
Service Oriented Manufacturing
Infrastructure

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

M.Sc. B.Sc. Ahmed Ismail
Registration Number 1429613

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof.Dr. Wolfgang Kastner

The dissertation has been reviewed by:

Wolfgang Kastner Paul Pop Dirk Timmermann

Vienna, 24th January, 2018
Ahmed Ismail

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





Erklärung zur Verfassung der
Arbeit

M.Sc. B.Sc. Ahmed Ismail
Nordportalstraße 02, 1020 Vienna, Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Jänner 2018
Ahmed Ismail

iii





Dedicated to my parents and sisters.





Acknowledgements

First and foremost, I thank my professor, Wolfgang Kastner, for his endless support
while supervising my dissertation. His knowledge, dedication, humility, and genuineness
as a person sets a high standard for me to live up to. I’d also like to thank Guenther
Gridling for the many long and helpful technical and academic discussions. I thank
Ethar Ismail and Raisa Trubko for their time spent proof reading my work. I’d like to
thank my examination committee for taking the time to review this dissertation. I also
thank all the professors of the Doctoral College Cyber-Physical Production Systems, of
my previous courses, and the AutomationML and EDBT’17 summer schools. A special
thanks to all my lab mates, past and present, for their cheerful openness and motivating
conversations and for making Austria feel just like home. Finally, I thank my family for
accepting the many years of distance in the pursuit of knowledge.

This dissertation is supported by TU Wien research funds as part of the Doctoral
College Cyber-Physical Production Systems.

vii





Abstract

This dissertation is concerned with the design and implementation of infrastructural
systems for resilient Machine-to-Machine (M2M) communication in distributed Cyber-
Physical Production Systems (CPPS). For this purpose, a number of technologies are
selected and applied in congruence with the principles of Smart Manufacturing. Thus,
this dissertation investigates the use of Service Oriented Architectures (SOA), M2M com-
munication middleware systems, overlay networking solutions, and other technologies to
improve the agility, resilience, and interoperability of manufacturing infrastructure.

First, the concept of SOAs and how they may be applied in current enterprises to
achieve flexibility, agility and interoperability is addressed. As such, the technical state
of current industrial enterprises and the characteristics of the Service Oriented (SO)
approach are detailed to highlight the competitive advantage possible through service
orientation. A review of preliminary SO Reference Architectures (RA) delivered by major
European Union (EU) research projects is conducted to determine their features and
possible shortcomings. Realisations of the architectures are also discussed to underline
their choices in technologies and their delivered technical innovations. Based on the
findings of the review, the SO Open Platform Communications Unified Architecture
(OPC UA) is selected as the base technology for the envisioned system.

Following a bottom-up approach to system development, this dissertation proceeds to
investigate the rigid networking infrastructure in manufacturing enterprises. It evaluates
the possibility of using Peer-to-Peer (P2P) networking technologies to create a cohesive,
fault-tolerant network of components for the non-real time management, replication,
storage, and sharing of plant data and service components. A cooperative P2P over-
lay network is proposed as the most applicable architecture for manufacturing systems.
While the overlay network proposed may be used as a transport layer for OPC UA, it is
in fact developed as a middleware-agnostic protocol, thus affording it wider applicability
in the domain. The design is also evaluated through a prototypical implementation that
demonstrates the viability of the approach.

Finally, the OPC UA specifications are reviewed to highlight possible items for en-
hancement. Specifically, two proposals are evaluated. The first assesses the practicality
of employing a dedicated service for the distributed coordination of redundant OPC UA
servers. The second applies a queueing service to shield resource-constrained OPC UA
servers from high rates of concurrent asynchronous service calls (SC) that may lead to
resource exhaustion. Both proposals are evaluated programmatically and the code is
open sourced. Results demonstrate the feasibility of their respective designs.
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CHAPTER 1
Introduction

Several passages in this chapter are reproduced verbatim from the following publication:

1. Ahmed Ismail and Wolfgang Kastner. Service-Oriented Architectures for Interoperability in Industrial
Enterprises. In Stefan Biffl, Detlef Gerhard and Arndt Luder (eds.). Multi-Disciplinary Engineering for
Cyber-Physical Production Systems. Springer International Publishing AG, May 2017.

2. Ahmed Ismail and Wolfgang Kastner. Vertical Integration in Industrial Enterprises and Distributed Mid-
dleware. International Journal of Internet Protocol Technology 9(2/3):7989, 2016.

In a similar fashion to how the Internet redefined the business-to-consumer industry,
avid efforts are being applied to bring about revolutionary changes to the manufacturing
sector using new emerging technologies [1]. This revolutionary movement is currently
being spearheaded under the conceptual term of the ‘Internet of Things’ (IoT). This term
was coined by technologist Kevin Ashton in 1999 when he claimed that with ubiquitous
sensing and autonomous data collection technologies becoming a reality, the Internet
was shifting from connecting humans to connecting devices, hence the term the ‘Internet
of Things’ [2].

Since then, IoT research tracks have become well-established academic fields in the
particular branches of building and home automation, transportation, and energy sectors.
As of recently, the IoT movement has set its sights on production systems to achieve
the vision of a fourth industrial revolution. Thus, several national and trans-national
initiatives, some of which are listed in Table 1.1, have been created over the past years to
investigate the application of transformative technologies to the manufacturing industry.
Their goal is to maximise the economic competitiveness of their respective manufactur-
ing sectors through current CPPS. These CPPS consist of computationally controlled
physical elements. Thus, they present a platform through which strategies from Infor-
mation Technology (IT) can be applied to enhance the sustainable competitiveness of
manufacturing enterprises.

The appropriate selection and deployment of technologies in manufacturing is typi-
cally done according to a manufacturing strategy. A manufacturing strategy, according
to [10], is a framework for the design, organisation, management, and development of
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Initiative Countries Description

Industrial Internet Consortium 243 Member Organisations Accelerator for the development and
adoption of secure connected and con-
trolled machines and devices [3]

Industrie 4.0 Germany National strategy for the digitisation
and integration of the full manufactur-
ing value chain [4]

Intelligent Manufacturing Sys-
tems

EU, Mexico, South Africa,
United States of America
(U.S.A)

Industry-led international collabora-
tion for research and development
(R&D) and industrial deployment in
advanced manufacturing [5]

Production of the Future Austria R&D Program for joint industry and
research efforts in the applied sciences
for the development of competitive
products in the Austrian manufactur-
ing sector [6]

National Network of Manufac-
turing Institutes

U.S.A Joint network of industrial, academic,
and governmental partners for the pro-
motion of R&D in the advanced man-
ufacturing sector [7]

Smart Industry Sweden National strategy for renewed industri-
alisation through focused efforts in a
national Industry 4.0, sustainable pro-
duction, industrial skills boost, and a
test bed Sweden for lead research in
manufacturing production [8]

Smart Manufacturing Leader-
ship Coalition

U.S.A Developing an open platform for the
inter-organisational collaboration of
networked industrial applications to
enable the proliferation of Smart Man-
ufacturing in enterprises [9]

Table 1.1: National and trans-national initiatives for the advancement of manufacturing
technologies.

a manufacturing enterprise’s resources. It is used to focus the manufacturing decisions
of a company towards achieving a select number of characteristics with the purpose
of continuously improving the company’s competitive advantage. The next section dis-
cusses a number of manufacturing paradigms to discern the governing strategy for this
dissertation.

1.1 Manufacturing Strategies
Over the years, many different manufacturing strategies have emerged. Several of them
are summarised in Table 1.2. Perhaps one of the most notable paradigms is that of lean
manufacturing. Born of Toyota’s just-in-time system, the lean production strategy is
based on the following principles described in [10]:

• employing a broadly trained workforce instead of specialised personnel
• empowering employees to find and resolve production issues

2



• using informal and horizontal communication instead of hierarchical structures
• focusing on “production throughput flow” in place of resource utilisation
• employing on-demand production flows instead of those formally dictated through

centralised scheduling
• utilising a product-based rather than a process-based layout
• exercising zero-tolerance towards any manufacturing defects
• centralising waste elimination and continuous improvement initiatives
• considering inventory as waste
• reducing set-up times
• establishing long-lasting cooperative relationships with suppliers in place of adver-

sarial ones
• carrying out multiple product development activities at the same time using cross-

functional teams

Manufacturing Strategy Description

Focused Manufacturing Specifies the functions of each part of a manufacturing system with
specific products, technologies, volumes, and markets to limit and con-
sequently improve its ability to achieve and excel in performance [10]

Lean Manufacturing Focused on the elimination of waste through increased flexibility and
monitoring and corrected metrics [10]

Agile Manufacturing Quick response to regular and unpredictable changes through control
and mitigation strategies [10]

Flexible Manufacturing Adopts computerised control systems to allow for quick changes to pro-
duction [11]

Sustainable Manufacturing Focused on the management of scarce resources, and the sustainability
of products, production systems, and process [12]

Digital Manufacturing Uses information technology systems to minimise product development
times and cost, increase product customisation and quality, and improve
enterprise response times to the market [13]

Cloud Manufacturing Centred on the use of service oriented architectures and cloud computing
technologies [14]

Intelligent (Cognitive)
Manufacturing

Using systems that share traits and principles with complex biological
systems to supplement or replace human problem-solving in manufac-
turing [15]

Holonic Manufacturing Adopts a hierarchy of self-reliant and autonomous agents for process
control to improve the ability of manufacturing systems to adapt to
product evolution and improve performance in out-of-bounds operating
conditions [16]

Smart Manufacturing Focused on the optimised application of resources and the workforce to
achieve the on-time production of high quality goods while maintaining
the enterprise characteristics necessary for the company to control and
respond to internal and external stimuli [14]

Scalable Manufacturing Development and implementation of algorithms for the (elastic) scala-
bility of different types of manufacturing systems for reductions in man-
ufacturing costs and waste and improvements in production throughput
[17]

Table 1.2: A subset of notable manufacturing strategies.

3



Lean manufacturing quickly allowed the Japanese manufacturing industry to consolidate
a substantial portion of the world’s export market in the 70’s through to the 90’s. How-
ever, with the rise of globalisation and the rapid rates of technology development in the
90’s, lean manufacturing soon gave way to agile manufacturing, a strategy focused on
proactively adapting to frequent and unforeseen internal and external changes by con-
trolling and dealing with the effects of those changes. Examples of change control given
in [10] include:

• monitoring and forecasting the change
• confining the effect of changes to specific equipment
• outsourcing tasks that experience drastic changes to other firms
• instilling redundancy to stabilise the system in the face of change or substituting

the source of change with another
• negotiating with the customers to reduce changes in customer demands
• using advertising and promotions to reduce the elasticity of market volume and

rate demands
• employing preventative maintenance and staff training to reduce the variability in

equipment availability and personnel behaviour

Handling unpredictable change, however, is dependent on the flexibility of the product,
mix, volume, delivery, and system robustness. This is based on the definition of flexibility
as the range of states available and the cost associated with the transitioning between
the different states.

In recent years, trends have shifted towards smart manufacturing, which is a cur-
rent paradigm that evolved from lean and agile principles. According to [14], smart
manufacturing is focused on the optimised application of resources and the workforce to
achieve the on-time production of high quality goods while maintaining the enterprise
characteristics necessary for the company to control and respond to internal and external
stimuli. Smart manufacturing, however, places special emphasis on the role of emerging
technologies. Thus, it calls for the digitisation of all manufacturing-relevant activities
as well as the adoption of technologies such as advanced sensors, SOA, and big data
analysis to achieve a competitive market advantage.

It is, therefore, the case that one of the largest opportunities in manufacturing cur-
rently lies in achieving the still-relevant goals of lean and agile manufacturing through a
technology-centric smart manufacturing approach. This involves employing technology-
driven solutions for the definition of a characteristic enterprise with “easy access to
integrated data whether it is customer driven, supplier driven, or product and process
driven”, “modular production facilities that can be organised into ever-changing manu-
facturing nodes”, and “data that is rapidly changed into information [for the expansion
of] knowledge”, amongst other things [18].

The pursuit of these characteristics requires an understanding of the current technical
landscape of manufacturing enterprises. This context is defined in the next section.

4



1.2 Technical Features of the Industrial Enterprise

A reference architecture is a structured meta-model representing the various functional
elements and interactions of an enterprise system. Industrial enterprises use a reference
architecture in order to allow for the rapid generation of a useful system architecture
that adopts all of the relevant insights and best practices gained from years of previous
deployments. Developing for manufacturing systems without taking into account the
restrictions imposed by existing architectures risks the breaking of application depen-
dencies vital to the manufacturing process. This section focuses predominantly on the
Purdue Enterprise Reference Architecture (PERA) framework as it is widely accepted
by industry and is compatible with multiple manufacturing standards, such as ISA 95,
ISA 88, and IEC 62443 [19, 20, 21].

Using the ISA 95 and ISA 88 models, PERA essentially segregates the elements
comprising an industrial enterprise system into separate zones and conduits. The system
is essentially divided into 5 functional layers, as shown in Fig. 1.1, that correspond to
the 5 layers of the automation pyramid (see Fig. 1.2). The lowest layer, level 0, is the
actual physical process. Level 1 consists of the device communication networks directly in
control of the physical processes. The second layer comprises the control and automation
network. This level can directly access the process and discrete devices of level 1 to set
or reconfigure them as needed. Level 3 consists of operations management systems, such
as the Manufacturing Execution System (MES). Level 3 components may only read from
layers 1 and 2. Level 4 is where the enterprise system is located and is where the bulk
of the business process network exists. The application of the PERA model has been
extended with time and currently includes a sixth layer and a Demilitarised Zone (DMZ).
The sixth layer, level 5, is where centralised IT systems and their associated functions
are situated. The DMZ, on the other hand, is in place to manage access from levels 4
and 5 to the data and network of levels 0 - 3. The recommended practice is to have no
traffic cross the DMZ. Instead all traffic should either originate or terminate within the
DMZ. Therefore, data sharing and application servers are normally found in the DMZ
[20, 21, 22].

This kind of segmentation is done to increase the manageability and security of the
enterprise. However, further impositions on the enterprise exist due to the physical
and logical constraints of the enterprise’s assets. Physically, devices may be connected
using legacy serial interfaces (e.g. EIA-232/422/485), fieldbus systems, and wired and
wireless Ethernet and IP-based technologies. Although devices with both interface types
may be used to physically bridge the two networks together, the protocols may have
different demands in bandwidth, latency, and other communication-related requirements.
At the messaging layer, these protocols may also differ in their message formats and
exchange mechanisms, as well as in other features. The process of bridging together
these various systems requires special devices and techniques that are designed and
implemented carefully to safely allow them to share data [24, 25].

By convention, there are two approaches for managing this heterogeneity and techni-
cal complexity, namely tunnelling and translation. Tunnelling involves the use of routers
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Figure 1.2: The five layers of the automation pyramid [23].

for the encapsulation of one protocol’s data inside the payload of another and treating
the channel as a transparent communication medium. Translation uses gateways as in-
termediaries to carry out data mappings on behalf of communicating devices to allow
them to exchange information using their native protocols. Each of these methods has
its own drawbacks in relation to capabilities and implementation complexity, and is often
considered to be costly in engineering efforts [26].

1.3 Problem Statements & Hypotheses

Problem statement 1 Enterprise processes are compounded by their technological
choices and implementations resulting in heterogeneous infrastructure that introduces
stiff resistance to change.

The main vision is to establish flexible, agile, and resilient distributed systems in
manufacturing enterprises. This involves overcoming the complexities of manufacturing
infrastructure which typically use a large number of protocols, are governed by numer-
ous standards, and are present in many various architectural forms. This heterogeneity
proves to be a major hindrance to the adoption of modern technologies that are increas-
ingly dependent on the easy accessibility of data and devices. The resulting systems
normally include many dependencies (for example, to a technology stack) that make
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rapid changes to the organisation extremely difficult. Thus, the enterprise cannot be de-
scribed as agile or flexible. The aim of this dissertation is to counter this heterogeneity
and inflexibility by enhancing data exchange capabilities and allowing an organisation
to quickly adapt to changing conditions and create a competitive advantage for itself
[27].

Hypothesis 1 Given the complex and heterogeneous technical landscape in manu-
facturing, a SOA would provide a suitable pathway for the pursuit of agile characteristics
in modern enterprises.

From a technical perspective, Chapter 2 will demonstrate that a SOA is the most ap-
propriate approach in the pursuit of agile characteristics. This is a field that is concerned
with the creation of modular IT and production systems that enhance an enterprise’s
capabilities for information exchange, technological independence, and component reuse.
The result would effectively be an industrial environment of operational flexibility and
responsiveness [28].

Problem statement 2 The proliferation of SOA in the manufacturing domain
complicates the process of selecting an appropriate RA for the development of SO man-
ufacturing infrastructure.

The properties and benefits of the SO approach have led several research projects to
pursue and outline RAs for highly interoperable industrial environments based on SOA.
These efforts have been extensively documented to facilitate future system implementa-
tions. However, the proliferation of RAs complicates the decision making process with
regards to technology adoption.

Hypothesis 2 In contrast to the recently proposed research-driven SO RAs, the
OPC UA standard currently provides a mature, standardised, well-adopted, and well-
supported SO solution for the integration of M2M communication infrastructure.

An analysis of several prominent RAs is given in Chapter 2 to determine their ap-
plicability to contemporary manufacturing enterprises. Chapter 2 will show that these
research-driven RAs are vulnerable to criticisms from stakeholders and low adoption
rates. Instead, the OPC UA specifications family is seen as a suitable alternative for the
implementation of interoperable SO M2M communication infrastructure.

The proper adoption of the SO architectural pattern should allow for the development
of an integrated system for the deployment of meaningful services. The envisioned system
consists of pervasively deployed, dynamic, robust, versatile, and extensible services for
the agile execution of cyber physical production processes. Given the safety critical
nature of manufacturing operations, this first and foremost implies designing a system
that is resilient to failure at the communication and application layer. This translates to
a system with integrated traffic engineering and self-preservation measures that allow it
to sustain business operations in the presence of failure by continuing to serve essential
services. A diagram demonstrating this envisioned system is shown in Fig. 1.3.
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Internet

Reflecting Servers

Manufacturing Equipment

Discovery Storage Service X

Server A Server B

                                        Control Service X

Figure 1.3: The envisioned resilient and robust SO manufacturing infrastructure. Service
X on server A fails and is replicated on a different server (server B). With the link to
the new service down, requests are re-routed through existing infrastructure to establish
a new path for the continuity of data exchange.
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Problem statement 3 SO CPPS require flexible, scalable, and failure-resistant
transport protocols for a dynamic system of services. This is in contrast to current
technologies which often limit these properties.

Following a bottom-up approach, the first task to be tackled is the design and de-
velopment of a flexible, scalable, and failure-resistant communication protocol. This is
in contrast to the dominant solutions in manufacturing which are often times found to
be rigid in structure, have limits on the maximum number of devices, include a Single
Point of Failure (SPoF) in their respective architectures, and require special hardware
for their operation [29].

Hypothesis 3 The domain of P2P networks as cooperative systems has suitable prop-
erties for the design of a failure-resistant protocol for SO manufacturing infrastructure.
Deviations from their typical nature will be necessary to adapt them to the manufactur-
ing domain.

Developing a network for resilient communication atop of existing infrastructure des-
ignates it as an overlay network. Of the various types of overlay networks possible, P2P
networks happen to be one of the most well-developed and understood. Chapter 3 will
demonstrate that P2P solutions are highly compatible with SO systems. However, P2P
technologies are themselves classified based on their degree of centralisation, hierarchical-
ness, and other features that have direct implications on their respective architectures
and capabilities. A specific subclass of P2P technologies known as P2P networks as
cooperative systems is expected to be the most appropriate solution for operating in a
manufacturing landscape. This is because it is a subclass concerned with the bridging,
merging, and sharing of resources between disjoint systems of machines. Thus, it is
compatible with the architectural constraints of manufacturing infrastructure, which, as
previously stated in Section 1.2, is governed by numerous restrictions that may limit the
flow of data between different groups of machines. Yet, since designs from the subdo-
main of P2P networks as systems are typically developed for use on the open nternet, it
is also likely that modifications to their characteristic features will be needed to adapt
them to the localised nature of manufacturing infrastructure.

Problem statement 4 OPC UA based distributed systems have coordination needs
for the safe operation of redundant servers that would require an extensive investment
on the part of developers.

The second task involves reinforcing the application layer, which, in the envisioned
system, is inexplicably linked with OPC UA. OPC UA operates using a client-server
architecture to develop large distributed systems for M2M communication. Redundancy
is a standard feature for the resilience of services. Although OPC UA accounts for redun-
dancy in its specifications, it does not define the measures necessary for the coordination
of redundant components. Such mechanisms are required to ensure the safe operation
of simultaneously running elements. The development of coordination logic is generally
considered to be a complicated and expensive task [30].

Hypothesis 4 Apache ZooKeeper provides a suitable platform for the development
of a service that can meet the coordination needs of redundant OPC UA servers.

Coordination is a key ingredient of large distributed systems. It is often needed for
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replication, leader election, group membership, cluster management, service discovery,
resource fencing, and barrier orchestration [31]. Since coordination is a task common to
many distributed applications, Yahoo! developed a popular and open source platform
for coordination named Apache Zookeeper. This platform incorporates a number of
primitives and a file-system like Application Programming Interface (API) specifically
to reduce the effort needed in developing coordination logic. The application-agnostic
Apache ZooKeeper may have the characteristics necessary to generate a coordination
service that meets the requirements of redundant OPC UA servers.

Problem statement 5 The push-based client-server communication model in OPC
UA leaves servers vulnerable to request overloads and the possibility of resource exhaus-
tion.

Another issue relating to the OPC UA ecosystem concerns its client-server architec-
ture. This approach to message exchange implies that service calls are executed via
a push-based communication model. This means that clients push requests to servers
which are then expected to process the service calls and possibly respond. The power
to communicate is therefore with the clients. This means that OPC UA servers are
vulnerable to scenarios involving high volumes of concurrent requests that may cause
servers to exhaust their available resources and enter a degraded or failed state.

Hypothesis 5 A queuing service can safely install rate-throttling capabilities in
an OPC UA system and circumvent the vulnerability of OPC UA servers to request
overloads.

Servers may avoid resource exhaustion by limiting the number of requests that they
can receive at any given time. A possible solution may use a mediator service that can
throttle the flow rate of requests to each server in the system.

1.4 Goals and Methodology

The problem statements and hypotheses of the previous section may be redefined as a
concise statement of sub-goals designed to achieve the envisioned system. The goals for
this dissertation are summarised as follows:

1. Identify the current landscape of SOAs for manufacturing enterprises in academic
literature.

2. Select an appropriate SO communication architecture for the development of the
envisaged system.

3. Identify and adapt appropriate technologies and strategies to the selected SO com-
munication architecture in support of more flexible and resilient manufacturing
infrastructure.

The implemented methodology surveys recent literature relevant to the topics in-
volved in this dissertation. The state of the art review on preliminary SOAs from aca-
demic literature leads to the selection of an appropriate architecture that forms the
foundation of this dissertation. The selected architecture is analysed to discern and
propose appropriate technical enhancements. The proposed changes are engineered and
executed as prototypical implementations to evaluate their viability.
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1.5 Dissertation in Brief

This dissertation addresses the smart-manufacturing paradigm as applied to M2M com-
munication infrastructure. Through the use of SOAs and the implementation of versatile
services for coordination, SC rate management, and failure-resistant communication, an
approach is outlined for the development of more flexible, agile, and resilient distributed
systems in manufacturing enterprises.

In Chapter 2, the various elements involved in the development of SO solutions
for CPPS are investigated. The features of SO solutions are discussed to highlight the
benefits that they may deliver in alleviating the current challenges to manufacturing
infrastructure. The SO RAs of five major EU research projects are surveyed to highlight
their main characteristics. Realisations of these architectures are analysed to discern
the compatible technologies used to guarantee system-wide interoperability. An archi-
tecture analysis framework developed by Angelov et al. in [32] is then applied to the five
architectures to determine the fluency with which they may be translated to concrete im-
plementations. The results show that the architectures are either over or under-specified,
and are in certain cases missing critical elements needed for implementation. Previous
results presented in [32] indicate that the analysed RAs are vulnerable to low adoption
rates and criticisms by stakeholders. Rather than contribute to the proliferation of avail-
able SOAs through the development of another competing architecture, a mature and
widely accepted SO technology is chosen for the remainder of the work presented in this
dissertation. Specifically, this is the OPC UA M2M communications specifications fam-
ily. The remainder of this dissertation then centres around the development of resilient
middleware infrastructure that is tightly bound to this standard.

Enhancements for OPC UA are presented in Chapter 3 and Chapter 4. Following
a bottom-up approach, Chapter 3 addresses the resilience of manufacturing systems
by developing an alternate transport layer based on P2P networking technologies with
the goal of creating cohesive and failure-resilient communication systems. Cooperative
P2P overlay networking is selected as the most appropriate technology domain for this
purpose based on the requirements of manufacturing systems. This is because this field
allows for the development of networks composed of multiple overlays. These can then
be used for inter-system traffic engineering, inter-system content-sharing, and to create
expanded systems of networks. Thus, participating infrastructure may organise itself into
self-contained systems of cooperative nodes. These systems would be able to dynamically
reconfigure themselves to restrict or facilitate message passing between nodes to meet the
changing policies and requirements of a manufacturing enterprise. Thus, the result would
be an enterprise-wide communication system that is compatible with the constraints
of a manufacturing system and is resilient to both failures and network churn. To
demonstrate this system, a service-oriented application is developed through an example
that converts a vanilla P2P networking protocol, Chimera, into a cooperative systems
protocol. The system is evaluated through a prototypical implementation in C and tested
as virtual deployments on 64-bit Xen Project servers and 32-bit embedded devices. It
is important to note that the resulting protocol is in fact middleware-agnostic and can
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therefore be used by both OPC UA and non-OPC UA applications that share the same
common need for survivable communication systems.

Chapter 4 then proceeds to address specific enhancements for the OPC UA based
application layer. It begins by addressing the coordination of redundant OPC UA servers.
The OPC UA specifications family may be used to build large distributed systems, such
as a Supervisory Control and Data Acquisition (SCADA) system. These systems typi-
cally have several coordination requirements that make sure that the different indepen-
dently and concurrently running components can operate safely. In the case of redundant
OPC UA servers, this includes needs for address space synchronisation and replication,
failure detection, and resource fencing. This is because OPC UA necessitates that re-
dundant OPC UA servers expose an identical address space to all connected clients.
Failure detection and automated failover measures are needed because certain redun-
dancy modes can only allow for a specific number of active servers that are connected
to downstream devices. As coordination is a task common to many distributed sys-
tems, Yahoo! developed an open source a coordination service, Apache ZooKeeper, that
provides strong guarantees for consistency, ordering, and durability, and implements a
number of primitives that allow for the rapid development of coordination functions.
The use of such a service reduces the time and cost needed to implement and meet the
coordination requirements of an application and thus allows developers to focus on the
application logic instead. In summary, this chapter presents an integrated system of
OPC UA and Apache ZooKeeper that meets the aforementioned coordination needs of
redundant OPC UA servers. A detailed description of the architecture, data model, and
components of the resulting system is given. An open source prototype is developed
using the open62541 and ZooKeeper C libraries. The resulting system demonstrates its
ability to provide runtime address space synchronisation, failure detection, automated
failover, and contention resolution.

Next, Chapter 4 also investigates the communication mechanisms of OPC UA’s
client-server architecture. This communication primarily takes the form of SC and can
effectively be considered remote procedure calls (RPC). Thus, OPC UA operates using
client-side push-based communication. This leaves OPC UA servers open to request
overloads as too many SCs may be submitted concurrently to a server in a short time
span. The server may subsequently enter a failed or degraded state as it exhausts its
available resources in trying to process these requests. The loss of a service in an online
manufacturing system is considered to be highly undesirable and may cause extensive
financial, human, and environmental losses. Measures from the standard to counter
this vulnerability are found to include the use of redundant OPC UA servers and service
level indicators. Effectively, these concepts amount to capacity planning and simple load
balancing. Since they do not alter the push-based communication mechanism of OPC
UA, the vulnerability to request processing overload persists. Thus, the use of a rate
throttling service that mediates SCs on behalf of servers is proposed. This is expected
to shield servers from traffic bursts that may result in unwanted consequences. Similar
to the coordination service, this service is modelled on the use of Apache Zookeeper. An
architecture, data model, and communication flow is detailed and an open source pro-
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totype based on the open62541 and ZooKeeper C libraries is developed. The prototype
also implements a safety measure that allows clients to circumvent the queuing service
in case of emergencies, where service calls must be immediately processed regardless of
the state of the queue.

Chapter 5 concludes by discussing the contributions of this work in the context of
the problem statements and hypotheses outlined in Section 1.3. This chapter also exam-
ines on the presented system in the context of Reference Architecture Model Industrie
4.0 (RAMI 4.0). Finally, an outlook on possible future work is presented.
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CHAPTER 2
Service Oriented Architectures in

Manufacturing Enterprises

Several passages in this chapter are reproduced verbatim from the following publications:

1. Ahmed Ismail and Wolfgang Kastner. Service-Oriented Architectures for Interoperability in Industrial
Enterprises. In Stefan Biffl, Detlef Gerhard and Arndt Luder (eds.). Multi-Disciplinary Engineering for
Cyber-Physical Production Systems. Springer International Publishing AG, May 2017.

2. Ahmed Ismail and Wolfgang Kastner. Surveying the Features of Industrial SOAs. In 2017 Annual In-
stitute of Electrical and Electronics Engineers (IEEE) Industrial Electronics Society’s 18th International
Conference on Industrial Technology (ICIT). March 2017, 1-8.

3. Ahmed Ismail and Wolfgang Kastner. Coordinating Redundant OPC UA Servers. In 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA). September 2017,
1-8.

Industrial enterprises are well-known for the heterogeneity of their technological
landscapes. Development in such environments typically carries large engineering costs.
These costs may be compounded by the technological choices and implementations of
enterprise infrastructures, which commonly use monolithic applications to achieve their
functional goals. The resulting system involves many implicit and explicit dependencies
(e.g., to a technology stack) that introduce stiff resistance to change. In such a case, the
enterprise cannot be described as agile or flexible. In fact, it is properties such as these
and their implications that have become major arguments used by the proponents of
SOAs to effect infrastructural changes in enterprises [33].

The SO paradigm attempts to reduce the overall costs by employing design features
and patterns specifically geared towards the development of flexible, agile, and man-
ageable systems of interoperable and reusable components. Consider for example the
concept of a SO CPPS. CPPS are physical and computational resources that are tightly
bound in coordinated and controlled relationships and embedded in a socio-technical
context. The functionalities originally addressed by monolithic applications may be de-
composed and distributed across the system’s member devices. That is, by applying the
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service-oriented design pattern, a large business problem can be fragmented into smaller
problems that may then be solved using a number of small and related units of logic,
termed services, rather than through a single monolithic application. Distributing these
services across the system would create networks of smart devices that are inherently
resilient due to their lack of dependence on any central component. Furthermore, as
long as services are designed with standardised interfaces, system-wide interoperability
is guaranteed. The internals of these services, such as how they are implemented, or
what technology they use is hidden behind the service interface, thereby affording the
system technological independence and flexibility. Services are also typically designed
with functional agnosticism to allow for their reuse to reduce future application devel-
opment efforts. Together, the concepts that define the SO approach, all of which are
summarised in [28, 34, 35] and presented in Table 2.1, afford an enterprise the agility it
requires and minimises the need for integration [36, 37, 34, 28].

According to [38], several projects have been formulated to research the application
of SOA based solutions to manufacturing domain problems since 2003. However, the
discourse in this chapter is limited to the more recent and completed projects within the
time period of 2010 to 2017. The purpose of this chapter is to provide an overview of
recent trends in the characteristics and technology choices of research-based SO RAs for
the industrial domain. Although the chapter refrains from including research projects
that are still ongoing at the time of this writing, an exception is made for the Arrowhead
framework as it has 77 partners and a budget of 69 million Euros, making it one of the
largest European research projects in the field of automation [38]. In total, five projects
are surveyed, the Internet of Things at Work (IoT@Work), Production Logistics and Sus-
tainability Cockpit (PLANTCockpit), ArchitecturE for Service-Oriented Process - Mon-
itoring and Control (IMC-AESOP), Embedded systems Service-based Control for Open
manufacturing and Process automation (eScop), and Arrowhead framework projects.

The analysis of the five projects is done from two different perspectives to deter-
mine the ease with which they may be translated into concrete architectures and the
technologies that may be used in such realisations. The first is a more technical and
detailed perspective that is achieved by extracting the specific protocols, standards, and
specifications used to define the various parts of the architectures’ communication stacks.
The second perspective is addressed by applying a software RAs analysis framework de-
veloped in [32]. Together, a succinct overview provides a baseline understanding of the
features of the respective architectures.
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Name Duration Objective

IoT@Work Jun 2010 - Jun 2013 Using IoT technologies to decouple applica-
tion/control programming from the network,
enabling communication-centric plug & work
capabilities, and enhancing the system security [39]

.

PLANTCockpit Sept 2010 - Dec 2013 Creating a SO and centralised plant-wide HMI [40].

IMC-AESOP Sept 2010 - Dec 2013 Using SO approach for SCADA/DCS in large-scale
process control systems [41].

eScop Mar 2013 - Feb 2016 System integration using ontology based knowledge-
management, embedded devices, and SOA [42].

Arrowhead Mar 2013 - Feb 2017 Providing a SO technical framework for cooperative
automation in technologically heterogeneous systems
[43].

Table 2.2: A summary of project durations and objectives.

2.1 Five Preliminary SOAs

This section focuses on five service-oriented RAs that resulted from collaborations be-
tween research, vendor, and user organisations. To reiterate, these are the IoT@Work,
eScop, PLANTCockpit, IMC-AESOP, and Arrowhead framework projects. The inferred
or explicitly stated purpose of each of these projects is summarised in Table 2.2.

2.1.1 IoT@Work

The IoT@Work project represents its RA using layers and planes. In terms of the former,
three layers are used; the physical, abstraction, and composite service layers, as shown
in Fig. 2.1. The first of these, the physical layer, is the physical world and is therefore
composed of physical devices. The second layer is an abstraction of the physical devices
as resources and services. In the context of the IoT@Work architecture, a resource is
an object representing a specific physical or virtual element. A service gives access to
a resource by specifying the type, identifier and interface. Effectively, a single device
may be represented using one or more resources and services. The third and final layer
is that of composite services. These group together the elements of the second layer to
hide their complexity and deal with context, contention over resources, and access rights.
It is this third layer atop which applications such as event notification, Complex Event
Processing (CEP), Network Access Control (NAC), and controller Input/Output (I/O)
applications run [39].

