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Abstracts

Abstract

Next generation sequencing underwent drastic developments in the last years. One
of the newest developments enables researchers to extract gene expression data from
single cells. One of these techniques managed to catapult single cell RNA (transcrip-
tome) sequencing to the top of the field, because it provides high throughput and
high accuracy sequencing information for a fraction of the costs. This technology is
called micro-droplet sequencing and is based on the principle of separating the cells
before the sequencing process by encapsulating them into droplets with the help
of microfluidics. This new technology introduces researchers to a new era of single
cell sequencing and thereby understanding of the mechanisms in biology on a single
cell level. Different applications are the discovery of new cell types, identification of
targets for drug development or the observation of biological reactions on a cellular
level to name just a few.
With this new technology a new kind of data is generated. Due to the higher sensi-
tivity of such sequencing processes we have to deal with a lot of noise or potentially
distorted measurements due to environmental factors. At the same time the amount
of data increased significantly, which results in high dimensional problems on large
datasets. Although more dimensions are added to the data, most of it is very sparse
and therefore makes the analysis more difficult. More than ever, sophisticated al-
gorithms and mathematical methods are needed to deal with this very sparse, high
dimensional and noisy signals.
This work focuses on the mathematical methods used and needed for the analysis
of single cell RNA sequencing (scRNAseq) data. For that, we introduce a mathe-
matical framework to describe the process of scRNAseq analysis in a rigorous way.
The goal is to find and evaluate different methods for each of the identified proce-
dures in the process of scRNAseq analysis. These procedures include quality control,
normalization, identification and removal of confounding factors, dimensionality re-
duction and clustering with appropriate visualizations. Mathematical methods are
needed to perform every one of these steps and we try to find and discuss the best
approaches to overcome the novel challenges. Furthermore, we put an emphasis
on the validation of clustering results within scRNAseq analysis and develop two
approaches to resolve this issue. All of the described and developed methods are
applied on a simulated dataset, based on a real scRNAseq dataset, and presented
for the purpose of better understanding and validation.



Zusammenfassung

Die Sequenzierungsmethoden der zweiten Generation (engl. next generation se-
quencing) durchliefen in den letzten Jahren rapide Entwicklungen. Eine der neuesten
Entwicklungen ermöglicht es Wissenschaftlern Genexpressionsdaten von einzelnen
Zellen zu ermitteln. Eine dieser Technologien schaffte es die Einzelzell-RNA (Tran-
skriptom) -Sequenzierung (engl. single cell RNA sequencing) an die Spitze dieses
Forschungsgebietes zu katapultieren, da sie einen hohen Durchsatz und präzise
Sequenzierungsinformationen für einen Bruchteil der Kosten zur Verfügung stellt.
Diese Technologie wird als “micro-droplet sequencing” bezeichnet und basiert auf
dem Prinzip die Zellen vor dem Sequenzierungsprozess durch das Einschließen in
Tröpfchen mit Hilfe von Mikrofluidik zu isolieren. Diese neue Technologie ermöglicht
es Forschern eine neue Ära der Einzelzell-Sequenzierung einzuläuten und damit die
Erforschung von biologischen Mechanismen auf zellulärer Ebene voran zu treiben.
Verschiedene Anwendungen sind die Entdeckung neuer Zelltypen, die Identifikation
von Angriffspunkten in der Medikamentenentwicklung und die Beobachtung biolo-
gischer Reaktionen auf zellulärer Ebene, um nur einige wenige zu nennen.
Durch die Anwendung dieser neuartigen Technologie wird eine noch nie dagewe-
sene Art von Daten generiert. Aufgrund der höheren Empfindlichkeit solcher Se-
quenzierungsverfahren treten, wegen äußerer Einflüsse, viele Störungen (Rauschen)
oder möglicherweise verzerrte Messungen auf. Gleichzeitig hat die Datenmenge
signifikant zugenommen, was zu hochdimensionalen Problemstellungen in großen
Datensätzen führt. Obwohl den Daten mehr Dimensionen hinzugefügt werden, sind
die meisten davon nur sehr dünnbesetzt und erschweren daher die Analyse. Mehr
denn je sind komplexe Algorithmen und mathematische Methoden erforderlich, um
diese sehr dünnbesetzten, hochdimensionalen und verrauschten Datensätze profes-
sionell verarbeiten zu können.
Diese Arbeit konzentriert sich auf die mathematischen Methoden, die für die Anal-
yse von Einzelzell-RNA-Sequenzierungs-Daten (engl. scRNAseq data) verwendet
werden. Dafür konstruieren wir einen mathematischen Rahmen, der es ermöglicht
den Prozess der scRNAseq-Analyse auf eine rigorose Weise zu beschreiben. Das Ziel
ist es verschiedene Methoden für jede der identifizierten Vorgehensweisen im Prozess
der scRNAseq-Analyse zu finden, zu beschreiben und zu vergleichen. Diese Vorge-
hensweisen inkludieren unter anderem Qualitätskontrolle, Normalisierung, Identi-
fikation und Entfernung von Störfaktoren sowie Dimensionsreduktion und Clus-
tering mit geeigneten Visualisierungen. Für jeden dieser Schritte sind mathema-
tische Methoden erforderlich und wir versuchen die besten Ansätze zur Überwin-
dung dieser neuen Herausforderungen zu finden und zu diskutieren. Darüber hin-
aus konzentrieren wir uns auf die Validierung von Clustering-Ergebnissen inner-
halb der scRNAseq-Analyse und entwickeln zwei Ansätze, um diese Problemstellung
zu bewältigen. Alle beschriebenen und entwickelten Methoden werden auf einen
simulierten Datensatz, basierend auf einem realen scRNAseq-Datensatz, angewen-
det und zum besseren Verständnis und zur Validierung präsentiert.
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1. Motivation
“Leave this world a little better than you found it.”

Robert Stephenson Smyth Baden-Powell

Right now the medical and biological landscape is transforming at a rapid speed.
One of the reasons is the increased development and use of sophisticated technolo-
gies. Next generation sequencing (NGS) is one of those technologies, which are driv-
ing the fast development and advances. As these technologies get smaller, faster,
better and cheaper they leave the realm of experimental research and enter into the
applied sciences, where the benefit is apparent and methods are developed around
the technology to generate further insights in their respective fields. One of these
fast developing fields is single cell RNA sequencing (scRNAseq), which is a collection
of methods that allow the capture of individual cells, followed by NGS to quantify
the gene expression level of single cells by determining their ribonucleic acid (RNA)
content.
These developments are relevant for advances in medicine, biology and chemistry
or the life sciences in general, but especially in understanding of biological mecha-
nisms, differentiation of disease characteristics, discovery of new cell types or drug
development.
Therefore, research in this field directly influences the academic community by driv-
ing forward this progress, the industry by supplying a basis for further development
of products and society by helping understand how the biological systems of our
body work or as patients, in need of new treatment options. Obviously the list of
applications, which result from advances in this field, can be continued endlessly,
due to omnipresent biological mechanisms occurring on a single cell level.
In the process of sequencing, a lot of data is generated, therefore it is critical to
invest time and effort in the research of the analysis of this data. In the case of
scRNAseq we are faced with new kind of data and therefore challenges, which are
novel in this field. We want to emphasize that the best and most rigorous scientific
advances in the technology or experimental setup are rendered useless, if the data
is not analyzed in a proper manner. Only after thorough analysis and exploration
of the data, interpretation of results is possible, reasonable and meaningful. One
exemplary challenge in dealing with biological measurements is usually the question
of artificial biases introduced by environmental or technical interferences. There
has to be a certain confidence that these influences did not distort or change the
information, which is intended to be used to generate new knowledge or inform
decisions, within the data or experiment. These challenges are bringing a lot of

1



Chapter 1 Motivation

different scientific fields together as physics, biology, mathematics, statistics and
computer science.
This work is trying to aid in the effort of making the critical part, the data analysis,
mathematically sound.
To position this work and put the mathematical aspects into context we start with an
introduction into the realm of next generation sequencing and continue by explaining
the existing technologies, which lead to a novel approach in scRNAseq developed
by 10x Genomics. After that, we present a general workflow for scRNAseq analysis,
with a qualitative description of all the steps involved.
Followed by that, we construct a rigorous mathematical framework to describe the
process of scRNAseq analysis. Within this framework we systematically analyze
different mathematical methods used and needed in scRNAseq analysis. The result
represents a clear picture of the methods recommended to use with strict argumen-
tation.
Furthermore, new ways to analyze scRNAseq analysis clustering results are investi-
gated and novel approaches for the decision making process are presented.

2



2. Introduction to Single Cell RNA
Sequencing Analysis
“We wish to suggest a structure for the salt of deoxyribose nucleic acid

(D.N.A.). This structure has novel features which are of considerable
biological interest.”

J. D. Watson and F. H. C. Crick [WC53]

In this chapter we will first give a general introduction into the world of next genera-
tion sequencing followed by a more detailed description of the relevant technologies.
The chapters are building on each other and lead us finally to single cell RNA se-
quencing. Here, we describe a certain method in more detail. At last a general
workflow for single cell RNA sequencing analysis is presented. This chapter repre-
sents the basis and at the same time the starting point of this work.

2.1. Next Generation Sequencing (NGS)

Following Kulski [Kul16] we will give a short introduction into the general topic of
DNA sequencing, especially next generation sequencing.
Next generation sequencing or in short NGS, is the name of a group of deep, high-
throughput, in-parallel DNA (deoxyribonucleic acid) sequencing technologies. The
goal of DNA sequencing technologies is to determine the order of nucleobases (for
DNA or RNA: Adenine, Cytosine, Guanine, Thymine or Uracil) within a DNA
molecule of a given organism. To determine the exact order of nucleotides different
techniques were developed.
Before NGS, the first technology developed for sequencing DNA was called Sanger
sequencing, which was introduced by Frederick Sanger in 1977. It was the gold
standard for DNA sequencing for the next three decades. With the Sanger method
scientists gained the ability to sequence DNA in a reliable, reproducible manner.
Nowadays it is still in use for routine sequencing applications and validation of NGS
data.
With the development of machines with higher sequencing throughput, by carrying
out millions of sequencing reactions in parallel, at much reduced cost around year
2005, the second generation of DNA sequencing was introduced. The second gen-
eration can also be described by the need to prepare amplified sequencing libraries
before undertaking sequencing of the amplified DNA clones.

3



Chapter 2 Introduction to Single Cell RNA Sequencing Analysis

Right now the third generation of sequencing or single molecular sequencing is start-
ing to gain momentum. Here, sequencing can be done without the need for creating
the time-consuming and costly amplification libraries, and therefore reduce cost and
simplify the sequencing process. We will not further elaborate on the third genera-
tion, due to the fact that these technologies are not subject of this work, as we will
discuss sequencing data generated by second generation technologies.

Due to these developments over the last decades the cost for sequencing one genome
decreased significantly. In Figure 2.1 on page 4 we see the decrease in cost over the
years from 2001 until 2017. Furthermore, a line describing Moore’s Law (initially
used in the computer hardware industry to describe the increase of transistors in
processors), which dictates a doubling of “performance” (in our case halving of the
price) every two years, is drawn to indicate that the reduction in costs is doing
extremely well.

Figure 2.1.: Sequencing costs per genome over the years [Nat17]

2.1.1. Applications of NGS in the Past

One of the biggest achievements in the field of genetics was the Human Genome
Project (HGP) [Nat15]. The goal was to sequence and map all of the genes (=genome)
of members of the human species, Homo sapiens. Initiated in 1990 the HGP con-
sisted of an international team of scientists. In 2003 the project was finished and a

4



2.1 Next Generation Sequencing (NGS)

complete genetic blueprint for building a human being was presented. The comple-
tion of this project took 13 years and cost approximately $2.7 billion. Compared to
that, it would take nowadays only one day to sequence up to 45 human genomes,
with a state of the art NGS system and the cost of a thousand dollar per genome
[Ill17].

In the following we will describe three applications of NGS, which are relevant in
the medical sciences and therefore more tangible as a motivation to drive advances
in this field.

Cancer Research Medical centers specialized on cancer treatments have already
incorporated protocols to screen the tumor for certain genetic mutations to identify
the cause of cancerogenesis. Furthermore the choice of treatment is dependent on the
mutations present within the tumor. With the help of sequencing as an analytical
tool physicians are able to devise better therapeutic strategies for each patient.

Infectious Disease Outbreaks as for example Ebola virus or antibiotic resistant
bacteria, are analyzed with the help of sequencing technologies with the goal of
identifying the strains involved and finding a valid therapeutic agent or trace back
the route of the outbreak.

Drug Discovery uses NGS technologies for conducting experiments with diseased
tissue or cells to understand disease characteristics and look for a cure or potential
targets to inhibit the progression of the disease. Additionally it is used in testing
the effect of a potential treatment on diseased cells.

In general more evidence-based approaches are possible to be integrated in the
medical practice, based on genomic research. Decision-making tools for patients and
providers are improved through better screening and diagnostic options. Medical
professionals have a better chance to tailor treatments to a patient’s individual
genomic profile.

The impact and the continuously declining costs of NGS technologies make the use
feasible for small and large institutions all the same. Therefore research in a lot of
different fields as genetics, biology, medicine, agriculture, forensic science, virology,
microbiology, marine and plant biology can be driven to an extent never seen before.

With this drastic increase in data generation in a multitude of different scientific
fields, the need for proper data analysis increased as well. Additionally, the type of
data is changing with each generation of technologies and even for different systems
within the same generation. Therefore, new methods have to be developed to deal
in a standardized, reproducible and rigorous way with the data.

5



Chapter 2 Introduction to Single Cell RNA Sequencing Analysis

2.1.2. Potential Applications in the Future

In the future NGS might be used as a common tool by doctors or health practitioners
alike. The potential applications for this technology in general are gaining a deeper
understanding of the (human) genome in a short amount of time (hours or even
minutes) to derive actionable knowledge concerning risks for potential diseases or
genome related interventions.

Examples for such applications concerning human health would be

• sequencing the genome of a fetus as soon as possible after conception to de-
termine potential health risk factors and intervene. Discussions concerning
sequencing of newborns are already ongoing [Nat16].

• assessing potential health implications in a regular manner and interventions
can be started immediately.

• discovering new cell types and understand biological mechanisms completely.

• building better models describing biological mechanisms and use simulations to
extrapolate collected data to the future. One could even devise individualized
models based on the personal genomic profile, which get updated by new data
inputs.

• stratifying patients into groups that will benefit from a particular drug or avoid
adverse reactions to a particular drug.

• characterizing diseases in a more precise way to immediately devise counter
measures, which lead to meaningful interventions with a significantly higher
probability of success.

• empowering individuals by giving them all the information about their genome
and context on what to do with it.

Evidently, the applications of NGS technologies will not be restricted to human
health interventions. It will also provide insights in all the other fields of biology and
medicine as for example discovering new cell types (also non human) and trying to
understand mechanisms of evolution or gene regulation in different types of animals
and organisms, by looking at their genome.

2.1.3. The Role of Mathematics in NGS

NGS technologies work faster and more precise than ever before. Also a lot of sample
preparation steps and the sequencing itself is mostly automated nowadays. This
results in more data in less time and therefore the rigorous analysis of sequencing
data becomes more important than ever before. This analysis is usually done by
computational biologists, bioinformaticians and biostatisticians, depending on the
question at hand.

6



2.1 Next Generation Sequencing (NGS)

Therefore we postulate that an appropriate and rigorous way to analyze data, de-
rived from next generation sequencing, is essential to conduct proper research. The
chosen methods for such an analysis heavily depend on the exact technologies used
in the course of the sequencing process. In general, the data generated has to reflect
the measured values by quantification of some kind. Then there has to be quality
control steps to ensure to get rid of “bad” data and noise. Noise can be described as
artificial signals added either by biological contamination or by technical errors dur-
ing the sequencing or the preparation process. In both of these pre-processing steps
mathematical methods are essential as for example outlier detection, normalization
of the data, identification and removal of confounding factors. In the downstream
analysis of such data the density of mathematical methods increases significantly to
tackle problems as dimensionality reduction, proper visualization and clustering, to
name just a few.
Of course, it always depends on the goal of the experiment, which therefore dictates
the goal of the analysis. In this work, we focus on the mathematical methods which
are or should be used to analyze NGS data derived from single cell RNA sequencing
through a micro-droplet sequencing technology. The main goal of the analysis is to
establish a clustering by the features of the cells, which in this case are the gene
expression counts. Following the gene expression, clusters representing cell types,
which generally speaking can be determined by a certain set of active genes, should
emerge or other biological properties present in the cells.
In consideration of this goal the most common problems solved with the help of
mathematical methods are
• quality control and outlier detection
• normalization of data to account for distortion by different sequencing depths
• identification and removal of confounding factors
• dimensionality reduction by determining most relevant dimensions
• visualization of the main features of the data in two or three dimension
• clustering by gene expression to identify cell types or other biological effects

The next chapters will give a brief introduction into the technical details of next
generation sequencing, especially single cell RNA sequencing. The output of these
technologies represents the basis of the data analysis.

7



Chapter 2 Introduction to Single Cell RNA Sequencing Analysis

2.2. The Technology

We will give a short technical introduction into next generation sequencing, espe-
cially into the rather new technology of single cell RNA sequencing. To understand
the challenges we are facing in single cell RNA sequencing, we have to understand the
difference between two kinds of RNA sequencing, namely bulk- and single cell-RNA
sequencing. After that we will describe a technology, which enables high through-
put single cell RNA sequencing with a never before seen level of quality in the data,
called micro-droplet sequencing. To be precise, we will explain an implementation
developed by 10x Genomics. The data, which is generated by this technique, will
be of our main concern throughout this thesis.

The following chapters will gradually describe the way from the general process of
next generation sequencing to one very recently introduced technology for single cell
RNA sequencing. To ensure that the differences and similarities are clear, we will
always refer to the preceding chapter(s), respectively.

2.2.1. Next Generation Sequencing (NGS)

In every NGS sequencing protocol the following four basic steps are included as
described by NGS technology providers ABM [ABM] and Illumina [Ill17].

1. Sample/Library preparation
Every NGS system requires a “library”, which is a collection of fragmented
DNA strands. Adapters have been added to these strands through ligation
(=process of joining two nucleic acid fragments through the action of an en-
zyme). These Adapters are needed in the following step of the process.

2. Cluster generation by amplification
With the help of those adapters the fragments can be oriented, positioned and
targeted by other components. To ensure the detection of every nucleotide
within one fragment, amplification is performed. Most of the time some kind
of polymerase chain reaction (PCR) is used. The results are clusters of DNA
fragments, each consisting of copies originated from one library fragment.

3. Sequencing
Through chemical reactions the sequence of each cluster (every fragment in
one cluster has the same sequence, due to the fact that they are copies) is de-
termined by optical reads. Optical signals can either be triggered through the
generation of light or a fluorescent signal. We now see that the amplification
of the fragments is critical for reducing errors and increasing the strength of
the optical signal. The following four main DNA sequencing methods are used
in NGS systems nowadays. We characterize them by briefly describing the de-
tails of the sequencing reaction. All of the methods have different advantages
compared to each other, but we will not discuss them here.
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• Pyrosequencing - the optical signals are triggered by the release of the
pyrophosphate during nucleotide incorporation.

• Sequencing by synthesis - by using reversibly fluorescently labelled nu-
cleotides, that cannot support incorporation of a second nucleotide due
to a missing hydroxy group at the 3’ end, each base of DNA strand is
sequenced in a step-by-step manner. In every step the nucleotide that
is complementary to the base being sequenced is incorporated. These
bring a unique (for each nucleotide type) fluorescent to the site. After
detection of the fluorescent signal, that corresponds in color to the base
being sequenced, the fluorophores are detached and washed away and a
hydroxy group at the 3’ end is recreated. This process is repeated until
the sequencing reaction is complete.

• Sequencing by ligation - this method differs from the previous methods,
because it does not use a DNA polymerase to incorporate nucleotides.
Instead it uses short oligonucleotides that are ligated to one another and
drive the sequencing reaction.

• Ion semiconductor sequencing - by locating each cluster directly above a
semiconductor transistor the release of hydrogen ions during the incor-
poration of the correct nucleotide is detected as change in the pH of the
solution and the sequence of each cluster is elucidated.

4. Data Analysis

a) The data output in its raw form, consisting of sequences of nucleotides,
gets mapped or aligned to a reference genome (for example the human
genome). Most of the time error correction methods are applied.

b) Analysis is performed on the mapped data, which represents a quantifi-
cation of gene levels within the considered sample. This step in a NGS
workflow represents the starting point for this work. The mathematical
framework and methods, which are derived, developed and discussed in
the following chapters, are entirely based on this data.

Following Kulski [Kul16] NGS technologies are not only used for whole genome
sequencing (WGS), but can also be adapted for the following goals:

• whole transcriptome sequencing (WTS), also called RNA sequencing (RNAseq)

• whole-exome sequencing (WES)

• targeted (TS) or candidate gene sequencing (CGS)

• methylation sequencing (MeS)

In the following chapter we will describe RNAseq in more detail, with the final goal
of describing a method for single cell RNA sequencing.

9
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2.2.2. (Bulk) RNA Sequencing (RNAseq)

The goal in RNA (ribonucleic acid) sequencing (RNAseq) is to determine the gene
expression level of a sample. This is achieved by quantification of the transcripts
(coding and noncoding) present in the sample, consisting of a certain amount of
cells. The basic assumption is that we can investigate the gene expression level of a
sample by determining how many RNA molecules of the respective genes are present
within the sample. Although, there is no information about the amount of proteins
synthesized with the help of the detected RNA molecules, it has proven very useful
in different scientific fields to investigate the gene expression level through RNAseq.
Compared to older technologies as microarray analysis it provides a more precise
and sensitive way to quantify gene expression levels. [Kul16]
To leverage the previously introduced NGS standard workflow for RNAseq, we have
to take into account the fact that RNA, compared to DNA, is single-stranded and
less robust. Therefore, we need a way to generate a more robust, DNA-like, structure
which preserves the information of the respective RNA molecule. The solution to
this problem is called complementary DNA (cDNA), which is synthesized DNA
based on RNA by reverse transcription.
One important remark on the sample preparation part has to be made at this point,
to better distinguish between RNAseq and scRNAseq. In RNAseq we have to extract
the RNA from the cells within the sample by lysis and some quality enhancing steps
(e.g. purification). Therefore, we end up with all the RNA, present in the whole
sample, mixed into one sample ready for cDNA synthesis. This strategy makes it
impossible to trace each RNA molecule back to its cell of origin.
With that, all the requirements are fulfilled and the standard NGS workflow can be
used to quantify gene expression levels. The result of such a process are “average”
gene expression levels of the cells within the sample, or in other terms, we get one
gene expression value per gene, within the whole sample. Therefore we quantified
the gene expression of the sample, but not the individual gene expression level of
every single cell within the sample. This brings us to the idea of single cell RNA
sequencing.
With the advent of single cell RNA sequencing, the term RNA sequencing for this
approach was not precise enough anymore. Therefore, it was changed to ”bulk-
RNAseq” due to the nature of the method, using the mixed bulk of all RNA
molecules within the sample, compared to scRNAseq. From this point on we will
be using bulk-RNAseq to refer to this method.
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2.2.3. Single Cell RNA Sequencing (scRNAseq)

In bulk-RNAseq, as we described above, RNA is extracted from a sample, a mixture
of many individual cells, to quantify the “averaged” gene expression levels of the
entire cell population within the sample. In a recent article in Nature [Now17], this
tactic is compared to a fruit smoothie. By the color, taste and smell we can get an
idea of what is in there, but a single blueberry or a few more, can be impossible to
detect or easily overlooked. Here the idea of single cell RNA sequencing (scRNAseq)
comes into play. This approach would relate to having a fruit salad instead of a
smoothie. In that case you can distinguish not only the blueberries from the apples,
but also from different types of berries. This method promises to detect a lot of
masked or hidden cellular variation, which could lead to the discovery of new cell
types or biological mechanisms. One global effort, similar to the Human Genome
Project in regards to genetics, is to build a Human Cell Atlas [RTL+17], with the
help of scRNAseq.

As a result of this approach the generated data differs drastically from the previous
generation. Now every cell within a sample, several thousand, have their own gene
expression values. Therefore, instead of one value per gene we generate one value per
gene and cell. This leads to a never before seen increase in volume and complexity,
due to the high dimensionality and at the same time sparseness of the data. The
sparseness is especially tricky, because it can originate from the fact that most
cells only express a certain set of genes or that many transcripts present are not
detected with the current sensitivity achieved. To ensure high quality research and
comparability within efforts as the Human Cell Atlas project, we need standards and
(mathematical) rigorous ways to analyze this new type of data. These challenges
represent the main subject of this work.

Compared to bulk-RNAseq the sample preparation is more sophisticated, due to the
fact that the cells have to be separated in some way to enable an individual analysis.
To ensure this “cell-capturing”, different technologies and methods have been devel-
oped. These can be sorted into three main categories: cell-sorting based, micro-well
based and micro-droplet based. Every method has its merits and drawbacks, which
we will not discuss any further. Instead we will focus on an implementation of the
last category, the micro-droplet based approach, by the company 10x Genomics, and
give a description in the following chapter.

2.2.4. The 10x Genomics Single Cell Capturing Technology

Following Zheng et al [ZTB+17] and 10x Genomics [10x16b] we will now describe the
micro-droplet based cell capturing technology introduced by 10x Genomics. Similar
to bulk-RNAseq we have to focus on the steps before the NGS standard workflow,
which we presented in the preceding Section 2.2.1. Additionally, to the extra steps
from bulk-RNAseq, extraction of the RNA and synthesis of cDNA, it is crucial to
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treat the cells individually to ensure that the generated data represents single cell
level gene expressions. To achieve this goal, 10x Genomics developed a step-wise
approach to capture and tag the individual cells. Furthermore, they incorporated a
way to get rid of amplification biases, which would occur during the standard NGS
workflow. For this procedure 10x Genomics developed a machine, called Chromium.
We will now describe the sample preparation steps with the help of the 10x Genomics
Chromium machine.

The steps from the sample (cells) to the cDNA molecules, which are ready for the
NGS standard workflow, are shown in Figure 2.2 on page 12 and are as follows:

1. Load oil, sample and 10x gel beads on a microfluidics chip from 10x Ge-
nomics.

2. With the help of the Chromium machine cells are pumped into microfluidic
channels, which are a little broader than the cells to avoid parallel transport.

3. At the first orthogonal intersection, cells and 10x gel beads are brought
together, to form pairs (ideally).

4. Each pair reaches the second orthogonal intersection and micro-droplets, called
GEMs (Gel Bead in Emulsion), are formed in an oil solution.

