
Visualisierung von veränderten
grafischen Modellen und

Diagrammen im Rahmen der
Überprüfung von Modellen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Florian Zoubek, BSc
Matrikelnummer 0828559

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.rer.soc.oec. Tanja Mayerhofer, BSc

Dipl.-Ing. Dr.techn. Philip Langer

Wien, 7. April 2018
Florian Zoubek Gerti Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Visualization of Evolving
Graphical Models and Diagrams
in the Context of Model Review

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Florian Zoubek, BSc
Registration Number 0828559

to the Faculty of Informatics

at the TU Wien

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Assistance: Univ.Ass. Dipl.-Ing. Dr.rer.soc.oec. Tanja Mayerhofer, BSc

Dipl.-Ing. Dr.techn. Philip Langer

Vienna, 7th April, 2018
Florian Zoubek Gerti Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Florian Zoubek, BSc
Viktor Kaplanstraße 13, 3013 Tullnerbach

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. April 2018
Florian Zoubek

v

Danksagung

An dieser Stelle möchte ich mich bei allen Bedanken, die mich während des Verfassens der
Arbeit mit Rat und Motivation sowie bei der Evaluierung unterstützt haben. Allen voran
möchte mich bei meinen Eltern für die Ermöglichung des Studiums, Rat, Motivation
und nicht zu guter Letzt für die finanzielle Unterstützung während meines Studiums
bedanken. Auch bei meinem Bruder möchte ich mich ausgiebig bedanken, der während
dieser Zeit immer hinter mir stand. Diese Zeit war durch positive, aber auch einige
negative Ereignisse geprägt, weshalb ich mich generell bei meinen Eltern und meinem
Bruder auch für die Unterstützung und den Rückhalt während dieser Zeit bedanken
möchte.

Mein Dank gilt auch den Betreuerinnen dieser Arbeit an der Technischen Universität Wien.
Ich möchte mich auch bei Philip Langer für die Mitbetreuung dieser Arbeit bedanken,
der immer bemüht war meine Fragen zu beantworten. Des Weiteren möchte ich mich bei
meinen Studienkollegen, ehemaligen Schulkollegen und den weiteren Teilnehmern meiner
Fallstudie für die investierte Zeit bedanken.

Gewidmet meiner kürzlich verstorbenen Großmutter Erna Fiedler. Sie half wo sie nur
konnte und schaffte es immer wieder mich zu motivieren alle Hindernisse zu überwinden,

so unüberwindlich sie auch schienen.

vii

Acknowledgements

I would like to thank all persons at this point who had supported me during the evaluation
and during the process of writing this thesis with advice and feedback. First of all I would
like to thank my parents for the possibility to study, as well as for advices, motivation
and also for the financial support during my study. Also I would like to thank my brother,
who also backed me during this time. Positive, but also negative events occurred during
the last years and so again I would like to thank my parents and my brother also for the
support in this timespan.

Also many thanks to all advisors of this thesis at the university of technology in Vienna.
I would also like to thank Philip Langer for the feedback about my work and who did
not hesitate to answer my questions. Last but not least I would like to thank all of my
study colleagues, former classmates and all other participants of the case study for the
invested time.

Dedicated to my grandmother Erna Fiedler who recently passed away. She helped
wherever she could, and always motivated me to break through all obstacles, regardless

how unconquerable they seemed.

ix

Kurzfassung

Code Reviews werden in vielen aktuellen Softwareprojekten zur Prüfung von Änderungen
eingesetzt. Ziel dieser Code Reviews ist es Fehler, die durch Änderungen an dem Code
entstanden sind, frühzeitig zu erkennen und zu verhindern, bevor diese in das Projekt
integriert werden. Zur Unterstützung dieses Überprüfungsprozesses existieren bereits
verschiedene Review Tools. Diese erlauben es einzelne, problematische Teile des Quell-
textes zu markieren, kommentieren und mit anderen Personen zu diskutieren, sowie den
Verlauf des Reviews nachzuvollziehen. Zusätzlich erlauben sie es auch die Änderungen
zurückzuweisen oder anzunehmen. Da, wie der Name schon andeutet, Quelltext auf Text
basiert, sind diese Tools primär auf Text-Daten ausgerichtet. Die Artefakte die im Zuge
eines Reviews betrachtet werden müssen, sind jedoch nicht nur auf Quelltext beschränkt,
sondern betreffen neben anderen Artefakten oft auch Modelle und Diagramme. Das inklu-
diert auch Diagramme und Modelle die durch eine grafische Syntax beschrieben werden,
jedoch nicht notwendigerweise eine für den Benutzer lesbare textuelle Repräsentation
besitzen. Ein Beispiel dafür sind Papyrus Unified Modeling Language (UML) Diagramme.
Daher werden die Visualisierungsmethoden existierender Review Tools für diese Art von
Modellen als nicht zufriedenstellend eingestuft. Stattdessen werden diese Review Tools
mit anderen Tools kombiniert, die diese Art von Modellen vergleichen können, aber den
Überprüfungsprozess nicht unterstützen. Dies erhöht jedoch auch die Komplexität und
bedeutet einen höheren Aufwand, der sich negativ auf den Überprüfungsprozess auswir-
ken kann. In dieser Diplomarbeit werden Visualisierungen und Interaktionstechniken
vorgestellt die Entwickler bei dem Überprüfungsprozess von Diagrammen und Modellen,
die durch eine grafische Syntax beschrieben werden, unterstützen. Verwandte Techni-
ken, sowie existierende Methoden zum Vergleich von Modellen und für Code Reviews
bilden die Basis für die entwickelten Visualisierungen und Interaktionstechniken. Zur
Untermauerung dieser Visualisierungen und Interaktionstechniken wird eine Fallstudie
präsentiert, die mit einem Prototyp durchgeführt wurde der auf dem Eclipse Modeling
Framework aufbaut.

xi

Abstract

Code reviews are used today in several software projects to check changes before they are
merged. The aim of code reviews is to identify and prevent mistakes introduced by changed
artifacts before they are merged into the actual software project. Therefore, several
tools exist to support developers with the reviewing process. Such tools usually allow to
mark, comment and discuss parts of the code that are considered to be problematic, as
well as track the history of the reviewed changes. Of course they also support approval
and rejection of changes. As source code is usually text based, these tools focus on
source code or text-based artifacts. However, like almost every artifact in a software
development project, models also change over time. This also includes diagrams, or
models with a graphical syntax, which may not necessarily have a textual representation
that is understandable by the average user. Papyrus Unified Modeling Language (UML)
Diagrams are an example for such models. Therefore the techniques and visualizations of
existing tools are usually considered to be unsatisfactory for such models by developers.
So developers have to combine the code review tool with comparison tools that support
the given model types, but do not support the review process. However, this adds
additional overhead and complexity that may affect the review negatively. This thesis
provides visualizations and interaction techniques that support developers who need to
handle diagrams as well as models with a graphical syntax during the review process.
These visualizations and techniques are obtained by analyzing existing methods for model
comparison, code review and related techniques that might support the review process.
A case study is presented using a prototype implementation utilizing frameworks based
on the Eclipse Modeling Framework to prove the value of the proposed visualizations
and techniques.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Thesis . 3
1.3 Methodological Approach . 4
1.4 Structure of this Thesis . 4

2 State of the Art 7
2.1 Existing Code Review Tools . 7
2.2 Review Process & Artifacts . 21
2.3 Graphical Models and Diagrams . 24
2.4 Existing Difference Visualization Techniques 25
2.5 Element Annotation Visualization Techniques 28
2.6 Review History Visualization Techniques 29

3 Mervin: A Graphical Model and Diagram Review Tool 31
3.1 Difference Types . 34
3.2 Unified Difference View . 35
3.3 Property Differences View . 48
3.4 Comment View . 50
3.5 Version History View . 52
3.6 Review Explorer View . 55
3.7 View Coordination And Highlighting 59
3.8 Required Input Data . 60

4 Implementation 63
4.1 Papyrus and GMF Overview . 64
4.2 EMF Compare Overview . 66
4.3 Internal Review Model . 68

xv

4.4 Gerrit Integration . 71
4.5 EMF Compare Difference Mapping . 74
4.6 Obtaining Layout Information . 77
4.7 Unified View Implementation . 78
4.8 Difference History . 87
4.9 Highlight Contexts . 90

5 Evaluation 93
5.1 Evaluation Setup . 96
5.2 Evaluation Results . 98
5.3 Summary . 106

6 Conclusion 107
6.1 Future Work . 107
6.2 Summary . 109

7 Appendix 111
7.1 Case Examples . 111

List of Figures 115

List of Tables 117

List of Algorithms 119

Index 121

Glossary 127

Acronyms 131

Bibliography 133

CHAPTER 1
Introduction

1.1 Motivation

Code reviews and tools designed to support code reviews [Goo17b, Pha17, Bea17, Rho17,
Atl17b] are part of many large scale software development processes. Gerrit is an example
for such a code review tool, which is used in popular open source projects such as the
Android Open Source Project [Pro17], Eclipse [Ecl17a], LibreOffice [Fou17] and many
others [Goo17a]. The aim of code reviews is to identify and prevent mistakes introduced
by changed artifacts before they are merged into the actual software project. For this
purpose, one or more other persons or automated processes act as reviewers. They
examine the changed artifacts and provide some form of feedback, such as comments on
changes or an overall rating of the proposed changes. How such reviews are done varies
and ranges from pair programming to formal inspections. However, the basic review
process supported by most of the review tools is as follows: A contributor proposes
changes to the current set of artifacts, which aim to solve a particular task. After that,
one or more reviewers provide some sort of feedback and decide whether the contribution
will be accepted or not. If a contribution is not accepted, the contributor may provide
new changes to the set of artifacts based on the given feedback of the reviewers and the
process starts over again.

This process requires to keep track of the changes introduced to the artifacts and previous
feedback, which together form a review history. To support this, most of the source
code review tools provide visualizations of differences among the changed artifacts and
additional annotations, such as comments tied to a specific scope of the text data.
However, to the best of our knowledge, these visualizations only support textual artifacts,
such as source code. Apart from binary artifacts, this way of visualization is also a
problem for artifacts that encode data with text, but are hard to read for humans, such
as models and diagrams.

1

1. Introduction

In Model-driven engineering, domain models are the most important artifacts of a software
project. Such models are represented by a textual syntax or a graphical syntax. The
previously mentioned visualizations are dedicated to show differences between textual
artifacts and are hence suitable for models with a textual syntax. However, they do not
support models using a graphical syntax, unless they can be encoded in text. Although
the latter is technically possible, it is desirable to visualize the changes and annotations
using the graphical representation, as this overcomes the burden of learning another
representation and keeping them in sync. It is expected that complexity is decreased and
comprehensibility is increased by providing a visualization on the same level as the user
is used to work with.

