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Kurzfassung

Die Analyse großer Datenmengen is ein immer größer werdendes Problem. Bitcoin hat
mehr Daten erzeugt, als es möglich ist zu analysieren. Um diese Schwierigkeiten zu
kompensieren, wurden verschiedenste Ideen, zum Beispiel Datenaggregation oder Daten-
minimierung, vorgeschlagen. Wiederum andere Arbeiten konzentrieren sich auch auf die
Einführung neuer Visualisierungstypen, die auf die neuartige Visualisierung von Daten
ausgerichtet sind. Die Visualisierung von Graphen durch Node-Link-Diagramme bleibt
jedoch eine schwierige Herausforderung. Die Analyse des Bitcoin-Transaktionsgraphen
ist aufgrund des Bitcoin-Protokolls und der Datenmenge ein schwieriges Problem. Die-
se Arbeit kombiniert zwei Datenverarbeitungsstrategien, um große Netzwerkdaten auf
Standardhardware zu visualisieren. Durch Visualisierung werden Muster identifiziert,
mit denen man Transaktionen deanonymisieren kann. Ein Proxy-Server vorverarbeitet
Daten bevor sie auf einem Web-Client visualisiert werden. Der Proxy nutzt parallele
Datenverarbeitung, um schnell genug für die interaktive Visualisierung zu sein. Dies
geschieht durch inkrementelles Laden (Bottom-Up), was es ermöglicht, Daten sofort
ohne (Vor-)Verarbeitung zu visualisieren. Die Blockchain als zentraler Datenspeicher von
Bitcoin ist über 163 Gigabyte groß. Der daraus resultierende Graph hat mehr als 800
Millionen Knoten. Da diese Informationen zu groß sind, um sie zu visualisieren, verwenden
wir auch einen Top-Down-Ansatz der Datenaggregation und Graphminimierung des Trans-
aktionsgraphen. Mit dieser Methodik werden Probleme langer Verzögerungen gelöst. Das
System wird durch den Dialog mit Sicherheitsexperten, im Bereich Crypto-Währungen,
konzipiert und implementiert. Die explorative Analyse eines großen Datensatzes, wie
etwa Bitcoin, wird durch die in dieser Arbeit vorgestellte Methodik ermöglicht. Weiters
hilft es Sicherheitsexperten, den Geldfluss in einem Finanznetzwerk zu analysieren, das
von Kriminellen wegen seiner Anonymität genutzt wird. Wir bewerten das Ergebnis
anhand der Verarbeitungsleistung und der Rückmeldung dieser Sicherheitsexperten und
vergleichen das Leistungsverhalten mit aktuellen, bewährten Vorgangsweisen.
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Abstract

Analyzing large amounts of data is becoming an ever increasing problem. Bitcoin as an
example has produced more data than is possible to analyze. In order to compensate for
these difficulties, creative ideas that employ data aggregation or minimization have been
proposed. Other work also focuses on introducing novel visualization types that are geared
towards the visualization of blockchain data. However, visualization of graphs through
node-link diagrams remains a difficult challenge. Analysis of the Bitcoin transaction graph
to follow bitcoin (BTC) transactions (TXs) poses a difficult problem due to the Bitcoin
protocol and the amount of data. This thesis combines two data processing strategies to
visualize big network data on commodity hardware. The idea is to use visualization as a
technique to analyze a data-set containing Bitcoin transaction information. Criminals
use Bitcoin as a means of payment because of its guaranteed pseudonymity. Through
visualization we aim to identify patterns that will allow us to deanonymize transactions.
To do so we use a proxy server that does data preprocessing before they are visualized
on a web client. The proxy leverages parallel computing to be able to do top-down
and bottom-up data processing fast enough for interactive visualization. This is done
through incremental loading (bottom-up), which enables to visualize data immediately
without a (pre-)processing delay. The database containing the public Bitcoin ledger is
over 163 gigabytes in size. The resulting graph has more than 800 million nodes. As
this information is too much to be visualized, we also employ a top-down approach
of data aggregation and graph minimization of the transactional graph. Through this
methodology we intend to solve performance problems of long processing delays and the
problem of fractured data where the data is shown only partially in the visualization.
We collaborate with security experts who share insights into their expertise through a
continuously ongoing dialog. Exploratory analysis on a big data-set such as the Bitcoin
ledger, enabled through the methodology presented in this thesis, will help security
experts to analyze the money flow in a financial network that is used by criminals for
its anonymity. We evaluate the result through the performance and feedback of these
security experts as well as benchmark the performance against current best practice
approaches.
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CHAPTER 1
Introduction

Information is ubiquitious; digital systems are part of all aspects of the lives of people.
These systems are the arteries of a globally spanning information network. Many different
types of data flow through this infrastructure and every part of this network produces
and stores data. People have claimed that data is the new oil [1], and that the human
species has progressed from the oil and atomic age into the information age [2].

1.1 Problem Statement
In an era where dat a is ubiquitous, it is important to be able to retrieve information
encoded in the data. However, the amount of data collected is disproportionate to the
capabilities to analyze it. This leads to many valuable datasets, considered "big data", that
are difficult to analyze. For example, all YouTube users combined upload approximately
48 hours of video every minute to the website, or users on Facebook upload 100 terabytes
of data every day [3]. While the processing capabilities of hardware increases by doubling
approximately every 18 months (known as Moore’s law), data production increases at an
even faster pace. Kryder’s law states that storage capacities double approximately every
13 months [4]. This phenomenon can be seen in Figure 1.1. It is clear that this imbalance
of growth makes it impossible to analyze all the produced, stored and available data [5].
Therefore, it is necessary to not rely on the raw improvement of processing power but
to find efficient solutions and speed improvements for the algorithmic side of the data
processing pipeline.

There are two different approaches to transform collected data into information. One is
through using statistical analysis. The other is leveraging the powerful capabilities of
human sense-making through representing data visually, known as visualization. While
the general goal of both methodologies is the same, the path from raw data to valuable
information is vastly different. The focus of this thesis is on contributing to the body of
knowledge in visual analytics of cryptocurrencies. The combination of analytical reasoning
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Figure 1.1: The development over time for processing, data storage and human capabilities
is inbalanced. It is therefore necessary to use a mix of human and technical capabilities
to counter the faster growth of data. [5]

and interactive visual interfaces, known as visual analytics, is a feasible approach to big
data analysis. However, there is not one standard methodology for big data visualization
as of early 2018. There has been a lot of work to explore possible solutions to the data
abundance. Each tackles its own distinct subset of the total problem space. However, the
general idea for all solutions is to reduce the number of data items to compensate for the
performance limitations of the visualization pipeline. In each of the four processing steps
shown in Figure 1.2 can be bottlenecks. Depending on the amount of raw data, loading
them from the data storage can be too slow. When the data is loaded, data analysis
itself can take too much time for interactive visualization. Filtering, again, can be slow if
the data size has not decreased sufficiently in the analysis step. Mapping and subsequent
rendering can also cause performance problems if the objects to draw are too numerous.

Filtering

Raw
Data

Mapping Rendering

Focus
Data

Geometric
Data

Image
Data

Data
Analysis

Prepared
Data

Figure 1.2: Schematic view of the visualization pipeline [6, 7], showing types of data at
the top and processing steps at the bottom. Every single one of the processing steps can
be a performance bottleneck if the dataset size exceeds computing capabilities.

To give the methodology proposed in this thesis real world relevance, we will use a
cryptocurrency dataset for analysis. The motivation to use such a dataset comes from
the fact that cryptocurrencies are considered a pseudonymous form of currency. Due
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to the pseudonymous nature of the currency it has been used by criminals for payment
in malware campaigns, darknet market places and money laundering. Additionally, the
underlying network produces large amounts of data, of currently more than 800 million
nodes in a graph that fall into the previously described category of big data. The size of
the dataset and the unique properties of the system make it difficult for law enforcement
to follow the stream of money in the network.

It is possible to distinguish between three general groups of Bitcoin visualization tech-
niques: visualization of Bitcoin statistics as bar charts, line diagrams and other similar
methods, node-link diagrams to show the network topology and, lastly, novel visualization
techniques that try to convey information through visualizations and are tailored to Bit-
coin or sometimes are even artistic. Visualization of statistical data [8, 9, 10] of Bitcoin is
limited in conveying topological information of the payment network. By using node-link
diagrams one can overcome this limitation [11]. However, this type of visualization does
not scale well enough with the number of nodes and links visible [12]. Processing power
therefore limits the size of the analyzed dataset. This can be overcome by specialized
hardware, which, in turn, reduces the accessibility to analysis techniques [13]. Lastly, it
is possible to visualize the data in a completely new way [14]. By doing so, a user has an
increased initial cognitive load to learn how to interpret the visualization. Furthermore,
these visualizations can still be very slow and therefore hinder exploratory analysis [15].
It is our goal to mitigate the shortcomings of the node-link visualization approach.
Being able to navigate the data space in an intuitive way through the chosen node-link
representation, can help users to understand Bitcoin.

1.2 Contributions
The goals of this thesis are twofold. On the one hand it is about the general contribution
to the science of big data visualization, while on the other hand, it contributes a novel
method to visualize tens of thousands of transactions and addresses of the Bitcoin network.
The three objectives for big data visualization are:

• Provide an interactive visualization of a subset of considerable size of the Bitcoin
network.

• Hide the processing latency from the user.

• Reduce the data that reaches the visualization client in a meaningful way and hide
the big data aspect from the client and the user.

The second set of goals is related to the application of the tool to analyze the cryptocur-
rency dataset by a user. After consultation with experts we identified two difficult to
achieve tasks. One is to analyze the transaction patterns that an address is involved with.
This is interesting for identifying money laundering operations and anonymity services. A
second problem is to analyze whether two known parties are transacting with each other.
Extracted from these questions we formulated the following two research questions:

3



1. Introduction

Q1: Find interesting transaction patterns and structures in the Bitcoin network.

Q2: Be able to find the money flow from select points of interests to other points of
interest.

1.3 Structure of this Thesis
The following chapters of this thesis are structured as follows:

Chapter 2 gives a summary of the history of visual analytics and outlines differences
to information visualization and scientific visualization. Furthermore, the surveyed
related work will be presented to give an overview of the status quo of big data
visualization. The last part of this chapter will give a primer on the history and inner
workings of Bitcoin as the oldest and most popular example of a cryptocurrency.

Chapter 3 will give an overview of the conceptual architecture of the bottom-up method-
ology proposed in this thesis. It will also be explained why certain design decisions
have been made.

Chapter 4 presents the top-down data processing methodology for graph reduction and
goes into the details of the database structure.

Chapter 5 highlights the actual technology that has been used. An overview of the
technology stack and its algorithms is given. Complex parts of the implementation
are highlighted and explained.

Chapter 6 presents the benchmarking results of various operations and user tasks
performed with the system.

Chapter 7 discusses the previously presented results and their implications. Further-
more future work for improvements and additional features are discussed in detail.

Chapter 8 summarizes the thesis.

4



CHAPTER 2
Background

This chapter gives a brief introduction to Bitcoin and information about its relevancy.
Additionally, it surveys the general state of big data visualization, especially for large
graphs and, finally, concludes with the state of Bitcoin visualizations.

2.1 Bitcoin

In autumn of 2009 a paper with the title "Bitcoin: A Peer-to-Peer Electronic Cash
System", containing the techical specification of a novel peer-to-peer (p2p) payment
system, was published, on an online cryptography mailing list, by Satoshi Nakamoto [16].
It was his1 answer to the previous financial crisis caused by the banking system.

2.1.1 History

After the initial publication of the Bitcoin whitepaper, Nakamoto published the first open
source client needed to participate in the Bitcoin network following his specifications. At
the same time, the first entry in the public ledger of the Bitcoin network, known as the
genesis block, was created. This coincided with the creation of the first bitcoins (BTCs),
that then could be traded within the network [3]. After the initial inception of the system,
early adopters started to participate in the network by running their own servers. In 2018,
almost ten years later, the network has, through several growth periods, reached a scale
where the traditional financial system, state actors and other established institutions,
have to pay attention to [17]. As of January, 26th of 2018 there are 16,826,975 BTCs,
with a price of roughly 11,000 US dollars (USD) each, in circulation. This gives a total
market capitalization of 190 billion USD.

1It is unknown whether Satoshi Nakamoto is a person or a group. The gender is also unknown but
for simplicity and in conformity with Japanese names the pronoun "he" is used.
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2. Background

While the financial data of BTC is impressive for a system without any governmental
backing, the technical details, such as how problems of distributed systems have been
resolved in BTC, are of interest for this thesis. In order to fully understand the problems
that we try to solve, a basic understanding of the BTC protocol is necessary. BTC
was envisioned as an anonymous p2p payment system and as such, it has attracted not
only legitimate users but also bad actors that use its technological properties to evade
law enforcement, while engaging in questionable businesses like drug trade, cybercrime,
extortion etc.

2.1.2 Technical Details

In order to understand why Bitcoin can act as an anonymous payment channel, it is
important to understand some details of the protocol. The general approach of Bitcoin
is a network that reaches consensus by itself without any central governing body. The
network is comprised of nodes that are connected in a p2p fashion. All participating
nodes in the network share a copy of a data structure called the blockchain that keeps a
record of all transactions in the network. Satoshi Nakamoto solved finding a consensus by
making it difficult to cheat through the usage of a "proof of work", which is an innovative
use of cryptography.

Transactions in the network are collected in blocks that have to be mined by volunteers
on the network. This mining is the "proof of work", where a miner has to find a partial
pre-image hash collision in order for a block to be accepted as valid by the network. In
detail this means that a miner has to find a message x for a given hash h. To make it
possible within a feasible amount of time only part of the hash is fixed. The incentive for
the miner to participate in the energy hungry and therefore costly endeavor is that if she
can find a valid block she is rewarded with a certain number of BTCs. Once a valid block
is found, the miner publishes it to the network and it is accepted, distributed, and added
to the blockchain. The transactions that a miner has chosen to accept in the block she
mined are therefore now part of the transactional history of Bitcoin. This process acts
as consensus finding in the network with the benefit of allowing transactions to be sent.
Figure 2.1 shows a small part of the blockchain consisting of three blocks. The figure
shows a small part of the blockchain showing three blocks with height 512256, 512257
and 512258. The block data contains information about the included transactions and
the previous block hash to uniquely identify a preceding block. This linking back to a
previous block is what gives the blockchain its name. The nonce is a field that can be
arbitrarily chosen by miners to change the input of the hash function in order to generate
varying hashes. Mining is the process of trying different values for the nonce in order to
find a hash that matches the requirements given by the system. Details on the complete
structure can be found in the Bitcoin developer reference [18].

In order to transfer money from one party to another, one has to publish a transaction
to the network. While, behind the scenes, this is also a very technically complex step, to
understand the problem of following this value transfer through the network, it is enough
to know the process on a conceptual level. If A wants to send money to B, she collects
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the amount of BTC she wants to send to B in a list of accounts, known as inputs, and
specifies the accounts of B, and possibly others, as output of a transaction (TX). One
requirement for this to be valid is that the sum of the total input has to be greater than
or equal to the sum of the outputs. There are some peculiarities on how money can be
transferred and how a miner is paid. However, the important part to note here is that
the list of inputs is an unordered list. The same holds true for the list of outputs in the
transaction. Figure 2.2 shows the structure of two transactions where Alice sends BTC to
Bob who then sends money to a marketplace. The unordered structure of the addresses
within a transaction means that the input and output addresses are not mapped 1:1. It
is therefore impossible to directly know who receives which coins. The only aspect one
can be certain of is that the creator of the transaction is under control of all the inputs.
The figure shows two transactions, one sent by Alice and another one by Bob. The green
colored overlay shows, which addresses are controlled by Alice, blue are Bob’s addresses
respectively. Alice uses ten BTCs controlled by two of her addresses to send 8 BTCs
to Bob. Bob then sends a transaction with a third address that holds two additional
BTCs to pay nine BTCs to a marketplace. Once such a transaction is included in the
blockchain it is considered valid and immutable. This means that the value transfer
from one party to another one has taken place. Although the addresses in this figure
are highlighted by the party controlling it, this is not known to the system. For output
addresses, it is not known, which belong to different stakeholders. The only known fact
is, that all the cryptographic keys of the input addresses are controlled by one entity.

Although all the information in the blockchain is public, this property gives in theory very
strong privacy properties. In reality however, there are many steps that can go wrong that
compromise anonymity. The seeming anonymity of addresses that are nothing more than
a hash of a cryptographic key, give a false sense of anonymity. Address reuse, connecting
public addresses with persons, and other usage patterns, give enough metadata to trace
the flow of money through the Bitcoin network [19]. Although modern end-user software
to interact with Bitcoin is implementing more and more privacy enhancing features,
at the end of 2017 address reuse was still at 42% [20]. To mitigate the creation of a
meta-data trail not only the end-user software developed automatic creation of new
addresses for each TX, but also dedicated services came into existence. One such type
of service is called mixer. People who want to gain increased anonymity can send their
BTC to this service that mixes the BTC together with other peoples’ BTCs and, after
they have taken a commission, finally return them to the original sender. Although these
mechanisms for improved anonymity exist, users are usually bad at following proper
security hygiene [21, 22]. In combination with the inherent nature of publicly available
financial transaction data in the blockchain, this leads to a complete publication of ones’
finances if on is not careful enough [19].

