
Parallel Hybrid Metaheuristics for
Solving the Firefighter Problem

Using the GPU

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Ing. Gajo Gajic, BSc
Matrikelnummer 0828150

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Dipl.-Ing. Christopher Bacher, BSc

Wien, 2. Mai 2018
Gajo Gajic Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Parallel Hybrid Metaheuristics for
Solving the Firefighter Problem

Using the GPU

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Ing. Gajo Gajic, BSc
Registration Number 0828150

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Dipl.-Ing. Christopher Bacher, BSc

Vienna, 2nd May, 2018
Gajo Gajic Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Ing. Gajo Gajic, BSc
Dürrwienstrasse 8a/1/6, 3021 Pressbaum

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Mai 2018
Gajo Gajic

v





Kurzfassung

Das Firefighter Problem (FFP) ist ein deterministisches diskretes Zeitmodell, das die
Ausbreitung eines Feuers oder eines anderen Problems über einen ungerichteten Graphen
simuliert. Es bietet eine Möglichkeit, Brandbekämpfungsstrategien zu entwickeln, indem
eine bestimmte Anzahl von Firefightern auf strategischen Punkten in jedem Zeitschritt
eingesetzt wird, um so viele Knoten wie möglich vor Feuer zu retten. Das Modell findet
Anwendung in zahlreichen Bereichen, wo es um die Verbreitung von verschiedenen Arten
von Information geht. Unter Anderem zählen dazu Vakzinationsstrategien, Finanzkapi-
talflüsse, virales Marketing sowie die Verbreitung von Viren in Computernetzwerken. In
mehreren Studien wurde gezeigt, dass das FFP für bestimmte Arten von Graphen [CC17]
und eine bestimmte Anzahl der eingesetzten Feuerwehrleute [BCR13] NP-schwer ist.
Mit dem Ziel, Strategien für eine effizientere Lösung des FFP zu finden, wird hier eine
parallele hybride Metaheuristik auf einer GPU mittels CUDA implementiert. Die hybride
Metaheuristik beinhaltet einen parallelen Ant Colony Optimization Algorithmus (ACO),
der eine dynamische Kandidatenliste und Heuristik anwendet, welche die Topologie des
Graphen zu jedem Zeitschritt berücksichtigen und dadurch den Suchraum reduzieren. Des
Weiteren, wird eine parallele Variante der Variable Neighborhood Search (VNS) eingeführt
und im Anschluss mit der ACO Implementierung kombiniert. Zusätzlich werden sequen-
tielle Versionen des ACO, der VNS und der hybriden Metaheuristik entwickelt um die
Effizienz der parallelen Implementierungen zu testen. Abschließend wird eine Gegenüber-
darstellung der entwickelten Algorithmen mit vorherigen Arbeiten [BBGM+14, HWR15]
vorgenommen.

Für die Leistungsbewertungstests wird dieselbe Testkonfiguration wie in früheren Arbei-
ten, welche Benchmark-Instanzen mit 120 Graphen unterschiedlicher Dichte und Größe
enthalten, verwendet. Testergebnisse zeigen, dass der vorgeschlagene sequenzielle ACO
eine durchschnittliche Verbesserung von 10,47% gegenüber der ursprünglichen ACO
Implementierung erreicht. Eine weitere Erkenntnis besteht darin, dass, verglichen mit
jedem einzelnen Algorithmus, die Kombination von ACO und VNS eine Verbesserung der
Lösungsqualität auf beiden Plattformen liefert. Die Testergebnisse der parallelisierten
Algorithmen ergeben, dass jede parallele Implementierung ihre sequenzielle Entsprechung
übertrifft, wobei auch die Lösungsqualität verbessert wird. Die erreichten Speed-ups
betragen bis zu 141x (ACO), 106x (VNS) und 114x (hybrider Algorithmus).

vii





Abstract

The Firefighter Problem (FFP) is a deterministic discrete-time model which simulates
the spread of a fire or other problem over an undirected graph. It offers a possibility
of developing fire containment strategies by deploying a given number of firefighters on
strategic points at each time step with the goal of saving as many nodes from fire as
possible. The model is applied in numerous areas considering the spread of various types
of information. These include, among others, vaccination strategies, financial capital
flow, viral marketing and the spread of viruses in computer networks. In several studies
it has been shown that the FFP is NP-hard for specific types of graphs [CC17] and the
number of firefighters [BCR13] involved. With the goal of finding strategies for a more
efficient solution to the FFP, a parallel hybrid metaheuristic is implemented on a GPU
using CUDA. The hybrid metaheuristic comprises a parallel Ant Colony Optimization
algorithm (ACO), which applies a dynamic candidate list and heuristic that take into
account the topology of the graph at each time step, thereby reducing the search space.
Furthermore, a parallel version of Variable Neighborhood Search (VNS) is introduced
and combined with the ACO implementation. In addition, sequential versions of the
ACO, the VNS and the hybrid metaheuristic are developed in order to test the efficiency
of the parallel implementations. Finally, the developed algorithms are compared with
previous works [BBGM+14, HWR15].

For the performance evaluation tests we used the same experimental setup as previous
works, which contains a benchmark instance set of 120 graphs with different density
and size. Test results show that the proposed sequential ACO achieved an average
improvement of 10.47 % compared to the original ACO implementation. Another finding
is that the combination of ACO and VNS provides an improvement in the solution
quality compared to each algorithm on their own on both platforms. The test results of
the parallelized algorithms revealed that each parallel implementation outperforms its
sequential counterpart while improving the solution quality. The achieved speed-ups are
up to 141x (ACO), 106x (VNS) and 114x (hybrid algorithm).
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CHAPTER 1
Introduction

1.1 Motivation & Contribution
The Firefighter Problem (FFP) was formalized as a graph-based optimization problem in
1995 by Bert L. Hartnell [Har95] as a model for studying the spread and containment of
fire. Due to its mathematical structure, variations of this model have found application in
numerous fields that analyze the distribution of various kinds of information throughout
networks, such as: studying the spread of diseases and developing vaccination strate-
gies [Har04a], analyzing the growth of groups [Mar17], the spread of viruses in computer
networks, financial capital flow, as well as viral marketing [CWY09].

The FFP uses a discrete-time model to simulate how a fire or other problem breaks out
and spreads over an undirected graph in a discrete time period. The model can be used
to investigate strategies for containing a fire or the spread of a similar kind of problem.
A strategy consists of deploying a given number of firefighters on strategic points at
each time step. Once a firefighter is placed on an unburnt vertex it is protected against
catching fire for all time intervals. This process continuous until the fire is contained.

Figure 1.1 depicts an example of an undirected graph with 14 nodes and two firefighters
available. At t = 0 the fire breaks out on node 1 (red circle). We can save nodes 3 and
8 at t = 1. Then the fire spreads to nodes 4, 5 and 6, so that we protect nodes 10 and
11 in the next time step t = 3. Since node 9 is the last one to catch fire, there are no
unprotected adjacent nodes left, that is, the fire is considered as contained.

Since its initial formulation, the FFP has been the topic of a series of papers, e.g., [FM09,
KM10] and [CFvL11], however, with a strong focus on theoretical results. Some extensions
of the FFP [Lip17, Mic14] are the focus of some computational studies as well. This
thesis focuses on the original formulation of the problem exclusively. Computationally,
the original formulation has been tackled only in three recent studies. The first to apply
a metaheuristic approach to the FFP is the study conducted by Blum et al. [BBGM+14].
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Figure 1.1: Example for a graph with 14 vertices and two firefighters.

It investigates a population-based algorithm based on a MAX–MIN Ant System (MMAS)
and a variant hybridized with Integer Linear Programming (ILP). An alternative, single
solution based metaheuristic approach with a new, more compact, solution representation
was developed by Hu et al. [HWR15]. This article uses a general variable neighborhood
search (VNS) approach combined with variable neighborhood descent (VND). The most
recent study in the field has been done by García-Martínez et al. [GBRL15]. It combines
ideas presented in his and Blum’s previous works and proposes nine integer linear
programming (ILP) techniques along with six heuristic approaches with random graphs.

The first two mentioned approaches solving the FFP have each their own set of strengths
and drawbacks. More specifically, it has been established that the major advantage of
the MMAS is its exploration capability, whereas the strength of the VNS lies in its fast
search intensification capability. Therefore [BPRR11] and [Tal09] propose combining the
two approaches in order to enhance the results.

Various studies on the complexity of FFP show that it is NP-hard for specific types
of graphs [CC17] and the number of firefighters [BCR13] involved. As it is a given
that parallelized computing enables us to solve larger or more complex instances of
optimization problems more efficiently, the logical next step is to introduce a parallel-
hybrid optimization technique for solving the FFP, which is the aim of this thesis.

The development of microprocessor technologies has raised significant questions concerning
how parallel programs can be efficiently implemented. New types of hardware have been
designed for high performance computing (HPC). Among them, there are Graphics
Processing Units (GPUs), which provide great computing acceleration [GGN+08] at an
affordable cost but demand extensive programming skills.

This thesis proposes the first parallel hybrid metaheuristic solution using GPU for the
FFP. The major contributions are the following:

1. A new sequential ACO algorithm with dynamic metrics that are provided by
analyzing the topology of the graph. By using these metrics, we can additionally

2



1.2. Problem Statement

develop a candidate list with prioritized nodes including only nodes that have
a positive impact on the containment of fire. The higher computational cost of
generating the metrics and the list is expected to be compensated by the smaller
search space. The proposed algorithm shows promising results compared to previous
works.

2. Similar ideas were applied to a VNS algorithm in order to develop an adaptive
shaking function improving the accuracy of the node removal phase.

3. By combining the two algorithms we implemented a hybrid metaheuristic, which
generated better results than each algorithm on their own.

4. Parallelization of the ACO for the FFP, which is to the best of our knowledge the
very first of its kind. In the analysis we compare it to the sequential counterpart
and come to the conclusion that the speed-up factor is up to 141 for the largest
instances tested.

5. Parallelization of the VNS, with a speed-up factor up to 106 for the largest instances
tested while improving the quality of the results for instances sizes ≥ 500.

6. Hybridization of the parallel ACO and the parallel VNS, resulting in a speed-up
(114x) and outperforming all the previous results.

1.2 Problem Statement
Given is an undirected graph G = (V,E) where V and E are the vertex set and the edge
set of G. The labels L ={untouched, burnt, protected} represent the state of a vertex at
a particular point in time. Initially, all vertices in V are labeled as untouched. The state
of a predefined set of vertices Binit ⊆ V changes to burnt at time t = 0, when the fire
breaks out. For each iteration t ≥ 1 a fixed number D of firefighters have to be placed
on untouched vertices, which are henceforth labelled as protected. Afterwards the labels
of all untouched vertices adjacent to a burnt vertex are set to burnt, thereby ending
iteration t. For each time step t = 2, 3, . . . , |V | D firefighters protect each a vertex v ∈ V
that is not burnt while the fire spreads around the graph. The process continues until
some iteration tl where no new vertex is labeled burnt. The optimization objective for
this problem is to save as many vertices as possible from burning by distributing the
firefighters in a strategically optimal way.

INSTANCE: Graph G = (V,E), a set of vertices Binit ⊆ V , and a positive integer D.
OBJECTIVE: Maximize the set of (Vu)-unburnt vertices Vu ⊆ V .

1.3 Thesis overview
The rest of the thesis is structured as follows. In Section 2, Background, all the used
algorithms are defined alongside a description of the architecture and the CUDA program-
ming model for GPUs. This chapter also includes a brief presentation of the optimization
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1. Introduction

techniques. A short overview of related works is given in Section 4. In Section 5 the six
algorithms for solving the FFP are presented. The performance results are discussed in
Section 6. The final Section 7 gives a conclusion of the thesis.
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CHAPTER 2
Background

This section gives a background for the topic. It describes the used algorithms and
gives an overview of the the microarchitecture of modern graphics processing units
(GPUs) and the Compute Unified Device Architecture (CUDA) programming model
approach for their usage. The focus lies on the Nvidia graphics architectures and the
terminology specific to their products. Yet the concepts discussed here are general and
can be applied to any similar GPU architecture. The description is based on selected
books [KH13, Far12, JC14, NVI17d] and papers [WKP11, HCZ16, MC17].

2.1 Optimization Algorithms

The existing methods for solving combinatorial optimization problems can be classified
into exact and approximate methods [Tal09]. Exact methods guarantee to find global
optimum solutions and their optimality for any given instance of an optimization problem.
When applied to NP-hard problems, however, those methods entail (at least) exponential
runtime. Examples of exact methods are Branch & Bound [LW66] and Dynamic Program-
ming [Bel57]. Approximate methods can be divided into two subclasses: approximation
algorithms and heuristic algorithms. An approximation algorithm produces solutions
that are bound to the global optimum. In other words, it guarantees to obtain a solution
quality that is within a certain range of the global optimum. Heuristics, on the other
hand, provide no provable guarantees regarding the solution quality. Their performance
may only be discovered empirically. However they offer the possibility to deal with
large-size problem instances in that they produce solutions close to the global optimum
in a reasonable time. The term metaheuristics refers to general heuristic methods that
can be used for solving various optimization problems. Their advantage lies in the fact
that relatively few adaptations need to be made to render them suitable for a particular
problem. Some better known classifications include the following [Tal09]:

5



2. Background

• Population-based vs. single-solution based search,

• Deterministic vs. stochastic methods,

• Iterative vs. greedy algorithms,

• Nature-inspired vs. non-nature-inspired,

• Memory-usage vs. memoryless methods.

The decision of whether to apply exact algorithms or heuristics depends on manifold
factors. The criteria that are most widely agreed on are the complexity of the problem,
the size of the instances. As the exact methods are solely appropriate for moderately sized
instances of NP-problems, solving largely sized instances relies on the use of heuristics.
For a more exhaustive description of metaheuristics we refer the interested reader to
Talbi et al. [Tal09], Gendreau et al. [GP10] and Blum et al. [BPRR11].

In the following subsection the metaheuristics used for solving the FFP are introduced.

2.1.1 Ant Colony Optimization

Ant Colony Optimization(ACO) [DS04] is a nature-inspired metaheuristic based on the
swarm behavior of ants. ACO algorithms are population-based, which means that a
number of agents cooperate to find an optimal solution. Such algorithms may be applied
to a wide range of problems, many of which are graph-theoretic.

Presented in a nutshell, ACO involves the following: Independent artificial ants, which are
basically simple agents, generate solutions for a given problem instance in a probabilistic
manner by following simulated pheromone trails. Pheromone trails enable indirect coordi-
nation between agents via their environment, a mechanism known as stigmergy [DBT00].
Stigmergy is a form of self-organization facilitating the ants to communicate indirectly
through a pheromone data structure. This structure is updated, depending on the variant
of the algorithm, during or after each ant has created a new solution.

In the past, there have been several variants of ACO. The better known ones are Ant
System (AS) [DMC96], Max-Min Ant System (MMAS) [SH00] and Ant Colony System
(ACS) [DG97]. The first proposed algorithm was AS. In this variant the pheromone trail
structure is updated once all the ants have constructed a solution. In contrast to AS,
the main improvement of MMAS lies in the fact that now only the best ant can update
the pheromone trail and the pheromone levels are bounded. The Ant Colony System is
another improvement over the original AS. In ACS pheromone updates are performed
during the construction of a tour (by applying the local updating rule) as well as after
all ants have constructed their tour (by applying the global updating rule).

The original formulation of the ACO is based on the traveling salesman problem
(TSP) [Flo56]. The following description is slightly adapted for the purpose of this
thesis, however, retaining its general aspect and applicability in other contexts.
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2.1. Optimization Algorithms

As described in Algorithm 2.1 the AS algorithm consists of three main stages: Initializa-
tion, solution construction and pheromone update. First, an initialization phase, in which
the pheromone trails are set to an initial value determined by the particular algorithm
variant, is performed. Subsequently, solution construction followed by an optional local
search and pheromone update are iterated until a termination condition is met.