The graphical syntax of a modeling language may differ from modeling language to
modeling language and is in general not constrained by any rules. Moreover, such a
syntax is usually defined by actual implementations, as no widely accepted modeling
language for such syntaxes exists to the best of our knowing. This makes it hard to find
a single visualization of model changes and review annotations which works for all kind
of possible graphical syntaxes, if any exists. Instead, it demands for an adaptable and
extensible visualization method. However, if a visualization makes use of the graphical
syntax, some conditions must be fulfilled in order to prevent misinterpretations by the
user. The most important condition is that the two versions of the model must be easily
identifiable. Also, it must be possible to distinguish between the model elements and the
visualization of model changes and review annotations at any time for arbitrary graphical
syntaxes. Additionally, the visualization must not modify the graphical representation of
the model in a way that layout constraints of the graphical syntax are violated.

Besides that, a visualization for review purposes also poses the following challenges:
Reviewing requires comparison of a usually well known model with another model, so it
is essential to easily identify changes as well as common parts of both models. Preserving
the so called Mental map [DG02, ELMS91, MELS95] with an appropriate visualization
technique might support the reviewer during review. For example, exploiting the spatial
memory of the reviewer in this way might reduce the burden of identifying common
parts of both models. However, this must be done with respect to layout constraints, as
mentioned before.

Additionally, models exist in various sizes and a submitted change may incorporate
multiple smaller and also independent changes. So the scalability of the visualization in
terms of the number of changes, as well as in terms of the size of each or both models is
an important aspect for such visualizations. This demands a visualization technique that
supports the main tasks Overview, Zoom, Filter and Details-on-demand of the visual
information seeking mantra [Shn96].

Another challenge is the visualization of annotations defined by the reviewer, forming a
feedback for the contributor. In current code review tools [Goo17b, Pha17, Bea17, Rho17,
Atl17b] this is done by assigning simple text messages to parts of the code. Usually three
types of code parts can be annotated this way. A sequence of characters, a sequence of
lines or the whole file. In case of diagrams, which are instances of a modeling language

2

1.2. Aim of the Thesis

in a graphical syntax, the same should be possible with the exception that the parts
are model elements or individual shapes of the graphical syntax. However, these types
of annotations are very simple, related to only one element and usually unstructured.
So it is not explicitly possible to specify relationships between comments that may ease
the understandability of the feedback. This is not a big problem for textual artifacts
as a typical reading direction can be assumed, and the reviewer may solve this issue by
adding labels in the messages and referencing them in subsequent messages. In contrast,
no typical reading direction can be assumed in diagrams. Although the workaround of
labels may be used, a new problem arises. A referenced label might not be read yet, and
the label must be found in one of the other messages, resulting in an additional search
task that potentially distracts the user from understanding the content of the feedback.
Therefore, depending on the size of the change and the extent of the necessary feedback,
it might be of use to specify an order in which the annotations should be read, or to
group annotations that address the same issue. Also the possibility of assigning multiple
parts of the diagram to one comment could be of use in that case.

The last challenge is the proper Visualization of the review history. In a review process
a reviewer is usually assigned to more than one review, multiple reviewers might get
assigned to different contributions for the same review and the period between contribution
submissions may be longer than several hours. So it would be of value for the contributor
that the visualization allows to keep track of changes and annotations of formerly rejected
submissions. This includes, but is not limited to the last rejected contribution, adding
an additional dimension to visualize.

1.2 Aim of the Thesis
The aim of this thesis is to develop a set of visualization techniques to visualize graphical
models in the context of review processes. Due to the challenges of graphical syntaxes
mentioned in Section 1.1, the visualization must be designed in a way that adaption and
extension to more complex graphical syntaxes is possible. These visualization techniques
must consist of:

• Visualization of changes between two or more versions of a model using the existing
graphical syntax of the model language.

• Visualization of reviewer annotations and their relationships to one or more parts
of the model.

• Visualization of reviewer annotations that suggest modifications or some sort of
labels that emphasize parts of the model.

• Mechanism that allows organizing of annotations.

• Visualization of the history of changes between two or more versions of a model
using the existing graphical syntax of the modeling language.

3

1. Introduction

• Visualization of the feedback, which is shown to the contributor.

Apart from that, visualization of review artifacts, such as comments, other reviewer
annotations, the change history, as well as differences, must not modify the graphical
representation in such a way, that the original models are not distinguishable anymore
or the layout constraints defined by the graphical syntax are not fulfilled. A prototype
implementation of the resulting techniques and a case study to verify the results is also
presented in this thesis. The prototype is built on top of popular open source frameworks
and tools used in Model-driven engineering, such as Eclipse [Ecl17a], Papyrus [Ecl17f] and
the Eclipse Modeling Framework [Gro17]. Besides that, the prototype has been released
under the terms of the Eclipse Public Licence [Ecl17b] in a public git repository on the
development platform GitHub [Git17a] to aid further research and development. The
repository can be found at https://github.com/theArchonius/mervin. Some
of the visualization techniques elaborated in this thesis may also be applicable in the
context of Model versioning and Model evolution [BKL+12] in general.

1.3 Methodological Approach
The Methodological Approach follows the Guidelines of Design Science [HMPR04]. The
first two guidelines are already discussed in the previous sections of this thesis. Section 1.2
describes the artifact according to Guideline 1, which is a new visualization method for
reviews of graphical models. The problem relevance according to Guideline 2 is described
in Section 1.1. The next step is to evaluate previous research of visualization techniques
that addresses comparison and annotation of graphical models for review purposes.
Section 2 contain this evaluation in detail including an evaluation of visualizations of
current code review tools. Based on this evaluation and further research on visualization
of graphs and diagrams, new visualization techniques have been derived and developed
in Section 3. These techniques have been implemented in a prototype which is discussed
in detail in Section 4. This prototype has been tested in a case study to verify the
technique and identify new problems and restrictions which is discussed in Section 5. A
final discussion and reflection of the work is done in Section 6.

1.4 Structure of this Thesis
This chapter provided an overview of the problem and methodological approach. The
following Chapter 2 provides an in depth analysis of the current state of the art in code
review tools and visualization techniques for differences in models as well as graphical
models and diagrams. It also defines a common review process, the artifacts of that
process and the involved actors in that process. Also other related visualization techniques
are mentioned that may be adapted for graphical models and diagrams.

Chapter 3 presents a proposed combined set of visualization techniques that aim to
improve the code review process for graphical models based on the findings in Chapter 2.

4

https://github.com/theArchonius/mervin

1.4. Structure of this Thesis

This is followed by implementation details on how the proposed solution is implemented
in a prototype called Mervin in Chapter 4. Also the encountered problems are described
in more detail in this chapter. As mentioned before, an evaluation has been done with
the implemented prototype. The setup and the results of that evaluation are discussed
in Chapter 5. Afterwards, future work is presented in the final chapter alongside with
the summary of this thesis.

5

CHAPTER 2
State of the Art

Various tools exist that support reviewing of source code, but to the best of our knowing,
not for diagrams or models with graphical syntaxes. For the sake of simplicity, reviewing
such diagrams or models with graphical syntaxes is called graphical model review in this
thesis. The first section of this chapter summarizes some of the most popular tools to
provide an overview of the review process and to identify techniques that need to be
adapted for graphical model review. Also they help to clearly define the overall review
process and the tasks that need to be supported during reviewing. This is summarized
in Section 2.2. The remaining sections are dedicated to visualization techniques in
current research and tools that aim to support the previously identified tasks. Differences
between versions are one of the most important artifacts while reviewing, so visualization
techniques addressing the differences between two versions will be discussed in Section 2.4.
Another group of important artifacts are annotations, which are discussed in the next
section. The last section is dedicated to the visualization of the history of artifacts while
reviewing.

2.1 Existing Code Review Tools

As mentioned before a huge variety of tools exist that aid at supporting developers during
the review of source code. This analysis focuses on tools that support the whole review
process from the beginning, where the first proposed solution is submitted, until the
decision is made to merge it into the actual software. The goal is to identify a common
process, common tasks and the commonly used artifacts. Obviously, reviewing code is a
complex task and there may be also other tools that provide features that help finding
differences and help understanding the effects of some aspects of the new code. However,
such tools usually focus only on one aspect of the whole review process and need to
be combined with other tools to form a tool set that can be used for code review. As
users have to switch between such tools, it is reasonable to assume that this increases

7

2. State of the Art

Tool Version
Bitbucket Cloud Software, accessed May 17, 2017 - Server: 5.0
Differential (Phabricator) commit 6ecd6980a1420633d5e02d09f67262d9dc876089
Crucible 4.4
Gerrit 2.14-773-Gd9d2de7604
GitHub Web Service, accessed May 17, 2017
GitLab Enterprise Edition / gitlab.com v9.1
Kallithea 0.3.2
Patchwork v2.0.0-rc1-2
ReviewBoard 3.0
RhodeCode 4.7.2
Rietveld commit 80a51fa637f416b8e9f192f9394bed2aca5ea1c3
Understand 4.0 (Build 891)
Upsource 2017.1.1892

Table 2.1: The version numbers of the analyzed code review tools

the complexity of the review as well. So the decision was made to exclude such tools
for that reason and due to the large variety of combinations of such tools. That aside,
visualizations of excluded tools that might be useful for graphical model review are
covered in Section 2.4

The analyzed code review tools can be divided in two categories: Standalone software
that is dedicated to support only code reviews, like Gerrit [Goo17b]. And code review
tools embedded in development platforms such as GitHub [Git17a]. The latter are usually
tightly tied to their development platform and its supported Version Control Systems
(VCSs), whereas tools from the former category may also support other VCS that provides
a description of the differences. Almost all tools are web applications, which might be
due to the fact that different persons have to collaborate at the same time. The only
exception is the software Understand [Sci17], which has been included for special reasons
as described in the subsection below. The current version at the time of this writing of
each of the mentioned tool have been used for this analysis. Table 2.1 shows the exact
versions of the analyzed tools.

Plugins available for other editors and Integrated Development Environment (IDE)s that
use the specified tools are not analyzed as they are considered to implement at most
a subset of the features provided by the actual tools. Each tool has been analyzed by
the features mentioned in their manuals, documentation, or by manual inspection, if
possible. The assignment process of the particular roles in the review has been ignored
for this analysis as they are either implied or the result of the configuration defined by
the tool administrator. Additionally, the presentation of automated tests that have been
executed to verify the new versions have been ignored. This is due to the fact that the
visualizations beyond simple result lists depend on the actual model, which would be
beyond the scope of this thesis.

8

2.1. Existing Code Review Tools

2.1.1 Standalone Code Review Tools

Rietveld is an open source code review tool inspired by a code review tool used
internally at Google [vR17]. This tool calls reviews issues. To start such an issue, an
issue owner uploads the differences in so called patch sets using either the preferred
upload script or the web fronted of the tool. Afterwards one or more reviewers may
comment on the proposed changes. Issue owners may upload new patch sets and respond
to these comments to discuss issues. They also have the responsibility to close the issue.
It is not strictly defined who is responsible to merge the code in the final software.

An issue is presented with an overview page which lists the issue description, the involved
persons, an overview of the patch sets and a chronological list of all comments. The
patch set overview lists all changed files and their difference statistics. The differences
per file are shown by default in the uploaded, color coded common unified diff format
provided by the issue owner. This format is a merged version with all added and deleted
lines with markers which define which lines have been deleted or added [Fre17]. Apart
from that, the user may switch to a side by side difference view that allows the selection
of the comparison scope with all uploaded patch sets and the original version. Reviewers
may comment on the changed lines in patch sets and these comments will be shown
below the specified line. Each comment is collapsible to show the complete comment text
only on demand.

