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Kurzfassung

Stürze sind die wahrscheinlichste Ursache für unfallsbedingten Tod von Personen die
65 Jahre oder älter sind. Gestürzte Personen können mit Hilfe von Tiefensensoren die
mittels strukturiertem Licht arbeiten, detektiert werden. Somit kann sofortige Hilfe
geleistet werden und Morbidität und Mortalität gesenkt werden. Tiefensensoren die
mittels strukturiertem Licht arbeiten schützen die Privatsphäre, sind unauffällig und
funktionieren auch ohne sichtbares Licht. Jedoch haben sie einen entscheidenen Nachteil
und zwar ein geringes Sichtfeld. Diese Limitierung kann mit Hilfe eines Schwenkneigekopfs
gelöst werden, der einen Tiefensensor bewegt, sodass dieser einer Person folgt. Als
Konsequenz wird das Sichtfeld des Sturzerkennungssystems um einen entscheidenden
Anteil erhöht.

Diese Diplomarbeit schlägt eine Methode vor wie ein existierendes Sturzerkennungssys-
tem, das sich in der Praxis bewährt hat, die induzierten Sensorbewegungen kompensieren
kann. Synthetische Daten werden erzeugt, um verschiedene Artefakte, die mit solchen
Tiefensensoren auftreten, zu isolieren und zu analysieren. Weitergehend werden auch
Artefakte untersucht die nur auftreten wenn Tiefensensoren bewegt werden. Reale Daten
werden aufgenommen um die Genauigkeit des Sturzerkennungssystems während Sensor-
bewegungen zu bestimmen. Resultate zeigen, dass Stürze bis zu 4m Entfernung unter
Sensorbewegungen detektiert werden können, wobei Sensoren auf einer Höhe von 1.15m
am besten funktionieren. Eine voll funktionierende Implementierung in Form von lose
gekoppelten Komponenten wird vorgestellt, welche Benutzer Rückmeldungen liefert und
Fernsteuerung ermöglicht.
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Abstract

Falls are the leading cause of accidental death among people that are 65 or older. Fallen
persons can be detected using structured light depth sensors to provide immediate help
and decrease morbidity and mortality rates. Structured light depth sensors are privacy
preserving, unobtrusive and can operate without viewable light. However, they suffer a
major disadvantage, namely their narrow field of view. This limitation can be tackled
utilizing a pan/tilt unit that rotates a depth sensor to follow a person. As a consequence
the field of view of the fall detection system is increased by a significant amount.

This thesis proposes a method to extend an existing fall detection system that has
proven to work reliably in practice to compensate induced sensor movements. Synthetic
data is created to isolate and analyze different artifacts that arise when using structured
light depth sensors. Furthermore, artifacts are investigated that explicitly occur when
moving the sensor. Real data is recorded to evaluate the performance of the fall detection
system during sensor pan and tilt. Results show that falls can be detected up to 4m
under sensor movements achieving the best accuracies when mounted on 1.15m above
the ground. A fully functional implementation in form of loosely coupled components is
proposed that supports user feedback and remote control.
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CHAPTER 1
Introduction

Between the years 2004 and 2050 the number of people worldwide who are older than 65
years will increase from 461 million to an estimated 2 billion [1], an increase of 434% in
only 46 years. According to a study in 2016 [2], 30% of people above the age of 65, fall at
least once a year. The risk of elderly people becoming seriously injured or even die after
a fall, ranges between 10% to 20% [3]. This makes falling the leading cause of accidental
death amongst the elderly population [4]. Moreover, falls not only lead to physical but
also to psychological injuries. The fear of falling is one of the main reasons that elderly
people limit themselves in daily living activities [5].

The elderly people who live in senior homes frequently fall when they are not observed
by care staff [6]. They can recover on their own which results in undetected and unreported
injuries, and thus, a significant under-estimation in fall statistics [7]. This consequently
highlights the task of detecting and reporting falls as essential to a number of papers
which covered surveys on published systems [8, 9, 10, 11, 12]. Furthermore, people feel
safer and independent if there is a fall detection system within their homes [13].

Igual et al. [8] classify fall detection system into wearable devices and context-aware
systems. The former is defined as an miniature body-borne computational sensory
device that is worn under, over, or in clothing 1. This devices include sensors such as
accelerometers and gyroscopes. These sensors are build, for example, into smartphones
allowing it to directly integrate a fall detection system into a device that is already
carried all the time [14], which increases the acceptance. However, such systems produce
a rather high number of false alarms [8]. The reason for this is that smartphones do not
get carried in a standardized position when used in practice. Moreover, persons do not
carry their smartphones all the time which makes this kind of fall detection impossible.

1https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-
interaction-2nd-ed/wearable-computing Last accessed 02 Dec 2016

1



1. Introduction

The second class of fall detection systems are context-aware systems, which are
deployed in the environment. The main advantage in relation to wearable devices is that
the user does not have to carry a sensor. However, operation is limited to regions where
the system is deployed. Common sensors are (depth)cameras, microphones and pressure
sensors [8].

Pressure sensors measure the applied force. They can be installed on the floor and
monitor vibrations produced by humans. Alwan et al. [15] use this vibration patterns
to distinguish between daily activities and falls. However, such sensors can be used
to detect uprising person2. This can provide help for staff in elderly care homes to
provide help on frail patients. Such pressure systems are cheap, however they suffer fall
detection accuracies below 90% [10]. Microphones can boost the accuracy when using
the received audio signals in conjunction with floor vibrations. Litvak et al. [16] propose
such a system with a sensitivity of 95% and specificity of 95%. This high numbers are
often reached under experimental conditions, but they drop significantly when applied in
realistic scenarios [17].

Camera-based systems are increasingly included in smart-home solutions and their
prices have decreased rapidly [18]. A main advantage is that person’s behavior can be
passively modeled [19] while fall detection is performed. Furthermore, other events like
stand-up detection can be performed simultaneously [20]. Concerning privacy, red-green-
blue (RGB) cameras have a significant disadvantage, since persons can be identified
on the video footage. However, depth sensors like the Microsoft Kinect only enables
privacy, when only using depth information. This is an important aspect in a real-world
application [21] as high numbers of research papers utilize depth data as input for an
event detection system [22, 23, 24]. Employing such systems on cheap low-end hardware
becoming increasingly popular, since hardware gets increasingly more powerful [25]. Thus,
this paper focuses on depth-data based fall detection system.

1.1 Problem Definition

Low-cost depth sensors have a massive disadvantage when deploying them, namely their
low field of view (FOV). For example, the Microsoft Kinect has a FOV range of 57◦
horizontally and 43◦ vertically. This leaves blind spots when installing the sensor on the
wall or in a room corner.

This paper focuses on how the FOV can be extended by rotating the depth sensor
depending on a person’s location. Fall detection is performed simultaneously using
fearless, an existing fall detection approach [26][27][28]. fearless has multiple advantages
in contrast to other depth-data based fall detection systems. It is designed to perform
a machine-learning approach on single-board hardware. Calibration is performed fully
automatically, making it plug and playable. In addition, fearless is iteratively refined

2http://www. google.com/patents/US6067019 Last accessed 02 Dec 2016
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1.2. Structure

Figure 1.1: Visualization of a fall event created by fearless.

since 2013 based on long-term evaluation under practical conditions [29, 30, 31]. A
visualization of a fall event created by fearless can be seen in Figure 1.1.

The algorithmic pipeline of fearless starts with the automatic calibration of the system.
This involves detecting the ground plane to estimate the extrinsic camera parameters
such as the sensor’s rotation and height. After the system is calibrated it processes depth
frames at a frequency of 15Hz. fearless operates in 3D voxel space, meaning that depth
frames are converted and analysed in world coordinates. To restrict the search space of
detecting fallen persons, a background subtraction based motion detector is used in a
preceding step. Persons are detected using a random forest classifier. A second classifier
decides whether a detected person has fallen down and raises an alarm.

1.2 Structure

The content of this thesis is structured as follows. Chapter 2 summarizes the current
state-of-the-art of systems that use movable depth sensors. This comprise of fall detection
systems, particularly because literature is limited on such systems. The emphasis will be
on systems that use movable structured light depth sensors, as it is done in this paper.
The fall detection system (fearless) is explained in Chapter 3. Besides the algorithm of
fearless its hardware components, i.e. structured light depth sensors will be explained.

The contributed changes to fearless to support movable depth sensors are explained
in Chapter 4. They concern with the motion detection part and the fall detection part
of fearless. The former stands at the beginning of the fall detection pipeline and every
other step depends on its outcome. The fearless motion detector is static and thus
replaced by a dynamic motion detector, that sources of inaccuracies are analyzed. This

3



1. Introduction

chapter includes the collection of real and synthetic data to test the dynamic motion
detector and the fall detection system. Furthermore, this chapter includes the detection
of uncontrolled sensor movements.

The implementation of the novel fall detection system as a distribution of loosely
coupled components combined with user feedback and remote control is explained in
Chapter 5. Chapter 6 shows the results of the fall detection system while the depth sensor
is moving, the evaluation of the dynamic motion detector and its sources of errors. Finally,
the chapter shows the results of detecting uncontrolled sensor movements. Chapter 7
concludes this work.

1.3 Contributions
fearless suffers limitations that are eliminated in this thesis:

• It is designed for a static setup. When the depth sensor is moved the system will
enter an invalid state producing arbitrary results. The main contribution of this
work is to adapt fearless to compensate these movement changes and perform
fall detection while its depth sensor is moving. This is done by developing a
dynamic motion detector to support motion detection during sensor pan and tilt.
Furthermore, a dynamic region of intereset (ROI) is implemented that moves along
with the sensor FOV.

• Empirical observations have shown that depth sensors might get displaced when
the room is cleaned, or people suffering from dementia manipulating it. Thus, a
further contribution is to detect if the sensor is manipulated and react accordingly.
This is done by developing a motion based tampering detection algorithm.

• fearless lacks a well-designed implementation. A third contribution is to imple-
menting a fall detection system that is distributed in a sense of loosely coupled
components to enable maintenance and expansion. This system comprises of user
feedback via light-emitting diode (LED) display and remote control.

4



CHAPTER 2
State of the Art

Performing fall detection with moveable depth sensors is a unique problem. Hence, the
availability of publications is limited. Mundher et al. [32] published a fall detection
system on a movable robot in 2014. This system is described in Section 2.1. Section 2.2
focuses on state-of-the-art of more generic systems, namely systems that use movable
structured light depth sensors. A large number of approaches that utilize hand-held
depth sensors to build point cloud representations of objects and environments have been
published [33, 34, 35]. However, since this work is about controlled movements which is
generally associated with robotics, only systems that use a computer-controlled unit to
move the depth sensor will be investigated.

Section 2.3 investigates state-of-the-art methods for performing motion detection
with moving sensors. This is done, since fearless uses a static motion detector that is
exchanged with the proposed motion detector in Section 4.2.

2.1 Fall Detection on a Robot
A robot is a machine that is guided by software such that it is able to perform complex
tasks automatically [36]. Mundher et al. [32] use a Kinect sensor on a mobile robot
system to follow persons and detect if its target person has fallen. They use the skeleton
information provided by the Kinect software development kit (SDK) that are proposed
by Microsoft Research [37]. This information is extracted from single depth images, thus
no motion detection is performed. However, persons are only detected if they face the
sensor which is a major limitation in the context of fall detection.

The robot starts and stops following a person using gesture recognition. The gestures
are right hand up and left hand up, which are detected by comparing the hand joints
to the shoulder joints. Fall detection is performed by computing the distances of the
body joints to the floor. Thus, the ground plane must be estimated in a prior step. The

5



2. State of the Art

authors do not specify the exact height of the sensor, but their illustration suggest that
its height is about 20cm above the ground. At such a low height the sensor must be tilted
upwards to include the person to its full extent. However, this draws major disadvantages
on the floor detection, since only a small portion of the floor is included in the depth
image. Due to this, falls are detected in the skeleton space coordinate system [37]. In
this coordinate system the joint positions are simply thresholded.

Falls are detected at distances of 2.0m, 2.5m, 3.0 and 3.5m with accuracies of 50%,
75%, 100% and 100%, respectively. However, only 4 scenarios are detected per distance
to generate this results. Bagalà et al. [38] found that threshold based methods proved to
be ineffective, since they are too simplistic. This applies to the approach from Mundher
et al. [32] and in conjunction with the requirement of persons facing the sensor to be
detected, a novel fall detection system on moving depth sensors is standing to reason.

2.2 Structured Light Depth Sensors on Robots

When dealing with robotics the simultaneous localization and mapping (SLAM) problem
plays a major role [39]. SLAM is the computational problem of maintaining a repre-
sentation of the unknown environment while keeping track of its own location. Usually
three degrees of freedom (DOF) are given on a movable robot with a fixed sensor namely,
height, tilt and roll. This work deals with a simpler version of the SLAM problem, since
no translations are performed. Thus, only two DOF are given: pan, tilt.