Algorithm 2.1: Sequential AS version
1 initialize pheromone trails ;
2 while termination criterion is not met do
3 construct solutions using local heuristic and pheromone information ;
4 apply local search ; // optional

5 update pheromone trails ;
6 end

In the construction phase, m ants are initialized with an empty solution. Based on the
random proportional rule, which determines the probability of choosing a particular
component j out of a set of possible solution extensions Nk

t by an ant k ∈ [1,m] at time
step t, each ant repeatedly chooses a new component at each time step of the construction
phase. The probability is given in the following equation:

pktj(i) = [τtj(i)]α[ηtj ]β∑
l∈Nk

t
[τtl(i)]α[ηtl]β

if j ∈ Nk
t , (2.1)

where τtj(i) defines the quantity of pheromone being deposited on component j at time
step t and iteration i. ηtj is the local heuristic value that entails problem-specific in-
formation for setting the ants on the right track. α and β are two parameters, which
define the relative influences of the pheromone trail and the heuristic information. The
numerator of Eq. 2.1 remains constant for every single ant in a single iteration within
a solution construction, which improves efficiency by saving this information so as to
make it available for all ants. In addition to this, in order to ensure that an ant chooses a
component exactly once, each ant k maintains a data structure, Mk, called the tabu list,
which consists of a chronological ordering of the components already chosen. This data
is used to determine the feasible neighborhood, as well as to enable the calculation of
the quality of the solution T an ant k generated and the reconstruction of the solution
structure in order to deposit pheromone.

Once all the ants have finished constructing their solutions, the last phase of the algorithm
takes place, the pheromone update. This phase has two stages, pheromone evaporation
and pheromone deposit. To avoid falling into local optima, the pheromone level of every
component is first evaporated by a constant factor ρ:

7



2. Background

τ ′tj(i) = (1− ρ)τtj(i), ∀τtj ∈ T (i), (2.2)

where 0 < ρ ≤ 1 is a user-defined evaporation rate and T the pheromone set. Pheromone
evaporation ensures that seldom selected components are forgotten over time. Following
the evaporation stage, each ant performs a pheromone deposit for every chosen component.

τtj(i+ 1) = τ ′tj(i) +
m∑
k=1

∆τktj(i), (2.3)

where ∆τktj(i) denotes the amount of pheromone ant k deposits. This is defined as follows:

∆τktj(i) =
{
Ck(t) if component (t, j)k belongs to T k(i)
0 otherwise, (2.4)

where Ck(i) denotes the quality of the solution T k(i) of ant k.

In general, and as can be derived from Eq. 2.3 and 2.4, the process of updating pheromone
levels ensures that a qualitatively better solution will result in a larger quantity of
pheromone deposited on its components, which in turn increases the chance of the
components being selected for the same positions by other ants in one of the next
iterations (according to the random proportional rule).

2.1.2 Variable Neighborhood Search

The Variable Neighborhood Search (VNS) is a single-solution based metaheuristic for
solving combinatorial and global optimization problems. It was initially proposed by
P. Hansen and N. Mladenovic [MH97]. The basic principles can be described as two
phases that are applied iteratively. In the first phase local search takes place in order
to find the local optimum within a given neighborhood structure. The aim of the
second phase is to escape from the local optimum by changing the given neighborhood
stochastically or deterministically. The idea of the method goes back to the fact that
different neighborhood structures may have different local optima [Jon95].

Naturally, this algorithm has also seen numerous developments and found application in
various fields. This thesis applies the General Variable Neighborhood Search (GVNS),
which uses the Variable Neighborhood Descent (VND) as its local search method.

Variable Neighborhood Descent

Variable Neighborhood Descent [HM99] is a deterministic version of the VNS algorithm,
which uses a predefined ordered set of neighborhood structures Nk (k = 1, ..., kmax). The

8



2.1. Optimization Algorithms

first step is a random generation of an initial solution s0 (line 1 in Algorithm 2.2). The
subsequent step is to apply the local search starting with the first neighborhood (line
4). In case an improvement has been found, the search is reiterated with the improved
solution replacing the initial solution while the neighborhood is reset to the first one. If no
improvement has been found, the neighborhood is incremented from Nk to Nk+1 and the
process is repeated until termination criteria are met (e.g., the maximum neighborhood
kmax is reached).

Algorithm 2.2: Variable Neighborhood Descent
Input: neighbourhood structure Nk (k = 1, ..., kmax)
Output: best found solution s

1 s← s0;
2 k ← 1;
3 while k ≤ kmax do
4 find best s′ ∈ Nk(s);
5 if s′ is better than s then
6 s← s′;
7 k ← 1;
8 else
9 k ← k + 1;

10 end
11 end
12 return s;

General Variable Neighborhood Search

General Variable Neighborhood Search [HM01] is a combined deterministic and stochastic
variant, which embeds VND as a local search method into the VNS. Hence, GVNS contains
two different neighborhood structures Nk (k = 1, ..., kmax) and Nl (l = 1, ..., lmax). In
contrast to VND, the GVNS contains three steps: shaking, local search and move, and
these are repeated until termination criteria are met. In line 5 of Algorithm 2.3 shaking is
applied by randomly generating an initial solution s′ from the current neighborhood Nl.
Then VND is applied with the generated solution s′ in order to generate a new solution
s′′. If the newly found local optimum s′′ is better than s (line 16), then s′′ substitutes
s. Otherwise, the algorithm generates a new solution randomly from the incremented
neighborhood only to start the whole procedure anew. The termination criteria for the
algorithm can be multiple: time limit, solution quality, total number of steps or a certain
number of consecutive steps. A combination of several different termination criteria is
possible and is often the case.

9



2. Background

Algorithm 2.3: General Variable Neighborhood Search
Input: neighbourhood structures Nk (k = 1, ..., kmax), Nl (l = 1, ..., lmax)
Output: best found solution s

1 s← s0;
2 while termination criteria are not met do
3 l← 1;
4 while l ≤ lmax do
5 pick s′ ∈ Nl(s) randomly;
6 k ← 1;
7 while k ≤ kmax do
8 find best s′′ ∈ Nk(s′);
9 if s′′ is better than s′ then

10 s′ ← s′′;
11 k ← 1;
12 else
13 k ← k + 1;
14 end
15 end
16 if s′′ is better than s then
17 s← s′′;
18 l← 1;
19 else
20 l← l + 1;
21 end
22 end
23 end
24 return s;

2.2 Further Algorithms

Along with the main algorithms introduced in the previous section, there is a number
of additional algorithms, which will be incorporated in the metaheuristics. These are
described in this section. For the simulation of the fire spread and the evaluation
techniques used in VNS we apply a Breadth-first search (BFS) algorithm, which requires
exhaustive Scan (or prefix sum) calculations. Furthermore, a radix sort, which also
requires Scan operations, is applied to generate neighborhood structures for the VNS
algorithm.

2.2.1 Breadth First Search

The Breadth-first search (BFS) algorithm is widely used in graph theory. Some of its
many applications are calculating shortest path with unit distances [KGBH16], searching

10



2.2. Further Algorithms

in peer-to-peer networks [KGZY02], establishing search components for crawlers in search
engines [NW01], and searching in social networks [Fay16].

Algorithm 2.4 shows the basic structure of BFS for determining the distance from the
source vertex to each vertex. Given is a connected graph G = (V,E) and a source vertex
vs. In order to keep track of the progress, the algorithm starts with initializing a distance
array of size |V |. This data structure has two functions, one is to save each node’s
distance (line 10) to the source vertex, the other is to serve as a tabu list in order to
avoid cycling (line 9). In line 5 the source vertex vs is added to a FIFO queue, which in
literature is also referred to as frontier queue. After that, the algorithm starts with the
examination of all adjacent vertices from the given vertex (line 7-13). The examination
determines whether the neighboring nodes have already been visited. In case a node
has not been visited, the node’s distance is set and the node is added to the frontier
queue. After this process, the queue holds the newly determined nodes, which are then
used for the examination of the next level, meaning the distance from the source vertex.
These nodes are taken as a source for locating the nodes of the next level. This process
is repeated on each level until all reachable nodes are located.

Algorithm 2.4: Breadth First Search
Input: connected graph G = (V,E), source vertex vs
Output: distance array dist holding the distance of each vertex to vs

1 foreach v ∈ V do
2 dist[v]← -1;
3 end
4 dist[vs]← 0;
5 Q.Enqueue(vs);
6 while Q 6= ∅ do
7 v ← Q.Dequeue();
8 foreach vn neighbor of v do
9 if dist[vn] 6= -1 then

10 dist[vn]← dist[v] + 1;
11 Q.Enqueue(vn);
12 end
13 end
14 end
15 return dist;

2.2.2 Prefix Sums

Prefix Sums is an important parallel building block for numerous parallel applications such
as: graph algorithms [BB15], machine learning [GLMN17], and sort algorithms [MG11].
The formulation and its realizable applications were first introduced by Belloch [Ble90].
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This paper discussed two variants of Prefix Sums, scan (or inclusive scan) and prescan
(or exclusive scan).

The scan operation is defined as follows [Ble90]:

Definition: The scan operation takes an array [x0, x1, . . . , xn] with n elements, and a
binary associative operator ⊕, and returns the array [x0, (x0⊕x1), (x0⊕x1⊕x2), . . . , (x0⊕
x1⊕, ...⊕ xn−1)].

Example: Given is an array [3, 1, 7, 0, 4, 1, 6, 3] with 8 elements and an addition operator.
The scan operation returns [3, 4, 11, 11, 14, 16, 22, 25] as a result.

Algorithm 2.5: Scan
Input: array in = [x0, x1, . . . , xn], size n, binary associative operator ⊕
Output: array out = [x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1⊕, ...⊕ xn−1)]

1 out[0]← in[0];
2 for i = 0; i < n; i← i+ 1 do
3 out[i]← in[i]⊕ out[i− 1];
4 end
5 return out;

The prescan operation is defined as follows [Ble90]:

Definition: The prescan operation takes an array [x0, x1, . . . , xn] with n elements, and a
binary associative operator ⊕ with identity I, and returns the array [I, x0, (x0⊕x1), (x0⊕
x1 ⊕ x2), . . . , (x0 ⊕ x1⊕, ...⊕ xn−2)].

Example: Given is an array [3, 1, 7, 0, 4, 1, 6, 3] with 8 elements and an addition operator.
The scan operation returns [0, 3, 4, 11, 11, 14, 16, 22] as a result.

Algorithm 2.6: Prescan
Input: array in = [x0, x1, . . . , xn], size n, binary operator ⊕, identity I
Output: array out = [x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1⊕, ...⊕ xn−1)]

1 out[0]← I;
2 for i = 0; i < n; i← i+ 1 do
3 out[i]← in[i− 1] + out[i− 1];
4 end
5 return out;

Sequentially, both algorithms can be easily implemented as described in Algorithm2.5
and Algorithm 2.7. However, it should be considered, that an efficient parallel version
needs further effort for breaking down the sequential nature of the operations.

12



2.2. Further Algorithms

2.2.3 Radix Sort

Radix Sort is among the fastest sorting algorithms [SKC+10]. The algorithm takes a
given sequence of size n and separates each key into d digits. These digits are then sorted
according to their significance one digit at a time, either from least to most significant
or from most to least significant. It is essential that the algorithm used for sorting the
digits belongs to stable sorts like a counting sort or bucket sort [CSRL01]. The running
time of radix sort is linear Θ(d(n+ k)), where n is the number of elements to be sorted,
k is the base and d is the number of digits.

Algorithm 2.7 shows a simple variant of radix sort using a fixed binary representation
k = 2. The algorithm starts with taking the least significant digit of the first key (line 7)
distributing it to the corresponding bucket. These steps are applied for each key of the
array. As a result of this phase, a newly sorted array is created by concatenating the first
and second bucket, which forms the basis for the next iteration of the next significant
digit. This process is repeated until the most significant digit of each key is sorted. After
the final iteration, the array is completely sorted.

Algorithm 2.7: Radix Sort
Input: array of integers a[n], length n, key-bit length d
Output: sorted array a[n]

1 for i = 0; i < n; i← i+ 1 do
2 bucket0[i]← 0;
3 bucket1[i]← 0;
4 end
5 for shift = 0; shift < d; shift← shift+ 1 do
6 for i = 0; i < n; i← i+ 1 do
7 res← (a[i]� shift) ∧ 1;
8 if res = 1 then
9 bucket1[b1]← a[i];

10 b1 = b1 + 1;
11 else
12 bucket0[b0]← a[i];
13 b0 = b0 + 1;
14 end
15 end
16 a← concat(bucket0, b0, bucket1, b1);
17 b0 = 0;
18 b1 = 0;
19 end
20 return a;
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2.3 GPU Architecture and the CUDA Programming
Model

With the rapid evolution of microprocessor technologies, the current trend in computing
is to increase parallelism rather than clock rate. Graphics Processing Units (GPUs)
are specialized microprocessors that accelerate graphics operations. NVIDIA’s newest
TITAN V GPU contains up to 5120 cores, enabling the implementation of massive
parallel programs. Due to the excessive number of cores, GPUs are suitable for creating
supercomputers. For instance, the Titan Supercomputer built at Oak Ridge National
Laboratory [TIT18] packs up whole 18,688 NVIDIA GPUs, which puts it on number 5
of the TOP500 list from November 2017 [Top17].

In order to develop efficient parallel programs on the GPU, the significantly different
hardware design of the GPU needs to be taken into consideration. In comparison to the
GPU, CPUs are designed with more complex control logic such as complicated branch
prediction and prefetching and are therefore optimized for task-based computation. On
the other hand, the design of GPUs is based on light-weight control logic and is optimized
for highly data-parallel computations. Consequently, it is essential to have an in-depth
knowledge of the underlying hardware in combination with the programming model. For
this reason, this section describes the hardware design of the graphic card (based on
the Maxwell architecture), in particular, the hierarchy of the memory, the programming
model, and selected optimization techniques.

2.3.1 Hardware Architecture of NVIDIA’s GPU

The basic architecture of the NVIDIA chip, given in Figure 2.1, can be described as an
array of streaming multiprocessors (SMs) that share an L2 cache. The global memory
interface is divided into partitions. The communication with the CPU is made possible
by the Host Interface via PCI-Express. The scheduler is distributed in multiple levels.
There is at least a global scheduler (GigaThread) at the chip level, which schedules
thread blocks to the various SMs in arbitrary order. At the SM level, the thread blocks
are divided into a collection of 32 parallel threads named warps. These warps are then
scheduled by independent warp schedulers that handle finer-grained scheduling. This
decoupled approach results in transparent scalability 1, but comes with limitations that
will be discussed in 2.3.4. The capacity and its features may vary according to the
graphic card type. NVIDIA’s hardware resources and supported features are defined in
the compute capability [NVI17d]. An example of the described architecture would be the
Maxwell chip (see Fig. 2.1), which can track up to 2048 threads per SM simultaneously,
which sums up to 16,384 concurrent threads for this chip.

1Transparent scalability refers to the executability of the same application code on varying hardware
capacities.
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Figure 2.1: Block diagram of NVIDIA’s Maxwell chip [NVI16].

2.3.2 NVIDIA’s Streaming Multiprocessor

Figure 2.2 depicts the Maxwell streaming multiprocessor (SMM). Its architecture is
classified by NVIDIA as single-instruction, multiple-thread (SIMT) [LNOM08]. The SMM
contains eight texture units and an on-chip shared memory. The SMM is further divided
into four distinct 32 CUDA-core processing blocks, two of which share an instruction
cache and a unified texture L1 cache. Each Block contains an instruction buffer, a pipeline
where each has a warp scheduler as well as two dispatch units. Furthermore, there is a
local register file. The 32 cores are sorted into 4 groups with each 8 units. Each of the 32
cores contains a separate integer arithmetic logic unit (ALU) and a floating point unit
(FPU). The FPUs implement the IEEE 754-2008 floating-point standard. There are also
8 load/store units for memory operations and 8 Special Function Units (SFUs) to handle
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Figure 2.2: Maxwell Streaming Multiprocessor (SMM) (adapted from [NVI16]).

transcendental functions such as sinus, cosines, reciprocal etc.

2.3.3 CUDA Programming Model

The CUDA framework comprises a small set of extensions to various programming
languages including ANSI C, C++, Python, and Fortran. The CUDA programming
model is a relaxed variant of the Single Program, Multiple Data (SPMD) parallel
computation paradigm [AF98]. In the context of the SIMT architecture, this means that
the same instruction that operates on different data is executed on multiple threads. The
main difference is that the SIMT architecture permits independent branching, that is,
threads within the same warp can execute different control flows. However, this flexibility
comes with the drawback in that it may lead to a serialization of the branches.

