
Contract Definition and
Governance for IoT

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Internet Computing

by

Peter Klein, BSc
Registration Number 8251105

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dr.techn. Hong-Linh Truong

Vienna, 23rd January, 2018
Peter Klein Hong-Linh Truong

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Peter Klein, BSc
Kuhngasse 8, Haus 5, 2201 Gerasdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. Jänner 2018
Peter Klein

iii

Acknowledgements

First of all I would like to express my sincere appreciation and gratitude to my advisor,
Mr. Prof. Hong-Linh Truong. He always gave me very valuable feedback, guidance,
support and I really enjoyed working on this thesis.

I would also like to thank my family, my wife Gabriele, my sons Martin and Markus, and
my friends and colleagues for their support, patience and encouragement.

v

Abstract

In large scale deployment of the Internet of Things a high number of devices such as
sports wearables, home heating and air conditioning systems, manufacturing machines
and in-vehicle components are connected to each other and to cloud applications pro-
viding complex services for users. IoT units provide a software based abstraction of
services, sensors and actors of devices. Contractual relationship of the Stakeholders IoT
unit provider, IoT service provider and IoT service consumer have to be captured in a
well-defined, machine processable and automatically enforceable manner. A challenge
is the dynamic runtime environment where unit providers run IoT units for different
services on the same shared platform, and services require input from several units of
different providers to be able to fulfill their requirements.

In this thesis an extensible framework is described that covers contract creation with a
flexible model based on JSON (Java Script Object Notation), monitoring of contract term
related constraints on IoT units via Aspect-oriented programming as well as contract
enforcement by storing and retrieval of contract violations and linking them as hash
values to smart contracts on the Ethereum blockchain.

A prototype is implemented and evaluated with respect to solving use cases based
on real world scenarios and with respect to handle workloads defined in performance
testing.

The results gained from evaluation demonstrate that the introduced framework for
IoT contract definition and governance is able to cover real world scenarios and provides
performance and scalability to handle the workloads related to the scenarios.

vii

Kurzfassung

Im Internet der Dinge wird eine große Zahl unterschiedlicher Geräte wie tragbare Sportge-
räte, Heizungs- und Klimaanlagensteuerungen, Produktionsmaschinen oder Fahrzeugkom-
ponenten miteinander und mit der Cloud verbunden, so dass komplexe Dienste für die
Nutzer zur Verfügung gestellt werden können. IoT Einheiten stellen eine Abstraktion der
Sensoren, Aktoren und Dienste von IoT Geräten dar. Dabei sollen Vertragsbedingungen
zwischen den unterschiedlichen Partnern, wie Anbietern von IoT Einheiten und IoT
Diensten sowie IoT Dienstnutzern, erfasst und in exakter, maschinenlesbarer und automa-
tisch verfolgbarer Art und Weise umgesetzt werden können. Eine Herausforderung dabei
ist eine dynamische Laufzeitumgebung in der IoT Geräte für unterschiedliche Dienste auf
einer gemeinsam genutzten Plattform laufen und Dienste auf Geräte unterschiedlicher
Art zugreifen müssen um ihre Funktion erfüllen zu können.

In der Diplomarbeit wird ein erweiterbares Framework beschrieben das den Bereich
des Vertragsentwurfs über ein flexibles Modell auf Basis von JSON (JavaScript Object
Notation) abbildet. Die Überwachung der mit den Vertragsbestandteilen verbundenen
Einschränkungen erfolgt über Aspekt-orientierte Programmierung. Die Vertragserfüllung
wird durch eine Komponente zur Speicherung und Abfrage von Vertragsverletzungen
sowie deren Verlinkung mit Smart Contracts in der Ethereum Blockchain unterstützt.

Es wird ein Prototyp implementiert und in Hinblick auf die Realisierbarkeit echter
Szenarien und der damit verbundenen Rechnerbelastung evaluiert.

Die Ergebnisse der Evaluierung zeigen dass das neu entwickelte Framework für IoT
Contract Definition und Governance in der Lage ist die Szenarien abzubilden und die
notwendige Performanz und Skalierbarkeit gewährleistet werden kann.

ix

Contents

Abstract vii

Kurzfassung ix

Contents xi

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 Introduction . 1
1.2 Problem Statement . 1
1.3 Methodological Approach . 3
1.4 Thesis Contribution . 3
1.5 Thesis Structure . 4

2 State of the Art and Background 5
2.1 Background . 5
2.2 State of the Art . 9

3 Scenarios and Requirements 13
3.1 Scenarios . 13
3.2 Requirements . 20
3.3 Use Cases . 25

4 Contract Specification and Composition 29
4.1 Contract Specification . 29
4.2 Composition of Contracts for IoT Services 33

5 Governance 37
5.1 Principles of Governance . 37
5.2 Enforcement of Contracts . 37
5.3 Contract Governance Implementation 48

xi

6 Prototype and Evaluation 53
6.1 Prototype Implementation . 53
6.2 Evaluation . 64

7 Summary 77

Bibliography 79

List of Figures

1.1 High Level Overview of IoT Contract Framework 3

3.1 BTS Scenario . 14
3.2 Stakeholders . 18
3.3 Use Cases . 25

4.1 Contract Elements . 30
4.2 Data Model . 32
4.3 IoT Service Composition Abstract Model 33
4.4 Example IoT Service using Composition 35

5.1 Governance Architecture . 49
5.2 Logging and Payment via Blockchain . 51

6.1 Embedding of Contract Model in SALSA 53
6.2 Graph Database . 55
6.3 Lifecycle and Startup . 62
6.4 Deployment for Evaluation with IoT Simulator 66
6.5 Deployment for Evaluation with IoT Gateway on Raspberry PI 67

xiii

List of Tables

3.1 Flexible Contract Terms . 21
3.2 Flexible Contract Templates . 21
3.3 Custom Logic for Contracts . 21
3.4 Custom Logic for Composition . 22
3.5 Flexible Contract Definition . 22
3.6 Monitoring Support . 23
3.7 Enforcement Logic . 23
3.8 Execution of Governance Actions . 23
3.9 Payment Actions . 23
3.10 Performance of Enforcement . 24
3.11 Integration to IoT Unit Management Platforms 24
3.12 Enforcement Logging . 25

6.1 REST Web Service Functions . 57
6.2 IoT Contract Model Resources . 57
6.3 Governance Controller Resources . 58
6.4 Experiment Setup . 72
6.5 Different Number of Events . 73
6.6 Different Number of Units . 73
6.7 Different Types of Contracts . 74
6.8 Different Contract Violation Percentage 75
6.9 Enforcement Performance via Blockchain 75
6.10 Monitoring and Enforcement Code Size 76

xiv

CHAPTER 1
Introduction

1.1 Introduction
The Internet of Things (IoT) refers to the growing range of Internet-connected devices
that capture or generate an enormous amount of information every day. For consumers,
these devices include mobile phones, sports wearables, home heating and air conditioning
systems, and more. In an industrial setting, these devices and sensors can be found in
manufacturing equipment, the supply chain, and in-vehicle components [1], [2], [3], [4].
Many existing IoT applications have been built in a silo approach for a single purpose and
use a strong coupling between devices, frameworks and application logic. Contracts for
these applications work like contracts in traditional software applications being defined
in a software end user license agreement (EULA) that is created by legal people and
intended to be read and accepted by customers. Examples of such license agreements are
given in [5] and [6]. Monitoring of Quality of Service (QoS) or Quality of Data (QoD)
related contract terms is done by application specific means (e.g. analysis of log files
provided or measurements taken on client side). Disputes are settled in a manual way by a
legal suit and legal decision [7], [8]. In state of the art designs, applications are composed
of independent IoT units instead of the strong coupling [9] and deployed in cloud data
centers and edge gateways [10]. IoT units provide a software based abstraction of services,
sensors and actors of IoT devices [11]. Services by one unit are consumed by other units
to provide aggregated services that are then again consumed by applications thus building
a complex web of provider and consumer relationships which makes contracts hard to
define and enforce in the existing approach.

1.2 Problem Statement
In scenarios such as the Santander Smart City project [12] or the Array of Things [13] a
large number of different sensors are deployed in a city and services are provided based

1

1. Introduction

on the sensor data to inhabitants and the government of the city. Similar cases are large
scale environment monitoring, vehicle monitoring or health tracking [3]. IoT services
are composed of IoT units. IoT contracts are formally defined, machine readable and
executable definitions for IoT services that have to cover access rights (e.g. giving certain
IoT units access to read sensor data and use actors), communication rights (amount of
data to be allowed in transmission, allowance to send data to certain receivers) as well as
resource utilization rights (CPU usage, frequency of sensor readings) and service level
agreements (response time, throughput, payment) [14].

The thesis aims to answer following questions:

• What is a usable modeling approach for IoT contracts that is flexible enough to
cover different kinds of services and is able to be interpreted and processed by
software running on IoT units themselves thus providing a machine readable and
executable contract.

• How can the monitoring requirements be derived from the contract and monitoring
functions being instantiated on the IoT units so that data for evaluation of contract
terms is collected and made available for enforcement.

• How can enforcement of contract terms be provided in an automatized way so
that contract violations are identified and information about them is provided to
contract parties in a trusted manner.

The goal of this thesis is to develop a framework that supports IoT contract definition,
monitoring and enforcement. Contracts will be defined as objects according to a contract
model and assigned to IoT units. Monitoring of IoT units is derived from contracts
and provides information to contract enforcement. Figure 1.1 gives an overview of the
framework and its embedding into IoT units and services:

• The Contract Manager is responsible to build contracts from contract models and
assign them to IoT units.

• The Contract Models contains building blocks for creation of contracts.

• The Contract Governance is responsible for recording of contract violations identified
by monitoring and enforcement and making them available to contract parties.

The framework will provide the base to ensure that IoT units and services can fulfill
their contracts as well as work together deployed on an IoT edge gateway or cloud in a
coordinated manner with proper resources available for each service.

2

1.3. Methodological Approach

IoT Marketplace

IOT

Units

IoT Deployment

IoT Infrastructure

contracts

IoT Application Building

IOT Unit

A

IOT Unit

B

deploycompose

IO
T

U
n

it
M

&
E

Framework

Contract Manager

assign contract

to units

Contract Models
Contract

Governance

monitoring data

deploy

monitoring and

enforcement

IO
T

U
n

it
M

&
E

Figure 1.1: High Level Overview of IoT Contract Framework

1.3 Methodological Approach
It is divided into three main parts: analysis, design and development and evaluation.

• In the Analysis part literature research on relevant topics for IoT contract definition
and governance is conducted, leading to selection of scenarios and definition of
requirements based on the scenarios.

• In the Design and Development part, a framework is designed and a prototype is
implemented, based on the previously defined requirements. The prototype serves
as implementation to solve the problems defined above.

• In the Evaluation part the prototype is evaluated with respect to functionality
provided to solve use cases based on real world scenarios (management of Heating,
Ventilation, Air Conditioning system in transceiver stations for mobile communica-
tions) and with respect to handle workloads defined in performance testing.

1.4 Thesis Contribution
In this thesis a framework for IoT contract definition and governance including monitoring
of constraints imposed by the contract and enforcement of contract violations by linking
them to the blockchain is introduced. Contracts are built from contract templates which
are composed of a set of contract terms. Each contract term includes a set of constraints
where for each constraint the parameters and a piece of Javascript code for monitoring
and enforcement is defined. Contract terms are defined to cover access rights, quality of
service and data such as throughput, completeness or accuracy as well as payment and

3

1. Introduction

pricing conditions.

The prototype implementation of the framework is available as open source software on
https://github.com/rdsea/IoTContract.

1.5 Thesis Structure
The rest of this thesis is structured as follows:

• Chapter 2.1 presents relevant background topics and the state of the art regard-
ing the Internet of Things (IoT), contracts, governance, enforcement and smart
contracts.

• In Chapter 3 scenarios and requirements derived from the scenarios are presented.

• In Chapter 4 the contract specification and composition part of the new framework
is described.

• In Chapter 5 the governance part of the new framework is described.

• In Chapter 6 the design and evaluation of a prototype implementation is presented.

• Finally the findings of this thesis are summarized and future work is outlined in
Chapter 7.

4

CHAPTER 2
State of the Art and Background

2.1 Background
In this section we discuss further key elements related to IoT contracts and governance.

2.1.1 Internet of Things

The Internet of Things connects physical devices (e.g. machines, vehicles, home appliances)
that are equipped with sensors, actuators, processing capability and network connectivity
to applications running in the cloud, on gateways or routers. Each device is uniquely
identifiable and is able to communicate on top of the existing Internet infrastructure.
Device and applications together build cyber-physical systems such as smart grid, smart
homes, intelligent transportation and smart cities.

IoT Architecture

A traditional way to build IoT applications is to connect IoT devices running on embedded
platforms to applications performing data storage and analytics in the cloud via standard
IP communications such as web services. In [15] an overview and a critique on this
approach is presented. Main concerns seen are privacy and security, scalability, latency,
bandwidth and QoS (Quality of Service) guarantees. A Global Data Plane that stores
time series data in a location independent way together with the publish / subscribe
pattern to access the data is proposed as a solution to overcome the problems described
for traditional cloud based IoT applications. The idea to move processing from the cloud
to processing elements close to the IoT devices or onto the devices themselves is further
developed in Edge Centric Computing where computing, data and services are moved
from central nodes to the edge of the network running on gateways, routers or powerful
end devices [16]. Satyanarayanan, et al. in [17] introduce the concept of ’Cloudlets’ that
augment resource poor IoT device elements with cloud based, resource rich capabilities

5

2. State of the Art and Background

on the edge level. Autonomous decision making, storage of personal and sensitive data
as well as coordination and management of applications is performed on these edge
computing elements.

IoT Applications

In this section we look at IoT applications, especially in the smart city domain where
many different IoT services are provided and open access for the city’s inhabitants and
government is required. A very important is that access has to be controlled in a way
that lets sensor owners decide which parts of their data they will provide and which
conditions have to be guaranteed. In [3] an overview of context aware IoT solutions is
given. According to the survey Context-Awareness is defined as "the ability of a system
to provide relevant information or services to users using context information (such as
location, time or environment data) where relevance depends on the user’s task". In the
survey solutions are grouped into the categories smart wearable, smart home, smart city,
smart environment and smart enterprise. Context-Aware features are categorized into
presentation (showing relevant information to the user), execution (automatic processes
depending on the context) and tagging (fusing data collected by multiple sensors together).
A set of 58 solutions is grouped into the categories and analyzed with respect to the
context-aware features. Among the lessons learned topics from the survey especially
interoperability of products and services as well as resource management, large scale
deployment, privacy and data analytics have to be considered for IoT contracts and
governance.

The Array of Things (AoT) is an urban scale approach to deploy a large amount of identi-
cal sensors in an urban environment to provide the foundation for smart city applications
[13]. Focus is on measurement, edge computing and reliability, scalability and replication
of hardware devices. Measurements comprise meteorological data (e.g. temperature,
humidity or light), chemical data (e.g. carbon monoxide, ozone) and environment data
(e.g. camera, sound level). The set of sensors can be extended to include additional guest
sensors. Edge computing (processing data already on the device) is applied to reduce
bandwidth and resolve privacy issues for camera and sound sensors. Privacy is addressed
by running the camera and sound sensors either in common mode (where predefined oper-
ations are applied locally and only extracted features like the number of people seen by the
camera are transmitted) or sampling mode (where full images or sound data are transmit-
ted to a secure storage but access is only granted through a confidentiality agreement) [13].

The SmartSantander smart city testbed in the city of Santander, Spain is presented in
[12]. In the testbed wireless sensor networks are deployed together with NFC tags and
smart-phone applications using them as sensors but also as interaction point with the
users. A common information model is applied throughout the SmartSantander platform.
It includes a resource model (static data), an observation model (handling measurements)
and a taxonomy supporting physical parameters and units of measurement. Common
infrastructure monitoring provides data quality monitoring (detecting non communicating

6

2.1. Background

sensors, stuck sensor and outliers) and device status monitoring generating alarms when
a device is not behaving properly.

2.1.2 Service Composition

In IoT applications the services provided by several IoT units are combined together to
provide composite services. Linked to composition of services also a composition of IoT
contracts is required combined with composition of QoS and QoD. In this section we will
look into composition of services and quality measurements.

Valenzuela et al. describe a SOA (Service Oriented Architecture) based data fusion mech-
anism for the Internet of Things [18]. In the DOHA (Dynamic Open Home-Automation)
platform services are self-contained components that receive and deliver data through
well-defined interfaces. Operations performed by services are either simple ones, that
work without interaction with other services, or composite ones, that require interaction
with other services. Service interactions are modeled by a service composition map. As
an example, the temperatures service managing the room temperature makes use of the
temperature sensor service and the temperature regulator service.

In [19] service orchestration is modeled as a graph consisting of task nodes that perform
some function and gateway nodes that are routing the orchestration logic. XOR nodes
represent conditional branching, AND nodes represent parallel forking and OR nodes
represent multiple choice. Depending on the orchestration graph, composition functions
for QoS parameters can be defined, e.g. for latency as QoS parameter, the maximum
of the paths in the AND block has to be taken. A Multi-Layer QoS Model for Service-
Oriented Systems is presented in [20]. QoS parameters are grouped into performance,
dependability, security and trust, and cost and payment. Parameters are aggregated
depending on the composition patterns of sequence, loop, AND and XOR. Depending on
the pattern aggregation formulas for parameters such as throughput, response time or
availability are defined. An extensive overview of data quality parameters in streaming
environments and rules for combining them when several data streams are merged is
given by Klein et al. in [21].

