posteriori error estimator. Let Apic > 0 and assume
that Step ( ) in Algorithm 8.7 is never reached for some { € Ny, i.e., HU?’_ uZLOHH >
APic ng(uz ) for all n € N. Further, suppose that Apcg is sufficiently small (in particular,
with respect to Apic) such that

Qpcg -1 (91 + gpeg)
0= Apcc — LB Al 1 and guay = L") g 8.32
1 — gpeg Pie e (1-q) ( )
Then, it holds that limy, .o up”™ = u* = u} € Xy and
k 1,0 —
nﬁ(u? ) — qlucky Hu - uﬁ ||7'[ K 00; 0= TM( ) (833)

Proof. We prove the assertion in two steps. First note, that Step (iii) of Algorithm 8.7
implies that, for ({,n, k) € Z,

q k—1 q k
— H w25 dwoa el ) (8.34)
pcg

g™ — gl
1-—

127



8 Abstract theory on strongly monotone nonlinear operators

Step 1: Proof of n,(uy ’—) < qlucky ||u u;’OH%. Let n > 2. The definition of
uy” 0= u?k L2 the triangle inequality, and Step (i (iv) of Algorithm 8.7, (i.e., Hu?’k—ug’OHH >
APic W(Ug )), yield that
i 0 ; & 1 1 Lk
g™ =Pl <l ™ = )"l + g™ =™ g+ g™ =y
(8:34) q k q Lk 1,
< APCG'It?gi_”M(U?L)4‘APCGif:?%L—7M(U? ) 4wy =y
Qpcg Gpcg
(Z’U) q _ ,k q 1 k 1
< APCC}I_ng_'APiHu? —uy’ H?t+-APCGif—B§L—7n(U? )+ Jug™ =y
Qpcg Qpcg
or sufficiently small A\pcg such that Apca — 5. < q1 < 1, we obtain that
For sufficiently small A h that Apce 725 Ap < g1 < 1 btain th
7& 70 q 1 k 1
(1= )% = o < Ao 225 )+ " =

Recall the definition of w,"™ := @(ug’o) = @(u?_l’k). We estimate the last term on the right
hand side by

1.k 1,k —
)™ =yl = (@ Cuy ™) — Dy ) < e flup = a0

Step (iv) of Algorithm 8.7 implies that ne(u, b k) < Apis ||y

the latter estimate yields that

0 —up . With (8.32),

k dpc 1,k 1,k -1,0
(1 — qu)lhup ™ — )l < Apca T n(uy ) + gpiclluy T = uy T
1 Qpcg (8.35)
1k 1,0
< (q1 + dpeg) Hun U? IE%

Rearranging the terms, we obtain that

(Q1 + Qpcg) ” n—1,k i n—l,OH
(1-a) "

Uy Uy
By assumption (8.32), there holds that gyccy = EQIJrqg < 1. Recall that ug = o(u,°) =

P (uy” 1) Now, for any n > 2, inductive application of (8.36) finally reveals that

g™ =y g <

k 1,0
Hu? HH < qlucky Hu - ué H'H (837)
With Step (iv) of Algorithm 8.7, this implies that

n,k (iv) 10”

77(“@ ,_) < )‘Pl(:Hu - u[ HH < qlucky H’LL — Uy —0 as n — oo. (838)

Step 2: Proof of u,”* — u} = u* € A,.  Note that u} is a fixpoint of ®(:). By
definition of u?’*, we obtain that

, 1.k 1,k
lug = wy "l = 1@ (u7) = @(uy ™)l < gpiclluy —uy™ = lu
n—1,%

I+ piclluy ™" — g

n 1% -1,k
[E¥

< QpicHuz
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8.7 Convergence

With (8.34), this implies that

n,* (8.34 n—1,% dpc nk
g =gl < apie g = ug™ 7w+ gpie 77— Apoa n(uy ™).
- Qpcg
The sequence ||u} —u,"*||3; is contractive up to a non-negative perturbation which tends to
zero. Basic calculus (e.g., [AFLP12, Lemma 2.3]) proves that |lu} —uy”™|l% — 0 as n — co.
The triangle inequality and Step 1 further imply that

7& b b 7&
g =yl < Mg =gl + llug™ = up = u
(8.34) (8.39)
< Jfup = Y+ 137; Apce ne(uy™) 22250
pcg

It remains to show that uj = u*. According to (E1), n¢(v¢) depends Lipschitz continuously
on vy € Xy. Reliability (E3) and stability (E1) imply that

(E3) (8.39)

lu* — il < meCup) < lim pe(u)®) ™2 o, (8.40)
n— o0
This concludes that u* = u} € Xy and ne(u*) = ne(uj) = 0. O

The second proposition shows that, if max {f’ eNp: (£,1,0) € I} = oo and additionally
ng(u%’k) = 0 for some ¢ in Step (v) of Algorithm 8.7, then it holds that u%’k = u* as well

as 1); (u]ﬂ’k) = (0 and u?’k = u;’o =u* for all j > 4.

Proposition 8.14. Suppose (A1)—(A2) for the nonlinear operator A as well as stabil-
ity (E1) and reliability (E3) for the error estimator. Suppose that max {¢' € Ny : (¢',1,0) €

T} = 0o and that ’I’M(U%E) =0 for some ({,n,k) € T (or equivalently My =0 in Step (v.a)

for some £ € Ng). Then, ujn»’k = u;’o =u* as well as M; =0 for all j > £.

Proof. Clearly, M, = () implies that ’I’M(U%E) = 0. Conversely, ng(u%’k) = 0 also implies

My = 0. In this case, Lemma 8.12 yields that ||u* — u%’EHH S ng(u%’k) = 0 and hence,
n.k

u,~ = u*. Moreover, M, = () implies that Ty;; = 7;. Nested iteration guarantees that
u;fl = u%k = u* and hence concludes the proof. O

8.7.2 Estimator convergence

In this section, we show that, if max{¢' : (¢/,1,0) € T} = oo, i.e., Step (v) of Algorithm 8.7
is executed for every £ € N, then Algorithm 8.7 yields convergence m(u?’k) —0as f— oo.

We first show that the iterates ul® of Algorithm 8.7 are close to the non-computable
exact Galerkin approximation u} € X, to (8.5). Then, the corresponding error estimators
are equivalent.

Lemma 8.15. Suppose (A1)—(A2) for the nonlinear operator A and stability (E1) for the
a posteriori error estimator. There exists a constant C > 0 given by

Cy = <)\pic 1 dpic + Apca (1 + T dpic )1 dpeg ), (8.41)

— Qpic — Qpic — Qpcg
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8 Abstract theory on strongly monotone nonlinear operators

such that for all sufficiently small Apic, Apca < 1 with Cy Cgp, < 1, it holds that

g — e < Came(u®), (8.42)
C

ey < A (ud). 8.43

e = ueBllae < g5 () (8.43)

Moreover, there holds equivalence
(1= CaCot) e (ug®) < me(ul) < (14 CrCutp) mo (ul®). (8.44)
Proof. For convenience of the reader, we split the proof into two steps.

Step 1: Proof of (8.42). The proof is similar to the proof of Lemma 8.12. Recall

n,

that the approximation u, k generated by Algorithm 8.7 satisfies that
Jug® —ug® ], < Apcane(ug®) and  [lud® —ud|],, < Apic 7 (ulE). (8.45)
The triangle inequality implies that
lus —ug®llze < flul = uH e+ lud™ — ug |3 (8.46)

Using the definition w,”" = @(ug’o) = @(u?il’k), we estimate the first term on the right-
hand side of (8.46) by

s = wd* e = 19 (u2) — (ug®) e < gpie [lug — wd®l

< i s =3 e+ i 3" — e

Rearranging the terms, we see that

o = < 2
pic
< T — ).
pic

The latter estimate in combination with (8.46) gives

o = bl < T2 o = g (14 ) e (847)

1- pic pic

We treat each term in (8.47) separately. For the first term, (8.28) implies that
lue® — w2 < Apic ne(ug®).
The last term in the right hand side of (8.47) is estimated by

23)

(8.
Jue™ — udElly <

5)
Apca 1
pcg — dpcg

dpcg n,k

(8.4
el [T BT IV e (1e):

1—g¢q

Combining the latter estimates, we conclude (8.42).
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Step 2: Proof of (8.43) and (8.44). Choose Apcg, Apic sufficiently small such that
C)Csip < 1. This implies that
nk * * n,k (842) * n.k
77(“?") < 77(“.) + CSthuo - u:_H'H < 77(“.) + CxCstp 77(“’77_)
and hence
(1= CxCaw) n(ug®) < m(ug)- (8.48)
This concludes the first estimate in (8.44). Combining (8.48) and (8.42), we see that

Cx N

uf—u?’kng)\ u?’k < ——n(uy).
s~ < Canud ) < T ()

This proves (8.43). With (8.42), we see that

(E1) (8.42)
< e (u?&) + Csthut - U%EH’H < (1 + C)\Cstb) UO(U%E)-

This verifies (8.44) and concludes the proof. O

The following proposition gives a first convergence result for Algorithm 8.7. Unlike the
stronger convergence result of linear convergence in Theorem 8.20, plain convergence only

relies on (A1)—(A2), but avoids the use of (A3).

Proposition 8.16. Suppose (A1)—(A2) for the nonlinear operator 2 and (E1)—(E2) for
the error estimator. Let 0 < 8 < 1 and let C be the constant from Lemma 8.15. Choose
APCG, Apic sufficiently small such that 0 < C)\Cgp, < 0 < 1. Then, there exist constants
0 < gest < 1 and Cegt > 0 which depend only on (E1)—(E2) as well as Cy, Apca, Apic, and
0, such that the following implication holds: If max{¢' : (¢',1,0) € Z} = oo, then

Mer1(u41)? < Gese e (uf)? + Cest llugyy — i3, for all € € No, (8.49)

where uy € Xy in the (non-computable) Galerkin solution to (8.5). Moreover, there holds
. n,k
estimator convergence ne(u,~) — 0 as £ — oo.

