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Abstract

In this thesis, the first fully self-consistent implementation of the dynamical vertex ap-

proximation (DΓA) in its parquet formulation was realized. The method provides a

framework to treat non-local correlations in strongly correlated electron systems, which

lead to some of the most interesting phenomena in solid-state physics. In this thesis, we

give an introduction to the parquet-, Bethe-Salpeter- and Schwinger-Dyson-equations,

which form the backbone of DΓA. We further give a sketch of the parquet-solver used

within this work, the victory-code. We then show how to extract the fully irreducible

vertex, a key component of DΓA, from two-particle Green’s functions obtained in a CT-

QMC solution of the local impurity problem. A special focus lies on the update of the

impurity problem to achieve self-consistency at the level of the local one-particle Green’s

function. This (outer) self-consistency is found to be particularly important with the

introduction of non-local interactions, as is shown for the case of the benzene molecule.

We also present results for the two dimensional Hubbard model on the square lattice,

where the outer self-consistency does not impact the solution in a significant way at the

currently attainable parameters. Nevertheless, the results indicate possible dx2−y2-wave

superconducting pairing in the two-dimensional Hubbard model.

Zusammenfassung

Im Rahmen dieser Arbeit wurde die erste völlig selbstkonsistente Implementierung der

Dynamischen Vertex Approximation (DΓA) durchgeführt. Diese Methode erlaubt die

Behandlung nicht-lokaler Korrelationen in stark korrelierten Elektronensystemen, die zu

einigen der interessantesten Phänomenen der Festkörperphysik führen. Wir stellen die zu-

grundeliegenden Gleichungen, die Parquet Gleichungen, vor und skizzieren den Aufbau

des Programms victory-code, das zur Lösung der Parquet Gleichungen verwendet wur-

de. Wir zeigen, wie man den völlig irreduziblen Vertex, der eine wichtige Komponente der

DΓA bildet, von den Zweiteilchen Greenschen Funktionen erhält, die wiederum mittels

CT-QMC von einem Störstellenmodell berechnet werden. Ein besonderer Fokus dieser

Arbeit liegt auf der Neuberechnung des Störstellenmodells, sodass Selbstkonsistenz auf

dem Niveau der lokalen Einteilchen Greenschen Funktion erreicht wird. Diese (äußere)

Selbstkonsistenz hat sich als besonders wichtig bei nicht-lokalen Wechselwirkungen her-

ausgestellt, wie sie für das Benzol-Molekül eingeführt wurden. Wir präsentieren außerdem

Ergebnisse für das zweidimensionale Hubbard Modell auf einem quadratischen Gitter, wo

die äußere Selbstkonsistenz das Ergebnis für die derzeit ereichbaren Parameter nicht stark

beeinflusst. Dennoch deuten die Ergebnisse auf mögliche dx2−y2-Wellen Supraleitung im

zweidimensionalen Hubbard Modell hin.
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Chapter 1

Introduction

Strong electronic correlations give rise to some of the most interesting phenomena in

condensed matter physics. Their treatment still poses a great challenge as they fail to be

described by the standard approaches to solid state physics such as the density functional

theory. The topic of this thesis, the dynamical vertex approximation (DΓA), provides a

non-perturbative method within the framework of many-body theory. Electronic correla-

tions are especially important in systems with partially filled d- and f -orbitals, which are

spatially highly confined and thus lead to strong interactions between electrons occupying

the same orbital. While in principle the Hamiltonian of such a system is easily written

down, vast simplifications have to be made in order to have a chance of solving it. The

Hubbard Hamiltonian [1] is given in second quantization as

H = −
∑
i,j,σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓. (1.1)

Here ĉ†iσ, ĉiσ are the creation and annihilation operators at site i and spin σ, and the occu-

pation number operator is n̂iσ = ĉ†iσ ĉiσ. The first term represents the kinetic energy and

allows electrons to “hop” from one site to another, with the so-called hopping amplitude

tij. The second term introduces the interaction U between two electrons when they are

on the same site. Throughout this thesis, only single-band systems with nearest-neighbor

hopping are considered although more realistic systems are possible for computationally

less demanding methods. Despite its simplicity, the Hubbard model is able to describe

a range of interesting phenomena such as the Mott metal-insulator transition [2] and

possibly superconductivity in two-dimensional planes [3].

The dynamical mean field theory (DMFT) [4] enabled a big step forward in the suc-

cessful description of some of these phenomena, for example the Mott metal-insulator

transition. In DMFT, the local part of the correlations can be treated non-perturbatively
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by mapping the lattice onto a single site and solving the resulting single-site Hamiltonian

self-consistently. In principle, this simpler Hamiltonian can be solved exactly, albeit still

not analytically, for example through Quantum Monte Carlo methods with only statis-

tical error [5]. This, however, comes at the price of the complete neglection of non-local

correlations, which lead to a variety of phenomena such as high-temperature supercon-

ductivity in cuprates [6] or quantum-critical points. DMFT can be extended to include

non-local correlations in two different ways: In cluster-DMFT, the lattice is mapped onto

a finite cluster of sites, again embedded in a self-consistently determined bath. Non-local

correlations are accounted for only within the length scale of the cluster, which is heavily

limited as the computational effort scales exponentially. The dynamical vertex approxi-

mation (DΓA) [7, 8], along with other methods, takes a different approach by extending

the diagrammatics of DMFT. This way, correlations on all length scales are taken into

account. See Ref. [9] for a review of diagrammatic extensions of DMFT.

1.1 Antiferromagnetism and dx2−y2 superconductiv-

ity

One major characteristic of any kind of superconductivity is spontaneous symmetry

breaking: The non-zero expectation value of the anomalous operator, 〈ĉa ĉb〉 6= 0 breaks

the U(1) gauge symmetry of the Hamiltonian, ĉa → eiφĉa [10]. While this is all the

symmetry-breaking that occurs in conventional superconductors, in high-Tc unconven-

tional superconductors the symmetry group of the order parameter is even more reduced.

Besides translational symmetry, the Hubbard model on a square lattice has the symmetry

group [11]

G = U(1)× SU(2)× T × C4v,

namely gauge symmetry U(1), spin-rotational symmetry SU(2), time reversal symmetry

T and the point group symmetry of the square lattice, C4v, which contains reflections,

inversion and, most importantly for the present discussion, rotations by π
2
. The character

table of C4v is given in Table 1.1. A classification of the order parameters is possible

depending on which symmetries are conserved.

A hint on which symmetries are broken comes from the BCS-gap equation for the gap-

function and order parameter ∆k [12]

∆k = −
∑
k′

Vkk′
∆k′

2Ek

. (1.2)
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E C4 C2
4 C ′2 C ′′2

A1g 1 1 1 1 1

A2g 1 1 1 -1 -1

B1g 1 -1 1 1 -1

B2g 1 -1 1 -1 1

Eu(x) 1 0 -1 1 0

Eu(y) 1 0 -1 -1 0

Table 1.1: The character table of C4v. E is unity, C4 a rotation of π
2

in the plane

and C ′2 and C ′′2 a rotation of π around the y = 0 and x = y axes. As A and B denote

one-dimensional irreducible representations, their effect on the order parameter can be

read directly from the character table.

For conventional superconductors, where an attractive potential Vk < 0 is mediated by

phonons, solutions are possible without any sign changes in ∆k. In cuprates, the BCS-

interaction is believed to be due to the exchange of antiferromagnetic spin fluctuations

[13]. The effective interaction Vk,k′ between a pair of electrons is proportional to χm(q =

k − k′), as shown in Ref. [14] from a random phase approximation (RPA) argument.

At low temperatures and near half filling, the system realizes an antiferromagnetic state,

manifested by a pronounced peak at χm(π, π). With doping, this peak shifts towards

smaller transfer momentum in one direction.

The sum in the gap equation is thus dominated by k′ = (π, π) − k and a solution is

possible when ∆(π,π)−k = −∆k, that is it changes its sign upon rotation by π
2
. Indeed,

the superconducting order parameter in cuprates has been shown experimentally [15] to

have the symmetry of the irreducible representation B1g, which exhibits this change of

sign upon rotation (see Table 1.1). In analogy to the isotropic continuous case, where this

symmetry is realized by states with angular momentum l = 2, the B1g states are more

commonly refered to as dx2−y2 or simply d-wave. The corresponding order parameter can

be expressed as

∆k =
∆0

2
(cos(kx)− cos(ky)) . (1.3)
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1.2 Notations and definitions

1.2.1 Green’s function

The Green’s function is one of the key elements for the treatment of many-body systems

as it is directly related to a variety of physical quantities such as the spectral function. In

real time, the one-particle Green’s function is defined in the Heisenberg-picture as

G12(t1, t2) = −i〈T ĉ1(t1)ĉ†2(t2)〉, (1.4)

where ĉ†1 creates a particle at compound index 1, which contains the remaining relevant

properties such as spin and position, and T is the time-ordering operator. For finite

temperatures, we follow the Matsubara formalism and use imaginary time arguments by

performing a ”Wick rotation” t→ −iτ . This avoids complex exponents when combining

the Boltzmann factor eβH and the time-evolution operator e−iHt. The one-particle Green’s

function in imaginary time is

G12(τ1, τ2) = −〈T ĉ1(τ1)ĉ†2(τ2)〉. (1.5)

From this, one can recover the values on the real time axis through an analytic contin-

uation by such methods as the maximum entropy approach [16]. The expectation value

can be explicitly calculated in an eigenbasis of the Hamiltonian with eigenfunctions |n〉.
Without loss of generality, for τ1 > τ2 this spectral representation reads

G12(τ1, τ2) ∝
∑
n

e(τ1−τ2−β)En 〈n| ĉ1e
−(τ1−τ2)H ĉ†2 |n〉 .

To avoid divergences for realistic systems with an arbitrarily large number of states |n〉
and arbitrarily large energies En, one has to ensure that the exponential suppresses the

matrix element by restricting

τ1 − τ2 < β. (1.6)

The cyclic property of the trace leads to another simplification: some rewriting and

exchanging the two operators gives [17]

Tr[e(τ1−β)H ĉ1e
(β−τ1)He−βH ĉ†2(τ2)] = Tr[e−βH ĉ†2(τ2)e(τ1−β)H ĉ1e

(β−τ1)H ], (1.7)

which is just the same as G12(τ1 − β, τ2) except for a sign coming from the permutation

in the time ordering operator.