In the case of cybercrime, fraud and money laundering culprits usually are more careful
when interacting with technology. However, even if the person who owns a certain address
is unknown, it is still possible to follow the money through the network. At some point,
in order to use the money, the BTCs have to be exchanged for fiat currency. As long as
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Bitcoin is not widespread enough to be used as a general form of payment, this problem
remains.

2.1.3 Bitcoin Network in Numbers

With an approximate total market capitalization of 200 billion USD and a daily trading
volume of about 8 billion USD, it is clear that there is a lot of movement in the
cryptocurrency space even with Bitcoin alone [23]. In the last 24 hours, as of January
29th 2018, there were a total number of 155 blocks mined. The time between blocks
was at an average of 8.57 minutes and in total there were 1937.5 bitcoins mined. In
these blocks, there were 216,358 TX included. While the total number of addresses
used in these transactions is unclear, it is certain that it is a multiple of the number
of TXs. In reality, there are many more addresses included in each TX. The already
large numbers of the last 24 hours are exceeded by the total number of transactions and
addresses in the network [24]. Up to the end of January 2018, 506,604 blocks have been
mined, 295,802,277 transactions have been performed and the website, used as source
for these numbers, alone counts 22,619,304 users, where each of them will have multiple
addresses [25].

2.2 Related Work of Real-Time Visualization of Big Data

The visual system of humans has evolved to process data incredibly fast and with a
high bandwidth [26]. It would be unwise to leave this potential unused in information
processing. However, in order to fully support humans to gain insight from data, it is also
important to allow for exploratory data analysis through interaction. The solution to this
is a research field called visual analytics that relies on methodologies from visualization
and many other fields, and enhances them with automatic data processing and analysis.

Visual analytics is particularly useful for unguided data analysis. Unfortunately, the
visualization part, as well as the automatic machine analysis aspect, of visual analytics can
be a bottleneck due to performance limitations in combination with big data. Therefore,
visual analytics of big data is still subject to intensive research. This becomes even
more problematic if interactivity is necessary for exploratory approaches. Researchers
circumvent this by either aggregating data in a meaningful way [27, 28, 29], that still allows
for analysis of the bigger picture, in a top-down approach, or using a bottom-up approach
where only parts of the data are loaded, processed, and visualized progressively [30, 31].

2.2.1 General Big Data Visual Analytics

For analyzing large amounts of data, the requirements for storage, processing, and
presentation are different than for smaller more managable datasets. Big data makes it
necessary to use specialized hardware and software. Storage systems supporting petabytes
and more can not fit inside commodity hardware. Preprocessing this amount of data
requires another type of hardware with processing power in mind. This leads to a
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2.2. Related Work of Real-Time Visualization of Big Data

distributed system where not necessarily one single computer is part of the three layers of
data storage, processing, and visualization. For each of the three layers there is an active
academic [32, 33, 34] and commercial community that engages in proposing solutions to
make the data managable [35]. To make it possible to visually analyze big data, one can
focus on problems of either category [36].

Due to limitations of the human perception and limited screenspace, it is not feasible to
visualize raw large-scale datasets, even if it was computationally possible. Visualizing
large datasets without any reduction during the processing step leads to overplotting.
Showing too many elements on screen overwhelms the user and reduces the efficacy of the
visualization. While there are multiple aspects where one can try to improve performance
of data processing [33], there are two different approaches to load and transform data
within the visualization pipeline, as shown in Figure 1.2:

• Top-down approaches start with an aggregation of the underlying data to give a
general image of their structure while also avoiding overplotting. This requires
an aggregation preprocessing step that generates these top-down views [27, 28,
29, 37, 38]. This approach also follows “overview first, zoom and filter, details on
demand” [39], a central principle in visual analytics proposed by Shneiderman. For
example, imMens by Liu et al. [27] uses data cubes, aggregations across multiple
data dimensions, to show overview visualizations of the data. However, leveraging
data cubes requires a preprocessing step to generate aggregational views of the data,
or database, beforehand. SplatterJS [37] uses kernel density estimation as a form of
aggregation to overcome overplotting. While it helps to reduce rendered elements
on-screen, it may hide interesting data points. We use heuristics that fit our dataset
to overcome this problem of losing detailed information. Nonetheless, the advantage
of top-down approaches is that one can see the global structures within the data
and then focus on possibly interesting details. Having a holistic view on the data,
however, comes at the price of a preprocessing step that, depending on the size of
the data, can be very costly.

• Bottom-up approaches start with a subset of the data and show only a small portion
of the complete set. Sampling [30, 31] and specific user queries can be strategies
for a starting point of loading data. However, this requires an analyst to navigate
within the data to fully grasp global structures of them. An advantage is that the
true representation of the data is loaded from the start without any preprocessing
delay. Unfortunately, these properties result in the visualization of only part of
the data so that the user is not aware of the global structures. Additionally, over
time there will be more and more elements on-screen and overplotting emerges.
Analyzing large datasets efficiently is not possible with this approach alone.

2.2.2 Visual Analytics of Large Graphs

Visualizing the Bitcoin transaction graph (TX-graph) falls into a subset of big data
visualization because it is inherently a graph drawing problem. Graph visualization
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is comprised of several steps, where in each one can apply methodologies to increase
performance. Data storage, preprocessing, visualization techniques, user interaction, and
graph analysis are steps in the visual analytics pipeline that can be improved.

If large graphs are visualized without processing, they result in "hairballs" that diminish
the efficacy of the visualization. So-called hairballs occur if the number of nodes and
edges of a graph increases up to a point where structures within the graph become
invisible. Figure 2.3 shows such a hairball of a Twitter hashtag. In order to be able to
gain insights from graph visualizations and not overwhelm the user, it is important to
apply tools and methodologies that reduce visual clutter. A wide array of methodologies
in all of the previously mentioned stages of the visualization has been proposed. Scientists
have found various solutions to the problem of overdrawing in graphs.

Edge bundling [40] is a strategy to reduce the number of edges in a graph. By visually
aggregating edges that are close together and have the same general direction, it
is possible to combine them into super edges. This in return, results in a smaller
number of edges overall.

Network motifs [41] are another strategy to reduce the number of nodes. By finding
recurring subgraph structures, known as motifs, in a bigger graph, these subgraphs
can be collapsed into a super node, thus, reducing the overall number of vertices
in a graph. Related to this technique is node clustering [42, 43] that is similar to
motif clustering, but finds substructures in a graph according to different metrics.

Magic lenses [44, 45, 46] are an interaction technique where an arbitrarily shaped
region can be selected by the user and the visualization within this region changes.
This filtering does not reduce the number of visual elements. However, they are
a useful tool to help the user to navigate large graphs by giving them a tool to
zoom into regions of a graph. This is different to global zooming by providing the
possibility to zoom into subregions of a visualization, similar to a magnifying glass.

Highlighting structures [47] is another interaction technique that does not reduce
the number of visual elements, but aids the viewer in finding connections within a
graph.

Novel visualizations [48] aim to mitigate visual clutter and overdrawing by not visu-
alizing graphs as node-link diagrams, but rather in a completely new way. These
visualizations can be very specific to a given problem and lose generality [15, 14].

If interactivity and timely visualization is not of concern, one can use top-down approaches
that require preprocessing of the data. Aggregation hierarchies that have been built
through a preprocessing step or that are naturally occuring within data, can be traversed
through user interaction which helps users to understand data [50]. An alternative is
to start with a known piece of information, such as a node or a structure, and expand
the graph around this area of interest according to a degree of interest [51, 52]. With
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FACETS, Pienta et al. [53] take large graphs as input and visualize them in a way that
does not overwhelm the user. Their solution is to let the user choose a starting node and
then through computing similarity and dissimilarity metrics in the neighborhood of this
vertex, they expand the node-link diagram. Nodes either already traversed by the user or
marked as similar or interesting (dissimilar) are also shown by the system. The metrics are
computed comparing node feature distributions to the global feature distribution of the
graph. Figure 2.4 shows this approach of combining node-link diagrams with computed
metrics. While the user is expanding nodes the system also creates a user profile and
incorporates it into the subjective interestingness calculation. Reducing the visualized
graph in this manner avoids visualizing large graphs. However, this is in contrast to our
work where we also visualize subgraphs but aggregate over data dimensions. Instead we
aggregate the data through topological properties that do not provide any additional
information. Section 4.3 details the aggregation steps of graph pruning, motif aggregation,
etc., that are performed as part of this Thesis.

Apart from a pure bottom-up approach, it is also possible to follow a hybrid approach
that combines aggregation with the expansion of the network. Stef van den Elzen and
Jarke J. van Wijk proposed a system [29] that follows this approach. Their work combines
multiple coordinated views that simultaneously show an aggregated view and a global
view. In the global view not all data is shown. The visualization starts completely without
edges and only shows them once a user has selected a region of interest. The selections
are then aggregated and shown in a separate overview. Through user interaction, the
graph can be further aggregated or expanded depending on the users’ navigation in the
data space. Their interface provides the user with a detailed and an aggregated view.
However, this comes at a cost and the authors themselves note that if users have too
many selections of interest, their approach fails and results in visual clutter. While
hiding parts of the visualization initially helps mitigating the performance bottlenecks
of the visualization pipeline, it also hides information from the user. Visualizing data
in this way makes it difficult for a user to understand structural properties of the data.
Figure 2.5 shows the visualization with a detailed view on the left and an aggregated
overview on the right. Our work differs in the sense that it does hide elements of the
network but only if they do not add any additional information to the visualization.

Numerous methodologies exist that address the same problems concerning the scalability
in the visualization of big graphs. Often, aggregation strategies are domain specific and
focus on a specific problem. Due to different properties of the data to be visualized,
solutions that fit one situation can not be applied to our data. While imMens [27]
is a system that can query big data and visualize the results, the necessary step of
preprocessing the data makes it too static for a dynamic system such as Bitcoin. Another
difference is that imMens operates on data different from graphs and therefore can not
be used for Bitcoin. Given the size of the Bitcoin network with millions of nodes and
edges, imMens’ is not fast enough to be able to work with the blockchain as it does not
scale to datasets of this size. Other systems proposed to analyze the dynamic TX-graph
of Bitcoin, such as the work by McGinn et al. [13], address the issue of dynamic data.
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However, this solution requires specialized hardware in the form of a render cluster and
large display walls. The methodology of this thesis finds a place between highly dynamic
and static systems with commodity hardware in mind.

2.2.3 Bitcoin Visualizations

Although the size of the blockchain data makes it difficult to analyze, there has been
an active community working on the problem of visualizing the public ledger. One
such solution is to calculate the statistical properties [11, 54, 55, 56], such as degree
distribution, daily transaction volume, TX size, etc., of the system. These numbers
can then be used to visualize phenomena (growth periods, company payment networks,
user participation and so forth) in the network. Additionally, this approach allows the
authors to visualize data over time to understand trends and developments. This can
entail technical data that concerns itself with the health of the network or financial data
that shows an overview of its usage. These visualization techniques include line plots,
bar charts, and other typical visualizations from the statistics toolbox. Besides showing
general properties [8, 9, 10, 57] of the network, these visualizations can also be used to
answer particular questions about phenomena in the network. Kuzuno and Karam [9]
use visualizations of the blockchain to specifically answer questions raised during an
investigation of law enforcement. Specifically, their system is used to anwer questions in
criminal cases of ransomware, marketplaces, and even DDoS extortion. They do so by
visualizing the balance of a certain address over time, send and receive events per day,
and hourly transaction count. They also plot this data over longer periods of time (weeks
and months). Furthermore, their tool allows for querying blockchain data for transactions
with user specified properties. Figure 2.6 shows one of their many visualizations they
produce during the analysis of a Bitcoin address and its surrounding network. Their
visualizations also allow the user to analyze the data on a transactional level, showing
input and output addresses of specified transactions. Path finding between two addresses
is also incorporated as a simple numerical output. Only the number of nodes and edges
in a path from address a to b is shown.

Apart from visualizing statistical properties, it is possible to gain insight about the
network by showing the payment transactions of Bitcoin as a graph. There has been
work to extend purely statistical visualization with information about the underlying
topology of the payment network [11, 54, 55, 56]. There have also been papers that
explicitly focus on the underlying topology of the transaction graph in Bitcoin [12, 13].
Data preprocessing strategies for graph visualization include abstracting the data into a
format that better suits analysis [11], enhancing the data with external information, or
reducing the data due to performance limitations. Data reduction can happen through
time constraints [13], topology connectivity, or other aggregation or pruning methods [12].
Pruning data either through heuristics or through filtering and leveraging of topology
properties (connected components, subgraphs, etc.) is a simple, yet effective way, of
combating the size of the dataset. Reid and Harrigan [11] focus explicitly on the network
topology. In their paper, the blockchain data is preprocessed and split into two subgraphs
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representing the transaction network as well as the user network. Using a node-link
diagram, even though only a small subgraph of the blockchain is analyzed, the authors
were able to find interesting information about a BTC theft that has happened in the
past. This shows that using topology information is a suitable tool to follow the flow of
money throughout the Bitcoin network, despite the seeming anonymity Bitcoin provides.
A big difference between their work and the methodology presented in this thesis is the
fact that Reid and Harrigan have a preprocessing step involved. The raw data from
the blockchain is taken and transformed into another graph representation that is then
used for the visualization and the analysis task. Our work does not change the network
topology by creating an artificial overlay network, instead it operates on the raw data of
the blockchain.

In 2017, a paper [12] that aims to solve the difficulty of analyzing the Bitcoin TX-graph,
by using a similar approach as proposed in this thesis, has been published. The proposed
analysis system is split into a server-client model and draws inspiration from visual
analytics to overcome the challenging size of the blockchain data. The approach is to
filter the data heavily according to some heuristics and topologies the authors deem
interesting. This includes filtering by time, transaction size, or addresses in regards to
node degree or number of BTCs sent. This leads to heavy pruning of the TX-graph. In
their use-case, they analyze a blob of 15,964 transactions, which they reduce by applying
several filters. The final visualization is comprised of several ”islands” that fulfill the
query criteria. Once such a subset is visualized, a user can apply more filtering to either
highlight or remove visual elements. A result of this approach is that a user can see
many disconnected subgraphs of the whole TX-graph. This hides the fact that some
islands might be connected through paths that might be pruned by the filtering. The
methodology of this paper therefore has the disadvantage that the global properties
of the TX-graph can be lost during the analysis process. Furthermore, given that the
authors are performing their computations on a very potent server with 128Gbyte of
RAM and two Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz 8 core processors with a total
of 32 threads, these hardware requirements limit the access and usefulness to analysts
that might not possess such a powerful machine. Our work makes analysis of the Bitcoin
network possible on off-the-shelf commodity hardware. This is possible by aggregating
data and streaming it at the same time. Such a mixture of top-down and bottom-up
approaches hides processing latencies even on less powerful hardware.

In contrast to pruning the data domain, one can also aim to visualize the not aggregated
blockchain dataset and prune according to the temporal dimension. McGinn et al. [13]
show visualizations of two fundamentally different data selections of the TX-graph. The
first selection is the current mempool of the Bitcoin network. In the mempool are the
currently published but not yet, through mining, validated transactions. The second
data selection is done by choosing one particular block and visualizing the transactions
occurring during this one validation period. Through this complete visualization, the
authors can find anomalies within the blockchain on a large-scale level, as seen in
Figure 2.7. However, due to the number of transactions in either the mempool or a
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block, the graph becomes hard to analyze on a fine grained level. This makes it feasible
to analyze the Bitcoin network on a global scale at the expense of local, fine grained
details. Additionally, the system is using specialized hardware to be able to show the
visualization on a large scale. Their so called data observatory facility employs 64 screens
and a distributed rendering cluster with a total screen-space of 132M pixels. This is in
contrast to the work of this thesis where the explicit design goal is to leverage commodity
hardware to analyze Bitcoin transactions in detail.

Apart from either pruning or using powerful hardware to overcome the difficulties posed
by the amount of data, one can choose to use a different visualization technique that
encodes the information differently [15, 58, 14]. Such an approach gives greater flexibility
by compressing more information into smaller screen space. This can be very well suited
for Bitcoin where there are many visual elements to be shown. However, the result is
often a less intuitive visualization that initially requires users to learn how to read and
understand the novel visualization technique.

By analyzing the money flow at the level of transactions, Battista et al. [15] were able to
show the purity of a set of BTCs over time without overdraw of the node-link diagram.
Purity refers to the certainty to which BTCs can be attributed to an address over the
time of multiple transactions. While this allows an analyst to monitor whether a set of
BTCs has been mixed with coins from another entity, all the topological information is
lost and it is impossible to see transactions on a detailed level. In contrast, a node-link
diagram is easily understood by analysts and does not require an initial learning period.
Furthermore, it allows for the visualization of the complete TX-graph and does not hide
information by ignoring graph topological information.

Instead of analyzing the purity of a certain transaction, it is possible to monitor the
inputs and outputs, as seen in Figure 2.2, of a specific address over time. By assigning
glyphs to the events of incoming BTCs, outgoing BTCs and simultaneously incoming and
outgoing BTCs, Isenberg et. al [58] are able to visualize the state of an address over time
in a clean way. While this visualization is easier to understand than BitConeView [15], it
shows less information overall. By limiting the visualized data to only show the inputs
and outputs of BTCs of a certain address over time, the applicability to a wide set of
problems is limited.