To address the functional aspects of these three layers, the IoT@Work project defines
a set of core services, listed and defined in Table 2.3, and organises a large number
of functional components that compose them into three planes; the communication,
security, and management planes. The communication plane is concerned with the
orchestration of network resources and communication to resolve access contention issues
and provide support for Quality of Service (QoS) guarantees. The security plane, as
the name implies, manages and integrates security into the overall system. Lastly, the
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Devices & physical entitites

Physical

Figure 2.1: The three layers of an IoT@Work architecture [39].

management plane attends to device, service, and configuration management with a
focus on their inter-relations [39].

2.1.2 PLANTCockpit

The PLANTCockpit system architecture, shown in Fig. 2.2, is composed of an internal
and external system. The external system refers to the data sources connected to the
PLANTCockpit using proprietary or open interfaces, such as an ERP system, OPC
server, or sensors and actuators. As for the internal system, this consists of five layers:
system connector, function engine, persistence, visualisation engine, and presentation
engine [40].

The first of these, the system connector layer, is primarily concerned with interfacing
with external data sources. It provides the configurable adapter modules required to
allow the PLANTCockpit to access and communicate with these sources. Due to their
configurability, an adapter manager is included in the architecture to oversee the entire
life cycle of adapters. As for the external data structures acquired through the adapters,
these are transformed to an internal data structure using a mapper module. Finally, the
layer uses two generic components, the subscriber and publisher, to query the external
systems via the adapters and push the data retrieved by way of the adapter and mapper
components to the function engine layer, respectively [40].

The function engine layer, receiving these data, provides a platform atop where an-
alytics and functions may be executed. It is based on the concept of function blocks,
which, inspired by the object oriented paradigm and the IEC 61499 standard, are re-
configurable and encapsulated blocks of program code with clearly defined interfaces to
allow for reuse and composability. These blocks’ life cycles are managed using a func-
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Core Service Explanation

ENS A common functional component that collects and
distributes events.

ENS ARB A broker between ENS clients attempting to access
namespaces and the ENS AS.

ENS AS Decision point for access requests sent to the ENS
ARB.

PDP Evaluates the status of capability tokens and policies
to approve or refuse access requests.

Revocation Service Manages capability revocation requests and capabil-
ity revocation life cycles.

ENS Namespace Management Service A service for the management of hierarchical struc-
tures used for the organisation of event publishing.

Slice Management System A three part service consisting of a CSI, SEP and
Slice Manager. Used for the creation of a ‘slice’1.

Embedded Application Configuration Service Provides devices with the configurations required by
their applications.

DS Stores device information in an ontology-based DS
data model.

Orchestrated Management

Orchestrated Management Authoring Support: A
lightweight algorithm and API.

Orchestrated Management Scheduling Service: Algo-
rithms to produce management plans and schedule
operations.

Management Services: A wrapper around existing
operations in the three planes so that they may be
used and executed in Orchestrated Management sce-
narios.

Context Services: Capture constraint values to pro-
vide context. May be a parameter of the MES or
ERP system.

Complex Event Monitoring Service Responsible for the verification of rule compliance to
allow the system to meet safety and security goals.

1A slice is a virtual network with QoS guarantees and policies.

Table 2.3: The IoT@Work Core Services [39].
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Figure 2.2: The PLANTCockpit system architecture [40].

tion manager, while a pub/sub broker (publisher/subscriber) provides them with secure,
reliable, and event-driven mechanisms through which they may communicate with each
other [40].

Any data relevant to the function engine or any other layer’s workings are managed
and stored using the persistence layer. This subsystem is composed of three components;
the data persistence manager, configuration repository, and data repository. The manager
administers the storage, archiving, retrieval, and deletion of data. The configuration
repository maintains all of the data needed to configure the internal components of the
PLANTCockpit system at design and runtime. Finally, the data repository stores all
of the data required by analysis processes in the PLANTCockpit system. It includes a
cache that can temporarily store data to improve the system performance, and a more
permanent store that archives historical data [40].
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Figure 2.3: The IMC-AESOP system architecture [44].

Finally, any data to be presented via the HMI interface is prepared for visualisation
using the visualisation engine layer. It consists of a service engine which is an aggregation
of a runtime and design engine. The former contains the configurable User Interface
(UI), while the latter configures the interface using a composition of building blocks
(visualisation elements) and their associated data points. A building block browser and
function block browser are used to make all possible building blocks and all available
data points provided by the data persistence manager accessible by the design engine
for the UI’s configuration, respectively. Finally, a data provider component subscribes
to the Pub/Sub Broker for data and events that it delivers to the runtime engines. The
presentation engine layer, which is composed solely of a presentation runtime engine,
then graphically presents the configured building blocks [40].

2.1.3 IMC-AESOP

As opposed to the PLANTCockpit framework, the IMC-AESOP architecture attempts
to provide a generic architecture to support multiple applications, with the HMI only
being one of these applications. As such, the framework is in fact a behemoth of services,
service groups, and interactions presented using both natural language and semi-formal
descriptions based on the Fundamental Modelling Concepts (FMC) graphical notation.
The abridged description of the framework’s components are shown in Table 2.4 [44].

Based on the architectural overview given in [44], the framework differentiates be-
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tween four system components, as shown in Fig. 2.3. The first component is that of user
roles, which designates user’s business, operations, engineering, maintenance, or train-
ing roles. These roles interact with or impact the architecture directly or indirectly as
they take part in plant processes. The second system component consists of the service
groups. These act as the glue binding together the user roles, the external systems (the
third component), and the plant data itself (the fourth) [44].

Service Group Component Services Explanation

Alarms Alarm Configuration Defines, maps, filters, and aggregates alarms based
on the principles of CEP. Supports simple alarms.
May be time and/or event/alarm-triggered.Alarm & Event Processing

Configuration System Configuration Service Responsible for the configuration, deployment, and
enforcement of configurations on the various plant
elements. The model repository service provides it
with a structure for saving hierarchical configuration
structures of nodes. The service may also manage the
versioning of services and the instantiation of plant
meta-models.

& Configuration Service
Deployment Configuration Repository

Control Control Execution Engine Typically a distributed service, it can execute pro-
cess models and configurations and support the on-
line reconfiguration of processes and hot-standby re-
dundancy.

Data Event Broker Responsible for “data retrieval, consistency checking,
storage, searching”, basic eventing, and actuator out-
put control. The service connects data producers
with higher level services and provides methods for
mapping data to the appropriate data models and
ontologies.

Management Data Consistency
Actuator Output
Historian
Sensory Data Acquisition

Data Filtering Provides services for basic filtering, CEP and calcula-
tions. The CEP engine allows for low-latency analy-
sis of event data. It provides a management interface
that allows for the creation, update or removal of
rules used for processing events. The calculation en-
gine supports users in executing numerical or logical
operations over process data.

Processing Calculation Engine
CEP Service

Discovery Discovery Service Supports the discovery of system components by
type and location. Uses a registry to support the
discovery of services implemented using technologies
without inherent discovery capabilities, and to allow
for discovery by remote entities where multicast and
broadcast based discovery would be of limited useful-
ness.

Service Registry

HMI Graphics Presentation Provides a generic web interface where graphical
tools may be embedded.

Integration Composition Service Responsible for ensuring interoperability between
heterogeneous components using translation and en-
capsulation. Also serves as a platform for the exe-
cution of business processes as service compositions
and their presentation as higher level services.

Service Mediator
Gateway
Business Process Management
and Execution Service
Model Mapping Service

Life cycle Code Repository Covers “aspects such as maintenance policies, ver-
sioning, service management and also concepts
around staging (e.g. test, validation, simulation, pro-
duction)”. It also contains a code repository service
which maintains the source code of services to allow

Management Life cycle Management Service
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for service maintenance, deployment, upgrade, and
other functions.

Migration Infrastructure Migration Solver Responsible for the migration of legacy systems to
the SOA-based approach by identifying system de-
pendencies, offering migration strategies, and execut-
ing them.

Migration Execution Service

Mobility Mobile Service Management Concerned with the management of mobile assets
and so is responsible for asset tracking, address map-
ping, data synchronisation, and similar supporting
functions.

Support

Model Model Management Service Consists of generic services for the management of
models, a repository to structure these models, and
an interface to the repository.

Model Repository Service

Process Monitoring Service Provides HMIs with an entry point into the system.
Responsible for gathering information from the phys-
ical process using other system components and se-
mantically enriching it, and for handling alarms and
events.

Monitoring

Security Security Management Service Enforces and executes security measures for confiden-
tiality, authentication, and other features. Also de-
fines and manages security rules/policies for identity
or role-based access control and for the definition of
identity federation.

Policy Management Service

Simulation Constraint Evaluation Is connected to almost every other service group
as it simulates systems and their processes, evalu-
ating constraints and simulating execution. It con-
sumes other systems’ exposed simulation endpoints
to imitate characteristic system performance and be-
haviour features.

Simulation Scenario Manager
Simulation Execution
Process Simulation Service

System Asset Diagnostics Management Concerned with monitoring the status and health of
plant assets and mainly used for maintenance and
planning.Diagnostics Asset Monitor

Topology Naming Service Allows for reporting and management on the sys-
tem’s physical and logical features. It includes Do-
main Name System (DNS) functionality, device dis-
covery and management, and asset location services.

Network Management Service
Location Service

Table 2.4: IMC-AESOP Service Groups & Services [44].

2.1.4 eScop

The eScop project is composed of five layers, a Physical Layer (PHL), Representation
Layer (RPL), Orchestration Layer (ORL), Visualisation Layer (VIS), and Interface
Layer (INT). The PHL is concerned with the physical equipment in the eScop system
and therefore provides device and service descriptions. The information provided by the
PHL is consumed by the RPL, which is responsible for knowledge representation. Syntac-
tic and semantic service descriptions based on the service implementations are mapped
and stored in the RPL. The ORL, which coordinates and executes service compositions,
in addition to requiring service descriptions from the RPL, may also need input from
the PHL to successfully orchestrate the execution of services. The VIS, configured by
the RPL, then provides an interface for the user to interact with the system data that
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Figure 2.4: The eScop system architecture [45].

is accessible via the PHL. Finally, the INT acts as the entry point for external systems
and services in the eScop architecture and is functionally concerned with the provision
of technology adapters and access control measures [45].

As for the features of the RA, the system’s services define concrete technologies for
implementation. For example, the various components of each of the layers are described
in the next few paragraphs.

Starting from the bottom-up, the PHL consists of an I/O module, runtime core,
and Web Services (WS) toolkit. These support connections to the physical devices, the
definition of applications on controllers, and provide the devices with web services and
notification mechanisms, respectively [45].

The RPL achieves its goal of knowledge representation using an ontology service, a set
of functions, and the ontology itself. The ontology service consists of four modules: de-
vice registration, visualisation provider, ontology manager, and service handler modules.
These handle device registration and de-registration in the ontology, assist with visuali-
sation, provide an interface for the configuration or editing of the model, or manage the
RPL’s connections to the various components of other layers. The governance of access
to the ontology in the triplestore is done by the RPL’s SPARQL Protocol and Query
Language (SPARQL) query factory and ontology connector internal functions, and it is
suggested that, once secured, SPARQL-over-HTTP may be used for these factors. As for
the ontology itself, it is stipulated as being the eScop Manufacturing Systems Ontology
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(MSO), which is a proprietary component created by one of the designing members of
the architecture [45, 46].

The ORL coordinates the various components in the architecture using a service com-
poser and an orchestration engine. The former maps process definitions to configurations
applicable to the system, and the latter executes them [46].

The VIS aims to allow for flexible and generic graphical interfaces. For this, it needs
a dynamic composition module, a symbol library, and visualisation agent(s). Together,
the VIS is able to map descriptions from the RPL to visualisation elements from the
symbol library which are then transformed by the agent(s) into web pages that can be
displayed using a web browser [45, 46].

2.1.5 Arrowhead Framework

The Arrowhead project divides its framework into three parts that are design guidelines,
documentation guidelines, and a software framework. The first provides a description of
design patterns for making legacy or newly created application systems compliant with
the Arrowhead Framework. The documentation guidelines provide templates for the
description of services, systems, and system-of-systems. The software framework is the
main concern of this section [43].

- Authorization
- Authentication
- Certificate Distribution
- Security Logging
- Security Intrusion

- Logging
- Monitoring
- Status Functionality
- Orchestration
- Software Distribution
- Quality of Service
- Configuration
- Policy
- Event Handling
- Performance

The Arrowhead 
Framework

- Service Discovery
- Service Metadata
- Application Installation,
 Setup, Startup
- User & Role
- Organization & Role
- Software Distribution

Software FrameworkDesign Guidelines
Documentation 

Guidelines

System Management Information AssuranceInformation Infrastructure

- Service Registry System
- Authorization System
- Orchestration System
- Man-Machine Interface (MMI) 
Service Registry System
- MMI Authorization System
- User/Role/System Registry
- Configuration System
- Deployment System
- Alarm System
- Certificate System

Core Systems

Figure 2.5: The Arrowhead framework [43, 47].
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The software architecture defines a grouping of core services. These services are
meant to support communication exchanges between domain-specific application services.
These core services and systems are effectively divided into three groups: Information
Infrastructure (II), Systems Management (SM), and Information Assurance (IA). II pro-
vides service descriptions and information on how to connect to services and systems.
SM core services are concerned with orchestration and system-of-systems composition.
Finally, IA addresses security and safety factors in information exchange processes. The
categorisation of core services and systems identified by the framework under these three
groups is shown in Fig. 2.5 [43, 48].

2.2 Realisations of the Reference Architectures
So far, the RAs have been described in an abstract manner. This portion of the chapter
inspects the technology stacks implemented by each of the architectures. For comparabil-
ity, these technologies are segregated into categories that address the various functional
aspects addressed by all of the architectures. Brief descriptions are given on both the
mature and novel technologies implemented for each category to give a succinct overview
of the technical properties of each project in the pursuit of achieving interoperability. A
summary of the technology stacks of the five projects is shown in Table 2.5. For im-
proved accessibility, the row of technologies employed by each layer is reproduced at the
start of each subsection.

2.2.1 Service Discovery

An essential aspect present in any service-oriented architecture is service discovery. Due
to the close association of the Device Profile for Web Services (DPWS) with SOAs, the
use of the Web Services Dynamic Discovery (WS-Discovery) specification is common.
Four out of the five architectures, excepting eScop, either directly implemented or dis-
cussed methods to allow for the use of the WS-Discovery protocol.

The WS-Discovery protocol is based on the use of multicast messages (typically Sim-
ple Object Access Protocol (SOAP) over User Datagram Protocol (UDP)) to announce
or probe for services using specially crafted eXtensible Markup Language (XML) doc-
uments. Announcements operate using multicast Hello and best-effort Bye messages.
Likewise, Probe and Resolve messages are also multicast. The former is used to locate
services based on service types and/or scopes. The latter searches for a specific service
by name. The use of a Discovery Proxy is encouraged to allow for the active suppression
of multicast traffic in the network. The specification also endorses the caching of mul-
ticast service advertisements to incur further savings. Finally, with respect to securing
the discovery process, the specification does not require, but recommends the use of
unique XML signatures and a number of other properties to mitigate against a variety
of attacks [49].
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Service Discovery

IoT@Work PLANTCockpit IMC-AESOP eScop Arrowhead

WS-Discovery, UA
Discovery, REST-
ful Directory Ser-
vice

WS-Discovery WS-Discovery, UA
Discovery, CoAP

Custom DNS, DNS-SD,
mDNS, XML-over-
HTTP, JSON-over-
HTTP

Table 2.6: The service discovery technologies employed in the 5 reviewed architectures.

The IMC-AESOP is one of the architectures implementing the WS-Discovery pro-
tocol directly, for example, to allow Service Bus instances to discover each other [50].
However, one of the main contributions of IMC-AESOP hinges on its bridging of DPWS
with the industry-focused OPC UA standard. OPC UA is a set of specifications that
mainly define an information model and a set of services to interact with it (further infor-
mation on OPC UA can be found in Section 2.4). This includes a discovery service. The
architecture therefore presents concepts for supplementing OPC UA’s discovery mecha-
nisms using WS-Discovery. To elaborate, the OPC UA discovery protocol requires the
use of a discovery server. The address of the server must be known beforehand by partic-
ipating OPC UA clients and servers. The IMC-AESOP approach presents two methods
for auto-discovery in OPC UA systems using WS-Discovery. The first involves the use
of WS-Discovery to allow OPC UA clients and servers to automatically find the OPC
UA Discovery Server. The second approach involves replacing the OPC UA Discovery
Server with the WS-Discovery protocol to allow OPC UA clients to find OPC UA servers
directly [51].

A second core technology in IMC-AESOP is the Constrained Application Protocol
(CoAP). Identified as a suitable protocol for device-level integration of constrained de-
vices, such as those belonging to Wireless Sensor Networks (WSN), the IMC-AESOP
approach discusses a reliance on the discovery mechanisms of CoAP, CoAP multicast,
and the Constrained RESTful Environments (CoRE) Resource Directory (RD), for the
location of services and resources hosted on resource-limited clients [52, 53].

Since the PLANTCockpit architecture is dependent on adapters to interface with the
various systems and function blocks, the discovery mechanism employed is dependent
on the system being interfaced. For example, the system implements a DPWS adapter
to allow for the discovery of DPWS devices. The adapters themselves, however, are im-
plemented as function blocks based on the concepts of IEC 61499 Function Blocks (FB).
The identification of FBs depends on FB Service Interfaces, and these are implemented
using the OSGi framework. As such, although not explicitly stated, it may be the case
that the implementation depends on OSGi’s service registry to register, get or listen for
services [54, 55].

Although the IoT@Work approach explored and compared the WS-Discovery and
OPC-UA’s discovery mechanisms, it did so within the context of auto-configuration.
Instead, the IoT@Work system uses a configurable RESTful DS as a form of service
registry. Devices interact with the DS using a RESTful API to retrieve, submit or delete
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IoT@Work PLANTCockpit IMC-AESOP eScop Arrowhead

WS-Discovery, WS-
MetadataExchange,
WSDL, WS-Transfer,
OPC UA

WSDL WSDL Swagger DNS-SD, WADL

Table 2.7: The service description technologies employed in the 5 reviewed architectures.

device and service information using Hypertext Transfer Protocol (HTTP) GET, PUT,
POST, and DELETE requests. The RESTful nature of the service allows every service
to be modelled as a Uniform Resource Locator (URL) accessible resource. The system
also supports the use of Quick Response (QR) codes and Near-Field Communication
(NFC) tags for the identification of devices [39].

Similar to IoT@Work, the eScop project generates its own discovery mechanisms.
Discovery here is based on the multicasting of Hello, Bye, and Probe messages. In this
respect, it is similar to the WS-Discovery specification [56]. Inspection of the source
code1, however, shows that the protocol does not follow the WS-Discovery specification.
This is because a few critical differences exist, such as the use of JavaScript Object
Notation (JSON) encoding for messages, multicast IPs, and ports different than those
stipulated for use by WS-Discovery.

Finally, the Arrowhead project defines three approaches for service discovery. The
first is a service registry functionality based on the DNS and Domain Name System
Service Discovery (DNS-SD). Effectively, DNS is a hierarchical database mechanism that
can store any kind of data and DNS-SD is a method for specifying how DNS resource
records may be named, structured, and browsed. These records may be accessed using
unicast DNS requests or Multicast Domain Name System (mDNS). The Arrowhead
framework applies mDNS for constrained devices, such as those belonging to WSNs.
The second and third approaches for discovery in the Arrowhead projects are based
on the use of XML-over-HTTP and JSON-over-HTTP for RESTful web services. The
former uses a DNS protocol specific to Arrowhead to allow for service discovery and the
retrieval of service and data descriptions. The JSON-over-HTTP approach is marked
as future work and an implementation still remains to be published. The framework
does however discuss the prospect of implementing a translation service for integration
between the XML/JSON and DNS-SD registry systems [57, 58, 59, 60, 61, 62, 63].

2.2.2 Service Description

This subsection focuses specifically on the aspect of service contracts as defined in Table
2.1. The goal of service contracts is to define a minimal level of interoperability and
thereby reduce the need for integration. It may do so by making available definitions
of the service’s functionality, data model, data transfer mechanisms and encodings, and

1http://www.escop-project.eu/tools/
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policies for security and quality of service, amongst other things. Naturally, these con-
tracts themselves need to be interpretable by all services available in the registry or
operating environment. Similar to what is the case for service discovery, a web services
technology, the Web Services Description Language (WSDL), is employed by a number
of projects [64].

The WSDL language is a machine-readable XML-based language for the definition
of interfaces. It is capable of describing all of a service’s operations, the data required
and output by each operation, and their respective data types. It may also provide
addressing and networking information to support inter-service connectivity. Both of
the IMC-AESOP and PLANTCockpit projects use WSDL files for service descriptions.
However, for describing sensor services, the IMC-AESOP project uses the JSON, XML
and Efficient XML Interchange (EXI) compatible Sensor Markup Language (SenML)
[65, 44].

The eScop project also employs a WS-based approach and develops a WS-enabled
Remote Terminal Unit (RTU) titled the eScopRTU. Within the eScopRTU, all services
are IEC 61131 Structured Text Language (STL) functions that are used to execute
operations on resources. They are RESTful, hypermedia-driven, accessible via a REST
API, and the API documentation (read “service descriptions”) are created using Swagger.
Swagger is a specification for the definition of language-agnostic, human and machine-
readable representations of RESTful APIs. The specification requires that the API be
described using either JSON or YAML Ain’t Markup Language (YAML)2. The resulting
files may then be processed by tools that can generate clients in a variety of languages.
The Swagger ecosystem also includes tools to display and test the API. Swagger has
since been renamed the OpenAPI Specification (OAS) [66, 67].

IoT@Work, as previously mentioned, explored the prospects of auto-configuration
using WS-Discovery and OPC UA. Part of the procedure outlined involves the acquisition
of service descriptions. With WS-Discovery, this was achieved by having metadata
on a DPWS-enabled device retrieved by its controller using the WS-Transfer protocol.
The metadata that may be included is defined as part of the WS-MetadataExchange
specification. This metadata would allow the service to share WSDL definitions, XML
schema, policy expressions, and so on. For the case of OPC UA, the GetEndpoints
Service, which is part of the OPC UA standard, retrieves the information required to
allow for secure communication between clients and servers. The information mainly
consists of addressing and security policies and definitions [68, 69, 70].

Service description in Arrowhead is dependent on the method of service discovery that
is implemented. As previously mentioned, the DNS system uses DNS-SD guidelines to
organise the resource records. In such a case, the specification already allots a structure
for the definition of addressing, service name, and other connection-related information.
For any additional requirements, the DNS TXT record is capable of accommodating
such information. The XML-based system uses XML schema for the description of data,
and the Web Application Description Language (WADL), which is WSDL’s counterpart

2http://www.yaml.org/
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Data Representation and Access

IoT@Work PLANTCockpit IMC-AESOP eScop Arrowhead

Custom ontology
(uCode), OPC UA,
SNMP MIB

Custom database
schema, XML
schema

OPC UA, SenML Manufacturing
Systems Ontol-
ogy

OPC UA, SenML,
Home Performance
XML, CoRE Link
Format, ThingML

Table 2.8: The data representation and data access technologies employed in the 5
reviewed architectures.

for RESTful services for the description of service interfaces. The JSON-based system,
as previously mentioned, is yet to be defined [60, 61].

2.2.3 Data Representation and Access

Data representation and access have been previously discussed with realisations of ser-
vice descriptions in Section 2.2.2. Here, the focus is a more in-depth description of the
information or data model and the semantics used by the architectures’ respective im-
plementations. The main purpose of these models and semantics is to homogenise the
representation of information or data in the entire system ensuring accessibility by all
participants and avoid the need for any data transformation [64].

Of the five projects only two, IMC-AESOP and Arrowhead, rely primarily on mature
standardised models for the representation of data. In IMC-AESOP, the system applies
the OPC UA information model to link up information in the majority of the enterprise,
except for the lowest layer, which instead uses a custom data model based on the SenML.
The former, OPC UA, contains a flexible address space that can be used to create infor-
mation models that capture objects, their attributes, and relationships. These objects
are known as nodes in the OPC UA address space and can be used to represent physical
or virtual components. The resulting information models create full-mesh networks of
these nodes, with associated properties and relations, and are exposed to applications
through OPC UA servers [44, 70, 71].

As for SenML, the associated specification defines a data model suitable for highly
constrained devices, such as sensors and actuators. It does so by having a minimalist
approach where the goal is to maximise the amount of information not included in a
message while still allowing for self-describing data that includes measurements and meta-
data. The result is a single array data model that contains a series of data records. The
records can contain the device’s unique identifier, a time stamp, the measurement value
and unit, amongst other details. This allows for the description of the measurements and
device, in addition to the measurement values themselves. The IMC-AESOP project,
however, claims that the information granularity level that can be carried by SenML’s
data model is insufficient for its needs and therefore creates a custom data model that
is primarily based on SenML to achieve this granularity [72, 44].

Similar to IMC-AESOP, Arrowhead also identifies OPC UA and SenML as suitable
candidates for the implementation of data structures and semantics. However, it also
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highlights the Home Performance XML standard and the CoRE Link Format as ap-
propriate for its needs. The former is a set of data standards that define a number of
XML schema and associated data elements to allow for the description of customers,
contractors, buildings (and their components and systems), and energy performance fac-
tors such as conservation, consumption, and savings, both as actual readings and as
estimates. The goal of these standards is therefore, as the name implies, standardisation
in the collection and transfer of information in the domain of home performance. The
latter, the CoRE Link Format, is a realisation for exposing the Uniform Resource Identi-
fier (URI) of resources on constrained devices and networks. It does so by extending the
HTTP Link Header format to include the URI descriptions, such as resource relations
and attributes, as a message payload, and specifying an entry point URI as a default
request path for the retrieval of these URIs. However, the existence of divergences from
the semantic and modelling technologies listed in the Arrowhead guidelines as the en-
ergy production demonstrator pilot adopts the domain-specific language, Thing Markup
Language (ThingML), instead of the ones listed above for its semantic needs [47, 73, 74,
75, 76].

In contrast to IMC-AESOP and Arrowhead, eScop and IoT@Work are the ontology-
driven models. eScop, as previously mentioned, develops a proprietary MSO based on
OWL to describe the system components, their attributes, and relationships. The MSO
is the evolved form of the Politecnico di Milano Production Systems Ontology (P-PSO),
which is a general taxonomy for discrete manufacturing systems. The MSO extends
the P-PSO to include logistics and process production from the perspective of control.
The MSO also incorporates concepts to allow for the visualisation of the respective
systems and their data. The information is stored in a Resource Description Framework
(RDF) triple-store database that supports SPARQL-over-HTTP to allow for web-based
interactions with the ontology [77, 78, 79].

The IoT@Work project also follows an ontology based approach by storing informa-
tion on devices in a DS-specific data model (ontology) that uses an RDF-triple-store. In
addition to RDF, the model is also inspired by the uCode Relation Model that models
device profile attributes as subject-predicate-object triples. Effectively, the resulting DS
model is a connected directed graph where the vertices are physical or virtual entities or
primitive elements and the edges in the graph represent the relationships between the
various entities and elements. The DS is also capable of validating and handling requests
for information on devices acquired through an exposed RESTful interface. This infor-
mation may be retrieved from the database or by collecting it directly from connected
devices. The IoT@Work-compliant devices, unlike the DS, use the OPC UA address
space and information model. The project also supports the retrieval of information
from Simple Network Management Protocol (SNMP) compliant devices. Mappings be-
tween the respective device and DS models are therefore a necessity [39, 80].

The PLANTCockpit project presents its own metamodel for a database schema and
an XML schema for the storage of visualisation engine configurations. The database
schema consists of four customisable data types and runtime data types to allow for
the persistence of analytics-relevant data. The XML schema contains several elements
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Information and Message Encoding

IoT@Work PLANTCockpit IMC-AESOP eScop Arrowhead

XML, JSON, OPC UA
Binary, HTML, SAML,
XACML

XML, OPC UA Bi-
nary(?), HTML

XML, JSON, EXI,
XOP/MTOM,
OPC UA Binary

XML, JSON,
YAML

XML, JSON, EXI

Table 2.9: The information and message encoding technologies employed in the 5 re-
viewed architectures.

to allow for the rendering of SVG components in HTML5 pages, and their linking to
data points to create a configurable and compound HMI made up of different graphical
elements [81].

2.2.4 Information & Message Encoding

For message encoding, all of the projects employ XML and extend support for one or
more other specifications. XML is a platform-independent data structuring format that
defines rules for the textual encoding of human and machine-readable data. It allows
for user-defined tags and different data types and processing methods. By allowing for
the definition of syntax rules and standardised contracts through the use of Document
Type Definition (DTD) or XML Schema Definition (XSD) descriptions, the validation
and verification of encoded data structures are possible. Several specifications have since
been defined for the binary-encoding of XML documents to address the overhead and
performance issues associated with XML. Of the possible choices, the EXI specification
is employed by the IMC-AESOP and Arrowhead projects for the compact exchange of
information [82, 83, 47, 44, 39, 84].

Other than XML, JSON is also widely employed, being used by all but PLANTCock-
pit. Stipulations in the PLANTCockpit approach do, however, allow for the inclusion
of JSON. This is the case, for example, with the configuration connector module which
is required to be format-agnostic in handling configuration data. As for the JSON spec-
ification itself, JSON, like XML, is a data structuring specification that defines rules
for the formatting of exchangeable and human and machine-readable data. Tools for
the parsing and generation of JSON exist for a large number of programming languages
therefore making it a popular alternative to XML. It follows a minimalist encoding ap-
proach, using a small number of characters to denote the structure and value of data.
Similar to XML, JSON allows for the definition of JSON-based schema for the validation
of resulting encodings. Binary encodings, such as the Concise Binary Object Represen-
tation (CBOR) specification, exist for JSON. However, aside from the mention of CBOR
support as a long-term goal for Arrowhead’s historian, it does not appear as though any
of the projects include a binary encoding for JSON in their respective stacks [44, 85, 47,
86, 87, 88, 89, 90].

Aside from XML, EXI, and JSON, three other formats used are OPC UA Binary,
HTML, and XML-binary Optimized Packaging and Message Transmission Optimisation
Mechanism (XOP/MTOM). OPC UA Binary, as the name implies, is the binary protocol
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for OPC UA. Like other binary representations, it is the performance and overhead-
sensitive data format for OPC UA. It is used in both IoT@Work and IMC-AESOP
and is considered to be part of the PLANTCockpit OPC UA adapter. HTML, on the
other hand, is used for the structuring and presentation of multimedia web content using
human and machine-readable semantic descriptions. It is explicitly stated as part of the
visualisation layers of IoT@Work and PLANTCockpit. Finally, XOP/MTOM, is used
by IMC-AESOP for the transmission and reception of binary data in SOAP messages
[39, 91, 81, 44, 92, 65].

Further specifications include security relevant ones, such as the XML-based Security
Assertion Markup Language (SAML) and eXtensible Access Control Markup Language
(XACML), which are employed in IoT@Work, SOAP for the structuring of messages,
and the previously mentioned YAML for the description of RESTful APIs. The first
of these, SAML, is a standard for the communication of data for authentication and
authorisation, while XACML handles the definition of access policies. How these are
applied as part of IoT@Work will be discussed later in Section 2.2.7 in this chapter.
SOAP defines a platform independent XML-based framework for message structuring,
encoding, and processing and for the representation of RPC and responses. The SOAP
message structure consists of a SOAP envelope, SOAP body, and, optionally a SOAP
header. The first, the SOAP envelope, is used to represent the message itself, while the
SOAP header can be used to add features and their associated attributes to a message.
Lastly, the SOAP body contains the message contents to be conveyed to the other
communicating parties. The platform-agnostic nature of the SOAP protocol is one of
the driving factors behind its popularity in the web services community. As for YAML,
this was discussed earlier as the language of choice for the configuration of Swagger files
under the eScop project. YAML, like its counterparts, is a serialisation language aimed
at minimizing the number of characters required to indicate the structure and value of
data while maximizing human readability in the resulting data interchange format. It is
built around a typing system, an aliasing mechanism and primitives such as mappings,
scalars and sequences. According to the YAML specification, compared to JSON, it
is more difficult to generate and parse but more legible to humans than JSON. The
specification also states that there is no direct correlation between XML and YAML [39,
93, 94, 82, 95, 96].

2.2.5 Message Exchange

For message exchange, web-based solutions (such as HTTP and CoAP) and Message
Oriented Middleware (MOM) (such as Java Message Service (JMS), Advanced Message
Queuing Protocol (AMQP), Extensible Messaging and Presence Protocol (XMPP), and
Message Queue Telemetry Transport (MQTT)) are preferred.

Starting with HTTP, this application-level, stateless, and generic protocol is used
by all projects for the transfer of hypermedia across networks. The protocol typically
runs over the Transmission Control Protocol (TCP), employs MIME-like messages for
communication, and uses URIs to provide access to resources. For its secure equivalent,
HTTP over SSL/TLS (HTTPS), HTTP is transported over a Transport Layer Security
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DPWS, HTTP,
AMQP, OPC UA
Binary profile
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- HTTP/HTTPS,
CoAP, XMPP,
MQTT, OPC UA

Table 2.10: The message exchange technologies employed in the 5 reviewed architectures.

(TLS) tunnel. In several instances, such as IMC-AESOP and PLANTCockpit, imple-
mentations used HTTP/HTTPS for the conveyance of SOAP messages. CoAP, on the
other hand, is a low overhead URI-based web protocol for M2M communication over
UDP with support for unicast, multicast, proxying, caching, stateless HTTP mapping,
and binding to Datagram Transport Layer Security (DTLS). Due to properties such as
these, a number of projects, namely IMC-AESOP and Arrowhead, have favoured the use
of the CoAP protocol for the access of constrained devices and network implementations
in their realisations [97, 98, 47, 85, 44, 65, 99, 100, 90, 101].

