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1 Introduction

In this section we introduce an initial value problem and show that it always has a
unique solution and that this solution is an entire function of z. Further we establish
some basic properties including a rough growth estimate.

We consider an initial value problem of the form{
y′(x) = −zA(x)y(x), x ∈ [a, b],

y(a) = y0,
(1.1)

where z ∈ C, y0 ∈ C2 and A ∈ L1([a, b],C2×2).
We call y : [a, b] → C2 a solution of (1.1), if y is defined on [a, b], takes values in C2, is

componentwise absolutely continuous, its derivative fulfills (1.1) for almost all x ∈ [a, b] and
y(a) = y0.

We will mainly focus on canonical systems, which are initial value problems of the form
(1.1), with A(x) = JH(x), where H ∈ L1([a, b],R2×2) is real and positive semidefinite, and

J =

(
0 −1
1 0

)
.

Remark 1.1. Note that in some books (1.1) is given without the ”−” on the right hand side.
This results in minor changes to some theorems.

This section will follow lecture notes of Professor Michael Kaltenbäck from the Technische
Universität Wien.

1.1 Existence and Uniqueness of Solutions

Theorem 1.2 (Existence and Uniqueness). Let z ∈ C, A ∈ L1([a, b],C2×2) and y0 ∈ C2, then
there exists a unique function y : [a, b]→ C2, such that y is a solution of (1.1).

Proof. Let BM
(
[a, b],C2

)
be the space of all bounded and Borel measurable functions on [a, b]

with values in C2 equipped with ‖f‖∞ := supx∈[a,b] ‖f(x)‖2. This is a closed subspace of the

Banach space B
(
[a, b],C2

)
of all bounded functions on [a, b] with values in C2, because uniform

convergence preserves measurability. Hence BM
(
[a, b],C2

)
is a Banach space as well. We define

Λ(x) :=

∫ x

a
‖A(t)‖dt, x ∈ [a, b],

where ‖ · ‖ denotes the operator norm on C2. Let G(x) := exp
(
− |z|Λ(x)

)
, then

‖f‖G := sup
x∈[a,b]

‖f(x)‖2G(x)

gives a norm equivalent to ‖ · ‖∞ on BM
(
[a, b],C2

)
. Now let T : BM

(
[a, b],C2

)
→ BM

(
[a, b],C2

)
be defined by

T (f)(x) := y0 −
∫ x

a
zA(t)f(t)dt.
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As an integral of an L1-function T (f) is absolutely continuous, and T indeed maps into
BM
(
[a, b],C2

)
. Further for f, g ∈ BM

(
[a, b],C2

)
we obtain

G(x)‖T (f)(x)− T (g)(x)‖2 = G(x)

∥∥∥∥∫ x

a
zA(t)

(
g(t)− f(t)

)
dt

∥∥∥∥
2

≤

G(x)

∫ x

a
|z|‖A(t)‖ exp

(
|z|Λ(t)

)
exp

(
− |z|Λ(t)

)
‖f(t)− g(t)‖2dt ≤

G(x)‖f − g‖G
∫ x

a
|z|‖A(t)‖ exp

(
|z|Λ(t)

)
dt = G(x)‖f − g‖G

∫ x

a

d

dt

(
exp

(
|z|Λ(t)

))
dt ≤

‖f − g‖G exp
(
− |z|Λ(x)

)(
exp

(
|z|Λ(x)

)
− 1
)
.

Taking the supremum over x ∈ [a, b], we get

‖T (f)− T (g)‖G ≤
(

1− exp
(
− |z|Λ(b)

))
· ‖f − g‖G.

By the Banach Fixed Point Theorem there exists a unique y ∈ BM
(
[a, b],C2

)
, satisfying y = Ty.

In particular y is absolutely continuous and obviously y(a) = y0 holds as well. Taking the almost
everywhere defined derivative, we obtain that y satisfies (1.1).

If, on the other hand, an absolutely continuous u satisfies u(a) = y0 and the differential
equation (1.1) almost everywhere, we get u ∈ BM

(
[a, b],C2

)
and by the fundamental theorem

of calculus, we obtain Tu = u. Hence y = u.

In the next theorem we show that the solution depends holomorphically on z.

Theorem 1.3. For each y0 ∈ C2, there exists a unique function y : [a, b]× C→ C2 such that

(i) for each z ∈ C the function y(·, z) is the solution of (1.1),

(ii) y is continuous on [a, b]× C,

(iii) for each x ∈ [a, b] the function y(x, ·) is holomorphic.

Remark 1.4. Note that Theorem 1.3 is a slight modification of Theorem 1.2 and its proof, to
obtain holomorphy in the second argument.

To prove this theorem, we need the following lemma.

Lemma 1.5. Let us now regard G(x, z) := exp
(
−k|z|Λ(x)

)
, for some fixed k > 1, as a function

on [a, b]× C→ (0,∞). For a function f : [a, b]× C→ C2 we define

‖f‖G := sup
z∈C

sup
x∈[a,b]

‖f(x, z)‖2 ·G(x, z).

Let X denote the vector space of all f : [a, b]× C→ C2, such that

(i) ‖f‖G <∞,

(ii) for each z ∈ C the function x 7→ (x, z) is continuous.

(iii) for each x ∈ [a, b] the function z 7→ f(x, z) is holomorphic.

Then X equipped with ‖ · ‖G is a Banach space.
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Proof. First it is a well known fact that the space B
(
[a, b] × C,C2

)
of all bounded functions

on [a, b] × C with values in C2 equipped with ‖ · ‖∞ is a Banach space. Hence the space
BG
(
[a, b]×C,C2

)
of all functions f on [a, b]×C with values in C2 such that ‖f‖G <∞, equipped

with ‖ · ‖G is a Banach space as well, because it is isometrically isomorphic to B
(
[a, b]×C,C2

)
via f 7→ f ·G.

Obviously X is a linear subspace of BG
(
[a, b]×C,C2

)
. Further it is closed: Assume fn ∈ X

and fn → f in BG
(
[a, b] × C,C2

)
. Then for every x ∈ [a, b] and for every compact K ⊆ C,

the uniform convergence of fn|[a,b]×K to f |[a,b]×K , as well as the uniform convergence of z 7→
fn(x, z) to z 7→ f(x, z), for z ∈ K follows. Hence f |[a,b]×K and therefore f , are continuous and
z 7→ f(x, z), z ∈ C is holomorphic for every x. Hence f ∈ X.

Proof of Theorem 1.3. Let X and G(x, z) be defined as in Lemma 1.5, and let T : X → X be
defined by

T (f)(x, z) := y0 −
∫ x

a
zA(t)f(t, z)dt.

First we want to show that T (f) actually lies in X. Let (x1, z1), (x2, z2) ∈ [a, b]×C and assume
without loss of generality that x1 ≤ x2. Then

‖T ()(x1, z1)− T (f)(x2, z2)‖2 ≤ ‖T (f)(x1, z1)− T ()(x2, z1)‖2 + ‖T (f)(x2, z1)− T (f)(x2, z2)‖2 ≤∥∥∥∥∫ x2

x1

z1A(t)(t, z1)dt

∥∥∥∥
2

+

∥∥∥∥∫ x2

a
A(t)

(
z2)f(t, z2)− z1f(t, z1)

)
dt

∥∥∥∥
2

≤

∫ x2

x1

‖A(t)‖‖z1f(t, z1)‖2dt+

∫ b

a
‖A(t)‖

∥∥z1f(t, z1)− z2f(t, z2)
∥∥

2
dt. (1.2)

If we fix (x1, z1), then we get, for |z1 − z2| ≤ 1 and ρ := |z1|+ 1,∥∥z1f(t, z1)− z2f(t, z2)
∥∥

2
≤ 2
(
|z1|+ 1

)
sup

x∈[a,b],|z|≤ρ
‖f(x, z)‖2 ≤ 2

(
|z1|+ 1

) ‖f‖G
G(b, ρ)

.

Hence, by the Dominated Convergence Theorem, the second integral in (1.2) converges to zero

for (x2, z2) → (x1, z1). Because ‖z1f(t, z1)‖2 ≤ ρ ‖f‖GG(r,ρ) , the same holds for the first integral.

Hence T (f) is continuous on [a, b]× C.
Let us regard H : z 7→ T (f)(x, z) = y0 −

∫ x
a zA(t)f(z, t)dt as a parameter integral, with

holomorphic integrand z 7→ zA(t)f(z, t) for every t and integrable integrand t 7→ zA(t)f(z, t)
for every z. We have the estimate∥∥zA(t)f(t, z)

∥∥
2
≤ ‖A(t)‖ max

(τ,ζ)∈[a,b]×K
|ζ|‖f(τ, ζ)‖2, K ⊆ C compact, z ∈ K, t ∈ [a, b],

where the right hand side is integrable, and conclude that H is holomorphic. Further we obtain

‖T (f)(x, z)‖2 ≤ ‖y0‖2 +

∫ x

a
|z|
∥∥A(t)

∥∥ exp
(
k|z|Λ(t)

)
exp

(
− k|z|Λ(t)

)∥∥f(t, z)
∥∥

2
dt ≤

‖y0‖2 +
1

k

(
exp

(
k|z|Λ(x)

)
− 1
)
‖f‖G.

Multiplying with G(x, z) and taking the supremum over (x, z) ∈ [a, b]×C, we obtain ‖T (f)‖G ≤
‖y0‖G + 1

k‖f‖G <∞. Hence we get T (f) ∈ X.
Finally T is a strict contraction: For f, g ∈ X we have∥∥T (f)(x, z)− T (g)(x, z)

∥∥
2
G(x, z) ≤ exp

(
− k|z|Λ(x)

) ∫ x

a
|z|‖A(t)‖

∥∥f(t, z)− g(t, z)
∥∥

2
dt ≤
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exp(−k|z|Λ(x))

∫ x

a
|z|‖A(t)‖ exp(k|z|Λ(t))‖f − g‖Gdt =

1

k
exp(−k|z|Λ(x))(exp(k|z|Λ(x))− 1)‖f − g‖G,

and hence ‖T (f) − T (g)‖G ≤ 1
k‖f − g‖G. By the Banach Fixed Point theorem, there exists

a unique f ∈ X, which satisfies Tf = f . In particular x 7→ f(x, z) is absolutely continuous.
Differentiating almost everywhere, shows that x 7→ f(x, z) satisfies the differential equation
(1.1) and obviously f(a, z) = y0 holds as well.

1.2 Properties of the Fundamental Solution

In the proof of Theorem 1.3 we saw that the solution y(x, z) lies in the space X. Thus, for each
k > 1, it satisfies an estimate of the form (x ∈ [a, b])

‖y(x, z)‖2 ≤ Ck exp(k|z|Λ(x)), t ∈ C,

with some constant Ck > 0. The Gronwall Lemma says that such an estimate holds for k = 1
as well.

Lemma 1.6 (Gronwall). Let y(x, z) be a solution of (1.1). Then

‖y(x, z)‖2 ≤ ‖y0‖2 exp

(
|z|
∫ x

a
‖A(t)‖dt

)
, (x, z) ∈ [a, b]× C. (1.3)

Proof. Obviously it holds that

y(x, z) = y0 − z
∫ x

a
A(s)y(s, z)ds, (1.4)

which implies

‖y(x, z)‖2 ≤ ‖y0‖2 +

(
|z|
∫ x

a
‖A(t)‖‖y(t, z)‖dt

)
.

For a ≤ s ≤ x ≤ b we further evaluate

d

ds
ln

(
‖y0‖2 + |z|

∫ s

a
‖A(t)‖‖y(t, z)‖2dt

)
=

|z|‖A(s)‖‖y(s, z)‖2
‖y0‖2 + |z|

∫ s
a ‖A(t)‖‖y(t, z)‖2dt

.

The right hand side is bounded from above by |z|‖A(s)‖, hence integrating from a to x with
respect to s yields

ln

(
‖y0‖2 + |z|

∫ x

a
‖A(t)‖‖y(t, z)‖2dt

)
− ln

(
‖y0‖2

)
≤
∫ x

a
|z|‖A(s)‖ds.

Applying the exponential function on this inequality completes the proof.

Definition 1.7. Let A ∈ L1([a, b],C2×2). Let y1 and y2 be the solutions of (1.1) with initial

value

(
1
0

)
and

(
0
1

)
, respectively. Then the matrix function M : [a, b]× C→ C2×2 defined as

M(x, z) :=
(
y1(x, z) | y2(x, z)

)
,

is called fundamental solution of (1.1). It is the solution of the matrix-valued initial value
problem {

d
dxY (x, z) = −zA(x)Y (x, z), x ∈ [a, b],

Y (a, z) = I,
(1.5)

Its value at the right endpoint is called the monodromy matrix of (1.1).
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Remark 1.8. Note that calling M a fundamental solution is not very precise, since the dimen-
sions for the initial value do not match.

Proposition 1.9. The fundamental solution M(x, z) of (1.5) has the following properties.

(i) Let a ≤ y ≤ x ≤ b, and let My,x be the fundamental solution for A |[y,x]. Then

M(c, z) = My,x(c, z)M(y, z), c ∈ [y, x], z ∈ C.

(ii) M is continuous on [a, b] × C → C2×2, absolutely continuous in the first argument and
holomorphic in the second argument.

(iii) If A is real a.e., then the entries Mij(x, z) of M(x, z) satisfy

Mij(x, z) = Mij(x, z), x ∈ [a, b], z ∈ C. (1.6)

(iv) Let Q ∈ GL(2,C) and a ≤ y ≤ x ≤ b. Then

‖QM(x, z)‖ ≤ ‖QM(y, z)‖ exp

(
|z|
∫ x

y
‖QA(t)Q−1‖dt

)
. (1.7)

Further, the fundamental solution is estimated as

‖M(x, z)‖ ≤ exp

(
|z|
∫ x

a
‖A(t)‖dt

)
, (x, z) ∈ [a, b]× C. (1.8)

(v) The fundamental solution satisfies detM(a, z) = 1 and the differential equation

d

dx
(detM(x, z)) = z trA(x) detM(x, z). (1.9)

Hence,

detM(x, z) = exp

(
z

∫ x

a
trA(t)dt

)
. (1.10)

Proof. Let a ≤ y ≤ x ≤ b. We have My,x(y, z) = I by definition and hence

M(y, z) = My,x(y, z)M(y, z).

Further M(c, z) and My,x(c, z) both satisfy the differential equation (1.5) for c ∈ [x, y]. Since
M(y, z) is a constant factor on the right, also My,x(c, z)M(y, z) satisfies the differential equation
(1.5). By uniqueness of solutions, we obtain (i).

By Theorem 1.3 y1, y2 : [a, b] × C → C2 are continuous, absolutely continuous in the first
argument and holomorphic in the second. Hence M : [a, b] × C → C2×2 satisfies the same
properties and therefore it satisfies (ii) as well.

Since
d

dx
(M(x, z)) =

d

dx
M(x, z) = −zA(x)M(x, z)

almost everywhere on [a, b], the matrix M(t, z) is the solution of{
d
dxY (x, z) = −zA(x)Y (x, z), x ∈ [a, b],

Y (a, z) = I.
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In particular, if A(x) ∈ R2×2 for x ∈ [a, b], uniqueness of solutions implies

M(x, z) = M(x, z), (x, z) ∈ [a, b]× C.

For each a ≤ y ≤ x ≤ b a fundamental solution satisfies the integral equation

M(x, z) = M(y, z)− z
∫ x

y
A(t)M(t, z)dt. (1.11)

Now let Q ∈ GL(2,C). Then we can rewrite this equation as follows

QM(x, z) = QM(y, z)− z
∫ x

y

(
QA(t)Q−1

)
QM(t, z)dt.