Proof. We prove the assertion in three steps.
Step 1: Proof of (8.49). Arguing as in the proof of Lemma 8.15, stability (E1)
proves that

nk (El) N N ok (8.42) N ok
e (Mg, uy™) < ne(Me,up) + Cap lup —up "l < (Mo, up) + CaCoen me(uy, ™).

Together with the Dorfler marking strategy in Step (v.a) of Algorithm 8.7, this proves that

. 0 — C\Cs L. (844) "
O'mi(ui) = TG i) < (0= CoCan) milug ™)
(v.a) L

< (Mg, u") — CrCap Wé(u%k) < ne( My, up).
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8 Abstract theory on strongly monotone nonlinear operators

Note that 0 < C\Cgp < 0 < 1 implies that 8/ > 0. Hence, the letter estimate shows
the Dorfler marking for uj with parameter 0 < ¢’ < 6. Therefore, [CFPP14, Lemma 4.7]
proves (8.49).

Step 2: Next, we adopt an argument from [BV84, MSV08] to prove a priori convergence
of the sequence (u})sen,: Since the discrete subspaces are nested, X := Jjo ) Xz is a closed
subspace of ‘H and hence a Hilbert space. Arguing as above (for the continuous and discrete
problem), there exists a unique solution u%, € Xy of

(Aur,, voo) = (F, Vo) for all vy € Xeo.

Note that X, C X, implies that uj is a Galerkin approximation to u},. Hence, the Céa
lemma (Lemma 8.2) is valid with u* € H replaced by u’, € Xy . Together with the
definition of X, this proves that

* L f—00

o —uplly < — min [Jul, —wellyg —— 0.

I
a weeXy

In particular, we infer that |Ju}, | — u}||3, — 0 as £ — oco.

Step 3:  According to (8.49) and Step 2, the sequence (ng(uz))geNO
non-negative perturbation which tends to zero. Basic calculus (e.g., [AFLP12, Lemma 2.3])
proves that ny(u;) — 0 as ¢ — oo. Lemma 8.15 guarantees the equivalence ny(uj) ~

is contractive up to a

ng(uf’ﬁ). This concludes the proof. O

Note that, A\pca, Apic in Lemma 8.15 and Proposition 8.16 can be chosen independently
of each other. To see this, we pick Apca, Apic > 0 sufficiently small such that

1_Qic (1_QC)(1_QiC)
Apic < 0 — P and Apcg <0 Pee pes. 8.50
¢ 2 Cstb Apic 2 Cstb Gpcg ( )

In combination with (8.41), this implies that C\ Cyp < 0 < 1.

Remark 8.17. As in Proposition 8.16, the linear convergence result of Theorem 8.20 below
allows arbitrary 0 < 0 < 1, but requires sufficiently small parameters Apcg, Apic <K 1 such
that 0 < C\Cgp, < 0 with Cy > 0 being the constant from Lemma 8.15. In many situations,
the weaker constraint 0 < C)\Cgp < 1 which avoids any coupling of 0 to Apca, Apic, appears
to be sufficient to guarantee plain convergence. To see this, note that usually the error
estimator is equivalent to error plus data oscillations

ne(uy) = ||u* — g3 + osce(uy).

If the “discrete limit space” Xoo = |Jjoy Xe satisfies Xoo = H, possible smoothness of 2
guarantees ||u* — uy||3 + oscy(u;) — 0 as £ — oo; see e.g., Section 4.5.1 or the argumenta-
tion in [EP16, Proof of Theorem 3]. Moreover, Xoo = H follows either implicitly if u* is
“nowhere discrete”, or can explicitly be ensured by the marking strategy without deteriorat-
ing optimal convergence rates; see Section 4.5.1 or Section 5.2.1. Since 0 < C)\Cyp, < 1,
Lemma 8.15 guarantees estimator equivalence ng(u%’k) ~ ne(uy). Overall, such a situation

leads to ng(u%’k) — 0 as { — oo.
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8.8 Linear convergence

8.8 Linear convergence
Suppose that 2 additionally satisfies (A3). For v € H, we define the energy functional
by
E:H—R with E(v):=Re(P— F)v,
where P(-) denotes the potential associated with 2 from (8.4) and F' € H* is the right-hand

side of (8.3). The next lemma generalizes [DK08, Lemma 16] and [GMZ12, Theorem 4.1]
and states equivalence of the energy difference and the difference in norm.

Lemma 8.18. Suppose (A1)—(A3). Let X, be a closed subspace of H (which also allows
Xe =H). If u} € X, denotes the corresponding Galerkin approximation (8.2), it holds that

L
%Hv. — u’:H% < E(ve) — E(uy) < §Hv. — u’,‘H% for all vy € X,. (8.51)

Proof. Since H is also a Hilbert space over R, we interpret £ as an R-functional. Since F'
is linear with Gateaux derivative (dF'(v), w) = (F, w) for all v,w € H, the energy E is
also Gateaux differentiable with

(dE(v), w)y = Re(dP(v) — F', w) = Re(Uv — F, w).

Define 9(t) := E(u} + t(ve — us)) for t € [0,1]. We first prove that 1 is differentiable. For
t € [0,1], it holds that

e E(uf + t(ve — uy) + 1(ve — u‘:)) — E(u‘: + t(ve — uﬁ))
v = :

rek (8.52)
= (dE(u’,‘ + t(ve — u’:)) , Ve — Uy)

=Re (A (uf +t(ve —u})) — F, ve — uj).
Hence, v is differentiable. For s,t¢ € [0,1], Lipschitz continuity (A2) of 2 proves that
[ (5) = 0/ ()] = | Re (A(ug + s(vw — ) — A(ul + t(va — u3)) , va — w3 )|
< L||(s = t)(ve — ud)|[allve — uillz = Llve — ulllFls — ¢,

i.e., ¢ is Lipschitz continuous with constant Ll|jve — u‘:H%_l By Rademacher’s theorem, 1)/
is almost everywhere differentiable and there additionally holds [¢"'| < Lljve — u}||7, almost
everywhere. Moreover, the fundamental theorem of calculus applies and integration by
parts yields that

1
Blon) = B(u) = v(1) = 6(0) = /(0 + [ 001 -1 at.
Since X, C H is a closed subspace, there also holds dP, = 2, with the restriction P, :=

P|y,. Hence, we may also define the restricted energy Fo, := FEl|x,. With (8.52) and
dFe uy = Aequl — Fy = 0, we see that ¢'(0) = 0. Hence, we obtain that

1
B(ve) — B(ul) = /O W01 — t) dt. (8.53)
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8 Abstract theory on strongly monotone nonlinear operators

Since || < L||ve — u}]|3, almost everywhere, we get the upper bound in (8.51). To see the
lower bound, we compute for almost every ¢ € [0,1] that
: 1
" (t) 532 i = (Re <Ql(uf +(t+7)(ve —ul)) — F, ve — uf>

r—0 7T
reR

~ Re (A + t(ve — 1)) — F . va — )

= lim lQ Re <Ql (us 4+ (t+7)(ve —uy)) — A (uh + t(ve — u})) , 7(ve — uﬁ)>

r—=0 7
reR
AD g , )
> tim % (e — ) = e — il
reR
Together with (8.53), we conclude the proof. O

Remark 8.19. Lemma 8.18 immediately implies that the Galerkin solution u}y € Xy to (8.5)
minimizes the energy E in X, i.e., E(u}) < E(ve) for all ve € Xo. On the other hand,
if we € Xo is a minimizer of the energy in X, we deduce E(we) = E(u}). Lemma 8.18
thus implies we = uy. Therefore, solving the Galerkin formulation (8.5) is equivalent to

the minimization of the energy E in X,. [

Next, we prove a contraction property as in [DK08, Theorem 20|, [BDK12, Theorem 4.7],
and [GMZ12, Theorem 4.2] and, in particular, obtain linear convergence of Algorithm 8.7 in
the sense of [CFPP14]. The proof is similar to the proof of linear convergence for compactly
perturbed problems ( see Theorem 4.14 in Chapter 4).

Theorem 8.20. Suppose (A1)—(A3) for the nonlinear operator 2 and (E1)—(E3) for the
error estimator. Let C) be the constant from Lemma 8.15 and 0 < 6 < 1. Let 0 <
Apca, Apic < 1 be sufficiently small such that 0 < C)\Cgy, < 6. Then, there exist constants
0 < qiin < 1 and p > 0 which depend only on (A1)-(A2) and (E1)—-(E3) as well as on Cj,
APCG, Apic, and 8, such that the following implication holds: If max{¢' : (¢/,1,0) € T} = oo,
then there holds contraction

Api1 < qin Ag for all £ € Ny,  where A, := FE(u}) — E(u*) + pne(ul)?. (8.54)
Moreover, there exists a constant Chy, > 0 such that
mﬂ(u%fj)Q < Ciin quin m(u?’ﬁ)2 for all j,¢ € Ny. (8.55)

Proof. Recall that refinement of meshes 7y,1 € refine(7y) leads to nestedness of the corre-
sponding discrete spaces Xy C &Xy411 C H. Then, Lemma 8.18 proves that

L
S —upl3 < B(}) — Bu}) < =

5 5 g = wp||3, for all j,¢,€ Ng with j <£.  (8.56)

Verbatim argumentation yields that

L
%Hu’g —u¥|3, < BE(u}) — E(u*) < EHu}f —u*|)3, for all £ € Ny. (8.57)
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We set p:= a/(2Cs). Together with (8.56), estimator reduction (8.49) gives

Apyr = Eup,) — E() + PWH(@H)Q
(8.49) N N . . . « «
< (BE(up) = B(u")) = (B(uf) = E(ui1)) + p (qessne(uf)® + Cestluj — uiy1ll3)
(8.56) N N o
< E(ug)—E(u )"’erstTM(uZ) :
Let £ > 0. Combining this estimate with reliability (E3) and (8.57), we see that

App1 < B(up) — Eu*) + p (qest + ) me(up)? — peme(u)?