2.1.3 Monitoring and Enforcement

Task of monitoring is to observe parameters of the IoT unit at run-time that are relevant
for checking constraints attached to contract terms. Monitoring should work without
code modification of the monitored IoT units and should have as little impact as possible
on performance and run-time behavior of the IoT unit. Enforcement deals with execution
of appropriate actions if a contract violation is detected by comparing the constraints
defined in the contract with the measurement taken by monitoring. Such an action could
be simply to report the contract violation in a secure way, but also more complicated
actions such as to reconfigure the IoT application to meet quality of service constraints
or to automatically initiate a payment if the conditions defined in the contract are met.

7

2. State of the Art and Background

In [22] a comparison of instrumentation techniques for monitoring of Java based programs
is given. Low level byte code instrumentation provides high flexibility but is difficult and
error-prone to apply. AOP (Aspect-oriented Programming) allows to add monitoring
on Java source code level. Details on AOP and its implementation AspectJ are given in
[23] and [24]. Crosscutting concerns such as monitoring, logging or access control are
defined in separate code parts and woven into the original code at defined join points by
the AspectJ compiler. Join point definitions allow to select methods (e.g. all methods
where the method name is messageHandler that have 2 arguments) and attach code parts
(called advices) to them, that are executed before, instead of, or after the original method.

In [25] a framework for management of sensing resources in IoT cloud systems is presented.
Resources (sensors, gateways, analyzers) are described by their properties (states and
meta-data) and capabilities (actions that can be performed on them). A unified model
of sensing resources and cloud services holds properties and capabilities. Management
services such as deployment, elasticity control or IoT governance then manage cloud
resources as well as start and stop of services or reconfiguration of sensors.

2.1.4 Smart Contracts

The term was "Smart Contract" was introduced by Szabo [26] and is defined as "a
computerized transaction protocol that executes the terms of a contract". As an example
let’s look at a scenario where usage of a car will be shared and offered to others. In the
contract it is offered by the seller that the car is available between 8 pm and 4 pm for
usage by anyone who agrees to pay a rate of X coins / hour as fee + Y coins per kilometer
traveled. As soon as the contract is agreed by a buyer, access to the car is granted. When
the car is returned the proper fee is calculated and automatically transferred from the
buyer’s account to the seller’s account. Smart Contracts rely heavily on capabilities of
the blockchain to perform secure transactions between untrusted parties without need for
a trusted intermediary. A blockchain constitutes a distributed ledger holding transactions
in a way that all participants have full access to the ledger and will provably reach
consensus about the transactions and their state. Each transaction is encapsulated in
a block, cryptographically secured and connected to its predecessor block. The longest
chain of blocks is considered as consensus among all parties. When a transaction is
embedded in a block that is already linked to several other blocks in the chain, it would
require rewriting all following blocks to invalidate the transaction. Since creating a new
block is difficult (depending on the consensus algorithm it is defined what is "difficulty")
it would require ownership of the majority of the blockchain network resources to create
a long chain of fake blocks in this case. Therefore transactions in the blockchain can
be considered as immutable and can be inspected by all participants. Messages sent
to a smart contract that change the state of the contract (in our example signing the
contract and paying the final fee) are handled as transactions in the blockchain. Since

8

2.2. State of the Art

smart contracts themselves are distributed on the blockchain and creation of a contract
is a transaction they are also immutable and can be inspected by every participant.

In [27] an overview of blockchain, consensus algorithms and smart contracts is given.
Applications of smart contracts to IoT cover firmware update of devices, IoT devices
that sell their own data and services via micro transactions, and application to the
supply chain where moving of goods is tracked among several parties. Deployment
considerations for smart contracts include lower throughput and higher latency compared
to a central solution, privacy issues since all transactions are visible on the network, and
legal enforceability which is still limited.

Usage of blockchain in IoT is presented in [28] with focus on a blockchain based smart
home platform where local immutable ledgers are connected via a blockchain overlay
network to cloud storage. In [29] experiments to use the IBM Adept blockchain and
Multichain for distribution of code and the storing of configuration data are performed.

2.2 State of the Art
In this section we discuss related work on contract definition and contract enforcement
from the IoT domain and related domains such as data markets, cloud systems and
security.

2.2.1 Execution Policy Framework for IoT Services in the Edge

P4SINC (Policy for Servicing IoT, Network Functions, and Clouds) is an execution policy
framework for IoT SDM’s(Software Defined Machines) [30]. An SDM provides an abstract
representation of IoT devices and edge components. Policy templates define allowed data
amount, allowed number of accesses, a white-list of allowed users, execution lifetime and
SDM capabilities. Policy instances then assign concrete values to a template, e.g. limit
the data read amount to 100 KB per day. Policy instances are then used by the policy en-
forcement to instrument code of SDM’s which supervises and enforces policies at run time.

Compared to our work the data model is focused on policy definitions (such as data
amounts, white lists or lifetime) and does not allow to define arbitrary contract terms.
Monitoring and enforcement is based on program instrumentation via Aspect-oriented
programming. This conceptual approach we reuse for monitoring and enforcement in our
framework but allow to execute arbitrary enforcement logic via Javascript.

2.2.2 Enforcement of Security Policy Rules for the Internet of Things

In [31] a model for the definition of security policies for MQTT [32] is presented. It
includes entities such as data, time, identity, role, behavior, trust and risk, rule templates
and rules. Rule templates follow the event-condition-action paradigm and contain vari-
ables that get concrete values assigned from the system configuration when the policy is

9

2. State of the Art and Background

applied. As an example a policy could be defined that allows access only if the requester
of the access is within a certain range of the IoT device (e.g. 100 meters). Actions defined
in policies can also log messages or notify users. The policy engine is directly integrated
with the Mosquitto MQTT broker so that enforcement is performed in the broker and
not in the IoT device.

The model used is focused on security policies and does not allow to the define other
contract terms such as data quality or service availability. In our work we reuse the
concept of rules (logic) where variables get assigned concrete values when the policy is
applied.

2.2.3 Policy-Driven Security Management for Fog Computing

Dzousa et al. in [33] present a framework for security management in fog computing
devices. The framework contains a policy repository holding policy rules, a policy decision
engine connecting to a policy resolver and a policy enforcement point in the IoT device.
As use case a smart transportation system is described where connected vehicles and
smart traffic lights communicate with each other, e.g. to inform a connected vehicle
about an approaching emergency vehicle so that it can give way. The data schema defines
a set of attributes associated with a physical or virtual component. The policy schema
defines a set of conditions associated with a requested action (e.g. to read data) that are
required to be fulfilled for the request.

Our approach follows a similar architectural pattern with a contract repository and
a governance controller but extends it to general contract terms and their enforcement
instead of focusing on security policies.

2.2.4 IoT Access Control Issues: a Capability Based Approach

In [34] a capability based approach to access control is presented. A service user has to
present a capability (in form of a token) to the service provider to get access to an object.
The concept supports the principle of least authority (only the minimum required set of
permissions is granted) and fine granular access control. In an example presented a car
owner defines access capabilities to information about the car (such as location or engine
status) to his wife (location), the city traffic management service (location) and the car
maintenance company (engine status). The car control unit then uses the capabilities
defined to grant or deny access by users.

A similar approach can be taken to manage access rights for IoT devices in our IoT
contract and governance framework.

10

2.2. State of the Art

2.2.5 Portable Architecture for QoS Monitoring in the Cloud

Adinolfi et al. in [35] describe the QoS-MONaaS (Quality of Service - MONitoring as a
Service) architecture for monitoring of QoS in IoT and cloud applications. It implements
a monitoring functionality that is available to all applications running on top of the
underlying cloud platform. Terms defined in the service level agreement are monitored
on the platform. If a breach is detected a violation is notified and a violation record is
created. As an experiment the architecture was applied to a smart metering application
where measurements of smart meters are taken by an energy supplier and sent to the
energy consumer.

The overall architecture resembles our work but focuses on QoS and does not han-
dle access control or payment. Monitoring is performed on the platform level whereas in
our framework monitoring is performed directly on the end devices or gateways.

2.2.6 Contract and Rights Management Framework Design

Guth, et al. in [36] describe a contract and rights management framework using standard
XML based modeling. Contracts in the educational domain (support of exchange of
learning resources) are mapped to the domain independent XML based ODRL language
(Open Digital Rights Language) [37]. In ODRL a contract agreement holds assets (the
items being handled by the contract), parties (the contract partners) and permissions
(constraints and requirements). The framework supports offer creation, interpretation
and access control. First the provider places an offer on the framework that is stored in a
repository. In the next step the consumer checks available offers, selects the appropriate
one and agrees on a contract with the provider. Finally the contract is interpreted so
that the consumer can access the required resource.

Compared to our work the framework and ODRL focus on description of assets and the
rights associated with these assets (such as playing or copying) but lacks constructs to
define enforcement and monitoring terms. What we take over to our work is the concept
that ODRL defines a meta-model (for parties, assets, policies, permissions) but does not
define specific policies or assets.

2.2.7 Contract-aware IoT Dataspace Services

In [38] a platform for enabling contract-aware IoT dataspace services is presented. An IoT
dataspace makes data from multiple IoT devices (Things) and from multiple providers
available for data consumers. IoT devices send data to the IoT dataspace, data packages
can then be downloaded by customers governed by data contracts assigned to the data
packages. Terms in data contracts include data rights, quality of data (QoD), quality of
service (QoS), pricing model, purchasing policy and control relationship. The platform
supports contract negotiation where contract partners agree on contract terms. Data
contract monitoring distributes incoming data according to the agreed contracts and

11

2. State of the Art and Background

measures QoD (e.g. completeness) and QoS (e.g. availability) parameters.

The platform focuses on data contracts including monitoring of quality of data and
quality of service. It includes advanced features such as contract negotiation and contract
recommendation. Compared to our work the contract model as well as monitoring and
enforcement is focused on data and does not allow to define other terms, e.g. access
control of sensors and actors for IoT units.

2.2.8 Data contracts for cloud-based data marketplaces

They are presented by Truong, et al. [14]. An abstract model for data contracts is
developed that can be used to build different types of data contracts for specific types of
data. Main terms in such data contracts are data rights (what the consumer is allowed to
do with the data, e.g. reproduction or derivation), quality of data, regulatory compliance
(privacy and confidentiality), a pricing model and control relationship (such as limitation
of liability and auditing of contractual compliance). An abstract model consisting of
term categories, term names, term values and term units is proposed to represent the
terms described above. Based on the model, applications can be built like data contract
compatibility evaluation if several data sets and their associated contracts are combined.

The concept of generic contract modeling is also applied in our work. Evaluation
of contract compatibility is not considered in our work yet but would be useful as a
future extension.

2.2.9 Governance Platform for Cloud Service Delivery

A governance platform for cloud service delivery is presented in [39]. The platform adapts
resources of cloud services and routing with respect to fulfillment of SLA’s (Service Level
Agreements) for throughput and availability. A governance manager holds a repository
of SLA’s, templates for elastic strategies and governance parameters. An SLA Manager
consisting of an SLA monitor and an SLA controller monitors SLA parameters and issues
commands to route incoming messages appropriately depending on commands received
from the governance manager. An elasticity manager monitors elasticity parameters and
applies elasticity strategies on behalf of the governance manager. Resource allocation is
adapted to changing demand but still SLA’s have to be fulfilled.

The system architecture consisting of SLA repository, governance controller and monitor
is a pattern that will be reused and applied to the the IoT contract and governance
framework. It will be extended beyond service level agreements to include also access
control, data quality as well as pricing and payment. Controlling in our framework is
restricted to simple access control and payment and does not provide elaborate elasticity
mechanism as described in the work above.

12

CHAPTER 3
Scenarios and Requirements

3.1 Scenarios

The first step to derive requirements for contract definition and governance is to look at
a set of real world scenarios. We selected three scenarios from the domains of industrial
control, smart cities and crowd sensing. Based on the scenarios a set of common
requirements is identified and described. The details of the scenarios are elaborated in
the following three sections.

3.1.1 Monitoring and Controlling HVAC Systems in Base Transceiver
Station (BTS)

A telco operator is running an IoT infrastructure for operation and maintenance of BTS
support equipment such as HVAC (Heating, Ventilation and Air Conditioning), power
generators or electricity backup systems. In each of the thousands of geographically
distributed BTS an IoT gateway connects to sensors and actuators that interface with
the BTS equipment. Each IoT gateway runs a set of software defined IoT units that
encapsulate sensors, actors and IoT capabilities [40]. The gateway communicates via
an MQTT broker with a complex cloud based monitoring and control system providing
analytics, optimization, storage via Hadoop and query capabilities . Services in the
central application analyze the sensor data and, if necessary, send configuration and
control commands via MQTT to the IoT gateway. IoT units in the gateway will then
execute those commands. Maintenance of HVAC equipment is outsourced to one or more
companies that deploy and run their own IoT units for HVAC monitoring and control in
parallel on the same IoT gateway. Since the HVAC is a critical component for operation
of a BTS the third party IoT units have to operate properly but may not affect other
IoT units (e.g. monitoring other components of the BTS such as radio access or network
connectivity) running on the same gateway.

13

3. Scenarios and Requirements

Figure 3.1: BTS Scenario

From point of view of the HVAC maintenance company following contract terms should
be defined in the contract:

• access to the sensors and actuators required for operation of the HVAC maintenance
analytics and control service.

• required quality of data delivered by the sensors (accuracy, completeness).

• required availability and responsiveness of the actuators.

• required processing power and storage capacity for the HVAC management IoT
units running on the IoT gateway.

• required availability of the IoT gateway for running the HVAC management IoT
units.

• price model and pricing requested for the HVAC maintenance analytics and control
service, e.g. a price per month for every BTS managed.

From point of view of the telco operator following terms should be defined in the contract:

• restriction of access to sensors and actuators required by the HVAC IoT units.

14

3.1. Scenarios

• provided guaranteed processing power and storage capacity for the HVAC IoT units
running on the IoT gateway.

• QoS criteria for the HVAC maintenance analytics and control service, e.g. main-
taining a constant temperature of 20 degrees Celsius for 99 % of the time.

• availability of the HVAC maintenance analytics and control service, e.g. minimal
99.9 % with a maximum unplanned downtime of 2 hours/year and a maximum
planned downtime of 5 hours/year.

• price model and pricing requested for running the IoT maintenance units on the
IoT gateway, e.g. usage based fees depending on CPU power and storage consumed.

Major contract relevant points of the scenario are access control, data quality of sensors,
availability of actors, resource management on the IoT gateway and pricing.

3.1.2 Analysis of Images Capturing from city-wide IoT Gateways

In a smart city IoT gateways, including sensors (e.g. for air quality, temperature and
noise) and cameras, are deployed in public places. An example of such a system is the
Array of Things project in Chicago [13] where IoT gateways are deployed on street light
poles. Data from the sensors is made available for customers in a data marketplace and
they may deploy their own IoT units on the IoT gateways. An IoT unit might access the
camera pictures to provide traffic counting for urban planning or measuring traffic flow
for an intelligent control of traffic lights. Many IoT units for different services will run
on the IoT gateway in parallel and IoT units might also collaborate with other IoT units
on the gateway.

Similar to the scenario of the HVAC application the company running the camera
based analysis service has to make sure in the contract that it gets access to the required
resources and the provider of the IoT gateways has to make sure that operation of the
IoT units on the gateway is compliant with operation of other IoT units for different
services.

From point of view of the camera analytics company following contract terms should be
defined in the contract:

• access to the cameras as required for the IoT service, it could be, e.g. constrained
to defined time intervals.

• required quality of pictures delivered by the camera, e.g. frame rate, resolution.

• required processing power and storage capacity on the IoT gateway.

• required availability of the IoT gateway.

15

3. Scenarios and Requirements

From point of view of the smart city provider following contract terms should be defined
in the contract:

• access rights restricted to usage of the camera.

• provided guaranteed processing power and storage capacity for the camera analytics
IoT service.

• price model and pricing requested for running the IoT units on the IoT gateway.

• ensure that data provided by the camera is used only locally for the defined purpose
and not sent to the Internet or stored in databases.

Major contract relevant points of the scenario are access control, data quality of sensors
and resource management on the IoT gateway.

3.1.3 Crowdsensing using Mobile Signals

Location based applications (LBA’s) analyze crowds (flow of people) [41] through signals
emitted from people’s mobile phones. In most cases data from sensors will be sent and
processed on the cloud but there might be also local IoT edge gateways that provide
access to sensor raw data [16], [17], [42]. In the scenario a company has deployed an IoT
service composed of a set of IoT units that monitor LBA data to ensure security of an
event happening in the public place but the IoT service is not allowed to send data to
the cloud.

From point of view of the security company following contract terms have to be defined
in the contract:

• access to LBA data as required by the IoT service.

• required processing power and storage capacity on the IoT gateway.

• required availability of the IoT gateway.

From point of view of the smart city provider following contract terms have to be defined
in the contract:

• access restricted to LBA data.

• provided guaranteed processing power and storage capacity for the security IoT
service.

• price model and pricing requested for running the IoT units on the IoT gateway.

Major contract relevant points of the scenario are access control and resource management
on the IoT gateway.