G12(τ1, τ2) = −G12(τ1 − β, τ2). (1.8)
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Because of time translational symmetry, only the difference between the two time argu-

ments matters: G12(τ1, τ2) = G12(τ1 − τ2). Combining equations (1.6) and (1.8), one can

constrain the time domain to

0 < τ < β. (1.9)

In accordance with all of the above, the Fourier expansion of the Green’s function is

G12(τ) =
1

β

∑
n

e−iνnτG12(iνn), (1.10)

G12(iνn) =

∫ β

0

dτeiνnτG12(τ), (1.11)

where, due to the antiperiodicity of the Green’s function, only the fermionic Matsubara

frequencies νn = π
β
(2n + 1) are allowed. Similarly, the bosonic Matsubara frequencies,

which play a role in two-particle Green’s functions, are denoted as ωn = 2πn
β

.

1.2.1.1 Noninteracting Green’s function

The noninteracting Green’s function for the Hubbard model can be obtained by trans-

forming the creation and annihilation operators to k-space

ĉj =
1

N

∑
k

e−ikrj ĉk, (1.12)

ĉ†j =
1

N

∑
k

eikrj ĉ†k, (1.13)

where j is a site index and N the number of sites. The non-interacting Hubbard Hamil-

tonian is instantly diagonalized:

H =
∑
kσ

(εk − µ)ĉ†kσ ĉkσ, (1.14)

where we introduced the chemical potential µ. Inserting the Hamiltonian into the defini-

tion of the Green’s function, we find [18]

G0
k,k′(τ) = δk,k′

e−τ(εk−µ)

1 + e−β(εk−µ)
. (1.15)

Finally, the Fourier transform from τ to iν gives

G0
k(iν) =

1

iν − εk + µ
. (1.16)

In the two dimensional Hubbard model on the square lattice with nearest neighbor hop-

ping t, the dispersion relation is

εk = −2t(cos(kx) + cos(ky)). (1.17)
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G
=

G0

+
G0 G

Σ

Figure 1.1: The Dyson equation. Double arrows denote the interacting Green’s function.

1.2.1.2 Dyson equation

The Dyson equation systematically generates all one-particle diagrams from the non-

interacting propagator and the self-energy, which consists of all one-particle irreducible

diagrams. That means, these diagrams cannot be separated into two diagrams by cutting

a line. Diagramatically, the Dyson equation is shown in Fig. 1.1. It can easily be solved

algebraically and reads

Gk(iν)−1 = G0
k(iν)−1 − Σk(iν). (1.18)

Inserting the non-interacting Green’s function from above gives

Gk(iν) =
1

iν − εk + µ− Σk(iν)
. (1.19)

1.2.2 Two-particle Green’s function

Throughout this thesis, for two-particle quantities we follow the notations and sign con-

ventions introduced in Ref. [19]

The two-particle Green’s function plays an integral role in the present work. Its definition

is

G1234(τ1, τ2, τ3, τ4) = 〈Tτ [ĉ†1(τ1)ĉ2(τ2)ĉ†3(τ3)ĉ4(τ4)]〉. (1.20)

Antiperiodicity and time domain are just as in the one-particle case and can be easily

shown in the same manner.

In the noninteracting case, the operators in the expectation value simply contract accord-

ing to Wick’s theorem, giving the product of two one-particle propagators. When the

interaction is turned on, an additional term arises where the two lines are connected by

interactions. This term is encapsulated by the “full vertex” F as shown in Fig. 1.2. Note

that the lines in these diagrams represent the interacting one-particle Green’s function

and thus already include self-energy insertions.

We further define the bare susceptibility

χ0,1234(τ1, τ2, τ3, τ4) = −G14(τ1 − τ4)G32(τ3 − τ2) (1.21)
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4

-

1

2
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3

- F1234

1

2 3

4

Figure 1.2: Diagrammatic representation of the two-particle Green’s function. The

generalized susceptibility is obtained from this by subtracting the first term on the right

hand side.

and the generalized susceptibility,

χ1234(τ1, τ2, τ3, τ4) = G1234(τ1, τ2, τ3, τ4)−G12(τ1, τ2)G34(τ3, τ4). (1.22)

In the limit τ2 → τ1, τ4 → τ3, the latter gives the physical susceptibility which describes

the linear response to a perturbation.

1.2.2.1 Frequency convention

The fourier transform of the two-particle Green’s function or susceptibility is defined

as

Gν1ν2ν3ν4
1234 =

∫ β

0

dτ1dτ2dτ3dτ4e
−i(ν1τ1−ν2τ2+ν3τ3−ν4τ4)G1234(τ1, τ2, τ3, τ4). (1.23)

Due to time translational invariance, ν1 − ν2 + ν4 − ν4 = 0. The frequency dependence

can thus be expressed by two fermionic frequencies ν, ν ′ and one bosonic frequency ω.

The frequency conventions used in this work are depicted in Fig. 1.3. The same is true

for the wave number k due to translational symmetry or conservation of momentum, and

combined indices (k, k′, q) ≡ (ν,k, ν ′,k′, ω,q) will be used when needed.

The transformation from particle-particle (pp) to particle-hole (ph) notation is given

as

ωph = ωpp − νpp − ν ′pp,

νph = νpp,

ν ′ph = ν ′pp. (1.24)

1.2.2.2 Spin dependence and SU(2) symmetry

In order for the expectation value in Eq. (1.20) to be non-zero, there has to be an equal

number of creation and annihilation operators for each spin direction. Spin rotational
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ph

1, ν

2, (ω + ν) 3, (ω + ν ′)

4, ν ′

pp

4, ν ′

2, (ω − ν ′) 3, (ω − ν)

1, ν

Figure 1.3: Particle-hole (left) and particle-particle (right) frequency- and momentum

notation.

symmetry further reduces the number of independent combinations of spins to three, for

which the following short notation is used:

σ1 σ2 σ3 σ4

↑↑ = ↑ ↑ ↑ ↑

↑↓ = ↑ ↑ ↓ ↓

↑↓ = ↑ ↓ ↓ ↑

Symmetry when rotating spins by π dictates, for example, the following relation for the

two-particle Green’s function:

G2,↑↓ = G2,↓↑ . (1.25)

Furthermore, rotation by π
2
, that is replacing ĉ†↑ → 1√

2
(ĉ†↑ + ĉ†↓) and ĉ†↓ → 1√

2
(ĉ†↑ − ĉ†↓),

leads to

G↑↓ = G↑↓ −G↑↑. (1.26)

This relation holds not only for the two-particle Green’s functions and susceptibilities,

but also for the vertex functions.

1.3 DMFT

1.3.1 Anderson Impurity Model

To understand the dynamical mean field theory (DMFT), we first have to introduce the

Anderson impurity model [20]. It contains one impurity site where electrons interact,

embedded in a non-interacting bath . Its Hamiltonian is

HAIM = −µ(n̂↑ + n̂↓) + Un̂↑n̂↓ +
∑
k,σ

εk,σ ĉ
†
k,σ ĉk,σ +

∑
k,σ

Vk(d̂†σ ĉk,σ + ĉ†k,σd̂σ). (1.27)
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The first two terms describe the chemical potential and the interaction when the impurity

is occupied by two electrons. The third term gives the energy levels of the bath and the

last one, often called hybridization term, introduces hopping between the impurity and

the bath. In this notation, ĉ† creates an electron in the bath while d̂† creates an impurity

electron. The same holds for the annihilation operators and n̂σ = d̂†σd̂σ is the occupation

on the impurity. Again, this Hamiltonian can be adapted to account for multi-orbital

impurities yet in the present work only one-band calculations were done.

While a variety of methods to calculate expectation values such as the Green’s function

on the impurity are available, in this work a continuous-time quantum Monte Carlo

(CT-QMC) solver [5] in the hybridization expansion [21], namely w2dynamics [22, 23,

24, 25], was used. The input to this method is the hybridization function ∆(iν), which

encapsulates the properties of the bath

∆(iν) =
∑
k

V 2
k

iν − εk
. (1.28)

1.3.2 DMFT cycle

The DMFT introduces the mapping of the lattice onto an impurity model in a self-

consistently determined bath. The assumption made here is that the lattice self-energy

is purely local and only composed of local lines. Self-consistency is achieved when these

local lines are the same on the lattice and on the impurity,

Gloc(iν) =
∑
k

G(k, iν) = Gimp(iν) , (1.29)

where the second equation is the Dyson equation for the impurity. The self-energy en-

ters the above expression through the Dyson-equation for the lattice Green’s function,

Eq. (1.19). Finally, we need to relate the hybridization function to the non-interacting

Green’s function on the impurity, G(iν), through

∆(iν) = iν − G(iν)−1 + µ = iν −Gloc(iν)−1 − Σloc(iν) + µ. (1.30)

The DMFT-cycle (see also Fig. 2.1) goes as follows:

1. Begin with some guess for the self-energy, for example the Hartree-term Σ(iν) = U
2

.

2. Calculate the local lattice Green’s function by summing Eq. (1.19) over the Brillouin

zone.

3. Calculate the hybridization function ∆ from Σ and Gloc through Eq. (1.30).
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4. Compute the impurity Green’s function from ∆ using CT-QMC.

5. Extract the self-energy through the Dyson equation on the impurity, Σ = G−1 −
G−1
imp.

6. Enter step 2. with the new self-energy and iterate until convergence.

DMFT not only serves to understand DΓA conceptually, but also as the starting-point

for the parquet DΓA. Once the above cycle is converged, from the resulting hybridization

function we calculate the two-particle Green’s function and the fully irreducible vertex

that enters the first iteration of the parquet DΓA, as will be explained later.
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Chapter 2

Parquet DΓA

The dynamical vertex approximation (DΓA) [7, 8] can be seen as a diagrammatic ex-

tension of DMFT. The assumption of the locality of the irreducible building block from

which all relevant diagrams are generated is taken from the one-particle level in DMFT

to the two-particle level in DΓA. Instead of the Dyson-equation, the much more compli-

cated parquet- and Bethe-Salpeter equations have to be applied to generate the reducible

diagrams. The benefit of this increase in complexity and computational cost is the inclu-

sion of non-local correlations on all length scales. Similar as for DMFT, the irreducible

building block, called the fully irreducible vertex Λ, is obtained by mapping the lattice

onto a self-consistently determined impurity and thus non-perturbatively.

2.1 Outline of the method

Before going into more detail for each step of the parquet DΓA, this section aims to

outline the whole method and compare it to DMFT where possible. To this end, Fig. 2.1

gives a direct comparison of the flow diagrams of both methods.