As for the MOMs employed, PLANTCockpit uses JMS, IoT@Work employs AMQP,
and certain Arrowhead demonstrators implement XMPP or MQTT. MOMs are a paradigm
for asynchronous, loosely coupled and reliable communication in distributed systems.
These properties, as well as others such as high scalability and availability, are enabled
through the use of an intermediate layer, the middleware, that handles the messaging
process on behalf of the communicating parties. The first MOM to be discussed is
JMS, which is a vendor-agnostic standard that defines a Java API and semantics for
the description of the interface and the messaging system behaviour. It therefore allows
applications to communicate with heterogeneous enterprise messaging systems, and sim-
plifies their development process. However, the implementation of the messaging service
itself is not defined by the standard. As such, only a very general structure for the JMS
message is defined by the standard necessitating the inclusion of integration techniques
if multiple implementations of MOM exist within the same system [102, 103, 82, 91, 80,
104, 90, 101].

In contrast to JMS, AMQP defines an open-standard messaging protocol that in-
cludes the networking protocol and message structure and remains agnostic towards the
client API and message broker employed. Its protocol provides flow control features,
message delivery guarantees, and highly flexible routing mechanisms for communicat-
ing parties. It appears that IoT@Work based its decision of using AMQP for its ENS
implementation on the fact that it addresses, as a standard, both aspects of high-level
modelling and wire-level communication concepts [105, 106, 107, 80].

In terms of Arrowhead’s choices, the XMPP and MQTT protocols are either high-
lighted for use or directly implemented in a number of its services and demonstrator
pilots. The former, XMPP is a widely-implemented XML and TCP/IP based protocol
for near-Real Time (RT) communication. The protocol addresses aspects related to
connection establishment and tear-down, security, discovery, reliability, messaging, and
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inter-entity interactions. MQTT, on the other hand, is a lightweight protocol for con-
strained and unreliable systems that is more efficient than HTTPS, but is not extensible,
and does not natively include connection security, transactions, discovery, or message
fragmentation features. Multiple instances in the Arrowhead documents list the desire
for services to support both MQTT and XMPP, or, in the case of the mediator service,
to support translation between the two protocols [108, 104, 90, 101, 109, 110].

Other protocols noted include DPWS and OPC UA. DPWS uses SOAP-over-HTTP
and SOAP-over-UDP bindings, yet certain member services, such as WS-Discovery and
WS-Transfer, are transport independent. With SOAP-over-HTTP the SOAP message
is placed inside the HTTP payload field for request/response messaging allowing for
features from both specifications. Similarly, the SOAP-over-UDP binding allows for the
inheritance of UDP’s messaging, encoding, security and other mechanisms.

Regarding OPC UA, four combinations of encoding, security, and transport protocols
are possible:

• UA Binary + UA-SecureConversation + UA-TCP
• UA Binary + HTTPS
• UA XML + SOAP + HTTPS
• UA XML + WS-SecureConversation + SOAP + HTTP

The first of these compositions, referred to as native UA Binary, is mandatory for im-
plementation. Both IMC-AESOP and IoT@Work use the native UA Binary profile for
the transport layer of their OPC UA implementations. IMC-AESOP, however, also in-
cludes a communication interface in its DPWS stack that implements the third profile
that consists of UA XML, SOAP and HTTPS, labelling it as OPC UA over WS. Ar-
rowhead presents a proof of concept of a condition monitoring system that employs the
OPC UA software development kit (SDK) from Unified Automation, and discusses its
use for the integration of legacy components in its framework. Finally, although OPC
UA is highlighted as a development technology for PLANTCockpit, the details of the
implementation are unclear from the public deliverables [111, 112, 113, 44, 70, 51, 47,
108, 114, 65].

2.2.6 Networking, Data Link and Media

As may have been partially visible from the previous sections of this chapter, a wide and
heterogeneous variety of media and their associated specifications are used, required,
or discussed for possible implementations. Effectively, however, only three projects,
Arrowhead, IMC-AESOP, and IoT@Work, explicitly state the technologies implemented
at the networking, data link, and media layers.

The Arrowhead framework’s stack is declared as being comprised of Internet Proto-
col version 4 (IPv4), Internet Protocol version 6 (IPv6), IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN), 802.11p, 802.15.4, NFC, Ultra-Wide Bandwidth
(UWB), and Network Time Protocol (NTP). However, other than the aforementioned
protocols, several more are used in one of the pilot demonstrations. Specifically, the
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Networking, Data Link and Media

Layer IMC-AESOP IoT@Work Arrowhead Framework

Application Services NTP, IEEE 1588 PTP NTP, IEEE 1588 PTP,
IEEE 802.1Q, SNMP,
DHCP, DNS-SD,
LLDP, STP

NTP

Networking IPv4, IPv6 IPv4, IPv6 IPv4, IPv6

Data Link & Media 6LoWPAN, IEEE
802.15.4, IEEE 802.11,
RS-485 Modbus,
Profibus

NFC, QR, Profinet 6LoWPAN, IEEE
802.15.4, IEEE
802.11p, NFC, UWB,
GSM, GPRS, UMTS,
RS-485 CAN

Table 2.11: The Networking, Media & Data Link standards and supporting application
services [47, 115, 116, 117, 118, 44, 39, 119, 80].

Global System for Mobile Communications (GSM) (2G), General Packet Radio Service
(GPRS) (2.5G), Universal Mobile Telecommunications System (UMTS) (3G), WiFi, and
RS-485 Controller Area Network (CAN) standards are highlighted by the Arrowhead
project as possible solutions for communication in electrical vehicle charging infrastruc-
ture. The wireless specifications allow users to communicate with charging stations using
devices separate from the vehicle, such as mobile devices. So far, the pilot demonstration
has limited its implementation to UMTS and WiFi. As for the communication channel
between the vehicle and the charging station, the Arrowhead project uses CAN, basing
it on the CHAdeMO standard [47, 115, 116, 117, 118].

The IMC-AESOP project declares a stack somewhat similar to Arrowhead, using
IPv4, IPv6, TCP, UDP, 6LoWPAN, IEEE 802.15.4, IEEE 802.11, and NTP. However,
it uses RS-485 Modbus instead of CAN, and also includes Profibus, UA Native, and
IEEE 1588 Precision Time Protocol (PTP). The majority of these protocols, namely
IPv4, IPv6, TCP, UDP, 6LoWPAN are part of the DPWSCore stack in IMC-AESOP.
The component responsible for bridging the DPWS and OPC UA stacks implements the
UA Native protocol. A pilot demonstrating the migration of a plant’s lubrication system
to the IMC-AESOP approach used the Modbus protocol to connect to the distributed
control system and a specific stack consisting of XML/EXI, CoAP, NTP, UDP, IP,
6LoWPAN, IEEE 802.15.4. A second pilot, for building system of systems with SOA
technology highlights the integration of smart home systems with communication infra-
structure using SenML, EXI, CoAP, IPv6, IEEE 802.11, IEEE 802.15.4 and cellphone
communication technologies (agnostic) [44].

The IoT@Work approach necessitates the use of IPv6 and designates IPv4 as optional.
For its DS, as previously discussed, both NFC and QR codes are supported. For tim-
ing, both NTP or IEEE 1588 PTP are possible. To demonstrate the auto-configuration
system, it uses the RT Ethernet standard Profinet. Its network slices technology is
mapped using Ethernet Virtual Local Area Network (VLAN). IoT@Work differs from
other approaches with its focus on protocols such as SNMP, Dynamic Host Configura-
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IoT@Work PLANTCockpit IMC-AESOP eScop Arrowhead

CBAC, SAML,
XACML, Digital
Signature & XML en-
cryption specifications,
IEEE 802.1AR, IEEE
802.1X

JMS interceptor,
LDAP SSO

HTTP basic au-
thentication and
rbac

Input sanitisa-
tion, testing re-
quired

DNS TSIG,
DNSSEC, X.509
certs., TLS/DTLS,
PKI, ’ESTADO’
system, MPI +
SSH

Table 2.12: The security technologies employed in the 5 reviewed architectures.

tion Protocol (DHCP), DNS, LLDP, and Spanning Tree Protocol (STP) to support the
network-level autoconfiguration of devices [39, 119, 80].

2.2.7 Security

The IoT@Work approach to security is founded on Capability-Based Access Control
(CBAC). This mechanism centres around the use of transmissible tokens that reference
an element and its access rights. A process in possession of a valid token may therefore
interact with the referenced element within the constraints of its access rights. These
capabilities may be forged or revoked in the form of XML documents following specific
schema with elements borrowed from the SAML, XACML, Digital Signature and XML
encryption schema. IoT@Work also requires that devices have secure identifiers based on
the IEEE 802.1AR specification, and that authentication for NAC be carried out based
on IEEE 802.1X. With these mechanisms, the system designs and employs multiple
components in a SO fashion to perform NAC and to secure the system’s event namespace
[120, 39, 121].

The PLANTCockpit project explored the possibility of using single-sign on solutions
for a security service. Ultimately, the PLANTCockpit approach employs a Lightweight
Directory Access Protocol (LDAP) Single Sign-On (SSO) service for access control and
the management of user rights. Interactions with the LDAP service are through a Java
client implemented using the JLDAP library. User access rights govern the compo-
nents and data sources that a user is permitted to interact with. As for the security
aspects related to PLANTCockpit’s use of JMS, notes in the deliverables claim that
PLANTCockpit permits the encryption of the JMS message body, with the encryption
to be managed using a central component and that JMS security is addressed using
‘interceptors’. Unfortunately, the security aspects of PLANTCockpit are addressed in a
non-public deliverable (D3.2) and, as such, details on the interceptors and other system
mechanisms for security are not available for further analysis [86, 122, 82].

Published materials show that Arrowhead instils security measures for its Service
Discovery and Authorisation Control, for mediation in legacy systems, and for commu-
nication in general. The Service Discovery service is secured by using Domain Name
System Transaction SIGnature (DNS TSIG) keys for DNS updates and Domain Name
System Security Extensions (DNSSEC) for queries. Authorisation Control is depen-
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dent on the use of X.509 certificates, and provides TLS security for the establishment
of secure communication links. In the case of Arrowhead’s Virtual Market of Energy
pilot, the Authorisation module uses Public Key Infrastructure (PKI) and X.509 certifi-
cates over REST for authentication and XMPP-over-TLS for encrypted communications.
Generally, the consensus throughout the Arrowhead framework is to secure information
exchange using TLS. In the case of UDP communication, DTLS is highlighted as the
applicable counter-part. Another project goal is to develop a secure NFC interface for
industrial applications. Based on a publication, this goal may have been addressed
through the ‘ESTADO’ system for smart maintenance. This system uses a ‘CUT-IN’
module that consists of a secure and a non-secure, but more powerful, controller. The
module is designed to be an add-on that would provide security features to ‘non-smart’
and legacy devices. This would include abilities for the secure storage and execution of
data, integrity checks, encrypted memory, and encrypted in-CPU calculations. Finally,
Message Passing Interface (MPI) with Secure Shell (SSH) for protected communications
are used in the implementation of a distributed framework for 3D swarming systems
such as aerial vehicles and WSNs [60, 123, 47, 124, 125, 126, 127].

In the case of IMC-AESOP, by self-admission, “cyber-security was not at the heart
of [this] project” [44]. As such, IMC-AESOP states that WS-Security and WS-Reliable
Messaging were not implemented as part of its DPWS communication stack, and neither
was IPsec included in the IPv6-based stack for WSANs, claiming them all as planned
additions. Furthermore, the service bus in IMC-AESOP only implemented HTTP ba-
sic authentication and Role-Based Access Control (RBAC) for service calls with such
rights only being given to administrative users. In accordance with RFC 7617, unless
communication takes place within a secure system (e.g., over TLS), basic authentication
is not to be considered secure as credentials are transferred in clear-text. It is unclear if
IMC-AESOP implements basic authentication over a secure channel [44, 128].

Similarly, other than security testing and a high level discussion of defining and
applying a security model as part of an SOA ecosystem, eScop did not address the
aspect of security. In the case of the former, security testing of the RPL is defined as
a method for verifying the robustness of the ontology by employing “ad-hoc offensive
queries”. For the VIS layer, testing is to be applied to access control measures. As for
the testing of the integration of the PHL, RPL, VIS and ORL, this entailed ensuring
that data in the system is secured and that the functionality of the system cannot be
misused [129, 130].

2.3 Comparison & Discussion

The concept of SOAs has been in existence for well over a decade and is generally
considered to be a stable and tried architectural design pattern. This chapter has so
far inspected the architectural designs and technological choices of five preliminary SO
RAs. For a definitive measure of comparison, the final examination takes place using
an analysis framework developed in [32]. This framework consists of two components.
The first defines a classification method for categorising architectures based on context,
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goals, and design. These factors are addressed using a set of interrogatives for which
there are a select number of possible values, some of which are mutually exclusive. The
factors, interrogatives, and architectural attributes are summarised in Table 2.13 [32].

The second element of the framework is a set of five architectural templates and
two sub-types that define preset compositions of values from the elements of Table 2.13.
An architecture that shares the same attributes as a category belongs to its type. The
type most relevant to the forthcoming analysis is Type 5. This is because the RAs are
facilitation architectures that use preliminary technologies and are developed through
collaborations between research centres and industrial partners. The combination of
values for the type 5 category and the degree to which the five RAs match are shown in
Table 2.14.

As may be noted from Table 2.14, all of the architectures reviewed are facilitation
RAs, include preliminary technologies, and are designed by partnerships between re-
search, industrial software design, and user organisations for application in multiple
organisations. In all of the remaining sub-dimensions, however, nearly all of the RAs
have divergent properties.

For the D1 dimension, certain RAs are either over or under specified. The IoT@Work,
eScop, and Arrowhead fit the former description, while IMC-AESOP and PLANTCock-
pit are of the latter type.

The D2 dimension is notably one of the more difficult dimensions for classification.
The framework’s authors note that the classification technique applied is subjective and
therefore inherently imprecise. However, the deviations noted for IMC-AESOP and
PLANTCockpit are irrefutable as certain elements needed by the D2 dimension are not
defined by the respective RAs. The remainder of the RAs all have detailed specifications
for their components, and all but eScop detail their algorithms and protocols.

For the D3 dimension, IMC-AESOP defines its architecture in a completely abstract
manner, while the remaining four all specify concrete elements in their architectures [40].

In terms of representation, IMC-AESOP, eScop, and Arrowhead all use semi-formal
techniques. The first uses the FMC graphical notation, the second the Unified Modelling
Language (UML), and the last the Systems Modelling Language (SysML) [44, 129]. As
for IoT@Work and PLANTCockpit, neither architecture explicitly declares its use of any
specification for representation.

The importance of this analysis is born of previous results in [32], which note that
a lack of congruence between a RA and its category makes the RA vulnerable to low
adoption rates and criticisms by stakeholders. Due to the lack of reporting on adoption
rates, it is more prudent to refrain from making the same conclusion. However, the
authors of [32] also note that the presence of ambiguities in RAs, such as the informal
representation of components, leads to a need for additional documents to clarify the
architecture. The technology stacks detailed in this chapter, and extracted from numer-
ous publications, deliverables, and other materials, may assist in achieving such clarity.
In certain cases, where the implementations did not address or make available certain
layers of their technology stacks, extra effort may still be necessary in the carrying out
of concrete implementations.
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To counter these short-comings, this dissertation can focus on delivering an additional
SOA, albeit, with a higher degree of congruence with the findings of [32]. However,
rather than contribute to the proliferation of SOAs by creating an additional competing
architecture, it is the opinion of this author that the community would be better served
by selecting and improving upon a SO communication architecture that already achieved
standardisation, currently enjoys wide adoption by industry, and is well-supported by
academic research as well. Thus, the remainder of this dissertation will focus on the
enhancement of manufacturing infrastructure using SO middleware based on the OPC
UA specifications family. The next section therefore presents an overview of OPC UA
and highlights its characteristic properties.

2.4 OPC UA
In its simplest terms, the OPC UA standard is composed of a set of specifications for the
definition of data transfer software interfaces in a client-server architecture. An example
of the overall structure of OPC UA is shown in Fig. 2.6. The remainder of this section
will give an overview of OPC UA’s technology stack, a summary of which is available in
Table 2.15.

OPC UA

Service discovery LDS, LDS-ME, GDS, ServerCapabilityIdentifiers

Service description Standard Services, Profiles, information model traversal

Data representation & access OPC UA information model

Information encoding OPC UA Binary and OPC UA XML

Message exchange, networking,
data link, and media Native OPC UA Binary, OPC UA Webservices, and hybrid

models based on OPC UA TCP, SOAP/HTTP, and HTTPS.

Security Message SecurityProtocols with message signing and encryp-
tion. X509 version 3 in X690 DER format conformant with
RFC 3280. Kerberos Authentication. Message sequence
IDs. UserIdentityTokens with user/password combinations,
X509v3 certificates, or WS-SecurityTokens. Event auditing.

Table 2.15: An overview of OPC UA’s technology stack.

2.4.1 Service Discovery

Service discovery is defined in Part 12 of the OPC UA specifications [131] and is primarily
concerned with two factors:

1. finding servers on the network

2. learning how to connect to them.

Mechanisms that make servers discoverable and that allow clients to discover them are
therefore required.
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Figure 2.6: An interpretation of the overall structure of OPC UA.

Starting with the former, servers can be discovered after they register with a des-
ignated discovery server. There are three types of discovery servers possible: a Local-
DiscoveryServer, LocalDiscoveryServer with MulticastExtension (LDS-ME), and a Glob-
alDiscoveryServer (GDS). It’s worth noting that OPC UA allows servers to opt out of
using in-band discovery, permitting them to instead announce themselves using out-of-
band methods and services.

All three discovery servers keep identifying information on the OPC UA servers that
register with them. An LDS is usually used by servers that are located on the same
host. It follows that a LDS-ME registers servers that announce themselves in the same
multicast subnet. A GDS registers OPC UA applications in a given administrative
domain. It is possible for an LDS to register with a GDS. The GDS then periodically
polls the LDS to update its database.

The possible options for server discovery available to OPC UA clients are:

1. using an out-of-band service,

2. executing a service call to find the servers on an LDS,

3. executing a multicast query natively from the client or via an LDS-ME, and

4. searching on the GDS.
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Discovery Endpoint

128.130.16.10:4843/UADiscovery

IT Endpoint

128.130.16.10:4843/httpsEndpoint

Field Endpoint

128.130.56.10:2181/binaryEndpoint

Figure 2.7: An example device with discovery, OPC UA HTTPS, and OPC UA TCP
endpoints.

The mechanisms used for out-of-band discovery are service-specific and will not be dis-
cussed further. The discovery process for the latter three, however, operate as follows.

A server registers itself periodically on the discovery server. The information given
to the discovery server may include the server and product URI, name, type, and the dis-
covery endpoint. Of these, the discovery endpoint is especially important. An endpoint
is an entry path to a device. OPC UA devices typically have at least two endpoints:
one discovery endpoint with a well-known address path and one endpoint that supports
a specific server communication profile. Given the discovery endpoint of a device, a
client may enumerate the other endpoints on that device and connect to the one with a
matching communication profile.

For example, referring to Fig. 2.7, a co-located Server is shown with three endpoints.
The topmost demonstrates the discovery endpoint while the latter two provides alternate
profiles for communication with clients using different transport, security, and encoding
mechanisms. Thus, a client, may issue a service call (FindServers2 or FindServers) to a
discovery server to identify the servers registered on it. Once the client locates the server
it wants to connect to, it issues a second service call (GetEndpoints) to the discovery
endpoint to request the endpoints on that device. The client then selects an endpoint
with a compatible communication profile and connects to the device.

It is worth noting that, in searching for a server, the client may also include identifiers
which describe certain features that may be offered by registered servers. This allows
clients to filter for servers that can offer current data, historical data, alarming features,
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Service Set Description

Discovery A set of services implemented by OPC UA servers and dedicated discovery
servers. These allow clients to find servers and determine the configurations
needed to connect to them.

SecureChannel Services that allow a client to establish a secure communication channel with
a server with guarantees for message confidentiality and integrity. These are
included in the OPC UA application’s communication stack.

Session Services that can be used by a client to establish an application-layer connec-
tion with a server.

NodeManagement These services are used to interact with the AddressSpace. A client may use
them to add, modify, or delete Nodes that form part of the information model
on an OPC UA server.

View Allows clients to browse the Nodes in a View. A View is a publicly defined
portion of the AddressSpace hosted on a server.

Query The Query service can be used to access the AddressSpace of a server without
any knowledge on the server’s logical schema. It allows Clients to filter a View
for a select subset of Nodes.

Attribute This service set allows Clients to read and write to the OPC UA defined
“primitive characteristics of Nodes”, also known as Attributes [132].

Method Provides the means by which exposed function calls on an OPC UA server
may be executed by clients.

Subscription This allows clients to subscribe to monitored items on an OPC UA server and
receive notifications on their values or status.

MonitoredItem Used by clients to define items that can then be subscribed to for data and
events.

Table 2.16: An overview of OPC UA’s different service sets [132].

or specific information models before connecting to them.

2.4.2 Service Description

Service description in OPC UA can be seen as a collection of different aspects from the
specifications working together. First of all, OPC UA provides a fixed set of services that
can be used to establish communications between servers and clients and allow clients
to interact with the application and information model. These services are divided
by function into different service groups, which are referred to as service sets in OPC
UA. The defined service sets are Discovery, SecureChannel, Session, NodeManagement,
View, Query, Attribute, Method, Subscription, and MonitoredItem. A description of
each service group can be found in Table 2.16. The service groups and their constituent
services and mechanisms are standardised in the specification documents. Thus, there
is no ambiguity related to their functionality and methods of operation [133].

Secondly, OPC UA defines a number of Profiles that group together different features
that an OPC UA client or server may choose to support. A Profile is composed of one
or more ConformanceUnits. A ConformanceUnit comprises a group of Services and/or
information models. This allows vendors to develop compliant and testable OPC UA
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applications. Profiles may be used to specify the functions of an OPC UA client and
servers, as well as transport and security related functions. Hence, determining the
profile of an OPC UA client or server allows an application to determine the majority
of aspects typically found in a service contract. This may be done in the second part of
the discovery process when a client calls the GetEndpoints service [134].

Finally, ad hoc services can be implemented as functions and exposed as methods
on an OPC UA server. Therefore, they form part of the server’s address space and can
be accessed and manipulated using standard OPC UA services. Information specific to
the function of the method, such as the service description, inputs, and outputs, may be
inferred from the information model, e.g., by traversing the address space.

2.4.3 Data Representation & Access

The OPC UA information model provides a flexible address space for modelling, expos-
ing, and consuming networks of data and metadata of varying degrees of complexity.
To do so, the OPC UA standard bases its model on two elementary units, Nodes and
References.

Nodes are the simplest units of information and can be of various NodeClasses (types)
that are predefined by the standard with specific Attributes (properties). The available
NodeClasses are “Object, ObjectType, Variable, VariableType, DataType, ReferenceType,
Method, and View” [135]. An Object node represents an abstract or physical component
in the modelled system. A Variable node is used to store a value. A Method node is used
to expose a function so that it may be called remotely. A View node is used to specify
a subset of an address space. Last of all, the ObjectType, VariableType, DataType,
and ReferenceType nodes, as their names imply, are used for the specification of Object,
Variable, data, and Reference types, respectively.

Every node in the address space is identified and addressed using a unique NodeId.
In addition to the canonical NodeId, a node may also have alternative NodeIds. Each
NodeId is composed of an identifier and a Namespace. The namespace is used to allow
naming authorities, such as vendors and organisations, to define unique NodeIds.

References, on the other hand, are used to connect nodes for organisational or filtra-
tion purposes. Each reference therefore has a source and destination node, a direction,
and a ReferenceType used to indicate the properties and meaning of a reference.

2.4.4 Information & Message Encoding

OPC UA defines two data encodings: OPC UA Binary and OPC UA XML. These
encodings are defined for 25 built-in data types. OPC UA Binary, as was stated in
Subsection 2.2.4, is the performance and overhead-sensitive format. OPC UA XML is
the WS compatibility protocol and uses the XML Schema Part 2 [136] to define the
formats or syntax for encoding the built-in types.

48



TCP/IP

HTTPHTTPS

UA TCP

SOAP

WS Secure
Conversation

UA XML

UA Secure
Conversation

UA Binary
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Figure 2.8: The possible protocol bindings for OPC UA.

2.4.5 Message Exchange, Networking, Data Link and Media

For message exchange, OPC UA provides three approaches. These are the Native OPC
UA Binary, OPC UA Webservices, and hybrid communication models. These protocol
bindings address the encoding, security, and transport layers, as shown in Fig. 2.8. The
three transport protocols used are OPC UA TCP, SOAP/HTTP, and HTTPS. OPC
UA is agnostic to the data link and media layer and only singles out NTP for clock
synchronisation in [137].

OPC UA TCP is a connection-oriented protocol based on TCP that is compatible
with the OPC UA SecureChannel services for secure communications. The protocol
defines the message headers, message structure, and mechanisms necessary to establish
and close a connection, as well as error handling and error recovery. [137].

The SOAP/HTTP protocol is deprecated in OPC UA Version 1.03 of the standard
due to a lack of adoption by industry [137].

The HTTPS protocol has previously been introduced in Subsection 2.2.5. However,
OPC UA introduces a custom header termed OPCUA-SecurityPolicy to inform the OPC
UA server of the SecurityPolicy in use by the client. OPC UA uses the protocol to carry
XML or OPC UA Binary encoded messages over a secure channel.
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2.4.6 Security

Security is an integral part of OPC UA as evidenced by Part 2 of the specification being
dedicated solely to the definition of security objectives, threats, and integrated solutions
for the standard. This subsection will give a brief overview on some of the security
features of OPC UA.

OPC UA integrates Message SecurityProtocols for application authentication, mes-
sage confidentiality, and message integrity. These protocols depend on the SecureChan-
nel service group to define the services needed to open and close secure channels for
communication. Three SecurityModes are supported by the protocols: None, Sign, and
SignAndEncrypt. The SecurityProtocols use X509 version 3 certificates encoded in X690
Distinguished Encoding Rules (DER) format. The X509 certificates used by OPC UA
applications should conform to the RFC 3280 profile for Internet applications. Security
policies are also defined to specify the algorithms used during a handshake. OPC UA
also explicitly supports the use of the Kerberos Authentication Service [137].

WS SecureConversation, similar to the SOAP/HTTP protocol, is deprecated in OPC
UA Version 1.03 due to a lack of adoption by industry [137].

OPC UA SecureConversation, which is defined as the “binary version of WS-Secure-
Conversation, is still supported by the standard for secure non-SOAP and non-XML
communication. OPC UA SecureConversation segments messages into separate chunks
that have a 4-byte sequence assigned to detect and prevent replay attacks [137].

While OPC UA application authentication is handled using X509v3 certificates,
user authentication uses UserIdentityTokens that may be user/password combinations,
X509v3 certificates, or WS-SecurityTokens. OPC UA also gives some support for user
authorisation, e.g., in the form of error codes that can signify a problem in the authori-
sation process. OPC UA does not, however, specify mechanisms for user authorisation
[138].

Finally, OPC UA also defines the events to be logged when the different service
groups are used by applications in support of auditing functions [133].

2.5 Classification & Discussion

This section is concerned with classifying the OPC UA architecture according to the
Angelov et al. [32] analysis framework to determine its attributes and vulnerabilities.

First off, OPC UA is a standardisation architecture for application in multiple or-
ganisations and is primarily concerned with system interoperability. By definition, this
designates it as a Type 1 architecture in the Angelov et al. [32] framework. The degree
of match of OPC UA with the attributes defined by [32] for a Type 1 RA is shown in
Table 2.17.

Starting with the C2 dimension, the design of the OPC UA architecture is led by
the Open Platform Communications (OPC) Foundation, which is a standardisation or-
ganisation composed of a consortium of software, user, and independent organisations.
It therefore gives stakeholders the ability to contribute to the specification process and
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Category Type 1 OPC UA

G1: Standardisation X

C1: Multiple organisations X

C2:
Standardisation Organisation (D)

Software organisations (R)
User Organisations (R)

X

C3: Classical X

D1: Components, interfaces, policies/guidelines X

D2: Detailed/Semi-detailed: interfaces
Aggregated: components, policies/guidelines X

D3: Abstract X

D4: Semi-formal X
Notation: X means it is a match, ≈ means deviations exist, and -
means it does not match [32].

Table 2.17: Attributes of a type 1 RA and degree of match of the OPC UA specifications
[32].

to moderate conflicting views. One example of each type of organisation, as extracted
from the OPC Foundation’s members list3 includes ProSys, Inc.4, Pfizer Inc.5, and TU
Vienna6, respectively. While research or academic organisations, such as TU Vienna, are
not shown as part of the C2 dimension, the Angelov et al. framework explicitly permits
contributions by research organisations in the form of reviews and surveys for Type 1
architectures [32].

In reference to the C3 dimension, Table 2.15 demonstrates that the technologies
adopted by OPC UA for implementation are mature solutions, thereby implying a clas-
sical nature for the OPC UA RA.

For the design dimensions D1 and D2, OPC UA defines detailed interfaces and aggre-
gated components, policies, and guidelines for the implementation of a compliant system.
While it may be debated that OPC UA also defines protocols to “demonstrate the inter-
actions among the components" [32], the defined protocols are considered elements of the
detailed interfaces that are incorporated to guarantee precise interoperability and the
conformance of interactions between components in resulting implementations. Thus,
the OPC UA architecture is also conformant in both the D1 and D2 dimensions.

In terms of concreteness, the OPC UA architecture only defines its components from
a high level. No “monopolistic” approach that implies preference to a specific software
organisation is applied in the specifications. OPC UA can therefore be stated as being
abstract in the D3 dimension.

Finally, the OPC UA specifications demonstrate the use of UML, where applicable.
Hence, OPC UA conforms to the Type 1 requirement for semi-formal notation in the

3https://opcfoundation.org/members
4https://www.prosys.com/
5http://www.pfizer.com
6http://www.tuwien.ac.at
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D4 dimension.
To conclude, OPC UA is compliant with all of the identified dimensions for a Type 1

architecture. By extrapolating the results of Angelov et al.’s previous results in [32], as
was done in Section 2.3, it appears that OPC UA therefore lacks the same vulnerabilities
to criticisms and low adoption rates demonstrated by the previously reviewed five SO
RAs. This is evidenced further by the fact that it is also well-accepted by industry and
academia. OPC UA therefore appears as the appropriate candidate for the realisation
of the SO envisioned system. Therefore, OPC UA will serve as the base technology of
choice for the remainder of this dissertation. The coming chapters will proceed in a
bottom-up approach by first demonstrating an alternate transport layer for OPC UA
in Chapter 3 and then developing specific enhancements for OPC UA deployments in
Chapter 4.
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CHAPTER 3
Overlay Networking in

Manufacturing Enterprises

Several passages in this chapter are reproduced verbatim from the following publications:

1. Ahmed Ismail and Wolfgang Kastner. Co-operative peer-to-peer systems for industrial middleware. In
2016 IEEE World Conference on Factory Communication Systems (WFCS). May 2016, 1-8.

2. Ahmed Ismail and Wolfgang Kastner. Discovery in SOA-Governed Industrial Middleware with mDNS and
DNS-SD. In 2016 21st IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). September 2016, 1-8.

3. Ahmed Ismail and Wolfgang Kastner. Vertical Integration in Industrial Enterprises and Distributed Mid-
dleware. International Journal of Internet Protocol Technology 9(2/3):7989, 2016.

Thematically, the governing concept for the envisioned system can be considered
under the umbrella term of “design for failure”. This is an architectural paradigm that
expects systems to be survivable by design. This means that they should be capable
of sustaining business operations in the presence of failure by continuing to serve essen-
tial services. This chapter proceeds in congruence with this concept by developing a
communication technology that is resilient to failures for manufacturing infrastructure.

The communication mechanisms must be designed with special consideration to the
existing infrastructure of industrial enterprises. This is because, as previously mentioned
in Chapter 1, industrial networking infrastructure is typically engineered based on nu-
merous standards and binding legal constraints, found in [139] and summarised in Table
3.1, that may not be violated for the sake of connectivity. Generally, these constraints
translate to a network design that follows a hierarchical and layered architecture, as was
shown in Fig. 1.1, with strict controls applied to communication flows between said lay-
ers, while intra-layer communication is permitted to flow freely [22]. Superimposed upon
the transport protocol, this means that the protocol should be able to mirror and main-
tain fidelity to such an architecture, while also having the flexibility to autonomously
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Factor Explanation

Regulations & Legislation Systems must observe the imposed local, regional, national or international
regulations, legislation and standards.

Impacts The impact of system malfunctions on the business must reflect on the system
design.

Safety The system must comply with safety best practices. Standards such as IEC
61508 and IEC 61511, provide the necessary guidance.

Security The system must be designed in accordance with the requirements of security
risk assessments.

Locality The physical location of systems must be taken into consideration when defining
both the zones and the digital system in itself.

Architecture The system must integrate within the overall technical and landscape architec-
ture.

Operations & Maintenance Operational and maintenance considerations impacting the system, the techni-
cal architecture, or the physical infrastructure, should be taken into account.

Organisation The organisational structure and culture introduces a set of requirements that
ought to be reflected unto the system under design.

Table 3.1: Governing factors in zonal population [139].

adapt to changing system requirements. The resulting network would therefore effec-
tively be an ‘overlay network’, which is a network that constructs itself upon existing
physical infrastructure [140].

Of the various subclasses of overlay networking that exist, one of the most well-
developed and popular ones is P2P networks. Briefly, in P2P networks devices are
connected together and share resources using direct exchange in a manner that is resilient
against failures and transient population sizes, all without the use of a central manager
[141]. In order to do so, P2P networks extend on the definition of overlay networks using
a number of well-defined features. Such attributes, listed in Table 3.2 are elements that
are compatible with SO design [142].

This chapter tackles this critical part of manufacturing infrastructure by defining a
basic set of services that would allow applications and devices to join a survivable net-
work of distributed nodes and participate in traffic relaying. Such a set consists of three
services: networking, discovery and management. The first of these establishes reliable
communication mechanisms for the transfer of messages between manufacturing infras-
tructure nodes. The second service is required to allow for the instantaneous detection of
service advertisements throughout the enterprise. Finally, the management service is the
orchestrator of all executed services on a node. Structuring the communication system
in this way separates communication from any specific application or technology, such
as OPC UA, while allowing them to participate and benefit from the system. Overall,
this implementation is expected to improve the survivability of manufacturing systems
in the enterprise.