(E3)
< E(uf) — E(u) + p (qest + &) me(uf)? — pe (Chy) 2 |Jup — w*||5
(8.57) 2e

< E(u}) = E*) + p (qest + &) me(up)? — p W(E(UE) — B(u"))
= (1= gy (BOE) = BO) + p e + ) e
2e

< max {(1 — pw), (Qest —i—&?)} Ay

This proves (8.54) with

. 2e
0 < qiin = ggmax{(l —Pm)a (Gest +5)} <1

rel

Moreover, induction on j proves that Ay ; < quin Ay for all j,¢ € Ny. In combination with
(8.57) and reliability (E3), the estimator equivalence (8.44) of Lemma 8.15 proves that, for
all j,¢ € Ny,

nk 2 (8:44) 2 j j 2 (8:44) nk 2
77€+j(u?+j) = WH(UEH) ~ Apyj < G Ao~ gy me(up)” = gy, WJrj(u?Jrj) .
This concludes the proof. ]

8.9 Optimal convergence rates

8.9.1 Approximation class

Similar to Section 4.8.1, we define the following approximation class in the sense of [CFPP14].
For N € Ny, we define the set

Ty := {Ts € refine(To) : #7e — #7To < N}, (8.58)

of all refinements of 7y which have at most N elements more than 7y. For s > 0, we define
the approximation norm || - |[a, by

Jella, == sup ((V+1)° min na(u)), (8.59)

NeNg TecTn

where 7, (u}) is the error estimator corresponding to the optimal triangulation 7, € Ty .
Note that ||u*|[s, < oo implies the existence of a (not necessarily nested) sequence of
triangulations, such that the error estimator 7e(u}) corresponding to the (non-computable)
Galerkin approximation w} decays at least with algebraic rate s > 0.
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8 Abstract theory on strongly monotone nonlinear operators

8.9.2 Main result

The following theorem is the main result of this section. It proves that Algorithm 8.7
does not only lead to linear convergence, but also guarantees the best possible algebraic
convergence rate for the error estimator ng(u%’ﬁ).

Theorem 8.21. Suppose (A1)—(A3) for the nonlinear operator A and (E1)—(E4) for the
error estimator. Let Cy > 0 be the constant from Lemma 8.15. Suppose that 0 < 0 < 1,
Apca and Apic are chosen sufficiently small, such that

0+ C)\Cstb 1
0 < C\Cap < 0 las 0" = == <lopt =
< OpCgep < as weke as 1— C)\Cstb < Pt 1+ Cg%;b(cérel)Q

(8.60)

(which is satisfied, e.g., for 0 < 0 < Oopy and sufficiently small Apca, Apic). Suppose that
max{¢ : ({',n,0) € T} = oo, i.e, both iterations (over n and k) terminate for all £ € Ny.
Then, for all s > 0, there holds the equivalence

|[u*]|a, <00 =  TCop >0Vl €Ny ng(u%’k) < Copt (#T0 — #To + 1)‘5. (8.61)

Moreover, there holds Copy = Clil|u*|a,, where Gl > 0 depends only on To, 0, Cx, Apca,
Apic, 8, (E1)~(E4), (A1)—(A2), and on the refinement azioms (R1)—(R6).

The following comparison lemma is very similar to Lemma 4.23 and is found in [CFPP14].
For sake of completeness we include its formulation in the current setting. The proof is
verbatim to Lemma 4.23 where /5 and 6 are replaced by £y and 6”.

Lemma 8.22. Suppose (E1), (E2), and (E4). Let 0 < 0" < Oopi. Then, there exist
constants C1,Cy > 0, such that for all s > 0 with |[u*||a, < oo and all £ € Ny, there exists
Ry C Ty which satisfies

* 1/s *\—1/s
#Ry < C1(Callu* ) me(uf) 1, (8.62)
as well as the Dérfler marking criterion
0"ne(uz) < ne(Reyup). (8.63)
The constants Cy,Cy depend only on 0", s, and the constants in (E1), (E2), and (E4). O

With Lemma 8.22 at hand, we can proof the main result of this section. The proof of
Theorem 8.21 is similar to that of Theorem 4.21 and follows ideas from [CFPP14, Theo-
rem 4.1].

Proof of Theorem 8.21. We prove the assertion in three steps.

Step 1: The implication “«<=" follows by definition of the approximation class, the
equivalence ng(uj) ~ ne(ue) from Lemma 8.15, and the upper bound of (R3); see Step 1 of
the proof of Theorem 4.21 or [CFPP14, Proposition 4.15]). We thus focus on the converse,
more important implication “=".
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8.9 Optimal convergence rates

Step 2: Suppose |u*|a, < oo. By Assumption (8.60), Lemma 8.22 provides a set
Ry C Ty with (8.62)—(8.63). Arguing as in the proof of Proposition 8.16, stability on non
refined elements (E1) proves that

(E1) 42)
ne(Re,uf) < no(Re,up )+Csthuz—UZ’_HH < nz(Ré7ug")+CACstbm(ug B),

where C) > 0 with C)\Cg;, < 1 denotes the constant from Lemma 8.15. Together with
0"n¢(uy) < ne(Re,wy), this proves that

sy
(1 = C\Ca)0" me(u™) <" 0" o(uf) < me(Re,uf) < mo(Re, up™) + CxCoy me(uf™).

Using the definition in §” in (8.60), the latter estimate results in
(8 60) nk
0 m0(up™) ((1 — C\Cyp)8" — C)\Cstb) ne(u™) < me(Re, ulp™). (8.64)

Hence, Ry satisfies the Dorfler marking for the computed solution uz’k with parameter 6.
By minimality (up to constant Cyyac > 0) of My in Step (v) of Algorithm 8.7, we thus
infer that, for all £ € Ny,

(8.64) (8.62) 1/s 1s
#MZ < mark #RZ < Cmark Cl (CZ Hu HAs) W( ) (8 65)
(8 44) 1 '
a1 e )~
The mesh-closure estimate (R5) guarantees that
/—1 (8.65) 1 /-1 - 1
* s\ —
#To—#To+15 D> #M; < w7 niu®) ™V for all £> 0. (8.66)
§=0 §=0
Step 3: Recall linear convergence of Theorem 8.20. This implies that
ne(uy ’—) < Ciin qhn m(u—’k)2 forall 0 <i <.
In particular, this leads to
ni(uiﬂvﬁ)—l/s < 01111/1(25) 1(1n )/(2s) ( %7&)—1/5 for all 0 <i< /.
By use of the geometric series with 0 < qllifl(%) < 1, we obtain that
-1 : -1 WV : /29
k 1/(2 nky— 1/(2s)\£—j 1/(2 i _
s < G e ™) < G ey mlue)
j=0 j=0 ~ lin

Combining the latter estimate with (8.66), we derive that
#To— #To + 1 S w1/ ne(up®) =15 for all £ > 0.

Since no(u(l)’o) ~ no(uf) S ||ur||a,, the latter inequality holds, in fact, for all £ > 0. Rear-
ranging this estimate, we conclude the proof of (8.61). O
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8 Abstract theory on strongly monotone nonlinear operators

Remark 8.23. We emphasize that linear convergence in Theorem 8.20 and optimal conver-
gence in Theorem 8.21 hold for sufficiently small, but independent parameters Apca, Apic >
0; see (8.50). On the other hand, a more subtle choice of Apca > 0, i.e., Apcg depending
on Apic, implies even linear convergence (Theorem 8.30) and optimal convergence of the
full estimator sequence ng(u?’k) (Proposition 8.27).

8.10 Optimal complexity

Throughout this section, we suppose that there holds max {E’ eNg: (¢,1,00eZ } = 00,
i.e., the Picard iteration in Step (iv) of Algorithm 8.7 terminates with ng(uf’k) > 0 for
all £ € Ny. The main result of this section is that Algorithm 8.7 does not only lead to
linear convergence with optimal convergence rates with respect to the degrees of freedom
(Theorem 8.20, Theorem 8.21), but also guarantees linear convergence of the full estimator

sequence (ng(u?’k)) (Cnk)eT (Theorem 8.30) and optimal convergence rates with respect to

the overall computational effort (Theorem 8.32).

8.10.1 Optimal convergence of the full estimator sequence

In order to prove the main results (Theorem 8.30, Theorem 8.32), we first prove optimal
convergence of the full estimator sequence ng(u?’k) for all (¢,n,k) € Z (Proposition 8.27).

With (8.23) and Step (iii) of Algorithm 8.7, there holds the following observation for all
n>1

(8.23)

7k q 7& 7&71 q 7E

lug ™ = up Pl < 2l =™l < 2= Apoc ne(uy ™). (8.67)
1- Gpcg 1- Gpcg

To prove Proposition 8.27, we need the following two technical lemmas. We emphasize that

both lemmas hold for all Apj. > 0, but sufficiently small Apcg > 0 depending on Apic.

Lemma 8.24. Suppose (A1)—(A2) for the operator A as well as stability (E1) and relia-
bility (E3) for the a posteriori error estimator. Let 0 < 6 < 1 and Apic > 0 be arbitrary.
Suppose that Apcg is sufficiently small with

qpi max{)‘gilm Cstb} <1 and Getr \ = M

<1, 8.68
1 — Gpeg (1—q2) (8:68)

g2 = A\pca

where gpic < 1 is the contraction constant for the Picard iteration ®(-). Then, there exists
Cy > 0 such that for all (¢,n,k) € T with n < n, the discrete solutions of Algorithm 8.7
satisfy that

Hu?b — u?’OHH < Qetr Hu?fl’k — u?fl’OHH for all2 <n <n. (8.69)
Moreover, it holds that

g™ =yl < Cral e () foralln=1,....n—1, (8.70)
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as well as

ng(u?’k) < Apin C1 gt 776—1(“[’%) foralln=1,...,n—1. (8.71)

Note that in (8.70), there holds that ||u?’k - u?’OHH = ||u?’k u, L&

constant Cy depends on qpeg, Apca, o, L, Csy,, as well as Crel

I3 for alln > 2. The

Proof. Recall that by definition, it holds that u?’o = u?il’k and consequently Hug’k —
u?’OHH = ||u?’k u, L k||q.¢ for all n > 2. We split the remainder of the proof into three
steps.