Gerrit is a popular code review tool used by several open source projects [Goo17a,
Goo17b]. Gerrit is tightly coupled to Git, as it uses git commands and the internal object
database of git to store parts of the review data. It was formerly created as a fork of
the Code review tool Rietveld and therefore has some similarities to Rietveld. It also
manages multiple patch sets with one or more patches per review. In contrast to Rietveld,
a review is called a change, and most of its data is stored directly in the repository. A
single contributor may create a new change by pushing a commit to a special branch on
the gerrit server. A new patch set for an existing change can be uploaded by amending
the uploaded commit, adding the associated change identifier and pushing it back to the
special branch. Reviewers may add comments on a patch set or a sequence of characters
in a patch. Contributors may also reply to them or write comments on their own.

Reviewers are also able vote for approval or rejection on a numerical range from minus 2
to 2 by default. A vote for minus two or two represents a strict rejection or approval,
whereas minus 1 and 1 represent a not so strict rejection or approval. A vote for 0 does
not have any effect. Gerrit also provides options to directly integrate the changes into
the main development branch if an accept vote has been given. However, project owners
may also define other labels that can be voted for as part of the review.

Access rights may be defined for users, groups and projects to control who is responsible
for which task and allow the definition of flexible roles. The change overview screen is
also similar to rietveld, with the following exceptions: Stacked bar charts are used to
depict the file change statistics, showing the amount of added and deleted lines. The

9

2. State of the Art

Figure 2.1: Screenshot of the change overview page in Gerrit.

Figure 2.2: Screenshot of a difference visualization in Gerrit.

10

2.1. Existing Code Review Tools

comment list also shows events and actions like the upload of new patch sets and votes.
Conflicting and related open changes on the same Gerrit server are also listed.

Differences can be shown per file, in either a plain unified or a side by side view. Additions
and deletions are color coded by their respective type. Only the context of the changed
lines is shown by default, but it can be expanded on demand. Comments are shown after
the line of the last linked character and the corresponding sequence is highlighted. Each
of those comments are also collapsible, similar to the comments in Rietveld.

ReviewBoard is a code review tool that supports both reviews based on difference
information upload or from a VCS repository [Bea17]. A script is also provided that
simplifies the upload of the difference information. The submitted difference information
is called a revision, and submitters may add new revisions for a review request. A review
is called a review request wich is created by a Submitter. Multiple reviewers can comment
on the request, on the uploaded difference information as well as on additional attached
files. Moreover, comments can be marked as issues that have to be solved and will also
show up in the the overview of the review request. Submitters may respond to these
comments, close an issue, drop an issue or upload a new revision. It is also noteworthy
that only the submitter is responsible for closing the review request by either marking it
as discarded or submitted. However, this does not necessarily mean that the submitter is
also responsible for integrating the difference in the final software.

The overview page of a review request shows the description of the request, followed by
the issue list and finally the complete history of the review. This history includes all
comments and all actions taken for this request. Revisions are shown in this history with
a list of all changed files and a small donut chart showing the difference amount, color
coded by their type. ReviewBoard distinguishes three types of differences: additions,
deletions and modifications. Details of the revisions are only shown on request. All
differences are shown on a single page in a side by side view. Each view includes the
changed lines and some lines before and after to provide more context. It is also possible
to increase the number of context lines on demand. Changed characters are color coded
according to their change type. Additions and deletions that represent a move are also
detected and marked with a reference to jump to the corresponding counterpart. Users
may also restrict the displayed differences to a sequence of consecutive revisions, showing
only differences between the selected revisions. Comments can be added for a sequence of
lines for text files, or on text blocks if the changed file is a markdown file. Each comment
is shown as a marker on the right of the corresponding line. These markers are stacked if
comments overlap and a number on the marker indicates the number of stacked comment
markers. Hovering over the marker reveals the comments and their replies.

In contrast to the other tools, difference visualization of images and comments on images
are also supported. The simplest difference visualization is a side by side view of both
images without any additional markers. The second option is to show the difference
image. A new image that is created by subtracting the RGB values of each pixel of the
two image versions. Another supported option is place both images above each other

11

2. State of the Art

and let the visibility of each be determined by the position of a slider. One version is
visible on the left side of the slider, the other on the right side of the slider. The last
supported option is similar to the previous one. Instead of controlling the visibility in a
binary manner, the slider determines the blend factor of the two images. So if the slider
is on the left or right side only the corresponding image version is shown. However, if the
slider is in the middle, both images will appear semi-transparent on top of each other.
Comments can be assigned to rectangular regions of the image. The regions are marked
with an rectangle in the images and the assigned comments are shown when the user
clicks on the rectangle.

Crucible is a standalone code review tool that supports the integration in existing
development platforms [Atl17b]. Therefore it supports the creation of reviews from
difference information extracted from patch files, VCS repositories and arbitrary files.
Crucible distinguishes four review roles, where a single person may take more than one
role in a review: Although the first role is named author, this person does not necessarily
be the author of the proposed changes. According to the documentation of the tool, users
with this role are users that deal with the results of a review. The reviewer is the person
that reviews the changes and comments on the submitted code. As the name implies,
creators are the users that create reviews. Users that act as moderators are responsible for
assigning and notifying reviewers, and closing the review with a decision and a summary.
Additionally moderators may also create reviews. All roles are allowed to comment or
reply to comments. However, this is only the default recommended configuration which
can be changed as the permissions of the roles and all users can be changed by the
administrator.

Crucible also allows adding of new revisions or changesets to the review. The term
revision is used for reviews based on patch files, while changesets are extracted from
VCS repositories. The initial page of the review shows the current state, the description
and the assigned reviewers with their progress on the review. General comments on the
review are shown below. A navigation and a list of all changed files is shown on the right
side with statistics about the amount of comments on the particular files. Comments
can be made on the review itself, revision, changesets, single files or a sequence of lines.
These comments also show up in the review activity list which shows all events related
to the current review in chronological order. This activity feed can be shown on demand
from any view of the review.

A detailed view of all differences for each file can be triggered by selecting a file in the file
list. Crucible supports two different difference types: additions and deletions. Differences
are color coded based on their difference type and can be shown in a unified view. A
side by side view is also available on demand. Similar to all previously mentioned tools,
lines with no changes will be hidden in these view except some lines before and after
the changed lines. However, these hidden lines can be shown on demand. Filtering the
differences is also possible for reviews with more than one revision or changeset. This
can be done by selecting a sequential range of revisions or changesets to restrict the

12

2.1. Existing Code Review Tools

displayed difference to the given range. Comments on lines are shown below the last
line if it is visible. A comment associated to a hidden line is shown in the space that
represents the skipped lines that contains the hidden line. The associated lines to a
comment are highlighted with a different background color when the user selects or hovers
over the comment. Users may also choose to mark their comment as issues or defects to
indicate problems that need to be solved. Such comments are also accessible through the
navigation list and may also be marked as resolved if the problem has been solved.

Patchwork is a code review tool that is primarily based on and controlled by e-
mails or its Representational State Transfer (REST) Application Programming Interface
(API) [Ker17]. Every information that a user submits, from simple comments and
difference information to state changes, is usually parsed from emails from a mailing list.
An optional script provides access to the REST API. The most important artifact that
is parsed from this data is the so called patch. It contains the difference information,
usually the content of a patch file generated by a VCS, and other metadata describing
the patch. Additionally, Cover letters can be created that give an overview of a series of
patches. Like in all previous tools, Patchwork also stores comments. These comments can
be assigned either to patches or cover letters. Patches may have different configurable
states, but Patchwork uses the states new, accepted and rejected by default.

Multiple patches can be grouped into series, bundles and todo lists. Users may also
add new revisions of patches in a series, which results in the creation of new patches.
Bundles are a collection of patches that can be created by the user. In contrast to a
series, bundles may contain patches from multiple projects and patches may be contained
in multiple bundles. A user may take one of two different roles: The standard user may
submit patches for review, comment on reviews or create todo lists. Maintainers are
able to change the state of a review, to archive a review, to delegate a review and to
execute the same actions as standard users. Cover letters and patches are presented on
a single page: The metadata is shown first, followed by the comments in chronological
order. Depending if it is a collection or not, a list of the patches of all versions or the
difference information is shown at the end. The difference information is presented in
the submitted format with syntax highlighting.

Upsource is a code review tool that depends on VCS repositories [Jet17]. It is possible
to create reviews either from one or more commits or from a branch. New revisions
of branch reviews will be automatically added to the review, while new revisions of
commit reviews must be added manually. All commits together form the final version
that is under review. Upsource distinguishes three main actors of reviews: Authors are
the authors of the commits assigned to the review, regardless of the user that actually
created the review. One or more reviewers may give an opinion on the review by raising
a concern or signal their acceptance for the new version. Additionally, watchers may
also be assigned to the review. Any user that is involved in the review may close the
review, adds comments to the review, or replies to existing comments. Reviews may be
pending, completed or closed. A review is completed once all assigned reviewers made

13

2. State of the Art

their opionon on the review. The actual inclusion of the new version in the final software
is the responsibility of any of the users and not necessarily managed by Upsource. It has
to be noted that Upsource is one of the few tools in this analysis that supports code
navigation and static code analysis for certain languages and projects.

The review overview page shows most of the review data without the detailed difference
information. It includes the review title, the involved users, the revision list, the list of
the changed files and the review timeline. Upsource tracks the number of viewed files per
reviewer and shows them on demand in the user list of this page, to give an overview of
the current review progress. The file list includes the number of added and deleted lines
for each files. Every action of any user assigned to this review is listed in chronological
order in the timeline. Comments may be added on the review itself, a line in the code or
on a sequence of characters. The detailed differences are shown by default in a unified
difference view. It is also possible to switch to a side by side view from the unified view.
Each view shows the changed lines with unchanged lines before and after them for each
file. Upsource recognizes added and deleted lines and presents them in different colors.
The presentation of comments depends on the view: Line comments are shown directly
after the line in the unified difference view and comments on a sequence of characters
in a single line are not shown in this view type. Additionally, a line with a comment is
highlighted with a colored background. Side by side difference views show comments on
demand in a separated list view. To view the assigned characters or lines, users have to
click on a comment. This enables highlighting of the assigned characters or lines with a
colored background. Users may also restrict the scope of displayed differences by selecting
the revisions to include. As revision might include different versions of the same line,
this may also remove displayed code with assigned comments. Such comments are shown
below the first visible preceding line with a special note. Comments can be marked with
different labels to highlight special issues and each user may also mark comments as
resolved. Resolved comments are shown like normal comments except that they have a
resolved mark on it and its text is grayed out.

Understand is a static code analysis application that has some basic features that
could be used in combination for code reviews [Sci17]. However, it does not define specific
user roles or a particular workflow for the code review process, but can be used for the
process without using other analysis tools. This is the reason why this tool is mentioned
in this analysis but not in the same detail as the other tools.