Endres et al. [40] present a mapping system that generates highly accurate 3D maps
using depth and RGB information by extracting visual feature points from the RGB
images. The depth images are further used to localize this feature points in 3D. Since
the Kinect provides a dense point cloud representation of the scene the depth image
is subsampled to enabled real-time processing. Also, the robot’s trajectory is used to
project sensor data into common coordinate frames, which simplifies the matching. The
authors released their source code online under an open-source license1.

Biswas et al. [41] filters vertical planes in the depth data and downproject them
onto 2D. The resulting map comprises of the walls of the scene which are subsequently
used for localization and navigation. Their method is highly optimized for real-time
application and runs with 30 frames per second (FPS) in a single thread at only 16%
central processing unit (CPU) load. They achieved this number with an Intel Core i7
950.

Benavidez et al. [42] use depth data to compute the traversable area of the robot in
image space using a gradient and a log filter. The color data is sent to a server, since the
hardware resources for their approach are unsuitable to use on a robot. At the server, a
neural network is utilized for pattern recognition and object tracking. The long-term
goal of this system is to work autonomously in outdoor environments.

1http://ros.org/wiki/rgbdslam Last accessed 02 Dec 2016
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2.2. Structured Light Depth Sensors on Robots

Correa et al. [43] use a priorly defined topological map of the indoor environment to
autonomously perform localization of their robot. The depth map is averaged over 80
rows of each column and used as the input of a artificial neural network. This network
is trained to distinguish 8 cases such as ‘path ahead’, ‘left path’ et cetera. With this
network the robot can locate itself in the topological map.

Maier et al. [44] use a priorly defined static map for localization and maintain a 3D
environment representation model in form of an octree for navigation. This representation
is build using only depth information, and when integrated over 28 frames, it can be
utilized for real-time planning of collision-free paths. Real-time performance is enabled
by scaling the depth image to 320x240 and operating with 6 fps on a remote quad core
computer. Their approach estimates the robots pose with 6 DOF, allowing the robot to
change its height or climb on objects.

Cunha et al. [45] use a priorly defined map of walls to perform localization. The depth
data is used to detect walls similar to the wall without contradiction method [46]. They
subsample the depth images to 128x96 which was proven to contain sufficient information
for the wall detection. This enables an extremely fast 3 DOF pose estimation which runs
at 162 FPS on an Intel Core i3 @ 2.4GHz.

Doisy et al. [47] propose two algorithms that only use depth information for a mobile
autonomous robot that follows a person. Both algorithms use the person detection and
tracking software provided by the Kinect SDK [37]. The first one reproduces the person
path by using the position of the tracked person in every frame. The second one requires
a pre-build map of the environment and uses it to compute the shortest path to the
person.

Table 2.1 shows a compact comparison of the different approaches. This includes
this work and the fall detection system from Mundher et al. [32]. The approaches are
partitioned into DOF, operating location, sensor height, whether pre-knowledge is used,
whether RGB information are used and whether the robots motion is used to support
localization (also referred to as odometry).

It is highlighted that the sensor height plays an important factor in the context of
fall detection. A low positioned sensor has to be tilted upwards to monitor persons to
their full extend. However, in the context of fall detection the sensor should focus on
monitoring floor regions. This can be compensated by using reasonable sensor heights
(> 1m) as it is done in this work.

Although, all approaches use a form of localization algorithm, not all of them use
odometry to enhance the localization accuracy. This paper however, solely uses odometry
for localization by polling the pan and tilt values of the robot motors. This reduces the
complexity of the SLAM problem significantly, which makes it possible to develop it in
real-time for low-end hardware. However, the localization results completely depend on
the robot’s responses and allow no major inaccuracies.

None of these methods take sensor artifacts into account that arise when a sensor is

7



2. State of the Art

DOF Location Height Pre-Knowl. RGB Odometry
Endres et al. [40] 4 indoor 150cm* no yes no
Biswas et al. [41] 3 indoor 30cm* no yes yes
Benavidez et al. [42] 3 outdoor 40cm* no yes yes
Correa et al. [43] 3 indoor 40cm* yes no no
Maier et al. [44] 6 indoor 58cm yes no yes
Cunha et al. [45] 3 indoor 80cm yes no yes
Doisy et al. [47] 3 indoor 120cm* yes and no no yes
Mundher et al. [32] 3 indoor 20cm* no no no
Proposed method 2 indoor 115cm no no yes

Table 2.1: Overview of systems using movable structured light depth sensors
*Not specified but estimated from provided images.

moved. Tourani et al. [48] demonstrates that such artifacts increase significantly with
the moving speed of the sensor. This paper will therefore investigate the influence of
sensor movement to the proposed algorithm.

2.3 Dynamic Motion Detection

Figure 2.1: Mosaic image of an outdoor scene [49].

Motion detection on pan/tilt units can be done using mosaic images [49, 50, 51]. This
images are created in an initial phase or during runtime and are then used as a model
for background subtraction [52]. Figure 2.1 shows an example of a mosaic which is an

8
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outdoor scene from Bevilacaqua et al. [49].

Hayman et al. [53] perform motion detection using the pan and tilt values from a
robot. They build a mosaic image using this values at runtime and handle errors that
arise when moving the camera. This approach could be used in this work. However, due
to the increased size of the mosaic image, the algorithm runs only at 10 FPS on images
that are sampled down to 176x144 on a 2GHz P4 laptop. This is a major drawback,
since the method should run besides a fall detection system on a single-board computer.
Additionally, this work uses depth data instead of color data. This enables projection
from and into world coordinates and thus rotation-center correction can be applied. In
conclusion it seems reasonable to develop a novel dynamic motion detection algorithm
that utilizes the advantages of depth data.

The current state of the art of fall detection systems that use moveable depth sensors
is limited. However, robotic systems that utilize depth sensors for scene reconstruction is
a trending research topic. Combining the knowledge of those systems helps to develop
related problems associated to fall detection for elderly people.

9





CHAPTER 3
fearless

The foundation of this work is an existing fall detection system: Fear Elimination As
Resolution for Loosing Elderly’s Substantial Sorrows, in short fearless. The method is
depth-data based and operates in real-time on single-board computers that cost less than
50 euros. In contrast to other depth-data based fall detection systems, it is plug and
playable meaning that the sensor can be placed anywhere in the room. The features used
are invariant to sensor rotation, position and are robust to partial occlusions. Regarding
privacy, the depth data is processed locally, meaning that alarms are only raised if a fall
is detected.

fearless started as a research project in 2009 and its first output was published in
2011 by Planinc et al. [26, 27]. In 2013, Pramerdorfer [28] proposes a new version of
fearless in the context of his master thesis. Further development is done in cooperation
with an industry partner. fearless 2 [29] was released in 2015 and improves the core
components of the original system. A long-term evaluation of fearless 2 under practical
conditions was published in 2016 by Pramerdorfer et al. [31]. It shows the evaluation
results under naturalistic conditions, that include nursing and assisted living homes on
53 devices. The installations were active for 5246 full days (125904 hours). The authors
claim that this is the first long-term evaluation of a fall detection method that is based
on depth-images. Additionally, the system is tested under experimental conditions which
consists of a dataset of 146 fall sequences and 415 activities of daily living. Examining
the contrast between experimental and naturalistic conditions is important, since new
sources of false alarms can be identified.

In 2016 fearless 3 [30] was released, which introduced a better scene understanding by
utilizing 3D instead of 2D computations and explicitly modeling occlusions. This work is
build upon fearless 3 and the following sections describe the hardware components and
the algorithmic pipeline.

11



3. fearless

3.1 Components

fearless consists of an inexpensive single-board computer and a structured light depth
sensor. Figure 3.2 shows an example of the hardware setup using an ASUS Xtion Pro
depth sensor that is connected to an ODROID U3 via USB.

Figure 3.1: The two hardware components of the fearless system: single-board computer
(left), depth sensor (right)

The single-board computer must be powerful enough to support more than 15 FPS,
since fearless 3 operates with exactly 15 FPS.

3.1.1 Structured Light Depth-Sensors

A structured light depth sensor is used as an input device obtaining the data for the
fall detection system. fearless supports multiple depth sensors including ASUS Xtion
Pro, Orbbec Astra and the first generation of the Microsoft Kinect. They all share the
same principle: structured light. Since the input data is the foundation of fearless, this
principle is explained in further detail.

Figure 3.2 illustrates how depth data can be obtained by projecting a known pattern
onto an object. This pattern is diffracted by the geometric shape. Observing the
illuminated object from another angle yields to a deformed pattern, which can be
analyzed to deduce the disparity d. In the simplest case, a sequence of stripe patterns
with increasing black-white frequency is projected onto an object over time. This results
in a binary code that encodes the disparity [55]. Knowing the focal length f and the

12



3.1. Components

Figure 3.2: Principle of structured light. [54]

baseline b between the camera and the projector and assuming parallel optical axes, the
disparity can be converted to the depth Z via triangulation, see Equation 3.1.

Z = b ∗ f
d

(3.1)

However, structured light depth sensors as used by fearless implement the LIGHT
CODINGTM technology that was developed by PrimeSense (bought by Apple Inc. in
2013). This technology describes the projection of a regular orthogonal grid infrared
(IR) of light and dark speckles into the scene. The projected pattern is observed with
a IR complementary metal oxide semiconductor (CMOS) sensor and deciphered to
create a video graphics array (VGA) size depth image. Since the technology used is
patented, detailing the creation of the dot pattern and the deciphering process can only
be speculated. Yet, it can be assumed that sub-windows of the pattern are efficiently
matched to the reference pattern to find the disparities used to compute the depth via
triangulation. The density of the dot pattern decreases proportionally to the distance of
the depth sensor. Thus, such sensors suffer a decreasing depth accuracy and increasing
noise level. Therefore, a high upper depth boundary is essential in the context of fall
detection, since sensors are installed on the wall or the ceiling and should observe the
room to its full extent. Also, the FOV is an important criterion of a depth sensor. In
conjunction with the depth range it defines the view frustum of the sensor.

1orbbec3d.com Last accessed 02 Dec 2016
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depth range field of view depth accuracy
Microsoft Kinect 0.8m-4.0m 57◦ H, 43◦ V 3.584mm@1.05m [56]
ASUS Xtion Pro 0.8m-3.5m 58◦ H, 45◦ V 2.573mm@1.05m [56]
Orbbec Astra 0.6m-8m 60◦ H, 49.5◦ V 5mm@2m1

Table 3.1: Comparison of different depth sensors.

Table 3.1 shows a comparison of three depth sensors that are compatible with fearless.
The Orbbec Astra has the highest depth range and the widest field of view. Although
the Xtion Pro and the Kinect have a maximum range of ≤ 4m they can be used for
higher ranges. However, they suffer major accuracy drops that are modeled by fearless.
Guidi et al. [56] evaluate five depth sensors including the Kinect from Microsoft and
the Xtion Pro from ASUS. Unfortunately, the Orbbec Astra is not tested by them and
consequently, the depth accuracy can only be set in relation between the Kinect and the
Xtion Pro. The latter shows a better accuracy at 1.05m. The Orbbec Astra is relatively
new (shipped since 2016), hence at the time of writing this paper there are no published
papers which assess the Orbbec Astra. Therefore, the depth accuracy is taken from the
official Orbbec website.

Due to the fact of projecting and observing an IR pattern several problems arise in
practice when this pattern is disturbed. A dominant problem is sunlight overlapping the
projected IR pattern. This is because, sunlight that passes through a filter (i.e. curtain)
may have enough remaining IR light to extinguish the projected pattern. Also, light
sources emit IR light leading to errors when observed directly.

Therefore, projected IR light can only be observed if it is reflected to the camera.
Glossy materials reflect the incoming light in a specular way. Thus, a light-ray of the IR
projector bounces from a glossy object to another location where it may overlap with
the correctly projected pattern. The IR sensor subsequently, receives reflected rays and
reconstructs the depth based on these values. Hence, monitoring a flat glossy object like
a mirror yields to noisy depth values of the reflection, see Figure 3.3. The depth values
correspond to the distance from the sensor to the mirror to the reflected object. On
the contrary, non-planar glossy surfaces distort the IR pattern which then cannot be
reconstructed, yielding to black pixels in the depth image.

IR light can be incorrectly reflected but also absorbed by the material. This effect is
amplified if the light is projected non-orthogonal onto the material. The higher the angle
between projected light ray and surface normal the less light gets reflected.

The IR projector and sensor are approximately 7.5cm apart. A high baseline is
important to obtain a big triangulation angle, hence better depth accuracy. However,
points may be occluded from the projector point of view but not from the sensor. The
amount of occlusion is proportional to the distance of the occlude to the depth sensor.
The depth image in Figure 3.3 illustrates an object that occludes parts of the background.
The camera can ‘see’ a part of the unprojected space which leaves a hole in the depth
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(a) Color image. (b) Depth image.

(c) Point cloud.

Figure 3.3: Effect of a mirror on structured light depth sensors.

image.

All these problems play a vital role in the fearless system since the environment where
it is installed cannot be controlled.