To start with the self-consistent parquet DΓA cycle, we need some initial guess for the

fully irreducible vertex Λ. Usually it is taken from a converged DMFT solution since

this provides a good estimate at a relatively low computational cost. Diagrammatically,

ΛDMFT is composed of the local Green’s function from DMFT, GDMFT
local , which will be

gradually replaced by GDΓA
local through iteration (described later as outer self-consistency).

Once the hybridization that solves DMFT is known, we calculate the two-particle Green’s

function and extract ΛDMFT . As mentioned, throughout this work all calculations on the

impurity were done using the CT-QMC solver w2dynamics [24].

13



Figure 2.1: Flow diagrams comparing DMFT and DΓA. Taken from Ref. [19].

From Λ, the nonlocal full vertex F kk′q is generated through the Bethe-Salpeter and par-

quet equations. This process is depicted in Fig. 2.2. From the full vertex F kk′q, one

can calculate the non-local self-energy Σ(k) through the Schwinger-Dyson equation of

motion, which in turn generates the non-local Green’s function through the Dyson equa-

tion. As the non-local Green’s function was already required to solve the parquet equa-

tions, this whole procedure has to be iterated until self-consistency is achieved (described

later as inner self-consistency). This step roughly resembles the much simpler use of

the Dyson-equation in DMFT, which also generates all relevant diagrams for the local

Green’s function from its local building block, the self-energy. Throughout this work, the

victory-code [26] was employed to handle this step.

Once the parquet equations are solved self-consistently, the first iteration of the parquet

DΓA is completed. From here on, this will be referred to as one-shot DΓA and the

required self-consistency as inner self-consistency. However, at that point the fully irre-

ducible vertex is still calculated on an impurity model with the local Green’s function

from DMFT. To achieve the full outer self-consistency, one has to find a new impurity

model with the local Green’s function from DΓA. The whole cycle is then repeated until

convergence, that is GAIM = GDΓA
local .
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Figure 2.2: The nonlocal vertices are generated by connecting the local fully irreducible

vertex by non-local one-particle propagators. Taken from Ref. [19].

Figure 2.3: The almost non-existent k-dependence of the fully irreducible vertex in the

2D-Hubbard model with U = 4t and 〈n〉 = 0.85 calculated within the dynamical cluster

approach on 24 sites by Maier et al. Taken from Ref. [27].

The key approximation in the parquet DΓA is that the fully irreducible vertex Λ is com-

posed only of local lines, and thus purely local itself. This can be shown diagrammatically

to be accurate in infinite dimensions, as non-local contributions decay at least as 1√
Z

where

Z is the coordination number. It was found numerically in dynamical cluster approxima-

tion (DCA) calculations that already for the 2D-Hubbard model Λ is essentially purely

local, as shown in Fig. 2.3.

The rest of this chapter aims to elaborate on each step of the fully self-consistent parquet

DΓA cycle.
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Figure 2.4: The parquet equation and the classification of reducible diagrams into the

the three channels ph, ph and pp. Taken from Ref. [7].

2.2 Underlying equations

2.2.1 Parquet equation

While one-particle reducibility is easily defined - those diagrams that can be split into

two by cutting a single one-particle propagator are one-particle reducible - some more

thought has to be put into the reducibility of two-particle diagrams. First of all, let us

note that connected two-particle diagrams cannot be one-particle reducible because they

would violate conservation of particles, since there would necessarily be vertices with one

more ingoing than outcoming line or vice versa.

Reducibility on the two-particle level is defined as follows: a diagram is two-particle

reducible if it can be split into two diagrams by cutting two one-particle propagators.

After cutting a diagram in two, there are three different ways in which the original legs

can stay at the same diagram, leading to the definition of the three channels shown

in Fig. 2.4, called particle-particle (pp), particle-hole longitudinal (ph) and particle-hole

transversal (ph).

At the heart of the parquet formalism lies the observation that any diagram is either fully

irreducible or reducible in exactly one channel. This is easily seen by trying to construct

a diagram that is reducible in two channels: whichever way the missing lines in Fig. 2.5

are connected, reducibility in one channel will be broken.

Before elaborating more on the parquet formalism, some more clarification on the nota-

tions used in this work is in order.

• Λ is the fully irreducible vertex. It contains all diagrams that are irreducible in all

three channels.
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A

B

C

D

Figure 2.5: Whichever way the the missing lines are connected (dashed or dotted), the

diagram will only be reducible in one channel. Note that connecting one dashed and one

dotted line results in a vertex with two incoming and one outgoing line, which is not

possible for fermions.

• Φch contains all diagrams that are reducible in channel ch.

• Γch contains all diagrams that are irreducible in channel ch.

This classification leads to the parquet equation,

F = Λ + Φph + Φph + Φpp. (2.1)

From the above definitions further follow

F = Γch + Φch ,

Γph = Λ + Φph + Φpp ,

Γpp = Λ + Φph + Φph . (2.2)

For the ph- and pp-channel, the corresponding frequency and momentum conventions

introduced in Fig. 1.3 are used. Let us now introduce these formulas with all their spin,

frequency and momentum dependencies. The indices k and k′ are used for combined

fermionic frequency and momentum, q for the bosonic ones. Diagrammatically, the par-

quet equation is shown in Fig. 2.4. By applying the crossing symmetry, the ph channel

can be transformed into ph and thus does not have to be treated explicitly. This is

demonstrated for the lowest order reducible diagram in both channels in Fig. 2.6. By

exchanging particles 2 and 4 in the ph-diagram, the two diagrams become equivalent and

therefore, after adjusting the momentum argument accordingly,

Φkk′q

phσσ′
= −Φ

k(k+q)(k′−k)

phσσ′
, (2.3)
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1, σ1

2, σ2 3, σ3

4, σ4

1, σ1

2, σ2 3, σ3

4, σ4

Figure 2.6: Equivalence between particle-hole and particle-hole transverse channel with

exchanging two lines, shown for the lowest order diagrams in each channel.

where the exchange of the particle changes the order of spins from ↑↓ to ↑↓, but naturally

↑↑ =↑↑.

Similarly, one has to exchange a line and shift frequencies to unify the notation for

particle-hole and particle-particle channels. The equations for the irreducible vertices

then read explicitly

Γkk
′q

ph,σσ′ = Λkk′q
ph,σσ′ − Φ

k(k+q)(k′−k)

ph,σσ′
− Φ

kk′(k+k′+q)

pp,σσ′
, (2.4)

Γkk
′q

pp,σσ′ = Λkk′q
pp,σσ′ − Φ

kk′(q−k−k′)
ph,σσ′

+ Φ
k(q−k′)(k′−k)
ph,σσ′ . (2.5)

Note that the fully irreducible vertex Λ is channel-independent and the subscript ph or pp

only denotes the notation, while for the irreducible Γ and reducible Φ it denotes channel

and notation.

2.2.2 Bethe-Salpeter equation

The Bethe-Salpeter equation relates the irreducible vertex with the full one. Schemati-

cally it reads

F = Γch + Γch(GG)chF , (2.6)

where (GG)ch denotes a connection by two single-particle propagators according to the re-

spective channel, as demonstrated in Fig. 2.7 for the particle-hole channel. Algebraically,

these equations are

F kk′q
ph↑↑ = Γkk

′q
ph↑↑ +

1

β

∑
k1σ1

Γkk1qph↑σ1G(k1)G(k1 + q)F k1k′q
phσ1↑ , (2.7)

F kk′q
ph↑↓ = Γkk

′q
ph↑↓ +

1

β

∑
k1σ1

Γkk1qph↑σ1G(k1)G(k1 + q)F k1k′q
phσ1↓ . (2.8)

One can decouple these two equations by adding or subtracting them and applying spin

rotational symmetry, leading to the definition of the following quantities:

Xd = X↑↑ +X↑↓ , (2.9)
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Xm = X↑↑ −X↑↓ = X↑↓ , (2.10)

where X represents F , Γ, Φ, Λ or χ.

In the particle-particle channel, the situation is similar and the equations read

F kk′q
pp↑↑ = Γkk

′q
pp↑↑ +

1

2β

∑
k1

Γk1k
′q

pp↑↑ G(k1)G(q − k1)F
k(q−k1)q
pp↑↑ , (2.11)

F kk′q
pp↑↓ = Γkk

′q
pp↑↓ −

1

2β

∑
k1σ1

Γk1k
′q

ppσ1↑(−σ1)↓G(k1)G(q − k1)F
k(q−k1)q
pp↑σ1↓(−σ1) , (2.12)

F kk′q

pp↑↓ = Γkk
′q

pp↑↓ −
1

2β

∑
k1σ1

Γk1k
′q

ppσ1↓(−σ1)↑G(k1)G(q − k1)F
k(q−k1)q
pp↑σ1↓(−σ1) . (2.13)

For the notation of the spin dependencies and their symmetry relations, see Sec. 1.2.2.2.

The factor 1
2

serves to compensate double counting, as the two particle lines connecting

F and Γ are indistinguishable [28]. The sign can be obtained from a comparison with

the lowest order perturbative contributions. Due to the conservation of spin, Eq. (2.11)

is already decoupled. Addition of the remaining two equations leads to (for X again

representing F , Γ, Φ, Λ or χ)

Xs = X↑↓ −X↑↓ = 2X↑↓ −X↑↑ , (2.14)

Xt = X↑↓ +X↑↓ = X↑↑ . (2.15)

With χk,q0,ph = −βG(k)G(k+q), and χk,q0,pp = −βG(k)G(q−k), the decoupled Bethe-Salpeter

equations then read [19]

F kk′q
d,m = Γkk

′q
d,m −

1

β2

∑
k1

Γkk1qd,m χk1q0,phF
k1k′q
d,m , (2.16)

F kk′q
s = Γkk

′q
s +

1

2β2

∑
k1

Γkk1qs χk1q0,ppF
k1k′q
s , (2.17)

F kk′q
t = Γkk

′q
t − 1

2β2

∑
k1

Γkk1qt χk1q0,ppF
k1k′q
t . (2.18)

2.2.3 Schwinger-Dyson equation

The Schwinger-Dyson equation relates the two-particle vertex F to the self-energy and

thus to the one-particle Green’s function. To derive it, one can start from the derivative

of the one-particle Green’s function with respect to time [29]

∂Gij,↑(τ)

∂τ
= − ∂

∂τ
〈T ĉi,↑(τ)ĉ†j,↑〉 = −δ(τ)(ĉ†j,↑ĉi,↑ + ĉi,↑ĉ

†
j,↑)− 〈T

∂ĉi,↑(τ)

∂τ
ĉ†j,↑〉 , (2.19)
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F kk′q
ph↑↑ = Γkk