Apart from the academic community, there are private entities that provide visualization
services. While there are some visualizations that are publicly available and aim to
showcase interesting data [59, 24, 60], there are also private companies that have a clear
business model involving data analysis and visualization. As with scientific contributions,
the publicly available collection of Bitcoin visualizations ranges from simple line graphs [24]
to complex and rather artistic visualizations [61, 62, 63]. There are visualizations that
focus on transaction data and try to visualize it to make it understandable. However, the
visualizations are either limited in how much data is visualized [64] or by their performance,
because too much data is shown [65]. The Bitcoin Transaction Visualization [64] is
implemented as a ringbuffer and only shows 300 transactions as nodes in a force directed
layout. It starts with an empty visualization and adds nodes and links for every TX that
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is published to the network. Once the buffer is full it removes the oldest nodes on-screen.
With such a minimal number of nodes shown there are no performance degradations.
Our visualization is able to process more than 23,000 nodes and 28,000 edges. The
visualization from dailyblockchain [65] shows newly added unconfirmed transactions
in the mempool. This visualization starts to suffer from performance problems when
zooming and panning at a node count of 1500. General interaction becomes slow at
6000 nodes and even without interaction the frames per second degrade at 7500 visible
nodes. The companies that sell a product to analyze the flow of money in the TX-graph
also offer visualizations of the data analysis [66, 67]. The details of the methodologies
used and the algorithms employed however are not publicly known and it is therefore
impossible to retrieve performance metrics of commercial tools. This also stems from
the secretive marketing on their websites that does not go into detail about the used
algorithms or visualization techniques. Missing data on performance and the lack of
access to the tools [68] without a commercial relationship make it impossible to compare
these available tools with the methodologies proposed by the scientific community. The
novelty of blockchain-technology and these commercial companies and products limits
the available information. That means that, besides highlighting their existence, it is
impossible to compare them against the methodology proposed in this thesis.
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Figure 2.1: This Figure shows three blocks of the Bitcoin blockchain and how they relate
to each other and form a chain.16
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Figure 2.2: Structure of input and output addresses as they occur in Bitcoin TX. It is
important to note that input and output addresses are not directly assigned 1:1. This
generates a certain level of anonymity when transacting with Bitcoin.
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Figure 2.3: A graph hairball showing that overplotting graphs reduces their expressiveness.
Structures and information are lost due to overplotting. This graph was visualized by
analyzing gamergate hashtags on Twitter [49].
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Figure 2.4: FACETS, a visualization approach that calculates degrees of interest and
shows substructures of a graph accordingly. B shows the node color reference for a
calculated metric. Orange nodes are nodes that have been manually expanded by the
user. The other colored nodes are shown according to calculations performed by the
system. The whole graph would have 17,000 nodes and 72,000 edges and if visualized
without any processing would result in a hairball [53].
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Figure 2.5: A bottom-up top-down hybrid approach as proposed by Elzen and Wijk.
A shows a global view of the dataset. To overcome overdrawing, the authors simply
start with a node-link diagram that does not show edges. Once a user selects an area of
interest, the edges are rendered and the aggregation view is created and shown in B [29].

Figure 2.6: Visualization of Kuzuno and Karam showing usage statistics of a certain
Bitcoin address over time. [9]
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Figure 2.7: The left part shows the visualization of blocks 199884 and 232304 that were
reported to possibly contain transactions of a money laundering operation. The right
side shows another visualization with various subgraphs of one block of the blockchain.
D shows a payout system with many recipients. E is possibly mixing service which is
a service that shuffles BTC around. Generally, this manifets in a highly associated yet
isolated structure in a block [13].
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CHAPTER 3
Bottom-Up: Architecture and

Processing Strategies

Instead of using a monolithic architecture for visualization and preprocessing, this thesis
proposes a client-server architecture. This chapter explains the architecture in detail and
also explains why certain designs choices were deemed the best fit for the Bitcoin data
and the research questions outlined in Section 1.2.

3.1 Client / Server Architecture

Our proposed methodology uses a client-server architecture to gain flexibility. This
increased flexibility allows for the use of hardware that best fits the respective stage of
the visualization pipeline. Although no extraordinary hardware is necessary for data
processing, this separation allows one to use thin clients that neither require powerful
computational resources nor a large data storage for the blockchain. The client only
needs enough processing power to be able to render the already heavily reduced data
on-screen. The proxy server prepares the data and transforms it into a format that
the client only needs to render. This reduces the computational workload for the client
even further. Even though this separation exists, it is possible to have all the necessary
parts of the system running on one machine. Figure 3.1 shows this separation into three
different parts.

However, such a separation comes at a cost and requires an extra amount of communication
between the individual parts. The whole system has two communication loops between
its components. On a high level view, the client requests data from the processing proxy,
which in turn requests the raw data from the database server. Once the database server
returns information, it is sent to the proxy where it is processed and transformed into a
format suitable for rendering by the client. After the proxy has processed the data, it is
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Figure 3.1: Control and data flow between the client, the proxy and the database server.
User interaction triggers a database query. Once data is received the proxy processes the
data and upon its completion sends the data to the client for visualization.

forwarded to the client which then renders it. This means that the client already receives
data in the form of nodes and links that it only needs to render on-screen. Internally in
the proxy server there are two communication loops. One that handles data only and
another that is used for sending commands and responses. Having a less complex channel
for data reduces the delay and the complexity of progressively streaming data to the
client. Between the proxy server and the external components are two communication
channels, one between the client and the proxy and another one between the proxy and
the database server. The example of a control and data flow can be seen in Figure 3.2
and its corresponding architecture in Figure 3.3.

3.2 Client

The visualization client presented in this thesis provides a static visualization that is
able to showcase the data processing capabilities of the server. Therefore, it is minimal
with only limited user interaction and a simple structure. It is the gateway for the user
to send queries about the blockchain to the proxy. The client supports two different
request types: one to show the neighborhood around a specified node and another one
to find paths between nodes in the TX-graph. Once the client receives an answer, it
simply visualizes the data. The communication loop with the proxy server includes
requests, with the necessary parameters, status responses from the server and data ready
for visualization. Figure 3.2 shows the message structure between the client, the proxy
server and the graph-database server. Once the client has sent a request and triggered
progressive streaming, data is constantly loaded from the database and processed in the
proxy and lastly sent to the client to update the visualization.

There are many different possibilities on how to visualize graph data. Two widespread
techniques are rendering adjacency matrices or node-link diagrams. In this thesis the
visualization is realized as a node-link diagram with a force-directed layout and directed
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Figure 3.2: Interaction diagram showing the general communication between client, proxy
server and database. Upon loading the client code from the proxy server and initiating a
query, data is constantly streamed and processed from the database. Each time additional
data arrives from the proxy server the client updates the visualization.

edges. There are three basic types of nodes that correspond to the blockchain data
structures: blocks, transactions and addresses, that are colored blue, green, and red
respectively. All edges are directed and multiple edges between two nodes are possible.
This can occur between two blocks, a TX and a block, or between a TX and an
address. The edge label gives additional information to understand the TX-graph. The
directionality of TX and address edges is in the direction of value flow. Directed edges
are shown as arrows from source to target node. Edges marked as "in" signal that an
address is used as an input in the TX at the end of the edges. The same holds true
for output edges labeled as "out" respectively. Although timestamps are contained in
block nodes, the blockchain structure, as seen in Figure 2.1, is apparent in the edges
connecting blocks with each other. This relative ordering uniquely identifies a successor
and a predecessor for each block. Additionally, the visualization shows special nodes
with visual markers (colors and strokes) to distinguish them from regular nodes. These
special nodes are the result of the user query (start and end node of a path query) and
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the processing steps in the server (hairball centers and motifs from the aggregation and
motif search).

While node-link diagrams show the structure of the Bitcoin network, the temporal
component is difficult to convey in a force-directed layout. Therefore, we provide a second
layout algorithm where the nodes in the visualization are not only positioned according
to attracting and repelling forces, but rather by a time component. To do so, the time
information in the transaction is mapped onto the x-axis. When the data is received from
the proxy, the client calculates the minimum and maximum time of all the transactions
it has received and then distributes all transactions along the x-axis according to their
time data. This introduces the time component into the node-link diagram while still
giving structural information of the graph. A user can switch back and forth between the
different layouts as desired by pressing a button. For the proof-of-concept visualization
this is the only interaction possibility for users.

When the server component streams data to the client and data is received, it checks
whether nodes and edges have to be removed from the visualization. After removing
elements that are not longer required and adding new elements to the cached data, the
visualization is updated. The new nodes and edges are added to the visualization and
the positioning computation of the force-directed layout is restarted to account for the
new elements in the visualization.

3.3 Server
The main contribution of this thesis is the middle layer preprocessing the data in the
processing server. Given the size of the blockchain data, performance was a central part
of the design. Apart from speed, the requirements of the server were flexibility and
the possibility to easily enhance the system with additional functionality. Therefore
the server architecture itself is split into several parts. This allows for simultaneous
processing and independent functionality for extending the functionality of the system.

Modular Architecture

A central principle for the architecture of the proxy is parallelism. Due to the algorithmic
complexity of certain graph operations, they take a long time to complete. Therefore the
workload is parallelized in order to avoid idling of computing hardware. A second factor
for this design choice was responsiveness. Once a query has been sent to the server, the
client or a user wants to have full control over the processing pipeline. Short reaction
times to commands by the user are necessary to minimize the perceived delay in the
visualization client.

To comply with these design goals, the server architecture itself is split into three main
parts. Each of them is running in their own process completely independent of each other.
This architecture allows for constant listening for client commands, while at the same
time, being able to send data when processing a chunk of the data has been finished.
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The second central part of the server is a control process that is able to control the server
and computing process. Its responsibility is to control startup and shutdown, as well as
synchronization between the processes. Finally, the data processing module controls the
database connection and the data processing logic. Figure 3.3 shows the three parts of
the server architecture, as well as the communication with each other. A detailed view
on an implementation level will be given in Chapter 5.

Message Passing

To synchronize all parts of the proxy server and the data processing, there is a lot of
communication involved. Splitting the server into three parts results in having three
specialized components.

Communication Module The communication part of the server is responsible for
providing a communication interface to the client. To allow the client to send
commands at the same time as data is processed and sent, a non-blocking, two-way
communication channel is established. Through this channel, the client can send
requests and receive resulting data at the same time. Another important part is
the initial delivery of the client code in order to provide an easy-to-use solution for
users. This part of the proxy handles all the communication with the client.

Control Module Once a user sends a request and it is received at the communication
endpoint, all necessary computations need to be started and the communication
module as well as the data processing module of the proxy need to be synchronized.
The responsibility of the control module is to establish communication between the
data processing module and the communication module. Furthermore, it needs to
control internal states and commands. Due to the fact that data processing can be
computationally expensive, it is necessary to have an external component that is
non-blocking and is able to control the process flow.

Data Processing Module After the control module has initialized the necessary inter-
nal state, it passes the client’s query on to the data processing module. This module
takes care of database communication, preprocessing and controls the incremental
streaming of the processed data to the client. This module also takes care of all
the necessary data conversions from database results to the internal representation
and finally to a format adequate for visualization in the client.

Figure 3.3 shows the message passing between all the components including the internal
channels of the proxy. First, a client loads the code from the proxy server. Once the code
is loaded, it opens a bidirectional communication channel and the user can send a query
to the server. The communication module accepts the request and forwards it to the
controller. The controller processes the query, performs necessary actions and starts data
processing. Once the data processor has received the query, it checks which type of data
is required. It then sets its internal processing state and formulates an appropriate initial
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query for the database. Once the database returns data it is processed and sent directly
to the communication module which then forwards it to the client. Upon receiving the
data, the client visualizes it and listens for further data or waits for user input. Figure 3.2
shows an example of how such a message passing could occur between the client, the
proxy and the database server.

Proxy Server

Communica�on
Module

DB Worker 
(Expander)

Graph Worker
DB Worker 

(Pathfinder)

startsstarts

starts

command/response channels

data channel

DB channel client channel
Data Processing

Module

Control Module

Figure 3.3: Message passing diagram of the internal proxy modules. The control module
starts the communication module and data processing module for simultaneous processing.
When the client sends a request, it is forwarded to the data processing module through the
control module. The data processing module generates a database query and processes
the returned data. After aggregating the data and transforming it into a format suitable
for the client, it is sent directly to the communication module. This module then forwards
the data to the client asynchronously.

Progressive Loading

For optimal performance and hardware saturation, the data processing methodology of
this thesis puts a focus on parallelism. This means that, although the client sends only
one single query, the proxy server splits the query into different subqueries. This helps
to fully utilize processing power and reduces stalling while the server waits for responses
from the database or costly graph operations. Depending on which query the user has
performed, different parallelism strategies are employed.

The user can query the neighborhood of a node in the TX-graph for visualization. The
TX-graph contains the data of the Bitcoin blockchain (blocks, transactions, and addresses)
after mapping it to a nodes and edges. Section 4.1 gives a detailed view on how this
data is mapped. Querying the neighborhood of a node gives the general surrounding
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structure of it inside the TX-graph and shows how it is embedded in the Bitcoin network.
Although this type of query is also used for the more complex path query provided by the
proxy, in itself it can also be interesting to see how the node interacts with the network.
The general algorithm for this neighborhood expansion is as follows:

1. The client sends a query with a hash A of a node as starting node to the proxy.

2. The proxy initializes its state and sends a query to retrieve all neighboring nodes
of A to the database.

3. When the database query returns data, the resulting nodes are added to an internal
in-memory graph representation for further processing. Additionally, the proxy
puts the resulting nodes in a queue for further processing. Finally it transforms
the data into readily visualizable nodes and edges and sends them to the client.

4. The client receives the information and visualizes the graph as a node-link diagram.

5. The proxy server keeps expanding the neighborhood structures by querying the
neighborhoods of all nodes in the list of nodes to process next. Depending on the
size of the list, only the oldest parts of it are processed in a first in, first out (FIFO)
order. If the database query returns new neighborhood nodes, these are added to
the queue, unless they have already been processed. Next they are added to the
in-memory graph of the proxy server. Lastly, the data gets sent to the client and
the visualization is updated.

6. This process is continued until the client sends a termination request to the proxy
and the controller shuts down the processing module.

Apart from querying the neighborhood of a node it is also possible to query for paths
between two nodes. If the user sends a path query to find possible paths between two
Bitcoin addresses, the system starts a database path search, a neighborhood expansion,
and a path search in the internal, in-memory graph of the proxy server. Every time one
of these threads returns data, it is immediately forwarded to the client to update the
visualization. This results in the following process:

1. The user sends a query, searching for paths between address A and B, to the proxy.

2. The proxy initializes its state, and formulates a database query that looks for a
path between those two addresses and then sends it to the database.

3. The database returns a single path between the addresses and the proxy adds it to
its in-memory graph.

4. Next the proxy transforms the data into nodes and links and sends it to the client,
which visualizes it.
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5. Without any further requests from the client, the proxy server starts two additional
processes that constantly keep loading more paths from the database and looking
for paths in the internal graph representation. At the same time, the proxy puts
the nodes of the initially found path into a list for neighborhood expansion and
starts processing this queue.

a) For each of the nodes in the list, the nodes with distance one are queried.
Once the data is returned from the database, the new nodes are added to
the list and the internal graph. Furthermore, an update with the new and
updated nodes is sent to the client.

b) The proxy queries the database for paths that have not yet been found in
the graph. If such a new path is found, it is added to the list of known paths
and the proxy server’s in-memory graph. Then, the nodes of the path are
added with highest priority to the list for neighborhood expansion. Lastly, the
update of the graph is sent to the client.

c) While the proxy server is processing data, it constantly searches for new paths
in the cached in-memory graph, induced by the neighborhood expansion. Find-
ing paths in the in-memory graph is done through a breadth-first search [69].
If new paths are found, their nodes are once again added to the node list.
Additionally, they are marked as known paths for the database path queries
and, finally, sent to the client.

6. This continues until the client sends a stop or termination request to the proxy.

Constantly sending visualization updates to the client helps to mitigate initially long
loading times. For users, this results in the perception of no significant loading times
and most importantly, interaction and analysis possibilities while more data is being
streamed. If the surrounding network of a node is very large or finding paths between
nodes takes a long time, the user is provided with information to analyze while in the
background, the proxy server continuously loads more data. Although this approach
does not give the complete information to the user at once, it reduces waiting times for
the client significantly. The longer the client waits, the more information it gets and
the closer the information will be to the complete data [31]. However, this methodology
requires an initial query. A starting point, or a set of interesting nodes, known to the
user, is necessary for this methodology to work. Alternatively, even when the user does
not have information to start with, it would be possible to choose a random starting
point for the query. However this might not be ideal for the user’s task at hand and this
problem will be discussed in Chapter 7.

