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Kurzfassung

Epistemische Modallogiken öffnen einen formalen Zugang zum Studium des Schließens
über Wissen. Üblicherweise werden dabei epistemische Szenarien beschrieben um relevante
Begriffe einzuführen und zu diskutieren. Unter diesen sind Puzzles und Paradoxien
von besonderem Interesse, da sie unsere Intuitionen herausfordern und den Vergleich
verschiedener Formalismen unterstützen. In dieser Arbeit verwenden wir einige bekannte
Puzzles und Paradoxien um die Gundlagen der epistemischen Modallogik zu erläutern.
Motiviert durch die Analyse epistemischer Szenarions, in denen die Akteure wiederholt
ihre Nicht-Wissen deklarieren, diskutieren wir insbesondere neuere Entwicklungen zur
Modallogik von “Ignoranz”.

Insgesamt versucht diese Masterarbeit eine einheitliche und in sich geschlossene Einfüh-
rung in aussagenlogische Modallogik zu bieten. In Fokus sind dabei Modaloperatoren, die
jeweils “wissen, dass”, “Gruppen-Wissen” und “Ignoranz” ausdrücken. Wir ergänzen die
nötigen technischen Überlegungen mit vielen Beispielen und Einsichten zu verwandten
Arbeiten der Erkenntnistheorie. Außerdem benutzen wir die “Logik der Ignoranz” um
zu beweisen, dass die Anzahl unterscheidbarer epistemischer Zustände gleichmächtig
mit dem Kontinuum der reellen Zahlen ist. Diese Einsicht wird in der Literatur zu
epistemischer Logik nur selten berücksichtigt, obwohl aus diesem Resultat folgt, dass es
epistemische Zustände gibt, die durch kein endliches Kripke-Modell adäquat representiert
werden können.
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Abstract

Epistemic modal logic is a formal approach to study reasoning about knowledge.
It is common practice to describe epistemic scenarios to introduce and explore epistemic
notions. Among those, the most interesting are puzzles and paradoxes because they
challenge our intuitions and they can be used to compare formalisms. In this thesis
we use some well-known puzzles and paradoxes to review the foundations of epistemic
modal logic. In particular, motivated by the analysis of scenarios in which ignorance
is repeatably announced, we review recent developments on a modal logic approach to
capture the notion of ignorance.

Overall, this thesis provides an unified and self-contained introduction to proposi-
tional epistemic logic with a focus on modalities of knowing that, group knowledge and
ignorance. We complement the standard technical considerations with plenty of examples
and insights from related work in epistemology. In addition, we use the logic of ignorance
to prove that the cardinality of the epistemic state space is the same as the cardinality
of the continuum. This result implies, for instance, that it is not possible for an agent
to name all epistemic states. This limitation is usually not included in the epistemic
logic literature. In addition, the result implies that some epistemic states cannot be
adequately represented by finite Kripke models.
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CHAPTER 1
Introduction

A logical theory may be tested by its capacity for dealing with puzzles,
and it is a wholesome plan, in thinking about logic, to stock the mind

with as many puzzles as possible, since these serve much the same
purpose as is served by experiments in physical science.

– Bertrand Russell, in On Denoting

Epistemic logic applies formal systems to study epistemic reasoning. This approach
was motivated by the early idea held by philosophers like Rudolf Carnap or G.H. von
Wright that some properties of knowledge could be captured by an axiomatic deductive
system. The seminal book by Jaakko Hintikka, Knowledge and Belief: An Introduction
to the Logic of the Two Notions [Hin62], was the first full-length book to discuss both
a semantic view on epistemic reasoning, based on possible world semantics, and an
axiomatic characterization of some epistemic notions. His approach turned out ot be very
successful and it influences the work in this area up to these days. The contribution in
late 90’s from fields like computer science [FHVM95] and game theory [Aum99] boosted
the development of epistemic logic and turned it into a multidisciplinary field driven by
both philosophical and application related issues.

In [vDvdHK07,vDHvdHK15] the authors present an overview of epistemic logic recent
technical progress, as well as, some of its applications. Those developments spawn from
the analysis of different informational attitudes like an agent only knowing some statement
or an agent having limited awareness [vDHvdHK15], to the study of the outcome of
epistemic actions with dynamic epistemic logic [vDvdHK07,Pac13]. While epistemic logic
initial motivation was to investigate questions in epistemology, its recent developments
are mostly motivated by computational concerns and focused on propositional modal
logic of knowing that.
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1. Introduction

This thesis uses epistemic scenarios to explore the foundations of epistemic logic. An
epistemic scenario is a description of a situation involving epistemic reasoning. From
those, the most interesting are puzzles and paradoxes because they challenge our intuitions
and can be used as test cases for formalisms. Usually, in an epistemic puzzle, the goal
is to find a consistent epistemic justification for the sequence of actions described. One
such puzzle is presented below:

Example 1.1 (Epistemic puzzle [Pac13]).
Three logicians walk into a bar.
The barman asks, ‘Does everybody want a beer?’
The first logician says, ‘I don’t know.’
The second logician says, ‘I don’t know.’
The third logician says, ‘Yes.’

In this puzzle iterated announcements of ignorance about a statement leads to one of
the agents to know whether that same statement holds. This pattern occurs in many
epistemic puzzles, like the muddy children or the sum and product puzzles (for these
and other epistemic puzzles see [vDK15]). This motivates us to have a closer look at
ignorance.

We say that an agent is ignorant about a statement if and only if neither the agent knows
that the statement holds nor does he know that the statement does not hold. In epistemic
logic, knowing that is interpreted as a necessity modality. A proposition is contingent
when it is neither necessarily true nor necessarily false. It is easy to see that ignorance
is the contingent counterpart of knowledge. The dual of ignorance is knowing whether.
Thus, an agent knows whether a statement holds if and only if the agent either knows
that the statements holds or he knows that it does not hold.

The notions of ignorance and knowing whether are useful in epistemic applications. There
are scenarios where it is only necessary to check whether an agent knows the truth-value
of a sentence, independently of its actual value. For example, in [Rei01] the authors
use a know whether operator to define succinct postconditions for ‘knowledge-producing
actions’. In spite of their advantages and the fact they are recurrent in epistemic puzzles,
these notions are barely mentioned in the epistemic logic literature. Exceptions are a
logic for ignorance presented in [vdHL04] and a logic for knowing whether discussed
in [FWvD15,Fan16].

The aim of this thesis is to fill a gap in the literature by presenting an uniform introduction
to both the logic of knowing that and the logic of ignorance. To this end, we review
the foundations of epistemic logic to later compare it with its contingent counterpart,
ignorance.

This thesis is structured as follows. In chapter 2 we introduce our epistemic models
and explain how to interpret the notions of knowing that and knowledge within a group
in such models. We finish the chapter with an analysis of the Muddy Children puzzle.

2



The next chapter, is about deductive systems for knowledge and common knowledge.
We start with a discussion about the relation between our modeling assumptions and
some axioms with interesting epistemic interpretation. We, then, prove that the system
S5 is sound and complete for the class of our epistemic models S5, for both the basic
epistemic logic and its extension with common knowledge. At the end of the chapter
we briefly discuss the Moorean paradox. The last chapter is dedicated to the logic of
knowing whether and ignorance. In that chapter we prove, using the notion of knowing
whether, that there continuum-many different epistemic states, when we consider at least
two agents.

3





CHAPTER 2
Epistemic Models

In this chapter we introduce basic epistemic logic and its extension with notions referring
to group of agents. We focus on their semantic interpretation over Kripke structures, due
to its intuitive characterization. This chapter is meant to be used as a gentle introduction
to the broad topic of epistemic modal logic.

We start the chapter by an historical overview of epistemic logic. The next section
presents modal logic preliminaries. In section 2.3, we define the basic epistemic logic
language and discuss the intended interpretation of its sentences over Kripke models.
In section 2.4, we overview some group knowledge notions with a focus on the notions
of general knowledge and common knowledge. We finalize this chapter by discussing a
solution for the Muddy Children puzzle using all what was presented before. Along the
chapter we use a simple epistemic scenario as a running example to help clarify some of
the ideas discussed.

2.1 Historical Overview
Epistemology is a branch of philosophy that studies the notion of knowledge. This includes,
for instance, the definition of knowledge, the analysis of its structural properties and
limitations, and the study of mechanisms that enable an agent to acquire it [Ste17,Hol13].
Epistemic logic applies formal systems to study epistemic reasoning. Attempts to capture
valid epistemic reasoning by means of a formal system can be traced back to the Middle
Ages. Paul Gochet and Pascal Gribomont give a quick overview of the work done during
this era in the introduction of [GG06]. In this section we present the contemporary
developments in epistemic logic with emphasis on the modal logic approach.

In the late 1940’s and early 1950’s many philosophers and logicians believed that the way
we reason about knowledge could be captured by means of an axiomatic system [HS15].
Von Wright [vW51] was the first to propose a syntactic characterization of formal
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2. Epistemic Models

epistemic reasoning based on modal notions. Later, the seminal book by Jaakko Hintikka,
Knowledge and Belief: An Introduction to the Logic of the Two Notions [Hin62], was
the first work to discuss both a semantic view on epistemic reasoning, based on possible
world semantics, and an axiomatic characterization of some epistemic notions. Hintikka’s
goal was to establish formal criteria to determine the consistency of a set of statements
expressing epistemic notions. In order to do so, he introduced and justified reasoning
principles to characterize this notion. Later in the book he uses this formal system to
investigate some of the problems discussed in epistemology at that time. He proves, for
example, that it is inconsistent for an agent to believe in a Moorean sentence about his
own current beliefs, i.e. an agent cannot consistently believe in a statement of the form
‘it’s raining, but I do not believe it is raining’.

The use of epistemic formal reasoning turned out to be relevant for other disciplines,
as well. Since the late 70’s there is an increasing interest in the study of knowledge
notions in the context of multi-agents systems with contributions from fields like artificial
intelligence, game theory and computer science. In artificial intelligence, for example,
Robert Moore in [Moo77] proposed to use a first order version of epistemic modal logic
to express preconditions on agents’ actions. In [Aum76], Aumann uses the concept of
common knowledge to prove his famous agreement theorem in game theory. This theorem
states that if two rational agents have the same probability distribution before any
evidence is presented (prior probabilities) and have common knowledge of each other’s
beliefs about the probability distribution after a relevant evidence is considered (posterior
probabilities), then their posterior probabilities must be equal. In late 90’s two text
books from computer science [FHVM95,MH95] summarize some of the work done in this
field at that time. All these contributions boosted the development of epistemic logic
and turned it into a multidisciplinary field driven by both philosophical and application
related issues.

2.2 Modal Logic Preliminaries

In this section we present modal logic concepts used throughout this thesis. We assume
that the reader has basic knowledge about modal logic. Otherwise, the books [BdRV01,
vB10] can be used to complement the material discussed here.

2.2.1 Language

We extend classical propositional logic with modal operators. We consider a countable
(non-empty) set of atomic formulas At, which are used to express propositions that are
considered to be logically elementary, for example ‘It is sunny’. Additionally, we have a
finite (non-empty) set of agents Ag and a finite set of modal operators Op.

Definition 2.2.1 (Modal language L).
Let At be a countable set of atomic propositions, Op a finite set of modal operators, and
Ag a finite set of agent symbols. All these sets are non-empty. The multi-modal language
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2.2. Modal Logic Preliminaries

L(At,Op,Ag) is defined by the following grammar in Backus normal form (BNF), where
p ∈ At and 2 ∈ Op:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2ϕ.

It is common to interpret formulas of the form 2ϕ, with 2 ∈ Op, as ‘it is necessary
that ϕ’, while their dual 3ϕ is read as ‘it is possible that ϕ’. In table 2.1 we list standard
abbreviations for other boolean operators and for the dual of each 2 in our set Op.

Description/name definiendum definiens

false ⊥ p ∧ ¬p, for some p ∈ At
true > ¬⊥
disjunction ϕ ∨ ψ ¬(¬ϕ ∧ ¬ψ)
implication ϕ→ ψ ¬ϕ ∨ ψ
biconditional ϕ↔ ψ ϕ→ ψ ∧ ψ → ϕ
dual of 2 3ϕ ¬2¬ϕ

Table 2.1: Abbreviations in the language L of other logical and modal operators.

Definition 2.2.2 (Iterated Application of 2).
Let 2 be a modal operator, either one in Op or one defined as an abbreviation. The nth
iterated application of 2, written 2n, is defined as follows:

20ϕ = ϕ and 2n+1ϕ = 22nϕ.

2.2.2 Semantics

Definition 2.2.3 (Kripke model and Kripke frame).
Let At be a set of propositions and Op a set of modal operators. A Kripke model M is a
structureM = 〈W, {R2 | 2 ∈ Op},V〉 such that:

• W 6= ∅ is a set of possible worlds;

• R2 ⊆ W ×W is an accessibility relation for each operator 2 ∈ Op;

• V : (W ×At)→ {true, false} is a valuation assigning truth values to propositions
at worlds. 1

A pair (M, w) with w ∈ W is called a pointed model. We use either (w, v) ∈ R2 or
wR2v, if worlds w ∈ W and v ∈ W are connected by the accessibility relation R2.

1It is often useful to consider an equivalent definition of valuation, VAt : At → 2W , where given a
proposition p ∈ At then VAt(p) yields the set of worlds in which p is true.

7



2. Epistemic Models

A Kripke frame F is a structure F = 〈W, {R2 | 2 ∈ Op}〉 that abstracts from a specific
valuation. Frames allow us to focus on models’ structural properties. A model is based on
a frame when they have the same set of worlds and accessibility relations. Given a class
of frames F we define the class of models based on F as

⋃
F∈F{M | M is based on F}.

It is important to note that there are two levels to be considered in our semantics. First,
we define satisfability of a formula over a pointed model, i.e. we define the truth value
of a given formula over a Kripke model from the point of view of one of its possible
worlds. Second, we use frames to define validity, because Kripke frames abstracts from
the evaluation given to proposition variables.

Definition 2.2.4 (Truth interpretation of modal formulas in Kripke structures).
Let M = 〈W, {R2 | 2 ∈ Op},V〉 be a Kripke model and w ∈ W a world. We define
inductively that a modal formula ϕ ∈ L(At,Op,Ag) holds in the pointed model (M, w)
as follows:

• (M, w) |= p iff V(w, p) = true, for p ∈ At;

• (M, w) |= ¬ϕ iff it is not the case that (M, w) |= ϕ, i.e. (M, w) 6|= ϕ;

• (M, w) |= ϕ ∧ ψ iff (M, w) |= ϕ and (M, w) |= ψ;

• (M, w) |= 2ϕ iff for all v ∈ W if wR2v then (M, v) |= ϕ.

When (M, w) � ϕ for all w ∈ W , we writeM � ϕ and say that ϕ is true inM. Moreover,
if we consider a class of models X ⊆ K we say that X � ϕ holds whenM � ϕ holds for
allM∈ X.

Definition 2.2.5 (Satisfiability and validity).
A modal formula ϕ is:

• satisfiable in a modelM if there is a world w inM such that (M, w) � ϕ;

• valid at a world w in a frame F , denoted (F , w) � ϕ, if ϕ is true at w in every
modelM based on F ;

• valid in a frame F , denoted F � ϕ, if it is valid at every world in F ;

• valid on a class of frames F, denoted �F ϕ, if it is valid on every frame F ∈ F;

• valid, denoted � ϕ, if it is valid on the class of all frames.

We present in table 2.2 a list of class of frames that are relevant for this thesis. Given
that we have n agents, then Kn is the class of all Kripke frames, at times we will refer to
it as the class of all Kripke models.

8



2.3. Basic Epistemic Modal Logic

Classe name Agent’s accessibility relation characterization

Tn Reflexive
Dn Serial
Bn Symmetric
4n Transitive
5n Euclidean
S4n Reflexive and transitive
S5n Equivalence

Table 2.2: Class of frames used in this thesis and their characterization.

In this thesis we consider a variety of modal languages which can be interpreted over
different class of models. Below we define that given a language, L, and a class of frames,
F, the logic generated by them is the set of all L formulas that are valid in F.

Definition 2.2.6 (Logic of L over F).
Let L be a modal language and F a class of frames. The set of all L-formulas that are
valid in F defines the logic of L over F, FL, as follows:

FL = {ϕ | �F ϕ and ϕ ∈ L}.

2.3 Basic Epistemic Modal Logic
In this section we introduce basic epistemic logic and epistemic models.

2.3.1 Epistemic Modal Language

Definition 2.3.1 (Basic epistemic modal language LK).
The basic epistemic modal language LK(At,Ag) = L(At, {Ka | a ∈ Ag},Ag) is a multi-
modal language with a knowledge operator Ka for each agent a ∈ Ag.

A formula Kaϕ can be read as ‘agent a knows ϕ’. Another possible interpretation for
Kaϕ is ‘agent a is informed that ϕ is true’. The dual of Ka is denoted by K̂a and, as
defined in table 2.1, K̂aϕ = ¬Ka¬ϕ. The formula K̂aϕ is often read as ‘ϕ is consistent
with the knowledge of agent a’ or ‘agent a considers ϕ possible’.

Throughout this chapter we will use the Groningen-Liverpool-Otago scenario (GLO
scenario), adapted from [vDvdHK07], as our running example of modal epistemic logic
usage.

Example 2.1 (Simple knowledge theory).
Suppose we have one agent, say Bert (b), who lives in Groningen. For some reason,
he builds a theory about the weather conditions in both Groningen and Liverpool: in

9



2. Epistemic Models

Groningen it is either sunny (denoted by the atom g), or not (¬g); and likewise for
Liverpool, it is either sunny (l) or not (¬l).

We present below two LK formulas encoding Bert’s knowledge about the weather in
Groningen and Liverpool.

Bert knows whether it is sunny in Groningen : Kbg ∨Kb¬g
Bert is ignorant about the weather in Liverpool : ¬Kbl ∧ ¬Kb¬l

The second formula encodes the fact that he is ignorant about the weather in
Liverpool, i.e. he does not know that it is sunny there and he does not know the
opposite either. If we consider the abbreviations defined in table 2.1 together with
some classical logic equivalences, then we can encode his ignorance by any of the
following equivalent formulas: ¬Kbl ∧ ¬Kb¬l ≡ ¬(Kbl ∨Kb¬l) ≡ K̂b¬l ∧ K̂bl.
The second formula can be read as it not the case that Bert knows whether it is sunny
in Liverpool. We can read it using the interpretation of the dual of the knowledge
operator, as well. Then the formula says that each of the possibilities is consistent
with Bert’s current knowledge.