Step 1: Proof of (8.69). Let 2 < n < n. The proof is similar to Step 1 in

the proof of Proposition 8. 13 The triangle inequality and Step (iv) of Algorithm 8.7, i.e.
[y b uy’ HH > Apic e (uy” ) yield that

A 70 ’ 7& 1 1 717&
o =l = S g g — g
(8.67) q k q k
< Apcc 1_p7Cg ne(uy ™) + Apca T 0 =S (uy ) =y
Gpcg Gpcg
(i)
dpcg )\71Hunk‘ qloim(u? lk)-|- Hu? —u? 1*||

< APCGqu Sl lfup® — HH+)\PCG1_ -
pc¢ pc

For sufficiently small Apcg such that Apca 1qp°g )\Eilc < g2 < 1, we obtain that

k dpc 1,k 1,
(1= 2)llup™ = ufPllae < Apca —E—me(ug ™) + up™ — up ™
L = Gpeg
Recall the definition of wu,™ := ®(u;”’ 0) @(u?_l’k). We estimate the last term on the right
hand side as

1,k 1,k —
™ = = 1@ () ™) — @y ™) g < el — a0l

n—1Lk nlO

Since n—1 < n, Step (iv) of Algorithm 8.7 yields that ||u, 1% > Apicne(uy b k)

With (8.68), the latter estimate implies that

o dpc Lk 1k
(1= g)llup™ =yl < Apca 1p7g n(uy %) + gpiellug T — w0
fpes (8.72)
717& —1,
< (g2 + gpic) lup % — w0
Hence,
q2 + Qpi ~1,k 1k

This proves (8.69).
Step 2: Proof of (8.70). Recall that ué’* = d(u éo) = O (up” 1) For any 1 < n < n,
inductive application of (8.73) reveals that

n,k n,0 —1 10
U,~ —u,’ < u, ’
I . ) (E% thr H IE” (8.74)

< Qetr (Huz —ungq_[—l—Hu _uz H?—l)
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Estimate (8.67) and stability (E1) yield for the first term on the right hand side

(8.67)
1,k q 1.k
H“L% —u, Sl < T o 22— Apca me(uy™).
~ docg (8.75)
(E1) Apcg n.k 1,k
< T pog (M) + Cunllug™ = uf u)-
1- Qpcg

Reduction on refined elements (E2) and stability yield that ng(ve—1) < ng—1(ve—1) for all
vp_1 € Xy_1. Recall that ug 1 = uz . Using (8.74) for n = 1, we obtain that
1,0 Yy 10

q Lk 4
<1 - —%—Xpcc Cstb> g™ = ug "l < == Apca me—1 (g 1) + Hu g |
1 — gpeg L= gpeg

Note that by assumption (8.68) there holds 5 Apca Csib < g2 < 1 For the second term
on the right-hand side, Remark 8.4 applies. Wlth rehablhty of Lemma 8.12, we see that

7 «

n,k
- Crel Te—1 (UZLl)

A OH (8.17) o
H L

. (8.2
1

g™ — g < —Hu —u I =+ Hu —uphln <

Combining the latter estimates with the first inequality in (8.74), we obtain that

, _ q -1/ q ol n.k
H“é Sy Ol < @t (1 - —%_Apca Cstb) <7ng Apca + — Cre1> ne—1(ug’s).
1-— Apcg 1-— Adpcg L

This proves (8.70).
Step 3: Proof of (8.71). To see (8.71), recall that Step (iv) of Algorithm 8.7 implies

that ||u?’k uy LRI > Apicne(uy’ E) for all n < n. With (8.70), this yields that
7& - 7& 717& - _7E
W(u? ) < Apilc\lu/? - u? [EAS qutrl W—l(ug 1)-
This concludes the proof. O

Remark 8.25. Note that assumptz’on (8.68) is similar to (8.32), but g2 additionally relies
on the constant Cgy,. For Ap; > Cstb, it holds that g2 = q1 and getr = Qucky- Further, (8.69)
implies that for suﬁiczently small Apca > 0, we even get a contraction in each step of the
perturbed Picard iteration.

The next lemma shows a similar result including also the PCG iteration.

Lemma 8.26. Suppose the same assumptions as in Lemma 8.24. Then, there exist con-
stants Co, Ch > 0 such that for all (¢,n,k) € T with £ > 1, it holds that

k k— n.k :
g™ =™ Hla < Chapeg acie ' me—a (i) ifn k> 1 (8.76)
Moreover, it holds that
ne(up®) < Coglict it mea(ufh)  forall k=0, k—1. (8.77)

The constants Ca, Cy depend on ApcG;Apics Gpicsdpic; C1, @, and L.
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8.10 Optimal complexity

Proof. For k > 1, the triangle inequality and Corollary 8.6 imply that

k k—1 k—1 k
Jug™ —wy™ e < llug™ =™ e+ g™ =yl
(8.24) - ko1
< (1+ Qng) ||u€ — Uy [E% (8.78)
(8.24) 0
S (1 +Q100g) Qpclnu u?’ ||7'[

Step 1: Proof of (8.76) for n > 2. Let n > 2. The triangle inequality implies

that
1, 1 0
gy ™ =y llae < g™ — g™ g+ flup ™ — g

The definition of uy™ = ®(u}”’ % = ®(u, L k) and Step (iv) of Algorithm 8.7 yield that
n—1k  n-1,0
—ug ln

1, Lk 1,0
g™ = g™ llag = (1@ (uy™ ") = @(uy )l < apic [l ¢
Together with (8.78), (8.67), and u? =uy LE this proves that
(8.67)
konk—1 Lk -1,0
g =g M < (1 + ) e (apiellug ™ =™ 570
q 1k ’
+ 7 Apoa me(uy 1‘))
Adpcg

Let 't > 0 be the constant from Lemma 8.24. Since n — 1 < n, Lemma 8.24 yields that

717& 10 _7E lk - - _7E
7 - n HH<Clqctr Ne— 1(“5 1) and W(u? ) SCI)‘PiICQQtrQW—l(ugfﬂ-

In combination with (8.79) we obtain that

n,k n,k—1
lug™ = ug™ I

k q _ _ k
P+ T Apoe Apk Cr gl et (uf )

2
< qpcg (1 + gpeg) <qpic Cr qeer Me—1(uy5 1 — Gpeg

q - 7&
= qlﬁcgl qgtrz (14 gpeg) C1 (Qpic + 1 e >‘Pilc) ne—l(uz )
- Qpcg
k—1 1 dpc n,k
= qpcg qgtr (1 + qug) Cl (thI' qplC + qctr 1— APCG >\P1c) Ne— 1(ué 1)
pcg

and concludes Step 1.

Step 2: Proof of (8.76) for n = 1.
0 2E and reliability of Lemma 8.12 imply that

Analogously to the proof of Lemma 8.6, the

s

143 17 J—
definition u,” = Uy

17) o (8.27) o
1, 1,0 n,k
luy™ —u "l < EHU*—U ||?-L—_Hu —uphly < < 7 Cramea (wg)-

With (8.78) we obtain that
Lk 1k 1 k— , 1,0 k— o n.k
”uﬁ HH < (1 + Qpcg) qpcgl Hug u[ HH S qpcgl (1 + Qpcg) z CI‘EI T]Z*l(u?_l)
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8 Abstract theory on strongly monotone nonlinear operators

This concludes (8.76) with

_ q _
C5 = (1 4 ¢peg) max {qcti <qpic Cr+ —22 Aol Apca Cl) ;

C 1}
1— pes re

e

Step 3: Proof of (8.77).  According to Step (iii) of Algorithm 8.7, it holds that

ne(uy kY < Apa Hu? - u?k Yu forall 1 <k<Ek.

This yields (8.77) for all k > 1. For k = 0, it holds by definition that m(u?’o) =ne(u, °)
if n — 1 < n. Hence, analogously to Step 1, Lemma 8.24 implies that,

(8.71)
1k — - K
W(U? 0) = W(U? ) < Gy )‘Pilc Qetr 2 77571(“5%1)-

Recall k = 0. Multiplying the right-hand side with qpcg > 1 concludes the proof. [

= qpcg

Next, we show a generalization of Theorem 8.21, which proves optimal convergence even
for the full estimator sequence m(u?’k). The proposition is a consequence of Theorem 8.21
combined with Lemma 8.5 and Lemma 8.24.

Proposition 8.27. Suppose the assumptions of Theorem 8.21. Let Apcg > 0 is sufficiently
small such that (8.68) be satisfied. Then, it holds that

|u*]la, < o0 <= Copts >0Vl k) €T ne(u, ) < Copt <#72 #To + 1>_ (8.80)

There holds Copt ¢ = C{)pt,f |u*||a,, where C' opt.f > 0 depends only on 8, Apca, Apic, S, Gpegs
(E1)~(E4), (A1)—(A2), and (R1)—(R5), as well as on Tp.

Proof. With stability (E1) and the triangle inequality, we make the following observation

(E1)
ne(u ™) < () + Oy [ — g
n(f)—1
7& ’E lk E
< W(U% )+Cstb\|ug —Ug ||?-L+Cstb Z || i Zn IEY (8.81)
) E(fn)— L nO1 Lk mk
< no(uE) + Cuy Z g™ =" [l + Co Z g™ = gl

r=k
For the last sum on the right-hand side, Lemma 8.24 yields that

(8.70)

ko omk k k
g = gy = g = a0 S g e (uy) for all m+ 1 < n(f).