This chapter is structured as follows. First, a discussion on the various possible
overlay networking solutions is presented to justify the selection of P2P networks as
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Layer Properties

Application-level
Applications

Tools
Services

Services-specific

Meta-data
Services management
Services scheduling
Services messaging

Features management
Security management
Resource management

Reliability and fault resiliency

Overlay nodes management Routing and location lookup
Resources discovery

Network communications Network

Table 3.2: The typical architecture of P2P networks [143].

cooperative systems as the most appropriate technology for the communication system.
Using the principles of the selected subdomain, a cooperative systems P2P protocol is
designed, implemented, and evaluated experimentally. Next, the service-based architec-
ture representing the networking, discovery, and management functions are described.
This design is also implemented and evaluated experimentally. Finally, the chapter con-
cludes with a discussion on the benefits and limitations of the system and gives some
recommendations for future work.

3.1 P2P Networking

Generally speaking, the definition of a P2P network is a network in which a number of
devices are connected together and share resources using direct exchange in a manner
that is resilient against failures and transient population sizes, all without the use of a
central manager. P2P networks are constructed upon existing physical infrastructure
and, consequently, are normally considered to be a subclass of overlay networks. Cur-
rently, the largest use of P2P networks is file-sharing applications, however, they may be
used to share content, storage or CPU cycles. The remainder of this section will delve
into the difference between these classification types and their methods of operation [144,
141, 140].

3.1.1 Centralisation, Structure, and Hierarchy

P2P networks may be distinguished from one another based on their structure, topology,
and degree of centralisation. As such, there exist centralised and decentralised networks,
hybridised or partially decentralised networks, structured and unstructured networks,
Horizontal Hierarchical (HoHA), Vertical Hierarchical (VeHA), hybrid hierarchical net-
works, and P2P networks as systems.
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Figure 3.1: Representative examples of centralised (top left), decentralised (top right),
and hybrid partially decentralised (bottom) networks.

Centralised networks, shown in Fig. 3.1, normally require central servers to manage
metadata, exchange data, route search requests, and coordinate peer efforts. However,
the central server does not share resources itself. The use of a central server introduces
a SPoF and limits the size and reliability of the network [144].

Decentralised networks, also shown in Fig. 3.1, eliminate the central server and have
peers handle all requests instead. If the architecture is purely decentralised, then each
peer can behave as both a server and client [144]. These peers are termed servents as
they are capable of occupying both SERVer and cliENT roles [145]. The Gnutella v0.4
protocol is a purely decentralised protocol composed of randomly connected servents that
match and respond to queries (server role), generate queries, and consume subsequent
query responses (client role) [146].

In a partially decentralised deployment, peers with higher abilities may be promoted
to a more important role in the network. This role is referred to as ‘super peer’, as shown
in Fig. 3.1. For example, Gnutella v0.6 networks operate by ensuring that ‘leaf peers’,
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Figure 3.2: An unstructured Gnutella v0.6 network and searching algorithm.

or normal peers, are connected to a minimum of one ‘ultrapeer’, or super peer. The
ultrapeers connect to each other forming a two tier network. Each ultrapeer manages a
hash table of its leaf peers’ resources and necessitates that all of its leaf peers’ queries go
through it. At the network level, this implies that only ultrapeers can forward messages.
These attributes justify the description of ultrapeers as local servers, and, consequently,
the network as a hybrid or partially decentralised network [144, 146].

Unstructured networks dissociate the location of the resource from the topology of
the network. To locate a resource, queries are normally flooded, or forwarded using
depth-first or breadth-first algorithms, until the resource is located or the queries expire.
A representative example is the Gnutella v0.6 protocol, where its ultrapeers utilise a
flooding mechanism, shown in Fig. 3.2, to forward queries amongst themselves in pref-
erence to a DHT based method. This factor alone causes the Gnutella v0.6 protocol to
be defined as an unstructured network [146].

In contrast to unstructured protocols, structured ones map the available resources
to their locations using, for example, resource identification codes and node addresses.
Structured networks also normally use DHTs for routing. An example of a structured
protocol is Kademlia which is also one of the most popular DHTs. BitTorrent, for exam-
ple, currently uses a flavour of Kademlia for its network. Kademlia works by randomly
assigning a Node ID from a 160-bit identifier space to each member of the network.
The distance between two identifiers in the key space is determined by performing an
exclusive or (XOR) on the two identifiers. Key-value pairs are then stored on the peers
closest to an identifier. A binary tree with k-buckets as leaves covering the entire key
space is then used as a routing table for lookups. Intricacies aside, Kademlia is capable
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VeHA HoHA

Network traffic load distribution using network
heterogeneity

Homogeneous environment allows for per node
load balancing

Versatile adaptability to various network en-
vironments; capable of withstanding the pres-
ence of firewalls and NAT

Aware of topological physical proximity

Intra-layer administrative autonomy Full administrative control and autonomy

Decreased search latency Efficient replication and caching

Table 3.3: A comparison of the advantages of VeHA and HoHA [140].

of resolving lookups in O(log(N)) hops, where N is the number of nodes in the network
[144, 147, 148].

In Kademlia, a resource publisher would generate a hash for the resource to be shared.
This hash then acts as the key in the key-value pair. The publisher’s identifier is used
as the value. The key-value pairs are kept on the peers with identifiers closest to the
generated key, respectively. To retrieve a resource, a search is performed for the nodes
with IDs closest to the resource hash key. From these nodes the list of sources may
then be retrieved. Thus, DHTs may be created that are based on proximity and are
resilient to failures and node churn. It is, however, important to note that these DHTs
are vulnerable to Sybil attacks as there are no measures in Kademlia that prevent a node
from generating several false identities [147, 148, 149].

Hierarchical networks, on the other hand, divide their members into layers based on
their functions and capabilities. Hierarchical networks can be composed of structured,
unstructured or both types of networks.

An example of an unstructured hierarchical network is the previously mentioned
Gnutella v0.6. This is because the unstructured Gnutella v0.6 network has a partially
decentralised topology with ultrapeers and leaf-peers working in two separate layers.
This separation makes it an unstructured hierarchical network [146].

Structured hierarchical networks, on the other hand, can be seen as the way in
which researchers attempted to combine the benefits of both structured and unstructured
networks into single protocol definitions [140]. These networks can exist as vertical or
horizontal hierarchical networks; abbreviated as VeHA and HoHA, respectively. VeHA
networks are defined as ones where each layer of the hierarchy has its own DHT. HoHA
networks have a single DHT for the entire network [150]. Consequently, VeHA networks
require the use of gateway nodes to connect the separate layers while HoHA networks
do not. A comparison of the advantages of VeHA and HoHA is shown in Table 3.3.

Finally, a hybrid hierarchical network uses a structured topology for one layer and
an unstructured topology for another of its layers [140].

The field of P2P networks as systems is concerned with the bridging or merging
together of networks to allow for expanded systems, inter-system content sharing, and
inter-system traffic engineering. The first of these aims to group together nodes that
share similar goals into a single system to eliminate the factor of competition between
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them. Inter-system content sharing, as the name implies, has systems cooperating with
each other to share resources. Finally, inter-system traffic engineering focuses on using
P2P systems to optimise network routing performance [151].

Discussion

When comparing hybrid systems to purely decentralised networks, the former is found
to reduce discovery time and inter-nodal traffic [145]. Hybrid systems also eliminate
the SPoF drawback associated with centralised networks. Yet, they do so at the cost
of slower discovery times [145]. In order to overcome this latency, indexing may also be
distributed across the network as is done in structured systems.

Using a vertical hierarchical protocol, however, affords a system the advantages of
partially decentralised networks. For example, VeHA allows for the integration of hetero-
geneous nodes with differing capabilities, and is capable of respecting these differences.
Furthermore, VeHA protocols are able to integrate with the networking infrastructure
found in manufacturing enterprises and adapt to routing controls, such as firewalls and
NAT.

Likewise, the concept of P2P networks as systems affords participating infrastructure
the flexibility to deploy separate overlays of similar or different protocols that may then
be dynamically bridged, merged, or kept as separate to facilitate or restrict communica-
tion between them as necessary.

Thus, both VeHA and P2P networks as systems are viable options for the design of a
resilient communication protocol for survivable manufacturing infrastructure. The next
sections will detail each based on recent literature to determine which is more suitable.
First, to establish sufficient background on the overall domain, traditional networks are
discussed.

3.1.2 Traditional P2P Networks

The next sections will review VeHA P2P protocols and P2P networks as systems. Since
these build upon traditional P2P protocols such as Chord, Tapestry, and Kademlia, this
section first gives a description of the most popular traditional P2P routing protocols
as a precursor to the coming discussions. This review of accepted protocols also serves
the development of the transport protocol in the second half of the chapter by, for ex-
ample, providing viable mechanisms for routing requests, joining networks, and network
discovery.

This section examines protocols for both structured and unstructured networks.
Thus the Chord, Tapestry, Content Addressable Network (CAN), Pastry, Kademlia,
and Viceroy structured networks are described. The Freenet, Gnutella, and BitTorrent
unstructured networks are also discussed. As Kademlia and Gnutella have already been
covered in Subsection 3.1.1, they will not be presently discussed again.

A comparison of the structured P2P protocols covered in the next section is presented
in Table 3.4. The comparison is made based on parameters partially sourced from [143]
and defined in Table 3.5.

59



C
ho

rd
Ta

pe
st

ry
P

as
tr

y
C

A
N

1
K

ad
em

lia
V

ic
er

oy
P

-G
ri

d

C
en

tr
al

is
at

io
n

D
ec

en
tr

al
is

ed
D

ec
en

tr
al

is
ed

D
ec

en
tr

al
is

ed
D

ec
en

tr
al

is
ed

D
ec

en
tr

al
is

ed
D

ec
en

tr
al

is
ed

D
ec

en
tr

al
is

ed

A
rc

hi
te

ct
ur

e
1-

di
m

en
si

on
al

,
un

id
ir

ec
ti

on
al

ci
r-

cl
e

of
2m

po
in

ts
kn

ow
n

as
th

e
C

ho
rd

ri
ng

.

P
la

xt
on

M
es

h
P

la
xt

on
M

es
h

d
-d

im
en

si
on

al
co

-
or

di
na

te
sp

ac
e

16
0-

bi
t

ke
ys

pa
ce

tr
ea

te
d

as
a

bi
-

na
ry

tr
ee

.

A
pp

ro
xi

m
at

e
bu

tt
er

fly
ne

tw
or

k
an

d
co

nn
ec

te
d

ri
ng

.

B
in

ar
y

tr
ie

B
oo

ts
tr

ap
R

eq
ui

re
m

en
ts

K
no

w
le

dg
e

on
an

y
ex

is
ti

ng
no

de
.

St
ab

ili
sa

ti
on

pr
ot

oc
ol

.

N
od

e
in

se
rt

io
n

pr
ot

oc
ol

.
K

no
w

le
dg

e
on

a
ne

ar
by

ex
is

ti
ng

no
de

ba
se

d
on

th
e

pr
ox

im
ity

m
et

ri
c.

St
at

e
in

it
ia

lis
at

io
n

pr
ot

oc
ol

.

D
N

S
sy

st
em

.
B

oo
ts

tr
ap

pi
ng

do
m

ai
n

na
m

e.
O

ne
or

m
or

e
bo

ot
st

ra
p

no
de

s.

K
no

w
le

dg
e

on
an

y
ex

is
ti

ng
no

de
.

P
re

su
m

ab
ly

,
kn

ow
le

dg
e

on
an

y
ex

is
ti

ng
no

de
ca

pa
bl

e
of

pr
op

a-
ga

ti
ng

a
su

cc
es

so
r

lo
ok

up
.

B
oo

ts
tr

ap
no

de
.

N
od

e
E

xi
t

P
ro

ce
du

re
E

ac
h

no
de

ke
ep

s
a

lis
to

fs
uc

ce
ss

or
s

r
.

If
a

su
cc

es
so

r
fa

ils
,t

he
ne

xt
on

e
in

th
e

lis
t

is
us

ed
.

E
xi

t
is

an
-

no
un

ce
d.

R
e-

pl
ac

em
en

t
no

de
s

ar
e

id
en

ti
fie

d
an

d
in

fo
rm

ed
.

N
o

pr
ot

oc
ol

fo
r

gr
ac

ef
ul

ex
it

.
E

xp
lic

it
ha

nd
ov

er
of

no
de

’s
zo

ne
to

a
ne

ig
hb

ou
r.

N
o

pr
ot

oc
ol

fo
r

gr
ac

ef
ul

ex
it

.
R

em
ov

e
al

l
ou

tb
ou

nd
co

n-
ne

ct
io

ns
.

In
fo

rm
al

l
co

nn
ec

te
d

se
rv

er
s

of
in

te
n-

ti
on

.
Tr

an
sf

er
re

so
ur

ce
s

to
su

cc
es

so
rs

N
o

pr
ot

oc
ol

fo
r

gr
ac

ef
ul

ex
it

2
.

Lo
ok

up
P

ro
to

co
l

K
ey

va
lu

e
pa

ir
s.

K
ey

is
m

ap
pe

d
to

a
no

de
on

th
e

C
ho

rd
ri

ng
.

Su
cc

es
so

rs
fo

r
fo

rw
ar

d
ro

ut
in

g.
F

in
ge

r
ta

bl
es

ar
e

us
ed

to
sc

al
e

lo
ok

up
s.

K
ey

-id
en

ti
fie

r
m

at
ch

su
ffi

x
ro

ut
in

g

K
ey

-id
en

ti
fie

r
m

at
ch

pr
efi

x
ro

ut
in

g

K
ey

va
lu

e
pa

ir
s.

K
ey

is
m

ap
pe

d
to

a
po

in
t

in
th

e
co

or
di

na
te

sp
ac

e.
G

re
ed

y
fo

rw
ar

di
ng

to
th

e
ne

ig
hb

ou
r

w
it

h
co

or
di

-
na

te
s

cl
os

es
t

to
th

e
de

st
in

at
io

n
co

or
di

na
te

s.

K
ey

va
lu

e
pa

ir
s

as
si

gn
ed

to
no

de
s

us
in

g
X

O
R

be
-

tw
ee

n
id

en
ti

fie
rs

.
Lo

ok
up

s
fo

llo
w

a
re

cu
rs

iv
e

al
go

-
ri

th
m

of
pa

ra
lle

l
an

d
as

yn
ch

ro
no

us
qu

er
ie

s
st

ar
ti

ng
fr

om
a

nu
m

be
r

of
cl

os
es

t
no

de
s.

K
ey

m
ap

pi
ng

id
en

ti
ca

l
to

co
rd

.
M

ul
ti

-p
ha

se
ro

ut
-

in
g

tr
av

er
si

ng
th

e
bu

tt
er

fly
,fi

rs
t

up
,

th
en

do
w

n
an

d
si

de
w

ay
s,

an
d

fin
al

ly
al

on
g

th
e

ri
ng

.

K
ey

va
lu

e
pa

ir
s

m
ap

pe
d

to
ke

ys
pa

ce
pa

r-
ti

ti
on

.
K

ey
-

id
en

ti
fie

r
m

at
ch

pr
efi

x
ro

ut
in

g.

R
ou

ti
ng

P
er

fo
rm

an
ce

O
(l

o
g
N

)
O

(l
o
g
N

)
O

(l
o
g
N

)
O

(d
.N

1/
d

)
O

(l
o
g
N

)
O

(l
o
g
N

)
O

(l
o
g
N

)

60



Se
cu

ri
ty

Fe
at

ur
es

N
on

e
A

rc
hi

te
ct

ur
e

su
pp

or
ts

se
cu

re
ch

an
ne

ls
,

no
de

au
th

en
ti

ca
ti

on
an

d
m

es
sa

ge
au

th
en

ti
ca

ti
on

co
de

s.

A
P

I
su

pp
or

ts
no

de
au

th
en

ti
ca

-
ti

on

N
on

e
R

es
is

ta
nt

to
a

D
oS

at
ta

ck
us

in
g

bu
lk

no
de

-jo
in

s.

N
on

e
N

od
e

id
en

ti
ty

ve
ri

fic
at

io
n

us
in

g
pu

bl
ic

ke
ys

.
Tr

us
t

an
d

re
pu

ta
ti

on
m

an
ag

em
en

t.

R
es

ili
en

ce
N

od
e

Jo
in

s
La

rg
e

nu
m

be
r

of
jo

in
s

m
ay

ca
us

e
lo

ok
up

de
la

ys
.

Fo
ur

co
m

po
ne

nt
no

de
in

se
rt

io
n

pr
oc

es
s

fo
r

ro
ut

-
in

g
ta

bl
e

co
ns

is
-

te
nc

y
an

d
ob

je
ct

av
ai

la
bi

lit
y.

O
pt

im
is

ti
c

ap
-

pr
oa

ch
to

N
od

e
ar

ri
va

l
aff

ec
ts

a
sm

al
l

nu
m

be
r

of
no

de
s.

Jo
in

s
ar

e
lo

-
ca

lis
ed

an
d

on
ly

aff
ec

t
O

(d
)

ex
is

ti
ng

no
de

s.

A
ne

w
no

de
is

in
se

rt
ed

in
a

ca
pp

ed
bu

ck
et

on
ly

if
th

e
le

as
t-

re
ce

nt
ly

se
en

no
de

is
un

re
sp

on
-

si
ve

.

[ 1
52

]
as

su
m

es
m

ul
ti

pl
e

jo
in

s
do

no
t

ov
er

la
p.

A
s

de
m

on
st

ra
te

d
in

[ 1
53

],
ne

tw
or

k
fu

nc
ti

on
s

ar
e

un
aff

ec
te

d
by

ne
tw

or
k

m
er

ge
rs

,
w

hi
ch

is
an

op
er

-
at

io
n

in
vo

lv
in

g
a

hi
gh

le
ve

l
of

jo
in

op
er

at
io

ns
.

N
od

e
Fa

il-
ur

es
In

cr
ea

si
ng

r
in

-
cr

ea
se

s
sy

st
em

ro
-

bu
st

ne
ss

.

M
ul

ti
pl

e
ob

je
ct

ro
ot

pe
er

s
an

d
ba

ck
up

ne
ig

h-
bo

ur
s.

La
zy

(o
pp

or
tu

ni
s-

ti
c)

re
pa

ir
of

ro
ut

-
in

g
ta

bl
e.

In
co

r-
re

ct
en

tr
ie

s
pe

r-
si

st
un

ti
lt

he
y

ar
e

di
sc

ov
er

ed
by

be
-

in
g

us
ed

.

R
ep

ai
r

us
in

g
ex

pa
nd

ed
ri

ng
se

ar
ch

an
d

im
-

m
ed

ia
te

ta
ke

ov
er

al
go

ri
th

m
s.

K
ey

-
va

lu
e

pa
ir

s
ar

e
lo

st
un

ti
l

th
e

st
at

e
is

re
fr

es
he

d
by

da
ta

ho
ld

er
s.

N
od

e
st

at
e

ex
-

hi
bi

ts
pr

ef
er

en
ce

to
ol

de
st

liv
in

g
no

de
s.

In
co

rp
o-

ra
te

s
re

pl
ic

at
io

n.

[ 1
52

]
as

su
m

es
m

ul
ti

pl
e

le
av

es
do

no
t

ov
er

la
p

an
d

se
rv

er
s

ne
ve

r
fa

il.

R
ed

un
da

nt
no

de
s

pe
r

ke
ys

pa
ce

pa
r-

ti
ti

on
.

Sy
m

bo
ls

:
m

is
th

e
le

ng
th

of
ha

sh
id

en
ti

fie
rs

.
N

is
th

e
nu

m
be

r
of

no
de

s
in

th
e

ne
tw

or
k.

n
is

th
e

si
ze

of
th

e
Ta

pe
st

ry
na

m
es

pa
ce

.
N

od
e

ID
s

ar
e

in
ba

se
b.

d
is

th
e

nu
m

be
r

of
di

m
en

si
on

s.
1

T
he

C
A

N
ba

se
pr

ot
oc

ol
is

re
vi

ew
ed

ex
cl

ud
in

g
th

e
po

ss
ib

le
de

si
gn

im
pr

ov
em

en
ts

di
sc

us
se

d
in

[ 1
54

]
2

T
he

re
is

no
m

en
ti

on
of

a
pr

oc
ed

ur
e

fo
r

gr
ac

ef
ul

ly
le

av
in

g
a

ne
tw

or
k

in
as

so
ci

at
ed

pu
bl

ic
at

io
ns

.
B

as
ed

on
a

re
vi

ew
of

th
e

P
-G

ri
d

co
de

fr
om

ht
tp

:/
/w

w
w

.p
-g

ri
d.

or
g/

do
w

nl
oa

d/
fil

es
.h

tm
l,

a
le

av
e(

)
fu

nc
ti

on
is

de
fin

ed
.

Tr
ac

in
g

th
e

fu
nc

ti
on

to
th

e
C

oU
P

ol
ic

y.
ja

va
fil

e
in

th
e

pg
ri

d.
co

re
.m

ai
nt

en
an

ce
.id

en
ti

ty
pa

ck
ag

e
sh

ow
s

th
at

th
e

fu
nc

ti
on

is
em

pt
y

an
d

do
es

no
th

in
g.

Fo
r

m
or

e
pe

rf
or

m
an

ce
m

et
ri

cs
pl

ea
se

re
vi

ew
[1

55
] Ta

bl
e

3.
4:

A
co

m
pa

ri
so

n
of

st
ru

ct
ur

ed
P

2P
pr

ot
oc

ol
s

[1
43

,1
56

,1
57

].

61



Parameter Definition

Centralisation Degree of centralisation in the network. The options are centralised, decentralised,
and partially decentralised modes of operation

Architecture Operating design of the resulting network

Bootstrap Requirements The elements used in integrating newly joined nodes

Node Exit Procedure The process executed on the network when a node leaves

Lookup Protocol The process used for queries in the system

Routing Performance Evaluation of query traversal procedure in the overlay

Security Features The components integrated in the network to counter security threats

Resilience The network’s resilience based on the network’s node exit procedure

Table 3.5: Definition of the parameters used for P2P protocol comparisons, some of
which are sourced from [143].

N0

N6

N3

Figure 3.3: A chord ring with m=3, 3 nodes, and 3 keys. Keys K1 and K5 are located
at nodes N3 and N6 as they are the successors to nodes N1 and N5, respectively.

Structured P2P Networks

The Chord P2P protocol is primarily built on consistent hashing. Consistent hashing is
a method designed to minimise the disruption felt in a network as nodes enter or leave a
network. It attempts to equally distribute the keys between the network members such
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that each node maintains a routing table on O(logN) network peers. This allows for
a graceful degradation in performance as the validity of information expires. In more
detail, the consistent hash function is used to assign m-bit identifiers to peers and data
keys. These identifiers are generated for peers and data keys by using the SHA-1 function
to hash the peers’ IP address and the data key itself, respectively. Therefore, ’m’ must
be large enough to prevent the hashing function from generating identical identifiers
for different resources. Identifiers are then mapped on a circle of size 2m known as the
Chord ring. A key is assigned to the first node that equals or follows the key in the
identifier space, as shown in Fig. 3.3. The next node on the identifier circle is then
known as its successor and if the first node leaves the network or fails, then its keys
are assigned to its successor. This method ensures stability in the network in the face
of node failures. Similarly, lookups are also dependent on the use of successors. That
is, since it is required that each node know its successor, lookups traverse along these
successor pairs until the desired identifier is located. Once the required node is found,
the response travels back by reversing the path used to find it. A benefit derived from
the use of successors is that each node needs to know only a small portion of the routing
table. Finger tables are also used by nodes to scale lookups. A finger table consists of
m entries, where the kth entry is the first successor node that is at least 2k-1 successions
away. Thus, a node forwards lookups to the highest predecessor key in its finger table.
This allows for O(logN) lookup times. However, this high dependence on successor
lookups means that routing information must be consistently accurate. To do so, Chord
requires the use of a stabilisation protocol. This protocol is run periodically on each
node to update the successor points and the finger table [143, 156, 158].

In contrast to Chord, Tapestry is highly focused on the routing aspect of P2P net-
works. Tapestry is founded on the methods proposed by Plaxton et al. in [159]. In [159],
the Plaxton model defines three possible roles for nodes: servers, routers, or clients.
These nodes then generate a distributed data structure known as the ’Plaxton Mesh’.
Names in the mesh are essentially bit-sequences, that are random, fixed length, and
unique in nature. Each object is then rooted at the node with the name closest to the
object’s name. Consequently, each object has one root peer. In contrast, each object in
Tapestry has multiple root peers for redundancy [143].

In terms of routing, Tapestry also bases its methods on those of Plaxton et al. in
[159]. Consequently, routing is done by matching Node ID suffixes. This involves the use
of the destination’s ID to route messages across overlays through digit-by-digit matching.
Consequently, the routing table employed by peers consists of multiple levels, with each
level corresponding to a suffix that matches to a certain digit position in the ID space.
Tapestry does, however, introduce a modification to the methods of [159] by making the
routing table take distance into account, and by including pointers to what are known
as neighbour nodes [143]. An example of Tapestry routing can be seen in Fig. 3.4.

Tapestry also includes dictates on the management and reachability of data objects.
For semantic flexibility, Tapestry stores the locations of all data object replicas and
allows for the selection of a specific one based on a variety of criteria. For resilience,
as previously mentioned, each data object is assigned multiple roots. Root selection
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27345

Figure 3.4: An example of Plaxton-based mesh routing in Tapestry.

therefore occurs through the use of surrogate routing, which is a form of routing that
allows any identifier to be mapped to a peer in the network. Tapestry also enhances its
fault tolerance features through the use of TCP timeouts and UDP heartbeat messages
to detect faults. If a fault is detected, then each node contains entries for a primary
neighbour and two backup neighbours in order to ensure the resume of normal operations
[143].

The CAN network uses a Cartesian multi-dimensioned coordinate space on a multi-
torus that acts like a hashtable. The entire coordinate space is partitioned such that
every node has its own zone. Each node maintains a routing table that contains the
IP addresses and virtual coordinate zones of its neighbours. The routing of messages
towards a destination is then done using a greedy forwarding algorithm that selects the
next hop as the neighbour that is closest to the destination coordinates. Key-value pairs
are stored in the virtual coordinate space by mapping the key to a point in the space
using a hash function. Consequently, by using the same function, any node may retrieve
the value associated with a key [143, 154].

When a new node joins the CAN network it must perform three actions. First of
all, the node resolves a CAN domain name to acquire the IP address of one or several
bootstrapping nodes. Once contacted, the bootstrap node provides the new node with
the IP addresses of several randomly selected peers that exist in the network. Using
this information, the new node sends a ‘join’ request to a randomly selected point P.
Once the node in zone P receives this request, the zone is split in two, as shown in
Fig. 3.5. The newly formed zone with its associated key-value pairs and IP addresses of
its neighbours are then assigned to the new node. The remainder of the neighbouring
nodes then update their coordinates of the new zones and the associated IP addresses
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Figure 3.5: A 2D CAN network showing a split of zone P to accommodate a newly joined
node N.

[143, 154].
When a peer fails, a takeover algorithm is used to assimilate the failed node’s zone

with the zone of a neighbour. The takeover node then updates its table to remove from
it any peers that are no longer its neighbour. Soft-state updates are then transmitted
throughout the system to ensure that all nodes are able to calculate if they now have a
new neighbour, and to update their tables accordingly [143, 154].

Pastry, similar to Tapestry, uses prefix routing based on the methods of Plaxton et
al. described in [159]. Each node is assigned a randomly selected 128 bit node identifier
for the even distribution of nodes in a circular identifier space ranging from 0 to 2128 - 1.
Pastry requires that each node maintains a routing table, a neighbourhood set, and leaf
set, as shown in Fig. 3.6. The routing table consists of logB(N) steps, where B = 2b

and b “involves a trade-off between the size of the populated portion of the routing table
(approximately [log2b(N)] × (2b − 1) entries) and the maximum number of hops required
to route between any pair of nodes ([log2b(N)])” [160].

Each row of the routing table contains B − 1 entries. The node ID and key are
considered sequences of digits in base 2b. An entry in row n signifies that its node
ID shares n digits with the current node. Each entry contains the IP address of the
respective peer node. Pastry routes messages using the routing table by selecting the
node with the node ID matching the prefix of a given key by an extra b bits than the
current node, and that is chosen out of the available alternatives based on a proximity
metric. If no such node exists, then a node matching the same number of digits as the
current node, but is numerically closer to the key, is selected instead. Routing therefore
usually takes less than logB(N) steps [160].

The neighbourhood set for a peer, denoted by the symbol M , contains information
on the |M | peers closest to it in terms of proximity. As is the case for the routing table,

65



NodeId 33120123 State Tables

Leaf set

Routing table

Neighbourhood set

Smaller Larger

3312002233120031 33120130 33120132

3312000333120010 33120200 33120213

3233101231123232 31211032 32212001

3321131033022131 33221103 33311021

3310201233101201 33112100 33113100

3312131033121121 33123102 33123112

2201331202021131 00113102 12003121

2211212313120213 13120013 23102132

...

3

Common 
Prefix

33

331

3312

...

Figure 3.6: Pastry leaf set, routing table, and neighbourhood set. The host node has a
node ID 33120123, b = 2, and l = 8. All IDs are in base = 2b = 4. Each row n in the
routing table shares n digits with the host node.

entries consist of node IDs and their corresponding IP addresses. This set is not typically
used for routing, but is meant to be used as a source of locality information [160].

Finally, the leaf set of a peer, L, is composed of the nodes with |L/2| numerically
larger and |L/2| numerically smaller node IDs as compared to the peer’s own node ID.
The leaf set is used for message routing before the routing table. This means that if the
key is within the leaf set’s range, then the message is routed to the node with the node
ID closest to it, which may be the current node. Otherwise, the routing table is used in
the same manner as described earlier. Both |L| and |M | are typically set to 2b or 2 × 2b

[160].
For a node to join a Pastry network it must initialise its tables and then announce

its presence to the network. To initialise its state tables, the node must have the address
of a contact peer to which it sends a ‘join’ message with a key equal to its node ID.
The join request is forwarded to the node numerically closest to key. All the nodes that
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encounter the join request forward their state tables to the new node. The new node may
request more data from other nodes and announce its presence to nodes that need to be
informed of its presence. The contact peer’s neighbourhood set is used to initialise the
neighbourhood set of the new node. Likewise, the last hop in the path of the forwarded
“join” request forwards its leaf set to initialise the new node’s leaf set as it is considered
to be the numerically closest peer. Lastly, the new node communicates its state tables
to its new neighbours for them to update their own tables based on this new information
[160].

When a node fails in a Pastry network, and no longer responds, the leaf set, neigh-
bourhood set, and routing table may need to be repaired. In the case of leaf set repair,
the failed node’s neighbour contacts the peer that has the largest index on the side of
the failed node. The neighbour requests its leaf set and selects from it an appropriate
node that is not already in its set. The selected node is contacted to ensure that it
is operational before it is included. Guarantees for leaf set repair do not hold in the
unlikely case where |L|/2 nodes with adjacent node IDs fail at the same time [160].

To repair the routing table of a node after a peer’s failure, the node contacts a peer
X from the same row as the failed node in the routing table. If the failed peer occupied
entry Rd

l, where l is the row and d is the column, then the node requests this specific
entry from node X. If none of the entries in row l are alive, then the node requests
entries from the peers of row l + 1 until an appropriate replacement is found [160].

Finally, to repair the neighbourhood set, the affected node requests that the remain-
ing members of its set respond with copies of their own sets. The proximity of peers
in the new sets are checked and appropriate peer(s) is(are) selected and inserted in the
node’s neighbourhood set [160].

The Viceroy protocol, like Chord, uses consistent hashing for data distribution. A
DHT is used to manage this distribution, and to allow peers to contact servers and locate
resources by name. Architecturally, Viceroy is composed of an approximate butterfly
network and a ring of connected predecessors and successors. This means that each
server has five links: three outgoing for long-range destinations, termed up, left and
right links, and two ring links, one to its successor and another to its predecessor. [161,
152].

The procedure used by Viceroy to ensure the balanced dispersion of nodes and data
across a network is used and executed by newly joining nodes. A new node performs an
estimation on the total number of active nodes in the network, n, using local data once
it joins the network. With this information in hand, an architectural level is selected
uniformly from the set of [1...log(n)]. The node also selects a 128 bit identifier uniformly
from the range [0, 1). If a clash in IDs between nodes is detected later on then the clash
is resolved by adding multiple precision bits to the ID. Resources that lie within the
range [predecessor-id...node-id], where the node-id is the newly joining node’s identifier,
are requested by the new node from its successor. Once the handover is complete, the
successor purges those values from its stores. The opposite of this algorithm occurs when
a node fails or leaves the network [161].

Viceroy is compatible with five different lookup algorithms. These are the Paper,
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Figure 3.7: An example P-Grid.

PapersPlus, TraverseTreePlus, TraverseTreeAbsolute, and FindFast algorithms. The
first of these algorithms, Paper, forms the basis for PapersPlus, TraverseTreePlus, and
TraverseTreeAbsolute so that they are, in effect, extensions to the Paper protocol [161].

The Paper algorithm consists of three different phases: the ‘Proceed to Root’, ‘Tra-
verse Tree’, and ‘Traverse Ring’ phases. In the first phase, the lookup is routed to the
root using up links. The second, the ‘Traverse Tree’ phase, has the query travelling the
tree using either left or right links until the query overshoots its destination or the re-
quired son is determined as non-existent. Finally, the third phase has the query traverse
the ring using successor and predecessor links until the node, and therefore the resource,
is found [161].

The PapersPlus algorithm is an extension to the Paper algorithm. It adds an addi-
tional check to the ‘Traverse Tree’ phase such that it determines which of the two child
nodes (left or right) is responsible for the value being looked up. Once this is determined,
the ’Traverse Ring’ phase is initiated using the selected child [161].

The TraverseTreePlus algorithm introduces a modification to the ‘Traverse Tree’
phase. Here, if a child is determined to exist, then the query is either routed to the
child or the ‘Traverse Ring’ phase is initiated [161].

The TraverseTreeAbsolute protocol also modifies the ‘Traverse Tree’ phase. It re-
quires that the child closest to the target be selected before the ‘Traverse Ring’ phase is
initiated, regardless of whether it is the left, right, or current node [161].