Our language should allow us to encode statements concerning knowledge about knowl-
edge, i.e. high-order knowledge. That includes statements about knowledge of an agent
about other agents’ knowledge, which are very useful to capture epistemic reasoning in
multi-agent scenarios.

Example 2.2 (Knowledge about knowledge).
Bert is friend with Cat who lives in Liverpool. He knows that she knows whether it
is sunny there.

We encode the knowledge of Bert about Cat’s knowledge (Cat is the agent c), as
follows:

Bert knows that Cat knows whether it is sunny in Liverpool : Kb(Kcl ∨Kc¬l).

If Bert gets to know that Cat knows that is is sunny in Liverpool, then we can
encode his new knowledge with the formula:

Bert knows that Cat knows that it is sunny in Liverpool : KbKcl.

2.3.2 Epistemic Models

A Kripke model encoding agents’ information is called an epistemic model. The design of
our epistemic models is based on the following assumptions:

(a) worlds encode possible configurations of the scenario being modeled, which are
consistent with agents’ current knowledge;

10



2.3. Basic Epistemic Modal Logic

(b) for each agent we define an accessibility relation connecting worlds that are indis-
tinguishable for that agent, given his current knowledge.

The interpretation given to the accessibility relation may induce different theories of
knowledge. In the interpretation adopted in this thesis each accessibility relation turns
out to be an equivalence relation. It is easy to see that the following properties must
hold in the agent’s accessibility relation in our epistemic models:

Reflexivity An agent cannot distinguish a world from that same world;

Symmetry If an agent cannot distinguish world w from world v, then he cannot
distinguish world v from world w;

Transitivity If an agent cannot distinguish world w from world v and world v from u,
then he cannot distinguish world w from world u.

Therefore, we will work with the class of frames S5n (see table 2.2). From now on, to
keep our models concise, we may not draw the reflexive arrows and arrows that can be
obtained by transitive closure over one of the accessibility relations.

We could have adopted a different interpretation for each of the agents’ accessibility
relation. For example, we could have considered that for a given agent the world w is
accessible to world v if and only if everything that the agent knows in w he knows it in v
as well [Hol13,Wil00]. Under this interpretation epistemic models are not necessarily
symmetric nor transitive [Hol13].

The current world represents the real configuration of the epistemic scenario being
modeled. Epistemic formulas are usually interpreted at that world to narrow our analysis
to only one of the possible epistemic configurations.

Example 2.3 (Epistemic states and indistinguishable relations).
Since Bert is situated in Groningen, we can assume that he is aware of the weather
in Groningen, but not of that in Liverpool. Surprisingly, in our current scenario it is
sunny in both cities.

Our goal is to build a model depicting what Bert knows about the weather in
Groningen and Liverpool, i.e. an epistemic model of what was described so far.

We start by identifying four states matching the four possible combinations of the
weather conditions considered by Bert (i.e. whether or not it is sunny) in both cities.
We call those states possible worlds. Each pair inside of a world defines the valuation
given to g (it is sunny in Groningen) and l (it is sunny in Liverpool) in that possible
world. For example, in world w1 both g and l are satisfied, which means that this
world corresponds to the possibility that it is sunny in both cities; or the world w2
that represents the situation in which it is not sunny in Groningen (g does not hold
in this world) and it is sunny in Liverpool. As stated in the scenario description it is

11



2. Epistemic Models

sunny in both cities, therefore the real world is represented by w1.

g, l

w1

¬g, l

w2

g,¬l

w3

¬g,¬l

w4

Figure 2.1: Possible worlds that we consider to model Bert’s knowledge of weather
conditions in Groningen and Liverpool.

Since Bert knows whether it is sunny in Groningen, he can distinguish between any
two situations with different weather conditions in Groningen. This means that
he can distinguish, for example, between states w1 and w2. However, Bert does
not know about the weather in Liverpool and thus he cannot distinguish between
states in which the weather is the same in Groningen but different in Liverpool. For
example, the states w1 and w3.

Starting from the states identified in the previous picture we build our epistemic
model of Bert’s knowledge by connecting by an arrow, labeled with b, states that he
cannot distinguish.

g, l

w1

¬g, l

w2

g,¬l

w3

¬g,¬l

w4

b b

b b

b b

Figure 2.2: Epistemic model for Bert’s current knowledge –MBert.

We interpret Ka as a necessity operator. Then, given that we have one accessibility
relation for each agent a ∈ Ag, we interpret LK modal operators as follows:

(M, w) |= Kaϕ iff for all v ∈ W, if wRav then (M, v) |= ϕ

(M, w) |= K̂aϕ iff there exists a v ∈ W such that wRav and (M, v) |= ϕ.

Given the above definition and the design assumptions about Ra, we define that an
agent knows or is informed that ϕ when the agent has no uncertainty about ϕ, i.e. ϕ is
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2.3. Basic Epistemic Modal Logic

necessary given agent’s current knowledge.

Example 2.4 (Interpretation of epistemic formulas).
Consider the previous example and the Kripke model, MBert, represented by fig-
ure 2.2. We proceed now by checking if what we learned so far about Bert’s knowledge
holds inMBert at the current world (w1).

Bert knows whether it is sunny in Groningen, which can be encoded by the formula
Kbg ∨ Kb¬g (from example 2.1). In fact, Kbg ∨ Kb¬g holds at the world w1 in
MBert because (MBert, w1) � Kbg. Note that the worlds accessible from w1 are w1
and w3, and in both the proposition g holds.

In addition, we know that Bert is ignorant about the weather in Liverpool. The
formula ¬Kbl ∨ ¬Kb¬l (from example 2.1) should hold at world w1 in MBert.
As (MBert, w1) � l and (MBert, w3) � ¬l, then (MBert, w1) � ¬Kbl. Therefore,
(MBert, w1) � ¬Kb¬l.

The most interesting scenarios to analyze using epistemic logic occur when we reason
about the knowledge of multiple agents. Luckily, Kripke models provide a natural
interpretation of arbitrary nested knowledge formulas. In scenarios with multiple agents
we usually expect the knowledge of any two agents to be independent. For example, the
formula Kaϕ→ Kbϕ is not expected to be valid for arbitrary agents a, b and formula ϕ.
This property makes it trivial to extend our single-agent logic to a multi-agent epistemic
logic. In fact, given n agents we only need to consider n independent accessibility relations
in our model and we have an epistemic model for n agents.

Example 2.5 (High-order knowledge and epistemic models).
Recall the example 2.2:

Bert is friend with Cat who lives in Liverpool. He knows that she knows whether it
is sunny there.

As we were not informed otherwise we assume that Cat is ignorant about Groningen
weather conditions. We will extend the modelMBert, as in figure 2.2, to include
Cat’s accessibility relations. Recall that, to keep the models concise we will not
draw reflexive arrows and arrows that can be obtained by transitive closure of an
accessibility relation.

13
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g, l

w1

¬g, l

w2

g,¬l

w3

¬g,¬l

w4

b

c

b

c

Figure 2.3: Kripke model for Bert and Cat’s current knowledge.

The reader can check that the formulas Kcl and ¬Kcg ∧ ¬Kc¬g holds in this model
at world w1. Moreover, we can see that Kcl ∨Kc¬l holds everywhere in this model.

It is also useful to reason about high-order knowledge. For example, we can check
that in this model at world w1 Bert knows that Cat knows whether it is sunny in
Liverpool, i.e. the following formula holds at w1:

Kb(Kcl ∨Kc¬l).

In order to check that the formula holds at w1, we will need to verify that Kcl∨Kc¬l
holds at the accessible worlds from w1 using Rb, i.e. at w1 and w3. We can then see
that (M, w1) � Kcl and (M, w3) � Kc¬l.

Note that, even thought it is not explicit in our epistemic scenario description that
it is the case that Cat knows that Bert knows whether it is sunny in Groningen,
the formula Kc(Kbg ∨Kb¬g) holds in this model at w1, as well. In fact, it holds
everywhere in this model. We may want to consider instead that Cat is ignorant
about Bert’s knowledge of Groningen weather conditions. We present below a Kripke
model where the following formula for Cat’s ignorance holds at w1:

¬Kc(Kbg ∨Kb¬g) ∧ ¬Kc¬(Kbg ∨Kb¬g).

g, l

w1

¬g, l

w2

g,¬l

w3

¬g,¬l

w4

g, l

w5

¬g, l

w6

g,¬l

w7

¬g,¬l

w8

b

c

b

c

c

c

b

b, c

b

b, c

b

b

Figure 2.4: Kripke model for Bert and Cat’s current knowledge assuming that Cat
is ignorant about Bert’s knowledge of Groningen weather conditions.
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2.4. Group Knowledge

2.4 Group Knowledge
In this section we extend basic epistemic logic LK with operators for different types of
group knowledge. The main idea is that given a group of agents we can combine their
knowledge in different ways to capture such notions.

Example 2.6 (Knowledge in a group).
Consider the epistemic scenario discussed in example 2.5. The model below depicts
the scenario in which Bert knows that Cat knows whether it is sunny in Liverpool
and the other way around. Given a group of agents, G ⊆ Ag, we motivate below four
group knowledge operators and use this model to illustrate their differences. Recall
that to keep models concise we don’t draw the reflexive and transitive arrows.

g, l

w1

¬g, l

w2

g,¬l

w3

¬g,¬l

w4

b

c

b

c

Figure 2.5: Kripke model for Bert and Cat’s knowledge considering that each of
them knows that the other knows whether it is sunny in their city –MGroup.

Distributed knowledge (DG): What would the agents in a group know if all of
them shared their knowledge?
If Bert and Cat would tell each other the weather in the cities they live in, then,
for instance, Bert would not be uncertain about the weather in Liverpool any
longer. If we consider the model aboveMGroup, this means that Bert would
be able to distinguish the worlds w1 and w3. Thus, his accessibility relation
would not connect them anymore. It is easy to see that, if an agent in a group
can distinguish two possible worlds, then it is distributed knowledge that these
worlds are different. Therefore, we can interpret distributed knowledge as
a 2-operator defined over the intersection of all accessibility relations of the
agents in the group.
In our example it is distributed knowledge among Bert and Cat that it is sunny
in Groningen and in Liverpool (i.e. g ∧ l). Thus, the following formula holds at
w1:

D{b,c}(g ∧ l).
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2. Epistemic Models

It is important to note that neither Bert nor Cat know this.

Dispersed knowledge (SG): What does at least one of the agents in a group
know?
Dispersed knowledge is a collection of each agent’s knowledge. It is usually
defined as: SGϕ

def
≡

∨
a∈GKaϕ.

We can see that it is not dispersed knowledge that it is sunny in Groningen
and in Liverpool (i.e. g ∧ l), because none of the agents know it. Therefore,
the following holds at w1:

¬S{b,c}(g ∧ l).

It is, however, dispersed knowledge that it is sunny in Groningen, because Bert
knows it; and that it is sunny in Liverpool, because Cat knows it. Thus, the
following two formulas hold at w1:

S{b,c}g and S{b,c}l.

General knowledge (EG): What do all agents in a group know?

General knowledge is usually defined as: EGϕ
def
≡

∧
a∈GKaϕ.

In our current scenario it is not general knowledge that it is sunny in Groningen,
because Cat does not know it. We can argue analogously to show that it is not
general knowledge that it is sunny in Liverpool. Thus, the following formulas
hold at w1:

¬E{b,c}g and ¬E{b,c}l.

However, each of the agents know that is sunny in one of the two cities, then
it is general knowledge that it is sunny either in Groningen or in Liverpool
(i.e. g ∨ l). Thus, the formula below holds at w1:

E{b,c}(g ∨ l).

Common knowledge (CG): What do all the agents in a group know about what
all of them know, and so forth up to infinite depth?
A statement is common knowledge if it holds in all possible iterations of
general knowledge. Therefore, common knowledge of ϕ is usually defined as
the following infinite conjunction: CGϕ

def
≡

∧∞
k=1 EkGϕ.

In our example, (MGroup, w1) 6� E{b,c}E{b,c}(g ∨ l). This follows from the fact
that, the world w2 is accessible from w1 by Cat’s accessibility relation and
(MGroup, w2) 6� Kb(g ∨ l), i.e. (MGroup, w1) 6� KcKb(g ∨ l). Therefore, it is not
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2.4. Group Knowledge

common knowledge that it is either sunny in Groningen or in Liverpool (g ∨ l),
i.e. the formula below holds at w1:

¬C{b,c}(g ∨ l).

It is, however, common knowledge that Bert knows whether it is sunny in
Groningen and that Cat knows whether it is sunny in Liverpool. The following
two formulas hold at w1:

C{b,c}(Kbg ∨Kb¬g) and C{b,c}(Kcl ∨Kc¬l).

We can see that for all worlds that we reach from w1 inMGroup, the formulas
(Kbg ∨Kb¬g) and (Kcl ∨Kc¬l) hold there. We will see later, in section 2.4.2,
that this characterization captures the notion of common knowledge.

2.4.1 General Knowledge

In this section we explore the notion of general knowledge using epistemic modal logic. A
statement is general knowledge in a group if everybody in that group knows it.

Definition 2.4.1 (General knowledge in a group EG).
Let LKE(At,Ag) = L(At, {Ka, EG | a ∈ Ag and G ⊆ Ag},Ag) be the basic epistemic
language extended with a general knowledge operator, EG, for each possible group of
agents G. Let Ag be a set of agents, G ⊆ Ag a group and ϕ ∈ LKE(At,Ag). The modal
operator EG is defined as follows:

EGϕ
def
≡

∧
a∈G

Kaϕ.

As mentioned in section 2.3.1, in LK we only consider a finite number of agents, thus our
groups are of finite size, as well. This means, using the definition above, that we can
translate any occurrence of the general knowledge into an equivalent well-formed basic
epistemic modal formula. Therefore, adding general knowledge as a modal operator to
our basic language does not make the language more expressive. However, having this
operator in our language makes it exponentially more succinct than LK (more details
in [vDHvdHK15]). In addition, later we use this notion to define common knowledge.

Example 2.7 (General knowledge).
Bert is informed by a reliable source, but not by Cat, that it is sunny in Liverpool.

After Bert being informed about the weather conditions in Liverpool it follows that
both Bert and Cat know whether it is sunny in Liverpool, and particularly they
know that it is sunny there. Therefore, this is general knowledge among both agents.
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2. Epistemic Models

We can encode this new information with the formula:

Bert and Cat know that it is sunny in Liverpool: Kbl ∧Kcl
def
≡ E{b,c}l.

The new Kripke model, updated from the example 2.5 with this new information, is
presented below.

g, l

w1

¬g, l

w2

g, l

w5

¬g, l

w6

g,¬l

w7

¬g,¬l

w8

cc

b

b, c

b

b, c

b

b

Figure 2.6: Kripke model for Bert and Cat’s knowledge after Bert is informed about
the weather in Liverpool.

It is important to note that Cat does not know that Bert knows that it is sunny in
Liverpool. Therefore, it follows, from the definition of the operator EG and other
modal logic equivalences, that it is not general knowledge that the fact that is sunny
in Liverpool is general knowledge:

It is not general knowledge that both Bert and Cat know
that it is sunny in Liverpool: ¬E{b,c}E{b,c}l, because ¬KcE{b,c}l.

With this example we can see that the modal operator EG does not satisfy the
positive introspection property. It is easy to come up with an example to illustrate
that EG does not satisfy negative introspection, i.e. an epistemic scenario in which
not everybody in a group knows p but all elements in the same group know that not
everybody knows p.

An agent knows a statement iff it holds in all worlds that to him are epistemically
distinguishable from the current world. The interpretation of general knowledge is similar.
It considers, instead, all worlds that are indistinguishable to at least one of the agents.

Definition 2.4.2 (Accessibility relation for EG [vDvdHK07]).
Let F = 〈W, {Ra | a ∈ Ag}〉 be a frame and G ⊆ Ag a group of agents, we define the
general knowledge accessibility relation REG

as:

REG
=

⋃
a∈G
Ra.
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2.4. Group Knowledge

In the lemma below we prove that the relation defined above characterizes correctly
general knowledge as presented in the definition 2.4.1.

Lemma 2.4.1.
LetM = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model, G ⊆ Ag a group and ϕ ∈ LKE:

(M, w) |= EGϕ iff for all v ∈ W, if wREG
v then (M, v) |= ϕ.

Proof. We consider an arbitrary pointed model (M = 〈W, {Ra | a ∈ Ag},V〉, w) with
w ∈ W, and an arbitrary group G ⊆ Ag.

(M, w) |= EGϕ
Def. 2.4.1 and 2.2.4⇐⇒

for all a ∈ G, (M, w) |= Kaϕ
Def. 2.2.4⇐⇒

for all a ∈ G, for all v ∈ W if there exists (w, v) ∈ Ra then (M, v) |= ϕ
Gen. union⇐⇒

for all v ∈ W, if (w, v) ∈
⋃
a∈G
Ra then (M, v) |= ϕ

Def. 2.4.2⇐⇒

for all v ∈ W, if (w, v) ∈ REG
then (M, v) |= ϕ

We interpret iterated general knowledge (see definition 2.2.2) over our epistemic models
by means of group reachability. A statement is general knowledge up to iteration k
iff it holds in all worlds reachable in k steps through the accessibility relations of the
agents in the group. We will prove this correspondence in the visualization lemma below
(lemma 2.4.2).

Definition 2.4.3 (Path and group reachability in a frame).
A sequence (s0, s1, . . . , sn) is a path π from s0 to sn (with size n) in the relation R iff
(si, si+1) ∈ R for all 0 ≤ i < n. Each pair is called a step.

Let F = 〈W, {Ra | a ∈ Ag}〉 be a frame and G ⊆ Ag a group of agents. A state v ∈ W is
G-reachable (in F) from a state w ∈ W iff there exists a path from w to v in the relation⋃
a∈GRa.

Lemma 2.4.2 (Visualization for EkG [FHVM95]).
Let M = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model, w ∈ W a world, G ⊆ Ag a group
and ϕ ∈ LKE(At,Ag):

(M, w) � Ek
Gϕ iff for all v ∈ W,

if v is G-reachable from w in k steps, then (M, v) � ϕ.