Hence, the geometric series proves that

n(l)— n(f)—2 1
1k & nk
E H CE S () DT gl < o e (). (8.82)
ctr

1
m=n
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8.10 Optimal complexity

Further, for m + 1 = n(¢), Step (iv) of Algorithm 8.7 implies that Hu?k - u%fl’EHH <

Apiche(uy ’—) Combining this estimate with (8.81), we obtain that

k(¢n)—
k 7& _7&
ne(ug™) S me(up®) + ) Hunrﬂ—u/g 3¢+ me—1(uy ™) (8.83)
r=k

For the remaining sum, Lemma 8.26 reveals that

(8.76)

I k
n,r+ nWH’H ,S q;cg 77571(71/%71)-

[

With Hu? —uy™ ok Y19 < Apcg ne(uy’ ) this further implies that

k(én)— k(ln)—2
n,r+1 n,r < n.k
E — Uy lH S meuy ) + me—1(u § ap
p H 0 H n ( ) n 1 — 1 pcg (884)

n,k
S WZ(W ) +mj1(u L "1)-
Combining the latter estimates with (8.81), Theorem 8.20 proves that

n,k n,k n.k (8.55) n,k
ne(uy™) Sneluy™) +ne—1(uyy) S me—1(uy)-

The splitting property (R3) directly implies that #7y,_1 < #7Tp < Cson#T¢—1 for all £ > 1.
With Lemma 4.19 or [BHP17, Lemma 22], this translates to

BT —#To+1 < #To — #T0 + 1 < (Coon#T0) (#Tio1 — #To + 1). (8.85)

Then, optimal convergence rates of Theorem 8.21 for ng(u%’ﬁ) imply that

(8.61)

ey S me () ST (BT — #To+ 1) ~ (AT — #To+1)°

This concludes the proof. ]

8.10.2 Linear convergence of the full estimator sequence

In this section, we show linear convergence of the full estimator sequence (see Theo-
rem 8.30). We first prove the following technical lemma.

Lemma 8.28. Let Apic, A\pcg < Cgstp such that (8.68) is satisfied. For Cs > max{(1 —
Csib )\pic)fl, (1 — Csib )\pcg)fl} > 1, it holds that

ng(u%’k) <C? ng(u?’k) for all (¢,n,k) € T. (8.86)
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8 Abstract theory on strongly monotone nonlinear operators

Proof. For ({,n,k) = (¢,n, k) the statement is trivial. Hence we focuson (¢,n,k) # (¢,n, k).
Stability (E1) and the Step (iv) of Algorithm 8.7 yield

k -1,k k k
me(ug™) < meCuy )+ Cuap g™ =™ o < me(uy ™) + Coaw Apic me (™).
This directly implies
n.k 1 n—1.k
o(u, ™) < ————ne(u, 7). 8.87
nelug”) 1_Cstb)\Pic77(£ ) (8.87)
Verbatim argumentation for with Step (iii) of Algorithm 8.7 yields for (¢,n, k) that
k 1 -
ne(ug™) € —————ne(up™™). (8.88)

~ 1 - Csp Apca

Step 1: Let n < n. We first prove ny(uy’ k) < (s ng(u?’ﬁ) by contradiction. Therefore,

suppose C31(u,” ) < ne(uy’ ) With Step (1V) of Algorithm 8.7 and the definition of Cs,
we obtain that

(8.87) (iv) .

Came(u™) <me(u™) <" Comelug %) < Corppllug ™ — g™l
(8.69) o

< C3)‘P10Hu — Uy lkHH

The latter estimate directly implies that

7&
Apic e(up ™) < Juf™® =y =05

This implies n = n and contradicts n < n. Hence, the contradiction proves ’I’M(U%E) <
7&
C3 ne(uy ™).
Step 2: Analogous argumentation as in Step 1 in combination with Step (iii) of

Algorithm 8.7 and (8.88) yields that 7e(uy’ My < s ne(uy’ ) Combining this with Step 1,
we obtain that

ng(u%’ﬁ) < (s ng(u?’ﬁ) <C? ng(u?’k) for all (4,n,k) €T
This concludes the proof. O

In order to prove linear convergence of the full estimator sequence, we need the following
assumption.

E5) finite improvement: There exists Cy > 0 such that for all (¢,n,k) € Z with
(,n, k) # (¢,n, k), it holds that

Me— 1(“73) < Cyne(uy’ k)-

Remark 8.29. Fven though, we cannot thoroughly prove this fact, such a behavior is
observed in practice. In particular, assumption (E5) is satisfied in the following cases:
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8.10 Optimal complexity

e Linear convergence proves, in particular, that ng(uf’k) < Clin Qlin m,l(uz’—l) for all
(¢,n, k) € Z. In practice, we observe that m(u%ﬁ) s only improved by a fized factor,

i.e., there also holds the converse estimate ng_l(u?’_%) < CN'W(U%’E) forall({,n,k) € T.
In this case, Lemma 8.28 implies that

n,k n,k (8.86) n,k
Ne—1(ug) Sme(uy™) S me(u,™)  for all (n,k) €T

e Optimal convergence (see Theorem 8.27) proves m(u?’k) < (#7} —#To+ 1) B for all

(4,n, k) € Z. In numeric experiments, we observe that there also holds the converse
—s
estimate <#72 — #T0 + 1) < ng(u%’k) for all £ € N. This implies that

ko« (8:80) —s (8.85) —s nk
() S (#Ta—#T+1) s (#T-#T+1) Smlupt),

and guarantees (E5).

To simplify notation in the upcoming theorem, we introduce the following notation. For
all (¢/,n' k"), (¢,n,k) € Z, we define the ordering

either: ¢ < ¢
(0',n' k) < (¢,n,k) &L or: !=Candn' <n
or: ¢! =fandn’=nand ¥ <k

Let |(¢,n, k)| := 0 for the initial index (0,1,0). For £ >0 or n > 1 or k > 0, we define
(6, k)| =#{(',n' k) e Q: (¢,n k) < (,nk)}. (8.89)

The next theorem shows, that each step of Algorithm 8.7 (i.e., every time the counter
is increased in any way), leads to a contraction of the corresponding error estimator. This
linear convergence thus applies to the full estimator sequence and hence improves the result
of Theorem 8.20.

Theorem 8.30. Suppose (A1)—(A2) for the operator A as well as stability (E1), reliabil-
ity (E3) and (E5) for the error estimator. Suppose Apic, A\pcc are sufficiently small such
that the assumptions of Proposition 8.27 are satisfied. Then, for all 0 < 8 < 1 and all
s > 0, the estimator satisfies the inverse summability

(¢’ k")

S ul YT < O (uly KTV for all (0,0 ) € T, (8.90)
(4,n,k)=(1,1,0)

where C' > 0 is independent of (¢',n', k") € Z. Moreover, there erist 0 < qgin < 1 and
Célin > 0, such that for all (1,1,0) < (¢/,n' k") < (¢,n, k)

/ /

4,k o' K
) < a4, ). s
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8 Abstract theory on strongly monotone nonlinear operators

Proof. We split the proof into two steps.

Step 1:  According to [CFPP14, Lemma 4.9], inverse summability (8.90) for all s > 0
is equivalent to linear convergence (8.91) and also equivalent to the following summability
condition

ST ) S ne(up My for all (1,1,0) < (¢, K) €1, (8.92)
(n,k)>(¢' 0’ k")

where the involved constant is independent of (¢/,n, k") € Z.

Step 2: It thus remains to prove (8.92). Let (¢,n',k’) € Z with ¢ > 0. Recall that

nested iteration in Algorithm 8.7 yields that u? L ué fl as well as ué mk = u£+1 0 for all

(¢,n,0) € Z. This directly implies that n,(u;’ ) = ng(u?Jr 9 for all n < n. Combining this

observation with Lemma 8.26, we obtain that

S mlupt)? < S nelupty?

(t.n,k)> (¢ k') (6,n,k)>(¢,1,0)
oo n(j) k(j,m)

n(j) k(jm)-1

< 3 (metr ez S S gt

j=v m=1 r=0
®77) X (j) k(j,m) o
< 2 Z(% 7_ POy Z Z qpcg Ctr )77] 1 (uf Uy 1)2>
j=v m=1 r=0
n(j) ) . k(j,m)—-1
= 2 Z <77] e R TR () L (S0 N ) S ”))-
j=v m=1 r=0

By use of the geometric series, we estimate the inner sums by

k(j,m)—1 q n(j) 2m1) g2
cg m— t
Z G ) < G qucg =10 s and ) gy < T2
Qpcg m=1 thr

With this, the previous estimate turns into

o
k2 n,k \2 k2
Z ne (") <Z(77J )? +mji— 1(]1)>§Z77j(u?)-
(£,n,k)> (¢ 0! k") =t j=t—1
With linear convergence (Theorem 8.20), we obtain that
o
kN2 NAY:
S mupt? < Y ph
(Ln,k)>(' ' k") j=0—1
(8.55) V1 ik
< ChnW'—l(Ug/ 1) Z C.hm( )<W’ 1(us))?.

j=0'—1
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Finally, assumption (E5) guarantees that

(E5)
k n,k k
E ne(up™)? Smeo1(upt)? S one(up™)?.
(k) > (¢! k)

This concludes the proof.

8.10.3 Main result

We show that Algorithm 8.7 does not only lead to optimal algebraic convergence rates for
the error estimator ng(u?’k), but also guarantees optimal convergence behavior with respect
to the computational complexity.

Optimal convergence behavior of Algorithm 8.7 means that, given ||u*||a, < oo, the error
estimator Ug(u?’k) for (¢,n,k) € T decays with rate s > 0 with respect to the degrees of
freedom O(#Ty).

Optimal computational complexity means that, given ||u*||4, < oo, the error estimator
ng(u?’k) for (¢,n,k) € T decays with rate s > 0 with respect to the computational cost; see,
e.g, [Feil5] for linear problems.

Given a mesh 7, € T, we define single-step complexity by

work(7,) := computational effort to compute exact solution uy of (8.5) and ne(uy).

Then, a single-step complexity rate of s > 0 is possible, if and only if, there exists a
sequence of successively refined meshes (’7}0pt)j ey © T with 7?3; = reﬁne(ﬁpt,./\/lj) for

some M, C 'T;pt such that

o, = sup (work(?pt)snj(u?pt’*» < . (8.93)
0

Here for 7}°pt, the corresponding exact solution of (8.5) and the estimator are given by

u?pt’* € X% and 7, (u;?pt’*).
Then, there holds the following correlation between the approximation class ||u*||a, and

the complexity class ||u*||w,-

Lemma 8.31. Suppose linear single-step complezity work(Te) ~ Te for all To € T, i.c.,
given To € T, the exact solution u} of (8.5) and corresponding estimator ne(u}) can be

computed in linear complexity. Then, it holds that
[u*llw, <oo <= [lu"]la, <oo.