′q
ph↑↑ +

(k1 + q)σ1

k1σ1

Γkk
′q

ph↑σ1 F kk′q
phσ1↑

F kk′q
ph↑↓ = Γkk

′q
ph↑↓ +

(k1 + q)σ1

k1σ1

Γkk
′q

ph↑σ1 F kk′q
phσ1↓

Figure 2.7: Bethe salpeter equation for the particle hole channel. k1 and σ1 are summed

over.

where the first term on the right hand side comes from the derivative of the time-ordering

operator. According to the Fermi-algebra, this term gives −δ(τ)δij. For the second term,

the Heisenberg equation is [30]

∂ĉi,↑(τ)

∂τ
= [H, ĉi,↑](τ) . (2.20)

The Hamiltonian that we consider can be written as

H =
∑
l,m,σ

H0
lmĉ
†
l,σ ĉm,σ +

∑
l

Uĉ†l,↑ĉl,↑ĉ
†
l,↓ĉl,↓ , (2.21)

with the non-interacting part H0. To resolve the commutators emerging from Eq. (2.20),

they first have to be converted to anticommutators and subsequently handled with the

Fermi-algebra. This is done via the relations

[AB,C] = A[B,C] + [A,C]B = A{B,C} − {A,C}B , (2.22)

[ABXY,C] = [AB,C]XY + AB[XY,C] =

= (A{B,C} − {A,C}B)XY + AB (X{Y,C} − {X,C}Y ) . (2.23)

The result is
∂ĉi,↑(τ)

∂τ
=
∑
m

H0
miĉm,↑(τ) + Uĉ†i,↓(τ)ĉi,↓(τ)ĉi,↑(τ) , (2.24)

∂Gij,↑(τ)

∂τ
= δ(τ)δij +

∑
m

H0
imGmj,↑(τ)− U〈T

[
ĉ†j,↑(0)ĉi,↑(τ)ĉ†i,↓(τ)ĉi,↓(τ)

]
〉 , (2.25)
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where the last term can be written as a two-particle Green’s function

〈T
[
ĉ†j,↑(0)ĉi,↑(τ)ĉ†i,↓(τ)ĉi,↓(τ)

]
〉 = G2,↑↓,jiii(−τ, 0, 0) . (2.26)

The Fourier Transform of Eq. (2.25) is, employing the particle-hole notation from Fig. 1.3

for the two-particle term,(
iν −H0(k)

)
G↑(ν,k) = 1 +

∑
ν′,ω,k′,q

G2,↑↓(ν, ν
′, ω,k,k′,q) . (2.27)

To connect this equation to the self-energy, we also take the time-derivative of the Dyson-

equation. This is again easier in Fourier space by replacing ∂
∂τ
→ iν. We further take into

account that the non-interacting Green’s function is a mathematical Green’s function of

the equation of motion [31]: (
iν −H0(k)

)
G0
↑(ν,k) = 1 . (2.28)

Thus the above operator acting on the interacting Green’s function gives(
iν −H0(k)

)
G↑(ν,k) =

(
iν −H0(k)

) (
G0
↑(ν,k) +G0

↑(ν,k)Σ↑(ν,k)G↑(ν,k)
)

= 1 + Σ↑(ν,k)G↑(ν,k) . (2.29)

Comparing equations (2.27) and (2.29), we can identify

Σ(k)G(k) = −U
∑
k′,q

G2,↑↓(k, k
′, q) . (2.30)

where the combined indices k, k′, q now contain momentum and frequency. We further

insert the relation between G2 and the vertex F to finally get the expression for the

Schwinger-Dyson equation,

Σ(k) =
U〈n〉

2
+ U

∑
k′,q

G(k + q)G(k′)G(k′ + q)F k,k′,q
↑↓ . (2.31)

It is shown diagrammatically in Fig. 2.8.

2.3 Extraction of the fully irreducible vertex of the

impurity problem

The great advantage of mapping the lattice model onto an impurity model lies in the

fact that the local problem can in principle be solved exactly. The CT-QMC solver

w2dynamics [22, 24] can be configured to calculate the one-particle Green’s function as
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Figure 2.8: Diagrammatic representation of the Schwinger-Dyson equation. Taken from

Ref. [19].

well as the generalized susceptibility in both ph- and pp-notation, from which the fully

irreducible vertex can then be extracted in two steps: First we invert the local Bethe-

Salpeter equation to get the irreducible vertices Γ. Then the fully irreducible vertex Λ

can be calculated algebraically through the parquet equations. Let us discuss these steps

in some more detail now:

For each bosonic frequency ω, the Bethe-Salpeter equation (2.16) can be interpreted as

a matrix multiplication, thus enabling its solution for Γ through matrix inversion in the

remaining indices ν1, ν
′. For the ph-channel, one gets

Γνν1,ωd,m =
∑
ν′

F νν′,ω
d,m [(1− 1

β2
χ0,phFd,m)−1]ν1ν

′,ω . (2.32)

Similarly, for the pp-channel

Γνν1,ωs =
∑
ν′

F νν′,ω
s [(1 +

1

2β2
χ0,ppFs)

−1]ν1ν
′,ω , (2.33)

Γνν1,ωt =
∑
ν′

F νν′,ω
t [(1− 1

2β2
χ0,ppFt)

−1]ν1ν
′,ω . (2.34)

The reducible vertex Φ is calculated in each channel by Φ = F−Γ and finally the parquet

equations can be solved for Λ:

Λνν′ω
d = Γνν

′ω
d +

1

2
Φ
ν(ν+ω)(ν′−ν)
d +

3

2
Φν(ν+ω)(ν′−ν)
m − 1

2
Φνν′(ν+ν′+ω)
s − 3

2
Φ
νν′(ν+ν′+ω)
t , (2.35)

Λνν′ω
m = Γνν

′ω
m +

1

2
Φ
ν(ν+ω)(ν′−ν)
d − 1

2
Φν(ν+ω)(ν′−ν)
m +

1

2
Φνν′(ν+ν′+ω)
s − 1

2
Φ
νν′(ν+ν′+ω)
t , (2.36)

Λνν′ω
s = Γνν

′ω
s − 1

2
Φ
νν′(ω−ν−ν′)
d +

3

2
Φνν′(ω−ν−ν′)
m − 1

2
Φ
ν(ω−ν′)(ν′−ν)
d +

3

2
Φν(ω−ν′)(ν′−ν)
m , (2.37)

Λνν′ω
t = Γνν

′ω
t − 1

2
Φ
νν′(ω−ν−ν′)
d − 1

2
Φνν′(ω−ν−ν′)
m +

1

2
Φ
ν(ω−ν′)(ν′−ν)
d +

1

2
Φν(ω−ν′)(ν′−ν)
m . (2.38)

Since the fully irreducible vertex is in principle not channel-specific, only two of these four

quantities are independent, in accordance with the two independent spin combinations.
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ν ′
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(ω + ν) (ω + ν ′)

ν ′

Figure 2.9: Lowest order diagrams contributing to the asymptotics of the particle-hole

reducible vertex. Since ν1 and ν2 are summed over, they depend only on one external

bosonic frequency (left) or one bosonic and one fermionic frequency (right).

One could only calculate two and recover the remaining two through combination and

change of frequency notation. However, this change of notation would further limit the

available frequency range and thus all four quantities are explicitly calculated.

2.3.1 Vertex asymptotics

Unlike the two-particle Green’s function, the vertices F , Γ and Φ do not decay for all

high frequencies ν, ν ′ and ω. This is due to diagrams like the ones shown in Fig. 2.9:

whenever two external lines meet at an interaction U , energy conservation immediately

eliminates one frequency dependence, resulting in diagrams that do not decay with all

three frequencies. This leads to the characteristic shape of the vertex asymptotics as

shown for Φ in Fig. 2.10. For a fixed ω, diagrams as the one on the left of Fig. 2.9

contribute to a constant background while the ones on the right create the cross structure.

This additional knowledge allows for a cheaper calculation of the full vertex F on larger

box sizes through equal-time Green’s functions [32]. The vertex asymptotics were applied

as follows: The Kernel-functions [33], which encapsulate the asymptotics in each channel,

were calculated through equal-times Green’s functions along with the susceptibility χ

using w2dynamics. The Kernel-functions were applied to the full vertex F before inverting

the Bethe-Salpeter equation, hoping to mitigate the effect of a finite frequency range and

to reduce noise. In one attempt, they were applied again directly to the irreducible

vertices Γ. Fig. 2.11 compares the results.

As all of the diagrams in the Kernel-functions are reducible, they do not contribute to the

fully irreducible vertex Λ. Therefore, unlike for the irreducible vertices Γ, no significant

improvement in cost or quality of the calculation of Λ was found when including the

Kernel-functions. A more thorough discussion of this method can be found in [32, 33,

34].
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Figure 2.10: Reducible vertex Φd from DMFT at βt = 8, U = 4t and bosonic frequency

nω = 10.
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Figure 2.11: The fully irreducible vertex from DMFT in the density channel for

βt = 10, U = 3.946t. On the right, the Kernel-functions were used to improve

the asymptotics of the local susceptibility. While a more aggressive application of the

Kernel-functions is possible, the crucial low-frequency behavior of Λ could not be im-

proved in a significant way. In this case, the generalized susceptibility was calculated

on a 40 × 40 × 41 frequency-box (fermionic × fermionic × bosonic) and, for the cal-

culation of Λkernels
d , the Kernel-functions were applied to enhance the box-size of the

generalized susceptibilty to 100 × 100 × 101 to mitigate finite-size effects. Further-

more, they were applied to the generalized susceptibility within the original box where(
β
π

)4 |ν1ν2ν3ν4| > 104 (1 + δν1ν2 + δν1ν4 − δν1ν2δν1ν4)4 to cover noise, as discussed in de-

tail in Ref. [34].
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2.3.2 Λ, analytically

The fully irreducible vertex can be well approximated analytically in two limits: First,

for weak interactions U , the fully irreducible vertex is well approximated by a pertur-

bative expansion. The lowest order diagram, besides the bare interaction, is already

of order U4 and its contribution to Λ↑↑ is shown in Fig. 2.12. On the other extreme,

for U � t, the atomic limit can be employed: The Hamiltonian is easily diagonalized

and one obtains the two-particle Green’s function, and subsequently the vertex F , in

a strenuous task from the Lehmann representation. In ph-notation, the result is [35]

F νν′ω
↑↑ = β

U2

4

δνν′ − δω0

ν2(ν ′ + ω)2

(
ν2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
, (2.39)

F νν′ω
↑↓ = U − U3

8

ν2 + ν ′2 + (ν + ω)2 + (ν ′ + ω)2

ν(ν + ω)(ν ′ + ω)ν ′
− β 3U5

16

1

ν(ν + ω)(ν ′ + ω)ν ′

−βU
2

4

1

1 + e
βU
2

2δν(−ν′−ω) + δω0

(ν + ω)2(ν ′ + ω)2

(
(ν + ω)2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
+β

U2

4

1

1 + e−
βU
2

2δνν′ + δω0

ν2(ν ′ + ω)2

(
ν2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
, (2.40)

G(iν) = − iν

ν2 + U2

4

. (2.41)

From there, one can extract the fully irreducible vertex in the usual way [34]. Fig. 2.13

shows a result for both extremes.