The final algorithm, FindFast, uses greedy searches to locate the target node and
resource. In searching for targets, the protocol uses absolute distances to select the
closest node. This means that the FindFast algorithm is completely structure-agnostic
and does not use the Viceroy’s architecture in any way [161].

Lastly, the P-Grid protocol, like Pastry and Tapestry, uses prefix-based routing. A
distributed binary search tree is constructed with one or more peers responsible for a
branch of the tree. For example, Fig. 3.7 shows that node C is responsible for the path
01, thus it stores all data with keys having a prefix of 01. For fault tolerance, several
peers can be responsible for the same path, as is the case for nodes A and B in Fig.
3.7. Unlike in Pastry/Tapestry, node identifiers and routing paths are independent of
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each other. This allows paths to change as required to allow for the equal distribution
of storage load in the network. These changes are done dynamically as part of the
maintenance protocol. It’s worth noting that sampling-based algorithms are used for
the balanced replication of resources [162].

For query routing, P-grid necessitates that each peer at a level store a reference to
another peer at the same level but at the other side of the tree. Node A in Fig. 3.7, for
example, would store a reference for path 01 pointing to peer C, and path 1 pointing
to peer D. The search cost remains logarithmic with dynamic paths because keys are
resolved in blocks and not in a bit-wise manner. Data updates, on the other hand,
are announced in a network using a rumour spreading algorithm based on a push/pull
gossiping scheme [162].

A public key distribution mechanism similar to PGP is used with a “quorum-based
query scheme” for the verification of node identities [162]. The public keys are stored
in-network for verification guarantees similar to the web-of-trust. The modelling and
analysis of peer interactions is also used to determine and assign trust ratings to peers
through a voting scheme to allow for the identification of unacceptable or malicious
behaviour [162, 163].

Unstructured P2P Networks

The Freenet network is a distributed file storage and retrieval system focused on anonymity
and availability. For a node to join the network, the address of an existing node should
be known before-hand. Each node maintains a routing table with its data keys and the
addresses of network peers, as well as a locally set value for disk space assigned to host
shared files. To ensure privacy for its members, nodes only know their immediate up-
stream and downstream neighbours. Consequently, similar to IP, queries are routed via
a chain of proxies with each node deciding on the most appropriate immediate next hop.
Likewise, a Hops-to-Live (HTL) counter is used and decremented with each subsequent
hop mirroring the Time-to-Live (TTL) measure of IP. Request identifiers are also used
to prevent routing loops, again, similar to IP [164, 143].

To retrieve a file, a request is sent with the HTL and the binary key file. If a node
receives the request and has the file, the file is returned and signals that it is the data
source. Otherwise the request is forwarded to the node in its routing table with a key
closest to the requested key. If that node is down, then the node with next closest key is
selected. This process repeats as many times as required. Requests that make their way
back to a previously visited node are dropped to avoid routing loops. A successful request
results in the file being cached by the forwarding nodes on the return path, as shown in
Fig. 3.8. Requests with the same key can then be resolved by the local cache. Requests
with similar keys are forwarded using the same path. These two features should improve
the effective routing and success of requests. If a successful response is received from a
node not already in the routing table, it is added thereby supporting network discovery.
To maintain the local cache within storage limits, the least used files are evicted when a
new file is received that would exceed the cache size. Additionally, nodes on the return
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Figure 3.8: A request lookup in the Freenet network. A failure is returned in step 5 to
break a routing loop causing the request to be forwarded down an alternate path in step
8.

path may arbitrarily declare themselves as the data source to maintain the privacy of
the original source [164].

Data keys in the Freenet network are normally generated using a 160-bit hash func-
tion. The methods used to generate the keys may differ. The Freenet protocol may
produce binary key files using one of three methods: the Keyword-Signed Key (KSK),
Signed-Subspace Key (SSK), and the Content-Hash Key (CHK) methods [164].

The KSK approach is the simplest one of the three used to generate a file key. KSK
applies the hash function to a descriptive text string used to identify the file. This
generates a public-private key pair. The public key is hashed to create the data file
key and the private key is used to sign the file. The file is also encrypted using the text
string. Thus, to share a file, the descriptive string should be published. It is important to
note that the dependence of KSK on a descriptive text string leaves it open to dictionary
attacks and ‘key-squatting’. The former has a person hashing a list of possible descriptive
strings to illicitly gain access to the resources. Key-squatting, on the other hand, is when
a user publishes a file using the same descriptive string as an existing resource. These
vulnerabilities are addressed by SSK [164].

SSK’s enhanced security measures are based on the use of personal namespaces. SSK
requires that each user generate a random public/private key to identify the namespace.
To generate file keys, the public key and the descriptive strings are hashed independently,
XOR’d together, and hashed once again. As is the case with KSK, the file is signed using
the private key and encrypted using the descriptive string. To share a key, however, SSK
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requires that both the public key and the descriptive string be published [164].
The CHK algorithm is focused on updating and splitting. A CHK of a file is generated

by hashing its contents. Files are encrypted using random keys. To share a file, the CHK
and encryption key need to be published. To allow file updating, the CHK method may
be used in conjunction with SSK. To explain, a node adds a file to the network using
CHK, but publishes the CHK using SSK. This allows file updates as the node may
replace the file and the CHK and add a new indirect file to the SSK pointing to the new
file. Any node with the old version receiving an insert of the new one will note that the
latter is both valid and more recent and will therefore use it to replace the older file.
In the case of file splitting, a CHK is divided into smaller ones and an indirect file is
generated and used to point to the different divisions [164].

BitTorrent is a centralised P2P protocol that is also the most commonly used protocol.
The protocol relies on metainfo .torrent files. Torrent files contain information on the
shared resource and are hosted on web servers. Each .torrent file also contains a URL
pointing towards its tracker. The tracker is a server that manages the list of nodes
that form the active swarm of peers sharing the resource in question, as shown in Fig.
3.9. The tracker is normally also aware of the download progress of each member of the
swarm. Any peer that has a full copy of the content is referred to as a seed [165, 166].

Seed

[100%]

Leach

[74%]

Leach

[12%]

Leach

[0%]

Leach

Swarm                                                                                 

Tracker

Figure 3.9: An example BitTorrent system. A new leach contacts the tracker to re-
ceive a list of peers from the tracked swarm. The leach connects to the swarm and
downloads/uploads pieces of the shared file(s).
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The BitTorrent protocol defines two piece selection strategies and four methods of
peer selection. The former is composed of the random first, rarest-first, strict prior-
ity, and endgame mode approaches while the latter comprises of tit-for-tat, optimistic
unchoking, upload only, and anti-snubbing.

Piece selection depends on the splitting of files into smaller pieces. The pieces are
shared between nodes and reassembled when a complete set is acquired to recreate the
original file. In the rarest-first algorithm, a node at the start of a download reviews the
distribution of pieces throughout the network and selects the rarest piece to download
first. This method is targeted at information survivability by trying to keep a full copy
of the file in the network in case the last seed leaves before any other node completes
its download. This approach also improves throughput as it diversifies the selection of
pieces distributed across nodes. In contrast to rarest-first, random first, as the name
implies, selects a random piece to download. This allows a node to quickly acquire its
first piece(s) and contribute back as an uploader as soon as possible. A random first
node usually switches to rarest-first after acquiring a small number of complete pieces.
The strict policy algorithm works by having all the blocks of a piece prioritised if a single
block from that piece is downloaded. Finally, end game mode is when a peer receives
requests for all pieces or has outstanding requests for all pieces. At this point, the node
requests the blocks it has not yet received from all nodes having them. Any block that
is then received causes the node to cancel all its requests for the same block [167, 168].

As for peer selection, these are based on the concepts of choking and unchoking. A
peer is said to choke another if it refuses to upload to it. The lifting of this ban is
known as unchoking. The tit-for-tat mechanism requires that a peer unchokes up to a
maximum of 4 peers at any given time. This is usually the 4 nodes with the highest
upload rates to the node. Optimistic unchoking periodically selects a random node to
unchoke regardless of its upload rate. This is done to allow for the discovery of new,
possibly better, peers. Upload only mode is set by nodes that have completed their
download. Like tit-for-tat, upload only mode selects peers with the highest upload rates
to allow for the quick replication of the resource being shared. Finally, anti-snubbing is
when a node, being choked by all of its peers, stops uploading to them [166, 168, 169].

3.1.3 VeHA Networks

This section will give an overview of VeHA networks by reviewing a number of solutions
from literature [170, 171, 172, 173, 174].

In [170], a two layer network named brocade is proposed. Brocade is motivated
by the desire to reduce latencies in routing using knowledge on the capabilities and
locality of peers in different administrative network domains. This information is used
to designate nodes in existing infrastructure with high bandwidth, processing power, and
accessibility features as “supernodes”. Each collection of peers in a domain or subdomain
is grouped as a “cover set” and assigned to the most local supernode, as shown in Fig.
3.10. Supernodes then become the dominant entry points for the different network
domains and subdomains. Thus, brocade is based on the assumption that knowing the
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Figure 3.10: An example of a brocade network hierarchy.

network domain of the destination node and using the supernode overlay to route directly
to that domain would result in a drop in hop count, bandwidth use, and network latency.

To demonstrate key routing mechanisms, a brocade is developed in [170] based on
a Tapestry network. The concepts addressed are the differentiation of inter-domain
from locally routed messages, the discovery of local supernodes in subdomains, and the
discovery of destination supernodes in message routing.

Message filtering is resolved by having each supernode keep a list of the Tapestry
nodes in its cover set. The number of entries in each list is assumed to range in the order
of 104. Each supernode uses its list to determine if the destination of a message is inside
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or outside the cover set. This allows supernodes to infer if brocade routing is applicable
to the transiting message.

As for the discovery of local supernodes, naive, IP-snooping, and directed approaches
are proposed. In the naive approach, an inter-domain message is routed through the
brocade overlay if it happens on a supernode as part of its Tapestry-outlined path.
Thus, there is no guarantee that an inter-domain message will take advantage of the
brocade overlay.

IP-snooping, on the other hand, assumes that supernodes are more likely to be the
nodes at the edges of network domains. Therefore, it infers that messages destined for
external nodes will probably transit through them. IP-snooping therefore requires that
supernodes inspect IP packets and parse the message headers to determine if they are
Tapestry messages with an external destination ID. If both conditions are met, then
brocade routing may ensue. This method is considered to be difficult and costly to
implement.

Directed discovery uses DNS resolution or an expanding ring search to determine the
local supernode. Each node also keeps a “proximity cache” on the peers it previously
communicated with. Nodes in the proximity cache are assumed to be within the same
cover set. Messages destined to these nodes are routed directly. Otherwise, the message
is sent to the supernode for routing. State is maintained through the use of periodic
beacons. Aside from the cost of state maintenance, this method would also require fault
tolerance at the supernode level. It is however stated as the best option of the three
[170].

Finally, the determination of the destination supernode is achieved by created a
second Tapestry overlay for the supernodes. Thus, Tapestry routing using the node ID
suffix is used to route the outgoing message to the destination supernode, which would
then route the message to its final destination within its cover set.

Brocade is evaluated in [170] through simulations and is shown to achieve its outlined
goals of reduced bandwidth consumption and improved routing performance.

In [171], a general framework is presented for hierarchical DHTs based on the hier-
archical nature of the Internet. Initially, the protocol requires that nodes be organised
into disjointed groups. For a member of a group to communicate a lookup message
to a destination, the message is first routed to the destination group and then to the
destination using inter-cluster and then intra-cluster routing, respectively. Like in [170],
super-peers are selected from the pool of available peers to form a secondary overlay.
The selection primarily occurs based on the reliability and connectivity characteristics
of the peers. Criteria such as bandwidth and processing power may also be taken into
account. The secondary overlay is responsible for inter-cluster routing. Consequently,
every cluster must have at least one super-peer. It is important to note that the pro-
posed hierarchy is not limited to two levels, but may be expanded to accommodate as
many layers as required. In doing so, a lookup message would have to first be routed to
the super-peer of the highest layer, which would then hand it off to the super-peer of the
level below it and so on until the message is routed within the destination’s group and
to its destination. The proposed framework is evaluated using Chord as the top-level
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DHT for a two-layer network. The results observed showed a substantial decrease in the
number of hop counts traversed by lookup messages. Based on the description of the
general framework, [171] can be considered as having a high degree of similarity with
[170].

In [172], a framework termed HIERAS is proposed for the division of clusters into
connected sub-clusters, termed P2P rings, to improve the routing performance of DHT-
based networks. The protocol requires that all peers be part of one all-encompassing
DHT. Within the network, nodes are split to form sub-clusters based on topological
proximity, as shown in Fig. 3.11. If required, the nodes of a sub-cluster may be split
again into micro-clusters as many times as required. Each peer must therefore be part
of a cluster at each layer, and, as such, all peers are equal. There are no super-peers or
gateways in this framework. When a routing task is to be performed, it is first tackled
at the lowest layer, within the smallest sub-cluster of which the node is a member. Thus,
tasks are resolved locally when possible, and routes are composed of low latency hops.

L2 P2P Ring

L2

L2

Level 1 (L1) P2P Ring

L3 P2P Ring L3

L3 L3

L3 L3

Landmark

Figure 3.11: An example of a three level HIERAS network hierarchy.
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This results in a shorter overall latency in routing and also alleviates the strain of routing
from the upper layers.

The P2P rings in [172] are formed using a distributed binning mechanism described
in [175]. Several endpoints are selected from the Internet to serve as landmark nodes.
These are well known machines that are spread out across the Internet. The nodes in
a HIERAS network divide themselves into disjoint bins based on their proximity using
the network link latency between themselves and the landmark nodes as a reference, as
shown in Fig. 3.11. Thus, aside from the routing tables of the underlying algorithm,
nodes must also maintain a landmark table and ring tables. A ring table is labelled by
ordering the measured latencies to landmark nodes. It is kept on the node with the node
ID closest to the ring table’s label. The ring table is also replicated on several other
nodes for fault tolerance. Typically, it contains the smallest two and largest two node
IDs of the nodes participating in the P2P ring. The ring table host maintains the table
by periodically checking the status of its constituents.

An increase in the hierarchical depth in HIERAS improves the routing performance.
This is at the cost of higher overhead as more state information and ring maintenance op-
erations will be required. The evaluation of the system through simulations using Chord
as the underlying algorithm determined that two and three layer networks are suffi-
ciently capable of reducing routing latencies without introducing a considerable amount
of overhead [172].

In [173], the authors address certain best practices related to the use of super-peers
in hierarchical networks. Using a two-layer P2P network, the network is organised into
star-shaped constituencies with each peer connected to one super-peer. The super-peers
then connect with each other to allow for full-network connectivity, as shown in Fig.
3.12.

Peer

No Redundancy

Super-

peer

Peer

2 x Super-Peer Redundancy

Super-

peer

Figure 3.12: An example of a super-peer network with no redundancy and 2 super-peers
redundancy as adapted from [173].
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The authors experiment using this topology to determine the effect of increasing
cluster sizes, the use of redundant super-peers, and the maximisation of the number of
neighbours that a super-peer has, and the TTL values to be used. First, it was found
that increasing the cluster size decreases the aggregate load at the cost of increasing the
individual load. Second, the use of two super-peers (super-peer redundancy) in the place
of each one does not impact the aggregate load, but notably reduces the individual loads.
Third, increasing the number of neighbours, referred to by the authors as maximizing
outdegree, reduces individual loads if all peers do. Hence, the maximisation of outdegrees
should be performed uniformly across the network. Lastly, the TTL should be minimised
based on the expected path lengths (EPL). The authors provide a procedure for global
design that includes an effective method by which the appropriate minimal TTL may
be used to initialise the network. After initialisation, the authors recommend that the
TTL be decreased as outdegree increases to maintain a stable value for the number of
nodes that process each query [173].

In [174] a two-layer network is proposed. The upper layer uses Chord for the super-
peers while the lower is composed of star-shaped connections with the leaf node peers,
as shown in Fig. 3.13. Cost-based analysis is used to evaluate this design. It is shown
that hierarchical DHTs perform better than their flat counterparts, and that there is a

Super-Peer

Leaf Node

Figure 3.13: An example of a two-layer network in [174] with a Chord network upper
layer and star-shaped connections with lower layer leaf nodes.
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natural trade off between the costs for the highest loaded peer and the cost for the total
network. This work is extended in [176] by performing a study on the various designs
that may be used for connecting between the lower-layer peers. The aforementioned
star-shaped design is found to be superior in performance to a fully-meshed structure,
where all the peers within a star are interconnected and to one which uses a DHT to
interconnect the intra-star peers. It’s important to clarify that in all three cases there
exist no direct links between the nodes of different stars. Thus, all communication must
go through the respective super-peers [174, 176, 140].

With VeHA networks and their properties discussed, the next section will review the
domain of P2P networks as systems.

3.1.4 P2P Networks as Systems

Another method of generating cross-layer integration in the enterprise can be found in
the literature on networks as systems. Literature in this domain has been focused on
bridging or merging together heterogeneous and homogeneous P2P networks to allow
for expanded systems, inter-system content-sharing or inter-system traffic engineering.
These topics will be addressed in the next sections in that order.

Inter-System Content Sharing Systems

Inter-system content sharing is when several systems cooperate together to share re-
sources with each other [151]. The research present in this field, as related to structured
networks, is focused on resolving issues in the inter-system routing of requests. The
solutions presented primarily use co-located nodes [151].

In [177], inter-system routing is achieved by having a subset of nodes in an overlay
network act as co-located nodes, or gateways, and then having a second group of nodes,
known as the gateway pointers, keep track of these gateways. Nodes are designated
gateways if they exist in two networks or are physically connected to a different DHT
than its home network, as shown in Fig. 3.14. The proposed system exemplifies this
principle by claiming that the proposed algorithms may potentially be used to connect
256-bit CAN, 160-bit Chord, and 256-bit Chord DHTs. To traverse across these differing
networks, queries go from the origin node to a gateway pointer, then to the gateway, and
finally to the external network. The selection of gateway pointers occurs without the
need for any negotiations. To elaborate, when locating a gateway pointer, a common
identifier is mapped to a keyspace id and the query is routed. If the keyspace that is
being sought after is hosted locally, the node realises that it is a gateway pointer. The
common identifier hashed once is the first gateway pointer, while the mth hashing is the
mth gateway pointer. In this way, the process of selecting gateway pointers requires the
modification of all nodes. The evaluation of this protocol focused on determining the
setup overhead and operational efficiency. It is unclear if the results on the setup over-
head were determined through experiments or simulation, but those of the operational
efficiency were based on neither one. According to [151], the system was not evaluated
using simulations or experimentation [177, 151].
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Figure 3.14: An example of three bridged DHTs for inter-system routing as adapted
from [177].

In [178], Babelchord, a protocol for the bridging together of different Chord networks,
is presented. Babelchord relies on the use of Synapse nodes, which are co-located nodes
that belong to multiple rings, or floors, at once. To join a floor, a peer makes an offer
based on the resources that it is able to add to the floor. The more resources that the
peer has and the more applicable that they are to the floor the greater the peer’s chance
that it be permitted to join the floor. To participate in multi-flooring, nodes require
extensions to their hashing methods and routing table. For example, in the case of a
node that participates in multiple floors, its routing table must be extended in order to
take ensure that the node is aware of its successor and predecessor on the ring for each
floor. When a query passes by this node, the lookup is forwarded to all of the floors that
the node is a part of. This requires that the node also know the different hash functions
of the floors that it is a member of. To limit unnecessary lookups, previously processed
requests are discarded. Also, a TTL value is assigned to each query and decremented
every time it crosses a floor boundary. To optimise lookups, Babelchord allows nodes
to keep lists of the different peers and floors that have resulted in successful lookups,
referred to as hot peers and hot floors. Optimisation may then be achieved by inviting a
hot peer to join one of the node’s floors, or the node may join a hot floor, or, lastly, a new
floor may be created. The Babelchord protocol is evaluated using a custom simulator
written in Python. Simulations vary the network size, number of floors, and number of
floors that each peer belongs to. Results demonstrate the protocol’s scalability and show
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Figure 3.15: An example of Babelchord lookup routing in two floors as adapted from
[178]. Node A queries for resource K on node C. The lookup from node A reaches node
B twice. The query following the red path is terminated at node B as it has already
been processed by node B via the blue path.

that only a comparatively small number of synapse nodes is required between floors to
achieve over 50% exhaustive lookups [178].

In [179], the same authors from [178] present a second unstructured protocol termed
Synapse, based on the concepts of Babelchord’s synapse nodes. Synapse is developed for
content sharing between heterogeneous overlay networks. It is available as a "white box"
and "black box" protocol. The former is designated for use with protocols and software
clients that are open to modification. The white box approach therefore aims to integrate
additional parameters to allow for intra-network routing. Every node therefore needs to
be aware of the changes made to their network protocols. Black box routing on the other
hand is designed for use with networks that utilise proprietary protocols or protocols that
are not subject to changes. Consequently, the black box model uses a Synapse control
network instead to maintain the parameters that networks with immutable protocols are
incapable of incorporating freely [179].

Effectively, the white box Synapse protocol is the same protocol as Babelchord with
extensions to allow for message passing between networks of different DHTs. Thus,
every query received by a co-located synapse gives the node the option to start a lookup
process in all its other connected overlay networks. The non-hashed key and node
addresses should therefore be available to synapse nodes so that they may be hashed
using the appropriate hash function before being routed across the adjacent overlay. A
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key can be stored on several peers to increase robustness and availability in more than
one overlay network. A Maximum-Replication-Rate (MRR) value is therefore used to
limit the number of resource replicas. The “game over” strategy for limiting queries
and preventing routing loops is inherited directly from Babelchord. This implies the use
of TTL values to drop drop over-extended or duplicate messages and message tags to
drop previously processed lookups, respectively. The parameters for correct inter-overlay
key and node address hashing, key replication, and the game over strategy need to be
integrated into the protocols of the underlying overlays [179].

The black box protocol assumes a network of “blind” peers running the unmodified
protocol of its overlay and synapses connecting the overlay to one or more other networks.
The synapses communicate and share routing information with each other using the
control network. This network is composed of a set of three DHTs implementing a Key
table, a Replication table, and a Cache table. The Key table stores the non-hashed
keys of the bridged overlays. The Replication table stores the keys’ MRR values. The
Cache table implements the replication of key retrieval requests, caches responses, and
“control[s] the flooding of foreign networks” [179].

The white box Synapse protocol is evaluated using a lightweight prototype, JSy-
napse1, and an open source prototype, open-Synapse2. The latter is based on the open
source implementation of Chord, open-Chord3. While both prototypes are deployed on
the Grid5000 platform, a test bed made of thousands of interconnected machines across
several sites in France, JSynapse undergoes real deployments as well. The evaluation of
the white box approach showed that it was resilient in the face of churn, and, similar
to Babelchord, that it was capable of near-exhaustive searches using a low number of
Synapses, but only if a TTL parameter is included to limit the communication overhead.
The black box approach was not evaluated [179].

In [180] and [181], modifications are proposed for Synapse’s black box method. The
control network is removed from the protocol and replaced by a Synapse discovery mech-
anism to allow the synapses to detect each other’s presence in networks. Four discovery
mechanisms are proposed: message embedding, active notifications, peer exchange, and
aggressive discovery. In message embedding, a node adds a list of the networks that
it is a part of to every message that it communicates. This, requires modifications to
the protocols of the underlying overlays. The second method, active notifications, has a
synapse node proactively respond to the source of any message transiting through it with
a SYNAPSE_OFFER message, thus makings its presence known. The third method,
peer exchange, is identical to the concept of peer bootstrapping. Finally, aggressive dis-
covery is a generic name given to the possibility that the Synapse protocol may exploit
unspecified attributes of underlying protocols for the purpose of discovery. The discov-
ery mechanisms afford synapses the ability to maintain pointers to each other. This
information is stored in a Direct Overlay Table (DOT) and is used to route messages
across overlays by having synapses directly contact each other in their respective over-

1http://www-sop.inria.fr/teams/lognet/synapse-net2012/
2No longer available on the INRIA Logical Networks team webpage.
3http://open-chord.sourceforge.net
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Figure 3.16: An example demonstrating a Synapse overlay.

lays, as shown in Fig. 3.16. It’s also worth noting that synapses also maintain a separate
Message Routing Table (MRT) that is used to keep track of the ongoing messages.

The proposed protocol is evaluated using Oversim (an overlay simulator built atop
Omnet++) and by deploying the Synapse protocol on the Grid’5000 test bed. The simu-
lation tests the protocol in a churn-less and high churn environment running 2000 nodes
in an equal number of Chord and Kademlia networks. Two topologies are used, FIT and
RAT. The FIT topology represents a fully-interconnected overlay with a path existing
to any other overlay through gateway nodes. The RAT topology is composed of com-
pletely random assignments of overlays to gateways. Results show that performance is
not highly correlated with the topology used. Therefore, a high knowledge of the under-
lying overlay systems is not required when building a Synapse network. This assumption
holds with a system of 200 overlays as results show exhaustive searches. However, more
synapses are required for exhaustiveness if synapse nodes have low connectivity in the
network [180].

The Grid’5000 experiments use a system of 1000 nodes distributed across 10 Chord
and 10 Kademlia networks that are interconnected with synapses. The system is found
to be resilient to churn when the mean lifetime of nodes is above 900 seconds. Ex-
haustive searches are also possible in the network given the same average lifetime of
nodes. To counteract shorter lifetimes, a higher degree of connectivity between synapses
is required. There exists a cut-off TTL at which search exhaustiveness plateaus and no
longer increases significantly with increasing TTL. Similarly, for this network size, assign-
ing 20% of the peers to the role of Synapse nodes is sufficient to achieve exhaustiveness
[180].
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In [182] and [183], the works of [180] and [181] are extended and renamed as the
Overlay Gateway Protocol (OGP). An important differentiator between OGP and pre-
vious works is that OGP puts nodes of a single overlay into a single group instead of
a single DHT. Therefore, OGP is able to bridge together structured and unstructured
networks.

The OGP protocol designates nodes as either Blind peers, Full OGP peers (FOGP),
or Lightweight OGP peers (LOGP). Blind peers are completely unaware of the OGP
protocol affording OGP backward compatibility. FOGP peers are the same synapse
nodes that can be used to generate the Synapse overlays described in [180] and [181].
LOGP peers use inter-overlay routing for their own advantage but do not participate in
the OGP overlay [182, 183].

FOGP and LOGP nodes and their overlays are topologically organised into a bi-
nary tree to allow for three forms of routing: OGP unicast, OGP multicast, and OGP
broadcast. Unicast, multicast, and broadcast networking is traditionally known as the
transmission of a message to a single node, a group of nodes, and all the nodes in a net-
work, respectively. In OGP, these concepts take on new meaning in that they represent
the communication of a message to a single overlay, a group of overlays, or all overlays
[182, 183].

The OGP protocol is evaluated using the Grid’5000 network in two scenarios: 20
networks of 50 nodes each running Kademlia, Chord, and Gnutella networks, and 3
networks of 100 nodes each running BitTorrent, a Kademlia-based protocol, and Gnutella.
The first experiment is used to evaluate the overall OGP framework and the second
evaluates the framework’s ability to support file-sharing capabilities. Results show that
efficiency in routing and cooperation can be achieved using small numbers of FOGP
nodes for each participating network, namely 5 peers per network. Routing costs are
also found to be logarithmic. LOGP nodes are also capable of achieving the same
routing efficiency as FOGP nodes while only minimally increasing FOGP traffic. This
is explained by the observation that LOGP nodes only produce very little traffic. Thus,
the OGP protocol is a scalable solution for inter-system content sharing [182, 183].

Merging P2P Systems

The second type, merging P2P systems, is when groups of nodes share the same goals.
This means that the relevant nodes may be grouped together under the same location
as one system eliminating the factor of competition between them [151].

In [153], the task of merging together distinct structured overlay networks that use
the same protocol is observed. The study is conducted on two protocols, Chord and
P-Grid, to determine the properties that affect the merger process.

For Chord, the ring-based structure is a large hindrance to a merger process. The
operations of merging Chord overlays are completely disruptive until the merger is com-
plete. This is because once the nodes of both networks are integrated into a larger one,
the given probability that a node’s predecessor changes with the addition of new nodes
is 1 − e−λ1 , where λ1 = N2/N1, and N1 and N2 are the number of nodes in networks 1
and 2, respectively. This means that the number of peers that will have their successor,
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predecessor, or both, changed is equal to N1(1 − e−λ1 )+N2(1 − e−λ2). These changes
need to be communicated to the immediate and respective neighbours to allow all rout-
ing tables to be eventually corrected. Therefore, until the merger is complete, and the
structure is once again stable, queries cannot be routed to the correct peer. The unique
key value pairs of each network may also be inaccessible until they are redistributed
amongst all the peers of the newly formed network. Another point to consider is that
the replication of data across the merged networks may add a considerable strain on
the nodes of the participating networks. Thus, the authors suggest that it is possible
that certain nodes may be overwhelmed by the merger process and may subsequently
leave the network. This hypothesis, however, requires an actual evaluation of a merger
process which is yet to be done [153].

In comparison to Chord, the features of structural replication in P-Grid mean that
routing processes are not disrupted during their mergers. Nodes with identical paths
replicate their counterparts’ content and merge to become redundant replicas of each
other. If nodes in one network do not have a path route with the existing prefix in the
other network then the path and nodes are retained without changes. Therefore, the
functions of the network are unaffected by the merger. However, the resources of one
network will not be visible to the other until the replication processes are complete and
the lack of policies structuring or limiting the number of replicas prevents there being a
deterministic way of knowing “the full replica subnetwork at each peer” [153], meaning
that the replication process is probabilistic. This contrasts with ring-based mergers,
which are precisely deterministic [153].

In [184] an algorithm is proposed for merging ring-based overlays. While the algo-
rithm is claimed to be applicable to unidirectional ring-based structured overlay net-
works, the findings in [184] are based exclusively on the Chord protocol. The algorithm
presented is capable of two types of mergers.

The first of these is concerned with merging two networks that were created through
the partitioning of one network. Network partitioning is expected to cause a large number
of nodes to be determined as failed nodes. The algorithm requires that these failed nodes
be placed on a passive list that is used to track their state. Every node regularly checks
its passive list to see if any of the members listed are once again reachable. Thus, any
attempt by the partition to merge is detected and causes the merger algorithm to be
executed [184].

The second type addresses the merging of two independently created networks. In
this case, a living node from one of the independent networks must be inserted into a
passive list of the other to trigger the algorithm [184].

Once the merger algorithm is triggered, the previously passive node is placed in a
queue, detqueue. The queue is checked periodically and if it is found to contain nodes,
the first of these nodes is selected for the merger process. A lookup with the node’s ID
is sent into the network. Once the lookup nears the destination, the predecessor and
successor values of the nodes located there are updated. Recursive calls are then sent
in both the clockwise and counter-clockwise directions to continue the merger process
along the ring. It is claimed that this process, termed the “simple algorithm” is slow
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and may fail under certain conditions. Therefore, a second gossip-based algorithm is also
proposed. The gossip-based algorithm has the simple algorithm initiated at a random
number of nodes. To reduce the messaging costs of this procedure, several strategies are
implemented. First, instead of immediately initiating lookups for the living node at the
random nodes, the living node is instead placed in its respective detqueue. Because these
queues are checked periodically, the lookups are not triggered in unison. To decrease
the resource cost of the algorithm even further, the number of random nodes selected is
varied based on a fanout parameter that is decreased with every selection of a random
node [184].

The proposed system is evaluated through simulations. However, the simulator em-
ployed is not stated in [184]. Simulations are carried out using 200 nodes with varying
node counts ranging between 256 and 2048. A merger is considered successful if 95% of
the nodes end up with correct successor pointers. The proposed algorithm is claimed to
be largely successful because only 3 out of the 200 executions for the simple algorithm
result in unsuccessful mergers while the gossip-based algorithm resulted in 0 unsuccessful
mergers [184].

Inter-System Traffic Engineering Systems

The last type, inter-system traffic engineering systems, involves the use of P2P systems
to optimise network routing performance. Different approaches have been suggested in
[185] and [186]. These are described in the next few paragraphs.

In [185], the Synergy architecture for overlay inter-networking is proposed. Simply,
this architecture uses co-located nodes to route messages over different overlays for per-
formance gains. In more detail, each network participating in the inter-networking effort
periodically assigns one of its nodes the role of an overlay agent. This agent is then
used to aid its network in joining Synergy. The selection of a node as an agent is based
on an estimation of how co-located it is. This estimation is reached, for example, by
evaluating the number of overlays that the node is connected to, the number of overlays
that its neighbours, past and present, are connected to, and the minimum and maximum
latency experienced by this node within its home network. Constrained and/or loaded
nodes are disqualified from the selection process. For redundancy, every agent is given a
backup. Agents across all of the participating networks use a bootstrapping mechanism
to form a second overlay, the Synergy network, which then allows for cross-overlay inter-
networking. The Synergy network is used primarily for cooperative forwarding, where
traffic is permitted to flow outside of the network using Synergy routes. By providing a
larger pool of nodes, network routes may be optimised to avoid network hotspots, reduce
routing latencies, or enhance the overall stability of the network. However, to avoid over-
loading the Synergy routes, three factors are imposed on the network. First, each host
is limited to a specific number of flows. Second, only one flow is permitted to choose
its routes at a time. Lastly, flows determine if hosts are to be used as parts of their
paths by utilising a prioritisation algorithm that uses an exponentially weighted moving
average of the number of flows that have used the host within a given time period. Also,
the Synergy network uses link state for the computation of routing paths. The proposed
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architecture was evaluated experimentally. Results showed that the use of cooperative
forwarding improved overlay connections’ latencies, throughput, and packet loss [185].