3.2 Algorithm
The algorithmic pipeline consists of four main components that are explained in greater
details:

• Scene Analysis. Automatic calibration and scene analysis.
• Motion detection. Motion detection based on background subtraction.
• Person tracking. Person detection and tracking over time.
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• Event detection. Detection of person events.

Further, the internal representation of objects and the modeling of occlusion is
discussed.

3.2.1 Data Representation

fearless converts each depth image into world coordinates and subsequently discretizes
the 3D points into a grid structure. The number of points falling into one cell is called
occupancy and thus, these grids are called occupancy grid. Since the density of depth
points decreases with the distance to the sensor, the occupancy value is corrected by
dividing it through the squared distance to the sensor [57].

(a) Depth image.
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(b) Occupancy grid.

Figure 3.4: Shaded depth image of a scene and its corresponding occupancy grid. The
data points in the occupancy grid are color-coded from black (low occupancy) to yellow
(high occupancy). Points with occupancies values below 100 are not drawn.

The size of an occupancy grid is defined by the cell size = 7.5cm and the ROI, which
is set to x ∈ [−3m, 3m], y ∈ [−0.2m, 2m], z ∈ [0.5m, 6m]. The values are fixed, resulting
in a grid size of 80x30x80. However, fearless restricts the ROI by means of finding
the maximum depth in a preprocessing step to increase the computation speed. Noise
reduction is performed after creation by filtering the grid with a 3D radial basis function
kernel based on the city block distance.

Using motion detection, sub-occupancy grids can be extracted to represent moving
objects and persons. Features are extracted based on these sub-grids to identify persons
and classify their state.

A person can never be fully visible to the depth sensor due to occlusions and as a
result it creates an incomplete sub-occupancy grid. fearless tries to model these occlusions
by introducing occlusion grids which are similar to occupancy grids. They are defined as
a discretization of world coordinates with the same ROI and cell size. However, occlusion
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grids are created by casting a ray from the sensor to each cell, detecting if the cell is
occluded. Hence, a cell of an occlusion map entails if it (i) is occluded (if yes also the
occlude), (ii) lies within the FOV of the sensor and (iii) whether it lies on an object
surface.

(a) Depth image. (b) Occlusion grid.

Figure 3.5: Shaded depth image of a scene and its corresponding occlusion map. Cyan:
surface cells, magenta: occluded cells, gray: cells outside the FOV.

Figure 3.5 shows an occlusion map of a scene with four persons. Each person except
for the one in the front is partially occluded. By using the occlusion map the visible part
of a person can be extended along the y-axis (i.e. to the ground plane) yielding to an
occlusion score to what extend a person is occluded. The occlusion score is used when
detection person events.

Computing occlusion grids is expensive, since each cell must be ray-casted to the
sensor. Thus, fearless creates the occlusion grid only at system start-up and updates it
every frame based on result of a frame differencing motion detector.

Limitations

Occupancy and occlusion grids are created based on the ROI. The ROI is statically
defined once at startup. Concerning pan and tilt movements of the sensor as it is the
context of this thesis, fearless 3 only supports static scenes.

3.2.2 Scene Analysis

The scene analysis is performed when fearless is started. It entails (i) the detection of the
floor plane to subsequently convert image points into world coordinates, (ii) the detection
of static objects for example chairs, beds and desks to find resting areas and (iii) the
generation of occlusion grids, which are used to explicitly model occlusions.
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Pinhole Camera Model

Figure 3.6: The pinhole camera model [58]

fearless uses the pinhole camera model [58]. Figure 3.6 illustrates how the model
projects a 3D point M = [X,Y, Z]T onto the image plane through the optical center C
resulting in a 2D point m = [u, v]T . This mapping is called central projection. To be
physically correct the image plane should be positioned behind the optical center, since
a ray passed the optical center and subsequently hits the image plane. However, for
illustration purposes it is placed in front of the optical center, which is mathematically
equivalent. Defining the homogeneous coordinates m̃ = [u, v, 1]T and M̃ = [X,Y, Z, 1]T
the relationship between M and its image m can be defined as

m̃ = A
[
R t

]
M̃ (3.2)

with A =

fx s u0
0 fy v0
0 0 1

 (3.3)

where A consists of the intrinsic camera parameters. The focal length f is the distance
from the optical center to the image plane. In a true pinhole camera model both values
fx and fy correspond to f , however the result of m̃ should be in image coordinates thus
pixels. Therefore fx = −mxf and fy = −myf where mx and my are the number of
pixels per unit distance on the image sensor. Consecutively, the intersection of the z-axis
with the image plane called principle point (u0, v0), which is (0, 0) in the true pinhole
model equals to the image center. The skewness s is defined as s = fxcotθ, with θ being
the angle between the axis of the image plane. Assuming a rectangular image plane this
parameter vanishes.

The intrinsic camera matrix A is found using camera calibration which transforms a
3D point from camera coordinates into image coordinates. Smisek et al. [59] calculated
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that fx = fy = −585.6px and u0 = 316px, v0 = 247.6px for the Microsoft Kinect. The
principal point is shifted by approximately 3px from the image center in both directions.
fearless uses these values to model the relationship between points in image coordinates
and camera coordinates. Lens distortion is neglected since the accuracy is found sufficient.

The extrinsic matrix
[
R t

]
consists of a rotation and translation transforming world

coordinates to camera coordinates. It is found automatically by detecting the ground
plane in camera coordinates and comparing its normal vector against the known normal
vector of the floor in world coordinates.

Floor Detection

Before converting the depth image into camera coordinates using the inverse of the
intrinsics matrix A, fearless applies a bilateral filter [60] to smooth the depth values
locally. The cross-product of the tangents in x and y direction yields to a normal for
each data point. The tangents are computed using the corresponding difference quotient.
The points in camera coordinates are filtered to reduce the candidates for the ground
plane estimation by restricting their corresponding normals. A sensor tilt of [0◦, 75◦] and
roll of [−20◦, 20◦] are required.

A plane can be defined through three non-collinear 3D points. Applying random
sample consensus (RANSAC)[61], fearless tries to find the correct ground plane iterating
over random triples of the filtered depth points. The depth points are randomly sub-
sampled to speed up the fitting process. An inlier is defined as a point lying at a
perpendicular distance of ≤ 10cm to the found image plane. The set of inliers is used
to define the final plane by using singular value decomposition (SVD) [62]. Since big
planar objects (i.e. tables) may block the view and can result in a incorrectly detected
ground plane, a search for a parallel plane is performed that is at least 500cm lower and
must include at least half of the inliers of the original plane. Figure 3.7 shows the floor
detection process based on a scene with a person queue.

(a) (b) (c) (d)

Figure 3.7: Floor detection process of fearless. Image (a) shows the depth smoothed with
a bilateral filter. Pixels are colored based on their depth value. The computed normals
(b) are mapped from [−1, 1] to [0, 255] for illustration purpose. Image (c) shows the
filtered points after restricting their normals, which are used as basis in the RANSAC
schema. The final inlier mask can be seen in Image (d).
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Detection of Static Objects

Static objects are used to find out whether a person is sitting or lying when performing
event detection. They are detected at system startup by analyzing cells in the occupancy
grid that neither belong to the floor nor to the wall. Cells belonging to the wall are found
analogue to the prior floor detection. The resulting occupancy grid is projected along
the y-axis (i.e. from top) to obtain a binary image that encodes if a 3D column contains
at least one cell with an occupancy over 100. Using connected component labeling [63] a
first segmentation of static objects is achieved. Segments that are smaller than 0.25m2 or
greater than 3.0m2 are discarded. A second segmentation is obtained by projecting the
filtered occupancy grid along the z-axis (i.e. from front), to split objects that are on top
of each other. The height of the remaining objects must lie in the interval [0.25m, 0.8m]
to be classified as a static object. Figure 3.8 shows a room with five detected static
objects.

Figure 3.8: Static object segmentation of fearless 3 [30]. The ground plane is drawn in
blue and the detected objects are illustrated with a random colored bounding box.

fearless periodically analyses static objects to detect whether they have been moved
from their original position. When an object is moved, the occupancy of the original
cells drop i.e. they become invisible. A visibility score is computed based on the ratio
of visible cells to the total number of cells of an object, including occluded cells. If the
visibility score falls below 0.25% the static object is no longer monitored and used for
event detection.

3.2.3 Motion Detection

Motion detection comprises of the creation of motion masks encoding which depth points
have changed. Such changes are created over time i.e. when a person walks by but also
through noise that increases with the distance to the sensor. Moreover, it is used to
restrict the search-space of objects by regions where motion occurs.
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fearless uses background subtraction [64] to fulfill the task of motion detection. This
is achieved by a background model depicting the static scene, which is then subtracted
from the current depth image to obtain a difference image. A threshold relative to the
depth value is then applied to filter significant changes between the frame and the model.
It should be noted that differences higher than the threshold are classified as foreground
and all other points as background. A motion mask is a binary image representing this
classification. Figure 3.9 visualizes this steps.

(a) input frame (b) model

0
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2000

2500

3000

(c) difference (d) classification

Figure 3.9: Motion Detection via background subtraction. The model (b) is subtracted
from the input frame (a) resulting in a difference image (c). Using a threshold which
is dependent on the depth value, a classification into foreground and background (d) is
obtained.

Only points closer to the sensor are considered as motion whilst points ‘behind’ the
background model are regarded as senseless. Such regions are called ghosts and can occur
if a static object is moved. They need to be removed from the background model, since
they distort the motion mask. This can be done periodically by overriding the ghost
regions of the background model with the current depth image.

fearless uses the first frame on system startup to generate the background model.
The model should not contain holes, however this occurs due to problems with structured
light depth sensors. Thus, the first frame is interpolated before it is used as background
model. This is attained by horizontally and vertically scanning for the first non-zero
depth pixel.

Updating the background model is crucial, since the scene can change over time. In
the case of fearless the system runs a full day before a daily system reset is done. Persons
interact with objects and can change their location, hence the background model must
adapt to such changes. This is implemented in fearless by adding ±4.5mm per second to
the model to balance it with the current frame. Thus, the model ‘grows’ to new objects
and encloses them after a while. The time needed depends on the depth difference and is
approximately 3 minutes for a chair. A fallen person will be included in the background

21



3. fearless

model if it does not move. This makes it important to detect the fall as soon as possible.

Detecting events in fearless is done on objects. Objects are sub-grids of occupancy
maps that are identified by foreground regions. Occlusion grids however are updated
using a frame differencing motion detector which is a simpler version of background
subtraction. The previous frame is used as a model yielding to a motion classification
from frame to frame. The occlusion grid is subsequently updated by ray-casting through
each foreground pixel.

Limitations

Conventional background subtraction is limited to static scenes because changing the
rotation of the sensor, which is the topic of this thesis, results in an invalid background
model. Thus, fearless can only support moving sensors by stopping the fall detection
system before the sensor is moved and restarting afterwards. Through the restart the
system re-detects the ground plane of the new sensor position and can operate normally
until the next sensor movement.

Further, fearless requires that the input data to be in front of the background model
in order to get classified as foreground. Otherwise, ghosting is detected and the input
data is written to the model. Detecting motion based on absolute background subtraction
and disabling ghost detection is not supported.

3.2.4 Person Tracking

Fall detection is performed on all detected persons that are tracked over time. fearless
distinguishes objects from persons. Objects are segmented from the occupancy grid and
must only fulfill a size constraint of [100, 600] cells. Persons however are converted from
objects when they reach a person confidence of ≥ 75%. Their models are optimized for
arbitrary pose of adults. Further, motion is estimated in 3D and the occlusion grid is
analyzed to obtain a visibility score. When performing event detection this information
is used for temporal integration of person state estimates.

Tracking

Figure 3.10 explains the tracking process. The location and velocity of a persons in frame
t− 1 is used to estimate the new location in frame t. A kalman filter [65] smooths the
estimates of these values. This approach is called detection-by-tracking since a person is
classified only once and tracked afterwards.

After persons are located the corresponding data points in the occupancy grid are
cleared. Objects are updated analog. The grid only contains points that were previously
classified as motion, hence only unmonitored objects remain which are later segmented
and detected.
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Figure 3.10: Person tracking pipeline of fearless 3 [30].

Feature Extraction and Person Classification

fearless uses a random forest classifier [66] to perform person classification. The classifier
uses slice features which are obtained by vertically dividing the sub-occupancy grid
into 15 slices and counting the occupancy cells that are non-zero per slice. Figure 3.11
illustrates the temporal evolution of the 15-dimensional feature vector.

Figure 3.11: Slice features of an upright person that gets detected at frame 100 and falls
around frame 220 [30]. The lower slice features increase significantly when the person is
on the floor whereas the upper features vanish. This indicates that these features are
discriminative for fall detection.

The random forest classifier training set consists of 12846 well visible person samples
and 3577 non-person samples. All samples are clustered using agglomerative clustering
to remove redundancies resulting in 8000 samples overall. Cross-validation is used to
validate the number and depth of trees in the random forest.