Proof. We prove the statement by induction in k. We consider an arbitrary model
M = 〈W, {Ra | a ∈ Ag},V〉, w ∈ W, group G ⊆ Ag and formula ϕ ∈ LKE(At,Ag).

The base case, k = 0, follows by definition of iterated operator (2.2.2) and the fact
that the world w is the only world reachable from itself in 0 steps: (M, w) � E0

Gϕ iff
(M, w) � ϕ.
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2. Epistemic Models

We proceed to the induction step and we assume as induction hypothesis that:

(M, w) � EkGϕ′ iff for all v ∈ W,

if v is G-reachable from w in k steps, then (M, v) � ϕ′. (IH)

By the definition of iterated operator (2.2.2) and the induction hypothesis (IH):

(M, w) � Ek+1
G ϕ iff (M, w) � EkGEGϕ iff for all v ∈ W,

if v is G-reachable from w in k steps, then (M, v) � EGϕ. (*)

Consider an arbitrary v ∈ W. Assume that v is G-reachable from w in k steps, i.e.
there exists a path π = (w, s1, . . . , sk−1, v) in

⋃
a∈GRa. By (*), (M, v) � EGϕ, which

is equivalent to (M, v) � Kaϕ for all a ∈ G, by definition 2.4.1. Thus, by the truth
interpretation of Ka (def. 2.2.4), by the definition of generalized union and by G-
reachability (def. 2.4.3), this is equivalent to:

for all v′ ∈ W, if v′ is G-reachable from v in 1 step, then (M, v′) � ϕ. (**)

Now, consider a v′ ∈ W that is G-reachable from v in 1 step. Then, v′ is G-reachable from
w in k + 1 steps, because there exists a path π+1 = (w, s1, . . . , sk−1, v, v

′) in
⋃
a∈GRa of

length k + 1 from w to v′. Finally, by (**), (M, v′) � ϕ. Therefore, we proved that:

for all v′ ∈ W, if v′ is G-reachable from w in k + 1 steps, then (M, v′) � ϕ.

Example 2.8 (General knowledge distributes over conjunction).
We we want to prove that: � EG(A∧B)↔ (EGA∧EGB). Our goal with this proof
is twofold: to show that the visualization lemma give us an intuitive interpretation
of (iterated) general knowledge; and to prove a general knowledge property that will
be useful in the next section on common knowledge.

If we consider the abbreviations in table 2.1 together with the classical interpretation
of logical operators, then we need to prove for all Kripke modelsM that:

M � EG(A ∧B) iffM � EGA ∧EGB.

Given the visualization lemma (lemma 2.4.2) and the interpretation of conjunction
over Kripke models, it follows that:

M � EG(A ∧B) iff for all v, w worlds inM,

if v is G-reachable from w in 1 step, then (M, v) � A and (M, v) � B.

Using classical logic equivalences together with the visualization lemma, we can
conclude that the previous is equivalent toM � EGA ∧EGB.

20
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2.4.2 Common Knowledge

General knowledge does not satisfy introspection properties (see example 2.7). This
means that it can be the case that EmGϕ holds but EnGϕ doesn’t. Common knowledge can
be seen as a limiting notion for those iterations. In other words, all agents in a group
know that all agents in the group know that ... the statement holds, ad infinitum.

The language LKC = L(At, {Ka,CG | a ∈ Ag and G ⊆ Ag},Ag) extends basic epistemic
language with modal operators for common knowledge for each possible group of agents.

Definition 2.4.4 (Group common knowledge CG).
Let At be a set of agents and G ⊆ Ag a group of agents. We define common knowledge
of ϕ ∈ LKC among the agents in group G by the following infinitary conjunction:

CGϕ
def
≡

∞∧
n=1

EnGϕ.

We do not include the iteration E0
Gϕ in this conjunction, because this would force common

knowledge to be veridical (only true statements could be common knowledge). This
would be independent of whether the theory of knowledge we decide to work with is
veridical, as well. We prefer to not impose such a restriction on common knowledge alone.
In addition, it is easy to see that, if we assume knowledge to be veridical, then both
general knowledge and common knowledge are veridical, as well.

In the basic epistemic modal language LK we can only have finite formulas. Thus, we
cannot use the definition above to translate a formula of the type CGϕ in to an equivalent
well-formed basic epistemic formula. It turns out that adding this operator to basic
epistemic logic makes it more expressive (see [vDHvdHK15]).

We generalize below the visualization lemma for general knowledge (2.4.2) to common
knowledge. Common knowledge of a formula ϕ must hold for any iteration of general
knowledge about that sentence, thus the visualization lemma for common knowledge
must hold for all path sizes. This semantic characterization will be useful later to prove
the validity of some common knowledge properties.

Lemma 2.4.3 (Visualization for CG [FHVM95]).
Let M = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model, w ∈ W a world, G ⊆ Ag a group
and ϕ ∈ LKC(At,Ag) a formula:

(M, w) � CGϕ iff for all k ≥ 1, for all v ∈ W,

if v is G-reachable from w in k steps, then (M, v) � ϕ.

Example 2.9 (Common knowledge).
Bert has a call with Cat and she tells him that it is sunny in Liverpool.

After Cat shares the weather conditions of Liverpool with Bert, it becomes common
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knowledge between them that it is sunny in Liverpool. They do not consider it
possible that one of them does not know that all of them know that ... it is sunny
in Liverpool, independently of the number of iterations. The new Kripke model is
presented below.

g, l

w1

¬g, l

w2

g, l

w5

¬g, l

w6

ccb, c

Figure 2.7: Kripke model for Bert and Cat’s knowledge after it becomes common
knowledge that it is sunny in Liverpool.

Using the visualization lemma (lemma 2.4.3) we can prove that the following formula
holds at w1:

It is common knowledge that it is sunny in Liverpool: C{b,c}l.

Note that all worlds are {b, c}-accessible in any number of steps from w1, and l holds
in all worlds in the model in figure 2.7.

The visualization lemma for this notion (lemma 2.4.3) tell us that we need to consider
all G-reachable states to check if a given statement is commonly known between the
agents in G. Therefore, we can interpret common knowledge as a 2-operator over an
accessibility relation that connects two worlds iff they are G-reachable in any number
of steps. Given the definition of G-reachability (def. 2.4.3), it is easy to see that this
relation must be the transitive closure of

⋃
a∈GRa.

Definition 2.4.5 (Accessibility relation for CG [vDvdHK07]).
Let M = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model and G ⊆ Ag a group of agents.
The common knowledge accessibility relation RCG

is defined as the transitive closure of⋃
a∈GRa, as shown below:

RCG

def
≡ (

⋃
a∈G
Ra)+.

Lemma 2.4.4.
LetM = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model, w ∈ W a world and G ⊆ Ag a group:

(M, w) |= CGϕ iff for all v ∈ W, if wRCG
v, then (M, v) |= ϕ.

Example 2.10 (Common knowledge as a limit to iterated general knowledge).
In this example we prove two properties of common knowledge that clarify its
definition as a limit to iterated general knowledge. The first property establishes
that common knowledge can be interpreted as the fixed point of the boolean function
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f(ϕ) = EG(ϕ ∧ f(ϕ)). In the second property, we have an inductive definition of
common knowledge based on general knowledge.

(1) CGϕ↔ EG(ϕ ∧CGϕ)

Proof. Given the abbreviations in table 2.1 and the classical interpretation of
logical operators, then we want to prove, for all Kripke modelsM, that:

M � CGϕ iffM � EG(ϕ ∧CGϕ).

LetM = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model and w ∈ W:

(M, w) � CGϕ
lemma 2.4.3⇔

for all v ∈ W, for all k ≥ 1,
if v is G-reachable from w in k steps, then (M, v) � ϕ ⇔

for all v ∈ W, if v is G-reachable from w in 1 steps, then (M, v) � ϕ and

for all k ≥ 1, if v is G-reachable from w in k + 1 steps, then (M, v) � ϕ def. 2.4.2⇔
def. 2.4.3

for all v ∈ W, (M, w) � EGϕ and
for all k ≥ 1, for all v′ ∈ W, if there exists a path (w, s1, s2 . . . , sk, v)

in
⋃
a∈G
Ra, then (M, v) � ϕ path composition⇔

lemma 2.4.2

(M, w) � EGϕ and (M, v) � EGCGϕ
classical logic⇔

(M, w) � EGϕ ∧EGCGϕ
example 2.8⇔ (M, w) � EG(ϕ ∧CGϕ)

(2) (ϕ→ EG(ϕ ∧ ψ))→ (ϕ→ CGψ)

Proof. Let M = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model, ϕ,ψ ∈ LKC and
assume that (a1)M � (ϕ→ EG(ϕ ∧ ψ)). We want to prove that:

M � ϕ→ CGψ.

We assume (a2) M � ϕ. By (a1), it follows that (*) M � EG(ϕ ∧ ψ). We
will now assume, towards a contradiction, that M 6� CGψ. Then, by the
visualization lemma (lemma 2.4.3), there exists a k ≥ 1 and w, v ∈ W such
that v is G-reachable from w in k steps and (M, v) 6� ψ. Given the definition
of G-reachability (def. 2.4.3), there exists a path π = (w, s1, . . . , sk−1, v) in⋃
a∈GRa, and in particular there exists a path π′ of size 1 from sk−1 to v. Note

that by (*), (M, sk−1) � EG(ϕ ∧ ψ). Therefore, by the lemma 2.4.2 and the
existence of π′, (M, v) � ϕ ∧ ψ. This contradicts (a2).
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2. Epistemic Models

2.5 Puzzle: Muddy Children
The Muddy children is a well-known epistemic puzzle, with many solutions presented in
epistemic logic literature [vB04,vDvdHK07,GS11]. We work with the simple version of
this puzzle presented by van Benthem in [vB04]:

After playing outside, two of three children have mud on their foreheads. They all
see the others, but not themselves, so they do not know their own status. Now their
father comes and says: ‘At least one of you is dirty’. He then asks: ‘Does anyone
know if he is dirty?’ The children answer truthfully. As this question–answer episode
repeats, what will happen?

An epistemic puzzle is solvable when there is a sequence of actions, which are consistent
with the agents’ knowledge, after which no agent is uncertain about the epistemic scenario
described. In this puzzle, we use epistemic logic to discuss how each agent’s knowledge
justify the sequence of actions described and which actions are needed to solve it.

2.5.1 Epistemic Model For Muddy Children

We start with a Kripke model describing agents’ initial knowledge about the epistemic
scenario described. We consider three agents, Ag = {1, 2, 3}, which correspond to the
children in the puzzle. The set of atomic propositions is At = {ma | a ∈ Ag}, where ma

means that the child a has mud in the forehead. In our first model we consider 8 possible
worlds, because each of the three kids can either have or not have mud in the forehead.
All agents have common knowledge about each other epistemic state. This means that
an agent knows whether other agent knows whether ma holds, for all a ∈ Ag. Thus, we
don’t need to consider worlds representing alternative states of mind.

Note that in a first instance we consider the case that none of the children have mud in
the forehead. We proceed now by translating the information in the puzzle into LKC
formulas.

‘They all see the others’ – They know whether the others’ forehead is dirty, and this
is common knowledge between them:

CAg(
∧
a∈Ag

∧
b∈Ag
b6=a

(Kamb ∨Ka¬mb)) (2.1)

‘but not themselves’ – They are ignorant about their own forehead, and this is com-
mon knowledge between them:

CAg(
∧
a∈Ag

(¬Kama ∧ ¬Ka¬ma)) (2.2)
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Figure 2.8: Muddy children: Kripke model for the beginning of the puzzle –Mbeginning.

In addition, it is easy to see that it is general knowledge that each child see at least one
child with mud in the forehead. This follows from the number of children with a dirty
forehead being greater than 1. Therefore, each of them know that at least one child is
dirty. However, this is not common knowledge among the children.

EAg(
∨
b∈Ag

mb) (2.3)

¬CAg(
∨
b∈Ag

mb) (2.4)

The Kripke model in Figure 2.8 shows an epistemic model for the children knowledge
before their father’s announcement. The epistemic formulas presented so far are satisfied
by this model at world w2, which we consider to be our current world. Recall that
accessibility relations in our epistemic models are equivalence relations and to improve
readability we do not draw reflexive and transitive arrows.

Announcement of ‘At least one of you is dirty’: With the father announcement
what previously was just general knowledge becomes common knowledge:

CAg(
∨
b∈Ag

mb) (2.5)

This announcement will remove the world w8 as a possible word for all our agents, because
at the world w8 we have that (Mbeginning, w8) 6|= (m1 ∨m2 ∨m3) and as a consequence
(Mbeginning, w2) 6|= CAg(

∨
b∈Ag mb). Therefore, we eliminate this world from the model

Minit. The new Kripke model is presented in Figure 2.9.
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Figure 2.9: Kripke models after the father’s announcement,Mfather, and after children’s
announcement of ignorance,Mchildren, respectively.

First question ‘Does anyone know if he is dirty?’: No children answers affirma-
tively, because no child knows whether he is dirty. This means that they are ignorant
about that. For all agents a ∈ Ag the formula below is entailed on the modelMfather at
world w2:

¬Kama ∧ ¬Ka¬ma (2.6)

No children announces that he knows that he has mud in the forehead: There-
fore, all children announce their ignorance about the state of their forehead. After this
action it becomes common knowledge that all kids are ignorant about the state of their
forehead:

CAg(
∧
a∈Ag

(¬Kama ∧ ¬Ka¬ma)) (2.7)

The worlds w6, w3 and w8 are not consistent with this new information, because at
those worlds the formulas K1m1, K2m2 and K3m3 hold, respectively. Therefore, the
formula 2.7 does not hold on modelMfirst at world w2. We eliminate those worlds from
our model and obtain the model in Figure 2.9.

Second question ‘Does anyone know if he is dirty?’: Child 1 and child 2 answer
affirmatively because K1m1 and K2m2 hold on modelMchildren at world w2.

At this point the puzzle is solved. Two rounds of ‘question-answer’ were necessary to reach
this state. Note that all the formulas presented here (from 2.1 to 2.7) are independent of
the number of the children. This epistemic modal specification can be applied to any
instance of this puzzle. Moreover, it can be used to prove that the number of steps we
need to solve the puzzle is same as the number of muddy children [vDvdHK07].
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2.5. Puzzle: Muddy Children

2.5.2 Discussion and Further Topics

This puzzle captures some interesting features that become clear after its analysis with
epistemic logic. For example, after the first father’s announcement a statement that
was general knowledge becomes common knowledge. This breaks the Kripke model
symmetry and makes the puzzle solvable. Or the fact that after the children announce
their ignorance for the second time, they are not ignorant anymore.

Additionally, this puzzle is a good introduction to dynamic epistemic logic (see [vD-
vdHK07]). While in basic epistemic logic we are concerned with static properties of
knowledge, in dynamic epistemic logic we focus on change of knowledge. We model this
change by transforming Kripke models (as we did in the puzzle’s solution). It is important
to note that such transformations do not change the content of the epistemic states.
In fact, they only affect the agents view over these. The first dynamic epistemic logic,
called logic of public communication, was presented in [Pla89]. The author considered
communications done in discrete time between a given set of agents, and defined that if
an agent a announces ϕ at time t+1 then at time t it becomes common knowledge among
all the agents that a knew ϕ. In [GG97] the authors developed, independently, a logic for
information change equivalent to logic of public communication. In public announcement
logic finding out that ϕ is the case by a reliable source amounts to eliminate all the
worlds that are not consistent with ϕ.
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CHAPTER 3
Knowledge Axioms

In the previous chapter we introduced epistemic models, which are an helpful tool to
analyze epistemic scenarios. In this chapter we present a syntactic characterization of
formal epistemic reasoning to derive all valid formulas in such models. This means that
we can derive all formulas that describe invariant knowledge properties with respect to
the epistemic theory encoded in our models, and only these.

The purpose of this chapter is twofold: to make clear advantages and limitations of
using deductive systems to capture formal epistemic reasoning; and, to get acquainted
with the notions of normal modal logic, canonical model, maximal consistent sets and
completeness-via-canonicity. These concepts are used, in the next chapter, in the context
of a non-normal logic and applied to prove a new result. The material discussed in here
is based on [BdRV01,FHVM95,vDvdHK07,vDHvdHK15]. In addition, we complement
their material with some useful insights and carry out proofs that are left as exercise. For
instance, proofs related to maximally consistent sets compositional properties are usually
left to the reader. We decide to include them, because they are essential to understand
the role of each system’s component.

We start the chapter by looking at some epistemic principles that follow from the theory
of knowledge implicit in our epistemic models. Afterwards, in section 3.2, we introduce a
deductive system for basic epistemic logic, that we prove to be sound and complete for
this class of models. In the next section we present a deductive system for basic epistemic
logic extended with common knowledge, and prove that it is sound and complete for
the class of all frames. The last section, section 3.2, is about Moorean sentences (i.e.
sentences of the form ‘p but I do not know p’). Using the deductive system for basic
epistemic logic we prove that is is inconsistent for an agent to announce such a sentence
while referring to himself. This means that, within our theory of knowledge it is not
consistent for an agent to know that ‘p but I do not know p’.
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3. Knowledge Axioms

3.1 Epistemic Principles and Frame Properties

We identify epistemic principles that are valid in epistemic models. In order to do so,
we use results from modal correspondence theory, as it establishes a connection between
modal formulas and frame properties. This is not meant to be an in depth discussion
of it, as this is not one of the main topics of this work. More information about frame
correspondence can be found in the third chapter of [BdRV01] and in [vB01].

The formalism presented in this work is based on the realization that propositional
knowledge can be interpreted as a necessity modality. We assume, in addition, that
agents are perfect reasoners and that they do not have computational limitations. Given
these two considerations, we adopt propositional modal logic as our base language and
interpret its sentences over Kripke models. This idealized view on the agents reasoning
abilities lead us to consider logical omniscient agents, i.e. they know all the logical
consequences of their knowledge. This principle can be schematized by the following rule
of inference1:

(ϕ1 ∧ . . . ∧ ϕn)→ ϕ

(Kaϕ1 ∧ . . . ∧Kaϕn)→ Kaϕ
RK , for n ≥ 0.