From now on we follow the lines of the proof of Lemma 1.6: The upper equality implies

‖QM(x, z)‖2 ≤ ‖QM(y, z)‖2 +

(
|z|
∫ x

a
‖QA(t)Q−1‖‖QM(t, z)‖dt

)
.

For a ≤ s ≤ x ≤ b we further evaluate

d

ds
ln

(
‖QM(y, z)‖2 + |z|

∫ s

a
‖QA(t)Q1−‖‖QM(t, z)‖2dt

)
=

|z|‖QA(s)Q−1‖‖QM(s, z)‖2
‖QM(y, z)‖2 + |z|

∫ s
a ‖QA(t)Q−1‖‖QM(t, z)‖2dt

.

The right hand side is bounded from above by |z|‖QA(s)Q−1‖, hence integrating from a to x
with respect to s yields

ln

(
‖QM(y, z)‖2 + |z|

∫ x

a
‖QA(t)Q−1‖‖QM(t, z)‖2dt

)
− ln

(
‖QM(y, z)‖2

)
≤

≤
∫ x

a
|z|‖QA(s)Q−1‖ds.

Applying the exponential function on this inequality yields assertion (v).
For the last property we start by evaluating the left hand side, (omitting the arguments of

our fundamental solution to simplify notation)

detM ′ =(M11M22 −M12M21)′ = M ′11M22 −M ′12M21 +M ′22M11 −M ′21M12 =

=z
(
A11(x)M11M22 +A12(x)M21M22 −A11(x)M12M21 −A12(x)M22M21+

+A21(x)M12M11 +A22(x)M22M11 −A21(x)M11M12 −A22(x)M21M12

)
=

=zA11(x)M11M22 − zA11(x)M12M21 + zA22(x)M22M11 − zA22(x)M21M12 =

=z trA(t) detM

and we obtain the desired equality. Plugging the right hand side of (1.10) in (1.9) completes
the proof.

The next result is easy to prove, but a very important fact.

Theorem 1.10. Let J ∈ C2×2, with J∗ = −J and assume that JA is hermitian a.e., then

M(x,w)∗JM(x, z)− J = (w̄ − z)
∫ x

a
M(t, w)∗JA(t)M(t, z)dt z, w ∈ C. (1.12)
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Proof. We evaluate

d

dx
[M(x,w)∗JM(x, z)] =

[
d

dx
M(x,w)

]∗
JM(x, z) +M(x,w)∗J

[
d

dx
M(x, z)

]
=

=

[
−J d

dx
M(x,w)

]∗
M(x, z) +M(x,w)∗J

[
d

dx
M(x, z)

]
.

Because JA is hermitian the right hand side further equals

w̄M(x,w)∗JA(x)M(x, z)− zM(x,w)∗JA(x)M(x, z) = (w̄ − z)M(x,w)∗JA(x)M(x, z),

and the equality follows by integrating with respect to x.

Corollary 1.11. Let J ∈ C2×2, with J∗ = −J and assume that −JA is hermitian and positive
semidefinite a.e., then

M(x, z)∗JM(x, z)− J
i

≥ 0, x ∈ [a, b], Im(z) > 0. (1.13)

Proof. We can put w = z in (1.12), because if −JA is hermitian, JA is hermitian as well, and
we obtain

M(x, z)∗JM(x, z)− J = −2i Im(z)

∫ x

a
M(t, z)∗JA(t)M(t, z)dt.

After we divide by i, the right hand side is greater or equal to 0, by positive semidefiniteness of
−JA.

Corollary 1.12. Let J ∈ C2×2, with J∗ = −J and assume that −JA is hermitian and positive
semidefinite a.e.. Then the entry M11(x, z) has no nonreal zeroes.

Proof. Evaluating M(x, z)∗JM(x, z)−J , yields (omitting the arguments (x, z) from the matrix
entries) (

M11M21 −M21M11 M12M21 −M11M22 + 1

M11M22 −M21M12 − 1 M12M22 −M22M12

)
.

Since, by Corollary 1.11, this is positive semidefinite for Im(z) > 0, after dividing by i, we
conclude that

M11M21 −M21M11

i
≥ 0.

Note that, due to which, for M21(x, z) 6= 0, is equivalent to

M11
M21
−
(
M11
M21

)
i

≥ 0.

Hence Im
(
M11
M21

)
≥ 0. Now, if Im

(
M11
M21

(x, z0)
)

= 0, for a z0 ∈ C+, by the maximum principle

we obtain that Im
(
M11
M21

(x, z)
)
≡ 0, for z ∈ C+ and hence Im(M11(x, z)) ≡ 0 for z ∈ C holds

as well. Therefore Re(M11(x, z)) has to be constant as well, and hence has to be equal to the
initial value, 1.

Corollary 1.13. Let J :=

(
0 −1
1 0

)
, and assume that JA is real and hermitian a.e.. Then

detM(x, z) = 1 for x ∈ [a, b], z ∈ C.
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Proof. We have that

JA(x) =

(
−A21(x) −A22(x)
A11(x) A12(x)

)
is real and hermitian, or in other words, A11(x) = −A22(x). Therefore trA(x) = 0 and hence
(1.10) yields the assertion.

The results above motivate the following definition.

Definition 1.14. A (2× 2)-matrix-valued function W (z) belongs to the classM0 if its entries
wij(z) are real entire functions, W (0) = I, detW (z) = 1 and if

HW (w, z) :=
W ∗(w)JW (z)− J

w − z

is a positive semidefinite kernel.

The following lemma shows that M0 is closed with respect to products.

Lemma 1.15. Let W1,W2 ∈M0. Then,

HW1W2 = HW2 +W ∗2 (w)HW1(w, z)W2(z)

Proof. We compute

HW1W2 =
W ∗2 (w)W ∗1 (w)JW1(z)W2(z)−W ∗2 (w)JW2(z) +W ∗2 (w)JW2(z)− J

w − z
=

= W ∗2 (w)
W ∗1 (w)JW1(z)− J

w − z
W2(z) +

W ∗2 (w)JW2(z)− J
w − z

=

= W ∗2 (w)HW1(w, z)W2(z) +HW2(w, z),

and have shown the assertion.
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2 Exponential Type

We recall the notion of exponential type, and present a first result connected with the
initial value problem (1.5). Namely we present Theorem 2.4, which provides a much
better estimate for the exponential type of the solutions of (1.5) than the Gronwall
Lemma (see Lemma 1.6). In fact we show that for canonical systems this upper
estimate coincides with the type (Corollary 2.9).

Definition 2.1. Let X be a Banach space, and f : C → X. We say f is of finite exponential
type, if there exist α ∈ [0,∞) and Cα ≥ 0 such that ‖f(z)‖ ≤ Cα exp

(
α|z|

)
for all z ∈ C.

We call τ(f) := inf{α > 0 : ∃Cα > 0 : ‖f(z)‖ ≤ Cα exp
(
α|z|

)
} the exponential type of f .

Remark 2.2. Assuming that f and g are elements of a Banach algebra, we immediately obtain
the following two properties:

(i) τ(fg) ≤ τ(f) + τ(g),

(ii) τ(f + g) ≤ max{τ(f), τ(g)}.

Lemma 2.3. Let X = C2×2, and A = (Ai,j)i,j∈{1,2} : C→ X. Then

τ(A) = max
i,j∈{1,2}

{τ(Aij)}.

Proof. Since all norms are equivalent on C2×2 we can use the maximum entry norm to compute
τ(A).

Theorem 2.4. Let A ∈ L1([a, b],C2×2), and let M(x, z) be the fundamental solution of (1.5).
Set

φ(x) := inf
Q∈GL(2,C)

∥∥QA(x)Q−1
∥∥ , Φ(x) :=

∫ x

a
φ(t)dt, x ∈ [a, b].

Then τ
(
M(x, z)

)
≤ Φ(x) for x ∈ [a, b].

Proof. First we note that the assertion is trivial if we consider x = a. Next we want to verify
that x 7→ τ

(
M(x, z)

)
is absolutely continuous. To this end let a ≤ y < x ≤ b. By Proposition

1.9 (i), we have
M(x, z) = My,x(x, z)M(y, z),

which is equivalent to M(y, z) = My,x(x, z)−1M(x, z). Hence, by Remark 2.2 and Lemma 2.3,
we obtain

τ
(
M(x, z)

)
≤ τ

(
My,x(x, z)

)
+ τ
(
M(y, z)

)
,

τ
(
M(y, z)

)
≤ τ

(
My,x(x, z)−1

)
+ τ
(
M(x, z)

)
.

Combining these two inequalities yields∣∣τ(M(x, z)
)
− τ
(
M(y, z)

)∣∣ ≤ max
{
τ
(
My,x(x, z)

)
, τ
(
My,x(x, z)−1

)}
. (2.1)

The first term in the maximum can be estimated from above by
∫ x
y ‖A(t)‖dt, due to the Gronwall

Lemma. To estimate the second term, let cof My,x(x, z) denote the cofactor matrix of My,x(x, z).
By Remark 2.2 and Lemma 2.3, τ

(
cof My,x(x, z)

)
= τ

(
My,x(x, z)

)
. Cramers rule says

My,x(x, z)−1 =
1

detMy,x(x, z)

(
cof My,x(x, z)

)T
,
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and applying Proposition 1.9 (v), we obtain

τ
(
My,x(x, z)−1

)
≤ τ

(
1

detMy,x(x, z)

)
+ τ

(
(cof My,x(x, z))T

)
≤

≤
∣∣∣∣∫ x

y
trA(t)dt

∣∣∣∣+ τ
(
My,x(x, z)

)
≤
∫ x

y

(
| trA(t)|+ ‖A(t)‖

)
dt.

Hence we can estimate the left hand side of (2.1) by
∫ x
y

(
| trA(t)| + ‖A(t)‖

)
dt, and conclude

that x 7→ τ
(
M(x, z)

)
is absolutely continuous.

Let Q ∈ GL(2,C) and let again a ≤ y < x ≤ b. By (1.7) the fundamental solution satisfies

‖QM(x, z)‖ ≤ ‖QM(y, z)‖ exp

(
|z|
∫ x

y

∥∥QA(t)Q−1
∥∥ dt) .

Since multiplying M(x, z) by Q ∈ GL(2,C) does not change the exponential type, i.e.,
τ
(
QM(x, z)

)
= τ

(
M(x, z)

)
, we get

τ
(
M(x, z)

)
− τ
(
M(y, z)

)
≤
∫ x

y

∥∥QA(t)Q−1
∥∥ dt.

This is equivalent to

τ
(
M(x, z)

)
− τ
(
M(y, z)

)
x− y

≤
∫ x
y

∥∥QA(t)Q−1
∥∥ dt

x− y
.

For almost every x both sides have a limit when y → x, and we obtain

τ
(
M(x, z)

)′ ≤ ∥∥QA(x)Q−1
∥∥ , x ∈ [a, b] a.e..

Taking the infimum over Q ∈ GL(2,C), and integrating yields our assertion.

Lemma 2.5. Let A ∈ C2×2 with trA = 0 and let ‖ · ‖ denote the spectral norm. Then

inf
Q∈GL(2,C)

∥∥QAQ−1
∥∥ =

√
|detA|.

Proof. Taking an appropriate basis of C2×2 and composing it to a matrix C ∈ GL(2,C), we
obtain that either

CAC−1 =

(
a 0
1 a

)
, or CAC−1 =

(
a 0
0 b

)
.

By assumption and because tr
(
CAC−1

)
= tr

(
CC−1A

)
= tr(A), we have a = 0 in the first case

and b = −a in the second.
In the first case we get

√
|detA| = 0. For r > 0 and B = diag

(
1
r , r
)
C, we have BAB−1 =(

0 0
r 0

)
and hence infQ∈GL(2,C)

∥∥QAQ−1
∥∥ = 0.

In the second case we have
√
|detA| = |a| =

∥∥CAC−1
∥∥ and hence

inf
Q∈GL(2,C)

∥∥QAQ−1
∥∥ ≤ a.

For arbitrary Q ∈ GL(2,C), the norm
∥∥QAQ−1

∥∥ is greater or equal to the maximum of the
absolute values of the eigenvalues of QAQ−1, and hence infQ∈GL(2,C)

∥∥QAQ−1
∥∥ ≥ |a|.
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Corollary 2.6. If trA(x) = 0 a.e., then

τ
(
M(x, z)

)
≤
∫ x

a

√
detA(t)dt. (2.2)

Proof. This result follows immediately from Lemma 2.5 and Theorem 2.4.

While the estimate (2.2) of the type from above holds under an assumption on the trace of
A, the reverse inequality will follow from a definiteness assumption.

Theorem 2.7. Let J =

(
0 −1
1 0

)
and assume that −JA is a.e. positive semidefinite and real.

Then

τ
(
M(x, z)

)
≥
∫ x

a

√
detA(t)dt. (2.3)

To prove this result we need the following general lemma.

Lemma 2.8. Let M(x, z) be the fundamental solution corresponding to A ∈ L1([a, b],C2×2),
and let Ψ : [a, b]→ R be some absolutely continuous function with Ψ(a) = 0. Then

MΨ(x, z) := exp
(
izΨ(x)

)
M(x, z)

is the fundamental solution of the system{
d
dxY (x, z) = −z

(
A(x)−Ψ′(x)iI

)
Y (x, z), x ∈ [a, b],

Y (a, z) = I.

Proof. First we note that MΨ(a, z) = M(a, z) = I. Further we obtain

d

dx
MΨ(x, z) = izΨ′(x) exp

(
iΨ(x)z

)
M(x, z) + exp

(
izΨ(x)

) d
dx
M(x, z) =

= izΨ′(x)MΨ(x, z)− exp
(
izΨ(x)

)
zA(x)M(x, z)

= −z
(
A(x)− iΨ′(x)I

)
MΨ(x,z),

and by uniqueness of solutions the proof is complete.

Proof of Theorem 2.7. Let −JA ≥ 0 and write −JA(x) =

(
h1(x) h3(x)
h3(x) h2(x)

)
, where hi(x), i ∈

{1, 2, 3}, are real and h1, h2 ≥ 0. Let Ψ(x) :=
∫ x
a

√
detA(t)dt, then

−J
(
A(x)−Ψ′(x)iI

)
=

(
h1(x) h3(x)− i

√
detA(x)

h3(x) + i
√

detA(x) h2(x)

)
.

We have
det
(
− J

(
A(x)−Ψ′(x)iI

))
= h1(x)h2(x)− h2

3(x)− detA(x) = 0,

and hence −J
(
A(x)−Ψ′(x)iI

)
≥ 0. For y > 0, this implies by Corollary 1.11

det

(
MΨ(x, iy)∗JMΨ(x, iy)− J

i

)
≥ 0. (2.4)

Now assume that τ
(
M(x, z)

)
<
∫ x
a

√
detA(t)dt = Ψ(x). Choose ε > 0 such that τ(M(x, z))+

ε < Ψ(x) and Cε > 0 such that

|Mij(x, z)| ≤ Cε exp
(
(τ(M(x, z)) + ε)|z|

)
, z ∈ C.
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Then
lim
y→∞

MΨ(x, iy) = lim
y→∞

exp
(
− yΨ(x)

)
M(x, iy) = 0.

and hence

lim
y→∞

MΨ(x, iy)∗JMΨ(x, iy)− J
i

= iJ.

Since det iJ = −1, that contradicts (2.4).

Putting together Theorem 2.7 and Corollary 2.6 for a canonical system, equality holds in
(2.2).

Corollary 2.9. If trA(x) = 0 a.e. and −JA is positive semidefinite and real a.e., then

τ
(
M(x, z)

)
=

∫ x

a

√
detA(t).

Proof. This follows immediately from Corollary 2.6 and Theorem 2.7.
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3 Growth Functions and λ-type

The question arises to which extent Theorem 2.4, or the method leading to its proof,
can be used to also capture different growth behaviour, for example with respect to
an order smaller than 1.
This chapter is of a preparatory nature. We introduce the notion of growth functions
and give some auxiliary results.