Another aspect to note is that, while in the description above the step of sending data
to the client is kept brief, it is more involved than previously explained. To be able to
visualize Bitcoin as such a large dataset without overwhelming the client, the graph data
is processed and reduced before sending it to the client. The steps involved in the sending
process in the data processing module of the proxy server are explained in the following
Chapter.
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CHAPTER 4
Top-Down: Graph Data

Processing

Besides the bottom-up approach of progressively streaming data to the client, reducing
the number of nodes and links to be visualized is necessary to be able to handle the size
of the blockchain. Dividing the data into chunks and sending them to the client piece
by piece does not reduce the amount of data. After some time of streaming, rendering
will still be a bottleneck and the client visualization will result in visual clutter. To
mitigate this bottleneck, in the rendering stage of the visualization pipeline, reducing the
number of data items is essential. The blockchain data runs through several phases of
transformation throughout the whole pipeline. In this Chapter, the graph minimization
and filtering during data analysis is highlighted.

4.1 Bitcoin Data
The source data for the visualization is the Bitcoin blockchain. The blockchain saves all
the transaction information in the Bitcoin network. It consists of three main entities,
blocks, transactions and addresses. Each of these entities contains information that gives
a comprehensive view of the state of the network.

Figure 4.1 shows the fields contained in each block. HashPrevBlock, nVersion and nTime
are parameters for the general state of the network. HashPrevBlock is a pointer to the
previous block and this linkage is what makes the chain of blocks a blockchain. nBits
and nNonce are important fields for miners. nBits gives the difficulty of the mining
process in which new coins join the system. nNonce is the variable field miners can use to
change the input of the hash function and therefore the resulting hash. The combination
of these two fields gives miners the information they need to validate new blocks through
the so called "proof-of-work" [70]. HashMerkleRoot, #vtx and vtx[] are the information
about transactions between Bitcoin users, included in the blocks.
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4. Top-Down: Graph Data Processing

Figure 4.1: The Bitcoin block structure with all header fields and the reference to the
previous block. HashPrevBlock is the unique reference to the previous block in the data
structure. To obtain this hash, the header information of a block is taken as input of a
SHA2562 function. nNonce is the variable field for validating new blocks and mining
new BTCs. For a full description of the included data the interested reader can refer to
the Bitcoin Developer Reference by Krzysztof Okupski [18].

The first transaction in each block is called a "coinbase transaction" and it is a special
transaction with no inputs and where the miner can choose the output address. This
creation of BTC is meant as an incentive for miners to perform the costly validation of
new blocks because the miner can send the newly created BTC to herself. The other
transactions that are included in the list are transactions the miner chooses to include.
Participants of the network can publish their transactions to the network and miners then
decide which they include when they publish a valid block. As can be seen in Figure 4.2,
transactions themselves contain several fields. scriptPubkey and scriptSig are necessary
to proof to the system that a transaction posted to the network is valid and the BTC
are under control of the sender. Generally, scriptPubkey contains an address that is tied
to a cryptographic key and can be considered as being similar to a bank account number.
For a transaction, the fields hash and n identify which output of a previous transaction
belongs to an input.

4.2 Blockchain Data to Graph Mapping
With blocks, transactions and addresses as nodes, it is possible to map the Bitcoin data to
a graph. Decoding the references of the inputs of transactions and the addresses contained
in the scriptPubkey field gives edges between transactions and addresses. Conceptually,
this is equal to what happens during sending BTCs from one user to another as shown
in Figure 2.2. To show which transactions are included in which block, another set of
edges is introduced. Special coinbase transactions that add new BTCs to the system are
connected to block nodes by an additional edge, signaling this special case. For temporal
mapping between a block and its preceeding block, a directed edge can be added between
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4.2. Blockchain Data to Graph Mapping

Figure 4.2: This Figure is taken from the Bitcoin Developer Reference and should
only illustrate how two TX relate to each other. Both TXs have two input and two
output addresses. TxNew shows that in order to identify a previous source of BTC for a
transaction, the fields hash and n of vin are necessary. Hash identifies the previous TX
and n gives the exact output address [18].

them. Mapping the data fields of blocks, transactions, and addresses from the blockchain
to the nodes and edges of a graph results in a graph structure as shown in Figure 4.3.
Green nodes are blocks with a uniquely identified predecessor and successor. Transactions
are colored in blue and are connected to blocks by two distinct edge types. One edge
label signals in which block the transaction is included. If an additional edge with the
edge label "coinbase" exists between a TX and a block, then this transaction is marked
as special; meaning that it does not have any input addresses. This separates special
coinbase transactions from standard ones. For example the first blue node from the left
in Figure 4.3 has two edges between itself and the green block node and is therefore
marked as a special coinbase transaction. Directed edges connecting to the red nodes, or
addresses, contain the information whether an address participates in a transaction as
output or input. Both cases are simultaneously possible as seen in this Figure.
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Figure 4.3: This Figure shows how mapping the Bitcoin blockchain to a graph structure
looks like. Three different node types, blocks, TX and addresses are shown with different
colors and are connected with directed edges.

4.3 Data Processing Steps

As described in Section 3.3, sending responses to the visualization client involves reducing
the amount of data to be sent. This happens in several steps throughout the visualization
pipeline as shown in Figure 1.2. On a high level, the complete graph data is reduced
step by step by applying heuristics that are suitable for Bitcoin. Data reduction entails
pruning of nodes that do not give additional information as well as aggregating nodes
that do not contribute to understanding of finding paths between nodes or analyzing how
a graph is embedded into the Bitcoin TX-graph. Visualizing the complete TX-graph is
not possible due to its size and therefore these steps are applied to reduce the size. The
Bitcoin network is very active and currently more than 150,000 new TXs are included in
the blockchain every day.

4.3.1 Large Graph

Our dataset contains only a subset of the whole blockchain, spanning from Sat Jan 03
18:15:05 2009 UTC to Thu Jul 29 20:52:49 2010 UTC, and already exceeds the possibility
of visualization on commodity hardware. During this timespan, a total of 71,036 blocks
has been mined, containing 97,254 TX with 94,270 unique addresses. This results in a
total of 262,560 nodes in our graph. These nodes are connected with a total number of
470,201 edges. It is not feasible to try and visualize the complete graph with interactive
visualization in mind. Therefore, it is necessary to reduce the amount of data that
reaches the rendering stage of the visual analytics pipeline. However, with our goal of
finding possible paths between two addresses, to follow the flow of money in the Bitcoin
TX-graph, we do not need to visualize the complete graph. For the second use case of
visualizing the neighborhood of a certain node, it is also possible to apply aggregation
and pruning.
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4.3. Data Processing Steps

4.3.2 Graph Pruning

Given knowledge about the TX-graph, an easy solution to reduce the number of visual
elements is to prune nodes that do not add information to the visualization. As mentioned
in the previous chapter, starting from a user query the data gets expanded. Neighborhood
expansion is one part of this process where neighborhoods of nodes are loaded from the
database. When that happens and a node only has one single neighbor, it does not add
necessary information to the visualization about the TXs between A and B. Such a
node can be omitted without providing the user with less information, but increasing the
performance of the overall system. Apart from this default pruning strategy, it is possible
for the client to specify a limit for the degree of the nodes to be pruned. Nodes with
a degree below the specified limit are omitted from the visualization. This is a simple
way to only retrieve a graph with highly connected nodes. However, this might lose
information about possible paths and is therefore not suitable for finding paths between
two nodes.

Another pruning strategy for finding paths between addresses is to only visualize the
TX-graph. By omitting blocks from the visualization, the number of nodes as well as
edges, is reduced. Although the number of transactions and addresses exceeds the number
of blocks in the dataset, the total number of nodes is still quite significant. Therefore,
hiding blocks in the visualization is another useful strategy to improve performance
without sacrificing information for finding the flow of BTC from one address to another.

4.3.3 Graph Aggregation

Apart from simply removing nodes, another strategy to reduce the number of data
elements is to aggregate them. Although aggregation in the data domain is possible [27],
the goal of this thesis is to show the TX-graph’s network topology. Therefore we use
several types of topological aggregations that fit well for the Bitcoin graph data and
do not hide necessary nodes and edges in the client visualization for the given user
tasks. Through visually inspecting the TX-graph, it was found that the previously
mentioned hairballs are very prevalent in the visualizations. Another common theme
was the occurrence of certain subgraphs, called network motifs [41].

Hairballs The main use of sending a Bitcoin TX is to transfer value from a user A to
a user B. Although this can be done with a minimum of two addresses per TX,
senders can make TXs use as many addresses in one TX as the network protocol
allows. This results in transactions that have hundreds or more participating
addresses. If a majority of these addresses have been one-time use addresses used
for storing BTCs over a long time, they do not contribute much to the general
topology information of the TX. Therefore, it is possible to collapse these nodes
into the TX and visually mark it. Such a reduction is shown in Figure 4.4. If
even just a few transactions in a graph are of this structure, many nodes can be
aggregated and saved from being displayed. An analysis on how significant this
reduction in size is, is given in Chapter 6.
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4. Top-Down: Graph Data Processing

Figure 4.4: A node n containing many neighbors with degree(n) = 1 has its neighbors
removed and is then marked as a special hairball node.

Motifs It is possible to search for recurring subgraph structures in a graph and replace
them with super nodes [41]. Super nodes are nodes that are added to a graph
when multiple nodes and edges are collapsed into one node. In the case of Bitcoin,
user behavior emerges in specific transaction (TX) patterns, that in turn result in
so-called motifs. The methodology proposed in this thesis searches for two distinct
motifs that are interesting from a Bitcoin analysis point of view.

• Self Sending Loops: If a user sends BTCs to another address and then
back to the original sender address, this behavior results in a loop in the graph
visualization. For finding paths between two nodes, removing these motifs
does not hide any vital information. Even if a path would incorporate such
a self-loop, pruning these structures only results in a shorter path without
omitting information. When a node that is source and target of a self-loop is
marked as such and the loops are removed, the number of nodes in the final
visualization is reduced while providing all structural information. Such a
motif as well as its replacement can be seen in Figure 4.5.

• Fan-Structures: When addresses are reused to send BTCs to another
addresses through multiple transactions, a fan-like pattern occurs. Figure 4.6
shows this motif in a graph taken from the real Bitcoin data. If considered
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Figure 4.5: A node that has loops containing other addresses with sending back BTC
to the original address. These loops do not contribute much information to the graph
but increase the node count in the graph. For the question of finding BTC flow between
two addresses, they do not add any information at all. By marking the central node as a
loop-node, it gives the same information without rendering all nodes. In the client this
results in a node stroked in a special color.

carefully, all occurrences of the motif can be collapsed into a super node. Even
the smallest possible replacement of just two TX-nodes would result in one
super node. Thus only half of the nodes of the source motif are left. If the
subgraph occurs in larger numbers and the start as well as the end node are
the same an even higher number of nodes can be replaced by one single super
node.

Replacing substructures by collapsing them into one super node in combination with
progressively streaming the data to the client helps to minimize the computational
requirements for the client as well as provides the user with an interactive visualization
without significant preprocessing delays. Mapping of nodes and edges to their respective
rendered representation is similar to the Neo4j Browser shown in Figure 5.1. However,
one big difference is that the size of the nodes is mapped to their degree. This can be
seen in the client visualization shown in Figure 5.4. There is no distinction between
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Figure 4.6: The fan-pattern between two nodes. One address sends BTCs to another one
through several transactions. By collapsing this fan-structure into one artificial super
node, the node count can be reduced.

outbound and inbound edges and just the sum of all edges per node is taken. Additionally,
the thickness of the outbound edges is mapped to the amount of BTCs as saved in the
outbound edges of a TX.
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CHAPTER 5
Implementation and Algorithms

While Chapter 3 and 4 provided insight into the general methodology of this thesis, this
chapter presents in detail, how the solution has been implemented. It provides a general
overview of the used technology stack and highlights how some peculiarities of the used
frameworks and tools have been dealt with.

In general, the work done in this thesis was realized in Python 3.6, web languages, such
as HTML and Javascript, and Cypher. The main part of the project, namely the proxy
server, has been implemented in Python and provides the client code via a web server.
The client code is written in HTML and Javascript using D3.js as visualization framework.
For the communication between the proxy server and the client a message structure for
commands and data has been realized using JavaScript Object Notation (JSON).

5.1 Message Passing
The messages sent between the server and the client are JSON encoded messages. Both
requests and responses are split into two parts: a header containing general meta
information and a body that differs between message types.

The header of a request supplies general parameters to the proxy server. The examples in
the following listings also contain fields that are not yet used by the proxy server. They
are placeholders for possible future work that would enhance the functionality of the
server. The data dictionary, truncate in the query dictionary and coi in the requests are
currently not implemented and are reserved for future functionality. The idea of these
parameters is to allow the client to send information about its memory capacity to the
proxy server. This would allow for resource limitation guided progressive loading and
processing. The header, for example, includes what kind of request it is and whether
streaming should be performed. In total, there are four different message types (new,
cancel, halt, and shutdown) that a client can send as a request to the proxy server.
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Listings 5.1 to 5.4 show the JSON structure of each of the request types. The difference
between the cancel and the halt request is, that after receiving a cancel request from
the client, the proxy sends all data to the client currently being processed, whereas the
halt message immediately terminates the streaming and the proxy does not forward the
currently processed data. For new-message types there is also another subset of requests
that corresponds to the path and neighborhood queries. These new-queries themselves
have parameters necessary for the proxy to specify an initial user provided query.

1 =========================================================
2 Cancel Request
3 Parameters:
4 clear_cache: [true, false]
5 =========================================================
6 {
7 "general": {
8 "type": "cancel",
9 "streaming": false, //streaming is stopped

10 "data": {
11 "capacity": 5,
12 "used": 2
13 },
14 "clear_cache": true //cache is cleared
15 }
16 }

Listing 5.1: A simple cancel request that cancels a previously sent request and stops the
streaming process. The client can also set a boolean "clear_cache" flag and signal the
proxy whether the previously loaded data should be cleared or not. Data processing in
the server is stopped. However, all data that is currently processed by the proxy will be
still forwarded to the client.

1 =========================================================
2 Halt Request
3 Parameters:
4 clear_cache: [true, false]
5 =========================================================
6 {
7 "general": {
8 "type": "halt",
9 "streaming": false, //streaming is stopped

10 "data": {
11 "capacity": 5,
12 "used": 2
13 },
14 "clear_cache": true //cache is cleared
15 }
16 }
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Listing 5.2: A simple halt request that cancels a previously sent request. The client can
also set a boolean "clear_cache" flag and signal the proxy whether the previously loaded
data should be cleared or not. When the proxy receives a halt-signal it immediately stops
streaming of all the data to the client, even if there is still some data currently being
processed.

1 =========================================================
2 Shutdown Request
3 Parameters:
4 clear_cache: [true, false]
5 =========================================================
6 {
7 "general": {
8 "type": "shutdown",
9 "streaming": false, //streaming is stopped

10 "data": {
11 "capacity": 5,
12 "used": 2
13 },
14 "clear_cache": true
15 }
16 }

Listing 5.3: A simple shutdown request not only cancels a previous request but fully
shuts down the proxy server. This means that the progressive streaming connection is
closed and even the webserver, for loading client code, is shut down. All processing and
data loading in the proxy server is stopped and the client cannot connect to it anymore.

1 =========================================================
2 New Request
3 Parameters:
4 streaming: [true, false]
5 aggregation: optional
6 degree_cut: integer
7 =========================================================
8 {
9 "general": {

10 "type": "new",
11 "streaming": true, //streaming is stopped
12 "data": {
13 "capacity": 5,
14 "used": 2
15 },
16 "aggregation": {
17 "degree_cut": 1
18 }
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19 },
20 "query": {
21 ...
22 }
23 }

Listing 5.4: This listing shows part of a client request, sending a new query to the proxy.
When a new query is sent, the client can also include an aggregation parameter. If the
"aggregation" field is included the client has to specify "degree_cut" as a parameter. It
defines the minimum degree of the nodes to return. Nodes with a degree less than the
parameter will be pruned from the returned graph.

When the client sends a "new" request, it also has to specify a query. This query is a
starting point for the streaming and the streaming strategy depends on which query the
client sends. In order to support path queries and neighborhood expansion, there are
two different queries.

The first query requests all paths between two nodes of the TX-graph. Although it is
possible to query paths between transactions, to answer questions about who sent BTCs
to whom, only address nodes are useful. Paths between transactions or blocks do not
give this information and therefore, while technically possible, provide not an answer to
the question of following the flow of BTCs through the TX-graph. Listing 5.5 shows the
structure and the possible parameters of a query asking for paths. The listing shows
part of a client request, sending a new path query to the proxy. When a new query is
sent, the client can also include an aggregation parameter. If the "aggregation" field is
included, the client has to specify "degree_cut" as a parameter. If aggregation is enabled,
all graph minimization steps, including graph pruning, are performed. The path query
supports multiple parameters to allow for finding distinct paths. "path_type" allows to
specify which paths are searched for. Details on path finding are given in Section 5.5.2.
The "label" fields for the start and end node specify which node type they are. The end
node is implicitly given as the last node in the "hops" array. "rel" allows to specify the
directionality of the path as well as the maximum distance. This is necessary for the
performance as path search in graphs can be computationally costly.