This rule together with all propositional tautologies and modus ponens define a deductive
system for the minimal normal modal logic K [Che80]. In the next section we specify a
different system for K. Nevertheless, both systems define the same logic [Che80] and
they are both sound and complete for the class of all Kripke models.

We say that a formula or a set of formulas defines a property, like reflexivity, if it defines
the class of frames satisfying that property in the following sense.

Definition 3.1.1 (Definability).
Let ϕ be a modal formula and F a class of frames. We say that ϕ defines (or characterizes)
F if for all frames F , then F ∈ F iff F � ϕ.

In table 3.1 we list some formulas that have an interesting epistemic interpretation along
with the frame property they define. These formulas can be combined in a modular way
with the minimal modal logic K to specify the deductive systems listed in the table 3.2.

The axiom T captures the idea that only true things can be known. It is often used to
distinguish knowledge from belief. The axiom B tells us that true sentences should always
be known to be epistemically possible. Axioms 4 and 5 describe positive and negative
introspective agents, respectively. This means that they describe agents that are able to
know about their own knowledge state. It is interesting to note that, it is enough to add
axioms T and 5 to K to derive all the other axioms in table 3.1. This shows the power of
negative introspection. In fact, axiom 5 is rejected by most epistemologists [Hol13], while

1A rule depicts that, if all formulas on top of the line are theorems in the system considered, then
the formula below the line is a theorem, as well.
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3.1. Epistemic Principles and Frame Properties

Name Formula Epistemic interpretation Property

Truth axiom Kaϕ→ ϕ Veridical Reflexive
D axiom ¬Ka⊥ Consistent Serial
4 axiom Kaϕ→ KaKaϕ Positive introspection Transitive
5 axiom ¬Kaϕ→ Ka¬Kaϕ Negative introspection Euclidean
Brower axiom ϕ→ KaK̂aϕ Truth is epistemically possible Symmetric

Table 3.1: Axioms with epistemic interpretation and the frame properties they define.

Name Basic axioms Other valid axioms Constraints

D D - Serial
K45 4,5 - Transitive, euclidean
KD45 D,4,5 - Serial, transitive, euclidean
T T D Reflexive
B T,B D Reflexive, symmetric
S4 T,4 D Reflexive, transitive
S5 T,5 D,B,4 Reflexive, symmetric, transitive

Table 3.2: Propositional systems with axioms from table 3.1 and the respective constraints
they impose on frames’ accessibility relations [GG06].

positive introspection, axiom 4, is accepted by some of them. For instance, in [Hin62]
axiom 4 is included in the system described, but not axiom 5. However, the inclusion
of 4 is not based on agent’s introspective capabilities, but on the idea that an agent
knowing a sentence (Kaϕ) differs only in words from an agent knowing that he knows
that sentence (KaKaϕ).

In this work, we define knowledge as a primitive modality in our language. We do not
aim at analyzing what knowledge is in terms of something else. Instead, we want to
evaluate what an agent or group of agents know, given a knowledge theory that can be
encoded in terms of Kripke structures. Therefore, we do not advocate for any specific
theory of knowledge. It is nevertheless relevant to understand the implications of our
modeling assumptions over Kripke models, which we list as follows:

(M1) worlds encode possible configurations of the epistemic scenario being modeled,
which are compatible with the agents current knowledge;

(M2) there is one accessibility relation for each agent;

(M3) the accessibility relations for the various agents are pairwise independent;

(M4) an agent’s accessibility relation connects worlds that the agent is unable to distin-
guish, given its current knowledge.
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3. Knowledge Axioms

Given these assumptions, accessibility relations in our epistemic models turn out to be
equivalence relations. This corresponds to the system S5 in table 3.2. We chose to
work mostly within S5, because it proved to be an adequate and successful approach for
epistemic reasoning within computer science applications [FHVM95].

Finally, it is important to note that giving our modeling assumptions, we are working
with perfect introspective agents. This is a reasoning ability that is not included in our
initial assumptions. However, it was made explicit by the correspondence of axioms
4 and 5 to the transitivity and euclideaness of agents’ accessibility relations. This is
an example of how sound and complete axiomatizations can help us to detect hidden
assumptions.

3.2 Basic Epistemic Logic
The main goal of this section is to present sound and complete axiomatizations for basic
epistemic logic with respect to the class of all Kripke models (Kn) and the class of our
epistemic models (S5n).

3.2.1 Minimal Normal Modal Logic

A normal modal logic is a set of formulas satisfying some closure properties.

Definition 3.2.1 (Normal modal logic [BdRV01]).
Let L be a modal language. A modal logic Λ is a set of modal formulas, Λ ⊆ L, that
contains all propositional tautologies; and it is closed under modus ponens (i.e. if ϕ ∈ Λ
and ϕ → ψ ∈ Λ, then ψ ∈ Λ) and uniform substitution (i.e. if ϕ ∈ Λ then all of its
substitution instances are in Λ as well).

A modal logic Λ is normal when it contains the formula K (i.e. 2(p→ q)→ (2p→ 2q)),
and it is closed under necessitation (i.e. if 2ϕ ∈ Λ, then ϕ ∈ Λ).

Example 3.1 (Frames, models and normal modal logics).
Validity is defined with respect to Kripke frames (def 2.2.5), because they abstract
from any specific valuation. It is easy to see that given a modal language L and a
class of frames F, then FL (def 2.2.6) is a normal modal logic. This establishes a
link between semantics, as defined previously, and normal modal logics.

It is worth to note that the same does not apply to Kripke models, i.e. ifM is a
Kripke model, then ΛM = {ϕ | M � ϕ} is not a (normal modal) logic.

If we consider an arbitrary set of modal formulas Γ, then there is a smallest normal modal
logic containing Γ. We call it the logic generated (or axiomatised) by Γ. The empty set
generates the minimal normal modal logic K, i.e. for any normal modal logic Λ we have
K ⊆ Λ.
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3.2. Basic Epistemic Logic

3.2.2 System Kn

Definition 3.2.2 (Minimal normal modal logic system Kn).
We denote by Kn the Hilbert system for the minimal normal modal logic over LK.
This system is defined by the following axiom and inference rules schemes2, for each
a ∈ Ag:

Taut. all instances of classic propositional logic tautologies;

K. Ka(A→ B)→ (KaA→ KaB);

Modus Ponens.
A A→ B

B
MP;

Necessitation.
A

KaA
Nec.

The propositional fragment is denoted by P and defined by Taut and Modus Ponens.

We consider the usual definitions of proof and provable for a deductive system X . A
X -proof or X -derivation of a formula ϕ is a finite ordered list containing ϕ, such that
each element is either an axiom of X or the application of one of the inference rules
to formulas that appear earlier in the list. We sometimes refer to ϕ as a theorem of X
or we say that ϕ is X -provable, denoted by `X ϕ. By 6`X ϕ we denote that ϕ is not
X -provable . We refer to propositional reasoning in the context of a proof whenever we
reach a conclusion by using only the system P, i.e. classic propositional tautologies and
modus ponens.

Example 3.2 (K-derivations).
In this example we show common derivation patterns and present K-proofs for some
of them. We use these results later as lemmas in proofs.

NK lemma: We explore the use of K axiom together with the necessitation rule.
The following lemma allow us to distribute Ka over an implication.

`K A→ B

`K KaA→ KaB
NK

2Axioms and rules are presented as schemes because they can be instantiated by any element of L.
For example, the axiom K should be read as {Ka(A → B) → (KaA → KaB) | A, B ∈ L}.
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3. Knowledge Axioms

K-proof:
1. A→ B

2. Ka(A→ B) Nec(1)
3. Ka(A→ B)→ (KaA→ KaB) K
4. KaA→ KaB MP(2, 3)

Propositional reasoning lemmas: We state below some lemmas that can be
derived using only propositional reasoning.

`K A→ B

`K ¬B → ¬A
PL1

`K A→ B `K B → C

`K A→ C
PL2

`K A→ (B → C)

`K (A ∧B)→ C
PL3

`K A→ B `K A→ C

`K A→ (B ∧ C)
PL4

`K A→ B `K C → (D ∧A)

`K C → (D ∧B)
PL5

Distribution of 2 over ∧: We prove below a distribution law of 2 over ∧. It is
interesting to note that, given our interpretation of knowledge as a necessity op-
erator, this law states that an agent knowing the conjunction of two statements
is equivalent to the agent knowing each of the statements in isolation.

`K Ka(A ∧B)↔ (KaA ∧KaB)
Dist

K-proof →:
1. (A ∧B)→ A Taut
2. Ka(A ∧B)→ KaA NK(1)
3. (A ∧B)→ B Taut
4. Ka(A ∧B)→ KaB NK(3)
5. Ka(A ∧B)→ (KaA ∧KaB) PL4(2, 4)

K-proof ←:
1. A→ (B → (A ∧B)) Taut
2. KaA→ Ka(B → (A ∧B)) NK(1)
3. Ka(B → (A ∧B))→ (KaB → Ka(A ∧B)) K
4. KaA→ (KaB → Ka(A ∧B)) PL2(2, 3)
5. (KaA ∧KaB)→ Ka(A ∧B) PL3(4)
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3.2. Basic Epistemic Logic

RK lemma: We present below the K-proof for the following lemma:

`K (A ∧B)→ C

`K (KaA ∧KaB)→ KaC
RK

K-proof:
1. (A ∧B)→ C

2. Ka(A ∧B)→ KaC NK(1)
3. (KaA ∧KaB)→ Ka(A ∧B) Dist
4. (KaA ∧KaB)→ KaC PL2(3, 2)

A system is a set of formulas. We define a system by the axioms and inference rules
that can be used to derive its elements. A system X is an extension of a system X ′ if
X includes X ′ (i.e. X ′ ⊆ X ). For example, the system K is an extension of P. In the
next section, we will look at all the possible extensions of K that are still consistent and
complete, and use them to build a canonical model. Hence, we will review these notions
below, to define maximal consistent sets in the end.

Definition 3.2.3 (Consistent and complete systems).
Let X be a system. X is consistent iff 6`X ⊥. X is complete for a language L iff for all
ϕ ∈ L, `X ϕ or `X ¬ϕ.

Below we define consistency of a set of formulas Γ with respect to a system X . We define
this relative consistency by the consistency of the extension of X with Γ. If we consider
a system X that includes classic propositional theorems (i.e. extensions of P), then X
is consistent iff for all formulas ϕ it is not the case that `X ϕ and `X ¬ϕ. Given that
derivations are finite, then X is consistent iff we cannot find two finite subsets of X that
can be used to prove ϕ and its negation.

Definition 3.2.4 (Consistency with respect to X ).
Let X be a system. A formula ϕ is consistent with the system X if we cannot derive
¬ϕ in X (6`X ¬ϕ). Likewise, a finite set of formulas {ϕ1, . . . , ϕn} is consistent with the
axiom system X if the conjunction ϕ1 ∧ . . . ∧ ϕn is consistent with X . An infinite set of
formulas Γ is consistent with X if each finite subset of Γ is consistent with X .

Example 3.3 (Consistent set of formulas and Kripke models).
Let X be an axiom system that is sound and complete for a class of frames F.
Then, for each Kripke model based on a frame F ∈ F each of its states defines a X
consistent set, i.e. {ϕ | (M, w) � ϕ} is a X -consistent.
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3. Knowledge Axioms

Proof. Let Γ = {ϕ | (M, w) � ϕ}, then (i) (M, w) � ϕ for all ϕ ∈ Γ. Assume
towards a contradiction that there exists a finite subset {ϕ1, . . . , ϕn} of Γ that is not
X -consistent. Then, `X ¬(ϕ1∧ . . .∧ϕn) and, by X being sound, �F ¬(ϕ1∧ . . .∧ϕn).
This is a contradiction. By (i), (M, w) � ϕi for all i ∈ {1, . . . , n}. Thus,M can be
used as a counter-example for the validity of ¬(ϕ1 ∧ . . . ∧ ϕn).

The set defined above is, in fact, maximally consistent. This means that every proper
superset is a X inconsistent set.

Definition 3.2.5 (Maximal consistent set of X ).
Let L be a language, Φ ⊆ L and X a system. A set of formulas Γ ⊆ Φ, is a maximal
consistent set of X (in Φ), denoted X -MCS, if:

• Γ is consistent with respect to X ; and

• for every formula ϕ ∈ Φ, if ϕ /∈ Γ then Γ ∪ {ϕ} is not X -consistent.

If not mentioned otherwise we assume that Φ = L.

Proposition 3.2.1 (K-MCS is complete and deductively closed).
Let Γ be a K-MCS and ϕ a modal formula.

(1) ϕ ∈ Γ iff ¬ϕ 6∈ Γ.

(2) Let {ϕ1, . . . , ϕn} ⊆ Γ. If `K (ϕ1 ∧ . . . ∧ ϕn)→ ϕ, then ϕ ∈ Γ.

Proof. Assume that Γ is a K-MCS.

(1) ⇒: Consider an arbitrary ϕ ∈ Γ and assume towards a contradiction that ¬ϕ ∈ Γ.
We can prove `K ¬(ϕ ∧ ¬ϕ), because ¬(ϕ ∧ ¬ϕ) is a propositional tautology.
Therefore, {ϕ,¬ϕ} ⊆ Γ is not K-consistent, which contradicts Γ being a K-MCS.

⇐ Analogously by proving the contraposition: if ¬ϕ ∈ Γ then ϕ 6∈ Γ

(2) Assume `K (ϕ1 ∧ . . . ∧ ϕn) → ϕ, for {ϕ1, . . . , ϕn} ⊆ Γ. Wsing propositional
reasoning, we prove that `K ¬(ϕ1 ∧ . . . ∧ ϕn ∧ ¬ϕ). Therefore, ¬ϕ 6∈ Γ because it
would contradict the initial assumption that Γ is a K-MCS. Then, by K-MCS being
complete (1), ϕ ∈ Γ.
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3.2. Basic Epistemic Logic

3.2.3 Soundness and Completeness of K

In what follows we work with only one modal operator, i.e. with the system K. The
results in this section can straightforwardly be generalized to the multi-modal case,
because none of the axioms nor rules use two or more distinct modal operators. This
generalization turns out to be sufficient to capture knowing that in the multi-agent setting,
due to our assumption that propositional knowledge of any pair of agents is mutually
independent.

We will now check whether the system K fully characterizes KLK . In this thesis we only
look at weak soundness and completeness, as this is enough to establish a perfect match
between the syntactic notion of logic (def. 3.2.1) and its corresponding Kripke-style
semantics (def. 2.2.6).

Definition 3.2.6 (Soundness and completeness [vDHvdHK15]).
Let L be a language, X an axiom system and S a class of structures. We use �S ϕ to
denote that for all structures S ∈ S, then S � ϕ.

X is sound with respect to SL if for all formulas ϕ ∈ L,

`X ϕ implies �S ϕ.

X is complete with respect to SL if for all formulas ϕ ∈ L,

�S ϕ implies `X ϕ.

If L is clear from the context, then we omit it and say that X is sound and complete
with respect to S.

The soundness of K for the class of all Kripke models3 tells us that all theorems of K
will, in fact, be valid formulas with respect to Kripke semantics. Soundness is easy to
prove. In order to do so, we need to prove that all axioms are valid formulas and that all
rules preserve validity, i.e. if we assume that the premises are valid then the conclusion
given by the application of that rule is a valid formula as well.

The completeness of K for the class of all Kripke models establishes that we can derive
all valid formulas. We will prove this result by contraposition. That is, given the class of
all Kripke models K and the system K, our goal is to prove that for all modal formulas ϕ:

6`K ϕ implies M 6� ϕ for someM∈ K.

We start by assuming that 6`K ϕ. Thus, by the definition of a formula being consistent
with a system (def. 3.2.4), ¬ϕ is consistent with K. We can reformulate once again our
statement, using the definition of K-consistent formula together with the interpretation
of formulas over Kripke models (def. 2.2.4), as follows:

¬ϕ is consistent with K implies M � ¬ϕ for someM∈ K.
3We refer, interchangeably, to elements of a class of frames F as frames or as models (see def. 2.2.3).
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The proposition below clarifies the relation between consistency and satisfiability for
complete systems. Given this result we will proceed in our completeness proof by
constructing a suitable model, called canonical model. In this model every consistent
formula will be satisfiable in some of its states.

Proposition 3.2.2 (Consistency and satisfiability [BdRV01]).
An axiomatic system X is complete with respect to a class of frames F iff all X -consistent
formulas are satisfiable in some F ∈ F.

Proof. ⇒ Assume that X is complete with respect to a class of frames F, then (i) 6`X ϕ
implies 6� ϕ. Consider an arbitrary formula ϕ that is X -consistent. This means that
6`X ¬ϕ (by definition 3.2.4) and by our assumption (i) it follows that 6� ¬ϕ. Therefore,
there exists F ∈ F such that F 6� ¬ϕ and, by our interpretation of formulas over Kripke
frames (def. 2.2.4), ϕ is satisfiable in F (F � ϕ).

⇐ Assume that all X -consistent formulas are satisfiable in some F ∈ F. Now, consider
an arbitrary ϕ that is X -consistent ( 6`X ¬ϕ). By our assumption, it follows that ϕ
is satisfiable in some F ∈ F (F � ϕ). By our interpretation of formulas over Kripke
frames (def. 2.2.4) we have that F 6� ¬ϕ. Thus, ¬ϕ is not valid (F 6� ¬ϕ then 6� ¬ϕ). In
conclusion, we just proved that given an arbitrary ϕ that is X -consistent (6`X ¬ϕ), then
6� ¬ϕ, i.e. X is complete with respect to F.

Recall that in the example 3.3 we mentioned that each state in a Kripke model induces a
K-MCS. In the canonical model each state will be identified by the K-MCS it defines. We
will use the canonical model to prove the truth lemma (lemma 3.2.4). This lemma states
that if a formula belongs to a K-MCS, then it is satisfiable in the canonical model at
the state of that K-MCS. Therefore, we need to guarantee that the states are coherently
connected (lemma 3.2.3). This means that, if a K-MCS includes the formula Kaϕ, then
all the states connected to the state representing that K-MCS must include the formula
ϕ. We present below the canonical model definition.