Throughout this chapter the order of an entire function will often be of importance or
interest. Therefore we start with its definition.

Definition 3.1. Let f be an entire function. Then, we define the order of f as

ord f := lim sup
z→∞

log log
(
|f(z)|

)
log
(
|z|
) ∈ [0,∞].

3.1 Proximate Orders and Growth Functions

This section follows the section of the same name of [5], but a similar chapter can be found in
[6] as well

Definition 3.2. We call a function λ : R+ → R+ a growth function, if it satisfies the following
properties

(i) The limit γ := limr→∞
log(λ(r))

log(r) exists and is a finite nonnegative number,

(ii) λ is differentiable for all sufficiently large values of r and limr→∞
rλ′(r)
λ(r) = γ,

(iii) log(r) = o
(
λ(r)

)
.

Let either α > 0 and βi ∈ R for i ∈ {1, . . . n}, or α = 0, β1 = 1, βj ∈ R and for j < i ≤ n.
Then an examples for growth functions are given by functions of the form

λ(r) = rα
(

log(r)
)β1 · . . . · (logn(r))βn ,

where logi(r) is defined as the i times iterated logarithm,
The following definition gives us information about the relative growth of f compared to λ.

Definition 3.3. Let f be an entire function and λ a growth function. The λ-type of f is given
by

σλf := lim sup
z→∞

log+
(
|f(z)|

)
λ
(
|z|
) ∈ [0,∞]. (3.1)

Further we introduce the following notion, which is closely related to growth functions. We
will elaborate their connection in Lemma 3.6.

Definition 3.4. A proximate order ρ(r) for the order ρ ≥ 0, is a function ρ : R+ → R+ such
that

(i) limr→∞ ρ(r) = ρ,

(ii) limr→∞ ρ
′(r)r log r = 0.
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For the entire function f(z) we set

σf = lim sup
r→∞

log
(
|f(r)|

)
rρ(r)

and call σf the type of f with respect to ρ. If σf ∈ (0,∞), ρ(r) is called a proximate order of
the function f(z).

Remark 3.5. We note that for any positive continuous increasing function f of finite order,
there exists a proximate order with respect to which f is of finite and nonzero type. For a proof
see [5], Appendix II.

Clearly the proximate order and its corresponding type of a given function are not uniquely
determined. For example, if we add log(c)/ log(r) to the proximate order, then we obtain a new
proximate order for the function, and now the type has been divided by c.

Lemma 3.6. The following assertions hold:

(i) Let ρ(r) be a proximate order with respect to the order ρ > 0. Then λ(r) := rρ(r) is a
growth function.

(ii) Let ρ(r) be a proximate order with respect to the order ρ = 0 and log(r) = o
(
rρ(r)

)
. Then

λ(r) := rρ(r) is a growth function.

(iii) Conversely, if λ(r) is a growth function, then ρ(r) := log(λ(r))
log(r) is a proximate order with

respect to the order γ, where γ := limr→∞
log(λ(r))

log(r) as indicated in Definition 3.2.

Proof. First we prove (i). To this end let ρ(r) be a proximate order, with respect to the order
ρ and λ(r) := rρ(r). Then property (i) of Definition 3.2 follows, because we get log

(
λ(r)

)
=

ρ(r) log(r) and apply Definition 3.4 (i). To validate (ii), we evaluate

λ′(r) = rρ(r)

(
log(rρ

′(r)) +
ρ(r)

r

)
.

Multiplying this by r
λ(r) and applying Definition 3.4 (i) and (ii) yields the desired assertion.

Further, Definition 3.2 (iii) is obvious, because ρ(x) > 0 by definition, and we obtain assertion
(i).

If we consider the situation in assertion (ii), we observe that Definition 3.2 (i) and (ii) follow
analogously. The last point of this definition is fullfilled by the assumption in (ii).

To prove (iii) let λ be a growth function. For ρ(r) := log(λ(r))
log(r) Definition 3.4 (i) is satisfied,

by Definition 3.2 (i), and we observe that ρ = γ. To verify Definition 3.4 (ii), we evaluate

ρ′(r) =

λ′(r) log(r)
λ(r) − log(λ(r))

r

log2(r)
,

and hence we obtain limr→∞ ρ
′(r)r log r = 0, by applying Definition 3.2 (i) and (ii).

Proposition 3.7. If ρ(r) is a proximate order with ρ > 0, then rρ(r) is strictly increasing for
r sufficiently large.

If ρ(r) is a proximate order with ρ = 0, then rρ(r) is increasing for r sufficiently large, if

lim
r→∞

rρ′(r) log(r)

ρ(r)
= 0. (3.2)
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Proof. We have d
dr

(
rρ(r)

)
= ρ(r)rρ(r)−1 + rρ(r)ρ′(r) log r.

First let ρ > 0, then, by Definition 3.4 (i) and (ii), we get ρ(r) > ρ/2 and |ρ′(r)r log r| < ρ/4
for all r sufficiently large. For such r, we conclude

rρ(r)−1
(
ρ(r) + rρ′(r) log r

)
> rρ(r)−1ρ/4,

and because rρ(r)−1 > 0 we obtain our assertion.
Let ρ = 0, then rρ′(r) log r

ρ(r) ≥ −1
2 for r sufficienly large, by (3.2). Hence

d

dr

(
rρ(r)

)
= rρ(r)−1ρ(r)

(
1 +

rρ′(r) log r

ρ(r)

)
> 0,

for r large enough, which completes the proof.

Remark 3.8. Since in the study of asymptotic properties of entire functions we are only
interested in their properties for r sufficiently large, we can always change ρ(r) on a bounded
set, without affecting the asymptotic properties we study. Thus for ρ > 0, we can always assume
that rρ(r) is strictly increasing for r > 0.

3.2 Slowly varying functions

Definition 3.9. Let Ψ : [X,∞) → R+ be a measurable function. We say that Ψ is slowly
varying, if

lim
x→∞

Ψ(kx)

Ψ(x)
→ 1, k > 0. (3.3)

Remark 3.10. Note that limx→∞
Ψ(kx)
Ψ(x) = 1 if and only if limx→∞

Ψ( 1
k
x)

Ψ(x) = 1. Hence, in order to

have Ψ slowly varying, it is enough to check (3.3) on any set M ⊆ (0.∞) with M ∪M1 = (0,∞).

The following theorem provides a useful result, in the context of slowly varying functions.
For the sake of completeness, we present a proof taken from [3], section 1.2..

Theorem 3.11. [Uniform Convergence] Let I be a compact interval in (0,∞) and Ψ be slowly
varying, then

lim
x→∞

Ψ(kx)

Ψ(x)
→ 1, uniformly for k ∈ I. (3.4)

Proof. Write h(x) = log(Ψ(ex)). Then our assumption is equivalent to

lim
x→∞

(h(x+ u)− h(x)) = 0, (3.5)

for all u ∈ R and we have to prove uniform convergence for u ∈ I, where I is any compact
interval in R. It suffices to prove uniform convergence on [0, A], for by translation this gives us
uniform convergence on every compact interval.

Now choose ε ∈ (0, A). For x > 0 let

Ix := [x, x+ 2A],

Ex := {t ∈ Ix : |h(t)− h(x)| ≥ ε/2},
E∗x := {t ∈ [0, 2A] : |h(x+ t)− h(x)| ≥ ε/2} = Ex − x.

Then Ex, E
∗
x are measureable, as Ψ is, and |Ex| = |E∗x|, where | · | denotes the Lebesgue

measure. By (3.5) the indicator function of E∗x tends pointwise to 0 as x→∞. So by dominated
convergence its integral |E∗x| tends to 0. Thus |Ex| ≤ ε/2 for x large enough, say, for x ≥ xε.
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Now, for c ∈ [0, A], Ix+c ∩ Ix = [x+ c, x+ 2A] has length 2A− c ≥ A, while for x ≥ xε

|Ex+c ∪ Ex| ≤ |Ex+c|+ |Ex| < ε < A.

So for c ∈ [0, A] and x ≥ xε
(Ix+c ∩ Ix)\(Ex+c ∪ Ex)

has positive measure, and therefore is non-empty. Let t be a point of this set, then

|h(t)− h(x)| < ε/2,

|h(t)− h(x+ c)| < ε/2.

So, by the triangular inequality, for all c ∈ [0, A] and x ≥ xε,

|h(x+ c)− h(x)| < ε,

proving the desired uniformity on [0, A], and hence the theorem.

The following theorem is very important in the study of proximate orders.

Theorem 3.12. If ρ(r) is a proximate order, then Ψ(r) = rρ(r)−ρ is a slowly varying function.

Proof. By definition of Ψ, we obtain

log

(
Ψ(kr)

Ψ(r)

)
= log

(
(rk)ρ(kr)−ρ

)
− log

(
rρ(r)−ρ

)
=

= (ρ(kr)− ρ) (log(k) + log(r))− (ρ(r)− ρ) log(r) = (3.6)

= (ρ(kr)− ρ) log(k) + (ρ(kr)− ρ(r)) log(r).

Let ε > 0 and choose r0 such that

|ρ′(x)x log(x)| ≤ ε, x ≥ r0 (3.7)

log(r)

log(r) + log(k)
≤ 2 r ≥ r0 (3.8)

|ρ(x)− ρ| ≤ ε x ≥ r0. (3.9)

Now assume k ∈ (0, 1). Then, by the Mean Value Theorem, |ρ(r)− ρ(rk)| = |ρ′(ξ)|(r− rk)|
for some ξ ∈ (rk, r). Hence, for r ≥ r0

k , we have

log(r)|ρ(rk)− ρ(r)| ≤ |ρ
′(ξ)ξ log(ξ)|(r − rk) log(r)

ξ log(ξ)
≤

≤ |ρ
′(ξ)ξ log(ξ)|r(1− k) log(r)

kr log(kr)
≤

≤ ε1− k
k

2,

by (3.7) and (3.8). Further by (3.9)

|(ρ(rk)− ρ) log(k)| ≤ ε| log(k)|

and hence, by (3.6),
∣∣∣log

(
Ψ(kr)
Ψ(r)

)∣∣∣ < ε
(
21−k

k + | log(k)|
)
.

By Remark 3.10, we conclude that
∣∣∣log

(
Ψ(kr)
Ψ(r)

)∣∣∣ < ε for all r > r0 and k ∈ (0,∞).
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Corollary 3.13. Let ε > 0. Then, for r sufficiently large

(1− ε)kρrρ(r) < (kr)ρ(kr) < (1 + ε)kρrρ(r), r > r0(ε).

Proof. By Theorem 3.12, we obtain

(1− ε) ≤ (kr)ρ(kr)rρ

(kr)ρrρ(r)
≤ (1 + ε),

for r sufficiently large, and the assertion follows immediately.

Further we will need the following result, and prove it following the lines of [3], section 1.3.

Theorem 3.14. Let I be a compact interval. Then the following two assterions hold.

(i) If the function Ψ is slowly varying, it may be written in the form

Ψ(x) = c(x) exp

(∫ x

a

ε(u)

u
du

)
, x ≥ a, (3.10)

for some a > 0, where c(x) and ε(x) are measurable functions with c(x)→ c ∈ (0,∞) and
ε(x)→ 0 for x→∞, respectively.

(ii) If the function Ψ can be written in the form given above, it satisfies (3.4).

Remark 3.15. Note that this will not yield an alternative proof of the Uniform Convergence
Theorem 3.11, since we apply it to show assertion (i).

Remark 3.16. Before we start the proof we make some observations.

(i) Since c, Ψ, ε may be altered on finite intervals, the value of a is unimportant, and one
may also take c bounded. We may rewrite (3.10) as

Ψ(x) = exp

(
c1(x) +

∫ x

a

ε(u)

u
du

)
, (3.11)

where c1(x), ε(x) are bounded and measurable, limx→∞ c1(x) = d ∈ R, limx→∞ ε(x) = 0.

(ii) We will write h(x) := log (Ψ(ex)). Thus we can prove Theorem 3.14 by showing that h
satisfies limx→∞ (h(x+ y)− h(x)) = 0, y ∈ R if and only if h may be written as

h(x) = d(x) +

∫ x

b
g(y)dy, (3.12)

with x ≥ b = log(a), d(x) = c1(ex), g(x) = ε(ex), where limx→∞ d(x) → d ∈ R,
limx→∞ g(x) → 0. This follows by applying the definition of h and by substitution in
the integral.

Lemma 3.17. If Ψ is positive, measurable, defined on some interval [A,∞) and

lim
x→∞

Ψ(kx)

Ψ(x)
→ 1,

for every k > 0, then Ψ is bounded on all finite intervals far enough to the right. If h(x) :=
log (Ψ(ex)), h is also bounded on finite intervals far enough to the right.
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Proof. By the Uniform Convergence Theorem 3.11 and Remark 3.16 (ii), we get for x0 suffi-
ciently large,

|h(x+ u)− h(x)| < 1, x ≥ x0

for u ∈ [0, 1]. Hence, if we consider x = x0 and write y := x0 + u by the triangular inequality,
|h(y)| ≤ 1+|h(x0)| for y ∈ [x0, x0+1]. By induction we get |h(y)| ≤ h(x0)+n for y ∈ [x0, x0+n],
for n = 1, 2, . . . , and we get the conclusion for h. Further this implies the conclusion for
Ψ(x) = exp(h(log(x))).

Proof of Theorem 3.14. Assume that (3.10) holds and let k ∈ I. Then we get

Ψ(kx)

Ψ(x)
=
c(kx)

c(x)
exp

(∫ kx

x

ε(u)

u
du

)
.

Choose ε > 0. Then, for all sufficiently large x, the right hand side lies between

(1± ε) exp (±ε| log(k)|) ,

from which (3.4) follows.
By Lemma 3.17, h is integrable on finite intervals far enough to the right, by being bounded

and measurable on them. For X large enough, we may therefore write

h(x) =

∫ x+1

x

(
h(x)− h(t)

)
dt+

∫ x

X

(
h(t+ 1)− h(t)

)
dt+

∫ X+1

X
h(t)dt, x ≥ X.

The last term on the right is a constant, say c. If g(x) := h(x + 1) − h(x), then g(x) → 0 as
x→∞ by Remark 3.16 (ii). The first term on the right is

∫ 1
0 (h(x)− h(x+ u))du, which tends

to 0 as x → ∞, by the Uniform Convergence Theorem 3.11 and again Remark 3.16 (ii). By
putting d(x) := c+

∫ 1
0 (h(x)− h(x+ u))du we obtain (3.12)

3.3 Indicator functions with relation to slowly varying functions

In this section we investigate more closely the growth of functions of order 0. The main result
is the theorem below. There we denote, for an entire function f ,

mf (r) := inf
|z|=r
|f(z)| and Mf (r) := sup

|z|=r
|f(z)|.

Theorem 3.18. Let f be an entire function and Ψ be a positive slowly varying function. Further
assume

α := lim sup
r→∞

log(Mf (r))

Ψ(r)
<∞. (3.13)

Then also

lim sup
r→∞

log
(
mf (r)

)
Ψ(r)

= α.

Remark 3.19. This theorem applies to all functions of zero order. For if f has order zero, and
ρ(r) is a proximate order for f , then Ψ(r) := rρ(r) is slowly varying and (3.13) holds with some
α > 0. It does not remain true for functions of larger order. For example consider f(z) := ez.
Then Mf (r) = er, while mf (r) = e−r.

A proof of this (and some stronger) facts, without appealing to slowly varying functions,
can be found in [4], chapter 3.

The proof of Theorem 3.25 will closely follow the lines of [2] section 6, but first we present
a corollary of it.
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Corollary 3.20. Assume that (3.13) holds. Then the indicator of f w.r.t Ψ, i.e. the function

hf,Ψ(θ) := lim sup
r→∞

log
(
|f(reiθ)|

)
Ψ(r)

, θ ∈ [0, 2π), (3.14)

is constant equal to α.