Figure 2.12: Lowest order dynamical contribution to the fully irreducible vertex Λ↑↑.

Taken from Ref. [19].

2.4 Numerical solution of the parquet equations

For the solution of the parquet equations in this work, the victory-code was used

[26, 36]. This section aims at giving a short overview of the program.
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Λenvelope: U=1t,βt=2
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Atomic Limit: U=4,β=2 (t=0)
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Figure 2.13: (left): Fourth order contribution to Λd for U = 1t, βt = 2 at ω = 0.

(right): Λd in the atomic limit for U = 4, β = 2 at ω = 0. Already at this relatively low

U/T ratio, Λ is sharply peaked in the atomic limit.

After reading in Λ in the four channels d,m, s, t as introduced in section 2.2.2, the vertices

are simply initialized as F = Λ and Γch = Λ. The self-energy is usually initialized as the

Hartree-Fock contribution. A more educated guess, such as the local DMFT self-energy,

was not found to reduce the required number of iterations.

The Bethe-Salpeter equations (2.6) are used to calculate the reducible vertex Φch in each

channel. From Φch and Λ, the full vertex F and the irreducible vertices Γch are calculated

through the parquet equations (2.2). As seen in equations (2.4) and (2.5), the vertices

Φch have to be known in a larger frequency range than the obtained Γch. To prevent the

frequency range from shrinking with each iteration, Φch is approximated by the Kernel

functions that encapsulate the asymptotics of the vertices and already appeared in section

2.3.1. The Kernel functions are themselves approximated by scanning the edges of the

available frequency range, see Ref. [33] for further details.

From the full vertex F , the self-energy is updated through the Schwinger-Dyson equation

of motion, Eq. (2.31), and the process is repeated with the new self-energy, F and Γch

until convergence.

For each bosonic frequency and momentum q, the Bethe-Salpeter equations consist of

a simple matrix multiplication. For parallelization in the victory-code, the vertices

for each bosonic q are stored on a separate thread. As the solution of the parquet

equations and the Schwinger-Dyson equation still mix bosonic frequencies, they require

heavy communication between the threads and thus the communication becomes the
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computational bottleneck.

To improve convergence at high interaction and low temperature, a damping parameter

for the irreducible vertices is introduced in each iteration of the parquet-solver [37]:

Γ = αΓnew + (1− α)Γold . (2.42)

Since the self-energy is calculated from the vertices through the Schwinger-Dyson equation

(2.31), it is also damped according to

Σ = αΣnew + (1− α)Σold . (2.43)

2.4.1 Symmetries

The required memory can be minimized by exploiting the symmetries of the system.

The complex conjugation symmetry dictates that F ν,ν′,ω = (F−ν,−ν
′,−ω)∗. With this

knowledge, it suffices to store all the vertices only for positive values of ω and infer the

negative ones from the above relation. Implementing this very simple symmetry thus

already reduces the required memory by half.

Furthermore, the symmetry of the lattice can be exploited in the victory-code. Let S

be any operation of the symmetry group of the lattice examined, such as the C4v group for

the two-dimensional square lattice. The vertices are only stored for a restricted number

of bosonic momenta qIBZ within what is called the irreducible Brillouin zone, such that

each remaining point q outside the irreducible Brillouin zone is generated by applying

a symmetry operation, q = S(qIBZ). To access the vertex F at q, the inverse of the

symmetry operation in question is applied to all arguments of F :

F k,k′,q = F k,k′,S(qIBZ) = F S−1(k),S−1(k′),qIBZ . (2.44)

For the two-dimensional square lattice, storing the bosonic momenta only within the irre-

ducible Brillouin zone further reduces the required storage by a factor of eight. The imple-

mentation of the lattice symmetry is not included in version 1.0 of the victory-code [26].

During this work, version 1.1 was used which exploits the symmetry for the square lat-

tice.

The parquet equations fulfill the crossing symmetry by design [38]. However, one may

be tempted to store the full vertex F only in either ph or pp notation and recover the

other by a simple transformation of the arguments. Since the vertices are only known

on a finite frequency range, some of the values would be unknown, thus breaking the

crossing symmetry [26]. For this reason, in the victory-code all four vertices Fd,m,s,t are

stored.

27



2.4.2 Coarse graining

The maximum k-resolution achievable in the solution of the parquet equations is severely

restricted by the available memory. At several points, such as during the calculation

of the self-energy through the Schwinger-Dyson equation, one has to sum products of

vertices and one-particle Green’s functions over the Brillouin zone. While the self-energy,

which in turn is needed to calculate the Green’s function, is only known on the k-resolved

points, the dispersion relation of the non-interacting Green’s function is usually known

analytically and thus at any arbitrary resolution. One can use this fact through coarse

graining: at any point k, we calculate the Green’s function as an average around that

point, where the averaged terms are calculated from the self-energy at k and the exact

non-interacting Green’s function.

G(k) =
1

Ncc

∑
k̃∈cc

G(k + k̃) , (2.45)

where k̃ are points in an area cc centered around k. Ncc is the number of points k̃ in

that area, which is only restricted by computational effort. This method greatly increases

the convergence of the parquet equations. In this spirit, one can also interpret DMFT

as the most extreme form of coarse graining where the self-energy is only known as an

average over the Brillouin zone, yet the local Green’s function is calculated with the full

dispersion relation [39]. In this case, the parquet equations reproduce the DMFT from

the local fully irreducible vertex Λ. Coarse graining is also included in version 1.1 of the

victory code, but not in the currently publicly available version 1.0.

2.5 Inverse impurity model

In this step, an impurity model has to be found such that its Green’s function equals the

local Green’s function from DΓA:

GAIM(iν) = GDΓA
local (iν) =

∑
k

1

iν − εk − ΣDΓA
k (iν) + µ

. (2.46)

Once it is found, a new fully irreducible vertex can be calculated for the impurity model

with the updated Glocal. A hint on how this can be achieved is found in the DMFT-cycle

(see Sec. 1.3.2): In any iteration n, the local Green’s function is calculated from Σn(iν)

through

Glocal
n (iν) =

∑
k

1

iν − εk − Σn(iν) + µ
. (2.47)
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From there, the non-interacting Green’s function

Gn(iν)−1 = Glocal
n (iν)−1 + Σn(iν) (2.48)

serves as the input to calculate the Green’s function on the impurity model: Gimp
n =

Gimp
n [Gn] and the Dyson equation on the impurity is solved for the self-energy of the next

iteration

Σn+1(iν) = Gn(iν)−1 −Gimp
n (iν)−1 . (2.49)

Inserting Eq. (2.49) into Eq. (2.48) after the shift n→ n+ 1 gives

Gn+1(iν)−1 = Gn(iν)−1 +Glocal
n+1 (iν)−1 −Gimp

n (iν)−1 . (2.50)

Equivalently, this can be expressed through the hybridization function ∆(iν) = iν + µ−
G(iν)−1 as

∆n+1(iν) = ∆n(iν) +Gimp
n (iν)−1 −Glocal

n+1 (iν)−1 . (2.51)

This scheme can be adapted to find the required impurity model for the fully self con-

sistent parquet DΓA by replacing Glocal with GDΓA
local . Omitting the inversion of both

Green’s functions has been found to give the same results after a sufficient number of

iterations while being numerically more stable, so that the hybridization-update used in

this implementation is

∆n+1(iν) = ∆n(iν) +Gimp
n (iν)−GDΓA

local (iν) . (2.52)

The high-frequency behavior of both Green’s functions in Eq. (2.52) is determined by

the 1
iν

-term and is thus the same. It is therefore not updated for ∆ and should be

assumed correctly in ∆0. For the Hubbard model with local interaction only and hopping

amplitude t, the asymptotic form of the hybdridization function is the same as that of

∆DMFT ,

∆(iν) =
z|t|2
iν

+O
(

1

(iν)2

)
, (2.53)

where z is the coordination number. Later we will introduce non-local interactions into

the parquet DΓA for the benzene molecule by adding the resulting non-local Hartree-

Fock term to the self-energy, without treating the non-local interactions explicitly in

the auxiliary impurity. This changes the high-frequency behavior of the hybridization

function significantly. To see how, we again write down the Dyson equation on the

impurity:

G(iν)−1 = iν −∆(iν) + µ = G−1
loc(iν) + Σimp(iν) . (2.54)

To find the high frequency behavior of this equation, we expand Gloc in terms of 1
iν

:
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Gloc =
1

iν

1

N

∑
k

1

1− εk+Σk−µ
iν

=
1

iν

(
1 +

1

N

∑
k

[
(
εk + Σk − µ

iν
) +

(εk + Σk − µ)2

(iν)2

])
+O

(
1

(iν)3

)
. (2.55)

Expanding the inverse G−1
loc again gives the required term for the Dyson-equation. With

1
N

∑
k

Σk = Σloc and
∑
k

εk = 0,

G−1
loc(iν) = iν

(
1− Σloc − µ

iν
− 1

N

∑
k

(εk + Σk − µ)2

(iν)2
+

(
Σloc − µ

iν

)2

+O 1

(iν)3

)
(2.56)

At half filling, the Hartree term of Σloc is exactly compensated by the chemical potential

µ = ΣHartree, so that Σloc−µ = O( 1
iν

). Hence the last term in the parentheses is of order

O( 1
(iν)4

) and can be neglected. Furthermore, we make use of Gloc = Gimp and Σloc−Σimp =

O( 1
(iν)2

). Inserting this into Eq. (2.54) gives the desired asymptotic expression for the

hybridization function,

∆(iν) =
1

iν

(
1

N

∑
k

(εk + Σk(iν)− µ)2

)
+O

(
1

(iν)2

)
. (2.57)

2.5.1 Uniqueness of the solution

The Matsubara frequencies are proportional to 1
β

= T . For high temperatures, both the

Green’s function and the hybridization are thus dominated by the 1
iν

behavior except for

very few Matsubara frequencies around zero. One can then parametrize the hybridiza-

tion function easily with only a few variables, for example through a decomposition in

Legendre-polynomials in τ [40]. At half-filling, we know that due to particle-hole symme-

try they should be symmetric around β
2
, thus eliminating all odd Legendre coefficients.