5. Inside of these micro-droplets the cells are lysed, the RNA transcripts get
captured and tagged followed by a reverse transcription (RT), which yields
the desired cDNA.

6. At last, remove oil and proceed with the standard NGS workflow, presented
before, by using sequencing-by-synthesis in step 3., provided for example by
Illumina machines.

Figure 2.2.: Formation of GEMs, RT takes place inside each GEM, which is then
pooled for cDNA amplification and library construction in bulk [10x16b]

Obviously, the most interesting and important reactions happen in step 5, that is
why we will take a closer look at the 10x gel beads and all of its components.
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The 10x Gel Beads are the components which drive the reaction and thereby
tag each cell and RNA strand and synthesis the cDNA molecules. As shown in
Figure 2.3 on page 13 they host a multitude of oligonucleotides (=short DNA or
RNA strands with different applications) which consist of 4 parts. We will focus
on the 10x barcode and the UMI components, because the R1 sequence serves
as primer-site for the amplification and the poly-T-sequence is used to capture the
RNA transcripts.

Figure 2.3.: 10x Genomics Gel Beads. Figure adopted from 10x Genomics

The 10x Barcode is a sequence, which is unique for every gel bead. Thereby it is
afterwards possible to assign the RNA molecules back to their cell of origin.

Unique Molecular Identifier (UMI) these randomly generated sequences are in-
dividual for every transcript and represent in combination with the 10x barcode a
truly unique way to tag each RNA molecule and trace it back to its cell of origin.
Not only is it used to assign the correct RNAs to a certain cell but also helps in
getting rid of a bias, which would be introduced through amplification. What we
mean by that is that due to the fact that every RNA molecule has an unique tag (10x
barcode + UMI) it is possible to trace back each copy made by amplification to its
RNA molecule of origin. Thereby it is ensured that in the end one UMI count does
really represent one RNA transcript within a certain cell. This is very important,
because other methods do not account for that and take the total number of RNAs
aligned to one cell and gene from the sequencer result. Here, with the help of UMIs,
this problem is solved by introducing an aggregation step after the alignment of the
sequencing result.

To sum up, barcodes and UMIs are crucial to the process of linking the RNA tran-
scripts back to their original cells and accounting for amplification bias during the
NGS workflow.

With this technology up to 10.000 cells can be captured per sample, with a capture
efficiency rate of approximately 50 %. Therefore scRNAseq gets more interesting
for industrial research applications rising above the purely curiosity-driven research
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by academia. We enter a new era for (sc)RNAseq, because of the high throughput,
quality and affordability this technology entails.

2.2.5. Challenges in scRNAseq

Although this technology provides a state of the art solution to quantify gene ex-
pression on a single cell level, there are some challenges due to the nature of the
process. In the following we want to point out just a few:
• It can happen that micro-droplets form, which only contain a bead, a cell or

remain empty.
• Doublets or multiplets, more than one cell is captured by a micro-droplet, can

occur. To test for the amount of multiplets experiments with samples from two
different species get mixed and analyzed together. Thereby the multiplet rate
can be determined. Multiplets are very difficult to detect during the analysis
of the data due to the fact that transcripts originating from cells within the
same droplet are assigned to the same cell in the data.
• Free floating RNA due to already lysed cells or contaminated samples falsify

the results to a certain degree.
• Dying cells can result in drastically shifted gene expression levels.
• Due to the fact that most of the genes are not expressed in a cell, we end up

with a lot of gene expression levels of zero. This inflates the data immensely.
• The procedure is very sensitive to biological (contamination, storage, handling)

and technical (anything else) noise.
• Only 5-15% of transcripts within a cell are captured, resulting in false zero-

levels (sometimes called dropouts) of expression for certain genes.
• Cell types have different amounts of RNA content, making generalizing nor-

malization difficult for samples consisting of more than one cell-type.
Some of these issues translate directly into challenges we are facing in the analysis of
scRNAseq data. Therefore, this work is dedicated to give such an analysis a rigorous
framework to operate in.
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2.3. The Analysis

To understand what the goal of the analysis is, we have to get a sense of the po-
sition of the analysis in the big picture of single cell RNA sequencing (scRNAseq).
Between the biological part of an experiment (the setup, the experiment itself and
the sequencing) and the interpretation and discussion of the results, we can find the
right spot for the analysis in the whole procedure. Simplified we could see the pro-
cess before the analysis as data generation and the steps afterwards as discussion of
the results presented by the analysis. The analysis itself, of course, depends on the
kind of data and the question at hand. Although the analysis is the last component
in the whole procedure, it extracts the relevant information out of the generated
data and supplies it with meaning, context and a certain confidence concerning the
accuracy of the statements, which can be derived.
The goal of this chapter is to establish an understanding of the procedure of scRNAseq
analysis as it is presented in the literature, for example by Stegle et al [STM15]. We
are trying to give the reader a comprehensive description of the steps which are
involved in a standard scRNAseq analysis workflow. We do not want to present a
manual or instruction guide on how to build a workflow for processing such data,
rather a sense of the steps, which have to be taken to ensure the desired result.
Every chapter will describe one major component of the analysis. The order of
the chapters is by design rather a recommendation of the way the data should be
processed. We try to describe every step qualitatively. No methods will be explicitly
mentioned, because the scope of this chapter, as stated above, is purely to give a
qualitative feel for the process, in which the mathematical methods are implicitly
integrated. The mathematical methods themselves will be explained in detail in the
following chapters in relation to what is presented here as a generic workflow. To
ensure that these conditions are met, we will answer the following questions in every
chapter and try to follow the same structure as we move on.
• What is the aim of this step? What should be the result?
• Why is it necessary for the analysis? What is the problem at hand?
• How can it be achieved?

2.3.1. Goals of the Analysis

Before we start describing the actual steps, which have to be taken in the analysis,
we have to ask ourselves: What are potential goals? This is important to keep an
open mind concerning the methods, restrictions or decisions, which will be applied
in the different steps on the data. Generally speaking it always depends on the
scientific question presented, before conducting an experiment. Here we try to give
some examples of potential goals in single cell RNA sequencing experiments, reaching
from general biological to very specific medical or pharmaceutical research questions:

15



Chapter 2 Introduction to Single Cell RNA Sequencing Analysis

• characterization of cell types by differential gene expression analysis
– e.g. biomarker identification for diseases

• identification of new cell populations or subpopulations
– e.g. target and binding site identification for pharmaceutical agents

• cell cycle/reaction development by pseudotime analysis
– e.g. investigate therapy effects

Most of these goals are based on the fact that there has to exist quality controlled
data and a stable clustering of cells by their gene expression. Without these two
prerequisites any further downstream analysis is done on a very weak basis. There-
fore, we intend to present solid mathematical arguments to establish a sound basis
for further investigation of scRNAseq data.

2.3.2. Data

It all starts with the data we want to analyze. There is no general rule how data
from RNA sequencing looks like, but for scRNAseq a few statements can be made.
First of all, we have to remember how the data were generated. After the sequencing
process a few data format conversions happen (which we will not discuss in this work,
because they heavily depend on the machines used) and a mapping takes place. In
the mapping step the read nucleotide chains are mapped to a given genome for
example human or mouse. This is necessary, because the sequencing instrument is
not able to identify species-specific sequences by itself, it is only capable of detecting
the order of nucleotides. After mapping a correctly sequenced string of nucleotides
to the associated gene, a gene by cell matrix is generated. Every row is a gene and
every column a cell. The values in this matrix are the gene expression level of the
respective cell and gene. This matrix represents the basis of the analysis.
At this point it should be stated that it can happen that more sophisticated methods
are at work, depending on the implementation of the single cell RNA sequencing pro-
cess. For example, in micro-droplet sequencing we can distinguish between different
cells, because of a separation process applied to the cells prior to sequencing. As we
have discussed earlier in Chapter 2.2.4, the sample preparation machine Chromium
from 10x Genomics tags not only each RNA molecule with the information of the
cell it is related to (= 10x gel barcode), but also every RNA inside of each cell gets
its individual tag, called UMI (=Unique Molecular Identifier). Both tags together
yield a unique identifier for each RNA, which additionally relates to exactly one
cell. With the help of these tags it is possible to account for duplicates introduced
by the amplification process during sequencing. Therefore, we do not get just the
“raw” counts (= number of RNA molecules related to the same gene per cell after
the amplification process), but the UMI counts, which represent the actual number
of individual RNA molecules expressing the same gene per cell.
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Therefore, the actual analysis starts with a gene by cell matrix filled with UMI
counts. We will refer to it as expression matrix or count matrix. Due to the
fact that every cell expresses a different amount of genes and technical errors occur
during the sequencing process, we introduce a lot of zeros into the data. The exact
mechanisms behind some cell-specific dropout profiles are still unknown. Therefore
we speak about sparse matrices, when we talk about scRNAseq data. There are a
lot of consequences resulting from this fact, which we will discuss throughout this
work. The dimensions of a given expression matrix can vary according to the used
genome and the number of detected cells. For example the human reference genome
19 (hg19) used by 10x Genomics consists of 32.738 genes. Sample sizes can vary
between a few hundred to tens of thousands of cells. One last aspect concerning
the input data for the analysis is annotation or meta data, here we talk about
information which is specific to each cell. A good example is the processing batch of
the sample or the donor from which the sample was taken. This information will be
relevant during the analysis, because most often these variables influence the data
heavily. This is not necessarily a bad thing, because sometimes we want to see the
different effects in the data (e.g. donor), but there is also the case where we want
to get rid of this influence (confounding factors, e.g. batch).

2.3.3. General Workflow

According to the literature there are certain steps, which should be taken to get in the
end what we desire: interpretable, corrected data which can be used to answer the
questions at hand with a certain degree of confidence. These steps are summarized
in the following chapters and are presented as a workflow through which the data
travels in consecutive order.
Every step involves mathematical methods, which we will present and discuss in
detail in Chapter 3. Here, we want to give an overview of the tasks in scRNAseq
analysis in a qualitative manner and what kind of questions should be answered by
the mathematical methods applied.

2.3.4. Quality Control

What is the aim of this step? What should be the result? As this is the first
step after the data was generated we have to deal with the fact that there has not
been done any filtering and the data, a gene by cell matrix, is in its rawest form, at
least from an analytical point of view. Sometimes we will refer to this state as the
original or just the count matrix. In this step we try to get rid of genes, which do not
convey meaningful information, and filter out cells, which are either not relevant,
seem damaged or have suspiciously high or low (UMI) counts. At the end of this
step we should have removed all the cells and genes, which are not relevant to the
analysis due to low quality or lack of informative value. Sometimes cells with very
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high UMI counts will be filtered, because an error in the sequencing process or the
prior preparation process might have occurred. For example more than one cell was
captured within one micro-droplet or free-floating RNA could have contaminated
the micro-droplet, which resulted in an artificially high UMI count. These cells
would distort the data immensely and are therefore excluded from the downstream
analysis.

Why is it necessary for the analysis? What is the problem at hand? We
need to get rid of cells and genes that do not enrich our dataset in a meaningful
way. If we would skip this step a lot of unnecessary data would influence each and
every other step along the workflow and the results may not be conclusive in any
way. If we remove the less meaningful or simply uninteresting cells from our dataset
what we will obtain are less datapoints with more meaning. In the case of genes, by
the removal of less meaningful, uninteresting or low expressed ones, we reduce the
dimensions of the space (feature space) in which our datapoints are embedded.

How can it be achieved? Cells can be simply controlled by filters using thresh-
olds or more sophisticated approaches as looking for outliers in the data or investi-
gation of the distribution either of the (UMI) counts per cell or expressed genes per
cell. Genes can be filtered by looking at metrics like the count values per gene over
all cells.

2.3.5. Normalization

What is the aim of this step? What should be the result? We now have the
quality controlled data from the step before, where we removed irrelevant data. Now
we want to account for the big differences in sequencing depth, which are usually
present in the data. Basically, we want to homogenize the total counts of our cells.

Why is it necessary for the analysis? What is the problem at hand? We do
this to get rid of the library size (= number of UMI counts per cell/per gene) as a
confounding factor (= a variable/factor which distorts or influences the data in a
non biological or unwanted way) and to ensure that the influence of some cells does
not dominate the results of the methods applied on the dataset and therefore the
conclusions, which are drawn by the analysis.

How can it be achieved? There are a lot of normalization methods out there,
because this is also done in other sequencing analyses. The difficulty in our case
is the new kind of data, which we are faced with. Some of the older methods do
not work properly, because of the massively increased presence of zeros in the data.
Therefore, new methods based on old ones, were developed and will be discussed in
Section 3.3.
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2.3.6. Confounding Factor Analysis

What is the aim of this step? What should be the result? Here we try to
identify confounding factors, which are variables that influence our data in a way we
do not want it to be influenced. After identifying such variables their influence has
to be removed from the data. A good example is a difference between two datasets,
consisting of cells from exactly the same sample, which can be mostly explained by
the fact that they were processed separately from each other. This variable usually
is called batch effect. If the variation in the data introduced through this batch
effect is above a certain threshold, we have to remove the effect of this variable on
the data. Other examples of such factors are donor, treatment or storage method
(frozen, fresh, etc.) of the sample. It always depends on the question, whether
a variable is identified and labeled as a confounding factor or not, as we do not
want to remove an investigated effect, which can be observed in the data. In the
end we want to identify all of the factors, which influence the data and remove the
confounding ones.

Why is it necessary for the analysis? What is the problem at hand? Obvi-
ously the outcome of the analysis differs significantly, if the confounding factors are
removed or not. This process involves a lot of challenges: Identifying confounding
factors, determining correlations between them or influence on each other, decid-
ing on which to remove and finally the removal itself. If two confounding factors,
which correlate heavily with each other, are removed, the effects introduced and the
results obtained are not foreseeable without a more detailed analysis of the relation-
ship between those particular factors. Nevertheless, it is critical to identify them,
to be able to make an informed decision, and then to remove a certain subset of the
identified ones. Otherwise these most influencing factors dominate following steps,
as for example the dimensionality reduction and/or clustering processes.

How can it be achieved? There are various ways to determine if a variable is
influencing the data. Most of the methods are based on a dimensionality reduced
dataset on which the analysis concerning confounding factors is done. One can
determine (for example with the coefficient of determination) the influence of a
given variable on each dimension of the reduced dataset. Furthermore, the relation
amongst the variables has to be determined for the reason described above. The
removal of the chosen factors can be done with the help of regression models, which
are in turn applied on the whole dataset instead on the reduced one. We want to
state, that the dimensionality reduction in this procedure was just a way to identify
the most influencing factors. In the next part we apply dimensionality reduction on
the obtained confounding factor free data.
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2.3.7. Dimensionality Reduction

What is the aim of this step? What should be the result? After this step
we should have a smaller feature space in which the datapoints of our dataset, the
cells, are embedded, without losing relevant information concerning the goals of the
analysis. With less dimensions to worry about, and having determined the most
meaningful ones, a lot of computational efforts (both quantitative and qualitative
ones) can be reduced and the conclusions are more precise. At this point it should
be stated that dimensionality reduction also finds its application in the confounding
factor analysis, as most of the analysis is done on a reduced space to determine
which factors heavily influence the most important dimensions. As we can see this
step is of integral importance in various cases.

Why is it necessary for the analysis? What is the problem at hand? In
the reference genome hg19 of the human genome we are confronted with more than
32.000 genes, which translates to exactly the same amount of dimensions. Most
of the time, depending heavily on the dataset at hand, we can reduce the feature
space itself to roughly 10.000 genes, but with the help of different dimensionality
reduction methods we can aggregate some of them to be able to reduce the number
of dimensions even further. It is important to keep in mind that one dimension, after
a dimensionality reduction method was applied, does not have to relate directly to
one gene. Of course, if a certain gene is very important (e.g. displays a high variance
throughout the dataset) it still can happen, but most of the time the newly acquired
dimensions are a combination of various genes. Further operations on the reduced
dataset are more easily done and the results yielded convey more meaning. However,
one should be aware that calculations done on a reduced dataset do not include all
the aspects of the whole dataset, but only the most “relevant” ones.

How can it be achieved? There are various different methods, which we will
discuss later, ranging from classical deterministic ones to stochastic ones. Some of
them occurred in the literature at the same time as an increase of interest in data
science by the industry was noticed. Basically it always comes down to determine
the lowest number of (new) dimensions, which can explain most of the information
within the data.

2.3.8. Clustering

What is the aim of this step? What should be the result? In general we are
talking about a typical clustering problem. We have data points (cells) which are
described by a certain set of features (genes) and our goal is to find clusters of cells,
which are similar to each other in regard of their gene expression values. Most of
the time the goal of the clustering process, biologically speaking, is to group them
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by cell population or rather cell types. Of course, mathematically speaking, the
concept cell type (which can be described through gene expression) is not conveyed
by the data. So it can happen, and this is very interesting when it does, that the
clustering happens due to other characteristics of the cells embedded in the gene
expression information. As we have discussed above already, confounding factors
can be such an information dominating the clustering process and we could for
example be confronted with a classification by batch effect. Therefore we remove
these factors, by regressing them out, to get to the bottom of the relevant information
on the research question, which is contained in the processed data.

Why is it necessary for the analysis? What is the problem at hand? This
step can represent one possible endpoint of a scRNAseq analysis and is therefore of
high significance for the presented process. After a successful clustering for example
by cell types the interpretation of the results can be initiated and an attempt to
answer the scientific question, which stood at the beginning of the experiment, can
be made. It also represents a solid basis for discussing the potential findings or to
further explore the dataset in a different way to discover another solution to the
current problem.
One of the biggest problems in this step, which we already touched upon briefly
before, is that the mathematical methods or algorithms applied on the data do not
concern themselves with the goal of the analysis. What we mean by that is, that the
result of a clustering attempt does not necessarily represent a classification by cell
type or cell population, although it may have been the desired outcome. If there are
other effects present in the data, or to be more precise in the gene expression values
of the cells, this could influence or even dominate the clustering process immensely.
Another problem is the huge amount of different methods which are present in the
literature. This directly results in the question: which method should we chose
or which is the best for our problem? There is not a clear answer to that, because
every method or algorithm has its justification and therefore yields a “correct” result
in the sense of their approach. One could argue that it makes sense to use more
than one method with different parameters and then rather focus on the analysis
of the results than on the methods. This is exactly what we try to achieve later in
this work. Confronted with an amount of different clustering results we try to find
a quality measure for comparing them and deciding on the “best one”. Although
“best one” will be up for discussion, as we have already mentioned above, it strongly
depends on the questions we want to answer.

How can it be achieved? Clustering of vast amounts of data generally speaking
is not a new problem. Nevertheless in the immediate past the interest in this problem
went hand in hand with the development of machine learning algorithms, which
mainly concern themselves with classification problems. Furthermore, the novelty
of the increase in scRNAseq data and its peculiar characteristics motivated the
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scientific community to increase research efforts to address this problem in particular.
Therefore, we have quite a lot of methods at our disposal, which makes the task of
finding the qualitatively best clustering result not easy.

2.3.9. Visualization

What is the aim of this step? What should be the result? One could argue
that we are confronted with the same challenge as with dimensionality reduction,
but there is actually more to it. The goal is to inspect the data visually and therefore
we need to reduce the dimensions even more drastically than before, because usually
humans have problems visualizing and comprehending more than three dimensions
in space. As a result we would like to get a two or three dimensional image of our
data which conveys potential findings. With the goal of clustering by cell types for
example we would like to see that the calculated clusters can also be found with
the help of appropriate visualization methods. Of course there are a lot of other
ways to visualize scRNAseq data than plotting the datapoints (cells) on two or three
axis of a dimensionality reduced space. Heatmaps to visualize gene expressions or
histograms to analyze the distribution of counts come to mind.

Why is it necessary for the analysis? What is the problem at hand? Visu-
alization helps to understand or find structures present in the data in a qualitative
manner. This seems at the first glance as something of minor relevance but some-
times data with exactly the same statistical metrics as mean or variance can look
very different when plotted. So, it truly is a valid way to analyze the data from a
new perspective or at least to check if the understanding of the data by quantifica-
tion (metrics) resembles the one by a qualitative analysis. Apart from this reason,
plots and graphs can be a lot easier communicated and presented and therefore at
least the presentation of findings or evidence should be done with the help of proper
visualization. One thing has to be always kept in mind: most of the visualizations
are drastic simplifications or represent only one perspective. Nevertheless, it is a
useful and necessary tool, especially if one is aware of the potential pitfalls.

How can it be achieved? To answer this question we, as often before, have to
know the final goal of the analysis. Therefore, no general rule exists. Nevertheless,
there are methods, which were created exactly for the purpose of visualizing great
amounts of data in reasonable time and in a meaningful way.
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3. Mathematical Methods in
scRNAseq - Analysis
“The Book of Nature is written in the language of mathematics.”

Galileo Galilei

In this chapter we give a qualitative analysis of the methods used in single cell
RNA sequencing analysis by analyzing the mathematical aspects behind the applied
best practice methods. These methods are used on different occasions within a
scRNAseq analysis workflow, such as the previously presented workflow in Chapter
2.3.3. Therefore, we focus on the mathematical methods and not necessarily on the
steps in the analysis, as we did in the last chapter. That is why the structure of this
chapter is driven by the mathematical categorization of the methods.

The following chapters start with stating the main goal of the following methods
and where they are applied within the analysis. At the end we compare, if necessary,
the presented methods and put them into context concerning their use in scRNAseq
analysis. Every method will be presented by a detailed mathematical description
followed by an explanation on the legitimation of applying it on scRNAseq data.
Some of those methods were not necessarily developed for scRNAseq data, but prior
to the rise of this new field. They still yield robust and valid results and therefore
should be mentioned.

We want to emphasize that there is no claim for completeness due to the fact that
there are a lot of alternatives for each of the presented methods and the amount
of methods is constantly increasing. The goal is to show what the mathematical
background of one possible single cell RNA sequencing workflow is, which we believe
yields solid results. Of course, we try to give some valid alternatives, which should
be part of a stable workflow. Furthermore, we try to embed everything in the
a general mathematical framework, which we setup and expand throughout this
work. Therefore, every mathematical description follows the same notation, which
gets introduced in the next chapter and is extended as needed. This shall aid in the
understanding of the concepts and discussions on different methods.

Examples, to illustrate the described methods will be provided throughout the fol-
lowing chapters. Furthermore, we will use specific plots at the end of every chapter
to present the results of the recommended methods. For this purpose a simulated
dataset is used. Further information on its origin, a detailed description and the
R-packages used to process and plot it, are provided in Appendix A on page 115.
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Chapter 3 Mathematical Methods in scRNAseq - Analysis

3.1. Introduction to the Mathematical Framework

The following definitions will be used throughout this work. The starting point for
every analysis is the data, in our case an expression matrix. To analyze the different
methods we have to mathematically describe what an expression matrix in our case
is. Before we do that, we establish what this matrix describes, therefore we have to
define the meaning of its dimensions. First we look at the genes, which expression
levels we want to analyze.

Definition 1. The gene set G consists of all the genes gi in the reference genome
of the species, where our sample is from.

G = {gi|i ∈ I} ,

where I = {1, . . . ,m} and m is the number of different genes in the used genome.
This set is always the same, if the samples and thus the datasets are from the same
species.

Next we define the cells, whose gene expression levels are of interest.

Definition 2. The cell set C consists of all the cells cj, which make up our dataset
or the sample, respectively.

C = {cj|j ∈ J} ,

where J = {1, . . . , n} and n is the number of cells detected in the sample at hand.
This set is always unique because no cell can be processed twice in single cell RNA
sequencing.

Finally we can put it all together and arrive at a definition for the starting point of
our analysis.

Definition 3. We define an expression matrix M as a gene by cell matrix. Every
entry mij is the detected expression level of a certain gene gi in a certain cell cj.

(mij)i∈I,j∈J = M ∈ Rm×n

Depending on the subject we want to discuss we will use either the format cj/gi or j/i
in sums and similar expressions, where sets of cells or genes or their respective indices
are needed. This very general definition holds true for every of the following chapters,
but in the beginning, before we manipulate the data in any way we are actually
confronted with mij ∈ R≥0 = {x ∈ R | x ≥ 0}, because there can not be a negative
expression value. In the course of this chapter we manipulate this matrix heavily
and sometimes introduce negative values, for example by removing the influence of
an explanatory variable from the data.
In the case of data generated by the 10x Genomics micro-droplet sequencing tech-
nology with the help of the 10x Genomics Chromium machine we can even further
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3.1 Introduction to the Mathematical Framework

restrict our definition, of the data immediately after the sequencing procedure, to
mij ∈ N0 = {x ∈ N ∪ {0}}. The elements mij are the UMI counts, the number of
different RNA molecules originated from the same gene in a certain cell, which we
introduced in Chapter 2.2.4 on page 13.
Now we want to describe the sparseness present in the data. Therefore we define
the sparsity of a matrix.

Definition 4. We define the sparsity sp of an expression matrix M ∈ Rm×n as the
number of zero values divided by the total number of elements.

sp = |{mij ∈M | mij = 0}|
m · n

,

with i = 1, . . . ,m and j = 1, . . . , n.

We can also account for the inverse information, the density.

Definition 5. We define the density de of an expression matrix M ∈ Rm×n as the
number of values greater than zero divided by the total number of elements.

de = |{mij ∈M | mij > 0}|
m · n

Or with the definition of the sparsity

de = 1− sp,

with i = 1, . . . ,m and j = 1, . . . , n.