Lastly, [186] suggests the sharing of resources between overlays to improve specific
network performance characteristics. The first action required by the protocol is for all
of the peers to join a mesh-based overlay. The peers need to be bootstrapped to allow
them to locate and construct logical links with a number of peers. The Mesh-Based
Overlay Manager (MBOM) is then used to have the generated mesh maintain fidelity to
the underlying physical topology. For topology matching, the MBOM uses the Location-
aware Topology Mechanism (LTM). However, the MBOM also uses flooding-based detec-
tion to discover new neighbours and timestamped updates to determine and eliminate
low-performance links. The Single Overlay Manager (SOM) manages the selection of the
paths of least delay for source-to-destination communication flows. Timestamps are used
to determine the most useful paths. The Inter-Overlay Optimisation Manager (IOOM)
is responsible for the management of backup streaming path sets and active streaming
path sets. The former involves the selection of backup paths for nodes using a reverse
tracing algorithm. The algorithm notes when the number of paths in a node’s backup
path set drops below a certain threshold. At this point, the affected node communicates
a probing message to a number of its neighbours with an empty array. Each receiver
injects their ID and timestamp into the array. If a receiver finds that the total calcu-
lated delay is larger than the previously known least delay, then it does not forward the
message. Likewise, if the receiver was the source of the message, then the message is
not forwarded. Otherwise, the message is forwarded again by the receiver to the same
number of random neighbours as was done by the original message source. This way,
the original source may be able to calculate and construct the best possible paths. The
management of the set of active paths involves the maintenance of the currently active
path, the removal of failed links, and the addition of new active paths from the backup
set. The key node manager performs admission control functions to avoid path over-
subscription. Finally, the buffer manager ensures that the streaming application has
valid data from multiple sources to maintain continuous playback [186].

3.2 Discussion: Selecting a Protocol

Based on the reviewed literature, of the various types of P2P networks possible the one
that is decidedly the most suitable for the task at hand is that of P2P networks as
cooperative systems. This is because this class of networks bridges or merges together
existing P2P networks to allow for expanded systems of networks, inter-system content-
sharing, and inter-system traffic engineering [151]. Using the concepts of this domain,
devices may therefore be capable of organizing themselves into systems of cooperative
nodes. Each layer of the enterprise may be comprised of one or more complete and self-
contained overlay networks. Using the concepts of cooperative systems, new systems may
be dynamically formed to bridge together the nodes from the different overlays of the
enterprise to offer new services or to execute new functions and processes. Consequently,
by allowing for the dynamic reconfiguration of systems, this subdomain may therefore
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be used to facilitate or restrict message and content transfer between overlays and enter-
prise layers dynamically, and possibly autonomously, in accordance with the enterprise’s
changing requirements. Such a subdomain therefore allows the proposed resulting man-
ufacturing infrastructure to establish pervasive enterprise-wide communication channels
that are resilient to failure without violating or compromising the binding constraints of
the industrial architecture.

Establishing reliable routing mechanisms for a distributed system operating using
the principles of P2P networks as cooperative systems directly translates to the need for
a reliable inter-system routing policy. Unfortunately, as is apparent from the previous
sections, work in this domain is scant. It is however possible to derive the fact that, for
enhanced reliability, solutions have converged towards the use of either co-located nodes
or gateways. The difference between the two strategies, as defined in [187], lies in the
fact that co-located nodes participate in the routing process, while gateways only main-
tain pointers towards specific nodes in different overlays. Works that representatively
exemplify these principles have been presented in Section 3.1.4.

Based on the results of previous studies, it appears that regardless of whether an
exclusively gateway-based or co-located-nodes-based method is used, the basic compo-
nents of an optimal inter-system routing protocol are nodes, gateways, and gateway
pointers. The first step in developing an inter-system routing protocol should therefore
be instilling the modifications necessary to allow for the inclusion of these elements.

To exemplify these principles, the next section will describe their usage in developing
a functional cooperative systems P2P protocol. However, due to the limited scope of
the study and the large number of existing and mature P2P solutions based on proven
methods, an existing single-system solution, Chimera, is used as a starting point for
the development process. Chimera is selected because it is a hybrid implementation of
two well established P2P protocols, Pastry and Tapestry. Its hybrid nature means that
it has inherited a favourable number of properties and constituent elements that are
also present in several other largely popular P2P protocols. This lends credibility to
the applicability of the methods of Section 3.3 for the conversion of other existing P2P
protocols into cooperative systems.

3.3 Developing a Cooperative P2P Network

This section demonstrates the conversion of a traditional P2P protocol, Chimera, into
a cooperative P2P routing protocol. The developed mechanisms are explained and the
results from the experimentally tested implementation are presented and discussed.

3.3.1 Design

The design process is described in two parts. The first presents the Chimera protocol in
its original form. The second explains the conversion process that transforms Chimera
into an inter-system routing protocol.
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Base Protocol & Modifications

This subsection will explain the main elements of Chimera to establish its baseline be-
haviour. These elements may be summarised as bootstrap nodes, prefix-based routing,
fault detection through the use of heartbeat messages, neighbour sets, and leaf sets. Due
to a lack of publications on Chimera, the descriptions provided are inferred from a li-
brary implementation in C that was developed at the University of California - Santa
Barbara4.

The definition of each of the aforementioned elements of Chimera is as follows. First,
a bootstrap node is a member of a P2P network that supplies newly joining nodes with
the initial configurations required for them to successfully join the network. Next, prefix-
based routing is a form of message routing that uses the unique identifiers or keys of
nodes in routing. In prefix-based routing, the next hop selected for a message is the
one that matches the prefix of the destination with a digit extra than the current hop.
As for fault detection through pings, or heartbeat messages, this mechanism relies on
the successful acknowledgement of pings between nodes to surmise that other peers are
functional. A node’s neighbour set consists of information on the peers that are closest
to it in terms of proximity. This set is not typically used for routing, but is meant to be
used as a source of locality information. Finally, the leaf set of a peer, L, is composed
of the nodes with |L/2| numerically larger and |L/2| numerically smaller node IDs as
compared to the peer’s own node ID. Unlike the neighbour set, the leaf set is used for
message routing [143, 160].

Together, the aforementioned mechanisms operate as follows. Initially, Chimera must
be supplied with the details of a bootstrap node or be initiated as the bootstrap node.
If it is initiated as the bootstrap node, then it simply waits for join requests. If it is
supplied with the host name, port and key of a bootstrap node, then, as shown in Fig.
3.17, the joining node, A, transmits a join request containing its host name, port, and
key to the bootstrap node, B, and waits indefinitely for a response. If node B accepts
the join request, node B sends node A its leaf set, which is processed by Node A and
subsequently used to send an update message to each of the members of the leaf set
announcing its arrival.

Once the join process is complete, the network is then maintained through the use
of heartbeat messages and what is termed as piggyback messages. To elaborate, every
preset length of time a node is expected to ping every other node in its leaf set. If the
pinged node responds with an acknowledgement within a pre-assigned grace period, the
node is acknowledged as a functional one. If, however, the node does not respond in
time and its success average is found to be below an acceptable threshold, the node is
pruned out of the routing table. As for the piggyback messages, these are communicated
after every third ping. This message type contains the entire leaf set of the node, and
is communicated to every member of its leaf set in order to disseminate routing table
updates.

Further details of the Chimera implementation relate to its external and internal host

4Available: http://current.cs.ucsb.edu/projects/chimera/
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Figure 3.17: The operational mechanisms of the vanilla Chimera P2P protocol.

lookup algorithms. For external host lookups, Chimera is dependent on DNS lookups
for host resolution. The resolved IPs of hosts are not stored and lookups are performed
before every transmission. The remaining information related to peers, such as host
names, keys, and ports, are stored using the Red-Black binary tree library. As such,
these binary trees are used for subsequent lookups of information on hosts, as well as
for other implementation-specific behaviour relevant to the proper functioning of the
program itself.

All of the aforementioned communication occurs solely through the use of UDP
packets. The structure given to the UDP packets is shown in Fig. 3.18. Of the header
elements listed, the seqNum and source key fields are not used by the original authors
of Chimera. That is, the message header struct includes these fields, however, they are
not included or used in any transmitted or received packets.

Some of the limitations of Chimera include the fact that support was not extended
for TCP communication. Furthermore, aside from the provision of UDP-based message
transferring mechanisms, no functions were defined for resource lookups, file transfers,
or any other cooperative behaviour typical of P2P networks.
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Figure 3.18: The structure of a UDP Packet in the original Chimera implementation
(above), and post-modifications (below).

Modifications

Since the purpose of modifying Chimera is to instil the necessary measures to allow
for inter-system routing, the first requirement is a method by which overlays may be
differentiated from one another. To do so, the protocol mirrors the same identification
method used to differentiate nodes from each other. That is, as each node is given a
unique key, each overlay is also assigned a key. Although it is a simple change, this
modification echoes throughout the routing, messaging, and higher level functions and
layers.

Starting with the messages themselves, a message must be clearly labelled with its
destination overlay. Consequently the message header is modified to include this key as
well. Furthermore, the source key and sequence number header fields are enabled and a
source overlay key field is added. These three fields are included for reasons that will be
clear later in this subsection. The resulting message header is shown in Fig. 3.18.

As for the routing process, naturally, the first step is to define a third node type
that allows a node to operate as a gateway. This role is denoted as the ‘co-located’
node type and is typically considered to be fixed. This is because, in an industrial
setting, nodes that would be responsible for cross-layer communication will need to
be granted the proper access rights to do so. This means that such gateways might
need several types of communication interfaces, additional wiring, multi-homing, or the
configuration of firewalls and other devices to allow for the traversal of gateway-specific
traffic. Since only a number of devices may be afforded the configurations or hardware
necessary to operate under these constraints, the P2P protocol must therefore be able
to accommodate the use of these nodes as fixed gateways.

Currently, the role of a co-located node is designed to be occupied exclusively by
bootstrap nodes. That is, a co-located node is always a bootstrap node, but a bootstrap
node is not always a co-located node. Since all nodes must know the bootstrap node to
join an overlay and Chimera operates by using fixed bootstrap nodes, by doubling the
role of a bootstrap node as a gateway node, all of the members of each overlay become
de facto gateway pointers. This reduces the complexity of the protocol by eliminating
the need for the selection of gateway pointers and gateway discovery processes.
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Figure 3.19: The operational mechanisms of Chimera after modifications.

With all of the aforementioned modifications in mind, the message routing process is,
naturally, modified as well. First, due to the geographic proximity of peers, prefix-based
routing is abandoned. Instead, if a message is destined to a node in the same overlay as
the sender, then the message is sent directly towards the destination. However, if the
message is sent to a node in a different overlay, then, as shown in Fig. 3.19, the message
is routed via the co-located node with the destination key and destination overlay key
clearly labelled. If the bootstrap node contains a listing of a co-located node in the
destination overlay, which in this case would be a node that has joined its overlay from
the destination overlay or vice versa, then the bootstrap node forwards the message to
the co-located node. In turn, the co-located node then forwards the messages towards
its final destination. If no co-located node in the destination overlay is available, then
the bootstrap node transmits the message to a co-located node from a randomly selected
overlay in the hopes that it may have a path to the destination overlay. If the bootstrap
node is not aware of any active co-located nodes, then the message is dropped.

As previously mentioned, the message header is modified to actively use the message
layer sequence number, source key, and source overlay key. The source key and overlay
key are used for two purposes. The first is to instil a loop-breaking mechanism which
was not originally present in Chimera. That is, the next hop of a message is prevented
from being the previous hop to avoid routing loops. The second purpose is to simplify
the experimental analysis process. By using the source key, overlay key, and sequence
number, messages can be traced back from the destination to the original source permit-
ting the collection of metrics such as the number of hops travelled per message. Beyond
the experimental value of including these three fields, they may also serve to enhance
the security of the protocol. This was their intended purpose in the original implementa-
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tion of Chimera, but, like vanilla Chimera, they are currently still not used for security
purposes.

Further routing-related changes involve the modification of the purpose of leaf sets
and neighbour sets. As prefix-based routing is not used, leaf sets are therefore instead
used as overlay sets. That is, each leaf set maintained by a node corresponds to an
overlay. Consequently, as shown in Fig. 3.19, the pinging and piggyback messages have
also been modified to accommodate for this change. The pinging function now operates
by having a node select a leaf set at random before pinging all of the nodes in that overlay.
As for the piggyback messages, like the pinging function, the destination leaf set of the
piggyback message is chosen at random. However, the contents of the piggyback message
always contains information on the nodes in the transmitting node’s own overlay. Lastly,
the second type of sets, neighbour sets, are not currently used. However, because they
may be useful for the execution of other functions, such as load distribution and data
replication, they are kept as vestiges within the current implementation for future use.

The final modifications done to Chimera are related to increasing its efficiency and
flexibility. For the former, Chimera’s dependence on DNS-based host name resolution is
eliminated. Instead Chimera directly stores and shares information on host IPs through
piggyback messages. For the latter, further flexibility is achieved through two measures.
The first is the modification of all the functions responsible for network communication
to allow both 32 bit and 64 bit platforms to execute Chimera. This is to allow the
system to use computing resources from both ends of the spectrum of available devices.
The second modification is the removal of Chimera’s dependence on the Red-Black Tree
library. Instead, a generic hash table is instilled, which may be easily extended to use
a Red-Black Tree, a NedTrie or any other digital searching mechanism that developers
may desire.

The next section describes the experimental procedure and results used to evaluate
the designed inter-system routing mechanisms.

3.3.2 Experimental Results

The protocol presented is designed to allow for the reliable inter-system routing of mes-
sages between clusters of nodes and this section describes tests of the protocol’s abilities
and limitations. These tests are performed while observing the degree of variation in
the protocol’s behaviour as the number of clusters and nodes per cluster are modified to
establish a relationship between the two.

Results

The experiment is conducted on a Xen Project (TM) server hosting 48 Debian virtual
machines (VMs). Two further VMs running Ubuntu are deployed separately on two
32-bit CubieTruck ARM boards that were also extended using the Xen platform. The
physical network configuration therefore consists of two CubieTrucks connected to a
single network port on the server using an unmanaged switch. The port is then bridged
to 48 virtual interfaces, with each interface belonging to one of the 48 VMs.
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Figure 3.20: The structure of a 5 cluster network.

The number of clusters and nodes per cluster are varied to establish a relationship
between the two variables. As such, a fixed number of nodes, 50 in all, are divided into
1, 2, 5, 10 and 25 clusters with each cluster consisting of 50, 25, 10, 5, and 2 nodes,
respectively. Clusters are connected linearly via their bootstrap nodes as shown in Fig.
3.20.

The configuration and execution of these topologies is performed by a Bourne Again
Shell (BASH) script running on the server’s domain 0 (dom0)5. The script transfers
the Chimera application with the necessary bootstrapping configuration files to all 50
nodes before each experiment. Once the transfers are complete, the same script executes
all of the instances sequentially, with a gap of 2 seconds between each execution. The
gap gives each instance enough time to initialise before it may begin receiving pre-
configured messages, such as join requests, from any subsequently executed nodes. As
a precaution, the Chimera instances are always run under the GNU Debugger (GDB).
Finally, each experiment runs for an hour. During this time, each node collects and
records information related to the behaviour of its network, routing, messaging, and
application layers. Once the experiment timer expires, the same BASH script terminates
Chimera on all 50 nodes, retrieves and archives all of the relevant logs, and prepares the
node for the next experimental run.

The acquired logs are analysed in Matlab to evaluate the performance of the pro-
tocol. For each node, the total number of messages sent, acknowledged, received, and
rerouted are calculated. Messages are also traced backwards, from destination to origin,
to compute the number of hops travelled by every unique message transmitted during
the experiment. The results are aggregated by cluster and summarised by means, me-
dians, and 95th percentiles. Since each of these forms of descriptive statistics may vary
extensively from one node to the next, the maximum, minimum, and median values of
each is also computed. All of the aforementioned results are shown in Tables 3.6, 3.7,
3.8, and 3.9. The case of having 1 cluster, where inter-system routing is not possible,
serves the purpose of establishing the baseline behaviour of the protocol.

5Dom0 is the first domain started on boot by the Xen hypervisor
(c.f. https://wiki.xen.org/wiki/Dom0)
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Messages Sent
Mean Median 95th Percentile

# of Clusters Min Med Max Min Med Max Min Med Max
1 2180 2180 2208 2166 2185 2174 2295 2312 2833
2 1848 1859 1876 1669 1683 1820 2349 2465 3033
5 1438 1642 2226 1222 1424 1844 3241 4243 5440

10 1368 1396 1777 1304 1368 1466 2047 2557 5294
25 621 698 750 502 724 812 1018 1109 1153

Table 3.6: The number of messages sent per node.

Acknowledgements Received
Mean Median 95th Percentile

# of Clusters Min Med Max Min Med Max Min Med Max
1 2080 2121 2126 2079 2097 2129 2202 2207 2688
2 1669 1701 1737 1477 1556 1642 2068 2367 2643
5 1378 1583 2182 1165 1384 1802 3108 4201 5313

10 1344 1372 1740 1274 1345 1433 2039 2488 5213
25 611 692 740 493 723 809 1005 1092 1133

Table 3.7: The number of acknowledgements received per node.

Acknowledgements Sent
Mean Median 95th Percentile

# of Clusters Min Med Max Min Med Max Min Med Max
1 2093 2126 2132 2100 2137 2138 2276 2290 2349
2 1673 1707 1741 755 995 1042 853 1105 1162
5 1384 1588 2186 392 436 462 9897 11757 16699

10 1348 1374 1433 274 286 341 5775 6386 7186
25 613 692 741 370 378 474 1292 1462 1515

Table 3.8: The number of acknowledgements sent per node.

Number of Hops
Mean Median 95th Percentile

# of Clusters Min Med Max Min Med Max Min Med Max
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
5 1 1 2 1 1 2 2 2 2

10 1 2 2 1 2 2 2 2 3
25 2 2 2 2 2 2 2 2 2

Table 3.9: The number of hops per message.
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From Tables 3.6-3.9, it is apparent that the number of messages transmitted and
received follows a crude bell-curve shape. The maximum number is achieved at the mid
range, where the number of clusters is half the number of nodes per cluster. Although
the case where the nodes per cluster is half the number of clusters, trails closely behind.
These higher recorded numbers of messages are due to two properties related to these
clusters’ configurations. The first is that there are enough nodes per cluster to allow
for a healthy number of intra-routed messages. Second, the number of clusters is small
enough to allow for inter-cluster discovery within one hour. This is apparent from Table
3.9, where the 5 cluster and 10 cluster cases are the only ones with means, medians, and
95th percentiles reflecting the dominance of multi-hopped messages in their experiment
runs.

Contrasting with these results is the highly granular case of having 25 clusters of
2 nodes each. Here, the number of transmissions are markedly lower than has been
observed in the other experiments. This is because each leaf set is so small in size that a
ping run on a leaf set results in only a few message transmissions before the source node
rests and waits for the initiation of the next ping run. Although this means that the
overhead of pings on the network is lower, it also means that in a fixed set of nodes, the
discovery of faulty peers, and the subsequent pruning of their information, is also slow.
Furthermore, the inter-cluster discovery process also suffers with this large number of
small clusters. As shown in Table 3.9, the value at 25 clusters is consistently 2 hops,
meaning that, within the time span of an hour, it was rare for a cluster to be able to
discover clusters beyond its immediate neighbours. This is also a reason for the lower
total number of transmissions observed for this configuration as messages did not have
to travel far to reach their final destinations.

Although the protocol performed formidably, none of the experiments achieved a
perfect record with respect to all sent messages being acknowledged. This is due to
two possible explanations. The first is that once the hour-long experiment is complete,
the termination of all instances is not instantaneous. This leads to the loss of acknowl-
edgements, as they are either not sent or not received by a terminated application.
Furthermore, at certain times multiple nodes try to communicate with the same one.
This led to collisions and the loss of messages or acknowledgements. This is especially
true for the cases of 2, 5, and 10 clusters, where co-located nodes were consistently under
exceptionally heavy loads.

3.3.3 Discussion

Results from experiments, described in Section 3.3.2, indicate that having the number
of nodes be double the number of clusters, or vice versa, is the best configuration for
the protocol. Unfortunately, even with this configuration, the discovery process is con-
siderably slow. The procedure of having to send hefty piggyback messages containing
information on all of the nodes of a leaf set requires replacement with a quicker and
more robust solution with less overhead.

The inter-system pings, although unnecessary for the maintenance of whole networks,
were introduced to simulate the inter-system routing of messages. The protocol and
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implementation is agile and stable enough to consistently allow messages to reach their
destinations without fail and with the shortest path possible. Although this would allow
designers to set conservative TTLs to messages, it comes at the cost of bootstrap nodes
being considerably loaded with the task of re-routing messages throughout its operational
lifetime. This brings to question whether such nodes would be able to participate in
any other tasks required of a node beyond routing. A further consideration is that,
due to these high loads, implementing star-shaped clusters is not a realistic option.
Redundancy and load balancing should be considered to offset inevitable failures that
would result from the heavy routing loads that co-located nodes must handle. Finally,
another desirable features is a mechanism that allows for a mesh configuration between
the co-located nodes. This is preferred over to the linear routing currently in place in
the hopes of reducing routing loads and message latencies.

Finally, limitations of this experiment are discussed. The gaps between initiation and
termination naturally mean that all experiments did not run for exactly an hour. The
effect of this limitation has been noted in the Section 3.3.2. Another limitation is that
the experiment was only run for an hour each time. In the future, it would be interesting
to observe the steady state behaviour of the nodes in the 2 or 25 cluster network after
several hours, when wider knowledge of further clusters is established and inter-cluster
routing plays a much more dominant role.

3.4 Service Discovery with mDNS & DNS-SD

The evaluation results of the developed protocol in the previous section highlighted two
conclusions. The first is that the optimal network structure should have the number of
overlays be double the number of nodes per overlay, or vice versa. The second observation
showed that the discovery mechanism of the protocol, which is dependent on unicast
transmissions of leaf sets, is detrimental to the performance of the network. These
messages both added traffic to an overloaded network, especially affecting the co-located
nodes, and were slow to deliver information necessary for the discovery of peers and
overlays. For this reason, the networking protocol is converted into a service, the unicast-
based discovery feature of the protocol is disabled, and service discovery is outsourced to
an independent module. A management service is also developed to coordinate between
the networking and discovery services.

Another modification is the extension of the protocol implementation with IPv6
capabilities in accordance with the principles of contemporary designs.

The next subsections describe the discovery and management services and their inter-
actions with the networking service. The implementation and experimental evaluation
of the overall system is also presented.

3.4.1 The Discovery Service

This subsection is concerned with the selection and implementation of a robust and
efficient discovery mechanism for the overlay system. It does not aim to provide an
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exhaustive list of all existing methods for discovery. Rather, the discussion is limited
to mechanisms found in other P2P networks as cooperative systems and one from the
domain of zero configuration networking.

Although the field of cooperative P2P systems is relatively new, it has several im-
plementations such as [188] and [187] that provide a number of possible methods for
discovery. These two implementations are described in the next few paragraphs.

In [188], a framework designed to enable the cooperation of heterogeneous P2P net-
works is presented. Node discovery within networks is left to the protocols of the respec-
tive overlays. Whereas the discovery of co-located nodes is handled by the mechanisms
of [188], which involve the use of flooding or a secondary overlay network called the In-
ternet Indirection Infrastructure (i3). The former, flooding, is not an acceptable option
because it would only create the same network conditions and strain as occurred in the
first iteration of the modified Chimera protocol. The i3 overlay based method, based
on the work of [189], depends on the use of a network of servers, called the i3 network,
that behave as discovery and forwarding servers. For example, when a node becomes a
cooperative node, it registers itself with an i3 server using a ‘trigger’ message contain-
ing a service identifier. Previously registered nodes periodically check in with the i3
infrastructure by pushing a packet type message containing a service identifier and their
network address. The i3 servers forward these messages to other nodes registered with
the same or similar identifiers. Once the new node receives this informational packet,
it de-registers its trigger from the i3 overlay. Applied to the distributed manufacturing
infrastructure, this method would require the creation of a secondary infrastructure to
support the discovery of nodes. The daunting complexity of this task causes us to look
elsewhere for suitable solutions.

In [187], local discovery is managed by the respective protocols of the member over-
lays. However, as previously mentioned in Section 3.1.4, the discovery of co-located
nodes, termed synapse nodes in [187], is done using message embedding, active notifi-
cations, peer exchange, and aggressive discovery mechanisms. For message embedding,
a node includes all of the overlays that it is connected to in outgoing messages. Any
synapse node that is part of the message path decodes this information and updates its
tables. For active notifications, a synapse node, becoming aware of a transiting message,
pro-actively notifies the sender of its connected overlays. Peer exchange involves the
iterative transmission of discovery-relevant information. Finally, aggressive discovery is
an umbrella term imparted upon the exploitation of specific attributes of the member
overlay protocols, such as leaf tables or peer lists, for discovery purposes. Hence, [187]
offers no specific procedures for the protocol. Both message embedding and active noti-
fications are opportunistic discovery methods and do not guarantee the timely discovery
of nodes. Likewise, the peer exchange mechanism is similar to the one already in place
in the modified Chimera protocol and would deliver no added benefit. Lastly, aggressive
discovery, being a generic term, lacks any concise definition or specific procedure that
would be useful for the implementation.

Unfortunately, other implementations from the field of P2P networks as coopera-
tive systems either operate in a broadcast medium [177], use the mechanisms of the
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Factor Explanation

“Opportunistic Caching” A single multicast response may update all nodes in a network reducing the
volume of queries in a network.

Query Suppression If several machines have the same query, only one device needs to transmit it,
and yet, all nodes receive the response.

Passive Failure Detection If a node observes an unanswered query, this information may be used to prune
stale data from the cache.

“Passive Conflict Detec-
tion”

Multicast advertisements allow all nodes to promptly detect violations to required
unique attributes i.e. peer keys.

Constrained Devices Multicasting reduces the need for resources for response transmissions. These
would otherwise be required to accommodate a list of destination nodes for each
response.

Multiple Subnets If a node receives an advertisement published in a subnet, multicasting guarantees
that the advertised services exist on the local link, regardless of the source address.

Robustness In the case where every node’s address, default gateway, subnet mask, and DNS
server addresses are incorrectly configured, the use of a multicast address ensures
that all peers will still be able to receive advertisement on the local link.

Table 3.10: The advantages of mDNS [58].

aforementioned protocols [182, 183], do not offer mechanisms for discovery [153], or
give incomplete solutions to the application’s needs [185]. For these reasons, the next
subsection will look investigate the application of flexible dedicated service discovery
frameworks that may be tailored to the system. Specifically, due to the local nature
of the infrastructure, a multicast-based framework may be used in favour of a unicast-
based scheme to reduce traffic. However, out of the various multicast-based discovery
frameworks available, mDNS and DNS-SD are considered as a possible solution because
of the benefits listed in Table 3.10 and sourced from [58], which guarantee a system with
low overhead.

3.4.2 The Management Service

As is typical of SOA-governed designs, the orchestration of the various services is a
requirement. In this architecture, this feature is handled by the management service,
which is both responsible for the transfer of information between services local to a device
and those occupying the role of a node’s decision engine. The former, communication
between services, is done using UNIX domain sockets. The management service is a
necessary intermediary between these services to allow it to decode received information
and employ it in its decision making process. Currently, the algorithms that would be
involved in such a process are outside of the scope of this work. Instead, the entire
system operates in the manner shown in Fig. 3.21. After the management service
is initialised, bi-directional sockets are created and the mDNS and P2P services are
executed. After execution, the mDNS service initialises an mDNS discovery thread and
collects all advertisements published by other nodes on its connected subnets, packages
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Figure 3.21: Interactions in the basic service set.

them in a string that is preceded by the message type and size, as shown in Fig. 3.21, and
forwards the string to the management service via the socket. The management service
decodes this information and decides which services the mDNS should advertise and
what information to initialise the P2P service with. The service then creates messages
identical in format to that shown in Fig. 3.21 for each service and forwards them
accordingly. Once the information to be published is received by the mDNS service,
the message is decoded and the services are published. If services are already being
advertised by the mDNS service, these are removed and the new ones are published in
their place. The P2P service also decodes the message to receive its key, its overlay key,
the port it should run on, the overlays it should join, and the nodes the P2P service
should add or remove from its routing tables. This process repeats indefinitely allowing
published services and the status of the P2P service to be updated when required. The
management service also executes an mDNS reflector during the initialisation process if
it recognises that it is operating on a multi-homed device. With the entire framework
detailed, the next section will proceed with its evaluation.

3.4.3 Experiment

The designed framework and the newly adopted discovery mechanism are tested using 11
Debian VMs hosted on a Xen Project (TM) server. These are distributed equally across
two different network interfaces, with 5 nodes per interface and one multi-homed with
access to both interfaces. The topology used is shown in Fig. 3.22. The experiment is
executed on all 11 nodes sequentially using a BASH script running in Domain-0 of the
server. After execution, the script pauses for 60 seconds during which the behaviour of
the networking, routing, messaging, discovery, and other application layers and services
are logged. Once the timer expires, the script resumes and terminates the framework
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Figure 3.22: Transmission of mDNS advertisements in a distributed deployment.

on all nodes in sequential order before collecting all logs and restarting the experiment.
The evaluation done here is to determine the speed of discovery within the context of
the newly instantiated mechanism and architecture. The experiments were run a total
of 33 times to ensure consistency of results.

For all 33 experiments, the discovery times for all nodes are summarised as a per-
centage distribution in Table 3.11 and the mean is plotted in Fig. 3.23. The time taken
to discover a service is calculated from the point that the discovering node is initialised
or the discovered node’s services are published, depending on whichever occurs at a later
time, until the discovering node receives a copy of the advertisement. As may be seen
from Table 3.11, the discovery service allows all nodes to consistently discover any adver-
tised services within 3 seconds from the time of publishing. Having therefore achieved its
set goal of timely discovery, the next section will discuss opportunities for future work.
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% of services discovered by time T

Experiment # T=1s T=2s T=3s

1 49.59 100.00 100.00

2 59.50 99.17 100.00

3 52.89 100.00 100.00

4 42.15 93.39 100.00

5 64.46 100.00 100.00

6 53.72 91.74 100.00

7 38.02 97.52 100.00

8 37.19 92.56 100.00

9 53.72 97.52 100.00

10 53.72 100.00 100.00

11 30.58 92.56 100.00

12 33.06 95.04 100.00

13 36.36 95.04 100.00

14 36.36 92.56 100.00

15 43.80 98.35 100.00

16 34.71 90.08 100.00

17 42.98 98.35 100.00

18 61.16 99.17 100.00

19 38.02 97.52 100.00

20 53.72 94.21 100.00

21 54.55 99.17 100.00

22 56.20 100.00 100.00

23 57.02 99.17 100.00

24 55.37 100.00 100.00

25 43.80 98.35 100.00

26 55.37 99.17 100.00

27 53.72 98.35 100.00

28 39.67 96.69 100.00

29 48.76 96.69 100.00

30 47.93 95.87 100.00

31 41.32 96.69 100.00

32 38.02 95.87 100.00

33 57.85 99.17 100.00

Table 3.11: The percentage distribution of time to discovery in the experimental assess-
ment.
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3.4.4 Discussion

This section is concerned with discussing possible enhancements for the discovery service
as well as its relationship with previous work done in large industrial SOA research
projects.

Potential Enhancements

Although the system achieves its goal of providing the underlying infrastructure required
of a distributed system, improvements are, as always, possible. This section discusses
two main concepts that may be applied to enhance the discovery service. Primarily,
this involves modifications to the service advertisement change-tracking methods and
the reflector implementation.

The detection of changes to advertised services, interestingly, includes the tracking
of service advertisement removal. As was previously stated in Section 3.4.1, in the
implementation, a node typically removes its published services before it advertises a new
set received from its management service. This removal is done via a multicast message
that may be integrated into the node as a method for the detection of failures in the
network. Effectively, this mechanism may be used to replace the unicast heartbeat-based
failure detection methods of Chimera with a multicast system that, again, would provide
more timely detections of failure. Such a modification would allow for the integration of
more enhanced fault tolerance mechanisms in the distributed system.

For example, in this implementation only one reflector may bridge the same set of
networks. If more than one is active in the same subnets, a routing loop may occur
that would allow for the amplification of multicast messages. This would effectively
be a denial of service (DoS) attack on the bridged networks. Backups to the reflector
node are necessary because the failure of a reflector node would be detrimental to the
discovery process of the distributed nodes. Naturally, the heartbeat messages mechanism
of Chimera may discover the failure of the reflector node. However, its opportunistic
nature provides no guarantees in terms of timely detection. The implementation may
be modified to incorporate a pinging mechanism exclusive to the reflector nodes, albeit
at the cost of increased complexity. Instead, the service removal multicast messaging
system that is already available may be used as an indicator for the detection of failed
nodes and for the timely execution of appropriate measures by backup nodes in order to
guarantee a responsive and survivable infrastructure.

A service removal mechanism in the manner described may be useful only in cases
where failing nodes have ample time to publish service removal messages. This may
not be the case, for example, if a node suffers immediate and total power loss. In this
situation, techniques, like the use of non-maskable interrupts and large capacitors in a
topology such as in Fig. 3.24 may be used to give the node enough time to notify the
network of its impending failure. In the case of high load nodes, such as servers, UPS
systems may be required instead of capacitors. To keep costs down, modules similar to
server Intelligent Platform Management Interface (IPMI) subsystems, which would not
have high power requirements, may be given the responsibility of monitoring for power
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Figure 3.24: A mechanism for detecting and delaying the loss of input power.

outages and the publishing of service removal messages on behalf of high load nodes. To
enact such a comprehensive system, however, requires a complete study of the methods
available, costs involved, and mechanisms needed to guarantee timely transmissions of
service removal messages in the various node and system failure scenarios possible.

A second possible method for improving the discovery service involves altering the
reflector service to impart further reductions in network traffic. In this case, the reflector
node, instead of forwarding all received mDNS messages to all other interfaces, may
aggregate all of the resources in the received advertisements of one interface and publish
them as resources local to the reflector node on all other interfaces. Mappings to the
actual locations of these resources may then be kept by the reflector node. Thus, allowing
it to route any subsequent attempts to access the advertised resources to their respective
locations. Effectively, this would reduce the amount of messages being relayed between
networks. However, in order to avoid a scenario where the reflector node, being the only
reflector and hence aggregator, would suffer the fate of also being the only traffic relaying
node between subnets, a method for the distribution of the services to be aggregated
across multiple reflector nodes may be required. Alternatively, the reflector service may
simply cache responses from one subnet and respond on behalf of those nodes to any
polls it receives from its other interfaces, thereby reducing the impact of polling on large
scale, multi-subnet deployments using a low-effort solution. A feasibility study is needed
to determine the overhead cost of such approaches or modifications in comparison to
that of the currently implemented technique of reflection.