Understand provides two main features that all of the aforementioned tools support:
First, it supports pointing out problematic code fragments adding so called annotations
in the code. Annotations are short texts with a particular author, a modification date
and a list of key value pairs. Each annotation can be assigned to a file, line, or code entity.
An explicit reply to such an annotation is not supported. Each annotation is stored in a
database file that can be exchanged with other users. Apart from that, Understand also
supports the comparison of two versions of code or text files.

Each version of the code must be checked out manually by the user as Understand does

14

2.1. Existing Code Review Tools

not support loading versions form a VCS repository. A list of all changed entities in
the comparison is shown at the top of the comparison view, including a control to filter
the list. It is followed by a side by side view of the files with the highlighted differences.
Differences are not distinguished in different difference types, like most of the other
analyzed tools do. Understand differentiates differences by highlighting the currently
selected, merged and not merged differences differently. Each side shows the code with
or without hiding most unchanged lines, and parts of the code may also be collapsed or
expanded, depending on the language entities. Additionally, the position of differences
are also highlighted directly on the scrollbar. The differences are also shown in the
common patch file diff format [Fre17] below the side by side view, followed by a list of
all line differences.

2.1.2 Embedded Code Review Tools

GitHub is a web-based development platform based on git [Git17a]. It allows users to
fork any accessible repository on this platform and change the code of the fork. Once
the changes are complete, users may request the integration and review of these changes
by creating a so called pull request. A pull request represents a number of incremental
commits on a branch that should be merged into the target repository. This also means
that multiple persons can be involved in the creation of the submitted changes. As most
Git users know, the person that creates a commit is not necessarily also the author of the
files in the commit. Furthermore, each commit can have different commiters and authors.
After the creation of the request, one or more reviewers are each able to start a review of
the changes by viewing the differences and adding comments. Once all comments have
been made, the reviewer has to conclude the review with a summary and one of three
different options: The most obvious options are to approve the changes or to request
additional changes. Finally, the last option to conclude a review is to neither approve
the changes nor request additional changes, but leave some feedback on the code. In case
of the approval of the changes, any user that has permission to merge the changes may
trigger the merge of the changes in the main repository. The last option to conclude
a review is to neither approve the changes nor request additional changes, but leave
some feedback on the code. How many approvals must be gathered or how many change
requests must be incorporated to merge the changes, is usually the decision of the user
that merges the changes. Still, GitHub may also be configured to accept merges only
with at least one review that approves the changes. New commits can be added to the
pull request by adding them to the branch. Users may add new comments to lines, files,
and the whole pull request. Anyone involved in the pull request may also reply to these
comments or add their own comments.

The pull request page shows by default the title, description, involved users and the
history of the request. Additionally, a small bar below the title of the pull request gives
an overview of the number of added and deleted lines in all files. All actions, comments
and reviews are shown in the history in chronological order from the oldest to the newest.
Comments and reviews are shown completely with the assigned code, if a code line has

15

2. State of the Art

been assigned. The only exception to this behavior are comments assigned to code that is
no longer part of the pull request due to an update. Such code and its assigned comment
are considered outdated and will be hidden unless the user decides otherwise. Commits
are shown only with their author, the first line of the commit message and the commit id.
Detailed difference information is only shown on demand by selecting the commit or the
changed files tab. This tab reveals all changed files in the pull request in either a unified
view or in a side by side view. Changed lines are colored based on their type and shown
with some unchanged lines before and after them. Remaining unchanged lines are hidden
unless they are explicitly requested by the user. Hidden lines are revealed in short steps,
revealing only a few hidden lines per request. Comments on lines are shown after the line,
with all replies below. All differences of each file are grouped. Each header of this groups
contains a stacked bar chart showing the number of additions and deletions. Users are
able to filter the displayed differences by selecting a sequence of consecutive commits to
show. Comments on hidden lines did not appear in this view during this analysis.

Bitbucket is similar to GitHub, a web-based development platform that supports
Git and Mercurial VCS repositories [Atl17a]. It is divided in two main products, the
cloud service and the standalone server. Their feature sets differ from each other, but
the review workflow and visualizations are mostly the same. So everything mentioned
in this part applies to both versions if it is not stated otherwise. Bitbucket also uses
forked repositories and pull requests, similar as it has been described for GitHub in the
preceding paragraphs. But unlike GitHub, it does not require the explicit creation of
a review. Users can signal their approval or remove it at any time. If the request is
accepted or not, depends on the configuration of the repository: It can be configured
to require an approval through a reviewer, but it does not have to. A user with the
appropriate permission can accept the request without approval through a reviewer.
Besides reviewing and contributing to pull request, users are also able to subscribe to
pull request, to get informed of any action performed on the pull request. Feedback can
be given with comments, and other users are able to reply to a comment. Comments can
be assigned to a code line, a file or the pull request itself. It is also possible to create
a list of tasks in a comment. These tasks can be accessed at any time by a keyboard
shortcut or from the pull request overview page. Each task can be marked as resolved or
unresolved while discussing or changing the pull request.

The main page of a pull requests shows the title, involved users, the description, and all
pull request comments. At this point the cloud and the server version have a different
layout. Bitbucket Server also includes the activity history in the overview tab, while the
Bitbucket Cloud version show it in another tab on demand. On the other side, Bitbucket
Cloud shows a section containing the difference information in the overview tab, while
Bitbucket Server shows the this section in another tab on demand. The activity list shows
a chronological list of all actions performed by any user on the pull request. Comments
on lines are shown completely with a unified view of the corresponding line, including all
replies. A comment will be marked as outdated if it refers to an line that is not part of
the pull request any more. The last tab can be used to display all commits of the pull

16

2.1. Existing Code Review Tools

request and show their contents. Although it is possible to comment on these commits,
such comments will not be part of the pull request. As a result, they are considered not
relevant for the review of the pull request.

The difference section starts in the cloud version with a short overview of the differences
with a list of all changed files. This list includes the number of added and deleted
lines, the change type of the file, and the number of comments related to the particular
file. In the server version, the file list is shown as a file tree with the file color-coded
based on their difference type. Files are categorized in added, deleted or modified files,
while line differences are categorized in added or deleted lines. The overview is followed
by the detailed differences in a unified difference view grouped by their containing file.
Each changed line is shown with a few surrounding lines to provide context information.
They are also color coded and marked with a symbol according to their difference type.
Characters that do not match in a pair of consecutive deleted and added lines are more
prominently highlighted than the other characters, pointing out that parts of a line
have been modified. Unchanged hidden lines can be revealed in short steps on demand.
Comments on lines are shown right after the assigned line with all replies. Outdated
comments are not shown in the difference view. A side by side view of the differences
without comments can be shown on demand. This view displays modified lines with a
gray background, except for the added or deleted parts. Their background color is based
on the type, either red or green. Also, both files are shown without hiding the unchanged
lines but with markers next to the scrollbar that represent changed lines. Filtering of
differences is only available in the server version of Bitbucket. It provides the possibility
to filter the differences to a specific commit, or commits that have not been reviewed by
the reviewer.

GitLab is also a web-based development platform that supports Git [Git17b]. This
analysis focuses on the Enterprise Edition of Gitlab, but also applies on the community
edition as the review features of both versions are identical according to the feature
comparison matrix. Code review is supported for so called merge requests. They are
either created from forked repositories as described in the paragraphs about GitHub
and Bitbucket, or from a different branch of a single repository to a protected branch.
This also implies that a merge request may contain code form multiple authors and
committers, as explained earlier for GitHub. Once the request has been created, users are
able to create comments, discussions and give their approval. Accepting the request does
not necessarily require the approval of one or more users, but repository administrators
are able to configure the repository to do so. A push of new commits from a local branch
to the branch that is the source of the merge request is interpreted as a new version.
All commits from the first diverging commit of the two branches to the newest pushed
commit are part of such a version. Comments can be made on the merge request or on a
single line in the difference information of the submitted changed files. Discussions are
special comments that may have explicit replies assigned to them. It is not mentioned
in the manual but during this analysis only merge requests may have simple comments
assigned without replies. All comments on lines of code have been discussions and the

17

2. State of the Art

button to switch between those types was not present when adding a comments to
a code line. Additionally, a discussion can be marked as resolved or unresolved and
repository administrators may configure the repository to disallow merging of requests
with unresolved discussions.

Each merge request is shown on a single page with its basic information at the beginning
and tabs with more details at the bottom. Basic information includes the title, the
description, a summary of the current request state. Given and requested approval, the
involved branches and final actions are part of this summary. A collapsible sidebar shows
the involved persons, labels and other minor information on the right side. An overview
about unresolved and resolved discussion is shown next to the tabs. The history of the
request is shown in the default tab, titled Discussions. It includes all actions as well as
all comments which are shown depending on their type. Discussions are shown together
with all replies, independent from the actual creation time of the reply. Discussions
assigned to a code line are shown below the line, embedded in a unified view of the
differences around the line. Resolved discussions are shown just with minor informations
about the involved persons and the creation time. Detailed informations about such
a resolved discussion can be shown on demand. All commits of the latest version are
shown in the second tab. The last tab shows the difference information in detail: First,
an overview is given with the statistics of the change: The number of changed files and
the actual number of changed lines for each change type are shown. Gitlab distinguishes
between added and deleted lines. Each changed file is shown with its changed lines
and their surrounding lines. Hidden lines may be displayed on demand, revealing only
a few more lines at a time. Difference information is shown either mixed in a unified
view, or in a side by side view. Changed lines are color coded by their type. A stronger
highlight is given for characters wich do not match in two subsequent added and deleted
line sections. In other words, the changed characters of a modified line have a stronger
highlight. Discussions on lines are shown directly below the assigned line with all replies.
Users can hide all comments of a file or a single comment. Comments hidden this way
are not completely removed from the view. Instead, markers are created with the picture
of the first comment author next to the lines. Hovering over such a marker reveals the
pictures of all involved users and a click reveals the comment again. It is possible to
filter the differences to differences between two versions or the base branch. This also
completely hides comments on lines that are not assigned to that particular difference
scope.

Differential is a web based code review tool wich is part of Phabricator, a suite of web
based tools for software development [Pha17]. Reviews are created either by submitting
the difference information with a script provided by the tool or by manually uploading
the difference information. Differential cannot be used without installing the whole
Phabricator suite, although the submitting process is similar to the approach that a
couple of the standalone tools use to be independent from the used VCS. A review
contains one or more revisions, each representing the set of changes to apply to the
existing code. Only one author exists for a single review. Authors are able to upload new

18

2.1. Existing Code Review Tools

revisions and reply to comments. One or more reviewers can be assigned to the review
and are able comment on the differences, reply to comments, as well as give an opinion on
the differences. The latter can by done by accepting the review, rejecting the review or
suggesting modifications to the differences. Comments are always submitted in a group:
A set of optional comments on a sequence of lines with an optional comment that is not
assigned to a section of the code. Merging the differences in the actual software is possible
with an experimental prototype directly from the tool, but can also be done manually by
any involved person, depending on the actual workflow of the team. Either the review is
closed manually, or the merge of the difference closes the reviews automatically in the
end.