Proof of Corollary 3.20. Clearly for every θ ∈ [0, 2π]

mf (r) ≤
∣∣∣f(r exp(iθ)

)∣∣∣ ≤Mf (r).

Thus our corollary follows from Theorem 3.18.

We need a few preliminary observations, before we start with the proof of Theorem 3.25.
First, let us observe that validity of (3.13) for some slowly varying function implies that f is of
zero order.

Lemma 3.21. Let Ψ be a slowly varying function. Then for every δ > 0 we have Ψ(r) = o(rδ),
r →∞.

Proof. Applying Theorem 3.14, we obtain

Ψ(r) ≤ c(r) exp

(∫ r0

a

maxu∈[a,r0] ε(u)

s
ds+

∫ r

r0

ε(s)

s
ds

)
For r0 large enough we get ε(u) ≤ ε′ for u ≥ r0 and hence the second integral is bounded by
ε′ log(r). Since, we can choose ε(x) to be bounded, the first one is a constant K, and hence we
obtain

Ψ(r) ≤ c(r) exp
(
K + ε′ log(r)

)
= c(r)eKrε

′
.

If we take ε′ ≤ δ we obtain
Ψ(r) = o

(
rδ
)
, as r →∞,

for δ > 0, since limr→∞ c(r) = c, by Theorem 3.14.

Remark 3.22. Combining Lemma 3.21 with (3.13) shows that f has zero order, because since

Ψ(r) = o(rδ) holds, we obtain lim supr→∞
log(Mf (r))

rδ
= 0 for all δ > 0.

Next we want to present two well known results, which we will need during this section.
Their proofs can be found for example in [6].

Theorem 3.23 (Jensen). Let f(z) be holomorphic in a disc of radius R with center at the
origin and f(0) 6= 0. Then∫ R

0

n(t)

t
dt =

1

2π

∫ 2π

0
log
(
|f(R exp(iθ))|

)
dθ − log(|f(0)|),

where n(t) is the number of zeroes of f in the disk |z| ≤ t.

Theorem 3.24 (Hadamard). An entire function f(z) of order ρ can be represented in the form

f(z) = zm exp(p(z))

∞∏
0

G

(
z

zν
, q

)
,

where zν are the zeroes of f , p(z) is a polynomial whose degree does not exceed ρ, m is the
multiplicity of the zero at the origin, q ≤ ρ and

G

(
z

zν
, q

)
:=

(
1− z

zν

)
exp

(
u+

u2

2
+ · · ·+ uq

q

)
, G

(
z

zν
, 0

)
:= 1− z

zν
.
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The basic connection between Mf (r), mf (r), and Ψ(r) is given by the following theorem,
which provides a very important step in the proof of Theorem 3.25.

Theorem 3.25. Let Ψ be a slowly varying function, f entire, and assume that (3.13) holds.
Then ∫ 2r

r
log

(
Mf (t)

mf (t)

)
1

t
dt = o(Ψ(r)), (3.15)

for r →∞.

Remark 3.26. We start the proof with a few preliminary observations.

(i) We can assume w.l.o.g. that f(0) = 1. This is because passing from f(z) to f(z)/(czp),
where p is a nonnegative integer and c a non-zero constant, does not affect the relations
(3.13), (3.15).

(ii) By Lemma 3.21 f is of order zero, and hence Hadamard’s Theorem 3.24 gives

f(z) =
∞∏
ν=1

(
1− z

zν

)
,

where zν are the zeroes of f . Hence, for |z| = r,

∞∏
ν=1

∣∣∣∣1− r

|zν |

∣∣∣∣ ≤ |f(z)| ≤
∞∏
ν=1

∣∣∣∣1 +
r

|zν |

∣∣∣∣ .
Therefore, we get

log

(
Mf (r)

mf (r)

)
≤
∞∑
ν=1

log

(
r + |zν |∣∣r − |zν |∣∣

)
. 0 < r <∞. (3.16)

To prove Theorem 3.25 we need an estimate of the sum in (3.16), which we will obtain by
means of the following lemmata.

Lemma 3.27. Assume that f satisfies (3.13), f(0) = 1, and denote by n(r) the number of
zeroes of f in the disc {z ∈ C : |z| ≤ r}, then

n(r) = o
(
Ψ(r)

)
, r →∞.

Proof. Let K > 1. From Jensen’s Theorem 3.23, (3.13), and the fact that Ψ is slowly varying,
we obtain r0(K) > 0 such that∫ Kr

0

n(t)

t
dt ≤ log

(
Mf (Kr)

)
≤ (α+ 1)Ψ(Kr) ≤ 2(α+ 1)Ψ(r), r > r0(K).

Hence

n(r) log(K) = n(r)

∫ Kr

r

1

t
dt ≤

∫ Kr

r

n(t)

t
dt ≤ 2(α+ 1)Ψ(r), r > r0(K).

Since K can be chosen arbitrarily large, this yields our assertion.

Lemma 3.28. For s > 0 we have∫ ∞
0

log

(∣∣∣∣1 + s
t

1− s
t

∣∣∣∣) 1

t
dt =

π

2
.
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Proof. We first put s/t = x so that our integral becomes∫ ∞
0

log

(∣∣∣∣1 + x

1− x

∣∣∣∣) 1

x
dx =

∫ 1

0
log

(
1 + x

1− x

)
1

x
dx+

∫ 1

0
log

(
1 + y

1− y

)
1

y
dy,

where we have put x = 1/y, when x > 1. Further∫ 1

0
log

(
1 + x

1− x

)
1

x
dx =

∫ 1

0

(
−
∞∑
k=0

(−x)k+1

k + 1
+
∞∑
k=0

xk+1

k + 1

)
1

x
dx = 2

∞∑
m=1

∫ 1

0

x2m−2

2m− 1
dx,

where we used the power series representation of the logarithm. Evaluating the integral in the
last sum yields

2

∞∑
m=1

∫ 1

0

x2m−2

2m− 1
dx = 2

∞∑
m=1

(
1

2m− 1

)2

=
π

4

and this proves our lemma.

Lemma 3.29. We have ∑
|zν |>2r

log

(
1 + r

|zν |

1− r
|zν |

)
= o(Ψ(r)). (3.17)

Proof. First we note

log

(
1 + r

t

1− r
t

)
= log

(
1 +

2r

(1− r
t )t

)
≤ 2r

(1− r
t )t
≤ 4r

t
, t ≥ 2r.

Further, by Lemma 3.27 and Lemma 3.21 we get n(t) = o(Ψ(t)) = o(tδ) for arbitrary δ > 0.
Choosing δ < 1, we conclude

lim
t→∞

n(t) log

(
1 + r

t

1− r
t

)
= 0.

Applying this, we can write the sum from the left hand side of (3.17) as∫ ∞
2r

log

(
1 + r

t

1− r
t

)
dn(t) =

[
n(t) log

(
1 + r

t

1− r
t

)]∞
2r

+ 2r

∫ ∞
2r

n(t)

t2 − r2
dt =

= −n(2r) log(3) + o

(
r

∫ ∞
2r

Ψ(t)

t2
dt

)
,

(3.18)

for r sufficiently large, noting that t2

t2−r2 ≤ 4/3 for t ∈ [2r,∞). Now consider t ∈ [2pr, 2p+1r] for
p ∈ N. Then, for r large enough

Ψ(t) < (1 + ε)Ψ(r2p) < 21/2Ψ(2r2p−1) < 2Ψ
(
2r2p−2

)
< · · · < 2p/2Ψ(2r),

because Ψ is slowly varying. Hence, for r sufficiently large, we obtain∫ r2p+1

r2p

Ψ(t)

t2
dt <

∫ r2p+1

r2p

Ψ(2r)2p/2

t2
dt =

Ψ(2r)2p/2

r2p+1
=

Ψ(2r)

2r
2−p/2.

We get

r

∫ ∞
2r

Ψ(t)

t2
dt <

Ψ(2r)

2

∞∑
p=1

2−p/2 = O(Ψ(r)).

Thus, (3.18) and Lemma 3.27 yield the assertion.
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Proof of Theorem 3.25. Let r < t < 2r. Then, by Lemma 3.29,∑
|zν |>4r

log

(
1 + t

|zν |

1− t
|zν |

)
≤

∑
|zν |>4r

log

(
1 + 2r

|zν |

1− 2r
|zν |

)
= o(Ψ(r)),

and hence ∑
|zν |>4r

log

(
|zν |+ t

|zν | − t

)
= o(Ψ(r)).

Thus ∫ 2r

r

∑
|zν |>4r

log

(
|zν |+ t

|zν | − t

)
1

t
dt = o

(
Ψ(r)

) ∫ 2r

r

1

t
dt = o(Ψ(r)). (3.19)

Further, by Lemma 3.28∫ 2r

r

∑
|zν |≤4r

log

(∣∣∣∣ |zν |+ t

|zν | − t

∣∣∣∣) 1

t
dt ≤

∑
|zν |≤4r

∫ ∞
0

log

(∣∣∣∣ 1 + t

|1− t|

∣∣∣∣) 1

t
≤ π2

2
n(4r) = o

(
Ψ(r)

)
. (3.20)

Putting together (3.16), (3.19) and (3.20) yields our assertion.

Proof of Theorem 3.18. Let ε > 0 and choose a large r, such that

log
(
Mf (r)

)
> (α− ε)Ψ(r).

Let k ∈ [1, 2]. Then, because Ψ is slowly varying, we get Ψ(kr) ≤ (1 + ε1)Ψ(r) and hence

(α− ε)Ψ(r) ≥ α− ε
1 + ε1

Ψ(t) ≥ (α− 2ε)Ψ(t),

with r ≤ t ≤ 2r, for r sufficiently large. Further, since log
(
Mf (r)

)
increases with r we obtain

that if r is sufficiently large

log
(
Mf (t)

)
> (α− 2ε)Ψ(t), r ≤ t ≤ 2r. (3.21)

Again, because Ψ is slowly varying, we get Ψ(kr) ≥ (1− ε2)Ψ(r), and hence

−εΨ(r) ≥ − ε

1− ε2
Ψ(t) ≥ −2εΨ(t), r ≤ t ≤ 2r

Applying this, and by the mean value theorem for integrals, it follows from Theorem 3.25 that
we can choose t, such that r ≤ t ≤ 2r and

log
(
mf (t)

)
> log

(
Mf (t)

)
− εΨ(r) ≥ log

(
Mf (t)

)
− 2εΨ(t),

if r is sufficiently large.
On combining this with (3.21) we obtain

log
(
mf (t)

)
> (α− 4ε)Ψ(t).

Since ε is arbitrarily small we obtain

lim sup
t→∞

log
(
mf (t)

)
Ψ(t)

≥ α.

Since mf (r) ≤Mf (r) we have from (3.13)

lim sup
t→∞

log
(
mf (t)

)
Ψ(t)

≤ α,

which proves the corollary.
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3.4 A Formula for Type

The next theorem will yield a formula for the type of an entire function with respect to a
proximate order ρ(r). Since by Proposition 3.12, rρ(r) is an increasing function for r > 0, if
ρ > 0 the equation t = rρ(r) admits a unique solution for t > 0. We will denote this solution by
r = φ(t). Therefore φ(t) is just the inverse function of rρ(r). Of course φ(t) depends on ρ(r),
but we will not denote this dependence. The proof we present is based on the proofs of this
theorem given in [5], [6].

Theorem 3.30. Let f(z) =
∑∞

n=0 cnz
n, z ∈ C, be the Taylor series expansion of the entire

function f(z) of finite order ρ > 0 and of proximate order ρ(r). Then the type σf with respect
to the proximate order ρ(r) is given by

1

ρ
log(σf ) = lim sup

n→∞

(
1

n
log
(
|cn|
)

+ log
(
φ(n)

))
− 1

ρ
− log(ρ)

ρ
, ρ > 0, (3.22)

where φ(t) is the inverse function of rρ(r).

Proof. We divide the proof in several steps.

Step 1: We show that lims→∞
φ(ks)
φ(s) = k

1
ρ , k ∈ (0,∞). Set t = rρ(r). Since, by definition,

log(t(r)) = ρ(r) log(r), we get

d(log(t))

d(log(r))
= ρ′(r)r log(r) + ρ(r),

which, by Definition 3.4, tends to ρ when r tends to infinity. Furthermore

d(log(t(r)))

d(log(r))
=

d
dt log(t(r))
d
dt log(r)

=
d
dt log(t(r))

d
dt log

(
φ(t(r))

) .
So combining these two equalities yields, for r sufficiently large,(

1

ρ
− ε
)
d

dt
log
(
t(r)

)
<

d

dt
log
(
φ(t(r))

)
<

(
1

ρ
+ ε

)
d

dt
log
(
t(r)

)
.

If we integrate from s to ks, we obtain(
1

ρ
− ε
)

log(k) < log

(
φ(ks)

φ(s)

)
<

(
1

ρ
+ ε

)
log(k),

and hence taking exponentials yields

lim
s→∞

φ(ks)

φ(s)
= k

1
ρ . (3.23)

Step 2: By the Cauchy Integral Formula we have the following estimate for the coefficients
of the power series

|cn| ≤
sup|z|≤r |f(z)|

rn
.

Since f(z) is of finite order ρ, there exists r0 such that for r ≥ r0, k ≥ ρ and σ̃ > σr
k

f

sup
|z|≤r
|f(z)| ≤ eσ̃rk
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and hence
|cn| ≤ eσ̃r

k
r−n, r ≥ r0. (3.24)

Considering the function on the right hand side as a function of r, with r ∈ R+, we want to
determine its smallest value. Therefore, we evaluate

d

dr

[
eσ̃r

k
r−n

]
= eσ̃r

k
σ̃krk−1r−n − neσ̃rkr−n−1 = eσ̃r

k
r−n−1(σ̃krk − n),

where the right hand side equals zero for

r =
( n
σ̃k

)1/k
.

To verify that this is indeed the smallest value we regard

d2

dr2

[
eσ̃r

k
r−n

]
=

= eσ̃r
k
σ̃krk−1r−n−1(σ̃krk − n)− (n+ 1)eσ̃r

k
r−n−2(σ̃krk − n) + eσ̃r

k
r−n−1σ̃k2rk−1.

Plugging in the value we obtained for r, we notice that (σ̃krk − n) = 0 and that only the last
term,which is obviously positive, remains and we are done. Therefore, we obtain

|cn| ≤
(
eσ̃k

n

)n/k
, (3.25)

for
(
n
σ̃k

)1/k ≥ r0 and k ≥ ρ and σ̃ > σr
k

f .
Conversely, assume that (3.25) holds for all n ≥ n(k, σ̃) and let us estimate sup|z|≤r |f(z)|.

If we choose r such that mr = 2keσ̃krk ≥ n(k, σ̃), we have by (3.25)

|cnzn| ≤ 2−n

for n ≥ mr = 2keσ̃krk, and therefore

|f(z)| ≤
mr∑
n=0

|cn|rn + 2mr .