The programming model enables the development of heterogeneous programs, which can
run simultaneously on the CPU (host) and GPU (device). A CUDA program therefore
consists of a CPU Code and a GPU Code. The CPU code can launch or invoke GPU
subroutines (so called parallel kernels) asynchronously, that are executed on the GPU
with a large number of threads in SPMD style. Typical CUDA kernels are executed by
thousand to millions of threads. Starting from CUDA 5.0 and compute capability 3.5,
CUDA enables invoking kernels also from device threads dynamically at runtime. This
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Figure 2.3: A schematic overview of the thread organization [Whi09].

feature is called CUDA Dynamic Parallelism (CDP) [NVI17d].

As can be seen in Figure 2.3, threads are organized into a two-level hierarchy. In general,
multiple threads are grouped into 3 dimensional thread blocks. Further thread blocks
are organized into 2 dimensional grids, where each grid executes a unique kernel. The
exact organization of a grid and its thread blocks is set by the programmer or compiler.
Thread blocks and threads have unique coordinates that enable to identify themselves
and their domains at runtime. These coordinates, which are assigned by the CUDA
runtime system, are also used to identify the appropriate memory locations.

As already described above, threads within a thread block run on a single SMM, so
within a block threads have the ability to synchronize via barrier synchronization 2

and/or shared memory by using atomic operations. However, there is no CUDA support
for threads in different thread blocks to synchronize with each other. This limitation
comes from the decoupled schedulers and independent thread blocks. One possibility
to achieve synchronization between thread blocks can be through global memory via
atomic operations [XcF10] or L2 cache [LA16] by using (PTX) assembly instructions.
Another approach, as described in [KH13], is to simply decompose a given problem into
multiple kernels. That would mean each time to terminate the kernel and relaunch a new

2Barrier synchronization refers to synchronization primitives implemented in numerous parallel
programming languages.
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kernel after the synchronization point. It should, however, be considered, that approaches
involving atomic operations on global memory are always connected with an increased
latency. Furthermore, relaunching kernels incurs significant overhead.

2.3.4 CUDA Memory Model

CUDA threads have access to different memory spaces with different scope, size, lifetime
and latency. Understanding their properties is essential for designing efficient algorithms
for GPUs.

Global Memory

L2 Cache

Shared Memory

L1 Cache/Texture Cache

Registers

TextureConstant

smallest fastest

biggest slowest

Si
ze

Sp
ee

d

Figure 2.4: An overview of the memory hierarchy (adapted from [JC14]).

Registers

Registers are the fastest memory on the GPU. All automatic 3 local scalar variables
declared in device subroutines are automatically placed into registers by the compiler.
Non-scalar 4 automatic variables can be placed on registers or local memory. Local
memory is an abstract logical memory type defined by NVIDIA for transparency purposes.
The implementation of the local memory depends on the architecture of the GPU. For
instance, the Maxwell architecture encompasses a local memory range from L1 to Global
Memory. The local memory is only used in the following cases:

1. If very large automatic arrays are allocated or regular arrays with dynamic indexes 5

are declared.

2. If register spilling occurs, i.e., in case more registers are required than available,
the variables will be hierarchically assigned to the local memory beginning with L1
cache [JC14].

3Automatic variables are declared without specific CUDA qualifiers like _constant_ or _device_ etc.
4Variables that are not arrays are referred to as scalar variables in the literature.
5A dynamic index is one that the compiler cannot determine at compile time.
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The scope of both variables, scalar and non-scalar, is limited to the threads within a
block.

L1 Cache/Texture Cache

The L1 cache and the texture cache is the same physical unit. By default it serves as a
cache for local memory accesses. However, it can be configured by the programmer in order
to act as a cache for global memory access loads with 32 Byte load granularity in texture
cache or 128 Byte load granularity in L1 cache. The choice of configuration depends on
the given application. A latency bound application may benefit from increasing the cache
hit rate instead of increasing occupancy, that is, parallelism. In other words, a higher
cache hit rate may hide the latency more efficiently than an increased number of threads.
In the case of a misaligned or unpredictable global memory access a shorter cache-line
is more effective than a longer cache-line. On the other hand, a longer cache-line offers
higher performance, if the data is accessed in coalesce manner. In opposition to the L2
cache, the L1 cache is not coherent, i.e., it does not reliably display the latest status of
the variables it contains, and is designed for spatial locality.

Shared Memory

The on-chip shared memory has a significantly higher bandwidth and lower latency
than global memory and has approximately 100x faster latency. Shared memory enables
inter-thread communication as threads within a block have access to the same shared
memory. The amount of shared memory is defined at the kernel launch time but its scope
is limited to the threads within a thread block. Its latency period is 28 cycles [MC17].

L2 Cache

The L2 cache is a coherent read/write cache with a Least Recently Used (LRU) re-
placement policy [MC17]. It is directly connected to the global memory (Figure 2.4).
All transactions to global memory go through L2, including copies to/from CPU host.
Further, the cache is completely transparent to the device code. There are only some
compiler options for optimization purposes.

Global Memory

The global memory is situated underneath the L2 cache. The off-chip GDDR5 DRAM is
the largest and slowest memory unit in the hierarchy. It has the highest latency starting
at 230 up to 2766 cycles and the smallest throughput [MC17]. Its cells can be accessed
on the device from any SM throughout the lifetime of the application.

2.3.5 Performance Considerations

This section focuses on execution optimization. It deals with a few of the best practice
optimization techniques for writing efficient parallel programs as described in [TGEF11,
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NVI17b] concentrating on the most important techniques.

Coalesced Access to Global Memory

The global memory is transferred in transactions on the GPU. To maximize the bandwidth
and to keep the latency low, each thread in a warp should always try to access a continuous
segment in the global memory. If this is successful, the individual queries are combined
into as few transactions as possible. The size of the transaction depends on the cache
line. Otherwise the queries are worked out sequentially in which case the number of
transactions depends on the memory access pattern as well as on the cache line. For
scattered access patterns, to reduce overfetch, it can sometimes be useful to enable
caching in L1, which caches shorter 32-byte segments.

Figure 2.5: Coalesced access - all threads access one cache line [TGEF11].

Figure 2.6: Misaligned sequential addresses that fall within five 32-byte L2-cache seg-
ments [TGEF11].

Shared Memory Accessing

The shared memory is subdivided into equally sized banks. One bank can be used by
only one thread at the same time. Access can be provided in parallel only if all threads
refer to different banks. If different threads refer to words within the same bank, the
access is serialized causing a so called bank conflict. Figure 2.7a shows conflict-free access
where all threads refer to different banks. In this case, the permutation is irrelevant
and therefore serviced simultaneously. Figure 2.7b shows conflict-free broadcast access if
threads 2, 3, 30, and 31 access the same word within bank B1. Otherwise this can cause
up to a four-way bank conflict, depending on how many distinct words within this bank
are accessed.

Occupancy

Occupancy is an indicator that is used for hiding latency. Basically, the idea is to
use the physical characteristics of the GPU optimally. Occupancy is defined as the
number of active warps divided by the maximum number of active warps. A warp is
considered active if its corresponding block including the resources (e.g., registers and
shared memory) has been allocated. The factors with potential for limiting occupancy
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(b) Broadcast or four-way bank conflict.

Figure 2.7: Shared memory access patterns.

are: register usage, shared memory usage and block size [Vol10]. However, keeping the
occupancy high does not necessarily mean that the latency is completely hidden; some
further performance limiters, such as low cache hit rates causing high latency, may need
further consideration [Ton15].

Branching and Divergence

As previously discussed in subsection 2.3.1, thread blocks are divided into a collection
of 32 parallel threads called warps. Due to the SIMT architecture, all threads within a
warp share a single program counter. This means that any control flow instructions 6

may lead to the serialization of the branches. Thus, for higher performance the divergent
warps should be kept to a minimum.

6In computer science, control flow (or alternatively, flow of control) refers to the order in which
the individual statements, instructions, or function calls of an imperative or a declarative program are
executed or evaluated [con].
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CHAPTER 3
Related Work

This chapter provides an overview of the existing literature on the firefighter problem as
well as the most recent and relevant parallel algorithms used in this thesis.

3.1 The Firefighter Problem

An extensive survey focusing on theoretical aspects of the FFP was conducted by Finbow
et al. [FM09]. This study provides an overview of the many variants of the existing
algorithms and their complexity, as well as various open problems and possible future
developments.

Several studies have investigated the complexity of the FFP showing on different graph
structures that even for a single firefighter NP-completeness is established. MacGillivray
and Wang [MW03] proved NP-completeness for bipartite graphs, whereas Finbow et
al. [FKMR07] showed NP-completeness for trees of maximum degree three. Building
on the results of the previous article, King and MacGillivray [KM10] established NP-
completeness for cubic graphs. Those complexity results indicate the need for heuristic
approaches such as ACO and VNS, which are the topic of this work.

Bazgan [BCR13] analyzed instances where firefighters are greater than one. In addition,
Costa [CDD+13] studied the case where a fire breaks out on multiple nodes. Cygan
et al. [CFvL11] examined various parameterized versions of the FFP on various graphs
determining their complexity. This study showed that, when parameterized by the
number of burned vertices, the FFP is fixed-parameter tractable on general graphs.

Further studies focused on the containment of fire on grids. In 2002, Fogarty [Fog03]
determined that a finite outbreak of fire is controllable for grids of dimension two, with
more than two firefirefighers. Feldheim and Hon [FH13] provided lower and upper bounds
of firefighters required for fire containment on planar grids. For fire containment on
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d-dimensional square grids, Develin and Hartke [DH07] showed that the presence of 2d−1
firefighters per time step is necessary.

Cai and Wang [CW09] introduced the definition of surviving rates, which is the average
percentage of unburnt vertices in cases of fire breakouts on random nodes. Wang et
al. [WFW10] analyzed the surviving rates of virus spread for planar networks, series-
parallel networks and d-degenerate networks. Subsequently, Kong et al. [DH07] showed
improved results for planar grids.

A separate study focusing on approximation algorithms for trees proposed a 1
2 -approximation

greedy algorithm [HL00]. Hartke [Har04b] developed linear programming relaxation algo-
rithms on trees based on the integer program approach of MacGillivray and Wang [MW03].
Furthermore, Cai et al. [CVY08] proposed a polynomial-time (1 − 1

e )-approximation
algorithm, which Iwaikawa et al. [IKM11] later improved by implementing enumeration
and backward induction techniques.

Recently, metaheuristic approaches for the FFP have been examined in different studies.
Blum et al. [BPRR11] developed a MAX–MIN Ant System (MMAS) and a hybrid
variant with a mathematical programming solver (CPLEX). An alternative general
variable neighborhood search (VNS) approach combined with variable neighborhood
descent (VND) using a more compact representation was presented by Hu et al. [HWR15].
García-Martínez et al. [GBRL15] presented nine Integer Linear Programming (ILP)
formulations along with six heuristic approaches on random graphs.

Lately, several extensions to the FFP have been presented. An evolutionary algorithm was
introduced to solve a multi-objective version of the firefighter problem [Mic14]. A further
extension is the Bi-Firefighter Problem introducing an additional spreading element
occurring independently [Lip17]. Finally, a nondeterministic model for the fire spread
was introduced in the study of Krzysztof and Knowles [MK16].

3.2 Ant Colony Optimization

An in-depth survey on different parallel ACO implementations strategies along with a new
taxonomy for their classification can be found in the study of Pedemonte et al. [PNC11].

A number of preliminary parallel implementations on the GPU used a coarse grained
(or task-based) approach based on the work of Stützle [Stü98]. In the context of GPU
computing, this means that each ant is mapped directly to a single thread. An entire
MMAS implementation [BOL+09] on the GPU for solving the Travelling Salesman
Problem (TSP), which is based on the coarse grained approach, achieved competitive
results. However, the speed-up factor did not exceed 2 in contrast to a sequential CPU
implementation. Alternatively, a heterogonous task-based MMAS variant [WDZ09] for
solving the TSP mixing CPU and GPU function calls for the different stages of the
algorithm. The achieved speed-up factor was 1.5 when tested against the sequential
variant on the CPU.
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Cecilia et al. [CGN+13] concluded that the task-based approach is essentially unfitting
for the GPU. For improvement of the GPU utilization, a novel data-parallel approach has
been introduced in addition to a systematic analysis of efficient strategies for implementing
ACO for the TSP. The algorithms were tested using a standard subset of benchmark
instances from the TSPLIB library [Rei91]. The speed-up factor achieved at the tour
construction was up to 21 while the speed-up factor at the pheromone update was
approximately 20 compared to a sequential CPU implementation.

An approach similar to Cecilia et al. [CGN+13] in which single ants are assigned to
CUDA Blocks was implemented by Del evacq et al. [DDGK10].

In contrast to the previously presented papers, Uchida et al. [UIN12] did not choose
a data-parallel approach, but decomposed the problem into several kernels. Their
implementation aimed at the maximization of the global memory bandwidth on the GPU
by dynamically and efficiently rearranging the various data. Compared to a sequential
counterpart, this approach achieved a speed-up factor of 43.47 overall performance.

Based on the work of Cecilia et al., Dawson and Stewart [DS13] proposed an adapted
tour construction implementation named Double-Spin Roulette (DS-Roulette), which
achieved speed-up factors up to 8.5 in comparison to the study of Cecilia et al.

Recently, Rafal Skinderowicz [Ski16] has proposed three novel parallel ACS implemen-
tations for the TSP on the GPU based on the data-parallel approach. At the onset,
the algorithm computes a static candidate list with a maximum capacity of 32 elements
containing the nearest neighboring nodes for each node. This limitation enables a com-
putation of the fitness proportionate selection on a single warp and its efficient warp
functions. The performance was tested on several TSP instances selected from the
TSPLIB library. The performance evaluation showed a maximum speed-up factor of
24.29 for the fastest variant, however, the variant with a solution quality approximately
identical to the sequential version reaches speed-up factors up to 6.43, when compared to
the CPU implementation.

3.3 Variable Neighborhood Search

Several strategies for parallel Variable Neighborhood Search are presented in the study of
Moreno-Pérez et al. [PHM05]. However, studies of parallel VNS on the GPU have been
seldom conducted.

Thé Van Luong et al. [LMT10] studied different neighborhood structures for Local Search
(LS) algorithms on the GPU. Additionally, the authors presented a template for LS
algorithms focusing on assigning techniques between different neighborhood structures
and threads. This approach was evaluated with three neighborhoods of variable sizes for
binary problems, resulting in a speed-up factor up to 26.3.

The previous study was extended by proposing a methodology for implementing Local
Search Metaheuristics on GPU [LMT13]. The work concentrates on different aspects
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of the following GPU implementation techniques: optimization of data transmission
between the CPU and GPU, efficient assignment strategies for neighborhood structures
and threads, memory management, and occupancy maximization using dynamic heuristics
for optimal configuration of threads per block and the total number of blocks.

In a recent study, Nikolaos Antoniadis and Angelo Sifaleras proposed a hybrid CPU-GPU
implementation [AS17] of the VNS for inventory optimization problems, which uses a
combination of OpenMP 1 [DM98] on the CPU and OpenACC 2 [CAP11] on the GPU.
Without presenting the speed-up, the result of their work reported higher quality solutions
achieved by the hybrid implementation in comparison to the sequential approach.

3.4 Breadth First Search

The first approach for developing BFS on the GPU using CUDA was introduced by
Harish and Narayanan [HN07]. Their work used a static task-based approach, meaning
that each vertex is statically assigned to a thread. This paper reports a speed-up factor
of 20–50 over the single-threaded variant for random input graphs, which have O(n2 +m)
work complexity 3 for BFS where n is the number of vertices and m is the number of
edges. Nevertheless, with the work complexity, the speed-up drops to a minimum when
using real world data. The reason is twofold: firstly, the static mapping approach leads to
load imbalance when the graph is irregular, and secondly, due to the absence of memory
optimizations, the implementation is subjected to high latency memory access.

These characteristics were observed by Hong et al. [HKOO11] who thus proposed a
novel virtual warp-centric programming method. Instead of mapping single threads, the
method assigns a number of threads v ∈ {x | x = 2n, n ∈ N}, referred to as virtual warps,
to single vertices statically. This approach improved GPU utilization by decreasing load
imbalance and increasing coalesced memory access, which in sum results in a speed-up
factor up to 15.1, compared to the implementation of Harish and Narayanan.