16

3.1. Scenarios

3.1.4 Common Requirements from the Scenarios

Analyzing the three scenarios together we can see common goals to achieve for IoT
contracts and their included contract terms. On one hand ensure that an IoT unit
deployed on an IoT gateway does not conflict with IoT units for other IoT services
running on the same IoT gateway, on the other hand ensure that the IoT units for a
certain IoT service get the necessary resources to perform their tasks. Required topics
for IoT contracts are:

• controlling access to sensors, actuators and data provided by the IoT gateway and
used by IoT services

• defining QoS for sensors and actuators provided by the IoT gateway and used by
IoT services.

• defining QoD for data provided by the IoT gateway and used by IoT services.

• defining QoS for IoT services.

• controlling usage of processing resources provided by the IoT gateway and used by
IoT services.

• pricing of resources provided by IoT gateways.

• pricing of IoT services.

In the next section stakeholders and their concerns will be further elaborated to lead
finally to a model for contract definition and governance.

3.1.5 Stakeholders and Concerns

Analysis of the stakeholders and their roles involved in operation of an IoT system is
performed in this section. Roles are those of IoT service provider, IoT platform provider
(edge gateways or cloud platform), IoT unit provider and IoT service user. In case of
the HVAC monitoring scenario the HVAC maintenance company is IoT service provider
and IoT unit provider, the telco running the IoT gateways is platform provider and also
service user of the HVAC monitoring service. In case of the image analysis scenario the
company providing the image analysis service is service provider and IoT unit provider,
the smart city is platform provider and IoT unit provider and the customers of the image
analysis company are the service users. In case of the crowd sensing scenario the company
providing the crowd analysis service is service provider and IoT unit provider, the IoT
gateway provider is platform provider and the customers of the crowd analysis company
are the service users.

Each of the stakeholders has different concerns with respect to the services they
provide or use. From these concerns contract terms and constraints will be derived that
provide the base for contract definition.

17

3. Scenarios and Requirements

Figure 3.2: Stakeholders

IoT Service Users

They use services from one or more service providers either for their own needs or to
provide own enhanced composite services, e.g. access to the sensors and actors of the
HVAC equipment in the BTS scenario. The major concerns for IoT service users are:

• Service availability which defines basic information such as "service available from
9 am to 6 pm" and quality attributes such as "service available 99.9 % of the time".
Availability concerns will have to be reflected in contract terms as part of the
Quality of Service (QoS) definitions.

• Service data quality as part of QoS covers the requirements of IoT users on data
produced by services such as completeness, accuracy or consistency. They will be

18

3.1. Scenarios

used by IoT users to select from different available IoT service providers and to
ensure the QoS for their own composite services.

• Trust relationships. The IoT service users must be sure that the service is actually
provided by an authenticated provider and not faked or altered. Providers and
users will work together to provide trust, e.g. by sharing secrets, using certificates
in public key infrastructure or relying on a general reputation building mechanism.

IoT Service Providers

Provide services based on a set of IoT units, e.g. the HVAC monitoring and maintenance
service in the BTS scenario. The major concerns for an IoT service provider are:

• Control usage of services by IoT service users to balance usage requests by different
users and manage integrity of the service with respect to constraints imposed by
the IoT units where the service is built upon.

• Authorize usage of services. Only authorized users identified by the IoT service
provider, e.g. by password, API key or certificate have to be allowed use the service.
Authorization has to be coupled with fine grained access control to allow users only
access to strictly defined services provided by the IoT service provider.

• Get paid for providing the service. The IoT service provider wants to define a
payment scheme (e.g. pay per use of the service or pay a flat rate per month)
that has to be agreed with the service users and get written in a contract. In IoT
systems it will be often the case that the payments for a single service are rather
small so we have to deal with micro-payments and put them together in larger
packets.

IoT Unit Providers

They provide IoT units with a set of defined functions, e.g. the camera units in the
Images Capturing from city-wide IoT Gateways scenario. Major concerns for an IoT unit
provider are:

• Control usage of IoT units by IoT service providers to balance usage requests by
different service providers. IoT units often run on small devices / gateways with
limited bandwidth and CPU power so that e.g. the number of read requests per
minute has to be controlled carefully. Typical constraints related to usage control
are frequency of service usage (e.g. max of 10 service calls / hour), amount of data
provided by the service (e.g. max 100 KByte / day) or maximum transfer rate (e.g.
not more than 1 KB / sec).

• Authorize usage of IoT units. Only authorized service providers must be allowed
use the IoT unit. This is especially important if IoT units provide services that

19

3. Scenarios and Requirements

allow users to control elements of the IoT unit to operate actors on a real world
process, e.g. to switch off an air condition in a building when there is a shortage of
electricity supply.

• Get paid for providing the IoT unit. Similar to service providers also the IoT unit
provider wants to define a payment scheme that has to be agreed with the service
providers and get written in a contract.

IoT Gateway / Platform Providers

They run IoT units on cloud platform or on network edge elements such as gateways.
The platform provider does not care about the individual functions provided by IoT units
but runs them utilizing platform resources such as sensors, actuators, CPU power and
network resources. Major concerns for platform providers are:

• Control usage of resources by IoT units to ensure that computing and storage
resources are allocated as required by the IoT units and overall available resources
of the platform are not over committed.

• Control access to resources by IoT units so that only authorized IoT units get access
and resource allocation request conflicts between different IoT units are resolved,
e.g. access to an actuator such as a valve should be granted only for one IoT unit
at a time exclusively.

• Get Paid for usage of the resources. The IoT platform provider wants to define a
payment scheme (e.g. pay per use of the resource) that has to be agreed with the
resource users and get fixed in a contract.

3.2 Requirements
Based on the abstraction of scenarios and analysis of stakeholders we have identified
different requirements. These are control of access to services and resources, management
of resources, service and data quality, authorization and payment. We need a flexible way
to define them in our contracts. In the following section we will detail these requirements.

3.2.1 Contract Model

Contract terms should model the basic building blocks of a contract. They cover def-
initions like access control, authorization, resource usage control and payment but it
should be possible to define also arbitrary other terms in a contract. In addition the
definitions in contract terms should be reusable in different contracts. Contract templates
should provide the base for modeling of concrete contracts. They should contain all the
elements that are the same for a certain class of contracts. The basic contract model is
abstract in the sense that it is independent of a concrete IoT unit, platform or service.
But enforcement of a contract requires inter-working with the concrete implementation

20

3.2. Requirements

of an IoT unit, platform or service. Therefore it should be possible to define custom
logic in the contract model to handle implementation dependent aspects of contract
enforcement. Composition is performed when a contract for an IoT service or unit
depends on other defined contracts. The logic how the contract terms are combined
depends on the functionality of the service or units combined in the contract and therefore
should be flexibly definable in the contract model. A concrete contract for an IoT unit
or service should be based on templates and allow the definition of arbitrary additional
contract information such as contract partners, validity date or descriptions.

The requirements are detailed in Tables 3.1, 3.2, 3.3, 3.4 and 3.5.

Table 3.1: Flexible Contract Terms

ID CM-001
Title Flexible Contract Terms

Description

The contract model has to support flexible definition of contract terms
since those will differ a lot between different kinds of IoT contracts.
Definition of contract terms should be independent of a concrete contract
so that reuse of contract terms is possible.

Stakeholders Service Provider, Unit Provider, Platform Provider

Table 3.2: Flexible Contract Templates

ID CM-002
Title Flexible Contract Templates

Description
The contract model has to support flexible definition of contract templates.
They are the base for definition of contracts for specific IoT services.
A concrete contract should be built by instantiation of a contract template.

Stakeholders Service Provider, Unit Provider, Platform Provider

Table 3.3: Custom Logic for Contracts

ID CM-003
Title Custom Logic for Contracts

Description The contract model has to support flexible definition of enforcement logic
executed in a contract.

Stakeholders Service Provider, Unit Provider, Platform Provider

21

3. Scenarios and Requirements

Table 3.4: Custom Logic for Composition

ID CM-004
Title Custom Logic for Composition

Description The contract model has to support flexible definition of composition logic
executed in a contract.

Stakeholders Service Provider

Table 3.5: Flexible Contract Definition

ID CM-005
Title Flexible Contract Definition

Description

The contract model has to support definition of concrete contracts
based on contract templates. Contracts should contain additional
information such as contract validity and information about contract
partners in a flexible way .

Stakeholders Service Provider, Unit Provider, Platform Provider, Service User

To fulfill the requirements models will be defined in an object oriented approach using
JSON (JavaScript Object Notation) [43], a flexible, widely used and lightweight model.
Storage will be provided by the Node4J graph database, reusing the already existing
implementation in SALSA [44].

3.2.2 Contract Enforcement and Governance

Enforcement of contracts should be based on monitoring the actual execution of IoT
units and services. It is not required to include monitoring capabilities in the contract
definition but it should be possible to integrate the contract definition and enforcement
with existing monitoring functionalities. It should be possible to execute enforcement
logic on a concrete IoT unit or service without requiring modification of the existing IoT
unit or service. If contract terms are violated it should be possible to inform all contract
partners about the violation. If possible the enforcement logic should be able to execute
preventive actions, e.g. denying access if an access violation is detected. If enforcement
is combined with external actions, e.g. when a payment has to be done, the enforcement
logic should trigger these external actions.

The requirements are detailed in Tables 3.6, 3.7, 3.8, and 3.9.

22

3.2. Requirements

Table 3.6: Monitoring Support

ID ENF-001
Title Monitoring Support

Description The contract management system has to support integration with
existing monitoring facilities as a base for contract enforcement.

Stakeholders Service Provider, Unit Provider, Platform Provider

Table 3.7: Enforcement Logic

ID ENF-002
Title Enforcement Logic

Description The contract management system has to support provisioning and
execution of enforcement logic on IoT units.

Stakeholders Service Provider, Service User

Table 3.8: Execution of Governance Actions

ID GOV-001
Title Execution of Governance Actions

Description

The contract management system has to support execution of
governance actions. If a contract term is violated contract partners
have to be informed about it and, if available, actions to remedy
the contract violation have to taken.

Stakeholders Service Provider, Service User

Table 3.9: Payment Actions

ID GOV-002
Title Payment Actions

Description

The contract management system has to support payment of IoT
services in a flexible way. This should include simple payment
schemes such as flat fee but also advanced scenarios such as pay by
use of services.

Stakeholders Service Provider, Service User

To fulfill the requirements a contract management system has to be developed. Enforce-
ment logics applied to IoT units will reuse existing script languages such as Javascript
[45] and will be injected into IoT units using Aspect-oriented programming via AspectJ
[46]. Java and AspectJ were chosen because of its wide spread availability on platforms
(e.g. the Raspberry PI used in the performance evaluation) and support for IoT by major
development organizations such as Eclipse [47], [48].

23

3. Scenarios and Requirements

3.2.3 Performance

Contract enforcement is an add-on to the normal operation of the IoT unit or service.
Therefore it should have as less influence on the operation of the IoT unit or service as
possible. Especially we have to consider cases where a high number of events is processed
locally on the IoT unit. In this case also the enforcement has to be provided locally to
minimize impact on performance of the IoT unit.

Table 3.10: Performance of Enforcement

ID PERF-001
Title Performance of Enforcement

Description
Enforcement of contract terms should have as minimal impact on IoT
unit performance as possible. Especially it is desired to execute
enforcement locally on the IoT unit.

Stakeholders Service Provider, Unit Provider

3.2.4 Integration

The contract management and enforcement is only a component in a possibly large
deployment of existing IoT units and services. Therefore it should be possible to integrate
the contract management and enforcement with standard technologies into existing IoT
units and services.

Table 3.11: Integration to IoT Unit Management Platforms

ID INT-001
Title Integration to IoT Unit Management Platforms

Description
The contract management system should support integration into
existing IoT unit management platforms (e.g. SALSA) via standard web
service interfaces.

Stakeholders Service Provider, Service User

3.2.5 Security

Results of the contract enforcement and governance have to be stored in a tamper proof
way and made available to all authorized contract partners but access by anyone not
authorized should be denied. Results of governance should be stored immutable so that
no one can dispute the application of a certain enforcement action. In addition the whole
system should work in an environment where there is no trust between contract partners
and there is no central authority of trust available.

24

3.3. Use Cases

Table 3.12: Enforcement Logging

ID SEC-001
Title Enforcement Logging

Description
The contract management system should support persisting logs of
enforcement and governance actions in way that make them immutable
and provable by all contract partners.

Stakeholders Service Provider, Service User

3.3 Use Cases
Based on the high level requirements we go into more detail by describing the system
use cases. Contracts are built from Contract Templates where each contract template
holds a set of Contract Terms that hold the actual conditions defined for the contract
(e.g. allow access to a certain unit or promise to deliver a certain QoS) [36], [14], [49].
Contract terms are linked to Scripts that contain executable logic defined in Javascript
[45]. Scripts solve the problem that executable enforcement logic that depends on the
actual implementation of the concrete IoT unit and on the requirements defined in the
contract terms can be handled in a uniform way by the framework. Scripts are injected
to IoT units and executed on the unit to enforce contract terms. As IoT service provider

Figure 3.3: Use Cases

we subsume all entities providing a service comprising IoT unit providers, IoT platform
providers and IoT application providers. Similar as IoT service users we subsume IoT
unit, platform and applications users.

25

3. Scenarios and Requirements

• IoT service providers create the basic entities in the contract management system
related to their services, such as contract terms, contract templates and enforcement
logic.

• IoT service providers together with IoT service users create a specific contract
based on a contract template.

• IoT service providers register their IoT units.

• IoT service users discover IoT units suitable for their needs.

• IoT service providers attach agreed contracts to the IoT units.

• Both IoT service providers and IoT service users enforce the contract.

3.3.1 Create Script

ID UC-001
Title Create Script
Stakeholder (s) IoT Service Provider
Preconditions none

Scenario
1. Write script
2. Call web service to insert script to contract management
system

Postcondition script persisted in database

Exceptions
Script with same name already existing
Script code not valid
In both cases an error is returned to the caller

3.3.2 Create Contract Term

ID UC-002
Title Create Contract Term
Stakeholder(s) IoT Service Provider
Preconditions Scripts created, if they are referenced in the contract term

Scenario
1. Write contract term as JSON object
2. Call web service to insert contract term to contract management
system

Postcondition contract term persisted in database

Exceptions Contract term with same name already existing
In this case an error is returned to the caller

26

3.3. Use Cases

3.3.3 Create Contract Template

ID UC-003
Title Create Contract Template
Stakeholder(s) IoT Service Provider
Preconditions Set of contract terms available

Scenario
1. Write contract template as JSON object
2. Call web service to insert contract template to contract management
system

Postcondition contract template persisted in database

Exceptions Contract template with same name already existing
In this case an error is returned to the caller

3.3.4 Create Contract

ID UC-004
Title Create Contract
Stakeholder(s) IoT Service Provider, IoT Service User
Preconditions Contract template available

Scenario
1. Service user and service provider agree on contract terms
2. Write contract as JSON object
3. Call web service to insert contract to contract management system

Postcondition contract persisted in database

Exceptions Contract with same name already existing
In this case an error is returned to the caller

3.3.5 Register IoT Unit

ID UC-005
Title Register IoT Unit
Stakeholder(s) IoT Service Provider
Preconditions none

Scenario
1. Write unit registration as JSON object
2. Call web service to insert unit registration to contract
management system

Postcondition IoT unit registered in database

Exceptions IoT unit with same name already existing
In this case an error is returned to the caller

27

3. Scenarios and Requirements

3.3.6 Discover IoT Unit

ID UC-006
Title Discover IoT Unit
Stakeholder(s) IoT Service User
Preconditions IoT units registered

Scenario 1. Write unit discovery command as JSON object
2. Call web service to query unit registration

Postcondition IoT unit returned

Exceptions No IoT found for query
In this case an error is returned to the caller

3.3.7 Attach Contract to IoT Unit

ID UC-007
Title Attach Contract to IoT Unit
Stakeholder(s) IoT Service Provider
Preconditions IoT unit registered

Scenario
1. Write contract attachment as JSON object
2. Call web service to insert contract attachment to contract
management system

Postcondition Contract attached to IoT unit

Exceptions Contract already attached to IoT unit
In this case an error is returned to the caller

3.3.8 Enforce Contract

ID UC-008
Title Enforce Contract
Stakeholder(s) IoT Service User, IoT Service Provider
Preconditions IoT unit with Contract attached

Scenario
1. Receive contract enforcement message
2. Query contract management system for enforcement logs
3. Execute appropriate actions to enforce contract

Postcondition Contract enforced

Exceptions No enforcement data available
In this case an error is returned to the caller

28

CHAPTER 4
Contract Specification and

Composition

4.1 Contract Specification

Based on the generic contract data model described in Chapter 3 which is based on
existing work in electronic contracts [49], data contracts [38] and policy control [30] we
will define now a set of concrete contract terms used in IoT contracts.

4.1.1 Contract Elements for IoT

A contract requires definition of the items that are contracted, the contract parties and
the related terms of the contract and is supported by a set of meta-data. IoT specific
contract terms such as access rights or service quality are derived from the analysis of
scenarios, stakeholders and their concerns. In addition general contract elements such as
contract partner definition and meta-data are added for a complete contract definition.
In the following the main focus is on IoT specific contract elements.

Service Description

As an IoT service we denote the functionality of an IoT unit or a set of IoT units provided
to other IoT services or IoT users. IoT Services are the contracted items. IoT units are
connected to sensors and actuators. Sensors read values from a real world process (e.g.
temperature, energy consumption and control settings in heating and air conditioning
system) as a set of time-stamped data. Actuators interact with a real world process by
changing the values of physical elements (e.g setting the heating or cooling controls of an
air conditioning system) by application of commands.

