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Kurzfassung

Bluthochdruck ist weltweit ein bedeutender Risikofaktor für Todesfälle. Um Diagnose-

und Präventionsmaßnahmen zu verbessern, ist es notwendig, die zugrundeliegenden Dy-

namiken des Herzkreislaufsystems zu verstehen, wobei mathematische Modelle hilfreich

sein können. Während viele Aspekte des Blutdrucks in früheren Modellen diskutiert wur-

den, wird das Konzept der Re-Reflexionen von Blutdruckwellen am Herzen bisher kaum

berücksichtigt.

In dieser Arbeit wird ein einfaches Differenzengleichungsmodell entwickelt und präsentiert,

welches die zeitlichen Veränderungen des Blutdrucks in der Aorta, der größten Arterie des

menschlichen Körpers, beschreibt. Das Modell behandelt Reflexionen von Blutdruckwel-

len im arteriellen System sowie Re-Reflexionen am Herzen. Dabei wird die Anzahl der

Reflexionsstellen im arteriellen System variiert, sodass verschiedene Versionen des Mo-

dells entstehen. Die Reflexion am Herzen wird als konstant, aber auch, motiviert durch

das periodische Öffnen und Schließen der Aortenklappe, als zeitabhängig angenommen.

Weitere Parameter sind die Geschwindigkeit der Pulswelle, die Entfernung zu den Refle-

xionsstellen, die Stärke der Reflexion an diesen sowie die Herzrate. Da die Modellpara-

meter physiologischen Parametern entsprechen, können Referenzwerte aus der Literatur

angegeben werden.

Die Eigenschaften des Modells werden ausführlich diskutiert, sowohl analytisch als auch

numerisch. Für die analytische Diskussion wird auf Theorie über Differenzengleichungen

zurückgegriffen, die für das Modell mit einer Reflexionsstelle auch eine explizite Lösung

liefert. Die Modellgleichungen werden dann in Matlab implementiert. Der Vergleich von

Blutdruckkurven, die durch die Modellgleichungen generiert wurden, mit einer bei Patien-

ten gemessenen zeigt die Eignung des Modells zur Beschreibung von Blutdruckdynamiken,

abhängig von der Wahl der Parameter.

Die Analyse des Einflusses der verschiedenen Parameter auf Form und Größenordnung der
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erzeugten Kurven zeigt viele Parallelen zu früheren Resultaten auf, was die Brauchbarkeit

des Modells untermauert. Jene Beobachtungen, die keine Entsprechung in der Literatur

haben, helfen beim Verständnis des Modells. Es zeigt sich, dass die Resultate verbessert

werden können, wenn das Modell verfeinert wird, was weitere Forschung auf dem Gebiet

motiviert. Eine solche Verfeinerung kann durch die Hinzunahme weiterer Reflexionsstellen,

aber auch durch die genauere Modellierung der Reflexion am Herzen erzielt werden.
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Abstract

Elevated blood pressure is a major cause of death not only in developed countries. In order

to improve diagnosis and prevention it is crucial to understand the underlying dynamics.

Mathematical models can help with this. While many aspects of blood pressure have been

considered by previous researchers, the concept of re-reflections of blood pressure waves

at the heart has been neglected in most models.

In this thesis a simple difference equation model is developed and presented. It describes

blood pressure development over time in the aorta, the largest artery of the human body,

depending on parameters that characterize both the heart and the arterial system. Re-

flections both at one and more sites in the arterial system as well as re-reflections at the

heart are considered. Different versions of the model are obtained by varying the number

of reflection sites in the arterial system. Reflection at the heart is assumed both constant

and time-dependent, motivated by the periodic behavior of the aortic valve.

Further parameters include pulse wave velocity, distance to the reflection sites, reflection

magnitudes and heart rate. Since the model parameters are linked to physiological para-

meters, reference values can be found in literature.

The model is discussed thoroughly, both analytically, using difference equation theory, and

numerically. For the simplest versions of the model, considering only one reflection site,

it is possible to solve the equations directly. To conduct numerical analysis the model is

implemented in Matlab. Comparison of blood pressure curves generated by the model

and blood pressure curves measured in patients demonstrates that the model is able to

represent reality to some extent, depending on the choice of parameters.

Studying the influence of different parameters on shape and magnitude of modeled curves

reveals parallels to previous results which confirms the model’s usefulness. Some obser-

vations, however, do not have a counterpart in literature. They increase understanding

of the model. It is shown that results can be improved by refining the model, motivating
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further research in the field. Refinement can be obtained by increasing the number of

reflection sites and by a more detailed description of reflections at the heart.
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CHAPTER 1

Introduction

1.1 Motivation

Cardiovascular diseases are a group of diseases affecting the heart and the vascular system,

that is, the system of blood vessels. They are the main cause of death in many developed

countries. Statistik Austria [42], for example, reports that 41.2% of all deaths in Austria

were caused by cardiovascular diseases in 2016. One of the major risk factors for many

types of cardiovascular diseases is hypertension, that is, elevated blood pressure. According

to the World Health Organization [22] hypertension alone accounts for about 12.8% of the

annual deaths worldwide.

For this reason it is important to understand how blood pressure dynamics in the cardi-

ovascular system work. Researchers from a wide range of scientific fields such as medi-

cine, computer science and mathematics have been working on this problem for centuries.

Mathematical blood pressure models can help understand the dynamics and be used to

interpret data obtained from patients.

In order to highlight different aspects of blood pressure dynamics, different types of models

have been developed. Many of them include wave reflections [31], a concept that was first

mentioned in the seventeenth century [27]. The idea is that blood pressure waves coming

from the heart (forward waves) are reflected at certain sites in the arterial system and

produce backward waves. Some researchers [4, 53] extended this idea and argued that

these backward waves are re-reflected when they arrive at the heart. However, only very

few models exist that address this issue and therefore it is only poorly understood so far.
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CHAPTER 1. INTRODUCTION

1.2 Aim of the Thesis

The aim of this thesis is to develop a mathematical model of blood pressure dynamics

that includes the concept of re-reflected pressure waves. It is desirable to use a model that

is as simple as possible while at the same time including all the information necessary to

describe wave reflections.

Difference equations are a useful tool for simple descriptions of time-discrete dynamical

systems. They link the state of the system (which in the present case is blood pressure)

at any point in time with the states at a finite number of previous points in time. The

easiest type of difference equations are linear difference equations of the form

xk �

$&
%
°N
j�1 akjxk�j � bk, k P N¡N

yk, k � 1, . . . , N

with prescribed coefficients akj P R, inhomogeneities bk P R and initial values yk P R.

They have been studied extensively [1, 11] and solution techniques have been developed

[21].

Even though blood pressure dynamics are time-continuous, difference equations can be

used to describe them. We will fix a measuring site in the aorta and consider the deve-

lopment of blood pressure over time. Blood pressure at a fixed point in time can then be

calculated as the sum of blood pressure values at previous times, determined by the choice

of a finite number of reflection sites.

Besides formulating the model, the goal of the thesis is to analyze and present its pro-

perties such as the influence of various parameters on results. The model parameters and

properties can be grouped in three types as follows:

� Technical properties that do not have any physiological equivalent,

� changes in the arterial system and

� changes in the heart.

1.3 Thesis Outline

The thesis consists of five chapters. In chapter 1 motivation for and the aim of the

thesis are presented. Chapter 2 gives an overview of anatomy and physiology of the

cardiovascular system and introduces terminology that will be used later on as well as the

most important types of blood pressure models. In chapter 3 we will formulate the model,

considering only one reflection site. We will then analyze its properties and the influence

of parameters. Chapter 4 introduces more reflection sites and studies how this improves

results. In chapter 5 the results are discussed and applications of the model are suggested.

2



1.3. THESIS OUTLINE

An appendix provides material on linear difference equations and supplementary data for

chapter 4.
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CHAPTER 2

Pressure Waves in the Arterial System

In order for the models developed in chapters 3 and 4 to make sense it is crucial to know

about the functioning of the cardiovascular system. It is also important to understand

the technical terminology that will be used later on. This chapter aims to explain both as

well as give an overview of the models of the cardiovascular system that are currently in

use.

2.1 Anatomy and Physiology of the Cardiovascular System

Information about anatomy and physiology of the cardiovascular system can be found in

various medical and biomedical engineering textbooks [10, 13, 27, 32]. The role of the

cardiovascular system is to supply body cells with oxygen, nutrients and other substances

such as hormones, to cart off waste products and to maintain a stable body temperature.

It consists of two interconnected parts, the heart as the pumping motor and the vascular

system as a network for distribution. The carrier liquid is blood.

2.1.1 The Heart

Anatomy of the Heart. Even though mostly considered “the pump” of the cardiovas-

cular system the heart consists of two pumps working in parallel. The right side pumps

deoxygenated blood into the lung (pulmonary circulation) where it is reoxygenated and

carried back to the left side of the heart. Oxygenated blood is distributed in the body

(systemic circulation) by the left side of the heart, returning to the right side to complete

the circle.
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CHAPTER 2. PRESSURE WAVES IN THE ARTERIAL SYSTEM

The heart is a hollow muscle with muscle tissue consisting of a special type of muscle cells,

cardiomyocytes, that together form the myocardium. Cardiomyocytes mainly differ from

skeletal muscles in two aspects: their contractibility is lower but at the same time they

are more resistant to fatigue [13]. Pumping is performed by rhythmic contractions of the

myocardium that lead to a change in size of the cavities of the heart.

Each of the two sides of the heart is comprised of two cavities, the atrium and the ventricle.

The atria, positioned in the upper half of the heart, collect the blood from their respective

veins, the venae cavae for the right and the pulmonary vein for the left atrium. From the

atria the blood is transported to the ventricles through the tricuspid valve and mitral valve,

respectively. The valves prevent blood from flowing back to the atria from the ventricles.

The ventricles are positioned in the lower part of the heart and contract to push the blood

into their respective arteries, the pulmonary artery for the right and the aorta for the left

side. At the exit of each ventricle a second valve, the pulmonary valve for the right and

aortic valve for the left side, prevents blood to flow back into the ventricle. Since the

systemic circulation is much larger than the pulmonary circulation the left ventricle needs

more pumping power to supply it. Therefore the muscle tissue is much stronger in the left

ventricle compared to the right one.

A schematic illustration of the anatomy of the human heart is presented in figure 2.1. The

sides are reversed with respect to their names due to the position of the observer.

Figure 2.1: Schematic cross section of the heart, from [13]. Cavities: RA - right atrium,
LA - left atrium, RV - right ventricle, LV - left ventricle. Valves: TV - tricuspid valve,
MV - mitral valve, PV - pulmonary valve, AV - aortic valve. Vessels: SVC - superior
vena cava, IVC - inferior vena cava, PV - pulmonary vein, PA - pulmonary artery, AO -
aorta.

Electromechanical Properties of the Heart. The rhythmic pumping of the heart is

regulated by an electrical impulse system. The primary pacemaker of the heart is the sino-

atrial node, a bundle of nervous tissue located in the wall of the right atrium. Through
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2.1. ANATOMY AND PHYSIOLOGY OF THE CARDIOVASCULAR SYSTEM

its automatic self-excitation a electrochemical signal is produced at a rate of about 1

sec�1. The signal spreads through the myocardium as a depolarization wave, distributed

by so-called nodal myocytes. First the wave reaches the atria and causes them to contract.

From the atria the wave proceeds to the atrio-ventricular node that is located at the lower

part of the interatrial wall. This atrio-ventricular node works as a propagator for the

signal but can also take the role of a secondary pacemaker. At the atrio-ventricular node

the depolarization wave experiences a delay of around 100 ms before it proceeds to the

ventricles, causing them to contract almost synchronously. Recording the depolarization

wave produces an electrocardiogram (ECG). Opening and closing of the four valves is

controlled by blood pressure changes in the vessels and heart cavities due to contractions.

While the rhythm of excitation of the sino-atrial node is about 1 sec�1, corresponding to

a heart rate of 60 beats per minute (bpm), it is not steady. The body has a variety of

control mechanisms to influence the heart rate according to its needs, mainly the central

nervous system and the release of hormones into the blood. A resting athlete’s heart may

have only 45 bpm while under physical exercise the heart rate can reach up to 200 bpm.

The Cardiac Cycle. A cardiac cycle consists of two phases, systole and diastole. There

are various definitions for both phases that differ slightly. Systole is generally defined

as the time between closing of the mitral valve and closing of the aortic valve. Another

definition uses the electric activity of the myocardium, detected by the ECG. For the

purpose of this thesis it will be safe to define systole as the period of ventricular ejection

[13]. Diastole will be accordingly defined as the rest of the cardiac cycle, either using the

closing times of the valves or myocardial activity. At rest, when the heart rate is around

60 � 70 bpm, the diastole takes up about two thirds of the cardiac cycle. An increase in

heart rate mostly implies a decrease in diastole length while systole length remains almost

constant. Only at very high heart rates systole length decreases too [13].

2.1.2 The Vascular System

In analogy to the heart’s two sides the vascular system consists of two separate circulations.

The pulmonary circulation is supplied with deoxygenated blood by the right ventricle and

transports it through the lung. Reoxygenated blood is carried back to the left atrium.

The systemic circulation provides the body cells with oxygenated blood and carts off

deoxygenated blood. It is supplied by the left ventricle and leads into the right atrium.

Each of the two circulations is a closed system that can be divided into three compartments:

arteries, microcirculation and veins. Both networks consist of branching and merging

vessels of varying elasticity and decreasing size distal to the heart with around twenty

generations of bifurcations from the heart to the most distal vessels. Arteries and veins

transport blood from and to the heart, respectively. In between them are the capillaries,

arterioles and venules, also referred to as microcirculation, and responsible for various

exchange processes between blood and body cells.
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CHAPTER 2. PRESSURE WAVES IN THE ARTERIAL SYSTEM

In this thesis the focus will lie on the behavior of large arteries in the systemic circulation.

We will therefore concentrate on their properties and only give a short overview of the

nature of other vessels. From the left ventricle blood is pumped into the aorta, the largest

artery.

(a) Schematic image of the aorta and its
branches. Thoracic and abdominal aorta are
separated by the diaphragm. From [24].

(b) Schematic image of the thoracic aorta
and its branches. Separation into ascen-
ding aorta, aortic arch and descending aorta.
From [28].

Figure 2.2: Schematic images of different parts of the aorta and their branches.

The Arterial System. The aorta not only is the main distributing artery with bran-

ches to all the different areas of the body, it also serves as a so-called Windkessel. Blood

is ejected from the ventricle in a discrete way. Because the aorta, in particular in re-

gions proximal to the heart, is more distensible than more distal arteries it can extend

during systole to store blood, thus acting as a reservoir. During diastole the aorta con-

tracts, releasing the stored blood. This process smooths out the change of blood flow and

blood pressure throughout the cardiac cycle, similar to the way an air chamber (German:

Windkessel) transforms pulsatile flow to a steady one.

Stretching along the entire torso with a length of about 50 cm in a human adult, the aorta

can be divided into segments with respect to different properties. One classification is into

thoracic and abdominal aorta, separated by the diaphragm, see figure 2.2 (a). These two

segments can be further divided into the aortic root at the opening of the aortic valve, the

ascending aorta immediately after it, the aortic arch and the descending aorta, see figure

2.2 (b). The coronary arteries, supplying the heart, originate at the aortic root. Arteries

branching off in the aortic arch supply the upper half of the body (arms, neck, head) while

the arteries for all the abdominal organs originate in the abdominal aorta. At the aortic

bifurcation the aorta terminates and splits up into the common iliac arteries that supply

the pelvis and the lower limbs. From origin to termination aortic diameter decreases.

Even though the Windkessel effect of the large arteries weakens the differences in pressure

and flow in the arterial system between systole and diastole, both pressure and flow fluc-
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2.1. ANATOMY AND PHYSIOLOGY OF THE CARDIOVASCULAR SYSTEM

tuate throughout the cardiac cycle. Since the object of this thesis is aortic blood pressure

we will omit further information about blood flow. Blood pressure is oscillating between a

minimum (diastolic pressure, DBP) and a maximum (systolic pressure, SBP) value. Their

difference is named pulse pressure (PP). By convention, blood pressure is expressed in

millimeters of mercury, mmHg. In a healthy human adolescent the values are

DBP � 80 mmHg, SBP � 120 mmHg, PP � 40 mmHg

in the ascending aorta (central aortic pressure).

The Microcirculation. With each bifurcation of arteries the size decreases until they

are called arterioles. The distinction between arteries and arterioles according to the

vessels’ sizes is made at rather arbitrary values. From the arterioles blood is transported

to the capillaries, the vessels where the exchange of oxygen and nutrients between blood

and body cells takes place. Analogously to arterioles, the smallest vessels leading away

from capillaries are named venules. Their size increases as they lead back towards the

heart until, at a rather arbitrary threshold, they are called veins.

The Venous System. In most parts of the body, apart from the skull, the venous

network mirrors the arterial one. Many large arteries and their corresponding veins run

together with nerves surrounded by connective tissue. While blood flow in arteries is con-

nected directly to the cardiac cycle and thus quite regular, blood flow in veins depends on

other factors such as muscle contractions and respiration and displays significant irregu-

larities. To prevent backflow, large and medium sized veins have valves. Blood pressure

in veins is considerably lower than in arteries.

Wave Reflection. Both blood flow and blood pressure in arteries display one-di-

mensional wave-like behavior, propagating along the arterial system. Pressure waves can

propagate in either direction of the artery. At any site in the system where properties such

as elasticity of the vessel wall change, at every bifurcation and also at the terminations of

the arterial system reflected flow and pressure waves arise, see figure 2.3.

Figure 2.3: Schematic image of flow and pressure wave reflection at an arterial bifurca-
tion. From [10].
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CHAPTER 2. PRESSURE WAVES IN THE ARTERIAL SYSTEM

Thus, at any site in the arterial system measured flow (Q, liters per minute) and pressure

(P , mmHg) can be split up into their forward (i.e. away from the heart) and backward

(i.e. towards the heart) component,

Q � Qf �Qb and P � P f � P b.

The reflected waves are responsible for the difference in shape between flow and pressure

waves, compare figures 2.4 (a) and (b). They display the development of flow and pressure

at a fixed measuring site in the ascending aorta over time.

(a) Aortic flow (b) Aortic pressure

Figure 2.4: Pressure and flow wave in the ascending aorta. From [48].

While reflected pressure waves add up with the original forward traveling wave, reflected

flow waves are subtracted from the original wave. Both amplitude and timing of reflected

waves depend on various parameters such as the number and location of reflection sites,

pulse wave velocity and damping effects. Even though the role wave reflections play in

physiology and pathology of the cardiovascular system has been discussed controversially

[31] most researchers have reached the conclusion that they must be included in models

and analysis of the cardiovascular system [27]. The concept of wave reflection can be

extended by including reflections at the heart. Each of forward and backward flow and

pressure would therefore be composed of multiple waves. Evidence for the occurence of

these re-reflections can be found in the shape of the forward flow wave [4].

2.1.3 Blood

Blood is a suspension of blood cells (45% of volume) in blood plasma (55% of volume).

The relative contribution of blood cells to blood volume is called hematocrit. 92% of blood

plasma are water while the rest is comprised of proteins, small molecules and ions. Red

blood cells (erythrocytes) are mainly responsible for the transport of oxygen in the blood

and represent 97% of blood cell volume. The rest consists of white blood cells (leukocy-

tes) that are important for the immune system of the body and platelets (thrombocytes),

essential for blood coagulation at sites of injury.

In the following we will be interested in the viscosity of blood a detailed definition and

description of which can be found in literature [54]. The viscosity of blood depends on

both the viscosity of the plasma and the hematocrit. Unfortunately it is not constant but

also subject to size, shape and flexibility of the red blood cells, blood velocity, the size of
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2.2. MODELING THE CARDIOVASCULAR SYSTEM

the blood vessel and temperature. In large arteries, however, these influences are of little

importance and can be neglected [47], leading to the assumption of a constant viscosity

value η.

2.2 Modeling the Cardiovascular System

Applying mathematical methods in cardiovascular research can serve different purposes.

Some mathematical models aim to interpret measured blood pressure (and flow) values

with respect to their influence on cardiovascular disease. Other models aim to find a way

of calculating blood pressure (and flow) values depending on parameters of the system. In

this section we will give an overview of previously developed models of both types. First,

however, the characteristic features of a blood pressure curve and some parameters of the

cardiovascular system will be introduced.

2.2.1 Characteristics of a Blood Pressure Curve

Even though measured blood pressure curves differ from person to person, they all display

characteristic features. The shape also depends on the position within the vascular system

where the pressure is measured. Since we will concentrate on the aorta in this thesis, we

will also present the features of an aortic blood pressure wave, see figure 2.5.

Figure 2.5: Characteristic features of a blood pressure wave, including shoulder point
and dicrotic notch. Modified from [44].

In systole an aortic blood pressure wave consists of a steep systolic upstroke, usually a

shoulder point (see section 2.2.4) and a systolic peak. The end of systole is marked by

an incision, the dicrotic notch, that can be more ore less distinct. During diastole blood

pressure declines slowly and resembles an exponential decay.