A linear work complexity approach [LWH10] was achieved by applying a hierarchical
queue management technique and a three-layer kernel arrangement strategy. Yet, the
maximum achieved speed-up factor was measured 10.3.

Merrill et al. [MGG15] introduced a semi-dynamic mapping approach [BB17a] that
achieved asymptotically linear runtime. They were the first to apply a parallel prefix-scan
for calculating the number of vertices for the inspection on the upcoming levels. Since
their proposal, the parallel prefix-scan has been used as a basis for frontier propagation
in numerous recent BFS implementations [FDB+14, LH15, BB15].

1A shared memory parallel programming model.
2A parallel programming model for many-core and multi-core processors.
3The work complexity of a multithreaded algorithm is the sum of the processing time (i.e., the

sequential work) of each thread.
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Furthermore, distributed BFS algorithms on GPU Clusters are proposed in [BBM16,
BCM+15, FDB+14], and various BFS algorithms on heterogeneous platforms are pre-
sented in [RGAN16, DNM14].

3.5 Prefix Sums

The existing attempts at designing parallel prefix sums on the GPU follow the same
parallelization model. The first step of the model is to segment a given array, which is
then distributed to different CUDA blocks. The second step is to apply a composite of
intra-block and inter-block computation.

Whereas Harris et al. [HSO07] implemented the first parallel prefix sum (scan) with
linear work complexity on CUDA, Sengupta et al. [SHZO07] proposed the first parallel
segmented scan on CUDA. Based on these two works, Sengupta et al. [SHG08] introduced
a new three-phase approach. In the first phase, a given array with size n is decomposed
into subsets si of size b and distributed to CUDA blocks. Then, an initial intra-block
computation in form of local 4 scan on each block is performed. Subsequently, the last
element of each scanned si is inserted in a new array A of size dn/be. In the following
phase, an exclusive scan operation on A is performed. Finally, the resulting individual
sums of A are added to each corresponding si to complete the scan operation in its
last phase. This implementation requires a minimum of 4n global memory accesses; in
addition, a global barrier synchronization is necessary to complete each phase.

A novel matrix-based scan reducing the number of global memory access to 3n was
proposed by Dotsenko et al. [DGS+08]. The three-phase approach starts with a reduction
operation, and continues with an exclusive scan using the results of the aforementioned
reduction. Thus, in the final phase, the partial sums of the preceding operation are
scanned with the corresponding subsets of the input array.

Shengen Yan et al. [YLZ13] evade global barrier synchronization and further reduce the
number of global memory access to 2n. Their proposed implementation starts with an
intra-block reduction where each block bi reduces its subset si. Afterwards, an inter-block
computation is performed by sequentially passing the sum ri of each block bi plus the
accumulated result ri−1 of the previous block bi−1 to the adjacent block bi+1. The
interaction between the thread blocks (inter-block synchronization) is achieved via busy
waiting on global memory. Finally, to complete the scan operation, a last intra-block
scan is performed after the synchronization phase.

The most recent implementation [LA16] applies the fastest features of the NVIDIA
Kepler [NVI12] architecture. Liu et al. use warp shuffle functions for the intra-block
computations and apply parallel thread execution (PTX) assembly instructions on the
coherent L2 cache for enhancing efficient inter-block synchronization. This approach
outperformed the leading GPU libraries CUDPP [HSO07], NVIDIA Thrust [BH12],

4A local operation is one in that only local resources like register and shared memory are used.
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NVIDIA ModernGPU [NMG17], NVIDIA CUB [NVI17a] as well as the Intel Threading
Building Blocks (TBB) [Phe08].

3.6 Radix Sort
The first implementation on parallel radix sort on the GPU was presented by Harris
et al. [HSO07] who was the first to apply parallel scan algorithms for radix sort. The
algorithm starts with decomposing an input array into subsets and separating each of its
keys into single bits. Then, the subsets are sorted bitwise in three consecutive operations:
binary splits, prefix sums, and scatter. After the sorting phase, the elements of the
aforementioned subsets are combined by applying a parallel bitonic sort [Bat68].

A most significant digit (MSD) radix sort on the GPU was proposed by He et al. [HGLS07].
Similar to Harris et al., the input data gets partitioned into subsets. However, instead of
sorting single bits, they sort a constant size of five bits at a time for the reduction of
scatter operations on global memory. In comparison to the sequential implementation,
the overall performance of their approach achieved a speed-up factor of 2.

Satish et al. [SHG09] separate each key into 2b digits and perform a counting sort on
each subset iterating 1-bit split b times in shared memory. The sorting results are then
saved in a histogram h of size 2b. Following this, a prefix sum is performed to accumulate
the partial sums of h. Then, the sorted elements are distributed to their corresponding
block. The whole procedure is repeated until all digits are sorted. The approach reached
a speed-up factor of 2 in comparison to previous GPU implementations.

Further strategies that aim for a maximal utilization of the GPU were developed by
Merrill et al. [MG11]. The presented methods comprise optimized split operations and
reduced data movement through global memory, for which the number of kernel calls
were decreased by applying kernel fusion and thread block serialization. The runtime of
this implementation was 3.8 times faster than existing GPU sorting algorithms.

In 2017, Elias Stehle and Hans-Arno Jacobsen proposed a heterogeneous implementation
of MSD radix sort [SJ17]. Their approach combines counting sort with local sort that
enables the sorting of eight bits per pass, thus reducing the transfer of data by a factor
not less than 1.6. Furthermore, for sorting instances too large for the GPU, they proposed
a heterogeneous approach, where the input array is divided into several subsets, which
are sorted on the GPU individually. During this process, the sorted subsets are returned
to the CPU where they are merged, which enables a partially simultaneous computation
on both architectures.
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CHAPTER 4
Implementation

The central aim of this thesis is the design of a parallel hybrid metaheuristic for the
firefighter problem. In Section 4.1 a hybrid encoding is presented, which is used for the
development of the algorithms. The sequential algorithms are introduced in Section 4.2
whereas the subsequent Section 4.3 provides the description of the parallelization of the
sequential approach.

4.1 Solution Representation
The hybrid approach alternates between two encodings during its various phases. For
the generation of the solutions for the MMAS and the VNS we follow the strategy of Hu
et al. [HWR15] and use a bitvector encoding P = 〈p1, . . . , pn〉, where

pv =
{

1 if vertex v should be protected,
0 otherwise, ∀v ∈ V (4.1)

and n = |V |. The main reason behind this choice of encoding lies in its compactness,
as the solution space is reduced in comparison to a permutation based representation.
Furthermore, it enables the use of more compact data structures for the computations.

The encoding does not provide explicit information on which vertices are to be protected
at a particular time step. Consequently, for the pheromone update stage the binary
representation needs to be decoded into an explicit solution representation containing
the missing time information. The decoding function g : G × P 7→ S takes a graph
G = (V,E) and an encoding P and maps the pair to an encoding S.

The representation S = 〈s1, . . . , sn〉 is defined as follows:

sv =
{
t if vertex v should be protected at ime step t,
0 otherwise. ∀v ∈ V (4.2)

29
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The mapping can be achieved by simulating the fire spread over the graph while saving
the time steps t of the protected nodes in P . This process can be accomplished implicitly
during the evaluation function in the VNS and hence an explicit decoding is not necessarily
required.

4.2 Sequential Implementation

The presented algorithm combines aMAX -MIN Ant System (MMAS) with a General
Variable Neighborhood Search (GVNS) implemented with a Variable Neighborhood De-
scent (VND) as local search. The MMAS is based on the work of Blum et al. [BBGM+14]
implemented in the Hyper-Cube Framework (HCF) [BRD01, BD04]. The VNS imple-
mentation is based on the work of Hu et al. [HWR15].

4.2.1 Sequential Hybrid ACO

Algorithm 4.1 shows the basic structure of the sequential hybrid approach. The algorithm
saves three different solutions: the iteration-best solution Sib, the restart-best solution Srb,
and the best-so-far solution Sbs. At the onset all the variables and the pheromone values
are initialized (lines 2-3). In the second step, each ant constructs a solution applying
the ConstructACOSolution() method. After that, depending on the current solution Pcr
and the threshold defined by parameter B ∈ [0, 1], the solution may be improved by
applying the ConstructVNDSolution(Pcr) procedure. During this phase the solution is
implicitly transformed by mapping Pcr to Scr. If VNS is not applied, the transformation
has to be done explicitly (line 10). The three saved solutions Sib, Srb, and Sbs are
then updated in case a better solution was found by the previous construction process.
After the construction phase, the ApplyPheromoneUpdate(cl, bs_update, T , Sib, Srb, Sbs)
method is applied, which serves to update the pheromone values using Sib, Srb, and Sbs.
Then, based on the pheromone values, a new convergence factor cl is computed in the
ComputeConvergenceFactor(T ) method. This factor in combination with the Boolean
variable bs_update defines whether the pheromone updates and the restart-best solution
are to be reset to their initial value. These steps are iterated until some predefined
termination conditions are met.

The salient methods of this algorithm are further described in the following subsections.

4.2.2 ACO Solution Construction

In order to reduce the search space, Algorithm 4.2 uses a dynamic candidate set for the
node selection. This set contains solely nodes that may at least postpone the fire spread.
To determine the set, the topology of the graph is analyzed at each time step. Based on
the current state of a given graph (burnt and protected nodes) the algorithm simulates
how the fire spreads over the remaining nodes. During this procedure metrics, i.e., the
indegree and the time step of a node catching in the simulation, are collected for each
node, which are then used to create the set and calculate the heuristic information.
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Algorithm 4.1: Sequential hybrid ACO for the firefighter problem (based
on [BBGM+14])
Input: An undirected graph G = (V,E), number of ants m, number of

firefighters D, and parameter B
Output: The best found solution Sbs.

1 Srb ← ∅, Sbs ← ∅, cf← 0, bs_update← false ;
2 τ(t, j)← 0.5, ∀(t, j) ∈ T ;
3 while termination criterion is not met do
4 Sib ← ∅ ;
5 for i = 0; i < m; i← i+ 1 do
6 Pcr ← ConstructACOSolution() ;
7 if f(Pcr) > (f(Sbs) · B) then
8 Scr ← ConstructVNDSolution(Pcr) ;
9 else

10 Scr ← g(Pcr), where g : Pcr 7→ Scr ;
11 end
12 if f(Scr) > f(Sib) then Sib ← Scr ;
13 if f(Scr) > f(Srb) then Srb ← Scr ;
14 if f(Scr) > f(Sbs) then Sbs ← Scr ;
15 end
16 ApplyPheromoneUpdate(cf , bs_update, T , Sib, Srb, Sbs) ;
17 cl← ComputeConvergenceFactor(T ) ;
18 if cf > 0.99 then
19 if bs_update = true then
20 τ(t, j)←0.5,∀(t, j) ∈ T ;
21 Srb ← ∅ ;
22 bs_update← false ;
23 else
24 bs_update← true ;
25 end
26 end
27 end
28 return Sbs ;

This process is formalized in Algorithm 4.3 and Algorithm 4.4. For the creation of
the candidate set two procedures, a top-down BFS and bottom-up BFS, are applied
consecutively. Algorithm 4.3 presents the top-down approach, which is responsible for
the calculation of metrics and the simulation of fire spread. For each remaining time
step t the algorithm creates a set of nodes that are reached at t (lines 5-8) and calculates
the indegree of each of them (lines 9-11). The design of Algorithm 4.4 considers two
purposes: to create the candidate set C and calculate the heuristic information η using
the collected information of the previous BFS. Starting from the latest time step i = tmax,
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Algorithm 4.2: ConstructACOSolution()
Input: An undirected graph G = (V,E), a set Binit, number of firefighters D.
Output: Solution Pcr.

1 t← 1 ;
2 burningNodes← |Binit| ;
3 while burningNodes > 0 do
4 ApplyTopDownBFS() ;
5 ApplyBottomUpBFS() ;
6 PlaceFirefighters() ;
7 burningNodes← PropagateFire() ;
8 t← t+ 1 ;
9 end

Algorithm 4.3: ApplyTopDownBFS()
Input: Current time step t, frontier set F containing n burning nodes at t, tabu

list tabu containing burnt and protected nodes.
Output: Distance-indexed list of sets of nodes dist, indegree list indeg,

maximum time step tmax.
1 dist[t]← F ; // dist[t][0 . . . n− 1]← v, ∀v ∈ F

2 while dist[t] 6= ∅ do
3 foreach v in dist[t] do
4 foreach v′ neighbor of v do
5 if tabu[v′] = false then
6 dist[t+ 1]← dist[t+ 1] ∪ v′ ;
7 tabu[v′]← true ;
8 end
9 if v′ ∈ dist[t+ 1] then

10 indeg[v′]← indeg[v′] + 1 ;
11 end
12 end
13 end
14 t← t+ 1 ;
15 end
16 tmax ← t− 1 ;

the algorithm traverses through the graph until time step t+ 1. During each time step
the algorithm calculates the theoretically free firefighters γi−1 for i− 1 (line 3). After
that, the algorithm inspects the adjacent nodes v′ from each node v at time step i (lines
4 -13). If the distance of v′ is i− 1, the value of the local heuristic η[v′] is incremented
by the heuristic value of v. Since it is difficult to prevent nodes with high indegrees from
catching fire, the algorithm weights the heuristic information additionally by adding a
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Algorithm 4.4: ApplyBottomUpBFS()
Input: Distance-indexed list of sets of nodes dist, indegree list indeg, current

time step t, maximum time step tmax, tabu list tabu containing burnt
and protected nodes.

Output: Candidate set C, heuristic set η.
1 i← tmax ;
2 while i > t+ 1 do
3 γi−1 ←calculate available firefighters for time step i− 1 ;
4 foreach v in dist[i] do
5 foreach v′ neighbor of v do
6 if v′ ∈ dist[i− 1] then
7 η[v′]← η[v′] + η[v] + 1

indeg[v] ;
8 if indeg[v] ≤ γi−1 and tabu[v′] = false then
9 C ← C ∪ v′ ;

10 tabu[v′]← true ;
11 end
12 end
13 end
14 end
15 i← i− 1 ;
16 end

weight inversely proportional to the indegree of v (line 7). Consequently, nodes with
neighbours of high indegree are less likely to be selected for protection. Whether an
adjacent node v′ is added to C is determined by the indegree of v (line 8). If the indegree
of v ≤ γi−1, v′ is added to C. This strategy excludes nodes that have no potential to
prevent adjacent nodes from catching fire or postponing the fire spread.

Figure 4.1 illustrates this approach on the same graph that was presented in the intro-
duction (see Fig. 1.1). The heuristic information and the candidate set for each time step
are given in Figure 4.1a. These values are generated based on the assumption that the
vertices within the candidate list with the highest heuristic are protected. We can see
that at the time step 0 the candidate list comprises five candidates and thus the size of C
is reduced by approximately 54%. Based on the heuristic information, nodes 4 und 10
are protected. At time step 1 the selection possibility is reduced to only two nodes. After
these two nodes are protected, the fire is contained. The resulting graph is presented in
Figure 4.1b.

This approach offers a certain degree of flexibility, as it is possible to apply a combination
of various strategies. An example of a hybrid strategy would be after the construction
phase to alternate between the described heuristic and an alternative complementary
strategy such as prioritizing nodes that would catch fire at the next iteration.
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t = 0 t = 1 t = 2
Node Heuristic v ∈ C Heuristic v ∈ C Heuristic v ∈ C
1 0.0 no 0.0 no 0 no
2 1.00 no 0.0 no 0 no
3 3.00 yes 0.0 no 0 no
4 17.00 yes 0.0 no 0 no
5 12.33 no 0.0 no 0 no
6 12.33 no 0.0 no 0 no
7 1.00 no 1.0 no 0 no
8 3.67 yes 1.0 no 1 no
9 1.00 no 3.0 yes 0 no
10 5.67 yes 0.0 no 0 no
11 3.67 yes 5.0 yes 0 no
12 1.00 no 1.0 no 1 no
13 1.00 no 1.0 no 1 no
14 1.00 no 1.0 no 1 no

(a) Metrics and candidates for each time step.

1

2 3

4 5 76

9 11

1312

108

14

(b) Result at t = 2

Figure 4.1: Example of a graph with 14 vertices and two firefighters.