Definition 3.2.7 (Canonical model for X (in Φ) [vDHvdHK15]).
Let L be a modal language and Φ ⊆ L. The canonical model for the axiom system X (in
Φ) is the Kripke modelMXΦ = 〈WXΦ ,RXa ,VX 〉 defined as follows:

• WXΦ is the set of all maximal consistent sets for X (in Φ);

• RXa is a binary relation over WXΦ , such that:

(Γ,∆) ∈ RXa iff Γ|Ka ⊆ ∆, with Γ|Ka = {ϕ | Kaϕ ∈ Γ};

• VX (Γ)(p) = true iff p ∈ Γ.

If not mentioned otherwise, we assume that Φ = L and denote the canonical model as
MX = 〈WX ,RXa ,VX 〉.
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The following lemma tells us that every K-consistent set is contained in a K-MCS. This
result guarantees that, in particular, every K-consistent formula is in a K-MCS.

Lemma 3.2.1 (Lindenbaum’s lemma for K [BdRV01]).
If Σ is a K-consistent set of formulas then there is an K-MCS Σ+ such that Σ ⊆ Σ+.

Proof sketch. Let Σ be a K-consistent set, and let the following be an enumeration of
all the formulas in language L: ϕ1, ϕ2,. . . . We define Σ+ =

⋃
n∈N Σn, with each of the

stages Σn defined as below:

Σ0 = Σ

Σn+1 =
{

Σn ∪ {ϕn+1} if it is K-consistent,
Σn ∪ {¬ϕn+1} otherwise.

It is easy to see that Σ+ is K-consistent, because our construction guarantees that all of
its finite subsets are K-consistent. In addition, note that we iterated through all formulas
of L to build Σ+. Therefore, no proper extension of Σ+ is K-consistent, as it would make
some stage K-inconsistent. Therefore, Σ+ is a K-MCS.

Below we prove K-MCS decomposition properties for boolean operators, using the fact
that K contains all classic propositional tautologies and admits modus ponens.

Lemma 3.2.2 (K-MCS and boolean reasoning).
Let Γ be a K-MCS and ϕ,ϕ′ be modal formulas. Then, ϕ ∧ ϕ′ ∈ Γ iff ϕ ∈ Γ and ϕ′ ∈ Γ.

Proof. Assume that Γ is a K-MCS.

⇒: Consider an arbitrary ϕ ∧ ϕ′ ∈ Γ and assume towards a contradiction that ϕ 6∈ Γ or
ϕ′ 6∈ Γ. We will proceed by cases.

If ϕ 6∈ Γ, then ¬ϕ ∈ Γ, by K-MCS being complete (prop. 3.2.1). As ¬((ϕ ∧ ϕ′) ∧ ¬ϕ) is
a propositional tautology, it follows `K ¬((ϕ ∧ ϕ′) ∧ ¬ϕ). Therefore, {ϕ ∧ ϕ′,¬ϕ} is not
K-consistent, which is a contradiction.

We can prove, analogously, that ϕ′ 6∈ Γ cannot be the case.

⇐: Similar proof, using the tautology ¬(ϕ ∧ ϕ′ ∧ ¬(ϕ ∧ ϕ′)).

The following lemma proves that worlds in the canonical model are coherently connected.
The interesting part of the proof is to prove that if a K-MCS includes the formula Kaϕ,
then all the states connected to the state representing that K-MCS must include the
formula ϕ. We follow the same strategy as in the previous lemma. We prove it by
contraposition and use K axiom and NK rule.

Lemma 3.2.3 (Coherently connected states).
Let Γ be K-MCS and ϕ a modal formula. Then, Kaϕ ∈ Γ iff for all ∆ that are K-MCS
if (Γ,∆) ∈ RKa then ϕ ∈ ∆.
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Proof. Let Γ be a K-MCS.

⇒ We assume that Kaϕ ∈ Γ and we consider an arbitrary ∆ such that (Γ,∆) ∈ RKa .
Then, by definition of Γ|Ka and RKa in 3.2.7, it follows that ϕ ∈ ∆.

⇐ We will prove this direction by contraposition. We start by assuming that Kaϕ 6∈ Γ,
and by lemma 3.2.1 it follows that:

¬Kaϕ ∈ Γ. (a1)

Our goal is to prove that:

there exists a K-MCS ∆ such that (Γ,∆) ∈ RKa and ϕ 6∈ ∆. (*)

By proposition 3.2.1 and the definition of RKa , our goal (*) is equivalent to:

there exists a K-MCS ∆ such that {ψ | Kaψ ∈ Γ} ⊆ ∆ and ¬ϕ ∈ ∆ Def. set inclusion⇔

there exists a K-MCS ∆ such that {ψ | Kaψ ∈ Γ} ∪ {¬ϕ} ⊆ ∆ Def. K-MCS (3.2.5) and⇔
lemma 3.2.1

{ψ | Kaψ ∈ Γ} ∪ {¬ϕ} is K-consistent

We will now proceed by proving the following equivalent statement of (*):

{ψ | Kaψ ∈ Γ} ∪ {¬ϕ} is K-consistent. (**)

Assume towards a contradiction that {ψ | Kaψ ∈ Γ} ∪ {¬ϕ} is not K-consistent, then:

there exists {Kaψ1, . . . ,Kaψn} ∈ Γ and `K ¬(ψ1 ∧ . . . ∧ ψn ∧ ¬ϕ). (a2)

By propositional reasoning, it follows that:

`K (ψ1 ∧ . . . ∧ ψn)→ ϕ.

In example 3.2 we proved the lemma RK. This lemma can be generalized to:

`K (ψ1 ∧ . . . ∧ ψn)→ ϕ

`K (Kaψ1 ∧ . . . ∧Kaψn)→ Kaϕ .

Using propositional reasoning:

`K (ψ1 ∧ . . . ∧ ψn)→ ϕ

`K ¬(Kaψ1 ∧ . . . ∧Kaψn ∧ ¬Kaϕ) .

So, {Kaψ1, . . . ,Kaψn,¬Kaϕ} is not K-consistent. This contradicts the assumption that
Γ is K-MCS, because from (a1) and (a2) it follows {Kaψ1, . . . ,Kaψn,¬Kaϕ} ⊆ Γ.
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We have all the ingredients to prove the connection between a formula ϕ being satisfiable
in the canonical model at some K-MCS Γ and ϕ being an element of Γ.

Lemma 3.2.4 (Truth Lemma).
Let ϕ be a modal formula and Γ a K-MCS. (MK,Γ) � ϕ iff ϕ ∈ Γ.

Proof. We prove this lemma by induction on the structure of an arbitrary modal formula
ϕ. The base case, (MK,Γ) � p iff p ∈ Γ for a propositional variable p, follows from the
valuation function defined in 3.2.7 and the interpretation of propositional variables using
Kripke semantics (see def. 2.2.4).

Consider arbitrary modal formula ϕ. Then, for all K-MCS Γ we assume as induction
hypothesis:

(MK,Γ) � ϕ iff ϕ ∈ Γ. (IH)

The inductive cases with boolean operators as the topmost operator follow from lemma
3.2.2 and their interpretation under Kripke semantics (see def. 2.2.4).

The inductive case Kaϕ is proved as follows. Assume for arbitrary ∆ that:

(MK,∆) � Kaϕ
Kripke semantics (def. 2.2.4)⇔

(MK,∆′) � ϕ for all ∆′ such that (∆,∆′) ∈ RKa
IH⇔

ϕ ∈ ∆′ for all ∆′ such that (∆,∆′) ∈ RKa
lemma 3.2.3⇔

Kaϕ ∈ ∆

Theorem 3.2.5 (K soundness and completeness w.r.t. K).
K is complete with respect to the class of all Kripke models K.

Proof. Soundness is straightforward. The completeness proof is presented below.

By Lindenbaum’s lemma (lemma 3.2.1) we know that every K-consistent formula will
be part of a K-MCS. It then follows, by the truth lemma 3.2.4, that every consistent
formula will be satisfiable in the canonical model at the state representing a K-MCS it
belongs to. We summarize this below:

K-consistent ϕ lemma 3.2.1=======⇒ exists a K-MCS Γ and ϕ ∈ Γ lemma 3.2.4=======⇒ (MK,Γ) � ϕ

Therefore, we can use the canonical model to prove that every K-consistent formula is
satisfiable in some Kripke model and, by proposition 3.2.2, conclude that K is complete
with respect to the class of all Kripke models K.
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3.2.4 Soundness and Completeness of S5
The system S5 (table 3.2) extends K with the T axiom (Kaϕ → ϕ) and the 5 axiom
(¬Kaϕ→ Ka¬Kaϕ). All previous results for the minimal normal modal logic K are ap-
plicable to S5, because this system contains all of its rules and axioms. The theorem 3.2.5
refers only to the class of all frames, so we still need to prove that S5 is complete with
respect to the class S5. One way to do it is by proving that the canonical model is a
member of S5.

A theorem ϕ of X is canonical for a frame property P , when ϕ is both valid in all frames
that satisfy P and valid in the canonical model of ϕ. This means that ϕ, besides defining
the class of frames characterized by P , forces the canonical model of X to satisfy the
structural property P . Recall that, in section 3.1, we discussed frame definability and
listed some formulas with the frame property they define (table 3.1). Those formulas are,
as well, canonical for the frame property they define [BdRV01].

Definition 3.2.8 (Canonicity for a property [BdRV01]).
Let ϕ be a modal formula and P be a frame property. Let X be a system such that
ϕ ∈ X . If the canonical model for X is based on a frame that satisfies property P and ϕ
is valid in any classes of frames with property P , then ϕ is canonical for P .

Example 3.4 (Axiom T forces reflexivity in canonical model).
We want to prove that the canonical model for normal modal logic extended with
the axiom T is reflexive.

Consider an arbitrary normal model logic KX, such that:

Kaϕ→ ϕ ∈ KX. (*)

Let MKX = 〈WKX ,RKXa ,VKX〉 be the canonical model of KX and Γ ∈ WKX a
world in this model. Assume that Kaϕ ∈ Γ. Γ is a KX-MCS, so it is easy to see
that (*), implies that Kaϕ → ϕ ∈ Γ. Then, by proposition 3.2.1 and ϕ ∈ Γ, it
follows ϕ ∈ Γ. Finally, by canonical model’s definition (def. 3.2.7), (Γ,Γ) ∈ RKXa .
This means that RKXa is reflexive.

The completeness of S5 follows from the canonicity of the axioms T and 5 for reflexive and
euclidean frames, respectively. This proof technique is called completeness-via-canonicity.

Theorem 3.2.6 (S5 soundness and completeness w.r.t. S5).
S5 is complete with respect to the class of frames S5.

Proof. Soundness follows from both axiom T and 5 being valid in the class S5.

To prove completeness, by proposition 3.2.2, we need to prove that all S5-consistent
formulas are satisfiable in some model based on a frame of the class S5.
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Let ϕ be an arbitrary S5-consistent formula. By lemma 3.2.1 we know that there exists
a S5-MCS Γ such that ϕ ∈ Γ. We need to prove that: (i) ϕ is satisfied in the canonical
model MS5 = 〈WS5,RS5

a ,VS5〉 at the state Γ; (ii) the accessibility relation RS5
a is an

equivalence relation. The first part (i) follows from the truth lemma. The second (ii)
follows from the fact that the T and 5 axioms are canonical for reflexive and euclidean
frames, respectively. Therefore, the accessibility relation in the canonical model, RS5

a , is
an equivalence relation.

3.3 Group Knowledge
In this section we present a finite axiomatization for basic epistemic logic extended with
common knowledge. This contrasts with the infinite nature of its semantic interpretation
presented in the previous chapter (def. 2.4.4). The system we introduce is based on the
view of common knowledge as the greatest fixed-point of what everybody in a group
knows.

3.3.1 Normal modal logic with common knowledge KC

In section 2.4.2 (see example 2.10) we proved that the formulas below are valid:

CGϕ↔ (ϕ ∧EGCGϕ) (Fixed-point)
(ϕ→ EG(ϕ ∧ ψ))→ (ϕ→ CGψ) (Induction)

It turns out that these properties are all we need to extend the syntactic characterization
of basic epistemic logic to accommodate common knowledge.

Definition 3.3.1 (Minimal normal modal logic with common knowledge KC).
Let LKC be the basic epistemic language with common knowledge and n = |Ag|.
The system KC is the minimal modal logic Kn extended with the following axioms
and rule schemes:

General Knowledge (AE). EGA↔
∧
a∈GKaA;

Fixed-Point Axiom (FP). CGA↔ EG(A ∧CGA);

Induction Rule (IC).
A→ EG(C ∧B)

A→ CGB
IC .

We prove, in theorem 3.3.6, that KC is sound and complete with respect to the class of all
Kripke models, for the epistemic language LKC. This proof follows the same structure as
the proof presented earlier for basic epistemic logic (theorem 3.2.5). The main difference
is that the maximally consistent sets used in the canonical model need to be of finite
size, because KLKC is not compact. We can see this with the set below:

S = {EnGϕ | n ∈ N} ∪ {¬CGϕ}.
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If the group G has two or more agents, then all S finite subsets are satisfiable while S is
not satisfiable.

Example 3.5 (Compactness and Canonical Model).
Why do we need a compact logic to use the canonical model, as in definition 3.2.7, to
prove a completeness result?

We proved that the minimal modal logic K is complete with respect to the class of
all Kripke models (theorem 3.2.5), by means of a truth lemma (lemma 3.2.4). This
lemma tell us that the canonical model, which consists of coherently connected K
maximally consistent sets (K-MCS), satisfies a given formula iff the formula belongs
to some K-MCS. Now, recall that an infinite set of formulas is consistent with respect
to an axiomatic system (def. 3.2.4) iff each of its finite subsets is consistent, as well.

Let X be a system that we want to prove to be complete with respect to a semantic
characterization that is not compact. We assume that we follow the same structure
as in the proof of the theorem 3.2.5. In particular, we assume that we proved already
(i) soundness, (ii) the Lindenbaum’s lemma for X and (iii) a truth lemma. Let S be
an infinite set of its sentences that is not satisfiable while its finite subsets are. By
soundness (i), all of S finite sets are X -consistent and thus, S is X -consistent as well.
Therefore, given the Lindenbaum’s lemma for X (ii), S is a set Γ that is a X -MCS.
We could, then, use the truth lemma (iii) to show that S is satisfied in the canonical
model at Γ. This is a contradiction, because there should be no model for that set.

Instead of looking at all well-formed formulas in the language to build a large canonical
model, which satisfies all consistent formulas, we restrict our attention to a finite set of
formulas defined with respect to the formula we want to prove satisfiable. We call this
set the closure of that formula (def. 3.3.2). The maximally consistent sets, used as the
building blocks of the canonical model, are subsets of it. Therefore, we must ensure that
it has all formulas we need in the maximally consistent sets to prove a truth lemma later.
This means that, the closure of a formula ϕ should include, for instance, all subformulas
of ϕ and all formulas that can be obtained from these by the application of inference
rules of the system we want to prove to be complete.

Definition 3.3.2 (Closure of ϕ for KC [FHVM95]).
Let ϕ ∈ LKC and Sub(ϕ) the set of all subformulas of ϕ. We denote by ClC(ϕ) the
closure of ϕ for LKC, as the smallest set defined inductively as follows:

• if ψ ∈ Sub(ϕ), then ψ ∈ ClC(ϕ);

• if CGψ ∈ ClC(ϕ), then {EG(ψ ∧CGψ), ψ ∧CGψ, Ka(ψ ∧CGψ), Kaψ} ∈ ClC(ϕ),
for all a ∈ G;

• if EGψ ∈ ClC(ϕ), then Kaψ ∈ ClC(ϕ), for all a ∈ G;
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• if ψ ∈ ClC(ϕ) and ψ is not negated, then ¬ψ ∈ ClC(ϕ).

It is easy to prove that the closure as defined above is a finite set. It follows, then, that
all KC-MCS in ClC(ϕ) (def. 3.2.5), for any formula ϕ ∈ LKC, are finite sets and that
there are only a finite number of such sets. Thus, the KC’s canonical model for ϕ in
ClC(ϕ) (def. 3.2.7) is of finite size, too.

We define below the encoding of KC-MCS into a formula, which can be used to define an
encoding with all the canonical model worlds that include a given formula ϕ. We call the
later characteristic of ϕ .

Definition 3.3.3 (X -MCS encoding into a formula [FHVM95]).
Let Γ be a X -MCS in a finite set Φ. We denote by Γ the encoding of Γ into a formula,
defined as Γ

def
≡

∧
ϕ∈Γ ϕ.

Definition 3.3.4 (Characteristic of formula [FHVM95]).
Let ϕ be a modal formula,M a canonical model in a finite set Φ and W the set of its
worlds. We denote by [ϕ]M the set of all worlds inM that satisfies ϕ, which is defined
as follows:

[ϕ]M def= {∆ ∈ W | (M,∆) � ϕ}.

We define the formula that characterizes ϕ in that modelM as follows:

χM
ϕ

def
≡

∨
∆∈[ϕ]M

∆.

IfM is clear from the context, then we denote them by [ϕ] and χϕ, respectively.

Given that our canonical model is finite, then the characteristic of formula will be a
well-formed LKw formula. We prove below that the this characterization is deductively
closed and complete.

Proposition 3.3.1.
Let ϕ be a modal formula andMKCΦ = 〈WKCΦ , {RKCa | a ∈ Ag},VKC〉 the canonical model
in Φ = ClC(ϕ).

(1) if ϕ ∈ Φ and Γ ∈ WKCΦ , then ϕ ∈ Γ iff `KC Γ→ ϕ;

(2) `KC
∨

∆∈WKC
Φ

∆.

(3) if ϕ ∈ Φ, then `KC χϕ ↔ ¬χ¬ϕ.
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Proof. (1) We assume that ϕ ∈ Φ and Γ ∈ WKCΦ .
⇒: Assume ϕ ∈ Γ, then Γ = . . . ∧ ϕ ∧ . . .. By propositional reasoning, it follows
that `KC Γ→ ϕ.
⇐: Assume `KC Γ → ϕ. By propositional reasoning, `KC ¬(Γ ∧ ¬ϕ). Therefore,
{Γ,¬ϕ} is not KC-consistent. From the assumption that Γ ∈ WKCΦ , then Γ is a
KC-MCS. Thus, ¬ϕ 6∈ Γ. This together with ϕ ∈ Φ entails that ϕ ∈ Γ.