It is not uncommon to encounter datasets with sp = 0.7, implying de = 0.3, for
example. This would mean that 70% of the data consists of zeros. Most of the time
the sparsity is even higher (around 0.9).
The dimensions of M (m and n) can vary a lot and are dependent on the species in-
vestigated and the size of the sample respectively. Examples for human experiments
could be 32000 genes and 3000 to 33000 cells.
As we can see the number of zeros in the data represents by far the majority of values.
Therefore, the question of imputation is often raised by statisticians. Of course, it
can be reasonable to impute most of the zeros, because they could be a result
of shallow sequencing or technical errors. In our case, micro-droplet sequencing,
we do not resort to this method, because of the nature of the sequencing process.
Reminder: The data we intend to analyze consists of UMI counts, which convey the
exact number of RNAs, and therefore expressed genes, present in the cell. Thats why
a zero in this case carries more weight compared to zeros yielded by other methods.
It describes the fact that there was no RNA molecule corresponding to that gene
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detected in the cell of interest, either because of absence or shallow sequencing. As
we are not able to distinguish between those cases, we do not resort to imputation.
Naturally technical errors can occur, but we always have to make assumptions when
dealing with biological matters.
Most of the time we are interested in the non-zero values of the matrixM . The range
of these values depends, again, on the sequencing process. In our case, micro-droplet
sequencing done with a 10x Genomics Chromium machine, we mostly encounter
values between one and a few thousand, which are always elements of N.
At the end we wanted to briefly discuss the distribution of expression values per
cell, gene and expressed genes per cell. In all cases we have seen a dependency
between the used cells, to be more precise the cell types present in the sample, and
the distribution of the count values. What we can say is that we usually encounter
a normal distribution in the first and the last case. Concerning the counts per cell
and expressed genes per cell we observed always a heavy tail on the low end of the
spectrum and no tail at the high end. Here, we have to mention that certain samples
(for example with tumor cells in it) usually yield an additional peak in the higher
end of the spectrum, due to the fact that a certain cell type expressed a lot more
genes than the rest of the cells in the sample. In the case of counts per gene we see a
peak at the low end, because a lot of genes are simply not expressed in the cell types
present in the sample, and another peak further along the spectrum, depending on
the sample.
In general there are no other special structures (banded, symmetric, diagonal,...)
present in the expression matrix apart from the ones mentioned above.
For better understanding we display some properties of the simulated dataset, before
any method is applied on it, in Table 3.1 on page 26.

dataset #cells #genes sp de
sim 3000 32000 0.948 0.052

Table 3.1.: Original dimensions, sparsity and density of the simulated dataset

3.2. Outlier Detection

Defining exactly which datapoints should be considered outliers is a difficult job.
Unfortunately there is no consensus in the literature or community concerning a
rigorous definition of the term outlier. Wether or not a datapoint (in our case a cell)
should be called an outlier is ultimately a subjective decision. Nevertheless, outlier
detection is sometimes complementary used in the quality control steps of scRNAseq
analysis, most of the time positioned right at the beginning of a workflow. The goal
is to determine cells, which are not consistent with the rest of the sample. This can
be due to technical errors or biological circumstances as dying or damaged cells.
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3.2 Outlier Detection

According to Filzmoser et al [FMW08] there are two approaches for outlier detection,
namely distance-based methods and projection pursuit.

Distance-based methods are based on the idea to detect outliers by measuring
their distance to the center of the data or a set of datapoints. Therefore, the first
thing needed is a distance measure. Often a robust version of the Mahalanobis
distance is used.

Definition 6. We define the robust Mahalanobis distance as

RDi =
√

(xi − T )T C−1 (xi − T ),

where xi ∈ X ⊂ Rp is the datapoint in question, T is a robust measure of location
and C is a robust estimate for the covariance matrix

Following this strategy we need reliable estimators for T (e.g. the coordinate-wise
median) and C (e.g. the median absolute deviation - MAD). Furthermore, the
decision on the distance RDi at which a point should be called an outlier represents
a major challenge. All of those tasks are non trivial to solve.

Projection pursuit methods have the goal of finding a projection, which represents
high dimensional data in the most meaningful or interesting way. In this case the
goal is to find a projection in which the outliers are readily apparent. With this
it is possible to yield robust estimators, which can be used to identify outliers.
The advantage of this family of methods is that they can be applied on any kind
of data, without assuming that the data originates from a particular distribution.
This flexibility comes with the price of a huge computational burden, because all
possible projections have to be explored.

The Problem of the currently implemented approaches in both categories is that
they have issues in dealing with high dimensional data (in the range of thousands
and not hundreds of dimensions), as it is the case with scRNAseq data. In an ef-
fort to overcome these obstacles a more sophisticated and commonly used way to
identify and get rid of outliers in very large high dimensional datasets is presented
by Filzmoser et al [FMW08]. The presented algorithm, called PCOut, basically
first detects location outliers and then detects scatter outliers. The difference be-
tween those outlier types is that the former ones possess a different scatter matrix
compared to the rest of the data, while the latter ones are described by a differ-
ent location parameter. Finally, it combines the weights resulted from the previous
steps to determine final weights for all datapoints to identify outliers. A detailed
description of steps involved in this procedure would go beyond the scope of this
work. Additionally we will not discuss these approaches any further, because their
application in scRNAseq analysis is very limited due to the nature of the data.
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With scRNAseq data we are often confronted with quite a lot of “outliers” or
low quality cells, which should be marked as outliers. These cells do not enrich the
dataset in a meaningful way, on the contrary they are basically noise. The presented
methods have not proven to be considered reliable in discarding such damaged or
low quality cells as stated by Ilicic et al [IKK+16]. They even go one step further and
conclude that most of the time the low quality cells form dense clouds and thereby
outlier detection algorithms treat them as high quality datapoints. According to
them the best way to get rid of low quality cells is by visualizing the data with the
help of principal component analysis or other dimensionality reduction methods to
locate these low quality clusters.
Therefore we propose to use cut offs instead of sophisticated outlier detection meth-
ods in scRNAseq analysis.

Cell Filtering by different metrics is one efficient way to get rid of low quality cells.
Some commonly used metrics for each cell are:
• total number of UMI counts (with upper and lower limits)
• total number of expressed genes
• percentage of a certain set of genes expressed, for example mitochondrial genes

(can be an indicator for cell viability)
The difficulty lies in the selection of the limits and most of the time it depends on
the sample itself. In a homogenous sample (all cells have the same cell type) for
example the total UMI count is expected to be more or less the same across cells. By
looking at the distribution of these metrics the selection of a limit gets easier. We
are often confronted with heavy tails in the distributions, which sometimes should
be removed.

Gene Filtering does not technically leverage outlier detection, but it is still very
useful to first get rid of non informative dimensions e.g. genes. This can be done by
simply removing every gene that was not expressed by any cell or more sophisticated
by defining the term expressed in a deterministic way. This can be done for example
by using the following condition: a gene is considered as expressed if at least two
cells with at least two UMI counts each, in this particular gene, exist within the
dataset. Or, mathematically speaking, we would define the set of filtered genes G∗
as a subset of all genes G restricted by the described condition.

G∗ = {gi ∈ G : |{cj ∈ C : mij ≥ 2}| ≥ 2}

In conclusion it can be said that outlier detection complements the quality control
process, but is not necessary, because filtering with the help of thresholds yields
better results. Therefore, after such a quality control step we end up with a reduced
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set of genes G∗ and cells C∗. Consequently, the reduction of low quality cells and not
“expressed” genes leads to a significant decrease in sparseness, which benefits further
analysis steps downstream. For the sake of simplicity we will use the symbols G and
C for the reduced sets, on which we perform the following analysis of methods.

To illustrate the change in the data established through the described actions we
display the same properties as before of the “quality controlled” simulated dataset
in Table 3.2 on page 29.

dataset #cells #genes sp de
sim 2995 6428 0.745 0.255

Table 3.2.: Updated dimensions, sparsity and density of the simulated dataset after
some quality control steps

3.3. Normalization

In this section we will describe a lot of different methods which are used for normal-
izing the data. Most of them are deterministic and therefore yield always the same
result, but one is stochastic and will be labeled as such. The goal is to make data
comparable within itself to eliminate cell-specific biases. So we have to account for
highly expressed genes as well as cells with unusually high UMI counts compared to
others.

Basically we do not want the outcomes of methods, applied on the data further
down the analysis, to be influenced by only a few genes or cells respectively. It is
very important to ensure that the starting point (normalized data) for most of the
methods is meaningful. We will denote the normalized matrix with MNORM and its
items with (mij)NORM .

One could argue that the total number of counts per cell would be a good factor
to normalize the data by, we will even see that this method is used in the counts
per million approach. However, real data shows that a few highly and differentially
expressed genes may influence this total number more and thereby causing it to be
not enough of a normalization measure.

3.3.1. Standard Methods

Two very common, intuitive and easily implemented methods are applying a log-
arithm on the data or calculating the counts per million values of the expression
matrix M . Oftentimes they are used in succession as a combination.
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Logarithm

Most of the time either the logarithm with the basis b = 2 or b = 10 is used. This
is easily done by first defining an offset c which is added to M to account for the
zeros in the data, which would yield −∞ as result, and second applying the chosen
logarithm.

(mij)NORM = logb (mij + c)

Counts Per Million (CPM) - Basic Normalization by Library Size

This is the first real normalization method in this work and commonly used for the
normalization of sequencing data of any kind. It also is a representative of a bigger
group of methods called normalization by library size, where the main goal is to
use the total number of (UMI) counts of each cell for the normalization. In this
case we use it to scale the counts such that the total count per cell is the same
across all cells. The idea of this method is closely related to already established
ones in similar fields, namely nucleotides per million (NPM), transcripts per million
(TPM) or reads per kilobase per million mapped reads (RPKM) described by Li et
al [LRS+09].

Definition 7. We define the library size or total number of counts Nj of cell
cj by

Ncj
= Nj =

m∑
i=1

mij (3.1)

Now we put the count value of one cell concerning one gene in a relative context of
the total number of counts, which were found in that cell.

Definition 8. To obtain the counts per million (CPM) normalized values
we divide each value mij of the expression matrix M by the total number of counts
found in the cell Nj and then multiply it by a million.

(mij)NORM =
(
mij

Nj

106
)

(3.2)

Other scRNAseq technologies sometimes yield much higher count values, because
they do not posses the means to account for duplicates introduced by the amplifi-
cation process as the 10x Genomics micro-droplet sequencing technology with the
help of UMIs does. Therefore, this approach is much more meaningful for expression
data resulting from those technologies. The results of these simple normalization
methods by library size can be dominated by a few highly expressed genes, which in
turn influence the downstream analysis. Nevertheless, it is still a standard on which
the community has agreed on and therefore important to mention and essential for
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the following comparison. Furthermore, some of the following methods build on this
approach.

The Combination

The combination of those methods is also a very popular and straight forward tech-
nique to normalize the data, that’s why we will define also this approach for the
sake of completeness.

Definition 9. Normalization by the combination of the logarithm and CPM is
performed by the following calculation.

(mij)NORM = logb
(
mij

Nj

106 + c

)

3.3.2. Size Factor (SF)

Now we start explaining the more sophisticated normalization procedures. Before
single cell RNA sequencing there was bulk RNA sequencing, as we explained in the
beginning of this work. That is one reason why a lot of the following methods were
developed in the first place. One popular method among them was introduced by
Anders et al [AH10], who use particular size factors for the normalization. This
method has two other names, which are also often used in the literature: DESeq-
and Relative Log Expression-normalization.

Definition 10. We determine the size factor sf for each cell by calculating the
median over all genes of the result of the count value of the cell, concerning the
current gene, divided by the geometric mean of the counts per gene. In other words
we define the size factor per cell as the median of the ratio between the count value
and a pseudo-reference of the respective gene, latter results from the geometric mean
of the counts per gene.

sfj = median
i∈I

 mij

(∏n
k=1 mik)

1
n

 (3.3)

Together, the gene-wise pseudo-references (geometric mean in the denominator) can
be seen as a reference pseudo-cell used to normalize against.

The yielded size factors should multiply to one, therefore we apply one additional
step after the size factor calculation.

sfj := sfj

exp
(

1
n

∑n
k=1 (log sfk)

) (3.4)
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Usually this step is followed by a rescaling of the factors by an average measure
like the mean or median.

sfj := sfj
1
n

∑n
k=1 sfk

(3.5)

Sometimes, before this centering step is done, the size factor sfj is multiplied by the
library size Nj.
How the obtained size factors are used in the analysis depends on the goal of the
normalization. To present one way of applying the size factors, we want to introduce
the concept of effective library sizes. The idea is to apply the previously introduced
CPM method on the dataset, but instead of using the library size Nj we want to
integrate the information gained through the derived size factor. Therefore, we have
to define the term effective library size.

Definition 11. The effective library size N∗j is defined as

N∗j = Nj · sfj. (3.6)

With the help of the effective library size N∗j we can get modified CPM values by
replacing Nj with N∗j in equation (3.2). These CPM normalized counts (mij)NORM
incorporate the adjustments made through the size factor. These results are more
convenient for comparing different normalization methods and for the downstream
analysis.
If we would want to apply this approach on the size factors we obtained in equation
(3.3) we have to divide them by the library size Nj before we use equation (3.4) to
transform them. After that, we multiply the library size with the transformed size
factor, as noted before this is in some cases necessary, and perform the scaling with
equation (3.5). Finally we follow the described steps until we have the modified
CPM count values (mij)NORM .
One major drawback of this method in regards of scRNAseq data is the fact that
the geometric mean only includes non-zero values, this usually is ensured by the
respective implementations. As we discussed earlier we are confronted with a very
sparse matrix and therefore not able to account for the amount of zeros present in
the data, which can lead to a loss of information

3.3.3. Upper Quartile (UQ)

This method leverages the idea of dividing the values of each cell by the value of the
upper quartile Q3 (= 75th percentile p75) of the count values, of the according cell,
as proposed by Bullard et al [BPHD09]. Again we encounter a problem concerning
the fact that the data is very sparse and therefore it can happen that the upper
quartile Q3 is still zero or very close to it. To avoid this case it is recommended to
simply use a higher threshold, for example the 99th percentile p99, or exclude the
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zeros beforehand, as we did before. The latter option could lead to a loss of valuable
information, hence we recommend the first one.

Definition 12. Therefore we define the upper-quartile size factor as follows.

sfj = px
i∈I

(
mij

Nj

)

In this step we calculated the xth-percentile px of the expression values for every cell.
Here we could choose between the previously stated two valid options to avoid the
zero problem: exclude the zeros or choose a higher percentile for example x = 99.

To obtain UQ-normalized values (mij)NORM we refer to the presented modified
CPM approach in Chapter 3.3.2 with an exception in the rescaling step. To keep
the level of expression relative consistent we center the size factors. In this case
we recommend using a more robust method for the centering of the size factors in
equation (3.5), namely the median.

sfj := sfj
median

k∈J
(sfk)

Here, the issue with the sparsity is also present but can be bypassed by either
skipping the zeros and therefore their informational value or with the help of a more
restrictive threshold, concerning the chosen percentile. Due to the fact the we use a
percentile instead of a quartile the method is also known as Upper Quantile, which
reflects the more general approach of using a specific quantile.

3.3.4. Weighted Trimmed-Mean of M-Values (TMM)

This method was developed by Robinson et al [RO10] as a new asset for normalizing
RNA sequencing data in general, coming from an era of microarray data analysis.
Therefore, it is not specialized for scRNAseq data, but it still yields valid results and
aids in achieving our goal of normalizing the data. As most of the other normaliza-
tion methods it tries to account for different library sizes. The main assumption, as
with most of the methods, is that most of the genes are not differentially expressed,
this may result in some problems, depending on the goal of the analysis.

We will now describe the normalization process for one cell. The first step is to
choose a reference cell, this reference is fixed for all the cells in our data set. The
authors do not elaborate on the selection of such a reference cell. We would rec-
ommend a cell with average total UMI count and as few zeros as possible, because
genes with zero counts in the reference cell are not used in the normalization pro-
cess. Another option would be to calculate a pseudo reference cell from all cells. For
each cell we want to get the weighted trimmed mean of the log expression ratios, or
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as we will call it the trimmed mean of M-values (TMM). To get this normalization
factor we calculate the M-values for each gene expressed in the cell (this implies
only expression values mij,mir > 0 are used), which we intend to normalize.

Definition 13. The M-value for sequencing data is defined as the gene-wise
log-fold-changes

M r
j (gi) = log2


(
mij

Nj

)
(
mir

Nr

)
 ,

where r denotes the index of the reference cell, j is the index of the cell, which we
want to normalize, and i the index of a particular gene.

We also need the absolute intensity of the expression levels.

Definition 14. The absolute intensity of a gene gi in a cell cj with respect to
the reference cell cr is defined by

Arj (gi) = 1
2 log2

(
mij

Nj

· mir

Nr

)
.

The M-value and absolute intensity has to be calculated for every gene expressed
within the considered cell. When we have calculatedM r

j (gi) and Arj (gi) for all genes
gi∈I ∈ G expressed in the considered cell cj and cr, we determine a trimmed gene set
by discarding the upper and lower x% concerning the M-value and y% concerning
the absolute intensity. Often x = 30 and y = 5 are taken as limits. We denote by
Gtr the gene set, which is left after trimming. Instead of the standard mean we take
a weighted mean of the M-values of the remaining genes in Gtr.

Definition 15. The used weights ω are defined as the inverse of the approximate
asymptotic variances.

ωrj (gi) =
(
Nj −mij

Njmij

+ Nr −mir

Nrmir

)−1

So we can now define the TMM value.

Definition 16. The trimmed mean of M-values (TMM), which is the desired
cell-specific size factor, for the cell cj is defined as follows.

log2

(
TMM r

j

)
=
∑
gi∈Gtr

[
ωrj (gi)M r

j (gi)
]

∑
gi∈Gtr

[
ωrj (gi)

]

sfj = TMM r
j
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The TMM-normalized values (mij)NORM are obtained by applying the approach
presented in Chapter 3.3.2.
Two potential problems arise while using this method. First, as already mentioned,
it is assumed that most of the genes are not differently expressed and second, again,
we do not account for the sparsity of the expression matrix, we simply exclude zero
values.

3.3.5. Downsampling (DS) - A Stochastic Approach

This method represents the only stochastic normalization method in this work. In
contrary to all the other presented methods, which are deterministic, we can not
expect to get every time the same result. Nevertheless, this method yields good
results and a Monte-Carlo approach would also ensure reproducibility. The basic
idea is to “downsample” the counts of each cell in that way, that all the cells have
approximately the same total number of counts. Parekh et al [PZV+17] use down-
sampling by targeting a specific number or range of total counts for all cells, chosen
by the respective analyst. Thereby, we again account for the library size and at the
same time still introduce or preserve the presence of zeros. There are multiple ways
to achieve this and only one possible way will be described at this point with the
help of the binomial distribution.
First we determine the minimum of the total number of counts per cellNj (calculated
as stated in equation (3.1)).

Nmin = min {Nj|j ∈ J}

This number Nmin is used as a target library size for all the other cells. Next, we
define a probability for every cell, which will be used to determine the normalized
count values of the cell.

Definition 17. The cell-specific-probability probj for downsampling is defined
by

probj = Nmin

Nj

.

Finally we generate binomially distributed random variables with the parameters
we just calculated to get the “normalized” values.

Definition 18. The DS-normalized values are obtained by

(mij)NORM ∼ B (mij, probj) .

Interestingly this method is not bothered by the sparsity of the expression matrix,
in contrast to the previous methods, which were not able to deal with zeros. When
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calculating the correlation of the results of this method with the results of the
previously mentioned methods, as presented in Figure 3.2 on page 42, we notice
that the DS method always yields slightly different normalized values. This can be
easily explained by the fact that unlike the other methods, it is not leveraging the
CPM approach, which we described earlier in Chapter 3.3.2.

3.3.6. Size Factor by Pooling Across Cells (LSF)

The drawback of the last methods and plain normalization by library size in general
led to the development of a modified normalization method, which will loosely be
called Lun Size Factor (LSF), because of the first authors name of the paper which
introduced it [LBM16]. Most of the methods so far had a major drawback by
assuming that most of the genes are not differentially expressed, especially TMM
and SF. Therefore, large size factors are often underestimated and small size factors
are overestimated. Additionally, they can not account for the sparsity of the data
and therefore remove zeroes beforehand in different ways.

This method tries to account for the sparsity of the matrix by pooling across cells
with similar total number of counts Nj, summing them gene-wise up to reduce the
incidence of those problematic zeros and calculating size factors for these pools.
Finally, by solving a system of linear equations, the size factor for each individual
cell can be determined.

We can characterize the method by these five key steps:

1. Defining pools of cells with similar total number of counts Nj

2. Summing up gene-wise across all cells per pool to receive a representative
pseudo-cell per pool

3. Normalization of each pool-pseudo-cell relative to a defined reference cell

4. By executing steps 1.-3. a linear system is constructed

5. Deconvolve the pool-based size factors to the individual cell-based size factors
by solving the constructed linear system

The following steps are taken to derive the desired linear system, which solution
yields the cell specific size factors sfj we are looking for. In the course of this expla-
nation we deviate from the previously introduced and used mathematical framework,
because the following derivation is done with the help of random variables and their
respective expected values.

Definition 19. We define a random variable Yij representing the count value of
gene gi in cell cj, with its expected value

E [Yij] = sfj · λi0,
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where sfj denotes the desired cell specific size factor or bias and λi0 the expected
count for the gene gi.
Furthermore we define the adjusted count value Zij by

Zij = Yij · t−1
j ,

where tj describes a constant adjustment factor for cj.

It makes sense to set tj as the total sum of counts of cj, the library size Nj (the
basic idea of normalization by library size is applied, see Chapter 3.3.1).

Theorem 20. By combining the previous definitions we obtain the expectation value
of Zij by

E [Zij] = sfj · λi0 · t−1
j .

Now, we need a few more definitions.

Definition 21. We define a pool k consisting of a set of cells

Ck = {cj|j ∈ Jk} ,

where Jk ⊂ J denotes the indices of cells, which are in the pool k. The set C0 refers
to the set of all cells, hence J0 = J .

Next, we need to sum up all of the cells in pool k to get a representative cell for the
set Ck, thereby we get rid of most of the unwanted zeros.

Theorem 22. We derive Vik as the random variable of the representative cell
of pool k by summing up the values of gene gj over all the cells in pool k or the
set Ck, respectively. This yields

E [Vik] = λi0 ·
∑
cj∈Ck

sfj · t−1
j ,

as the expected value of Vik.

The observed values of Vik for i = 1, . . . ,m get us an overall expression profile of
the cells in pool k or as we called it before a representative (cell) of the pooled
cells in Ck.
Now we have to define the before mentioned reference cell, which we use to normalize
the newly acquired representatives of the pools.

Definition 23. Therefore we set Ui as the mean of the Zij values across all N cells
as the random variable of the reference cell.

Ui = mean
j∈J

(Zij)
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Theorem 24. With this we can derive the expected value of Ui as

E [Ui] = λi0 ·N−1 ·
∑
j∈J

sfj · t−1
j .

In other words, the observed values of Ui represent the average gene expression of
gene gi over all cells C0, regardless of which pool they belong to. The last step on
our way to the desired linear system is to normalize the pool representatives against
the reference cell.

Definition 25. Therefore, we define Rik as the true size factor for gene gi
regarding the cell pool k as the ratio of Vik to Ui. As expectation we get

E [Rik] ≈
E [Vik]
E [Ui]

.

Now, we have everything defined and derived to simplify the last equation to

E [Rik] ≈
∑
cj∈Ck

sfj · t−1
j

N−1 ·∑cj∈C0 sfj · t
−1
j

,

additionally we now see that the denominator can be seen as a constant in regards
to the whole dataset, because it neither depends on a cell nor a gene (nor a pool).
Therefore, we will replace the denominator with the constant U . So, this results in

E [Rik] ≈
∑
cj∈Ck

sfj · t−1
j

U
. (3.7)

In the end, we replace E [Rik] with its estimate, calculate a robust average (e.g.
median) across all genes (under the assumption that most genes are not differentially
expressed between the pool and the reference cell) and treat sfj · t−1

j as unknown
parameters. We can set U to unity and therefore ignore it, because it is the same
constant factor for every pool. For every pool k we now have an equation (based
on equation (3.7)) to calculate the pool specific size factor. At the same time this
means we can derive a system of linear equations with one equation per pool.

We can repeat this process with different pools of cells until we get an overdetermined
system of linear equations in which every sfj · t−1

j corresponding to each cell is
represented at least once. This system can be solved with a least-squares method.
Thereby, we obtain estimates of sfj · t−1

j for all cells. By multiplying tj (the library
size of cell cj) we get an estimate for the desired size factor sfj for each cell. This
value can be used to normalize the expression values of each cell, for example by
applying the presented CPM method in Chapter 3.3.2.

The authors themselves admit that this process seems circuitous, because one could
also directly try to estimate sfj from the count values. However, summation reduces
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the number of zeroes, which, as we know, could cause problems as we observed in
other methods.

Remarks on LSF

Selecting cell pools The pooling of the cells with similar library sizes is designed
to provide some robustness to estimation errors of sfj · t−1

j . The authors recommend
the following pooling strategy. The cells are ordered by their library size and split
into two groups: odd and even library sizes. Then the even ones are arranged in
a clockwise manner starting with the largest library sizes at 12 o’clock, and the
smallest ones at 6 o’clock. The odd ones are arranged exactly the same way starting
also at 12 o’clock but progressing counter-clockwise to 6 o’clock. Now the pooling
process can be done by simply sliding a window of the desired pool size along this
clock and thereby avoiding truncated windows as we would get in a linear ordering
at the boundaries.

Solvability of the linear system With the described approach the next question
would be how does the size w of the mentioned window, which slides along the clock,
influence the resulting linear system? The total number of equations in the system is
equal to the number of cells, but the number of equations in which the term sfj · t−1

j

for one cell shows up is determined by w. If we would like to increase the precision
of the estimates one way could be to use different values for w. Thereby the total
number of equations naturally increases.

Before solving the linear system a set of equations is added in which every estimated
size factor is equated to its directly derived size factor. The directly derived size
factor is obtained by normalizing the count values of the cell directly against the
reference cell. By adding these additional equations we ensure that the columns are
linearly independent and therefore a single solution can be obtained. It is important
to note that these equations are assigned a very low weight in the least-squares
approach so that they just ensure independency but do not influence the least-
squares outcome substantially.

Weakening the DE assumption by clustering As we still use the assumption
(as other methods too) that most of the genes in one pool are not differentially
expressed the authors recommend to cluster the data in the beginning and selecting
the cell pools within the found clusters. Thereby, the assumption is at least reduced
to a certain degree, because the cells in one cluster should have similar expression
profiles, due to the fact that the clustering is based on the expression values of the
respective cells.
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3.3.7. Comparison & Conclusion

Comparison

To compare results of the presented normalization methods we recommend using
relative log expression (RLE) plots. In general RLE plots are used to asses (un-
wanted) variation in high dimensional data. In our case we want to compare the
RLE before and after normalization. Furthermore, it can be used to compare the
normalization results of different methods to decide which normalizes the current
data best. To get a RLE plot some calculations have to be done. First, for each
gene gi we calculate the median of the expression of that gene across all cells cj.

g∗i = median
cj

(mij)

Next, with the help of the acquired median per gene g∗i , we calculate the deviation
matrix.

Definition 26. We define the deviation matrix by subtracting the median from
the expression values of the according gene.