Algorithm 4.5: PlaceFirefighters()
Input: Candidate set C, heuristic set η, Solution Pcr = (p1 . . . pn), set of

untouched vertices V unt, current time step t, number of firefighters D,
determinism rate q0.

Output: Solution Pcr.
1 n← D ;
2 if n ≥ |C| then
3 ∀v ∈ C (pv ← 1; n← n− 1) ;
4 end
5 while n > 0 and |V unt| > 0 do
6 if C = ∅ then
7 C ← V unt ;
8 end
9 r ← U(0, 1) ; // apply uniform random function

10 if r < q0 then
11 v ← arg max

v∈C
(ηv × τt,v) ;

12 else

13 v ← select proportional to (ηv × τt,v)∑
v∈C(ηv × τt,v)

from all v ∈ C ;

14 end
15 pv ← 1 ; // protect node v

16 n← n− 1 ;
17 end

Once the candidate set C has been calculated, the node selection phase takes place
in which at most D vertices are selected from C (see Algorithm 4.5). In case D is
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greater than or equal to the size of C, all nodes of the candidate set are protected (lines
2 - 4). For each remaining firefighter, the algorithm first checks whether C is empty
and, if so, further vertices are chosen from the remaining set of untouched vertices
V unt = V \ (V prot ∪ V burnt). In the next step a random number r ∈ [0, 1] is generated.
For r ≤ q0, where parameter q0 ∈ [0, 1] represents the determinism rate, the vertex with
the largest product of the heuristic information and pheromone trail is deterministically
chosen to be protected. In the other case, when r > q0, the next vertex is chosen by
applying the fitness proportionate selection function in line 13.

Following the node selection phase, Algorithm 4.2 continues spreading the fire to all
untouched adjacent nodes after which t is incremented. These three steps of calculating
the candidate set, selecting the nodes and spreading fire are iterated until the fire is
contained.

4.2.3 Variable Neighborhood Search

As already mentioned in the introduction, the population-based algorithms have an
advantage in their capability to explore wide regions of the solution space, however, with
the drawback of a weak exploitation capability. On the other hand, the advantage of
single-solution based algorithms is their superior exploitation capability within a limited
search space. Due to such features, these two types of metaheuristics are frequently
combined with the aim of enhancing the solution quality.

Algorithm 4.6 presents GVNS combined with VND with a best improvement strategy,
which is a simplified version of the work of Hu et al. [HWR15]. The proposed version
introduces an adaptive shaking but excludes the performance boosting incremental
evaluation scheme. The Algorithm starts with an adaptive shaking (line 4) where l
protected nodes change their status in a given solution Pcr. In order to improve the
accuracy of this phase a set of protected nodes T ⊆ Pcr, the removal of which does not
decrease the result of a given solution by more than one, is defined. This process is
described in Algorithm 4.7 at line 2. For the purpose of escaping from local optima the
whole set Pcr needs to be taken into account as well. The relation between these two
sets is controlled by parameter z, where z ≤ |T | and z ≤ l (lines 5-11).

For the VND phase (lines 7-18) the set of neighborhood structures Nk for k = 1, . . . , kmax
is defined as follows. For a given solution P ′, the neighborhood Nk(P ′) is defined as a set
Wk, which comprises the vertices with k unprotected adjacent vertices. For each w ∈ W
a VND procedure, which consists of three steps is applied. The first step protects all
adjacent vertices after which the evaluation procedure is applied. During the traversal
in the evaluation, P ′ is implicitly transformed to the encoding S ′ defined in Eq. 4.2 by
saving each node’s protection time (for a more detailed description of the evaluation
process see [HWR15]). The subsequent refine procedure improves the solution either
by aiming to protect further vertices until no improvement is achieved or applying a
more costly local search. The described phases are applied iteratively until a termination
criterion, which in this context is the last examined neighborhood, is met.
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Algorithm 4.6: General Variable Neighborhood Search (based on [HWR15])
Input: solution P = (p1 . . . pn), parameter z.
Output: solution S = (s1 . . . sn)

1 while termination criteria are not met do
2 l← 0 ;
3 while l ≤ lmax do
4 P ′ ← Shake(P, l, z) ;
5 k ← 1 ;
6 Pbestk ← P ′ ;
7 while k ≤ kmax do
8 Nk ← a set of vertices with k unprotected adjacent vertices ;
9 foreach v in Nk do

10 P ′′ ← P ′ ;
11 P ′′v′ ← 1, ∀v′ neighbor of v ;
12 Evaluate(P ′′) ;
13 Refine(P ′′) ;
14 if P ′′ is better than Pbestk then Pbestk ← P ′′ ;
15 end
16 if Pbestk is better than P ′ then P ′ ← Pbestk ; k ← 1 ;
17 else k ← k + 1 ;
18 end
19 if P ′ is better than P then P ← P ′ ; l← 0 ;
20 else l← l + 1 ;
21 end
22 end

4.2.4 Pheromone Update

The pheromone model T , where ∀τt,v ∈ T corresponds to a time step 1 ≤ t ≤ tmax ≤ |V |
and a node v, is applied in this algorithm. To update the pheromene trails, we apply the
update rules from HCF (see [BD04, BBGM+14]):

τt,v := τt,v + p · (ξt,v − τt,v), (4.3)

where

ξt,v := κib ·∆(Sib, t, v) + κrb ·∆(Srb, t, v) + κbs ·∆(Sbs, t, v), (4.4)

where

∆(S, t, v) :=
{

1 if v is protected at time step t in solution S
0 otherwise. (4.5)

The parameter p refers to the evaporation rate whereas the values κib, κrb, and κbs
present the weighting factor of the iteration-best solution Sib, the restart-best solution
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Algorithm 4.7: Shake()
Input: Solution P = (p1 . . . pn), size k, parameter z.
Output: Protected set P.

1 if z > 0 then
2 T ← {p ∈ P | L(p) = protected ∧ ∀p′ neighbor of

p : L(p′) 6= burnt ∨ L(p′) = protected} ;
3 end
4 while k > 0 do
5 if z > 0 ∧ |T | > 0 then
6 v ← take node v from T randomly ;
7 pv ← 0 ; // drop protection of node v

8 z ← z − 1 ;
9 else

10 drop protection from P randomly ;
11 end
12 k ← k − 1 ;
13 end

Srb, and the best-so-far solution Sbs respectively. The weights κib, κrb, and κbs of the
solutions Sib, Srb, and Sbs change depending on the convergence factor cf in combination
with the Boolean variable bs_update. These factors are defined in Table 4.1.

bs_update = 0 bs_update = 1
cf < 0.4 cf ∈ [0.4, 0.6[ cf ∈ [0.6, 0.8[ cf > 0.8

κib 2/3 1/3 0 0 0
κrb 1/3 2/3 1 0 0
κbs 0 0 0 0 1

Table 4.1: Shows the weighting factors determined by the convergence factor cf and the
variable bs_update. The content of this table is taken from [BBGM+14].

With the aim of preventing the algorithm from search stagnation, each pheromone trail
τt,v ∈ T is retained between τmax = 0.99 and τmin = 0.01 after the pheromone update
phase has completed.

4.2.5 Convergence Factor Computation

The computation of the convergence factor cf is determined by the pheromone trails [BD04,
BBGM+14]:
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cf = 2 ·


tmax∑
t=0

∑
v∈V

max (τmax − τt,v, τt,v − τmin)

tmax · (τmax − τmin) − 0.5

 (4.6)

This factor indicates the degree of convergence of the pheromone values. When all
pheromone trails denote the initial pheromone value that is 0.5, cf results in 0. In the
opposite case, when all pheromone trails are set to τmax or τmin, cf results in 1. The
value of cf lies between 0 and 1 for all other scenarios.

4.3 Parallel Implementation
This section presents the parallelization of the previously described sequential approach.

With the aim to utilize the GPU efficiently, we apply a hybrid mapping technique that
combines task parallelism with data parallelism. More specifically, a predefined number
of ants, where each is statically assigned to a thread, perform each ACO and VNS
consecutively using a data parallelism strategy that switches to dynamic parallelism at
runtime. A clearer overview of the described approach is provided in Figure 4.2.

Figure 4.2: An overview of the parallel hybrid ACO implementation.

Various studies [BB17a, BB17b] have shown that none of the mapping techniques de-
veloped so far achieve optimal performance, as each comes with a trade-off between
workload balance and computational overhead resulting from dynamic parallelism. Nev-
ertheless, based on the literature in the field and tentative tests, we assume that the
chosen approach might have the most promising trade-off.
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4.3.1 Graph Representation and Data Structure

Instead of ordinary adjacency matrices, a Compressed Sparse Row (CSR) data structure
is used for the graph representation due to its compact structure enabling efficient
application. The CSR data structure consists of two arrays, an offset array O and a
concatenated adjacency list A. The offset array contains elements that refer to the start
position of neighboring nodes in the adjacency list. In addition to that, a degree array D
containing the degree of each node is saved in order to make the workload calculations
more efficient. Figure 4.3 shows an example of a small graph represented in CSR.

(a) (b)

Figure 4.3: An example of the CSR data structure.

Furthermore, for each ant ai bitmask representations for the candidate list Ci and tabu
listMi are used, s.t. the n-th bit indicates if vertex v is present in the respective set.
For the analysis of the graph topology, for each ant an array Li is required, which saves
the time step of each node that catches fire in the simulation process. Additionally, for
the breadth first search, each ant uses two buffers (Qiin,Qioffset) and Qiout to store the
nodes of the current and the subsequent time step, where (Qiin,Qioffset) is represented in
CSR format.

4.3.2 Parallel Hybrid ACO

A representation of the basic structure of the parallel hybrid approach is given in
Algorithm 4.8. Similarly to the sequential counterpart, this algorithm saves three
solutions Sib, Srb and Sbs. Instead of using a loop in the construction phase, this step
is now performed in parallel by the ants. After that, a random selection of the best
solution is performed (line 4). Henceforth, the ant that generated the selected solution
is responsible for the remaining steps of an iteration. It updates the three solutions
in lines 6-8. Then the pheromone update method is applied in a data-parallel manner.
The number of threads necessary for this process amounts to the number of nodes |V |
multiplied by the highest time step tmax reached up to that point by any ant. The
convergence factor is computed using the same strategy and the same number of threads.
The described procedure is iterated until predefined termination criteria are fulfilled.

4.3.3 Parallel ACO Solution Construction

Equivalently to the sequential approach, the parallel approach comprises the same three
phases. First candidate set Ci along with heuristic information ηi is generated after which
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Algorithm 4.8: Parallel hybrid ACO for the firefighter problem on the GPU
Input: An undirected graph G = (V,E), a set Binit, number of ants m, number

of firefighters D.
Output: The best found solution Sbs.

1 while termination criterion is not met do
2 P icr ← ConstructACOSolutionGPU(anti) ;
3 Sicr ← ConstructVNDSolutionGPU(anti,P icr) ;
4 index← arg max(S0

cr . . .Smcr ) ;
5 if anti = index then
6 Sib ← Sicr ;
7 if f(Sib) > f(Srb) then Srb ← Sib ;
8 if f(Sib) > f(Sbs) then Sbs ← Sib ;
9 size← |V | · tmax ;

10 ApplyPheromoneUpdateGPU«size»(cf , bs_update, T , Sib, Srb, Sbs);
11 cf← ComputeConvergenceFactorGPU«size»(T );
12 if cf > 0.99 then
13 if bs_update = true then
14 τ(t, j)←0.5,∀(t, j) ∈ T ;
15 Srb ← ∅;
16 bs_update← false;
17 else
18 bs_update← true;
19 end
20 end
21 end
22 end
23 return Sbs;

the node selection takes place and the fire is spread to all untouched adjacent nodes.
These three steps are controlled by each ant ai in parallel and iterated until the fire is
contained.

Algorithm 4.9 illustrates the parallel approach where Cit and ηit are generated. In lines
5-12 the top-down BFS is applied. For each time step t, two procedures are performed:
the calculation of an exclusive prefix sum and a frontier expansion. In order to enable an
efficient mapping between threads and edges for the frontier expansion an exclusive prefix
sum is calculated over the degrees of all elements v in frontier queue Qiin at t. A detailed
description of this process is given in Algorithm 4.10, which is based on the chained
approach of Liu and Aluru [LA16] and Yan et al. [YLZ13]. The algorithm starts with an
intra-warp scan (see Algorithm 4.11) where each warp wi scans its subset. Subsequently
(lines 8-20) an intra-block scan is performed. In this step the last thread of each warp
saves its sum in a shared memory shrd, which is used for communication within a CUDA
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Algorithm 4.9: GenerateCandidateSetGPU()
Input: Current time step t, frontier set F containing n burning nodes at t.
Output: Candidate set Ci, heuristic ηi.

1 tcur = t ;
2 i← Qioffset[t] ; // read starting index i of Qi

in for t

3 Qiin[i . . . i+ (n− 1)]← v, ∀v ∈ F ; // copy F to Qi
in starting at index i

4 burningNodes← n ;
5 while burningNodes 6= 0 do
6 t← t+ 1 ; // increment time step t

7 Qioffset[t]← burningNodes + i ; // save starting index of Qi
in for t

8 sum←ApplyPrefixSumGPU«burningNodes»(&Qiin[i],&Qiout, t) ;
9 i← i+ burningNodes ;

10 globalCounter[anti]← 0 ;
11 burningNodes← ExpandFrontierGPU«sum»(&Qiout,&Qiin[i]) ;
12 end
13 while t > tcur + 1 do
14 i← Qioffset[t− 1] ;
15 burningNodes← Qioffset[t]− i ; // calculate workload

16 t← t− 1;
17 γt ← calculate available firefighters for time step t;
18 sum← ApplyPrefixSumGPU«burningNodes»(&Qiin[i],&Qiout, t) ;
19 ExpandFrontierGPU«sum»(&Qiout, γt, Ci, ηi) ;
20 end

block (lines 8-10). Then an additional warp scan is performed on the shared memory
(lines 12-16). To finish the intra-block scan each warp except the first one (wi > 0 )
has to add the sum of the previous warps (lines 18-20). In the next step an inter-block
communication takes place. Starting with the first block b0, the sum of each block bi
is sequentially passed to the adjacent block bi+1 after which the sum of these two is
calculated and passed further on (lines 22-31). Finally, to complete the scan operation, a
last intra-block scan is performed in line 32. During the whole described procedure the
time step (distance) of each node along with its offset is implicitly saved.

The main aim of the frontier expansion is to create the frontier for the next level.
Algorithm 4.12, which is taken from the atomic based approach of Bernaschi et al. [BBM16]
presents the steps of the frontier expansion procedure. By applying a binary search
in the previously scanned result and taking the old offset each thread is mapped to a
corresponding index of the adjacency list (lines 1-4). In line 5 the indegree of node v is
incremented. Afterwards, an investigation of whether a node v has already been visited
by another thread or not is conducted. If not, it is added into the next frontier queue.

The bottom-up BFS applied in lines 13 - 20 in Algorithm 4.9 follows the same strategy
as sequential Algorithm 4.2, however, using the parallel techniques from the top-down
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Algorithm 4.10: ApplyPrefixSumGPU() (based on [LA16, YLZ13])
Input: Buffer Qiin ⊆ V containing n elements, current time step t.
Output: Buffer Qiout = {0, x0, x0 + x1, . . . , . . . xn−3 + xn−2 + xn−1}, offset list

offset
1 li ← threadId mod 32 ; // laneId = threadId % warp size

2 wi ← threadId/32 ; // warpId = threadId / warp size

3 v ← Qiin[threadId] ; // get node v

4 Li[v]← t ; // save distance of node v

5 offset[threadId]← O[v] ;
6 dv ← D[v] ; // get degree of node

7 dv ←WarpScan(dv, li) ; // apply intra-warp scan

8 if li = 31 or threadId = (n− 1) then
9 shrd[wi] = dv ; // save reduction to shared memory

10 end
11 __syncthreads() ; // barrier synchronization

12 if wi = 0 then
13 tmp← shrd[li] ;
14 tmp←WarpScan(tmp, li) ; // block scan in first warp

15 shrd[li]← tmp ;
16 end
17 __syncthreads() ;
18 if wi > 0 then
19 dv ← dv + shrd[wi − 1] ; // finish intra-block scan

20 end
21 __syncthreads() ;
22 if threadId = blockSize− 1 or threadId = (n− 1) then
23 tmp← 0 ; // start of inter-block communication

24 do
25 tmp← read(Indicator[anti]) ;
26 while tmp < blockId;
27 sumblock ← sumglobal[anti] ;
28 sumglobal[anti]← sumblock + dv ; // add reduction of current block

29 _threadfence() ; // wait for write completion

30 atomicInc(Indicator[anti]) ; // increment indicator

31 end
32 Qiout[threadId + 1]← dv + sumblock ; // last intra-block scan

approach presented above. Similarly to the sequential approach, the parallel variant
starts from the latest time step tmax and traverses through the graph until time step
t+ 1, during which the candidate list and the heuristic information are computed.