The known value at τ = 0 puts a further constraint on the coefficients. To see how the

number of relevant Legendre-coefficients changes with temperature, Fig. 2.14 compares

their magnitude for DMFT-solutions at various temperatures.

At βt = 2, only the first three coefficients contribute significantly, one of them being

determined through ∆(τ = 0). To investigate the uniqueness of the solution of the inverse

impurity problem, that is finding a hybridization function such that the impurity model

gives a specific Green’s function, one can then scan the two-dimensional parameter space.

Fig. 2.15 gives a map of the solutions of impurity models with different hybridization

functions. The hybridization functions and the resulting identical Green’s functions of

the points marked as 1 and 2 are shown in Fig. 2.16. There are thus two solutions to

finding an impurity model with that Green’s function.
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Figure 2.14: Legendre coefficients of DMFT-hybridization functions for various tem-

peratures at U = 4t. The uneven coefficients are zero due to particle hole symmetry

at half filling. At βt = 2, already the sixth coefficient is negligibly small, enabling the

parametrization in the rest of this section.

Figure 2.15: Map of hybridization functions and their resulting GAIM at βt = 2, U = 4t

and half filling. The colorbar gives the imaginary part of the Green’s function at the first

(left), second (middle) and third (right) Matsubara frequency. The hybridization functions

are composed of only the first three even Legendre polynomials and normalized to give

the correct asymptotics for the 2D-square Hubbard model. The x− and y−axes denote

the second and fourth Legendre coefficient of the hybridization function, divided by the

zeroth coefficient. Only strictly positive and convex hybridization functions were taken

into account, hence the borders of the triangle shape. For larger Matsubara frequencies,

the Green’s function is already dominated by the 1
iν

behavior at this temperature. The

point marked as 1 and 2 give the same Green’s function, as demonstrated in Fig. 2.16,

and ∆1 is close to ∆DMFT .

Although the one-particle Green’s function is identical for the two baths, the self-energy

and the fully irreducible vertex generated from ∆2 are vastly different, as seen in Fig.

2.17. The fully irreducible vertex from ∆2 almost diverges and does not allow to fur-

ther converge the parquet equations. Hence one has to be careful to pick a good initial

31



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Δ
(τ

)

τ

Δ2
Δ1

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0  2  4  6  8  10

Im
(G

(i
ω

))

ω

G(Δ2)
G(Δ1)

Figure 2.16: Left: The hybridization functions for the two points marked in Fig. 2.15.

Right: The resulting Green’s function. Although the hybridizations differ greatly, the

resulting Green’s functions are practically indistinguishable.
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Figure 2.17: The fully irreducible vertex at nν′ = 0, ω = 0 (left) and the self-energy

(right) for the two hybridization functions from Fig. 2.16.

hybridization in order to get a physical fully irreducible vertex. Both ∆DMFT and a

hybridization calculated from the local part of ΣDGA were found to work well. At lower

temperatures and a finer resolution in Matsubara frequencies, both the possible hybridiza-

tion function as well as the requirements on the resulting Green’s function become more

nuanced at an equal rate. The assumption that also at lower temperatures there would

only be one solution that gives a physical Λ was corroborated by converging from different

starting hybridization functions.
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2.6 Similar methods

A computationally less demanding version of DΓA, namely the ladder DΓA, can be

applied when there is one dominating channel [41]. For example, in a system with mag-

netic ordering, the particle-hole channel will dominate and one can restrict the particle-

particle-reducible vertex to its local part, eliminating the repeated solution of the par-

quet equations and thus the most expensive step from the computation. Furthermore,

the Green’s function is approximated by the (non-local) GDMFT (ν,k), so the ladder

DΓA consists in a one-shot generation of the so-called ladders in one channel through

the Bethe-Salpeter equation and subsequent calculation of the self-energy through the

Schwinger-Dyson equation.

Another simplification of the parquet DΓA is the parquet approximation, where Λ is ap-

proximated by the bare interaction U . It can thus also be executed using the victory-code.

Some results of both of these methods will be compared to the parquet DΓA in Sec. 3.2.2.
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Chapter 3

Results

3.1 Benzene

In this section, DΓA results for the benzene molecule are compared to exact diagonaliza-

ton. Due to the simplicity of the benzene molecule, a semi-empirical model is available

that fits very well to experimental data, called the Pariser-Parr-Pople model [42]. Just

like the one-dimensional Hubbard model it contains hopping and the local interaction,

but it further includes non-local interaction between electrons on different sites. Its

Hamiltonian is

HPPP = −
∑
σ

6∑
i=1

t(ĉ†i+1σ ĉiσ + h.c.) +U
6∑
i=1

n̂i↑n̂i↓ +
1

2

∑
i 6=j

Vij(n̂i↑ + n̂i↓)(n̂j↑ + n̂j↓) (3.1)

The parameters are adjusted to account for screening and fit the experimental results.

They are given in Table 3.1.

The same parameters were applied to DΓA so the exact diagonalization results could be

taken as a benchmark for the method, even though the model, being one-dimensional and

including non-local interactions, is almost a worst case scenario for DΓA. The non-local

interactions were not included in the DMFT calculation that serves as a starting point

t U V1 V2 V3

eV 2.539 10.06 7.19 5.11 4.58

units of t 1 3.963 2.833 2.014 1.804

Table 3.1: Parameters of the Pariser-Parr-Pople model. V1 is the nearest neighbor

interaction, V2 the next-nearest neighbor interaction and V3 the next-next-nearest neighbor

interaction.
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for DΓA, but only through the non-local Hartree-Fock term in the solution of the parquet

equations [43]:

ΣHF
↑ (ν; k) =

∑
ω;q G↑(ν − ω; k − q)

U(q)

=
∑
q
n̂↑(k−q)U(q)

The introduction of these static but k-dependent parts of the self-energy also changes the

required asymptotics of the hybridization function, as discussed in Sec. 2.5. The parquet

equations for the PPP model were subsequently solved with an extended version of the

victory-code that includes non-local interaction [44].
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Figure 3.1: Left: Local Green’s function from DMFT and DΓA with local interaction

only and the PPP-model parameters. Middle: Lowest order dynamic contribution to

Λ↑↑(ν, ν ′, ω = 0) in ph-notation (corresponding to Fig. 2.12), calculated from the DMFT

Green’s function. Right: Same contribution calculated from the local DΓA Green’s func-

tion for the PPP-model. Note the different scale between the two plots.

Just like for the 2D-Hubbard model, the parquet DΓA calculation begins with a solution

from DMFT which does not take the non-local interaction into account at all. Only

after one iteration of DΓA, the hybridization of the impurity is updated to match the

new local Green’s function which now also contains an approximation of the non-local

interaction. The outer-self consistency in DΓA is therefore especially important in this

case since the initial guess for Λ from DMFT is particularly inaccurate. Specifically,

the introduction of Vij notably reduces the magnitude of the local Green’s function at

low frequencies, as seen in the leftmost plot of Fig. 3.1. Physically, this means that the
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Figure 3.2: The fully irreducible vertex Λ for βt = 10, U = 3.963t. Top left: DMFT

only. Bottom left: fully self-consistent parquet DΓA with local interaction only. Bottom

right: fully self-consistent parquet DΓA with V1 = 0.5t, V2 = 0.2t, V3 = 0.1t. Top right:

fully self-consistent parquet DΓA with the parameters from table 3.1.

system is more metallic. The low-frequency behavior of the Green’s function is crucial for

the generation of the dynamic part of the fully irreducible vertex Λ as the higher order

diagrams are basically sums of products of Green’s functions which have their maximum

at a low frequency. Fig. 3.1 compares the lowest-order contribution to Λ, the envelope

diagram from Fig. 2.3.2, calculated once from the DMFT-Green’s function and once from

GDΓA
local with non-local interactions of the PPP-model.

The same happens for higher order diagrams, so all dynamic contributions to Λ almost

vanish and only the bare interaction U survives. Fig. 3.2 shows the results for Λ as

calculated from the auxiliary impurity for DMFT and DΓA with three different strengths

of Vij. Already for Vij = 0, DMFT overestimates the dynamic contributions to Λ. The

introduction of nonlocal interaction reduces them further, and for the Pariser-Parr-Pople

model Λ ≈ U .
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With the dynamic parts of Λ suppressed, the fully self-consistent parquet DΓA closely

resembles the parquet approximation, where Λ is approximated by the bare interaction.

Fig. 3.3 compares results for the self-energy from exact diagonalization to one-shot DΓA,

self-consistent DΓA and the parquet approximation. As expected, the parquet approxi-

mation and the fully self-consistent parquet DΓA are very similar. Both show much more

accurate results than the one-shot DΓA when compared to the exact diagonalization data,

confirming the importance of the outer self-consistency in this case.
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Figure 3.3: Self energy calculated from one-shot DΓA, parquet approximation, self-

consistent DΓA and exact diagonalization with the parameters from Table 3.1 and

βt = 10. Top: Imaginary part for k = 0 (left) and k = π
3

(right). Bottom: Real part

without Hartree-Fock contribution again for k = 0 (left) and k = π
3

(right). The DMFT

self-energy is not shown here because it is much larger in magnitude, as its maximum is

|=(ΣDMFT )|max ∼ 0.55.
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3.2 2D-Hubbard model

During the parquet DΓA cycle, various quantities are computed that help to interpret

the properties of the system in question. First of all, there are the one-particle properties

such as the non-local self-energy ΣDΓA(k, ν) and thus, in combination with the dispersion

relation and the chemical potential, the interacting Green’s function and the shape of the

Fermi-surface. These are complemented by the two-particle vertices, which give insight

into phenomena such as magnetic ordering and possibly superconductivity.

3.2.1 Magnetic and superconducting order

When looking for possible instabilities and ordering symmetries, looking directly at the

vertices is sometimes impractical. Instead, in the following we introduce eigenvalues,

eigenvectors and effective interactions, which give a much more compact representation

of the results.

3.2.1.1 Eigenproblem

The victory-code produces the eigenvalues and eigenfunctions of the Bethe-Salpeter

equations. In the pp-channel, they are most interesting at q = 0, ω = 0 and capture possi-

ble pairing between wave vectors k and −k. The corresponding eigenequation reads

λαΦα(k) =
1

β

∑
k′

Γpp(k, k
′)G(k′)G(−k′)Φα(k′) , (3.2)

where the momentum indices are given in particle-particle notation (see Sec. 1.2.2.1).