(mij)deviation = mij − g∗i

Finally, every element (mij)deviation is transformed, by adding an offset and applying
the logarithm. For every cell cj a boxplot for all the log-transformed deviations
(mij)deviation for i = 1, . . . ,m is generated. By looking at all the boxplots at once,
variations in groups of samples can be spotted. Most of the time it is helpful to apply
some kind of prior knowledge (e.g. batch, donor or treatment) on the generated
plot by coloring the cells according to potential or suspicious explanatory variables
(this term will be defined in the next chapter). After applying an appropriate
normalization method the RLE plot should display all cells in a similar manner.
What we mean by that is that there should not be a cell or group of cells, which
behave differently compared to all the others. If that happens it can be suspected
that they have something in common, which distinguishes them heavily from all the
other cells (e.g. damaged cells).
If we would like to decide for a method without testing all of them and only by
looking at their mathematical description, we would recommend using the LSF nor-
malization method. The main argument is of course the fact that this method
accounts for all the new challenges in scRNAseq data and at the same time in-
corporates mechanisms, which seem to work on previously generated data in the
sequencing domain.
One last remark on deciding for a method: Sometimes both the sophisticated meth-
ods and the straight forward ones yield very similar results. Therefore, it is recom-
mended to choose the simpler one as they do not modify the original data as much
as the other methods.
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Conclusion

We have looked at different methods for normalizing scRNAseq data starting at
the most intuitive one, applying the logarithm and simple normalization by library
size, working through some established methods, which still yield valid results for
scRNAseq data, SF, UQ and TMM, looking into stochastic ways to normalize data,
DS, and finally describing in detail a method especially developed for scRNAseq
data, LSF.
By normalizing the data we remove potential technical noise and establish a basis
for comparability between cells. If we would describe the normalization process in
terms of removing explanatory variables, we would best describe it by trying to
remove the library size factor. The drawback in normalizing the data is always the
loss of information (wanted and unwanted sources of variation to some degree), but
the proposed methods try to ensure that the cell’s inherent structure or information
is not lost and only the biases introduced through the data generation process are
removed.
After removing or weakening the effect of the library size Nj an intuitive next ques-
tion in an analysis would be: What kind of other variables, which could describe
our data, are present? Therefore the following chapter will deal with explanatory
variables. We will discuss how they are defined, which types can be encountered,
how to determine their influence on the data and how to get rid of this influence,
if it is of an unwanted source. The methods presented in the next chapter are used
throughout the course of a scRNAseq analysis.

Figure 3.1.: RLE plots of the simulated dataset with the RLE values on the y-axis
and the cells on the x-axis. Every vertical line is a boxplot of the deviated log-
transformed counts of the respective cell. On the left the logarithm-normalization,
with amplitudes larger than +2 and -1 respectively, and on the right the LSF-
normalization, with amplitudes smaller +2 and -1 respectively, are shown.
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Figure 3.2.: Correlation plot based on 599 randomly selected cells out of the nor-
malized matrices of the simulated dataset, generated by different methods.

3.4. Explanatory Variables

This chapter deals with attributes of the data, to be more precise of the cells. Math-
ematically speaking we add other dimensions to the already existing ones (genes),
where every data point (cell) is supplied with further specific information. The
questions at hand are: How big is the influence or the descriptive power of a specific
variable, represented by an additional dimension, on the data? and How much do
these variables describe each other?
With the help of the next section and the examples supplied within it, we try to
give a feeling about the kind of variables we are dealing with. Followed by that, we
will discuss different methods for determining descriptive power of variables on the
data and each other. Thereby, we will establish a basis for a comparison. We will
end with a discussion on the presented methods and their application in scRNAseq
analysis. In the last part a method for the removal of the influence of confounding
factors on the data is presented. This method is only applied in scRNAseq analysis,
if a variable is identified as a confounding factor (which we will define later) and
not a biological information, which helps answering the experimental question and
therefore should be preserved.
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In the course of this chapter we will always want to determine the influence of one
variable x ∈ Rn on another variable y ∈ Rn, where n is the number of cells cj in our
data set. The previously introduced mathematical framework will be used when we
put the the explained methods into context of scRNAseq analysis.

3.4.1. Variable Types

We encounter three different data types in our variables, which will be described
in the following and highlighted by examples. It is important to understand that
different data types lead to different approaches for determining the influence of
said variable on another one or the data itself, because most of the methods have a
mathematical limitation concerning the desired comparison.
Before we describe the types, we have to distinguish between the two general sources
of variables: internal and external ones.

Internal variables can be derived directly from the data, without additional knowl-
edge about the data. An example would be the total UMI counts per cell Nj

as previously defined in equation (3.1) or the number of expressed genes per cell
#gexprj = |{mij : mij > 0}|. These values exist intrinsically within the data, but are
not provided in such an explicit way. Therefore, they have to be calculated and
supplied as an artificial dimension.

External variables on the other hand, have to be supplied from an data indepen-
dent source. We are talking about questions like: Who performed the experiment?,
What kind of storage was used? or the most common one: From which batch (e.g.
sample/experiment/run) is a certain cell? It is important to state that the effect
of these variables (if there is one) would always be present in the data, whether we
know about the variable or not. The problem is we would not be able to detect it
and thereby also not able to remove the effect, in case of absence of the explicitly
stated explanatory variable. Sometimes the term “Hidden Confounding Factor” or
“Hidden Covariate” is used to address these unknown variables, but we will not
further discuss this subject as we want to focus on the challenges, which come with
known variables.
Independent of the source either of those variables can be represented by the follow-
ing datatypes.

Categorical variables These variables describe the cell in a non numerical way
and are most of the time used to convey information, which is supplied externally
and concerns the preparation of the cell or other circumstances, which lead to a
classification of some sort. The different values, of one categorical variable, are fixed
and often called levels. Common examples are batch, donor, storage, treatment,

43



Chapter 3 Mathematical Methods in scRNAseq - Analysis

gender of donor, etc. Actually, it depends on the setup of the current experiment
and the effects the researchers want to see. One other case of categorical values is
presented in the form of boolean entries (true or false), which could either be derived
from within the data (e.g. cell has less than 1000 UMI counts) or outside the data
(e.g. cell was exposed to radiation).

Continuous variables Most of the time we are dealing with this kind of variables,
which are an element of R and often describe metrics from within the data. Examples
are percentages of certain genes expressed or mean values of the top 100 expressed
genes within a cell. Whenever there is some kind of calculation involved other than
summing up UMI counts (which are always integers), the result usually falls into
this category.

Integer variables Here we are faced with values, which are either an element of N
or Z and therefore can not be classified in the same way as continuous variables and
sometimes are even interpreted as discrete or categorical values, although it is not the
case. Dealing with expression matrices, which consist of UMI counts and therefore
are elements of N, we are often confronted with the fact that internally derived
descriptive variables are also integers. To bypass possible problems arising from the
nature of such variables we can transform them to another type, without losing their
descriptive power. One way to transform such discrete values to continuous values
is the application of the logarithm. Common examples are total UMI counts or the
number of expressed genes per cell.

Complications The following measures, which describe the influence of said vari-
ables on the data or each other, have certain limitations concerning the data type
they support. We will always clearly define in which case this measure makes sense
or when it should not be used and why. Part of the solution is the fact that some-
times one variable can be represented by more than one type and still has, in both
cases, the same descriptive power (e.g. total UMI counts or logarithm with base 10
of total UMI counts). Thereby one can simply transform a variable which is not
supported by a method to a supported one.

3.4.2. Linear Regression

We will give a brief introduction into the topic of linear regression following the
lecture notes from “Mathematical Statistics” held by Prof. Grill [Gri00]. Linear
regression represents the basis of most of the methods, we present in this chapter.
With the goal of using the same notation throughout this chapter we will define some
important terms. After that we will discuss simple linear regression, multiple linear
regression and finally an approach to deal with categorical variables in this context.
All of these modeling approaches will be needed in the course of this chapter.
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The general idea is to model the relationship between a dependent variable and
one (simple linear regression) or more (multiple linear regression) explanatory (or
independent) variables.

Definition 27. We will denote the dependent variable with y ∈ Rn and its
mean with ȳ = 1

n

∑n
i=1 yi. Furthermore we define the variable (for simple linear

regression), which explanatory power is in question, as the independent variable
x ∈ Rn and its mean with x̄ = 1

n

∑n
i=1 xi.

We assume that the dependent variable is related to the independent variable(s)
through a linear function.

Definition 28. The vector ŷ ∈ Rn represents the predicted values of the linear
regression model of the dependent y and independent variable(s) x(1,...,k).

One further definition will be very important.

Definition 29. The deviations of the dependent variable y from the predicted values
ŷ are the residuals resi ∈ R of the linear regression model.

resi = yi − ŷi

Now the only thing missing is an explanation on how the predicted values are de-
termined. Here we have to distinct between the two linear regression approaches.

Simple Linear Regression

We assume that the dependent variable y is related to one independent or explana-
tory variable x in a linear fashion, through the equation

y = ax+ b,

where a, b ∈ R are constants. If the relationship would truly be linear we could
determine the exact relation, the constant a for the slope and b for the y-intercept,
already with the help of only two observations. Having said that, we know that most
relationships in the real world, especially in the life sciences, are not linear in their
nature. That’s why, we have to account for the deviations of the true values from
the linear function values. These deviations were previously defined as residuals and
denoted by res ∈ Rn. Therefore we write

y = ax+ b+ res (3.8)

and modify the previously stated equation to

ŷ = ax+ b.
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This is then the model function for the predicted values ŷ and equation (3.8) rep-
resents the related linear regression model. Therefore, we are looking for a linear
function, characterized by a and b, which predicts the values of y as accurate as
possible depending on variable x. This can be achieved for example through min-
imizing the the sum of squared residuals as in the ordinary least-squares method.
Hence, this approach is sometimes called ordinary least squares regression.
We are using the previous definitions to frame the problem in mathematical terms:
Find min

a,b
R (a, b) for

R (a, b) =
n∑
i=1

res2
i =

n∑
i=1

(yi − axi − b)2 .

With the assumptions of the residuals being independent and normally distributed
with expectation zero and constant variance, the solutions â and b̂ to this minimiza-
tion problem are given by the following least squares estimators.

â =
∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2 = Cov (x, y)
Var (x)

b̂ = ȳ − âx̄

We want to mention that this is not the only way to determine the best fitting
function and there are even some, which do not involve the minimization of the
residuals.

Multiple Linear Regression

This approach represents a generalization to k different explanatory variables x1, . . . , xk
and we describe them as n sets of numbers (x1l, . . . , xkl), with l = 1, . . . , n. This
could practically be written as a matrix, where the rows represent the relation
to a particular y-value and the columns denote the different explanatory variables
x1, . . . , xk. Sometimes this matrix is referred to as design matrix.
Consequently we have a model function of the form

ŷ = a1x1 + . . .+ akxk

and the related linear regression model function

yl = a1x1l + . . .+ akxkl + resl, (3.9)

with resl as the residuals. Compared to the previous model function we do not have
a variable b anymore, because it can be included by letting xi = 1 for some i. The
corresponding ai would represent the variable b.
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Analogue to the previous derivation of the variables a and b in simple linear regres-
sion, we again apply the ordinary least squares method. This yields the following
system of equations for the least squares estimators ai

k∑
i=1

ai

(
n∑
l=1

xilxjl

)
=

n∑
l=1

ylxjl,

for j = 1, . . . , k.

Linear Regression with categorical variables

We can also apply the presented methods if the explanatory variable x or one of the
explanatory variables is categorical in nature. The trick is to transform the cate-
gorical variable into a design matrix, which we can use in multiple linear regression.
This can be achieved by the use of coding systems. This can be done by introducing
a new independent variable for every level of the respective categorical variable but
one. Thereby, we reduce redundancy, while still having all the information. No
additional information would be contained in the coded matrix if the final level also
gets a variable, because the information is already implied.
We give an example to better illustrate this approach. We take the categorical
variable of the Batch, in which the cells were processed, with 6 levels (Batch1,...,
Batch6). Following the previous argumentation we need 5 variables for the coded
system. Table Table 3.3 on page 47 illustrates the coding system of the variable
Batch.

Batch x1 x2 x3 x4 x5

Batch1 0 0 0 0 0
Batch2 1 0 0 0 0
Batch3 0 1 0 0 0
Batch4 0 0 1 0 0
Batch5 0 0 0 1 0
Batch6 0 0 0 0 1

Table 3.3.: Coding system of the categorical variable Batch

With this coding system the design matrix can be derived for that variable or even
additional explanatory variables. Following the constructed example, the first line
of the design matrix, representing the explanatory variables for the first cell, would
look like (

x11 x21 x31 x41 x51
)

=
(

0 1 0 0 0
)

in the case of the first cell being originally from Batch3.
We face a problem if a categorical variable is used as the dependent variable y.
This is not possible, because we can not determine the sum, mean, median or any
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other statistic needed. In the case of only one independent variable x and it being
continuous in nature we can simply swap their respective role. In any other case, for
example if the influence of more than one explanatory variable on the categorical
variable is of interest or if we want to determine the influence of two categorical
variables on each other, we can not use linear regression models.

Remarks

In scRNAseq analysis linear regression is commonly used due to its transparency
concerning the understanding of the derivation of the result and its wide field of
application, as we will see in the following. Having said that, it is important to keep
in mind that some assumptions are not correct for biological matters and the re-
sults can be misleading. As for example demonstrated with the help of Anscombe’s
quartet [Ans73], which is a group of four datasets that have very similar descriptive
statistics (e.g. mean of the variables x and y, linear regression function, coefficient
of determination R2) but appear very different when plotted. This remark holds
also true for the following sections of this chapter. That’s why, there are also im-
plementations and practices in scRNAseq analysis, which experiment with other
modeling approaches (e.g. non-linear). The problem with those more complex mod-
els is their restricted field of application (e.g. special data structures required) and
the insufficient control over the effects, which result from applying it on the data.

When we will use the term model in the following, we usually refer to linear regression
models as presented in this section, unless stated otherwise. Now, we are finally
moving on to methods for the measurement of explanatory power, which sometimes
leverage linear regression as modeling approach.

3.4.3. Coefficient of Determination R2

The coefficient of determination R2 is an important measure for the formal assess-
ment of the quality of a fit by a regression model. The R2 describes the proportion
of the variance in a dataset, which can be predicted by another (explanatory) vari-
able. In other words: How much of the variance in the data can be explained by a
specific variable? We chose to present the most general version following Gujarati
[Guj04], which uses linear regression. We will use the mathematical definitions from
the previous Section 3.4.2.

To determine the explanatory power of the independent variable x on the dependent
variable y we need the predicted values ŷ. Therefore, we will apply linear regression,
as described before. In the case of using simple linear regression the coefficient
of determination is often denoted by r2 instead of R2, but we will see that both
modeling approaches will be needed. Before we can start to formulate the definition
of the R2 we need three measurements for the variability of the data and the model,

48



3.4 Explanatory Variables

which are the total sum of squares, the explained sum of squares and the residual
sum of squares.

Definition 30. The total sum of squares SStot yields the difference or error of
the data to its own mean, thereby describing the total variance within the data and
is given by

SStot =
n∑
i=1

(yi − ȳ)2 .

To get the proportion of the variance explained through the model, we need a
measure for the variance explained by the respective model.

Definition 31. The explained sum of squares SSexpl describes the difference of
the predicted values to its mean and is obtained by

SSexpl =
n∑
i=1

(
ŷi − ¯̂y

)2
.

Furthermore, we define the inverse measure, the variance which is not explained by
the model, with the help of the residuals of the model.

Definition 32. The residual sum of squares SSres describes the difference of
the data to its modeled value and is calculated by

SSres =
n∑
i=1

res2
i =

n∑
i=1

(yi − ŷi)2 .

At this point we want to show a convenient relation connecting those measures.

Theorem 33. In the case of using linear regression with the least squares approach
(including a constant in the model function, the y-intercept) to obtain the model
values ŷ, the following partition of the sum of squares holds.

SSexpl + SSres = SStot

Furthermore the mean of the dependent variable and the mean of the modeled values
are the same.

ȳ = ¯̂y

Now we can formulate the definition of the R2.

Definition 34. The coefficient of determination R2 of a linear regression model,
describing the proportion of the variance in the data that is predictable from the
explanatory variable(s), is defined by the ratio of the explained variance by the
model to the total variance within the data

R2 = SSexpl
SStot

= 1− SSres
SStot

∈ [0, 1] .
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If x = y the value of the coefficient of determination R2 would be 1. Therefore, a
higher R2 value indicates that the two variables are very similar to each other or
in other words: one variable can predict the other to a high degree. In the case of
scRNAseq analysis this would relate to a high influence of one explanatory variable
on the data.
If we have continuous variables y and x this works out fine, but we encounter prob-
lems if either one of them is of another type. In the case of integer values we already
presented an easy solution of transforming them to continuous variables by applying
for example the logarithm. In the case of categorical variables we sadly inherit the
limitations, concerning the data types of the variables, we already faced with linear
regression, due to the fact that we base the calculation of the predicted value ŷ on
a linear regression model.
As we already described in Section 3.4.2 in the case of x being categorical and y
being continuous, we can apply a coding system to the categorical variable and use
multiple linear regression. If, on the other hand, x is continuous and y is categorical,
we can not apply the same strategy. Due to the fact that the R2 for simple linear
regression is symmetric we solve that issue by simply swapping the roles of x and y
to get the mirrored case, where we use y as the independent and x as the dependent
variable, which we can solve as before.
In the remaining option we are faced with a different situation. Here both, x and
y, are categorical. In this setup it is not possible to determine the mean of our
dependent variable or the residuals of the model, because linear regression, as we
described it, can not be applied. Therefore, we have to conclude that the case of
comparing the influence of categorical variables on each other can not be described
with the help of the R2 of linear regression models and we need another, hopefully
comparable, measure.

3.4.4. Correlation

When thinking about the comparison of data in general or two vectors in particular,
correlation immediately comes to mind. The standard measure of the linear corre-
lation between two variables x and y in statistics is called the Pearson correlation
coefficient PCC (also known as Pearson’s product-moment correlation coefficient
PPMCC). It yields values in the interval of −1 to 1. With the interpretation of
1 describing total positive linear correlation, 0 no linear correlation, and −1 total
negative linear correlation. Following the lecture notes from “Applied Mathematical
Statistics” held by Prof. Gurker [Gur13] we will define the PCC, in addition we
will present a relationship to the previously described coefficient of determination
and discuss the application of correlation in scRNAseq analysis.

Definition 35. We define the Pearson correlation coefficient PCC also known
as rxy as the ratio between the (empirical) covariance of x and y, and the square root
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of the product of the (empirical) variances, or simply the product of the standard
deviations, of x and y.

rxy =
∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2∑n
i=1 (yi − ȳ)2

We have already discussed before that linear regression is a powerful and flexible
method for the analysis of linear dependencies. Following this argumentation we
want to show a relationship between the coefficient of determination R2 and the
PCC.
In the case of applying simple linear regression using the least squares approach the
R2 and the rxy are linked by the following relationship.

Theorem 36. Suppose the conditions of Theorem 33 are met with only one explana-
tory variable x, then it can be shown that

R2 = r2
xy,

where R2 describes the coefficient of determination of the simple linear regression
model of y and x, and rxy denotes the PCC of x and y.

In the more general case of wanting to measure the influence of multiple explanatory
variables, we can formulate the following relationship.

Theorem 37. Assuming again that the conditions of Theorem 33 are met, it can
be shown that

R2 = r2
yŷ,

where R2 describes the coefficient of determination of the multiple linear regression
model of y and x1, . . . , xk, and ryŷ denotes the PCC of y and the predicted linear
regression model value ŷ.

Of course these relationships are not valid for every correlation method, but they
illustrate nicely that these measures capture the same kind of information.
We immediately realize one major shortcoming of the PCC or correlation methods
in general: we can only measure the correlation of two variables on each other,
but not the correlation of a set of variables with a single one, as we do with the
coefficient of determination and multiple linear regression. Furthermore, in the case
of PCC we are restricted to continuous variables x and y, which is not the case for
all correlation coefficients.
One other popular correlation coefficient, in the analysis of life science derived, data
is the Spearman’s rank correlation coefficient, due to its more robust nature. In
contrast to the PCC it does not try to capture linear relationships, but measures
monotonic relationships or in other words: the best correlation is achieved, when
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each of the variables is a perfect monotone function of the other. Here, we still face
the restricting condition that the variables must be ordinal in nature, which is not
the case with categorical variables.

Due to the shown nature of the relationship between the PCC and the R2, we
again face the same limitations concerning categorical variables. Therefore, we are
still confronted with the unsolved case of determining the influence of categorical
variables on each other. That’s why other approaches, which can deal with this
setting in particular, have to be investigated in the following.

3.4.5. Statistical Hypothesis Testing

One attempt to solve the issue of determining the influence of categorical variables
on each other is to use statistical hypothesis testing. The null hypothesis in our case
proposes that no relationship between the two variables exist or in other words, that
the two variables are independent. To investigate this idea we chose the χ2 test of
independence as presented by Prof. Grill [Gri00]. We will define it and then discuss
arising challenges.

As a starting point we are faced with two categorical variables x and y with their
respective number of levels k andm and length n. Now we define some helpful terms
for 1 ≤ j ≤ k and 1 ≤ l ≤ m. The probabilities pj = P (x = j) and ql = P (y = l)
together with the assumption that the variables are independent get us the following
equation.

P (x = j, y = l) = P (x = j)P (y = l) = pjql

Moreover, we need the expected and observed values for the different cases. There-
fore, we define

zjl = # {i : xi = j, yi = l} ,

z.l = # {i : yi = l} =
k∑
j=1

zjl,

zj. = # {i : xi = j} =
m∑
l=1

zjl

and get the estimator Zj.

n
for pj and Z.l

n
for ql. With that we are ready to apply the

χ2 test.

Definition 38. The χ2 test of independence is defined as

χ2 =
k∑
j=1

m∑
l=1

(
zjl − Zj.Z.l

n

)2

Zj.Z.l

n

.
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The last thing we need to get the desired result, a p-value for the null hypothesis,
are the degrees of freedom of this statistic.

Theorem 39. The number of degrees of freedom (dof) of the χ2 statistic from
Definition 38 is

dof = (k − 1) (m− 1) .

With this we can determine a p-value, which is compared to a given significance level
(conventionally 0.05). If the p-value is smaller than the given significance level, then
the assumption (null hypothesis) of x and y being independent is rejected and we
can conclude that the variables x and y influence each other in a significant way.

Having reached our goal of measuring the influence of two categorical variables, we
do have a problem of comparability concerning the previously introduced methods,
namely the coefficient of determination and correlation. Another issue is the prede-
termination of a level of significance to which the yielded p-value shall be compared.
Additionally sometimes the p-value itself has to be adjusted to be meaningful. Due
to all of these complications a hopefully more suitable approach was investigated.

3.4.6. McFadden’s Pseudo - R2

Another attempt to solve the problem of having two categorical variables with pos-
sibly different numbers of categories (levels) and trying to describe the influence
on each other, is the application of pseudo-R2 measures on models, which capture
these aspects. The idea is the construction of an analogues to the classical R2 in
linear regression for more general regression models. There is not one but several
measures, which try to be the appropriate analogues to the R2, each with differ-
ent approaches and advantages. We decided on McFadden’s pseudo-R2, which is
motivated by constructing an analogue to the classical R2 measure for multinomial
logistic regression models. Here, we assume that the dependent variable y is cat-
egorical in nature with potentially more than two levels. This condition describes
nicely the limitation, which we were not able to overcome with the previous methods
and especially with linear regression. As the name suggests, this measure was first
proposed by McFadden, therefore we will define it with the help of the according
publication [McF73].

Without going to deep into multinomial logistic regression, which is needed to de-
scribe this measure, we want to give a brief introduction into the terminology first,
before defining the desired measure.

We start with the simplest case, which tries to build a regression model for the
categorical dependent variable y, with the two levels 0 and 1 (binary), and only one
continuous explanatory variable x as discussed by Gujarati [Guj04]. The basis of
this approach, as the name suggests, is the logistic function.
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Definition 40. The logistic function is defined as

σ (t) = et

et + 1 = 1
1 + e−t

,

with t ∈ R.

This function is very useful, because the input t can be any real number, but the
output value is between zero and one, σ (t) ∈ [0, 1]. Thereby it can can be interpreted
as a probability. Next, we want to look at the inverse of that function. Before we
do that, we choose for t a linear regression model with one explanatory variable
t (x) = ax+ b, as we have done before in Section 3.4.2. This results in

σ (t (x)) = σ (x) = 1
1 + e−(ax+b) . (3.10)

With that we can define the so called logit.

Definition 41. We define the inverse of the logistic function, the logit function,
as follows

L (σ (x)) = ln
(

σ (x)
1− σ (x)

)
= ax+ b,

which immediately gives us the following equation

σ (x)
1− σ (x) = eax+b

through exponentiation.

When investigating equation (3.10) again, we can see that it can be interpreted as the
probability of the dependent variable y equaling 1 rather than 0, P (y = 1|x), given
some linear combination of predictors. This is also known as the (cumulative)
logistic distribution function. Looking at the previous definition in this context,
we can see that the logit is simply the logarithm of the odds ratio in favor of y
equaling 1 or in other words the ratio of the probability that y equals 1 to the
probability that it will equal 0. That is why these models are also called logit
models. This shows us, that the logit enables us to link a linear regression model to
a probability.

So, we now have derived a probability for the case of having a binary categorical
dependent variable y and one continuous independent variable x. By extending this
approach to more than one explanatory variable, we will also include the possibility
to use categorical variables with any number of levels as independent variables. We
can simply achieve that by replacing the simple linear regression model by a multiple
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linear regression model in equation (3.10). Thereby we get

P (y = 1|x1, . . . , xK) = 1
1 + e−

∑K

k=1 akxk

,

with K explanatory variables. How to deal with categorical variables in this case
was already explained in Chapter 3.4.2 with the help of a design matrix X and
coding systems.

The last thing missing now is the possibility of the dependent variable being cat-
egorical with more than two levels, namely the multinomial part. To get there we
keep building on what we have so far, because luckily we can directly extend the
binary approach to the multinomial one, as described by Czepiel [Cze12].

Definition 42. The family of probabilities, which describes the multinomial lo-
gistic regression model, is obtained by

P (y = c|x1, . . . , xk) = e
∑K

k=1 αkc·xk∑L
l=1 e

∑K

k=1 αkl·xk

,

where c denotes the respective category we want to determine the probability for,
the variable αkc is the coefficient of the explanatory variable xk associated with
category c and L is the number of categories, which the independent variable y
could choose from. For the sake of completeness the respective linear regression
function for category c looks like

ŷc = α1cx1 + . . .+ αKcxK ,

where K denotes the number of explanatory variables.