Introducing the notation
µ(r) := max

n
|cn|rn

we have
sup
|z|≤r

f(z) ≤ (1 + 2keσ̃krk)µ(r) + 2mr (3.26)

Step 3: In this step we show that ” ≥ ” holds in (3.22), if σf <∞. By (3.24) we obtain

log
(
|cn|
)
< σ̃rρ(r) − n log(r),

for σ̃ > σf and r large enough. If rn is the solution of the equation n = σ̃ρrρ(r), then for n
sufficiently large we have

log
(
|cn|
)
<
n

ρ
− n log

(
φ

(
n

ρσ̃

))
.
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Dividing by n and adding log(φ(n)) to this yields

log
(
φ(n)|cn|1/n

)
<

1

ρ
+ log

 φ(n)

φ
(
n
ρσ̃

)
 ,

and hence, taking the exponential again, lim supn→∞
(
φ(n)|cn|1/n

)
≤ (σ̃ρe)1/ρ by (3.23). This

is true for all σ̃ > σf . Passing to the limit we have

lim sup
n→∞

(
φ(n)|cn|1/n

)
≤ (σ̃ρe)1/ρ,

and since σ̃ > σf was arbitrary

lim sup
n→∞

(
φ(n)|cn|1/n

)
≤ (σfρe)

1/ρ, (3.27)

Step 4: This step completes the proof by showing that ”≤” holds in (3.22) if the right hand

side is finite. Let σ̂ be defined by the formula lim supn→∞
(
φ(n)|cn|1/n

)
= (σ̂ρe)

1
ρ . We shall

show that σ̂ < σf leads to a contradiction. Suppose σ̂ < σf and choose σ′ such that σ̂ < σ′ < σf .

|cn| <

(
(σ′ρe)1/ρ

φ(n)

)n
≤

 e1/ρ

φ
(

n
σ′ρ

)
n

,

by (3.23). Thus, there exists n0 such that for n ≥ n0,

|cn|rn ≤

 e1/ρ

φ
(

n
σ′ρ

)
n

rn.

and hence

µ(r) < max
n>n0

 e1/ρ

φ
(

n
σ′ρ

)
n

rn.

This maximum is obtained at σρrρ(r), according to [5], [6]. Therefore, let n be the biggest integer

smaller than σρrρ(r). Then, by (3.23), we get φ( n
σ′ρ) ≥ φ(σ

′ρrρ(r)

σ′ρ )(1 − ε1). Hence, choosing ε2

such that 1 + ε2 = 1
1−ε1 , we get, by definition of φ

µ(r) ≤

(
e1/ρ

φ
(
rρ(r)

))n · ((1 + ε2)r)n ≤ (e1/ρ(1 + ε2))n,

which is strictly increasing in n, and therefore

(e1/ρ(1 + ε2))n ≤ ((1 + ε2)e1/ρ)σ
′ρrρ(r) ,

for r sufficiently large. Hence from (3.26), we see that for all ρ1 > ρ, σ′ > 0

sup
|z|≤r
|f(z)| ≤ (1 + 2ρ1eσfρ1r

ρ1)eσ
′rρ(r)(1 + ε2)σ

′ρrρ(r) + 1.

Further, since we can choose our ε1 accordingly, we can get (1 + ε2) ≤ eε3/ρ, for an arbitrary
ε3 > 0. Therefore, and by definition of σf , this leads to σf ≤ σ′(1 + ε3), where ε3 is arbitrarily
small, and hence a contradiction. Thus the inequality sign in (3.27) cannot occur and the
theorem is proved.

26



3.5 λ-type of Matrices of the Class M0

Definition 3.31. The Nevanlinna Class N0 is defined as the set of all functions q, that are
analytic in C\R, satisfy q = q# := q(z) and have nonnegative imaginary part in C+.

In the following we want to investigate the connection between the Nevanlinna Class and
matrices of the classM0, as given in Definition 1.14. The most imporant result will be Corollary
3.36. We start with the following theorem, which is taken from [1]:

Theorem 3.32. Let A,B be entire functions such that B
A ∈ N0 and let λ be a growth function.

Then σλA = σλB.

Proof. We start by showing that B
A ∈ N0 implies −A

B ∈ N0. Clearly B
A =

(
B
A

)#
implies

−A
B = −

(
A
B

)#
. Further, if we write B

A (z) = v(z)+w(z)i, inverting yields −A
B (z) = − v(z)−w(z)i

(v(z)+w(z))2

and hence the nonnegativity of the imaginary part translates as well. Further, if Im B
A (z) = 0

for some z ∈ C+, by the maximum principle this would hold for all z ∈ C+. Hence the real
part would be constant as well and the theorem follows immediately. Therefore we only need
to consider B

A without zeroes.
If both σλA and σλB are both equal to ∞ we are done. Therefore, let σλA < ∞. We show

that this implies σλA ≥ σλB, which will complete the proof. Since we have B
A ∈ N0, it has by the

Herglotz Theorem (see Appendix), an integral representation of the form

B(z)

A(z)
= az + b+

∫
R

(
1

t− z
− t

t2 + 1

)
dµ(t), z ∈ C+,

where a ≥ 0, b ∈ R and µ is a positive Borel measure on R such that
∫
R(t2 + 1)−1dµ(t) < ∞.

In the present case in fact µ is a discrete measure with point masses at the zeroes of A. Hence∣∣∣∣B(z)

A(z)

∣∣∣∣ =

∣∣∣∣az + b+

∫
R

tz + 1

(t2 + 1)(t− z)
dµ(t)

∣∣∣∣ ≤
≤
∣∣∣∣az + b+ z

∫
R

1

t2 + 1
dµ(t)

∣∣∣∣+

∣∣∣∣(z2 + 1)

∫
R

1

(t2 + 1)(t− z)
dµ(t)

∣∣∣∣ , z ∈ C+.

Therefore,

log
(
|B(z)|

)
≤ log

(
|A(z)|

)
+ C1 log

(
|z|+ 2

)
+ C2 log+ 1

| Im(z)|
+ C3

for all z ∈ C\R. In particular

log
(
|B(z)|

)
≤ log

(
|A(z)|

)
+ C1 log

(
|z|+ 2

)
, | Im(z)| ≥ 1. (3.28)

Now let Im(z) < 1. Then by subharmonicity of log |B|,

log
(
|B|
)
≤ 1

2π

∫ 2π

0
log
( ∣∣B(z + exp(iφ)

)∣∣ )dφ ≤
≤ 1

2π

∫ 2π

0
log
( ∣∣A(z + exp(iφ)

)∣∣ )dφ+

+ C4 log
(
|z|+ 2

)
+

1

2π

∫ 2π

0
log+ 1∣∣Im (z + exp(iφ)

)∣∣dφ.
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Clearly

1

2π

∫ 2π

0
log+ 1∣∣Im (z + exp(iφ)

)∣∣dφ ≤ C5

for all z with | Im(z)| < 1. Consequently

log
(
|B(z)|

)
≤ 1

2π

∫ 2π

0
log
( ∣∣A(z + exp(iφ)

)∣∣ )dφ+ C4 log
(
|z|+ 2

)
+ C5, Im(z) < 1. (3.29)

Since σλA < ∞ and log(r) = o
(
λ(r)

)
, from (3.29) and (3.28) it follows that σλB < ∞ and

σλB ≤ σλA.

From now on let M denote the fundamental solution of a system (1.5), hence satisfying the
properties shown in Proposition 1.9.

Lemma 3.33. Let M(x, z) ∈M0. Then M11(x,z)
M12(x,z) and M22(x,z)

M21(x,z) ∈ N0.

Proof. We evaluate

diag

(
M∗(x,w)JM(x, z)− J

w̄ − z

)
=(

−M11(x, z)M12(x,w) +M12(x, z)M11(x,w)

w − z
,
−M21(x, z)M22(x,w) +M22(x, z)M21(x,w)

w − z

)
.

If we consider the first entry, it is equal to 1
M12(x,w)M12(x,z)

−M11(x,z)
M12(x,z)

+
M11(x,w)
M12(x,w)

w̄−z . Putting z = w
yields

1

M12(x, z)M12(x, z)

Im M11(x,z)
M12(x,z)

Im z

Now we consider the vector a =

(
−M12(x, z)i

0

)
and since M ∈M0 we have aTHM (z, z)a ≥ 0.

Therefore Im M11(x,z)
M12(x,z) ≥ 0 for z ∈ C+. The other two properties are immediate conclusions from

the properties of M .
If we consider the second entry of the diagonal matrix, we analogously obtain that

Im M21(x,z)
M22(x,z) ≥ 0.

Lemma 3.34. Let V :=

(
1 0
0 −1

)
. Then M ∈M0, if and only if VM−1V ∈M0.

Proof. Note that V = V −1 = V ∗ and V JV = −J = J−1. Now the following computation shows
that the equation

HVM−1V (w, z) =
(VM−1V )∗(w)J(VM−1V )(z)− J

w − z
=

=
(
M−1(w)V

)∗ −J −M∗(w)V JVM(z)

w − z
M−1(z)V

=
(
M−1(w)V

)∗ M∗(w)JM(z)− J
w − z

M−1(z)V

=
(
M−1(w)V

)∗
HM (w, z)M−1(z)V

holds and the assertion follows immediately.
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Lemma 3.35. If M ∈M0 and τ(z) ∈ N0, then

M12(z)τ(z)−M11(z)

M22(z)τ(z)−M21(z)
∈ N0.

Proof. Define

(M ? τ)(z) :=
M12(z)τ(z)−M11(z)

M22(z)τ(z)−M21(z)
.

Assume that

(M22(w)τ(w)−M21(w))
(M ? τ)(w)− (M ? τ)(z)

w − z
(M22(z)τ(z)−M21(z)) =(

−τ(w)
1

)T (VM−1V
)∗

(w)J
(
VM−1V

)
(z)− J

w − z

(
−τ(z)

1

)
+
τ(w)− τ(z)

w − z
.

(3.30)

Since, due to the previous lemma, in our case the right hand side is greater or equal to 0, the
same holds for the left hand side, and we conclude that the lemma holds.

What remains, is to verify (3.30), which will follow by a few elementary computations. First
we note that (

−τ(w)
1

)T
J

(
−τ(z)

1

)
= τ(w)− τ(z).

Applying this and multiplying by (w − z) in (3.30) and furthermore evaluating the left hand
side of it, yields (

M12(w)τ(w)−M11(w)
)(
M22(z)τ(z)−M21(z)

)
−

−(M12(z)τ(z)−M11(z))
(
M22(w)τ(w)−M21(w)

)
=

=

(
−τ(w)

1

)T (
VM−1V

)∗
(w)J

(
VM−1V

)
(z)

(
−τ(z)

1

)
.

(3.31)

Further, applying Proposition 1.9 (iii) and VM−1V (z) =

(
M22(z) M21(z)
M12(z) M11(z)

)
, we rewrite the

right hand side of (3.31) to(
−τ(w)

1

)T (
VM−1V

)∗
(w)J

(
VM−1V

)
(z)

(
−τ(z)

1

)
=(

−M22(w)τ(w) +M21(w)
−M12(w)τ(w) +M11(w)

)T (−M12(z) −M11(z)
M22(z) M21(z)

)(
−τ(z)

1

)
=

= τ(z)τ(w)
(
−M22(w)M12(z) +M12(w)M22(z)

)
+ τ(z)

(
M21(w)M12(z)−M11(w)M22(z)

)
+

+τ(w)
(
M22(w)M11(z)−M12(w)M21(z)

)
−M21(w)M11(z) +M11(w)M21(z),

which equals the left hand side of (3.31), and we are done.

Corollary 3.36. If M ∈M0, all the entries of M have the same λ-type.

Proof. By putting τ = 0 in the previous lemma and applying Theorem 3.32, we get

σλM11
= σλM21

.

By Lemma 3.33 and again applying Theorem 3.32 we obtain the equalities

σλM12
= σλM11

, σλM21
= σλM22

,

and we obtain the corollary by combining the equalities above.

29



Definition 3.37. Due to this corollary we can now define the λ-type of M ∈M0 via

σλM := σλMi,j
, i, j ∈ {1, 2}.

Corollary 3.38. If M ∈M0, all the entries of M have the same order.

Proof. If all entries of M have infinite order, we are trivially done. Therefore, assume that the
order of Mij , i, j ∈ {1, 2} is finite. Then we can write

ordMij = inf
{
α > 0 : σr

α

Mij
<∞

}
.

By the previous Corollary 3.36 we get that the rα-types of the other entries are finite as well.
Hence their order is smaller or equal to α. W.l.o.g., assume that Mkl, k, l ∈ {1, 2}, has order
β < α, then repeating the argument above Mij has to have order smaller or equal to β, which is
a contradiction to the assumption that it has order α. Therefore we conclude that every entry
has order α, and we are done.

Lemma 3.39. Let c ∈ [a, b], M be the fundamental solution of a system (1.5) and let Ma,c, Mc,b

be the fundamental solutions of (1.5), restricted to the respective intervals. Then, if Ma,c, Mc,b ∈
M0, the following hold:

(i)
σλM ≤ σλMa,c

+ σλMc,b
.

(ii) If either

lim sup
z→∞

log+(|Mac(z)|)
λ(|z|)

= lim
z→∞

log+(|Mac(z)|)
λ(|z|)

, or

lim sup
z→∞

log+(|Mcb(z)|)
λ(|z|)

= lim
z→∞

log+(|Mcb(z)|)
λ(|z|)

,

then
σλM ≥ σλMa,c

+ σλMc,b
.

Proof. First we note that by Lemma 1.15 M ∈ M0, hence σλM is actually defined. Further we
obtain thatM(x, z) = Mc,b(x, z)Ma,c(c, z) holds, with the same argument we used in Proposition
1.9 (i).

Now we write

Mc,b(b, z) :=

(
M11(z) M12(z)
M21(z) M22(z)

)
, Ma,c(c, z) :=

(
M̃11(z) M̃12(z)

M̃21(z) M̃22(z)

)
,

and obtain

M(b, z) =

(
M̃11(z)M11(z) + M̃12(z)M21(z) M̃11(z)M12(z) + M̃12(z)M22(z)

M̃21(z)M11(z) + M̃22(z)M21(z) M̃21(z)M12(z) + M̃22(z)M22(z)

)
.

Now we rewrite the first entry of this matrix to

M̃11(z)M11(z) + M̃12(z)M21(z) = M̃11(z)M21(z)

(
M11(z)

M21(z)
+
M̃12(z)

M̃11(z)

)
.
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By Lemma 3.33 and by Lemma 3.35, we obtain M11(z)
M21(z) ,

M̃12(z)

M̃11(z)
∈ N0, and hence the last term is

an element of N0 as well. Let us write h(z) := M11(z)
M21(z) + M̃12(z)

M̃11(z)
. Then, evaluation of the λ-type

of the functions in the upper equation, therefore yields

σλM = lim sup
z→∞

log+
(
|M̃11(z)M11(z) + M̃12(z)M21(z)|

)
λ(|z|)

=

= lim sup
z→∞

(
log+(|M̃11(z)|)

λ(|z|)
+

log+(|M21(z)|)
λ(|z|)

+
log+(|h(z)|)

λ(|z|)

)
.

We note that h(z) ∈ N0 implies 1
Im(z) ≤ h(z) ≤ Im(z) and hence that σλh = 0 which is not just

its limes superior, but its limit. Therefore the last term does not affect the result on the right
hand side.

Now we obtain assertion (i), because of the well known identity

lim sup
z→∞

(a(z) + b(z)) ≤ lim sup
z→∞

a(z) + lim sup
z→∞

(b(z)). (3.32)

Further, we obtain assertion (ii), because, by assumption, one of the remaining limes superior
has to be a limit, which gives us equality in (3.32). Therefore we get

σλM = lim sup
z→∞

(
log+(|M̃11(z)|)

λ(|z|)

)
+ lim sup

z→∞

(
log+(|M21(z)|)

λ(|z|)

)
= σλ

M̃
+ σλM .
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4 Canonical Systems

In this section we extend Theorems 1 and 2 of [7]. From now on we will consider our differential
equation (1.5) for a specific A. Therefore, let H be a positive summable function on [a, b] with
values in 2× 2 matrices of reals, such that H(t) is symmetric and positive semidefinite almost

everywhere and let J =

(
0 −1
1 0

)
. We put A = JH(t) and define a canonical system (H, [a, b])

as the matrix differential equation of the form

J
dY

dx
= zHY, z ∈ C, x ∈ [a, b]. (4.1)

Note that by writing ‖ · ‖ we refer to the matrix spectral norm. The matrix H is referred to as
Hamiltonian and we assume, without loss of generality, that tr(H) = 1 almost everywhere.