29

4. Contract Specification and Composition

Figure 4.1: Contract Elements

Access Rights

They allow or deny to access a certain part of a service. Access rights can be further
restricted with respect to time (access is only allowed in defined time intervals and
not always), bandwidth and frequency (amount of services provided per time unit, e.g.
max. 1 GB/month or 100 commands/day) or dependent on system state (e.g. not in an
emergency condition).

• Data Access: allows to get a set of time-stamped data from a service.

• Control Access: allows to send a command to a service and modify its state or
behavior.

Service Quality

It is bound to provided services, typical measures of service quality [20], [21], [38] are:

• Availability: required uptime for the service (e.g. 99.9 % of the time with maximum
unplanned downtime of 2 hours / year).

• Completeness: ratio of missing values to the number of delivered values, e.g. a
smart metering service has to deliver 96 meter reads per day, one each 15 minutes.
If one read is missing then completeness is 98.9 %.

30

4.1. Contract Specification

• Timeliness: age of values, e.g. a monitoring service for a machine has to deliver a
condition report at least every day.

• Accuracy: indicates the accuracy of the data, e.g., a voltage measured by a sensor
is required to have a measurement error below 0.1 %

• Consistency: indicates the degree to which a value of an attribute adheres to defined
constraints, e.g., if a value lies in certain bounds

Payment

Determines how much a contract partner using a service has to pay for service usage
to the provider of the service. Payment properties include payment conditions such
as postpaid or prepaid, time allowed to pay a bill or penalties in case of non-payment.
Pricing defines a mapping of services to priced items (e.g. pay per individual use, pay a
flat fee per month) and the price applied.

Contract Partners

They are (legal) entities participating in a contract. There is no IoT specific definition
required to describe contract partners and existing models can be applied. Contract
partners might be users or organizations. Both share properties such as name, address or
email.

Role

Describes who owns the services and is able to grant rights on them. Services will be
provided by a contract partner and used by a set of other contract partners. A contract
partner might also be on one hand user of a service and on the other hand (when he has
the right to resell the service) provider of a service.

Meta-data

They cover information about the contract itself such as creator, date, language, version,
validity and license. Meta-data are not specific for the IoT domain and reuse of existing
meta-data models is possible and suggested.

4.1.2 Specification of Contracts

Contracts terms and constraints associated with them are dependent on the actual IoT
service and units targeted by the contract, e.g. a service such as the maintenance of
heating and air conditioning will require different contract terms than a service for crowd
surveillance in a smart city. Therefore the set of contract terms cannot be determined in
advance in the contract definition framework and a layered approach that allows to build
contracts in a flexible way is applied.

31

4. Contract Specification and Composition

• A generic model defines the entities required to build contract templates and
instances. It holds contracts terms, constraints attached to the terms and parameters
required to instantiate the terms and constraints.

• A contract template is built using the generic model and defines common terms of a
contract, e.g. that access rights are used in the contract or that a throughput limit
is to be applied. Enforcement of constraints is implemented by attaching scripts
that are evaluated at runtime when constraint enforcement is performed.

• A contract is built on top of the contract template defining concrete values of the
contract, e.g. throughput max. 100 KB / hour as well as contract partners and
contract items which bind the contract to a specific set of IoT units and their
services.

• A script is a template written in Javascript for code to be executed on the IoT
unit to check and enforce contract terms. Variables in the template referring to
constraints in contract terms are replaced with the value defined in the contract
when it is attached to an IoT unit. The script code defines how a certain constraint
is enforced. As an example a script to enforce access rights checks the entity to
be accessed against a list of allowed entities. The list of allowed entities is not
defined directly in the script but as a reference to a constraint. Therefore it is set
to the concrete value defined for this constraint when an IoT unit is assigned to
the contract. In this way scripts can be reused for different contracts terms and
contracts.

Figure 4.2: Data Model

32

4.2. Composition of Contracts for IoT Services

IoT specific contract elements such as service description, access rights, service quality
and payments are mapped to enforceable contract terms. General contract elements are
mapped to contract, contract partner and meta-data entities. It is based on similar data
models for IoT policies [30] or data contracts [38] but uses an arbitrary user definable set
of contract terms instead of a fixed set. In addition it allows to define the contract term
constraints and the logic required to enforce the constraints.

4.2 Composition of Contracts for IoT Services

Services are described in an abstract model where each service running on an IoT unit is
denoted by a black box receiving inputs from units or other services on input ports and
delivering results to users or other services on output ports. Services are composed by
connecting output ports of one service to input ports of another service. They can be
combined in a pipeline, a tree or, in general a directed acyclic graph.

We assume that contracts are assigned to each service. When the same constraint
is applied to a higher level service as to the connected lower level services, the concrete
value assigned to the constraint can be derived by composition of the concrete values
of the connected lower level services. This procedure can be applied recursively until a
base service is reached. Composition of in real world cases requires knowledge of the
service function. A service B that combines several input services A1 to An may use
the input services either in a disjunctive way (only one of the input services is required
so that the combined service can work) or in a conjunctive way (all input services to
the combined service have to be available). In the following we look at the different IoT
specific contract terms with respect to composition.

Figure 4.3: IoT Service Composition Abstract Model

33

4. Contract Specification and Composition

4.2.1 Composition of Access Rights

Access rights are related to components of a single service (e.g. access to a sensor
connected to an IoT unit providing a base service) and are not applicable to composition
since each contract is only responsible to control access rights for its own components.

4.2.2 Composition of Service Quality

We follow the ontologies described in [50] and [51] to define elements of service quality.
Based on the concepts in these works we propose following simple approach for the
composition of service quality contract terms. The combination is dependent of the
type of service quality (e.g. availability or timeliness) and the type of combination
(conjunctive or disjunctive). Availability as an example is either is calculated as avail(B) =
min(avail(A1), avail(An)) in the disjunctive case or as avail(B) = avail(A1)∗avail(An)
in the conjunctive case. Similar formulas for other types of service qualities are given in
"QoS-Aware Composition of Adaptive Service-Oriented Systems" [52] .

4.2.3 Composition of Payment

Payment contract terms of composed services have their own payment and pricing
model independent of payment contract terms for services used in the composition (e.g. a
temperature reading service might charge 10c for 100 reads but the combined temperature
control service might simple charge 10 EUR / month).

4.2.4 Composed Service Example

Given the HVAC example in the scenarios we can have:

• a temperature sensing IoT unit that provides a service to read the BTS temperatures.

• an heating control IoT unit that provides a service to turn the heating on and off.

• an air condition control IoT unit that provides a service to turn the air condition
on and off.

• an HVAC control IoT unit that provides a service to switch on heating resp. air
conditioning to maintain a desired temperature.

34

4.2. Composition of Contracts for IoT Services

Figure 4.4: Example IoT Service using Composition

We use JSON (Javascript Object Notation) format to represent the contracts and store
them in the contract database. A sample contract for the temperature sensing IoT unit
in JSON looks like:

Listing 4.1: Temperature Sensing IoT Contract
{

"name " : " TemperatureSensingContract " ,
" ContractItem " : " TemperatureSens ingService " ,
" ContractPartners " : { " Provider " : " t e l c o , " User " : HVAC"} ,
" ContractTerms " : [

" AccessRights " :
{"name " : " TempSensor " ,
" c on s t r a i n t " : { " name " : " NrOfReads " , " d e s c r i p t i o n ":" <1/min "}

} ,
" Se rv i c eQua l i ty " :

35

4. Contract Specification and Composition

{"name " : " Av a i l a b i l i t y " ,
" c on s t r a i n t " : { " name " : " Average " , " d e s c r i p t i o n " : " 99 . 9%"}

}
"Payment " :

{"name " : " UsageFee " ,
" c on s t r a i n t " : { " name " : " Pr i ce " , " d e s c r i p t i o n " : " 1 c/ read "}

}
]

}

For the composed service of the HVAC controller the contract in pseudo code looks like.

Listing 4.2: HVAC Controller IoT Contract
{

"name " : " HVACControllerContract " ,
" ContractItem " : " HVACService " ,
" ContractPartners " : { " Provider " : " t e l c o , " User " : "HVAC"} ,
" ContractTerms " : [
" Se rv i c eQua l i ty " :

{"name" : " Av a i l a b i l i t y " ,
" c on s t r a i n t " :

{"name " : " Average " ,
" d e s c r i p t i o n " : " @ComposedBy

(TemperatureSensingContract ,
A i rCond i t i onContro l l e rContract) "

}
"Payment " :

{"name " : " UsageFee " ,
" c on s t r a i n t " : { " name " : " Pr i ce " , " d e s c r i p t i o n " : " 5EUR/month "}

}
]

}

36

CHAPTER 5
Governance

5.1 Principles of Governance
According to a definition given in [53] "IT Governance is to provide leadership, organiza-
tional structures and processes to ensure that an organization’s IT sustains and extends
the organization’s strategies and objectives". Within our framework for contract definition
and governance for IoT this means to ensure that contract terms defined for IoT units
in a contract and agreed between the contract parties are fulfilled when the units are
running and performing their task. Enforcement is the process that supports contract
fulfillment by monitoring and checking contract terms for violations. It includes following
parts:

• Real-time monitoring of observable attributes of the IoT unit that correspond to
contract terms and constraints defined in these terms.

• Supervision to detect violations of constraints.

• Information of all involved contract parties on the constraint violation and record
it in a way agreed by the contract partners.

• Simple constraint violations can be treated locally on the IoT unit (e.g. in case of
an not allowed access it can be denied), more complex ones will require intervention
by a contract partner (e.g. reconfiguration of the IoT units in case performance or
availability terms are violated).

5.2 Enforcement of Contracts
In order to enforce a contract term we have to identify observable and measurable service
or resource attributes. These attributes are monitored continuously to identify if a

37

5. Governance

contract term is fulfilled or violated. In case of violation actions to enforce the contract
term are performed.

5.2.1 Enforcement of Access Rights

Basic Access Rights

Enforcement of basic access rights, see definition in Chapter 4.1.1, requires to identify the
service being accessed as well as the rights of the accessing entity. A service is identified
by a unique name, and each service has a provider defined in the contract. The provider
grants access rights (read, write, execute) to service users. Observable attributes are
the identifier of the requested service and the identity of the contract partner requesting
the service. Monitoring can be performed on message level via a proxy intercepting
the message and analyzing the content depending on the message protocol (e.g. via
XSLT for XML messages) or on service level by instrumenting the service (e.g. via
AOP for Java based services). Enforcement then, based on the access rights defined
in the contract, either allows or denies access. Listing 5.1 from the BTS maintenance
scenario, see Chapter 3.1.1 shows part of a contract defined in JSON [43] that gives
the maintenance service access to the temperate sensor with ID=114 to measure the
temperature in the server room.

Listing 5.1: BTS Contract with Basic Access Rights
{

"name " : " BTSMaintenanceService " ,
" cont rac t " : {
"name " : " BTSMaintenanceContract " ,
" pa r tne r s " : [{

"name " : "TelcoOpCo " ,
" r o l e " : " p rov ide r "

} ,{
"name " : "HVACMaintCo" ,
" r o l e " : " user "

}] ,
" i tems " : [{

"name " : " BTSServerRoomTemperatureService "
}] ,
" parameters " : [{

"name " : " SensorID " ,
" datatype " : " S t r ing " ,
" d e s c r i p t i o n " : " a l lowed senso r a c c e s s " ,
" va lue " : "114"

} , {
"name " : " AccessRight " ,
" datatype " : " S t r ing " ,

38

5.2. Enforcement of Contracts

" d e s c r i p t i o n " : " a l lowed ac c e s s r i g h t " ,
" va lue " : " read "

}]
}

Time Based Access Rights

In addition to basic access rights a set of time constraints allows to control the access.
They are based on a set of time windows together with definition of repetition (daily,
weekly or monthly, weekend or workday). It could be allowed e.g. to access a sensor
only between 8 pm and 6 am or on weekends. Monitoring of time is only requiring a
trigger when a service is requested. An example of for such a contract term from the
BTS scenario is shown in listing 5.2.

Listing 5.2: BTS Contract Term for Time based Access Rights
{

"name " : " BTSServerRoomTemperatureAccess " ,
" type " : " AccessRight " ,
" c o n s t r a i n t s " : [{

"name " : " SensorAccessAtTime " ,
" en fo rcementScr ipt " : " AccessRightCheckWithTime " ,
" d e s c r i p t i o n " : " check ac c e s s to the s enso r at time " ,
" parameters " : [{

"name " : " SensorID " ,
" datatype " : " S t r ing "

} , {
"name " : "From" ,
" datatype " : " Date "

} , {
"name " : "To" ,
" datatype " : " Date "

}]
}]

}

An example for the core logic of a script to check access rights with time constraints is
given in listing 5.3. The contract terms and constraints are independent of a concrete IoT
unit but the enforcement scripts that work by instrumentation of the IoT unit program
code are dependent on the concrete unit and have to be developed specific for each
IoT unit code. The values starting with @ are replaced with concrete values of the
constraint parameters when the script is loaded to the IoT unit. The variables starting
with underscore transport information to the governance controller when a contract
violation is detected.

39

5. Governance

Listing 5.3: Script for Time based Access Rights Enforcement
var sensorID = @SensorID ;
var from = @From;
var to = @To;
var t s = now() ;
i f ((! Boolean (dataPoint . getName () == SensorID)) | |

(t s < from) | |
(t s > to)) {
_reason=’ABORT’ ;
_log=’ a c c e s s not al lowed ’ ;

}

Volume or Bandwidth Based Access Rights

In addition to basic access rights only a certain volume of requests with a defined time
frame or consumption of a certain bandwidth are allowed (e.g. not more than 10 requests
per hour or maximum bandwidth of 10 KB / sec). If a constraint is violated further access
to the service is denied for the defined time. Monitoring of volume and bandwidth is
performed by counting the number of service requests and the volume of data transferred.
An example of for such a contract term from the BTS scenario is shown in listing 5.4.

Listing 5.4: BTS Contract Term for Bandwidth based Access Rights
{

"name " : " BTSServerRoomTemperatureAccess " ,
" type " : " AccessRight " ,
" c o n s t r a i n t s " : [{

"name " : " SensorAccessWithBandwidth " ,
" en fo rcementScr ipt " : " AccessRightCheckWithBandwidth " ,
" parameters " : [{

"name " : " SensorID " ,
" datatype " : " S t r ing "

} , {
"name " : "MaxDataAmount " ,
" datatype " : " I n t eg e r " ,
" un i t : "KB"

} , {
"name " : " DataAmountInterval " ,
" datatype " : " I n t eg e r " ,
" un i t : " minutes "

}]
}]

}

40

5.2. Enforcement of Contracts

An example for the core logic of a script to check access rights with bandwidth constraints
is given in listing 5.5. The scratchpad is a map that allows to store data from previous
invocations of the enforcement script so that decisions based on historical data can be
made as in the example where a the amount of data sent with a time interval is checked.

Listing 5.5: Script for Bandwidth based Access Rights Enforcement
var sensorID = @SensorID ;
var maxDataAmount = @MaxDataAmount ;
var dataAmountInterval = @DataAmountInterval ;
var t s = now() ;
var s i z e = dataPoint . getMessageLength () ;

f unc t i on calcDataAmount (scratchpad , dataAmountInterval) {
// c a l c u l a t e s the data amount per i n t e r v a l based on

scratchpad data
var actualDataAmount = 0 ;

f o r (var [key , va lue] o f scratchpad) {
i f (key > t s − dataAmountInterval) {

actualDataAmount += value
} e l s e {

scratchpad . remove (t s) ;
}

}
re turn actualDataAmount ;

}

scratchpad . put (ts , s i z e) ;
i f ((! Boolean (dataPoint . getName () == SensorID)) | |

(calcDataAmount (scratchpad , dataAmountInterval) >
maxDataAmount)) {

_reason=’ABORT’ ;
_log=’ a c c e s s not al lowed ’ ;

}

System Utilization based Access Rights

Instead of constraining the number of service requests sent or the data volume used it
is also possible to use constraints based on global parameters of utilization, e.g. that
access is only allowed if CPU or network load is below a certain threshold. Monitoring of
such global parameters can be realized by interaction with the operating system or the
network management system and is independent of specific services. An example of for
such a contract term from the BTS scenario is shown in listing 5.6.

41

5. Governance

Listing 5.6: BTS Contract Term for System Utilization based Access Rights
{

"name " : " BTSServerRoomTemperatureAccess " ,
" type " : " AccessRight " ,
" c o n s t r a i n t s " : [{

"name " : " SensorAccessWithSystemUti l i zat ion " ,
" en fo rcementScr ipt " : " AccessRightCheckWithSystemUti l izat ion

" ,
" d e s c r i p t i o n " : " check ac c e s s to the s enso r with system

u t i l i z a t i o n c on s t r a i n t s " ,
" parameters " : [{

"name " : " SensorID " ,
" datatype " : " S t r ing "

} , {
"name " : "CPULoad" ,
" datatype " : " I n t eg e r " ,
" un i t : " percent "

}]
}]

}

An example for the core logic of a script to check access rights with system utilization
constraints is given in listing 5.7.