(2) Assume towards a contradiction that 6`KC
∨

∆∈WKC
Φ

∆. By propositional reason-
ing, this is equivalent to 6`KC ¬(

∧
∆∈WKC

Φ
¬∆). Thus, Θ = {¬∆ | ∆ ∈ WKCΦ } is

KC-consistent. This is equivalent to:

Θ = {
∨
ϕ∈∆
¬ϕ | ∆ is a KC-consistent in Φ} is KC-consistent.

Therefore, for all ∆ that is a KC-consistent in Φ there exists a ϕ∆ ∈ ∆ such that
the following set is KC-consistent, as well:

Θ′ = {¬ϕ∆ | ∆ is a KC-consistent in Φ}.

Note that Θ′ ⊆ Φ and that we can prove a Lindenbaum’s lemma for KC consistent
sets in Φ similar to lemma 3.2.1. Given these, it follows that there exists a
KC-MCS in Φ that contains Θ′. However, this is a contradiction, because Θ′, by
its construction, is inconsistent with all KC-MCS in Φ.

(3) Consequence of (2).

3.3.2 Soundness and Completeness of KC and S5C
In the results that follow, given a formula ϕ ∈ LKC, we consider the structures and
abbreviations below:

• Sub(ϕ) as the set with all ϕ subformulas;

• Φ = ClC(ϕ) as its closure;

• MKCΦ = 〈WKCΦ , {RKCa | a ∈ Ag},VKC〉 as the canonical model of KC in Φ.

Below we prove that, although we restrict the domain of KC-MCS to the closure of a
formula, they still have the compositional properties we need to prove the truth lemma
(lemma 3.3.5) later.

Lemma 3.3.1.
Let ϕ ∈ LKC and Γ a KC-MCS in ClC(ϕ).

(1) if ψ ∈ ClC(ϕ), then ψ ∈ Γ iff ¬ψ 6∈ Γ.
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(2) if ψ ∈ ClC(ϕ), {ψ1, . . . , ψn} ⊆ Γ and `KC (ψ1 ∧ . . . ∧ ψn)→ ψ then ψ ∈ Γ.

(3) if ψ ∧ ψ′ ∈ ClC(ϕ), then ψ ∧ ψ′ ∈ Γ iff ψ ∈ Γ and ψ′ ∈ Γ.

Proof. Analogous to proof of proposition 3.2.1 and lemma 3.2.2.

In addition we prove that KC-MCS, restricted to the closure of a formula, are coherently
connected w.r.t. modal operators Ka and EG. To prove the EG case we use the general
knowledge axiom (AE).

Lemma 3.3.2 (KC-MCS are coherently connected).
Let ϕ ∈ LKC be a formula and Γ be a KC-MCS in Φ.

(1) if Kaψ ∈ ClC(ϕ), then Kaψ ∈ Γ iff for all ∆ ∈ WKCΦ if (Γ,∆) ∈ RKCa then ψ ∈ ∆;

(2) if EGψ ∈ ClC(ϕ), then EGψ ∈ Γ iff for all a ∈ G, Kaψ ∈ Γ.

Proof. Consider an arbitrary ϕ ∈ LKC and its closure Φ = ClC(ϕ). Let G ⊆ Ag be a
group of agents. We assume, in all proofs that follow, that Γ is a KC-MCS in Φ.

(1) Note that, if Kaψ ∈ Φ then {Kaψ,ψ,¬Kaψ,¬ψ} ⊆ Φ. Given this, the proof is
analogous to the proof of lemma 3.2.3.

(2) Assume that EGψ ∈ Φ. It is easy to prove that, for all a ∈ G, {Kaψ,¬Kaψ} ⊆ Φ.
⇒: Assume that EGψ ∈ Γ. Assume towards a contradiction that there exists
a′ ∈ G such that:

Ka′ψ 6∈ Γ.

Then, by (1) and (2):
¬

∧
a∈G

Kaψ ∈ Γ.

Using the axiom for general knowledge and propositional reasoning:

`KC ¬(EGψ ∧ ¬
∧
a∈G

Kaψ).

Therefore, the subset {Kaψ | a ∈ G \ {a′}} ∪ {¬Ka′ψ} ∪ {EGψ} of Γ is not
KC-consistent, which contradicts our initial assumption that Γ is a KC-MCS.
⇐: Assume that Kaψ ∈ Γ, for all a ∈ G. Then, by lemma 3.3.1:∧

a∈G
Kaψ ∈ Γ.

If we consider, in addition, the axiom for general knowledge (AE) and lemma 3.3.1,
it follows that EGψ ∈ Γ.
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To prove that canonical model worlds are coherently connected w.r.t. the CG is more
complicated. Recall that common knowledge axiomatization is based on its view as the
fixed-point of f(ϕ) = EG(ϕ ∧ f(ϕ)). Our strategy is to use the characteristic formula of
CGϕ to prove this result.

Lemma 3.3.3 (χCGϕ).
Let ϕ ∈ LKC be a formula, Φ = ClC(ϕ) be its closure and M =MKCΦ be its canonical
model for KC in Φ. If CGψ ∈ ClC(ϕ), then for all ∆ ∈ [CGψ]M and Θ ∈ [¬CGψ]M:

(1) 6`KC ∆→ Kaψ iff there exists ∆′ ∈ WKCΦ such that ∆Ra∆′and ψ 6∈ ∆′;

(2) `KC ∆→ Ka¬Θ.

Proof. Consider an ϕ ∈ LKC and CGψ ∈ ClC(ϕ). Then, by definition of ClC(ϕ):

{CGψ, EG(ψ ∧CGψ), ψ ∧CGψ} ∪ {Ka(ψ ∧CGψ), Kaψ | a ∈ G} ⊆ ClC(ϕ). (*)

(1) Consider a ∆ ∈ [CGψ]M, then ∆ is a KC-MCS in ClC(ϕ).

6`KC ∆→ Kaψ
Propositional reasoning⇔

6`KC ¬(∆ ∧ ¬Kaψ) def. 3.2.5⇔
(*)

¬Kaψ ∈ ∆ lemma 3.3.1⇔

Kaψ 6∈ ∆ lemma 3.3.2⇔
(*)

there exists ∆′ ∈ WKCΦ , ∆R∆′and ψ 6∈ ∆′.

(2) Consider Θ ∈ [¬CGψ]. Given the equivalences below, Θ is not G-reachable from
any ∆ ∈ [CGψ].

[¬CGψ]
def
≡ {Θ | (MKCΦ , Θ) � ¬CGψ}

lemma 2.4.3⇔

{Θ | there exists Θ′ G-reachable from Θ and (MKCΦ , Θ′) 6� ψ} def. 2.4.3⇔
def. 3.3.4

{Θ | Θ is not G-reachable from ∆ ∈ [CGψ]}

In particular, (∆,Θ) 6∈ RKCa . By definition of canonical model (def. 3.2.7), this
means that, there exists a formula ψ′ such that Kaψ

′ ∈ ∆ but ψ′ 6∈ Θ. Therefore,
as Kaψ

′ ∈ ∆ then ψ′ ∈ ClC(ϕ) and, by lemma 3.3.1, ¬ψ′ ∈ Θ. It follows then:

`KC Θ→ ¬ψ′ Prop. reasoning⇔

`KC ψ′ → ¬Θ NK lemma⇔
`KC Kaψ

′ → Ka¬Θ ⇔
Prop. reasoning

`KC ∆→ Ka¬Θ
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Lemma 3.3.4 (KC-MCS and common knowledge).
Let ϕ ∈ LKC be a formula,MKCΦ = 〈WKCΦ , {RKCa | a ∈ Ag},VKC〉 be the canonical model
of ϕ in Φ, and Γ ∈ WKCΦ be a KC-MCS in Φ. If CGψ ∈ Sub(ϕ), then:

CGψ ∈ Γ iff for all ∆ ∈ WKCΦ ,

if ∆ is G-reachable in k ≥ 1 steps inMKCΦ from Γ, then {ψ,CGψ} ⊆ ∆.

Proof. Consider an arbitrary ϕ ∈ LKC and its closure Φ = ClC(ϕ). Let G ⊆ Ag be a
group of agents. We assume, in all proofs that follow, that Γ is a KC-MCS in Φ and that
CGψ ∈ Sub(ϕ). Then, by definition of ClC(ϕ) (def. 3.3.2):

{CGψ, EG(ψ ∧CGψ), ψ ∧CGψ} ∪ {Ka(ψ ∧CGψ), Kaψ | a ∈ G} ⊆ Φ. (*)

⇒: Assume that (r1) CGψ ∈ Γ. We will prove by induction in k that, for all ∆ ∈ WKCΦ :

if ∆ is G-reachable in k ≥ 1 steps inMKCΦ from Γ, then {ψ,CGψ} ⊆ ∆. (†)

We use the fixed-point axiom (FP) to prove the base case, k = 1. Given (*), (r1) and
`KC CGψ → EG(ψ ∧CGψ) (FP), then, by lemma 3.3.1, EG(ψ ∧CGψ) ∈ Γ. We can use
the results proved in the previous lemma, to show that:

for all a ∈ G, for all ∆ ∈ WKCΦ , if (Γ,∆) ∈ RKCa , then {ψ,CGψ} ⊆ ∆.

This is equivalent to (†) for k = 1, by the definition of G-reachability (def. 2.4.3) and
generalized union.

We assume as induction hypothesis that (†) holds for k. Additionally, we consider an
arbitrary ∆ ∈ WKCΦ and assume that:

∆ is G-reachable in k + 1 steps inMKCΦ from Γ.

By the definition of G-reachability, the previous is equivalent to:

there exists a path (Γ, S1, . . . , Sk,∆) inMKCΦ . (r2)

Therefore, we can apply the induction hypothesis to the state Sk, as it is G-reachable
from Γ in k steps, and conclude that {ψ,CGψ} ⊆ Sk. As CGψ ∈ Sk, we can apply the
same reasoning as in the base case, and conclude that, for all ∆′ ∈ WKCΦ :

if ∆′ is G-reachable in 1 step inMKCΦ from Sk, then {ψ,CGψ} ⊆ ∆′.

∆ is G-reachable from Sk in one step, due to (r2). Thus, {ψ,CGψ} ⊆ ∆.

⇐: Assume that, for all ∆ ∈ WKCΦ :

if ∆ is G-reachable in k ≥ 1 steps inMKCΦ from Γ, then {ψ,CGψ} ⊆ ∆. (l1)
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We want to prove that CGψ ∈ Γ.

We use the characteristic formula of CGϕ (def. 3.3.4) to prove the following:

`KC χCGψ → EG(ψ ∧ χCGψ).

Given the definition of χCGψ (def. 3.3.4) and the axiom for general knowledge in KC
(AE), then the previous is equivalent to:

for all ∆ ∈ χCGψ and a ∈ G, `KC ∆→ Ka(ψ ∧ χCGψ).

We prove earlier, in example 3.2, that Ka distributes over conjunction. Thus, the previous
is equivalent to:

for all ∆ ∈ χCGψ and a ∈ G, `KC ∆→ Kaψ ∧KaχCGψ.

By propositional reasoning, this means that we need to prove the following two statements,
for all ∆ ∈ χCGψ and a ∈ G:

(i) `KC ∆→ Kaψ and (ii) `KC ∆→ KaχCGψ.

In what follows we consider an arbitrary ∆ ∈ χCGψ and a ∈ G.

We assume, towards a contradiction that (i) does not hold. By lemma 3.3.3, there exists
∆′ ∈ WKCΦ such that ∆Ra∆′ and ψ 6∈ ∆′. Given our assumption l1 and the fact that ∆′
is G-reachable from ∆, then {ψ,CGψ} ⊆ ∆′. This is a contradiction, because before we
said that ψ 6∈ ∆′. Therefore, `KC ∆→ Kaψ holds.

By 3.3.1, we can prove `KC ∆ → KaχCGψ by proving instead `KC ∆ → Ka¬χ¬CGψ.
This is equivalent to the statement proved in 3.3.3:

for all Θ ∈ χ¬CGψ and a ∈ G, `KC ∆→ Ka¬Θ.

Thus, `KC χCGψ → EG(ψ ∧ χCGψ). and, by application of the IC rule, it follows
`KC χCGψ → CGψ.

We want to prove that Γ ∈ [CGψ], i.e. that (MKCΦ ,Γ) � CGψ. Assume towards a
contradiction that is not the case, then there exists a G-path (Γ, s1, . . . , sn−1,∆), with
n ≥ 1, such that (MKCΦ ,∆) � ¬ψ. In particular, we have that (MKCΦ , sn−1) � ¬Kaψ, for
some a ∈ G. By 3.3.2, this means that, for some a ∈ G, there exists a ∆′ such that
sn−1Ra∆′ and ψ 6∈ ∆′. Note that such ∆′ is G-reachable from Γ and this contradicts our
initial assumption (l1).

By Γ ∈ [CGψ] and (*), then `KC Γ→ χCGψ. Together with `KC χCGψ → CGψ it follows
that `KC Γ→ CGψ. By proposition 3.3.1, then CGψ ∈ Γ.

We can use all the previous lemmas to prove the following truth lemma.
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Lemma 3.3.5 (Truth Lemma).
Let ψ ∈ LKC, Φ = ClC(ψ) the closure of ψ andMKCΦ be the canonical model of KC in Φ.
For all Γ that are KC-MCS in Φ and ϕ ∈ Sub(ψ), (MKC ,Γ) � ϕ iff ϕ ∈ Γ.

Proof. We prove it by induction on ϕ ∈ LKC. The base case follows from definition
of canonical model (def. 3.2.7). The inductive cases for the boolean operators and the
knowing that operator (Ka), can be proved as in the previous section using lemma 3.3.1
and lemma 3.3.2, respectively. For the general knowledge and common knowledge we use
lemma 3.3.2 and lemma 3.3.4, respectively.

Theorem 3.3.6 (KC soundness and completeness w.r.t. K).
KC is sound and complete with respect to the class of all Kripke models K.

Proof. The soundness follows trivially from the proofs in the example 2.10.

We can use the canonical model, as we did in theorem 3.2.5, to prove that every
KC-consistent formula is satisfiable in some Kripke model. By proposition 3.2.2, it follows
that KC is complete with respect to the class of all Kripke models K. We can prove that,
by proving a Lindenbaum’s lemma for KC, similar to lemma 3.2.1. Then, by the truth
lemma 3.3.5, every consistent formula is satisfiable in the canonical model at the state
representing a K-MCS it belongs to.

For completeness result for S5C we need to modify the accessibility relation in the
canonical model to be an equivalence relation. This is nicely proved in [vDvdHK07].

Theorem 3.3.7 (S5C soundness and completeness w.r.t. S5 [vDvdHK07]).
S5C is sound and complete with respect to the class of all Kripke models S5.

3.4 Paradox: Agents’ Knowledge and Moore’s Sentences

Moore’s sentences are of the form ‘It is raining, but I don’t believe it is raining.’. If
we assume that someone asserting a statement implies that he believes in that same
statement, then asserting a Moore’s sentence is paradoxical. In [Hin62], Hintikka provides
an analysis of such sentences involving both the concepts of belief and knowledge. He uses
his system to prove that it is inconsistent for an agent to believe in a Moore’s sentence if
it involves their own beliefs.

We consider an analogous to Moore’s sentences involving only knowledge. We present
below a T -proof, based on [Hin62], for the fact that Moore’s sentences cannot be known.
Therefore, we prove that `T ¬Ka(C∧¬KaC). In order to improve the proof’s readability
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we refer to lemmas presented in example 3.2.

T -proof:
1. Ka(¬KaC)→ ¬KaC Axiom T
2. Ka(C ∧ ¬KaC)→ (KaC ∧Ka¬KaC) Dist
3. Ka(C ∧ ¬KaC)→ (KaC ∧ ¬KaC) PL5(1, 2)
4. ¬(KaC ∧ ¬KaC)→ ¬Ka(C ∧ ¬KaC) PL1(3)
5. ¬(KaC ∧ ¬KaC) Taut
6. ¬Ka(C ∧ ¬KaC) MP(4, 5)

In [HII10] the authors establish a connection between Moore’s sentences an unsuccessful
announcements. An announcement is unsuccessful, if the sentence announced becomes
false after its announcement.
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CHAPTER 4
Knowing Whether and Ignorance

In this chapter we present a modal logic that captures epistemic notions of ignorance and
its dual to know whether. In some epistemic puzzles, like the muddy children presented
in chapter 2, ignorance is repeatably announced by the agents until some of them knows
whether a given proposition holds. This motivated us to have a close look at these
epistemic notions and investigate how are they related with the notion of knowing that.

We start the chapter by discussing our definition of ignorance. Afterwards, in section 4.2,
we present the state of the art on formal characterization of knowing whether and
ignorance using modal logic. In the next section we introduce a logic for knowing whether,
as in [FWvD15]. The main goal of that section is to develop intuitions about this
non-normal logic. Therefore, we complement the technical introduction with examples.
Finally, in the last section we use this logic to prove that, given two agents and a fixed
proposition, there are uncountably many distinct states of knowledge. This result was
proved before in [HHS96] using information structures. Here we prove it using Kripke
structures.

4.1 What is Ignorance?

The definition of ignorance adopted in this work is motivated by epistemic scenarios in
which an agent does not know the answer to a ‘know whether question’. Therefore, an
agent being ignorant about some statement, Iaϕ, is the opposite of that agent knowing
whether that statement holds, Kwaϕ.

Definition 4.1.1.
We define below knowing whether in terms of knowing that and ignorance in terms of
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knowing whether, as follows:

Kwaϕ
def
≡ Kaϕ ∨Ka¬ϕ

Iaϕ
def
≡ ¬Kwaϕ.

Example 4.1 (Ignorance vs. Not knowing that).
Cat does not know whether Bert is currently visiting Lisbon. She was not paying
attention when Bert told her about his trip and she does not want him to know that.
Thus, instead of asking him directly about his location, she decides to ask about the
weather conditions in Lisbon. She knows that the only reason for him to not be
ignorant about the weather there is if he is there.

If Cat decides to ask Bert if he knows that it is raining in Lisbon, then he can be
there and still answer truthfully that he does not know that. As he may know that it
is sunny, instead. Therefore, this question fails to test his ignorance on this matter.
Cat should ask whether he knows if it is raining there. In this case, Bert’s answer
will allow Cat to infer whether he is currently in Lisbon.

It is not the concern of this thesis to elaborate on either linguistics or philosophical
justifications for the definitions just presented. It is, nevertheless, relevant to have an
overview of the current discussions in epistemology on this matter.