Definition 4.1. A Hamiltonian H is of finite rank, if there exist numbers xj , a = x0 < x1 <
. . . < xn = b, and a finite sequence of numbers, (φj)

n−1
j=0 , φj ∈ [0, 2π), such that

H(x) =

(
sin2(φj) sin(φj) cos(φj)

sin(φj) cos(φj) cos2(φj)

)
, x ∈ (xj , xj+1), j = 0, . . . , n− 1.

The sequences (xj)
n−1
j=0 , (φj)

n−1
j=0 are called parameters and n is called rank of the Hamiltonian.

The intervals (xj , xj+1) are called constancy intervals.

Definition 4.2. Let ξφ := (cosφ, sinφ)T , for some φ ∈ [0, π). The open interval Iφ ⊆ [a, b] is
called H-indivisible, if the relation

ξTφ JH = 0, almost everywhere on Iφ

holds. In particular detH = 0 almost everywhere on Iφ. An H-indivisible interval is called
maximal if it is not a proper subset of an H-indivisible interval.

4.1 Main Growth Theorem of Canonical Systems

Before we formulate the first important theorem regarding the growth of canonical systems, we
present a preparatory result, which we will use to prove the theorem.

Lemma 4.3. Let M(x, z) be a fundamental solution of (1.5), let xj, a = x0 < x1 < . . . < xn = b
and Qj ∈ GL(2,C) for 0 ≤ j ≤ n. Then

‖M(b, z)‖ ≤ exp

|z| n∑
j=1

∫ xj

xj−1
‖Q−1

j A(t)Qj‖dt

 ‖Q−1
n ‖

n−1∏
j=0

‖Qj+1Q
−1
j ‖‖Q0‖.

Proof. Applying (1.7), we obtain

‖QM(xj , z)‖ ≤ ‖QM(xj−1, z)‖ exp

(
|z|
∫ xj

xj−1

‖QA(t)Q−1‖dt

)
,

for arbitrary Q ∈ GL(2,C) and 0 ≤ j ≤ n. Hence, we get

‖Qj+1M(xj+1, z)‖ ≤ ‖Qj+1Q
−1
j ‖‖QjM(xj+1, z)‖ ≤

≤ ‖Qj+1Q
−1
j ‖‖QjM(xj , z)‖ exp

(
|z|
∫ xj+1

xj

‖QjA(t)Q−1
j ‖dt

)
.
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We recall that M(xn, z) = M(b, z) and M(x0, z) = M(a, z) = I and we apply the upper
inequality inductively for ‖QnM(xn, z)‖ and get

‖QnM(b, z)‖ ≤ ‖Q0‖
n−1∏
j=0

‖Qj+1Q
−1
j ‖ exp

(
|z|
∫ xj+1

xj

‖QjA(t)Q−1
j ‖dt

)
.

Multiplying this inequality with ‖Q−1
n ‖ yields the desired result.

For φ ∈ [0, 2π), we define P (φ) as the following matrix of rank one

P (φ) :=

(
sin2(φ) sin(φ) cos(φ)

sin(φ) cos(φ) cos2(φ)

)
.

Theorem 4.4. Let (H, [a, b]) be a canonical system and let 0 ≤ d ≤ 1. Suppose that there exists
C ≥ 0, such that for each R large enough, there exists a Hamiltonian H(R) of a finite rank n(R),

defined on (a, b) and a sequence of numbers (depending on R) (aj(R))
n(R)−1
j=0 , 0 < aj(R) ≤ 1,

for which the following conditions are satisfied:

(i)
n−1∑
j=0

1

a2
j (R)

∫ xj+1

xj

‖H(t)−HR(t)‖dt ≤ C1
λ(R)

R
,

(ii)

n−1∑
j=0

a2
j (R)(xj+1 − xj) ≤ C2

λ(R)

R
,

(iii) log a0(R) + log a−1
n(R)−1(R) +

n−1∑
j=0

log
(

min
(
aj(R)a−1

j+1(R), aj+1(R)a−1
j (R)

))
≤ C3λ(R),

Then the monodromy matrix has finite λ-type.

Proof. Let (H, [a, b]) be a canonical system. For an arbitrary finite set of numbers xj , 0 ≤ j ≤ n,
such that a = x0 < x1 < . . . < xn = b and arbitrary invertible matrices Qj , 0 ≤ j ≤ n, we
obtain, by Lemma 4.3

‖M(b, z)‖ ≤ ‖Q0‖‖Q−1
n ‖

n−1∏
j=0

∥∥Qj+1Q
−1
j

∥∥ exp

(
|z|
∫ xj+1

xj

∥∥QjJH(t)Q−1
j

∥∥dt)

Taking the logarithm we obtain

log ‖M(b, z)‖ ≤ |z|
n−1∑
j=0

∫ xj+1

xj

∥∥QjJH(t)Q−1
j

∥∥dt+
n−1∑
j=0

log
∥∥Qj+1Q

−1
j

∥∥+ log ‖Q0‖+ log ‖Q−1
n ‖

(4.2)
A summand in the first sum can be estimated, applying the triangle inequality, the following
way:∫ xj+1

xj

∥∥QjJH(t)Q−1
j

∥∥dt ≤ ∫ xj+1

xj

(∥∥QjJ(H(t)− P (φj))Q
−1
j

∥∥+
∥∥QjJP (φj)Q

−1
j

∥∥) dt ≤
(xj+1 − xj)

∥∥QjJP (φj)Q
−1
j

∥∥+

∫ xj+1

xj

∥∥QjJ(H(t)− P (φj))Q
−1
j

∥∥dt ≤
(xj+1 − xj)

∥∥QjJP (φj)Q
−1
j

∥∥+ ‖Qj‖
∥∥Q−1

j

∥∥∫ xj+1

xj

‖H(t)− P (φj)‖dt.

(4.3)
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The next step is to choose appropriate matrices Qj . We want to choose them such that
equality in Lemma 2.5 is nearly fulfilled. Since detP (φj) = 0, we take

Qj = diag
(
a−1
j (R), aj(R)

)
Uj ,

where aj(R) ∈ (0, 1] and Uj is a unitary transform reducing JP (φj) into its Jordan form,

UjJP (φj)U
−1
j =

(
0 0
1 0

)
.

More precisely we get Uj = e−φjJ =

(
cosφj sinφj
− sinφj cosφj

)
and hence

Qj =

(
a−1
j (R) cosφj a−1

j (R) sinφj
−aj(R) sinφj aj(R) cosφj

)
and Q−1

j =

(
aj(R) cosφj −a−1

j (R) sinφj
aj(R) sinφj a−1

j (R) cosφj

)
.

We can compute the spectral norms ‖Qj‖ =
∥∥Q−1

j

∥∥ = a−1
j (R) and ‖QjJPjQj‖ = a2

j (R), and
hence continue to estimate the right hand side of (4.3) from above by

1

a2
j (R)

∫ xj+1

xj

‖H(t)− P (φj)‖dt+ a2
j (R)(xj+1 − xj). (4.4)

For j ≤ n− 1, computing the spectral norm, we get∥∥∥Qj+1Q
−1
j

∥∥∥ = min
(
aj(R)a−1

j+1(R), aj+1(R)a−1
j (R)

)
. (4.5)

Hence
log
∥∥Qj+1Q

−1
j

∥∥ ≤ ∣∣∣log
(

min
{
aj(R)a−1

j+1(R), aj+1(R)a−1
j (R)

})∣∣∣ .
Plugging this and (4.4) into (4.2), taking into account that ‖Q0‖ = a−1

0 (R),
∥∥Q−1

n

∥∥ = a−1
n−1(R)

and applying (i) - (iii), we obtain

log ‖M(L, z)‖ ≤ (C1 + C2)
λ(R)

R
|z|+ C3λ(R) = (C1 + C2 + C3)λ(R),

which concludes the proof.

4.2 An Application of Theorem 4.4

If we consider the case that aj(R) is independent of j, we get a corollary as a consequence of
the previous theorem.

Corollary 4.5. Assume λ(R) = Rd, with 1
2 ≤ d < 1 and that aj(R) is independent of j. For

any ε > 0 let a finite rank Hamiltonian Hε defined on (a, b) exist such that

‖H −Hε‖L1(a,b) ≤ ε (4.6)

Then the order of the system (H, [a, b]) is not greater than d.

Proof. We note that if aj(R) is independent of j condition (ii) of Theorem 4.4 reduces to
a2
j (R) = O(Rd−1) and the left hand sides in condition (i) is monotonely decreasing in aj(R).

The left hand side of condition (iii) of Theorem 4.4 reduces to log(aj(R)) + log(aj(R)−1) =
log(aj(R)aj(R)−1) = 0 and hence is trivially fulfilled. Hence, the system (H, [a, b]) obeys the

conditions of Theorem 4.4 with HR = Hε(R), ε(R) = R2(d−1), aj(R) = R
(d−1)

2 , because (4.6)
implies (i), and (ii) is immediate.
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4.3 Improvements on Theorem 4.4

Now we will try to find a way to get a better estimate than in the theorem above.

Definition 4.6. Let A : [a, b]→ C2×2 and let (xj)
n
j=0 be a partition of [a, b] such that a = x0 <

x1 < · · · < xn = b. Then let Q :=
〈

(xj)
n
j=0, (Qj)

n
j=0

〉
, where Qj ∈ GL(2,C), for j = 0, . . . ,. We

will call est(Q) := ‖Q−1
0 ‖‖Qn‖

∏n
j=0

∥∥Q−1
j Qj−1

∥∥ the estimator, for our problem.

The estimate from Lemma 4.3 provides us with a rough upper bound for the growth of our
fundamental solutions. Our next goal will be to choose (Qj)

n
j=1 such that est(Q) becomes as

small as possible. To this end we note the following simple properties of est(Q).

Lemma 4.7. Let Q =
〈

(xj)
n
j=0, (Qj)

n
j=0

〉
. Then the following statments hold true:

(i) Let Q′ =
〈

(x′j)
n
j=0, (Q

′
j)
n
j=0

〉
be such that x′j = xj and Q′j = αjQj, for αj 6= 0. Then

est(Q) = est(Q′).

(ii) Let Q′ =
〈

(x′j)
n
j=0, (Q

′
j)
n
j=0

〉
be such that x′j = xj and Q′j = QjUj, where Uj are unitary

matrices for j ∈ {1, . . . , n}. Then est(Q) = est(Q′).

(iii) Let Q′ =
〈
(x′i)

M
i=0, (Q

′
i)
M
i=0

〉
be such that {xj : j = 0, . . . , N} ⊆ {x′i : i = 1, . . . ,M} and

Q′i = Qj, if x′i ∈ (xj−1, xj ] and i = {1, . . . ,M}. Then est(Q) = est(Q′).

Proof. (i) trivially holds.
(ii) obviously holds as well, because ‖U−1

j ‖ = ‖Uj‖ = 1, for j = 1, . . . , n, by unitarity of Uj .
Since Q′i = Q′i−1, whenever x′i−1 6= xj for j = 1, . . . , n, we observe that in that case

‖Q′−1
i Q′i−1‖ = 1 and hence we obtain (iii).

Corollary 4.8. Let Q be defined with Qj = exp(φjJ)

(
a−1
j 0

0 aj

)
and Q′ such that Q′j =

exp
(
(φj + π

2 )J
)(0 a2

j

1 0

)
, then est(Q) = est(Q′).

Proof. We observe

Q′j = exp
(

(φj +
π

2
)J
)(0 a2

j

1 0

)
= exp(φjJ)

(
−1 0
0 a2

j

)
= ajQj

(
−1 0
0 1

)
,

and conclude our proof by Lemma 4.7 (i).

Remark 4.9. Recall that we have proven Theorem 4.4 using matrices of the form

exp(φjJ)

(
a−1
j 0

0 aj

)
. With the corollary above we see that the estimator stays the same if

we use matrices of the form Q(φ, aj) := Q′j = exp(φjJ)

(
0 aj
1 0

)
.

Further ‖Q′j‖ = ‖Qj‖,
∥∥∥(Q′j)

−1
∥∥∥ =

∥∥∥Q−1
j

∥∥∥ and
∥∥∥Q′jJP (φj)(Q

′
j)
−1
∥∥∥ =

∥∥QjJP (φj)(Qj)
−1
∥∥

hold, because multiplication by unitary matrices does not change the spectral norm. Hence we
obtain the same estimate for the order for these matrices.

This is of special interest, because in some applications Qj(φ, a) has actually led to better
results than the matrices presented in that proof. Because of this we will now turn our attention
to minimizing the estimator of a partition with matrices Qj(φ, a). To this end we want to find
a more precise estimate to replace conditions (iii) and (iv) from Theorem 4.4. The following
lemma shall serve this purpose.
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Lemma 4.10. Let 0 < v,w ≤ 1 and Q(φ, v) := exp(φJ)

(
0 v
1 0

)
and write C := Q(φ, v)−1Q(ψ,w).

Then
‖C‖ ≤

√
|λ(v, w)|,

where

λ(v, w) := max

{
1

2

(
tr(C∗C) +

√
tr(C∗C)2 − 4 det(C)2

)
,
1

2

(
tr(C∗C)−

√
tr(C∗C)2 − 4 det(C)2

)}
.

Proof. We evaluate

C =

((
cosφ − sinφ
sinφ cosφ

)
·
(

0 v
1 0

))−1(
cosψ − sinψ
sinψ cosψ

)
·
(

0 w
1 0

)
=

=

(
− sinφ cosφ
v−1 cosφ v−1 sinφ

)
·
(
− sinψ w cosψ
cosψ w sinψ

)
=

=

(
sinφ sinψ + cosφ cosψ −w sinφ cosψ + w cosφ sinψ

−v−1 cosφ sinψ + v−1 sinφ cosψ wv−1 cosφ cosψ + wv−1 sinφ sinψ

)
=

=

(
cosψ − φ w sin(ψ − φ)

−v−1 sin(ψ − φ) wv−1 cos(ψ − φ)

)
.

Now we want to compute the spectral norm of C. To this end we consider

C∗C = cos2(ψ − φ)

(
1 0
0 w2v−2

)
+ sin2(ψ − φ)

(
v−2 0
0 w2

)
+D,

where

D := sin(ψ − φ) cos(ψ − φ)

(
0 w − wv−2

w − wv−2 0

)
denotes the appropriate offdiagonal matrix such that the equation is fulfilled. Hence, to compute
the eigenvalues of this matrix, we have to solve the following quadratic equation

λ2 − tr(C∗C)λ+ det(C)2 = 0.

Therefore, the eigenvalues of C∗C are

λ1(v, w) =
1

2

(
tr(C∗C) +

√
tr(C∗C)2 − 4 det(C)2

)
,

λ2(v, w) =
1

2

(
tr(C∗C)−

√
tr(C∗C)2 − 4 det(C)2

)
,

and we are done.

Corollary 4.11. Let (H, [a, b]) be a canonical system and let 0 ≤ d ≤ 1. Suppose that there
exists a C ≥ 0, such that for each R large enough, there exists a Hamiltonian H(R) of a

finite rank, n(R), defined on (a, b) and a sequence of numbers (depending on R)
(
aj(R)

)n(R)−1

j=0
,

0 < aj(R) ≤ 1, for which the following conditions are satisfied:

(i)
n−1∑
j=0

1

a2
j (R)

∫ xj+1

xj

‖H(t)−HR(t)‖dt ≤ C1
λ(R)

R
,

(ii)

n−1∑
j=0

a2
j (R)(xj+1 − xj) ≤ C2

λ(R)

R
,
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(iii) log a−1
0 (R) + log a−1

n(R)−1(R) +

n−1∑
j=0

log
(
λ(aj(R), aj+1(R))

)
≤ C3λ(R).