3.2.5 Event Detection

The state of tracked persons is estimated in each frame. A random forest classifier is used
with the same features and the same protocol that is used for person classification. This
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classifier can distinguish between a person on the floor who is lying, kneeling or sitting
and a person who is upright (active). Additionally, the overlap of the static objects is
used to classify whether the person is resting. These three states (resting, lying, active)
are further used for temporal integration.

Temporal Integration

The state estimates can be noisy since they are heavily dependent on the occupancy
grid and the visible depth points of the person. Thus, Kalman filters [65] are used
to combine individual state confidences which are obtained from consecutive frame
measurements. The reliability of the estimates correlate with the person confidence, the
degree of occlusion and the degree of invisibility due to the sensor field of view. Hence,
the contribution of each estimate is chosen based on these measurements which yields to
a powerful classification framework that takes scene conditions into account. Figure 3.12
illustrates temporal integration on a person walking around in a scene and sitting down.
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Figure 3.12: State estimates before (light colors) and after (dark colors) temporal
integration of a person walking through the scene and sitting down [30]. The three state
estimates are plotted in violet (resting), orange (lying) and cyan (active). The person
confidence (black) is decreased midway of the sequence due to occlusions (red).

Events are detected by monitoring the state estimates after temporal integration. If
an estimate exceeds 60% fearless raises an event:

• Active. Person is upright after being detected or resting.
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• Resting. Person sat or lay on a static scene object.
• Fall. Person fell, lay or sat on the floor.
• Recovery. Person got off the floor.

Event Filtering

fearless detects events in each frame, hence, if the state estimates exceeded the threshold,
event filtering would be initiated to reduce the number of reported events. Therefore,
following event filters are implemented:

• Delay. An event is delayed for 5 seconds to allow the confidence of this event to
increase. After the delay the event with the highest confidence is reported.

• Timeout. After an event is reported, fearless waits 5 minutes to report another
event of the same type and person. Alternatively, if a consecutive event has a
higher confidence than the reported one the filter is skipped.

Starting from 2011 this pipeline was refined using real data from elderly people. The
algorithms shown in this chapter are the current state of the fearless system. More than
5 years of development and improvement are packed in this pipeline. That is the main
reason fearless is chosen as a foundation of this thesis. However, the system lacks features
for fall detection with moveable depth sensors which are introduced in this work.
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CHAPTER 4
Methodology

Performing fall detection during sensor changes is build upon fearless [30]. fearless does
not support movable sensors, thus several contributions are proposed to eliminate these
limitations. This includes the adaption of the motion detection algorithm, to enable
correct motion classification for dynamic sensors which is described in Section 4.2.

Data is collected from the pan tilt unit (PTU) and synthetically created as described
in Section 4.1, to test and evaluate the developed methods. Regarding real data, a
number of problems must be considered due to sensor limitations. These problems are
analyzed in Section 4.3.

fearless does not only have no dynamic motion detection but it lacks the support
for updating its ROI. The ROI is statically defined in world-space, depending on the
sensor orientation where fearless is initialized. Section 4.4 explains the proposed solution
to update the ROI depending on the sensor pan and tilt. In conjunction with dynamic
motion detection, fall detection on moving sensors is supported.

The contributed changes to fearless allows for controlled sensor changes. However,
uncontrolled changes such as a person intentionally or unintentionally altering the sensor
position yield to an abnormal state. Experience has shown that persons might move
the depth sensor. This happens for example if an individual cleaned their room or
intentionally tampered with the sensor, especially if they suffer from dementia. Section
4.5 describes how sensor tampering is detected using motion detection and subsequently
reinitializing fearless.

4.1 Data Collection
To test and evaluate fearless with moving sensor support a device specifically for the task
of precisely moving a structured light depth sensor, namely the PTU is used. Additionally,
synthetic data is generated to investigate the influence of non-perfect data as it is received
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from the PTU to the proposed fall detection system. This data can be accurately modeled
using a pinhole camera model because it suffers no inaccuracies, such as lens distortion
or a decreasing depth resolution, in contrast to real data. Also, no problems due to rapid
sensor movements arise.

4.1.1 Pan/Tilt Unit

The PTU is a remotely controllable device with a mounted depth sensor1. It was built to
evaluate the developed algorithms while panning and tilting the sensor and to further
examine the problems that arise. Additionally, the user receives feedback from the built-in
RGB LED.

The casing of the depth sensor is replaced with a 3D printed casing to fixate it on the
unit which makes the sensor exchangeable. Two stepper motors panning and tilting the
unit head are controlled by a 16MHz ATmega32U4 micro controller. The motor position
is set for the number of steps but can be converted into degrees, see Equations 4.1 and
4.2. The pan range lies between ±70◦ and the tilt range between 5◦ to −25◦. Besides the
USB connection to the mounted depth sensor, the PTU can be connected via micro-USB
to a computer and requires a 4A/5V power supply. Two RGB LEDs are added to the
casing on the bottom part of the unit. Figure 4.1 shows the PTU on a tripod.

Figure 4.1: The PTU on a tripod.

The unit is equipped with three contacts: two of which are used to detect the pan
range while the third is used to find the upper tilt bound. When supplying the PTU
with power, it carries out a self-calibration cycle to detect its bounds:

1. pan left until left contact is reached.
1Asus Xtion PRO. Casings for other depth sensors can be printed
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2. pan right until right contact is reached.
3. pan to center of found range.
4. tilt to top until top contact is reached.
5. tilt fixed number of steps down.
6. tilt to center of found range.

After the self-calibration phase the unit is ready to receive and send commands.

Communicating with the PTU is done via the USB communication device class CDC
together with the abstract control model ACM. This makes the connected computer
"think" it is communicating over the old-fashioned serial port. The benefit using this
standardized type of communication is that, it is a simple way to exchange raw data
and supported by all operating systems. A baud rate of 115200Bd must be defined for
writing and reading to the serial port. The protocol for sending and receiving commands
include five parameters. These are:

• p - pan
• t - tilt
• r - red color
• g - green color
• b - blue color

The pan and tilt parameter are set in steps and the color of the LED is set as an
unsigned char [0, 255].

The unit sends and receives commands at 50 Hz, consisting of an arbitrary subset of
parameters, each split by a space and postfixed with ‘:value’. An example for setting the
units LED to solid green, the pan to 5000 and tilt to 3000 steps looks like this:

r:0 g:255 b:0 p:5000 t:3000

An answer from the unit always comprises of the five parameters, which returns
the status of the current position and the LED values. The step values are clamped
to the minimum and maximum bounds of the motors. Therefore, sending the unit a
pan/tilt value outside the range would therefore result in the unit going to the bound of
its pan/tilt range. A joystick at the back of the PTU enables the user to control the unit
manually.

A command always overwrites the last one. It is thus possible to send the unit to a
new position even though the last command is not finished. Also, the unit accelerates
and decelerates smoothly which prevents jittery depth images.
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step division accuracy pan accuracy tilt speed pan speed tilt
1 0.0937◦ 0.0199◦ 75.5967◦/s* 45.9922◦/s
2 0.0469◦ 0.0100◦ 75.5967◦/s* 22.9961◦/s
4 0.0234◦ 0.0050◦ 54.0378◦/s 11.4981◦/s
8 0.0117◦ 0.0025◦ 27.0189◦/s 5.7490◦/s
16 0.0059◦ 0.0012◦ 13.5095◦/s 2.8745◦/s

Table 4.1: Accuracy and speed of the PTU with different step divisions.
*Maximal speed of the unit.

One step motor comprises 200 full steps per 360◦ and the motors use a transmission
unit with a ratio of 1 : 19 + 38

187 for panning and 1 : 90.25 for tilting. A step can
be subdivided into 1

2 ,
1
4 ,

1
8 ,

1
16 steps reducing the speed but increasing the accuracy.

Equations 4.1 and 4.2 are used to convert steps into degrees or visa-versa.

degpan = steps

division
∗ 360◦

200 ∗
1

19 + 38
187

(4.1)

degtilt = steps

division
∗ 360◦

200 ∗
1

90.25 (4.2)

Using a step division of 8, 5000 steps are equal to

5000
8 ∗ 360◦

200 ∗
1

19 + 38
187

= 58.5840◦ (4.3)

for panning and 3000 steps are equal to

3000
8 ∗ 360◦

200 ∗
1

90.25 = 7.4792◦ (4.4)

for tilting. Both stepper motors run at 2306 steps per second when they are fully
accelerated. Moreover, the accuracy can be obtained by converting a single step. Table
4.1 provides a summary of the accuracies and speeds at all step divisions. When using
half or full steps the panning motor cannot keep up with the desired speed and only
achieves 75.5967◦/s.

Operating with low step division (i.e. high speed) makes the synchronization between
the images from the depth sensor and the pan/tilt values from the unit a crucial task.
The mounted depth sensor has a latency of about 2

15s whereas the PTU delivers the pan
and tilt values with a latency in a microsecond range.

Further inaccuracies arise since the center of rotation is not the optical center of the
IR sensor. Due to the hardware setup, a rotation of the PTU leads to a small translation
(< 5cm) of the IR sensor. Thus, the distance of two arbitrary data points in the sensed
image is not consistent after rotation.
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4.1.2 Synthetic Data
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(a) (b) PTU depth image (c) synthetic depth image
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Figure 4.2: A scene recorded with the PTU (a) and created synthetically (c). The
corresponding point clouds (d), (e) illustrate the differences in world coordinates. The
color scale (a) maps colors to the distance to the sensor.

Data recorded with the PTU suffers a number of problems related to the depth sensor
and the induced movements. To analyze these problems synthetic data is generated. This
data can be modified to be perfectly accurate or isolate single problems. The influence
on the algorithms used can then be quantified.

Synthetic data is generated using Blender, an open source 3D content-creation
program. The internal camera parameters correspond to the depth sensor used in the
PTU. Figure 4.2 shows a comparison of a scene that is created synthetically and recorded
with the PTU. The synthetically created scene has no major drawbacks, except for the
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limited density which occurs when the angle between the sensor ray to the ground plane
decreases. This effect leads to a visible stripe pattern in the synthetic point cloud at
ranges ≥ 6m, however, this produces no inaccuracies.

On the contrary, real-world data suffers a significant drop in depth resolution at
increasing sensor distance. This can be observed in Figure 4.2 at distances ≥ 9m. Further,
the lens distortion of the IR sensor leads to a pincushion effect that is proportional to the
sensor distance. The PTU point cloud depicts this effect at the left image edge at 3.5m.

The PTU data is generated at a moderate panning speed (13.5◦/s), hence no effects
occur due to rapid sensor movements. However, at increasing speed two problems arise:
(i) rolling shutter and (ii) motion blur. Rolling shutter is the effect of image sensors
that read the sensor data top-down. This results in a skewed image while the sensor is
moving. Comparatively, motion blur occurs when the image sensor is moved during a
single exposure. As a result, objects get blurred along the moving direction.

Another problem in real world is the shifted center of rotation. Unlike the PTU the
center of rotation can be placed exactly at the optical center of the camera. Thus, the
distance between two arbitrary depth point on the sensed image remain constant after
rotation. However, the effect of having a different rotation center can be emulated by
virtually creating the same setup as it is given by the PTU.

4.2 Dynamic Motion Detection

fearless 3 uses a static background model that is stored in image space. Performing
motion detection while rotating the sensor requires the model to compensate the induced
movements. This correction is done using the corresponding pan and tilt values. These
values refer to the world coordinate system: panning corresponds to a rotation around the
worlds y-axis and tilting to the worlds x-axis. The image plane however, is oriented after
the camera coordinate system. Its orientation only matches the world coordinate system
if the sensor is not tilted, see Figure 4.3. To overcome this limitation the background
model is converted into world coordinates.

4.2.1 Background Model

The background model can be created by scanning the whole FOV and projecting
the current segment back into image coordinates. This method, however suffers two
disadvantages, which makes it infeasible. First, the amount of data from the model
which must be stored exceeds the limited resources given on a single-board computer.
These are not only memory limitations, but a lack of computational power to handle the
amount of data. Second, keeping data points that are not visible can lead to problems if
the scene changes as areas cannot be updated accordingly if they are outside the FOV.
Third, a static position is required. Considering future work, a motion detector should
be developed that is capable of supporting translations as well.
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Figure 4.3: Panning a sensor in different coordinate systems.

For these reasons, a method is implemented that stores only visible data points. If
the sensor moves, points that fall out of the view are discarded, while new data points
become visible and are added to the background model. Figure 4.4 shows the background
model of a sensor moving left-up.

Figure 4.4: Point cloud of a background model in world coordinates when it is updated.
Yellow points are discarded, red points are new.

When a new frame is available, the three dimensional model points are projected
into image coordinates. Points that are outside the image bounds are discarded (yellow
area in Figure 4.4). Figure 4.5 shows two kinds of holes that appear after projection:
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projection artifacts and unobserved areas.