Proof. The implication “<=" follows directly from Theorem 8.32 or Proposition 8.27.
Hence, we focus on the implication “=". To that end, let ||u*||w, < oo and (7}0pt)j€N cT

denote the corresponding sequence. For all N € N, there exist 7;25)\1;),7;2% ) such that
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8 Abstract theory on strongly monotone nonlinear operators

#7*’1Dt <N<N+1<#7‘0
erty (R3) it follows that

()1 With work(7) = O(T) as well as the splitting prop-

[u*lla, = sup(N +1)° min 7e(ug)
NeN Te€Tn

IN

sup(#ﬁﬁvtm) ) (W50N))

(3.5) X
< CSOH Sup(#'TO ) nj N)( Ft7))

< sup <W0rk(7}0p )? nj(u?pt’*)) < 00
j€Ng

This concludes the proof. ]

On the other hand the computational complexity of Algorithm 8.7 to compute an ap-
proximation u—’— depends on the number of preceding adaptive steps as well as on the
number of PCG and Picard iterations in each step.

e From now on, we assume that the preconditioner as well as each step of the PCG
iteration can be computed in linear complexity O(#7y). This can be guaranteed
by using a multilevel additive-Schwarz preconditioner; see, e.g., [FFPS17a, Fiih14].
Moreover, we suppose that the evaluation of (Q[u?il’k — F, vy) and ny(T, vy) for one
fixed vy € Xy and T € Ty is of order O(1). Recall that k(¢,n) > 0 and n(¢) > 0 denote
the number of PCG resp. Picard steps in the ¢-th adaptive step of Algorithm 8.7. In
total, we thus require

n(0) n(l) k(,m)

(kae #7) =0( 3 Z #70)

m=1 r=1
operations to compute the discrete solution u—’— € Xy

e We suppose that the construction of the set M, in Step (v.a) as well as the local
mesh-refinement 7y41 := refine(7;, My) in Step (v.b) of Algorithm 8.7 are performed
in linear complexity O(#7;); see, e.g., [Ste07] with Ciax = 2 for Step (v.a).

Since one step of the adaptive algorithm depends on the full history of the adaptive meshes,
the overall computational cost for ug’k in the ¢-th step of Algorithm 8.7 thus amounts to

O< 3 #7;) . (8.94)
' n' k"< (ln,k)

The next theorem shows that Algorithm 8.7 realizes every possible single-step complexity
rate with respect to the cumulative effort (8.94).

Theorem 8.32. Suppose (A1)—(A2) for the operator A as well as stability (E1), reliabil-
ity (E3) and (E5) for the error estimator. Suppose Apic, A\pcg are sufficiently small such
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that (8.68) and the assumptions of Theorem 8.21 are satisfied. Then, for all s > 0, it holds
that
|lu||la, < oo = FCyork >0 V(l,n,k)eT ng(u?’k) < Cwork< Z #’7@)7
' n' k"N<(ln,k)

(8.95)

There holds Cyorx = Cévork ||| a,, where C"’er > 0 depends only on 8, Apca, Apic, S, @pegs
(E1)—~(E4), (A1)=(A2), and (R3)—(R5), as well as on Ty, n(0) and k(1,0).

Proof. Let ||[u*]|a, < co. First, we note that is holds that n(0) k(1,0) #7o < #71 for some
constant depending on n(0), k(1,0) and #7o. Using #7; < #To(#T; —#To +1) (see, e.g.,
Lemma 4.19), we obtain that

o #TwsS ). #Tv S S #Te—#To+1).  (8.96)
' k"< (£,n,k) ' n' k")=(1,1,0) ' k")=(1,1,0)

Optimal convergence in Proposition 8.27 implies further

, ., (8.80)
ne(up ) S #FTe — #To+1)7° forall (¢,n', k') € T.

In combination with (8.96) and inverse summability from Theorem 8.30, we obtain that

(t,n,k) ke (3:90) N
Z #To S Z e (ug/7 )_ /s S W(uf )_ /5
' n' k" <(£,n,k) ' k")=(1,1,0)
This concludes the proof. O

Remark 8.33. In order to interpret the result of Theorem 8.32, we want to consider the
following heuristic comparison. Suppose we have an oracle, which can do the following:

e Given N, the oracle produces the optimal mesh Topt, v € Tn with Ny opt = 1(Topt, Uspt)

ming, e, 7( 7o, us) without any computational cost.

e The oracle can compute the exact solution of the nonlinear equation and the corre-
sponding estimator in linear complexity O(Topt)-

Theorem 8.32 shows that every single-step complexity rate s > 0 which can be achieved

by using the oracle, is also realized by Algorithm 8.7, even with respect to the cumulative
effort (8.94).
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9 Adaptive FEM with fixpoint iteration

In this chapter, we focus once again on AFEM. As an application of the preceding analysis,
we show that certain types of nonlinear PDEs fit in the abstract framework of Chap-
ter 8. As model problems serve nonlinear boundary value problems similar to those
of [GMZ11, GMZ12, BSF*14, CW17]; see (9.1). Then, applying Algorithm 8.7 leads
to optimal algebraic convergence rates and optimal complexity for the underlying error
estimator.

Outline of this chapter. Section 9.1 introduces the model problem and Section 9.1.2
the corresponding a posteriori error indicator. In Section 9.2, we prove that all operator
axioms (A1)—(A3) and estimator axioms (E1)—(E4) of Chapter 8 are met. Section 9.3
recaps the main results on linear and optimal algebraic convergence. Finally, Section 9.4
underpins our theoretical findings with numerical experiments for AFEM in R2.

9.1 Model problem

Let Q € R? with d € {2,3} be a bounded Lipschitz domain with polyhedral boundary
I' = 99. To include also mixed boundary conditions, suppose that I :== I pUT  is split into
relatively open and disjoint Dirichlet and Neumann boundaries I'p, 'y C T" with |T'p| > 0.
For given f € L%(Q), we consider second-order nonlinear problems of the following type:

—div(u(z, [Vu* ()]*) Vu* () = f(z)  inQ,
u*(z) =0 on I'p, (9.1)
p(z, [Vu*(x)]?)ogu* (z) = g(x) on I'y.

As in [GMZ12], we suppose that the scalar nonlinearity p :  x R>¢p — R satisfies the
following properties (M1)—(M4).

M1) There exist constants 0 < Yigw < Yup < 00 such that

Mow < p(x,t) <yyp Vo€ Qand VE > 0. (9.2)

M2) There holds u(z,-) € C1(R>0,R) for all x € Q, and there exist 0 < Fioyw < Fup < O
such that

Now < p(x,t) + Qt%p(:ﬂ,t) <Ayp forall z € Qandallt>D0. (9.3)

M3) Lipschitz-continuity of p(z,t) in z, i.e., there exists L, > 0 such that

|w(z,t) — p(y,t)| < Lyle —y| Va,y € Q and Vt > 0. (9.4)
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9 Adaptive FEM with fixpoint iteration

M4) Lipschitz-continuity of t&/i(x,t) in z, i.e., there exists Zu > 0 such that

t%p(:ﬂ,t) - t%,u(y,t) < EHL’E —y| Vz,y € Qand Vt > 0. (9.5)

9.1.1 Weak formulation

To obtain the weak formulation of (9.1), we introduce the space of H'(Q)-functions with
homogeneous Dirichlet data

Hp(Q) = {we H': (3" w)|r, =0},

where 4" : H'(Q) — H'/?(Q) denotes the interior trace operator, cf. Section 2.2. The
weak formulation of (9.1) reads as follows: Given f € L?(Q2) and g € L*(T"), find u € H} ()
such that

/ w(z, | Vu*(2)|?) Vu* - Vodz = / fodx +/ guds for all v € Hp(Q). (9.6)
Q Q r

N

Recall the abstract framework from Chapter 8. We define H := H%)(Q) with corresponding
norm ||v]l = [|[Vo|[12(0) and let (-, -) denote the extended L*(Q) scalar product. This
gives rise to the operators

RAw, v) := / w(z, [Vw(z)?) Vw(z) - Vo(z) dz, (9.7a)
Q
(F,v):= /vadx—k/ﬂgvds. (9.7b)

In the framework of the abstract setting of Chapter 8, the weak formulation (9.6) can
equivalently be stated as

(Au*, v) = (F,v) forall ve HhH(Q). (9.8)

Let T be an initial conforming triangulation of €2. Analogously to Chapter 5, we use
NVB for mesh-refinement. Then, Section 3.5 guarantees the validity of the refinement
axioms (R1)—(R6). Let 7, € T := refine(7y) be a conforming triangulation of Q. We
employ lowest-order finite element spaces

Xo = Sp(Te) := PL(Te) N HLH(Q).

The discrete formulation corresponding to (9.8) reads as follows: Given f and g, find
uk € S5(T,) such that

(Auk, ve) = (F, ve) for all vy € SH(Ta).

In order to apply the abstract analysis of Chapter 8, it remains to prove the operator
properties (A1)—(A3) of Section 9.2.
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9.2 Verification of the axioms

9.1.2 Weighted-residual error estimator

Once again we consider the weighted-residual error estimator. To abbreviate notation, let
po(z) = p(z, |Vo(z)?) for all v € H5(Q). The element contributions for an arbitrary
discrete function ve € Sll) (7e) are given by

e (T, U-)z = h%’”f + diV(Nv.vv-)H%?(T) + hr [, ve - n]”%?(aTﬂQ) (9.9)
+hrllg = toe Voo - 0 F2 oar -

where [(-) - n] denotes the normal jump over interior facets and hp := |T|'/¢ ~ diam(T)
denotes the local mesh-size (see Chapter 2-3).

9.2 Verification of the axioms

In this section we prove that the model problem (9.1) as well as the a posteriori error
estimator of (9.9) fit in the abstract framework of Chapter 8. To that end, we first show
the operator axioms (A1)—(A3) for the nonlinear operator 2. Afterwards, we verify the
axioms (E1)—(E4).