2.2.2 Terminology

Impedance. It has been found [45, 46] that an analogy between electrical transmission

line theory and pulse wave propagation can be drawn where pressure corresponds to voltage

and flow to current [13]. Thus, also the term impedance, originally describing a relation
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between voltage and current, can be used to describe the arterial system. Since both

pressure and flow are propagated through the arterial system as waves they can be analysed

in the frequency domain and separated into their harmonics by Fourier analysis [54]. Then,

for each harmonic, input impedance at a specific site in the arterial system is defined as

Z �
P

Q
P C, (2.1)

i.e. the fraction of pressure and flow at the given site [31]. This complex number gives

information about the ratio of amplitudes as well as on the phase difference between the

two harmonics [54]. Analogously, characteristic impedance is defined as the ratio

Z0 �
P0

Q0
P C (2.2)

where P0 and Q0 refer to pressure and flow in a setting where no reflections are present

[31]. The calculation of impedance gives meaningful results only under certain conditions

such as linearity and time invariance that the arterial system at least approximates [54]. If

blood viscosity and viscoelasticity of the wall are neglected, which is a good approximation

in large arteries, it is possible to approximate characteristic impedance by the real number

Z0 �
ρ � c0
Ac

P R, (2.3)

where ρ denotes the density of blood, c0 is the pulse wave velocity (see below) and Ac is

the cross-sectional area of the vessel [54].

Compliance. To describe the Windkessel effect of large arteries it is necessary to know

how much the arteries extend when pressure rises during systole. This information is

expressed by compliance, defined by

C �
∆V

∆P
P R,

i.e. the ratio of change in volume and change in pressure. Its inverse is called arterial

stiffness [27]. Because the relationship between pressure and volume is nonlinear, the

value of C depends on the value of P around which change is considered [54], see figure

2.6. Since in blood vessels with their approximately cylindrical shape change in volume is

proportional to change in cross-sectional area, the use of area compliance

CA �
∆Ac
∆P

P R,

where Ac denotes cross-sectional area, instead of C makes sense [54].

Pulse Wave Velocity. The velocity with which a blood pressure wave (pulse wave)

propagates through the arterial system is called pulse wave velocity (PWV) and generally

denoted by c0. It has been established as a marker of arterial stiffness and cardiovascular
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Pressure P

Volume V

∆V

∆P

Figure 2.6: Illustration of the dependence of compliance on values of P . The solid curve
represents the physiological relationship while the dotted line has slope C. Reproduced
after [54].

risk [27]. Indeed it has been shown [54] that the relationship

c0 �

d
Ac

ρ � CA
(2.4)

holds where Ac denotes the cross-sectional area, ρ denotes blood density and CA is area

compliance. There are several methods to obtain wave velocity for a given arterial system.

The most direct method is to measure the time it takes the foot of the wave to travel over

a known distance. Other methods use equation (2.4) or changes in flow and area [54]. By

equation (2.3) pulse wave velocity can be linked to characteristic impedance.

Resistance [54]. Blood flow and pressure drop in a uniform tube of radius r and length

L can be linked using Poiseuille’s law

Q �
∆P � π � r4

8 � η � L
(2.5)

where η denotes the (assumed to be constant) viscosity of blood. Inserting R � 8ηL{πr2

into equation (2.5) yields
∆P

Q
� R,

which is in accordance with Ohm’s law of electricity that links voltage drop and current

via resistance. Thus, R is called resistance of the vessel P and Q are referring to. Using

the dimensions of different vessel types it can be seen that the main resistance of the

arterial tree is found in the small arteries and arterioles. It is often named peripheral

resistance. As for impedance calculation of peripheral resistance only makes sense for

linear and time-invariant systems.

Inertance [54]. Consider Newton’s law,

F � m �
dv

dt
,

where F is force, m is mass and v is the velocity of blood. For a vessel with given length

L and cross-sectional area Ac the net force is given by F � ∆P �Ac and mass is given by
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ρ � L �Ac. The rate of change of velocity, dv{dt, can be expressed in terms of volume flow

by p1{Acq � dQ{dt. Combining these identities with Newton’s law yields

∆P �Ac � ρ � L �
dQ

dt

which simplifies to

∆P � I �
dQ

dt

by defining inertance I � ρ � L{Ac.

2.2.3 Mathematical Models of the Cardiovascular System

Many different models have been developed to describe the flow of blood in the cardiovas-

cular system both in time and frequency domain [39], accounting for different properties.

This section will only mention a few types of models in the time domain to give an idea

of the diversity in models.

Fluid Dynamics [13]. One large class of models often referred to as distributed models

[54] uses fluid dynamics to describe blood flow. Due to the properties of blood effects of

viscosity can only be neglected if the vessel to be modeled is large enough. Since in this

thesis we are only interested in the behavior of blood flow in the aorta we will focus on this

case. Flow can be described by the Navier-Stokes equations, partial differential equations

linking blood flow velocity, not to be confused with wave velocity [54], and pressure in a

three-dimensional domain. Usually in this class of models only segments of the arterial

system are considered, resulting in a need for boundary conditions not only at the vessel

wall but also at the inlet and the outlet boundary. To further improve the model fluid

dynamics can be linked with continuum dynamics, taking into account displacements of

the vessel wall. Unfortunately these full three-dimensional models are very complex due

to the large number of vessels in the system and their different length scales.

For this reason simplifications of the 3D models have been developed. One major sim-

plification is to reduce the number of dimensions in space to one by integrating over the

cross-sectional area of the vessel, thus avoiding the explicit modeling of arterial wall me-

chanics [12]. Even though the information these models provide lacks the precision of

the three-dimensional ones they are able to describe the propagation of pressure waves in

arteries. In particular they enable us to study the global circulation instead of only artery

segments.

Another possibility is the assumption of two dimensions such that radial variation of blood

flow and pressure in an axisymmetric tube can be represented [39].

Windkessel Models [52]. An entirely different approach is taken by Windkessel models

that make use of the analogy between the cardiovascular system and an electric circuit.

They are zero-dimensional, lumped parameter models meaning they contain no spatial in-
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formation. Spatially distributed phenomena as well as the wave-like nature of pulse waves

are ignored. The first so-called two-element Windkessel model was introduced by Otto

Frank [14] already in 1899 and describes hemodynamics with respect to compliance and

resistance, linking aortic pressure and flow by Ohm’s law. Because significant differences

were found between measured pressure and the one modeled by the two-element Windkes-

sel during systole, a third element was added: characteristic impedance of the aorta. This

three-element Windkessel links the original two-element Windkessel to wave phenomena

due to the relationship represented in (2.3). It has been found, however, that the three-

element Windkessel only produces realistic aortic pressure and flow if the parameters are

chosen in a way that does not reflect the properties of the arterial system [43]. A solution

to this problem is the introduction of a fourth element, total inertance of the arterial sy-

stem [7]. Because this inertance is difficult to estimate, however, often the three-element

Windkessel is used. Windkessel models serve a variety of purposes, from offering boundary

conditions for other models to the determination of parameters.

Tube Models [54]. Because distributed models are very complex and the easier

Windkessel models ignore the wave-like behavior of blood pressure and flow, a new class

of models has been proposed. In single tube models the entire arterial system is modeled as

a single tube that represents the aorta combined with a model of the peripheral vascular

beds, often a Windkessel model. This type of model can be refined by including the

tapering of the aorta. Wave reflections are accounted for in single tube models with the

simplifying assumption that they all originate in the same reflection site. Often [10, 54]

the aortic bifurcation is mentioned as the principal bifurcation site. Instead of a single

tube an asymmetric T-tube can be used where reflections from the upper (head and arms)

and lower body parts are distinguished.

Unlike distributed and Windkessel models the term tube model does not refer to a particular

mathematical method. The characterizing property of tube models is the geometry. In

this thesis a single tube as well as an asymmetric T-tube model will be realized with

difference equations.

2.2.4 Mathematical Assessment of Pulse Wave Reflection

The models discussed in the previous section help increase understanding of the cardio-

vascular system. Often, however, it is desired to interpret pulse wave data obtained from

measurements in patients with respect to wave reflection. In this section we will present

some methods to do that.

Wave Separation Analysis. It has been mentioned above that both flow and pressure

can be split up in their forward and backward component. Since it is not possible to

measure the components separately, it was necessary to develop a method to calculate

them from measured flow and pressure values. The method presented here [20, 53] makes

use of the analogy of arteries and transmission line theory and includes both characteristic
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impedance Z0 and input impedance Z of the aorta. First of all consider once again

P � P f � P b and Q � Qf �Qb. (2.6)

Forward and backward pressure are linked by

P b � Γ � P f (2.7)

where the reflection coefficient Γ is defined as

Γ �
Z � Z0

Z � Z0
. (2.8)

Combining equations (2.6)-(2.8) with the definition of input impedance,

Z �
P

Q
,

yields

P f{b �
1

2
pP � Z0 �Qq and Qf{b �

1

2

�
Q�

P

Z0



.

Together with an appropriate approximation of Z0 such as equation (2.3) this is a simple

and fast method for quantifying wave reflection and its influence of pressure and flow. Since

its development wave separation analysis has been used in a variety of clinical studies,

confirming that wave reflections play a major role in cardiovascular dynamics [27]. An

illustration of a pressure curve separated in its forward and its backward component can

be found in figure 2.7.

Figure 2.7: Separation of a pressure wave into its forward (blue) and backward (red)
component. Modified from [36].

Augmentation Index. Another way of quantifying pulse wave reflection is the aug-

mentation index (AI), defined as

AI �
AP

PP
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where AP indicates the late systolic boost in the aortic pressure wave [27] and PP is the

pulse pressure. The late systolic boost is the height of the peak above the shoulder of the

wave where the shoulder is defined as the first concavity on the upstroke of the wave [16].

Several methods are available for the determination of AP [27]. The definition of the AI

is illustrated in figure 2.8.

Figure 2.8: Augmentation Index (AI) is defined as the ratio of AP and PP, from [56].

The advantage of using the AI instead of pulse wave separation lies in the fact that only

the measurement of pressure is required. Unfortunately, however, augmentation index

does not only depend on the magnitude of wave reflection but also on the time delay

between original and reflected wave, limiting its usefulness for estimating the magnitude

of reflections [54].

Wave Intensity Analysis [34]. Instead of decomposing waves in the frequency domain

using Fourier analysis it is possible to decompose waves into a sequence of small wavefronts.

They are best described by the change of properties during a sampling period ∆t, such as

dP � P pt�∆tq � P ptq.

The starting point of wave intensity analysis are the one-dimensional Euler equations

describing flow in an elastic tube with respect to pressure P and flow velocity U . Using

the methods of characteristics one can derive the water hammer equations

dP f{b � �ρ � c0 � dUf{b

with blood density ρ and pulse wave velocity c0 and, with their help, separate pressure

and velocity into their forward and backward component. Wave intensity is defined by

dIw � dP � dU and measures the flux of energy per unit area carried by the wave.

Wave intensity analysis provides information about several aspects of the arterial mecha-

nics. At the moment, however, it is mostly a research tool and not yet widely used for

clinical applications.
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CHAPTER 3

Difference Equation Model Using One Reflection Site

In our first model we imagine the arterial system to be a single uniform tube with the

heart on one end, hereafter referred to as (aortic) valve or heart, and an elastic boundary

on the other, herafter referred to as (distal) reflection site, see figure 3.1. Different authors

[23, 27, 59] have already showed this idea to be reasonable by comparing experimental

results with those computed using the model. The single tube model has already been

used to model repeated reflections in the arterial system [4] but with an approach different

from ours.

We are interested in describing the time curve of blood pressure P in a fixed site in the

ascending aorta, close to the aortic valve, hereafter referred to as measuring site. This

aortic root is of particular interest because it allows to assess the interaction of reflections

in the vascular system and the heart [8]. The distance between measuring site and distal

reflection site will be named effective length in this thesis. Usually this refers to the length

of the tube and is connected with the term effective reflection site [25], a terminology

expressing the reduction of multiple reflection effects to one. Justification for our usage,

however, will be given in sections 3.2 and 3.4.

AV RS

MS

Figure 3.1: Tube model of the arterial system as presented above. AV - aortic valve,
MS - measuring site, RS - distal reflection site.

The tube models developed so far have at least one spatial dimension [59] and take into
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account the elastic properties of the tube wall. Our model, however, will be dimensionless,

only depending on time. All spatial and elasticity information will therefore be integrated

in various constants and parameters, as explained below.

Several parameters and variables are needed to describe the reflections arising on both

ends of the tube. They can be grouped as follows:

Technical parameters:

� Time will be described by the discrete variable k P N where the length of a time step

k Ñ k � 1 is given by the step size τ . Accordingly, we are looking for the discrete

function pPkqkPN and all the upcoming time-dependent parameters will be given in

the same form.

Properties of the arterial system:

� The reflection coefficient at the distal reflection site, arising from a resistance [25]

that represents the properties of the arterial bed [27] and the damping of the wave

by the fluid (blood) [27], will be denoted by RD. It was first argued [45] and later

verified by experiments by Taylor [46] that to some extent an electric transmission

line can be used as an analogue of a fluid-filled elastic pipe. Thus, the reflection

coefficient is given [20] by

Γ �
Z � Z0

Z � Z0
� |Γ|eiφ P C,

where Z0 denotes the characteristic impedance, see equation (2.2), of the tube and

Z the input impedance, see equation (2.1). The complex number Γ can not be

used for our model because it requires separation of the given wave in its harmonics

using Fourier transformation. In our model, however, we will consider the wave

in the time domain and thus need a reflection coefficient that does not depend on

frequency. The ratio of the amplitudes of forward and reflected wave, derived by

classical wave separation, can be used as a real valued approximation [54], i.e.

Γ � RD �
P b

P f
P R.

In some papers [51] this real number is called reflection magnitude and denoted by

RM. Amplitudes are always positive, and due to the aforementioned damping effects

the amplitude of the reflected wave will always be less than the original one [27],

yielding 0 ¤ RD   1.

The choice of RD is coupled with the position of the distal reflection site, i.e. effective

length of the tube [9, 37, 51].

� The number of time steps it takes a pressure impulse to travel from the measuring

site to the distal reflection site and back will be denoted by the time constant tb P N.
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It includes information on both the distance between measuring site and reflection

site and PWV. It has been shown [51] that the time of return of the reflected wave is

also affected by the phase shift that occurs in the complex description of reflection.

Due to our simplification of the reflection coefficient, this time delay must be included

in the time constant tb. As mentioned above, the choice of the distal reflection site

and with it the choice of tb is coupled with the choice of the reflection coefficient.

According to prior studies [38] wave propagation in the arterial system is fast enough

to ensure that the return time is much shorter than the duration of one cardiac cycle.

In fact, we will see in section 3.5 that the return time is even significantly shorter

than systole duration.

� Analogously to tb, the number of time steps it takes a pressure impulse to travel

from the measuring site to the aortic valve will be denoted by tf P N. This time

constant is computed from distance between measuring site and aortic valve and

PWV. Again, the time constant should include the time delay produced by complex

reflection. Seeing that the measuring site is very close to the valve we can demand

tf ! tb.

Properties of the heart:

� The reflection coefficient at the aortic valve will be denoted by Rav where, with the

same arguments as above, 0 ¤ Rav   1. Since reflection intensity depends on the

state of the valve (open or closed or somewhere in between), Rav is ideally chosen to

be time dependent, i.e. Rav � pRavk qkPN [49]. Other choices, such as the limit cases

Rav � 1, i.e. treating the heart as a total reflector and Rav � 0, i.e. treating the

heart as a total absorber, are possible as well [49].

� While the distal reflection site is a closed end that only produces reflections, the heart

also operates as a driving force for pressure dynamics. During systole, when the valve

is open, blood is pumped into the system, increasing the pressure. This phenomenon

is represented by the (discrete) function pP ink qkPN. Unfortunately knowledge about

this systolic input is limited [45], so one goal of this thesis is to find a good estimation

To formulate the equations we now split the total pressure Pk into its forward and backward

component P fk and P bk , i.e. Pk � P fk � P bk , see section 2.1.2.

Using everything defined above we can find the equations

Model 1

P fk � P ink � P bk�2tf
Ravk�tf , k P N¡2tf , (3.1a)

P bk � P fk�tbRD, k P N¡tb . (3.1b)
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Figure 3.2 illustrates the idea behind equation (3.1a). For equation (3.1b) the situation is

practically the same, only in the opposite direction.

time position in tube

k � 2tf
P bk�2tf

k � tf
P bk�2tf

k
P bk�2tf

Ravk�tf

AV MS RS

Figure 3.2: Backward pressure is reflected at the time-dependent aortic valve as described
in equation (3.1a).

It can be seen in model 1 that for RD � 0 there holds P bk � 0 and thus Pk � P fk � P ink
which makes the idea of a difference equation model redundant. For this reason from now

on we will assume 0   RD   1.

3.1 Difference Equation Solutions

Inserting (3.1a) into (3.1b) and vice versa yields the two independent linear equations

P fk � P ink � P fk�2tf�tb
RDR

av
k�tf

, k P N¡2tf�tb , (3.2a)

P bk � P ink�tbRD � P bk�2tf�tb
RDR

av
k�tb�tf

, k P N¡2tf�tb . (3.2b)

Obviously both equations are of order N where N � 2tf � tb. Since they only define a

recurrence relation for k ¡ N , we need to prescribe initial values P fk � P̄k and P bk � P̂k,

k � 1, . . . , N . Then we know from standard literature [1, 11] that the initial value problems

$&
%P

f
k � P ink � P fk�2tf�tb

RDR
av
k�tf

, k P N¡N ,

P fk � P̄k, k � 1, . . . , N

and $&
%P

b
k � P ink�tbRD � P bk�2tf�tb

RDR
av
k�tb�tf

, k P N¡N ,

P bk � P̂k, k � 1 . . . , N,

defined by equations (3.2a) and (3.2b) and initial conditions, have unique solutions. De-

riving these solutions with traditional methods is tedious since it requires rewriting each

equation into a system of equations of first order, solving the homogeneous equation and

applying the variation of constants formula [1]. Fortunately, a solution theory was deve-

loped by Mallik [21] for exactly this type of equation. The procedure is very technical
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and only provided here for completeness. Following it is not necessary to understand the

fundamental aspects of the model.

Let us first consider equation (3.2a). Again, define N � 2tf�tb and transform the equation

to

P fk�N � P ink�N � P fk RDR
av
k�N�tf

, k P N.

In his paper Mallik proves that for equations of the type

yk�N �
Ņ

j�1

ak,jyk�N�j � xk�N , k P N,

with the initial values y1, . . . , yN and prescribed values xk the explicit form of the unique

solution is given by

yk�N �
Ņ

j�1

dk,jyN�1�j �
0̧

j�2�k

dk,jxN�1�j � xk�N , k P N, (3.3)

with the coefficients

dk,j �
k�j�1¸
r�1

¸
pl1,...,lrq

1¤l1,...,lr¤N
lr¥j

l1�l2�...�lr�k�j�1

�
r¹

m�1

ak�lm�
°m�1
n�1 ln,lm

�
(3.4)

for j � 2� k, . . . , N and k P N. In the case of equation (3.2a) we have

ak,j �

$&
%RDR

av
k�N�tf

, j � N,

0, else,
for k P N.

Inserting this in equation (3.4) we see that all summands vanish except for those with

lm � N for all m � 1, . . . , r, hence
°r
m�1 lm � r � N . Since the choice of lm demands°r

m�1 lm � k � j � 1 this can only be the case for k � j � 1 � r �N ô j � r �N � 1� k

for some r P N. Applying these considerations to (3.4) yields

dk,j �

$''&
''%

k�j�1
N±

m�1
RDR

av
k�pm�2qN�tf

, Dr P N : k�j�1
N � r,

0, else.

(3.5)

for j � 2 � k, . . . , N and k P N. In our case the initial values are chosen as P fk � P ink ,

k � 1, . . . , N . By inserting this and equation (3.5) into (3.3) we obtain

P fk�N �
¸

2�k¤j¤N
DrPN: j�r�N�1�k

P inN�1�j

k�j�1
N¹

m�1

RDR
av
k�pm�2qN�tf

� P ink�N , k P N
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and, by substituting r � k�j�1
N ,

P fk�N �
t k�1�N

N u¸
r�1

P ink�N�r�N

r¹
m�1

RDR
av
k�pm�2qN�tf

� P ink�N , k P N.

After inserting the definition of N and shifting the index by N we get

P fk � P ink �

Z
k�1

2tf�tb

^
¸
j�1

P ink�jp2tf�tbqR
j
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf
(3.6)

for k P N¡2tf�tb . Applying exactly the same procedure with the initial values P bk � 0,

k � 1, . . . , tb and P bk � RDP
in
k�tb

, k � tb � 1, . . . , N to equation (3.2b) yields

P bk � P ink�tbRD �

Z
k�tb�1

2tf�tb

^
¸
j�1

P ink�jp2tf�tbq�tbR
j�1
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf�tb
(3.7)

for k P N¡2tf�tb . Summing up equations (3.6) and (3.7) yields the explicit formula

Pk � P ink � P ink�tbRD �

Z
k�1

2tf�tb

^
¸
j�1

P ink�jp2tf�tbqR
j
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf

�

Z
k�tb�1

2tf�tb

^
¸
j�1

P ink�jp2tf�tbq�tbR
j�1
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf�tb

(3.8)

for k P N¡2tf�tb .