When the largest eigenvalue λ in the particle-particle channel gets close to one, the

susceptibility diverges signaling the superconducting instability. At that point, the Bethe-

Salpeter equations becomes equivalent to the gap equation and the eigenfunction becomes

equivalent to the order parameter ∆k [45]. Furthermore, the q-resolved eigenvalues µq,α in

the magnetic channel (in particle-hole notation) give an overview of the possible magnetic

ordering in the system.

µq,αΨq,α(k) =
1

β

∑
k′

Γm(k, k′)G(k′ + q)G(k′)Ψq,α(k′) (3.3)

Again, an eigenvalue of one leads to a divergence in the susceptibility at that momentum

transfer and for antiferromagnetic ordering the largest eigenvalue is at q = (π, π).
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3.2.1.2 Pairing interaction

Looking at the Bethe-Salpeter equation in the particle-particle channel, we can interpret

the irreducible vertex in that channel as an effective pairing interaction [46]. Since the pair

is expected to have wave numbers k and −k, we evaluate Γpp at q = (0, 0). Furthermore,

the required spin-combination ↑↓ of the pairing interaction is obtained from the singlet-

and triplet-channel through

Γpp,↑↓ = Γpp,↑↓ − Γpp,↑↑ =
1

2
(Γt − Γs) := Γpp . (3.4)

It will be simply referred to as Γpp in the following. The pairing interaction between site

0 and site j is obtained through a Fourier transform:

0 ↑

j ↓

0 ↑

j ↓
Γj
pp =

∑
kk′

Γkk′q=0
pp ei(k+k′)·j (3.5)

In order for superconductive pairing to be energetically favorable, the pairing interaction

should be attractive in analogy to the attractive electron-electron potential mediated by

phonons in conventional superconductivity. Indeed, an attractive interaction between

neighboring sites was found in the parquet DΓA and the parquet approximation and will

be shown for several parameter sets in Sec. 3.2.1.4. This attractive interaction was also

found by Bulut [45] in QMC calculations.

3.2.1.3 Momentum dependent susceptibility

The transfer-momentum dependent form of the magnetic susceptibility contains informa-

tion about the magnetic ordering of the system. As stated above, at low temperatures and

near half filling it has a sharp peak at q = (π, π). With doping, the maximum moves away

from (π, π). To compare the results of DΓA with those of another method, where a larger

lattice is achievable, we follow Ref. [47]. Herein, we calculate χDMFT
m (q, ω = 0) from

the irreducible vertex ΓDMFT
m and the k-summed bare susceptibility χDMFT

0,ph (q, ω = 0)

through the Bethe Salpeter equation. This method violates the Mermin-Wagner theorem

[48], in that the magnetic susceptibility diverges at (π, π) at low but non-zero tempera-

tures and the above calculation fails. To compare it to χDΓA
m (q, ω = 0), calculations at a

temperature of βt = 4, above the DMFT Néel temperature, were done. Fig. 3.4 shows

the evolution of the maximum of χm(q) with doping.
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Figure 3.4: Position of the maximum of χm(q) is at (π, kmaxy ) (and the symmetrically

identical points). Even for the limited k-resolution due to the system size of 8×8 in (one-

shot) DΓA, the position of the maximum clearly resembles that of DMFT. βt = 4, U = 4t.

The peak in the magnetic susceptibility is closely connected to the symmetry of the su-

perconducting order parameter through the effective interaction, as discussed in Sec. 1.1.

This can also be seen from the parquet equations, specifically Eq. (2.5), after some rear-

ranging:

Γkk
′q

pp = Λkk′q
pp + Φkk′(q−k−k′)

m +
1

2
Φk(q−k′)(k′−k)
m − 1

2
Φ
k(q−k′)(k′−k)
d (3.6)

The pp-subscript without spin indices is defined as in Eq. (3.5). Close to magnetic

ordering, the Φm-terms will dominate the right hand side of this equation, as well as

the full vertex in the connected part of the magnetic susceptibility. Setting the bosonic

momentum and frequency to zero, we thus see that the effective interaction Γkk
′q=0 is

proportional to the magnetic susceptibility with transfer momentum q = k− k′.

3.2.1.4 Symmetry of the eigenfunctions

Fig. 3.5 shows the pairing interaction and the corresponding eigenfunctions from the

self-consistent parquet DΓA on a 6× 6 cluster at three different fillings. In all cases, for

the small cluster size considered there is a strong interaction with the most distant site

within that cell. At half filling, it is strongly repulsive while there is an attraction between

nearest neighbors with opposing spins. This attraction leads to the dx2−y2 pairing, which

already manifests itself in the symmetry of the eigenfunction at eigenvalues λ � 1 far

from the superconducting instability. Away from half filling, the interaction with the

most distant site becomes attractive at n ' 0.7, causing the eigenfunction of the largest

eigenvalue to reflect the pairing with that site in real space. In k-space, this leads to
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an unusual s-wave symmetry, further referred to as s̃. Fig. 3.8 shows the evolution of

the largest eigenvalue with dx2−y2 and s or s̃ symmetry over various fillings. The dx2−y2-

pairing has a maximum at half filling, unlike the physical situation in cuprates where the

superconducting dome is centered around n ' 1− 1
8
. The same result was found in Ref.

[49] for DCA-calculations at interaction U . 6t. At larger U , they found the pairing to

be suppressed at half filling, along with the emergence of a pseudogap [50, 51]. Also,

the introduction of next-nearest neighbor hopping t′ was found to break the symmetry

between electron- and hole-doping. For the parquet DΓA, however, no pseudogap was

found yet because the interaction strength and temperature are limited by the divergence

of the parquet equations.

The origin of the attraction to the furthest site at n = 0.7 and thus the strange s̃

symmetry is currently not completely understood and cluster-size dependent. Fig. 3.6

shows the effect to be significantly weaker on a larger cluster size of 8×8 when compared

to the 6× 6 cluster with n = 0.7 shown in Fig. 3.5. Also with the larger system size, the

eigenvalue of the strange symmetry s̃ is significantly smaller and close to the eigenvalues

with other symmetries. However, this may be due to a shift in the maximum of the

s̃-eigenvalue away from n = 0.7, as indicated by results from the parquet approximation

[52]. To reach a conclusive explanation of the strange behavior of the pairing interaction

and the eigenfunctions, calculations on even larger clusters may be necessary. The s̃-

symmetry fades with even heavier doping and gives way to the usual s-symmetry, as

shown in Fig. 3.7 for the parquet approximation at n = 0.65. Note however, that above

some doping level there will no longer be any superconducting symmetry breaking.

Besides the symmetries mentioned above, also eigenfunctions resembling the stripe-order

[53] (p-wave) were found, although never at the dominating eigenvalue. Fig. 3.9 shows

one example.
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β = 20, U = 4, n = 1

pp-eigenvalues
λpp symmetry
0.231 d
0.155 s

magnetic
eigenvalues

q λq,m
(π, π) 0.927
(π, 2π/3) 0.674

β = 20, U = 4
n = 0.85

pp-eigenvalues
λpp symmetry
0.229 d
0.147 s

magnetic
eigenvalues

q λq,m
(π, π) 0.905
(π, 2π/3) 0.696

β = 20, U = 4, n = 0.7

pp-eigenvalues
λpp symmetry
0.192 s̃
0.116 dx2−y2

0.09 s

magnetic
eigenvalues

q λq,m
(π, π) 0.53
(π, 2π/3) 0.646

Figure 3.5: Left: Pairing interaction in real space, as described in Sec. 3.2.1.2. Middle:

eigenfunction of the leading eigenvalue of the pp-Bethe-Salpeter equation in k-space and

real space. Right: Parameters, leading eigenvalues in the pp-channel with their respec-

tive symmetry and largest eigenvalue in the magnetic channel for q = (π, π), which is

close to one for antiferromagnetic ordering, and for q = (π, 2π/3), where the magnetic

susceptibility peaks for lower fillings at the used cluster size of 6× 6.
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β = 20, U = 4, n = 0.7
8× 8

pp-eigenvalues
λpp symmetry
0.104 s̃
0.088 s
0.082 d

magnetic
eigenvalues

q λq,m
(π, π) 0.425
(π, 3π/4) 0.569

Figure 3.6: As Fig. 3.5, but for βt = 20, U = 4t, n = 0.7 on an 8× 8 cluster.

β = 20, U = 5,
n = 0.65, 8× 8

pp-eigenvalues
λpp symmetry
0.077 s
0.065 d
0.057 s

magnetic
eigenvalues

q λq,m
(π, π) 0.466
(π, 3π/4) 0.611

Figure 3.7: As Fig. 3.5, but for βt = 20, U = 5t, n = 0.65 on an 8× 8 cluster from the

parquet approximation.

44



 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.05  0.1  0.15  0.2  0.25  0.3

λ

1 - n

dx2-y2

s

Figure 3.8: Largest eigenvalues of the pp-Bethe-Salpeter equation at βt = 20, U = 4t

for various fillings on a 6 × 6 cluster. Note that the point at n = 0.7 has the unusual

s̃-symmetry mentioned above.

Figure 3.9: Eigenvector showing a p-wave symmetry in k-space (left) and stripe-like

order in real space (right) at βt = 20, U = 4t, n = 1 on an 8×8 cluster. The corresponding

eigenvalue is 0.147, compared to the largest eigenvalue in the pp-channel, 0.344, which

has dx2−y2-symmetry.
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Figure 3.10: Imaginary part of the self-energy near the fermi-surface from self-

consistent parquet DΓA(p-DΓA), one-shot parquet DΓA (p1-DΓA) and parquet approxi-

mation (PA [52]) at U = 4t and half filling.0 1 2 3 4 5 6 7
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Figure 3.11: Imaginary part of the self-energy near the fermi-surface from self-

consistent parquet DΓA and ladder DΓA [54] in the ph-channel at U = 4t and half

filling.

3.2.2 Comparison of methods

Qualitatively, the results of the self-consistent parquet DΓA and the one-shot parquet

DΓA have been found to be similar to the results of the parquet approximation for the

2D Hubbard model at the Coulomb interaction and temperature considered. This is

shown in Fig. 3.10. The difference between the methods becomes visible in the structure

of the generated non-local vertices. Fig. 3.12 compares the non-local magnetic irreducible

vertices from parquet approximation and DΓA and gives the corresponding local vertices
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Figure 3.12: Irreducible vertex generated in the parquet Approximation [52] (top left)

and the self-consistent parquet DΓA (top right). Bottom left: The fully irreducible vertex

from DMFT that served as input for the parquet DΓA. Bottom right: The corresponding

magnetic irreducible vertex from the impurity. All at βt = 10, U = 4t and half filling.