9.2.1 Verification of (A1)—(A3)

To prove (A1)-(A3), we first recall an auxiliary lemma which is just a simplified version of
[LB96, Lemma 2.1] with p := 2 and ¢ := 0.

Lemma 9.1. Let C; > 0 as well as 0 < Cy < C3 < oo. Further, suppose that k(x,-) €
CY(Rx0,R>0) satisfies that k(z,t) < Cy for allx € Q and t > 0 as well as

—~

Cy < %(tn(aﬁ,t)) <(Cs Vref andVt>0. (9.10)
Then, it holds that
(k(z, ly))y — K(z,[2])2) - (y —2) > Caly — 2> Va € Q and Vy,z € R, (9.11)
as well as
|5z, lyl)y — K(z,|2)z| < Cily— 2| Vo eQandVy,z € RY. (9.12)
O

Lemma 9.1 gives rise to the following proposition, which proves (A1)—(A3).

Proposition 9.2. Suppose that p : Q x R>g — R satisfies (M1)-(M4). Then, the cor-
responding (nonlinear) operator 2 satisfies the operator axioms (A1)—(A3) with constants
= Yyow and L = Yyp.
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9 Adaptive FEM with fixpoint iteration

Proof. We split the proof into two steps.
Step 1: Proof of (A1)—(A2). Define x(z,t) := u(z,t?). Note that (M1)-(M2)
with & (tk(z,1)) = p(x,t?) + 2t202u(x, t) yield that

W 0) S up a0 Fiow < S (t(,1)) < T

Hence, the assumptions of Lemma 9.1 are satisfied. The lemma implies for all v,w € H })(Q)
that

(9.11)
a|Vu = Vwl* < (u(- Vo) Vv = u(-, [Vwl]?) Vo) - (Vv — V) ae. in €, (9.13)
as well as

o (

9.12)
|1, [V ) Vo = u(-, Vo) Vw)|? < L2|[Vo - Vol ae. in Q. (9.14)

Integration over €2 proves strong monotonicity (A1) and Lipschitz continuity (A2).

Step 2: Proof of (A3). Analogously to [Has10], we define

|Vw|?
P:HHQ) = Rsp: wrs %/Q/O p(z,¢)d¢de. (9.15)

Note that boundedness (M1) implies well-posedness of P. Next, we show that 2 is the
Géteaux-derivative dP of P. To that end, let 7 > 0 and v,w € HL(). Define

|Vw+rVo|?
H(r) :=P(w+rv) (415 %/Q/O u(z,¢)d¢dx.

With the Leibniz rule, we get

1
H'(r) == / p(x, [Vw + er|2)i(|Vw + T‘VU|2) dz
2 Q dr

= / w(z, |Vw +rVol?) (Vw + rVv) - Vodz.
Q
With this, we obtain that
(dP(w), v) = H'(0) = / w(z, |Vwl*) Vw - Vo dz R RAw, v).
Q

This concludes the proof. ]

9.2.2 Verification of (E1)—(E4)

The verification of stability (E1) and reduction (E2) requires the validity of a certain inverse
estimate. We recall the following result from [GMZ12, Lemma 3.7].
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9.2 Verification of the axioms

Lemma 9.3. Let 7, € T. Define pe : Te X S})(T.) X Sll)(T.) for all T € Ty and all
Ve, We € SH(T4) by

Pe(T', Ve, we) = hr|| div(py, Vve) — div(pw, Vwe)|| 2 (1)
1/2
+ 1yl [t ve 0] = [ty we - 0] 27
Then, there exists Ciny > 0 such that for all T € Ty and ve,we € 511)(7:) 1t holds that

p.(T, Ve, U).) S CinVHVUQ — Vw.HLz(w(T)). (916)

Moreover, there exists Cy > 1, which depends only on d and y-shape reqularity such that
> pe(T,ve,ws) < Ci[|Vve — Vel 12(0)- (9.17)
TET.

The inverse estimate gives rise to the estimator axioms (E1)-(E4). We emphasize that
the proofs are similar to the linear case; see, e.g., Section 5.2 or [CFPP14, CKNSO08§].
A proof for scalar nonlinearities can be found in [GMZ12, Lemma 3.7]. For sake of the
completeness, we include the proof of stability (E1).

Proposition 9.4 (stability on non-refined element domains).  Suppose (M1)—-(M4). Then
the error estimator defined in (9.9) satisfies aziom (E1).

Proof. Let Tq,To € T with T, € refine(7,). Let Us C To N To, and ve € S})(T.) as well as
Vo € 5117 (75). Analogously to the proof of Proposition 5.3 we obtain

N0 (Us, Vo) — Ne(Us, Ve )| < ( Z Re(vo,ve, T )1/2.
TEUs

Using pe from Lemma 9.3, the function Re(-,-,) is given by

1/2

Re(T,v0,ve) := pe(T, Vo, ve) + hp' " || o, Vo - VI — fiy, Vv - nHLQ(BTmFN)-

Recall that each element patch contains at most finitely many elements. Note that nested-
ness of the discrete spaces implies that ve € Sh(7s) C Sh(7T5). The inverse estimate (9.16)
applied to the first term on the right—hand side yields that

Z pe(T, 05, 0s)? Z IV (vo HLQ(w ) S 1V (ve )H%Q(Q)

TEU. TeUs

The remaining term right-hand side is estimated analogously to (5.11). Using Lemma 9.1
and the trace inequality, we obtain for an edge E C 0T NI'y that

(9.12)
[[(1ve Vo = p10, Vva) - n||%2(E) < lpws Voo — #v.VUoH%%E) < L2V (v - U-)H%%E)

—1 2
rg hTEHUO _U.HLQ(TE)'
Combining this with the latter estimate, we end up with
Z R.(Ta UOavo)Q 5 ||Uo - voH?{l(Q)a
Tl
which concludes the proof. O
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9 Adaptive FEM with fixpoint iteration

With the inverse inequality (9.16), the proof of (E2) follows analogously to the linear
case in Proposition 5.4. The Neumann term in the estimator (9.9) is estimated similarly
to the proof of Proposition 9.4, where we additionally use the reduction of the local mesh
size (3.3) on refined elements.

The well-posedness of the error estimator requires that the nonlinearity p(x,t) is Lip-
schitz continuous in x, i.e. (M3). Then, reliability (E3) and discrete reliability (E4) are
proved as in the linear case. We refer to, e.g., [CKNSO08] for the linear case or [GMZ12,
Theorem 3.3] and [GMZ12, Theorem 3.4] for strongly monotone nonlinearities. We empha-
size that the arising constants in (E1)—(E4) depend also on the uniform 7-shape regularity
of the triangulations generated by NVB.

9.3 Optimal convergence

Recall that NVB bisection guarantees the refinement axioms (R1)—(R6). With the operator

axioms (A1l)—-(A3) as well as the estimator axioms (E1)-(E4) at hand, we can apply the

abstract framework and analysis of Chapter 8. Let u?’k € SH(Ty) denote the sequence

generated by Algorithm 8.7 applied to model problem (9.1). The following theorem recaps
the main results of the previous chapter and is a direct consequence of Proposition 8.27,
Theorem 8.30, and Theorem 8.32.

Theorem 9.5. Suppose (M1)—(M4) for u(-,-). Let 0 < Apic, Apca, 8 < 1 be sufficiently
small such that (8.68) and the assumptions of Theorem 8.21 are satisfied. Then, the se-
quence ug’k € 511)(72) produced by Algorithm 8.7 satisfies linear convergence

ngﬂ(uffj) < Clin qﬂn Ug(U%E) for all (¢,n,k) € T. (9.18)

Moreover, for all s > 0 with ||u*||s, < oo, there holds optimal algebraic convergence w.r.t.
the degrees of freedom

m(u?’k) S (#72 —#7To + 1) B for all (¢,n,k) € L. (9.19)

If we additionally assume (E5), we obtain optimal complexity
ng(u?’k) < ( Z #72)7 for all (¢,n,k) € T. (9.20)
(¢,n,k)>(0,1,0)
The involved constants depends only on 0, Apca, Apic, S, Qpics dpeg, the constants in (E1)—
(E4), (A1)—(A2), (R1)~(Rb). The constant in (9.20) additionally depends on Ty, n(0), and
k(1,0).
9.4 Numerical experiments

In this section, we present two numerical experiments in 2D to underpin our theoretical
findings. In the experiments, we compare the performance of Algorithm 8.7 for

e different values of A\3,. € {1,0.1,0.01,0.001},
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9.4 Numerical experiments

different values of Apqq € {Ap,.,0.1A,.,0.01 A3, 0.001 A3, .},

e different values of 0 € {0.2,0.4,...,1},
e PCG with multilevel additive-Schwarz preconditioning vs. non preconditioned CG,
e nested iteration ué’o = uf;% compared to a naive initial guess ué’o = 0.

As model problems serve nonlinear boundary value problems from [GHPS17|, which are
similar to those of [GMZ11, GMZ12, BSF™14, CW17]. If it is not stated otherwise, we
employ the multi-level additive-Schwarz (MLAS) preconditioner for the PCG-iteration;
see, e.g., [Fih14].

9.4.1 Experiment with known solution (Ex. 1)

We consider the Z-shaped domain Q C R? from Figure 9.1 (above) with mixed Dirichlet—
Neumann boundary and the nonlinear problem (9.1), where the function uf(-,-) is given

by
1
V1t Vur(z)2

This choice of u leads to a = 2 and L = 3 in (O1)—(02). We prescribe the solution u* in
polar coordinates by

|Vt (2)P) = 2+

u*(z,y) = 1’ cos (ﬁ qb), (9.21)

where f = 4/7 and f as well as g in (9.1) are chosen accordingly. We note that u* has a
generic singularity at the reentrant corner (z,y) = (0,0). Figure 9.1 (below) shows that in
order to produce optimal rates, Algorithm 8.7 heavily refines towards the singularity.