In the node protection phase we combine various parallel techniques from previous parallel
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Algorithm 4.11: WarpScan()
Input: value x, lane id li
Output: Scanned set X = {x0, x0 + x1, . . . , . . . x29 + x30 + x31}

1 #pragma unroll
2 foreach i = 1; i < 32; i� 1 do
3 tmp = __shfl_up(v, i) ;
4 if li ≥ i then x← x+ tmp ;
5 end
6 return x ;

Algorithm 4.12: ExpandFrontierGPU() (based on [BBM16])
Input: Scanned Qiout = {0, x0, x0 + x1, . . . , . . . xn−3 + xn−2 + xn−1} containing n

elements, offset array offset.
Output: Buffer Qiin

1 index← BinarySearch(n) ;
2 localOffset← threadId−Qiout[index] ;
3 index← offset[index] + localOffset ;
4 v ← A[index] ;
5 if Li[v] =∞ then atomicInc(indeg[v]);
6 mi ← 1� (v mod 32);
7 if tabu[v/32] &mi then return ;
8 mo ← atomicBitwiseOr(&tabu[v/32],mi) ;
9 if !(mi &mo) then

10 index← atomicInc(globalCounter[anti]) ;
11 Qiin[index] = v ;
12 end

ACO implementations for the TSP, which are described in the following papers [CGN+13,
DS13, Ski16]. To compute the node selection we follow the Double-Spin Roulette (DS-
Roulette) strategy from Dawson et al. [DS13] decomposing the candidate list Cit into
subsets cit with size s. Depending on its size, Cit can be computed either within one block
— when |Cit | ≤ s — or distributed among several blocks. In our implementation we define
a maximum block size of 512 threads, i.e., 16 warps per block, where each block performs
the calculations warpwise. The described warp parallelism approach enables a significant
decrease in execution time due to the fact that all threads within a warp execute without
divergence throughout the whole phase. The subset size s, which is dynamically defined
depending on a given situation, controls how many elements are computed in one block.
For instance, a block with 512 threads would need 10 iterations for the computation of a
subset with the size s = 5120.

According to Cecilia et al. [CGN+13] expensive repetitive calculations can be avoided
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by precalculating the fitness values Z = {ηv × τt,v | ∀v ∈ Cit}, since neither the heuristic
knowledge nor the pheromone trail change during a protection phase at time step t.

An illustration of the parallel single node selection for the case r > q0 is given in Figure 4.4.
For each free firefighter at time step t the computation steps of each warp are the following.
First, each thread of a warp reads its corresponding element from the fitness values Z
with coalesced access and performs a multiplication of Zv by the associated tabu value.
The result X of the multiplication amounts either to the fitness value or 0, based on the
status of the tabu list. Second, each warp performs an intra-warp reduction on X and
stores the results in shared memory. These steps are repeated until the block is finished
computing its predefined subsets.

Figure 4.4: An overview of the parallel ACO node protection phase (based on [CGN+13,
DS13, Ski16]).

Third, a warp responsible for selecting the next node to be protected needs to be chosen via
a first roulette wheel selection. There are two possible situations: If the number of blocks
equals to one, then a roulette wheel selection takes place within a single block using local
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memory. Otherwise, each block copies values from shared to global memory on which the
selection is performed on a separate kernel. In the last step, a final roulette wheel selection
is performed after a specific warp has been selected. The fitness values Z are either read
from shared memory or reread from global memory and multiplied by the associated tabu
value resulting in X ′. Then, a scan S = {x′0, x′0 + x′1, . . . , · · ·+ x′n−1} on X ′ is perfromed
after which a random value r is generated using the XORWOW pseudo-random number
generator from the cuRAND library [NVI17c] by a single thread. This thread broadcasts
r · x′n−1 to all threads of this warp. The last step entails finding the winning thread Ti
using the warp functions _ffs(_ballot(x′i ≥ r)), where _ballot(predicate) returns an N
bit integer whose n-th bit is set if the predicate of the n-th thread evaluates to true while
_ffs(int) finds the first set bit in an N bit integer.

For the case r ≤ q0 the same strategy is applied. The only difference is that the roulette
wheel selection is replaced by reductions that are applied to find the maximum value
emax. Then the set with the best values can be computed with _ballot(x′i = emax). Out
of this set the node to be protected is chosen randomly in the final step.

4.3.4 Parallel Variable Neighborhood Search

In order to optimize the performance of the VNS a closer inspection of its various
components was conducted with the aim of establishing which of them have parallelization
potential. The procedures that we decided to parallelize are the following:

• shake solution,

• create neighborhood structure,

• protect nodes,

• evaluate solution,

• improve solution.

Based on preliminary tests we decided to perform parallelization starting with a workload
size of 16 elements. This limit applies to the shake and node protection procedures. All
the other mentioned procedures can be parallelized without any restrictions. Unlike the
sequential algorithm, for performance reasons we left out the adaptive shaking in the
parallel approach. Instead, the strategy of Hu et al. [HWR15] was chosen in which the
protection status of l protected nodes is randomly changed. To create the neighborhood
structure the parallel radix sort of Satish et al. [SHG09] is used. We adapted it slightly
by exchanging the prefix sum procedure. Node protection is a straightforward task. In
case less than 16 nodes have to be protected, this task is done sequentially. Otherwise,
the process is parallelized with the same number of threads. The major component of
the evaluation function is the breadth-first search, which was already introduced in the
section about creating the candidate list. During the traversal through the graph the

45



4. Implementation

solution is repaired in case it is infeasible and implicitly transformed into the target
encoding. After the evaluation has been performed, the program calculates for each time
step, beginning with the first one, whether there are any remaining free fire fighters γ.
If so, γ nodes that are reached at that time step are protected non-deterministically.
This procedure is iterated until the last time step is reached. The basic structure of the
complete algorithm is illustrated in Figure 4.5.

Figure 4.5: An overview of the parallel VNS implementation.

4.3.5 Parallel Pheromone Update

The parallelization of the pheromone update procedure is a straightforward process and
is presented in Algorithm 4.13. In the first step, each thread is mapped to an element
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of the pheromone model. To determine the node in the pheromone matrix a modulo
operation is performed in line 1. To determine the time step in the pheromone model it
is necessary to perform a division in which the thread ID is divided by the number of
nodes (line 2). Based on the weighting factors κib, κrb, and κbs, along with the three
solutions Sib, Srb, and Sbs a value representing the influence is calculated, which is then
used for the update (lines 3-6). In line 7 the pheromone trail is updated according to the
formula of HCF. In the last step we check whether the pheromone value lies in the range
between τmin and τmax (lines 8-13).

Algorithm 4.13: ApplyPheromoneUpdateGPU()
Input: Solutions Sib, Srb, and Sbs, weighting factors κib, κrb, and κbs, size n.
Output: Updated pheremones T .

1 v = threadId mod n ;
2 t = threadId/n ;
3 value← ∅ ;
4 if svib = t then value← value + κib;
5 if svrb = t then value← value + κrb;
6 if svbs = t then value← value + κbs;
7 τt,v ← τt,v + p · (value− τt,v) ;
8 if τt,v > τmax then
9 τt,v ← τmax

10 end
11 if τt,v < τmin then
12 τt,v ← τmin
13 end

4.3.6 Parallel Convergence Factor Computation

For this computation the same strategy as for the pheromone update stage, where each
thread is mapped to a pheromone trail, is applied. First, the numerator of Equation 4.6
needs to be calculated, which can be done by the chained reduction method, similarly to
the prefix sum algorithm. The initialized threads perform this operation collaboratively.
After this phase the last thread contains the result of the operation in the numerator. This
last thread is responsible for completing the calculation (lines 9-12 of Algorithm 4.14).
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Algorithm 4.14: ComputeConvergenceFactorGPU()
Input: Solutions Sib, Srb, and Sbs, weighting factors κib, κrb, and κbs, size n.
Output: Updated convergence factor cf.

1 v = threadId mod n ;
2 t = threadId/n ;
3 if (τmax − τt,v) > (τt,v − τmin) then
4 x← τmax − τt,v ;
5 else
6 x← τt,v − τmin ;
7 end
8 x← apply reduction using chained approach.
9 if threadId = n− 1 then

10 x← x

n · (τmax − τmin) ;

11 cf← (x− 0.5) · 2 ;
12 end
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CHAPTER 5
Experimental Results

In this section, the results of the proposed implementations on various instances of the
FFP are presented. For the purpose of comparability, we use the same test set-up as
in [BBGM+14, HWR15]. This includes test instances and their grouping, the parameters
of the algorithms, number of iterations as well as the representation of the results. The
experiments consist of several parts. First, the solution quality of ACO, VNS and
the hybrid approach of the sequential implementation are investigated. The solution
quality of these tests is compared to the results of the mentioned previous works. Then
the same tests are performed for their respective parallel implementations comparing
them both to previous work and our sequential algorithms. We furthermore perform
a computational performance test of the parallel implementation comparing it to our
sequential implementation.

5.1 Test Instances

For the proposed algorithms the benchmark set of Blum et al. [BBGM+14] was used.
The set comprises four different subsets containing 30 instances of Erdős–Rényi 1 graphs
per subset. The graph size of the subsets is 50, 100, 500, and 1000 nodes. For each graph
size category, graphs with three different edge densities are considered. The density of
edges defines the probability of the existence of an edge between two vertices in a graph.
For each edge density and vertex count combination there are 10 graphs. Moreover each
instance was tested for firefighters D ∈ {1, . . . , 10}, which means that altogether 1200
tests were performed for each algorithm. For a more detailed description see Section 6.4.

1Is a random graph G(n, pe), where n is the number of vertices and pe ∈ (0, 1) the probability of each
edge being placed independently.
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CPU GPU CPU
Manufacturer Intel NVIDIA Intel

Model Core 2 Duo E6600 GeForce GTX 960 Core i5-4300U
Operating system Windows 7 Windows 7 Windows 7

Platform .Net Framework 4.5 CUDA 7 .Net Framework 4.5
Codename Conroe Maxwell Haswell ULT

Cores 2 1024 2 (4 HT)
Clock frequency 2.4 GHz 1.165 GHz 1.90 - 2.90 GHz
L1 Cache size 32 KB + 32 KB 384 KB (48KB for each SM) 64 KB + 64 KB
L2 Cache size 4096 KB 2048 KB 512KB
L3 Cache size 3072 KB

DRAM memory 4 GB DDR2 4 GB GDDR5 12 GB DDR3

Table 5.1: Hardware platforms used for the experiments.

5.2 Hardware

The solution quality tests were conducted on the same machine with the aim of creating
the same test conditions. In order to create comparable results to those achieved by
Blum et al. [BBGM+14] a similar hardware configuration was used. Before every test
session all the background processes were shut down ensuring that the machine is in
idle modus. Two different platforms were used for the implementations. The parallel
algorithms were implemented using CUDA 7. The results were obtained on a NVIDIA
GeForce GTX 960 with 1024 cores (8 Maxwell Streaming Multiprocessors containing 128
processing cores each), 1.165 GHz and GDDR5 memory. The sequential implementations
were tested using C# in Microsoft’s .Net Framework 4.5 Framework. For the tests we
used an Intel Core 2 Duo E6600 with 2.4 GHz and 4 GB DDR2 memory. To establish
fairness of the test conditions for the speed-up tests we used another, more up to date
hardware configuration for the sequential algorithms. More precisely, the specifications
are the following: Intel Core i5-4300U with 1.9 GHz and 12 GB DDR3 memory. It
should be mentioned that C# is known to be slower than the C language and that due
to this difference the speed-up results may vary if they were to be implemented in C.
The detailed specifications are given in Table 5.1.

5.3 Parameter Settings

For the sequential ACO implementation we used the same parameter settings as Blum
et al. [BBGM+14], namely, we defined the number of ants (na) to be 10 per iteration,
and the evaporation rate (p) was 0.1. All tests were performed under the assumption
that the fire starts always at vertex 0. For the number of firefighters D ∈ {1, 2, 3} the
value of parameter q0 is set to 0.5. For D ∈ {4, 5, 6}, q0 is set to 0.7, and for the rest
of the values of D, q0 is set to 0.9. The threshold parameter B, which defines whether
VNS is applied after an ACO solution is generated, is set to 0; that is, VNS is always
applied after ACO computation. For the GPU implementation we performed tests with
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a complete warp i.e. 32 ants in order to maximize the utilization of the GPU.

5.4 Solution Quality
Each of the six algorithms were applied once to each of the 120 graphs of the benchmark
set with the chosen computation time limit of n/2 seconds, where n is the number
of vertices. Tables 5.2 to 5.13 show the results according to the number of vertices
and the edge density. A comparison of the previous four approaches, the VNS taken
from Hu et al. [HWR15], the CPLEX, ACO and Hybrid ACO (HyACO) from Blum
et al. [BBGM+14], and our six implementations (ACO-SEQ, VNS-SEQ, HyACO-SEQ,
ACO-GPU, VNS-GPU, HyACO-GPU) is made. Each line of the tables shows a different
number of firefighters D while each cell represents the average number of unburnt vertices
over 10 Erdős–Rényi graphs. The values in bold typeface show the best results. A
summary of the test results is provided in the last two lines of the tables. Here the sum
of the average solution values (Σ) and the best values reached (in %) is given.

For the sake of a clearer overview and in order to make an easier comparison the
summarized results from each table are illustrated for a selected number of algorithms
in an accompanying graph (Figures 5.1 to 5.6). The horizontal axis represents the test
instances and correspond each to one table. For example, the value 100_ep0.1, where 100
stands for the number of nodes and _ep0.1 is the edge probability, belongs to Table 5.7.

As can be gathered from Tables 5.2 to 5.13, there are several improvements that can be
observed. Firstly, comparing the ACO with ACO-SEQ, it can be seen that the former
shows a decrease in quality as the size of the instances grows. Contrary to that, the variant
with dynamic candidate lists outperforms its comparative counterpart as well as keeps a
relatively stable solution quality regardless of the size of instances (see Figure 5.1).The
average improvement achieved by this approach is 10.56% over all instances. Interestingly,
the VNS implemented by Hu et al. performs still better than any of the sequential ACO
variants. Considered in isolation, the results suggest that the VNS metaheuristic is better
suited for the FFP than ACO. In addition to that, the proposed VNS-SEQ variant still
achieves better results than Blum’s ACO despite not having an incremental evaluation
scheme implemented.

Figure 5.2 compares the three best sequential algorithms. Several interesting observations
can be noted. Comparing the VNS with the proposed HyACO-SEQ, we can clearly see
that the hybrid variant achieves better performance for each instance set, particularly
for dense graphs. The average solution quality improvement is 0.3%. When we compare
HyACO-SEQ with the HyACO implemented by Blum et al., HyACO-SEQ shows an
overall better performance. However, the results for the instance set with 500 nodes
and edge probability 0.025 (500_ep0.025) are counterintuitive, as it is the only instance
set where HyACO outperforms both the VNS and HyACO-SEQ. The reason for this
can be seen in Table 5.10: We can see that the performances of HyACO for D = 6 and
D = 7 stand out as the only two values that are better than all the other ones. The
performance difference between HyACo and HyACO-SEQ for this instance set is 1.75%.
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To sum up, 118 times out of 120 test runs our proposed hybrid approach shows better
solution quality than HyACO, with an average solution quality improvement of 0.47%.
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Figure 5.1: A comparative overview of the different solution qualities of ACO by Blum et
al. and the proposed sequential ACO with dynamic candidate sets for all tested instances.