3.2 Plausibility of the Model

Before we start analyzing how the change of parameters influences the outcome of the

model it is important to verify if it makes any sense at all, i.e. if it produces curves that

correspond to reality. In order to do this we plot the modeled pressure and compare it

with a measured one. The measured curve that is used here and in sections 3.4, 4.2 and

4.4 is taken from a data set that was collected and used in a study by Weber et al. [50].

We choose P in as a half sine during systole and zero during diastole, see figure 3.3.

The reflection coefficient of the heart, Rav is chosen as the step function Rav � 1diastole
1.

Both these choices are taken from a paper by Wang and Parker [49] where they gave

1Both P in and Rav are discrete functions. For reasons of practicability we will refer to them as
continuous functions here and in the following. Rav � 1diastole means that it assumes the value one for
all discrete points in time during diastole and zero for all the other discrete points in time.
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0

1

P in

systole systolediastole diastole
k

Rav

Figure 3.3: Choice of P in as half sine during systole and zero during diastole and
Rav � 1diastole, as used in figure 3.4.

good results. For the choice of P in further arguments have been found [12]. Because the

authors were only interested in wave forms, not in absolute values, the choice of amplitude

is arbitrary.

For implementation it is necessary to shift the input function, i.e. P ink Ñ P ink�tf by tf steps:

Because it takes the pressure wave tf time steps to arrive at the measuring site, systole

and diastole are shifted by the same number of steps compared to the aortic valve.

Figure 3.4: Comparison of measured and modeled curve, normalized to the same pulse
pressure. Choice of parameters (see section 3.5): s � 0.348, d � 0.652, tb,ms � 150ms,
tf,ms � 5ms, RD � 0.6, τ � 0.0001.

In figure 3.4 we see that even though the modeled curve shows more spikes and is generally

less smooth, the main characteristics of a blood pressure curve are represented. We have

a (relatively) fast systolic upstroke, a notch at the end of systole (indicated by the vertical

blue line) and a slow diastolic decay.

The presence of distinct spikes in the modeled curve can be explained with the simplifi-

cation of assuming only one distal reflection site. Why they look the way they do will be

analyzed later, see section 3.7.3.

Since the arbitrary choice of the value 1 for the maximum of the input function P in leads

to values very different from the measured curve that assumes values between 80 and
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CHAPTER 3. DIFFERENCE EQUATION MODEL USING ONE REFLECTION SITE

140 mmHg, the two curves in figure 3.4 were normalized to have the same pulse pressure.

Absolute values should not be given too much weight here since we do not know the correct

scaling yet. See section 3.10 for more information on the correct scaling of the modeled

curves.

In the following sections we will analyze properties of model 1 and the influence of the

parameters. Wherever we already have information about the real arterial system, com-

parison can help further underline the plausibility of the model.

3.3 Periodicity and Properties

Considering once again equation (3.8), one might wonder if Pk is increasing infinitely in k.

After all, the number of summands seems to be growing almost linearly with k. In reality,

however, blood pressure obviously does not increase infinitely over time. It oscillates

between diastolic (DBP) and systolic (SBP) blood pressure, see section 2.1.2.

3.3.1 Stability and Boundedness of Solutions

To prove that the modeled curve displays the same behavior, we will use stability theory

for linear difference equation systems, see appendix A.1. Therefore we need to transform

equations (3.1a) and (3.1b) to equivalent systems of difference equations of order one.

Consider the equation

xk � xk�NRD � P ink , k P N¡N (3.9)

that is equivalent to (3.1a) with Rav � 1 and N � tb � 2tf . By defining

uk :� pxk�1, . . . , xk�N qT and bk :� p0, . . . , 0, P ink�N q
T

equation (3.9) can be transformed to the equivalent system

uk�1 � Auk � bk�1, k P N0 (3.10)

where

A �

�
������������

0 1 0 . . . . . . 0
... 0 1

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

0
...

. . . 1

RD 0 . . . . . . . . . 0

�
�����������


P RN�N
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is nonsingular. First of all we will prove properties of the system matrix A.

Claim 3.3.1 The powers of the matrix A are given by the following formulas.

1. There holds

Ar �

�
0 IN�r

RDIr 0

�
(3.11)

for r � 0, . . . , N � 1.

2. There holds AmN � RmDIN for m P N.

Proof.

1. Proof by mathematical induction. Due to the definition of A the induction base

is obviously fulfilled. The inductive step follows from the induction hypothesis by

multiplication with A.

2. Proof by mathematical induction. Consider formula (3.11) for r � N � 1. Multipli-

cation by A proves the induction base. There holds

AmN � ANApm�1qN � RDINR
m�1
D IN � RmDIN

which proves the inductive step.

�

Claim 3.3.2 For any matrix norm || � || there exists c ¡ 0 such that

||Ak|| ¤ c �Rt kN u
D

for k P N0.

Proof. It is known [15] that all matrix norms in RN�N are equivalent. For our purposes

we will choose the maximum absolute column sum of the matrix,

||A||1 � max
1¤j¤N

Ņ

i�1

|aij |.

For all k P N there exist m P N, r � 0, . . . , N � 1 such that k � mN � r and
X
k
N

\
� m.

By claim 3.3.1 it follows

||Ak||1 � ||AmN�r||1 � ||AmNAr||1 � ||RmDA
r||1 � RmD ||A

r||1 � RmD .

Because of the aforementioned equivalence of matrix norms for any generic matrix norm
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|| � || there exists c ¡ 0 such that ||B|| ¤ c � ||B||1 for any matrix B P RN�N and thus

||Ak|| ¤ c � ||Ak||1 � c �Rt kN u
D .

�

Next we will prove a claim for the homogeneous system.

Claim 3.3.3 For any vector norm || � || there holds

lim
kÑ8

||uk|| � 0

for all solutions uk of the homogeneous system

uk�1 � Auk, k P N0. (3.12)

Proof. According to theorem A.1.2 the general solution of (3.12) can be written as

uk � Aku0, k P N0

where u0 P RN is the initial condition.

Let || � ||Op denote the matrix operator norm induced by the vector norm || � ||. It follows

||uk|| ¤ ||Ak||Op||u0||, k P N0

and, using claim 3.3.2,

||uk|| ¤ c �Rt kN u
D ||u0||, k P N0

for some c ¡ 0 and k P N0. Because ||u0|| is bounded and 0   RD   1, we obtain

lim
kÑ8

||uk|| ¤ lim
kÑ8

c �Rt kN u
D ||u0|| � 0.

�

Claim 3.3.3 can be used to asses stability of the original system 3.10.

Claim 3.3.4 All solutions of system (3.10) are globally asymptotically stable.

Proof. From claim 3.3.3 and theorem A.1.12 it follows that the trivial solution of the

homogeneous system (3.12) is globally asymptotically stable. Applying theorem A.1.13

proves the statement. �

Even more than in stability we are interested in the boundedness of solutions. Again, we
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can use the result from claim 3.3.3.

Claim 3.3.5 All solutions of system (3.10) are bounded.

Proof. From claim 3.3.3 and theorem A.1.12 it follows that there exists c P R� such

that

||Uk|| ¤ c, k P N0

where Uk denotes the principal fundamental matrix of (3.12).

According to theorem A.1.9 the solution of (3.10) with initial condition u0 is given by

uk � Uku0 �
ķ

j�1

Ak�jbj�1, k P N0

which yields the estimate

||uk|| ¤ ||Uk|| ||u0|| �
8̧

j�1

||Ak�j ||||bj�1||, k P N0.

We now use that ||bj�1|| ¤ b0, @j P N for some b0 P R and claim 3.3.2, obtaining

||uk|| ¤ ||Uk||||u0|| �
N�1̧

j�1

b0 �
2N�1¸
j�N

RDb0 � . . . � ||Uk||||u0|| � pN � 1qb0
8̧

j�0

RjD, k P N0

and thus, due to 0   RD   1,

||uk|| ¤ c||u0|| � pN � 1qb0
1

1�RD
, k P N0. (3.13)

Hence, max
kPN0

||uk||   8 for constant 0   RD   1. �

Claim 3.3.5 can be extended to equation (3.9) and further to (3.1a).

Claim 3.3.6 All solutions
�
P fk

�
kPN of equation (3.1a) are bounded.

Proof. Because solutions for (3.9) can be found by

xk � puk�1�N qN , k P N¡N . (3.14)

boundedness follows from

|xk| � |puk�1�N qN | ¤ ||uk�1�N ||, k P N¡N

By theorem A.1.14 and claim 3.3.5 we know that p0 ¤qP fk ¤ xk for k P N¡N where P fk is

the solution of (3.1a) with the same initial condition. �
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Exactly the same analysis can be done for equation (3.1b) to prove that every solution

pP bkqkPN is bounded. Obviously this implies the boundedness of pPkqkPN.

3.3.2 Number of Relevant Summands in the Explicit Solution

Since we already know that pPkqkPN is bounded, we also know that the sums in (3.8)

converge for k Ñ 8 and thus the summands converge to zero. To find the maximum

number of “relevant” summands we first make the estimation

Pk ¤ 1�RD �

Z
k�1

2tf�tb

^
¸
j�1

RjD �

Z
k�tb�1

2tf�tb

^
¸
j�1

Rj�1
D , k P N¡N

for all k P N¡2tf�tb , assuming P ink � Ravk � 1. This is an upper bound for any solution

where max
kPN

P ink � 1 and max
kPN

Ravk � 1. The sums still converge for k Ñ 8 because they

can be majorised by the geometric series. Next define some tolerance level δ ¡ 0. The

idea is that the contribution of a summand less than δ is negligible. A similar idea was

pursued to determine the number of relevant reflected waves by Berger et al. [4], though

they used a relative instead of an absolute tolerance. We have

RjD   δ ô j lnRD   ln δ ô j ¡
ln δ

lnRD
,

so we know we can neglect all summands with j ¥
Q

ln δ
lnRD

U
�: m�pRDq if we choose a

sufficiently small δ ¡ 0. The value m�pRDq is monotonously increasing in RD which

agrees with previous results [4] and intuition. We obtain the approximation

Pk � P̃k � P ink � P ink�tbRD �
m�pRDq¸
j�1

P ink�jp2tf�tbqR
j
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf

�
m�pRDq¸
j�1

P ink�jp2tf�tbq�tbR
j�1
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf�tb

for k ¡ k0 with

k0 � m�pRDqp2tf � tbq � tb.

Thus, P̃k has the same number of summands for all k ¡ k0. The error Pk � P̃k can be

expressed by

Pk � P̃k �

Z
k�1

2tf�tb

^
¸

j�m�pRDq�1

P ink�jp2tf�tbqR
j
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf
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�

Z
k�tb�1

2tf�tb

^
¸

j�m�pRDq�1

P ink�jp2tf�tbq�tbR
j�1
D

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf�tb

for k ¡ k0.

An upper bound is given by

Pk � P̃k ¤
8̧

j�m�pRDq�1

RjD �
8̧

j�m�pRDq�1

Rj�1
D � p1�RDq

8̧

j�m�pRDq�1

RjD

for k ¡ k0. Using the geometric sum formula and inserting the definition of m�pRDq yields

Pk � P̃k ¤
1�RD
1�RD

R
ln δ

lnRD
D �

1�RD
1�RD

δ, k ¡ k0. (3.15)

To illustrate this section let δ � 0.00005. Table 3.1 provides different values of RD and

their respective m�pRDq. An upper bound of the error Pk � P̃k according to (3.15) is also

given.

RD m�pRDq error

0.1 5   7 � 10�4

0.3 9   1 � 10�3

0.5 15   2 � 10�3

0.7 28   9 � 10�3

0.9 94   1 � 10�2

Table 3.1: Different values of RD, their respective m�pRDq and upper bounds for the
error Pk � P̃k.

Table 3.1 clearly shows that for large values of RD a large number of summands is required.

Still, the error is considerably larger than for small values of RD. The importance of the

number of relevant numbers mainly lies in determining the setting time of the model as

will be seen in the following section.

It must be noted that due to the simplification P ink � Ravk � 1 the values obtained in this

section are much larger than in the realistic versions of the model.

3.3.3 Periodicity of Solutions

Next we want to show that Pk, the sum of products of periodic functions, is periodic again.

In reality blood pressure curves are approximately periodic. The period length equals the

sum of the duration of systole and diastole, i.e. the duration of one cardiac cycle, and

is indirectly proportional to the heart rate. Let K be the period of P in and Rav (i.e.

discrete length of systole plus discrete length of diastole, P ink�K � P ink and Ravk�K � Ravk )
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and consider the difference Pk�K � Pk for k P N¡N :

Pk�K � Pk � pP ink�K � P ink q �RDpP ink�K�tb � P ink�tbq

�

Z
k�1

2tf�tb

^
¸
j�1

RjD

�
P ink�K�jp2tf�tbq

j¹
m�1

Ravk�K�pm�1qp2tf�tbq�tf

� P ink�jp2tf�tbq

j¹
m�1

Ravk�tf�pm�1qp2tf�tbq

�

�

Z
k�K�1
2tf�tb

^
¸

j�

Z
k�1

2tf�tb

^
�1

RjDP
in
k�K�jp2tf�tbq

j¹
m�1

Ravk�K�pm�1qp2tf�tbq�tf

�

Z
k�tb�1

2tf�tb

^
¸
j�1

Rj�1
D

�
P ink�K�jp2tf�tbq�tb

j¹
m�1

Ravk�K�pm�1qp2tf�tbq�tf�tb

� P ink�jp2tf�tbq�tb

j¹
m�1

Ravk�pm�1qp2tf�tbq�tf�tb

�

�

Z
k�K�tb�1

2tf�tb

^
¸

j�

Z
k�tb�1

2tf�tb

^
�1

Rj�1
D P ink�K�jp2tf�tbq�tb

j¹
m�1

Ravk�K�pm�1qp2tf�tbq�tf�tb
.

Due to the periodicity of P in and Rav all but two terms cancel out, yielding

Pk�K � Pk �

Z
k�K�1
2tf�tb

^
¸

j�

Z
k�1

2tf�tb

^
�1

RjDP
in
k�K�jp2tf�tbq

j¹
m�1

Ravk�K�pm�1qp2tf�tbq�tf

�

Z
k�K�tb�1

2tf�tb

^
¸

j�

Z
k�tb�1

2tf�tb

^
�1

Rj�1
D P ink�K�jp2tf�tbq�tb

j¹
m�1

Ravk�K�pm�1qp2tf�tbq�tf�tb
.

Using the tolerance level defined above the summands can be neglected if j ¥ m�pRDq,
i.e.

k � tb � 1

2tf � tb
¥ m�pRDq ô k ¥ p2tf � tbqm�pRDq � tb � 1.

This tells us that after a setting time of p2tf � tbqm�pRDq � tb � 1 time steps Pk can be

considered periodic with the same period as P in, Rav. There holds lim
kÑ8

pPk�K � Pkq � 0

because the number of summands remains the same while their absolute value decreases

with increasing k.
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3.4 Shifting the Measuring Site towards the Heart

The solution for the general equations (3.2a) and (3.2b) is a rather unwieldy formula. In

the upcoming sections we will set tf � 0 to facilitate further calculations, a choice that

agrees with our idea of describing pressure in the aortic root. Are we allowed to do that,

though? After all, setting tf � 0 merges the measuring site with the aortic valve, a site

of reflection. Pressure might behave entirely different in this place. Still, arguments can

be found why this choice is reasonable under certain conditions.

First consider formula (3.7) with the input function

P ink �

$&
%1, k � 1,

0, else.

For tf ¡ 0 forward pressure is nontrivial if either k � 1 or there exists j � 1, . . . ,
Y

k�1
2tf�tb

]
such that k � jptf � tbq � 1 which is equivalent to

k � 1

2tf � tb
P N. (3.16)

Backward pressure is nontrivial if either k � tb�1 or there exists j � 1, . . . ,
Y
k�tb�1
2tf�tb

]
such

that k � jp2tf � tbq � tb � 1 which is equivalent to

k � tb � 1

2tf � tb
P N. (3.17)

Equations (3.16) and (3.17) cannot both be satisfied for the same k P N¡2tf�tb , hence

there holds

P fk ¡ 0 ñ P bk � 0 and P bk ¡ 0 ñ P fk � 0,

a connection that complies with the intuitive idea that a single impulse moves within the

system but remains a single impulse.

If tf � 0, however, equations (3.16) and (3.17) simplify to

k � 1

tb
P N and

k � tb � 1

tb
P N

two equivalent conditions. This implies that the single impulse is present twice at certain

points in time. Setting tf � 0 is therefore not reasonable in this case.

Now consider the input function

P ink �

$&
%1, k � 1, . . . , kmax

0, else
(3.18)
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where kmax ¡ 2tf � tb for a given tf ¡ 0. Since return times are significantly shorter than

systole duration (see section 3.5) and we will assume P in ¡ 0 during systole throughout

the thesis, this assumption makes sense.

Forward pressure is nontrivial if there exists j P
!

0, . . . ,
Y

k�1
2tf�tb

])
such that k�jp2tf�tbq P

t1, . . . , kmaxu or, equivalently,

k � kmax
2tf � tb

¤ j ¤
k � 1

2tf � tb

and j P N0. Due to our choice of kmax such a j P N0 can be found for any k P N, hence

at any point in time a forward impulse is present.2 By applying exactly the same idea to

backward pressure we conclude that at any point in time k P N¡tb a backward impulse is

present.

For tf � 0 and kmax ¡ tb we obtain the same result. Having a forward and a backward

running impulse at the same time is no longer a contradiction because from the beginning

more than one impulse is present.

Instead of the step function (3.18) any other function can be used as input, as long as

P ink ¡ 0 for k � 1, . . . , kmax and kmax ¡ tb. Assigning tf � 0 will not change the output

significantly. Evidence for this phenomenon with an input that is a half sine during systole

and vanishes during diastole can be found by comparing figures 3.4 and 3.5.

Figure 3.5: Comparison of measured and modeled curve, normalized to the same pulse
pressure. Choice of parameters (see section 3.5): s � 0.348, d � 0.652, tb,ms � 150ms,
tf,ms � 0ms, RD � 0.6, τ � 0.0001.

2In theory. In practice, forward pressure (and backward) can vanish due to high powers of RD conver-
ging to zero.
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Inserting tf � 0 into equation (3.8) yields

Pk � P ink � P ink�tbRD �

Y
k�1
tb

]¸
j�1

P ink�jtbR
j
D

j¹
m�1

Ravk�pm�1qtb

�

Y
k�tb�1

tb

]¸
j�1

P ink�pj�1qtb
Rj�1
D

j¹
m�1

Ravk�mtb ,

k P N¡tb ,

which further simplifies to

Pk � P ink �

Y
k�1
tb

]¸
j�1

P ink�jtbR
j
DpR

av
k � 1q

j�1¹
m�1

Ravk�mtb , k P N¡tb , (3.19)

a handy formula that will be used from now on.

3.5 Implementation and Parameter Values

In order to ensure comprehensibility of the following numerical analysis we will now give

an overview of implementation details and used parameter ranges.

The Matlab code to generate the blood pressure curve, a function called GenerateCurve-

Separated, is given in algorithm 3.5.1.

Algorithm 3.5.1

1 function [Pf, Pb, P] = GenerateCurveSeparated (s, d, J, tau, RD, tbms, tfms)

2 tb = floor (tbms * 0.001 / tau);

3 tf = floor (tfms * 0.001 / tau);

4 [Pin, Rav] = GeneratePinRav (s, d, J, tau, tf);

5 Pf = Pin;

6 Pb = [zeros(1,tb), Pin(1:2*tf) .* RD, zeros(1,length(Pin)-2*tf-tb)];

7 for k = 2 * tf + tb + 1 : length(Pin)

8 Pb(k) = Pin(k-tb)*RD + Pb(k-2*tf-tb)*Rav(k-tf-tb)*RD;

9 Pf(k) = Pin(k) + Pf(k-2*tf-tb)*Rav(k-tf)*RD;

10 end

11 P = Pf + Pb;

12 end

35



CHAPTER 3. DIFFERENCE EQUATION MODEL USING ONE REFLECTION SITE

The input parameters are as follows:

� Duration of systole and diastole in seconds are given by s and d, respectively. Trans-

formation to a finite number of time points (ks and kd, respectively, see definition

3.8.1) is done within the function GeneratePinRav that will be explained in algo-

rithm 3.5.2. Typical values are s � 0.3 and d � 0.7 [13]. Variation of systole and

diastole duration will be performed around these base values.

� The number of cardiac cycles to be generated is given by a power of 2 with the

exponent J. Again, this will become clear in algorithm 3.5.2. Choosing J ¡ 0 is only

necessary if m�pRDq ¡ ks � kd.

� To be able to modify precision and computation time and for some applications it

will be necessary to have the possibility to adjust the step size. The size of a time

step in seconds is given by tau, accordingly the number of time points per second is

1{τ .

� The reflection coefficient at the distal reflection site is given by RD. Different num-

bers were computed with different methods by various authors. Latham et al. [19]

computed local reflection coefficients from regional cross-sectional areas and regio-

nal foot-to-foot pulse wave velocities. The results differ according to the measuring

site. In the aorta at the level of the renal arterial branches they found a reflection

coefficient of RD � 0.43. Even though the model used slightly differs from the one

discussed here and local reflection coefficients differ from the global effective one,

the value can be used for orientation because the renal arterial branches are often

considered a main reflection site, see section 2.2.3. Other authors [37] computed the

global reflection coefficient by Pb{Pf , obtaining RD � 0.45 � 0.08 (mean � SD).