Γm and Λ from DMFT.

The difference between the parquet DΓA and the ladder DΓA is much more pronounced,

as shown in Fig. 3.11 for the self-energy. The pseudogap, which was not found in the

parquet DΓA yet at all, develops at much higher temperatures in the ladder DΓA and

can be identified by the sharp downturn (divergence) of =(Σ) in Fig 3.11. Note that in

the ladder DΓA the non-local vertices and the susceptibility are not generated at all in

one of the channels, in this case the pp-channel. This has to be taken into account when

comparing the methods in that respect.
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3.2.2.1 Effect of the outer self-consistency

Fig. 3.13 shows the effect of the outer self-consistency on the self-energy for a variety of

parameters. All calculations were done on a 6× 6 cluster and the self-energy is given on

two points near the Fermi surface, (0, π) and (2π
6
, 4π

6
), as well as the point (0, 0). Note

that, due to the small cluster size, these are the only two independent k-points near the

Fermi surface that are not related to another one through symmetry. It is clear that

the corrections from the outer self-consistency are most pronounced near half-filling and

almost non-existent in the doped case at U = 4t. Also, they seem to be enhanced with

larger interaction as may be inferred from comparing the lower two plots. There are no

results for larger filling at that interaction, however, because the Bethe-Salpeter equations

diverge for this limited system size. In the accessible parameter range, no qualitative

difference, such as the establishment of a pseudogap, was found between the results from

the one-shot and self-consistent scheme. For larger interaction and lower temperatures,

the corrections to the local Green’s function stemming from non-local correlations may

be expected to be larger due to the proximity to the superconducting instability. The

outer self-consistency may then be expected to have a larger effect than in the current

cases. Fig. 3.14 shows the change in the fully irreducible vertex from DMFT to self-

consistent parquet DΓA in the case where the effect of the outer-self consistency was

most pronounced, βt = 20, U = 4t, n = 1.
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Figure 3.13: Imaginary part of the self-energy as obtained from self-consistent and

one-shot parquet DΓA as well as DMFT, for βt = 20, U = 4t, n = 1 (top left), n = 0.85

(top right) and n = 0.7 (bottom left) and the same for βt = 15, U = 5t, n = 0.7 (bottom

right).
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3.2.3 Computational cost

The by far most expensive part in the fully self-consistent parquet DΓA is the solution

of the parquet equations. The limiting factor is memory consumption as the size of the

vertices scales as the third power of frequency range and, in two dimensions, the sixth

power of the cluster size Nk. The calculations were done on the Vienna Scientific Cluster

VSC-3 on machines with two Intel Xeon E5-2650v2, 2.6 GHz processors with 8 cores

each and 64 GB of RAM. Due to the limited memory, the calculation for the parquet

equations had to be spread out over several nodes without being able to use all 16 cores

on each one of them for larger Nω and Nk. For the CT-QMC calculations, where memory

is not an issue, all 16 cores were used. The following table compares the computational

resources spent for some of the calculations done during this work, each given for one

iteration of DΓA, that is from the update of Λ to the solution of the parquet equations

using that same Λ. Depending on the desired accuracy in the statistics of the Monte-

Carlo calculations and the convergence criterion for the parquet equations, these values

may vary significantly.

Parquet equations CT-QMC (CPU-h)

β U 〈n〉 Nω Nk ×Nk CPU-h RAM cores used inv. AIM ΛAIM

10 4 1 32 6× 6 1,000 520 GB 8/16 500 1,000

20 4 1 48 6× 6 25,000 1.8 TB 2/16 1,000 5,000

20 4 0.7 48 6× 6 20,000 1.8 TB 2/16 1,000 5,000

5 4 1 32 8× 8 15,000 3.0 TB 2/16 500 1,000

20 4 1 32 8× 8 30,000 3.0 TB 2/16 1,000 5,000

3.2.4 Convergence

The self-consistent solution of the parquet equations (inner self-consistency) fails to con-

verge for βt & 20 and U & 5. Depending on the parameters and the filling, convergence

may take upwards of 150 iterations of the parquet equations. For large interaction, the

Bethe-Salpeter equation may even diverge in the magnetic channel. Notably, the parquet

DΓA fails to converge already at higher temperatures than the parquet approximation.

For example, at βt = 20, U = 5t, n = 1, the parquet approximation with Λ = U con-

verges, while parquet DΓA with Λ = ΛDMFT does not. Convergence is improved with a

larger cluster, so there is hope to go to lower temperatures in the future. Once a solu-

tion of the one-shot parquet DΓA was found, the outer self-consistency converged at all

parameter sets. This took approximately 10 iterations at half filling and even less away

from half filling where the effect of the outer self-consistency was even smaller.
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Chapter 4

Conclusion and outlook

The implementation of the parquet DΓA has only recently become feasible with the

development of a new and powerful parquet-solver, the victory-code [26]. In this work,

we presented the formalism and the steps to a self-consistent parquet DΓA solution. After

introducing the underlying formulas, we gave special focus to the calculation of the fully

irreducible vertex on the impurity, a key component of the parquet DΓA. We discussed

the possibility of using Kernel-functions [33] for an improved calculation of the high-

frequency asymptotics of the fully irreducible vertex Λ. While this method has proven

valuable in the calculation of the irreducible vertices Γ that enter, for example, the ladder

DΓA, we found no benefit in applying it to our problem of calculating Λ. This was not a

real setback to the implementation of the parquet DΓA however, as the inevitable noise in

the impurity calculations can relatively cheaply be kept sufficiently low to not impact the

solution of the parquet equations. We further showed a method to update the auxiliary

impurity model in order to achieve the outer self-consistency and made an attempt to

show the uniqueness of the solution of that step.

The outer self-consistency was found to be particularly important in the case of the

benzene molecule, where non-local interactions were introduced according to the Pariser-

Parr-Pople model [42]. In the two-dimensional Hubbard model, the feedback of non-

local correlations into the local one-particle Green’s function provided by the outer self-

consistency did not have a big impact for the currently accessible parameter sets. This

may change once parameters closer to the superconducting instability are feasible. Tem-

perature and interaction strength are currently limited by the convergence of the parquet

equations, which can be expected to behave better with larger cluster sizes. Moreover, for

lower temperatures more Matsubara frequencies will have to be taken into account, fur-

ther increasing the already heavy memory consumption. Due to the unfavorable scaling

of the size of the vertices with the number of frequencies and, even more so, the clus-
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ter size, new ways to decrease the computational demand will be highly welcome. One

method proposed for this purpose is the use of so-called form-factors for a more efficient

parametrization of the fermionic momenta [55]. Even at the accessible parameters, which

are relatively far from a possible superconducting instability, a range of interesting quan-

tities can be extracted from the non-local vertices. These results have already indicated

possible dx2−y2 ordering in the two-dimensional Hubbard model, as well as an unexpected

s̃-wave pairing.

Still, the path to realistic multi-orbital calculations within the parquet DΓA is long

and certainly will give rise to many interesting challenges along the way. The method,

however, has already proven to give good results from a natural and elegant approxima-

tion.

53



Bibliography

[1] J. Hubbard. Electron correlations in narrow energy bands. The Royal Society, pages

238–257 (1963).

[2] N. F. Mott. Metal-Insulator Transition. Rev. Mod. Phys., 40, 677 (1968).

10.1103/RevModPhys.40.677.

[3] T. Maier, M. Jarrell, T. C Schulthess, P. Kent, and J. B White. Systematic Study of

d -Wave Superconductivity in the 2D Repulsive Hubbard Model. 95, 237001 (2006).

[4] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg. Dynamical mean-field

theory of strongly correlated fermion systems and the limit of infinite dimensions.

Rev. Mod. Phys., 68, 13 (1996). 10.1103/RevModPhys.68.13.

[5] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner.

Continuous-time Monte Carlo methods for quantum impurity models. Reviews of

Modern Physics, 83, 349 (2011). 10.1103/RevModPhys.83.349. 1012.4474.

[6] P. W. Anderson. The Resonating Valence Bond State in La2CuO4 and Supercon-

ductivity. Science, 235, 1196 (1987).

[7] K. Held. Dynamical Vertex Approximation. ArXiv e-prints (2014). 1411.5191.

[8] A. Toschi, A. A. Katanin, and K. Held. Dynamical vertex approximation: A

step beyond dynamical mean-field theory. Phys. Rev. B, 75, 045118 (2007).

10.1103/PhysRevB.75.045118.

[9] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I. Kat-

snelson, A. I. Lichtenstein, A. N. Rubtsov, and K. Held. Diagrammatic routes to

non-local correlations beyond dynamical mean field theory. ArXiv e-prints (2017).

1705.00024.

[10] L. Landau and E. M. Lifshitz. Theory of the Condensed State, pages 173–222.

Pergamon Press (1981).

54



[11] A.-M. Tremblay. Strongly Correlated Superconductivity. Autumn School on Corre-

lated Electrons (2013).

[12] D. J. Scalapino. The case for dx2−y2 Pairing in the Cuprate Superconductors. Physics

Reports, 250, 047005 (1995).

[13] W. Metzner. Superconductivity in the Two-Dimensional Hubbard Model. Founda-

tions of Physics, 30(12), 2101 (2000). 10.1023/A:1003793524858.

[14] N. Bulut, D. Scalapino, and S. White. Spin-fluctuation mediated interaction in the

two-dimensional Hubbard model. Physica C: Superconductivity, 246(1), 85 (1995).

https://doi.org/10.1016/0921-4534(95)00130-1.

[15] C. Tsuei and J. Kirtley. Pairing symmetry in cuprate superconductors. Reviews of

Modern Physics, 72(4) (2000).

[16] O. Gunnarsson, M. W. Haverkort, and G. Sangiovanni. Analytical continuation of

imaginary axis data using maximum entropy. Phys. Rev. B, 81(15), 155107 (2010).

10.1103/PhysRevB.81.155107. 1001.4351.

[17] G. D. Mahan. Green’s Functions at Finite Temperatures, pages 123–220. Plenum

Press (1986).

[18] J. Imriska. Hubbard models on general lattices. A dynamical cluster approximation

approach. Ph.D. thesis, ETH Zürich (2016).
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