A review is presented on a single page, starting with the review title, description, involved
persons and other minor metadata. It is followed by a section that shows the related
repository and the automated test results. A chronologic history of all actions performed
on this review is presented afterwards, followed by the actual revision content section.
Comment groups are shown in the history in the following manner. The comment not
assigned to a code section is shown first, if it exists. Afterwards, comments assigned
to code sections are shown grouped by their containing file, together with a link to the
the code section. Detailed information about the differences is presented in the revision
content section. Three tabs give an overview of the differences at the top of this section.
A list of all changed files is shown in the file tab. It contains the path and the name of
the files as well as its change state. Differential distinguishes between added, deleted and
modified files. The history tab shows all uploaded revisions submitted by the author and
allows selection of the scope of the differences to show in the detail view. Other metadata
like the actual contained commits of the difference information is shown in the last tab.
Line differences are shown below the tabs in either a side by side view or in a unified
view. Changed lines are color coded by their difference type, where different character
sequences of subsequent added and deleted line sections are stronger highlighted. Each
changed line section is shown with it surrounding unchanged lines, while the other lines
hidden. Hidden lines can be shown on demand either completely all at once or just a few
lines at a time. Comments assigned to code lines and their replies are shown directly after
the last code line. The assigned code section is highlighted with a different background
color while moving the mouse pointer over the comment. Comments on lines are tied
to a specific revision, but are also shown in other revisions as so called ghost comments
at a similar position. How the position is determined is not exactly described in the
manual of the tool. Ghost comments are grayed out to indicate that the comment has
been assigned to a different code section in the beginning.

RhodeCode is web based collaboration and development tool with built in code
review features [Rho17]. It is divided in the community and the enterprise edition,
where the latter includes more features then the former. This analysis is based on the
enterprise edition as it also includes all features from the community edition. RhodeCode
supports the VCS Git, Mercurial and Subversion and implements code reviews for
individual commits or pull requests. Both of them can be in one of the following review

19

2. State of the Art

states: not reviewed, approved, rejected or under review. Commit changes have a single
author extracted from the commit and more than one reviewer may review the commit.
Additionally, the review state of a commit is determined by the last review. Changing
the review state of a commit does not have any consequence defined by the tool, but
the users may take action based on the state. Reviews of pull requests are similar to
pull request reviews in GitHub or Bitbucket. A pull request is created from a forked
repository by a user that acts as the pull request author. Each pull request may contain
multiple versions with multiple commits of different authors. An update of the pull
request with a new commit also creates a new version with the old commit and the new
commits. One or more users review the changes, leave comments and vote for the review
state. Comments can be assigned to the whole pull request or a single line. It is not
possible to reply explicitly to another comment. Once all votes are received, the request
is either accepted or rejected. RhodeCode allows the merging of the request directly from
the tool or manually by the user. Afterwards the request has to be closed manually, or
the merge triggers the closing of the request.

The presentation of both reviewed commits and pull requests is similar: A section with
general information of the reviewed element is shown at the top, including the current
review state and the involved users. It also contains a list of all versions for pull requests
and controls to select the version comparison scope that determines the differences to
display in the difference section. A list of all commits follows this section for pull requests.
The difference section is present for both elements, and shows the changed lines grouped
by their containing file. Each file group gives an overview of the number of added and
deleted lines of the file. All differences of a file can be hidden on demand. Differences
can be shown in either a side by side view or in a unified view. Changed lines are
color coded by their change type, which is either added or deleted. Modified lines are
interpreted as deleted and added with a similar content and changed parts of such lines
are stronger highlighted than the matching parts. Changed lines are shown with parts of
their surrounding lines, while the other unchanged lines are hidden. In contrast to most
of the other tools, hidden lines cannot be shown on demand. Comments are shown right
after the line they have been attached to, and will be shown in all versions. An icon that
displays the comment on demand is shown for comments on lines that are not part of the
shown differences. The last section contains the chronological history that includes all
comments without assigned lines and all actions applied to the pull request or commit.

Kallithea is a web based collaboration and development tool based on Git and Mercu-
rial [Sof17]. It has been created as a fork of an earlier version of RhodeCode and there is
no major release version of Kallithea yet. The review process of pull requests has not
been documented at the time of writing this thesis and it can only be assumed that it
works exactly the same as in RhodeCode. For that reason, only confirmed aspects of
Kallithea will be mentioned in the following paragraphs

Kallithea also supports reviews of pull requests and commits. Reviews are also presented
similar to RhodeCode: The general information is shown on the top of the page, followed

20

2.2. Review Process & Artifacts

by the difference section and the history. A version list or a control to change the version
comparison scope has not been found. Moreover, it is not clear if users are able to update
the commits of an existing pull request or have to create a new pull request for every
update. The difference information section contains an overview section at the beginning
and the changed lines grouped by their containing file. A list of all commits in the request
is shown in the overview section, including the review state of the commit and the total
number of comments for this commit. It is followed by the list of changed files with icons
that represents the corresponding file change type and stacked bar charts that show the
ratio of added and deleted lines for the particular file. Each file group shows the changed
lines color coded with surrounding unchanged lines in a unified view. Users can choose
to increase the number of surrounding lines in small steps. Kallithea also distinguishes
between added and deleted lines, like RhodeCode. Furthermore, it also shows the same
highlighting behavior for modified lines like RhodeCode. Comments assigned to lines are
also shown right after the lines they are attached to. A side by side view of the changed
file can be shown on demand, which shows all lines at once. The scrollbars of each side
are linked and markers next to each scrollbar indicate changed lines on the corresponding
side. The color coding of added lines differs from the color coding used in the unified
view and deleted lines are additionally crossed out. All actions and comments on the
pull request, except comments assigned to lines, are shown in the history in chronological
order.

2.2 Review Process & Artifacts

As shown in the previous section, the process varies from tool to tool, but all of them
also have some parts in common. This parts are considered as the key parts of the review
process. Also the name of the roles varies from tool to tool, so the role names in the
following do not necessarily match the role names chosen by the tools. However, the
role names in this and all subsequent sections have been chosen to be as expressive as
possible and close to the role names used in the tools.

Origin of all reviews is a change that is introduced to an existing set of base artifacts to
fulfill a certain task. A change may be separated in parts, which have been created by
one or more persons, the authors of the change. All except one tool support updating
the change, which results in new versions of the changed artifacts. Each update may also
depend on a different sets of base artifacts. It depends on the tool if the old versions of
the change are also available once it has been updated.

At the beginning a person, the review requester , requests feedback about a change from
one or more reviewers in form of comments, approval votes, rejection votes, or other
annotations on the artifacts. Annotations on the artifacts are realized with a varying
granuality and in different ways in the analyzed tools. Some tools assign annotations to
artifacts in a particular version, artifacts represented in all versions or artifacts present
in the comparison scope of two versions. It also affects the validity of annotations after
updating the change. All tools support discussions about the feedback to clarify issues

21

2. State of the Art

AUTHORS

CHANGE

REVIEW

REQUESTER

AUTHORS

CHANGE

REVIEWERS

WATCHERS

DECISION

MAKER

ARTIFACT

MERGER

REQUIREMENTS

NEW

VERSION

NEW

NEW

VERSIONS

NEW

REPLIES/

COMMENTS

NEW

REPLIES/

COMMENTS NEW

REPLIES/

COMMENTS

VOTES

ACCEPT / REJECT

APPLY

CHANGE

Base Changed

Artifacts

REJECT

CHANGE

Figure 2.3: Illustration of the common review process and its artifacts.

and necessary actions to solve them.

A change might be updated until it is accepted or rejected by a person that has the
permission to do so, the decision maker . It is the decision of the decision maker how many
rejection or approval votes are necessary to make a final decision. The final incorporation
of the changed artifacts in the set of base artifacts is the responsibility of the artifact
merger . Additionally, some tools also support one or more watchers per change. Such
persons are notified of actions taken by the involved persons in the process, and may
also comment or annotate the artifacts. That aside, watchers cannot vote for approval or
rejection.

Several different kinds of roles have been presented in the previous paragraphs, but not
every review is done with at least one person for each role. Some roles like the watcher
are optional, and a single person may take more than one role. For example a review
requester may also be an author and may also be responsible for merging the approved
change version. Any combination of roles is possible by the tools, and it is subject to the
review policy of the team to define who is allowed to act in a particular role. Obviously,
it can be assumed that a review cannot be done by a single person. This would contradict
the idea of reviewing the changed artifacts and getting a second opinion by another
person. So at least two persons have to be involved in a review.

22

2.2. Review Process & Artifacts

Representations of a version in a change also varies: Some tools interpret versions as a
single state of changed artifacts, like a single commit, which is seen as independent from
the other versions. Gerrit is such a tool for example. On the other hand, some tools view
versions as a sequence of applied sets of changed artifacts, the change sets, where each
set might be contained in multiple versions. The final version is the final set of artifacts
after applying the changed artifact sets in the order of the sequence. Bitbucket and
other embedded tools that use pull requests or merge requests use this representation.
Although this has no effect when viewing the differences between the base version and
the new version, it is important once a user has to navigate through the version. For
example, the user might be interested in the differences between two versions or filter
the differences of change sets.

New versions are primarily viewed with focus on the differences with respect to another
version. The main visualizations used to show these differences are unified or side by side
views. Changed parts of the artifacts are shown with some context that show the point
where the change has been applied. Some tools support filtering of differences on versions
or change sets, but not on the change type. Changed artifact parts are highlighted
color coded by their difference type. Almost all tools distinguish added, deleted and
unchanged parts of artifacts with a certain difference granularity. In the case of the
analyzed tools, the smallest possible difference was detected on a single line. Modified
parts with respect to the smallest difference granularity are represented with an addition
or deletion. Nevertheless, a couple of the analyzed tools also highlight the modified parts
in a special way.

Difference types of artifacts are the same as the previously mentioned difference types,
but also include modified artifacts. Most of the tools use red and green to encode
additions and deletions, which may be a problem for users with color vision deficiency
(CVD) [Sim10, JH06]. While this is the case, some of the tools also provide different
color sets that can be chosen by the user on demand.

A study reveals that motivations for doing code reviews are finding defects, code im-
provement, alternative solutions, knowledge transfer, team awareness, transparency, and
sharing of code ownership [BB13]. It also states that the key challenge is understanding
the change and also the reason of the change. These challenges have been targeted by
the analyzed tools in a similar fashion. Difference visualizations have been used to solve
the first challenge, while textual descriptions are used to solve the second challenge.
Hence there are some key aspects of the tools that have to be adapted for graphical
model review: The various change versions must be visualized, especially the differences
between versions, including the base version. Additionally, filtering of differences of one
or more versions should be supported. Users have to be able annotate the versions or
differences in some way to mark and discuss issues of a version. These annotations must
be visualized in a way that allows to track back the history of the review, in order to
check the validity of annotations with respect to updates to the change. As updates
create new versions, an implicit history of changed artifacts or differences is also created.
It is not explicitly visualized by the analyzed tools but might be of use for detecting

23

2. State of the Art

issues and argue about artifacts.