Having now the models properly derived we still need two more things to be able
to define McFadden’s pseudo-R2. The first thing is a special variant of the just
described model, the associated null model, which we need for a comparison later
on.

Definition 43. The null model of a binary logistic regression model contains just
the intercept b,

ln
(

P (y = 1)
1− P (y = 1)

)
= b.

Analogously, in the case of a multinomial logistic regression model, the null model is
defined by a vector bc, with the proportion of the respective category c present in y.
Thereby, we determine the probabilities without including the explanatory variables
x1, . . . , xK or in other words we build a model with zero values for the explanatory
variables.
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So far, we have derived everything for only one observation y. To get a useful model
we have to derive it by considering every yi with i = 1, . . . , n. Then this model has
to be fitted, which means that the regression coefficients αkc have to be determined
for every category and explanatory variable. This is usually done by maximum
likelihood estimation. For that we need the likelihood function of such models.
Therefore, the last thing left is to answer the question of how the likelihood functions
of those models are determined.

Definition 44. We obtain the kernel (= only non constant components) of the
likelihood function LM of a binary logistic regression model M by

LM '
n∏
i=1

P yi
i (1− Pi)1−yi ,

where n denotes the number of observations yi and Pi describes the probability
P (yi = 1|x1, . . . , xk).
Similarly, we obtain the kernel of the likelihood function LM of a multinomial
logistic regression model by

LM '
n∏
i=1

L∏
l=1

P yil
il ,

where L is the number of categories, yil is 1 when yi = l and otherwise 0, and Pil
describes the probability of yi being category l

P (yi = l|x1, . . . , xk) .

Finally, we have everything in place to define the desired measure.

Definition 45. We define McFaddens pseudo-R2 or ρ2 as one minus the ratio
of the log likelihood values of the fitted model with predictors and the null model

R2
McFadden = ρ2 = 1− ln (LM)

ln (L0) ,

where LM is the likelihood for the fitted model and L0 is the likelihood for the null
model. The measure takes values between zero and one, R2

McFadden ∈ [0, 1).

Now we have a powerful solution at our disposal to the problem of comparing cate-
gorical variables with each other, but this was already ensured by statistical hypoth-
esis testing. The motivation was the question whether we can find a measure, which
is more compatible to the previously introduced methods, namely the coefficient
of determination and correlation. This is the case, but only to some degree. We
still have to keep in mind that this measure can not be exactly interpreted in the
same way as the standard R2 (proportion of variance explained) and therefore the
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two measures are not directly comparable. Fortunately, McFadden himself pointed
out the following, in a discussion on model evaluation in the context of multinomial
logistic models:

“While the R2 index is a more familiar concept to planners who are
experienced in ordinary regression analysis, it is not as well-behaved a
statistic as the ρ2 measure for maximum likelihood estimates. Those
unfamiliar with the ρ2 index should be forewarned that its values tend
to be considerably lower than those of the R2 index and should not be
judged by the standards for a "good fit" in ordinary regression analysis.
For example, values of .2 to .4 for ρ2 represent an excellent fit.” [McF77]

Therefore, we conclude that we have found a reasonable measure for the determina-
tion of the influence of categorical variables on each other, which is in some sense
comparable to the previously established methods.

3.4.7. Discussion on Adjusted R2 Measures

There are also adjusted versions of the corresponding R2 measures. The goal of these
adjusted versions is to counteract the effect of getting a better model fit by simply
increasing the number of variables or categories of an explanatory variable. This is
a common issue in statistics and therefore often a penalizing term is introduced into
the calculation. This holds also true for the two presented R2 measures. We now
want to argue why we think that an adjustment, in our case, would not make any
sense.
Generally speaking our main goal is to determine the influence of given variables of
different types on each other. We do not want to find the best model to describe
our data. Therefore, we argue that penalizing by deliberately decreasing the corre-
sponding R2 measure would decrease the value of the information we want to get. It
would be another story if we would try to build or find the best variable to describe
our data, in that case it would totally make sense to penalize. However, in our case
the variables are predetermined by external sources and we have to assess how much
they influence each other or the data, respectively.

3.4.8. Comparison

We have investigated two established methods to determine the influence of one
variable on another namely the coefficient of determination R2 and correlation co-
efficients. Both methods were lacking the capability of determining the influence
of categorical variables on each other and therefore we had to look for methods to
solve this problem. This challenge resulted in two additional approaches, statis-
tical hypothesis testing and McFadden’s pseudo-R2 measure, both with their own
limitations.
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Representing the statistical hypothesis testing approach, we tried using the χ2-test
of independence to determine the relation between explanatory variables. Due to
the fact that we could not find a general rule for the comparison p-value, the lack
of comparability to the other measures and the question of appropriate p-value
adjustment we had to consider the alternative.

The McFadden pseudo-R2 on the other hand, yielded stable and comparable results,
within the categorical vs. categorical domain. Having already established that the
R2 measure could be used for any constellation but the categorical vs. categorical
one, we conclude that the McFadden pseudo R2 would complement nicely. Although,
we want to repeat that these two different R2 measures can not directly be compared,
this solution is more consistent than any other combination of methods, as we have
demonstrated by direct comparison. Therefore, using the McFadden pseudo-R2

for categorical vs. categorical variables and the standard R2 for the remaining
constellations is the best way to go.

3.4.9. Application

In single cell RNA sequencing analysis the above described methods are applied in
the identification of influencing variables, comparing their influence on each other,
removal of confounding factors and even in clustering analysis.

Identification of influencing factors

We loosely define confounding factors as variables, amongst all explanatory vari-
ables, which have a big influence on the data but actually should not describe the
data at all or at least not to a big extent. Therefore, the influence of given variables
(internal or external) on the data is of interest. For this analysis most of the time
the data is projected in a space of reduced and more meaningful dimensions (we
will come to that in Section 3.5 on Dimensionality Reduction). This means that the
dependent variable y, in the above described methods, would represent the values of
every datapoint (cell) concerning one of these dimensions. The explanatory variable
in question would be denoted by the variable x, as in the presented methods. After
the influence of x on y is determined by the respective R2 measure, a threshold
is needed which establishes a rule on how much a variable is allowed to influence
the data. If the regarded R2 value surpasses this threshold, we call the respective
variable a potential confounding factor. This process has to be repeated for every
dimension of the reduced space or at least for the most informative ones. Having
done this, we have a list of potential confounding factors, but still need to establish
which of them to remove.
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Analysis of potential confounding factors

Before we can remove the influence of the obtained potential confounding factors
we have to analyze their influence on each other to detect hidden dynamics or
dependencies. The motivation of this procedure requires some knowledge about the
following step in the analysis, which is the removal of the influence of confounding
variables on the data with the help of a linear regression model. With that in
mind, we have to be careful to not remove two variables, which influence each other
heavily, because the effects introduced by that and the results obtained may not be
conclusive or aid in the further analysis. To reiterate: If the potential confounding
factors influence each other to a certain degree and the influence of both is removed,
the result might not be useful for the downstream analysis. Of course, a closer
investigation of the relationship of such variables and the respective dataset, would
aid in predicting the effects or consequences of a removal, but in general we want
to avoid the removal of effects of related variables. Therefore, we state that it
is sufficient and safer to remove only the effect of the confounding factor with the
greater descriptive power concerning the data. What we mean by greater descriptive
power naturally relates to greater influence on the data, which we determined with
the respective R2 measure. As we mentioned before the data is embedded in a space
with reduced dimensions, which are often ranked according to their explanatory
power within the data. Therefore, the selection also depends on the respective
influenced dimension of the reduced space. This should also be taken into account.

Removal of confounding factors

Ultimately we are facing the following two questions: Which of the identified vari-
ables are confounding factors? and How to remove their effect from the data?
Before we try to answer the first question, we want to stress that not every highly
influential variable should automatically be removed, because it depends on the
question which is tried to be answered by the analysis. Therefore, we deliberately
called the influential factors with the greatest descriptive powers so far only “po-
tential” confounding factors. To illustrate what we mean by that, let us look at the
following brief example. We assume the goal of an analysis is to establish whether
cells, which were exposed to radiation, can be distinguished by their gene expression
from untreated cells. Here, we would have the prior knowledge which cells were ex-
posed and which were not. This translates to a categorical variable with two levels.
Furthermore, we assume that the radiation heavily changed the gene expression pro-
files of the cells and therefore this variable gets labeled as a potential confounding
factor. Now, it would not make any sense to remove the effect of radiation from
the cells, because exactly this effect is the subject of the analysis. Therefore, the
answer to the first question whether the effect of a variable, which was identified as
potential confounding factor, should be removed from the data or not, is up to the
question driving the analysis.
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After we have established a certain set of potential confounding factors, which do
not depend on each other in a significant way, and decided on the truly unwanted
variables, thereby labeling them as confounding factors, we now have to remove
their effect from the data. To remove the effect of a set of confounding factors
from the data, linear regression can be used. Suppose we identified k confounding
factors. The first step is to declare the confounding factors as explanatory variables
x1, . . . , xk and construct a multiple linear regression model. This is done with the
help of a design matrix, representing the confounding factors in the model, and/or
coding systems in the case of categorical variables, as described in Section 3.4.2.
Thereby, we obtain residuals res for every observation (cell). The last step is to use
these residuals instead of the original values y for the downstream analysis, because
they are per definition independent of the identified confounding factors.

Cluster Analysis

We want to briefly mention that the described methods can also be applied in the
analysis of clustering results in two ways. Firstly, the clustering results, categorical
variables which describe the cluster membership of every cell, can be analyzed in
the same way as the explanatory variables. Due to the nature of the question in this
case adjusted R2 measures would be necessary, because we want to determine which
clustering result best describes the data. Therefore, we have to penalize the number
of found clusters, because more clusters would always induce higher R2 measures.
Secondly, we can determine whether there are explanatory variables (e.g. metadata),
which explain the clustering results to a high degree. This helps in understanding
driving factors within the clustering process and whether particular explanatory
variables, which were not detected before, influence the clustering process to an
unwanted extent.

Conclusion

Coming back to the topic of confounding factors after a detour into cluster analysis
we are confronted with the following scenario: We have identified potential con-
founding factors, established their relation among each other and determined the
ones with the greatest descriptive power. Finally, we showed how to decide on the
real confounding factors and a way to remove their effect from the data. The pre-
sented methods were mostly linear in nature and based on the variance within the
data or variables. During the identification of the influencing variables, we needed
vectors y representing our data, therefore we applied dimensionality reduction. One
of the most popular methods for dimensionality reduction is Principal Component
Analysis (PCA), which is also linear in nature and based on the variance within the
data. This fits well to the presented methods, for example the standard R2 which
determines the proportion of the variance explained by an explanatory variable, and
therefore will be a main subject of the next chapter on dimensionality reduction.
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Figure 3.3.: The Heatmap is displaying the influence in percentage, determined
by the standard R2, of metadata variables on the 10 most informative principal
components of the simulated dataset. The heatmap is clearly indicating that
the variable Group_new (true clustering) and Batch_new are explaining a great
proportion of the variance within the data.
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Figure 3.4.: The Heatmap is displaying the influence in percentage, determined
by the appropriate R2, of metadata variables on each other. We can see that
the remaining variables, after applying analysis specific rules on which variables’
effects are not allowed to be removed (e.g. Group_New), split up into two groups.
Therefore, the decision of removing the effect of the variables Batch_new and
pct_counts_top_500_features can be made.
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Figure 3.5.: Violin plots of the respective most influenced principal component by
the categorical variable Batch_new before (top) and after (bottom) confounding
factor removal .
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Figure 3.6.: Scatter plots of the respective most influenced principal component
by the continuous variable pct_counts_top_500_features before (top) and after
(bottom) confounding factor removal.
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3.5. Dimensionality Reduction

One of the biggest challenges in dealing with data from scRNAseq experiments is the
high number of dimensions (e.g. more than 32.000) present in a dataset. Therefore,
one of the most critical procedures in scRNAseq analysis is the reduction of the di-
mensions. It is absolutely essential to the analysis, because the computational effort
decreases with every dimension we can get rid of. Furthermore, the mechanisms
and effects, we seek to understand, are easier to reveal by focusing on the most
“relevant” dimensions regarding the experimental setup. By reducing dimensions
we hope to increase the individual characteristics of particular effects and thereby
make it easier to distinguish them from each other more distinctively. In the end
the tough questions are: How do we find or define the most relevant dimensions?
and What happens to the information lost by removing dimensions?

Often the most relevant dimensions can be found by combining the most descriptive
dimensions or the ones with the biggest explanatory power of the variance and
removing dimensions below a certain threshold of explanatory power. Thereby,
we define on which aspect we want to focus (e.g. the variance and therefore on
the differently expressed genes). The reduced dataset will be used in most of the
computational expensive downstream analysis procedures and therefore the decision
on the relevance is rather impactful. As stated above it is difficult to define what
may be of importance and at the same time we always lose information by reducing
dimensions. We have to always keep in mind that the reduced dataset only represents
those aspects, which we deemed as important or relevant before. Consequently,
only mechanisms within the remaining dimensions can be revealed or analyzed,
respectively.

We will present a standard method to deterministically reduce dimensions (Principal
Component Analysis) and a rather novel one (t-Distributed Stochastic Neighbor
Embedding), which is stochastic in nature, but yields faster and often more insightful
results. Both methods are frequently used, when dealing with high dimensional data.

At the end we compare the presented methods and point out explicitly where in a
scRNAseq analysis workflow dimensionality reduction will be used.

3.5.1. Principal Component Analysis (PCA)

The goal of Principal Component Analysis (PCA) lies in determining a lower-
dimensional picture, a projection of the data when looked at from its most de-
scriptive angle, of the data, which actually lies in a much higher dimensional space.
Often times it can be described as reduction to the drivers of the variance within
the internal structure of the data.

The method has a lot of different names or variants depending on the mathematical
field for example the eigenvalue decomposition (EVD) or its generalization singular
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value decomposition (SVD) in linear algebra, factor analysis (FA) in statistics or the
spectral decomposition in functional analysis. The main idea is to determine the
principal components of a set of observations in our case the expression matrix. This
transformation results in a set of independent vectors, which are an orthogonal basis
set. The vectors are ranked by their associated eigenvalues. This implies that the
first vector or principal component explains the largest proportion of the variance
within the data and therefore turns out to be the most informative. Thereby, we
already get a ranking from the most informative components to the least informative
ones.

The method needs normalized data, either centered (=subtract the mean of each
variable from the dataset), Z-score (=through standardization) or by another method.
We have already discussed how important normalization for the downstream analy-
sis is before in Section 2.3.5 and Section 3.3. In this chapter we assume that one of
the previously presented normalization methods was applied on the data. PCA is
sensitive to the relative scaling of the data and there is no measure to best transform
the data to get optimal results.

We will now explain in detail how a PCA is done, based on Shlens tutorial on PCA
[Shl03].

Mathematically speaking our goal comes down to a change of basis, which constructs
the reduced space. To change the basis of the space, in which our data is embedded,
we have to assume linearity. At this point we have to mention that this assumption
was already implicitly expressed when we stated that the data itself can be described
by its measured dimensions (e.g. genes). In such a linear system we want to get rid of
two things: noise and redundancy. Noise can be defined as the irrelevant information
or technical artifacts within the data. Therefore, we presume that the variance in
the noise is significantly smaller than the variance of our signal or otherwise it is
not possible to get any information out of the data. This relates to a very high
signal-to-noise ratio (SNR), a common measure for noise.

Definition 46. We define the signal-to-noise ratio SNR, also known as ratio of
variances as

SNR =
σ2
signal

σ2
noise

, where σ represents the standard deviation of the signal or noise, respectively.

Redundancy on the other hand can be described as the issue of two dimensions
containing the same or highly correlating information. We capture this by using the
covariance.

The new basis has to be found according to a goal. In our case we focus on the vari-
ance within the data to get rid of both above mentioned issues. This is achieved by
looking at the components with the biggest variance within the data (which should
not be noise) and the covariance of the given dimensions (to spot redundancy).
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These considerations lead us to the fact that the covariance matrix of our data is
an integral part of our further discussions.

To put this in a more rigorous mathematical context we use our previously defined
expression matrix M ∈ Rm×n. Every row represents a gene and therefore a different
measurement type or dimension. Columns are the denoted as cells and could be
seen as the observations.

We are now looking for a matrix P ∈ Rm×m to transform M to N ∈ Rm×n by the
following linear transformation

N = PM.

We could also interpret this transformation geometrically as a rotation and a stretch
or even better that the rows of P are a set of new basis vectors for expressing the
columns of M .

Next we think about the already mentioned covariance matrix SM . We get this
matrix by

SM = 1
n− 1MMT

with the following attributes. The elements of SM ∈ Rm×m describe the covariance of
the ith to the jth gene. The diagonal terms of SM are the variances of the respective
genes. Therefore, SM is a square symmetric matrix. Now we have a matrix (SM)
which exactly describes to us the relationship between the genes and at the same
time gives us the variance of each gene within the data. What we would like to have
is SM to be diagonalized and ranked, because this would mean that all the genes do
not have anything in common and we would get the most informative ones.

At the end we want to bring it all together. So lets rephrase our goal in a mathemat-
ical way: We are looking for a matrix P which transforms M , through N = PM ,
in a way that SN = 1

n−1NN
T is diagonalized. The rows of such a P would then

represent the principal components of M . We start out with the equation of our
final term and then substitute N .

SN = 1
n− 1NN

T

= 1
n− 1 (PM) (PM)T

= 1
n− 1P

(
MMT

)
P T

We define a new matrix A = MMT , where A is symmetric. From linear algebra
we know that symmetric matrices can be diagonalized with the help of a matrix E
consisting of the eigenvectors of A as columns and a diagonal matrix D.

A = EDET
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If the matrix A has a rank r < m, which would mean A is degenerate or all of
the data occupies a subspace of dimension r, we fill up the matrix E with (m− r)
additional orthonormal vectors to maintain the constraint of orthogonality. This
does not influence the result of our calculation, because the variances of those filled
up dimensions are zero. The final and most critical step is now to select the matrix
P as a matrix where each row is an eigenvector of A = MMT . In other words we
select

P = ET

and substitute it in our equation

SN = 1
n− 1P (A)P T

= 1
n− 1P

(
EDET

)
P T

= 1
n− 1P

(
P TDP

)
P T ,

at last we know that the inverse of an orthogonal matrix is its transpose. So we use
P−1 = P T and get

SN = 1
n− 1PP

TDPP T

= 1
n− 1

(
PP−1

)
D
(
PP−1

)
SN = 1

n− 1D.

With this choice for P we successfully diagonalized SN and thereby reached our
previously formulated goal. In the end the matrix M is transformed to N by N =
PM . To keep everything consistent we denote Mredcued = N .

To summarize, we derived a way to get a diagonalized version of the covariance
matrix of our data, which implies the independence of the dimensions. Furthermore,
the values of this matrix represent the variance of the respective dimension. For the
computation we need to do two things: first normalize the data and then compute
the eigenvectors of the normalized dataset, to get the principal components.

Assumptions & Limitations

In the described process we have made some assumptions, which we want to sum-
marize in the following

• Linearity is the main assumption for our goal of changing the basis of the
space in which the data initially is embedded. Without linearity a basis change
would not be a valid approach.
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• Mean and variance are the only statistics used to capture all the informa-
tion within the data and decide on what are the most informative components.
The only distribution, which is fully described by those two measures, is the
Gaussian distribution, therefore we implicitly assume that our data is usually
normal distributed. Luckily, a lot of the observed data in nature is normally
distributed and additionally we can achieve normalization by applying previ-
ously introduced methods.
• Large variance means important information. And lower ones repre-

sent noise. Those two statements are the basis for the ranking done by the
eigenvalues.
• Orthogonality of the principal components. This assumption provides a

good way to tackle the problem with the help of linear algebra.
The second and the third point additionally assume or imply the fact that the data
should have a high SNR.
Furthermore this method has its limitations
• No parametrization, which is actually also a strength, because independent

of the user the answer is always unique. It gets problematic in the case of
having a-priori knowledge about the system and not being able to incorporate
it in the process.
• Linearity is a necessary condition for using methods of linear algebra, but in

certain cases a non-linear transformation prior or within the dimensionality
reduction would lead to far better results. Sometimes those transformations
are called kernel transformations and therefore the modified PCA approach
is named kernel PCA. Such a kernel could be the transformation of cartesian
coordinates to polar coordinates, Fourier- or Gaussian transformations.
• The above described assumptions can be to strict, as for example in a sit-

uation where the orthogonality of the components or the distribution to be
Gaussian is not needed. With less constraints we face a set of problems which
are not easily solved. One rather recent approach is called Independent Com-
ponent Analysis (ICA) where the goal, to find a matrix P with N = PM and
SN is diagonalized, is the same without the above stated assumptions except
linearity, which is still required.
• Preserving large pairwise distances. Dissimilar points in the high dimen-

sional space are kept far apart, but for high dimensional data that lies on a low
dimensional non-linear(!) manifold it is often more important to keep similar
datapoints close together. This can not be achieved consistently with linear
transformations.

We mentioned that there are more variants of PCA and further developed methods.
One of them was ICA, which relies on the concept of finding a basis such that the
joint probability distribution can be factorized, which in turn results in statistical
independence of the components. In contrary to PCA the result is not unique.
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Singular Value Decomposition (SVD)

In the beginning of this chapter we stated that PCA is sometimes, depending on the
mathematical discipline, also called Singular Value Decomposition (SVD). Actually,
SVD is a more general method of factorizing any matrix M into three distinct
components. The exact theorem is formulated as follows.

Theorem 47. For every n × m matrix N , with either real or complex numbers,
there exists a factorization, called singular value decomposition (SVD) of N ,

N = UΣV ∗,

with U being a n × n unitary matrix (=columns and rows are orthonormal to each
other regarding the scalar product), Σ is a diagonal matrix consisting of a ranked set
of singular values, which are uniquely defined by N , and V ∗ is the conjugate of a
m×m unitary matrix.

Let us now link this theorem to the concept of PCA. Suppose we define a new n×m
matrix Y with the help of the expression matrix M ,

Y = 1√
n− 1

MT

and investigate the term Y TY . Thereby we get

Y TY = 1
n− 1MMT = SM ,

which is the covariance matrix of M . We already know that the principal compo-
nents of M are the eigenvectors of SM . By applying Theorem 47 on Y we can show
the following relationship.

SM = Y TY

= (UΣV ∗)T (UΣV ∗)
= V ΣUTUΣV ∗

= V Σ2V ∗

⇒ SMV = V Σ2

At last we see that the columns of V will give us exactly the eigenvectors of SM =
Y TY . Therefore, we can calculate the principal components of M , by determining
the SVD of Y .
Another method, which is also widely used in scRNAseq analysis and leverages
probability theory, is t-Distributed Stochastic Neighbor Embedding (t-SNE). The
next chapter will give an introduction to this rather novel method.
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3.5.2. t-Distributed Stochastic Neighbor Embedding (t-SNE)

Van der Maaten and Hinton presented in [VH08] a new method for dimensionality
reduction with the goal of visualizing high dimensional data. They recognized the
absence of visualization methods, which capture more than a few variables at a time
and yield results in reasonable amounts of time and computational effort. Visual-
ization, as stated before, is basically a very rigorous way of reducing dimensions to
only two or three.
The idea of t-SNE lies in building a low dimensional map in which distances be-
tween datapoints reflect similarities in the dataset. The main focus lies in preserving
smaller pairwise distances, in contrast to linear methods as PCA. It then tries to
iteratively minimize the discrepancies between similarities in the high dimensional
space and similarities in the low dimensional representation. To measure the dis-
crepancy we need a function to describe it. This function should then be minimized.
We now take a step away from our mathematical framework for scRNAseq analysis
and introduce a more generic setting for the explanation of this method. At the
end we will put the derived method back into our context. Our goal is to convert a
high dimensional dataset X = {x1, . . . , xm} into a two or three dimensional dataset
Y = {y1, . . . , ym}. Due to the fact that we want to reduce dimensions down to two
or three, the dataset Y can be referred to as a map.
To measure the pairwise similarities between the high dimensional data points we
convert euclidean distances to conditional probabilities. In other words we want
to convert the distance between xi and xj to a conditional probability pj|i. This
value should represent the probability that the point xi chooses the point xj as
its neighbor, assuming neighbors are chosen according to their probability density
under a Gaussian with mean at xi. This results for nearby points in a high value and
for far reaching points in a value close to zero. In other words, we are mainly looking
at local distances and thereby similarities, in contrast to global ones. Additionally,
to the conditional probability we need to put the value into a context. This can be
achieved by normalizing only over pairs of points that involve the point of interest
xi. This is done to focus even more on the local mechanisms.

Definition 48. We define the conditional probabilities pj|i of neighborhoods
in the high dimensional space as

pj|i =
exp

(
−‖xi−xj‖2

2σ2
i

)
∑
k 6=i exp

(
−‖xi−xk‖2

2σ2
i

) ,
where xi is the point of origin, xj is the point in question and σ2

i is the variance of
the Gaussian distribution with mean xi.

We are only concerned with pairwise similarities and therefore set pi|i = 0.
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To explain the origin of the parameter σ2
i , the variance of the used Gaussian distri-

bution, we have to first look at some challenges concerning the parameter selection.
Due to the fact that the density of datapoints in the dataset varies drastically it is
unlikely that there is an optimal value σ2

i for all datapoints. Dense regions would
benefit of smaller σ2

i values and sparser areas need bigger ones. The parameter σ2
i

induces a probability distribution Pi with a certain entropy. Before we elaborate
further, we have to put the term entropy into context.

Definition 49. We define the Shannon entropy H of Pi, measured in bits by

H (Pi) = −
∑
j

pj|i log2

(
pj|i
)
,

where pj|i is the previously defined conditional probability of xi choosing xj as its
neighbor.

With increasing σ2
i the entropy of the corresponding probability distribution Pi

increases as well. Having the term entropy in place we will use it to define the term
perplexity.

Definition 50. The perplexity Perp of a certain probability distribution Pi is
defined as follows

Perp (Pi) = 2H(Pi),

where H (Pi) denotes the just defined Shannon entropy of probability distribution
Pi.

Having already stated that it is unlikely to find an optimal σ2
i value for all datapoints,

we rather choose a perplexity Perp∗ beforehand and then look for an appropriate σ2
i

(e.g. by binary search) that generates a probability distribution Pi with Perp (Pi) =
Perp∗. As we can see the perplexity increases monotonically with the variance.
One last remark on the interpretation of the perplexity term. The authors state
that it can be seen as a smooth measure for the effective number of neighbors.
Furthermore, they say that the performance is rather robust concerning variations
in the perplexity and that values ranging from 5 to 50 are typical.
Next, we symmetrize those conditional probabilities, to define symmetric joint prob-
abilities in the high dimensional space, by basically averaging the conditional prob-
abilities.