Computing the reflection coefficient by Pb{Pf in a model of the arterial system [51]

yielded RD � 0.5 or RD � 0.43, depending on the choice of PWV / effective length.

� Both the return time from the distal reflection site and the travel time to and from the

heart are given in milliseconds by tbms and tfms, respectively. They are transformed

to finite numbers of time points in lines 2 and 3 of the code, yielding the parameters

tb and tf that have been used in the previous sections. To find typical values for

tb,ms and tf,ms we need values for PWV and effective length.

Both as well as travel time directly were determined by Murgo et al. [25]. PWV was

measured as foot-to-foot velocity with a value of 6.68�0.32m{s (mean � SEM). The

travel time of the wave from the heart to the reflection site and back was defined as

the time from the beginning of the systolic upstroke to the beginning of the secondary

peak, yielding a value of 149� 7ms (mean � SEM). Effective length was calculated

using PWV and the frequency at which the first minimum of the impedance modulus

occurs.
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Segers et al. [37] found PWV to be 4.86 � 1.1m{s (mean � SD), using time and

distance traveled by the propagating flow front at four locations. Travel time, defined

as before, was determined as 165�33ms (mean � SD) and effective length calculated

as 38.7� 6cm (mean � SD), using the two previously found parameters.

Westerhof et al. [51] determined all values using mathematical models. Effective

length was given as 41cm. Travel time was calculated to be 100ms with a resulting

PWV of 8.2m{s.

The following algorithm presents how Pin and Rav are generated. In this case P in was

chosen to be a sine curve during systole, Rav is a step function. To choose different

functions, the algorithm can easily be adjusted accordingly.

Algorithm 3.5.2

1 function [Pin, Rav] = GeneratePinRav (s, d, J, tau, tf)

2 Pin = [sin(pi*(0:1/floor(s/tau):1)), zeros(1,ceil(d/tau))];

3 Rav = [zeros(1,floor(s/tau)), ones(1,ceil(d/tau))];

4 Pin = [zeros(1,tf), Pin];

5 Pin = Pin(1:length(Rav));

6 for j = 1:J

7 Pin = [Pin, Pin];

8 Rav = [Rav, Rav];

9 end

10 end

The main work of the algorithm is done in lines 2 and 3. Transformation of the values

s and d into numbers of time points is achieved via floor(s/tau) and ceil(d/tau),

respectively. In lines 4 and 5 the input function Pin is translated by tf time steps to

account for the fact that in the measuring site systole and diastole are shifted by tf time

steps. Finally, lines 6 to 9 demonstrate how the parameter J determines the number of

cardiac cycles produced.

3.5.1 Influence of the Input Function

First we want to know how the choice of the input function P in influences the shape

of the resulting curve. In particular we want to compare the sine curve we assumed in

section 3.2 and will use in all the numerical analysis in the following sections with the

step function that will be used in sections 3.8 and 3.9, hoping to justify that simplification

that facilitates mathematical analysis. The expectation is that a smoother P in leads to
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a smoother curve. Also, the sine function is more realistic than the step function since it

takes the opening and closing periods of the valve into account, hence we expect a more

realistic curve. A sine function has been used as input previously [12, 49]. Furthermore

absolute values should be higher if the step function is used due to the fact that, using

the same amplitude, its values are larger or equal to those of the sine function at every

point in time.

(a) P in is a sine during systole (b) P in is constant during systole

Figure 3.6: Comparison of different shapes of P in. Choice of parameters: s � 0.3,
d � 0.7, RD � 0.45, tb,ms � 145ms, τ � 0.0001. Second cardiac cycle.

Figure 3.6 compares the two different choices of P in where all other parameters are held

the same. Parameters were chosen according to section 3.5, with Rav being a step function.

The figures immediately confirm both our expectations. In its major characteristics, ho-

wever, the shape is very similar in both figures, with a steep ascent in systole and a slower

descent during diastole. End of systole is marked by vertical lines. Altogether using the

step function instead of the sine function in sections 3.8 and 3.9 seems to be justified.

3.5.2 Influence of Aortic Valve Reflection

Next we will compare different shapes for Rav that will be used in sections 3.7, 3.8 and

3.9 for both mathematical and numerical analysis. Mainly, we expect the curves to be

smoother if Rav is constant. Also, absolute values should be higher or lower, respectively,

if we choose an upper or lower bound for the step function Rav. Intuitively, choosing Rav

as a step function should also give the most realistic curve since reflection properties of

the valve are expected to be different for an open / closed valve.

The comparison of different choices of Rav is shown in Figure 3.7 and again, the end of

systole is marked by vertical lines. Parameters were chosen according to section 3.5, with

a sine function for P in. Indeed, the curve is smoother where Rav is chosen to be constant

with less distinct spikes. An explanation for the shape of the spikes in figure 3.7 (a) can

be found in section 3.7.3.
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(a) Rav
� 1diastole (b) Rav

� 1 (c) Rav
� 0

Figure 3.7: Comparison of different shapes of Rav. Choice of parameters: s � 0.3,
d � 0.7, RD � 0.45, tb,ms � 145ms, τ � 0.0001. First cardiac cycle.

The difference in absolute values is not very large but detectable. However, the curve

looks most realistic for the choice Rav � 1, motivating further investigation of that case

in section 3.8. Again, the main characteristics of the curves remain the same in all three

cases.

3.6 Variation of Cardiovascular System Parameters

3.6.1 Potential Problems

During the following sections we will analyze the influence of different parameters and

their underlying physiological equivalents (if applicable) on systolic, diastolic and pulse

pressure separately. In reality, however, most of these system parameters are coupled in

some way or the other. For example, connections between body height and heart rate [41]

as well as connections between body height and reflection coefficient [37] have been found.

This means that the variation of only one of them, with all the others held constant, is

very unrealistic. While for some parameters reasonable ideas can still be developed and

actually coincide with findings in literature, results should be handled with care.

3.6.2 Reflection Coefficient

Even though we know that the choice of the reflection coefficient RD is strongly connected

with the choice of effective length (see page 19) it can be linked to the arterial system

impedance when considering a fixed distance. Hence [27], absolute values are expected to

rise with RD.

Because RD is the same for all time points, both in systole and diastole, the value should

not be responsible for shape or smoothness of the curve. Rather than the number of spikes

their prominence is expected to grow with increasing RD.
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Furthermore, according to section 3.3.3, setting time until the produced curves are periodic

should rise with RD.

3.6.3 Systole and Diastole Duration

Diastole and systole duration are connected strongly with the heart rate. We thus need

to distinguish two cases:

Variable Heart Rate. We keep one of the two parameters fixed and vary the other.

This implies a change of heart rate and is physiologically interesting, since changes of heart

rate occur all the time in the human body.

Literature research shows that so far no clear influence of systole or diastole duration

on blood pressure has been determined. Wilkinson et al. [57] found that DBP increased

significantly with increasing heart rate while SBP did not (which implies a decrease in PP).

They even detected a decrease in SBP and PP and an increase in DBP with increasing

heart rate, particularly for a heart rate between 65 and 80 bpm [58]. Unfortunately change

in heart rate usually means a change in both diastole and systole duration which is why

complicates direct application of these results.

Our expectations are therefore only based on intuition. Since an increase in systole du-

ration increases the time span during which blood is ejected by the heart we expect it to

positively influence absolute blood pressure values. Similarly (and with the same argu-

mentation) we expect an increase in diastole length to negatively influence blood pressure.

Constant Heart Rate. Let us consider, however, the change of systole and diastole

duration while we keep their sum fixed. Physiologically this means looking at different

values of systole and diastole duration with a constant heart rate. As before we expect

systolic and diastolic pressure to be directly correlated with systole duration which in this

case is equivalent to being indirectly correlated with diastole duration.

As for shape, predictions are harder to make in both cases. Again, information is only

available for the influence of heart rate instead of the separate variation of systole and

diastole duration. Furthermore, both P in and Rav depend on systole and diastole duration.

3.6.4 Return Time

Due to its definition (see page 19) variation in tb can mean both variation in PWV and/or

variation in effective length.

PWV is known to be an indicator of arterial stiffness [27], positively influencing PP and

SBP [5]. We therefore expect tb to have the inverse effect, i.e. decreasing pressure with

increasing tb.

It is known (again, see page 19) that the choice of effective length is strongly connected with
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the choice of RD. Still, if we keep RD constant, variation of effective length does represent

variation of the length of the arterial system. The fact that a negative relationship between

body height and SBP / PP has been found [18] raises the expectation of a negative

relationship between tb and SBP / PP.

Both these theories indicate that there will be a negative relationship between tb and

absolute pressure values in general.

3.6.5 Step Size

Time step size τ is a purely technical parameter that determines how precise computations

are. It does not represent any physiological phenomenon and only occurs in connection

with the implementation of the algorithm. Variation of τ should not fundamentally affect

shape and magnitude of the model curve, only its precision, i.e. the smoothness.

3.7 Time-Dependent Reflection at the Heart

We have already had a first look at the shape of our curves in sections 3.2 and 3.4 and

seen that it is possible to choose the parameters in a way that the resulting curve displays

the major characteristics of a physiological blood pressure curve. In this section we want

to study how the variation of parameters influences absolute values and shape of the curve

when the input function P in and the reflection coefficient at the aortic valve Rav are chosen

as in section 3.2.

Since it is hard to quantify the shape of a curve, especially a discrete one, we will have

to do this analysis numerically, even graphically, by comparing plots. Because we have

more than one parameter to analyze and in order to compare plots we can only change

one at a time, comparing plots cannot prove general concepts. Still, it can give a hint if

our theories are reasonable.

3.7.1 Influence of the Reflection Coefficient

To assess the influence of RD on the model outcome we compute and plot the curves for

different values of RD, while all other parameters are held constant.

The ideas from section 3.6.2 are partly confirmed by figures 3.8 (a) -(e). While systolic

pressure and the prominence of spikes do increase with RD, diastolic pressure remains

very close to zero independent of the reflection coefficient. Also the setting time turns out

not to be influenced by RD, mostly due to the fact that the curves are already periodic

from the second cycle on for all considered values of RD.

Further, we see that the model gives physiological curves only if RD is “sufficiently small”.

The threshold, however, depends on the choice of other parameters. Choosing, for example,
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(a) RD � 0.1 (b) RD � 0.3 (c) RD � 0.5

(d) RD � 0.7 (e) RD � 0.9

Figure 3.8: Different values of RD and their influence on curve shape. Second cardiac
cycle. Choice of parameters: s � 0.3, d � 0.7, tb,ms � 145ms, τ � 0.0001.

a higher value of tb results in unrealistic shapes already at lower values of RD. In particular,

for the specific parameter values used a reflection coefficient of RD � 0.5 looks reasonable,

agreeing with the values from literature, see section 3.5.

3.7.2 Influence of Systole and Diastole Duration

To asses the impact systole and diastole duration have on absolute values and shape of the

pressure curve we compute and plot the curves for different values. We confine ourselves to

the case of a variable heart rate, i.e. systole and diastole duration are varied independently.

In figure 3.9 blood pressure curves are plotted for five different values of systole length,

with all the other parameters held constant. Systole length ranges from 0.1 seconds to

the length of diastole, in this case 0.9 seconds. End of systole is marked by a vertical

line in the respective color. We see that systolic blood pressure increases with systole

length, a result consistent with the prediction in section 3.6.2. Because diastolic pressure

remains zero regardless of systole length, also pulse pressure increases. Interestingly, the

prominence of all secondary spikes, that is, spikes that occur during diastole, decreases

with increasing ktbs while their width remains (almost) the same. The reason for this can

be found in section 3.7.3. Both for too low and too high values of ktbs the curve does not

resemble a measured one any more. The thresholds, though, will depend on the choice of

the other parameters again.
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Figure 3.9: Shape of the blood pressure curve for five different values for ktbs . First
cardiac cycle. End of systole is marked by a vertical line in the respective color. Choice
of parameters: d � 0.9, tb,ms � 145, RD � 0.45, τ � 0.0001.

In figure 3.10, however, we see that diastole length does not have a significant impact

on the shape of the curve. Blood pressure curves are plotted for four different values of

diastole length (ranging from systole length 0.3 seconds to 0.9 seconds).

Figure 3.10: Shape of the blood pressure curve for four different values for ktbd . First
two cardiac cycles. Choice of parameters: s � 0.3, tb,ms � 145, RD � 0.45, τ � 0.0001.

Because during the first cardiac cycle all four curves look identical and time shift only

occurs after diastole two cycles were plotted. We see that shape as well as absolute values

are almost constant. Again, an explanation for this behavior can be found using the

results from section 3.7.3: The shape of the curve mainly depends on the shape of the

input function. A longer diastole will thus mainly produce more spikes and only slightly

change their shape.
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Another interesting observation can be made in figure 3.10, mainly for d � 0.5 and d � 0.7.

At the end of diastole, right at the beginning of systole, pressure decreases significantly

before it starts rising due to systolic input. The same phenomenon has been observed

before [33, Figure 2] and can be explained as follows: When the aortic valve opens the

reflection coefficient at the heart becomes zero. Forward pressure is reduced by the amount

of reflections that therefore disappear while the contribution of the input function still is

small.

3.7.3 Influence of Return Time

In section 3.6.4 we predicted a negative relationship between tb and systolic as well as pulse

pressure. Numerical analysis confirms these predictions, see figure 3.11. In accordance

with previous results [38] tb,ms is chosen to be much shorter than systole duration. Diastolic

pressure remains zero regardless of the choice of tb,ms.

(a) tb,ms � 70ms (b) tb,ms � 95ms (c) tb,ms � 120ms

(d) tb,ms � 145ms (e) tb,ms � 170ms (f) tb,ms � 195ms

Figure 3.11: Different values of tb and their influence on curve shape. First cardiac cycle.
End of systole is marked by a red vertical line. Return times after the end of systole are
marked by blue vertical lines. Choice of parameters: s � 0.3, d � 0.7, RD � 0.45,
τ � 0.0001.

Furthermore we observe that all the secondary spikes (spikes occurring during diastole)

become wider, smoother and more prominent with increasing value of tb. Indeed, the

width of each secondary spike equals the return time as can be told by the position of the

blue vertical lines indicating the first, second, third,... time of return after the beginning

of diastole.

The question is raised whether this phenomenon can be observed for arbitrary parameter

values or is due to the specific choice of parameters. An answer to this question together
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with a technical explanation for the phenomena can be found in the basic formula (3.19):

According to figures 3.11 (a) -(f) all the secondary spikes happen during diastole. During

diastole the sum in formula (3.19) only has one nontrivial summand

P ink�j0tbR
j0
DpR

av
k � 1q

j0�1¹
m�1

Ravk�mtb

for some j0 P N due to the choice of Rav. This can be seen as follows: For j   j0 we

obtain P ink�jtb � 0 (still in diastole), with the choice j ¡ j0 there exists 1 ¤ m   j such

that Ravk�mtb � 0 (already in systole). This means the spikes are the part of the input

function between tb steps prior to the end of systole and the end of systole, multiplied by

increasing powers of RD. The larger tb the longer is the used part of the input function,

hence the spikes look smoother.

Another question is what happens to reflections during systole. The bump that can

be observed tb time steps after the beginning of systole indicates the return of the first

reflection. Also in systole formula (3.19) can only have one nontrivial summand

P ink�j0tbR
j0
DpR

av
k � 1q

j0�1¹
m�1

Ravk�mtb � P ink�j0tbR
j0
D

j0�1¹
m�1

Ravk�mtb

for some j0 P N. There holds

j0

$&
% � 1 if k is more than tb time steps after the beginning of systole,

¡ 1 else.

This can be seen as follows: In the first case for j ¡ 1 there exists 1 ¤ m   j such that

Ravk�mtb � 0. In the second case for j   j0 there holds P ink�jtb � 0, for j ¡ j0 there exists

1 ¤ m   j such that Ravk�mtb � 0. The second case, however, is only relevant for relatively

large values of RD, such that j0 ¤ m�pRDq. If applicable reflections from the first (second,

third,...) cardiac cycle influence the systolic spike of the second (third, fourth,...) one,

causing a jump a multiple of tb time steps after the end of the previous systole. The

bump that can be observed tb time steps after the beginning of systole becomes a distinct

incision, see figure 3.12. Parameters were chosen such that systole or diastole length are

not multiples of tb,ms and that the aforementioned incision is visible.

Because both P ink and P ink�tb do not make jumps there are no further bumps during systole.

At the end of systole the summands are doubled since Ravk switches from 0 to 1, causing

the first visible spike.

Next, we want to study the case where tb,ms is larger than systole length, see figure 3.13.

The shape of the curve is less realistic if tb,ms is chosen larger than systole duration. It

is clearly visible that during one cardiac cycle each segment of length tb is a copy of the

previous one multiplied by some constant, which can be verified by formula (3.19).
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Figure 3.12: Plot of blood pressure curve with tb,ms � 161ms. First two cardiac cycles.
End of systole is marked by a red, beginning by a cyan vertical line. Return times are
marked by blue vertical lines. Choice of parameters: s � 0.3, d � 0.7, RD � 0.6,
τ � 0.0001.

.

Figure 3.13: Plot of blood pressure curve with tb,ms � 360ms. First two cardiac cycles.
Choice of parameters: s � 0.3, d � 0.7, RD � 0.45, τ � 0.0001.

In the second cardiac cycle interference with waves from the previous cycle are responsible

for the difference in shape.

3.7.4 Influence of Step Size

In figure 3.14 six different values for τ are used to compute and plot curves in order to

asses the influence of the step size τ .
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(a) τ � 0.0001s (b) τ � 0.0005s (c) τ � 0.001s

(d) τ � 0.005s (e) τ � 0.01s (f) τ � 0.05s

Figure 3.14: Different values of τ and their influence on curve shape. First cardiac
cycle. End of systole is marked by a vertical line. Choice of parameters: s � 0.3, d � 0.7,
tb,ms � 145, RD � 0.45.

We can see that indeed the curves remain practically unchanged for τ � 0.0001s to

τ � 0.01s. The curve computed using τ � 0.05s, however, does not show any of the

characteristic spikes of the model, indicating that this time step size is too large. In al-

gorithm 3.5.1 we could see that τ was needed to compute the time parameters tb and tf

using the floor function. An increase of τ leads to a possible increase of the error caused

by this function and thus a lower value of tb.

3.8 The Heart as Total Reflector

Since in section 3.5.2 we could see that modeling the heart as a total reflector, i.e. Rav � 1,

gives fairly reasonable results, we want to further investigate that case. We will see that

using a step function instead of a sine for the input function P in enables us to analyze the

model not only numerically but also (to some extent) mathematically. In particular, we

will be able to find formulas for systolic, diastolic and pulse pressure.

First of all, let P in be the step function P in � 1systole. Obviously prescribing a very

simple input function influences the behavior of the blood pressure curve but we have seen

previously (see section 3.5.1) that the main characteristics of the curves are preserved.
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Now equation (3.19) simplifies to

Pk � P ink � 2

Y
k�1
tb

]¸
j�1

RjDP
in
k�jtb

� 1systolepkq � 2

Y
k�1
tb

]¸
j�1

RjD1systolepk � jtbq,

k P N¡tb . (3.20)

Next, we will develop formulas for both SBP and DBP and thus also for PP.

3.8.1 Systolic, Diastolic and Pulse Pressure

Let k P N, k ¥ tb pm�pRDq�1q�1 be given. The goal is to find a formula for Pk, depending

on the temporal position of k within the cardiac cycle, using the notation introduced in

the following definition.

Definition 3.8.1 The number of time points in systole will be denoted by ks, the number

of time points in diastole by kd. Further, we set

ktbs :�
R
ks
tb

V
and ktbd :�

R
kd
tb

V
.

To understand the analysis that will be conducted regarding the influence of parameters

on SBP and DBP in sections 3.8.3 - 3.8.5 it is not necessary to follow the very technical

arguments in this section. They are only provided for reasons of completeness.

In formula (3.20) the number RjD only adds to Pk if k � jtb is a point in systole. In the

following we will need to know for how many consecutive values of j this is true. Likewise

we will need the number of consecutive values of j such that k � jtb is in diastole. Using

the notation from definition 3.8.1 one recognizes that the number is either ktbs or ktbs �1 for

systole and ktbd or ktbd �1 for diastole if the starting point is one that can be reached within

tb time steps from the previous diastole or systole, respectively. Figure 3.15 illustrates this

for ks � 5, kd � 10 and tb � 3, i.e. ktbs � 2 and ktbd � 4.

Now imagine repeatedly taking tb time steps, passing through several cardiac cycles. De-

termining exactly how many points of each systole and diastole are reached will be tedious

work and impossible to do without knowledge of ks, kd and tb. Instead we will call these

numbers ns and nd respectively, with ns P tktbs � 1, ktbs u and nd P tk
tb
d � 1, ktbd u and ignore

the fact that we do not know which of the two values ns and nd really attain. Specifying

ns and nd will later lead to our first estimation.