A comparison of the parallel VNS (VNS-GPU) with the sequential variant developed
by Hu et al. (VNS) is given in Figure 5.3. It can be derived from this figure that the
parallel approach achieves a better performance for all instance sets above 100. Hu et
al. observed that VNS achieves better performances on sparse graphs and with larger
instances. Interestingly, we observed the same behavior for the parallel variant. The
results shown in the figure display the same characteristics starting at instance set 100.

In Figure 5.4 a comparison of ACO-SEQ and ACO-GPU is presented. From this data, we
can see that the solution quality is steadily better for node sizes starting at 500. The best
results are achieved for the largest instance set with the highest density. With smaller
instance sets the algorithm shows inconsistencies for dense graphs.

The HyACO-GPU is compared with the VNS by Hu et al. and the HyACO by Blum et
al. a summary of which is shown in Figure 5.5. The graph shows that the parallel variant
achieves by far the best results (100%) for all instances except the already discussed
results from Table 5.10. The difference for this instance set is reduced to 0.97% in
comparison to the sequential results (see also Fig. 5.2).

Figure 5.6 shows an overview of the proposed three parallel algorithms. Analogously
to the sequential results, the VNS algorithm outperforms the ACO. Moreover, we can
derive that there is a gain in the solution quality with the hybrid variant implemented
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on the GPU proving that hybridization yields remarkably better performances on both
platforms (GPU and CPU).
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Figure 5.2: A comparative overview of the different solution qualities of HyACO by Blum
et al., VNS by Hu et al. and the proposed sequential HyACO for all tested instances.
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Figure 5.3: A comparative overview of the different solution qualities of VNS by Hu et
al. and the proposed parallel VNS for all tested instances.
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Figure 5.4: A comparative overview of the different solution qualities of the proposed
sequential and parallel ACO algorithms for all tested instances.
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Figure 5.5: A comparative overview of the different solution qualities of HyACO by Blum
et al., VNS by Hu et al. and the proposed parallel HyACO for all tested instances.
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Figure 5.6: A comparative overview of the different solution qualities of the proposed
parallel algorithms for all tested instances.

Edge propability pe = 0.1
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 7.4 7.4 7.4 7.3 7.3 7.1 7.4 7.4 7.4 7.4
2 26.6 26.4 26.5 26.6 26.4 26.5 26.6 26.6 26.6 26.6
3 41.8 40.9 41.6 41.7 41.8 40.4 41.8 41.8 41.6 41.8
4 47.9 47.8 47.9 47.9 47.9 47.9 47.9 47.9 47.9 47.9
5 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5
6 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.8
7 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0
8 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0
9 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0
10 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0∑

417.0 415.8 416.7 416.8 416.7 415.2 417.0 417.0 416.8 417.0
% 100.00% 99.71% 99.93% 99.95% 99.93% 99.57% 100.00% 100.00% 99.95% 100.00%

Table 5.2: Results for graphs with 50 vertices and edge propability pe = 0.1.
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Edge propability pe = 0.15
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 4.5 4.5 4.5 4.5 4.4 4.3 4.5 4.5 4.5 4.5
2 9.7 9.7 9.7 9.7 9.6 9.4 9.7 9.7 9.7 9.7
3 18.8 16.5 18.5 18.7 18.0 16.3 18.8 18.8 18.8 18.8
4 31.2 30.5 30.9 31.2 31.0 30.7 31.2 31.2 31.2 31.2
5 39.1 36.1 39.1 39.1 38.4 38.1 39.1 39.1 39.1 39.1
6 43.7 42.7 43.7 43.7 43.6 43.7 43.7 43.7 43.7 43.7
7 46.3 45.4 46.3 46.3 46.2 46.2 46.3 46.3 46.3 46.3
8 48.1 46.8 48.1 48.1 48.1 48.1 48.1 48.1 48.1 48.1
9 48.6 48.2 48.6 48.6 48.6 48.6 48.6 48.6 48.6 48.6
10 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.8 48.8∑

338.8 329.2 338.2 338.7 336.7 334.2 338 338 338 338
% 100.00% 97.17% 99.82% 99.97% 99.38% 98.64% 100.00% 100.00% 100.00% 100.00%

Table 5.3: Results for graphs with 50 vertices and edge propability pe = 0.15.

Edge propability pe = 0.2
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.2 7.1 7.2
3 11.2 11.1 11.2 11.2 11.1 11.1 11.2 11.2 11.2 11.2
4 17.5 16.0 17.2 17.2 16.9 16.9 17.4 17.5 17.1 17.5
5 27.7 26.1 27.6 27.6 27.1 27.5 27.7 27.7 27.0 27.7
6 33.0 31.4 33.0 32.9 32.6 32.8 33.0 33.0 32.5 33.0
7 37.5 35.7 37.5 37.5 37.0 37.4 37.5 37.5 36.7 37.5
8 42.7 40.3 42.6 42.6 42.4 42.5 42.7 42.7 42.3 42.7
9 46.1 44.4 46.1 46.1 46.1 46.0 46.1 46.1 46.0 46.1
10 47.5 47.1 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5∑

273.5 262.4 273.0 272.9 270.9 271.9 273.3 273.5 270.5 273.5
% 100.00% 95.94% 99.82% 99.78% 99.05% 99.42% 99.93% 100.00% 98.90% 100.00%

Table 5.4: Results for graphs with 50 vertices and edge propability pe = 0.2.

Edge propability pe = 0.05
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 9.2 9.1 9.2 9.1 8.9 8.4 9.0 9.1 9.2 9.2
2 26.9 25.7 27.6 27.7 26.9 25.3 27.8 27.7 27.2 27.8
3 62.8 54.6 62.7 63.6 62.4 60.8 63.9 63.4 62.9 63.9
4 85.3 66.3 85.5 86.0 85.8 79.0 86.1 85.7 98.0 86.4
5 97.3 92.3 97.3 97.3 97.3 93.3 97.3 97.3 97.3 97.3
6 98.5 98.3 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5
7 98.8 98.8 98.8 98.8 98.8 98.8 98.8 98.8 98.8 98.8
8 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9
9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
10 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9∑

775.7 742.0 776.5 777.9 775.5 761.0 778.3 777.4 776.6 778.8
% 99.60% 95.27% 99.70% 99.88% 99.58% 97.71% 99.94% 99.82% 99.72% 100.00%

Table 5.5: Results for graphs with 100 vertices and edge propability pe = 0.05.
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5.4. Solution Quality

Edge propability pe = 0.075
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 5.4 5.4 5.4 5.4 5.3 5.2 5.4 5.4 5.4 5.4
2 11.3 11.2 11.3 11.2 11.2 10.7 11.5 11.3 11.5 11.5
3 41.5 41.0 41.6 41.5 41.2 40.9 41.6 41.6 41.3 41.6
4 53.7 52.4 53.3 53.8 53.4 52.6 54.1 54.1 54.1 54.5
5 65.7 63.5 65.9 66.5 65.9 65.2 67.0 67.0 66.5 67.3
6 87.5 75.1 87.3 87.6 87.0 85.5 88.5 88.2 87.3 88.5
7 98.1 87.9 98.1 98.1 98.1 98.0 98.1 98.1 98.1 98.1
8 98.6 93.5 98.6 98.6 98.6 98.6 98.6 98.6 98.6 98.6
9 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8
10 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0∑

659.6 627.8 659.3 660.5 658.5 654.5 662.9 662.1 660.6 663.3
% 99.44% 94.63% 99.40% 99.58% 99.28% 98.67% 99.94% 99.82% 99.59% 100.00%

Table 5.6: Results for graphs with 100 vertices and edge propability pe = 0.075.

Edge propability pe = 0.1
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9
2 8.5 8.3 8.7 8.7 8.6 8.3 8.7 8.7 8.7 8.7
3 21.4 21.0 21.3 21.4 21.4 21.2 21.5 21.6 21.7 21.7
4 25.5 24.5 25.5 25.7 25.7 25.0 25.9 26.1 25.6 26.1
5 30.2 29.1 29.5 30.1 30.2 39.8 30.4 30.3 30.2 30.7
6 41.8 33.9 41.0 42.3 42.5 35.2 42.6 42.8 42.4 43
7 58.7 46.4 56.3 56.9 58.8 53.7 59.3 57.3 57.9 59.5
8 74.8 62.0 74.0 74.8 75.4 69.6 76.1 75.4 75.3 76.1
9 89.2 77.3 88.0 89.2 90.0 83.6 90.7 90.7 90.2 90.8
10 94.7 85.9 94.4 94.6 94.6 94.3 94.9 94.8 94.6 94.9∑

448.7 329.3 442.6 447.6 451.1 424.6 454.0 451.6 450.5 455.4
% 98.53% 72.31% 97.19% 98.29% 99.06% 93.27% 99.69% 99.17% 98.92% 100.00%

Table 5.7: Results for graphs with 100 vertices and edge propability pe = 0.1.

Edge propability pe = 0.015
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 7.6 7.5 7.8 7.6 7.4 6.9 7.4 7.8 7.9 7.9
2 5.6 13.0 13.6 14.6 13.9 13.7 14.8 15.3 14.8 15.3
3 3.1 18.8 21.3 22.3 20.5 20.7 22.1 23.1 22.3 23.6
4 150.2 119.9 168.3 170.3 169.0 169.0 268.3 268.5 268.1 171.4
5 250.5 218.9 265.9 267.5 266.9 267.4 268.3 268.5 268.1 269.4
6 349.1 268.8 363.0 362.9 363.1 362.6 363.7 363.3 363.7 364.8
7 448.9 407.6 453.5 453.7 453.6 453.4 453.7 453.9 453.8 452.2
8 449.1 453.9 455.0 454.7 454.7 454.3 455.0 455.2 454.7 455.4
9 449.1 454.7 456.6 456.9 456.6 456.0 457.4 456.1 457.3 457.8
10 498.8 455.5 498.8 498.8 498.8 498.8 498.8 498.8 498.8 498.8∑

2612.0 2418.6 2703.8 2709.3 1704.5 2702.8 2711.3 2712.8 2711.6 2718.9
% 96.07% 88.96% 99.45% 99.65% 99.45% 99.41% 99.72% 99.78% 99.73% 100.00%

Table 5.8: Results for graphs with 500 vertices and edge propability pe = 0.015
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5. Experimental Results

Edge propability pe = 0.02
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 5.3 5.2 5.6 5.7 5.5 5.3 5.6 5.7 5.7 5.7
2 10.6 10.4 11.2 11.3 11.0 10.4 11.4 11.5 11.6 11.9
3 60.3 63.1 63.6 65.0 64.2 63.6 64.7 65.5 65.3 65.7
4 69.5 67.6 70.4 70.0 68.8 68.9 69.8 70.7 69.8 70.9
5 45.6 72.7 74.6 75.1 74.1 73.8 75.4 76.5 75.1 76.8
6 102.4 123.8 126.5 126.1 125.3 125.4 126.6 127.4 126.5 128.1
7 102.7 128.1 130.1 133.1 133.1 131.8 133.6 134.2 132.7 136.0
8 299.0 135.8 315.8 316.1 316.1 316.2 317.1 317.4 316.4 318.1
9 349.0 317.5 363.8 364.1 363.7 363.6 364.6 364.7 364.2 365.4
10 409.2 321.1 410.2 409.3 409.2 409.4 409.9 409.9 409.8 410.3∑

1462.6 1245.3 1571, 6 1575.8 1569.5 1568.4 1578.7 1583.5 1577.0 1588.9
% 92.05% 78.37% 98.91% 99.18% 98.78% 98.71% 99.36% 99.66% 99.25% 100.00%

Table 5.9: Results for graphs with 500 vertices and edge propability pe = 0.02

Edge propability pe = 0.025
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 4.2 4.4 4.3 4.5 4.4 4.3 4.3 4.4 4.5 4.5
2 9.1 8.5 9 9.3 9.1 9.2 9.1 9.3 9.3 9.3
3 12.8 12.7 13.8 13.7 13.6 13.6 13.7 14.5 14.1 14.3
4 17.7 16.9 18.6 18.1 17.9 18.1 18.7 19.2 18.5 19.3
5 6.5 21.6 22.4 23.2 22.7 23.3 23.6 24.5 23.5 24.4
6 25.6 26.3 33.8 28.7 28.4 29.0 29.0 30.2 29.3 30.3
7 78.1 77.6 93.0 80.1 79.7 80.2 80.7 81.6 79.8 81.9
8 154.2 127.6 173.5 175.5 174.9 175.8 176.3 177.2 175.1 175.5
9 232.2 221.8 225.4 223.8 223.0 224.1 224.7 224.9 223.8 226.1
10 221.5 225.1 229.6 227.3 227.0 227.9 228.9 228.4 227.7 229.9∑

753.0 742.4 823.5 804.2 800.7 805.5 809.0 814.2 805.6 815.5
% 91.06% 89.78% 99.59% 97.25% 96.83% 97.80% 97.84% 98.46% 97.42% 98.62%

Table 5.10: Results for graphs with 500 vertices and edge propability pe = 0.025.

Edge propability pe = 0.0075
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 105.2 107.4 107.8 108.0 107.3 107.2 107.8 108.1 108.2 108.3
2 107.9 112.7 115.0 114.6 113.4 113.6 115.1 116.0 114.7 116.0
3 101.7 118.0 118.0 122.1 120.6 120.0 122.5 122.8 121.9 123.8
4 399.4 318.3 415.7 417.9 416.5 416.1 418.4 418.8 417.6 419.4
5 399.6 419.0 421.2 422.8 421.9 421.2 423.8 424.1 422.8 425.3
6 598.8 423.6 614.2 617.1 616.7 616.2 618.8 618.5 617.8 619.6
7 898.1 523.5 902.5 903.3 903.0 902.8 903.6 903.8 903.4 904.0
8 998.2 528.6 998.2 998.2 998.2 997.8 997.8 998.2 998.2 998.2
9 998.9 905.6 998.9 998.9 998.9 998.9 998.9 998.9 998.9 998.9
10 999.0 999.0 999.0 999.0 999.0 999.0 999.0 999.0 999.0 999.0∑

5606.8 4455.7 5690.5 5701.9 5695.5 5692.8 5705.7 5708.2 5702.5 5712.5
% 98.15% 77.99% 99.61% 99.81% 99.70% 99.66% 99.88% 99.92% 99.82% 100.00%

Table 5.11: Results for graphs with 1000 vertices and edge propability pe = 0.0075.
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5.4. Solution Quality

Edge propability pe = 0.01
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 4.9 5.7 6.0 6.3 6.1 6.1 6.2 6.7 6.6 6.6
2 4.4 10.9 10.6 12.1 11.5 11.6 11.9 13.0 12.6 13.1
3 13.7 15.9 17.0 17.9 16.9 17.0 17.9 19.0 18.2 19.3
4 14.8 21.4 24.1 24.1 23.1 22.6 24.1 25.2 24.3 25.9
5 104.3 27.1 123.6 126.6 125.2 125.4 127.0 128.4 126.6 128.6
6 201.5 129.1 226.0 228.2 227.5 227.3 228.7 230.3 228.5 230.6
7 299.7 525.5 325.2 328.2 326.7 327.0 329.2 330.1 327.3 330.2
8 399.5 329.7 424.4 426.5 425.4 426.3 427.8 428.3 426.1 429.6
9 399.6 427.9 427.7 431.8 430.8 431.4 433.6 433.1 431.7 435.1
10 499.5 432.6 528.4 530.7 530.8 531.0 533.1 531.9 531.3 534.1∑

1941.8 1725.8 2113.0 2132.4 2124.0 2125.7 2139.5 2146.0 2133.2 2153.1
% 90.18% 80.15% 98.13% 99.03% 98.64% 98.72% 99.36% 99.67% 99.07% 99.995%

Table 5.12: Results for graphs with 1000 vertices and edge propability pe = 0.01.