Definition 51. We define the joint probabilities pij in the high dimensional space
as the symmetrized conditional probabilities

pij = pj|i + pi|j
2m ,

where m is the total number of points in the high dimensional data set X.
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Thereby, we can simplify the function (= cost function, which will be defined later),
which we have to minimize, and reduce computational effort. Additionally, by sym-
metrizing it in this way we ensure that every datapoint xi makes a significant con-
tribution to the cost function, which would not have been the case if we would have
achieved symmetrization by

pij =
exp

(
−‖xi−xj‖2

2σ2

)
∑
k

∑
l 6=k exp

(
−‖xk−xl‖2

2σ2

) .
Here we would have encountered a problem with outliers, because their pij values
would have been very small and therefore not impacted the cost function.
To measure the pairwise similarities in the low dimensional space we use the same
approach, but execute it slightly different. In contrast to the conditional probabili-
ties pj|i, which use a Gaussian distribution, we take advantage of the properties of
the Student t-distribution with one degree of freedom (= standard Cauchy distri-
bution).

Definition 52. Using the Student t-distribution with one degree of freedom we
define the joint probabilities qij of neighborhood in the low dimensional
space as

qij =

(
1 + ‖yi − yj‖2

)−1

∑
k

∑
l 6=k

(
1 + ‖yk − yl‖2

)−1 ,

where yi is the point of origin and yj the point in question.

As before we set qii = 0.
Why did the authors use another distribution and not again a Gaussian? The answer
to this question is manifold and we will go through it step by step.
• The heavy tails of this distribution, compared to a Gaussian, give us a natural

way to alleviate a problem, which is called the crowding problem. This
problem describes the difficulty of perfectly preserving distances from the high
dimensional space in the map. This can not be done in every case, especially
when the data is intrinsically high dimensional. This means that the data
itself exhibits a high dimensionality. It is for example not possible to map
three points, with the same distance between each other, in two dimensions
(a triangle) to one dimension (on a line) with preserved distances. Therefore,
the heavy tails of the Student’s t-distribution allow dissimilar points to be
modeled as “too” far apart in the map.

• For large pairwise distances ‖yi − yj‖ the term
(
1 + ‖yi − yj‖2

)−1
gets close

to an inverse square law in the low dimensional map. Therefore, we introduce
an invariance to changes in the scale of the map for points, which are
far apart.
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• The Student’s t-distribution is closely related to the Gaussian distribu-
tion, because it is equivalent to an infinite mixture of Gaussians with different
variances.
• It is a lot faster to evaluate the density, because no exponential calculations

are involved.
The main goal now, is to achieve a mapping, which yields pij = qij as a result for
all points. In other words we want to minimize the mismatch between qij and pij.
The last thing missing is the before mentioned (cost) function, which should describe
the discrepancy between the high dimensional similarities of the data points and
the corresponding similarities on the low dimensional map. For this purpose we
introduce the Kullback-Leibler divergence as a natural measure of how good qij
models pij.
Definition 53. The Kullback-Leibler divergence between a joint probability distri-
bution P , in the high dimensional space and a joint probability distribution Q in
the low dimensional space is defined by

KL (P ||Q) =
∑
i

∑
j 6=i

pij log
(
pij
qij

)
.

Since we want to minimize this Kullback-Leibler divergence, we set it as the cost
function C (P,Q).

C (P,Q) = KL (P ||Q)

At last we need the gradient of this cost function C (P,Q), to minimize it.
Theorem 54. The gradient of the defined cost function C (P,Q) is given by

δC

δyi
= 4

∑
j

(pij − qij) (yi − yj)(
1 + ‖yi − yj‖2

) .

The low dimensional map Y is constructed by using an algorithm, which starts with
a random sampled initial solution Y(0) and iteratively improves this solution until
Y(T ) is generated, where T describes the number of iterations. The improvement or
learning process is achieved through recomputing the low dimensional similarities
qij of Y(t−1) after every iteration and using the updated gradient of the cost function
δC
δY

to calculate a new low dimensional data set Yt.
Theorem 55. The improvement can be achieved by iteratively determining Y(t)
based on the previously calculated Y(t−1), with an initial sample solution Y(0) ∼
N (0, 10−4I), where I is the m× n Identity Matrix, and Y(−1) = 0m,n a zero matrix,
where m is the number of datapoints and n is the number of dimensions of the low
dimensional map Y . This is achieved by

Y(t) = Y(t−1) + η
δC

δY
+ α (t) (Yt−1 − Yt−2) ,
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where η is the learning rate, δC
δY

is the gradient of the cost function, which has to be
updated after every iteration, and α (t) is the momentum.

A few remarks on the parameter η and the function α (t). The learning rate η
describes how fast new learnings, which are determined by the gradient of the cost
function, are adopted by the algorithm. If η is to big, the changes within the cost
function would have a greater impact on the adoption of the equation and this would
lead to an overcorrection and thereby to an increase in error or even divergence. If it
is to small, the adoption to the changes would be slow and it would take a lot longer
to converge or in this case at time T the result Y(T ) would not be as conclusive.
In the publication the authors chose initially η = 100, but then used an adaptive
learning rate scheme, which adapts η in every iteration, to reduce computational
effort.
The function α (t) describes the momentum at time t and it actually represents a
time dependent factor for the whole momentum term α (t) (Yt−1 − Yt−2) . This term
is added to speed up the optimization process and helps to avoid poor local minima.
In this case the authors chose α (t) = 0.5 for t < 250 and α (t) = 0.8 for t ≥ 250,
with the total number of iterations T = 1000.

Limitations & Extensions

At the end we want to point out some limitations and extensions of t-SNE.
Limitations

• This method should only be used for the purpose of visualizing high dimen-
sional data. The authors specifically stated that it is not foreseeable how it
will behave when used like a standard dimensionality reduction method. Fur-
thermore, the primary goal of the method was to give the analyst a feeling
for the data and what kind of behavior to expect. It is also used to check if
certain attributes (dimensions) capture the nature of the data.
• The computational effort can be too high, because we have to consider

all parallel interactions between points. This means if we have m points we
have to look at m2 interactions between points and those have to be summed
whenever the gradient is calculated, which happens in every iteration of the
process. Therefore t-SNE is computationally very expensive and limiting,
when visualizing 5.000 to 10.000 datapoints. In scRNAseq it is not uncommon
to analyze more than 10.000 cells.
• There are situations in which it is simply not possible to get a correct map,

based on similarities. One example would be the attempt to visualize words
by their semantic similarities or associations in a single map. This can never
be done right, because of different meanings of one word. The same problem
occurs if authors and co-authors are mapped as relationships. It can happen
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that author A and author B wrote a lot of papers together and therefore will be
mapped close to each other. If author B also wrote a lot together with author
C, but A did not write anything with author C, they will still be mapped
closely together, because of their relationship with author B. So we can not
model that correctly. In this case it is a matter of perspective. Mathematically
we face the problem of the similarity structure not being metric, because the
triangle inequality is not satisfied.

• Too high intrinsic dimensionality and an underlying highly varying man-
ifold violates the implicitly made assumption of local linearity. As a result of
these circumstances t-SNE might not be successful in preserving local simi-
larities and yielding a map that represents the relations of datapoints to each
other.

• The non-convexity of cost function leads to the usage of more optimiza-
tion parameters and consequentially the result depends on the choice of those
parameters.

Possible extensions to overcome the stated limitations of the standard t-SNE
method are as follows.

• The Barnes-Hut-SNE described by van der Maaten [Van14] tries to reduce
the computational effort through approximation. Thereby, decreasing the cost
from m2 to m log (m) . The idea is based on the assumption that many of the
pairwise interactions between points are very similar. The approach is to find
the center of mass of close together groups and calculate the similarity of that
center to far away points. This similarity is multiplied by the number of points
in the group. The method is called Barnes-Hut approximation and it is coming
from astronomy. There they try to model the interaction between stars. This
variant of t-SNE can be implemented with Quadtrees to determine the groups.

• To address the issue of non-metric similarity structures, an alternative ap-
proach using multiple maps instead of a single map was proposed by van
der Maaten and Hinton [VH12]. The authors state, that due to the proba-
bilistic nature of t-SNE it can be easily extended to leverage multiple maps.
In multiple-maps t-SNE each object gets a point in each map. Then an im-
portance weight is assigned to each point in each map. In the end the low-
dimensional similarity is defined between two points under the multiple maps
model as a weighted sum over the similarities in the individual maps. Mathe-
matically the similarities in the low dimensional maps qij are differently defined
by incorporating the different maps and the weights of the objects in the re-
spective maps. Thereby, the “perspective” on the map can be shifted. For
the sake of a clearer notation we denote with N the number of datapoints and
M the collection of maps m. As already mentioned we have to redefine the
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similarities qij of the low-dimensional map

qij =

∑
m π

(m)
i π

(m)
j

(
1 +

∥∥∥y(m)
i − y(m)

j

∥∥∥2
)−1

∑
k

∑
l 6=k

∑
m′ π

(m′)
k π

(m′)
l

(
1 +

∥∥∥y(m′)
k − y(m′)

l

∥∥∥2
)−1 ,

where y(m)
i denotes the location of word i in map m and π

(m)
i the impor-

tance weight that measures the importance of word i in map m. The weights
have to fulfill ∀i∀m : π(m)

i ≥ 0 and ∀i : ∑m π
(m)
i = 1. In the nominator(

1 +
∥∥∥y(m)

i − y(m)
j

∥∥∥2
)−1

describes the similarity of words i and j in map m

and we multiply that by the according weights and finally sum over all maps.
Thereby, all the maps and the importance weights are learned simultaneously.
The goal remains the same, namely to minimize the Kullback-Leibler diver-
gence, as we have shown before.

In conclusion, the visualization method t-SNE tries to lead to insights in high dimen-
sional data by reducing dimensions to two or three, while trying to preserve local
similarities within the data. It is widely used in a range of domains and modified
variants are in development. Most of the time already reduced datasets, for example
by PCA, are used as input for t-SNE to decrease computational effort.

3.5.3. Application & Comparison

Two very different methods were presented and now we will discuss their applica-
tion in scRNAseq analysis and how the before introduced terms translate into our
mathematical framework.
The first approach was Principal Component Analysis (PCA), which is a determin-
istic method to reduce the existing dimensions to its principal components based on
the variance within the data. The second method, t-Distributed Stochastic Neighbor
Embedding (t-SNE), on the other hand is stochastic in nature and tries to preserve
local similarities in a two or three dimensional map of the data. Both methods are
applied in scRNAseq analysis, but on rather different occasions.

Principal Component Analysis

In the case of PCA the observations are the cells cj ∈ C and the measurement types
are the genes gi ∈ G. After performing the PCA on the (normalized) expression
matrix MNORM downstream analyses are computationally less expensive and more
importantly will yield more meaningful results, because noise was reduced and the
most informative dimensions (by variance) within the data were highlighted. Most
of the time further analyses are done only on the most informative principal compo-
nents derived by PCA. The number of components chosen depends on the data set.
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Usually bigger datasets convey more information and therefore more components
are used. This reduced dataset will be used in
• Confounding Factor Analysis for identification of potential explanatory

variables by analyzing their influence on the principal components and thereby
on the data,
• Clustering as an input, because of the more pronounced attributes and com-

putational simplifications,
• Cluster Analysis, when trying to determine which clustering result best

describes the data, we can use PCA to represent the data,
• Differential Gene Expression Analysis for determining differences in found

clusters by looking at the difference on the reduced instead of the entire dataset
and
• Visualization, either by plotting two or three principal components or as

input for methods such as t-SNE.
Actually nearly every downstream analysis step will be performed on some kind of
reduced dataset.

t-Distributed Stochastic Neighbor Embedding

In t-SNE the high dimensional datapoints xi are the cells cj ∈ C and the dimensions
of xi are the genes gi ∈ G. This means that the columns of our expression matrix
M represent the high dimensional datapoints xi. In scRNAseq analysis t-SNE is
commonly used for visualization (its main purpose) to achieve two things.
• Visual investigation of the data after quality control, normalization, con-

founding factor analysis and dimensionality reduction. Often to compare the
visualization of the data before and after those steps. Due to the fact that
t-SNE tries to preserve and visualize the local similarities within the data,
clusters should form on the map. Those clusters give an idea of the different
cell types, which can be expected, or other effects, present within the dataset.
By coloring according to metadata, unwanted effects could be revealed (e.g.
batch effect). Also the number of different clusters, which should be targeted
by certain clustering approaches, can be anticipated.
• As a control mechanism during the cluster analysis process. After perform-

ing the clustering step and deciding on one solution we can visualize the data
with t-SNE and color the cells by their cluster affiliation. If the visual clusters
of t-SNE map and the colored clusters coincide, it is a strong indicator that on
the one hand t-SNE already captures the found structure within the data and
on the other hand that two different approaches yield the same or a similar
result. This usually can be considered as a confirmation on the chosen cluster-
ing solution. To leverage these circumstances one further clustering attempt
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is to use a centroid-based clustering approach on the two or three dimensional
map, generated by t-SNE. This option will be discussed in the next chapter.

This approach should be taken with a grain of salt, because t-SNE is only able to
visualize two or three dimensions. Therefore it could happen that one visual cluster
found by t-SNE can consist of a homogenous mixture of cells from two or more cell
types. This would result in a mixed color pattern and thereby contradict the previ-
ously stated strategy for decision making. However, this could still be a valid result
of both processes, visualization by t-SNE and clustering respectively, because t-SNE
could have captured the general cell-type and the clustering found subpopulations
of that cell-type. Therefore, it is important to use t-SNE and different clustering
methods together to ensure optimal results.
In scRNAseq analysis the input X for t-SNE should always be the already dimen-
sional reduced dataset Mreduced, this can be achieved by performing for example
PCA beforehand.

Comparison

As we just demonstrated, the two methods can not really be compared, because
of their different fields of application. Moreover t-SNE uses PCA in most imple-
mentations in scRNAseq analysis, because of the high number of dimensions and
datapoints. They complement each other nicely and supply the potential of a better
analysis.
We already touched upon the topic of clustering, which is one possible endpoint
of a scRNAseq analysis. In the next chapter we give an overview of the clustering
approaches used in scRNAseq analysis.
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Figure 3.7.: PCA plot of the first and second principal component of the simu-
lated dataset colored by the clustering result obtained by applying the consensus
approach presented in Chapter 4.
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Figure 3.8.: Plot of a two dimensional t-SNE map of the simulated dataset colored
by the clustering result obtained by applying the consensus approach presented
in Chapter 4.
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3.6. Clustering

This chapter is dedicated to a topic, which filled books for the last decades, namely
clustering. We have already elaborated on the importance of clustering to iden-
tify cell types or even unknown subpopulations within a cell type in Section 2.3.
Furthermore, clustering can be used to identify the time course of changes in the
expression profile of a cell population, which can be used for detecting effects of a
certain exposure. A few examples would be treatment with a medical compound,
exposure to radiation or progression of a disease. Therefore, clustering by cell type
or other effect is one of the primary objectives in scRNAseq analysis in general. As
we do not have any given labels, categories or a ground truth to compare to or use
as a training set we will only talk about unsupervised approaches.
We will not even try to cover every aspect of the topic clustering, because it is
simply not possible in one chapter and out of scope of this work. Instead we will
focus on constructing a mathematical framework in which different approaches can
be described and apply it to one very popular kind of clustering algorithms. Then
we will describe further approaches, which are most frequently used in scRNAseq
analysis, in a qualitative manner. The general clustering approach descriptions
follow the chapter “A Survey of Clustering Data Mining Techniques” by Berkhin
from the book “Grouping Multidimensional Data: Recent Advances in Clustering”
[KNT06]. Every approach will be highlighted by at least one exemplary algorithm,
which is used in scRNAseq anaylsis. In the end we will try to compare the presented
approaches and touch upon a huge challenge, which will be the subject of Chapter
4.
Let us start by defining a few key terms to setup the mathematical framework. The
result of a clustering algorithm is the classification of data in different categories or
groups, which we call clusters. The clustered cells should have more in common,
concerning the attributes, which are captured by the algorithm, than to those in
other groups. All clusters together are called a clustering and represent one possible
classification solution.
Definition 56. We will call a set of cells Ck = {cj|j ∈ Jk} a cluster k, where
Jk ⊂ J are the indices of the cells in the cluster.

Building on that, we define the term clustering in our context.
Definition 57. A clustering CL is a group of clusters, which are defined on the
same dataset and the union of all clusters within one clustering represents the whole
data set.

CL = {Ck|Jk ⊂ J}⋃
{Ck|Ck ∈ CL} = C0 = {cj|j ∈ J}

A clustering can capture either the main aspect we are looking for (e.g. cell type)
or it classifies the cells according to other attributes within the data (e.g. batch,
disease or treatment effects). One important distinction has to be made.
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Definition 58. If the clusters of one clustering are pairwise disjoint sets we call it
a hard clustering.

Ci ∩ Cj = ∅
i 6= j

∀Ci, Cj ∈ CL

On the other hand, if a cell can belong to more than one cluster to a certain degree,
we will call it a soft clustering.

In the following we will only discuss hard clusterings, because for most of the bio-
logical questions a distinct classification for the cells is necessary. Now, we have all
the building blocks to start exploring the realm of clustering.

3.6.1. Partitioning-Based Clustering

This approach and the respective example (k-means) is one of the most commonly
used, established and fastest ones. The idea is to divide the data into subsets without
testing every possible combination. Therefore, different relocations schemes, which
reassign points in an iterative manner to k different clusters until a condition is met,
are applied. These schemes are referred to as iterative optimization. The relocation
thereby improves the cluster assignments in a step-wise manner.
We will now discuss in detail a very popular partitioning-based algorithm, namely
k-means. The basic principle of this clustering approach is to find K centroid-
points within the dataset such that the distances from the datapoints, which are
assigned to the K clusters, to their cluster-centroids are minimized. This centroid
point is presented by a vector, which does not necessarily have to be part of the
data (in contrast to the k-medoid approach, where the representative point is one
of the datapoints). Therefore, we are faced with an optimization problem which is
NP-hard, but very fast heuristic implementations exist.
Two problems immediately come to mind:

1. How to find the optimal number K of clusters within the data without prior
knowledge?

2. How to find the best centroids of these K clusters?
Problem one is a very common question in the domain of cluster analysis with no
(simple) answer. The next section will partially deal with the topic of finding or
estimating the optimal number of clusters within the data. This task is especially
hard, if there is no further information about the data, what we have to assume
most of the time.
The second problem on the other hand has a solution. We find the “best” centroids
by an iterative refinement technique after initially random centroids were set. This is
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achieved by assigning the datapoints to the nearest (depending on the used metric)
centroid and thereby to a cluster. Next, we calculate a new centroid mk within
each cluster Ck, by taking the mean over all the data points within this cluster
mk = 1

|Jk|
∑
j∈Jk

cj. We continue by repeating those two steps until no further
change is observed or a certain number of iterations is reached.
The result of this approach is a Voronoi diagram as presented by Joswig and
Theobald [JT08], which is basically a partitioning of space into subsets following
specific rules concerning distances between points. Each subset is called a Voronoi
cell and in our case they represent the clusters Ck. Putting the previously explained
k-means approach and this short description of the Voronoi diagram together, we
end up with a definition of how the clusters are put together.
Definition 59. In mathematical terms a cluster in k-means is defined by

Ck = {cj ∈ C|d (cj,mk) < d (cj,mi)∀i 6= k} ,

where d (·, ·) denotes the chosen metric and mk,mi describe the respective centroids
of the clusters Ck,Ci.

We stated before that this is actually an optimization problem. Therefore we also
want to give the mathematical description of the measure, which we minimize.
Definition 60. We define thewithin-cluster sum of squares (WCSS) as follows

WCSS (CL) =
K∑
i=1

∑
cj∈Ck

‖cj −mk‖2 .

To reiterate, the final goal is to find the clustering CL which minimizes the WCSS
which translates to finding

arg min
CL

WCSS (CL) .

The attentive readers have already grasped that there are a few drawbacks to this
approach, but we will discuss them anyway in a concise way:
• The method needs a certain number of clusters to look for. This is not a trivial

matter and will be discussed throughly later in Chapter 4.
• The approach yields always similar cluster sizes, because of its nature. There-

fore, it might not be advisable to use it on datasets where a lot of differently
sized clusters are suspected.
• Another problem occurs, when we are faced with a dataset, which has more

dense clusters than we are looking for (K). Then we can not capture those
dense clusters with this approach, because the centroids would be placed, in
at least one case, exactly in the middle of the distance between two very dense
clusters.
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Despite a few drawbacks there are plenty of variations and implementations out
there. We will not go into the different implementations, but we want to note
that when the name k-means algorithm is used it usually refers to the standard
implementation, which is called Lloyd’s algorithm (here we look for local minima
and therefore multiple iterations are recommended). This algorithm was roughly
described before, when we discussed the best method for determining the centroids.
Concerning scRNAseq analysis the approach is often used with slight variations
or modifications, two interesting ones are presented in the following.
• One idea is applying t-SNE on a dataset and then using k-means to cluster just

the points of the low dimensional map. This comes of course with a tradeoff,
because on the one hand we increase the speed immensely and k-means will
yield good results, because it benefits from the structure of typical t-SNE
maps. On the other hand, we loose a lot of information prior to clustering,
assuming that we first use a PCA, then put the most informative components
in t-SNE and then apply k-means clustering.
• Another modification is an approach called single cell consensus clustering

(SC3) [KKS+17]. Here the authors calculate a lot of different results by high
iteration numbers (e.g. 1.000) and varying parameters such as: switching
between three metrics, namely Euclidean, Pearson and Spearman. Then they
try to find a consensus of all of the results, which seems to be very robust
concerning variations of parameters.
• Distribution-Based Clustering is another approach in the data partitioning

realm. Here, we tackle the problem from a conceptual point of view and
assume that the clustering can be done due to an underlying probabilistic
mixture model. The clusters are then characterized by the parameters of the
respective probabilistic model. By constructing the clusters this way it is easier
to interpret the meaning of the individual clusters. A popular method is using
gaussian mixture models, which assume that the datapoints of the individual
clusters follow a normal distribution. Gaussian mixture models are an integral
part of the MCLUST algorithm [FR99], which is applied in scRNAseq analysis,
although it is hierarchical in nature (will be explained in Section 3.6.2).

Therefore partitioning-based clustering methods as k-means are a valid approach
and a valuable asset in finding clusters within scRNAseq datasets.

3.6.2. Further Clustering Approaches

As mentioned before, this work is not about clustering methods but their application
in scRNAseq analysis. Therefore, the analysis of clustering results is more interesting
than the methods themselves. That’s why we will give an overview of other clustering
approaches used in scRNAseq analysis to give the reader a feeling for the vast amount
of valid approaches and to set the scene for Chapter 4, where we try to tackle a major
challenge in scRNAseq analysis.
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Density-Based Clustering This approach can be seen as a close relative of the
partition-based clustering approach, because the goal of partitioning the topolog-
ical space, in which the data is embedded, is the same. Here, the partitioning is
achieved according to the densities within the data, instead of distances between
certain points. Therefore, the main difference lies in the strategy of how the parti-
tioning is implemented. By using concepts of density, connectivity, and boundary,
arbitrary shaped clusters can be discovered in contrast to partition-based cluster-
ing. Additionally, this approach is very robust in respect to outliers, which is not
the case for partitioning-based approaches we presented previously. A often used
representative of this approach in scRNAseq analysis is DBSCAN [EHPSX96].

Hierarchical-Based Clustering The goal of this approach is to derive an hierar-
chical tree, called dendrogram, whose leaves are the datapoints. Moving from one
leaf up to the parent node we have a cluster of two datapoints. This process can
be repeated and yields larger clusters in every step until we reach the root of the
tree, which represents the whole dataset. There are two common approaches to
generate such a dendrogram following either an agglomerative (bottom-up) or a di-
visive (top-down) strategy. In the agglomerative case we proceed as just described,
by starting with singleton clusters (=clusters consisting of only one datapoint) and
merge each with the most similar other singleton cluster. This process is repeated
with the newly generated clusters until we have built a complete dendrogram. To
reiterate, this was achieved by recursively merging the most similar clusters together
until only one cluster is left. The divisive method starts on the opposite end of the
dendrogram. Therefore, it starts with all the datapoints and divides them always
in appropriate subclusters until a level is reached where all the leaves of the tree
are singletons. If the computational burden is too high, a stopping criterion has to
be applied, which specifies at which level of granularity to stop the process. This
directly relates to the number K of clusters we are looking for.

In biological applications these approaches are very popular due to the fact that
biology itself, or to be more precise cells, are hierarchical in nature (e.g. cell dif-
ferentiation). The approach automatically generates different levels of granularity
illustrated by the levels of the dendrogram. Additionally, hierarchical clusterings
may indicate relationships of clusters to each other and it is easier to find subpop-
ulations or explain effects. Another advantage of this approach is that it builds
models based on any distance or similarity measure. Deciding on a proper stopping
point, on the other hand, in the process of generating a dendrogram is a major
challenge.

Especially for the analysis of scRNAseq data a hierarchical based algorithm, called
pcaReduce [žY16], was developed. It is hierarchical in nature and, as the name
suggests, applied on datasets, which dimensions were reduced by PCA.
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Graph-Based Clustering Here, we see the data as a graph, where the datapoints
represent vertices and their relation to each other (e.g. similarity) the weighted
edges. The main idea is to gradually delete (cut) the edges with the smallest weights.
Thereby, we automatically generate a partitioning. Of course the challenge is to
decide which edges to cut and when to stop, because the amount of cuts should
be kept to a minimum. The motivation to apply it in scRNAseq analysis is, that
we hope to reveal connections and close neighborhoods, which can be interpreted
as subpopulations. A rather novel approach developed for scRNAseq data, which
shows good results and clusters most of the time by cell type, is SNN-Cliq [XS15].
This algorithm also captures some kind of granularity and thereby makes the search
for subpopulation or inner dynamics possible and more transparent.

Combinations of the presented approaches or with other methods are becoming
more popular, because disadvantages of one method can be compensated by advan-
tages of another one. Three examples in scRNAseq analysis are as follows.

• The SC3 approach of using the k-means algorithm with a variety of different
parameters and the combination of the dimensionality reduction method t-
SNE with the clustering algorithm k-means, were already mentioned in Section
3.6.1.