Projection artifacts originate from data points not equally falling into the pixel grid.
There are pixels where more than one data point is projected to. However, these points are
direct neighbors in world coordinates and the resulting error is negligible. Compensating
for pixels into which no data point falls is done by filling them with the median of all
non-zero points in the 8-connected neighborhood. This interpolated data points are not
added to the background model, since it would increase the point cloud size with data
that is interpolated. They are only used for the comparison between background model
and current depth frame.

Unobserved areas, the second kind of projection holes, are regions where no data
points exist. Filling this area is done using the current data. However, the current
frame may have holes while the background model must not have empty regions. Thus,
remaining holes are interpolated by searching the local neighborhood vertically and
horizontally, using the first depth value found. In a subsequent step these new points are
transformed into world coordinates and added to the model.

Figure 4.5: Holes after projecting the model in world coordinates into image coordinates.
Projection artifacts are visualized red and unobserved areas blue.

4.2.2 Ghost Detection

When the sensor rotates, all data points along the rotation will be added to the background
model, which includes persons. No foreground will be detected as long as the person is
not moving. Additionally, a ghost is created if the person starts moving and must be
detected and removed immediately.
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4.2. Dynamic Motion Detection

Ghost detection is done in image coordinates. This results in a set of new 2D points
that depict the ‘real’ background. They are added to the 3D background model, whereas
the ghost points must be removed from the model. The removal cannot be done in a
reasonable time by exhaustive search, thus the newly added points are treated with a
higher priority when the background model is projected back to image coordinates:

1. Project all points labeled as ghosts.

2. Project other points. If a projection falls into an occupied pixel do not override it
and remove it from the background model.

4.2.3 Difference Maps

Difference Maps are introduced to illustrate the errors in the dynamic motion detector.
They are bi-variant histograms that count the differences between the dynamic motion
model and the current depth frame depending on the depth. The maps are normalized
on the number of frames to be invariant according to the sequence length.
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Figure 4.6: Image (a) shows a dynamic motion model minus a depth frame. The resulting
differences are color-coded (b). The difference map is shown in image (c) after panning a
sensor 180◦ in a static scene.

Difference maps contribute to the interpretation of inaccuracies due to real data.
However, to avoid distorting this maps there should be no occurrence of real motion.
Figure 4.6 shows an example of a difference map. The horizontal axis partitions the depth
difference between the model and the current frame. Negative differences are clipped
such that, the only points considered, lie in front of the dynamic background model. The
vertical axis depicts the depth value of the current frame.

A depth sensor does not measure the Euclidean distance to a point in the scene, but
the normal distance to the sensor plane. Thus, a point in the scene has different depth
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values depending on the sensor rotation. To be invariant to sensor rotation, each depth
point is converted to measure the euclidean distance before creating the difference map.

The density of the maps grows rapidly when looking at small difference values (< 100),
since small errors appear more often. Thus, a non-linear density scale is used to visualize
the full spectrum of errors.

The dynamic motion detector is evaluated with synthetically generated data that is
manipulated to mimic problems with real data. In addition difference maps are used to
visualize and analyze the impact of this data.

4.3 Problems with Real Data
Inaccuracies arise when handling real data as if it is collected from the PTU. These
inaccuracies contribute to errors in the dynamic motion detector and are therefore
analysed in greater detail:

• Pixel discretization.
• Center of rotation.
• Synchronization.
• Lens distortion.
• Depth accuracy and resolution.
• Rolling shutter and motion blur.

4.3.1 Pixel Discretization

The infrared camera of a structured-light depth sensor as the one used by fearless creates
a VGA sized depth image. This image contains a constant number of 640x480 depth
pixels. The density of pixels falling onto a flat surface is inversely proportional to the
squared distance to the sensor [67]. Thus, the quantization error 2 increases at higher
distances. The area of one pixel covers about 2.4mm2 at 1 meter distance. At 7 meter
this area increases to 118.4mm2.

Figure 4.7 shows the discretization of a continuous depth signal at 1 meter and 7
meter. The quantization error strongly depends on the input data. Rapid depth changes,
such as object edges, will significantly increase the quantization error. This happens
because a pixel falling onto an object edge contains a single depth value that represents
a wide depth range.

Quantization errors occur when 3D data points are projected from world coordinates
into image coordinates. This is done 15 times a second, since this frame rate is required
by fearless. To keep quantization errors as minimal as possible, points that are already

2difference between depth image and continuous depth data
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Figure 4.7: Discretization of continuous depth data along an image row.

in the dynamic background model are not updated. This includes the adaptation of the
model to the current frame. The only exception is the ghost detection which is required
to remove falsely added objects from the model.

Quantization errors cannot be prevented when the depth data is discretized onto an
image. Thus, synthetically created data contains this errors. The other problems do not
affect synthetic data except they are particularly implemented. Hence, the results are
further used as a baseline for the effect of the other problems.

The quantization error is analyzed by examining the difference between the current
frame and the background model of synthetic data. Since no motion occurs in the data,
the difference should optimally be zero. However, due to the quantization error the
difference must be greater than zero.
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4.3.2 Center of Rotation

Optimally, the center of rotation of a movable camera is the location of its entrance pupil
[68]. This eliminates the parallax error that arises due to a translation of the sensed
image. The depth sensor is mounted centrally on the PTU and the sensed image is
created from the perspective of the IR camera. This camera is located about −4.8cm off
the panning rotation axis. Further, the depth sensor is fixated on a joint that is used for
tilting. The joints location is 3.3cm beneath the IR sensor. Figure 4.8 illustrates this
offsets.

Figure 4.8: Frontal view of the mounted depth sensor on the PTU. The red lines illustrate
the rotation axes: y-axis panning, x-axis tilting. The IR sensor does not lie at the center
of rotation.

When transforming the depth image from and into world coordinates the center of
rotation can be corrected by modifying the extrinsic matrix E =

[
R t

]
. This matrix

consists of a rotation R and a translation t, and relates the camera coordinate system
with the world coordinate system. The rotation is composed on the PTU pan and tilt
and the translation is statically set to the position of the camera t = (0, h, 0)T , where h
is the sensor height. To compensate the shifted rotation center, the offset vector from
the rotation center o = (−4.8, 3.3, 0)T is rotated and added to the camera position:

t = (0, h, 0)T + Ro (4.5)

The influence of the parallax error created by this shift is evaluated on synthetic data.
The camera is shifted by the offset vector o from the rotation center to create the same
setup as on the PTU. Furthermore, correction is applied to the data (Equation 4.5) and
the results are compared to a setup with zero offset from the rotation center.

4.3.3 Synchronization

Images obtained from the depth sensor that is mounted on the PTU arrive after a delay
of about 50ms3. This delay occurs because the depth images are computed locally on

3http://rosindustrial.org/news/2016/1/13/3d-camera-survey Last accessed 02 Dec 2016
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the depth sensor. The received depth images are processed using the pan and tilt values
from the PTU. Since this values are delivered in the range of microseconds, the latency
receiving them can be neglected. Thus, the depth images must be synchronized to the
corresponding sensor orientation.

Synchronization can be done by delaying the pan and tilt values from the PTU to
match the latency of the depth sensor. Since the latency of the depth sensor is a rough
estimate, the impact of small synchronization errors are evaluated. The evaluation is done
using equidistant time delays at a fixed panning speed of the unit. This corresponds to a
sensor being panned at different speeds with a fixed delay. Furthermore, the correlation
between the delay and the sum of errors in the difference maps can be detected.

4.3.4 Lens Distortion

Lens distortion is an optical aberration that makes physically straight lines appear curvy
in the image [69]. The distortion is commonly radially symmetric since photographic
lenses are symmetric. Two types of radially symmetric distortions are distinguished:
(i) barrel distortion and (ii) pincushion distortion. The distortion shape of the former
appears as if the image is mapped around a barrel, whereas straight lines in the latter
are bowed towards the image center, looking like a pincushion.

The distortion can be modeled by splitting it into a radial f(r) and a tangential
g(r, α) part [69]:

r2 = (x− xp)2 + (y − yp)2 (4.6)

r̂ = f(r)r (4.7)

r̂α = g(r, α)rα (4.8)

x and y refer to a 2D point in pixel coordinates, whereas xp and yp refer to the
principal point. The radius from a pixel to the principal point is denoted as r and the
image must be scaled such that the magnitude of r equals one at the image corners. To
compute the corrected radius r̂ radial distortion f(r) and tangential distortion g(r, α)
must be considered. Experience shows, that the tangential distortion g(r, α) is at least
one magnitude lower than the radial distortion f(r). Thus, it is neglected in the context
of measuring the impact of lens distortion to the dynamic background model.

The radial distortion function f(r) depends on the lens used and is smaller than 1 for
barrel distortion and greater than 1 for pincushion distortion. It is commonly modeled
using the polynomial

f(r) = 1 + k1 ∗ r2 + k2 ∗ r4 (4.9)
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The values of k1 and k2 can be found alongside the intrinsic camera parameters using
camera calibration. However, instead of performing camera calibration, fearless obtains
the intrinsic camera parameters from Smisek et al. [59] to be plug and play capable. The
accuracy of those values is found sufficient, however, lens distortion is neglected and thus,
the conversion into world coordinates suffers increasing inaccuracies at image borders.
The influence of this inaccuracies should be estimated by synthetically creating a similar
distortion and comparing it to undistorted results.

To obtain the distortion parameters k1 and k2 of the depth images, the IR camera
is calibrated using a checkerboard pattern on a planar surface in different orientations
[70], see Figure 4.9. Since the projected dot pattern disturbs the calibration pattern,
the IR projector is covered with a post-it note which blurs the pattern and yields to a
illumination effect. Further, the IR image has a size of 1280x1024 pixels, whereas the
depth image has a size of 640x480. However, according to Khoshelham et al. [67] a
convenient approach to this situation is to estimate the distortion parameters from the
reduced IR images.

Figure 4.9: Calibrating the IR camera with a checkerboard pattern.

Results on synthetic data that is distorted with k1 = −0.026 and k2 = 0.084 are
compared to undistorted data to evaluate the effect of lens distortion. The values for k1
and k2 are found as a result of camera calibration.

4.3.5 Depth Accuracy and Resolution

Structured light depth sensors include noise [71]. Khoshelham et al. [67] show that
this noise can be modeled with a Gaussian distribution. The standard deviation of this
distribution is computed as follows:
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σZ = (m
fb

)Z2σd′ (4.10)

The parameters f and b correspond to the focal length and the base line respectively.
m is a normalization factor used to convert between the physically correct disparities
and the quantized disparities4. The disparity measurement error σd′ is estimated with 1

2
pixel.

Since the depth is inversely proportional to the disparity (Equation 3.1), the depth
resolution is inversely proportional to the levels of disparity. This resolution can be
computed as the difference of two successive levels of disparity d′: ∆Z(d′) = Z(d′) −
Z(d′ − 1). Khoshelham et al. [67] show that this equation yields to:

∆Z = (m
fb

)Z2 (4.11)

Figure 4.11 shows the theoretical random error σZ and the depth resolution ∆Z for
different depth values. With increasing depth value, the depth resolution and accuracy
decreases. The theoretical random error is smaller than the depth resolution, however it
should not be understated for higher distances.
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Figure 4.10: The depth resolution ∆Z (blue) and the theoretical random error σZ (red)
of a Kinect-like depth sensor.

Figure 4.11 shows a synthetically created scene where gaussian noise with standard
deviation σZ is added. Further, the quantization of depth values matches the depth
resolution ∆Z . Due to sensor tilt, the quantization layers are slanted. The depth
resolution is greater than the random error, however the sensor noise ‘pushes’ data points
into other layers. This can be clearly observed on the flat wall at 9m. The low accuracy

4Kinect-like depth sensors quantize the measured disparities into 1024 levels of disparity.
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coupled with the high sensor noise is the reason for fearless to stop monitoring regions
farther away than 7m.

(a)

(b)

Figure 4.11: A point cloud of a synthetically created scene with (b) and without (a)
Kinect-like noise and resolution.

The dynamic motion detector is evaluated on synthetically created input data that is
modified as explained previously. The results are compared to the unmodified data to
estimate the influence of decreasing depth accuracy and resolution.

4.3.6 Rolling Shutter and Motion Blur

All problems described until now affect static images. However, two effects arise si-
multaneously when the depth sensor is moved: (i) rolling shutter and (ii) motion blur.
Both effects occur if the scene changes during a single exposure, which includes rapidly
moving objects. For explanation purpose the two effects are discussed for moving objects,
however, the discussion is also valid for sensor location and rotation changes.

Motion Blur

If a sensed object moves during a single exposure of the image sensor, the object appears
blurred along the moving direction. This happens since the light of the object is transferred
to spatially indistinct pixels. Thus, the blurring effect depends on the exposure time of
the image sensor and the moving speed of the object.

A blurred IR image can be corrected using the provided pan and tilt values [72].
However, depth images are created from the blurred IR images already on-chip. Thus,
IR images cannot be altered for computation, but correction must be performed on the
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depth images. A model for doing so can only be created through experimental results,
since the reconstruction process is patented.