On Contemporary Projects

Approaches implemented in large contemporary projects for SO industrial automation
almost exclusively use WS-Discovery for zero-conf discovery. This include the IMC-
AESOP, PLANTCockpit, and IoT@Work projects previously discussed in Chapter 2.
WS-Discovery uses multicast SOAP-over-UDP messages for advertising, searching, and
locating services on a local network. Similar to mDNS, the caching of multicast adver-
tisements to reduce the number of subsequent in-network probes is encouraged. However,
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a difference lies in the number of possible situations that support caching. For example,
while mDNS stipulates that query responses be multicast, WS-Discovery requires uni-
cast responses. This means that in mDNS, if several nodes have the same query, only
one node needs to probe for the service and all nodes may benefit from the response. In
contrast, with WS-Discovery’s unicast responses, this is not possible and indicates that
the two specifications may have different impacts on the network performance rates.

Another feature of WS-Discovery that may possibly impact performance lies in its
message structuring technologies. The WS-Discovery specification requires the use of
XML, while mDNS typically uses DNS-SD. In [68], the authors show that a ‘Hello’
multicast message predominantly containing addressing information is sized at 1088
bytes. Whereas packet captures from the Xen server showed mDNS query responses
with frame sizes in the range of 300 bytes. Remedies are however possible, as [190] and
[191] show that extensive savings in message sizes may be incurred if the EXI specification
is applied to reduce the XML overhead of WS messages and possibly result in message
sizes that are comparable with mDNS.

Without continuing with a granular comparison of the two specifications, it is already
apparent that WS-Discovery, mDNS, and their companion technologies all target the
same issues and, at times, use very similar techniques. However, differences do exist.
Thus, there is a need for a detailed analysis and evaluation of the two systems to compare
them in terms of their delivered benefits and expected performance. This is to determine
the appropriateness of each as a solution for discovery in industrial environments.

3.5 Conclusion

An inter-system routing protocol is built based on the constraints of developing for
industrial, SOA-governed, distributed systems. The system was subsequently deployed
on 50 VMs on 64-bit and 32-bit platforms. Extensive testing was performed to determine
the performance of the protocol and the optimal configurations for the organisation of
Chimera peers.

The test results unearthed drawbacks that include high traffic loads and slow discov-
ery times. Thus, the work was further extended by re-designing the networking layer as a
basic service set for the non-RT coordination of industrial, SO, and survivable infrastruc-
ture. The resulting architecture applies network, discovery, and management services.
It also uses sockets for inter-service communication, P2P technologies for inter-node
communication, and mDNS and DNS-SD for discovery. The implemented framework is
tested using 33 consecutive runs on 11 VMs across two subnets. Results showed that
the presented services and their associated mechanisms consistently allowed for network-
wide discovery of published services within a span of 3 seconds.

Further enhancements for the existing services are discussed. These include the use of
service removal mechanisms, service aggregation and caching to reduce the impact of the
proposed system on channel performance rates. However, based on the acquired results,
the architecture is both stable and suitable for the failure-resistant relaying of messages
in distributed manufacturing systems. The presented system may therefore progress
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beyond the basic service set and incorporate advanced services for the acquisition, tun-
nelling, translation, storage, processing, and distribution of data. In the immediate sense
this would involve the application of the services as a transport layer for middleware stan-
dards, e.g. OPC UA, as well as the extension of the SOA with capabilities to support
hard RT tasks, as done in [192], to allow for the complete assimilation of field-level
manufacturing components. This system would be a comprehensive solution capable of
resolving age-old and complex challenges to vertical integration, system reconfiguration,
and distributed execution in heterogeneous manufacturing environments.
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CHAPTER 4
Enhancements to the

Open-Platform Communications
Unified Architecture

Several passages in this chapter are quoted verbatim from the following publications:

1. Ahmed Ismail and Wolfgang Kastner. Coordinating Redundant OPC UA Servers. In 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA). September 2017,
1-8.

2. Ahmed Ismail and Wolfgang Kastner. Throttled Service Calls in OPC UA. In 2018 IEEE 19th International
Conference on Industrial Technology (ICIT). February 2018, 1-6. In press.

The previous chapter developed alternate communication mechanisms for traffic en-
gineering in networks of cooperative systems. This chapter continues to develop the en-
visioned system of flexible, agile, and resilient SO CPPS by designing and implementing
enhancements for an OPC UA governed system of services. While OPC UA provides
a complete technology stack, standardised interfaces and components, and guidelines,
OPC UA also has gaps that are purposely left open for vendor-specific implementations.

For example, a SCADA system based on OPC UA is typically a large distributed
system. It is “a system comprised of multiple software components running indepen-
dently and concurrently across multiple physical machines” [30]. As noted in [193], large
distributed systems need several forms of coordination. These include requirements for
configuration, replication, synchronisation, group membership, discovery, leader election,
and barrier synchronisation (resource fencing and locks) [193, 31]. For instance, OPC
UA Servers running in warm redundancy failover mode need mechanisms for address
space synchronisation and to ensure that only one server in the redundancy set connects
to a downstream device at a time [133].

Since the need for coordination mechanisms is common across many distributed
applications, Yahoo! created and open-sourced a generalised service for coordination,
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named ZooKeeper. This service, with its uncomplicated filesystem-like API and strong
guarantees for consistency, ordering, and durability has become the de facto solution for
distributed coordination. The first goal in this chapter is to demonstrate the coordination
of OPC UA server redundancy sets using Apache ZooKeeper [30].

The second part of this chapter addresses the client-server communication model
in OPC UA. Communication between clients and servers in OPC UA is in the form
of service calls. Effectively, these are Remote Procedure Calls (RPC). This implies
that OPC UA predominantly operates using a client-side push-based communication
model. The problem with this model is that it is possible for a single OPC UA Server to
receive too many concurrent requests. In trying to process these requests, the server may
exhaust or over-extend its available resources. Thus, the server may enter a failed or
degraded state causing clients to experience high latencies, request time-outs, or service
unavailability [194]. The degraded operation or unavailability of a component in an
online manufacturing system is highly undesirable. The National Institute of Standards
and Technology (NIST), for example, recorded an incident where a hanged control system
in a wafer fabrication plant caused a financial loss worth US $ 50 000 [195].

It can be argued that the use of OPC UA Server Redundancy Groups and Ser-
viceLevel indicators may alleviate the symptoms of server overload or prevent them from
occurring. The former, involves sets of redundant servers with access to the same un-
derlying resources and a synchronised information model. The latter, is a byte variable
included in every OPC UA Server address space. It can have a value of 0, 1, 2-199, or
200-255 signalling that the Server is in a Maintenance, NoData (failed), Degraded, or
Healthy state, respectively. According to the specifications, clients connected to a De-
graded Server should not expect reliable services. Consequently, the client is permitted
to switch to another healthy Server, if one is available. The client may also connect to
multiple degraded servers to maximise its access to the underlying devices and their data.
If connecting to a healthy server, a client is expected to select the one with the highest
value. The sum of these tools therefore amounts to capacity planning and a simple load
balancing strategy [133].

However, since capacity planning and load balancing do not alter the client-side push-
based communication model of OPC UA, servers continue to be vulnerable to overload.
In fact, as clients are permitted to switch from degraded to healthy servers, the situation
may worsen as failures cascade across an impacted redundancy set and possibly cause
the entire service to fail.

Other possible solutions limit the number of requests that are received and/or pro-
cessed by an OPC UA Server. Thus implying rate throttling and load shedding, respec-
tively. Both of these strategies involve the use of queues. Rate throttling would use
a resourceful mediator to shield an OPC UA Server from traffic bursts. In contrast,
load shedding operates on the premise that rejecting a service call uses significantly less
resources than processing it. By limiting the number of requests being concurrently
processed and rejecting the rest, servers are believed to reduce their chances of failing
[196]. While both may be viable solutions to the problem, neither approach has been
investigated in this context. Thus, this chapter also takes the first step by examining
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the use of a rate throttling mediator to combat server overload in OPC UA. Similar to
the coordination service, this is demonstrated using the Apache ZooKeeper service.

This chapter is therefore structured as follows. Initially, a primer on Apache ZooKeeper
is provided. This is followed by an overview on OPC UA server redundancy. Next, the
first deliverable, the coordination service, is detailed giving a description of the architec-
ture, data model, and components used. The proposed system is evaluated through a
prototypical implementation. The merits, limitations, and caveats involved in the sys-
tem are discussed. Next, the queuing service developed for service calls rate throttling
is similarly described and implemented. The code for both services is open sourced on
Github1, 2.

4.1 ZooKeeper
This section presents an overview of ZooKeeper by discussing its data structure, ar-
chitecture, sessions, ZooKeeper Atomic Broadcast (Zab) protocol, local storage, failure
resolution, and security [30].

4.1.1 Servers

The ZooKeeper service operates using a server-client architecture. Applications use a
client library to interact with the ZooKeeper servers, as shown in Fig. 4.1. The servers
can run in either standalone or quorum mode. The former is a single server and no
replication of the ZooKeeper’s state occurs. In quorum mode, a group of servers, termed
the ensemble, work together to replicate the ZooKeeper state and serve client requests.
A quorum is the smallest number of servers out of the ensemble that are needed to allow
ZooKeeper to work.

ZooKeeper 
Ensemble

Application

Client Library

Application

Client Library

Server

Server

Server

Figure 4.1: The ZooKeeper client-server architecture.

1https://www.github.com/AGIsmail/zkUACoordination
2https://www.github.com/AGIsmail/UaRateThrottling
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Within an ensemble, a ZooKeeper server can be either a leader, a follower, or an
observer. The leader is an elected position that manages all requests for state changes,
including the ordering of changes. The leader transmits state changes as proposals that
are voted on by the followers to ensure the replication of state changes across the quorum.
Observers do not vote on state changes and only replicate committed updates. Observers
are typically used to scale the system.

4.1.2 Sessions

Clients connect to any single server using a TCP session. Clients send heartbeat messages
to keep sessions alive. Only a server can declare a session as expired. If, however, a
client does not hear from its server for a certain amount of time, the session may move
to another server. The server that it connects to is selected at random as a form of
simple load balancing. Within a single session, requests are executed First-In-First-Out
(FIFO). However, FIFO guarantees do not apply to concurrent and consecutive sessions.

4.1.3 Data Structure

ZooKeeper uses a hierarchical tree of data units, termed znodes, for its data structure.
Znodes can be persistent or ephemeral. A persistent znode can only be removed through
a call for deletion, whereas an ephemeral znode is also removed if the session of the client
that created it expires. Because ephemeral znodes are session-dependent they are not
permitted to have child znodes. Both persistent and ephemeral znodes can also be
sequential. Sequential znodes are assigned unique sequentially incremented integers. An
example data structure can be seen in Fig. 4.2.

/Configs

/Configs/Server1

/

/ActiveServers

/ActiveServers/Server1

/Tasks

/Tasks/Server1

/Tasks/Server1-0000000001

Key

Persistent znode

Ephemeral znode

Sequential znode

Figure 4.2: An example ZooKeeper data structure.
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ZooKeeper supports the implementation of a quota on the number of znodes, called
the count, and the size of data, called the bytes, that can be stored. Exceeding the set
quotas only causes a warning to be logged and does not interrupt the operation of the
system.

Every znode is given a version number that is incremented with every change to its
data. This allows for the conditional execution of certain operations, such as deletion
and data setting operations, as shown in Fig. 4.3. However, because a znode’s version
number is reset if it is deleted and re-created, conditional execution is not fool-proof.
An example demonstrating the failure of conditional execution is shown in Fig. 4.4.

Client
ZooKeeper 

Server

setData of /Configs/Server1 if version=1

/Configs/Server1, version=2
alt

Version is not 1

Version is 1

Operation failed

Figure 4.3: The coordination of concurrent updates using conditional execution. A data
setting operation is dependent on znode /Configs/Server1 having a version number of
1. If the data set operation succeeds, the znode’s version number is incremented to 2.

4.1.4 Watches and Notifications

Due to the performance penalty incurred by polling mechanisms, ZooKeeper favours a
method based on notifications. Clients register for a notification by setting a watch on
ZooKeeper. A watch is removed if the notification is triggered. To continue monitoring
the znode, the client must therefore reset the watch. To avoid missing changes between
receiving a notification and resetting the watch, watches are set using operations that
read the znode’s state. This mechanism is demonstrated in Fig. 4.5.

Watches can be set to monitor for changes to a znode’s data, its children znodes, or
its creation or deletion. They are persistent across servers and can only be removed by
being triggered or if the creating client’s session expires.
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Client
ZooKeeper 

Server

Delete /Configs/Server1

/Configs/Server1, version=0

loop

[counter < infinite]

Create /Configs/Server1, data=(x++)

x=0

Figure 4.4: An example of a failure in conditional execution. The znode data is updated
infinitely, but the version number remains the same.

Client
ZooKeeper 

Server

Get children of /Configs & set watch

/Configs/Server1, version=0

Client

Create /Configs/Server13

Notification

Get children of /Configs & set watch

Figure 4.5: An example of a watch and notification on ZooKeeper. The watch set on
the /Configs znode by the first client (left) is triggered by the creation of a new child
znode under the same path by the second client (right).

112



Watches should be applied conservatively as they consume about 250-300 bytes of
memory per watch, and the number of notifications sent for each watch is equal to
the number of watches set for that znode. This rule of proportionality may result in
undesirable traffic spikes on the network.

A final consideration related to watches relates to the ‘Exists’ watch, which is set to
monitor for the creation of a znode. As a node’s creation may be missed between the
time that a client disconnects and reconnects, it should only be used for long-lasting
znodes.

4.1.5 Requests and the Zab Protocol

Requests can be read requests or state changing requests. Both are atomic and ei-
ther succeed or fail and no partial results are permitted. Reads are executed locally
by ZooKeeper servers, while the writes are forwarded to the leader. The request is
typically initiated by the client. The leader transforms the request into a transaction
that describes the steps to be applied atomically and results in a state change. These
transactions are committed using the Zab protocol.

The Zab protocol requires that the leader send the transaction to its followers as a
proposal. The followers respond to the leader with an acknowledgement if they accept
the proposal. Once the leader receives a majority of acknowledgements from the quorum
it transmits a commit message to the followers and an inform message to the observers.
This is shown graphically in Fig. 4.6. It is important to note that transactions are both
idempotent and permanent. ZooKeeper does not support rollbacks.

Transactions generated by the leader are assigned a ZooKeeper Transaction ID (zxid).

ZooKeeper 

Server

[Follower]

ZooKeeper 

Server

[Leader]

ZooKeeper 

Server

[Follower]

PROPOSAL

ZooKeeper 

Server

[Observer]

PROPOSAL

ACCEPT ACCEPT

COMMIT COMMIT

INFORM

Figure 4.6: Simplified view of the message pattern between leader, follower and observer
servers while committing a proposal.
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Each zxid is a 64-bit integer used to ensure that transactions are applied in the order
established by the leader, amongst other things. The zxid may be used for conditional
execution.

4.1.6 Local Storage

ZooKeeper uses a pre-allocated transaction log file to persist ordered transactions on
local storage. The transaction log is appended with proposals before they are accepted.
ZooKeeper also offers snapshots, which are complete copies of the data tree serialised
to file. Processes continue to execute during the snapshot taking process. This results
in fuzzy snapshots that do not represent the true state of a tree at any specific point
in time. However, this shortcoming may be remedied by replaying the transaction logs
over the snapshot. Together, logfiles and snapshots may be used to recreate a server’s
state for later review or recovery.

4.1.7 Failures

Failures in ZooKeeper may occur in the service, network, or application and may be
either recoverable or unrecoverable.

Recoverable failures, such as a network hiccup, are normal events and applications
are written to continue running in spite of them. In the case of the leader, all actions
should be suspended while in a disconnected state because no updates are received
during this time. Clients, on the other hand, lose all of their submitted requests when
they disconnect and need to resubmit them once they reconnect.

Unrecoverable failures are typically caused by expired sessions or an authenticated
session no longer being able to authenticate itself. Unrecoverable failures, should be
handled by exiting the application. Once the application starts again, it may resynchro-
nise with ZooKeeper. This avoids the possibility of undesirable manipulations of data
in multi-threaded applications that automate recovery.

4.1.8 Security

The security aspects of ZooKeeper include:

1. access control lists (ACL): Access rights are normally handled by the developer as
they are set each time a znode is created. Access rights are not inherited by child
znodes from their parent.

2. encrypted communication: Client-server communication may be encrypted if the
server has Netty and Secure Sockets Layer (SSL) support. Quorum communication
does not currently support SSL [197].
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4.2 OPC UA Server Redundancy

This section provides an overview of redundancy features in the OPC UA standard. OPC
UA supports the redundancy of both clients and servers to allow for availability, fault
tolerance, and load balancing in different deployments. In OPC UA, this is achieved
by allowing for duplicate instances of clients and servers. Special services, mechanisms,
nodes, and client/server profiles are included in the specifications to support the various
possible redundancy scenarios. These scenarios translate to a variety of failover modes
that are available for OPC UA Server redundancy. A specific node, the ServerRedun-
dancy node, is included in the address space to advertise the failover mode supported
by an OPC UA Server. The different types of failover modes and their requirements are
detailed in the rest of this section [70, 133, 24, 135, 198].

4.2.1 Transparent Redundancy

Redundant servers operating in transparent redundancy (TR) mode all run using an
identical server URI and endpoint URL, as shown in Fig. 4.7. Therefore, the servers all
appear as one server to connected clients. To allow a connected client to pinpoint the
exact source of its data in a redundant server set, each server offers a unique ServerId.
Information synchronisation between servers is the responsibility of the servers such that
no actions are required by the client when a failover occurs.

Transparent Server

OPC UA Client

OPC UA Server
(active)

OPC UA Server
(backup)

OPC UA Client

OPC UA Server
(active)

OPC UA Server
(backup)

a) Transparent Redundancy

b) Non-Transparent Redundancy

Figure 4.7: a) Transparent and b) non-transparent redundancy in OPC UA [133].
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4.2.2 Non-Transparent Redundancy

In non-transparent redundancy (NTR) mode, clients are expected to participate in the
failover. This typically involves selecting a server to failover to and moving session-
relevant information to the new server. To do so, a server in NTR provides its clients
with information on its failover mode and the other servers in its redundancy set. The
different modes available in NTR are Cold, Warm, Hot and HotPlusMirrored.

Cold In Cold NTR, only one single server is active at a time.

Warm In Warm NTR, redundant servers may be active but only a single server can
connect to the downstream device(s). This is useful in situations where the device(s)
can only support a single connection at a time.

Hot In Hot NTR, all of the redundant servers are active and more than one server
may be connected to the downstream device(s). The servers participating in a Hot
NTR redundancy server set operate independently and are expected to have “minimal
knowledge” of each other.

HotPlusMirrored In HotPlusMirrored, also referred to as Hot+ and hot and mir-
rored, all of the servers in a group mirror their internal states across each other. More
than one server may be active and connected to a downstream device. The mirroring
must at least include “Sessions, Subscriptions, registered Nodes, ContinuationPoints,
sequence numbers, and sent Notifications” [133].

4.3 Coordination in OPC UA Server Redundancy

Several aspects of server redundancy in OPC UA are in need of reliable coordination
measures. This section presents these needs and details an integrated solution based on
OPC UA and ZooKeeper.

4.3.1 Demands

The demands for coordination in OPC UA Server Redundancy include the following:

1. The first requirement is a synchronised address space such that an identical hi-
erarchy of nodes is exposed to connected clients. This includes identical Nodes,
NodeIds, browse paths, and address space structure. The only exempt nodes are
the ones in the local Server namespace that, for example, expose server diagnostics
information. This need is universal across all failover modes. Further requirements
exist for specific failover modes, such as the replication of unique identifiers for
events across servers in TR or Hot+ configurations [133].
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2. The second requirement is a reliable mechanism for the detection of server failures.
In the case of a TR server set, this would ensure the timely transfer of a session
and its subscriptions to a functional server [133]. In NTR, this would allow for the
automated initialisation of an application and/or connection to a downstream de-
vice. A service is therefore required to ensure failure detection and, if appropriate,
contention resolution measures for the position of active server or to determine
which server may connect to the downstream device.

The aforementioned requirements may be resolved by using ZooKeeper as a reliable
configuration store for address space replication and as a central point for failure de-
tection, leader election, and contention resolution. Using ZooKeeper for these services
delivers several benefits to the system. The first is that any newly added OPC UA server
only needs to be told how to connect to the ZooKeeper service and it may then download
any other configuration information necessary, including its address space, and discern
its role in the redundancy set [199]. The second benefit is derived from ZooKeeper’s sup-
port for watches and notifications, which allow OPC UA servers to subscribe to changes
and undergo run-time reconfiguration [199]. Third, ZooKeeper’s snapshots and logs may
be used to recreate the state of the information model at any point in time for diagnostic
purposes. Last of all, ZooKeeper’s other benefits include its guarantees for consistency,
ordering, reliability, and its scalability born of its use of the Zab protocol and Observer
servers.

To realise the above applications, certain requirements need to be imposed on the
system:

• The entire address space of a redundancy server set must be stored on the dis-
tributed coordination service.

• Any modifications to the address space must be atomic and reflected on the coor-
dination service.

• Any running server in a redundancy set must register its type and state on the
distributed coordinator.

• For all of the above points, the distributed coordination service must be the only
source of truth in the system.

To demonstrate this integration of OPC UA and ZooKeeper for distributed coordi-
nation, Subsections 4.3.2 to 4.3.4 present the overall architecture of the resulting system,
the data model used for ZooKeeper, the different architectural components, and their
implementation details.
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4.3.2 The zkUA Architecture

The ZooKeeper-OPC UA (zkUA) system architecture is composed of four software com-
ponents shown in Fig. 4.8:

1. ZooKeeper Ensemble: This is the distributed coordination service in the scenario.
Out of an ensemble of n servers, the best practice is for n to be an odd number
and that a majority be used to form the quorum. Doing so, would tolerate f
servers crashing, where f<n/2, without it resulting in undesirable behaviour, e.g.,
split-brain scenarios [30].

2. zkUA Server: Every server participating in a redundancy set in the system must
be integrated with ZooKeeper for several reasons. First, it ensures that any mod-
ifications to the address space locally or on ZooKeeper are reflected in the other.
This allows redundant servers to provide connected OPC UA Clients with a homo-
geneous view of their address space. The integration is also needed for the correct
operation of failure detection, leader election, and contention resolution for reasons
that will be clear in Section 4.3.4.

3. zkUA Proxy: For the migration of existing OPC UA servers to the zkUA system,
zkUA Proxies are required. This component is both an OPC UA and a ZooKeeper
client. Its purpose is to replicate the address space present on an OPC UA Server
to ZooKeeper. Replication of changes from an address space on ZooKeeper to
legacy OPC UA Servers should not be supported as the legacy servers may include
functions that would disrupt the overall behaviour of the zkUA system.

4. zkUA Failover Controller: This component is the main management component in
the architecture. It is responsible for detecting and reporting zkUA Server failures,
initiating a failover, and participating in contention resolution and resource fencing.
The details of this component are discussed in Subsection 4.3.4.

4.3.3 The ZooKeeper Data Model

A fifth component essential to the zkUA system is the data model deployed on ZooKeeper
that is also shown in Table 4.1 and Fig. 4.9. The first znode under the root node is
the /Servers znode. This denotes the parent znode under which all OPC UA Server
redundancy sets operate. Each redundancy set requires a neutral identifier under the
/Servers znode where the set’s address space may be stored and its activities organised.
A Globally Unique Identifier (GUID) is currently used to represent each redundancy
set. To advertise the GUID via the OPC UA address space, a new Variable node, the
GroupGUID, is created under the OPC UA-specified ServerRedundancy object. The
GroupGUID’s value is set to the GUID of the redundancy set. Both the path and the
value are shown in Fig. 4.10.

Every Node is uniquely identified on ZooKeeper under the /AddressSpace path using
its NodeId. The NodeId is converted into a string that holds the Node’s namespace and
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Ensemble
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zkUA System
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Replication

Ephemeral  locks 

Address Space 
Replication

Figure 4.8: The zkUA system architecture.

ZooKeeper Path Type of znode Explanation

/Servers Persistent The root path for zkUA Server redundancy
sets.

/Servers/{GroupGUID} Persistent Every redundancy set is assigned a unique
GUID to differentiate it from the others.

/Servers/{GroupGUID}/AddressSpace Persistent This path stores all of the OPC UA Nodes
with their respective attributes and ref-
erences for storage, synchronisation, and
replication.

/Servers/{GroupGUID}/Active Persistent If a zkUA Server is in a functional state,
connected to a downstream device, and
ready to serve clients, then it is in an active
state and is represented by an ephemeral
znode under this path.

/Servers/{GroupGUID}/{Failover
Mode}

Persistent All zkUA Servers that support a specific
failover mode and are part of the same re-
dundancy server set are each represented
by an ephemeral znode under the correct
Failover Mode path. Paths are available
for Transparent, Cold, Warm, Hot, and
Hot+ redundancy.

Table 4.1: The ZooKeeper data model for OPC UA servers redundancy.
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/Servers

/Servers/{GroupGuid}

/Servers/{GroupGuid}/Active

/Servers/{GroupGuid}/{FailoverMode}

/Servers/{GroupGuid}/AddressSpace

/Servers/{GroupGuid}/{FailoverMode}/{ServerUri}

/Servers/{GroupGuid}/Active/{ServerUri}

/Servers/{GroupGuid}/AddressSpace/ns={d};i={d}

JSON Document

/

Figure 4.9: The hierarchical ZooKeeper data model for OPC UA servers redundancy.

identifier. For example, a node belonging to namespace index 1 NodeId 3000 would be
represented as “ns=1;i=3000” under the AddressSpace path. The znode’s data is set
with the encoded attributes of the Node it represents.

Naturally, this data model may be extended based on the failover mode to accom-
modate any additional information requiring synchronisation across the redundancy set.
While in its current state, however, it is apparent that an indirect result of having all
zkUA Servers register on ZooKeeper is that ZooKeeper unwittingly doubles as a discov-
ery service. The remainder of the data model will be clarified in the next subsection as
the operations of the zkUA components are discussed.

4.3.4 The zkUA Components

zkUA Proxy The zkUA Proxy is developed as a migration path for non-ZooKeeper
integrated OPC UA Servers. It is composed of a ZooKeeper client and an OPC UA
Client. The proxy is initialised with a configuration file that specifies several parameters
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Figure 4.10: The “GroupGUID” variable node and “Activate/Deactivate Server” method
node in the OPC UA address space.

Parameter Component Explanation

Hostname Proxy/Server The hostname belonging to the OPC UA Server.

PortNumber Proxy/Server The port number the OPC UA Server is bound to.

GroupGUID Proxy/Server The GroupGUID representing the UA redundancy group on
ZooKeeper.

Username Proxy/Server The Username used to login to the UA Server.

Password Proxy/Server The Password used to login to the UA Server.

ZkServer Proxy/Server The hostnames and port numbers of ZooKeeper servers participating
in the ensemble.

RedundancyType Server The zkUA Server needs to be informed of its redundancyType. Op-
tions are: standalone, transparent, cold, warm, hot, and hot+.

State Server Instructs the zkUA Server if it is to start in an active or inactive
state.

ServerId Server Required if the server is running in transparent redundancy mode,
otherwise it is not.

AvailabilityPriority Server If set to true, the locally cached address space is used as a fallback
for reads in case the server’s connection to ZooKeeper is interrupted.

Table 4.2: The zkUA start up configuration file parameters.

listed in Table 4.2. The proxy must be told which OPC UA Server’s address space to
replicate to ZooKeeper. It must also be told how to connect to it and the redundancy
server set’s GUID so that it may push the encoded address space to the correct path on
ZooKeeper. A UML sequence diagram demonstrating the actions of a zkUA Proxy is
shown in Fig. 4.11.

zkUA Server The zkUA Server, similar to the zkUA Proxy, is initialised using a
configuration file providing it with start up parameters such as its URI, port, redundancy
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OPC UA 

Server

ZooKeeper 

Server
zkUA Proxy

BrowseAddressSpace()

ReadConfigFile()

PushAddressSpace()

AddressSpace

loop

[Full AddressSpace Browsed = False]

Figure 4.11: A UML sequence diagram showing the actions of a zkUA Proxy component.

group GUID, failover mode and role, as shown in Table 4.2.
An additional parameter, AvailabilityPriority, is included in the configuration file to

allow reads to continue from the zkUA server’s local cache even if the communication
between it and the ZooKeeper ensemble fails. Although this stops ZooKeeper from being
the only source of truth, it may be required in cases where the continued uninterrupted
availability of the zkUA Server is necessary. In such cases, it is advisable that modifi-
cations to the local cache be kept at a minimum, e.g., only permitting the continued
polling and storage of values from downstream devices in the address space while disal-
lowing any add/delete operations or the modification of Node types until the connection
to ZooKeeper is restored.

A new Method Node, the “Activate/Deactivate Server”, is also needed by every zkUA
Server. The Method Node and its associated internal function are used to modify the
state of a zkUA Server when a failover is initiated.

The interactions that take place between a zkUA Server and ZooKeeper are shown
in Fig. 4.12.
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ZooKeeper 
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AddressSpaceExists()
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alt

[Else]

[Address Space 
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ReadConfigFile()
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PushAddressSpace()

AddressSpace
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AddressSpace

GetAddressSpace()

GetAndSetWatchOnAddressSpace()

UpdateLocalAddressSpace()

UpdateLocalAddressSpace()

Figure 4.12: A UML sequence diagram showing the interactions taking place between a
zkUA Server and ZooKeeper. The triggered notification implies that the address space
stored on ZooKeeper was manipulated by a zkUA Server.
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zkUA Failover Controller Finally, the zkUA FC is one of the most critical compo-
nents in the system because it manages the behaviour and role of the zkUA Servers. The
zkUA FC, similar to the proxy, is both an OPC UA Client and a ZooKeeper client. The
zkUA FC is initialised with all of the parameters found in a zkUA Server configuration
file except for the “AvailabilityPriority” parameter. These configurations are used by
the zkUA FC to know which zkUA Server to monitor, how to connect to it, and what
the correct failover mode and behaviour should be.

The zkUA FC is modelled on Hadoop’s HDFS ZKFailoverController [200] and, there-
fore, performs the following tasks:

• zkUA Server registration: Once initialised with a specific failover mode, the zkUA
FC opens a session with ZooKeeper and creates an ephemeral znode under the
redundancy group’s path for that mode.

• zkUA Server status monitoring: the zkUA FC of a specific zkUA Server periodically
polls the server’s state to determine its health. If the server responds in a timely
manner with an acceptable state then it is considered to be healthy. Otherwise,
it is not. The acceptable responses for the server’s state differ with the failover
mode.

• zkUA contention resolution: If a zkUA Server is initialised in an active state and
the failover mode supports more than one active server at a time, the zkUA FC
creates an ephemeral znode under the redundancy set’s Active path. If the failover
mode or scenario only supports one active server at a time then only one zkUA
FC and server combination is capable of creating an ephemeral znode under the
Active path at a time, effectively acquiring a lock for the downstream device. The
zkUA FC/server combo that is first to create the znode acquires the lock. All
other controllers then monitor the lock for deletion. This typically occurs if the
zkUA FC with the lock determines that its zkUA Server is in an unhealthy state.
In such a case, the zkUA FC terminates its session with ZooKeeper. As the session
expires, the ephemeral znodes are deleted, and all other controllers monitoring the
znode are notified of the deletion event. The respective active controllers then try
again to be the first to create a lock.

The above actions are demonstrated using a UML sequence diagram in Fig. 4.13.
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Figure 4.13: A UML sequence diagram showing the interactions taking place between a
zkUA Server, a zkUA FC, and ZooKeeper.
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4.3.5 Implementation

A prototypical implementation3 is made using the open source ZooKeeper4 and open62541
libraries [201]. The resulting code achieves the requirements in Section 4.3 by intercept-
ing calls in the open62541 library to OPC UA Node addition, deletion, and modification
(attribute writing) functions. Specifically, the functions are re-defined in the amalga-
mated open62541 library header file such that calls to the functions listed below are
redirected to zkUA interception functions.

• Service_Write: This function is called once when an OPC UA Client modifies the
attribute of a Node on an OPC UA Server over the network.

• UA_Server_Write: This function is called once when an OPC UA Server edits a
Node’s attribute.

• Service_AddNodes_single: This function is called once when an OPC UA Client
or Server adds a new Node to the address space of the OPC UA Server.

• Service_DeleteNodes_single: This function is called once when an OPC UA Client
or Server deletes a Node from the OPC UA Server’s address space.

For attribute changing operations, the intercepting function should save a copy of the
current state of the Node to be modified before calling the original open62541 function.
Once the original function finishes updating the local cache, the intercepting function
then encodes the Node’s NodeId, attributes, and its parent’s NodeId and reference and
pushes the encoded information to ZooKeeper. The parent’s NodeId and reference are
required to preserve the structure of the address space when replicating to another OPC
UA Server. If the push fails, then the entire process should be reversed. The same
process applies for the addition of a new Node, except for saving a copy of the original
state of the Node because it should not yet exist in the local cache.

When a Node is modified and pushed to ZooKeeper, the remaining servers in the
redundancy set receive a notification for the change in the znode’s data. Since the Node
may already exist on the zkUA Server, the node must be deleted and re-added. This
is because the Node’s type may have been modified in the process thereby invalidating
the option of using attribute writing functions during replication. For these cases, Node
deletion must not be replicated back to ZooKeeper and must only be enacted upon the
local cache to prevent unwanted behaviour in the system.

Every Node that is added or modified in a zkUA Server is accompanied by its trans-
action zxid. The Node’s znode path and zxid form key-value pairs that are stored in a
hashtable local to each zkUA Server. The hashtable is then used to guarantee that the
local zkUA Server is in sync with ZooKeeper and to prevent unnecessary operations to
the address spaces stored on the zkUA Servers.

3https://github.com/AGIsmail/zkUACoordination.git
4https://zookeeper.apache.org/
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Read operations do not need to be redirected to ZooKeeper. By setting watches on
the entire address space on ZooKeeper, the zkUA Server ensures that the local cache is
always up to date. The only case in which this does not apply is when the zkUA Server’s
cache is being read while it suffers from an interrupted session. In such situations, reads
from the local cache are forbidden unless the “AvailabilityPriority” parameter is set to
true in the server configuration file for the special case where the availability of the zkUA
Server is more important than the reliability of the served data.