The assumption of k being in systole gives ks possibilities of what Pk might look like.
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(a) Systole: Depending on the starting point one (ktbs �1, blue dot) or two (ktbs , red and
black dots) points are reached by going back tb steps.

(b) Diastole: Depending on the starting point three (ktbs � 1, blue and red dots) or four
(ktbs , black dots) points are reached by repeatedly going back tb steps.

Figure 3.15: Illustration of the number of consecutive values j such that k � jtb is in
systole or diastole, respectively.

� If k is the last time point in systole, the first ns � 1 time points reached by k � jtb

with j ¥ 1 are still in systole, meaning that RjD will be added to Pk. The next nd

are in diastole (nothing gets added to Pk), followed by ns time points in systole.

This pattern will be continued while k � jtb ¥ 1. Instead of a verbal description, a

mathematical expression for these considerations can be obtained by adaptation of

formula (3.20), yielding

Pk � 1� 2
ns�1¸
i�1

RiD � 2
nş

i�1

Rns�nd�i�1
D � 2

nş

i�1

R
2pns�ndq�i�1
D

� . . .

� 2
nş

i�1

R
pl�1qpns�ndq�i�1
D � 2

imax̧

i�1

R
lpns�ndq�i�1
D

(3.21)

where . . . indicates that the sums continue in the same manner until

k � tb

�
l pns � ndq � imax

	
¤ 0

for some 1 ¤ imax   ns and l P N, see equation (3.20). In order to simplify the

following calculations we assume to have infinitely many sums. This can be justified

by the fact that there holds k ¥ tb pm�pRDq � 1q � 1 and thus

tb

�
l pns � ndq � imax

	
¥ tb pm�pRDq � 1q � 1 (3.22)

which makes all the additional sums negligibly small, see section 3.8.2.

By adding the negligibly small summands to obtain an infinite number of sums

formula (3.21) now simplifies to

Pk � 1� 2
ns�1¸
i�1

RiD � 2
8̧

j�1

R
jpns�ndq
D

nş

i�1

Ri�1
D
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which is transformed to

Pk � 1� 2

�
1�RnsD
1�RD

� 1



� 2

1�RnsD
1�RD

�
1

1�Rns�ndD

� 1

�

using the geometric sum formula. Rearranging further yields

Pk � 1� 2
RD �RnsD

1�RD
� 2

1�RnsD
1�RD

Rns�ndD

1�Rns�ndD

.

� Now assume k to be such that only the first ns � 2 points reached by k � jtb with

j ¥ 1 are in systole. Everything else is shifted by one. Carrying out the same

estimations and transformations as above finally yields

Pk � 1� 2
RD �Rns�1

D

1�RD
� 2

1�RnsD
1�RD

1

RD

Rns�ndD

1�Rns�ndD

� . . .

Going through the same process as above for all the possible temporal positions for k

within systole finally leads to the general formula

P systpl, ns, ndq :� 1�
2RD

1�RD
� 2R�lD

�
Rns�ndD

1�RnsD
1�RD

1

1�Rns�ndD

�
RnsD

1�RD

�
(3.23)

for some l � 0, . . . , ns � 1 indicating at what temporal position within systole k is.

Unfortunately formula (3.23) still depends on the particular values of ns and nd as well

as on the exact temporal position of k within systole. Since we are interested in finding

maximum and minimum values, though, we do not need this general form. Rather, we

want to choose l (and later also ns and nd) such that the expression given by (3.23) is

maximized / minimized.

Claim 3.8.2 The expression P systpl, ns, ndq given by (3.23) is decreasing monotonously

in l.

Proof. In consequence of 0   RD   1 the term 2R�lD is increasing monotonously in l

and thus all we need to check is the sign of
�
. . .

	
in (3.23).

Consider

Rns�ndD

1�RnsD
1�RD

1

1�Rns�ndD

�
RnsD

1�RD
  0

ô RndD
1�RnsD
1�RD

1

1�Rns�ndD

�
1

1�RD
  0

ô RndD p1�RnsD q � 1�Rns�ndD   0
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ô RndD � 1   0.

The last inequality is true because 0   RD   1. �

Now assume k to be in diastole. Again, we have to find the formula for kd different possible

temporal positions.

The same procedure as above yields

P diastpl, ns, ndq :� 2Rd�lD

ns�1¸
i�1

Ri�1
D

8̧

j�0

R
jpns�ndq
D � 2

1�RnsD
1�RD

Rnd�lD

1

1�Rns�ndD

(3.24)

for some l � 0, . . . , nd � 1 indicating at which temporal position in diastole l lies.

Claim 3.8.3 The expression P diastpl, ns, ndq given by (3.24) is monotonously increasing

in l.

Proof. Can be seen directly due to 0   RD   1. �

Choice of ns, nd. As mentioned above, ns P
 
ktbs � 1, ktbs

(
, nd P

!
ktbd � 1, ktbd

)
and it

is at best very tedious to determine exactly which of the two values to choose. For this

reason at this point we need to make estimations. The idea is to maximize / minimize

formulas (3.23) and (3.24) with respect to ns and nd to find upper estimates for SBP and

lower estimates for DBP.

Claim 3.8.4 Formulas (3.23) and (3.24) depend on ns and nd as follows:

1. P systpl, ns, ndq is monotonously increasing in ns and decreasing in nd.

2. P diastpl, ns, ndq is monotonously increasing in ns and decreasing in nd.

Proof.

1. We need to calculate the derivatives with respect to ns and nd respectively.

� There holds

d

dns
P systpl, ns, ndq � R�lD

2pRndD � 1q
1�RD

RnsD lnRD

p1�Rns�ndD q2
.

Due to 0   RD   1 it follows that RnsD � 1   0 and lnRD   0, while all

other factors are positive. Altogether this yields d
dns

P systpl, ns, ndq ¡ 0 for all

l, ns, nd.

� There holds

d

dnd
P systpl, ns, ndq � R�lD

2RnsD
1�RD

lnRD
RndD p1�RnsD q
p1�Rns�ndD q2

  0 @l, nd, ns
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with similar arguments as above.

2. Again, we calculate the derivatives with respect to ns and nd.

� There holds

d

dns
P diastpl, ns, ndq �

2Rnd�lD

1�RD
lnRD

RnsD pR
nd
D � 1q

p1�Rns�ndD q2
¡ 0 @l, nd, ns,

where again the main argument is 0   RD   1.

� There holds

d

dnd
P diastpl, ns, ndq �

2p1�RnsD q
1�RD

Rnd�lD lnRD

p1�Rns�ndD q2
  0 @l, nd, ns,

with similar arguments as above.

�

Actual form of diastolic, systolic and pulse pressure. To find out the actual

(estimated) representations for SBP and DBP we will maximize / minimize P syst and

P diast with respect to l, ns and nd and compare the results.

Claim 3.8.5 The minimum of the curve after a setting time of m�pRDq time steps, dia-

stolic pressure, is approximately given by

DBP � min
k¥m�pRDq

Pk � 2
1�Rk

tb
s �1
D

1�RD
R
k
tb
d
D

1

1�R
k
tb
s �k

tb
d �1

D

for any positive integer values of ktbs and ktbd .

Proof. There holds

min
l,ns,nd

P diast � 2
1�Rk

tb
s �1
D

1�RD
R
k
tb
d
D

1

1�R
k
tb
s �k

tb
d �1

D

. (3.25)

and

min
l,ns,nd

P syst � 1�
2RD

1�RD
�R2�k

tb
s

D

�
�2R

k
tb
s �k

tb
d �1

D

1�Rk
tb
s �1
D

1�RD

1

1�R
k
tb
s �k

tb
d �1

D

� 2
Rk

tb
s �1
D

1�RD

�

.

To prove the claim we need to show that min
l,ns,nd

P diast ¤ min
l,ns,nd

P syst for all 0   RD   1 or,

equivalently, min
l,ns,nd

P diast� min
l,ns,nd

P syst ¤ 0. Multiplying the difference with the (positive)

common denominator gives (after simplification)

min
l,ns,nd

P diast � min
l,ns,nd

P syst ¤ 0 ô p1�RDq
�

2R
k
tb
d
D �R

k
tb
s �k

tb
d �1

D � 1



¤ 0.
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This can be further simplified by dividing by 1�RD which is positive, yielding

min
l,ns,nd

P diast � min
l,ns,nd

P syst ¤ 0 ô 2R
k
tb
d
D �R

k
tb
s �k

tb
d �1

D � 1 ¤ 0. (3.26)

Now consider

d

dRD
2R

k
tb
d
D �R

k
tb
s �k

tb
d �1

D � 1 � 2ktbd R
k
tb
d �1

D � pktbs � ktbd � 1qRk
tb
s �k

tb
d �2

D ¡ 0

which is equivalent to

RD  

�
2ktbd

ktbs � ktbd � 1

� 1

k
tb
s �1

.

Since physiologically realistic values must meet ktbs   ktbd and thus

1  

�
2ktbd

ktbs � ktbd � 1

� 1

k
tb
s �1

,

this condition is always fulfilled and the expression in (3.26) is monotonously increasing

in RD. Hence, it is sufficient to prove the inequality for the limiting case RD Ñ 1. We

have �
2R

k
tb
d
D �R

k
tb
s �k

tb
d �1

D � 1


 �����
RD�1

� 0,

proving our claim. �

Unfortunately, no similar claim can be proved for systolic blood pressure. An explicit

approximate formula for SBP can only be found if the values ks, kd and tb are known, as

the following computations show.

There holds

max
l,ns,nd

P syst � 1�
2RD

1�RD
� 2

�
�Rktbs �ktbd �1

D

1�Rk
tb
s
D

1�RD

1

1�R
k
tb
s �k

tb
d �1

D

�
Rk

tb
s
D

1�RD

�

 (3.27)

and

max
l,ns,nd

P diast � 2
1�Rk

tb
s
D

1�RD
RD

1

1�R
k
tb
s �k

tb
d �1

D

. (3.28)

We want to know where max
l,ns,nd

P syst ½ max
l,ns,nd

P diast or, equivalently,

max
l,ns,nd

P syst � max
l,ns,nd

P diast ½ 0

holds. Multiplying the difference with the (positive) common denominator gives (after
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simplification)

max
l,ns,nd

P syst � max
l,ns,nd

P diast ½ 0 ô p1�RDq
�

1�R
k
tb
s �k

tb
d �1

D � 2Rk
tb
s
D



½ 0.

This can be further simplified by dividing by 1�RD which is positive, yielding

max
l,ns,nd

P syst � max
l,ns,nd

P diast ½ 0 ô
�

1�R
k
tb
s �k

tb
d �1

D � 2Rk
tb
s
D



½ 0.

Unfortunately the polynomial on the left hand side can have a root 0   R�D   1, depending

on the values of ktbs and ktbd . Consider, for example, ktbs � 3 and ktbd � 6, yielding the root

R�D � 0.9. Thus, the maximum is given by (3.27) for 0   RD ¤ R�D and by (3.28) for

R�D   RD ¤ 1. A more general expression for R�D that does not need inserting values for

ktbs and ktbd cannot be found analytically.

Once we know systolic and diastolic pressure it is possible to compute pulse pressure, the

difference of those two values.

Claim 3.8.6 Pulse pressure PP can be approximated by

PP �
1

p1�RDq
�

1�R
k
tb
s �k

tb
d �1

D


 �
1�RD � 2Rk

tb
s
D � 2R

k
tb
d
D � 3R

k
tb
s �k

tb
d �1

D �R
k
tb
s �k

tb
d

D

�

for 0   RD ¤ R�D and

PP �
2

p1�RDq
�

1�R
k
tb
s �k

tb
d �1

D


 �
RD �Rk

tb
s �1
D �R

k
tb
d
D �R

k
tb
s �k

tb
d �1

D

�

for R�D   RD ¤ 1.

Proof. Use systolic and diastolic pressure as calculated in claim 3.8.5 and equations

(3.27) and (3.28) and take the difference. �

3.8.2 Error Analysis

There are two causes for errors in above estimations:

� Using the geometric series formula for a finite sum causes the error

err :�

�����
l�1̧

j�1

R
jpns�ndq
D

nş

i�1

Ri�1
D �

imax̧

i�1

R
lpns�ndq�i�1
D �

8̧

j�1

R
jpns�ndq
D

nş

i�1

Ri�1
D

�����
�

������
8̧

j�l

R
jpns�ndq
D

nş

i�1

Ri�1
D �

imax̧

i�1

R
lpns�ndq�i�1
D

������ .
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This can be simplified to

err �
R
lpns�ndq
D

1�Rns�ndD

1�RnsD
1�RD

�R
lpns�ndq
D

1�RimaxD

1�RD

and further to

err �
R
lpns�ndq
D

p1�Rns�ndD qp1�RDq

�
1�RnsD � 1�RimaxD �Rns�ndD p1�RimaxD q

	

¤
R
lpns�ndq
D

p1�Rns�ndD qp1�RDq

�
RimaxD �Rns�ndD

	
.

Because of imax   ns   ns � nd we obtain

err ¤ 2
R
lpns�ndq�imax
D

p1�Rns�ndD qp1�RDq

and can use the fact that lpns � ndq � imax ¥ m�pRDq � 1 � 1
tb

, see (3.22), and

therefore R
lpns�ndq�imax
D ¤ δ. We finally obtain the upper bound

err ¤
2δ

p1�Rns�ndD qp1�RDq
.

For RD Ñ 1 this upper bound increases monotonously to infinity but so do SBP,

DBP and PP, see section 3.8.3. Furthermore, we have seen in section 3.7.1 that the

model does not yield realistic solutions for high values of RD. For sufficiently low

values of RD the upper bound is a small number.

� The second source of error is the overestimation of systolic pressure and underes-

timation of diastolic pressure due to our choices of ns and nd. We can find upper

bounds for the errors (in SBP and DBP, respectively and for ns, nd separately) by

taking the differences between upper and lower estimates.

Consider, for example, the error caused by the choice of ns in the P syst formula.

Take the difference

P systpl � 0, ns � ktbs , ndq � P systpl � 0, ns � ktbs � 1, ndq

as an upper bound for the error, yielding

err ¤ 2
Rk

tb
s
D p1�RndD q

p1�Rk
tb
s �nd
D qp1�Rk

tb
s �nd�1
D q

.

As before the upper bound increases to infinity for RD Ñ 1 but due to the same rea-

sons as before this does not pose a significant problem. Differentiation with respect

to ktbs reveals that the upper bound is monotonously decreasing in ktbs . Similarly, the
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upper bound for the error caused by the choice of nd is monotonously decreasing in

ktbd . The same analysis can be done for the errors in the P diast formula.

However, the actual errors are not monotonous in either tb, ks or kd because they

depend on the residuals
Q
ks
tb

U
� ks

tb
and

Q
kd
tb

U
� kd

tb
.

Combining both sources of error we see that systolic pressure will always be overestimated

by our formulas. For diastolic pressure the absolute error depends on if and how the

positive error from the geometric series compensates the underestimation due to the choice

of ns and nd.

3.8.3 Influecne of the Reflection Coefficient

If we go back to the beginning of this section, we can see directly that both systolic and

diastolic blood pressure are monotonously increasing in RD because they are sums of

increasing values, matching our predictions from section 3.6.2. Obviously there holds

lim
RDÑ0

DBP pRD, ktbs , k
tb
d q � 0, lim

RDÑ0
SBP pRD, ktbs , k

tb
d q � 1

and

lim
RDÑ1

DBP pRD, ktbs , k
tb
d q � lim

RDÑ1
SBP pRD, ktbs , k

tb
d q � 8.

Considering the derivatives of SBP and DBP with respect to RD we find that also the

derivatives are monotonously increasing and

lim
RDÑ0

d

dRD
DBP pRD, ktbs , k

tb
d q � 0, lim

RDÑ0

d

dRD
SBP pRD, ktbs , k

tb
d q � 1

and

lim
RDÑ1

d

dRD
DBP pRD, ktbs , k

tb
d q � lim

RDÑ1

d

dRD
SBP pRD, ktbs , k

tb
d q � 8.

Thus, we have convex functions with respect to RD with a steep ascent towards RD � 1.

Claim 3.8.7 Pulse pressure has the limits

lim
RDÑ0

PP pRD, ktbs , k
tb
d q � 1 and lim

RDÑ1
PP pRD, ktbs , k

tb
d q � 8.

Proof. The limit lim
RDÑ0

PP pRD, ktbs , k
tb
d q � 1 is obvious considering the limits of SBP

and DBP. For the second one we use the formulas in claim 3.8.6 and L’Hôpital’s rule. �

Unfortunately we are not able to prove monotony as easily as we did with SBP and DBP.

In figure 3.16 it can be seen that even though some simplifying estimations were made

in finding above formulas, they give reasonable values compared to those produced by
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Figure 3.16: Systolic and diastolic pressure computed by the model compared to our
reference values, depending on RD, with fixed values of ktbs and ktbd . First 128 cardiac
cycles. Choice of parameters: s � 0.3, d � 0.7, tb,ms � 145, τ � 0.0001. 27 cardiac
cycles. SBP, DBP and PP are generated using algorithm 3.5.1. The reference values are
computed using formulas (3.27) and (3.28), claim 3.8.5 and claim 3.8.6.

the actual model with a step function as input P in. We can also see that pulse pressure

is increasing monotonously in RD as well, even though we were not able to prove this

analytically. However, it increases slower than systolic and diastolic pressure. The increase

in SBP, DBP and PP can also be observed in figure 3.17.

(a) RD � 0.1 (b) RD � 0.3 (c) RD � 0.5

(d) RD � 0.7 (e) RD � 0.9

Figure 3.17: Different values of RD and their influence on curve shape. First six cardiac
cycles. Choice of parameters: s � 0.3, d � 0.7, tb,ms � 145ms, τ � 0.0001.

As for shape, we can make two observations. First of all, setting time does increase with
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RD, see figure 3.17 even though it remains low even for large values of RD. For the second

observation it is necessary to zoom into figure 3.17 and have a closer look at the last

cardiac cycle, see figure 3.18.

(a) RD � 0.1 (b) RD � 0.3 (c) RD � 0.5

(d) RD � 0.7 (e) RD � 0.9

Figure 3.18: Different values of RD and their influence on curve shape. Sixth cardiac
cycle. Choice of parameters: s � 0.3, d � 0.7, tb,ms � 145ms, τ � 0.0001.

It seems that not only the spikes’ prominence but also their number increases with incre-

asing RD, contradicting our ideas in section 3.6.2. However, further zooming in reveals

that the same spikes that are clearly visible in figure 3.18 (e) are also present in figures

3.18 (a) -(d), only less prominent.

3.8.4 Influence of Systole and Diastole Duration

In the formulas describing SBP, DBP and PP the duration of systole and diastole are

not used directly, but in the form of the parameters ktbd and ktbs . According to definition

3.8.1 these are (almost) directly proportional to kd and ks which are directly related to

the durations via the step size τ . Thus, we will do the following calculations with ktbs and

ktbd , respectively.

We find that indeed, the theories from section 3.6.3 are (at least for SBP and DBP)

confirmed for both variable and constant heart rate, see the following claims.

First consider the case of variable heart rate, i.e. ktbd and ktbs are varied independently of

each other.

Claim 3.8.8 Keeping ktbd fixed, diastolic and systolic pressure are monotonously increasing

in ktbs . They are monotonously decreasing in ktbd if we keep ktbs fixed.
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Proof. See claim 3.8.4. For systolic pressure the distinction between 0   RD ¤ R�D and

R�D   RD ¤ 1 has to be made. Fortunately the claim is true for both forms of SBP. �

Unfortunately it is not as easy to prove a similar claim as claim 3.8.8 for pulse pressure:

Distinguishing between 0   RD ¤ R�D and R�D   RD ¤ 1 gives different results for the

two cases. Because R�D depends on ktbs and ktbd again, this leads to circular reasoning.

Next we consider the heart rate to be constant which implies that variation of one of the

parameters ktbs and ktbd results in variation of the other too.

Claim 3.8.9 Keeping the heart rate fixed, i.e. ktbs � ktbd � c for some c P N, systolic and

diastolic pressure are monotonously increasing in ks and monotonously decreasing in kd.

Proof. Setting ktbd � c� ktbs simplifies the formula from claim 3.8.5 to

P diast �
2RcD

p1�RDq
�
1�Rc�1

D

� �R�ktbsD �R�1
D

	
,

which obviously is monotonously increasing in ks. Analogously the monotony in ktbd can

be seen directly by setting ktbs � c� ktbd .

The same observations can be made for the systolic pressure but as in the proof of claim

3.8.8 separate formulas have to be used for RD ¤ R�D and RD ¡ R�D. Again, the argument

works because the claim is true for both forms of SP. �

A similar result can be proved for pulse pressure too because (almost) the same result can

be obtained for 0   RD ¤ R�D and R�D   RD ¤ 1.

Claim 3.8.10 Keeping the heart rate fixed, i.e. ktbs �k
tb
d � c for some c P N, pulse pressure

is increasing in ktbs and decreasing in ktbd under the “physiological condition” ktbs   ktbd .