Tourani et al. [48] discovered that motion blur causes depth image pixels to take the
minimal depth value from those exposed at one time. This leads to an edge-flattening
effect causing object boundaries to extend beyond their real boundaries. They use this
information to provide a probabilistic labeling of edge-flattened pixels. This labeling can
be thresholded resulting in a depth image with a reduced edge-flattening effect.

However, Ringaby et al. [73] show that it is convenient to only consider the rolling
shutter effect up to 115◦/s. Below this angular velocity the motion blur effect is negligible.
Since the PTU moves with a maximal speed of about 75◦/s, motion blur is neglected
when the dynamic motion detector is tested with synthetic data.

Rolling Shutter

Figure 4.12: Rolling shutter (top) vs global shutter (bottom) from Meilland et al. [72].
The exposure time te defines how long an image row is exposed to light. The total readout
time tr measures the delay between the readout of the first and the last image row. The
frame period time tp is the time between two successive readouts of the same row. This
defines the framerate of the image sensor.

The depth camera mounted on the PTU uses a CMOS light sensor. The main
difference of its counterpart, is namely, the charge-coupled device (CCD), which refers to
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the way the analog light signal is read out and digitized. CCD sensors expose all of their
pixels at the same time, which is called global shutter. Using global shutter mode, the
signal of all pixels after exposure must be serially converted to a single analog-digital
converter (ADC). Transferring the pixels’ signal to the converter is done by shifting them
onto a serial bus. This requires a high amount of power and is a bottleneck, since the
frame rate of the sensor depends on how fast the signal can be transferred to the ADC.

CMOS sensor use electronic rolling shutters (ERS), where this bottleneck is eliminated
since each pixel row is exposed and read-out individually [72]. This requires an ADC for
each column, which increases the noise, due to micro variations of the ADCs preamplifier.
However, CMOS draw less power than CCD sensors, since the pixels can be read in
parallel and must not be shifted onto a serial bus.

An exposure can be started after the previous readout. The whole pixel array is
converted one row at a time, which creates a small delay between the readouts of two
rows. CMOS sensors optimize their framerate by exposing the (n+ 1)th row after the nth
row was converted into a digital signal. Figure 4.12 illustrates this process in contrast to
global shutter mode.
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Figure 4.13: Skew of the image in pixels at different panning speeds considering rolling
shutter. Severe motion blur starts at 115◦/s.

The delay between the readout of the first row and the last row is called total readout
time tr and equals to 32.51ms for the IR sensor of the PTU [74]. The skew of a moving
image is dependent on tr and can be computed using the relationship that connects the
sensor width w, the focal length f and the horizontal field of view θ = hFoV [75]:

w

2f = tan(θ2) (4.12)

Solving this equation for w and employing the angular velocity ω = θ
tr

yields to the
following identity:
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s = 2f ∗ tan(ωtr2 ) (4.13)

, where s is the skew that defines the horizontal shift between the first and last image
row. If the focal length f is inserted with pixel units, the skew is in pixel units. Figure
4.13 shows the skew in dependence of the angular sensor velocity and Table 4.2 gives
a precise summary of the image skews depending on the angular velocity of the PTU.
The Figure highlights that the maximal angular velocity PTU is far off the point where
severe motion blur occurs.

steps speed pan skew
1+2 75.5967◦/s 24.7537px
4 54.0378◦/s 17.6930px
8 27.0189◦/s 8.8460px
16 13.5095◦/s 4.4229px

Table 4.2: Image skew of the depth images with different angular velocities from the
PTU.

The dynamic motion detector is evaluated using synthetic data, where the camera is
rotated with the same angular velocities as the PTU. The exposure and readout time
match the ones found in this section to provide a sophisticated evaluation of the rolling
shutter effect. Motion blur, however, is not evaluated, since the effect does not have a
severe implications on the data with the operational speeds of the PTU.

4.4 Updating the Region of Interest
fearless computes occupancy grids and occlusion grids for a given ROI that is defined in
world coordinates. For efficiency reasons, the ROI should be as small as possible but span
the area the sensor can observe. For static sensors, a ROI can be defined that does not
change anymore. It is restricted to the observed boundaries by transforming all pixels
to world coordinates and fitting a bounding box. The vertical boundaries are fixated to
[−200, 2000] to include the full height of a standing person that could enter the scene
afterwards. (Due to an imprecise calibration, points may fall ‘under’ the floor, hence the
negative lower boundary.)

This approach is not possible for a moving sensor. Either the ROI has to adjust or
span the whole area the sensor can observe. Regarding future work where translations
should be supported, the first method is implemented, moving the ROI based on the
current sensor position/rotation. A ROI is dynamically constructed by projecting four
points into the scene with different distances to the sensor: two at 0.5 meters and two
at 6.0 meters. The two farther points are moved along the line connecting them, such
that their distance matches 6 meters. This values are all configurable and control the
size of the ROI, which has a major influence on the performance. A bounding box is
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spanned around these four points to obtain the final ROI. Figure 4.14 shows the ROI of
two sensor positions with the projected points. The farther points are connected to the
origin and illustrate the alignment of the sensor.
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Figure 4.14: Adjustment of the ROI before (blue) and after (red) sensor movement.
horizontal: x-axis, vertical: z-axis

Detected persons are represented as a subregion in a given occupancy grid. The offset
of the subregion is stored to reconstruct the absolute position in this grid. Moving the
ROI implies that these offsets become invalid and must be corrected. For instance, if
a stationary person is located at the center of the ROI, panning the sensor to the left
results in the person moving to the right. Thus, the offset of the person subregion must
be updated accordingly to match the correct position in the new ROI.

Occupancy grids are created in each frame and are thus unaffected by sensor changes.
However, creating occlusion grids is computationally expensive, thus they are incremen-
tally updated in fearless. When changing the sensor rotation, however, occlusion grids
must be partially created. Voxels in the occlusion map where the old and the new ROI
overlap can be reused. Yet, this approach only works on rotations, not for translations.
Considering future work where this method should work with translations will have to
fully recreate the occlusion map in each iteration or find a better solution.

4.4.1 Tracking

All this changes enable fall detection while panning and tilting the sensor. However,
the PTU must follow a person to keep it inside its FOV. This is done by projecting the
center of the detected person to the two dimensional image plane. The difference of the
projected point to the image center is used to control the PTU. The higher this difference
is the faster the unit is rotating to the person. It is highlighted that the persons moving
direction is not taken into account, but future work will focus on that to minimize the
units tracking latency.
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The fall detector is evaluated using the PTU following a person that walks along
different trajectories and falls at different distances to the sensor.

4.5 Detection of Uncontrolled Sensor Movements

Uncontrolled sensor location changes (e.g. sensor tampering) can occur due to persons,
intentionally or unintentionally moving the sensor. This changes yield to an abnormal
state in the fall detection system and must therefore be detected. Therefore, the following
method is proposed since fearless lacks this detection. It can be used in a static setup,
using only fearless, or in a setup with moving sensor support.

When the sensor is tampered with, the background model will become invalid.
However, this results in significant changes of the absolute difference between the model
and the current frame. Thus, this changes can be detected by monitoring the amount of
motion over time. The motion detector used is based on that, which is used by fearless.

The fearless motion detector only detects motion, if a data point is significantly
closer to the sensor as the model. While, if it is significantly farther away the pixel in
the background model is classified as a ghost and no motion is detected. Ghosts are
removed periodically, however, this behavior is not beneficial, since a tampered sensor
should optimally increase the motion of the whole image, independently from data points
situated in front or behind the background model. Thus, the fearless motion detector
is adapted to classify motion neglecting the sign of the difference between background
model and current frame. Further, the ghost detection is removed.

If the motion exceeds a threshold, the system goes into a «tampering» state. To
exit this state the sensor must not be tampered with for a period of time. Since the
background model is invalid after sensor movement, frame differencing is instead used for
motion detection during the «tampering» state.

(a) Depth Frame (b) Motion Mask

Figure 4.15: Depth frame and corresponding motion mask of a person occupying two
quadrants. The red lines illustrate the four quadrants.
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This approach works well if the sensor is mounted higher than 2 meters, but problems
arise if persons move closer to the sensor. For example, a close person would result in
a motion peak that might be detected as tampering. To increase the robustness, the
motion image is split equally into four quadrants. At least three quadrants must exceed
a shared threshold to enter the «tampering» state. Figure 4.15 illustrates this approach.

Furthermore, close points cannot be measured by the sensor and result in a black
pixel on the image. This knowledge is applied for tampering detection: if at least two
quadrants are fully occupied by black pixels, which indicates that the sensor points
towards a close object, tampering is detected.

The tampering detection approach can be used in conjunction with the proposed fall
detection system. This protects the fall detector from processing faulty data that results
after the depth sensor is intentionally or unintentionally manipulated. However, the fall
detection system suffers inaccuracies that arise from real depth data. Inaccuracies can
be corrected to reduce the errors, but they are the reason falls can only be detected to a
limited sensor distance.
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CHAPTER 5
Implementation

All contributions made to fearless are divided into several loosely coupled components.
This facilitates its maintenance and allows for it to be used in different programming
languages. Therefore, this chapter describes how each component is implemented and
how it interacts with other components. The first section gives an overview of how the
fall detection system is distributed in general. Also, an overview of all the components is
given and explanation of their communication process is provided. The following sections
describe the purpose and implementation of each component in detail.For clarity, each
component’s name is typed in bold letters.

5.1 System Distribution

Figure 5.1 shows a component diagram illustrating those components and their rela-
tionships. The fearless implementation with pan/tilt support, is summarized into one
component, namely Pan Tilt Fearless. This component is the core component of the
fall detection system and generates events that are forwarded to the Event Manager
component. The event manager sends the events to a variable number of Adapters that
share the same interface. Each adapter implements an interface to a third-party platform
that should receive events from the fall detection system. Those platforms can take
the form of an email or short message service (SMS) server, but also alarm monitoring
platforms.

The input data is obtained from the Depth Provider component. The depth
provider supplies the Tampering Detection component with the same input data.
This component performs the detection of uncontrolled sensor location changes and will
pause fall detection while tampering is detected. The Pan Tilt Fearless component
act therefore as a server and provides a start/stop interface. The Remote Control
component uses this interface to enable start/stop functionality for the user.
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Figure 5.1: System distribution of fearless with pan/tilt support. Blue components are
written in C++, green components are written in Python. Pan Tilt Fearless is the
core component of the fall detection system that generates fall events.

5.1.1 Apache Thrift

Apache Thrift1, in short thrift, is a remote procedure call (RPC) framework that is used
to communicate between the components, see Figure 5.1. Its implementation is described
in a technical paper published by Facebook in 2007 [76] and is now hosted by Apache.

A service interface is defined by a .thrift file. This file can be used to generate
code for different programming languages with the thrift compiler. The generated files
are imported into components to act as a client or a server. The code overhead is minimal
allowing a fast setup, which is the reason that thrift is chosen as a communication
framework.

Thrift servers must define a host and port where the RPC service is bound to. Since
all components of the fall detection system run on the same system, the host is always
the local host. However, in theory, components could be moved to other hosts which

1https://thrift.apache.org/ Last accessed 02 Dec 2016
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5.2. Depth Provider

advises to secure the connection with secure sockets layer (SSL) encryption, which is
supported by thrift.

5.2 Depth Provider
The Depth Provider writes the depth images into shared memory, allowing an arbitrary
number of components to read them. This communication is denoted as inter process
communication (IPC) and implemented using Boost Interprocess2. The Tampering De-
tection and Pan Tilt Fearless components use the images from the Depth Provider
as their input data. Not only the depth images are provided, but also meta data:

• id. The frame id.
• timestamp. The frame timestamp.
• width, height. The frame width and height.
• framerate. The framerate at which depth images are read.
• running. Whether frames are currently read.
• repeat. Whether frames are repeated sequentially.
• number of frames. The number of frames in case of a recorded sequence.

The meta data is important since clients know how much frames to expect. Also, the
read frequency is defined by the meta data and whether the sensor stopped providing
frames due to errors. If the Depth Provider gets its data from a recorded file the
frames are limited. Thus, the number of frames is set to a finite number and the repeat
flag can be optionally set. Those parameters are redundant when reading from a live
depth stream.

The Depth Provider reads the depth data using OpenNI23, which is a open source
framework that provides an application programming interface (API) to communicate
with depth sensors. OpenNI2 supports the ASUS Xtion sensor mounted on the PTU,
but also the Microsoft Kinect and the Orbbec Astra.

5.3 Event Manager
The Event Manager acts as a server for Pan Tilt Fearless and receives and manages
events from this component. The following list gives an overview of the supported events:

• status changed. The internal status of Pan Tilt Fearless changed: stopped,
init, running, errors.

2http://www.boost.org/doc/libs/develop/doc/html/interprocess.html Last accessed 02 Dec 2016
3http://structure.io/openni Last accessed 02 Dec 2016
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• init started. Initialization started. Includes a visualization of an unprocessed
depth image.