1 =========================================================
2 New Path Request
3 Parameters:
4 streaming: [true, false]
5 aggregation: optional
6 degree_cut: integer
7 path_type: ["all_shortest", "shortest", "all"] // supply one of

these parameters
8 start:
9 label: ["Address", "Transaction", "Block"] // supply one of

these parameters
10 params:
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11 hash: string //the hash of a node in the Bitcoin network
12 hops:
13 rel:
14 direction: [-1, 0, 1] //directionality: -1 - (node)->(start)

| 0 - undirected | 1 - (node)<-(start)
15 dist: integer //maximum path length from start node
16 node:
17 label: ["Address", "Transaction", "Block"]
18 params:
19 hash: string // the hash of a node in the Bitcoin network
20 =========================================================
21 {
22 "general": {
23 "type": "new",
24 "streaming": true,
25 ...
26 "aggregation": {
27 "degree_cut": 1
28 }
29 },
30 "query": {
31 "type": "path",
32 "truncate": 1000,
33 "subgraph_labels": ["Address", "Transaction"],
34 "path_type": "all_shortest",
35 "start": {
36 "label": "Address",
37 "params": {
38 "hash": "1A9zE4C215zA8HfigEdwxP8ApV8miEgudX"
39 }
40 },
41 "hops": [{
42 "rel": {
43 "var": "r",
44 "label": null,
45 "direction": 1,
46 "dist": [50]
47 },
48 "node": {
49 "var": null,
50 "label": "Address",
51 "params": {
52 "hash": "1JyEmxiMso2RsFVfBcCa616npBvGgxiBX"
53 }
54 }
55 }],
56 "coi": null
57 }
58 }
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Listing 5.5: This listing shows a client request of type "new". Such requests start the
loading of data and graph minimization in the proxy server. The client can pass various
parameters to the proxy server within this request.

Another interesting query to retrieve topological information about a node in a graph is
the neighborhood query. It starts streaming the surrounding graph neighborhood of the
initially specified node and gives the user information about how, for example, an address
interacts with the Bitcoin network. Listing 5.6 shows the JSON structure of the query.

1 =========================================================
2 New Neighborhood Request
3 Parameters:
4 streaming: [true, false]
5 coi:
6 label: ["Address", "Transaction", "Block"]
7 hash: string //the hash of a node in the Bitcoin network
8 =========================================================
9 {

10 "general": {
11 "type": "new",
12 "streaming": true,
13 ...
14 },
15 "query": {
16 "type": "surrounding",
17 ...
18 "coi": {
19 "label": "Address",
20 "hash": "13VgbQM6ssD9VnafHp3DVVidUzTaB9B49i"
21 }
22 }
23 }

Listing 5.6: This listing shows part of a client request, sending a new neighborhood query
to the proxy. This query is much simpler than the path query as only one node needs to
be specified. It acts as a center node from which the graph neighborhood is expanded.
Although streaming can be set to false in this query, the usefulness of this query would
be very limited. If the neighborhood query has streaming disabled only the directly
connected neighbors of the start node will be returned. The resulting visualization would
not give much information about the interaction of the starting node with the TX-graph.

Internally after the requests are received by the proxy server, they are transformed
into Python objects. This allows for greater flexibility and makes it easier to retrieve
parameters and use the query object for representing the internal progressive loading
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states. Another advantage is that, through the usage of Python enumerations for task
types and query types, programming errors are minimized.

The other side of client-server communication are responses. As with requests, the
communication is encoded as JSON and there are two different response types: status
responses to send feedback about the received request to the client, shown in Listing 5.7,
and data messages to send data to the client.

1 =========================================================
2 Status Response
3 =========================================================
4 {
5 "header": {
6 "message_type": "status",
7 "status": "OK",
8 "code": 3
9 }

10 }

Listing 5.7: A simple status response from the server. In addition to the message type, a
textual status representation and a status code are returned.

1 =========================================================
2 Data Response
3 =========================================================
4 {
5 "header": {
6 "message_type": "data",
7 "hierarchy": false,
8 "chunk_nr": 0,
9 "node_types": ["block", "transaction", "address"]

10 },
11 "nodes": [{
12 "id": 0,
13 "hash": "1A9zE4C215zA8HfigEdwxP8ApV8miEgudX",
14 "processed": false,
15 "delete": false,
16 "special_type": ["start"],
17 "type": 2
18 },
19 ...],
20 "links": [{
21 "source": 0,
22 "target": 1,
23 "label": "in",
24 "delete": false
25 }, {
26 "source": 1,
27 "target": 2,
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28 "label": "out",
29 "delete": false,
30 "amount": 2.0,
31 "type": "pubkey",
32 "req_sigs": 1,
33 "n": 0
34 },
35 ...],
36 "paths": [...]
37 }

Listing 5.8: This message is comprised of four important parts, "header", "nodes", "links",
and "paths". The header gives information about which data chunk is being received.
The "node_types" field in the header and "type" in each node are necessary to resolve
the node type in the "node" array. This is done in order to shorten the overall size of
the JSON responses. nodes is an array of node objects that contains all the information
saved in the blockchain. links is an array with the edges between the nodes. source and
target refer to the id field of the nodes.

The JSON result shows all the fields contained in the blocks, TX and addresses. An
abbreviated form of the response that includes data is shown in Listing 5.8. For the
aforementioned special nodes as described in Chapter 4, the field special_type is used.
Each of the nodes that partakes in the aggregation steps has its own label. Additionally,
the start and end nodes of the path query also have special labels. delete is the field that
signals the client that a node needs to be removed.

By referencing node types and nodes by ids, it is possible to reduce the size of the
JSON response. Additionally, this is the format required by D3.js [71] to visualize
node-link diagrams. Providing the client with a ready to visualize dataset, the processing
requirements in the client are reduced. The client only has to take care of updating
its internal data when new nodes and edges are streamed from the proxy. After this
updating step, the visualization is updated and data marked for deletion are removed
from the visualization. Finally new data are added to the visualization.

5.2 Complementary Work and Additional Queries

The complementary thesis by Alexandra Mai is concerned with on creating visualizations
that focus on the temporal component of Bitcoin [72]. Her work focuses on past and
current transactions and provides analysts with a forensic tool to visually explore the
Bitcoin blockchain in-depth. Additionally her visualization client allows users to cluster
and calculate the statistical probability TXs.
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5.3 Database

Before any visualization can be done, the blockchain data has to be accessed. Although
it is possible to load data through the Bitcoin client Application Program Interface
(API), this is not the fastest method. For queries on graph data this would also result
in complex queries and slow performance because operations, such as to look for paths
or neighborhoods, are not supported in the Bitcoin API. Having the possibility to
send queries like those to a data storage system that is made for graph data seems
natural. Therefore, the blockchain data was loaded into a Neo4j [73] graph database in a
preprocessing step. Neo4j is a database especially made for graph data and therefore graph
theoretical queries can be performed without complicated query syntax or performance
degradation. Using a Python script that iterates over the blockchain block by block
and retrieves all its TXs and participating addresses, the data was inserted into the
graph database. The script starts with the first block in the blockchain and creates
a block-node in the graph database. For each TX in a block a TX-node is created.
Subsequently, each address in a TX is loaded and added to the database. By linking
input and output addresses of each TX with the TX-node in the database, the edges
are introduced. Finally the edges between the TX-node and block are created. After
processing a block is finished, the script continues with successive block and its TXs and
addresses are processed.

Communication with the graph database happens through Cypher. It is a query language
similar to the Structured Query Language (SQL). A major key difference, however, is that
it is designed for querying graphs. Therefore, it supports graph pattern matching and
graph queries, such as shortest paths, that regular relational database query languages
do not support.

While Cypher is very flexible, some queries can be cumbersome to implement. Therefore,
for database creation, neomodel [74] was used. Having an Object Graph Mapper (OGM)
simplified this step as only the mapping from a Python object to database fields has to
be specified. This is similar to Object-relational mapping for relational databases but
instead is aimed at graph databases. Neomodel takes care of creating all the necessary
Cypher queries in the background. Listing 5.9 shows the OGM structure used to create
the database.

1 =========================================================
2 Object Graph Mapping for the Blockchain
3 =========================================================
4 from neomodel import (StructuredNode, StructuredRel, StringProperty,

IntegerProperty,
5 UniqueIdProperty, FloatProperty, RelationshipTo,

RelationshipFrom, One, ZeroOrOne)
6
7
8 class Block(StructuredNode):
9 version = IntegerProperty()
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10 hash = StringProperty(unique_index=True)
11 hash_next_block = StringProperty()
12 tx_merkle_root = StringProperty()
13 time = IntegerProperty()
14 median_time = IntegerProperty()
15 bits = StringProperty()
16 nonce = StringProperty()
17 confirmations = IntegerProperty()
18 weight = IntegerProperty() # block size (after segwit)
19 difficulty = IntegerProperty()
20 chainwork = StringProperty() # number of total hashes/work up to

this block (hex)
21 size = IntegerProperty()
22 stripped_size = IntegerProperty()
23 height = IntegerProperty()
24
25 # Relationships
26 prev = RelationshipTo(’Block’, ’previous’, cardinality=One)
27 next = RelationshipTo(’Block’, ’next’, cardinality=One)
28 tx = RelationshipFrom(’Transaction’, ’hasTx’)
29 coinbase_tx = RelationshipFrom(’Transaction’, ’coinbase’,

cardinality=One)
30
31
32 class OutRel(StructuredRel):
33 amount = FloatProperty()
34 type = StringProperty()
35 req_sigs = IntegerProperty()
36 n = IntegerProperty()
37
38
39 class Transaction(StructuredNode):
40 uid = StringProperty(unique_index=True)
41 version = IntegerProperty()
42 lock_time = IntegerProperty()
43 size = IntegerProperty()
44 vsize = IntegerProperty()
45 hash = StringProperty()
46
47 # Relationships
48 block = RelationshipTo(’Block’, ’hasTx’)
49 coinbase_tx = RelationshipTo(’Block’, ’coinbase’,

cardinality=ZeroOrOne)
50 in_address = RelationshipFrom(’Address’, ’in’)
51 out_address = RelationshipTo(’Address’, ’out’, model=OutRel)
52
53
54 class Address(StructuredNode):
55 hash = StringProperty(unique_index=True)
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56
57 # Relationships
58 in_tx = RelationshipTo(’Transaction’, ’in’)
59 out_tx = RelationshipFrom(’Transaction’, ’out’, model=OutRel)

Listing 5.9: Object Graph Mapper (OGM) used to create the Neo4j graph database. It
shows the three different node classes and a special outgoing relationship class.

Even though Cypher is very powerful in expressing and querying graph structures, not
all queries were easily possible. In order to drastically simplify time-related queries,
the creation time of blockchain blocks has also been copied into the transaction nodes
after the initial database creation. After the blockchain data has been loaded into the
database, viewing it through the Neo4j Browser, a web interface for visually inspecting
the database, results in a structure as seen in Figure 5.1.
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Figure 5.1: A small example of a block with transactions and its connected addresses.
The green nodes show blocks, the blue nodes are transactions and the red nodes are
addresses. All edges between the nodes are directed. It is a heavily pruned (77 of 262,560
nodes) and reduced example from the database. This is a screenshot taken from the
Neo4j Browser with a different color scheme than the one used in the client visualization
presented in this thesis. Due to changes in the Neo4j browser implementation, blocks
and transactions have swapped colors in this figure.
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5.4 Client

For increased flexibility and the least number of software requirements for the client, it is
realized as a thin client using web technologies. The client code is based on HTML, CSS,
and Javascript and uses only D3.js as framework for rendering. D3.js is a Javascript
framework that helps to map data to the Document Object Model (DOM) automatically.
The advantage of using web technologies lies in the fact that they are universally available.
Only a web browser is necessary to download and run the client code. However, this
advantage comes with the downside that, generally, web implementations do not perform
as well as native implementations. Nonetheless, for the goals in this thesis this should not
pose a problem. The data that reaches the client should be reduced through the processing
steps in the proxy server, so that reduced processing capacities should not matter. Apart
from D3.js, which is an external library, everything else has been implemented in standard
web technologies that work with every browser.

When a user navigates her web browser to the website of the proxy server, the browser
downloads all the necessary files for the client to run. This includes the website, the
style information, the visualization and rendering code in Javascript, and code to open
a websocket connection to the proxy server. After the browser has established this
websocket link, the user can send queries to the proxy server through the user interface.
When data is returned through the websocket, the received JSON is parsed into Javascript
objects and the visualization update functionality is called.

The visualization is rendered as Scalable Vector Graphics (SVG) through D3.js. Lay-
outing is also done through the forceSimulation functionality of the D3.js API. There
are two different layout mechanisms implemented for the node-link diagram. One is the
traditional force-directed layout that is comprised of attracting and repelling forces. The
second layout algorithm changes the node positioning while attracting forces of the edges
remain intact. Nodes are positioned in the visualization according to the times of the
blocks and the TXs along the x-axis. Besides switching the layout algorithm, there is no
user interaction implemented.

To showcase the pruning and aggregation as well as the progressive loading capabilities
of the server, coloring of special nodes is employed in the client. Blocks are blue, TX
are green and addresses are red. Nodes can have various states and nodes that are
yet to have their neighborhood expanded use the light version of these colors. They
can be nodes that are already fully expanded, aggregated or have pruned neighboring
nodes. Fully expanded nodes and not yet expanded nodes share the same node color but
their saturation is different. The proxy server can mark certain nodes as special nodes
and they will be marked by different visual properties. For special nodes a distinction
between hairball aggregation and motif aggregation is made. Start nodes of either the
path or the neighborhood query are marked with a colored stroke as well. The path
query also returns the final node of the paths as a special node with its own stroke color.
Additionally, special nodes have different stroke styles. Figure 5.2, 5.3 and 5.4 show the
markings and different node colors and sizes as visualized in the client.
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Figure 5.2 shows the visualization as implemented by the client and the control panel
to the right. In this Figure all possible node types are visible. Although the graph in
the proxy server contains thousands of nodes and edges, the client node-link diagram is
small enough to allow for an interactive visualization.

Figure 5.3 shows a more detailed view of the client graph, including the motif and hairball
aggregation as well as different states of the neighborhood expansion. The node with a
purple stroke is the start node and the node stroked in pink is the target of the path
query. Nodes with an orange circle are hairball nodes. Light-green nodes of large size are
fan-motif super nodes the orange nodes mark "loop"-motifs. Dark colored nodes are fully
expanded in the proxy graph and light colored nodes do not have their neighborhood
loaded yet.

Figure 5.4 shows the same graph and focuses more on the two red nodes with large
diameters. With the exception of motif super nodes, the node diameter increases with
the degree of the graph vertex. The two red nodes show this clearly as they have many
incoming and outgoing edges. Figure 5.5 shows the same graph with the second layout
option. The TXs are placed along the x-axis according to their respective timestamps.
This ordering gives information on how BTCs have been sent over time from a start to
an end address.

5.5 Server
The core part of the system proposed in this thesis is the proxy server. It combines
almost all processing in itself and therefore most of the work is performed there. The
main implementation of it is done using Python 3.6 and it uses several frameworks for
client communication, graph storage, and processing. This has the advantage that graph
processing, implemented through graph-tool [75], has algorithms written in C++ and,
therefore, improved speed over Python. Python is a high level language that is compiled
to byte-code and not to machine-code. Therefore, the performance of a pure Python
implementation is not on par with a native machine-code implementation such as C++.

Graph-tool implemented by Tiago P. Peixoto [75] is a library for graph analysis written
in C++, with a heavy focus on being used through Python. The combination of speed
with the ease of use through Python was the main reason for choosing graph-tool
over a completely native Python implementation such as NetworkX [76]. Graph-tool
provides the necessary algorithms for path finding, motif search, and data storage for
the implementation of the methodology presented in this thesis. For providing the client
code through a webserver and client communication in the form of websockets, the
implementation uses Twisted [77] and Autobahn [78]. These two projects are closely
related but provide different functionality. While Twisted provides an easy to use web
server to support static content, Autobahn makes it easy to open and handle websocket
connections. For communicating with the database, the same framework as for the
database initialization is used. Neomodel with its convenience OGM functions uses the
neo4j-python-driver [79], provided by the Neo4j project, in the background. However,
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for querying the database, no OGM is used but rather raw Cypher queries are sent.
This allows for more complex queries with results that have been preformatted for easy
processing in Python.

When the proxy server is started, it initializes a controller, which creates all necessary
synchronization objects (multiprocessing.Queue, multiprocessing.Event) and spawns two
more processes. It passes the necessary data pipes and synchronization event objects to
the newly spawned processes. These two processes are the server component that acts
as interface to the client, and the data processing module that is responsible for all the
data storage, data processing, and database communication. Once everything is set-up,
the proxy waits for a client connection and a subsequent query to start processing data.

When a client connects and sends a query to the proxy, the request passes through all
three components. For data requests, the data module translates the client query into a
database query and sends it to the Neo4j database. Once data is returned, it is added
to the proxy server’s in-memory graph and the graph is processed in different stages.
Before the graph is sent to the client, it needs to be translated into nodes and links
and embedded into a JSON message. To minimize network requirements, only new or
updated nodes are sent to the client. Previously sent nodes and edges that have not
undergone a change since they were sent are skipped. Generally, the graph data passes
the following stages:

1. Remove blocks from the graph as they do not necessarily give additional information.
This is an optional step and mostly makes sense for path queries where only
transaction patterns are of interest.

2. Remove disconnected components. If removing blocks has resulted in creating
multiple connected components, the components, where the nodes of the initial
query are not part of, are removed.

3. Detect hairballs and prune them and mark the aggregated nodes as special nodes.

4. Find and replace motifs. This step searches for previously mentioned fan- and
loop-motifs.

5. Remove all nodes and edges that have been previously sent to reduce the data to
translate into JSON and send them over the network.