Proof. Plugging ktbd � c� ktbs into the formulas in claim 3.8.6 yields

PP �

$'&
'%

1
p1�RDqp1�Rc�1

D q

�
1�RD � 2Rk

tb
s
D � 2Rc�k

tb
s

D � 3Rc�1
D �RcD

�
, 0 ¤ RD ¤ R�D,

2
p1�RDqp1�Rc�1

D q

�
RD �Rk

tb
s �1
D �Rc�k

tb
s

D �Rc�1
D

�
, R�D   RD ¤ 1.

Differentiation shows

d

dktbs
PP ¥ 0 ô Rc�k

tb
s

D ¤ Rk
tb
s �1
D ô ktbs ¤

c� 1

2
ô ktbs ¤ ktbd � 1

for 0   RD ¤ R�D and

d

dktbs
PP ¥ 0 ô Rc�k

tb
s

D ¤ Rk
tb
s
D ô ktbs ¤

c

2
ô ktbs ¤ ktbd
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for R�D   RD ¤ 1 which proves the claim. The proof for d
dktbd

PP is analogous. �

These theoretical (and simplified) results, at least for variable heart rate, are confirmed

by figures 3.19 (a) and (b). As for shape, we see that the influence of systole and diastole

duration is the same as in section 3.7.2. Similar results can be obtained in the case of

constant heart rate.

(a) Variation of systole duration with a dia-
stole duration of d � 0.9. First cardiac cycle.

(b) Variation of diastole duration with a sy-
stole duration of s � 0.3. First two cardiac
cycles.

Figure 3.19: Influence of systole and diastole duration on curve shape. In (a) the
beginning of systole is marked by a vertical line. Choice of parameters: tb,ms � 145,
RD � 0.45, τ � 0.0001.

It was already mentioned in section 3.6.3 that Wilkinson et al. showed that central diastolic

pressure increased significantly with an increasing heart rate while central systolic pressure

decreased significantly [58] or did not change significantly [57]. These phenomena can

numerically be observed in our very simple model as well. For an illustration of an increase

in DBP and decrease in SBP, at least for certain combinations of parameters, see figure

3.20. It is known [10] that as the heart rate increases, there is a much greater decrease of

diastole length than of systole length [6], which in this model means a large decrease in

ktbd and a smaller one in ktbs . For this reason diastole duration d was decreased from 0.9 to

0.3 seconds while simultaneously systole duration s was decreased from 0.4 to 0.3 seconds

to produce figure 3.20, generating heart rates between � 46 and 100 bpm.

However, the relationship between heart rate and SBP is not the same for all parameter

combinations. Increasing RD and or tb,ms to very large values reverses the behavior of

SBP, especially for high heart rates. This is due to the fact that systole and diastole

duration have opposing impact on SBP while they play together in influencing DBP.

3.8.5 Influence of Return Time

The time constant is related to ktbs and ktbd via definition 3.8.1. Ignoring the ceiling

function they would be inversely proportional. The ceiling function, however, only slows
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Figure 3.20: Influence of heart rate on SBP and DBP. First 128 cardiac cycles. Choice
of parameters: RD � 0.45, tb,ms � 145, τ � 0.0001.

down change, since different values of tb can lead to the same values of ktbs or ktbd when ks

and kd, respectively, are held constant.

Unluckily the change of tb influences ktbs and ktbd at the same time. These parameters have

opposite impact on systolic and diastolic pressure and their impact on pulse pressure can-

not be determined analytically. Altogether it is not possible to find an analytic description

of the time constants’ influence. We thus have to rely on numerical analysis.

(a) tb,ms � 75ms (b) tb,ms � 100ms (c) tb,ms � 125ms

(d) tb,ms � 150ms (e) tb,ms � 175ms (f) tb,ms � 200ms

Figure 3.21: Different values of tb and their influence on curve shape. First cardiac cycle.
End of systole is marked by a red vertical line. Return times are marked by blue vertical
lines. Choice of parameters: s � 0.3, d � 0.7, RD � 0.45, τ � 0.0001.
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In figure 3.21 several observations can be made. First of all it is confirmed that increasing

the return time decreases SBP and increases DBP. More peaks appear and become more

prominent relative to the prominence of the entire curve. As opposed to the observation

from section 3.7.3 the width of the spikes does not equal tb,ms this time. This is due to

the fact that reflections do not die out as quickly and therefore superposition of reflected

waves takes place.

3.8.6 Influence of Step Size

The influence of the time step size τ has been discussed and illustrated in section 3.7.4.

3.9 The Heart as Total Absorber

After considering the heart to be both a time-dependent reflector and a total reflector at

all times we will now study the case where the heart is a total absorber at all times. Using

a general input function P in and setting Rav � 0 leads to a much easier solution formula,

Pk � P ink � P ink�tbRD, k P N¡tb .

It can be seen directly that for any choice of P in that equals zero during diastole the

lowest possible value is Pk � 0, as long as

ktbd ¥ 2. (3.29)

Therefore DBP remains constant. The highest possible value, i.e. SBP (and with it PP),

is influenced by the particular choice of P in and, depending on its shape, also ktbs . If P in

is assumed to be a half sine during systole, the time position of the maxima of the curve

changes with RD, resulting in a more complex relationship between SBP (and with it PP)

and RD, see figure 3.22.

In general, most results from sections 3.7 and 3.8 are also valid in this case and will

therefore not be repeated.

3.10 Scaling

One question that is not addressed in any of the previous sections is that of scaling. In

physiological blood pressure curves there holds

DBP : PP � 2 : 1,
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(a) RD � 0.1 (b) RD � 0.3 (c) RD � 0.5

(d) RD � 0.7 (e) RD � 0.9

Figure 3.22: Different values of RD and their influence on curve shape. First cardiac
cycle. Position of maximum is indicated by red vertical line. Choice of parameters: s � 0.3,
d � 0.7, tb,ms � 145ms, τ � 0.0001.

see section 2.1.2. In order for the model to reflect reality it is therefore desirable to produce

curves that fulfill the same condition.

Now consider sections 3.7 and 3.9. Since we have DBP � 0 for all choices of parameters

it is impossible to scale the model accordingly such that the desired ratio is obtained.

Unfortunately, this is a sign that the model might not be a good representation of reality

even though the shape of the curves looks promising.

In section 3.8, however, DBP increases with both RD and tb,ms, see sections 3.8.3 and

3.8.5, enabling us to obtain the desired ratio.

Using the results from figure 3.23 it is possible to associate the values on the ordinate with

their respective values in mmHg, i.e.

2.8571 model units � 80mmHg and 4.2857 model units � 120mmHg.

This enables us to interpret the magnitude of the input function P in that we were unable

to determine earlier: The maximum value of P in, that was chosen to be one in this model,

must be equivalent to a magnitude of � 28mmHg in reality.

As can be seen in figure 3.23, the necessary parameter combination leads to a diminished

quality in shape of the curve. Apparently one must choose between meaningful absolute

values and a meaningful curve shape. The shape, however, can be changed further by

adding more reflection sitesas will be done in the following chapter.
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Figure 3.23: Modeled curve that satisfies DBP : PP � 2 : 1. First nine cardiac cycles.
Choice of parameters: s � 0.3, d � 0.7, RD � 0.9, tb,ms � 178, τ � 0.0001.

3.10.1 Prolonged Diastole

It has been shown before [26] that if the heart stops, blood pressure experiences an ap-

proximately exponential decay until a constant value is reached. Studying this case with

our model only makes sense for parameter combinations that yield a diastolic pressure

that is not equal to zero. To increase comparability of absolute values to measured curves

we will only work with the parameters established in this section.

(a) Pulse pressure after heart stops beating.
Adapted from [26].

(b) Pulse pressure after heart stops beating.
10th to 25th cardiac cycle. Choice of parame-
ters: s � 0.3, d � 0.7, RD � 0.9, tb,ms � 178,
τ � 0.0001.

Figure 3.24: Pulse pressure after heart stops beating, i.e. extreme case of prolonged
diastole. Comparison between measured and modeled curve.

In figure 3.24 we compare the results that were (a) obtained by measuring absolute blood

pressure and performing a novel approach of wave separation [26] with (b) results from

our model. We can see that the overall development in time is very similar in both figures,
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with one major difference. In figure (a) measured blood pressure converges to a value

distinctly unequal zero while in figure (b) all forward, backward and full blood pressure

converge to zero as time progresses. Obviously, in (a) the sum of forward and backward

pressure does not yield measured pressure, a fact that the explain authors by the existence

of undisturbed pressure.

This concept could also be applied to our model in further studies. By adding a constant

value to the sum of forward and backward pressure it might become possible to obtain

correctly scaled curves with a meaningful shape.

3.11 Conclusion

In this chapter we presented arguments for the simplifying assumption of a single reflection

site in the arterial system, proposed model equations (3.1a) and (3.2a) and solved them

in section 3.1.

By conducting both mathematical and numerical analysis on several versions of the model

we were able to verify that the modeled curves display the characteristic features and

properties of physiological blood pressure curves. We can therefore conclude that the

approach of modeling blood pressure curves with difference equations is a promising one.

Comparison of different ways to model input pressure from the heart as well as the re-

flection property of the aortic valve yielded the following: Assuming the heart to be a time-

independent absolute reflector gives better results than the more intuitive time-dependent

reflection coefficient. It is very well possible that truth lies somewhere in between those

two very simple cases, i.e. the reflection coefficient is time-dependent but does not become

zero during systole. This question could be addressed in further studies.

However, even though the modeled curves do display characteristic features of blood pres-

sure curves, they are much less smooth, presumably due to the simplifying assumption of

a single reflection site. For this reason in the next chapter we will extend the model to

include more than one reflection site.
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Difference Equation Models Using More Reflection Sites

In the previous chapter we showed that modeling the arterial system as a single tube and

describing reflection phenomena with difference equations is a useful approach. However,

even though the model curves display all the important features of a central blood pressure

curve (see section 3.2) they clearly differ from measured curves, in particular in their

smoothness.

While the single tube model has been popular with many researchers, others have found

evidence that the ascending aorta “sees” two reflection sites instead of only one, one closer

to the heart than the other [30, 40]. In both papers the experiments were conducted with

dogs but the underlying principles are the same in humans. The two reflection sites can

be interpreted as one in the lower part of the body and one in the upper part [30].

Modeling two reflection sites is often accomplished with an asymmetric T-tube model as

was proposed by O’Rourke [29]. The shorter arm of the T represents the arteries in head,

neck and upper limbs while the longer arm represents descending aorta and the arteries

in trunk and lower limbs.

Determination of parameter values is even harder for the T-tube model than the single

tube model [4]. This is because parameters in one arm of the tube depend on those of the

other arm. We will encounter this difficulty in section 4.3.

However, in the model(s) developed and studied in this chapter instead of a branching

tube we will consider a set-up as shown in figure 4.1. The two reflection sites are assumed

to be independent from each other, all interactions already being accounted for by the

choice of parameter values.

The parameters are the same as were introduced in chapter 3, with only two differences.
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AV RS 1 RS 2

MS

Figure 4.1: Tube model of the arterial system with two reflection sites as presented
above. AV - aortic valve, MS - measuring site, RS 1 - first distal reflection site,
RS 2 - second distal reflection site.

Instead of one reflection coefficient RD we now have to distinguish between R1
D and R2

D,

the reflection coefficients of the first and second reflection site, respectively. Analogously,

we have two time constants t1b and t2b . Both are computed using the same PWV but

obviously the distances between measuring site and reflection sites as well as the phase

shift of the reflected wave may differ. Without loss of generality we may assume t1b   t2b .

Again, total pressure is split into its forward and backward component, i.e. Pk � P fk �P
b
k ,

yielding the difference equation system

Model 2

P fk � P ink � P bk�2tf
Ravk�tf , (4.1a)

P bk � P f
k�t1b

R1
D � P f

k�t2b
R2
D. (4.1b)

By inserting equation (4.1a) into (4.1b) and vice versa we obtain the two independent

equations

P fk � P ink � P f
k�2tf�t

1
b
R1
DR

av
k�tf

� P f
k�2tf�t

2
b
R2
DR

av
k�tf

, (4.2a)

P bk � P ink�t1b
R1
D � P bk�2tf�t

1
b
R1
DR

av
k�tf�t

1
b
� P ink�t2b

R2
D � P bk�2tf�t

2
b
R2
DR

av
k�tf�t

2
b

(4.2b)

for k P N¡2tf�t
2
b

that are both of order N � 2tf � t2b .

Again, we know from standard literature [1, 11] that the initial value problems defined by

equations (4.2a) and (4.2b) for k P N¡N and some initial values P̄k and P̂k for k � 1, . . . , N ,

have unique solutions. For the forward pressure the initial condition can be chosen as

P fk � P ink for k � 1, . . . , N . For the backward pressure it is

P bk �

$'''&
'''%

0, k � 1, . . . , t1b ,

R1
DP

in
k�t1b

, k � t1b � 1, . . . , t2b ,

R1
DP

in
k�t1b

�R2
DP

in
k�t2b

, k � t2b � 1, . . . , N.

Finding these solutions is not as straightforward as it was for equations (3.2a) and (3.2b).
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Thus, numerical analysis will play an even more important role in this chapter than it did

in chapter 3.

4.1 Boundedness of Homogeneous Solution

Stability analysis as in section 3.3.1 turns out to be impossible, even for the homogeneous

equations because we fail to prove any convergence of the norm of the system matrix A.

The only statement we are able to show is the boundedness of the solutions of the homo-

geneous equation

xk � xk�N1R
1
D � xk�N2R

2
D (4.3)

that is equivalent to equations (4.2a) and (4.2b) with N1 � 2tf � t1b and N2 � 2tf � t2b ,

respectively, and Rav � 1, under certain conditions.

Claim 4.1.1 Every solution pxkqkPN of equation (4.3) is bounded, i.e. there exists c ¡ 0,

depending on the initial condition such that

|xk| ¤ c @k P N

if R1
D �R2

D   1.

Proof. The proof is a simple mathematical induction. Let x1, . . . , xN2 be the initial con-

dition and define c � max
i�1,...,N2

|xi|, directly implying the induction base for k � 1, . . . , N2.

Now assume k ¡ N2. By (4.3) and the triangle inequality it follows

|xk| ¤ R1
D|xk�N1 | �R2

D|xk�N2 |.

Inserting the induction hypothesis and the condition R1
D �R2

D   1 finally yields

|xk| ¤ pR1
D �R2

Dqc ¤ c,

completing the proof. �

The boundedness of the homogeneous solution combined with the fact that the input

function vanishes for a large proportion of time points hints that the solutions of (4.1a)

and (4.1b) are bounded too but we will have to resort to numerical analysis to confirm

this prognosis.

4.2 Comparison to First Model and Measured Curves

In this section we want to compare the curves produced by the new model with those

produced by the original model in chapter 3 as well as with measured curves.
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Since in chapter 3 treating the heart as a time-independent reflector gave useful results, we

will consider both the cases Rav � 1 and Rav � 1diastole in this chapter. The choice of P in

will be the same as in chapter 3. Due to our results from section 3.4 we will concentrate on

tf � 0 and omit the possibility of tf ¡ 0. The combinations of parameters used to generate

the curve in figures 4.2 (a) and (b) were found by trial and error, including information

from the previous chapter. They are chosen such that the curves look as similar to the

measured curve as possible, therefore different parameter values are used in (a) and (b).

(a) Rav
� 1diastole. Choice of parameters for

blue curve: s � 0.348, d � 0.652, t1b,ms �

135, t2b,ms � 190, R1
D � 0.2, R2

D � 0.23, τ �
0.0001. Choice of parameters for cyan curve
as in figure 3.5.

(b) Rav
� 1. Choice of parameters for blue

curve: s � 0.348, d � 0.652, t1b,ms � 125,

t2b,ms � 185, R1
D � 0.3, R2

D � 0.3, τ �

0.0001. Choice of parameters for cyan curve:
s � 0.348, d � 0.652. tb,ms � 160, RD � 0.6,
τ � 0.0001.

Figure 4.2: Comparison of measured curve, a curve modeled with one reflection site and
a curve modeled with two reflection sites. Normalization to same pulse pressure. End of
systole is marked by a vertical line.

Figure 4.2 (a) compares the second cardiac cycle of each of the models using Rav � 1diastole

with a measured curve. In figure 4.2 (b) the same comparison is done for Rav � 1. While

the second cardiac cycle differs from the first one, the curve has reached its periodic state

after two cycles. Thus, the second cardiac cycle (or any cycle after the first one) is more

meaningful for analyzing model properties. The main characteristics of a blood pressure

curve are still represented in the new model (blue). Even though the curve is still not

as smooth as the measured one, we can see that the spikes have become less prominent,

thus better approximating the diastolic decay. In particular, the blood pressure does not

decrease to zero after each spike in figure 4.2 (a), presumably a result of the superposition

of reflected waves. In figure 4.2 (b) we can observe that, again, choosing Rav � 1 yields

very good results, even smoother than in the previous chapter. Altogether figures 4.2 (a)

and (b) justify further analysis of the enhanced model, using both versions of Rav, despite

its difficulty.
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4.3 Numerical Analysis

Unline in chapter 3, the theoretical knowledge of the enhanced model is very limited. In

this section we hope to fill the gaps by numerical experiments and interpretation of plotted

curves. Considering the increased number of parameters interpreting the plots will be a

more delicate task than it was before.

4.3.1 Implementation and Parameter Values

Again, we will give an overview of implementation and parameter ranges before we start

varying the parameters. In algorithm 4.3.1 the Matlab function GenerateCurveSepa-

ratedTwo that generates blood pressure curves according to the model is given.

Algorithm 4.3.1

1 function [Pf,Pb,P] = GenerateCurveSeparatedTwo (s, d, J, tau, RD1, RD2,

tbms1, tbms2, tfms)

2 tb1 = floor(tbms1 * 0.001 / tau);

3 tb2 = floor(tbms2 * 0.001 / tau);

4 tf = floor(tfms * 0.001 / tau);

5 [Pin,Rav]=GeneratePinRav(s, d, J, tau, tf);

6 Pf=Pin;

7 Pb = [zeros(1,tb1), Pin(1:tb2-tb1) .* RD1, Pin(tb2-tb1+1:tb2+2*tf-tb1)

.* RD1 + Pin(1:2*tf) .* RD2, zeros(1,length(Pin)-2*tf-tb2)];

8 for k = 2*tf + tb2 + 1:length(Pin)

9 Pb(k) = Pin(k-tb1)*RD1 + Pb(k-2*tf-tb1)*RD1*Rav(k-tf-tb1)

+ Pin(k-tb2)*RD2 + Pb(k-2*tf-tb2)*RD2*Rav(k-tf-tb2);

10 Pf(k) = Pin(k) + Pf(k-2*tf-tb1)*RD1*Rav(k-tf)

+ Pf(k-2*tf-tb2)*RD2*Rav(k-tf);

11 end

12 P = Pf + Pb;

13 end

The function GeneratePinRav that is used in line 5 is the same that was used in chapter

3 and can be found in algorithm 3.5.2. Also parameters s, d, J, tau and tfms remain

unchanged, meaning that reasonable values can be found in section 3.5.

71



CHAPTER 4. DIFFERENCE EQUATION MODELS USING MORE REFLECTION SITES

The only parameters that need to be further specified are the reflection coefficients and

return times.

� Instead of one distal reflection coefficient there now is one for each of the reflection

sites, RD1 and RD2. Unfortunately finding reference values in literature proves to be

impossible. The result from section 4.1, though, indicates that the values should be

lower than those that were used for RD in the previous chapter.

� The situation is similar for return times. Even though pulse wave velocity does

not differ rom that presented in the first model and the same values can be used,

now there are two different distances, implying different return times tbms1 and

tbms2. Also for these parameters the search for reference values turns out not to be

successful.

An alternative to using reference values from literature can be found in figure 4.2(a). The

particular combination of parameters in this figure led to a valid blood pressure curve.

Thus we will take the used numbers as reference values for further analysis.

4.3.2 Periodicity and Boundedness of Solutions

So far it has not been discussed if the curve generated by the inhomogeneous equations

(4.2a) and (4.2b) is periodic or even has an upper bound for k Ñ8.

From sections 3.7.3, 3.8.3 and 3.8.4 we know that for the model with one reflection site

large values of reflection coefficient and systole duration and low values of diastole duration

and return time lead to an increase in pressure. Considering that equations (4.1a) and

(4.1b) have the same structure as equations (3.1a) and (3.1b) the behavior should be

essentially the same in this model. Details will be addressed in the following sections. In

section 3.3 it was also showed that the setting time until the curve is periodic increases

with increasing values of reflection coefficient and return time. We can therefore assume

this to be true in this model.

Combining the information from the previous two paragraphs motivates the particular

choice of parameters in figures 4.3 and 4.4.

In figure 4.3 parameters were chosen appropriately to increase absolute values according to

the previous paragraphs. Therefore systole duration is chosen longer and diastole duration

is chosen shorter than generally used, return times are low and reflection coefficients high.

As was already indicated in section 4.1, the inequality R1
D�R

2
D   1 must hold in order to

obtain a bounded solution if Rav � 1 is used. For a variable function Rav it is possible to

use higher values. In both figures (a) and (b) it is clearly visible that while the curves do

not resemble a measured blood pressure curve they are periodic and bounded for k Ñ8.

In figures 4.4 (a) and (b) parameters were chosen appropriately to increase setting time

according to the previous paragraphs, i.e. return times and reflection coefficients are high.
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(a) Rav
� 1diastole. First four cardiac cycles.