Edge propability pe = 0.0125
D CPLEX ACO HyACO VNS ACO-SEQ VNS-SEQ HyACO-SEQ VNS-GPU ACO-GPU HyACO-GPU
1 4.0 4.9 4.7 5.3 5.0 4.8 4.9 5.1 5.4 5.4
2 8.0 9.4 10.1 10.2 10.1 9.9 10.0 10.5 10.5 10.6
3 4.6 14.3 13.9 15.4 14.9 15.0 15.5 16.2 16.2 16.6
4 99.9 116.6 116.5 117.8 116.8 117.5 118.0 118.8 118.3 119.2
5 103.3 120.8 120.9 122.8 121.3 122.6 123.2 123.8 123.6 124.5
6 99.9 125.5 126.2 128.7 127.3 128.3 129.3 129.4 129.3 130.7
7 199.8 226.7 226.6 228.8 228.2 228.8 229.8 230.1 228.7 230.9
8 218.7 231.1 234.8 233.9 233.5 233.4 235.1 235.3 233.8 236.2
9 301.0 236.2 332.1 332.6 332.6 333.1 334.4 334.7 333.1 338.9
10 602.2 335.0 620.5 619.6 619.5 526.5 620.5 620.9 619.5 621.1∑

1641.1 1420.5 1806.3 1815.1 1809.2 1719.9 1820.7 1824.8 1818.4 1834.1
% 89.49% 77.45% 98.48% 98.96% 98.64% 93.77% 99.27% 99.49% 99.14% 100.00%

Table 5.13: Results for graphs with 1000 vertices and edge propability pe = 0.0125.
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5. Experimental Results

5.5 Computational Performance Evaluation
For the evaluation of the computational performance of the proposed implementations
we follow the guidelines established by Barr and Hickman [BGK+95] for computing the
speed-up.

In the first test, based on the largest three instances, the proposed sequential ACO
algorithm was tested against the parallel counterpart in order to investigate whether the
number of ants has an impact on the speed-up. The test was limited to ten iterations
with three different numbers of ants. We, moreover, set q0 = 1,i.e., the node selection is
performed deterministically in order to achieve similar runs on both platforms. However,
due to different data type accuracies between the platforms, there is no guarantee that
the algorithms would always select the same nodes. Tables 5.14 to 5.16 contain the mean
speed-ups and execution times for the subset with 1000 vertices using 8, 16 and 32 ants.
The test results offer no unambiguous conclusion; they suggest that for sparse graphs
there might be a higher speed-up when fewer ants are employed. In other words, the
higher the graph density, the more similar the speed-up results. However, it remains
unclear to which degree the number of ants has an influence on the speed-up. Another,
more evident, finding is that the overall speed-up rises with heightened graph density
(see Fig. 5.7).

In a further test, the speed-up of the parallel implementations was examined on various
instance sizes so as to measure the scalability. Tables 5.17 to 5.19 present mean speed-ups
and execution times executed on instance sets for each instance size with highest density
and applied with 32 ants. The speed-up at small instance sizes is rather low. For instance
sizes 50 and 100 all three algorithms achieve a comparable speed-up factor, which amounts
to 2-3 and 4-6, respectively. The speed-up rises significantly at instance size 500, at which
ACO achieves 40.63x, VNS 30.72x and the hybrid algorithm 42.33x. This behaviour
of the speed-up is very much in accordance with the solution quality results, as the
best results are achieved with the more complex instances. In Figure 5.8 it can also be
observed that VNS does not achieve such a rise in speed-up as it is 43.66% lower than
the ACO speed-up for the largest instances. Yet, the hybrid algorithm has almost the
same speed-up as the ACO, which leads to the conclusion that the hybridization is a
meritable approach causing no performance loss in a parallelized scenario.
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5.5. Computational Performance Evaluation

Edge propability pe = 0.0075 Edge propability pe = 0.001 Edge propability pe = 0.0125
D ACO-GPU ACO-SEQ Speedup ACO-GPUU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup
1 43.78 3309.42 75.59 38.61 3344.89 86.65 33.55 3469.78 103.43
2 45.27 3423.84 75.62 39.00 3498.30 89.71 34.50 3610.90 104.67
3 50.13 3688.25 73.57 41.50 3769.66 90.83 37.59 3856.03 102.59
4 42.38 3427.43 80.88 45.09 3934.77 87.26 35.48 3907.20 110.13
5 41.94 3073.17 73.27 45.72 4208.00 92.03 38.26 4047.29 105.79
6 37.91 3347.13 88.29 44.43 4010.14 90.27 42.69 4280.43 100.26
7 30.75 3114.15 101.27 39.14 3696.64 94.45 38.69 4323.33 111.75
8 22.55 2671.52 118.49 37.46 3803.63 101.54 43.10 4749.21 110.18
9 13.27 2200.66 165.80 39.29 4295.08 109.33 41.87 4889.02 116.76
10 11.75 2167.26 184.44 39.86 3955.12 99.24 34.31 4597.84 134.01
x̄ 33.97 3042.28 103.72 41.01 3851.62 94.13 38.00 4173.10 109.96

Table 5.14: Mean speed-up and execution time results (in ms) for graphs with 1000
vertices for graph densities 0.75%, 1% and 1.25% executed with 8 ants and 10 iterations.

Edge propability pe = 0.0075 Edge propability pe = 0.001 Edge propability pe = 0.0125
D ACO-GPU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup
1 70.40 4725.32 67.12 62.67 4790.27 76.44 53.38 5351.02 100.25
2 73.25 4943.91 67.49 63.12 5231.48 82.88 55.71 5505.12 98.82
3 81.33 5125.63 63.02 66.93 5810.60 86.82 60.79 6125.88 100.78
4 68.07 4841.49 71.12 72.70 6357.76 87.46 57.36 6042.86 105.35
5 67.59 4730.58 69.99 73.83 7743.37 104.88 63.92 6444.73 100.83
6 60.99 4696.27 77.01 71.27 7182.45 100.77 69.22 6843.50 98.87
7 46.90 4103.62 87.50 63.34 5991.03 94.58 62.85 7506.29 119.42
8 36.34 3787.26 104.21 60.42 5776.22 95.60 69.52 7555.10 108.68
9 21.05 2663.32 126.52 63.48 5560.45 87.60 67.83 7954.74 117.27
10 19.21 2487.15 129.46 64.69 6014.24 92.97 55.83 7311.90 130.97
x̄ 54.51 4210.46 86.34 66.24 6045.79 91.00 61.64 6664.11 108.12

Table 5.15: Mean speed-up and execution time results (in ms) for graphs with 1000
vertices for graph densities 0.75%, 1% and 1.25% executed with 16 ants and 10 iterations.

Edge propability pe = 0.0075 Edge propability pe = 0.001 Edge propability pe = 0.0125
D ACO-GPU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup
1 116.68 7798.46 66.83 102.38 7868.41 76.85 89.72 8761.15 97.65
2 121.13 8031.05 66.30 105.15 8812.41 83.81 93.50 9507.90 101.69
3 134.69 8678.05 64.43 111.37 9765.79 87.69 101.07 10391.46 102.82
4 112.25 8004.93 71.31 120.80 10895.87 90.20 95.90 9996.61 104.23
5 111.11 7381.95 66.44 122.11 11702.29 95.83 103.10 11209.89 108.73
6 100.60 7857.95 78.11 117.69 10863.82 92.31 114.25 12503.67 109.44
7 77.40 6466.68 83.55 104.07 9414.72 90.47 103.82 12804.48 123.34
8 59.18 5785.95 97.76 99.34 9075.47 91.36 114.72 13626.07 118.77
9 34.65 3881.32 112.03 103.85 9193.73 88.53 111.86 15274.88 136.55
10 30.88 3271.41 105.94 105.45 9556.11 90.62 91.12 12885.78 141.42
x̄ 89.86 6715.78 81.27 109.22 9714.86 88.77 101.91 11696.19 114.46

Table 5.16: Mean speed-up and execution time results (in ms) for graphs with 1000
vertices for graph densities 0.75%, 1% and 1.25% executed with 32 ants and 10 iterations.
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5. Experimental Results

Instances 50_ep0.2 Instances 100_ep0.1 Instances 500_ep0.025 Instances 1000_ep0.0125
D ACO-GPU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup ACO-GPU ACO-SEQ Speedup
1 49.43 145.84 2.95 56.86 254.91 4.48 75.17 2890.98 38.46 89.72 8761.15 97.65
2 52.74 147.57 2.80 60.28 354.22 5.88 80.03 3106.09 38.81 93.50 9507.90 101.69
3 55.53 127.89 2.30 59.53 341.57 5.74 84.94 3405.75 40.09 101.07 10391.46 102.82
4 65.47 127.65 1.95 64.52 323.80 5.02 87.85 3706.28 42.19 95.90 9996.61 104.23
5 60.55 118.85 1.96 71.38 297.47 4.17 94.24 3975.08 42.18 103.10 11209.89 108.73
6 55.59 103.55 1.86 78.49 375.75 4.79 102.22 4396.38 43.01 114.25 12503.67 109.44
7 52.93 110.64 2.09 80.22 369.41 4.60 100.55 3803.47 37.83 103.82 12804.48 123.34
8 52.96 118.74 2.24 67.75 293.84 4.34 85.80 3547.15 41.34 114.72 13626.07 118.77
9 44.00 104.94 2.39 53.19 204.85 3.85 74.36 2945.58 39.61 111.86 15274.88 136.55
10 33.02 83.83 2.54 34.00 155.07 4.56 77.59 3317.67 42.76 91.12 12885.78 141.42
x̄ 52.22 118.95 2.31 62.62 297.09 4.74 86.28 3509.44 40.63 101.91 11696.19 114.46

Table 5.17: ACO mean speed-up and execution time results (in ms) for graphs with 50,
100, 500 and 1000 vertices, graph densities 20%, 10%, 2.5% and 1.25% executed with 32
ants.

Instances 50_ep0.2 Instances 100_ep0.1 Instances 500_ep0.025 Instances 1000_ep0.0125
D VNS-GPU VNS-SEQ Speedup VNS-GPU VNS-SEQ Speedup VNS-GPU VNS-SEQ Speedup ACO-GPU VNS-SEQ Speedup
1 47.94 245.57 5.12 111.51 1144.77 10.27 484.97 25845.35 53.29 1085.89 114931.57 105.84
2 60.59 255.20 4.21 179.46 1220.13 6.80 651.27 25949.82 39.84 1583.78 136659.60 86.29
3 88.08 286.71 3.26 188.12 1370.43 7.29 774.80 24909.16 32.15 2151.91 138250.48 64.25
4 135.40 349.68 2.58 223.83 1445.77 6.46 891.79 27239.63 30.54 1980.31 118069.26 59.62
5 142.31 231.07 1.62 255.41 1475.09 5.78 1066.27 28258.32 26.50 2121.64 118143.64 55.69
6 119.16 201.30 1.69 341.73 1673.61 4.90 1161.50 27276.11 23.48 2743.09 131880.58 48.08
7 117.68 218.50 1.86 365.18 953.93 2.61 1156.02 23625.15 20.44 2761.25 138732.68 50.24
8 136.34 230.60 1.69 435.75 1005.13 2.31 849.42 20802.69 24.49 2825.58 142142.07 50.31
9 124.41 210.84 1.69 377.98 824.64 2.18 660.60 17954.85 27.18 2540.89 188296.19 74.11
10 84.80 138.17 1.63 343.51 355.45 1.03 787.96 23094.62 29.31 3023.15 152439.33 50.42
x̄ 105.67 236.76 2.54 282.25 1146.90 4.96 848.46 24495.57 30.72 2281.75 137954.54 64.48

Table 5.18: VNS mean speed-up and execution time results (in ms) for graphs with 50,
100, 500 and 1000 vertices, graph densities 20%, 10%, 2.5% and 1.25% executed with 32
ants.

Instances 50_ep0.2 Instances 100_ep0.1 Instances 500_ep0.025 Instances 1000_ep0.0125
D HyACO-GPU HyACO-SEQ Speedup HyACO-GPU HyACO-SEQ Speedup HyACO-GPU HyACO-SEQ Speedup HyACO-GPU HyACO-SEQ Speedup
1 87.47 245.57 2.81 137.98 1021.99 7.41 539.78 24457.59 45.31 1217.33 118601.46 97.43
2 90.60 255.20 2.82 154.81 1072.84 6.93 559.10 24037.90 42.99 1234.38 129919.30 105.25
3 97.40 286.71 2.94 145.10 1079.48 7.44 590.81 24479.27 41.43 1300.00 126535.03 97.33
4 112.67 349.68 3.10 150.94 984.33 6.52 638.42 26383.03 41.33 1115.89 121950.80 109.29
5 107.90 231.07 2.14 162.25 1119.55 6.90 672.06 29320.29 43.63 1191.64 129935.66 109.04
6 100.25 201.30 2.01 174.86 1154.85 6.60 707.54 30045.61 42.46 1277.50 180573.05 141.35
7 97.38 218.50 2.24 196.46 1016.89 5.18 633.65 25485.65 40.22 1138.70 122623.41 107.69
8 90.56 230.60 2.55 176.68 807.62 4.57 555.28 20959.83 37.75 1136.91 129996.47 114.34
9 78.49 210.84 2.69 153.29 521.04 3.40 482.24 20088.11 41.66 1054.46 110065.42 104.38
10 68.59 138.17 2.01 116.81 332.85 2.85 526.41 25622.19 48.67 990.26 96213.14 97.16
x̄ 93.13 236.76 2.53 156.92 911.14 5.78 590.53 25087.95 42.55 1165.71 126641.37 108.33

Table 5.19: Hybrid ACO-VNS mean speed-up and execution time results (in ms) for
graphs with 50, 100, 500 and 1000 vertices, graph densities 20%, 10%, 2.5% and 1.25%
executed with 32 ants.
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5.5. Computational Performance Evaluation
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Figure 5.7: Comparison of the mean speed-up for instance sets with 1000 veritces,
densities 0.75%, 1% and 1.25% using 8, 16 and 32 ants.
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Figure 5.8: A comparison of parallel ACO, VNS and the hybrid approach for graphs
with 50, 100, 500 and 1000 vertices, graph densities 20%, 10%, 2.5% and 1.25% executed
with 32 ants.
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CHAPTER 6
Conclusion

The purpose of this thesis was to implement, to the best of our knowledge, the first parallel
hybrid metaheuristic for the Firefighter problem while combining a population-based
with a single solution approach. We expected to achieve performance enhancement on
various graphs along with higher solution quality. Another aim was to gain a better
theoretical understanding of the field of applied heuristics in the context of the FFP
while developing various strategies for the selection of vertices to be defended.

On the grounds of our conducted tests we were able to show that mechanisms with
higher complexity, which take into account the changing states of the graph, tends to
display better results than methods with static heuristics. More specifically, in this thesis
we presented an ACO algorithm in which we consider the topology of the graph after
each time step in order to generate a candidate list. This list contains only nodes that,
if protected, in combination with other protected nodes, have the potential to protect
neighboring nodes. In addition to that, we developed a dynamic heuristic that is created
simultaneously with the generation of the candidate list. The average improvement of
the solution quality achieved by this approach was 10.56% over all instances.

A further step was the development of an VNS combined with VND introducing an
adaptive shaking function in order to improve the algorithm’s accuracy within the node
removal phase.

Tests revealed that the combination of two metaheuristics provides an improvement
in the solution quality. Having combined the ACO and the VNS, we implemented a
hybrid algorithm, which generated better results than each algorithm on their own. More
precisely, in comparison with the original VNS the proposed hybrid approach showed
better performance over all instances and achieved on average 0.3% better solution quality.
When compared with the original hybrid approach the proposed hybrid computed on
118 out of 120 test runs better solutions while the average improvement lies at 0.47%.
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6. Conclusion

Finally, we parallelized the three introduced algorithms, the ACO, the VNS and the
hybrid, and were able to show that each single implementation outperforms its sequential
counterpart in that it both yields faster and better results. The highest ACO speed-up
was 141x whereas the average speed-up for the instance set with the largest graphs was
114x. The VNS achieved a speed-up of up to 106x and an average speed-up of 64x.
The hybrid algorithm achieved a speed-up up to 114x and an average speed-up of 108x.
Similarly to the hybridization of the sequential implementation, the hybridized parallel
approach shows a remarkable improvement in the solution quality.

From the strategic point of view, we discovered that it is essential to consider the dynamics
of the fire spread in order to make the right decisions and develop efficient strategies.
From the metaheuristic point of view, we showed that a hybridization of parallel solutions
enables significantly better results. In order to achieve a better evaluation of the proposed
algorithms, further tests on higher instance sizes and different types of graphs would be
necessary.

For future work, all the mentioned results hold promise for a further development of
dynamic strategies that consider the changing states of a graph. Another conclusion that
can be drawn is that parallelization offers advantages in the solution of highly complex
problems such as the presented FFP and should therefore be researched to a greater
extent.
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