Our empirical observations are the following: Due to the singular behavior of u*, uni-
form refinement leads to a reduced convergence rate O(N~#) for both, the energy error
err(uy™)? == |Vu* — Vu?’kH%Q(Q) as well as the error estimator n(u)™*)?; see Figure 9.2.
On the other hand, the adaptive refinement of Algorithm 8.7 regains the optimal con-
vergence rate O(N~!), independently of the actual choice of # € {0.2,0.4,0.6,0.8} and
A2, € {1,0.1,0.01,0.001} if Apcg is chosen accordingly; see Figure 9.4-9.5. As it turns
out, only A3, € {1,0.1} and A}oq > 0.1A3,. lead to reduced orders of convergence. All
other pairings recover the optimal convergence rate of O(N~1).

Further, Figure 9.3 shows that Algorithm 8.7 leads to optimal rate with respect to the
cumulative complexity (8.94), for uf’ﬁ, where instead uniform refinement leads to reduced
order even for linear single step complexity.

Throughout all adaptive steps, Algorithm 8.7 guarantees that the number of Picard
and PCG iterations remains bounded for all tested choices of Apca, Apic; see Figure 9.6.
Moreover, we compare the performance of the PCG iteration with MLAS preconditioning
and without any preconditioning. According to (8.50), Apcg has to be chosen sufficiently
small in order to guarantee optimal rates. Note that Apcg depends on gpes and hence,
on the condition number of the linear system. Figure 9.8 (top) shows that the condition
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9 Adaptive FEM with fixpoint iteration

number of the non-preconditioned system increases with O(N), where instead the MLAS
preconditioner leads to a bounded condition number. This leads to gpeg — 1 as £ — oo
for the non-preconditioned CG iteration. As shown in Figure 9.7 and in contrast to PCG,
non-preconditioned CG leads to stagnation of the energy error ||Vu* — Vu?’kH%Q @ for
¢ > 0y depending on Apcg and Apjc. Further, Figure 9.8 (bottom) shows that up to £ = ¢},
the number of CG-iterations increases with ¢.

As expected from Remark 8.4, for the naive initial guess u;fl := 0, the number of
Picard iterations grows logarithmically with the number of elements #7,, while we observe
a bounded number of Picard iterations for nested iteration uéfl = uf’_%; see Figure 9.9.

9.4.2 Experiment with unknown solution (Ex. 2)

We consider the Z-shaped domain  C R? from Figure 9.1 (above). Moreover, we consider
the nonlinear Dirichlet problem (9.1) with I' = I'p and constant right-hand side f = 1,
where pu(-,-) is given by

p(, |Vu*|?) = 1 + arctan(|Vu*|?).

According to [CW17, Example 1], there holds (O1)—(02) with o =1 and L =1+ /3/2 +
/3.

The exact solution is unknown. Therefore, our empirical observations are concerned with
the error estimator only; see Figure 9.10-9.12. We derive similar results as in the previous
example with known solution. Since we use the same geometry containing a reentrant
corner, uniform mesh-refinement leads to a suboptimal rate of convergence O(N~5) for
ng(u?’k)Q, while the use of Algorithm 8.7 regains the optimal rate of convergence O(N~1).
Figure 9.10 shows the convergence of the estimator sequence ng(u?’k)2 with respect to the
degrees of freedom for different values of 6 € {0.2,0.4,0.6,0.8,1}. Moreover, the estimator
even realizes the optimal rate with respect to the cumulative effort (8.94); see Figure 9.12
(top). According to Figure 9.11, the optimal rate is achieved for all choices of Apijc. A naive

initial guess ué’o := 0 for the iterative solver leads to a logarithmic growth of the number

of Picard iterations, while the proposed use of nested iteration ué’o = u%;% again leads to

bounded iteration numbers for all tested choices of Apic, see Figure 9.12 (below).
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Figure 9.1: Geometry and initial partition 7p in the experiment from Section 5.4.1 (top).
The Dirichlet boundary I'p C IT' is marked by a thick red line. In addition
we plot the mesh T1g with #7135 = 4543 generated by Algorithm 8.7 (bottom),
where we used A%ic =10"2, )‘%CG =10"%, and § = 0.2.
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Ex. 1: Convergence rates of m(u?’kf (solid lines) and err(u%ﬁ)2 (dashed lines)
for different values of 6 with respect to the cumulative complexity (8.94). For
uniform refinement, we just plot the single step complexity, i.e., ng(uf’kf w.r.t.
#7Ts. We used )\%ic = 0.1, Apcg = 1072 )\%ic (top) as well as )\%ic = 1073,
Apcg = 1073 A2, . (bottom).

161



9 Adaptive FEM with fixpoint iteration

N
100%
e ‘
- . f
5 -
+~
g
-5 10'2
8
o)
8
— 1‘
o
E -4 2 ’\‘
104 —e— )2 =1 &
A2 =0.1 J- .
—1
A2 =102 O(N™) e
—— )2, =103 \°\°‘¢~
10_6 il R R Ll Ll . y
102 10° 104 10% 108
number of elements N
100¢
—
@]
+
g
= 1072
8
o]
=
2]
—
o
—
)

—e— )2
)‘Pic

=1
M. =01
M, =102

—— g, =107

Pic
1l L a1 aaaal

1074

106 B
102 103 104

number of elements N

10°

Figure 9.4: Ex. 1: Convergence rates of n(uj™)? (solid lines) and err(u)")? (dashed lines)

for different values of Ap;.. We used 6 = 0.4 as

well as Ao = 0.1A3;, (top)

and )\%CG =103 )\%ic (bottom). For Apj. = 1, the parameter Apcg has to be

sufficiently small in order to get optimal rates.

162



9.4 Numerical experiments

[ T T T T T T
I :\;\i:/
100% "Ry
\‘88:& h 9%
- \&9*& "8
oo} | 0~ $ &l
S -2 1 [C O
% 10 1‘ Qe -
$ % . A
Fg ‘\ .‘\% Q
< 0‘-. v \‘ Qo
= ~ =g
2 °‘. O
o 10'4 _g_)\Q _)\2 \«
PCG = Mpic 0‘0\
2 _ 2
Apog = 0.1 A, oN-1 ‘"‘
2 _10-212 - ~
Aog = 107202, (N7 o o4
2 _ 10-312
) —— Moo = 1073 M3, 0,
10~ il il il il il
102 103 104 10° 108
number of elements N
1009
—
8
g
= 1072
wn
[¢]
o]
g
3
—
2
S 404 —o— 2., = )2
PCG — "‘Pic

2 _ 2
Apcg = 0-1Ap;.
2 10-232
Apog = 1077 A,
2 10=312
*— Apoe = 1077 A
102 108 104 10° 106
number of elements N

1076

Figure 9.5: Ex. 1: Convergence rates of ng(u?’k)Q (solid lines) and err(u?’k)2 (dashed lines)
for & = 0.4 as well as different values of Apcg depending on Apic = 0.1 (top)

and Apjc = 1073 (bottom).

163



9 Adaptive FEM with fixpoint iteration

10 T ML | T T T T T T T T T T
9L T Mcg = M ]
g )‘%’CG = O-U‘%ic
Apoa = 1072 A,
2 7r — Apog = 1072 Ay, 1
g
.2
+~
s
B
[
o
g
=
=]
)
2+ R .
1 <>Ko>—¥e —0—109-60-9005- 05024 0 —D—R)-0P DD H0=0=0-0
O N roaa ol N MEETETE e | N TR | N MEETETE e | N TR |
102 108 104 10° 108
number of elements N
25 T T T T T T T T T ToTTTTT T
"= Aboa = Mpic
20 Nbog = 0.1 A%
Apog = 1072 A8,
. O— Mpoa = 1072 A,
=
.2
=
g
=
o
g
o)
g
]
=

102 103 104 10° 108
number of elements N

Figure 9.6: Ex. 1: Number of total PCG iterations Zﬁ(i)l k (solid lines) and number total
Picard iterations n(¢) (dashed lines) in each adaptive step for 6 = 0.4, A3, = 0.1
(top) resp. A%, = 1073 (bottom) and different values of A3q.

164



9.4 Numerical experiments

error and estimator

2 10-3
2 104
—E— Ao =10
_ 1n—4
—5— CG, A\pog = 10
102 103 104 10° 108
number of elements N

o Apeg = 1077
CG, A2 = 1072

10%F —*— Xy =103
CG, A2 = 1073

—&— Apog = 1077
—5—CG, Mg = 1074

1008 o i

102 108 104 10° 108
number of elements N

error and estimator
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(bottom) and # = 0.2. Additionally, we compare PCG to a non-preconditioned
CG iteration to solve the linear system in (8.14).

165



9 Adaptive FEM with fixpoint iteration

10 6 T T T T
—— 2 2 2
Apie = 0.1, Apcg = 0.1 Apse
—_— 2 -2 2 —2 42
10° £ Apic = 1077, Apog = 1077 Apie

—B— 2 _ 0-3 32 _ 10312
Apie = 1077, Apcg = 1077 Apje

—

o
IS
T

condition number
>
w
T

10" 102 103 104 105 108
number of elements N

—— )2 — 102
Apcg = 10
2 — -2
CG, Apog =10
1021 —H— 2, —10-3
[ Pcg =
2 — -3
CG, Apog =10
—A— 2 g4
Apcg = 10

TV CG, Agg = 1071

PCG - steps

1 y o
(;-?—(:/.3 (7) ﬁ/V A (
L(—f%;‘%:@@ G-C-O4-0< ;

102 10° 104 10% 108
number of elements N

4
7

Figure 9.8: Ex. 1: Condition number estimate (top) for the linear system in (8.14) for
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MLAS-preconditioner (solid lines) to diagonal-preconditioner (dashed lines),
and no preconditioning (dotted lines). Number of steps of the PCG-iteration
(bottom) compared to non-preconditioned CG in (8.14).
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Figure 9.12: Ex. 2: Convergence rates of m(u?’h)2 for different values of 6 with respect to
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the cumulative complexity (8.94), where A3, = 1072 and Apcg = 1074 (top).
For uniform refinement, we plot the single step complexity, i.e., ng(u%’E)Q with
respect to #7;. In addition, we compare the number of Picard steps n(¢) for
nested iteration uéfl = u%’k (solid lines) to uéfl = 0 (dashed lines) for 6 = 0.2
and A3, = 1072 A3 (bottom).
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