Choice of parameters: s � 0.4, d � 0.6, t1b,ms �

50, t2b,ms � 100, R1
D � R2

D � 0.9, τ � 0.0001.

(b) Rav
� 1. First 16 cardiac cycles. Choice

of parameters: s � 0.4, d � 0.6, t1b,ms � 50,

t2b,ms � 100, R1
D � R2

D � 0.49, τ � 0.0001.

Figure 4.3: Curves with parameter combinations that increase absolute values for both
choices of Rav.

(a) Rav
� 1diastole. First four cardiac cy-

cles. Choice of parameters: s � 0.4, d � 0.6,
t1b,ms � 180, t2b,ms � 210, R1

D � R2
D � 0.9,

τ � 0.0001.

(b) Rav
� 1. First 32 cardiac cycles. Choice

of parameters: s � 0.4, d � 0.6, t1b,ms � 180,

t2b,ms � 210, R1
D � R2

D � 0.49, τ � 0.0001.

Figure 4.4: Curves with parameter combinations that increase setting time for both
choices of Rav.

While in the case of Rav � 1diastole the curves are periodic from the second cardiac cycle

on, a longer setting time is necessary for Rav � 1.

4.3.3 Influence of the Reflection Coefficients

In principle the results obtained in sections 3.7.1 and 3.8.3 are valid even if the model

now includes two reflection sites with their respective reflection coefficients. However, the

question is if the influence of both reflection coefficients is the same.
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Magnitude. Before we assess the shape of the modeled curves we will investigate the

influence of reflection coefficients on SBP, DBP and PP. The results for Rav � 1diastole are

displayed in figure 4.5. In (a) the first reflection coefficient R1
D, referring to the reflection

site closer to the heart, is held constant while R2
D is varied. In (b) the situation is reversed.

Since the figures give only exemplary insight and not general information, parameters were

chosen such that the desired effects can be observed distinctly.

(a) R1
D � 0.4, 0 ¤ R2

D ¤ 1 (b) R2
D � 0.4, 0 ¤ R1

D ¤ 1

Figure 4.5: Variation of one reflection coefficient while the other is held constant and
influence on SBP, DBP and PP. Rav � 1diastole. Choice of parameters: s � 0.3, d � 0.7,
t1b,ms � 125ms, t2b,ms � 190ms, τ � 0.0001

Apart from the fact that SBP, DBP and PP are increasing monotonously in both reflection

coefficients which agrees with previous results one major observation can be made: As long

as the sum of both reflection coefficients is small, the curves for SBP and DBP are very

similar, regardless of which coefficient is held constant and which is varied. Only when the

varied parameter tends towards one, increase in SBP is significantly stronger for variation

of R1
D. For DBP, however, increase is significantly stronger for variation of R2

D, if the

coefficient exceeds a certain threshold.

The thresholds for significant differences depend on the choice of the constant coefficient

as well as on other parameters. Increasing the difference of the return times and increasing

the constant reflection coefficient tend to lower the threshold. Tables that illustrate these

tendencies for different parameter values can be found in appendix A.2.

The same analysis can be done for Rav � 1, see figure 4.6. Again, the curves look very

similar as long as the sum R1
D � R2

D is small. When a certain threshold is exceeded,

increase in both SBP and DBP is stronger for variation of R1
D. Again, the threshold

depends on the choice of the constant reflection coefficient and on the return times, see

tables in appendix A.2.

Shape. Next the influence of the parameters on the shape of the generated curves will

be analyzed. In figure 4.7 the first reflection coefficient R1
D is held constant, while R2

D is

varied.
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(a) R1
D � 0.4, 0 ¤ R2

D ¤ 1 (b) R2
D � 0.4, 0 ¤ R1

D ¤ 1

Figure 4.6: Variation of one reflection coefficient while the other is held constant and
influence on SBP, DBP and PP. Rav � 1. Choice of parameters: s � 0.3, d � 0.7,
t1b,ms � 125ms, t2b,ms � 190ms, τ � 0.0001

(a) R2
D � 0.0 (b) R2

D � 0.1 (c) R2
D � 0.2

(d) R2
D � 0.3 (e) R2

D � 0.4 (f) R2
D � 0.5

Figure 4.7: Different values of R2
D and their influence on curve shape. Second cardiac

cycle. Rav � 1diastole. Choice of parameters: s � 0.3, d � 0.7, t1b,ms � 150, t2b,ms � 200,

R1
D � 0.2, τ � 0.0001.

Several observations can be made:

� It is clearly visible that the number of secondary spikes is larger for R2
D ¡ 0 than

it is for R2
D � 0. For all values R2

D ¡ 0, however, the number of secondary spikes

remains the same. They only differ in their prominence. This agrees with the results

from chapter 3.

� As R2
D increases, it becomes harder to distinguish which spikes are produced from

which reflection site.
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� The curve looks most realistic for R2
D � 0.2 which could indicate a variety of phe-

nomena. Possibly, the curves will look most realistic for R1
D � R2

D. Alternatively,

the resemblance between measured and generated curves might depend on the sum

R1
D �R

2
D instead of the individual values with R1

D �R
2
D � 0.4 being a good choice.

(a) R1
D � 0.0 (b) R1

D � 0.1 (c) R1
D � 0.2

(d) R1
D � 0.3 (e) R1

D � 0.4 (f) R1
D � 0.5

Figure 4.8: Different values of R1
D and their influence on curve shape. Second cardiac

cycle. Rav � 1diastole. Choice of parameters: s � 0.3, d � 0.7, t1b,ms � 150, t2b,ms � 200,

R2
D � 0.2, τ � 0.0001.

To find out if any of the possible explanations for the third observation is indeed correct,

further experiments have to be conducted. Figure 4.8 shows variation of the first reflection

coefficient R1
D while the second coefficient R2

D is held constant. Again, several observations

can be made:

� It is clearly visible that the number of secondary spikes is larger for R1
D ¡ 0 than

it is for R1
D � 0. For all values R1

D ¡ 0, however, the number of secondary spikes

remains the same. They only differ in their prominence. This agrees with the results

from chapter 3.

� For increasing R1
D distinguishing between the influences of the two reflection sites

becomes harder.

� Again, the most realistic shape is obtained for R1
D � 0.2. This agrees with both

explanations suggested above.

After repeating above experiments for different values of the constant reflection coefficient

and different return times t1b,ms and t2b,ms we can conclude that reasonable curve shapes
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can only be obtained if R1
D �R2

D do not exceed some threshold value that itself depends

on the return times, a result that agrees with section 3.7.1.

For a constant sum R1
D �R2

D � σ the best1 results are found around R1
D � R2

D � σ
2 This

was tested for several values of σ and several return times and is illustrated for σ � 0.4,

t1b,ms � 150ms and t2b,ms � 200ms in figure 4.9.

(a) R1
D � 0.0, R2

D � 0.4 (b) R1
D � 0.1, R2

D � 0.3 (c) R1
D � 0.2, R2

D � 0.2

(d) R1
D � 0.3, R2

D � 0.1 (e) R1
D � 0.4, R2

D � 0.0

Figure 4.9: Different values of R1
D and R2

D such that R1
D �R

2
D � 0.4 and their influence

on curve shape. Second cardiac cycle. Rav � 1diastole. Choice of parameters: s � 0.3,
d � 0.7, σ � 0.4, t1b,ms � 150ms, t2b,ms � 200ms, τ � 0.0001.

We conclude that indeed R1
D and R2

D, respectively, have to be chosen smaller than RD in

the model from chapter 3 in order to produce curves that resemble measured ones. This

agrees with our assumption from section 4.3.1. Again, no absolute numbers can be found

due to a strong interdependence of parameters.

The same analysis can be done for Rav � 1, see figures 4.10 and 4.11. The results are

very similar, up to the fact that very good results are obtained for R1
D � R2

D � 0.2. In

general, shape remains reasonable for higher values of both reflection coefficients than

before. Again, distinguishing between the effects of the different reflection sites becomes

harder when the reflection coefficients increase.

1The extent to which a curve generated by the model resembles a generic measured one is not quanti-
fiable. Thus, in many cases, it is not possible to state which of a sample of curves is “the best”. Still, it is
possible to find tendencies, for example in the evenness of secondary spikes.
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(a) R2
D � 0.0 (b) R2

D � 0.1 (c) R2
D � 0.2

(d) R2
D � 0.3 (e) R2

D � 0.4 (f) R2
D � 0.5

Figure 4.10: Different values of R2
D and their influence on curve shape. Second cardiac

cycle. Rav � 1. Choice of parameters: s � 0.3, d � 0.7, t1b,ms � 150, t2b,ms � 200,

R1
D � 0.2, τ � 0.0001.

(a) R1
D � 0.0 (b) R1

D � 0.1 (c) R1
D � 0.2

(d) R1
D � 0.3 (e) R1

D � 0.4 (f) R1
D � 0.5

Figure 4.11: Different values of R1
D and their influence on curve shape. Second cardiac

cycle. Rav � 1. Choice of parameters: s � 0.3, d � 0.7, t1b,ms � 150, t2b,ms � 200,

R2
D � 0.2, τ � 0.0001.
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4.3.4 Influence of Systole and Diastole Duration

The influence of systole and diastole duration on the curves of this model is the same as

was discussed in section 4.3.4. Figure 4.12 (a) shows generated curves for various values of

systole duration with all the other parameters held constant. In figure 4.12 (b) generated

curves are showed for various values of diastole duration with all the other parameters held

constant. Comparison of figure 4.12 with figures 3.9 and 3.10 confirms that the effects of

systole and diastole duration are the same in both models. Hence, see section 3.7.2 for

further explanation and interpretation.

(a) Variation of systole duration with a dia-
stole duration of d � 0.9. First cardiac cycle.

(b) Variation of diastole duration with a sy-
stole duration of s � 0.3. First two cardiac
cycles.

Figure 4.12: Influence of systole and diastole duration. In (a) the beginning of systole
is marked by a vertical line. Choice of parameters: t1b,ms � 125, t2b,ms � 190, R1

D � 0.3,

R2
D � 0.2, τ � 0.0001.

For Rav � 1 the effects are generally the same as in figure 3.19 and are therefore not shown

again here.

4.3.5 Influence of Return Times

Similar to the reflection coefficients, the general influence of return times on the modeled

curves is expected to be the same as in chapter 3. The interesting question is how the

influences of t1b and t2b differ. In this section we will address several aspects. To make

sure observed differences are consequences of the choice of return times only, the reflection

coefficients were chosen to be the same, R1
D � R2

D.

First consider figure 4.13. It is visible that so-called main secondary spikes are determined

by the choice of the second return time. Within each of the main secondary spikes smaller

spikes can be observed that are generated by the first reflection site.

The two types of secondary spikes observed in figure 4.13 can only be distinguished clearly

for particular choices of t1b,ms and t2b,ms. In general, they become less distinguishable further
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Figure 4.13: Main diastolic spikes, determined by second return time, are marked by red
vertical lines. Second cardiac cycle. Choice of parameters: s � 0.3, d � 0.7, τ � 0.0001,
R1
D � R2

D � 0.2, t1b,ms � 70, t2b,ms � 200.

into diastole due to the superposition of an increasing number of reflected waves and the

decreasing magnitude of all spikes. These phenomena can be observed in figure 4.14,

especially in subfigures (c) and (d).

(a) t1b,ms � 70ms (b) t1b,ms � 95ms (c) t1b,ms � 120ms

(d) t1b,ms � 145ms (e) t1b,ms � 170ms (f) t1b,ms � 195ms

Figure 4.14: Different values of t1b,ms and their influence on curve shape. Second cardiac
cycle. Raturn time of second reflection site after end of systole indicated by red lines.
Choice of parameters: s � 0.3, d � 0.7, R1

D � R2
D � 0.2, t2b,ms � 225ms, τ � 0.0001.

Additionally, in figure 4.14 it can be seen that the effects of the different reflection sites

on the curve during diastole are most distinguishable if the difference t2b,ms� t
1
b,ms is either

relatively large or very small. For a large difference the effects of the first site are negligible
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compared to the effects of the second site, compare section 3.7.3. If the difference is small,

the number of returning waves from the first and the second reflection site is the same with

only a little time shift between them. This is mainly true for large values of t2b,ms because

in that case only a small number of reflected waves occurs during one cardiac cycle and

even the accumulated time shift remains small. Interference of the waves produced by the

two reflection sites is therefore limited.

Apart from the question of discriminability of reflection effects we observe that, as ex-

pected, influence of the reflection sites is similar to that in chapter 3.

Finally, we want to know if any of the reflection sites is dominating in the question of how

realistic the generated curve looks. Figure 4.14 indicates that the return time from the

first reflection site does play an important role. In figure 4.15, however, it becomes clear

that the return time from the second reflection site is relevant too.

(a) t2b,ms � 120ms (b) t2b,ms � 145ms (c) t2b,ms � 170ms

(d) t2b,ms � 195ms (e) t2b,ms � 220ms (f) t2b,ms � 245ms

Figure 4.15: Different values of t2b,ms and their influence on curve shape. Second cardiac

cycle. Choice of parameters: s � 0.3, d � 0.7, R1
D � R2

D � 0.2, t1b,ms � 95ms, τ � 0.0001.

If we assume Rav � 1 the effects are very similar. Discriminability of reflection effects is

generally harder, see figure 4.16.
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(a) t2b,ms � 120ms (b) t2b,ms � 145ms (c) t2b,ms � 170ms

(d) t2b,ms � 195ms (e) t2b,ms � 220ms (f) t2b,ms � 245ms

Figure 4.16: Different values of t2b,ms and their influence on curve shape. Second cardiac

cycle. Choice of parameters: s � 0.3, d � 0.7, R1
D � R2

D � 0.2, t1b,ms � 95ms, τ � 0.0001.

4.3.6 Influence of Step Size

As in the previous chapter, time step size τ is purely technical and does not represent

any physiological phenomenon. We therefore expect the influence of τ on the model with

two reflection sites to be the same as it is on the first model. Indeed, generating curves

for several values of τ and comparing them to measured curves confirms this for both

Rav � 1diastole and Rav � 1.

4.4 Adding Reflection Sites

In the previous sections a blood pressure model with two distal reflection sites was dis-

cussed and compared to the model with only one distal reflection site. The superiority of

the second model over the first one suggests that adding more reflection sites will further

improve results. It has also been argued by Westerhof and Westerhof [55] that a single

tube model with only one or two reflection sites is a poor representation of reality. In this

section we will therefore generalize the model to include n distal reflection sites for some

n P N. However, the arterial system will still be modeled as a single tube, see figure 4.17.

In order to describe reflected waves arising at n different reflection sites it is necessary

to define n reflection coefficients R1
D, . . . , R

n
D and return times t1b , . . . , t

n
b . Without loss of

generality we will assume t1b   t2b   . . .   tnb . By splitting pressure into its forward and

backward component, i.e. Pk � P fk � P bk , the difference equation system
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AV RS 1 RS n

MS

Figure 4.17: Tube model of the arterial system with n reflection sites as presented above.
AV - aortic valve, MS - measuring site, RS 1, . . ., RS n - distal reflection sites.

Model 3

P fk � P ink � P bk�2tf
Ravk�tf , (4.4a)

P bk � P f
k�t1b

R1
D � . . .� P fk�tnb

RnD (4.4b)

can be derived. Inserting equation (4.4a) into (4.4b) and vice versa yields the two inde-

pendent equations

P fk � P ink � P f
k�2tf�t

1
b
R1
DR

av
k�tf

� . . .� P fk�2tf�t
n
b
RnDR

av
k�tf

� P ink �
ņ

l�1

P f
k�2tf�t

l
b

RlDR
av
k�tf

,
(4.5a)

P bk � P ink�t1b
R1
D � P bk�2tf�t

1
b
R1
DR

av
k�tf�t

1
b
� . . .� P ink�tnb

RnD � P bk�2tf�t
n
b
RnDR

av
k�tf�t

n
b

�
ņ

l�1

P in
k�tlb

RlD � P b
k�2tf�t

l
b
RlDR

av
k�tlb�tf

(4.5b)

of order N � 2tf � tnb . Again, we know from standard literature [1, 11] that the initial

value problems $'&
'%
P fk � P ink �

n°
l�1

P f
k�2tf�t

l
b

RlDR
av
k�tf

, k P N¡2tf�t
n
b
,

P fk � P̄k, k � 1, . . . , N

and $'&
'%
P bk �

n°
l�1

P in
k�tlb

RlD � P b
k�2tf�t

l
b

RlDR
av
k�tf�t

l
b

, k P N¡2tf�t
n
b
,

P bk � P̂k, k � 1 . . . , N,

defined by equations (4.5a) and (4.5b) and some initial values P̄k and P̂k, have unique

solutions. For the forward pressure the initial condition can be chosen as P fk � P ink for
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k � 1, . . . , N . For the backward pressure it is

P bk �

$'''''''&
'''''''%

0, k � 1, . . . , t1b ,

P in
k�t1b

R1
D, k � t1b � 1, . . . , t2b ,

...
...

n°
l�1

P in
k�tlb

RlD, k � tnb � 1, . . . , N.

However, due to the increased complexity finding these solutions explicitly is not possible.

(a) Rav
� 1diastole. Second cardiac cycle.

Choice of parameters for blue curve: s �

0.348, d � 0.652, t1b,ms � 95, t2b,ms � 145,

t3b,ms � 195, R1
D � R2

D � 0.2, R3
D � 0.1,

τ � 0.0001. Choice of parameters for cyan
curve: s � 0.348, d � 0.652, t1b,ms � 95,

t2b,ms � 195, R1
D � R2

D � 0.2,τ � 0.0001.

(b) Rav
� 1. Second cardiac cycle. Choice

of parameters for blue curve: s � 0.348, d �
0.652, t1b,ms � 95, t2b,ms � 145, t3b,ms � 195,

R1
D � R2

D � 0.2, R3
D � 0.1, τ � 0.0001.

Choice of parameters for cyan curve: s �
0.348, d � 0.652, t1b,ms � 95, t2b,ms � 195,

R1
D � R2

D � 0.2,τ � 0.0001.

Figure 4.18: Comparison of measured curve, a curve modeled with two reflection sites
and a curve modeled with three reflection sites, normalized to same pulse pressure.

In figure 4.18 the model with three reflection sites is compared to a measured curve and

the model with two reflection sites, both for (a) Rav � 1diastole and (b) Rav � 1. The

parameter values were found by trial and error. They were chosen such that the shape of

the curve is as similar to the measured curve as possible. We can see that in particular

for Rav � 1 the model with three reflection sites is a better fit than the one with only

two: The diastolic decay is a better approximation for the exponential decay that was

presented in chapter 2.

Numerical analysis becomes more and more complex as the number of reflection sites in-

creases. Since it would require the variation of each parameter separately, it goes beyond

the scope of this thesis and will be left for further projects. We can, however, briefly

compare the curves generated by the model with an increasing number of reflection sites

while holding the sum of reflection coefficients constant, see figures 4.19 and 4.20. While

the overall reflection remains the same it is distributed over more and more sites. Algo-
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rithm 4.3.1 can easily be generalized to consider n reflection sites. In figure 4.19 we choose

Rav � 1diastole and the following reflection sites:

(a) RD � 0.55, tb,ms � 145ms.

(b) R1
D � 0.3, R2

D � 0.25, t1b,ms � 95ms, t2b,ms � 145ms.

(c) R1
D � 0.3, R2

D � 0.1, R3
D � 0.15, t1b,ms � 95ms, t2b,ms � 145ms, t3b,ms � 195ms.

(d) R1
D � 0.2, R2

D � R3
D � 0.1, R4

D � 0.15, t1b,ms � 95ms, t2b,ms � 130ms, t3b,ms � 145ms,

t4b,ms � 195ms.

(e) R1
D � 0.2, R2

D � R3
D � R4

D � 0.1, R5
D � 0.05, t1b,ms � 95ms, t2b,ms � 130ms,

t3b,ms � 145ms, t4b,ms � 160ms, t5b,ms � 195ms.

(f) R1
D � R2

D � R3
D � R4

D � R5
D � 0.1, R6

D � 0.05, t1b,ms � 95ms, t2b,ms � 110ms,

t3b,ms � 130ms, t4b,ms � 145ms, t5b,ms � 160ms, t6b,ms � 195ms.

(a) One reflection site. (b) Two reflection sites. (c) Three reflection sites.

(d) Four reflection sites. (e) Five reflection sites. (f) Six reflection sites.

Figure 4.19: Comparison of measured curve and curves modeled with increasing number
of reflection sites. Second cardiac cycle. Rav � 1diastole.

°n
l�1R

l
D � 0.55. Choice of

parameters: s � 0.3, d � 0.7, τ � 0.0001.

We see that during diastole curves get smoother as the number of reflection sites increases.

The main spike at the beginning of diastole, however, remains distinct. This can be

explained by the discrete description of valve closure by Rav � 1diastole. To optimize the

shape of the curve further analysis is necessary that shall be done elsewhere.

In figure 4.20 we choose Rav � 1 and the same reflection sites as in figure 4.19. Again,

the curves become smoother as the number of reflection sites increases.
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(a) One reflection site. (b) Two reflection sites. (c) Three reflection sites.