Then the entries of the monodromy matrix have finite λ-type.

Proof. The proof of this corollary follows the same lines as the proof of Theorem 4.4, except
that we replace the estimate (4.5) by the estimate we get from Lemma 4.10.

4.4 Diagonal Hamiltonians

An important class of canonical systems is constituted by systems with diagonal matrices H(x),
which we call diagonal Hamiltonians. We will now apply Theorem 4.4 to diagonal Hamiltonians
to find their order.

In the context of the order problem we are only interested in Hamiltonians with determinant

equal to 0. Hence, a diagonal Hamiltonian may take only two values, H1 :=

(
1 0
0 0

)
and H2 :=(

0 0
0 1

)
. Our next result says that in this case the upper bound implied by Theorem 4.4 coincides

with the actual order. The formulation is as follows. Define X1 := {x ∈ (a, b) : H(x) = H1},
X2 := {x ∈ (a, b) : H(x) = H2}, and let | · | denote the Lebesgue measure.

Theorem 4.12. Suppose that for almost every x ∈ [a, b] either H(x) = H1 or H(x) = H2.
Then the order of the system (H, [a, b]) coincides with the infimum of d ∈ (0, 1], for which there
exists C > 0 such that for n large enough there exists a covering of the interval (a, b) by at most
n intervals ωj, such that

n∑
j=1

√
|ωj ∩X1||ωj ∩X2| ≤ Cn1−d−1

(4.7)

We shall split the proof into several parts. The first part will be the proof of the following
proposition, which we will use to show that the order of the system is not greater than the
infimum.

Proposition 4.13. Under the assumptions of Theorem 4.12 the order of the system (H, [a, b])
is less or equal to the infimum of d ∈ (0, 1], for which there exists a positive C such that for each
R large enough there exists a covering of the interval (a, b) by n(R) ≤ CRd intervals ωj(R),
such that

n(R)∑
j=1

√
|ωj(R) ∩X1||ωj(R) ∩X2| ≤ CRd−1 (4.8)

Proof. Let d be any number larger than the infimum mentioned in the statement. hen we find
ε > 0, C > 0, and intervals ωj(R), such that n(R) ≤ CRd−ε and (4.8) holds with the exponent

d − ε − 1 on the right side. Since Rd−ε ≤ Rd

log(R) for R large, we may assume that we have

C > 0, ωj(R), with n(R) ≤ CRd

log(R) , such that (4.8) holds with exponent d− 1.
The stated inequality will be established if we show that the order is not greater than d.

Without loss of generality, one can assume that the intervals ωj(R) are mutually disjoint. Define

HR(x) =

{
H1, x ∈ ωj(R), |ωj(R) ∩X1| ≥ |ωj(R)|

2 ,

H2, otherwise.
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With this choice of HR,∫
ωj(R)

‖H(t)−HR(t)‖dt ≤ 2 min{|ωj(R) ∩X1|, |ωj(R) ∩X2|};

hence the left hand side of condition (i) of Theorem 4.4 takes the form

n(R)∑
j=0

2

aj(R)2
min{|ωj(R) ∩X1|, |ωj(R) ∩X2|}. (4.9)

To further estimate this, we show that

min{|ωj(R) ∩X1|, |ωj(R) ∩X2|} � |ωj(R) ∩X1||ωj(R) ∩X2|/|ωj(R)|

holds. Therefore we observe that min{|ωj ∩X1|, |ωj(R)∩X2|}, is obviously bounded from below
by |ωj(R)∩X1||ωj(R)∩X2|/|ωj(R)|. To find a C > 0 such that min{|ωj(R)∩X1|, |ωj(R)∩X2|} ≤
C|ωj(R) ∩ X1||ωj(R) ∩ X2|/|ωj(R)| holds we can assume without loss of generality that the
minimum is taken by |ωj(R) ∩ X1|. Then it follows that |ωj(R) ∩ X2|/|ωj(R)| ≥ 1/2 and
therefore we can choose C = 2 and the inequality holds. Hence (4.9) is equivalent to

n(R)∑
j=0

2

a2
j (R)|ωj(R)|

|ωj(R) ∩X1||ωj(R) ∩X2|. (4.10)

The left hand side of condition (ii) obviously has the form

n(R)∑
j=0

aj(R)2|ωj(R)|. (4.11)

Condition (iii) in the situation under consideration, is estimated as follows

log a−1
0 (R) + log a−1

n(R)−1(R) +

n(R)−1∑
j=0

log
(

min
(
aj(R)a−1

j+1(R), aj+1(R)a−1
j (R)

))
≤

≤ log a−1
0 (R) + log a−1

n(R)−1(R) +

n(R)−1∑
j=0

log
(
a−1
j (R)

)
≤ 2

n(R)∑
j=0

log(1 + aj(R)−2),

(4.12)

because aj(R) < 1 for j ∈ {0, . . . n} and by monotonicity of the logarithm. Now we define
numbers aj(R) to further estimate the three previous terms.

First we consider |ωj(R)| ≤ 2
R . We write N := {j : |ωj(R)| ≤ 2

R} and set aj(R) = 1 for
j ∈ N . The parts of sums in (4.10), (4.11), (4.12) over j ∈ N are estimated from above by
4n(R)R−1, 2n(R)R−1 and n(R), respectively, hence all of them satisfy the bounds required for
Theorem 4.4. For |ωj(R)| > 2

R we optimize the choice of aj(R) over the summands in (4.10),
(4.11) and (4.12), by taking

aj(R)2 = max

{
1

R|ωj(R)|
,

√
|ωj(R) ∩X1||ωj(R) ∩X2|

|ωj(R)|

}
.

Note that with this choice we can estimate (4.10) and (4.12) from above by taking either value
for aj(R), because we regard its inverse. With this choice the sums over j /∈ N in (4.10), (4.11)
and (4.12) are estimated from above by

2

n(R)∑
j=0

√
|ωj(R) ∩X1||ωj(R) ∩X2|,
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2R−1n(R) + 2

n(R)∑
j=0

√
|ωj(R) ∩X1||ωj(R) ∩X2|,

n(R)∑
j=0

log(1 +R|ωj(R)|) ≤ cn(R) logR, c ∈ [0,∞).

Due to condition (4.8) and our choice of n(R) it follows that the order is not greater than d by
Theorem 4.4.

The next step will be the following proposition. To prove it we show a few general properties
of diagonal Hamiltonians, some of which we will then apply. To simplify notation, we set

ρ1(c, d) :=

∫ d

c
h1(t)dt, ρ2(c, d) :=

∫ d

c
h2(t)dt.

Proposition 4.14. If H is a diagonal Hamiltonian, it holds

ordM(x, ·) ≥ lim sup
τ→∞

log
(∫ x

a

1X2
(t)

ρ2(r(τ,t),t)dt
)

log(τ)
, x ∈ [a, b], (4.13)

where 1X2 denotes the indicator function on X2 and r(τ, x) is a strictly increasing function we
will specify later on.

To this end we start with a a few preliminary observations. We write H(t) =

(
h1(t) 0

0 h2(t)

)
,

i.e. h1(x) = 1X1 , h2(x) = 1X2 . By definition of X1 and X2, we always get that either h1(t) = 1
and h2(t) = 0 or vice versa. Therefore our canonical system, writing out the components, has
the form

d

dx
M21(x, z) = −zh1(x)M11(x),

d

dx
M22(x, z) = −zh1(x)M12(x),

d

dx
M11(x, z) = zh2(x)M21(x),

d

dx
M12(x, z) = zh2(x)M22(x).

(4.14)

Written in integral form the whole system has the form

JM(x, z)− J = z

∫ x

a
H(t)M(t, z)dt.

Again writing out the components, we obtain

M21(x, z) = −z
∫ x

a
h1(t)M11(t)dt,

M22(x, z) = 1− z
∫ x

a
h1(t)M12(t)dt,

M11(x, z) = 1 + z

∫ x

a
h2(t)M21(t)dt,

M12(x, z) = z

∫ x

a
h2(t)M22(t)dt.

(4.15)
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If we combine the first and third and the second and fourth equations respectively we get
four second order differential equations for Mij(x, z), i, j ∈ {1, 2}:

M11(x, z) = 1− z2

∫ x

a
h2(t)

∫ t

a
h1(s)M11(s, z)dsdt, (4.16)

M21(x, z) = −z
∫ x

a
h1(t)dt− z2

∫ x

a
h1(t)

∫ t

a
h2(s)M21(s, z)dsdt,

M12(x, z) = z

∫ x

a
h2(t)dt− z2

∫ x

a
h2(t)

∫ t

a
h1(s)M12(s, z)dsdt,

M22(x, z) = 1− z2

∫ x

a
h1(t)

∫ t

a
h2(s)M22(s, z)dsdt.

(4.17)

Then, since 1[a,t](s) = 1[s,x](t), if s, t ∈ [a, x], and by changing the order of integration, we get∫ x

a
h2(t)

∫ t

a
h1(s)M11(s, z)dsdt =

∫ x

a
h2(t)

∫ x

a
1[a,t](s)h1(s)M11(s, z)dsdt =

=

∫ x

a
h2(t)

∫ x

a
1[s,x](t)h1(s)M11(s, z)dsdt =

=

∫ x

a
ρ2(s, x)h1(s)M11(s, z)ds.

Applying this (and similar computations for the other three equations) to (4.16), we obtain

M11(x, z) = 1− z2

∫ x

a
ρ2(s, x)h1(s)M11(s, z)ds, (4.18)

M21(x, z) = −zρ1(a, x)− z2

∫ x

a
ρ1(s, x)h2(s)M21(s, z)ds,

M12(x, z) = zρ2(a, x)− z2

∫ x

a
ρ2(s, x)h1(s)M12(s, z)ds,

M22(x, z) = 1− z2

∫ x

a
ρ1(s, x)h2(s)M22(s, z)ds.

Soon we will focus on M11 to estimate its order, and hence, by Corollary 3.38, the order of
M , but first we make the following general observation:

Lemma 4.15. The functions M11(x, z) and M22(x, z) are even, while M21(x, z) and M21(x, z)
are odd.

Proof. Set V :=

(
1 0
0 −1

)
and consider M̃(x, z) = VM(x, z)V . Using that JV = −V J and

that V H(x) = H(x)V , if H(x) is diagonal, we obtain

J
d

dx
M̃(x, z) = JV

d

dx
M(x, z)V = −V

(
J
d

dx
M(x, z)

)
V = −zH(x)M̃(x, z).

Further M̃(a, z) = I and we conclude that M(x, z) = M̃(x,−z) i.e.(
M11(x, z) −M12(x, z)
−M21(x, z) M22(x, z)

)
=

(
M11(x,−z) M12(x,−z)
M21(x,−z) M22(x,−z)

)
.
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Lemma 4.16. For τ > 0, set ξτ (x) := M11(x, iτ). Then ξτ is real, positive nondecreasing and
ξτ (a) = 1.

Proof. Using Lemma 4.15 and Proposition 1.9 (iii) we obtain

ξτ (x) = M11(x, iτ) = M11(x,−iτ) = M11(x, iτ) = ξτ (x),

hence ξτ (x) is real.
Fix x ∈ [a, b]. Since M11(x, ·), by Corollary 1.12, has no nonreal zeroes and M11(x, 0) = 1,

continuity of τ 7→ ξτ (x) yields that ξτ (x) > 0 for all τ > 0. Now fix τ > 0. Then (4.18) becomes

ξτ (x) = 1 + τ2

∫ x

a
h2(t)

∫ t

a
h1(s)ξτ (s)dsdt.

Since the integrand is a nonnegative function, ξτ (x) is nondecreasing.

Lemma 4.17. Let τ > 0, x ∈ [a, b], and let r : [a, b] 7→ [a, b] such that r(t) ≤ t. Then

log(ξτ (x)) ≥
∫ x

a

τ2ρ1(r(t), t)h2(t)

1 + τ2ρ1(r(t), t)ρ2(r(t), t)
dt. (4.19)

Proof. We shall estimate d
dx

(
log(ξτ (x))

)
in two ways.

First, using (4.16), and that ξτ is nondecreasing, we get

ξτ (x)′ = τ2h2(x)

∫ x

a
h1(s)ξτ (s)ds ≥ τ2h2(x)

∫ x

r(x)
h1(s)ξτ (s)ds ≥ τ2h2(x)ξτ (r(x))ρ1(r(x), x).

Dividing by ξτ (x) yields

τ2h2(x)ρ1(r(x), x)
ξτ (r(x))

ξτ (x)
≤ ξ′τ (x)

ξτ (x)
. (4.20)

Second, using (4.18) and that ρ2 is nonincreasing in its first argument, we obtain

h2(x)
(
ξτ (x)− ξτ (r(x))

)
= h2(x)τ2

∫ x

r(x)
ρ2(s, x)h1(s)ξτ (s)ds ≤

≤ h2(x)τ2ρ2(r(x), x)

∫ x

r(x)
h1(s)ξτ (s)ds ≤

≤ τ2ρ2(r(x), x)h2(x)

∫ x

a
h1(s)ξτ (s)ds = ρ2(r(x), x)ξ′τ (x).

Multiplying this by τ2ρ1(r(x),x)
ξτ (x) , we get

τ2ρ1(r(x), x)h2(x)

(
1− ξτ (r(x))

ξτ (x)

)
≤ τ2ρ1(r(x), x)ρ2(r(x), x)

ξ′τ (r(x))

ξτ (x)
. (4.21)

Summing up (4.20) and (4.21) gives us

τ2ρ1(r(x), x)h2(x)

1 + τ2ρ1(r(x), x)ρ2(r(x), x)
≤ ξ′τ (r(x))

ξτ (x)
.

Since ξτ (a) = 1, integrating over [a, x] yields the assertion.

To simplify (4.19), we make a particular chioce of r(x) depending on τ .
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Lemma 4.18. Let c, α > 0 and assume that H(x) starts with two indivisible intervals

H(x) =

(
0 0
0 1

)
, x ∈ [a− 2α, a− α], H(x) =

(
1 0
0 0

)
, x ∈ [a− α, a].

Then there exists a unique function rc : [
√
c,∞)× [a, b]→ [a, b], such that

(i) rc(τ, x) ≤ x, x ∈ [a, b],

(ii) τ2ρ1(rc(τ, x), x)ρ2(rc(τ, x), x) = cα2, τ ∈ [
√
c,∞), x ∈ [a, b].

Further this function has the following properties:

(iii) rc(
√
c, a) = a− 2α,

(iv) The functions τ 7→ rc(τ, x) and x 7→ rc(τ, x) are strictly increasing and

(v) x− rc(τ, x) ≥
√
cα
τ .

Proof. First we want to show that there exists a unique function rc(τ, x) that fulfills conditions
(i), (ii). Therefore, fix some x ∈ [a, b]. Writing out (ii) yields

τ2

(∫ x

rc(τ,x)
h1(s)ds

)(∫ x

rc(τ,x)
h2(s)ds

)
= cα2.

By definition of h1, h2, this is equivalent to(∫ x

rc(τ,x)
1X1(s)ds

)(∫ x

rc(τ,x)
1X2(s)ds

)
=
cα2

τ2
,

and further, if | · | denotes the Lebesgue measure, we obtain that rc(τ, x) has to satisfy∣∣(rc(τ, x), x) ∩X1

∣∣∣∣(rc(τ, x), x) ∩X2

∣∣ =
cα2

τ2
. (4.22)

Now we need to show that there exists a value for rc(τ, x) such that this is fulfilled. Therefore,
we consider τ ≥

√
c and hence c

τ2
≤ 1. Further, by assumption, we have

∣∣(a− 2α, x)∩Xi

∣∣ ≥ α,
for x ∈ [a, b], i ∈ {1, 2}. To sum up we have∣∣(a− 2α, x) ∩X1

∣∣∣∣(a− 2α, x) ∩X2

∣∣ ≥ α2 ≥ cα2

τ2
, x ∈ [a, b].