Listing 5.7: Script for System Utilization based Access Rights Enforcement
var sensorID = @SensorID ;
var maxCPULoad = @MaxCPULoad;

func t i on getCPULoad () {
// ge t s the CPU loads from the opera t ing system
. . .

}

i f ((! Boolean (dataPoint . getName () == SensorID)) | |
(getCPULoad () > maxCPULoad)) {
_reason=’ABORT’ ;
_log=’ a c c e s s not al lowed ’ ;

}

42

5.2. Enforcement of Contracts

System State based Access Rights

In this case access constraints are dependent on global parameters but those parameters
are depending on state variables of the service, e.g. access is only allowed in normal
operating mode but not in an emergency mode. Access to the operating mode has to be
provided by an API to enable such a constraint check. An example of for such a contract
term from the BTS scenario is shown in listing 5.8.

Listing 5.8: BTS Contract Term for System State based Access Rights
{

"name " : " BTSServerRoomTemperatureAccess " ,
" type " : " AccessRight " ,
" c o n s t r a i n t s " : [{

"name " : " SensorAccessWithSystemState " ,
" en fo rcementScr ipt " : " AccessRightCheckWithSystemState " ,
" d e s c r i p t i o n " : " check ac c e s s to the s enso r with system

s t a t e c on s t r a i n t s " ,
" parameters " : [{

"name " : " SensorID " ,
" datatype " : " S t r ing "

} , {
"name " : " SystemState " ,
" datatype " : " enumeration "

}]
}]

}

An example for the core logic of a script to check access rights with system state constraints
is given in listing 5.9.

Listing 5.9: Script for System State based Access Rights Enforcement
var sensorID = @SensorID ;
var systemState = @SystemState ;

f unc t i on getSystemState () {
// reads the system s t a t e from the IoT uni t

}

i f ((! Boolean (dataPoint . getName () == SensorID)) | |
(getSystemState () != NORMAL_OPERATION)) {
_reason=’ABORT’ ;
_log=’ a c c e s s not al lowed ’ ;

}

43

5. Governance

5.2.2 Enforcement of Quality of Service

Depending on the quality of service term a comparison based on data returned by the
service and the constraints defined in the contract is performed. If a constraint is violated,
enforcement writes a log entry and raises an alarm. Execution of corrective actions, e.g.
to assign more processing resources or switch to backup system is not in scope of this
work.

Availability

Monitoring requires access to the services used and calculating the same criteria as
defined in the contract term. E.g. if in the contract it is stated that a service availability
of 99% for the last hours is guaranteed, all successful and unsuccessful service accesses are
traced and the resulting availability is calculated and compared to the constraints defined
in the contract. Results of successful and failed reads are stored in the scratchpad and
then the actual availability is calculated for the desired interval. If the actual availability
is less than the required availability a message is sent to the governance controller to
notify the contract violation.

Listing 5.10: Script for Availability Check
var r e q u i r e dAva i l a b i l i t y = @Requ i redAva i lab i l i ty ;
var a v a i l a b i l i t y I n t e r v a l = @Ava i l a b i l i t y I n t e r v a l ;
var t s = now() ;

f unc t i on c a l cAv a i l a b i l i t y () {
// i t e r a t e over a l l timestamps in scratchpad with in the

a v a i l a b i l i t y I n t e r v a l
// sum the number o f s u c c e s s e s and f a i l u r e s
// return the ac tua l a v a i l a b i l i t y
var s u c c e s s e s = 0 ;
var f a i l u r e s = 0 ;
f o r (var [key , va lue] o f scratchpad) {

i f (key > t s − a v a i l a b i l i t y I n t e r v a l) {
i f (va lue == " suc c e s s ") {

s u c c e s s e s += 1 ;
} e l s e {

f a i l u r e s += 1
}

} e l s e {
scratchpad . remove (t s) ;

}
}
i f (s u c c e s s e s == 0) return 0 ;
i f (f a i l u r e s == 0) return 100 ;

44

5.2. Enforcement of Contracts

re turn (s u c c e s s e s / f a i l u r e s) ∗ 100 ;
}

i f (datapo int . ge tSta tus () == OK) {
scratchpad . put (ts , " s u c c e s s ") ;

) e l s e {
scratchpad . put (ts , " f a i l u r e ") ;

}

i f (c a l cAv a i l a b i l i t y () < r e qu i r e dAva i l a b i l i t y) {
_reason=’NOTIFY’ ;
_log=’ a v a i l a b i l i t y v i o l a t ed ’ ;

}

Completeness

The ratio of the number of received values to the number of expected values is calculated
and compared to the constraints defined in the contract. The script works similar to the
one for availability but counts the number of successful read values and compares them
with the required number of read values.

Listing 5.11: Script for Completeness Check
var requiredCompleteness = @RequiredCompleteness ;
var comp l e t ene s s In t e rva l = @CompletenessInterval ;
var t s = now() ;

f unc t i on ca lcCompleteness () {
// i t e r a t e over a l l timestamps in scratchpad with in the

comp l e t ene s s In t e rva l
// sum the number o f s u c c e s s e s
// return the ac tua l completeness
var s u c c e s s e s = 0 ;
f o r (var [key , va lue] o f scratchpad) {

i f (key > t s − a v a i l a b i l i t y I n t e r v a l) {
i f (va lue == " suc c e s s ") {

s u c c e s s e s += 1 ;
}

} e l s e {
scratchpad . remove (t s) ;

}
}
re turn su c c e s s e s ;

}

45

5. Governance

i f (datapo int . ge tSta tus () == OK) {
scratchpad . put (ts , " s u c c e s s ") ;

)

i f (ca lcCompleteness () < requiredCompleteness) {
_reason=’NOTIFY’ ;
_log=’ completeness v i o l a t ed ’ ;

}

Timeliness

Age of the data is computed from timestamps received in the data and the result is then
compared to the contract terms as shown in the following listing.

Listing 5.12: Script for Timeliness Check
var r equ i r edT ime l i n e s s = @RequiredTimeliness ;
var t s = now() ;

i f (now() − datapo int . getTimestamp () > requ i r edT ime l i n e s s)
_reason=’NOTIFY’ ;
_log=’ t ime l i n e s s v i o l a t ed ’ ;

}

Accuracy

It has to be delivered by the data source as meta-data and is then compared to the
contract terms as shown in the following listing.

Listing 5.13: Script for Accuracy Check
var requiredAccuracy = @RequiredAccuracy ;
var t s = now() ;

i f (datapo int . getAccuracy () < requiredAccuracy)
_reason=’NOTIFY’ ;
_log=’ accuracy v io l a t ed ’ ;
}

Consistency

Data returned by the service is checked according to consistency checking terms in the
contract, e.g. values must be between a min and max value as shown in the following
listing.

46

5.2. Enforcement of Contracts

Listing 5.14: Script for Consistency Check
var min = @RequiredMin ;
var max = @RequiredMax ;

i f (datapo int . getValue () < min | | datapo int . getValue () > max) {
_reason=’NOTIFY’ ;
_log=’ con s i s t en cy v io l a t ed ’ ;

}

5.2.3 Enforcement of Payment

Contract terms related to payment enable pay-per-use functionality. Usage of a certain
service as defined in the contract requires the user to pay a certain amount, either in
advance or automatically deducted from an account. The actual calculation of the price
for a certain service is out of scope of this work (and normally done by external charging
and billing systems) but enforcement of the payment is an interesting topic turning the
IoT contract into a smart contract that automatically executes the payment transaction
when the payment enforcement constraint is fulfilled, e.g. pay a certain amount after 100
reads from a sensor.

5.2.4 Script Language

Scripts, see Chapter 4.1.2, execute contract enforcement logic. Such a logic is not only
dependent on the type of constraint but also on the concrete implementation of the
corresponding functionality in the IoT unit, e.g. to check access rights in an IoT unit
we have to know how accesses in the IoT unit are handled. We considered following
alternatives:

• Direct implementation of enforcement logic in the IoT unit. This would imply that
our framework is only applicable to IoT units containing the enforcement logic and
it is restricted to the type of constraints handled by the predefined logic.

• Provide a library of enforcement logics in the contract framework. This would also
imply that the type of constraints that can be used in the contract is limited and it
is not possible to add contract terms with arbitrary constraints.

• Define and implement an own language for definition of enforcement logic. This
implies that each IoT unit has to implement execution of the logic written in
the own language. In addition the person defining the contracts has to learn the
language.

• Use a well-known language for definition of enforcement logics and provide an
interpreter for execution of the logic on the IoT unit.

47

5. Governance

We decided to use Javascript, which is widely known as programming language, to define
the enforcement logics and use the open source Rhino Javascript interpreter to execute
them on the IoT unit. The Rhino interpreter is injected via Aspect-oriented programming
into the IoT unit so that no change of the base code of the unit is necessary.

5.3 Contract Governance Implementation
Contracts are built from contract templates composed of contract terms. Each contract
term covers a certain aspect of a contract, e.g. access rights, service quality or payment.
Enforcement of contract terms is based on scripts that are assigned to contract terms
and executed on IoT units.

5.3.1 Components

The contract definition and governance framework contains following components:

• Contract Repository holding contracts, contract terms, contract templates and
scripts.

• Governance Controller which retrieves contract information and manages attach-
ment of contracts to IoT units.

• Governance Enforcement which retrieves enforcement scripts from the governance
controller and executes them locally on the IoT unit.

• IoT Units running on top of an IoT unit runtime system.

5.3.2 Scenario

The following scenario is based on the diagram given in Fig. 5.1.

• Step 0: Based on existing contract terms and contract templates a contract between
IoT service provider and IoT service user is negotiated, defined and created in the
contract repository. The contract holds concrete values of all enforcement script
parameters that are defined in the contract.

• Step 1: Service user checks the list of available IoT units via a REST web service
resource of the governance controller. This requires that all IoT units register with
the governance controller. As an alternative the IoT unit execution environment
itself provides such a registry function or the list of IoT units is simply known in
advance and agreed by service user and service provider.

• Step 2.1: Service user calls the REST web service contract assignment resource of
the governance controller to attach a contract to an IoT unit.

48

5.3. Contract Governance Implementation

Figure 5.1: Governance Architecture

• Step 2.2: The governance controller fetches the contract information from the
contract repository (scripts and parameters defined in the contract) and builds the
concrete enforcement scripts including values for all parameters.

• Step 3: The enforcement component injected into the IoT unit fetches the en-
forcement scripts and executes them when triggered, e.g. every time a message is
received or periodically for non message related contract terms.

5.3.3 Example

As an example we take the scenario of monitoring and controlling HVAC systems in
Base Transceiver Stations (BTS). The company that runs the HVAC maintenance as IoT
service user requires access to a certain set of data points of each BTS for a minimum
amount of times per day whereas the operator of the BTS as an IoT service provider
wants to ensure that only the defined set of data points are accessed and the maximum
amount of data accesses per day is not exceeded. The contract between the maintenance
company (called MAINT) and the BTS operator (called BTSOP) includes contract terms
that manage the access and amount of requests for each managed BTS unit. The contract

49

5. Governance

terms will be enforced by scripts that are attached to the contract terms and executed
on the IoT unit connected to the BTS. Parameters of the scripts (in the scenario the set
of data points and the amount of allowed accesses) are defined in the contract terms, the
concrete values of the parameters are defined when a contract is built.

5.3.4 Governance Controller

Its task is to manage attachment of IoT contracts to IoT units, make enforcement scripts
available to be loaded and executed on the IoT units, store contract violations and execute
payments. When a contract is attached information required for contract enforcement
is loaded from the IoT contract data model managed by SALSA and placeholders of
parameters in the script code are replaced with actual values from the contract according
to following pseudo-code:

Listing 5.15: Replace Placeholders in Contract Template
1 ServiceTemplate = fetchServ i ceTemplate (Unit . ServiceTemplate)
2 ContractTemplate = fetchContractTemplate (ServiceTemplate)
3 FOR EACH ContractTerm IN ContractTemplate
4 ContractTerm = fetchContractTerm (ContractTerm)
5 FOR EACH Constra int IN ContractTerm
6 Sc r i p t = f e t c hS c r i p t (ContractTerm . Sc r i p t)
7 FOR EACH Parameter IN Constra int . Parameters
8 r ep l a c e p l a c eho ld e r in Sc r i p t with ac tua l cont rac t va lue
9 END FOR

10 END FOR
11 END FOR

5.3.5 Recording Contract Violations via Blockchain

We need to be able to record information about contract violations in a way that records
are immutable and verifiable by both service user and service provider. A smart contract
running on the Ethereum blockchain is used to store a fingerprint of the contract violation
information. Both service user and service provider have an account (an entity able to
hold units of a cryptographic currency) on the blockchain. When a contract violation is
reported, a transaction is performed on the blockchain. As soon as the transaction is
recorded in a block and the block is signed and accepted by the blockchain it is immutable
and distributed between all nodes of the blockchain. Both service provider and service
user can inspect the blockchain and verify that the transaction occurred. Following steps
are performed to setup and use the smart contract in enforcement, see Fig. 5.2.

• Each of the partners involved in the contract creates an account on the blockchain

• When the contract is attached to the IoT unit by the governance controller, contract
data and scripts are fetched from the contract repository and a smart contract

50

5.3. Contract Governance Implementation

Figure 5.2: Logging and Payment via Blockchain

is created. It contains the account id’s of the partners and a fingerprint of the
contract and its enforcement scripts. Any partner can then at any time verify the
contract in the repository using the fingerprint.

• When a contract violation is observed the governance controller sends a message
containing a fingerprint of the log to the smart contract. Any partner can then
verify the logs recorded by the governance controller using the fingerprint.

5.3.6 Enforcement of Payments via Blockchain

In a similar way payments due to contract terms are executed via the smart contract
by generating a transaction sending a certain amount of coins used in the blockchain
from one partner account to the other. Either the cryptographic currency used in the
blockchain (e.g. Ether in Ethereum [54]) is directly used for payment or an own coin is
created in the smart contract. Creating an own coin has the advantage that its value is
independent of the varying exchange rate of the blockchain currency but the supplier
of the smart contract has to provide exchange of the own coin to a public blockchain
currency or a standard real world currency. Transactions on the blockchain require

51

5. Governance

transaction costs to be paid in a small amount of the blockchain currency (in Ethereum
this is called "Gas" and has a conversion rate to Ether). Transaction fees in the blockchain
serve the purpose to give reward to the "miners", those that use their computing power
to put transactions into blocks and write them to the blockchain. For transactions with
a very small value (called micro transactions), e.g. when data from individual sensor
data feeds of an IoT Unit would be paid, the transaction fees become large compared to
the value of the transaction. In this case an hybrid approach could be used that handles
such micro transactions locally and synchronizes to the blockchain only when a certain
amount is exceeded. The smart contract defines what to pay for usage of resources (e.g.
computing power), data (e.g. sensor data feeds) or services (e.g. performing regular
maintenance) and how to handle exceptions like contract violations. It could be agreed
e.g. to pay a penalty when a constraint defined in the contract is violated. All payment
transactions are recorded in the blockchain. Each of the contract partners needs to have
an account on the blockchain to make or receive payments. The account holds a public
address that is used as a source or target of a transaction and a private key that is
used to sign the transaction. All transactions on the blockchain are public and can be
inspected by anyone using a blockchain explorer, e.g. Etherscan for Ethereum [55]. In
our implementation we use a simple own coin, called MetaCoin that is provided as a
sample application from the Truffle Ethereum blockchain development framework [56].
Transactions to transfer MetaCoin are performed from the governance controller when a
payment message is sent by an enforcement script running on the IoT unit.

52

CHAPTER 6
Prototype and Evaluation

6.1 Prototype Implementation

Implementation of the IoT contract model is done within SALSA, see Chapter 6.1.1. The
governance controller managing the association of IoT units and contracts as well as the
provisioning of enforcement is an independent process, see Chapter 6.1.2. Monitoring
and execution of enforcement is performed locally on the IoT unit, see Chapter 6.1.3.

6.1.1 IoT Contract Implementation

Figure 6.1: Embedding of Contract Model in SALSA

53

6. Prototype and Evaluation

Figure 6.1 shows how the contract data model is connected to the data model of SALSA
which is a framework for dynamic configuration of IoT cloud services. SALSA is written
in Java using Spring as application framework and Tomcat as servlet container for web
services. An IoT service consists of a service topology that itself consists of service units
that consist of service instances. It is deployed on a deployment stack such as virtual
machines, OS containers such as Docker, application containers or simply as an own
application. ELISE is integrated in SALSA providing information of IoT services for
the configuration process. It provides a set of APIs among them the repository API
that allows to manage IoT components according to the ELISE information model. It
contains entities such as service template, service instance, artifact or capabilities. The
ELISE information model is designed to be extensible to cover other models such as
licensing, contracts or quality. In the work presented here the IoT contract model, see
Fig. 6.2 is embedded into ELISE to cover the domain of contract management by adding
following entities:

IoT Contract Model Entities

• Contract manages a full defined instance of a contract.

• ContractItem links between contracts and services.

• ContractPartner holds information such as name, address or role of contract
partners.

• MetaData manages arbitrary additional information about contracts such as validity,
start data or version.

• ContractTemplate manages blueprints for contracts composed of contract terms.

• ContractTerm manages the basic building blocks of contracts.

• ContractTermType manages the different types of contract terms defined.

• Constraint manages enforcement of contract terms by referencing scripts.

• Scripts contain logic interpreted and executed when the contract is attached to
man IoT unit. In the prototype Javascript is used as execution language for scripts.