• The authors of the SC3 [KKS+17] approach, tackled the problem of the com-
putational burden, which comes from applying k-means multiple times (up to
a 1000 times) on large datasets, by combining their approach with Support
Vector Machines (SVM). When confronted with more than 5.000 datapoints
(e.g. cells) they switch to a “hybrid” approach. Here, they randomly choose
a small subset (e.g. 100 cells) of the dataset and perform SC3 on that. After-
wards they use the clustering result of that subset as a training set for a SVM.
With that strategy they seem to achieve very similar results.

• Another approach is to presented by Tseng et al [TW05], called “Tight Cluster-
ing”, where k-means clustering is applied as an intermediate clustering engine
combined with early truncation of hierarchical clustering tree to overcome the
local minimum problem of k-means. Additionally, the approach tries to iden-
tify the tightest and most stable clusters in a sequential manner by analyzing
the tendencies of certain dimensions being grouped together under repeated
resampling.

• Finally we wanted to mention CIDR (Clustering through Imputation and Di-
mensionality Reduction), a clustering package designed for scRNAseq data
by Lin et al [LTH17]. This approach uses “implicit” imputation to account
for the huge amount of dropouts present in scRNAseq data. Additionally, it
performs Principal Coordinates Analysis (PCoA) for the dimensionality re-
duction, based on a dissimilarity matrix, and applies hierarchical clustering
on the first few principal coordinates.
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3.6.3. Comparison & Conclusion

We have presented a mathematical framework to describe any clustering approach,
which could be applied on scRNAseq data. Then we have introduced a very popular
strategy in clustering, namely partitioning-based algorithms. Here, we explained in
detail one common algorithm, called k-means, with the help of the mathematical
framework. Finally we presented in a qualitative manner other approaches and
pointed out that new strategies often involve combinations of different methods.
A comparison between the presented approaches is neither sensible nor possible,
because all of them are used in scRNAseq analysis on a regular basis and yield
valid results. Depending on the dataset some algorithms work better than others,
but until now there is no consensus within the community concerning the best
clustering approach for scRNAseq data and it might be that there is not a best one.
Additionally, it is not uncommon that different approaches yield very diverse results,
which could mean that they captured different aspects within the data or simply did
not work properly. A recent publication by Freytag et al [FLNB17] tried to solve
this issue, even with data derived with the 10x technology, and called this situation
actually a “Cluster Headache”, without any more concrete results except what we
already stated above. Others have already accepted this situation and tackled the
problem by putting different clustering approaches together in programs, as for
example the R-package clusterExperiment by Purdom et al [PRJ17]. Here, the goal
is to generate a lot of clustering results by applying a variety of algorithms, each
with different, algorithm specific, parameter variations.
This means we are facing the following situation. We have a lot of valid approaches,
which yield biological sound results. Depending on the datasets at hand, some of
them work very well and some do not even yield reasonable results. Every algorithm
has their own set of parameters, which variations also have to be investigated, be-
cause the results can significantly differentiate from each other. Additionally, the
amount of algorithms and combinations, which are applied in scRNAseq analysis, is
increasing.
In conclusion we can see that the decision making process in cluster analysis is a big
unsolved challenge in scRNAseq analysis with an immanent need to be addressed.
The open question is: Which is the “best” or “correct” clustering result? This
question implies the following issues and aspects:
• Which clustering result describes the current dataset best?
• Which clustering result should be chosen for further analysis or answers the

initial scientific question?
• Which clustering result is the most robust, concerning parameter variations?
• How many clusters K can be expected by looking at the dataset? (this is

needed as input for some clustering approaches)
The objective of the next chapter is to address this major challenge.
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Analysis
“The validation of clustering structures is the most difficult and frus-

trating part of cluster analysis. Without a strong effort in this direction,
cluster analysis will remain a black art accessible only to those true be-
lievers who have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes [JD88]

The anecdotal quote in the beginning of this chapter nicely outlines the importance
of this topic. It is true that cluster validation or the analysis of clustering results,
is one of the most important steps in cluster analysis. Naturally, this translates to
the analysis of clustering results in scRNAseq analysis. Without this part of the
cluster analysis, it can not be determined, which result should be considered as the
best and therefore investigated or used in further analyses. Differences in clustering
results often indicate that the respective algorithms, or even parameter variations
using the same algorithm, detect different dynamics within the data. Sometimes the
approach is simply not right for the structure of the dataset at hand and therefore
useless results are generated. Here, in scRNAseq analysis, it is not different and
the inhomogeneity within the results of the clustering process could also simply
indicate that one approach is more fit to the structure of the dataset than others.
On the other hand they could reflect something more interesting, as for example
the cell types within the data in different levels of granularity or they even pick up
on different effects as batch or exposure to some compound. Therefore, we need to
find a way to determine a result or a group of results, which we can use to answer
the initial scientific question from the onset of the analysis or to perform further
analyses on.
We need to mention, that the variety of results can, for the above stated reasons,
be seen as an advantage. This may sound confusing, but we can use it to capture a
number of different aspects within the data at the same time.
One major challenge in cluster analysis has always been the determination of the
number of clusters K we are looking for. Or in other words, how many different
groups should we expect to find within the data. This is not only interesting,
but also often a prerequisite for a lot of clustering approaches to operate properly
and highly influences the quality of the results. One popular example is the k-
means algorithm, which was previously presented in Section 3.6.1. This conundrum
motivated the development of so called “Clustering Indices” to evaluate, with or
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without additional knowledge, which clustering result, and therefore which input
parameters, yields the highest quality. Exactly such clustering indices are the main
drivers of this chapter and how they can be used to solve the problem of finding the
best clustering result among a huge amount of potentially valid ones.

4.1. The Starting Point

We basically start off where Chapter 3 ended, namely with the open question of
finding the “best” or “correct” clustering result among an arbitrary number of po-
tentially useful ones. The large amount of results origins from a lot of different
clustering approaches and therefore a multitude of different algorithms, each with
their own sets of different parameter variations, which can be successfully applied
on scRNAseq data, as we have elaborated before. Therefore, we are faced with the
challenge of determining which of the given results is the best. Maybe it would be
even better, if we were able to derive a ranking according to quality and additionally
find some consensus between the best results. We have already indicated that we
propose to use already established quality measures in cluster analysis.
Before we can start with the definition and the subsequent application of these
quality measures we have to agree on the terminology. We will extend the previ-
ously introduced mathematical framework, which was used to describe clusterings
in Chapter 3.6, by the following terms.
Definition 61. We define the number of clusters K within a clustering CL
implicitly by

CL = {Ck|k = 1, . . . , K} .

The clustering CL can also be described by the partition P ∈ {1, . . . , K}n of the
data, where Pj describes the cluster affiliation of cell cj.

Furthermore we want to describe the individual clusters in a more detailed way.
Definition 62. We can see a cluster Ck also as a cluster submatrix M{k} of
the whole expression matrix M , which is reduced to only consisting of the cells
(columns) cj, which are affiliated with cluster Ck. With the help of the partition P
we define it as

M{k} = (mij)i∈I,j∈{j∈J |Pj=k} .

An alternative way to define the cluster submatrix is to use the previous definition
of the cluster indices Jk = {j ∈ J |cj ∈ Ck} of the cells affiliated with cluster Ck
and define the submatrix M{Jk} by the index set Jk

M{Jk} = (mij)i∈I,j∈Jk
.

Thereby, we get the relationship M{k} = M{Jk}, because Jk = {j ∈ J |cj ∈ Ck} =
{j ∈ J |Pj = k}.
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The number of cells within a cluster Ck is denoted by

nk = |{cj : Pj = k}|

and therefore the dimensions of the cluster submatrix M{Jk} are m× nk and we get∑K
k=1 nk = n.

Having now set the scene, we will introduce different kinds of quality measures for
clustering results. After that, we will propose two ways of deciding on or determining
a final clustering result. Finally, we apply this approach on the simulated dataset
and discuss the results.

4.2. Quality Measures for Clustering Results

In general we distinguish between two different kinds of clustering indices: external
and internal ones.

The external indices rely on some kind of externally provided knowledge, hence the
name. In most cases this is a ground truth, a reference result or another kind of
labeling, against which we want to compare. In scRNAseq analysis ground truths
are very scarce. Nevertheless, we need external indices to compare clustering results
with each other and thereby detect similarities between them and in the case of
the simulated dataset to validate the proposed approach by comparing it to the
configured true clustering. Therefore, we will present the Adjusted Rand Index
(ARI) and the Normalized Mutual Information (NMI) in Section 4.2.1.

Internal clustering indices on the other hand only use metrics, which lie within the
data. Therefore, we will only use internal indices for the decision making process,
which we will present in Section 4.3, as we do not have any external knowledge. To
do that we will briefly discuss four different indices and two information criteria in
Section 4.2.2 and Section 4.2.3, respectively.

4.2.1. External Indices

We present two external indices, mainly to determine similarities of clustering re-
sults between each other, compare clustering results to published ones or to verify
results in the very rare case of having a ground truth. External indices are also very
useful for the investigation of relationships between clustering results derived from
the same algorithm, but with different parameter combinations. Here, some ap-
proaches simply yield different levels of granularity in their results, where others do
not resemble each other at all. The input for such indices are merely two clustering
results or in other words the partitions P of the respective clusterings CL.
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Adjusted Rand Index (ARI)

The first external index is the adjusted version of the Rand index (ARI) as described
by Jain and Dubes in [JD88]. The regular Rand index describes the overlap of two
clustering results with a value from 0 to 1, where 0 means no overlap at all and 1
indicates that the clusterings are the same. The adjusted version accounts for the
fact that two datapoints could be clustered together due to chance. Therefore, this
statistic is normalized with the expected values ExpInd. Thereby, the value 0 is
yielded when the clusterings are selected by chance and 1 in the case of a perfect
match. The adjusted Rand index, in contrast to the regular one, can return negative
values in the case of the two clusterings being more different from each other than
it would be expected, if they were determined by chance.
To describe the ARI we have to first define the term contingency table in this context.

Definition 63. Given two partitions PA and PB, with their respective index sets
JA and JB and number of clusters K and L of a dataset, we define the contingency
table and its respective row- and column-sums as

JA1 JA2 . . . JAK sums
JB1 n11 n12 . . . n1K a1
JB2 n21 n22 . . . n2K a2
... ... ... . . . ... ...

JBL nL1 nL2 . . . nLK aL
sums b1 b2 . . . bK

,

where nij = |JAi ∩ JBj|.

Now, we can calculate the previously mentioned terms, namely the regular rand
index, the maximum index and the expected index.

Definition 64. The rand index RI is defined as

RI =
∑
ij

(
nij
2

)
.

The maximum index MI, being the maximum value of the statistic, is calculated
by

MI = 1
2

∑
i

(
ai
2

)
+
∑
j

(
bj
2

) .
The expected index EI is determined by

EI =
∑
i

(
ai

2

)∑
j

(
bj

2

)
(
nij

2

) .
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Finally, we have everything in place to describe the adjusted version of the Rand
index.

Definition 65. The Adjusted Rand Index (ARI) is obtained by

ARI = RI − EI
MI − EI

.

Normalized Mutual Information (NMI)

The second external index we want to present, following Wagner et al [WW07], is
the normalized mutual information (NMI), a measure from information theory. We
have already used a term originated from information theory, namely the Shannon
entropy, in a previous chapter about dimensionality reduction in Definition 49. We
will use it here to describe the entropy associated with a clustering CL, measur-
ing the uncertainty about the cluster affiliation of a randomly chosen cell. This is
achieved by assuming that all cells have the same probability of being put in a par-
ticular cluster. Choosing one cell cj at random, the probability that cj ∈ Ck (∈ CL)
is P (k) = nk

n
.

Definition 66. Therefore, we define the associated entropy H with clustering
CL by

H (CL) = −
K∑
k=1

P (k) log2 P (k) .

We now want to extend this concept to that of mutual information. Therefore, we
want to determine how much this uncertainty can be reduced on average, when
knowing about the cluster affiliations of randomly chosen cells in another clustering.

Definition 67. We define the mutual information between two clusterings
CLA and CLB, with their respective number of clusters K and L, as

I (CLA, CLB) =
K∑
i=1

L∑
j=1

P (i, j) log2
P (i, j)

P (i) P (j) ,

where P (i, j) is obtained by

P (i, j) = |CAi ∩ CBj|
n

and describes the probability of an element belonging to cluster CAi in CLA and to
cluster CBj in CLB.

Due to the fact that this measure is not bound to a constant value it is rather
difficult to interpret or compare. Therefore, normalization of the entropy values seem
reasonable. One approach is to apply the arithmetic mean for the normalization.
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Definition 68. Finally, we define the normalized mutual information (NMI)
between two clusterings CLA and CLB by

NMI (CLA, CLB) = 2I (CLA, CLB)
H (CLA) +H (CLB) ,

with 0 ≤ NMI (CLA, CLB) ≤ 1 and NMI (CLA, CLB) = 1 for CLA = CLB and
NMI (CLA, CLB) = 0 for P (i, j) = 0 or P (i, j) = P (i) · P (j).

4.2.2. Internal Indices

This chapter concerns itself with the description, definition and occasional interpre-
tation of four different internal clustering indices. As already stated before, internal
clustering indices deliver a measure of quality concerning a clustering purely based
on the data’s internal information, hence the name. Therefore, the input of such
indices is always the data and a certain clustering. Often the data will be used
to derive further objects to analyze, for example a distance matrix. We chose the
following indices to capture different aspects (e.g. density or partitioning) within
the data and the clusterings, because results of certain clustering approaches fit to
certain cluster indices. By using always more than one cluster index we tried to en-
sure that the clustering result is analyzed in a balanced way. Every index represents
a function depending on clusterings, which can be seen either as a cost function or
a score function and therefore has to be minimized or maximized, when looking for
a better result.

The following definitions are adapted from [Des13] by Desgraupes, the author of
the R-package clusterCrit, which can be used to perform cluster validation with the
help of cluster indices.

The Silhouette Index

This measure is derived from the individual silhouette widths of every point, which
try to capture how good a point lies within its affiliated cluster. To get a global
measurement for a whole clustering, the silhouette index, all the silhouette widths
have to be combined. That’s why, we will start with deriving the silhouette width
for one cell cj. We start off by defining measures of the position of cell cj ∈ Ck with
respect to the clustering CL.

Definition 69. The within-cluster mean distance of cell cj to its own cluster
is given by

a (j) = 1
nk − 1

∑
i∈Jk\j

d (cj, ci) ,

with d (·, ·)being the chosen metric.
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Similarly, we define the mean distance to the other clusters Cl ∈ CL \ Ck as

δ (cj, Cl) = 1
nl

∑
i∈Jl

d (cj, ci) .

Lets determine the minimum of the mean distances to the other clusters by

b (j) = min
Cl∈CL\Ck

δ (cj, Cl) .

The cluster Cl, which yields the minimum b (j), would be the best choice for relo-
cating the cell cj, if necessary.

With that, we can define the silhouette width.

Definition 70. The silhouette width of one cell cj is calculated by

s (j) = b (j)− a (j)
max (a (j) , b (j)) .

Its values range from −1 to 1, where −1 means that the cell cj should be relocated
to another cluster and 1 indicates a perfect fit.

Next we determine the mean silhouette of a cluster.

Definition 71. The silhouette index for cluster Ck is obtained by applying the
arithmetic mean on the silhouette widths of the respective cells

sk = 1
nk

∑
j∈Jk

s (j) .

Finally, we define the global silhouette index.

Definition 72. The global Silhouette Index SI of one clustering is defined by
the arithmetic mean of the silhouette indices of its clusters

SI = 1
K

K∑
k=1

sk,

with values ranging again from −1 to 1, where −1 indicates a overall bad clustering
and 1 a very good one. Therefore, we see ourselves confronted with a score function,
which we want to maximize.

The Calinski-Harabasz Index

The idea of this index is to define a “variance ratio criterion” to get some insight
into the structure, determined by the clustering, of the cells. This is achieved by

95



Chapter 4 Cluster Validation in scRNAseq - Analysis

calculating the relationship between a measure of between-cluster and within-cluster
variance.

Definition 73. The Calinski-Harabasz Index CHI is defined by

CHI = (n−K)
(K − 1)

BCSS

WCSS
,

where WCSS is the previously in Definition 60 introduced within-cluster sum of
squares of clustering CL and BGSS denotes the between-cluster sum of squares
defined by

BCSS (CL) =
K∑
k=1

nk ‖mk −m‖2 ,

with mk being the centroid of cluster Ck and m denoting the centroid of all points
given by m = 1

n

∑n
j=1 cj. Hereby, we capture the positions of the clusters in respect

to all points by a weighted sum of squared distances between the centers of the
clusters and the center of all cells.

As we can see this index represents a score function and therefore should be maxi-
mized while searching for better clusterings. There is no normalized range for the
CHI values and therefore direct comparisons between different clusterings are nec-
essary.

The Tau Index

Here, we formulate an analogue to the Kendall rank correlation coefficient (also
known as Kendall’s tau coefficient), which is a statistic used to determine the ordinal
association between two vectors.
We need a few new metrics, before we can define the tau index for clusterings. We
start off with counting the number of specific pairs within the data.

Definition 74. The total number of pairs of distinct cells is

NT = n (n− 1)
2 ,

the total number of distinct pairs within the clusters of a clustering is

NW =
K∑
k=1

nk (nk − 1)
2

and the number of pairs constituted of cells, which do not belong to the
same cluster is

NB =
∑
k<l

nknl.
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These measures relate to each other in the following sense

NT = NW +NB.

Furthermore, we denote JW as the index set of the NW pairs within clusters and JB
as the index set of the NB pairs between-clusters.

The last thing we need are two measures for the distances between those pairs.

Definition 75. We formulate the definition of the two numbers s+ and s− as

s+ =
∑

(r,s)∈JB

∑
(u,v)∈JW

1d(cu,cv)<d(cr,cs)

s− =
∑

(r,s)∈JB

∑
(u,v)∈JW

1d(cu,cv)>d(cr,cs),

where s+ counts the number of times a distance between two cells belonging to the
same cluster is strictly smaller than the distance between two points not belonging
to the same cluster. The value of s− on the other hand is the number of times the
opposite situation occurs.

Now, we are putting it all together to get the desired measure.

Definition 76. The Tau Index is defined by

TI = s+ − s−√
NBNW

(
NT (NT−1)

2

) .

This index can be classified as a score function and therefore the maximum would
represent the best clustering result.

The C Index

In this case we focus on comparing distances between pairs of cells within the clusters
and distances between all the pairs of cells within the data.
We can reuse a lot of the definitions presented in the previous section to define the
C Index in the following.

Definition 77. The C Index is defined by

CI = SW − Smin
Smax − Smin

,

where SW is the sum of the NW distances between all the pairs within each cluster,
Smin and Smax are the sums of the NW smallest and largest distances between all
the pairs of cells in the whole dataset, respectively.
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This index can be seen as a cost function and therefore the goal is to minimize its
value in the search for better clusterings. The range of its values is also not fixed
and therefore indices of different clusterings have to be compared directly.

During the investigation of cluster indices we noticed that the just described C Index
and the previously presented Tau Index correlate highly (negative). We argue that
this is due to the fact that they use and capture very similar aspects of a clustering.
Nevertheless, we have to keep in mind that this can be the case with other indices
as well. Therefore, it is important to account for it in the decision making process
in which the presented indices play a key role. Otherwise, correlating indices will
always influence the decision in a way that promotes clustering approaches, which
fit the respective indices.

4.2.3. Information Criteria

Information criteria are a way to select the best statistical model, describing a
dataset. In general they need a statistical model and the number of parameters
used. With that, they try to balance the two aspects of perfectly fitting a model
(and thereby increasing complexity) and the number of parameters, used in the
model to describe the data. Due to the fact that it is possible to increase the
likelihood of a model by increasing the number of parameters the presented criteria
always penalize for that by adding a term dependent on the number of parameters.
The information criteria are relative measures, therefore only meaningful when used
to compare different models of the same data. A value of an information criteria for
one model does not convey any information on the model’s quality.

We will present two very popular information criteria, namely the Akaike (AIC) and
the Bayesian Information Criterion (BIC). Both information criteria can be seen as
cost functions and therefore the model with the lowest value is preferred. After
describing these measures we will propose a way to apply them on our data and the
large number of clustering results in a meaningful way.

Akaike Information Criterion (AIC)

Following the original publication of Akaike [Aka74], we will briefly describe the
AIC.

Definition 78. The Akaike Information Criterion AIC of a statistical model
M is determined by

AIC = 2k − 2 ln (LM) ,

where k denotes the number of estimated parameters in the model and LM the
maximum value of the likelihood function of the model M .
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Bayesian Information Criterion (BIC)

Adapting the publication of Schwarz [Sch78], which originally proposed this crite-
rion, we will define the BIC in the following.
Definition 79. The Bayesian Information Criterion BIC of a statistical model
M is obtained by

BIC = ln (n) k − 2 ln (LM) ,

where n denotes the number of datapoints, k the number of estimated parameters
in the model and LM the maximum value of the likelihood function of the model
M .

Weighted Information Criteria Approach

To apply either of those criteria we try to use already derived and described tech-
niques and results from the previous chapters. Before, we chose the most informative
principal components to represent our data during the clustering process. That’s
why it makes sense to use them again in the analysis of the clustering results in the
same way. The required models are determined with the help of linear regression,
as described in Section 3.4.2, with the respective clustering result as categorical
explanatory variable.
We propose the following approach to determine a comparable value for every clus-
tering result CL with partition P .

1. Perform a PCA on the data, which was used in the clustering process, or use
the already dimensionality reduced dataset Mredcued.

2. Take the L most important principal components PC1, . . . , PCL, which were
also used before in the process of confounding factor analysis, in Section 3.4.9,
and clustering.

3. Build a linear regression model for every principal component as the dependent
variable yl = PCl, for l = 1, . . . , L, and the clustering result as categorical
independent variable x = P .

4. Determine the respective information criterion for each model, yielding L in-
formation criterion values IC1, . . . , ICL.

5. In the end we calculate a weighted sum ICsum of those information criterion
values, with the proportions of variance explained V El by the respective prin-
cipal component PCl as weights.

ICsum =
L∑
l=1

V El · ICl

The result of this approach is one value per clustering result, which can be used just
like a clustering index in the following decision making process. The next chapter
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deals with that decision making process by using all of the above described clustering
indices to determine the best clustering result.

4.3. Determination of the Final Clustering Result

We are now faced with having six different values, e.g. the internal quality measures
we just described in Section 4.2, for every clustering result. The question is how
to determine the “best” clustering result by using all six of these measures simul-
taneously and in an objective way? This situation can be framed as a multicriteria
decision making (MCDM) problem, where the six different results from our quality
measures per clustering result are seen as criteria.
In the following we propose a way to solve this MCDM problem and determine the
“best” clustering result. Since we do not want to loose the potential knowledge
within the other clustering results, we describe an approach to leverage the large
amount of alternative clustering results and present an additional solution. In the
end, we discuss how the two final clustering results can be interpreted and apply
the proposed approaches on the simulated dataset.

4.3.1. The Favorite Approach

The goal of this section is to determine one final clustering result, which is quali-
tatively the best, among a large number of potentially valid ones. The quality is
determined by six different measures we described previously in Section 4.2. Those
measures are derived only from the data and the respective clustering result. Only
one of those measures can be used in an independent way to determine the quality
of clustering results, in contrast to the other five measures, which are only appli-
cable by comparing different clustering results to each other. They are separated
in two groups: cost- and score-functions, where higher quality is associated with a
smaller or bigger value, respectively. In summary, we are faced with a multicriteria
decision making (MCDM) problem, where the criteria are the quality measures and
the alternatives between which we have to decide are the different clustering results.
As we have stated before, the issue of finding the best number of clusters K in
a dataset is not new. This was one of the motivations for developing the above
described clustering measures. Therefore, the problem we are facing now is also not
totally new. In the past, the idea was to determine the best clustering from a lot
of different results generated by the same algorithm, where different values for the
number of clusters K were used as the main input parameter. We rephrase this
problem to be more general: We have a large amount of clustering results generated
by a lot of different algorithms with different parameter configurations and we want
to use different quality measures to determine the best one. An approach to solve
the initial problem of finding the correct number of clusters within a dataset was
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proposed by Peng et al [PZKS12]. They used three different MCDM approaches
with ten cluster validity measures on fifteen public-domain datasets. One of the
conclusions was, that the most accurate results of the individual validity measures
were equal to the worst performances of the three MCDM approaches. This indicates
that the MCDM approach leverages the cumulative qualitative measurement of all
of the indices better than either one of them individually. We decided to apply
one of the three described MCDM approaches to our problem and therefore present
in the following the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS), adapted to our setting.
We start out by calculating a normalized decision matrix, which aggregates all the
quality measures for every clustering result in a normalized and structured way.

Definition 80. We define the normalized decision matrix R by its entries r as

rpq = xpq√∑CR
q=1 x

2
pq

,

where p = 1, . . . , CM , q = 1, . . . , CR, CM and CR denote the number of cluster-
ing measures and the number of clustering results, respectively. The value of xpq
describes the result of the pth quality measure applied on the qth clustering result.

In other words, R is a matrix, which rows denote the different clustering measures
and columns the clustering results. In our case we know that CM = 6, but we
will keep the description abstract and continue with the general variables. The
TOPSIS approach supports the option to declare different priorities for the clustering
measures by weights. As we were not able to find any indication that one clustering
measure is superior to others in determining the quality of clusterings on scRNAseq
data, we decided to assign equal weights to all six clustering measures. Nevertheless,
we give the definition of the weighted normalized decision matrix in the following.

Definition 81. We obtain the weighted normalized decision matrix V with
its entries v by

vpq = wprpq,

where the indices are defined as before and wp denotes the weight of the pth quality
measure. The weights have to fulfill the condition of summing up to 1, ∑CM

p=1 wp = 1.

As just discussed, we set wp = 1
CM

= 1
6 for p = 1, . . . , CM . Before we can continue,

we have to distinguish between cost and score functions, with the help of two disjoint
index sets. The C-index and the two information criteria (Akaike and Bayesian)
were cost functions, with the minimal value indicating the highest clustering quality.
The Silhouette-, Calinski-Harabasz- and Tau-index, on the other hand, were score
functions, where the biggest value indicates the best clustering result. We will denote
the index set of the score functions by CM ′ and the index set of the cost functions
by CM ′′. This yields CM = CM ′ ∪CM ′′ and CM ′ ∩CM ′′ = {∅}. We continue by
determining the ideal solution and its counterpart the negative-ideal solution.
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Definition 82. We can find the ideal solution S+ by

S+ =
{
v+

1 , . . . , v
+
CM

}
=
{(

max
q
vpq|p ∈ CM ′

)
,
(

min
q
vpq|p ∈ CM ′′

)}
and its counterpart the negative-ideal solution S− by

S− =
{
v−1 , . . . , v

−
CM

}
=
{(

min
q
vpq|p ∈ CM ′

)
,
(

max
q
vpq|p ∈ CM ′′

)}
.