• init completed. Initialization completed. Includes a visualization of the scene.
• person event. Fall or recovery. Includes a visualization and confidences.
• person detected. Person is detected. Includes the track id.
• person lost. Person is lost. Includes the track id.

It is highlighted that the communication between Pan Tilt Fearless and the Event
Manager happens through RPC even though the components use different programming
languages. The former is implemented in C++ and the latter is implemented in Python.

5.3.1 Queing

Events are sent to an arbitrary number of adapters, which are responsible to forward
them to third-party platforms. However, if a platform is not reachable (i.e. network
problems) the adapter raises an error. Therefore, a queuing system is implemented in
the Event Manager.

A queued event has a maximum lifetime of 3 days. This ensures that the queue
size does not exceed local hardware resources. Also, experience shows that network
connections can drop for multiple days. This makes it important to spare the network
bandwidth by processing the queue every 60 seconds.

Another important feature of the queue is being persistent. This is done by serializing
it into a .pickle file. Thus, the queue is not cleared if the fall detection system restarts,
the whole system reboots, even if the Event Manager is uninstalled.

5.3.2 User Feedback

Besides sending events to adapters the events are used to control the LED of the PTU.
This gives the user instant feedback of the system state. Status updates could be for
example the fall detection system being stopped, starting, running or going in an error
state. The LED blinks if a fall or recovery event is received. Such events have a timeout
that defines how long the LED is blinking until it falls back to its last color. The
communication to the PTU is accomplished with the pyserial4 library.

5.4 Adapters

An Adapter implements an interface to a third-party platform. Those platforms can
be email servers, SMS servers, monitoring platforms, et cetera. Each adapter acts as a
server to the Event Manager and shares the same interface. If the interface changes,

4https://pythonhosted.org/pyserial/ Last accessed 02 Dec 2016
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every adapter implemented must be updated accordingly. However, the advantage of
using a shared interface is that new Adapters can easily be ‘plugged’ into the Event
Manager. This is realized by collecting all active adapters in a configuration file. A new
event spawns a subprocess for each adapter in this file. The subprocesses are called with
the same arguments, since they share the same interface.

5.5 Pan Tilt Fearless
Pan Tilt Fearless depicts the core component of the fall detection system. It comprises
the implementation of fearless including the contributions to enable fall detection during
pan tilt. The depth data is obtained from the Depth Provider component and events
are sent to the Event Manager component. Additionally, a thrift service is provided to
enable and disable the detection of events. This is used by the Tampering Detection
component to stop the fall detection during sensor movement. Also, the Remote
Control component gives the user the option to manually disable fall detection using
this service.

5.5.1 Fearless

The implementation is split into 5 libraries that implement the algorithmic pipeline of
fearless. Table 5.1 gives an overview with the corresponding dependencies. All libraries
use OpenCV 35 for image processing. Further, TBB 46 is used (except in depthio) to
enable processing in multiple CPU cores.

Library Description TBB 4 OpenCV 3 Other
depthio Depth data input/output x
autocalib Automatic calibration x x
dmd Depth data motion detection x x
c3d 3D processing x x
fearless3-core Fall detection logic x x x

Table 5.1: Dependency overview of the fearless implementation.

The depthio library had to be updated to enable reading from the Depth Provider
using IPC. fearless3-core uses a number of other dependencies, since it takes care of
high-level logic and uses functionality from other libraries:

• Boost 1.547. Reading/parsing configuration files and runtime arguments, as well
as manipulating files, directories and paths that identify them.

• RapidJSON8. Reading and parsing classifier models.
5http://opencv.org/ Last accessed 02 Dec 2016
6https://www.threadingbuildingblocks.org/ Last accessed 02 Dec 2016
7http://www.boost.org/ Last accessed 02 Dec 2016
8http://rapidjson.org/ Last accessed 02 Dec 2016
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• SpdLog9. Fast logging library.

• autocalib. Filtering object normals to detect walls used to restrict static objects.

• c3d. Occupancy and occlusion grid operations for fall detection.

All libraries are built as shared libraries (.so files on Linux) using the standard
CMake10 installation pipeline. The libraries are dynamically linked when building a fall
detection application, hence, this type of library is applied in this implementation.

5.5.2 Pan Tilt Support

A fall detection application is developed with pan/tilt support that uses the libraries
from fearless. Dividing fearless into multiple libraries allows for the modification of
intermediate results. The implementation of the dynamic motion detector, for example,
reuses the dmd library at a per-frame basis to compute the motion mask that is forwarded
to the fall detection logic in fearless3-core.

Dynamic Motion Detector

The dynamic motion detector is implemented with a threshold starting at 0.3m and
increasing linearly with the distance to the sensor. However, an individual in a lying
position is about 0.3m above the ground, making fall detection impossible, since the
motion mask would not include a person. Thus, a second, more sensitive dynamic motion
detector is utilized for floor regions. This motion detector is more error-prone due to
its lower threshold, however, it is tuned such that a persons in a lying position can be
robustly detected up to 5m.

fearless only converts points into world coordinates that are classified as motion. The
dynamic motion detector, however, must convert the whole depth image. Thus, it forms
a bottleneck of the whole system making it infeasible to run on a single-board computer.
To overcome this limitation, the input images are scaled down with nearest-neighbor
interpolation [77] to half of their size. This reduces the number of points based on VGA
resolution from 307200 to 76800 (one fourth).

The conversion from and to world coordinates is done using the pan and tilt values
from the PTU. However, these values are relative to an origin that varies depending on
the initialization of the PTU. For this reason, software calibration is performed using
the autocalib library to obtain the initial groundplane and consequently the pan and tilt
values.

9https://github.com/gabime/spdlog Last accessed 02 Dec 2016
10https://cmake.org/ Last accessed 02 Dec 2016
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5.6 Tampering Detection

The implementation of detecting uncontrolled sensor movements is summarized in the
Tampering Detection component. As an input it receives the same depth frames as
Pan Tilt Fearless via IPC from the Depth Provider. Instead of detecting persons
the motion of the whole scene is used as a basis for the tampering detection. Thus, the
input images are scaled down to 40x40 pixels. This yields to a lightweight system that
runs parallel to Pan Tilt Fearless without consuming much hardware resources.

When tampering is detected, the thrift service of Pan Tilt Fearless is used to stop
fall detection. After sensor tampering the fall detection application is reinitialized and
started.

5.7 Remote Control

The proposed system can be started or stopped using a remote control such as the IR
Remote Controller from Hardkernel11 (Figure 5.2). The decoding of the IR signals is
accomplished using the linux infrared remote control (LIRC)12. However, an IR receiver
must be available on the local device to receive the IR signals (e.g. ODROID-C1+). The
following buttons on the remote control initiate an action on the fall detection system
when pushed:

• power toggle
• vol+ start
• vol- stop

Figure 5.2: Remote used to control the fall detection system.

The component Remote Control is a Python application that implements the IR
communication and offers callbacks to start, stop and toggle Pan Tilt Fearless. It is
highlighted that only the core component and therefore the internal status of the system

11http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141637537661 Last accessed
02 Dec 2016

12http://www.lirc.org/ Last accessed 02 Dec 2016
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is stopped and started. This has the advantage of being able to restart the fall detection
system faster.

The Remote Control is one example of an extension to the fall detection system.
Other extensions can be added by connecting to one of the components. Thus, the
implementation is a scaffold that can be easily extended.
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CHAPTER 6
Results and Discussion

This chapter contains the experiments and evaluation results of (i) the dynamic motion
detector (Section 6.1), (ii) the fall detection system with pan and tilt support (Section
6.2) and (iii) the detection of uncontrolled sensor movements (Section 6.3).

The dynamic motion detector is evaluated using synthetically created data that is
artificially distorted to mimic problems that arise with real data. Reference results are
obtained using non-distorted synthetic data and are compared to the distorted data to
evaluate the influence of those problems. At the end of the section the synthetic data is
distorted with a combination of all problems which is then compared to the real data.

The fall detection system with pan and tilt support is evaluated with real data that is
obtained from the PTU. The evaluation contains quantitative results from two different
sensor heights and falls with distances of 2, 3 and 4 meters from the sensor. Additionally,
the movements of the PTU are determined by three trajectories of the test subject
which classify the amount of sensor movement into three categories: heavy, middle and
low. In addition a fourth class, namely no movement, is introduced to compare the
categories against a static setup. This enables the evaluation of the amount of sensor
movement to the fall detection performance.

The detection of uncontrolled sensor movements is a contribution to a static fearless
setup and thus, evaluated with static sequences. This is quantitatively done using a
dataset that comprises 1815 sequences.

6.1 Dynamic Motion Detection
All results in this section are generated based on data recorded in the same scene, see
Figure 6.1. All sequences are recorded using the same camera movements and pan/tilt
speeds. The only differences between the sequences are the added distortions to mimic
problems with real sensors.
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6. Results and Discussion

Figure 6.1: Top view of the synthetically created scene. The camera is positioned near a
desk and pans 180◦ in 200 frames.

6.1.1 Pixel Discretization

Synthetic data without modification is used to generate results that are used as a reference
for all experiments. The only inaccuracies of this data arise from quantization errors
when projecting the depth signal into image coordinates and discretizing it into pixels.
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Figure 6.2: Difference maps of a synthetically generated sequence. Image (a) shows all
differences, where image (b) focuses on small differences.

Figure 6.2 shows two difference maps for a synthetically generated sequence. High
differences (> 0.5m) occur on object edges. This edges can be seen in the left difference
map as stripes, further denoted as edge-stripes. They start at zero difference, since the
object edge meets the ground plane. Moving upwards, along an edge, the difference
increases until the edge occludes a wall that is perpendicular to the sensor view direction.
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6.1. Dynamic Motion Detection

At the wall, differences remain constant and leave a dense area in the map. Since the
depth values of the points are measured in camera coordinates a flat wall that faces the
depth sensor appears tilted. Thus, the edge-stripes are skewed.

Differences below 50mm are illustrated in the right image of Figure 6.2. The quan-
tization error of the ground plane can be clearly seen in form of a cone starting from
0.5m and ending at 8.5m. The spacing between the depth layers of the cone occurs since
the area occupied by one pixel increases with the depth. However, another important
factor which should be noted is the slope of the surface. The synthetic scene contains a
desktop surface that is positioned 1m above the ground. Thus, the depth sensor looks
in a shallow angle onto the surface yielding to rapid depth changes in the depth image.
As a result the quantization error increases significantly. It can therefore be concluded
that a high sensor position is beneficial for quantization errors on the ground plane (and
other parallel planes).

The two dense areas around 5.7m and 8.8m with differences below 3mm depict walls
that are parallel to the image plane. The angle the of the camera ray falling on the
surface is 90◦, where quantization errors reach a minimum.

Around 3.8m a wall is located that is orthogonal to the image plane and additionally
close to the sensors x-position. This, again creates a shallow angle onto the surfaces
resulting in a high quantization error, which appears as a cloud-like structure in the
difference map.

6.1.2 Center of Rotation
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Figure 6.3: Difference maps of a synthetic sequence with the camera not lying on the
center of rotation. Image (a) shows the consequences of this shift, where image (b) is
generated with regards to the shift in the dynamic motion detector.

To mimic the depth sensor mounted on the PTU, the camera of the synthetic scene is
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shifted from the rotation center. A difference map is generated using this modified input
data. Further, another difference map is obtained correcting the shift in the dynamic
motion detector.

Figure 6.3 shows the two difference maps with and without correction. The uncorrected
difference map displays higher errors on object edges. Also, the edge-stripe starting at
3.8m increases in size. This edge-stripe corresponds to a wall where its surface normal is
perpendicular to the viewing direction of the sensor. The difference map suggests that
errors grow rapidly on such surfaces.

The difference map of the corrected rotation center depicts a significant loss in errors.
However, a comparison with the reference map is difficult, since they look identical.
Thus, Figure 6.4 shows the sum of differences of the uncorrected, corrected and reference
difference map. It can be observed that the correction of the rotation center is a great
benefit to the algorithm. The errors are still greater than using reference data by a factor
of 1.5. This can be explained by the occlusions that arise if the depth sensor is shifted,
similar to the IR sensor measuring the projected pattern.
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Figure 6.4: Counted errors of the difference maps using reference data (ref) and data
with a shifted rotation center (rot) that is corrected (rotcorr) by the dynamic motion
detector.

6.1.3 Synchronization

The delay of the depth images obtained from the PTU is approximately 133ms. The
camera is set with a panning speed of 15◦ per second which corresponds to the panning
speed of the PTU using a step division of 16. Figure 6.5 shows the difference map of
synthetic data using this delay. The edge-stripes illustrate that the frequency of errors
on object edges increases significantly. Also, walls that are aligned orthogonally to the
image plane draw huge error-areas into the difference map. The reason for this areas is
a error-prone conversion from depth points into world coordinates, since the extrinsic
matrix is generated from pan and tilt values that are not synchronized to the depth
images. The distance of each data point in world coordinates in comparison to its true
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location is constant. However, since a difference map measures the distance to the sensor,
the direction where a 3D point is translated is crucial. Translations approximating the
sensor, create higher errors because of translations along the perimeter of the sensor.
Thus, walls that are orthogonal to the image plane are more vulnerable to inaccurate
synchronization than walls that are parallel to the image plane. Moreover, the difference
map emphasizes that the extend of such errors is proportional to the depth.
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Figure 6.5: Image (a) shows the correlation between the depth image delay and the sum
of differences obtained from the difference maps. The difference map of unsynchronized
data from the PTU has a delay of 133ms and is displayed in Image (b).