2.3 Graphical Models and Diagrams

Model-driven engineering is based the concept that “Everything is a model” [Bé05].
An arbitrary system is therefore represented by a model which conforms to a certain
metamodel, and a metamodel may also conform to a metamodel [Bé05]. Models are more
focused on the problem and closer to the problem domain [Sel03] than on the actual
implementation with an actual technology. This allows to abstract the problem from the
actually used technology to some extent [Bé05, Sch06, GS03, Sel03]. As a consequence,
it focuses on the problem domain and therefore allows to describe complex problems
while hiding implementation details. In model-driven engineering, models may also be
processed. Currently, they can be executed, transformed, verified and used to generate
actual executables or source code [Bé05, Sch06, GS03, Sel03]. Given that such generators
exists for the target platforms and technology, models aim at offering the ability to
describe and implement a system independently from both the target platform and the
used technology.

Models and metamodels may be represented by a textual or a graphical syntax. Models
or metamodels with a graphical syntax are called graphical models in this thesis since
it focuses on this type of models. Models may also reference other models to form a
single model, like it is done by the Graphical Modeling Framework (GMF) [Ecl17e]. This
framework distinguishes the semantic model from the notation model which together
represent a graphical model. The notation model references the semantic model and
describes all graphical aspects of the referenced elements in the semantic model, to
provide a clear separation between semantics and notation.

However, some artifacts do not encode the semantics of a model explicitly. For example
images that store their data in pixels or vector data may depict graphical models, but do
not provide semantic data without further processing. Following the previously mentioned
approach of “Everything is a Model” also such images are models. But the domain is
in this case to describe graphical data, not a model. So actually it is a model of a
model [Bé05]. As the artifact is a model, it can be visualized like any other model, but
it may be harder to understand for the user and more complex to obtain difference
information for such artifacts. However it is generally possible to derive the necessary
input mentioned in Section 3.8, which is required by the visualizations described in
this thesis. To emphasize this, such artifacts are denoted as Diagrams in this thesis.
The notation model without considering the semantic model is an example of such a
diagram, since the semantic model is needed to obtain the actual semantics of the model.
Diagram artifacts may be treated as graphical models if extraction of the depicted model
is possible. However, such an extraction is out of the scope of this thesis. Hence, the
combination of the notation model and the semantic model can be treated as a single
graphical model.

24

2.4. Existing Difference Visualization Techniques

2.4 Existing Difference Visualization Techniques
Change versions are displayed in all tools by highlighting the differences between versions
with some context. Therefore, comparative visualizations of graphical models are needed
and the following paragraphs describe current techniques and research in that area.
The main focus in this section lies on comparison of two versions. Visualizations of
multiple versions already form a sort of history and are therefore discussed in Section 2.6.
Comparative visualizations of complex elements are difficult, especially in terms of
scalability and complex relationships [GAW+11]. Diagrams and graphical models, as
well as code are examples for such complex elements. It is even more complex in the case
of code review or graphical model review as multiple versions have to be compared.

Although this thesis aims at finding a visualization that uses the graphical representation,
difference visualizations of textual artifacts might provide hints and aspects that can be
used also for other difference visualizations. Examples are the principle of side by side
or unified visualizations [SR04], which have also been encountered in the analyzed code
review tools.

Side by side visualizations of textual artifacts are based on juxtaposition and explicit
encoding [GAW+11] of differences. One version of the text is shown next to the other side.
Changed lines are highlighted according to their change type with a different background
color and a corresponding symbol at the beginning of the line. Insertion or deletion
points on either side are linked to their corresponding text block on the other side with
their specific color. Unmatched characters of subsequent added and deleted text blocks
are stronger highlighted to emphasize modified parts. Scrolling of long texts is usually
done in a linked way, such that corresponding parts of both parts are shown at once.
This may be implemented by adding blank space corresponding to the larger side of the
changed text block on the other side, or by scrolling each side by a different amount.
Visualizations that use the latter method also provide a scrollbar for each side as the
scrolling amount is also dependent on the version to scroll. For example, a large text
block on the left side that has been deleted on the right side result in a big amount of
scrolling distance on the left side if the right side is scrolled just by a small amount. This
potentially skips parts of the text block and makes it hard to scroll for the user. On the
other hand, normal scrolling on the left side scrolls the right side just a small amount
and the large text block can be read easily.

Unified text difference visualizations are based on superposition and explicit encod-
ing [GAW+11]. Both versions are merged into a unified version that includes all changed
lines. The highlighting and color coding is the same as described for side by side text
difference visualizations.

Unchanged lines are usually hidden in both visualization types except for lines close to
changed lines. They are shown to provide context to the user, and this context can be
increased in most tools. A line overview visualization is used by most of the other tools
to highlight changed lines and to support quick navigation through the text if no lines
are hidden. Changed lines are marked on a vertical bar that represents the whole file.

25

2. State of the Art

Markers are color coded by their change type and positioned on the bar relative to their
line position.

None of the analyzed tools supported displaying of differences in diagrams or graphical
models. Despite this, diagrams and graphical models can also be seen as individual
images that can be compared. On the other hand, not much research has been done
explicitly in the field of visualizing differences of two images, to the best of our knowing.
Obviously, the most simple ways to show differences of two images are to place them next
to each other or to calculate the a difference value pixel per pixel to generate a difference
map. The latter has been done by the tool ReviewBoard [Bea17] or by Baudrier and
Riffaund [BR07]. Alternatively, different interactive blending approaches may also be
used to allow interactive comparison, as described for the ReviewBoard [Bea17] tool.

EMF Compare [Ecl17c], the comparison framework for Eclipse Modeling Framework
(EMF) based models provides a comparison editor for Eclipse based products. It also
supports graphical comparison of graphical models based on Papyrus which itself is based
on GMF and EMF. The editor is divided in three parts: the difference tree, the base
version and a side by side view. EMF Compare creates a tree structure of matching
model elements, assigned with the detected differences on the particular match. This
tree is reduced to matches with differences, filtered, grouped and finally shown in the
difference tree. Applied filters and the grouping algorithm can be selected by the user.
The number of available filters depend on the installed plugins and the model. But the
cascading differences filter should be mentioned at this point: It filters all differences
from the tree that are contained by other differences. For example, only one addition
instead of multiple additions remains, if an element is added that contains also child
elements.

Three different difference types can be shown by the editor: Additions, deletions, and
changes. It should be noted that the API of EMF Compare also distinguishes between
changes and moves, which are mapped to one of the previously mentioned difference
types. Additionally, conflicting differences and merge states are also visualized, but will
be ignored in this thesis as the task of solving merge conflicts has not been observed to be
supported by any of the analyzed code review tools during the review process. Instead,
reviewers requested the authors to resolve the merge conflicts and update the change.

Each difference type is represented by a small icon before the difference label in the tree.
A more detailed difference description is also added to the label. The content of the two
remaining parts of the editor depend on which element of the difference tree has been
selected. As the name implies, the base version shows the common base version of the
compared element versions if it exists. It is completely hidden otherwise. The side by
side view shows the versions next to each other and is also dependent on the selected
tree element. Additions and deletions are detected with respect to the left side, which
means that the content on the left side is considered as the new version. Modifications
of non-containment features in EMF models are shown without context but with links
to corresponding elements, insertion points, or deletion points. The same is done for

26

2.4. Existing Difference Visualization Techniques

modifications of containment features, except that the whole containment tree is shown
to provide context.

A graphical representation is shown for each version if a difference is selected that
corresponds to a graphical element depicted in a Papyrus model. Each side view is
centered to the selected element or the area affected by the difference. Changed elements
are outlined, depending on the element. A node that can be freely positioned is outlined
by a simple rectangle that shows the position of the node in both versions. If the node is
not present in the version, an outline is positioned at the position where it has been or
has been added in the other version. Edges are outlined by lines which follow the path
of the edges, together with outlines of the source and target elements. Positioning is
done in the same manner as for the outline of nodes. Elements presented as a sequential
list contained in another element are simply outlined with a rectangle if they exist, or
highlighted as a line representing the insertion point or deletion point in the list. Scrolling
the content of a side does not affect the other side, whether it is a list, tree or the
graphical representation of the difference.

The widely used side by side visualization for textual artifacts has been extended for
graphical models by Schipper et al. [SFvH]. Based on the compare editor of EMF
Compare [Ecl17c], they used an additional tree view that shows a structural overview
of the differences. This tree view also supports focusing on particular differences by
zooming the side by side view to the current selection, which allows interactive navigation
through all differences. The side by side view encodes difference information with color
and supports zooming and panning. To improve the scalability, the authors suggested to
collapse regions which are considered to be not of interest, with respect to the graphical
syntax. However, this does not improve the scalability for a large amount of differences
and also introduces new challenges: The identification of these regions in arbitrary
graphical models and how to collapse them without violating the graphical syntax.

Ohst et al. [OWKa, OWKb] proposed a technique that aims to provide a visualization of
differences in UML diagrams and other design documents containing graphical diagrams.
They focused on diagrams where the particular layout is considered irrelevant, so layout
constraints of graphical syntaxes are ignored and not supported. With this restriction,
both diagrams could be merged into a single diagram with a changed, but similar layout.
Difference information is encoded using line styles and colors. Additionally, developers
could select and restrict the encoding on specific logical parts of the difference which
gives the developer a filtering mechanism.

A similar encoding has been chosen for a technique proposed by Mehra et al. [MGH]. In
contrast to the previous method, they merge both versions into a single diagram without
modifying the layout of the individual shapes. Also, they visualize changes of shape
properties by outlining the previous shape and drawing a line to the new shape. However,
due to the simple merging of both diagrams, it is quite likely that shapes of both versions
or outlines overlap, hiding potentially important information.

Also, Polymetric Views can be used to visualize model differences [Wen]. In this approach

27

2. State of the Art

a set of change metrics are defined and calculated for specific entities of a model instance.
Afterwards the values per entity are mapped onto properties of a rectangle, and relation-
ships between entities are shown by lines between the corresponding rectangles. This
provides an overview over even vast models, and changed entities can be identified at a
glance. Details of a particular change are shown on demand by selection of entities. The
authors also propose different sets of metrics that target different aspects of the change
or aspects which depend on the chosen modeling language. Later work [vdBPV] refined
this method and proposed an additional step that allows viewing the details of changes
for a selected entity using the graphical syntax of the modeling language. Such a detailed
view is a unified diagram of both versions restricted to a selected subset of the model.
The difference information is encoded by using different colors for each difference type.
However, a mapping to a specific dot metamodel must be defined which is used to create
the unified view. Although this model is quite flexible it does not support preserving
the layout information of the original model versions, and is therefore not capable of
preserving the mental map of the user.

The differentiation tool DSMDiff [LGJ] visualizes changes in a non-graphical way by
presenting the model instances with highlighted changes in a tree view. A similar
approach is implemented by EMF Compare [Ecl17c], where tree views of the underlying
models are presented side-by-side and changes are highlighted. Störrle [Stö] proposed an
even simpler representation extracting high level changes in form of prosaic sentences
or tables. Although these techniques are not embedded into the diagram or use the
graphical syntax, they may serve to define additional views that support navigation,
filtering and other interaction tasks in the context of visualization.