With this we have the best and the worst possible solution, which are not necessar-
ily present within the decision matrix, to calculate the relative distances of every
clustering result to them.

Definition 83. With the help of the CM -dimensional Euclidean distance we de-
termine the separation measures. The separation of each clustering result q =
1, . . . , CR to the ideal solution is denoted by D+

q and determined by

D+
q =

√√√√CM∑
p=1

(
vpq − v+

p

)2
.

Similarly, the separation of each clustering result to the negative-ideal solution is
denoted by D−q and determined by

D−q =

√√√√CM∑
p=1

(
vpq − v−p

)2
.

The last step is to determine the relative closeness of every clustering result to the
ideal solution.

Definition 84. Therefore, we define the ratio R+
q , which measures the closeness

to the ideal solution in a relative way by

R+
q =

D−q
D+
q +D−q

.

To obtain the best or final clustering result we have to rank them in a descending
order of the ratio value R+

q . The first entry denotes the best and therefore final
clustering according to our clustering indices. Due to the fact that we will propose
an additional way to reach a final clustering we will call the clustering result, which
is the result of this approach, the favorite clustering.
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4.3.2. The Consensus Approach

We have already briefly mentioned that potential discoveries within the remaining
clustering results, which were not chosen as the favorite through the procedure we
described in the preceding chapter, are lost. Furthermore, Peng et al [PZKS12]
mentioned in the conclusion of their publication on MCDM approaches in cluster
analysis, that the second and third ranked clustering results should always be con-
sidered by the analyst, especially in the case of very close distances between their
respective R+ values.
Therefore, we propose an additional way of finding a final clustering by using a set of
clustering results consisting of the top tCL entries of the previously obtained ranked
list. Inspiration on how to do that was given by Kiselev et al [KKS+17] authors of
the SC3 approach, who try to find a consensus among a large amount of k-means
clustering results with different parameter configurations, and Purdom et al [PRJ17],
who developed the R-package clusterExperiment, where a function for combining
given clustering results according to specific rules is described. The goal of this
chapter is to combine the top tCL clusterings, from now on called topclusterings,
to obtain a robust and potentially more informative result. Thereby, we leverage the
cumulative knowledge or potential discoveries of a lot of clustering results, which
were derived from different sources (e.g. algorithms and parameter variations).
The following statements concern only the topclusterings. We start with defining a
matrix for every clustering result, which describes the relation of individual cells to
each other in respect to their cluster affiliation within the respective clustering.

Definition 85. The entries of the n×n connectivity matrix CCL for a clustering
CL is obtained by

mij =

1 Pi = Pj

0 Pi 6= Pj
,

where i, j ∈ J denote the indices and Pi, Pj the cluster affiliation of the cells ci, cj,
respectively.

In other words, the connectivity matrix value mij is 1 when cell ci is in the same
cluster as cell cj and 0 when they are in different clusters. To aggregate these tCL
connectivity matrices (one for every topclustering) in a meaningful way, we apply
the arithmetic mean.

Definition 86. We obtain the entries of the n×n the consensus matrix Cons of
the tCL connectivity matrices by

(mij)Cons = 1
tCL

tCL∑
k=1

(mij)k ,

where (mij)k denotes the entry mi,j of the connectivity matrix of the kth clustering.
Naturally, (mij)Cons ∈ [0, 1].
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The entries mij of the matrix Cons can be seen as the proportion of times that cell
ci was in the same cluster as cell cj in respect of all topclusterings. In other words,
this matrix can be described as a similarity matrix, determining the similarity of
two cells ci and cj by the value mij following the rational of defining clusters as
groups of points with similar features.

Having one matrix representing the relationship between all the individual cells con-
cerning their cluster affiliations in all topclusterings, enables the use of hierarchical
clustering on this matrix. The matrix Cons is symmetric in nature, therefore it does
not make any difference if the rows or columns are taken for the clustering process.
Furthermore, a threshold proportion 0.5 < prop ≤ 1 has to be defined to establish
a rule for putting two cells into the same cluster in the desired final clustering. The
proportion threshold can be interpreted in the following way: if two cells ci and cj
clustered into the same cluster more than prop · tCL times, they belong together in
the same cluster. Otherwise they should not be in the same cluster.

Following Purdom et al [PRJ17] to realize this strategy we apply divisive (top-down)
hierarchical clustering with the matrix Cons as input similarity matrix and the cut
parameter (e.g. stopping criterion) prop. The clustering algorithm transverses down
the tree until encountering a group (=potential cluster) of cells whose minimum
similarity value is greater than or equal to prop. So, the stopping criterion for
a potential cluster Ck with cells cj, j ∈ Jk can mathematically be described as
mini,j∈Jk

{mij} > prop. Attentive readers probably noticed that this procedure
inheres the possibility (with higher prop the probability increases) that some cells
are not clustered in the course of this approach. These not-clustered cells can either
be excluded from any further downstream analysis or put into an additional cluster
CK+1.

This process yields a final clustering, which we will call combined clustering.

The combined clustering leverages the additional cumulative knowledge of the next
tCL − 1 clustering results in the ranked list, which was derived in the previous
section, after the favorite clustering. Furthermore, potential discoveries indicated
by the additional results can be unveiled through this approach. Therefore, we were
able to utilize not only the best, but the top tCL clustering results concerning the
presented quality measures, which was the goal of this section.

We want to make one last remark concerning this approach, relating it to graph
theory. The consensus matrix Cons could also be seen as an adjacency matrix.
With that we could derive a weighted graph. The vertices would be the cells and
the weights for the edges would be the entries of Cons. Applying the proportion
parameter prop as a condition for erasing every edge with a weight less than prop
and using a graph-based clustering approach would probably yield similar results,
but this was not investigated in the course of this work.
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4.3.3. Interpretation & Application

Having now two clustering solutions at hand we will point out some characteristics of
them and how the above described approach was applied on the simulated dataset.

Interpretation

With two final results in the end, the problem of deciding which one to use for
answering the scientific question from the beginning or the downstream analysis is
apparent. We want to propose that both final clusterings should be used as a base
for further analysis in the following way.
Lets start with the favorite clustering, here we simply chose the result with the best
combination of quality measure values, determined by a MCDM approach called
TOPSIS. As already mentioned the second and third best should also be investigated
by the analyst, especially in the case of close R+ values. Sometimes the favorite
clustering yields the best objective quality measurements, but does not fit to the
biological question at hand. Therefore, we recommend to keep an open mind and
use the whole list and not only the number one.
Having in mind that the favorite clustering is a part of the combined clustering,
it begs the question where their potential differences come from. First of all it
depends heavily on the number tCL of topclusterings used to determine the combined
clustering. When more topclusterings are used to generate the combined clustering,
then the influence of one single clustering result is naturally decreased.
In general the combined clustering is intended to give a result based on more than
one clustering approach and the respective parameters. Therefore, it informs on
the level of agreement among the topclusterings concerning the cluster affiliations
of cells. When the majority of clusterings within the topclusterings agree on certain
cluster affiliations it is reflected in the combined clustering result. In the course of
generating the combined clustering and by looking how it was created a lot of in-
formation about potential subclusters within the data can be obtained. This could
inform further downstream analysis steps or lead to modifications within the initial
analysis. Biologically this is very interesting as subcluster could indicate subpop-
ulations within cell types or effects within certain populations. Furthermore, the
clustered matrix Cons can be used to visualize very nicely how “good “ the com-
bined clustering harmonizes with the input clusterings, the topclusterings. This can
be achieved by displaying it as a heatmap. This would be one way to detect hidden
dynamics or potential subclusters. We can even derive a “level of satisfaction” for
each cell with the help of the consensus matrix Cons in the following way.
Definition 87. We define the level of satisfaction satj of cell cj in the cluster Ck
in the combined clustering CLcombined as

satj = 1
nk

∑
i∈Jk

mij,
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where mij denotes the values of the consensus matrix Cons. Naturally, satj ∈ [0, 1],
where a value close to 1 indicates a good fit of cell cj within cluster Ck.

In the end we have some remarks concerning very fractured combined clustering
results. If there are huge discrepancies between the topclusterings, then the com-
bined clustering will not look very homogenous. The combined clustering will be
very fractured and yield a lot of very small clusters. This is not a good result and
indicates that the best clustering results picked up on very different aspects within
the data. This can also be the case when the number of clusters within the top-
clusterings varies significantly or the proportion parameter prop is chosen close to
1.

Application & Results

The preceding chapters outlined nicely how this approach is applied. We want to
mention some further details, which should be considered. Furthermore, we present
the results of this approach applied on the simulated dataset.
Before any quality measures of clusterings are calculated the clustering results should
be filtered by very basic means. We recommend to remove clusterings which are
empty or have less than two clusters, have more than 20% not clustered cells, largest
cluster consists of more than 90% of the total number of cells or found more clusters
than twice the number of anticipated clusters K. The thresholds of the presented
filter criteria should be adapted according to the data at hand.
Furthermore, we think it is reasonable to set a minimum size of clusters before the
consensus approach is applied, therefore the problem of a very fractured combined
clustering can be avoided or at least weakened. Again, it depends on the data, how
the size of the smallest clusters is chosen.
In the following we will present the result of applying the described approach on the
simulated dataset. The dataset was processed with the help of the mathematical
methods we have discussed throughout this work. The favorite and combined clus-
tering will be benchmarked against a “ground truth” clustering (=true clustering),
which was used in the process of simulating the data to characterize the real clus-
ters in the raw data. This clustering consists of six clusters of different sizes. We
want to point out that in contrast to Peng et al [PZKS12] we did not only compare
the number of clusters found, but the clusterings themselves. This is of course a
much more rigorous and precise way to assess the accuracy of the results of the pro-
posed approaches. The comparison is performed by the external clustering indices
presented in Section 4.2.1, namely the ARI and NMI.
We have already presented PCA and t-SNE plots of the combined clustering result
obtained by the consensus approach in Figure 3.7 on page 80 and Figure 3.8 on
page 81. The respective plots of the favorite clustering are displayed in Figure 4.1
on page 108 and Figure 4.2 on page 109.
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ground truth vs. ARI NMI
favorite 0.959 0.937
combined 0.998 0.99

Table 4.1.: The results of the favorite and the consensus (combined) approach are
benchmarked against the true clustering of the simulated data by the external
clustering indices ARI and NMI. These results describe nearly perfect agreement
between the ground truth an the found clusterings (1 would mean that they are
the same).

We can immediately see that the solutions do not differ significantly from each other,
but that the combined clustering yielded more clusters than the favorite approach.
Indeed, the combined clustering performed better than the favorite clustering. This
can already be seen in Table 4.1 on page 107. That allows us to conclude that the
majority of the topclusterings already indicated the correct clustering. To under-
stand how the combined clustering was generated we can investigate Figure 4.3 on
page 110, where we see the topclusterings in a more transparent way. The columns
of this figure consist of cells and the rows are either clusterings (the first one, the
combined clustering, dictates the order of the cells) or categorical metadata such as
the true clustering (=Group) or the batch affiliation, as it is the case here. Every
row is colored according to the categories (e.g. clusters) of the respective variable.
We can immediately see that the topclusterings do not differ significantly from each
other and therefore the combined clustering is very robust.
To investigate the result of the combined clustering further, we see in Figure 4.4
on page 111 the according consensus matrix. Again, as in Figure 4.3 on page 110,
we notice that the consensus between the topclusterings is very high concerning the
cluster affiliations of the individual cells. Therefore, we can see clearly distinguished
clusters.
We have shown that the proposed approaches for cluster validation in scRNAseq
analysis perform very well on a simulated dataset. Furthermore, we have displayed
ways that aid in the analysis of clustering results and make automated decision
making processes more transparent. Therefore, this represents a mathematical solid
basis for further research in this direction with promising potential due to the very
good results.
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Figure 4.1.: PCA plot of the first and second principal component of the simulated
dataset colored by the clustering result obtained by applying the favorite approach
presented in Chapter 4.
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Figure 4.2.: Plot of a two dimensional t-SNE map of the simulated dataset colored
by the clustering result obtained by applying the favorite approach presented in
Chapter 4.
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Figure 4.3.: In this plot the columns describe cells and the rows denote different
categorical variables. The first row describes the combined clustering, followed by
20 topclusterings, the true clustering denoted by Group and the simulated batch
affiliation at the bottom. Every row is colored by the category affiliation of the
cells concerning the respective variable.
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Figure 4.4.: Consensus matrix Cons of the combined clustering, where the rows
and the columns denote the cells and the entries describe the proportion of times
two cells are in the same cluster over all topclusterings.
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5. Conclusion & Outlook
“’There is only one way to learn,’ the alchemist answered ’it is through

action. Everything you need to know you have learned through your
journey.’”

Paulo Coelho, The Alchemist

5.1. Conclusion

We started out by an introduction into the general topic of next generation se-
quencing (NGS) and ended up with the role of mathematics within the realm of this
technology. Then we took a closer look and elaborated on the technology of NGS and
how it is applied. We dealt with the differences between classic DNA sequencing,
bulk RNA sequencing and finally single cell RNA sequencing (scRNAseq). Here, we
described the 10x Genomics technique for the capturing of single cells in detail and
discussed challenges. Having understood how the data was generated in scRNAseq,
we continued with describing the process of analyzing that data. This was done
with the description of a general workflow, which heavily relies on mathematical
methods.
We introduced a mathematical framework to discuss matters in scRNAseq analysis
in a rigorous way. With that we investigated the problem of outliers, analyzed
different normalization methods, described how to deal with explanatory variables,
presented two methods for dimensionality reduction and discussed clustering, all in
the context of scRNAseq analysis. Every single method was described in detail,
using the proposed mathematical framework. The application of those methods and
approaches was discussed and compared. At the end of every chapter we applied
the recommended methods on a simulated dataset, which was derived from a real
scRNAseq dataset, and discussed the meaning of the results.
Finally, we rose to the challenge of developing an approach on how to choose from
many potentially valid clustering results, generated in the course of scRNAseq analy-
sis, the best one. We proposed the usage of established quality measures and framed
the problem as a multicriteria decision making (MCDM) problem, where the quality
measures are seen as the criteria. Applying an already existing MCDM approach
called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) we
were able to develop two approaches (favorite and consensus) for the determination
of a final clustering result.
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The favorite approach yielded the clustering result with the overall best quality
measures, which was determined by TOPSIS. The consensus approach on the other
hand tried to capture the additional information of the next best clustering results
by combining them, according to specific rules, yielding an additional solution. We
elaborated on the application of these approaches and the interpretation of its re-
sults. Ultimately, we applied the two approaches on the simulated dataset and
obtained nearly perfect results by comparing them to the ground truth clustering.

5.2. Outlook & Further Work

The technology of single cell RNA sequencing is entering a new era with cheaper
and faster (high throughput) sequencing machines than ever before. Therefore, the
developments in this field will keep increasing and generate more data in less time.
Following the direction of this work, directly building on the determined final clus-
tering results, we think it would be of interest to analyze the mathematical methods
of downstream analysis methods such as differential gene expression analysis or
pseudotime analysis in scRNAseq analysis. Apart from that, we noticed a need
for proper visualization tools in scRNAseq analysis. All of these methods could be
integrated in the proposed mathematical framework.
With the methods we have established in this work, the most biological knowledge
would be used in the downstream analysis on the final clustering results. There-
fore, we see a big potential in the life sciences to apply the knowledge of different
disciplines directly in the analysis. This work was subject to the mathematical per-
spective and thereby kept a certain objectivity concerning the analysis of scRNAseq
data. Methods, which could leverage biological knowledge in a meaningful way,
could be developed in combination with rigorous mathematical approaches.
A more practical way for further development would be to build a best practice
scRNAseq analysis workflow, based on the methods described in this work. This
workflow could be implemented in a common programming language (e.g. R) to
conduct analyses and further tests. For example more simulated datasets to test the
cluster analysis approach and real publicly available datasets could be analyzed.
Furthermore, the cluster validation approach could be tested on other datasets.
In addition, standards in the realm of scRNAseq analysis could be developed not
only concerning the methods and workflows but also the formats. This should aid
in the comparison and understanding of results and the communication within the
community. The human (single) cell atlas project [RTL+17] is one instance, which
is at the forefront of such developments.
We think that we will see a lot of revolutionary developments in this field in the
following years.
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In this section we will discuss the origins of the simulated dataset, which we used
throughout this work for the purpose of illustrating how the different presented
methods are applied and in the end to test the proposed cluster validation ap-
proaches. It was important to us, that this work shows the close relationship be-
tween mathematical theories and real world applications. Therefore, we tried to
point out that the theoretical argumentations of the mathematical chapters yield
directly applicable methods, by presenting real results.
We chose a simulated dataset, because thereby we were able to configure a true
clustering and batch affiliations (as a confounding factor). However, we wanted to
keep it as close to a real dataset as possible and therefore used a public dataset from
10x Genomics to estimate the simulation parameters. This procedure enabled us to
have full control over the intrinsic structure of the data, which we needed to validate
our results and at the same time we kept a close relationship to a real dataset,
which was generated by applying the described single cell capturing technology
from 10x Genomics. This additionally underlined our argumentation for using the
described recommendations in real world scenarios. Therefore, this work yields valid
arguments for real world applications and not purely theoretical conclusions based
on arbitrarily simulated data.
In the following we will present the dataset from 10x Genomics, which was used to
model the simulated dataset, the origin and configurations of the simulated dataset
and finally the R packages, which were used to process the dataset and generate
most of the figures in this work.

3k PBMCs from a Healthy Donor

As stated in the beginning of this chapter we used a real dataset as basis for the
estimation of simulation parameters to generate the simulated dataset. We chose the
3k PBMCs dataset from a healthy donor provided publicly by 10x Genomics[10x16a].
We will call it pbmc3k for the sake of convenience till the end of this section.
In the following we directly state some metrics from 10x Genomics concerning this
dataset.
• Single Cell Gene Expression Dataset by Cell Ranger 1.1.0
• Peripheral blood mononuclear cells (PBMCs) from a healthy donor.
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• PBMCs are primary cells with relatively small amounts of RNA (~1pg RNA/-
cell).
• 2,700 cells detected, sequenced on Illumina NextSeq 500 with ~69,000 reads

per cell 98bp read1 (transcript), 8bp I5 sample barcode, 14bp I7 GemCode
barcode and 10bp read2 (UMI)
• Analysis run with --cells=3000
• Published on May 26, 2016

Before we move on to simulating the dataset based on the pbmc3k data, we wanted
to elaborate on the decision making process, which resulted in choosing exactly this
dataset. First of all it is provided by the inventors of the technique we described in
the beginning of this work for capturing single cells. Furthermore, the number of
cells (approximately 2700) is high enough to encounter the novel challenges, which
come with this new kind of data. At the same time the number is low enough to
work on the dataset in an iterative manner, without long computing times. This
enabled us to test, refine and check the results more often. The biological origin of
the sample was human PBMCs, which host a wide range of cell types, compared
to samples from specific organs or tissues (e.g. liver), with differently sized cell
populations. Coming from a human donor, the sample represents an easily relatable
example for the use of scRNAseq analysis.

Simulating the dataset

The simulation of the dataset was done by the R package Splatter from Zappia et
al [ZPO17]. It presents a standardized format for simulating scRNAseq datasets.
The program itself is very sophisticated and highly customizable with the help of
different parameters. Furthermore, it provides a function to estimate parameters,
for the purpose of simulating similar datasets, based on a given dataset. We will
not elaborate on the simulation process itself, only on how we applied this method
to generate the simulated dataset.
The estimated parameters based on the pbmc3k dataset by splatter were as follows.
A Params o b j e c t o f c l a s s SplatParams
Parameters can be ( e s t imab le ) or [ not e s t imab le ] , ’ Default ’ or ’NOT DEFAULT’ .
Global :
(GENES) (CELLS) [ Seed ]
32738 2967 362015

27 a d d i t i o n a l parameters

Batches :
[BATCHES] [BATCH CELLS] [ Locat ion ] [ Sca l e ]

4 741 , 742 , 741 , 743 0 .1 0 .1

Mean :
(RATE) (SHAPE)
13.1862567561821 0.513625055001981
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Library s i z e :
(LOCATION) (SCALE)
7.46950097836897 0.795782986717212

Exprs o u t l i e r s :
(PROBABILITY) (LOCATION) (SCALE)
0.0192464082407156 5.13929002084815 0.994144591961186

Groups :
[GROUPS] [GROUP PROBS]

7 0 . 0 1 , 0 . 2 5 , 0 . 1 , 0 . 0 5 , . . .

D i f f expr :
[ P r o b a b i l i t y ] [ Down Prob ] [ Locat ion ] [ Sca l e ]

0 . 1 0 . 5 0 .1 0 .4

BCV:
(COMMON DISP) (DOF)
0.291449770028786 28.9998030313448

Dropout :
[ Present ] (MIDPOINT) (SHAPE)

FALSE −0.0200665832600224 −1.02201072763585

Paths :
[ From ] [ Length ] [ Skew ] [ Non−l i n e a r ] [ Sigma Factor ]

0 100 0 .5 0 .1 0 .8

These parameters could have been used directly to simulate a dataset, instead we
simplified and modified them slightly to fit our purpose.
We will point out the adapted and most important parameters, which play a critical
role in the subsequent analysis of the dataset.
• Batches: We decided for the simulated dataset to consist of six different

batches of equal size, because real datasets often consist of more than one
batch. Thereby, we were able to demonstrate the usage of the methods from
Section 3.4 on explanatory variables and illustrate the term “batch effect” de-
scribed by a categorical variable. This information is known to the analyst in
advance and therefore can be used in the course of an analysis.
• Groups: This variable describes the true clustering within the data. We de-

cided to use very different cluster sizes, described by the group probabilities,
to make it more realistic. Especially in the case of PBMCs it is possible to en-
counter very small cell populations. Furthermore, we decided on six clusters,
because this number is close to the estimated one from the pbmc3k dataset,
seven. The group affiliation is never known beforehand and therefore was only
used in the end of this work for the assessment of the cluster validation results.
• BCV: The Biological Coefficient of Variation for each gene in each cell de-

scribes the underlying common dispersion across all genes. The dispersion
was estimated at 0.291 for the pbmc3k dataset and we increased it to 0.5 to
make the data even more disperse and thereby more difficult to distinguish
between different clusters.
• Dropouts: We added dropouts, which are a major challenge in scRNAseq.
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• We kept most of the other parameters as they were estimated or simplified
them through rounding.

Finally, we used the following parameters to simulate the dataset.
A Params o b j e c t o f c l a s s SplatParams
Parameters can be ( e s t imab le ) or [ not e s t imab le ] , ’ Default ’ or ’NOT DEFAULT’ .
Global :
(GENES) (CELLS) [ Seed ]
32000 3000 123456

27 a d d i t i o n a l parameters

Batches :
[BATCHES] [BATCH CELLS] [ Locat ion ] [ Sca l e ]

6 500 , 500 , 500 , 500 , 500 , 500 0 .1 0 .1

Mean :
(RATE) (SHAPE)
10 0 .1

Library s i z e :
(LOCATION) (SCALE)

11 0 .2

Exprs o u t l i e r s :
(PROBABILITY) (LOCATION) (SCALE)

0 .02 5 1

Groups :
[GROUPS] [GROUP PROBS]

6 0 . 0 1 , 0 . 4 , 0 . 1 , 0 . 0 5 , 0 . 3 , 0 .14

D i f f expr :
[ P r o b a b i l i t y ] [ Down Prob ] [ Locat ion ] [ Sca l e ]

0 . 1 0 .5 0 .1 0 .4

BCV:
(COMMON DISP) (DOF)

0 .5 30

Dropout :
[ Present ] (MIDPOINT) (SHAPE)

TRUE 0 −1

Paths :
[ From ] [ Length ] [ Skew ] [ Non−l i n e a r ] [ Sigma Factor ]

0 100 0 .5 0 .1 0 .8

In the end we manipulated the count values by dividing them by 10 to make the
quality control metrics look more like the ones from the pbmc3k dataset.

R packages

Every figure in this work displaying some kind of scRNAseq data is an illustration
of the simulated dataset or a modification of it. The computations and plots were
done and generated with the help of the following R packages. In the following we
quickly describe and categorize them according to their role in scRNAseq analysis.
We will not include or mention their respective dependencies.
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• scRNAseq (low-level) analysis and quality control packages
– scater 1.6.2 [MCLW16] - “A collection of tools for doing various analy-

ses of single-cell RNA-seq gene expression data, with a focus on quality
control.”

– scran 1.6.6 [LMM16] - “Implements a variety of low-level analyses of
single-cell RNA-seq data.”

– Seurat 2.2.0 [SBH+18]- “A toolkit for quality control, analysis, and ex-
ploration of single cell RNA sequencing data. “

• Regression model packages
– nnet 7.3-12 [VR02] - “Software for feed-forward neural networks with a

single hidden layer, and for multinomial log-linear models.”
– limma 3.34.9 [RPW+15] - “Data analysis, linear models and differential

expression for microarray data.”
• Clustering packages

– clusterExperiment 1.4 [PRJ17] - “Provides functionality for running and
comparing many different clusterings of single-cell sequencing data or
other large mRNA Expression data sets.”

– SC3 1.7.7 [KKS+17] - “Consensus clustering of single-cell RNA-seq data.”
– pcaReduce 1.0 [žY16] - “Hierarchical clustering of single cell transcrip-

tional profiles.”
– CIDR 0.1.5 [LTH17] - ”Ultrafast and accurate clustering through impu-

tation for single-cell RNA-seq data.”
• Cluster validation packages

– mclust 5.4 [SFMR16] - “Gaussian finite mixture models fitted via EM al-
gorithm for model-based clustering, classification, and density estimation,
including Bayesian regularization, dimension reduction for visualisation,
and resampling-based inference.” Here, used to calculate ARI measures.

– NMI 2.0 [Wu16] - “Calculates the normalized mutual information (NMI)
of two community structures in network analysis.”

– MCDM 1.2 [Ceb16] - “Implementation of several MCDM methos for crisp
data for decision making problems.”

• Plot packages
– corrplot 0.84 [WS17] - “A graphical display of a correlation matrix or

general matrix.”
– NMF 0.23.6 [GS10] - “Provides a framework to perform Non-negative

Matrix Factorization (NMF).” Here, used for the consensus heatmap plot.
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