The next sections detail the operations performed during this sending preparation step.
This graph processing happens every time new graph data has been added to the in-
memory graph through constantly querying the database during neighborhood expansion
and database path querying. Additionally, the graph is constantly searched for new paths,
as described in Section 5.5.2, and if one has been found, this processing cascade is also
started before the path is sent to the client.
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5.5.1 Neighborhood Expansion

Neighborhood expansion takes nodes of found paths and loads their neighborhoods.
This helps to show how paths between nodes are embedded into the blockchain. If a
Bitcoin user has reused an address, this also reveals other related addresses. Additionally,
neighborhood expansion is a query that terminates quickly and, therefore, continuously
sends data to the client. Visualization updates in the client help to give feedback to the
user that data streaming is still being performed by updating the client. This hides long
latencies of queries with longer computation time. Finding paths in a graph can take a
long time and users can perceive that as unresponsive. If a neighborhood query is started,
neighborhood expansion is the main processing algorithm to load new data. For a path
query, additionally loading more data in this manner stems from the assumption that
nodes that are topologically close to existing paths might occur in more paths between
two nodes of interest. Users transacting with each other may possibly do so more than
once and therefore their addresses and transactions will produce multiple paths with
overlapping address nodes in the graph.

The general algorithm works as follows. Starting with an initial set of vertices, split them
into s subsets of size k, spawn s threads and let each of the threads load the neighborhood
of each node in the respective subset. After all threads have returned, the results are
merged into a single result set and the new nodes are added to the processing queue.
The new nodes and edges are added to the graph and graph processing (aggregation,
path search, etc.) is performed. Finally, the new data is sent to the client. As long as no
termination signal has been received or the node list, of nodes to be processed, is empty,
the procedure is repeated. Algorithm 5.10 shows the complete procedure including queue
splitting, thread spawning, and merging of results.

1 =========================================================
2 Parallel and Sequential Neighborhood Expansion
3 =========================================================
4
5 def neighbourhood_worker(thread_idx, result, node_ids, distance,

iterative):
6 tmp_data = self.db.get_multi_neighbourhood(node_ids, distance,

iterative)
7 result[thread_idx] = tmp_data
8
9 if self.neighbourhood_threading:

10
11 tmp_results = [None] * self.nr_neighbourhood_threads
12 thread_chunk_size = math.ceil(len(next_query) /

self.nr_neighbourhood_threads)
13
14 # Start threads with their workload share
15 for i in range(self.nr_neighbourhood_threads):
16 thread_chunk_data = set(
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17 itertools.islice(next_query, i * thread_chunk_size, (i + 1)

* thread_chunk_size))
18
19 self.neighbourhood_threads[i] =

threading.Thread(target=neighbourhood_worker,
20 args=(
21 i, tmp_results,

thread_chunk_data,
[1], False))

22 self.neighbourhood_threads[i].start()
23
24 # Join them back together
25 for i in range(self.nr_neighbourhood_threads):
26 self.neighbourhood_threads[i].join()
27
28 # Merge results together
29 graph_data = ([[[], []]], tmp_results[0][1]) # empty container

- layout as from db
30 for i in range(self.nr_neighbourhood_threads):
31 graph_data[0][0][0] += tmp_results[i][0][0][0]
32 graph_data[0][0][1] += tmp_results[i][0][0][1]
33
34 self.update_processed_nodes(next_query) # mark expanded

nodes
35
36 else: # Perform db query sequentially
37 graph_data = self.db.get_multi_neighbourhood(next_query, [1],

True)
38 self.update_processed_nodes(next_query) # mark expanded nodes

Listing 5.10: Python code showing two neighborhood expansion strategies. Either
querying the database with one big query or splitting the nodes to query into chunks,
according to a number of assigned threads, can be chosen as strategy. If the parallel
strategy is to be performed, then all queries are started in parallel and after data is
returned from the database it is assembled and processed further. Overlaps are processed
when the data is added to the in-memory graph of the proxy server.

5.5.2 Path Finding

Path finding is only done if the user starts a path query and works on both the in-memory
graph data as well as the whole blockchain data. Both processing methodologies are very
similar. The only difference is that one uses graph-tool path finding algorithms [69] while
the other sends path queries to the database. Due to a slight difference in functionality,
the way previously found paths are handled is different.

After spawning two threads, one for each type of data source, the first step for the
database path-finding algorithm is to retrieve a list of previously found paths, used as a
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blacklist, and create a query to send to the database. Using such a blacklist ensures that
no previously found path is returned from the database. Once a new path is found and
received it is added to the list of found paths and the data is added to the graph. The
nodes in the path are also added to the neighborhood expansion queue as the first nodes
to process next. This is done to prioritize newly found nodes and to load the surrounding
neighborhood of the new path. In the next step the new data is added to the in-memory
graph of the proxy server. Then, if the query enabled aggregation, the aggregation steps
are performed, the graph is transformed into JSON, and the data update is sent to the
client.

The in-memory path finder works slightly differently. It iterates over all paths in the
graph, found by a breadth-first search, and for each new path that is not already known,
it adds the path to the already known paths. Then, for all nodes in the path that have
not yet been neighborhood-expanded, add them to the beginning of the node list. Then,
start the graph minimization procedure and send the current graph data to the client.
Algorithm 5.11 shows the code of the database path search and Algorithm 5.12 shows
in-memory path search. The path finding is performed by graph-tool and does a fresh
breadth-first search every time it is called.

1 =========================================================
2 Database Path Search
3 =========================================================
4
5 def db_path_finder(self, query):
6
7 while self.stream_ctrl.is_set() and self.do_progressive_loading:
8
9 # Profile

10 measurement_cache = []
11
12 # Get copy of currently known paths (threading)
13 tmp_curr_paths = self.gm.paths.copy()
14
15 # Apply path length multiplier
16 for path in query.path:
17 path[’rel’][’dist’][-1] *= self.db_path_length_multplier
18
19 # Query database for a new path that has not been found yet
20 result_data = self.db.get_all_paths_id(query.start, query.path,
21 [[self.gm.graph_id_to_db_id(v) for v

in path]
22 for path in tmp_curr_paths],
23 self.path_timeframe[0],
24 self.path_timeframe[1])
25
26 # Split graph data and path data
27 path_data = result_data[0][0].pop(-1)
28
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29 # Check if there was a path found
30 if len(path_data):
31
32 # Update graph
33 self.synchronized_graph_update(result_data)
34
35 # Handle process path data
36 # Update found paths and next nodes to process (queue first)
37 tmp_graph = self.get_graph_snapshot(self.gm.graph)
38 tmp_path_nodes = set() # set -> automatically avoid

duplicates in path
39 paths = []
40
41 for path in path_data:
42 [tmp_path_nodes.add(node) for node in path if node not in

self.processed_nodes]
43
44 # Process new data to generate JSON
45 p_tuple = tuple(self.gm.db_id_to_graph_id(id, tmp_graph)

for id in path)
46 v_list, e_list = self.gm.add_path(p_tuple, tmp_graph)
47
48 # Clean already sent vertices, edges
49 v_list = [vertex for vertex in v_list if

self.gm.prop_map.nodes.unsent[vertex]]
50 e_list = [edge for edge in e_list if

self.gm.prop_map.edges.unsent[edge]]
51
52 paths.append([{p_tuple: False}, v_list, e_list])
53
54 # If there are new nodes -> update node processing queue
55 if len(tmp_path_nodes) > 0:
56 self.update_node_queue(list(tmp_path_nodes), True)
57
58 data = self.gm.path_list_to_json(self.nr, paths)
59
60 if self.stream_ctrl.is_set():
61 self.data_update_signaling(data)
62
63 else:
64 self.db_path_length_multplier *= 1.5 # Expand path search

radius if no paths are found
65
66 self.background_db_path_thread = None # To signal termination

Listing 5.11: Python code showing the database path search. If no path is found for a
specific length, the maximum path length is increased. This helps to terminate the query
in a feasible amount of time. Once a path is found, it is added to the in-memory graph
and the list of known paths is updated. Finally, an update is sent to the client.
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1 =========================================================
2 In-memory Path Search
3 =========================================================
4
5 def graph_path_finder(self, query):
6
7 while self.stream_ctrl.is_set():
8
9 # Find all paths between nodes in current graph

10 new_paths = self.gm.path_in_graph(
11 self.gm.find_by_hash(
12 query.start[’params’][’hash’])[0],
13 self.gm.find_by_hash(
14 query.path[-1][’node’][’params’][’hash’])[0],
15 self.nr,
16 self.get_graph_snapshot(self.gm.graph),
17 p_type=query.path_type)
18
19 # If there are paths -> process ELSE sleep...
20 if len(new_paths) > 0: # update the nodes to process queue and

add path nodes first IFF not processed yet
21
22 # Get nodes in paths that have not been processed
23 tmp_path_nodes = set()
24
25 [[tmp_path_nodes.add(self.gm.prop_map.nodes.id[node]) for

node in path if
26 node not in self.processed_nodes]
27 for
28 path in new_paths]
29
30 # If there are unprocessed path nodes -> update node queue

(prepending)
31 if len(tmp_path_nodes) > 0:
32 self.update_node_queue(list(tmp_path_nodes), True)
33
34 # Send path data to client
35 try: # Check if aggregation is to be performed
36 data = self.graph_to_json(self.nr,
37 self.gm.prune_low_degree(
38 self.get_graph_snapshot(
39 self.gm.graph),
40 self.current_task.aggregation.degree_limit))
41 except AttributeError: # No aggregation
42 data = self.graph_to_json(self.nr,
43 self.gm.get_unsent_graph(
44 self.get_graph_snapshot(self.gm.graph)))
45
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46 # Send to client
47 if self.stream_ctrl.is_set():
48 self.data_update_signaling(data)
49
50
51 else: # ...else pause thread for half a second if no new paths

are found to save processing capacities
52 time.sleep(0.5)
53
54 self.background_graph_path_thread = None

Listing 5.12: Python code showing the in-memory path search. It is a simple algorithm
constantly searching for new paths. If no new paths are found, it pauses for a moment to
save CPU resources. If a path is found it is added to the list of known paths and the
path is sent to the client with the updated nodes and edges.

5.5.3 Pruning

Apart from finding new paths, graph minimization, to overcome performance and over-
plotting problems, is an important part of the proposed methodology. Pruning is part
of minimizing the full blockchain data into a smaller dataset. Two methodologies are
applied in this thesis. One is to simply prune nodes below a certain node degree threshold
and the other one is to remove nodes with high degree and merge the surrounding nodes
into the central node. This is in contrast to other work, as presented in Chapter 2 that
reduces data size by aggregating across data dimensions or prunes through temporal or
spatial limitations.

Degree Pruning

Thresholding nodes by their degree involves finding all nodes n where deg(n) < t for a
threshold t and removing them from the graph. However, after removing some nodes the
graph might become disconnected and the component including the nodes of the initial
user-provided query needs to be kept for further processing. The other components are
removed from further graph processing. The parameter t is set to one by default. This
means that the graph can not be split into multiple connected components. Only if the
user specifies a different parameter multiple connected components can occur. All paths
inside a path have at least degree one and will not be removed. Therefore, no necessary
information is lost. Algorithm 5.13 shows the simple steps involved to prune the graph.

1 =========================================================
2 Degree Pruning
3 =========================================================
4
5 def prune_low_degree(self, graph, degree=1):
6
7 # Get only tx<->address subgraph
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8 graph = self.get_tx_subgraph(graph)
9

10 # Filter graph by degree
11 graph_degrees = graph.degree_property_map(’total’) # total =

in-degree + out-degree
12 filter_degree = graph.new_vertex_property(’bool’, val=0)
13 map_property_values(graph_degrees, filter_degree, lambda x: True

if x > degree else False)
14
15 graph = GraphView(graph, vfilt=filter_degree)
16
17 # Filter small connected components
18 graph = self.filter_components(graph)
19
20 # Filter already sent
21 #graph = self.get_unsent_graph(graph)
22 return graph

Listing 5.13: Python code showing pruning of all nodes below a certain degree.

5.5.4 Hairball Aggregation

Hairball pruning is similar to degree pruning but it needs a few extra steps. First, nodes
with a degree higher than a threshold t are selected. This is a threshold that is supplied
by the user and set to 5 by default and during the testing in Chapter 6. Then, for
each of the nodes all the degrees of all neighbors are inspected. Count all neighbors
with degree 1 and if the central node has more than five such neighbors, it is marked as
hairball. All neighboring nodes with deg(n) = 1 and their connecting edges are removed
from the graph. Also check for previously marked hair balls if they are still considered
hairballs, if not remove the special label. Finally, once again select the correct component
in the graph and remove disconnected components. The whole algorithm can be seen in
Listing 5.14.

1 =========================================================
2 Hairball Aggregation
3 =========================================================
4
5 def prune_hair_balls(self, graph, degree=10):
6 min_neighbourhood_size = 5
7 max_degree_range = 9999999999999999999
8
9 filter_hairball = graph.new_vertex_property(’bool’, val=1)

10
11 # Find all vertices with high degree
12 vertices = find_vertex_range(graph, ’total’, [degree,

max_degree_range])
13
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14 tmp_special = {}
15
16 # For all vertices
17 for v in vertices:
18
19 # Counter for deg(n) == 1 neighbours
20 hairball = 0
21 h_neighbours = []
22 # Check if should be marked as hairball
23 #hairball = False
24
25 # Check if the neighbours...
26 for n in v.all_neighbours():
27 # Have a degree of 1
28 if n.out_degree() + n.in_degree() < 2:
29 hairball += 1
30 h_neighbours.append(n)
31
32 else: # have higher degree...
33 # ...and were previously marked as hairball vertex
34 if self.prop_map.nodes.delete[n]: # Change delete flag

&& mark for resend
35 self.prop_map.nodes.unsent[n] = True
36 self.prop_map.nodes.delete[n] = False
37
38 # also change the edge (v,n) to be not deleted
39 if graph.edge(v, n): # Change delete flag && mark for

resend
40 if self.prop_map.edges.delete[(v, n)]:
41 self.prop_map.edges.unsent[(v, n)] = True
42 self.prop_map.edges.delete[(v, n)] = False
43 else:
44 if self.prop_map.edges.delete[(n, v)]:
45 self.prop_map.edges.unsent[(n, v)] = True
46 self.prop_map.edges.delete[(n, v)] = False
47
48 # If the node qualified as hairball
49 if hairball >= min_neighbourhood_size:
50 # For all neighbours
51 for n in h_neighbours:
52 # Remove them from the graph and set delete flag
53 filter_hairball[n] = False
54 self.prop_map.nodes.delete[n] = True
55
56 # Marke edges to delete
57 if not graph.edge(v, n): # check directionality
58 self.prop_map.edges.delete[graph.edge(n, v)] = True
59 else:
60 self.prop_map.edges.delete[graph.edge(v, n)] = True
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61
62 tmp_special[v] = ’hair’
63
64 else: # is not a hairball in current iteration
65 if v in self.v_special: # check if vertex was hairball

previously
66 if ’hair’ in self.v_special[v]: # has hair label
67 if len(self.v_special[v]) > 1: # has more labels
68 self.v_special[v].remove(’hair’) # remove hair

label
69 else: # only hair label -> else delete from special

nodes
70 del self.v_special[v] # check that this does not

delete the vertex from graph
71
72 # Update special nodes
73 if len(tmp_special) > 0:
74 self.add_specials_by_v(tmp_special)
75
76 graph = GraphView(graph, vfilt=filter_hairball)
77
78 # Filter small connected components
79 graph = self.filter_components(graph)
80
81 return graph

Listing 5.14: Code for pruning all nodes in the graph that have more than 5 neighbors
with a degree of 1 and marking them as a special node. This code also checks if nodes
have previously been removed and need to be added to the client visualization again. If
so, the proxy server marks the nodes to be updated and sent to the client. This needs to
be done to correctly update the client graph when new data from the database is loaded.