• ParameterTemplate manages names and types of script parameters.

• Parameter manages concrete parameter values of scripts.

Entities are defined as POJOs (Plain Old Java Objects), annotations manage persisting
of entities. In SALSA the Neo4J NoSQL database is used to store entities. Neo4J is a
graph oriented database that allows to store configuration graphs in a natural way. The
contract data model is represented as a set of graphs where in the figure below full lines

54

6.1. Prototype Implementation

denote inclusion of nodes in the graph and dashed lines denote reference by name. Using
reference by name name instead of inclusion enables us to reuse definitions, e.g. to use
the same contract term in several contract templates.

Figure 6.2: Graph Database

Listing 6.1 shows the entity representing a contract term.

Listing 6.1: ContractTerm Entity
1 @NodeEntity
2 public class ContractTerm {
3
4 @GraphId
5 Long graphID ;
6 private St r ing name ;
7 private St r ing type ;
8
9 @RelatedTo @Fetch

10 private Set<Constra int> con s t r a i n t s ;
11
12 public St r ing getType () {
13 return type ;

55

6. Prototype and Evaluation

14 }
15
16 public void setType (St r ing type) {
17 this . type = type ;
18 }
19
20 public Set<Constra int> ge tCons t ra in t s () {
21 return c on s t r a i n t s ;
22 }
23
24 public void s e tCons t r a i n t s (Set<Constra int> con s t r a i n t s) {
25 i f (this . c o n s t r a i n t s == null) {
26 this . c o n s t r a i n t s = new HashSet<>() ;
27 }
28 this . c o n s t r a i n t s = con s t r a i n t s ;
29 }
30
31 public St r ing getName () {
32 return name ;
33 }
34
35 public void setName (St r ing name) {
36 this . name = name ;
37 }
38
39 }

Entities are stored by the Spring Neo4J database support by defining interfaces that
extend the Graph Repository interface. In the interfaces queries are defined the access
the Neo4J database to retrieve the corresponding entity. The following listing shows the
repository interface for the contract term.

Listing 6.2: ContractTerm Repository
1 public interface ContractTermRepository extends GraphRepository

<ContractTerm> {
2
3 @Query("match␣ (n : ContractTerm) ␣ return ␣n ")
4 Set<ContractTerm> l i s tContractTerms () ;
5
6 @Query("match␣ (n : ContractTerm) ␣where␣n . name={name}␣ return ␣n ")
7 ContractTerm findByName (@Param(value = "name") S t r ing name) ;
8 }

56

6.1. Prototype Implementation

Web Service for Managing IoT Contracts

Access to IoT contract model entities is provided by a set of REST web services. They
are built as an extension to the already existing web services of ELISE in the /salsa-
engine/rest/elise/extracdg namespace. It is always checked by the web services that
creation is only possible with a new unique name to prevent double creation (in case of
violation an error 409 CONFLICT is reported back) and that modification, deletion and
reading is only possible for existing objects (an error 404 NOTFOUND is returned in
such a case).

Each entity supports following access methods:

Table 6.1: REST Web Service Functions

Function Method Pattern Description
ReadAll{Entity} GET /{entity} read all instances

Read{Entity} GET /{entity}/{name} read a specific instance
defined by name

Save{Entity} POST /{entity} creates a new instance

Delete{Entity} DELETE /{entity}/{name} delete a specific instance
defined by name

Each of the functions described above can be applied to following entities (resources in
REST terminology).

Table 6.2: IoT Contract Model Resources

Resource URL Description

Contract .../elise/servicetemplate
Contract is part of existing
SALSA ServiceTemplate
resource

ContractTemplate .../elise/extracdg/contracttemplate Contract template as
blueprint for contract

ContractTerm .../elise/extracdg/contractterm
Contract term as basic
building blocks
of contract templates

ContractTermType .../elise/extracdg/contracttermtype Definition of types
of contract terms

Script .../elise/extracdg/script
Definition of scripts
for enforcement
and composition

Technically implementation of the web services is based on Java JAX-RS using annotations
as shown in following listing snippet showing the web service to read a contract term.

57

6. Prototype and Evaluation

Listing 6.3: Read ContractTerm Web Service
1 @GET
2 @Path(" / contractterm /{name} ")
3 @Produces (MediaType .APPLICATION_JSON)
4 ContractTerm readContractTerm (@PathParam("name") S t r ing name) ;

6.1.2 Governance Controller

It is implemented in Java and Spring and offers web services to attach a contract to an
IoT unit, build the concrete enforcement scripts based on the contract and make them
available for download by the IoT unit, serve as a registry for IoT units and handle
contract violation messaging and logging. The governance controller is run as an own
independent application. Spring web starts an embedded Tomcat servlet container to
handle the web service requests. Following web service resources are provided:

Table 6.3: Governance Controller Resources

Resource URL Description

Assignment POST /governor/assign Assign a contract
to a unit

Script GET /governor/scripts/{unit} Retrieve scripts for
a unit

Registration GET /governor/register/{unit} Retrieve registrations for
a unit

Registration POST /governor/register Create registration for
a unit

Logging POST /governor/log Log a contract violation
to the log

Logging GET /governor/log/{contract} Retrieve the logs for
a contract

Logging GET /governor/sclog/{contract}/{id} Retrieve the fingerprint
of a log from blockchain

Payment POST /governor/payment Perform a payment
on the blockchain

In the prototype the governance controller provides a registry for IoT units. Each unit
registers at startup with the registry. Either the unit contains the registration code
already in the implementation or it is injected into any Java based IoT unit via AspectJ
instrumentation. An alternative would be to have a registration capability already in
the IoT unit runtime system. In order to be independent of a specific runtime system,
registration via governance controller was chosen.

58

6.1. Prototype Implementation

6.1.3 Monitoring and Enforcement

In the prototype IoT units are treated as a white box and they are assumed to be written
in the Java programming language. Instrumentation of the unit is applied by AOP
(Aspect-oriented Programming) introducing cross cutting concerns such as monitoring
and contract enforcement. Using AOP it is possible to add and execute code that
monitors and enforces certain contract terms. The code added by AOP may run before,
after or instead of the original code, e.g. enforcement of access rights may deny access if
the contract terms do not allow it. Enforcement scripts are written in Javascript, the
code added by AOP includes loading of the scripts from the governance controller and
execution by the Rhino Javascript engine. Scripts are loaded at startup of the IoT unit
and executed locally on the unit when the trigger conditions as defined in the pointcut
are met, e.g. a method to process a message received on a port is called. If a constraint
defined in a contract term is detected to be violated it is enforced locally if possible (e.g.
denying access) and a message is sent to the governance controller to log the violation
and execute further actions, e.g. notifying the contract partners.

Enforcement Scripts

AspectJ is used to inject monitoring and enforcement into IoT units, therefore only
IoT units written in Java are supported. Enforcement scripts are written in Javascript
and executed by the Rhino execution engine. Enhancement to use other programming
languages for enforcement scripts could be easily provided for JVM based languages. As
an example the injected instrumentation code could use the Groovy language running on
the JVM directly. Such a change would not require changes in the governance controller
or the contract repository but just in the injected Java code. The following listing shows
an example of a pointcut definition. It places itself around reception of messages and
also has access to the arguments of the original method, therefore being able to analyze
the content of the message performing following steps:

• on first access init the monitor and fetch the scripts

• copy the method call arguments to the Javascript environment

• call the script code

• analyze the script code results and store contract violation log message if necessary

• analyze the script code results and perform payment if necessary

• abort the processing if an access right was violated, otherwise continue with normal
processing

Listing 6.4: Pointcut for processDataPoint Method
1 @Around(" execut ion (∗ ␣ processDataPoint (. .)) ␣&&␣ args (f i leName , dp ,

thing , port) ")

59

6. Prototype and Evaluation

2 public void aroundProcessDataPoint (Proceed ingJo inPoint
jo inPo int ,

3 S t r ing fi leName , DataPoint dp , Thing thing , S t r ing port)
throws Throwable {

4 System . out . p r i n t l n ("Around␣ be f o r e ") ;
5 i f (s c r i p t s == null) {
6 in i tMon i to r () ;
7 }
8 for (Object s c r i p t : s c r i p t s) {
9 try {

10 Context cx = Context . ente r () ;
11 S c r i p t ab l e scope = cx . in i tS tandardObjec t s () ;
12 Object [] s i gnatureArgs = jo inPo in t . getArgs () ;
13 Object wrappedDp = Context . javaToJS (dp , scope) ;
14 Sc r ip tab l eOb j e c t . putProperty (scope , " dataPoint " ,

wrappedDp) ;
15 Object wrappedPort = Context . javaToJS (port , scope) ;
16 Sc r ip tab l eOb j e c t . putProperty (scope , " port " , wrappedPort

) ;
17 Object o = ((org . moz i l l a . j a v a s c r i p t . S c r i p t) s c r i p t) . exec

(cx , scope) ;
18 St r ing r = Context . t oS t r i ng (o) ;
19 Scr ip t IF s c r i p t I f = objectMapper . readValue (r , Sc r ip t IF .

class) ;
20 i f (! (s c r i p t I f . getReason () . equa l s ("OK"))) {
21 LogEntry l = new LogEntry () ;
22 l . setTs (new Date ()) ;
23 l . setReason (s c r i p t I f . getReason ()) ;
24 l . setLog (s c r i p t I f . getLog ()) ;
25 l . s e tUni t (s c r i p t I f . getUnit ()) ;
26 l . s e tServ iceTemplate (s c r i p t I f . getServ iceTemplate ()) ;
27 l . s e t I d (UUID. randomUUID() . t oS t r i ng ()) ;
28 St r ing data = objectMapper .

wr i t e rWithDe fau l tPre t tyPr inte r () .
wr i teValueAsStr ing (l) ;

29 send (System . getProperty (" thingGovernor ") + " / governor
/ log " , data) ;

30 }
31 i f (In t eg e r . pa r s e In t (s c r i p t I f . getAmount ()) > 0) {
32 PaymentEntry p = new PaymentEntry () ;
33 p . setAmount (s c r i p t I f . getAmount ()) ;
34 p . se tSender (s c r i p t I f . getSender ()) ;
35 p . s e tRece i v e r (s c r i p t I f . g e tRece ive r ()) ;

60

6.1. Prototype Implementation

36 St r ing data = objectMapper .
wr i t e rWithDe fau l tPre t tyPr inte r () .
wr i teValueAsStr ing (p) ;

37 send (System . getProperty (" thingGovernor ") + " / governor
/payment " , data) ;

38 }
39 i f (s c r i p t I f . getReason () . equa l s ("ABORT")) {
40 System . out . p r i n t l n (" Access ␣denied , ␣ abort ing ") ;
41 return ;
42 }
43 } f ina l ly {
44 Context . e x i t () ;
45 }
46 }
47 j o inPo in t . proceed () ;
48 System . out . p r i n t l n ("Around␣ a f t e r ") ;
49 }

Listing 6.5 shows an example of an enforcement script checking access rights. The variable
parts marked with the @character will be replaced with concrete values from the contract
by the governance controller when the scripts are built for download by the IoT unit.
The following script allows access only to data points defined in the contract. If an access
violation occurs the original method call is aborted, therefore enforcing to deny access, a
log is written and its fingerprint stored in the blockchain.

Listing 6.5: Access Right Checking Script
1 var checkDPName = @DPName;
2 i f (! Boolean (dataPoint . getName () == checkDPName)) {
3 _reason=’ABORT’ ;
4 _log=’ a c c e s s ␣not␣ a l lowed ’ ;
5 }

Lifecycle and Startup Synchronization

The following figure 6.3 shows the lifecycle including synchronization at startup.

• Assumption is that contract templates and contract terms are available in the
contract repository.

• The IoT service provider creates a contract for his service offering in the contract
repository. Independently the IoT service registers itself in the governance controller.

• The IoT service user queries the governance controller for available services and
then assigns a service to a contract via the governance controller.

61

6. Prototype and Evaluation

Figure 6.3: Lifecycle and Startup

• When the IoT service receives a trigger event (e.g. a measurement received) it
checks for available enforcement scripts and downloads them if necessary.

• It then runs the scripts on the input data of the event, the scripts check for any
kind of contract violations. If a violation is detected it is reported to the governance
controller.

• The governance controller logs the contract violation in its logger and, in addition,
sends a fingerprint of the log entry to the logging smart contract running in the
blockchain.

• The fingerprint is stored as a transaction so that an immutable and distributed
record of the fingerprint is created in the blockchain.

Reporting Contract Violations

If a constraint checked by an enforcement script is violated immediate action is performed
if possible (e.g. if an unauthorized access is detected then access is denied) and the
constraint violation is reported to the governance controller. Within the governance
controller all violations are logged to a central log repository. Contract partners can
query the log repository to check for constraint violations. As an extension it would also

62

6.1. Prototype Implementation

be possible to notify contract partners about such violations via Email, SMS or web
service calls. In addition fingerprint of logs are stored in a blockchain as described in the
next section.

6.1.4 Logging to Ethereum

A blockchain based on Ethereum is used in the prototype implementation. Ethereum
is available as open source on github and allows execution of application code in the
blockchain, the code is written in the Solidity language to implement smart contracts.
In addition to execution of transactions on the public Ethereum blockchain where real
Ether crypto-currency units have to be spent it is also possible to build an own local
blockchain for demonstration or test purposes or when a private blockchain, e.g. within
a large organisation, should be created. In the prototype the testrpc tool or the Ropsten
test network to avoid spending real Ether when testing and demonstrating the system.
A smart contract for logging of fingerprints is defined in the Solidity language and then
compiled using the solc compiler. The resulting contract interface and binary is then
used by the web3j library to build a Java wrapper class for contract deployment and
execution. The smart contract is deployed on the blockchain when an IoT unit is attached
to a contract in the governance controller. The smart verification contract receives log
messages from governance controller and stores a hash value derived from the message
in a data structure of the smart contract. Hash values are stored instead of complete
messages because storage of large messages is an expensive operation in the Ethereum
blockchain. Every contract partner is able to retrieve the hash values and verify the
correctness of the actual log messages stored in the governance controller. The smart
contract in the blockchain works as a notary verifying the messages on behalf of the
contract partners.

Listing 6.6: Smart Contract for Logging
1 cont rac t Logstore {
2 s t r i n g constant public defaultKey = " d e f au l t " ;
3 mapping (address => mapping (s t r i n g => s t r i n g)) private owners ;
4
5 func t i on setLog (s t r i n g key , s t r i n g value) {
6 owners [msg . sender] [key] = value ;
7 }
8 func t i on getLog (address owner , s t r i n g key) constant r e tu rn s (

s t r i n g) {
9 return owners [owner] [key] ;

10 }
11 }

Payment is directly executed on the Ethereum blockchain using the web3j library from
Java code as shown in listing 6.7.

63

6. Prototype and Evaluation

Listing 6.7: Payment using Ethereum
1 void makePayment (S t r ing fromAddress , S t r ing toAddress ,

B ig Intege r amountWei)
2 throws Exception
3 {
4 EthGetTransactionCount transact ionCount = web3
5 . ethGetTransactionCount (fromAddress ,

DefaultBlockParameterName .LATEST)
6 . sendAsync ()
7 . get () ;
8
9 B ig Intege r nonce = transact ionCount . getTransact ionCount () ;

10 Transact ion t r an sa c t i on = Transact ion
11 . c reateEtherTransact ion (fromAddress , nonce , GAS_PRICE_LOCAL,

GAS_LIMIT_LOCAL, toAddress , amountWei) ;
12
13 EthSendTransaction response = web3
14 . ethSendTransact ion (t r an sa c t i on)
15 . sendAsync ()
16 . get () ;
17
18 Transact ionRece ipt r e c e i p t = waitForRece ipt (web3 , txHash) ;
19 }

6.2 Evaluation

6.2.1 Evaluation Criteria Types

In order to evaluate the applicability of the IoT contract and governance system we look
at following criteria.

• Logical evaluation criteria focus at real world examples and check if proper contracts
for them can be formulated in the contract framework. Different contract terms
such as those for access rights, service and data quality or payment are analyzed
together with their enforcement. In addition the applicability of the monitoring and
enforcement component to different environments was evaluated, one environment
being a simulator for IoT services, the other one a real IoT gateway running on a
Raspberry PI computer.

• Runtime evaluation criteria focus on measurement of important terms such as
impact of contract enforcement on performance and IoT service code size.

64

6.2. Evaluation

6.2.2 IoT Units and Runtime System

In order to be able to evaluate the contract definition framework we need to build
experiments simulating a set of IoT units (single units but also more complex topologies
of IoT units working together). The simulated IoT units should be able to process real
world data and connect to simulated external processes. Topology of the IoT units should
be configurable and the units should be able to execute processing logic so that complex
behavior can be simulated. Contracts then have to deal with the behavior of the units
and their topology. We followed a simple processing model to implement the IoT unit
simulator.

• Each simulated IoT unit is communicating with other units and outside world via
ports. Ports are unidirectional and can handle data and commands.

• Data handled by ports consists of a list of tuples (name, value, timestamp). Com-
mands consist of a tuple (name, list of parameters).

• The unit receives information on input ports and routes it to output ports.

• A unit may execute logic after receiving information on input ports and before
sending to output ports. Logic is defined as Javascript code that is interpreted an
executed by the unit.

• Communication is possible via file, web services and MQTT. Different types of
communication can be used within a unit, e.g. reading data from a file and sending
it to another unit via MQTT.