On the other hand obviously limt→x
∣∣(t, x) ∩ Xi

∣∣ = 0 < cα2

τ , x ∈ [a, b], i ∈ {1, 2} and since∣∣(·, x) ∩X1

∣∣∣∣(·, x) ∩X2

∣∣ maps continuously and strictly decreasing from [a− 2α, x] to R we get
the existence of a unique rc(τ, x) ∈ [a− 2α, x] such that (4.22) and assertion (i) are fulfilled.

To prove that (iii) is satisfied, we plug rc(
√
c, a) into (4.22):∣∣(rc(√c, a), a) ∩X1

∣∣∣∣(rc(√c, a), a) ∩X2

∣∣ = α2. (4.23)

Due to the assumption we know the form of X1 and X2 on [a− 2α, a], and hence can evaluate

∣∣(rc(√c, a), a) ∩X1

∣∣ =

{
α a− 2α ≤ rc(

√
c, a) ≤ a− α,

a− rc(
√
c, a) a− α ≤ rc(

√
c, a) ≤ a,∣∣(rc(√c, a), a) ∩X2

∣∣ =

{
a+ α− rc(

√
c, a) a− 2α ≤ rc(

√
c, a) ≤ a− α,

0 a− α ≤ rc(
√
c, a) ≤ a.
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Therefore,(4.23) is satisfied, if and only if rc(
√
c, a) = a− 2α.

Now we want to show the strict monotonicity of x 7→ rc(τ, x). To this end let τ ∈ [
√
c,∞)

be fixed, x1 < x2 and assume rc(τ, x2) ≤ rc(τ, x1). Then we get the contradiction

cα2

τ2
=
∣∣(rc(τ, x1), x1) ∩X1

∣∣∣∣(rc(τ, x1), x1) ∩X2

∣∣ <
<
∣∣(rc(τ, x2), x2) ∩X1

∣∣∣∣(rc(τ, x2), x2) ∩X2

∣∣ =
cα2

τ2
.

For the strict monotonicity of τ 7→ rc(τ, x) let x ∈ [a, b] be fixed. Now, because the right hand
side in (4.22) strictly decreases with a bigger τ , to decrease the left hand side as well we have
to strictly increase rc(τ, x).

To see that (v) holds, by (4.22) we obtain∣∣(rc(τ, x), x)
∣∣∣∣(rc(τ, x), x)

∣∣ ≥ ∣∣(rc(τ, x), x) ∩X1

∣∣∣∣(rc(τ, x), x) ∩X2

∣∣ =
cα2

τ2
,

and hence
√
cα
τ ≤ x− rc(τ, x).

Corollary 4.19. Assume that H is given as indicated in the previous lemma, let c > 0 and
x ∈ [a, b]. Then

log
(
ξτ (x)

)
≥ cα2

cα2 + 1

∫ x

a

h2(t)

ρ2(rc(τ, t), t)
dt, τ ∈ [

√
c,∞), x ∈ [a, b]. (4.24)

Proof. By (4.19) and due to Lemma 4.18 (ii), we have

log(ξτ (x)) ≥
∫ x

a

τ2ρ1(rc(τ, t), t)h2(t)

1 + τ2ρ1(rc(τ, t), t)ρ2(rc(τ, t), t)
dt =

=

∫ x

a

τ2ρ1(rc(τ, t), t)ρ2(rc(τ, t), t)h2(t)

ρ2(rc(τ, t), t) + τ2ρ1(rc(τ, t), t)ρ2(rc(τ, t), t)2
dt =

=
cα2

cα2 + 1

∫ x

a

h2(t)

ρ2(rc(τ, t), t)
dt.

Proof of Proposition 4.14. First let z ∈ R and define N as the set of all zeroes of M11(x, ·),
which are always real by Corollary 1.12. Then, since M11 is even, we can write

M11(z) =
∏
zj∈N

(
1− z

zj

)
=
∏
zj∈N,
zj>0

(
1− z

zj

)(
1− z

−zj

)
.

Using this we can bound

|M11(z)| ≤
∏
zj∈N,
zj>0

(
1 +
|z|2

z2
j

)
=
∏
zj∈N,
zj>0

(
1 +
|iz|2

z2
j

)
= M11(i|z|).

Therefore, and because by Corollary 3.36 the orders of all components are the same, we get
ordM(x, ·) = ord ξ·(x). We fix some α > 0 and we have

ordM(x, ·) = lim sup
τ→∞

log
(
ξτ (x)

)
log(τ)

≥ lim sup
τ→∞

cα2

cα2+1

∫ x
a

h2(t)
ρ2(rc(τ,t),t)

dt

log(τ)
.
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We obtain the assertion, since for fixed α and ε > 0 we can always find c large enough such that

cα2

cα2 + 1
> 1− ε,

and regard rc(τ, t) for such a c.

Proof of Theorem 4.12. To prove Theorem 4.12 let us assume that for any d∫ b

a

h2(x)

ρ2(r(R, x), x)
dx = O(Rd), R→∞, (4.25)

holds. Then, after taking the logarithm and dividing by log(R), Proposition 4.14 yields

ordM(x, ·) ≥
log
(∫ b

a
h2(x)

ρ2(r(R,x),x)dx
)

log(R)
= d. (4.26)

We can attach two intervals, as indicated by Lemma 4.18, and the order of the fundamental
solution of the canonical system (H, [a− 2α, b]) remains the same. Now we regard this system
and we want to show that for every d, such that (4.25) is satisfied, the interval (a− 2α, b) can
be covered by n(R) ≤ O(Rd log(R)) intervals, ωj(R), such that

n(R)∑
j=0

√
|ωj(R) ∩X1||ωj(R) ∩X2| ≤ O(Rd−1) (4.27)

holds.
For each R large enough define a monotone decreasing sequence (xj(R))

n(R)
j=1 , as follows:

x1(R) := b, xj+1(R) = rc(R, xj), if j ≥ 1 and xj(R) ≥ a. If xj−1(R) ≥ a, xj(R) < a, then
xj+1(R) := a− 2α and the sequence terminates. First we show that the sequence is finite. To
this end let α := 1. Then, by the Lemma 4.18 (i) and (v), we get

c = R2ρ1(rc(R, x), x)ρ2(rc(R, x), x) ≤ R2|x− rc(R, x)|2.

This implies that xj(R) − xj+1(R) ≥
√
c/R−1, so the sequence has at most O(R) members.

Define ωj(R) := [xj+1(R), xj(R)]. By construction [a− 2α, b] ⊆
⋃
j ωj(R). To simplify notation

we will write xj instead of xj(R) from now on.
We claim that ωj(R) is the required covering. First we have to show that n(R), the number

of intervals in the covering, is O(Rd log(R)). To this end, recall that for x ∈ [xj+2, xj ], it holds
that ρ2(rc(R, x), x) = ρ2(xj+1, xj) ≤ ρ2(xj+2, xj). Defining sj := ρ2(xj+1, xj) we can estimate
the left hand side of (4.25) from below by

n(R)−3∑
j=1

∫ xj

xj+1

h2(x)

ρ2(r(τ, x), x)
dx ≥

n(R)−3∑
j=1

∫ xj

xj+1

h2(x)

ρ2(xj+2, xj)
=

n(R)−3∑
j=1

sj
sj + sj+1

. (4.28)

Let G1 := {j :
sj+1

sj
≤ 2}, G2 := {j :

sj+1

sj
> 2} and let n(G1), n(G2) be the respective numbers

of elements. When j ∈ G1 the summand in (4.28) is bounded below, because in this case
sj

sj+sj+1
≥ 1

3 . Hence n(G1) ≤ O(Rd) by (4.25). To estimate n(G2), notice that sj ≥ c
(b−(a−2α))R2 ,

because c = R2|ωj(R)∩X1|sj ≤ R2(b−(a−2α))sj . It follows that if k is the length of a discrete
interval of the set G2 and m is the right end of it, then

xm+k − xm+k−1 ≥ sm+k−1 ≥ 2sm+k−2 ≥ · · · ≥ 2k−1sm ≥
2k−1c

(b− (a− 2α))R2
.

44



On the other hand xm − xm+1 ≤ b− (a− 2α) trivially, hence k ≤ C + 2 log2R. Hence we have
estimated the length of one interval of G1. The number of those intervals can not exceed O(Rd),
because there has to be an interval of G1 between two intervals of n(G2). In conclusion we get
n(G2) ≤ O(Rd logR) and therefore, n(R) = n(G1) + n(G2) ≤ O(Rd logR) as required. Now we
can always estimate O(Rd log(R)) ≤ O(Rd+ε), for ε > 0. Hence, the same holds true for the
infimum of such ε, and we see that we can limit the number of intervals by O(Rd).

Further, we note that by the definition of rc(R, x), the summand in (4.27) is in O(R−1),
and hence (4.27) holds. Therefore, by Proposition 4.13 the fundamental solution M(x, z) of
the canonical system (H, [a − 2α, b]) satisfies ordM(x, ·) ≤ d. Hence, we also get that the
fundamental solution M(x, z) of the canonical system (H, [a, b]) satisfies ordM(x, ·) ≤ d. This
completes the proof of Theorem 4.12, by putting n := Rd in (4.7).
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5 Appendix A - The Herglotz Integral Representation

Theorem 5.1 (Herglotz). Let h be analytic in C+. Then we have Imh(w) ≥ 0, w ∈ C+ if and
only if h has a representation of the form

h(w) = aw + b+

∫
R

(
1

t− w
− t

t2 + 1

)
dν(t), w ∈ C+,

where a ≥ 0, b ∈ R and where ν is a positive Borel measure on R such that∫
R

(t2 + 1)−1dν(t) <∞.

Proof. We divide the proof in three steps:
Step 1: Let f be analytic on some domain containing the closed unit disc and z ∈ D and

let Re f(0) ≥ 0. Then, by the Cauchy Integral Theorem and the Cauchy Integral Formula, we
obtain

f(z) =
1

2πi

∫
|ζ|=1

(
f(ζ)

ζ − z
− f(ζ)

ζ − 1
z

)
dζ. (5.1)

Further the following equality holds:

1

ζ
Re

(
ζ + z

ζ − z

)
=

1

ζ − z
− 1

ζ − 1
z

. (5.2)

To verify this we consider the left hand side and, using that fact that |ζ| = 1, obtain

1

ζ
Re

(
ζ + z

ζ − z

)
=

1

2ζ

(
ζ + z

ζ − z
+
ζ + z

ζ − z

)
=

1

2ζ

(
ζ + z

ζ − z
+

1 + ζz

1− ζz

)
=

=
ζ + z − ζ2z − ζ|z|2 + ζ + ζ2z − z − ζ|z|2

2ζ(ζ − z)(1− ζz)
=

2ζ(1− |z|2)

2ζ(ζ − z)(1− ζz)
=

=
1− |z|2

(ζ − z)(1− ζz)
.

The right hand side satisfies

1

ζ − z
− 1

ζ − 1
z

=
1

ζ − z
+

z

1− ζz
=

1− ζz + ζz − zz
(1− ζz)(ζ − z)

=
1− |z|2

(1− ζz)(ζ − z)
.

and hence we obtain (5.2). Inserting (5.2) in (5.1) and with the substitution ζ = eiθ, we get

f(z) =
1

2πi

∫
|ζ|=1

Re

(
ζ + z

ζ − z

)
f(z)

1

ζ
dζ =

1

2π

∫ 2π

0
Re

(
eiθ + z

eiθ − z

)
f
(
eiθ
)
dθ.

Now let

k(z) :=

∫ 2π

0

eiθ + z

eiθ − z
Re f

(
eiθ
)
dθ,

which is holomorphic on the unit disc. We have Re k(z) = Re f(z), and hence k(z) = f(z) + ci
for some c ∈ R. Since, by the mean value property of holomorphic functions k(0) = Re f(0) we
obtain c = − Im f(0), which implies

f(z) = i Im f(0) +

∫ 2π

0

eiθ + z

eiθ − z
Re f

(
eiθ
)
dθ. (5.3)
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Step 2: Let f be analytic in the open unit disc and satisfy Re f(z) ≥ 0, z ∈ D. Define
φ : [0, 2π)→ T as

φ(θ) = eiθ. (5.4)

For r ∈ [0, 1) consider the positive measure ηr on [0, 2π), which shall be defined such that

dηr =
1

2π
Re f

(
reiθ

)
dθ

and further the image measure µr := ηr ◦ φ−1. Applying (5.3) with the function z 7→ f(rz), we
obtain ∫

T

ζ + z

ζ − z
dµr(ζ) =

1

2π

∫ 2π

0

eiθ + z

eiθ − z
Re f

(
reiθ

)
dθ = f(rz)− i Im f(0).

For z = 0, this yields

‖µr‖ =

∫
T
dµr =

1

2π

∫ 2π

0
Re f

(
eiθ
)
dθ = f(0)− i Im f(0) = Re f(0).

Having a uniform bound for ‖µr‖ we can apply the Banach-Alaoglu Theorem, which gives a
positive measure µ such that for every net µri with ri → 1, there exists a subnet µrin which

satisfies lim
rin→1

µrin (z)
ω∗−→ µ(z). Passing to the limit in (5.3), yields

f(z) = i Im f(0) +

∫
T

ζ + z

ζ − z
dµ(ζ), z ∈ D. (5.5)

Step 3: Now we have to perform a fractional linear transform from the unit disc to the upper
halfplane. Consider the fractional linear transformation β : C+ → D, defined by

β(ω) =
ω − i
ω + i

, ω ∈ C+.

Let g be analyic in C\R, Re g(0) ≥ 0 and f(z) :=
(
g ◦ β−1

)
(z). Now we want to evaluate

g(ω) =
(
g ◦ β−1

)
(β(ω)). Obviously β−1(1) = ∞, and we separate the right hand side of (5.5)

into two parts

f(z) = i Im f(0) +

∫
T

ζ + z

ζ − z
dµ(ζ) = i Im f(0) +

∫
{1}

ζ + z

ζ − z
dµ(ζ) +

∫
T\{1}

ζ + z

ζ − z
dµ(ζ) =

= i Im f(0) + µ
(
{1}
)1 + z

1− z
+

∫
R

β(t) + z

β(t)− z
d
(
µ ◦ β−1

)
(t).

Now we can evaluate

g(w) =
(
g ◦ β−1

)
(β(ω)) = i Im f(0) + µ

(
{1}
)1 + β(ω)

1− β(ω)
+

∫
R

β(t) + β(ω)

β(t)− β(ω)
d
(
µ ◦ β−1

)
(t) =

(5.6)

= i Im f(0) + µ
(
{1}
)1 + ω−i

ω+i

1− ω−i
ω+i

+

∫
R

(
t−i
t+i + ω−i

ω+i
t−i
t+i −

ω−i
ω+i

)
d
(
µ ◦ β−1

)
(t) = (5.7)

= i Im f(0) + µ
(
{1}
)ω
i

+

∫
R

1 + tω

i(t− ω)
d
(
µ ◦ β−1

)
(t). (5.8)
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Now we consider
ν(ω) :=

(
1 + t2

) (
µ ◦ β−1

)
(ω).

Then, since
∣∣∫

T dµ
∣∣ <∞, it holds that

∫
R d
(
µ ◦ β−1

)
<∞ and because of this we obtain∫

R

(
1 + t2

)−1
dν(t) <∞.

Finally, there holds (
1

t− ω
− t

1 + t2

)(
1 + t2

)
=

1 + tω

t− ω
d
(
µ ◦ β−1

)
,

which yields the assertion, if we apply it to (5.6) and consider h(w) := ig(w).
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