2.5 Element Annotation Visualization Techniques

Annotations of artifacts are used by all of the analyzed tools and are one of the key
aspects to formulate and discuss feedback on the changed artifacts. To the best of our
knowing, no explicit research has been done in that area, so this section summarizes the
different annotations encountered in the analyzed tools.

In the analyzed code review tools, comments assigned to code are the only way to
annotate the artifacts. Comments usually contain at least a message and are always tied
to a single artifact or part of the artifact. They are shown in three different ways: The
first option is that the comment is shown right below the assigned element, moving all
subsequent elements below the comment. Another way is that a marker is added next
to the element and the comment is shown on demand, hiding parts of the subsequent
elements in the artifact. The last option is that the comments are shown completely
detached form the assigned elements, and selection of the comment triggers a highlight
of the assigned element. The other two options may also be combined with a highlight of
the assigned elements with a special color, either permanently or on demand, depending
on the tool. ReviewBoard also supports comments on regions in images, and uses a
rectangular marker to show the comments on demand. Some tools also support comments

28

2.6. Review History Visualization Techniques

that have one or more replies assigned to them, which are all displayed right below the
replied comment.

Users are also able to hide the comments. Some tools remove the comments completely
with all highlights from the view, while other tools replace them with markers to indicate
that comments exist. Additionally, a couple of the tools also support marking the
comment with labels to indicate issues that have to be solved. Such labels or issues can
be manually removed or resolved by other users, which may also result, depending on
the tool, in a grayed out representation of the comment. A few tools use the labels to
generate overview lists of unresolved issues and requested changes.

Comments assigned to elements that have become invalid due to updates to the element
are also differently displayed. The easiest but also used option is to do not display them
at all. Another option is to show the comments grayed out at the nearest valid element.
The last option is to show a hint that views the comment with the old elements on
demand.

2.6 Review History Visualization Techniques

History data of a review includes all actions taken by users and also relations between
artifacts and annotations in multiple versions. The presented tools usually presented
this history to some extend in a chronological list, mostly with focus on the actions
performed by users during the review process. But they also include comments and
other annotations on the artifacts or differences. Excerpts of the related artifacts are
also presented for annotations in the list. Of course only if they are part of the history
list, as some tools do not include them in their history.

As mentioned before, also different versions of artifacts form a history for each artifact or
a history for a set of artifacts. None of the tools visualized this type of history as they
usually focused on a small part of the history: the difference between two versions. This
might be due to the fact that the former adds another dimension to existing visualizations,
as differences of multiple versions must be visualized.

To the best of our knowing, no research has been found on graphical model history
visualizations that use the graphical representation of the model elements. Nevertheless,
some visualizations exists that aim to visualize the evolution of code or artifacts in an
abstract way. They might be also adopted for graphical models, due to their abstract
representation of artifacts and their properties.

A couple of them focus on particular history metrics which are dependent on the actual
type of the artifacts. These metric values are mapped onto elements or properties on a
graph, or are used to animate elements or properties on a graph [FG04, CKN+03]. Others
use static pixel mappings and animated visualizations to show the change in metrics
or change metrics itself [BE94, BE96]. Another option is to visualize the evolution of
artifacts with rectangles representing artifacts placed in a matrix [Lan01]. Rows represent

29

2. State of the Art

the artifact in the examined version range, columns represent a single version. If an
artifact does not exist in a version, no rectangle is shown.

A similar, but more dense approach is to visualize file evolution in a matrix [VTvW05].
Lines in a file are represented by rows and columns represent versions. Color coded cells
indicate if a line has been modified, added, deleted or not. Alternatively, color coding
can be changed to show authors, line types or other line based metrics. Additional views
show metrics with a higher granularity and the actual text that can be selected by the
user by selecting lines and versions. Moreover, selecting empty lines in a version shows
also lines that have been deleted or will be added in a later version. Coordinated views
with a matrix-based visualization has also been proposed for visualizing rank differences
in search results for multiple or revised sets of search terms [SR04]. Rows represent
search result entries and columns the set of search terms. Cells contain color coded circles
based on the rank of the entry in the result set of the corresponding set of search terms.
The other views present overview and details of the dataset with respect to the current
selection.

Multiple tree visualizations with edges that link common parts are also an option to
visualize artifact evolution [CAT07, TA08, GK10]. As mentioned in Section 2.4, diagrams
and graphical models can also be seen as images and multiple versions of images form
a sequence of images. Sequences of images are also commonly found in videos, and a
visualization has been proposed that aims at giving overview of videos [DC03]. These
focus on visualizing differences between single images in videos, by creating volumes out
of difference maps and hiding unchanged parts. This might be also applied for multiple
versions of images created from diagram or graphical models, although it might need to
be adopted for the potentially smaller amount of images.

30

CHAPTER 3
Mervin: A Graphical Model and

Diagram Review Tool

The previous sections showed that no tool or set of visualization techniques exists that
provides a set of visualizations that support the mentioned open problems. Hence, a set
of visualizations is proposed in this chapter which have been implemented in a prototype
called Mervin. This chapter explains the visualization techniques in general, which
are independent from the actually used frameworks in the prototype. Implementation
specifics of the prototype will be discussed in Chapter 4.

Many different aspects of reviews have been presented in the previous chapter that need
to be visualized. A set of coordinated visualization views [NS00] are therefore proposed
instead of a single visual representation for all these aspects. They use brushing and
linking, where selections in one view leads to highlighting in the other views [NS00].
Additionally one view is also designed to use drill-down coordination, where the selection
in one view yields the visualization of child or related elements of the selection in another
view [NS00]. Understanding the change is the biggest challenge in code reviews [BB13],
so it can be assumed that this also applies on graphical model review. Understanding
the change also includes understanding the reason for the change. While this is the
case, the reason is usually part of the textual description of the review request and is
not necessarily explicitly represented in the submitted changed artifacts. Hence, the
presented visualization focuses on helping understanding the changes of the submitted
change versions.

Five views with different visualizations are defined to achieve this goal. Two of them focus
on visualizing differences and annotations for a selected pair of versions, be it change
versions or one of their base versions. They are referred to as the old and new version
of the current comparison scope. Other comparison tools also refer to those as the left
or right version, but this also requires the definition of an implicit or explicit reference

31

3. Mervin: A Graphical Model and Diagram Review Tool

Review Explorer

View

Overview, Navigation,

Difference Details

All Versions

Highlighting

Property difference view

Selection Difference Details

All Versions

Uni ed Difference View

Graphical Differences

Comparison Scope

Filtering & Highlighting

Version History View

Evolution of Differences

All Versions

Filtering & Highlighting

Comments View

Comments, Replies, Links

Comparison Scope

Triggers Highlighting

Scope: Comparison Scope

Scope: All Versions

Figure 3.1: Illustration of the set of coordinated views in the proposed solution.

Figure 3.2: Screenshot of Mervin, the prototype that implements the proposed solution.

32

side to avoid ambiguity of differences. Otherwise, the classification of a difference as
an addition or deletion is not clearly defined. The notion of an old and new version
eliminates the need for such a reference side. Additionally, naming the versions based on
particular sides also implies that the versions are shown in some sort of side by side view.
This is also not true for the central difference view, so the new and old labels have been
chosen.

The layout of the view is based on the concept of one central view that takes the most
part of the screen, surrounded by supporting views. Controls to change the comparison
scope and the difference visualization of the selected comparison scope are part of the
central view, the unified difference view. Comments are shown right to the central view,
in the comments view, which also depends on the selected comparison scope. On the left
side of the central view is the so called review explorer view, which aims at providing an
overview and navigation through the versions of the review. The top view is the version
history view which aims at visualizing the history of versions in the review. Below the
central view is the property difference view, that shows fine grained difference details
based on the current selection. As mentioned before, the review explorer view, the version
history view, and the property difference view also visualize aspects that are not part of
the current comparison scope. All views show different aspects of the differences, and
therefore address the problem of understanding the change. Understanding the reason of
the change and the outcome of the change is not addressed by any of the views, like in
all of the analyzed code review tools. Supporting this aspect may be addressed in further
research.

Positions of the views have been chosen to support the expected user interactions. The
central view is the most prominent view and is expected to draw the most attention of the
user at the beginning of the review. By default, the comparison scope is set to the base
version of the latest change version for both the left and the new version, which results
in showing the base version without differences. The user may use that to familiarize
with the models before proceeding with the review, if necessary. Afterwards, the user
can set the comparison scope or start searching for issues using unified difference view,
the review explorer, the version history or the comment view. Quick switching between
views is expected to be encouraged this way, so that potential issues can be confirmed
in combination with the other views. So almost all views act as the starting point for
investigations of the user. Only the property difference view is designed as a detail only
visualization.

The views are also designed to address the problem of scalability: Diagrams and graphical
models vary in size and therefore also take up a varying amount of space. Obviously,
screen space is limited by the actual display devices and must be shared by all views.
So parts of the views must be hidden if there is not enough screen space and potential
important information is not shown to the user at once. It is also expected that not
every view is used in the same frequency by every user for every task. Some tasks do
not even require the use of a certain view and the screen space can be used for a view
that is more important for the user’s needs at a certain point. To reduce the problem of

33

3. Mervin: A Graphical Model and Diagram Review Tool

scalability, each view may be resized or temporarily hidden on demand by the user.

3.1 Difference Types

Visualizing differences between versions, including base versions, are an integral part of
code review and will also very likely be an integral part of graphical model review as
stated in Section 2.2. It is therefore necessary to define the difference types that may be
encountered in graphical model review.

The most obvious difference types are based on low-level atomic operations [BKL+12]
applied to the model. Additions and deletions represent new model elements and deleted
model elements. EMF Compare also distinguishes a change from additions and deletions,
representing elements that have been moved between different features and modifications
of special features. This difference type is also used in the proposed visualization and is
called a modification, to avoid ambiguity with a change in the review process. Layout
differences are another category of differences. They represent differences in the layout
of the concrete graphical syntax, including location differences, dimension differences,
and edge routing differences.

A location difference represents the move of a model element from one position to another
position. Each position is relative to a reference point, model elements might be nested in
parent model element, and might also be moved between different parents. A dimension
difference represents a modification of the extent of the graphical representation of a
model element. That might be the width or the height of a rectangle or any other
shape that is used to describe the bounds of a graphical representation. Edge routing
differences are differences of the layout information of an edge or connection. They
describe differences of the start point, the end point, or the exact route that the edge
takes. Such a description can be a list of points relative to a reference point or any other
set of parameters that can be used to define a curve.

Layout information may also be implicitly or explicitly defined. For example, the width
of an element may be defined as the width of its biggest nested element. So a layout
property depends on one or more properties of another graphical representation of an
element and is therefore implicitly defined. Additionally, the implicit dependency might
be replaced by an explicit layout information or vice versa from one version to the other.
For static graphical representations, explicit layout information can be computed from
implicit layout information, given that the concrete layout algorithms are known. In this
case no implicit layout information differences are needed in theory, but it remains to
future work if this has any effect on understanding layout differences more easily. The
following sections also describe the handling of implicit layout changes.