A positive delay corresponds to the depth images being delayed to their pan/tilt
values, where a negative delay means that depth images are in advance to their pan/tilt
values. The difference map only includes positive differences. Thus, it is decisive whether
the delay is positive or negative, since the sign of depth differences of a wall surface flips
with the sign of the delay. The left image in Figure 6.5 shows that a negative delay would
be beneficial for this specific sequence. However, in general no assumption can be made
whether a positive or negative delay produces smaller errors.

The plot illustrates the correlation between the depth image delay and the sum of
differences. A linear function is fitted using least squares regression [78] which starts at
zero delay and corresponds to the reference results. For the sequence used the error is
doubled at a delay of 13.2ms, respectively −6.7ms. This highlights the importance of a
precise synchronization.

6.1.4 Lens Distortion

To synthetically mimic a real lens, the distortion effect of such is estimated using camera
calibration. The distortion parameters are applied to the depth images as a post processing
effect with Blender before using them as input data to the dynamic motion detector.
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Figure 6.6: Comparison of the reference difference map (a) to a difference map with lens
distortion (b).

Figure 6.6 shows a comparison of the resulting difference map to the reference map.
The increase in errors can clearly be observed. Especially object edges are vulnerable to
such inaccuracies, but also slanted surfaces like the ground plane yield to errors up to
0.5m.

The sum of all differences with lens distortion is 9 times higher than the reference
results. This highlights the sensitivity to an error-prone conversion of depth images into
world coordinates.

6.1.5 Depth Accuracy and Resolution

Since real depth sensors suffer decreasing accuracy with increasing depth, Gaussian noise
is added to the synthetic depth images. Additionally, to match realistic depth resolution,
the depth values are quantized into depth bins with size proportional to the depth value.

Figure 6.7 illustrates the difference map created from the generated image sequence.
The sum of differences is 4.7 times higher as the reference results. This indicates less
sensitivity of the dynamic motion detector as compared to lens distortion. However,
depth accuracy and resolution cannot be corrected and depend on the type of depth
sensor used whereas lens distortion can be corrected using camera calibration.

When comparing the difference maps, the added noise can be clearly observed in form
of dispersed shapes. The noise yields to a massive increase in errors (up to 0.5m at 9m
distance) at distances. The ground plane forms the shape of a cone and spans nearly
the whole spectrum of depth values [0.75m, 9m], illustrating the increase in inaccuracies
with distance. Flat walls that are parallel to the image plane create significant errors,
due to the noise. Without noise, they would only create differences < 3. This error areas
appear as smeared ellipses i.e. at 5.5m and 8.75m.
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Figure 6.7: Comparison of the reference difference map (a) to a difference map with
realistic depth accuracy and resolution (b).

The decreased depth resolution can be seen at the ground plane cone. Starting at
6m the cone appears layered. In between those layers no depth points are located due to
the quantized data. This error adds up with the added noise and depends on how far off
the depth point is from the resolution bin center. At 9m the points are about 240mm
apart and thus the maximal error is 120mm if a point falls in between two depth bins.
This error contributes to the noise that is added to the depth points.

6.1.6 Rolling Shutter

The results of adding the rolling shutter effect to the synthetically created data is shown
in Figure 6.8. The overall error already doubles at the slowest angular velocity 14◦/s.
However, the difference map is created at 76◦/s and suggests that only errors at low
distances show a significant increase, even though the overall error is 5.3 times higher at
this speed. This is owing to the rolling shutter effect which creates a horizontal shift that
linearly increases with the image row. Thus, the error is zero at the first row and maximal
(i.e. 24.75px at 76◦/s, see Table 4.2) at the last image row. Since the depth sensor is
tilted downwards, pixels that are located in the upper part of the image correspond to
points that have a higher distance to the sensor. Therefore, those distances do not suffer
a high rolling shutter error, whereas pixels of the lower part of the image suffer increasing
errors.

Further, the rolling shutter induced skew only changes if the sensor accelerates/decelerates.
Thus, a depth sequence with constant speed and no tilt changes results in reduced rolling
shutter errors, since the depth points are shifted equally.

When comparing the difference map with the rolling shutter effect (Figure 6.8) to
the reference map (Figure 6.7) it can be seen that the rolling shutter effect does not add
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Figure 6.8: The influence of the rolling shutter effect to synthetically created data. The
bar chart (a) shows the overall error at angular velocities of 14◦/s (shut14), 27◦/s (shut27),
54◦/s (shut54) and 76◦/s (shut76), which correspond to the operating speeds of the PTU.
The reference bar (ref) shows the errors with no rolling shutter effect. The difference
map created at an angular velocity of 76◦/s can be seen in image (b).

significant errors to points above 4.5m distance. Thus, the sensor tilt is highly beneficial
for the dynamic motion detector, since errors have higher influence on points at high
distance. When performing fall detection, a tilt downwards the floor is common, since
the depth sensor has to monitor the floor.

6.1.7 Real Data
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Figure 6.9: Synthetic data (a) vs real data (b) obtained from the PTU.
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Real data is recorded using the setup that is modeled synthetically, see Figure 6.1.
The synthetic data combines all problems from this section. This yields to two difference
maps that are depicted in Figure 6.9. Both maps are similar but lack matching details,
since the synthetic data is only a coarse model.

Lens distortion has the highest impact on errors in the dynamic motion model.
Assuming a perfect synchronization between depth images and pan/tilt values, inaccurate
depth values in conjunction with decreasing depth resolution and rolling shutter comes
second.

It should be highlighted that the theoretical random error σZ has to be multiplied
with a factor of three to obtain similar inaccuracies. Another error model is tested [79]
to legitimize the error model used from Khoshelham et al. [67]. However, similar results
are obtained. Thus, it can be concluded that an unknown error source exists, which adds
significant errors to the dynamic motion detector. This makes inaccurate depth values
the leading cause of errors. Future work will focus on finding this error source and, if
possible, correcting it.

6.2 Fall Detection

The fall detection system with pan/tilt support is evaluated using the PTU at 27◦/s. This
speed is chosen since it is found to be sufficient for the unit to follow an elderly person.
The falls are simulated at sensor distances of 2m, 3m and 4m at different trajectories, see
Figure 6.10. Each trajectory refers to a constant amount of sensor movement, whereas
180◦, 50◦ and 20◦ are denoted as heavy, middle and low movement, respectively.
No sensor movement is analyzed to obtain reference results, which correspond to an
unmodified version of the fearless fall detection system. Furthermore, the influence of the
sensor height is evaluated by placing the PTU at 1.15m and 2.15m above the ground.

Figure 6.10: Setup used to evaluate the fall detection system. The depth sensor is
illustrated with a yellow star and the black crosses mark fall positions at 2m, 3m and
4m. A subject moved along three different trajectories to trigger heavy sensor movement
(red), middle sensor movement (green) and low sensor movement (blue).
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Table 6.1 shows the results of the pan/tilt fall detection system. The values are
obtained by performing three falls per scenario and averaging their confidences. Thus, if
a fall is not detected the value is lower than 0.667.

heavy movement middle movement low movement no movement
low high low high low high low high

2m 0.993 0.953 0.987 0.990 1.000 0.857 0.990 0.990
3m 0.943 0.897 0.980 0.977 0.980 0.900 0.987 0.990
4m 0.647 0.530 0.840 0.893 0.537 0.207 0.990 0.990

Table 6.1: Confidences of falls at pan/tilt sensor changes. The falls are performed at
sensor distances of 2m, 3m and 4m and sensor heights of 115cm (low) and 215 cm (high).
The subject walked different trajectories yielding to no, low, middle and heavy sensor
movement.

For better interpretation the results are illustrated in Figure 6.11. It can be seen
that increasing the height of the sensor has a negative effect on the performance of the
fall detection system. This happens since increasing the height increases the distance of
objects to the sensor and therefore the noise in the scene. The same statement is valid
for the three distances to the sensor where the falls are performed. At 4m falls show the
lowest confidences, whereas the best confidences are achieved at 2m.
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Figure 6.11: Illustrated fall confidences from Table 6.1. The colors correspond to the
amount of sensor movement.

The amount of sensor movement has a crucial impact on the fall detection system.
When using a static sensor, falls at all distances are detected without problems, see Table
6.1. Middle sensor movements perform better than heavy sensor movements, which is
expected. However, low sensor movements performance is surprisingly the worst of the
three classes. This is owing to the dynamic motion detector which is initialized with a
complete depth image. If the sensor starts moving the dynamic background model is
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successively updated with points at the border of the depth image. Taking lens distortion
into account the depth error remains constant at the image border and newly added data
is distorted with the same error. Thus, it is less beneficial to have a newly initialized
dynamic background model, since this error is not constant in the model.

Figure 6.12 shows the recall margin between the pan/tilt and the static fall detection
system. It can clearly be seen that the static version performs perfectly with the given
data. The precision of both systems is 1.0, since no false alarms are produced. This is
evaluated using 32 sequences recorded with the PTU that do not include a fall event,
but persons walking by and get tracked by the system. Also, with this additional data
no false alarm is generated. A supportive factor for this is that the person classifier
of fearless is rather restrictive and thus, does not detect errors of the dynamic motion
detector as persons.
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Figure 6.12: Recall of the fall detection system during pan/tilt.

In conclusion the developed fall detection system works best at low sensor heights
and after initial movement. Falls can be detected up to 4m, but the confidences drop
significantly from thereon. The precision of the system is equal to fearless, since incorrectly
detected motion is not classified as a person and can therefore not trigger fall events.

6.3 Detection of Uncontrolled Sensor Movements

The performance of the method for detecting sensor location changes is tested on two
datasets. The first dataset is the same as used by Pramerdorfer et al. [31]. It comprises
1815 sequences including recorded scenes under real and experimental conditions. As
this dataset does not contain sequences in which the sensor location changes, it is used
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to assess the false positive rate of the method. In this context, a false positive occurs if
sensor tampering is detected by the system even though no tampering occurred.

The method reported a single false positive, which is visualized in Figure 6.13. The
corresponding test sequence is particularly challenging because it depicts multiple persons,
a moving door, and a ghost due to a motion detection error.

(a) True positive (b) False positive

Figure 6.13: Cases of detected sensor tampering. Foreground is shown in blue.

The second dataset comprises of 10 sequences to assess the false negative rate of the
method. In these sequences, the sensor is located at a height of 3 meters and dislocated
with a mop. In two recordings, the mop touches the sensor lens resulting in a black
image. The other recordings displace the sensor without occluding the sensor lens. All
sensor tampering incidents are detected correctly.

The results in this chapter show that the fall detection system is able to detect falls up
to 4m with the support for moveable sensors . A disadvantage to the static fall detection
version is the lower performance. However, the FOV is extended by a factor of 3 which
is a significant improvement. The sensor should be mounted at 1.15m to get the best
performance, but at this height, it is easily reachable by individuals, hence, the need for
the tampering detection, which makes the fall detection system effective for practical use.
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CHAPTER 7
Conclusion

In this work an existing fall detection system was extended to support depth sensors that
are moved by a pan/tilt unit. The results clearly illustrated that falls can be robustly
detected up to 4m after heavy sensor movements. Moreover, better results are obtained at
a low sensor height of about 1.15m due to decreased distance from objects and therefore
increased sensor accuracy and resolution. The effect of different artifacts that arise when
using structured light depth sensor is measured by using synthetically created data. Lens
distortion yields to the highest errors in the motion model however, this could be reduced
by using camera calibration. The fall detection system which was used, renounces a
manual setup to remain plug and playable. This feature remains within this work. Other
artifacts such as rolling shutter arise when the depth sensor is moved, and its effect
should not be underestimated, since the error increases with the angular velocity of the
camera.

Future work will focus on correcting such errors. Decreasing depth accuracy in
conjunction with increasing depth resolution is a source of errors and cannot be corrected.
The only possible solution is to use other depth sensors with better properties. Another
important task is the synchronization between depth frames and the corresponding
pan/tilt values. Experiments have shown that a delay of 6.7ms can double the errors in
the motion model.

All contributions were implemented in a system of loosely coupled components which
allow maintenance and extension. A remote control component offers the user the option
to turn the fall detection system on and off, whereas the user gets LED feedback on the
system status.

Since the sensor should be mounted at heights that are accessible to humans to get
the best performance, the detection of uncontrolled sensor movements was developed to
detect whether persons manipulate the depth sensor. Results show that this detection
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7. Conclusion

works in all tested cases with one false positive out of 1815 static test scenarios. This
makes the proposed fall detection system ready for practical use.
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