5.5.5 Motif Search

Due to some limitations of graph-tool, motif search is by far the most complex operation.
Even though graph-tool is implemented in C++, motif search remains a computationally
very intensive operation. With increased motif size, the computation also increases and
therefore only small but recurring motifs are processed. Once a motif is found, graph-tool
returns the location of the motif but not its orientation. For a rotational invariant motif,
such as a loop, this does not pose a problem. However, for fan-motifs where there is a
specified source and a target, this invariance is not given. Graph-tool seems to order
the resulting vertices according to their vertex index in the in-memory graph and not
according to the way the search pattern has been specified during the motif search
function call. For rotation invariant motifs such as the self-loop no additional steps are
necessary. For the fan-motif additional steps to find its orientation are necessary before
it is possible to replace motifs with super nodes in the graph.
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Motif aggregation is performed through multiple, intermediary steps. These steps include
locating the motif, computing the motif orientation for fan-motifs, sorting motifs according
to their source node, filtering motifs that would destroy topology if aggregated and finally,
the motifs in the graph are removed. The first step is to find the motifs in the graph.
Then, a map containing the common start node for all motifs is created. Once this map
has been computed it is possible to find overlapping motifs and replace more than one
motif with only one super node. For the rotationally sensitive fan-motif, the additional
step of orienting the motif in the graph is performed. The source node is identified
by finding the node that has two outgoing edges to two other nodes from the motif as
target. After this node is identified, one neighboring node from the source is selected and
once again, the node, in the set of nodes of the currently processed motif, that has an
outgoing edge from the intermediary node is selected. This gives the motif target node.
Figure 5.6 shows this orientation process in detail. In this example vertex 4 is marked
as starting point. Then by traversing the center node, with index 1, the end vertex 2 is
found. After the source and target vertices have been identified, the orientation of the
motif in the graph is known. After this step, the processing is the same for the loop-
and the fan-motifs. Once the motifs are oriented and sorted according to source nodes,
the motifs are filtered and only motifs that are not part of bigger graph structures are
kept to aggregate. Motifs where the central nodes (marked in green in Figure 5.6) of
the motif have to have deg(n) == 2. Otherwise, they would have edges to other nodes
not part of the motif. Aggregation of these motifs would destroy topological information.
After filtering the motifs, they are merged into a bigger structure for easy removal. The
last step involves removing the motif nodes in the graph but differs for both motifs.
For fan-motifs, the removed nodes are replaced by introducing a super node with two
edges between the source and the target nodes of the motifs. For loop-motifs all vertices
except the source node are removed from the graph. Source nodes of loop-motifs are
marked as special nodes and are marked for updating in the client. After the client
received the updated loop-motif nodes, it visually marks them by highlighting them an
orange color. Algorithm 5.15 shows the code of all the necessary steps for the motif
aggregation. Currently there is no distinction between addresses and transactions as start
nodes of the motifs. This can be updated in the future to distinguish between the two
different cases. Both cases differ in what they mean semantically. If the central nodes
of a fan-motif are TX, then it means that one address sends BTCs to another address
through multiple transactions. If the central nodes are addresses, however, it means that
the same addresses are used to transact money in two distinctive TX. By treating these
two cases differently more semantic information can be conveyed to the user.

1 =========================================================
2 Motif Aggregation
3 =========================================================
4
5 def generate_motif_graph(self, graph):
6 # generate motifs
7 query_motifs = self.generate_motifs()

62



5.5. Server

8 # find motifs
9 motifs = self.find_motifs(graph, query_motifs) # find occurrences

of the query_motifs in the graph
10 self.filter_motifs(graph, motifs) # filter motifs that are

connected to other nodes not contained in any motifs
11 merge_map = self.merge_motifs(motifs) # merge fan-motifs with the

same source and target nodes together
12 return self.process_motif_graph(graph, motifs, merge_map) #

remove loop-motifs and replace fan-motifs with super nodes
13
14 def filter_motifs(self, graph, motifs):
15
16 if len(motifs[1]):
17 # filter all motifs with central nodes deg(n) > 2
18 deg_map = graph.degree_property_map(’total’)
19 del_marker = []
20 for v_start, m_list in motifs[1].items():
21 for m in m_list:
22 # if either of the central nodes has connections to

other nodes
23 if deg_map[graph.vertex(m[2])] > 2 or

deg_map[graph.vertex(m[3])] > 2:
24 motifs[1][v_start].remove(m) # remove motif from the

motif list
25
26 if len(m_list) == 0: # if no motifs are left for a certain

source node remove the start node from the list
27 del_marker.append(v_start)
28
29 for i in del_marker:
30 del motifs[1][i]
31
32 def merge_motifs(self, motifs):
33 merge_map = {}
34 # for all start nodes
35 for v_start, m_list in motifs[1].items():
36 # compare all motifs with each other and check for overlaps
37 for i in range(len(m_list)):
38 for j in range(i + 1, len(m_list)):
39 indices = [i, j]
40 if m_list[i][2] == m_list[j][2]:
41 indices += [2, 2]
42 if m_list[i][2] == m_list[j][3]:
43 indices += [2, 3]
44 if m_list[i][3] == m_list[j][2]:
45 indices += [3, 2]
46 if m_list[i][3] == m_list[j][3]:
47 indices += [3, 3]
48
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49 if len(indices) == 4: # the two compared motifs overlap
on at least one node

50 if v_start in merge_map:
51 merge_map[v_start].append(indices)
52 else:
53 merge_map[v_start] = [indices]
54 return merge_map
55
56 def process_motif_graph(self, graph, motifs, motif_map):
57 v_virt = graph.new_vertex_property(’bool’, val=False)
58 e_virt = graph.new_edge_property(’bool’, val=False)
59
60 v_m_filt = graph.new_vertex_property(’bool’, val=True)
61 e_m_filt = graph.new_edge_property(’bool’, val=True)
62
63 # for all nodes with motifs
64 for v_start, motifs in motifs[1].items():
65 for m in motifs: # for all motifs of node
66 v_m_filt[graph.vertex(m[2])] = False # set vertices in

filter to be removed from the graph
67 v_m_filt[graph.vertex(m[3])] = False
68
69 e_m_filt[graph.edge(v_start, m[2])] = False # set edges in

filter
70 e_m_filt[graph.edge(v_start, m[3])] = False
71 e_m_filt[graph.edge(m[2], m[1])] = False
72 e_m_filt[graph.edge(m[3], m[1])] = False
73
74 # Add node and edges instead of motif
75 v_m_virt = graph.add_vertex()
76 v_virt[v_m_virt] = True
77 v_m_filt[v_m_virt] = True
78 e_m_virt = graph.add_edge(v_start, v_m_virt)
79 e_virt[e_m_virt] = True
80 e_m_filt[e_m_virt] = True
81 e_m_virt = graph.add_edge(v_m_virt, m[1])
82 e_virt[e_m_virt] = True
83 e_m_filt[e_m_virt] = True
84
85 # generate graph with the motifs filtered out
86 g_agg = self.get_graph_snapshot(graph)
87 g_agg.set_filters(e_m_filt, v_m_filt)
88
89 # generate graph with only the super nodes
90 g_virt = GraphView(graph, vfilt=v_virt, efilt=e_virt)
91
92 # get all virtual vertices...
93 v_tmp = {}
94 for v in g_virt.vertices():
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95 if v_virt[v]:
96 v_tmp[v] = ’virtual’
97
98 # ...and mark as special nodes
99 self.add_specials_by_v(v_tmp)

100
101 # return the graph with the replaced nodes
102 return g_agg
103
104 def find_motifs(self, graph, q_motifs):
105
106 def sort_motifs(motifs):
107 # Sort motifs according to their source node
108 l_map = {}
109 for motif in motifs:
110 if motif[0] in l_map:
111 l_map[motif[0]].append(motif)
112 else:
113 l_map[motif[0]] = [motif]
114
115 return l_map
116
117 def orient_motifs(motifs):
118
119 m_oriented = []
120
121 # For all motifs...
122 for m in motifs:
123 # For each vertex in motif...
124 for v in m:
125 # Get neighbours
126 n_out = graph.get_out_neighbours(v)
127 # Check if source node (intersection of motif and

neighbours == 2)
128 s_n_out = set(n_out)
129 s_motif = set(m)
130 v_intersect = s_n_out.intersection(s_motif)
131 if len(v_intersect) == 2:
132 # Found source...
133 # Remove source && central vertices from vertex set

to get target
134 v_tgt = s_motif - s_n_out - {v}
135
136 # Construct final array to store motif with

orientation
137 m_oriented.append([v] + list(v_tgt) +

list(v_intersect))
138 break
139
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140 return m_oriented
141
142 def format_motifs(motifs):
143 m_list = []
144 for m in motifs:
145 m_list.append(list(m))
146
147 return m_list
148
149
150 # Iterate over query motifs and locate them in the graph
151 res_motifs = []
152 for i in range(len(q_motifs)):
153 res_motifs.append(motifs(graph, k=q_motifs[i].num_vertices(),

motif_list=[q_motifs[i]], return_maps=True))
154
155 if len(res_motifs[0][2]):
156 res_motifs[0] = format_motifs(res_motifs[0][2][0])
157 res_motifs[0] = sort_motifs(res_motifs[0])
158 else:
159 res_motifs[0] = {}
160 if len(res_motifs[1][2]):
161 res_motifs[1] = orient_motifs(res_motifs[1][2][0])
162 res_motifs[1] = sort_motifs(res_motifs[1])
163 else:
164 res_motifs[1] = {}
165
166 return res_motifs

Listing 5.15: This listing shows the code necessary for finding and replacing fan- and
loop-motifs in the graph. First the motifs need to be located in the graph. Then they are
filtered and if they are embedded in larger graph structures, which means that they are
connected to nodes not part of a motif, they can not be removed from the graph. Next,
they are merged together if there are overlaps between motifs of the same type. Finally,
all the nodes of the remaining motifs are removed from the graph. Nodes that were start
nodes of loop-motifs are marked as special nodes. For fan-motifs, the motif is removed
and replaced by a super node in the graph. Additionally for each iteration the algorithm
checks if the motifs are still valid and if not reintroduces the nodes into the graph and
sends the update to the client. This is necessary to account for updates when more data
is returned from the graph database during streaming.

5.6 Data Sending

Sending data to the client involves passing the current in-memory graph to all necessary
processing steps. In each step the number of vertices is reduced until finally a minimized
graph remains. This graph contains all special nodes and aggregations and can be
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translated into JSON. During transformation of the graph data, only nodes that need
updating, deletion, or have not yet been sent to the client are included in the final JSON
string.

5.6.1 Lost in Translation

During the implementation of this thesis, several avenues were explored and discarded.
Generally the approaches did not perform in a way that concurred with the speed
goals, of hiding processing latency from the user, that were initially set. This is just
a small summary of less successful techniques. Most complications stemmed from the
highly parallel nature of processing. Operating on a graph while adding new elements
and creating JSON for updating the client required more synchronization than initially
anticipated. A simple approach of just adding elements whenever new data is returned
from the database does not work because race conditions can occur or the program
crashes because values changed that should not have. Iterating over the graph elements
for JSON creation takes a long time and during this operation it is not possible to insert
new data.

The initial idea was to make all graph operations, such as inserting new data, writing
JSON, and some processing steps (pruning and aggregation), blocking. This resulted in
a very bad performance where after around 10 minutes only a few thousand nodes have
been loaded into memory. Instead of crashing the server or having many parts of the
program that are blocking, the idea was to create a second copy of the graph. However,
due to the implementation of graph-tool as a C++ library and the reliance on pointers
for certain search operations, synchronization between the two graph versions was overly
complicated. Additionally, copying large graphs, especially when done regularly, takes a
toll on performance as well.

Finally, instead of copying graphs or large blocking code chunks, using graph snapshots
proved to be the fastest and least complicated way of handling the system’s parallelism.
Graph-tool provides GraphViews that are similar to database views. This means it is
easy to freeze the state of a graph and operate on it. This is used for all the pruning and
aggregation steps as well as converting the data into JSON for the client. GraphViews
share the same data in memory but do not change if new data is added. Therefore,
iterating over nodes and edges does not cause the Python runtime to crash. Creating
GraphViews is fast and does not require a lot of additional memory. Only during insertion
of new data, blocking access is necessary. However, Section 7.2 presents a possible solution
to this problem that is reserved for future work.
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Figure 5.2: A screenshot of the client implementation. It shows transactions and addresses
in green and red respectively. Less saturated versions of the colors signify that the nodes
have not yet been expanded. The right hand panel shows the interaction possibilities for
the user.
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Figure 5.3: A detailed view of the graph shown in Figure 5.2. Orange stroked nodes have
undergone hairball pruning. A purple stroke (leftmost node) marks the start of the path
query and the pink stroke (right hand, large node) marks the end node of the paths. The
edge width corresponds to the transaction output in BTCs. The super nodes of motifs
shown in light green and orange with a large diameter are clearly visible.
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Figure 5.4: An even more detailed view of the client visualization as shown in Figure 5.2
and Figure 5.3. The hairball node visible with the orange stroke is shown in the center.
The fully saturated red nodes that are connected to it, have a node degree ≥ 2 in the proxy
server. During the graph minimization step, the nodes linked to them have been removed
in the proxy because they do not contribute information as described in Section 5.5.3.
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Figure 5.5: This Figure shows the same graph as in the previous figures, but with the
time constrained layout as described in Section 3.2. The timestamps contained in the
transactions (green nodes) are mapped to the x-axis. This view shows how BTCs were
sent between two addresses over time.

4

1

3

2

motif m = {1, 2, 3, 4}

find start node
(2 outoing edges e, 

where ∀ e | e.target ∈ m)

4

1

3

2

select middle node

4

1

3

2

select outgoing edge

4

1

3

2

found source (4) found target (2)

Figure 5.6: This Figure shows how the orientation of the motifs is determined schemat-
ically. Due to graph-tool sorting the vertex indices in ascending order during motif
detection, the orientation of motifs is lost. For the rotationally sensitive fan-motif the
orientation needs to be established before any further processing is possible.
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CHAPTER 6
Results

For testing the performance of the methods proposed in the thesis, different metrics
can be applied. It is possible to compare the approaches with each other by measuring
run time. However, with the defined goal of minimizing the blockchain TX-graph in a
meaningful way, it is important to also look at by how much the proposed system reduces
the node and edge count from the original dataset. It also gives insight into whether
some operations justify the complexity effort or if they do not contribute much to the
graph minimization.

6.1 Processing Speed

All benchmarks were performed on an average computer with components that are, at
the time of writing this thesis, several years old. Although, as in previous chapters
mentioned, it is possible to have the database, the proxy server, and the client running
on one physical machine, the database was stored off-site and only the proxy and the
client were running on the same computer.

The database server is using an Intel(R) Xeon(R) E5-2640v2 @ 2 GHz CPU, 128 GB
RAM and 1 GBit/s connectivity. The database itself is encapsulated in a virtual machine
with 4 cores and 32 GB RAM.

The processing proxy runs on an Intel(R) Xeon(R) E5-2630v2 @ 2.6 GHz with 8 GB
of ECC RAM and is connected to the network with a measured speed of 27 MBit/s.
Network speeds between the client and the processing proxy are negligible because the
data never leaves the physical machine. However, running them on the same physical
machine results in shared computing resources. The measurements were run multiple
times and the average runtime of measurements was taken.
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Time (m:s) Graph Size (V / E) DB Query Graph Update Graph → JSON
00:00 2,413 / 3,098 2,313 3,579 932
00:14 3,797 / 4,927 2,813 4,264 1,431
00:45 5,404 / 7,094 2,795 3,917 1,683
01:50 11,045 / 13,342 6,793 13,557 3,597
02:35 12,682 / 15,525 3,978 7,718 3,301
04:31 19,755 / 23,770 8,302 26,249 3,978
5:40 21,134 / 25,712 4,312 10,357 3,899
7:41 22,809 / 28,208 2,610 7,823 5,100
8:57 23,691 / 29,524 2,540 9,153 4,954

Table 6.1: Timings of different steps while expanding the neighborhood of graphs in
milliseconds. It can be seen that querying the database is independent of graph size.
However, updating the graph depends on the number of nodes and edges to insert and
the size of the graph they are inserted into. Runtimes for transforming the graph into
JSON increase sublinear with graph size.

6.1.1 Graph Expansion Timings

The various stages of the processing pipeline have different runtimes depending on how
much data they have to process. Generally, database queries, graph insertion, graph
minimization, and JSON creation are the most resource intense operations. Although
parallelization was a focus while implementing the system, inserting new data into the
in-memory graph is required to be sequential. This results in stalls and waiting of
processes for resources to be freed. An analysis of the neighborhood expansion, the
database path query, and the in-memory path query performance is given in the following
paragraphs. Tables 6.1 to 6.3 shows the progression of time, in minutes and seconds, in
the first column. The second column shows the graph size in vertices and edges. DB
Query, Graph Update, and for the third table Graph Path Search and State Update,
and Graph → JSON show the runtime of these steps during processing in milliseconds
rounded to one decimal place. Table 6.1 shows various graph sizes and the respective
timings for the neighborhood expansion. Stalling during graph insertion is clearly seen
when a certain operation requires more time to compute than later in time even though
the graph is smaller. This can be seen when the graph grows by 5,641 from 5,404 nodes
to 11,045 nodes at time 1:50 and by 1,637 nodes from 11,045 to 12,682 nodes at 2:35
and their respective timings are compared. The duration of the graph update for the
insertion of 5,641 nodes takes almost twice as long.

Apart from neighborhood expansion, the graph database is also queried for new paths
simultaneously. The operation of finding paths in the database differs from the neighbor-
hood expansion because updating the graph is only necessary for the number of nodes in
the newly found path. Typically, the result only includes a few dozen nodes. Compared
to the update time of the neighborhood expansion, adding a new path from the database
is much faster. However, the main bottleneck for path finding in the TX-graph is with
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Time (m:s) Graph Size (V / E) DB Query Graph Update Graph → JSON
00:00 2,413 / 3,098 509 160 1.0
00:14 3,797 / 4,927 705 191 0.1
00:45 5,404 / 7,094 7,563 167 5.9
01:50 11,045 / 13,342 1,343 275 0.1
02:35 12,682 / 15,525 12,057 354 0.1
04:31 19,755 / 23,770 2,156 446 0.1
5:40 21,134 / 25,712 13,044 479 0.1
7:41 22,809 / 28,208 2,679 441 0.1
8:57 23,691 / 29,524 14,194 457 0.1

Table 6.2: Timings of different steps while loading new paths between two nodes of the
Bitcoin TX-graph from the graph database in milliseconds. Searching paths in the graph
database is very unpredictable due to its dependency on graph topology. Once a path has
been found only a few dozens of nodes need to be inserted into the graph and transformed
into JSON. Therefore, these steps are very fast compared to the database query.

the database itself. Table 6.2 shows that the database query runtime exceeds all other
steps during processing. Generally, query times increase over time. Although this is not
strictly monotonous, the more paths have been found, the larger the search space has to
be. Timings of the database query, however, are more unpredictable than the other steps
in the processing pipeline as it depends on the graph topology. Once a path is found, the
data returned by the database is very small consisting only of a few nodes and edges and
therefore updating the graph, the search state, and generating an updated JSON is very
fast.