Ignorance is defined by Oxford dictionary as ‘Lack of knowledge or information.’ This
view is widely accepted by epistemologists [LM13] and it is referred as the ‘standard
view’. In [Kyl15] the duality between ignorance and knowledge, with respect to this view,
is summarized as follows:

On the standard view, knowledge and ignorance are mutually exclusive
and jointly exhaustive; they are contraries and contradictories. (...) The
theory can be stated as necessary and sufficient conditions for ignorance:

Standard View: For any truth P, S is ignorant of the fact that P if and
only if S does not know that P.

Recently Peels challenged the standard view by defining ignorance as the absence of
true belief [Pee10]1. While arguing in favor of the standard view Le Morvan identifies
two notions of ignorance [LM13]: propositional and factative. Later, in [LM15], he
defends that ignorance is a failure of knowing of, instead of a failure of knowing that.
The following quote clarifies his view:

1In epistemic logic, knowledge is defined as true belief. This is not the case in epistemology.
Gettier-cases are counterexamples for this definition (see [Ste17]).
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Accordingly, on the intuitive idea that knowledge and ignorance are
complements, the complement of ignorance of a proposition p is not knowledge
that p but rather knowledge of p—an acquaintance with or knowledge of an
entity, where the entity in question is a proposition. Such acquaintance or
knowledge may be occurrent (as when one is conscious of it) or dispositional
(as when one retains it in memory). It requires the deployment of concepts
in the grasping or comprehension (whether occurrent or dispositional) of a
proposition. Knowledge of p is required to have—and is therefore entailed
by, and a precondition of—any propositional attitude in relation to p such
as believing that p, considering that p, doubting that p, hoping that p, or
knowing that p.

It is not clear to us if this can still be considered the standard view, because the standard
view definition presented in [Kyl15] defines ignorance as the failure of knowing that.

The stance we adopt in this work is classified in [Fan16] as the ‘logical view’, in which
ignorance is defined as the contingent counterpart of knowing that. A proposition is
contigent when it is neither necessarily true nor necessarily false, likewise a proposition
is non-contingent when it is either necessarily true or necessarily false. Given that
we interpret knowing that as a necessity operator, then it is easy to understand how
the concepts knowing whether and ignorance are related with non-contingency and
contingency, respectively.

4.2 State of the Art
Ignorance is barely mentioned in the current literature on epistemic logic, and only recently
the relation between ignorance and contingency was established [FWvD15,vDF16,CL16].

Contingency modal logic, first introduced in [MR66], investigates the logic with the sole
primitive operator ∆ with the intended reading of ‘it is non-contingent whether...’. Its
dual is denoted by ∇. In [H+95] an infinite axiomatization for the class of all frames
and for the class of serial frames is presented. Later, a finite axiomatization is proposed
in [Kuh95], which includes a system for transitive frames. In [Zol99], the authors introduce
a finite axiomatization that looks alike the system for minimal normal modal logic as in
definition 3.2.1. We present the finite axiomatizations on table 4.1.

A propositional modal logic for ignorance is introduced in [vdHL04]. Its defined over a
language that considers only one primitive modal operator Ia, for each agent a, read as
‘the agent a is ignorant about ...’. Ignorance is interpreted as the contingent counterpart
of knowledge. However, the authors seem to not be aware of the work done previously in
contingent modal logic. They prove that their deductive system (in table 4.2) is sound
and complete with respect to the class of all Kripke models, by defining an appropriate
canonical model. Additionally, they a sound and complete axiomatization is shown for
the class of transitive frames, by extending the system for ignorance with a new axiom
scheme. However, in [FWvD15] they present a counter example for the validity of this
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[Kuh95] [Zol99]

Axioms: All instances of propositional tautologies
∆¬A→ ∆A ∆A↔ ∆¬A
∆A ∧∇(A ∧B)→ ∇B ∆(A↔ B)→ (∆A↔ ∆B)
∆A ∧∇(A ∨B)→ ∆(¬A ∧ C) ∆A→ (∆(A→ B) ∨∆(A→ C))

Rules:
` A
` ∆A

Nec∆
` A↔ B

` ∆A↔ ∆B
A A→ B

B
MP

Table 4.1: Minimal contingent modal logic systems by [Kuh95] and by [Zol99].

Axioms: All instances of propositional tautologies
Iϕ↔ I¬ϕ
I(ϕ ∧ ψ)→ (Iϕ ∨ Iψ)
(¬Iϕ ∧ I(α1 ∧ ϕ)) ∧ ¬I(ϕ→ ψ) ∧ I(α2 ∧ (ϕ→ ψ))→ (¬Iψ ∧ I(α1 ∧ ψ))
(¬Iψ ∧ Iα)→ (I(α ∧ ψ) ∨ I(α ∧ ¬ψ))

Rules: Substitution of equivalents
` ϕ

` ¬Iϕ ∧ (Iα→ I(α ∧ ϕ))
RI

ϕ ϕ→ ψ

ψ
MP

Table 4.2: Axiomatization of ignorance by [vdHL04].

axiom scheme over the class of transitive frames. The main problem with this approach
is that it mostly an ad hoc solution with axioms that are difficult to interpret, specially
in epistemic terms.

In [vDF16] they present a contingency logic with a non-contingent operator as the only
primitive operator. They axiomatize contingency logic over different classes of frames
based on an almost definable schema for necessity, define in a previous work [FWvD14].
In addition they introduce dynamic operators in the context of contingency logics by
extending the basic contingency logic with public announcements and later introducing
action models in this context. A contingency logic with arbitrary announcements (ACLA)
is proposed in [vDF16].

4.3 A Logic for Knowing Whether and Ignorance

4.3.1 Semantics

We define a propositional modal language with one non-contingent modal operator Kwa,
for each a ∈ Ag.
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Definition 4.3.1 (Knowing whether language LKw).
Let At be a countable set of atomic propositions and Ag a finite set of agent symbols. The
language for knowing whether, LKw(At,Ag), is defined by the following BNF grammar,
where p ∈ At and a ∈ Ag:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kwaϕ.

We read Kwaϕ as ‘agent a knows whether ϕ’. Ignorance is defined as the negation of
knowing whether, i.e. Iaϕ

def
≡ ¬Kwaϕ.

Definition 4.3.2 (Truth interpretation of LKw formulas in Kripke semantics).
Let M = 〈W, {Ra | a ∈ Ag},V〉 be a Kripke model and w ∈ W a world. The truth
interpretation for formula ϕ ∈ LKw in the pointed model (M, w) is the same as in
def. 2.2.4 for boolean connectives and propositional variables. In addition, knowing
whether is interpreted as follows:

(M, w) |= Kwaϕ iff for all v, v′ ∈ W such that wRav and wRav′ then
(M, v) |= ϕ iff (M, v′) |= ϕ.

As a consequence, Iaϕ is interpreted as follows:

(M, w) |= Iaϕ iff there exists v, v′ ∈ W such that wRav and wRav′ and
(M, v) |= ϕ and (M, v′) |= ¬ϕ.

Example 4.2 (Non-distributivity of Kwa).
We use the modelMdist defined below to prove that Kwa does not distribute over
conjunction, i.e.

(Mdist, w1) 6� Kwa(p ∧ q)→ (Kwap ∧Kwaq).

For i ∈ {1, 2}, (Mdist, wi) � ¬(p ∧ q), then (Mdist, wi) � Kwa(p ∧ q). However,
(Mdist, w1) � ¬Kwap and (Mdist, w1) � ¬Kwaq, because they have different valua-
tions at w1 and w2. Thus, (Mdist, w1) 6� Kwap ∧Kwaq.

p,¬q

w1

¬p, q

w2

a

Figure 4.1: Counter example for distributivity of Kwa over conjunction,Mdist.
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This model proves that Kwa does not distribute over disjuction as well, i.e.

6� Kwa(p ∨ q)→ (Kwap ∨Kwaq).

We start by proving that the logic of knowing whether over the class K, KLKw , is a modal
logic (def. 3.2.1). From its interpretation of boolean operators, it is easy to see that
it contains all propositional tautologies and it is closed under modus ponens. Below
we prove that it is closed under uniform substitution, as well. We denote by ϕ[ψ/p] a
uniform substitution of ϕ, i.e. we replace all occurrences of p in ϕ by ψ. We can prove
that given a counter-exampleM for the validity of ϕ[ψ/p], then we can changeM such
that p is true at all worlds ofM that satisfy ψ. The new model is a counter-example for
the validity of ϕ.

Proposition 4.3.1 (KLKw is closed under uniform substitution [FWvD15]).
Let ϕ,ψ ∈ LKw and p ∈ At. If � ϕ then � ϕ[ψ/p].

Proof. We prove its contrapositive form, i.e. that for all ϕ,ψ ∈ LKw and p ∈ At,
if 6� ϕ[ψ/p] then 6� ϕ. By definitions 2.2.5 and 2.2.4, we need to show that, (∗) if there
exists a pointed Kripke model (M, w) such that (M, w) � ¬ϕ[ψ/p] then (M′, w′) � ¬ϕ.

Assume arbitrary ψ ∈ LKw, p ∈ At,M = 〈W, {Ra | a ∈ Ag},V〉 and w ∈ W . Consider a
Kripke modelM′ that is the same asM except for the valuation function V ′ that assigns
to the variable p all worlds that satisfy ψ, i.e. V ′(p) = {v | v ∈ W and (M, v) � ψ}.
We can prove, by induction in LKw formulas, that (M, w) � ϕ iff (M′, w) � ϕ[ψ/p] and
use this result to prove (∗).

The logic KLKw is not a normal modal logic (def. 3.2.1), because the formula
Kwa(p→ q)→ (Kwap→ Kwaq) is not valid. The Kripke model Mnormal (fig. 4.2)
is a counter example for the validity of this formula. It is easy to check that, for i ∈ {1, 2},
(Mnormal, wi) � p→ q and (Mnormal, wi) � ¬p. Thus, (Mnormal, w1) � Kwa(p→ q) and
(Mnormal, w1) � Kwap. However, q has a different valuation in world w1 and w2, so
(Mnormal, w1) 6� Kwaq.

¬p, q

w1

¬p,¬q

w2

a

Figure 4.2: Counter example for KLKw being a normal modal logic,Mnormal.

Example 4.3 (How to know whether ϕ?).
The axiom K (Ka(ϕ → ψ) → (Kaϕ → Kaψ)), together with the application
of modus ponens, allow us to derive formulas with Ka as the topmost operator.
We can think of this axiom as describing a strategy for an agent to get to know that
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a given ϕ holds. For example, if Cat knows that ‘if Bert is on holidays then he is
Lisbon’, then she only needs to know that he is on holidays to know that he is in
Lisbon.

The valid formula (*) Kwa(ϕ→ ψ) ∧Kwa(¬ϕ→ ψ)→ Kwaψ, has a similar role
in the logic of knowing whether. Consider the example below, from [Fan16]:

As another example, suppose Jay submitted a paper to a conference
a couple of months ago and he learns that his friend b also submitted
a paper. Now Jay wonders whether his submission is accepted. But it
is embarrassing to ask directly the programme chair who has decisions
about submitted papers. What can he do? Jay can ask the chair the
following two questions: ‘Is b’s submission or mine accepted?’ ‘If b’s
submission is accepted, then is mine accepted too?’ No matter whether
the chair says ‘Yes’ or ‘No’, Jay will know whether his submission is
accepted and then his ignorance disappears.

Let j stand for ‘Jay’s submission is accepted’ and b for ‘b’s submission is accepted’. We
consider the instance of (*): KwJay(b→ j) ∧KwJay(¬b→ j)→ KwJayj.
After the programme chair’s answers Jay knows whether b’s submission or his
is accepted (KwJay(b ∨ j), which is equivalent to KwJay(¬b → j)); and he knows
whether, if b’s submission is accepted then his is accepted (KwJay(b→ j)). Thus,
by the validity of (*), it follows that Jay knows whether his submission is accepted
(KwJayj).

The fact that Kwaϕ holds at world w captures only the agent’s epistemic state with
respect to ϕ at that world. It does not force the interpretation of ϕ, at the accessible
worlds from w, to a specific value. The counter-examples presented so far are based on
this property. We illustrate it with the following valid formula:

� Kwaϕ↔ Kwa¬ϕ. (4.1)

Example 4.4 (Indistinguishable models).
It is interesting to note that we cannot use formulas with knowing whether (or
ignorance) as topmost operators to distinguish worlds that have at most one accessible
world. Consider the Kripke models below:
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¬p

w1

M1: p

w1

M2: p

w1

M3: ¬p

w2

a
a

Figure 4.3: Kripke models with a trivial interpretation for all formulas in LKw.

For all formulas ϕ ∈ LKw and i ∈ {1, 2, 3}: (Mi, w1) � Kwaϕ and (Mi, w1) � ¬Iaϕ.

The example above show that there are models which cannot be distinguished by LKw
formulas, even though they are clearly distinguishable using LK formulas. A formula
with knowing whether as topmost operator vacuously holds at w, if w has at most one
accessible world. This idea is explored below to prove that, for some class of models,
LKw is less expressive than LK.

Before we prove the result we review the concept of two formulas being equivalent in a
class of frames, and relative expressive power of two logic language over the same class of
frames.

Definition 4.3.3 (Equivalence over a class of frames).
Let F be a class of frames and ϕ,ϕ′ be modal formulas. We say that ϕ is equivalent
to ϕ′ over F, denoted by ϕ ≡F ϕ

′, iff for all F ∈ F and for all pointed models (M, w)
generated by F : (M, w) � ϕ iff (M, w) � ϕ′.

Definition 4.3.4 (Relative expressive power [vDvdHK07]).
Let L1 and L2 be two modal languages that are interpreted in the same class of frames F.

• L2 is at least as expressive as L1, denoted by L1 �F L2, iff for all ϕ ∈ L1 there is a
formula ϕ2 ∈ L2 such that ϕ1 ≡F ϕ2;

• L1 and L2 are equally expressive, denoted as L1 ≡F L2, iff L1 � L2 and L2 � L1;

• L2 is more expressive than L1, denoted by L1 ≺F L2, iff L1 �F L2 but L2 6≡F L1.

Proposition 4.3.2 (Relative expressivity of LK and LKw [FWvD15]).
The basic epistemic language is more expressive than the knowing whether language over
the class of all frames, serial frames, symmetric frames, transitive frames and euclidean
frames. This means that, for all F ∈ {K,Dn,Bn, 4n, 5n}, then LKw ≺F LK.

The basic epistemic language is equally expressive to the knowing whether language over
the class of reflexive frames, i.e. LKw ≡Tn LK.

Proof. We start by proving that for all F ∈ {K,Dn,Bn, 4n, 5n,Tn}, then LKw �F LK.
Using def. 4.1.1 we define inductively a translation of any LKw formula to an equivalent
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LK formula, as follows:

tr(ϕ) =


ϕ if ϕ ∈ At,
tr(ϕ′) if ϕ = ¬ϕ′,
tr(ϕ′) ∧ tr(ϕ′′) if ϕ = ϕ′ ∧ ϕ′′,
Katr(ϕ′) ∨Ka¬tr(ϕ′) if ϕ = Kwaϕ

′.

It is easy to prove that for all ϕ ∈ LKw, tr(ϕ) ∈ LK and ϕ ≡K tr(ϕ). In addition, as
ϕ ≡K tr(ϕ), then ϕ ≡F tr(ϕ) for all F ∈ {K,Dn,Bn, 4n, 5n,Tn}

Now we prove that, for all F ∈ {K,Dn, 4n, 5n}, then LK 6�F LKw. The goal is to
present two pointed models (M, w) and (M′, w′) with accessibility relations that are
serial, transitive and euclidean, such that we can distinguish them using a LK formula
but we cannot do it with a LKw formula. This means that, there exists ϕ ∈ LK such
that (M, w1) � ϕ and (M′, w′1) 6� ϕ, but for all ϕ′ ∈ LKw we have (M, w1) � ϕ′ iff
(M′, w′1) � ϕ′. We use the idea, explored in example 4.4, that LKw formulas cannot
distinguish worlds with at most one accessible world, to build such models.

p

w1

M: p

w2

p

w′1

M′: ¬p

w′2

a
a

a
a

Figure 4.4: Kripke models to prove that LK 6�F LKw, for all F ∈ {K,Dn, 4n, 5n}.

We can use Kap to distinguish (M, w1) from (M′, w′1). We can prove by induction on
LKw formulas, that (M, w1) � ϕ′ iff (M′, w′1) � ϕ′. The propositional case and the
boolean operators cases follow straightforwardly from the fact that w1 and w′1 have the
same valuation function. For the modal operator case, we use the fact that w1 and w′1
have only one accessible world, to prove that (M, w) � Kwaϕ and (M′, w′) � Kwaϕ, for
all ϕ ∈ LKw.

The models in figure 4.5 can be used to prove the same result for symmetric frames, i.e.
that LK 6�Bn LKw.

p

w1

MBn: p

w2

p

w′1

M′Bn: ¬p

w′2

a a

Figure 4.5: Kripke models to prove that LK 6�Bn LKw.

To prove LKw �Tn LK we use the equivalence, in reflexive frames, displayed below to
define an appropriate translation from LKw formulas to LK formulas.

Kaϕ ≡Tn Kwaϕ ∧ ϕ.
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In [FWvD14] they presented the idea of Ka being almost definable with respect to Kwa.
This is based on the observation that, for an agent a, if at w there are two Ra accessible
worlds that can be distinguished using a contingent formula, then Ka can be locally
defined in terms of Kwa.

Proposition 4.3.3 (Almost-definability schema (AD) [FWvD14]).
Let ϕ, χ be formulas in a modal language with both Ka and Kwa modalities, then:

� Iaχ→ (Kaϕ↔ Kwaϕ ∧Kwa(χ→ ϕ)).

Proof. Assume that � Iaχ. Then, by definition 4.3.2 and validity (def. 2.2.5):

for all pointed models (M, w) there exists v, v′ ∈ W such that
wRav, wRav′ and (M, v) |= χ and (M, v′) |= ¬χ. (*)

Consider an arbitrary pointed model (M, w).

⇒: Assume that (M, w) � Kaϕ. By definition 2.2.4, for all v ∈ W if wRav then
(M, v) |= ϕ. By propositional reasoning, for all v ∈ W if wRav then (M, v) |= χ → ϕ.
By definition 4.3.2 and propositional reasoning, (M, w) � Kwaϕ ∧Kwa(χ→ ϕ).