• Configuration of a unit is done via a JSON file that covers definition of ports,
data points, commands and routing of input to output ports. In addition the
configuration file refers to the name of the file containing the script logic. There is
one unit configuration file per unit.

• Configuration of the communication topology is in another JSON configuration file
that exists once per simulated set of IoT units and contains the communication
paths between the units and physical addresses of units.

The IoT simulator is implemented in Java using the Spring framework. Each unit runs
as an own Java process but could also be placed on a Docker container or even a virtual
machine. For our experiments we use one Java process per unit to avoid overhead of
virtualization environments. When running with input from real world data the IoT unit
simulator is able to replay the same set of messages as the real system and therefore able
to provide a realistic test setup.

65

6. Prototype and Evaluation

6.2.3 System Setup

Experiment Setup 1 with IoT Simulator

For evaluation we took a set of real-world sample data from the Monitoring and Controling
HVAC Systems in Base Transceiver Station (BTS) scenario. The sample data covers
alarms and status messages for a set of BTSs each covering a set of data points, in total
1.7 Mio entries in csv format. They were taken from a repository in Github, see [57].
From the set we took a small set of data points for one BTS to come to a subset with
an reasonable amount of data for the evaluation. The subset was then fed into the IoT
simulator as csv file in the same format. Data contained in the sample is BTS id, data
point id, time-stamp and value. The evaluation was performed with following setup.

Figure 6.4: Deployment for Evaluation with IoT Simulator

• SALSA is running on an Ubuntu Linux 16.04 server in a virtual machine. 2 GB of
main memory and one CPU was allocated to the virtual machine.

• SALSA is used as contract repository. Access to the contract repository is provided
via web services on port 8080.

• Contracts are provided as JSON files and inserted into the repository via Linux
shell scripts using the curl tool.

66

6.2. Evaluation

• Governance controller running is an own process on a Raspberry PI. Used port for
the controller is 8088.

• Ethereum simulator testrpc is running on the same Raspberry PI as the governance
controller.

• Simulated IoT units are running on four Raspberry PI nodes, where each node is
running up to three units. Data is read into the IoT simulator where each simulated
IoT unit is running as an own process. Ports for the IoT units are from 8081 up.

Experiment Setup 2 with IoT Gateway on Raspberry PI

In this real world example a humidity sensor is connected to a sensor IoT unit running on
a small low power IoT device. The device uses wireless communication to a Raspberry PI
that works as an IoT gateway translating from the CoAP protocol on the wireless side to
REST web services sent to a cloud based IoT platform. The monitoring and enforcement
component is injected via Aspect-oriented programming into the IoT gateway application
monitoring every message sent to the cloud platform.

Figure 6.5: Deployment for Evaluation with IoT Gateway on Raspberry PI

6.2.4 Logical Evaluation

Contract for Access Right Check

The first evaluation contract covers access rights of an IoT unit to a set of data points.
Depending on the contract terms access to a data point is allowed or denied by the

67

6. Prototype and Evaluation

enforcement script. The contract is composed of a contract term for checking the name
of the allowed data point and an enforcement script that checks the name of the data
point received in a message with the name defined in the contract.

Listing 6.8: Contract Term for Access Right Check
1 {
2 "name " : "DPNameCheck" ,
3 " type " : "DPChecks " ,
4 " c on s t r a i n t s " : [{
5 "name " : "DPNameCheck" ,
6 " type " : " " ,
7 " en fo rcementScr ip t " : "DPNameCheck" ,
8 " compos i t i onScr ip t " : nu l l ,
9 " d e s c r i p t i o n " : " check the a l lowed data po int name " ,

10 " parameters " : [{
11 "name " : "DPName" ,
12 " datatype " : " S t r ing " ,
13 " d e s c r i p t i o n " : " data po int name " ,
14 " un i t " : " i d e n t i f i e r "
15 }]
16 }]
17 }

Using the _reason variable the script tells the enforcement core function in the injected
monitoring and enforcement component that it should abort further processing if the
access right is not granted.

Listing 6.9: Script for Access Right Check
1 var checkDPName = @DPName;
2 i f (! Boolean (dataPoint . getName () == checkDPName)) {
3 _reason=’ABORT’ ;
4 _log=’ a c c e s s not al lowed ’ ;
5 }

In the contract concrete values are defined for the contract parameters. They are then
substituted for the formal parameters in the script marked with the @ sign when the
script is built by the governance controller and loaded by the monitoring and enforcement
component.

Listing 6.10: Contract for Access Right Check
1 {
2 "name " : "DPNameCheckContract " ,
3 " template " : "DPNameCheckTemplate " ,

68

6.2. Evaluation

4 " par tne r s " : [{
5 "name " : " Peter "
6 }] ,
7 " i tems " : [{
8 "name " : " SimpleSensor "
9 }] ,

10 " parameters " : [{
11 "name " : "DPName" ,
12 " datatype " : " S t r ing " ,
13 " d e s c r i p t i o n " : " a l lowed data po int " ,
14 " un i t " : " d imens i on l e s s " ,
15 " va lue " : "114"
16 }] ,
17 "metaData " : [{
18 "name " : " validFrom " ,
19 " va lue " : "2016−11−01"
20 }]
21 }

Contract for QoS Check

An extension of the simple name check used in the sample above is to check also QoS
parameters, e.g. to check that values received in the message are within a defined interval
(min, max). Following additions is done in the script for the QoS check.

Listing 6.11: Contract Term for QoS check
1 {
2 "name " : "DPValueCheck " ,
3 " parameters " : [{
4 "name " : "DPMinValue " ,
5 " datatype " : " I n t eg e r " ,
6 " d e s c r i p t i o n " : " data po int min value " ,
7 " un i t " : " i n t "
8 } ,
9 {

10 "name " : "DPMaxValue " ,
11 " datatype " : " I n t eg e r " ,
12 " d e s c r i p t i o n " : " data po int max value " ,
13 " un i t " : " i n t "
14 }]
15 }

69

6. Prototype and Evaluation

The script logs any contract violation to the governance controller but does not abort
processing the event.

Listing 6.12: Script for QoD check
1 var checkDPMaxValue = @DPMaxValue ;
2 var checkDPMinValue = @DPMinValue ;
3 i f (Boolean (dataPoint . getValue () < checkDPMaxValue) &&
4 Boolean (dataPoint . getValue () > checkDPMinValue)) {
5 _reason=’NOTIFY’ ; _log=’ va lue out o f range ’
6 }

Listing 6.13: Contract for QoD check
1 {
2 "name " : " DPValueCheckContract " ,
3 . . .
4 " parameters " : [{
5 "name " : "DPMinValue " ,
6 " datatype " : " I n t eg e r " ,
7 " d e s c r i p t i o n " : "min value " ,
8 " un i t " : " i n t " ,
9 " va lue " : " 0 "

10 } ,
11 {
12 "name " : "DPMaxValue " ,
13 " datatype " : " I n t eg e r " ,
14 " d e s c r i p t i o n " : "max value " ,
15 " un i t " : " i n t " ,
16 " va lue " : "1000"
17 }]
18 . . .
19 }

Contract for Timeliness Check

In this sample we run a more complex IoT system composed of 2 sensor IoT units that
send data to an analyzer IoT unit running in the cloud. The analyzer requires access to
data of the sensors at least every minute to perform its task, this requirement should be
reflected in a contract for the analyzer. The sensor IoT units run the enforcement script
for the access check, the analyzer IoT unit runs the enforcement script for the timeliness
check.

70

6.2. Evaluation

Listing 6.14: Script for Timeliness Check
1 var checkMaxTime = @DPMaxTime;
2 var newTS = new Date () . getTime () ;
3 var lastTS = monitor . scratchpad . get (dataPoint . getName ()) ;
4 i f (lastTS == nu l l) {
5 monitor . scratchpad . put (dataPoint . getName () , newTS) ;
6 } e l s e { i f ((newTS − lastTS) > checkMaxTime ∗ 1000) {
7 _reason=’NOTIFY’ ;
8 _log="max wait time reached , cont rac t v i o l a t e d " } ;
9 } e l s e {

10 monitor . scratchpad . put (dataPoint . getName () , newTS) ;
11 }
12 }

In this script the scratchpad which is a data structure provided by the monitor component
is used to store temporary variable values between calls of the enforcement script so that
it can base its checks not only on actual but also on historical values. The scratchpad
is a map of strings to objects. In addition the log functionality is used to permanently
store and make available contract violation log messages to both contract partners.

Contract with Payment

The script supplies the payment information (amount, sender, receiver) to the governance
controller.

Listing 6.15: Script for Payment
1 _amount = @DPPaymentAmount ;
2 _sender = @DPPaymentSender ;
3 _rece ive r = @DPPaymentReceiver ;

Evaluation Result

On the positive side logical evaluation shows that scripting is powerful. Javascript as
programming language is Turing complete and therefore any algorithm for enforcement
can be implemented in it. In addition scripts can also be implemented in other Java
based languages. e.g. Groovy or in other interpreted languages such as Python. On the
negative side writing enforcement scripts in a general purpose programming language
requires programming skills and scripts have to be adapted to each type of IoT unit.
It would be an improvement to build a domain specific language for enforcement so
that users can concentrate on the enforcement logic and do not need to handle low level
programming.

71

6. Prototype and Evaluation

6.2.5 Runtime Evaluation

Evaluation Criteria

Following criteria were evaluated with respect to runtime performance using simulated
IoT units running on the Raspberry PI cluster.

• number of contracts assigned to a unit.

• number of contract terms assigned to a contract.

• complexity of contract terms in terms of number of constraints.

• number of units.

• number of events processed.

• percentage of events resulting in a contract violation.

• whether contract violations are logged to the blockchain.

Table 6.4: Experiment Setup

ID number
of units

number
of events
total

constraints
per
contract

contract
terms
per
contract

contracts
per unit

contract
violation
percentage

use
block-
chain

M1 1 10 1 1 1 20 No
M2 1 100 1 1 1 20 No
M3 1 1000 1 1 1 20 No
M4 1 2000 1 1 1 20 No
M5a 5 5000 1 1 1 20 No
M5b 10 10000 1 1 1 20 No
M5c 15 15000 1 1 1 20 No
M6 1 1000 10 1 1 20 No
M7 1 1000 1 10 1 20 No
M8 1 1000 1 1 10 20 No
M9 1 1000 1 1 1 0 No
M10 1 1000 1 1 1 40 No
M11 1 1000 1 1 1 60 No
M12 1 1000 1 1 1 80 No
M13 1 1000 1 1 1 100 No
M2bc 1 100 1 1 1 20 Yes
M3bc 1 1000 1 1 1 20 Yes

72

6.2. Evaluation

Influence of Different Number of Events Processed

In the first set of experiments we evaluate influence of different number of events processed.
Expectation is that from a certain number of events on the processing time will increase
linear with the number of events. For results see table 6.5. From the measurements we
see that throughput (number of events per second) stays the same from 1000 events on
so that any effects of startup processing can be neglected. We will use 1000 events to
process for the other experiments.

Table 6.5: Different Number of Events

ID number of
events

script loading
time (sec)

execution
time (sec)

events
per sec

M1 10 1.38 0.79 12.66
M2 100 1.38 4.13 24.21
M3 1000 1.35 30.32 32.98
M4 2000 1.38 59.16 33.81

Influence of Different Number of Units running

We run IoT units on 4 different Raspberry Pi machines, first 1 unit on one machine, then
4 units spread over 4 different machines and then 8 and 12 units spread over 4 machines.
For results see table 6.6.

Table 6.6: Different Number of Units

ID number of
units

script loading
time (sec)

execution
time (sec)

events
per sec

M3 1 1.35 30.32 33.81
M5a 4 1.65 29.92 133.69
M5b 8 2.55 33.76 236.97
M4 12 3.26 39.02 307.53

From the measurement we see that throughput increases nearly linear with usage of
parallel execution on IoT units. Processing of enforcement is parallel in different IoT units
since they are running on different machines. Processing of messages on the governance
controller also makes use of parallel execution depending on available processing capacity
due to implementation of stateless web services running on a Spring application container.
Increased script loading time (measured as from starting of script loading on the first
unit of the first machine to finishing script loading on the last unit of the last machine)
increases because not all units are started on the Raspberry Pi at the same time, especially
if more units are run on the same machine. The same applies to execution time (also
measured from starting event processing on the first unit of the first machine to finishing
on the last unit of the last machine) slightly increasing although throughput on one

73

6. Prototype and Evaluation

machine stays the same.

We see that the system scales well (approximately 10 fold increase in throughput from 1
- 12 units, even when the governance controller is running on a RaspberryPI) and from
architectural point of view is able to handle a large number of units.

Influence of Different Contracts

Different number of constraints, number of terms per contract and number of contracts
per IoT unit were applied. For results see table 6.7.

Table 6.7: Different Types of Contracts

ID number of
constraints

number of
contract terms

number of
customers

script loading
time (sec)

execution
time (sec)

events
per sec

M3 1 1 1 1.35 30.32 32.98
M6 10 1 1 1.51 91.15 10.97
M7 1 10 1 1.51 88.47 11.3
M8 1 1 10 1.53 90.16 11.09

From the measurement we see that execution time increases linear with the number of
constraints, contract terms and contracts per unit. There is no noticeable difference
between increasing the number of constraints, contract terms and contracts per unit
which is also visible from the design of the system since such an increase leads to an
increase in the number of scripts executed during runtime independent how they are
built from. For a 10 tenfold increase in the number of scripts from 1 to 10 we see an
approximately 3 times reduction in throughput.

We see that even a large number of constraints added leads to reasonable (less than
linear) system performance.

Influence of Different Percentage of Contract Violations

Event content was set in a way that from 0 up 100 % of the events cause a contract
violation. For results see table 6.8.

74

6.2. Evaluation

Table 6.8: Different Contract Violation Percentage

ID
contract
violation
percentage

script loading
time (sec)

execution
time (sec)

events
per sec

M9 0 1.30 24.07 41.55
M3 20 1.35 30.32 32.98
M10 40 1.35 34.53 28.96
M11 60 1.31 39.60 25.25
M12 80 1.32 39.51 25.31
M13 100 1.30 49.36 20.26

From the measurement we see that throughput decreases with the number of contract
enforcement messages sent to the governance controller. Going from no enforcement
messages to 100 % decreases throughput by about 50 %.

We see that reporting of contract violations reduces throughput but moderatly. Even
for a full 100% of contract violations reported, which is an unlikely case meaning that
the system is not able to fulfill the contract at all, we are able to deliver a reasonable
performance.

Influence of Enforcement Technologies

Tests were run with logging of enforcement via blockchain and without. For results see
table 6.9.

Table 6.9: Enforcement Performance via Blockchain

ID number of
events use blockchain script loading

time (sec)
execution
time (sec)

events
per sec

M2 100 No 1.38 4.13 24.21
M3 1000 No 1.35 30.32 32.98
M2bc 100 Yes 1.45 15,47 6.46
M3bc 1000 Yes 1.37 112.77 8.48

From the measurement we see that enforcement via blockchain adds considerable per-
formance penalties. The performance impact will be even bigger if we move from the
testrpc blockchain simulator to using a real blockchain network since a real network will
be able to handle transaction only at the order 20 transactions per second for the whole
worldwide network.

We see that only especially important contract enforcement messages should be logged
to the blockchain otherwise performance will be severely decreased.

75

6. Prototype and Evaluation

6.2.6 Size of Enforcement Code

Evaluation was performed by analyzing the code size for the monitoring part added
to the IoT simulator and the gateway and analyzing the code size for the access right
monitoring script.

We see that both size of the monitoring and enforcement component as well as size of
the enforcement scripts is rather small and has no substantial influence on the size of the
IoT unit (size of IoT simulator without monitoring was 20 MB, size of gateway was 3.5
MB, most of the size of IoT simulator and gateway is caused by included libraries.)

Table 6.10: Monitoring and Enforcement Code Size

size (characters) class file size (KB)
Monitor IoT simulator 7716 16
Monitor gateway 7818 15
Access Right Script 122 n/a
QoD check script 218 n/a

76

CHAPTER 7
Summary

In this thesis we introduced a framework for IoT contract definition and governance
including monitoring of constraints imposed by the contract and enforcement of contract
violations by linking them to the blockchain. Contracts are built from contract templates
which are composed of a set of contract terms. Each contract term includes a set of
constraints where for each constraint the parameters and a piece of Javascript code for
monitoring and enforcement is defined. Contract terms are defined to cover access rights,
quality of service and data such as throughput, completeness or accuracy as well as
payment and pricing conditions.

When a contract is assigned to an IoT unit, the constraints of the contract are col-
lected and script code is generated and injected into the IoT unit via Aspect-oriented
programming. During runtime the injected scripts check the constraints at defined
points of the IoT unit execution (e.g. when a new value is received for a data point or
periodically every x seconds) and, if a constraint violation is detected, send a message to
the enforcement component. There enforcement covers informing contract parties about
the constraint violation, logging a hash of the message to the blockchain for immutable
storage and inspection by contract parties and initiation of payment transactions on the
blockchain transferring coins from one wallet to the other.

Evaluation results show that the introduced framework is able to cover real world
scenarios and provides performance and scalability to handle the workloads related to
the scenarios. A future research direction in this area is the introduction of automatic
reconfiguration of the IoT unit or infrastructure in case of a constraint violation e.g. to
add more IoT units if throughput is below the threshold defined in the contract. Another
is to add a domain specific constraints checking language so that contract enforcement
does not require programming knowledge of script code.