Finding new paths in the in-memory graph is much faster than querying the database.
For this stage, generating an update for the visualization in the graph is the most time
intensive task. The total runtime depends on the number of paths found and the length
of them. Generating JSON from the graph scales with the number of nodes that need
to be updated. As can be seen in Table 6.3, the native C++ implementation of the
library, used to find new paths in the in-memory graph, shows its superior performance
compared to the graph database (DB Query) path search. The graph-tool library takes
only a fraction of the time to find paths. Additionally, runtimes for analyzing the graph
generally increase, but not as drastically as expected. The difference for analyzing the
paths only increases by about 30 milliseconds for an increase of 20,000 nodes and 25,000
edges in the graph.

The results support the assumption that only querying the graph database might introduce
long waiting times at the client to receive new data. Neighborhood expansion continuously
adds new data to visually give feedback in the client and provide the user with more
information. Having a path search for the in-memory graph is necessary to support
finding new paths that might have been introduced with the neighborhood expansion.
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Time (m:s) Graph Size (V / E) Graph Path Search State Update Graph → JSON
00:00 2,413 / 3,098 143 1.5 468
00:14 3,797 / 4,927 22 1.1 448
00:45 5,404 / 7,094 151 2.8 1,155
01:50 11,045 / 13,342 105 2.1 1,126
02:35 12,682 / 15,525 94 4.5 667
04:31 19,755 / 23,770 138 4.4 477
5:40 21,134 / 25,712 174 24 1,966
7:41 22,809 / 28,208 172 5.2 2,765

Table 6.3: Timings of different steps while searching new paths in the in-memory graph
in milliseconds. Path search with graph-tool only requires a few hundred milliseconds
and is much faster than querying the database. Once a path is found updating the search
state and sending the found paths to the client is very fast due to a small number of
nodes and edges.

Furthermore, the runtime cost of searching new paths in the in-memory graph are
negligible.

6.1.2 Graph Minimization

Graph growth not only influences when new data is inserted into the graph or sent to
the client. Foremost, costly graph minimization steps are influenced by increasing graph
size. By analyzing the graph minimization steps in detail, it is possible to see whether
some steps pay off in terms of graph reduction efficacy and run time. To see the effects
of minimization techniques for different graph sizes, three points in time of loading the
blockchain are taken as an example.

The steps involved in reducing the graph before sending are:

1. Generating the TX-graph, effectively removing blocks from the graph.

2. Filtering disconnected components from the graph that are not connected to the
main component. This removes floating nodes that can not be reached from the
nodes of the initial user query.

3. Prune nodes that have many neighbors with deg(n) = 1 and are therefore not
contributing to the topological information but require many elements on screen.

4. Remove all nodes with deg(n) = 1 that only have one outgoing edge. This means
that they have not yet been expanded and also do not add information about the
flow of BTCs.

5. Replace all fan-motifs with one super node and remove all loop-motifs from the
graph.

76



6.1. Processing Speed

6. Remove already sent nodes and nodes that do not need updating.

Tables 6.4 to 6.6 show the timing results and the vertex and edge reduction for each step
during preparing the in-memory graph for sending it to the client.

• TX subgraph results from the removal of blocks and their connected edges from the
graph.

• The component graph is the resulting graph after only the connected component
containing the initial user query is kept.

• After all nodes with a high degree have been analyzed and all connected nodes
with deg(n) = 1 have been removed, the hairball graph is left.

• Pruning all outer nodes with a degree of one and only outgoing edges, results in
the rim pruned graph.

• After motif detection and replacement and the introduction of additional super
nodes the graph is referred to as motif graph.

• Lastly, all the already sent nodes and edges are removed and only nodes that have
not yet been sent to the client or nodes that need updating are sent to the client.
This results in the unsent graph.

For a graph with 959 nodes and 1,196 edges this results in the measurements shown
in Table 6.4. The differences in the number of node and edge reduction are not yet
clearly visible due to a small graph. However, generating the motif graph and the hairball
graph take the longest. While during the hairball removal step only 118 nodes and edges
are removed, motif reduction only decreases the graph size by 32 nodes and 81 edges.
However, motif reduction takes almost twice the computation time. For such a small
graph it is already more than 300 milliseconds.

When the graph grows to around 11,000 nodes and 14,000 edges, the differences in
performance become even more obvious. With a runtime of almost 12 seconds the motif
reduction only removed 69 nodes and 498 edges. This is compared to the hairball removal,
that takes about half the time, and removes almost half of all nodes in the original graph.
Measurements that capture this behavior can be seen in Table 6.5.

This holds if the graph increases even further. Table 6.6 shows a graph with around
23,000 nodes initially and the reduction in each step of the processing pipeline. Although
hairball removal takes a long time for large graphs and motif removal is only 3.8 seconds
slower, the graph reduction efficiency is still the best for all steps involved.
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Reduction Method # V_prev # V_post # E_pre # E_post Time
TX Subgraph 959 356 1,196 499 11.9

Component Graph 356 356 499 499 13.5
Hairball Graph 356 238 499 381 184.5

Rim Pruned Graph 238 227 381 363 32.0
Motif Graph 227 195 363 282 319.8

Unsent Graph 195 195 282 0 15.0

Table 6.4: During sending the graph to the client and before JSON generation, several
graph minimization steps are applied. This table shows the reduction of nodes and edges
in each step as well as how long it takes to perform the steps. Even for small graphs (959
vertices and 1196 edges) motif search already is computationally intensive and does not
contribute much to the overall graph reduction.

Reduction Method # V_prev # V_post # E_pre # E_post Time
TX Subgraph 11,538 9,789 14,148 9,455 24.8

Component Graph 9,789 8,706 9,455 9,129 17.8
Hairball Graph 8,706 4,207 9,129 4,630 6405.6

Rim Pruned Graph 4,207 2,409 4,630 2,802 145.8
Motif Graph 2,409 2,340 2,860 2,362 11,935.6

Unsent Graph 2,340 2,340 2,362 182 88.5

Table 6.5: The efficacy and timings of graph minimization steps for a graph with 11538
vertices and 14148 edges. It can be seen that motif search for larger graphs is even less
performant and does not scale well. As with the small graph in Table 6.4 the reduction
of nodes in the motif aggregation step is very small.

Reduction Method # V_prev # V_post # E_pre # E_post Time
TX Subgraph 23,218 19,613 28,600 18,267 5.6

Component Graph 19,613 16,693 18,267 17,366 136.1
Hairball Graph 16,693 6,247 17,366 6,920 11,608.0

Rim Pruned Graph 6,247 3,685 6,920 4,313 236.0
Motif Graph 3,685 3,580 4,399 3,792 15,395.5

Unsent Graph 3,580 3,580 3,792 143 79.9

Table 6.6: Reduction performance of the employed graph minimization techniques for a
graph with 23,218 nodes and 28,600 edges. Although hairball removal takes a long time,
compared to the performance of motif reduction, the cost / performance ratio is a lot
lower.
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6.2 Expert Reviews
After showing the proof of work client as shown in Section 5.4 to domain experts, their
feedback was very promising. Although it was made clear that the processing proxy is
without value if the visualization is not able to display paths, patters, motifs, etc., they
have highlighted that such a visualization system is sought after in the Bitcoin community.
In the cryptocurrency community there are many ongoing efforts to solve the problem of
visualizing large blockchain graphs and that, to their knowledge, no one has yet found a
solution to efficiently visualize the TX-graph. They also stated that with a more polished
client, they would be eager to use the system for their own research. According to the
experts, the client user interface needs improvements in terms of flexibility and usability.
Nonetheless, they already have concrete projects in mind that could benefit from the
system. These projects involve analyzing mining pool payout patterns or spending habits
of miners. They also explicitly highlighted the benefit of the entity graph as used by
Reid and Harrigan [11] presented in Section 2.2.3 and would be interested in adding this
type of graph to the system. While our system operates on the TX-graph itself, Reid and
Harrigan compute an entity graph based on clustering of addresses. By doing so they
analyze spending habits on the entity level instead of the address level. Additionally, for
solving ongoing problems the experts face, the dataset needs to be expanded to cover the
whole blockchain. With the current time frame not enough data is available to answer
their specific questions.
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CHAPTER 7
Discussion

The results in the previous chapter show that bottom-up and top-down approaches to
reduce the data to be rendered and immediately start the visualization are a suitable ap-
proach to hide data processing latencies and improve scaling of visualization performance
with large graphs. Although the approach presented in this thesis focuses on Bitcoin, by
using different aggregation and querying strategies it could be extended to work with
different types of graph data.

7.1 Performance Discussion
Cryptocurrencies as a recent monetary trend with an ever increasing amount of data and
growing relevance for various stakeholders require novel solutions. While the scientific
communities of visual analytics and cryptocurrencies are very active, there is still room
for improvements of analyzing blockchain data. Naturally, this stems from the fact
that blockchain technologies are very new and pose a unique set of requirements and
challenges. A limiting factor of the related work on node-link visualizations is scaling
with data size and the performance degradation if the data becomes larger than a few
thousand nodes. So far, Bitcoin visualization projects have focused on pruning the
data through constraining the visualized timeframe [13], topology [12] or by using a
completely new kind of visualization that makes understanding network topology difficult
or impossible [15, 58, 14]. Additionally, some related visualizations require a static
preprocessing step that makes it difficult to add additional data to the data storage. In a
dynamic system as Bitcoin, however, ease of adding data to the data storage without
costly processing is paramount.

The methodology proposed in this thesis improves on these shortcomings by choosing a
hybrid approach of top-down graph minimization with bottom-up progressively streaming
data from the data source. Using a graph database for storing makes it easy to add
additional data to the database. Visualizing the blockchain is done over time and the

81



7. Discussion

longer the visualization continues to load data, the more complete the visualization will
be. Through aggregation and user defined pruning thresholds, a significant reduction of
nodes and edges is achieved. That allows for visualization on readily available hardware.
Through progressive loading, an analyst can start inspecting the TX-graph immediately
after the system has been queried. Although, the focus of the presented visualization
client is on topological information, other types of visualizations can be created using
the proxy server. Section 7.2 goes into detail about possible improvements to the proxy
server.

The performance measurements shown in Chapter 6 make it clear that the approach
of dynamic graph minimization is very effective and possible without special hardware.
After measuring the performance of each step involved in aggregating the graph, the
bad performance of network motifs is unexpected. Through visualization of the Bitcoin
TX-graph it was established that reducing node count in the visualized graph is very
promising. After consultation with domain experts, it has been established that other
network motifs, such as loops between TX and addresses, might be more prevalent.
Although the performance of motif reduction is bad compared to other minimization
steps, more benchmarks with different network motifs need to be done to fully exclude
motifs from the list of promising reduction techniques. On the other hand, pruning
neighbors of nodes with very large degree that have no outgoing edges themselves, has
proven itself as the most effective reduction method. While it seems that this does
not scale well with an increasing size of the graph, the problem might be avoided by
implementing this step using NumPy [80], mitigating the comparably slow performance
of Python.

Although the approaches presented in this thesis work well, there is still room for
improvement of the processing speed of the graph. Currently the proxy server is considered
experimental and before it can be deployed in a real world analysis setting, it needs more
work. Additionally, even if the server reduces the graph data efficiently at, some point the
number of elements to render will be too high and the performance degrades. The way
the Bitcoin protocol works makes it difficult to follow money between users. The work
presented by Reid and Harrigan [11] uses an entity graph that makes this information
apparent and it could be better to visualize this entity graph in order to convey the
information we want to show to the user. Although an additional preprocessing step is
necessary for creating this entity graph, combining the true TX-graph and the entity
graph might be a better solution. The entity graph was not chosen in the first place, as
visualization of ground truth blockchain data was a goal. Despite some limitations and
preliminary functionality, the implemented prototype and methodology presented in this
thesis, are useful for future blockchain research.

7.2 Future Work

During the implementation of this thesis’ methods, several roadblocks and obstacles
have been found. Most are related to speed improvements that either stem from initial
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design decisions or from the used technology stack. Possible speed improvements include
a change from internally used Python arrays to NumPy [80] arrays. NumPy, similar
to graph-tool, has native implementations of many algorithms and therefore increases
the speed of the current implementation [81]. Another possible technology change is a
migration from Neo4j to OrientDB [82]. According to the website of OrientDB, it is
faster than Neo4j and therefore the proxy server could benefit from this change. However,
self reported performance benchmarks that have not been scientifically scrutinized are
to be taken with a grain of salt and further benchmarking with the blockchain data is
necessary. In relation to the database, loading the complete, currently available, Bitcoin
blockchain into the database is yet to be done. Creating a system that constantly updates
the database when new blocks are mined would also be a helpful feature.

In terms of algorithmic improvements it is possible to aggregate paths in the graph. After
finding paths and pruning nodes that do not contribute information to the system, it is
possible that long paths, where all nodes have deg(n) = 2, can be collapsed into one single
super edge. This would further reduce the node and edge count in the final graph to be
visualized. Pruning nodes that have not been expanded by the neighborhood expansion
could also performed if a user wishes to. This functionality is not implemented yet but it
would result in a drastically reduced graph size. Exact reduction performance needs to be
analyzed first and this assumption stems from visually analyzing the system during the
work on this thesis. Currently, the system is creating a JSON data string for visualization
with D3.js [71]. Returning data in a different format to the client would allow for
more versatile visualization clients and could lead to clients using different visualization
frameworks. This might be at the expense of the universality of web technologies, but
could increase scalability of the visualization client. Using D3.js only between 5,000 and
10,000 nodes are feasibly to visualize. Although the proxy server can handle larger graph
sizes internally, graph reduction needs to ensure that the client does not have to visualize
too many nodes and edges.
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CHAPTER 8
Conclusion

This thesis presented a novel bottom-up/top-down hybrid approach for visualizing
and and analyzing Bitcoin. As presented in Chapter 2, the current state of visual
analytics of Bitcoin is still an unsolved problem. Especially, following transferred BTCs,
given Bitcoin’s design choices, through the TX-graph is a difficult task. By combining
progressive streaming with top-down aggregation, we showed that it is possible to analyze
the TX-graph of the blockchain through visualization of a node-link diagram. User
guided graph minimization through aggregation, using heuristics and knowledge about
Bitcoin, has proven to be a suitable approach to scale with the dataset size. At the
same time, node-link diagrams show graph structures in a visually approachable way.
However, force-directed node-link diagrams do not scale well for more than a few thousand
nodes [65]. Reducing the amount of data that reaches the rendering stage in the client is
an effective solution to this problem. The graph minimization and progressive streaming
approach presented in this thesis allows for processing graphs with a size of more then
25,000 nodes and edges. Aggregation of graph motifs and pruning of nodes that do
not contribute necessary information allows for visualizing large graphs. While other
related work [15, 58, 14] has focused on finding novel visualization types to mitigate the
hairball problem [49] and scaling issues of graphs, the methodology presented in this
thesis addresses these problems of node-link diagrams. With the approach presented
in this thesis it is possible to visualize node-link diagrams of large graphs that exceed
current capabilities found in the related work.

Another way of analyzing the Bitcoin TX-graph is to summarize addresses into clusters
of entities. The resulting data structure contains clusters of parties participating in
the Bitcoin network. However, after loading the blockchain this approach needs a
preprocessing step where the whole blockchain is scanned and addresses are clustered
according to the TX in which they occur. This makes updating the underlying data
storage more computationally expensive [11]. The methodology presented in this thesis
operates on the TX-graph as found in the blockchain itself. This saves the processing cost
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when an update of the blockchain occurs about every 10 minutes. Bitcoin experts have
indicated the usefulness of having an entity graph and creating this additional, clustered
graph is reserved for future work.

One of the two main contributions of this work is to tackle the scaling problem of big data
visualization through a combination of progressive streaming and aggregation. Especially
cryptocurrencies as a fairly new phenomenon have not yet readily available solutions to
visualize their data. The second contribution is the implementation of a proof-of-concept
that allows experts to query the blockchain for analysis. One possible query is to find
paths, and therefore the flow of BTCs, from one address to another one. The second
visualization type is to see how a node is embedded in the TX-graph. This shows how
an address interacts with other addresses and it allows to analyze spending patterns.
The benchmark results have shown that not all graph minimization steps provide a
good cost-performance trade off. Especially motif detection as currently implemented is
inefficient and a bottleneck. Further analysis in collaboration with Bitcoin researchers
is necessary to find better suitable motifs for graph minimization and visual mapping
of the client visualization. Nonetheless, the system already achieves graph reduction
by an order of magnitude and it is considered, with some minor additions, a valuable
contribution to Bitcoin visualizations by Bitcoin experts.
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