As may be expected, further details related to the failover modes and other imple-
mentation specifics exist. However, the above suffices for the purposes of the discussion
in the next section. The codebase contains further information5.

4.3.6 Discussion

The presented architecture and accompanying implementation ensure that the entire
address space of a redundancy server set is stored on ZooKeeper. Any modifications to
the address space are atomic in nature. All servers are registered on ZooKeeper and
participate in failure detection, leader election, and contention resolution. The system
is designed to treat ZooKeeper as the only source of truth, thereby avoiding split-brain
scenarios.

However, there are caveats involved in using such a system. First, while the scala-
bility of reads are possible using ZooKeeper Observers, due to the per-watch-set mem-
ory penalty, the ZooKeeper service may require memory-abundant systems. Yet, since
watches are stored locally on the ZooKeeper server that the zkUA Server connects to,
this should not be a problem if the overall system is designed with enough ZooKeeper
servers and hardware resources. The design should, therefore, reflect the expected overall
number of server redundancy sets and their respective address space sizes.

A second point to address is security. As mentioned in Subsection 4.1.8, ZooKeeper
provides support for ACLs. In principle, this should prevent any unwanted manipulation
of zkUA redundancy set behaviour. The system may be hardened further if communi-
cation between the ZooKeeper servers and the zkUA Servers, Proxies, and Failover
Controllers are encrypted with SSL. Since communication between the quorum is not
encrypted, tunnelling may also be necessary.

Another point to address in this section is related to an unintended, yet positive,
consequence of the presented architecture. Since the ZooKeeper service is effectively
storing the address spaces of all of the participating zkUA servers, ZooKeeper may be
considered an active OPC UA Chaining Server. However, to exploit this situation a
specially designed zkUA Client capable of reading directly from ZooKeeper would be
required. Otherwise, a proxy that is both a ZooKeeper Client and a shell OPC UA
Server may act as an interface to ZooKeeper for other OPC UA Clients.

One other detail to discuss is Method Node replication. While not present in the
prototypical implementation, possible solutions to achieve this may require the following.

5https://github.com/AGIsmail/zkUACoordination.git
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1. The first solution would have the functions associated with the Method Nodes be
available on all of the zkUA Servers in the entire system. This allows for a single
generic zkUA Server to be used throughout the system. This may, however, result
in a larger sized implementation which has a number of costs associated with it,
e.g., a larger attack surface. Alternatively, each redundancy set may have its own
flavour of zkUA Servers with the appropriate functions built. While potentially
resulting in smaller implementations, this would increase the complexity involved
in managing and developing for the system.

2. The second possible solution would use function stubs. An implementation in this
case may follow a service-oriented approach whereby a sub-system of services is
created to represent the different methods to be called.

As may already be apparent from the architecture of Subsection 4.3.2, the zkUA FC,
while critical to the system, is a single point of failure. A zkUA FC may crash while its
zkUA Server remains functional. This vulnerability is mirrored in Hadoop’s HDFS [200].
For mitigation, the zkUA FC should be monitored for unexpected failures and restarted
appropriately [200]. To ensure the orderly operation of zkUA Servers, a possible solution
may include having active zkUA Servers watch for the disappearance of their ephemeral
znodes on ZooKeeper and forfeiting their active roles when appropriate.

While several other papers have addressed implementations for OPC UA Aggrega-
tion Servers [202, 203] or Historical Servers [204], there appears to be only one other
publication addressing OPC UA Redundancy [198]. In [198], a different goal is pursued
as the paper carries out a performance evaluation for OPC UA redundancy using the
Java Client-Server SDK by Prosys. While this makes the presented system unique, it
also deprives it of a basis for comparison.

The coordination requirements of OPC UA Server redundancy have been quantified
and shown to be realisable using the ZooKeeper service. The next sections will address
the queuing service for rate throttling service calls in OPC UA client-server interactions.

4.4 Throttled Service Calls in OPC UA

This section examines the use of a rate throttling mediator to combat server overload in
OPC UA. Subsection 4.4.1 defines the requirements for the queuing service and demon-
strates how features of Apache ZooKeeper can be used to meet these requirements.
Subsection 4.4.3 proceeds to describe an open-source prototype developed to evaluate a
suitable architecture, data model, and communication flow for rate throttling based on
ZooKeeper. Finally, Subsection 4.4.4 provides a discussion on the presented system.

4.4.1 Requirements

This section defines the requirements necessary of a mediator for the queuing of OPC
UA service calls. These requirements are summarised in Table 4.3.

128



Parameter Requirement

Scalability The system should be able to scale to support 1000’s to 100 000’s of connected
OPC UA Clients and Servers.

Consistency Guarantees The service must reflect a consistent state.

Recoverability The service should be able to recover from system and network problems.

Security The system must, at least, provide the same security features as OPC UA.

Client-Push/Server-Pull
Communication

OPC UA Clients must push to the queueing service, while OPC UA Servers must
pull tasks off their respective queues when they wish to receive the data.

At Least Once Semantics Every service call should be delivered to a server at least once.

Supportability The service must be well-documented, actively developed, and have a healthy
support community.

Table 4.3: The criteria for a task queuing service.

First, the queueing service is expected to be highly scalable. It should be able
to support thousands to hundreds of thousands of concurrent connections from both
OPC UA servers and clients. Scalability should, in this case, be horizontal due to the
associated benefits [205]. This means that the tool should be able to operate as a
distributed system.

For service calls, submissions should be committed in a transactional and strongly
consistent manner. According to [206], this implies four properties listed below:

• Atomicity: An operation either succeeds or fails. Inconsistent states are not per-
mitted.

• Consistency: “Committed transactions are visible to all future transactions” [206].
This means that all redundant participants in the queueing service apply trans-
actions in the same order, thereby preserving the uniformity of the service state
[207].

• Isolation: Uncommitted transactions are not visible to future transactions.

• Durability: Transaction commits are permanent.

These are important properties for task queuing in safety-critical environments. Par-
tial or non-permanent commits, fuzzy reads, and dirty reads and/or writes imply that
an online system may operate out of specification. Given the tight and complex cou-
pling between software and physical processes in CPPS, the outcome may manifest as
undesirable physical events.

A third point to address is availability and fault-tolerance. In an ideal system, every
submitted service call should be successfully queued and subsequently made accessible
to their respective OPC UA Servers. However, system and network problems are to be
expected. Measures should therefore be included to tolerate crashed node faults. These
would allow connected OPC UA Clients and Servers to continue using the queueing ser-
vice in cases of partial system failures. The service should also have protections in place
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against network partitioning. If the system does not protect against network partitions,
split-brain behaviour may manifest. This situation may, again, have an undesirable effect
on the manufacturing environment.

Naturally, clients must be able to submit tasks for execution with associated meta-
data. Likewise, servers must be able to retrieve them. At-least-once message delivery
semantics are necessary to guarantee that each service call is consumed by a server. Mes-
sages should also be delivered to servers using pull-based mechanisms to mitigate the
previously discussed server overload scenarios.

Moreover, the system should match, if not improve upon, the security features in-
herent to OPC UA. The system should therefore incorporate measures to ensure that
the submission, retrieval, and modification of queued tasks are only done by authorised
clients. This amounts to the inclusion of authentication and encrypted communication
features.

The last point to discuss is supportability. The tool should have strong community
and developer support available. It should be well-documented and actively developed
to ensure a long and stable lifetime for the service.

The next subsection will demonstrate how the Apache ZooKeeper service meets these
requirements, thus making it a suitable platform for the development of the queueing
service.

4.4.2 Relevant ZooKeeper Features

This subsection highlights the relevant features and strengths of ZooKeeper that demon-
strate its ability to serve as a queuing service for OPC UA. This discussion is based on
the ZooKeeper overview previously given in Section 4.1. A summary of the required
parameters and respective ZooKeeper properties is given in Table 4.4. Thus, ZooKeeper
meets the demands outlined in the prior subsection as follows.

• supportability is considered a met requirement due to ZooKeeper’s wide adop-
tion, detailed documentation6, and frequent updates7.

• For consistency guarantees, the leader of a ZooKeeper quorum is an elected
server that is responsible for executing and ordering requested state changes using
the Zab protocol. This is a two-phase commit protocol that operates as follows
(c.f. Fig. 4.6).

1. A requested state change is transformed by the leader into a transaction that
includes the steps needed to atomically apply the state change.

2. The transaction is transmitted by the leader to its followers as a proposal.
3. Each follower checks that the proposal is from its current active leader and

that it conforms with the current order of acknowledged and committed trans-
actions.

6https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
7https://zookeeper.apache.org/releases.html
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Parameter Features

Scalability Quorum mode, observers, dynamic scaling.

Consistency Guarantees Zab protocol, majority quorum in an odd numbered ensemble.

Recoverability Zab protocol, transaction logs, snapshots.

Security Client-server and server-server mutual authentication, client-server
SSL, znode-level access control.

Client-Push/Server-Pull
Communication

Write/read operations and watches.

At Least Once Semantics Watches, persistent znodes, and read operations.

Supportability Mature, widely adopted product [31].

Table 4.4: The features of ZooKeeper that meet the criteria for a task queueing service.

4. If the proposal is found to be compliant, then the followers accept the proposal
and respond to the leader with an acknowledgement.

5. The minimum number of servers that need to respond to a proposal with
an acknowledgement is referred to as the quorum. Once the leader receives
enough acknowledgements, it sends a commit message to the followers.

By following these steps, the protocol ensures that a state change is properly stored
before it is committed. It also guarantees that transactions are ordered, consistent,
and durable, despite possible crash faults.

• Scalability in ZooKeeper systems can be achieved through the use of observer
servers and dynamic scaling. To recap, observers are servers that replicate the
state of ZooKeeper. They are used to scale the system without impacting the per-
formance of state-changing requests because they do not participate in the voting
process. Dynamic scaling, a second relevant feature, can be used to conveniently
add new servers to the ZooKeeper ensemble while the system is online.

• A client-push/server-pull communication model can also be achieved using
ZooKeeper. This is because Clients can submit either read or state-changing
requests. A ZooKeeper server would push a message to a Client only if it has
registered for notifications on state changes in a znode by setting a watch. Since
this is an optional feature that is possible only through the willing participation
of a Client, the required communication model holds.

• At-least-once message delivery semantics can be reached using ZooKeeper as
long as permanent znodes with proper access rights are used for the submission of
service calls. Watches set using read operations can then be used to minimise the
possibility of a missed submission.

• Recoverability and security are possible because of ZooKeeper’s use of transac-
tion logs and snapshots for data persistence on local storage, and mutual authen-
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tication, SSL-encrypted communication, and access control measures, respectively.
For further information on these features, please refer back to Section 4.1.

Since all of the requirements of Table 4.3 can be met using ZooKeeper, the next
section details the design and implementation of the queuing service using this platform.

4.4.3 Service Call Throttling

This section is concerned with using the mechanisms available to ZooKeeper to imple-
ment a queuing service. As such, it specifies the requirements and implementation details
of an integrated OPC UA and ZooKeeper solution for mediating OPC UA service calls.

Requirements

There are several requirements for the operation of the queue. First, the system should
allow OPC UA Servers to register and initialise a queue. OPC UA Clients and Servers
must also be able to assign and retrieve tasks to and from their respective queues. The
order in which tasks are processed may be important. The system should therefore
give sufficient support for the ordered execution of these SCs. The system should also
have mechanisms allowing OPC UA Clients to detect when a Server has crashed or
disconnected. This may be useful, for example, for cases when an OPC UA Client can
communicate directly with an OPC UA Server, but the Server is unable to communicate
with and retrieve assigned tasks from ZooKeeper.

OPC UA Clients may also need to circumvent the queue when needed. For example,
in a safety-critical environment, certain tasks may need to be processed by a server
immediately, regardless of the length of the queue. Thus, it may be necessary to keep
an OPC UA-native back-channel open to allow Clients to invoke service calls on Servers
directly.

Lastly, a typical pattern for MOM based message queuing involves publishing the
response message on the same platform [194]. This is not necessary for the queueing
service. This is because the service’s purpose is to shield OPC UA Servers from excessive
concurrent service calls by Clients, and not vice versa. Hence, there is no immediate
need to queue Server responses as well.

With these demands in place, the next subsection will describe the implementation
of a ZooKeeper queuing service. This includes the data structure employed and the
expected communication flow between an OPC UA Client, ZooKeeper server, and OPC
UA Server.

Implementation

A prototypical implementation of the queueing service is built using the open source
C99 implementation of OPC UA, open62541 [201], and the ZooKeeper library [193].
This subsection presents the data structure and the communication flow used for the
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implementation, which itself is also open source8. The overall system architecture can
be seen in Fig. 4.14.

ZooKeeper
Ensemble

OPC UA Native
Back Channel

Request Rate 
Throttling System

OPC UA
Server

ServiceCall Request

Request Queues

ServiceCall Response

OPC UA
Client

ServiceCall Request

Figure 4.14: The integrated system architecture.

The data structure used by the queueing service builds upon previous work employed
in [208] where ZooKeeper is used for the coordination of redundant OPC UA Servers.
The main feature adopted is the use of a GUID for each set of redundant OPC UA
Servers. In the queueing service, this allows clients to set watches in a more specific
manner that is expected to reduce the overall frequency of notifications received. The
resulting data structure for service registration, queue management, and crash detection
would be as shown in Table 4.5 and Fig. 4.15.

The root path for the queuing service on ZooKeeper is the /Servers znode. Each set
of redundant OPC UA Servers is assigned its own unique path under the /Servers znode
using its GUID. The resulting path is therefore /Servers/GroupGUID. Any active server
in the redundancy set then registers itself under the /Servers/GroupGUID/Active znode
using its ServerUri or ServerId. A ServerUri or ServerId is used to identify a specific
server out of a redundancy set in the case of non-transparent or transparent server
redundancy, respectively.

Once an OPC UA Server registers itself as an active server, it initialises a queue
using its ServerUri/ServerId under the Servers/{GroupGUID}/Queue/ znode. OPC
UA Clients can submit tasks to a Server’s queue as permanent and sequential znodes.

8https://github.com/AGIsmail/UaRateThrottling
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ZooKeeper Path Type of znode Explanation

/Servers Persistent The root folder for zkUA
Servers.

/Servers/{GroupGUID} Persistent A GUID unique to each OPC
UA Server redundancy set.

/Servers/{GroupGUID}/Active Persistent Path to registered zkUA
Servers that are in a functional
state and connected to a
downstream device.

/Servers/{GroupGUID}/Active/{ServerUri} Ephemeral Each active server registers it-
self using an ephemeral znode.

/Servers/{GroupGUID}/Queue/ Persistent Path to the queues of regis-
tered zkUA Servers that are
in a functional state and con-
nected to a downstream device.

/Servers/{GroupGUID}/Queue/{ServerUri} Persistent Every OPC UA Server creates
a persistent znode named af-
ter its server URI under the
Queue path to accept task as-
signments.

/Servers/{GroupGUID}/Queue/{ServerUri}/Tasks-# Persistent-
Sequential

Clients assign tasks to a Server
by creating a znode with the
service call and the needed
arguments under the correct
Server’s Tasks path. Each task
is a sequential znode for the
synchronous execution of calls.

Table 4.5: The ZooKeeper data model for OPC UA service call queuing.

Thus, after the queue has been initialised, the Server sets a watch on its tasks queue
using a read operation to monitor for new tasks. If tasks have already been queued
between the time that the queue is initialised and read, they are retrieved, processed,
and deleted from ZooKeeper. As a watch is set on the queue by the Server, any future
tasks added by Clients trigger a single notification with the creation of a task znode.
No further notifications are sent until the Server retrieves the task list and re-sets the
watch. A sequence diagram demonstrating this communication flow between an OPC
UA Client, ZooKeeper Server, and OPC UA Server is shown in Fig. 4.16.
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/Servers/{GroupGuid}/Active
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Figure 4.15: The hierarchical ZooKeeper data model for OPC UA service call queuing.
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Figure 4.16: Changes to the client-server service call communication flow.
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4.4.4 Discussion

The previous section presented the data structure and process flow for the queuing
and processing of OPC UA service calls. An immediate concern revolves around the
possibility of service calls being processed more than once or not at all. The former
may occur if the queue is retrieved more than once before the OPC UA Server has
had a chance to process and delete all of the tasks retrieved in a previous run from
ZooKeeper. The prototype currently prevents this from occurring. Once a notification
is triggered, the watcher function synchronously retrieves the task list, re-sets the watch,
and processes each task before returning. The watcher function is not triggered again
until it has completed, and therefore deleted the tasks on ZooKeeper and returned. This
is the desired order of events as it is a requirement of Subsection 4.4.3 that tasks have
to be executed in order.

If, however, the ordered execution of service calls is not important, then the watcher
function may asynchronously execute its tasks and return early. This may allow tasks
to be executed more than once. Recall, however, that tasks are submitted to ZooKeeper
as sequential znodes. Preventing the multiple executions of a service call could therefore
be as simple as having each thread processing a task list only execute znodes with an
ID higher than the last ID of its predecessor and lower than its own last task’s ID.
Alternatively, an internal queue, e.g., using a hashtable, could be used to store the
retrieved tasks and their status. Multiple threads can then contend over the available
tasks and use locks to relieve the possibility of duplicate executions.

Another issue to be addressed is the possibility that service calls time out while in the
queue. However, the OPC UA specifications do not currently specify a value for message
time-outs. This value is purposely left open for developers to set. Needless time-outs
can therefore be avoided through the selection of a reasonable value that reflects the
context of execution.

The Clients’ ability to circumvent the queue should be designed with the utmost care.
The use of OPC UA’s native communication flow for service calls effectively pushes
requests to the front of the queue. This may overload a server and cause it to enter
a degraded or failed state. It may also alter the states previously used to submit the
currently queued requests and may result in their unsafe execution. Out-of-queue service
calls should therefore be done with caution.

Finally, in [31], it is indicated that distributed queues is one of the least used applica-
tions for ZooKeeper. The explanation offered is that consensus may have a detrimental
effect on the performance of large queues. Apache Curator’s documentation [209] rec-
ommends against the use of ZooKeeper for queues because of an anecdotal report in
[210]. The report mentions ZooKeeper’s transport limitations, slow start up times and
other complexities introduced by having large queues. However, the points listed are
all self-admittedly born of casual observation in a global and multi-tenant architecture.
Thus, these remarks are not based on rigorous scientific analysis, are not quantified, and
are asserted by only a single source. The problems mentioned are also stated as being
the result of “[developers abusing] the queues" [210]. Given the difference in context
between the environment used in [210] (a global multi-tenant architecture for Netflix)
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and a manufacturing environment, results may differ. This work does not currently pur-
sue an evaluation to discern these limits which may include the size of the ZooKeeper
ensemble, number of active OPC UA clients and servers, znode size and distribution
per size, queue lengths, ZooKeeper settings (e.g., forceSync), and hardware performance
(e.g., storage I/O) [211]. This, in fact, is a problem that may garner different results
between deployments. Instead, the prototype developed for this work is open-sourced
and it should be possible to design appropriate architectures, quantify normal limits
of operation, and address contingencies for the scalable execution of the service and
dependent systems once feedback is available from early adopters.

Future work may also investigate the use of load shedding for server overloads as was
mentioned in the introduction of this chapter. A comparison of server-side load-shedding
and task queueing on ZooKeeper would be immensely useful. A possible outcome of this
analysis may shed light on the engineering cost involved in determining which service
calls can be dropped versus the cost of ensuring safe out-of-queue service calls.

4.5 Conclusion

In this chapter, the coordination requirements of OPC UA Server redundancy were
quantified and shown to be realisable using the ZooKeeper service. An explanation of
the overall architecture, data model, and components of the integrated OPC UA and
ZooKeeper system was given. This includes the appropriate consideration of a solution
for the migration of existing OPC UA systems. An example implementation based on
the open source ZooKeeper and open62541 libraries was described.

While real-world deployments would still require careful design to ensure that suffi-
cient resources are present for safe operation, the resulting system should be capable of
providing a reliable framework for OPC UA Server redundancy. Through this system,
redundant servers may achieve the required goals of synchronisation and replication,
failure detection, failover initiation, and resource fencing. The extensibility of the data
model given should present opportunities to accommodate further synchronisation re-
quirements than those shown in this chapter. It is expected that future iterations of this
system address more complex features of OPC UA, such as Method Node replication,
and include more technologies from the IT domain to address other open questions in
the standard.

This chapter also addressed the possible vulnerability of OPC UA Servers to resource
exhaustion due to high rates of concurrent service calls by OPC UA Clients. A queuing
service for service call rate throttling was identified as a possible solution for mitigating
server overload. The requirements for this service were determined and shown to be
achievable using Apache ZooKeeper. A data structure and queuing protocol is designed
and demonstrated using a prototypical implementation based on the same open62541
and ZooKeeper libraries.

While certain facets of the design necessitate care in use and administration, the
system meets all of the demands determined for the reliable queuing and execution of
service calls. Future work for this service is expected to focus on comparisons with alter-
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native solutions, as well as the determination of appropriate deployment architectures
and best-practices that account for identified contingencies.

.
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CHAPTER 5
Conclusion & Outlook

As discussed in Chapter 1, manufacturing strategies are typically used by an enterprise
to give assurances that its decisions match with its requirements and vision. This dis-
sertation applied itself within the context of the smart manufacturing approach for the
design and implementation of infrastructural systems for resilient M2M communication
in distributed CPPS. Thus, it investigated the application of SOAs, M2M communication
middleware systems, and overlay networking solutions to improve the agility, resilience,
and interoperability of enterprise infrastructure. This chapter provides a summary on the
main contributions of this dissertation and provides a discussion on possible directions
for future work.

5.1 Summary of Contributions

5.1.1 Service Oriented Architectures

Manufacturing systems require infrastructural agility, interoperability, and flexibility to
meet the goals of lean and agile manufacturing. Existing systems, however, continue
to have complex and heterogeneous technical infrastructure that impede the progress of
achieving these properties. This is the first problem statement identified in Section 1.3
- [PS-1]. For this purpose, Chapter 2 investigates the hypothesis that SOAs “provide
a suitable pathway for the pursuit of agile characteristics in modern enterprises” [H-1].
Thus, it explains the properties of SOA and demonstrates how they may be used in
CPPS to counteract the systemic complexity that hinders manufacturing processes.

Yet, a survey on service-based manufacturing systems carried out by Kevin Nagorny
et al. in [38] demonstrates that a large number of SO RAs exists for CPPS. Herein lies
the second problem statement of this dissertation which states that “the proliferation
of SOA in the manufacturing domain complicates the process of selecting an appropri-
ate RA for the development of SO manufacturing infrastructure” [PS-2]. To moderate
this complexity, Chapter 2 also performs a state-of-the-art analysis on the preliminary
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SO RAs of five major European projects: IMC-AESOP, PLANTCockpit, IoT@Work,
eScop, and Arrowhead framework. The five RAs are analysed for their practicality by
determining the simplicity of transforming them into concrete implementations. The
architectures, technologies, and communication stacks used in their realisations are pre-
sented. Results attained through the application of an analysis framework developed in
[32] show that the SO RAs are often under or over specified and, on occasion, are miss-
ing critical elements from their specifications implying that extra effort may be required
for their implementation. By extrapolating the results of [32] to this survey, the review
concludes that the SO RAs presented are vulnerable to low adoption rates and criticisms
from stakeholders.

Thus, Chapter 2 pursues the second hypothesis of this dissertation that the “mature,
standardised, well-adopted, and well-supported” OPC UA specifications may provide a
SO solution that is well-suited for “the integration of M2M communication infrastruc-
ture” [H-2]. This is confirmed by the application of the same methods used to evaluate
the SO RAs of the five major European projects. Based on this conclusion, OPC UA is
adopted as the underlying technology for the development of SO manufacturing systems
for the remainder of the dissertation.

5.1.2 Cooperative P2P Overlay Networks

Following a bottom-up approach, the first task to tackle in developing a resilient SO
system involves addressing the need for “flexible, scalable, and failure-resistant transport
protocols for a dynamic system of services. This is in contrast to current technologies
which often limit these properties” [PS-3].

The third hypothesis of Section 1.3 describes P2P networks as cooperative systems
as a field with possibly suitable solutions to this problem, albeit, “deviations from their
typical nature will be necessary to adapt them to the manufacturing domain” [H-3].

Consequently, Chapter 3 discerns the properties of these networks and develops a
resilient transport layer for middleware systems based on their principles. Due to these
properties, the resulting protocol may allow participating manufacturing infrastructure
to function as independent clusters that may undergo runtime reconfiguration for creat-
ing expanded systems, inter-system traffic engineering, and inter-system content sharing.
This allows middleware to dynamically adapt to changes in the requirements and policies
of the network architecture in a manufacturing enterprise and introduces a resilience to
the transport layer against node and link failures. A typical P2P protocol, Chimera, is
used to demonstrate the conversion of a traditional protocol into a cooperative systems
one. A prototypical implementation is developed and evaluated via virtual deployments
on a Xen Project server and 32-bit embedded devices. Empirical results demonstrated
that the discovery mechanisms typically employed by P2P technologies are unfit for
manufacturing infrastructure due to high traffic loads and slow discovery times. Thus,
a SO approach is followed to separate the discovery, management, and networking el-
ements. Service discovery is then implemented using the low traffic zero-conf mDNS
protocol. The prototypical evaluation using the Avahi mDNS and modified cooperative
networks Chimera libraries demonstrated full-network discovery in less than 3 seconds.
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An added feature of the resulting system is its agnosticism towards the used middleware
technology. Thus, it is compatible with both OPC UA and non-OPC UA applications
in manufacturing.

5.1.3 OPC UA-Based M2M Communication Middleware Systems

With the transport layer addressed, the remainder of the dissertation focused on en-
hancing the OPC UA based application layer. The fourth problem statement of this
dissertation states that “OPC UA based distributed systems have coordination needs
for the safe operation of redundant servers that would require an extensive investment
on the part of developers” [PS-4].

A review of the SO OPC UA M2M communication specifications highlights the need
for address space synchronisation, failure detection, and resource fencing. The demands
of these three coordination functions are discerned and, in accordance with the fourth
hypothesis [H-4], are shown to be realisable using Apache ZooKeeper as a coordination
platform. Therefore, a system architecture, data model, and component descriptions are
designed and detailed. An open source evaluation is implemented using the open62541
and Apache ZooKeeper libraries showing that the system is capable of realising the
required goals of runtime address space synchronisation, failure detection, and barrier
synchronisation.

The fifth problem statement concerns itself with the vulnerability of OPC UA servers
to resource exhaustion due to the client-server communication mechanisms in place [PS-
5]. This vulnerability is found to be due to clients’ unhindered ability to transmit SCs
to a server. This means that a server may potentially receive an overload of requests
causing it to fail or operate in a degraded state as it tries to process them. A SC queuing
service is proposed as a solution to throttle the rate of concurrently processed requests
by a server [H-5]. The requirements of the service are discerned and Apache ZooKeeper
is shown to be a viable platform for its development. Similar to the coordination service,
the architecture, data model, and service components are detailed. An open source
implementation is carried out using the open62541 and Apache ZooKeeper libraries. A
back channel for circumventing the queue is also integrated in the system for increased
operational safety. The overall service is shown to be able to meet the requirements of
a queuing service for throttling the rate of SCs to an OPC UA server.

5.1.4 Discussion

In sum, this dissertation focused on delivering an integrated system of service overlays
that provide a runtime environment for the deployment and execution of resilient services,
as shown in Fig. 5.1. The system is based on SOA, P2P networks as cooperative
systems, and OPC UA to allow for the development of distributed, dynamic, and robust
services for CPPS. While the proposed work is developed in the context of the classical
automation pyramid based on PERA and associated standards, the contributions of
this dissertation may be specified with respect to the functional hierarchy of the three-
dimensional RAMI 4.0 [212]. This seminal architecture, shown in Fig. 5.2, is a three-
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Network A Network B

Figure 5.1: The main building blocks of the service overlays for resilient CPPS.

dimensional coordinate system of elements identified for the fourth industrial revolution,
also known as Industrie 4.0 (I4.0). The three axes represent the hierarchy levels (right
horizontal), life cycle and value streams (left horizontal), and layers (vertical) in an I4.0
environment [213].

The hierarchy levels expand upon those stated in the IEC 62264 (ISA-95) standard
for enterprise integration by including the new ‘Product’ and ‘Connected World’ levels.
The former represents the work piece and the latter the IoT. Thus, given the disserta-
tion’s focus on enhancing the features of enterprise infrastructure, the main contributions
are concerned with the ’Field Device’, ‘Control Device’, ‘Station’, ‘Work Centres’, and
‘Enterprise’ levels. Given the nature of the technologies adopted for the dissertation,
it should also be possible to extend the designed system to include the ‘Product’ and
‘Connected World’ levels given appropriate effort [213]. This is discussed further in the
coming section.

The life cycle and value streams axis in RAMI 4.0 predominantly applies to the man-
ufactured product. Therefore, it is composed of two overarching elements: the type and
the instance. To quote, “a type becomes an instance when design and prototyping have
been completed and the actual product is being manufactured” [213]. Thus, this axis
may be accurately labelled as the product life cycle. The accomplishments of this dis-
sertation are primarily concerned with the production system life cycle as they address
concepts for the operation of systems that are the means through which resources are
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Figure 5.2: Translating the contributions to the RAMI 4.0. Addressed layers and hier-
archical levels are highlighted in red.

converted into manufactured products. However, as pointed out in the previous para-
graph, extensions are possible and may be applied here to incorporate aspects of the life
cycle and value streams axis of RAMI 4.0 as well.

Finally, the vertical axis of Fig. 5.2 decomposes the properties of a machine into
six definitive layers. Of these, the system incorporates aspects of everything from the
Functional to the Integration layer. For example:

• Functional: the inclusion of remote access and horizontal integration.

• Information: the “provision of structured data via service interfaces” [213].

• Communication: standardised communication and data formats and the provision-
ing of services for controlling the integration layer.

• Integration: provisioning processable information from assets and event generation.

Hence, it can be concluded that the degree of congruence between the features of
the envisioned system and the governing concepts of a pioneer R&D project such as
RAMI 4.0 serves as evidence to the integrity of the delivered contributions. The system
introduces numerous desirable properties to CPPS with room to extend the vision of the
system beyond its current boundaries. This, alongside other possible enhancements to
the system, is the topic of discussion for the coming section.
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5.2 Future Work

Extending to other environments

As of yet, the contributions of this dissertation are focused on improving the state of
infrastructure local to the manufacturing enterprise. These CPPS are predominantly
concerned with the safe collection of data and execution of control over local resources.
The nature of the manufacturing ecosystem has, however, changed to apply significant
importance to data outside of the production system as well for decision making processes
[14]. This includes data from product development and supply chain life cycles. Thus,
there is a need for the integration of systems and information flows from these currently
isolated dimensions. The applied technologies and strategies can be ported over to aid
in this process of integration to provide the same advantages of agility, flexibility, and
resilience. However, a different context, again, implies different use cases, requirements,
and thus, technologies and implementations. The design of SO M2M communication
platforms for the automated acquisition and integration of data from these life cycles
is an expensive task that warrants investigation in the immediate future. While this
should henceforth serve as the governing strategy for the development of the platform,
the currently existing technical features of the system should also receive appropriate
attention. Several specific points for their development are discussed in the coming
subsections.

Enhancements to OPC UA Middleware

As applied to the coordination service for redundant OPC UA servers, an immediate
enhancement to the presented system would be a solution to Method node replication.
The evaluation of a SO system of services for the various possible methods is suggested
as a viable solution in Chapter 4. The requirements and resulting architecture and im-
plementation details to allow for the dependable operation of OPC UA applications is a
considerable challenge. Given the foreseen number of services that may run concurrently
on a single device, this may result in demands for lightweight processing and communi-
cation technologies with guarantees for deterministic execution and bounded response
times. Supporting infrastructure for versioning, management, and monitoring, amongst
others, may also be necessary for their coordination.

A second possibility for future work highlighted in Chapter 4 involves the investiga-
tion of load shedding as a solution for resource-strained OPC UA servers. As previously
pointed out, this is based on the premise that rejecting a SC consumes less resources
than processing it. Given the close coupling of computational and physical resources in
a CPPS, arbitrarily rejecting a SC may have undesirable physical consequences to the
manufacturing system or product. Thus, mechanisms are required to establish a clear
understanding of the result of denying a specific SC in its context. The available options
for such a system need to be investigated to discern the engineering costs and runtime
overheads associated with candidate systems.
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Enhancements to the Transport Layer

An immediate task available for enhancing the discovery feature of the cooperative P2P
networks transport layer was presented in Chapter 3. This relates to the complete
abandonment of unicast-based network heartbeat messages in favour of a mechanism
based on the tracking of service advertisement removal. However, the vulnerability of
advertisement removal announcements to immediate link and node failures on the service
host must first be addressed. Chapter 3 has proposed and discussed the use of modules
modelled on the concept of IPMI subsystems as a solution. An investigation of an
algorithmic software-based approach is also warranted given the cost and engineering
factor involved in developing such a subsystem.

An investigation into improving the mDNS reflector service of the P2P network is
also discussed in Chapter 3. This may, for example, involve the aggregation of service
advertisements at reflector nodes and their announcement in foreign subnets as resources
local to the reflectors. Since this may cause a concentration of traffic on reflector nodes,
strategies for the distribution of routing load amongst the gateways may be required for
this architecture. The second proposed modification is the caching of service announce-
ments at reflector nodes to reduce the load of propagating service queries. This, in
turn, would require a careful study of the repercussions of caching on the passive failure
discovery features of mDNS.

A final point worth investigating is in addressing the transport layer’s limitation to
non-RT communication tasks. Given the importance of RT systems in manufacturing
operations, an apparent next step would be to consider the introduction of this feature
to the cooperative P2P transport layer. Previous work in [214, 215] demonstrates the
viability of RT communication in P2P networks through a hard RT implementation of
a Kademlia network. However, as of yet, the engineering of a RT cooperative systems
protocol has not been examined in an academic context. Doing so may, in theory, allow
the same advantages of resiliency and flexibility to be extended to field level equipment.
However, the standards, technologies, and requirements of field level systems differ sig-
nificantly from the upper layers of manufacturing infrastructure. This, in turn, implies
different demands for the cooperative systems protocol, possibly creating a different
breed of networks.
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