77

Bibliography

[1] “Watson internet of things.” https://www.ibm.com/internet-of-things/
learn/what-is-iot. Accessed: 2017-12-21.

[2] S. Li, L. D. Xu, and S. Zhao, “The internet of things: A survey,” Information
Systems Frontiers, vol. 17, pp. 243–259, Apr. 2015.

[3] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, “A survey on internet of things
from industrial market perspective,” IEEE Access, vol. 2, pp. 1660–1679, 2014.

[4] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things
for smart cities,” IEEE Internet of Things Journal, vol. 1, pp. 22–32, Feb 2014.

[5] “Evrythng license agreement.” https://evrythng.com/legal/
license-agreement. Accessed: 2018-06-01.

[6] “Cumulocity license agreement.” https://cumulocity.com/
terms-and-conditions. Accessed: 2018-06-01.

[7] “The internet of things (you can sue about).” https:
//www.forbes.com/sites/danielfisher/2015/06/03/
the-internet-of-things-you-can-sue-about/#72a66571cb12. Ac-
cessed: 2018-06-01.

[8] “Internet of things- five most famous legal law-
suits).” https://medium.com/@legalresolved/
internet-of-things-five-most-famous-legal-lawsuits-84120106ac8.
Accessed: 2018-06-01.

[9] F. Li, M. Vogler, S. Sehic, S. Qanbari, S. Nastic, H.-L. Truong, and S. Dustdar,
“Web-scale service delivery for smart cities,” Internet Computing, IEEE, vol. 17,
pp. 78–83, July 2013.

[10] B. Mandler, F. Antonelli, R. Kleinfeld, C. Pedrinaci, D. Carrera, A. Gugliotta,
D. Schreckling, I. Carreras, D. Raggett, M. Pous, C. V. Villares, and V. Trifa,
“Compose – a journey from the internet of things to the internet of services,” in
Proceedings of the 2013 27th International Conference on Advanced Information

79

https://www.ibm.com/internet-of-things/learn/what-is-iot
https://www.ibm.com/internet-of-things/learn/what-is-iot
https://evrythng.com/legal/license-agreement
https://evrythng.com/legal/license-agreement
https://cumulocity.com/terms-and-conditions
https://cumulocity.com/terms-and-conditions
https://www.forbes.com/sites/danielfisher/2015/06/03/the-internet-of-things-you-can-sue-about/#72a66571cb12
https://www.forbes.com/sites/danielfisher/2015/06/03/the-internet-of-things-you-can-sue-about/#72a66571cb12
https://www.forbes.com/sites/danielfisher/2015/06/03/the-internet-of-things-you-can-sue-about/#72a66571cb12
https://medium.com/@legalresolved/internet-of-things-five-most-famous-legal-lawsuits-84120106ac8
https://medium.com/@legalresolved/internet-of-things-five-most-famous-legal-lawsuits-84120106ac8

Networking and Applications Workshops, WAINA ’13, (Washington, DC, USA),
pp. 1217–1222, IEEE Computer Society, 2013.

[11] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for
internet of things: A survey,” IEEE Internet of Things Journal, vol. 3, pp. 70–95,
Feb 2016.

[12] P. Sotres, J. R. Santana, L. Sánchez, J. Lanza, and L. Muñoz, “Practical lessons from
the deployment and management of a smart city internet-of-things infrastructure:
The smartsantander testbed case,” IEEE Access, vol. 5, pp. 14309–14322, 2017.

[13] C. E. Catlett, P. H. Beckman, R. Sankaran, and K. K. Galvin, “Array of things: A
scientific research instrument in the public way: Platform design and early lessons
learned,” in Proceedings of the 2Nd International Workshop on Science of Smart
City Operations and Platforms Engineering, SCOPE ’17, (New York, NY, USA),
pp. 26–33, ACM, 2017.

[14] H.-L. Truong, M. Comerio, F. De Paoli, G. Gangadharan, and S. Dustdar, “Data
contracts for cloud-based data marketplaces,” Int. J. Computational Science and
Engineering, vol. 7, no. 4, pp. 280–295, 2012.

[15] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek, E. Lee,
and J. Kubiatowicz, “The cloud is not enough: Saving iot from the cloud,” in 7th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15), (Santa Clara,
CA), USENIX Association, 2015.

[16] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” SIGCOMM Comput. Commun. Rev., vol. 45, pp. 37–42, Sept. 2015.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, pp. 14–23, Oct
2009.

[18] “Data fusion mechanism based on a service.” https://www.google.at/
url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&
ved=0ahUKEwiq_sT5_vzXAhUIyKQKHf45BzoQFggrMAA&url=http%3A%2F%
2Fwww.jornadassarteco.org%2Fjs2012%2Fpapers%2Fpaper_61.pdf&
usg=AOvVaw1Il3SDv7cJFFUJ1C4pS-oE. Accessed: 2017-11-19.

[19] D. Schuller, A. Polyvyanyy, L. García-Bañuelos, and S. Schulte, “Optimization of
complex qos-aware service compositions,” in Proceedings of the 9th International
Conference on Service-Oriented Computing, ICSOC’11, (Berlin, Heidelberg), pp. 452–
466, Springer-Verlag, 2011.

[20] “Architectural styles and the design of network-based software archi-
tectures.” https://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation_2up.pdf. Accessed: 2017-12-14.

80

https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiq_sT5_vzXAhUIyKQKHf45BzoQFggrMAA&url=http%3A%2F%2Fwww.jornadassarteco.org%2Fjs2012%2Fpapers%2Fpaper_61.pdf&usg=AOvVaw1Il3SDv7cJFFUJ1C4pS-oE
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiq_sT5_vzXAhUIyKQKHf45BzoQFggrMAA&url=http%3A%2F%2Fwww.jornadassarteco.org%2Fjs2012%2Fpapers%2Fpaper_61.pdf&usg=AOvVaw1Il3SDv7cJFFUJ1C4pS-oE
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiq_sT5_vzXAhUIyKQKHf45BzoQFggrMAA&url=http%3A%2F%2Fwww.jornadassarteco.org%2Fjs2012%2Fpapers%2Fpaper_61.pdf&usg=AOvVaw1Il3SDv7cJFFUJ1C4pS-oE
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiq_sT5_vzXAhUIyKQKHf45BzoQFggrMAA&url=http%3A%2F%2Fwww.jornadassarteco.org%2Fjs2012%2Fpapers%2Fpaper_61.pdf&usg=AOvVaw1Il3SDv7cJFFUJ1C4pS-oE
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiq_sT5_vzXAhUIyKQKHf45BzoQFggrMAA&url=http%3A%2F%2Fwww.jornadassarteco.org%2Fjs2012%2Fpapers%2Fpaper_61.pdf&usg=AOvVaw1Il3SDv7cJFFUJ1C4pS-oE
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf

[21] A. Klein and W. Lehner, “Representing data quality in sensor data streaming
environments,” J. Data and Information Quality, vol. 1, pp. 10:1–10:28, Sept. 2009.

[22] A. Sarimbekov, “Comparison of instrumentation techniques for dynamic program
analysis on the java virtual machine,” in Proceedings of the 12th Annual Interna-
tional Conference Companion on Aspect-oriented Software Development, AOSD ’13
Companion, (New York, NY, USA), pp. 31–32, ACM, 2013.

[23] A. Nusayr, “Aop as a formal framework for runtime monitoring,” in Proceedings
of the 2008 Foundations of Software Engineering Doctoral Symposium, FSEDS ’08,
(New York, NY, USA), pp. 25–28, ACM, 2008.

[24] A. Nusayr and J. Cook, “Using aop for detailed runtime monitoring instrumentation,”
in Proceedings of the Seventh International Workshop on Dynamic Analysis, WODA
’09, (New York, NY, USA), pp. 8–14, ACM, 2009.

[25] D. H. Le, H. L. Truong, and S. Dustdar, “Managing on-demand sensing resources
in iot cloud systems,” in 2016 IEEE International Conference on Mobile Services
(MS), pp. 65–72, June 2016.

[26] “Smart contracts: Building blocks for digital markets.” http://www.fon.
hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.
html. Accessed: 2017-12-16.

[27] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet
of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[28] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an optimized blockchain for iot,”
in Proceedings of the Second International Conference on Internet-of-Things Design
and Implementation, IoTDI ’17, (New York, NY, USA), pp. 173–178, ACM, 2017.

[29] M. Samaniego and R. Deters, “Using blockchain to push software-defined iot com-
ponents onto edge hosts,” in Proceedings of the International Conference on Big
Data and Advanced Wireless Technologies, BDAW ’16, (New York, NY, USA),
pp. 58:1–58:9, ACM, 2016.

[30] P. H. Phung, H. L. Truong, and D. T. Yasoju, “P4sinc - an execution policy framework
for iot services in the edge,” in 2017 IEEE International Congress on Internet of
Things (ICIOT), pp. 137–142, June 2017.

[31] R. Neisse, G. Steri, and G. Baldini, “Enforcement of security policy rules for the
internet of things,” in 2014 IEEE 10th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pp. 165–172, Oct
2014.

[32] “Mqtt message queuing telemetry transport).” http://mqtt.org. Accessed: 2018-
13-01.

81

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://mqtt.org

[33] C. Dsouza, G. J. Ahn, and M. Taguinod, “Policy-driven security management for
fog computing: Preliminary framework and a case study,” in Proceedings of the 2014
IEEE 15th International Conference on Information Reuse and Integration (IEEE
IRI 2014), pp. 16–23, Aug 2014.

[34] S. Gusmeroli, S. Piccione, and D. Rotondi, “Iot access control issues: A capability
based approach,” in 2012 Sixth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pp. 787–792, July 2012.

[35] O. Adinolfi, R. Cristaldi, L. Coppolino, and L. Romano, “Qos-monaas: A portable
architecture for qos monitoring in the cloud,” in 2012 Eighth International Conference
on Signal Image Technology and Internet Based Systems, pp. 527–532, Nov 2012.

[36] S. Guth, B. Simon, and U. Zdun, “A contract and rights management framework
design for interacting brokers,” in 36th Annual Hawaii International Conference on
System Sciences, 2003. Proceedings of the, pp. 10 pp.–, Jan 2003.

[37] “Odrl community group.” https://www.w3.org/community/odrl. Accessed:
2017-12-16.

[38] F. B. Balint and H. L. Truong, “On supporting contract-aware iot dataspace services,”
in 2017 5th IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud), pp. 117–124, April 2017.

[39] C. Müller, H. L. Truong, P. Fernandez, G. Copil, A. Ruiz-Cortés, and S. Dustdar,
“An elasticity-aware governance platform for cloud service delivery,” in 2016 IEEE
International Conference on Services Computing (SCC), pp. 74–81, June 2016.

[40] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S. Dustdar, “Provisioning software-
defined iot cloud systems,” in 2014 International Conference on Future Internet of
Things and Cloud, pp. 288–295, Aug 2014.

[41] “Home - dfrc ag.” http://www.dfrc.ch. Accessed: 2017-11-19.

[42] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and
B. Amos, “Edge analytics in the internet of things,” IEEE Pervasive Computing,
vol. 14, pp. 24–31, Apr 2015.

[43] “Rhino.” https://www.json.org. Accessed: 2017-11-27.

[44] D. Le, H. L. Truong, G. Copil, S. Nastic, and S. Dustdar, “SALSA: A framework
for dynamic configuration of cloud services,” in IEEE 6th International Conference
on Cloud Computing Technology and Science, CloudCom 2014, Singapore, December
15-18, 2014, pp. 146–153, 2014.

[45] “Ecmascript R© 2017 language specification.” https://www.
ecma-international.org/publications/standards/Ecma-262.htm.
Accessed: 2017-11-27.

82

https://www.w3.org/community/odrl
http://www.dfrc.ch
https://www.json.org
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm

[46] “Eclipse aspectj.” https://www.eclipse.org/aspectj. Accessed: 2017-11-27.

[47] “Java is the go to language for iot applications).” https://jaxenter.com/
java-is-the-go-to-language-for-iot-applications-127844.html.
Accessed: 2018-09-01.

[48] “Creating the open source building blocks for iot).” https://www.w3.org/WoT/
IG/wiki/images/5/59/Eclipse-IoT-W3C-WoT.pdf. Accessed: 2018-09-01.

[49] P. R. Krishna and K. Karlapalem, “Electronic contracts,” IEEE Internet Computing,
vol. 12, no. 4, pp. 60–68, 2008.

[50] S. Geisler, C. Quix, S. Weber, and M. Jarke, “Ontology-based data quality manage-
ment for data streams,” J. Data and Information Quality, vol. 7, pp. 18:1–18:34,
Oct. 2016.

[51] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar, “Towards
composition as a service - a quality of service driven approach,” in 2009 IEEE 25th
International Conference on Data Engineering, pp. 1733–1740, March 2009.

[52] “Qos-aware composition of adaptive service-oriented systems.” https:
//www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&
cad=rja&uact=8&ved=0ahUKEwiUnaG8gP3XAhVQ4KQKHcqBCEoQFggtMAA&
url=http%3A%2F%2Fwww.infosys.tuwien.ac.at%2FStaff%2Fsd%
2Fphd-thesis%2FPhDthesis_FlorianRosenberg.pdf&usg=
AOvVaw14v5Aq0Zr2j_Z1ywkgmG_s. Accessed: 2017-11-19.

[53] “Board briefing on it governance.” https://www.isaca.org/restricted/
Documents/26904_Board_Briefing_final.pdf. Accessed: 2017-12-01.

[54] “Ethereum blockchain app platform).” https://www.ethereum.org. Accessed:
2018-13-01.

[55] “Etherscan, the ethereum block explorer).” https://etherscan.io. Accessed:
2018-13-01.

[56] “Your ethereum swiss army knife).” http://truffleframework.com. Accessed:
2018-13-01.

[57] “Github iotcloudsamples).” https://github.com/rdsea/
IoTCloudSamples/tree/master/data/bts. Accessed: 2018-13-01.

83

https://www.eclipse.org/aspectj
https://jaxenter.com/java-is-the-go-to-language-for-iot-applications-127844.html
https://jaxenter.com/java-is-the-go-to-language-for-iot-applications-127844.html
https://www.w3.org/WoT/IG/wiki/images/5/59/Eclipse-IoT-W3C-WoT.pdf
https://www.w3.org/WoT/IG/wiki/images/5/59/Eclipse-IoT-W3C-WoT.pdf
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiUnaG8gP3XAhVQ4KQKHcqBCEoQFggtMAA&url=http%3A%2F%2Fwww.infosys.tuwien.ac.at%2FStaff%2Fsd%2Fphd-thesis%2FPhDthesis_FlorianRosenberg.pdf&usg=AOvVaw14v5Aq0Zr2j_Z1ywkgmG_s
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiUnaG8gP3XAhVQ4KQKHcqBCEoQFggtMAA&url=http%3A%2F%2Fwww.infosys.tuwien.ac.at%2FStaff%2Fsd%2Fphd-thesis%2FPhDthesis_FlorianRosenberg.pdf&usg=AOvVaw14v5Aq0Zr2j_Z1ywkgmG_s
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiUnaG8gP3XAhVQ4KQKHcqBCEoQFggtMAA&url=http%3A%2F%2Fwww.infosys.tuwien.ac.at%2FStaff%2Fsd%2Fphd-thesis%2FPhDthesis_FlorianRosenberg.pdf&usg=AOvVaw14v5Aq0Zr2j_Z1ywkgmG_s
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiUnaG8gP3XAhVQ4KQKHcqBCEoQFggtMAA&url=http%3A%2F%2Fwww.infosys.tuwien.ac.at%2FStaff%2Fsd%2Fphd-thesis%2FPhDthesis_FlorianRosenberg.pdf&usg=AOvVaw14v5Aq0Zr2j_Z1ywkgmG_s
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiUnaG8gP3XAhVQ4KQKHcqBCEoQFggtMAA&url=http%3A%2F%2Fwww.infosys.tuwien.ac.at%2FStaff%2Fsd%2Fphd-thesis%2FPhDthesis_FlorianRosenberg.pdf&usg=AOvVaw14v5Aq0Zr2j_Z1ywkgmG_s
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiUnaG8gP3XAhVQ4KQKHcqBCEoQFggtMAA&url=http%3A%2F%2Fwww.infosys.tuwien.ac.at%2FStaff%2Fsd%2Fphd-thesis%2FPhDthesis_FlorianRosenberg.pdf&usg=AOvVaw14v5Aq0Zr2j_Z1ywkgmG_s
https://www.isaca.org/restricted/Documents/26904_Board_Briefing_final.pdf
https://www.isaca.org/restricted/Documents/26904_Board_Briefing_final.pdf
https://www.ethereum.org
https://etherscan.io
http://truffleframework.com
https://github.com/rdsea/IoTCloudSamples/tree/master/data/bts
https://github.com/rdsea/IoTCloudSamples/tree/master/data/bts

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Problem Statement
	Methodological Approach
	Thesis Contribution
	Thesis Structure

	State of the Art and Background
	Background
	State of the Art

	Scenarios and Requirements
	Scenarios
	Requirements
	Use Cases

	Contract Specification and Composition
	Contract Specification
	Composition of Contracts for IoT Services

	Governance
	Principles of Governance
	Enforcement of Contracts
	Contract Governance Implementation

	Prototype and Evaluation
	Prototype Implementation
	Evaluation

	Summary
	Bibliography