⇐: Assume that (M, w) � Kwaϕ ∧Kwa(χ→ ϕ). By definition 4.3.2 and propositional
reasoning, for all v, v′ ∈ W if wRav and wRav′ then :

(i) (M, v) |= ϕ iff (M, v′) |= ϕ and
(ii) (M, v) |= χ→ ϕ iff (M, v′) |= χ→ ϕ.

By our initial assumption(*) and (ii), there exists v, v′ ∈ W such that wRav and wRav′
and (M, v) |= ϕ and (M, v′) |= ϕ. By (ii) and definition 2.2.4, (M, w) � Kaϕ.

4.3.2 Minimal Non-contingency Logic KWn

Definition 4.3.5 (Minimal non-contingency logic KWn [FWvD15]).
The Hilbert system for the minimal non-contingency logic KWn over LKw, denoted by
KWn, is defined by the following axioms and inference rules schemes, for each a ∈ Ag:

Taut. all instances of classic propositional logic tautologies;

Consistency. Kwa(A→ B) ∧Kwa(¬A→ B)→ KwaB;

Distribution. KwaA→ Kwa(A→ B) ∨Kwa(¬A→ C);

Equivalence. KwaA↔ Kwa¬A;

Modus Ponens.
A A→ B

B
MP ;

62



4.3. A Logic for Knowing Whether and Ignorance

Kw-Necessitation.
A

KwA
KwNec ;

Replacement.
A↔ B

KwA↔ KwB
Repl.

The consistency axiom is explained in example 4.3 and the equivalence axiom is the
formula in 4.1. The distribution axiom tell us what we can derive from a knowing whether
formula. Assume that an agent a knows whether ϕ. Then, he either knows ϕ and as a
consequence he knows that ¬ϕ implies any formula; or he knows ¬ϕ, which means that
he knows that ϕ implies any formula.

We define below, based on the canonical model definition from previous chapter (def. 3.2.7)
and the almost almost-definability schema (def. 4.3.3), the canonical model of KWn.
This is used to prove the completeness of KWn with respect to Kn.

Definition 4.3.6 (Canonical model for KWn).
The canonical model for KWn is the Kripke modelMKW = 〈WKW ,RKWa ,VKW〉 defined
as follows:

• WKW is the set of all maximal consistent sets for KW;

• RKWa is a binary relation over WKW , such that (Γ,∆) ∈ RKWa iff:

– ¬Kwaχ ∈ Γ, and
– for all ϕ and ψ: if Kwaϕ ∧Kwa(χ→ ϕ) then ϕ ∈ ∆;

• VKW(Γ)(p) = true iff p ∈ Γ.

Theorem 4.3.1 (Soundness and completeness of KWn for Kn [FWvD15]).
The system KWn is sound and complete with respect to the class of all frames Kn.

The proposition below tell us that there are frame properties that cannot be defined
(see def. 3.1.1) using LKw formulas. In particular, this means that we cannot use the
completeness-via-canonicity proof technique, as in section 3.2.4, to prove completeness of
a system for the logic of knowing whether over the class of transitive frames.

Proposition 4.3.4 (Undefinable frame properties [Zol99]).
The frame properties of seriality, reflexivity, transitivity, symmetry, and euclidicity are
not definable in LKw.

Definition 4.3.7 (System KWS5n [FWvD15]).
We define the system KWS5n by extending KWn with the following axioms schemes:

KwT. KwaA ∧Kwa(A→ B) ∧A→ KwaB;

Weak Kw5. ¬KwaA→ Kwa¬KwaA.

63



4. Knowing Whether and Ignorance

Theorem 4.3.2 (KWS5n Soundness and completeness w.r.t. S5n [FWvD15]).
The system KWS5n is sound and complete for the class of frames S5n.

4.4 Knowing Whether and Epistemic States

In this section, we address the cardinality of the epistemic state space problem. A state of
knowledge or epistemic state is a maximally consistent set of epistemic formulas. We
prove that, given two agents and a fixed propositional variable, the number of epistemic
states is the same of the continuum.

This result was proved before using information structures, first in [Aum99] and later
in [HHS96]. The proof in [Aum99] uses the notion of knowing that. In [HHS96], they
present a shorter and more elegant proof using only knowing whether formulas to define
the epistemic states. This operator simplifies high-order reasoning, because it does not
force a truth value on the sentence it refers to. We follow the same strategy as in [HHS96]
and prove this result using the logic of knowing whether.

Example 4.5 (Differences in high-order reasoning).
The interpretation of nested knowing that operators is not straightforward, because
the levels are not independent. Note, for example, that `S5n KaKbC → KbC,
because the formula is an instance of axiom T (see table 3.1).

The same does not apply to knowing whether, i.e.

6`S5n KwaKwbC → KwbC.

For the Kripke model below,M, we have:

(M, w1) � KwaKwbp , but (M, w1) 6� Kwbp.

p

w1

¬p

w2

a, b a, b
b

Figure 4.6: Kripke model to prove that different levels of knowing whether are
independent.

The fact that there are uncountable many epistemic states has some interesting implica-
tions. For instance, it means that is it not possible to name all of them. Therefore, we
need to be cautious when we assume that and agent is capable of communicating their
epistemic state or when we assume that an agent knows its epistemic model. Moreover,
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given the soundness and completeness result presented in the previous chapter and the
fact that there is only a countable number of finite models, then there exists epistemic
states that cannot be satisfied by a finite Kripke model.

4.4.1 Countable and Cardinality of the Continuum

We review some notions about the cardinality of sets, adapted from [HJ99]. We follow
the usual definition of size of a set S, denoted by |S|. The cardinality of a set A is less
than or equal to the cardinality of B, denoted by |A| ≤ |B|, if there is a one-to-one
(injective) mapping of A into B. The set A has the same cardinality has the set B,
denoted by |A| = |B|, if |A| ≤ |B| and |B| ≤ |A|. If |A| ≤ |B| but |B| 6≤ |A|, then we say
that |A| < |B|.

Definition 4.4.1 (Countable, uncountable and cardinality of the continuum).
A set S is countable, if |S| = |N|. A set S is uncountable, if |N| < |S|. A set S has the
cardinality of the continuum, if |S| = |R|.

The following two theorems are well-known results in set theory.

Theorem 4.4.1.
The set R is uncountable, i.e. |N| < |R|.

Theorem 4.4.2 (Sets with cardinality of the continuum [HJ99]).
|P(N)| = |{0, 1}N| = |R|.

All languages that we work with in this thesis are countable.

Proposition 4.4.1 (Modal language is countable).
Let L be a modal language, then |L| = |N|.

Proof. All modal formulas are finite. In addition, there is a finite number of operators
and a countable number of propositional variables. Thus, we can define an encoding
of modal formulas to natural numbers that is both a one-to-one (injection) and onto
(surjection) function from L to N.

4.4.2 Cardinality of Epistemic State Space

We are interested in the number of epistemic states, when there is at least two agents. In
our setting, epistemic states correspond to S5n maximally consistent sets (MCS).

Definition 4.4.2 (State space defined by X ).
Let L be a modal language and X a system. The state space defined by X , SX , is the set
of all X -MCS.
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We want to prove that |SS5n | = |R|. The fact that |R| is an upper bound for the cardinality
of epistemic states follows trivially from SS5n ⊆ P(LK). Thus, we need to show that
the cardinality of the continuum establishes, as well, a lower bound. Our strategy is to
define a one-to-one mapping from the set of infinite binary sequences, {0, 1}N, to the set
of all epistemic states. We consider, in particular, the set of all epistemic states defined
by KWS5n. This is not problematic, because by the definition of Kwa (def. 4.1.1) all
LKw formulas can be translated to LK formulas. Thus, by Lindenbaum’s lemma for K
(lemma 3.2.1), there is an S5n-MCS for each KWS5n-MCS.

Our mapping works as follows. We consider two agents, odd and even, and a propositional
variable, p. Each binary sequence is translated to a formula with alternated Kwodd
and Kweven operators. The digits in a sequence define whether the operator is negated.
Then, given a s ∈ {0, 1}N, we collect all translations of initial segments of s in a set. We
formalize this below.

Definition 4.4.3 (Translation of a digit to a know whether formula).
We define the translation of digits in {0, 1} as follows:

d1eaϕ = Kwaϕ and d0eaϕ = ¬Kwaϕ.

Definition 4.4.4 (Translation of a binary string to a sequence of LKw formulas).
Let s ∈ {0, 1}N. Let odd and even be two agents. We define Sn(s), for all n ∈ N,
inductively as follows:

S0(s) =
{
p if s0 = 1,
¬p if s0 = 0,

Sn(s) =
{
dsneoddSn−1(s) if n ≥ 1 is odd,
dsneevenSn−1(s) if n ≥ 1 is even.

The sequence of LKw formulas generated by s is defined as S(s) = {Sn(s) | for all n ∈ N}.

Example 4.6 (Inconsistent set with LK formulas).
We cannot use the mapping described above for LK formulas, because it would
generate inconsistent sets. In [HHS96], they show that the following set is inconsistent:

{A, K1A, ¬K2K1A, ¬K1¬K2K1A, K2¬K1¬K2K1A}.

The third and the fifth element of this set make it inconsistent. We prove it below.

`S5 ¬(K2¬K1¬K2K1A ∧ ¬K2K1A)

66



4.4. Knowing Whether and Epistemic States

S5-proof :
1.K2K1A→ K1A Axiom T
2.¬K1A→ ¬K2K1A PL1(1) (from example 3.2)
3.K1¬K1A→ K1¬K2K1A NK(2)
4.¬K1A→ K1¬K1A Axiom 5
5.¬K1A→ K1¬K2K1A MP(4, 3)
6.¬K1¬K2K1A→ K1A PL1(5) (from example 3.2)
7.K2¬K1¬K2K1A→ K2K1A NK(6)
8.¬K2¬K1¬K2K1A ∨K2K1A Prop. reasoning(7)
9.¬(K2¬K1¬K2K1A ∧ ¬K2K1A) Prop. reasoning(8)

It is interesting to note that only the axiom T and 5 are used to prove this result.

We use the model defined below to prove that all infinite binary strings s generate a
consistent S(s). The worlds in this model are all the infinite binary strings. We connect
worlds with respect to the epistemic information they encode. Thus, two worlds s, s′
are connected with an agent’s acessibility relation, if the agent cannot distinguish S(s)
from S(s′).

Definition 4.4.5 (Kripke model for binary sequences).
The Kripke modelM{0,1} = 〈W{0,1}, {Rodd,Reven},V{0,1}〉 is defined as follows:

• W{0,1} = {0, 1}N;

• Rodd and Reven are a binary relations over W, such that:
sRodds

′ iff for all odd k ≥ 1: sk = s′k and if sk = 1 then sk−1 = s′k−1;
sRevens

′ iff for all even k ≥ 1: sk = s′k and if sk = 1 then sk−1 = s′k−1;

• V{0,1}(s)(p) = true iff s0 = 1.

We use the fact that Kwa¬ϕ↔ Kwaϕ is valid, to prove that the model defined above
satisfies all the sequence of LKw formulas defined by a binary sequence. This validity
tell us that we can disregard the tail of each sequence.

Lemma 4.4.3 (Know whether property).
Let s ∈ {0, 1}N and (M, w) a pointed Kripke model.

If n > 0 is odd, then (M, w) � Sn(s) iff (M, w) � dsneoddSn−1(1n−1).

If n > 0 is even, then (M, w) � Sn(s) iff (M, w) � dsneevenSn−1(1n−1).

Proof. We can prove this by induction on n using � Kwa¬ϕ↔ Kwaϕ.
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We prove below that all binary sequences generate a consistent set.

Lemma 4.4.4.
Let s ∈ {0, 1}N and n ≥ 0. Then, (M{0,1}, s) � Sn(s).

Proof. We prove the statement by induction on n. Consider an arbitrary s ∈ {0, 1}+.
The base case, (M{0,1}, s) � S0(s), follows from definition of M{0,1}. We assume, as
induction hypothesis (IH) that: for all s ∈ {0, 1}+, (M{0,1}, s) � Sn(s).

Case n is even: By lemma 4.4.3, the (IH) is equivalent to:

for all s ∈ {0, 1}+ : (M{0,1}, s) � dsneevenSn−1(1n−1). (IH*)

We want to prove for all s ∈ {0, 1}+ that (M{0,1}, s) � Sn+1(s). Consider an
arbitrary s ∈ {0, 1}+.

Case sn+1 = 1: We want to prove that (M{0,1}, s) � KwoddSn(s). This is equiva-
lent to prove that, for all sRodds

′ and sRodds
′′:

(M{0,1}, s′) � Sn(s) iff (M{0,1}, s′′) � Sn(s).

Consider arbitrary s, s′′ such that sRodds
′ and sRodds

′′. By definition of Rodd,
(i) sn+1 = s′n+1 = s′′n+1 = 1 and (ii) sn = s′n = s′′n. In addition, by (IH*):

(M{0,1}, s′) � ds′neevenSn−1(1n−1) and (M{0,1}, s′′) � ds′′neevenSn−1(1n−1).

Thus, by (ii): (M{0,1}, s′) � Sn(s) and (M{0,1}, s′′) � Sn(s).
Case sn+1 = 0: We want to prove that (M{0,1}, s) � ¬KwoddSn(s). This is equiv-

alent to prove that, there exists sRodds
′ and sRodds

′′ such that:

(M{0,1}, s′) � Sn(s) and (M{0,1}, s′′) � ¬Sn(s).

Let s′ = s and s′′ be the same as s′ except for the digit in the position n
that is flipped, i.e. (iii) s′′(n) = |s′(n)− 1|. As sn+1 = 0 and s, s′ and s′′ are
identical except for the digit in the position n, then sRodds

′ and sRodds
′′. By

(IH*):

(M{0,1}, s′) � ds′neevenSn−1(1n−1) and (M{0,1}, s′′) � ds′′neevenSn−1(1n−1).

By definition 4.4.3 and (iii):

(M{0,1}, s′) � ds′neevenSn−1(1n−1) and (M{0,1}, s′′) � ¬ds′neevenSn−1(1n−1).

Thus, by s′ = s: (M{0,1}, s′) � Sn(s) and (M{0,1}, s′′) � ¬Sn(s).

Case n is odd: Analogous.
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Lemma 4.4.5.
The accessibility relations inM{0,1} are equivalence relations.

Proof. It is easy to see that Rodd and Reven are reflexive, i.e. that for all s ∈ {0, 1}N,
then sRodds and sRevens.

We prove now that Rodd is euclidean, the case for Reven is analogous. Assume that
sRodds

′ and sRodds
′, for some s, s′, s′′ ∈ W{0,1}. Then, by def. 4.4.5, for all odd k ≥ 1:

sk = s′k = s′′k. We can, then, prove that it follows that s′Rodds
′′.

Proposition 4.4.2.
|R| = |SKWS52 |.

Proof. |R| ≥ |SKWS52 |: Given that SKWS52 ⊆ P(LK), then it follows from proposi-
tion 4.4.1 and theorem 4.4.2, that |SKWS52 | ≤ |R|.

|R| ≤ |SKWS52 | : In definition 4.4.4 we define a translation from infinite binary strings to
KWS52-consistent sets, as proved by lemma 4.4.4 and lemma 4.4.5.

Consider to distinct s, s′ ∈ {0, 1}N. Then, by definition 4.4.4 there exists n ∈ N, such
that Sn(s) = ¬Sn(s′). By a Lindenbaum’s lemma for KWS52, there exist KWS52-MCS
M = S(s) and M ′ = S(s). Thus, we can deduce by maximally of M and M ′ that if
S(s) = S(s′) then s = s′. This means that, our translation defines an one-to-one mapping
from {0, 1}N to SKWS52 .

We finish this section with the example below. We show that without negation we have
finite models for infinite sets with alternated iterations of knowing that, knowing whether
or ignorance.

Example 4.7 (Epistemic states without negation).
Consider a Kripke model M = 〈{w}, {R1,R2},V〉, such that (M, w) � A. Then,
this is a model for the following infinite sets:

{(K2K1)nA, K1(K2K1)nA | n ∈ N} and
{(Kw2Kw1)nA, Kw1(Kw2Kw1)nA | n ∈ N}

The finite model below satisfies the set: {(I2I1)nA, I1(I2I1)nA | n ∈ N}.
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p

w1

¬p
w2

¬p

w3
2

1

Figure 4.7: Kripke model for iterated ignorance.
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CHAPTER 5
Conclusion and Future Work

In this thesis we reviewed the foundations of epistemic logic and introduced the logic of
knowing whether and ignorance. Our motivation was the analysis of epistemic scenarios.
We proved, in addition, that there are continuum many epistemic states, when we consider
at least two agents.

There exists a vast literature on epistemic logic, which covers a myriad of systems built to
accommodate many of its possible applications. Given its fast and fruitful development,
it is not surprising that discussions related to its foundations and implicit assumptions
are scattered and not developed into much detail. This poses a problem to newcomers.
Moreover, such considerations are important to understand puzzles’ solutions and to
discuss paradoxes.

In this work we clarify the assumptions behind our decisions. In addition, even though
our epistemic models are elements of S5n, we did not narrow our analysis to these models
and gave an example of a theory of knowledge that only requires reflexive models.

We use contingent modal logic to capture the notion knowing whether, and its dual
ignorance. This is a non-normal logic. As a consequence, the logic of knowing whether is
less expressive that basic epistemic logic for some classes of frames. Additionally, there
are classes of frames that are not definable by contingent formulas. Therefore, there was
no straightforward approach to the axiomatization of knowing whether in terms of the
system Kn or S5n. It was, then, important to understand the role of each axiom and
rule in S5n to be able to compare systems for contingent logics in the literature. We
use the completeness proof of S5 with respect to the class S5, to develop such intuitions.
This completements the usual presentation of this topics in textbooks, as normally those
proofs are left to the reader. In addition, while proving completeness results we worked
extensively with maximally consistent sets which were used later to prove the result
about the cardinality of the epistemic state space.
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In our result we only proved that there are continuum-many epistemic states. This
implies that there are epistemic states that cannot be adequately represented by a finite
Kripke model. However, it does not tell us whether there are models with uncountable
many connected worlds. This is an interesting topic for future work.
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