(d) Four reflection sites. (e) Five reflection sites. (f) Six reflection sites.

Figure 4.20: Comparison of measured curve and curves modeled with increasing number
of reflection sites. Second cardiac cycle. Rav � 1.

°n
l�1R

l
D � 0.55. Choice of parameters:

s � 0.3, d � 0.7, τ � 0.0001.

4.5 Conclusion

In this chapter the original model was extended to include more than one distal reflection

site. Equations for a model with two reflection sites were given by (4.1a) and (4.1b).

Finding explicit solutions was not possible but comparison with the previous model and

a measured curve in section 4.2 showed that the model leads to a better fit than the

original one. Numerical analysis revealed that interpretation of reflection coefficients and

return times is more challenging in this model than before since the effects of the separate

reflection sites interfere with each other. There are even more combinations of parameters

to get a physiologically significant curve than before.

In section 4.4 the addition of further reflection sites was discussed. We concluded that even

though using more than two reflection sites might add useful information to the curve,

analyzing this model exceeds the scope of this thesis and shall be done elsewhere.
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Discussion

In this chapter we want to discuss the results of this thesis and their implications for

further research. Since the results were already discussed in detail in chapters 3 and 4, we

will not list all our findings. Instead, we want to give an overview and motivate further

research.

5.1 Conclusion

The aim of the thesis was to develop a simple new model for blood pressure using difference

equations that describes effects of wave reflection and analyze its properties. Overall it

can be said that this goal has been accomplished. The model proposed in chapter 3 is

simple enough that it is possible to solve the equations. Comparing modeled curves with

curves measured in patients shows that indeed the model represents reality fairly well.

Even though the curves produced by the model are less smooth than measured ones they

display the main characteristics of a blood pressure curve. Also in terms of periodicity

and boundedness the curves agree with reality.

Analyzing how changes at the heart influence the outcome shows the following: Intuitively

one would assume that reflections at the heart depend on the timing within the cardiac

cycle. Other researchers have reached the same conclusion [49]. The curves produced

by the model, however, are smoother and a better representation of reality if the heart

is assumed to be a total reflector throughout the entire cardiac cycle. Analysis of the

influence of the different parameters that describe the vascular system further confirmes

that assuming the heart to be a total reflector throughout the cardiac cycle is the better

choice. One reason for this might be the fact that a step function does not describe
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the physiological process of the aortic valve closing. Closing of the valve involves not

only the states “open” and “closed” but also intermediate states that are ignored by the

step function. Another reason could be that even when the valve is open, arriving blood

pressure waves are not absorbed completely. They are still reflected inside the ventricle,

with a different reflection coefficient than with a closed valve.

Also, observed influences of the parameters agree with results from a variety of previous

studies. Increasing the reflection coefficient that is connected to the arterial system impe-

dance increases systolic, diastolic and pulse pressure [27]. Increasing heart rate increases

DBP and decreases SBP and PP [57, 58]. The influence of return time that is found agrees

with results about pulse wave velocity [5] and the relationship of body height and systolic

blood pressure [18]. Effects of parameter variation on curve shape can be observed that

have no counterpart in literature. They help understand the model better.

Unfortunately it is not possible to choose parameters such that both shape and absolute

values match real curves. This inspires the introduction of further reflection sites.

The model that includes two different reflection sites is more difficult and cannot be solved

directly anymore. Numerical analysis, however, shows that the fit to measured curves

improves by using two reflection sites. Again, the curves look more realistic if the heart is

assumed to be a total reflector throughout the cardiac cycle. Influence of the parameters

is more complex and cannot be directly compared to results from literature anymore [4].

More than two reflection sites make the model so complex that a thorough analysis would

exceed the scope of this thesis. It can be seen, though, that indeed increasing the number

of reflection sites makes the curves smoother.

5.2 Outlook

Even though the model was thoroughly analyzed in the previous chapters, some questions

are left open. One can therefore still improve understanding of the model by further

studies. Also, applications of the model can be found.

Improvement of the model. The first problem that can be addressed is the question

of reflection at the heart. All the functions compared in section 3.5.2 are extreme cases.

Instead one could try the function

Rav � A � 1diastole �B � 1systole (5.1)

with constants A,B P r0, 1s to include wave reflection inside the left ventricle. To better

represent the time of valve closure one could substitute the step function given in (5.1) by

a continuous function, see figure 5.1.

Another possibility is to find a new model that describes the ventricle, maybe a Windkessel
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B

A

systole systolediastole diastole
k

Rav

Figure 5.1: Alternative choice of Rav that includes valve closure.

model. During systole, this model is then linked with the arterial system. When the valve

is closed during diastole, however, reflection at the heart is assumed to be total, as was

presented in this thesis.

Next, more than two reflection sites can be assumed. The model can then be thoroughly

studied to analyze influence and interdependence of parameters.

Applications of the model. There are several applications that could be developed

with the help of the models presented here. We will only list a few of them.

First of all, one can try to fit the model to measured curves by choosing specific parameter

values. This could be automated and implemented, for example in Matlab, as follows.

Preexisting algorithms can be used to find systole and diastole length and return times [3].

If the model is assumed to have only one reflection site and tf � 0, the return time tb can

be found by using the shoulder point that is also used for calculating the augmentation

index, see section 2.2.4. Next one needs to decide what functions to use for Rav and P in.

Using all these methods it will be possible to find the correct value of RD by minimizing

some error function. Depending on which error function is used the results will vary. The

method can be refined by introducing more reflection sites.

Once the parameters to fit the model to a measured curve are known, the algorithm can be

adapted to separate the measured curve into its forward and backward component. This

can further be compared to traditional wave separation methods [20, 53].

A concept that has come up recently [2, 35] is that of wave tracking. The idea is that as

an initial wave coming from the heart gets reflected and re-reflected at various reflection

sites throughout the vascular system it multiplies. The number of waves (forward and

backward) stemming from the initial wave grows exponentially. At a fixed site measured

pressure at any point in time is therefore the sum of different “descendants” of several

reflected waves. Wave tracking algorithms aim to separate these parts and attribute them

to their respective heart beats. The model developed in this thesis could be adapted to

find a new method to track waves.

Possibly more applications of the model can be found that have not been mentioned here.

This confirms that the model is worth further studies.
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Appendix

A.1 Linear Difference Equations

This section aims to give an overview of the theory of difference equations used in sections

3.3.1 and 4.1. It is based on several books on difference equations [1, 11, 17].

In the following results the inhomogeneous linear system

uk�1 � Auk � bk�1, k P N0 (A.1.2)

and the corresponding homogeneous system

uk�1 � Auk, k P N0 (A.1.3)

will be considered for some N P N, a nonsingular matrix A P RN�N and bk P RN for

k P N. Usually, an initial condition u0 P RN is prescribed.

A.1.1 Solution Theory

Definition A.1.1 The solution of a system of type (A.1.2) or (A.1.3) is defined as a

sequence of vectors uk P RN , k P N0 such that the respective iteration is satisfied.

For homogeneous systems, the solution can be found directly by taking powers of the

system matrix A.

Theorem A.1.2 The solution of the homogeneous system (A.1.3) with the initial condition

u0 is given by

uk � Aku0

for k P N0.
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Proof. See [1], theorem 2.6.1 for k0 � 0 and constant A. �

Definition A.1.3 Two solutions pup1qk qkPN0 and pup2qk qkPN0 of (A.1.3) are called linearly

independent if

au
p1q
k � bu

p2q
k � 0, @k P N0

implies a � b � 0.

Theorem A.1.4 The homogeneous system (A.1.3) has N linearly independent solutions

pup1qk qkPN0 , . . . , pu
pNq
k qkPN0 .

Proof. See [11], theorem 2.18. �

Definition A.1.5 Consider any N linearly independent solutions

pup1qk qkPN0 , . . . , pu
pNq
k qkPN0

of (A.1.3). The matrix

Vk �
�
u
p1q
k , . . . , u

pNq
k

�
, k P N0

is called fundamental matrix of the system.

Multiplying the matrix Vk with a constant vector yields a fundamental matrix that satisfies

a different initial condition.

Definition A.1.6 Let Uk denote the principal fundamental matrix of (A.1.3), i.e.

U0 � In.

Definition A.1.7 The Green’s matrix of (A.1.3) is defined by

Gpk, jq � UkU
�1
j .

Theorem A.1.8 There holds

Gpk, jq � Ak�j .

Proof. See [17], lemma 3.4. �

Theorem A.1.9 The solution of the inhomogeneous system (A.1.2) with the initial con-
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dition u0 is given by

uk � Uku0 �
ķ

j�1

Ak�jbj�1

for k P N0.

Proof. Equation (3.2) in [17] gives

uk � Uku0 �
ķ

j�1

UkU
�1
j bj�1.

Inserting definition A.1.7 and theorem A.1.8 completes the proof. �

A.1.2 Stability Theory

Definition A.1.10 A solution pukqkPN0 of system (A.1.2) or (A.1.3) with the initial con-

dition u0 is called

1. stable if for all ε ¡ 0 there exists δ ¡ 0 such that for all solutions pykqkPN0 that

satisfy the initial condition y0 and ||u0 � y0||   δ it follows ||uk � yk||   ε for all

k P N0,

2. globally attractive if for all solutions pykqkPN0 of the system there holds

lim
kÑ8

||uk � yk|| � 0,

3. globally asymptotically stable if it is both globally attractive and stable.

Obviously the following theorem is true.

Theorem A.1.11 If a solution pukqkPN0 of (A.1.2) or (A.1.3) is globally asymptotically

stable, it is stable.

Theorem A.1.12 The following statements are equivalent:

(a) All solutions of the system (A.1.3) are globally asymptotically stable.

(b) There holds lim
kÑ8

||uk|| � 0 for alle solutions of (A.1.3).

If the above statements are true, it follows that there exists c P R� such that ||Uk|| ¤ c for

all k P N0.

Proof. See [17], theorem 4.2. �
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Theorem A.1.13 The following statements are equivalent:

1. All solutions of the inhomogeneous system (A.1.2) are globally asymptotically stable.

2. The trivial solution of the homogeneous system (A.1.3) is globally asymptotically

stable.

Proof. See [17], lemma 4.1 and the remark on the following page. �

Theorem A.1.14 Consider the linear difference equations

xk � akxk�N � hk, k P N¡N (A.1.4a)

yk � bkyk�N � hk, k P N¡N (A.1.4b)

with the initial condition xk � yk � ck for k � 1, . . . , N . Assume ak ¥ bk for all k ¡ N .

Then there holds

xk ¥ yk, @k P N.

Proof. The claim can be proved by mathematical induction. The base x1 � y1 follows

directly from the initial condition. Now assume xk ¥ yk for all k ¤ n with n ¥ N . To

prove xn�1 ¥ yn�1, consider

xn�1 � an�1xn�1�N � hn�1 ¥ an�1yn�1�N � hn�1 ¥ bn�1yn�1�N � hn�1 � yn�1.

The equality signs follow directly from (A.1.4). The first ¥ follows from the induction

hypothesis, the second one from ak ¥ bk. �

A.2 Thresholds

This appendix aims to illustrate the dependence of the threshold for significant differences

in the influence of R1
D and R2

D on return times and the constant reflection coefficient that

is mentioned in section 4.3.3. The tables are provided for completeness and would decrease

readability if inserted in section 4.3.3 directly.

For the following computations the threshold was chosen as the lowest value 0   c   1

such that

|SBP pR1
D � RconstD , R2

D � cq � SBP pR1
D � c,R2

D � RconstD q|
max
R2
D

SBP pR1
D � RconstD , R2

Dq
¡ 0.1.

First consider the case Rav � 1diastole. Tables A.2.1 and A.2.2 illustrate the dependence

of the threshold on t2b,ms for several fixed values of t1b,ms. The two tables only differ in the
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value of RconstD that was chosen. In both tables it can be observed that even though the

threshold does not depend on t2b,ms monotonously, it has a tendency to decrease if t2b,ms
and with it the difference t2b,ms � t1b,ms increases. In fact, the difference seems to be more

important than the actual values.

t1b,ms � 50ms t1b,ms � 75ms t1b,ms � 100ms t1b,ms � 125ms

t2b,ms (in ms) c

75 0.93
100 0.90
125 0.93
150 0.90
175 0.92
200 0.89
225 0.91

t2b,ms (in ms) c

100 0.96
125 0.99
150 0.90
175 0.94
200 0.96
225 0.88
250 0.91

t2b,ms (in ms) c

125 ¡ 1
150 ¡ 1
175 0.95
200 0.89
225 0.92
250 0.93
275 0.92

t2b,ms (in ms) c

150 ¡ 1
175 0.95
200 0.99
225 0.87
250 0.85
275 0.89
300 0.89

Table A.2.1: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.2, τ � 0.0001.

Comparing tables A.2.1 and A.2.2 shows that increasing RconstD seems to generally lower the

threshold values. For RconstD � 0.2 for some combinations of return times the threshold

is beyond the range of the varied reflection coefficient (indicated by ¡ 1 in the table).

For RconstD � 0.4, however, threshold values are significantly below one for all studied

combinations of return times.

t1b,ms � 50ms t1b,ms � 75ms t1b,ms � 100ms t1b,ms � 125ms

t2b,ms (in ms) c

75 0.86
100 0.81
125 0.80
150 0.77
175 0.78
200 0.75
225 0.77

t2b,ms (in ms) c

100 0.90
125 0.85
150 0.81
175 0.83
200 0.82
225 0.75
250 0.81

t2b,ms (in ms) c

125 0.90
150 0.98
175 0.83
200 0.80
225 0.83
250 0.80
275 0.79

t2b,ms (in ms) c

150 0.90
175 0.88
200 0.93
225 0.80
250 0.77
275 0.79
300 0.75

Table A.2.2: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.4, τ � 0.0001.

Tables A.2.3 and A.2.4 illustrate the dependence of the threshold on t1b,ms for several fixed

values of t2b,ms. Again, they differ in the value of RconstD . It can be observed that as t1b,ms
increases and therefore the difference t2b,ms� t

1
b,ms decreases the threshold values increase,

a result that agrees with the previous one. As before, the difference seems to be more

important than the actual values.

Comparing tables A.2.3 and A.2.4 shows that increasing RconstD seems to generally lower

the threshold values.

The same analysis can be done for Rav � 1, with very similar results. Tables A.2.5 and

A.2.6 illustrate the dependence of the threshold on t2b,ms for several fixed values of t1b,ms.

Again, the two tables only differ in the value of RconstD that was chosen. In both tables it
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t2b,ms � 200ms t2b,ms � 225ms t2b,ms � 250ms t2b,ms � 275ms

t1b,ms (in ms) c

25 0.88
50 0.89
75 0.96
100 0.89
125 0.99
150 0.99
175 ¡ 1

t1b,ms (in ms) c

50 0.91
75 0.88
100 0.92
125 0.87
150 0.98
175 ¡ 1
200 ¡ 1

t1b,ms (in ms) c

75 0.91
100 0.93
125 0.85
150 0.90
175 0.95
200 0.97
225 ¡ 1

t1b,ms (in ms) c

100 0.92
125 0.89
150 0.85
175 1.00
200 0.95
225 ¡ 1
250 ¡ 1

Table A.2.3: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.2, τ � 0.0001.

t2b,ms � 200ms t2b,ms � 225ms t2b,ms � 250ms t2b,ms � 275ms

t1b,ms (in ms) c

25 0.75
50 0.75
75 0.82
100 0.80
125 0.93
150 0.87
175 ¡ 1

t1b,ms (in ms) c

50 0.77
75 0.75
100 0.83
125 0.80
150 0.88
175 ¡ 1
200 ¡ 1

t1b,ms (in ms) c

75 0.81
100 0.80
125 0.77
150 0.78
175 0.86
200 0.93
225 ¡ 1

t1b,ms (in ms) c

100 0.79
125 0.79
150 0.78
175 0.88
200 0.87
225 ¡ 1
250 ¡ 1

Table A.2.4: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.4, τ � 0.0001.

can be observed that even though the threshold does not depend on t2b,ms monotonously,

it has a tendency to decrease if t2b,ms and with it the difference t2b,ms � t1b,ms increases. In

fact, the difference seems to be more important than the actual values.

t1b,ms � 50ms t1b,ms � 75ms t1b,ms � 100ms t1b,ms � 125ms

t2b,ms (in ms) c

75 0.95
100 0.93
125 0.91
150 0.90
175 0.89
200 0.89
225 0.88

t2b,ms (in ms) c

100 0.97
125 0.94
150 0.93
175 0.92
200 0.91
225 0.90
250 0.89

t2b,ms (in ms) c

125 0.97
150 0.95
175 0.94
200 0.93
225 0.92
250 0.91
275 0.90

t2b,ms (in ms) c

150 0.98
175 0.96
200 0.95
225 0.93
250 0.93
275 0.92
300 0.91

Table A.2.5: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.2, τ � 0.0001.

As before, comparing tables A.2.5 and A.2.6 shows that increasing RconstD seems to gene-

rally lower the threshold values.

Tables A.2.7 and A.2.8 illustrate the dependence of the threshold on t1b,ms for several fixed

values of t2b,ms. Again, they differ in the value of RconstD . It can be observed that as t1b,ms
increases and therefore the difference t2b,ms� t

1
b,ms decreases the threshold values increase,

a result that agrees with the previous one. As before, the difference seems to be more

96



A.2. THRESHOLDS

t1b,ms � 50ms t1b,ms � 75ms t1b,ms � 100ms t1b,ms � 125ms

t2b,ms (in ms) c

75 0.93
100 0.90
125 0.87
150 0.85
175 0.84
200 0.83
225 0.83

t2b,ms (in ms) c

100 0.95
125 0.92
150 0.89
175 0.88
200 0.86
225 0.85
250 0.85

t2b,ms (in ms) c

125 0.96
150 0.93
175 0.91
200 0.89
225 0.88
250 0.87
275 0.86

t2b,ms (in ms) c

150 0.97
175 0.94
200 0.92
225 0.91
250 0.89
275 0.88
300 0.87

Table A.2.6: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.4, τ � 0.0001.

important than the actual values.

t2b,ms � 200ms t2b,ms � 225ms t2b,ms � 250ms t2b,ms � 275ms

t1b,ms (in ms) c

25 0.75
50 0.75
75 0.82
100 0.80
125 0.93
150 0.87
175 ¡ 1

t1b,ms (in ms) c

50 0.77
75 0.75
100 0.83
125 0.80
150 0.88
175 ¡ 1
200 ¡ 1

t1b,ms (in ms) c

75 0.81
100 0.80
125 0.77
150 0.78
175 0.86
200 0.93
225 ¡ 1

t1b,ms (in ms) c

100 0.79
125 0.79
150 0.78
175 0.88
200 0.87
225 ¡ 1
250 ¡ 1

Table A.2.7: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.2, τ � 0.0001.

Comparing tables A.2.7 and A.2.8 shows that increasing RconstD seems to generally lower the

threshold values. For RconstD � 0.2 for some combinations of return times the threshold

is beyond the range of the varied reflection coefficient (indicated by ¡ 1 in the table).

For RconstD � 0.4, however, threshold values are significantly below one for all studied

combinations of return times.

t2b,ms � 200ms t2b,ms � 225ms t2b,ms � 250ms t2b,ms � 275ms

t1b,ms (in ms) c

25 0.80
50 0.83
75 0.86
100 0.89
125 0.92
150 0.95
175 0.97

t1b,ms (in ms) c

50 0.83
75 0.85
100 0.88
125 0.91
150 0.93
175 0.95
200 0.98

t1b,ms (in ms) c

75 0.85
100 0.87
125 0.89
150 0.92
175 0.94
200 0.96
225 0.98

t1b,ms (in ms) c

100 0.86
125 0.88
150 0.90
175 0.92
200 0.94
225 0.96
250 0.98

Table A.2.8: Dependence of threshold for SBP on the difference t2b,ms � t
1
b,ms. Choice of

parameters: s � 0.3, d � 0.7, RconstD � 0.4, τ � 0.0001.
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List of Symbols

∆Ac change in cross-sectional area

∆P change in blood pressure

∆V change in blood volume

η viscosity of blood

Γ reflection coefficient

ρ density of blood

τ time step size

Ac cross-sectional area of vessel

AI augmentation index

AP late systolic boost

AV aortic valve

bpm beats per minute

C compliance

c0 pulse wave velocity

CA area compliance

DBP diastolic blood pressure

dIw wave intensity

ECG electrocardiogram

I inertance

k time variable

L tube length

mmHg millimeters of mercury

MS measuring site

P blood pressure

P b backward pressure

P f forward pressure

P ink pressure generated by heart at

time k

P0 reflectionless pressure

Pk pressure at time k

PP pulse pressure

PWV pulse wave velocity

Q blood flow

Qb backward flow

Qf forward flow

Q0 reflectionless flow

R resistance

r tube radius

Rav reflection coefficient at aortic

valve

RD reflection coefficient at distal re-

flection site

RM reflection magnitude

RS distal reflection site

SBP systolic blood pressure

tb number of time steps for pres-

sure impulse to go to reflection

site and back to measuring site
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tf number of time steps for pres-

sure impulse to go to aortic valve

tb,ms return time from distal reflection

site in ms

tf,ms travel time to the aortic valve in

ms

U flow velocity

Z input impedance

Z0 characteristic impedance
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