Layout differences can be derived from atomic operation differences, depending on
the detection of such differences. No restrictions are made in this thesis how these
differences are computed exactly as it depends on the underlying modeling and difference

34

3.2. Unified Difference View

Figure 3.3: Screenshot of the unified difference view in Mervin, the prototype that
implements the proposed solution.

computation framework. While this is the case, Section 4.5 provides an example on how
to compute such differences based on Papyrus and EMF Compare.

Layout differences are sometimes considered to be irrelevant to the semantics of a
model [OWKb]. Even tough this is true for some models, layout issues may be a valid
reason to reject a change version. In that case, a visualization of layout differences in an
updated version may support the understanding of the layout differences, although the
semantics of the model have not changed.

3.2 Unified Difference View
The unified difference view shows differences in diagrams and graphical models with their
graphical representation or using their concrete graphical syntax. Both are build up of
graphical elements and the supported structure of graphical elements is described in the
following paragraphs. It consists of a few basic elements, nodes, anchor points, and edges.

Nodes may contain multiple nested elements, and an element can only be contained by
a single node. So nodes and their nested nodes actually form a tree of nodes. Not all
elements are actually visible to the user, but they are used describe the composition of
the graphical elements. Nodes may have an arbitrary shape, but their bounds can be
described by a simple shape like an rectangle that encloses the shape. This rectangular

35

3. Mervin: A Graphical Model and Diagram Review Tool

EdgeRoute Node

AnchorPoint

Edge

RectangularBounds

Position

AbsolutePosition RelativePosition

Dimension

DerivedDimension FixedDimension

0..1

*

0..1
*

1

1

1

1

*

* 1

*

1

1

1

1

1

1

Figure 3.4: Outline of the used structure of graphical elements within a diagram or
graphical model.

description of the bounds is the basis for the visualizations and differences of nodes in this
view. The proposed solution focuses on two dimensional graphical representations, but a
cuboid can be used instead if the graphical elements are shown in a three dimensional
space instead of a two dimensional space. However, both options also require the definition
of a position and a dimension. A position may be relative or absolute. Relative positions
are defined to be relative to some reference point which is also at a certain position in the
view space. An absolute position is defined by coordinates that are relative to a reference
point of the view, usually the top left corner of the view. Similar, dimension properties
may also be derived from other properties like the width of contained nodes, or fixed to
a certain value.

Anchor points are usually invisible, and are assigned to one or more ends of one or more
edges. They may be also assigned to other elements to link an edge and an element
together. In that case, the position of an anchor point is often relative to the assigned
element.

Edges are graphical elements that are used to connect exactly two anchor points. Again
they can have any shape, but the shape follows a certain route from one anchor point to
the other. Additionally, edges may also have child nodes or anchor points with positions
relative to the edge. A label on an edge is an example for such a child node.

36

3.2. Unified Difference View

int

Figure 3.5: Example and visual explanation of the used structure of graphical elements
within a diagram or graphical model.

This structure has been designed to support a wide variety of different graphical repre-
sentations and should be sufficient for most diagrams or graphical models. For example,
the simplest way to create such a structure for an arbitrary diagram or graphical model
is to create the hierarchy of nodes based on containment relation of shapes. Graphical
representations that contain edges that connect to elements can be obviously mapped
the edges in the presented structure. Edges that connect multiple elements may also
represented by multiple edges in the presented structure that share an invisible anchor
point.

Given that structure, differences are shown in a unified manner in the unified difference
view. In short, that means that two versions are shown in one merged version, with
different highlights to point out the differences. It contains of the common parts and the
changed parts of both versions [OWKb, OWKa]. As mentioned before, the versions are
named the old and the new version of the current comparison scope. Added elements
are from the new version, deleted elements are from the old version, and modified
elements are contained in both versions. The comparison scope is selected by the
user, and selecting the same version as the old and new version results in the display
of the selected version without differences. Prior work on generating such a unified
model [MGH, OWKb, OWKa] show that keeping the layout of changed model elements
might result in overlapping elements. They suggest to modify the layout to avoid such
overlaps. Nevertheless, computing a new layout might be complex and require detailed
knowledge about the effects on the semantics of the model. In this solution, interaction is
proposed as a partial solution to overcome the problem of overlapping elements. Hence,
no explicit layout adjustment is done in this view and absolute as well as relative positions
are kept. Deleted elements change the layout of the diagram depending on how derived
dimensions and the reference points of relative positions are defined. For example if the
reference point is defined to be the bottom left corner of the previous sibling element, also

37

3. Mervin: A Graphical Model and Diagram Review Tool

E
x
a
m
p
le
P
a
c
k
a
g
e
:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:A
b
s
o
lu
te
P
o
s
itio

n
:F
ix
e
d
D
im

e
n
s
io
n

C
la
s
s
0
1
:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:R
e
la
tiv

e
P
o
s
itio

n
:D
e
riv

e
d
D
im

e
n
s
io
n

:A
n
c
h
o
rP
o
in
t

Id
A
ttrib

u
te
:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:R
e
la
tiv

e
P
o
s
itio

n
:D
e
riv

e
d
D
im

e
n
s
io
n

O
p
O
p
e
ra
tio

n
:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:R
e
la
tiv

e
P
o
s
itio

n
:D
e
riv

e
d
D
im

e
n
s
io
n

C
la
s
s
0
2
:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:R
e
la
tiv

e
P
o
s
itio

n
:D
e
riv

e
d
D
im

e
n
s
io
n

:A
n
c
h
o
rP
o
in
t

N
a
m
e
A
ttrib

u
te
:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:R
e
la
tiv

e
P
o
s
itio

n
:D
e
riv

e
d
D
im

e
n
s
io
n

R
e
la
tio

n
:E
d
g
e

:E
d
g
e
R
o
u
te

C
la
s
s
0
1
C
a
rd
in
a
lity

:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:R
e
la
tiv

e
P
o
s
itio

n
:D
e
riv

e
d
D
im

e
n
s
io
n

C
la
s
s
0
2
C
a
rd
in
a
lity

:N
o
d
e

:R
e
c
ta
n
g
u
la
rB
o
u
n
d
s

:R
e
la
tiv

e
P
o
s
itio

n
:D
e
riv

e
d
D
im

e
n
s
io
n

Figure
3.6:

Sim
plified

object
diagram

ofthe
graphicalelem

ents
ofthe

exam
ple

in
figure

3.5.

38

3.2. Unified Difference View

Diagram 3

Diag
ram

 1

Diagram 1

Diag
ram

 2

Diagram 2

Tab Mode Window Mode

Diagram 1 Diagram 2

Diag
ram

 2

Diagram 3

Minimized Window Minimize WindowTab Mode

Switch

Window Mode

Switch

Figure 3.7: Illustration of the unified difference view in tab and window mode.

the layout changes. However, future work may provide layout adjustment algorithms for
specific graphical models since interaction cannot solve all problems caused by overlapping
elements. Section 3.2.2 discusses some of the biggest problems found while implementing
this solution with no layout adjustment in unified graphical models. The unified approach
has the advantage that less screen space is used compared to side by side visualizations.

Moreover, models may also be described with more than one diagram which show different
aspects of the same elements. So this view also shows all diagrams of the changed artifacts
using tabbed browsing or a multiple window strategy, depending on the user preference.
In tab mode, one active diagram is shown completely in the view, while the other diagrams
are hidden. A list of the diagrams at the top can be used to change the currently active
diagram. In window mode, one or more diagrams are shown in free-floating windows
or in an area for minimized windows. Each window’s location and dimension can be
changed by the user, allowing to place related diagrams next to each other on demand.
Additionally, windows can be minimized that show diagrams that are currently not of
interest to the user.

3.2.1 Overlays

Graphical elements are annotated by semi transparent overlays. Overlays have been chosen
in favor of annotating by coloring the graphical elements directly for two reasons. First,
colors might be used by the graphical syntax of the model to encode certain semantics;
an element with a special property for example. This might lead to information loss and
misconceptions by the user if the colors of a difference annotation is equal or similar
to colors in the graphical syntax. Of course, this problem might be partially solved by
specifying a different color set based on the graphical syntax. But finding such a color

39

3. Mervin: A Graphical Model and Diagram Review Tool

Figure 3.8: Screenshots of various overlays in Mervin.

scheme is not always a simple task and the problem of information loss has not been
solved. Moreover, users might be used to certain colors for specific difference types, which
may lead to confusion. Second, if no assumptions are made about the graphical syntax,
less is known about the graphical elements and how coloring affects the perception of the
colored graphical elements. Some elements might be less noticeable than others, or not
noticeable at all in the worst case.

Overlays encode multiple types of information of exactly one element: the difference
type, layout difference details and the existence of comments. An overlay may contain
information of all of these categories and at least information of one these categories.
For example, an overlay may represent an addition and the existence of comments if an
element is added and a comment references it. Each overlay is a colored semi-transparent
rectangle that covers the whole graphical element that represent the changed or annotated
model element. In addition, overlays have no interior if they represent only comment
annotations and layout differences or a combination of those two. This is due to the
assumption that layout differences are less important in most diagrams or graphical
models [OWKb]. Comment annotations are intended to remind the user of the existence
of comments and less to draw the attention of the user to the element itself. Hence, no
interior is drawn for these comment overlays.

The color of the overlay is determined by the information it represents. If the overlay
contains atomic difference information, then the atomic difference type it represents is
used to determine the color of the overlay. Another different color is used if the overlay
represents only a layout difference. The existence of comments is indicated by a dashed
outline in another color. In summary, five distinct colors are needed if we consider all
difference types mentioned in Section 3.1.

40

3.2. Unified Difference View

Dimension
Decrease

Dimension
Growth

Dimension
Fixation

Dimension
Derivation

Layout Difference Indicators

Location

Overlapping Overlays & Conflicting Colors

Added Node

Moved Node

Overlay Types and Interaction Examples

Inactive

Atomic Difference

Comment

Atomic Difference
with Comment

Layout Difference

Atomic Difference
and Layout Difference

Atomic Difference
and Layout Difference

with Comment

Pointer above Overlay

Atomic Difference

Comment

Atomic Difference
with Comment

Layout Difference

Atomic Difference
and Layout Difference

Atomic Difference
and Layout Difference

with Comment

Pointer above Indicator

Layout Difference

Atomic Difference
and Layout Difference

Atomic Difference
and Layout Difference

with Comment

Base
Color Set

Transparent
Color Set

(White Background)

Addition

Deletion

Modification

Layout

Comment

Mervin Color Set

Figure 3.9: Illustration of the overlay types, combinations, indicators and interaction.

41

3. Mervin: A Graphical Model and Diagram Review Tool

Semi-transparency allows the user to see the overlayed element, but does not provide
a clear view on the element. Thus, overlays are drawn without interior when the user
moves the cursor over the overlay. This allows the user to get a better, unmodified view
of the element on demand. So this interaction and the semi-transparency have been done
to reduce the coloring problem. If an colored element is overlayed, the color changes due
to the color blending with the goal of drawing the attention of the user. Even if this is
not the case, the user can check it by moving the cursor over the overlay.

Overlays also have a dependency relation to each other which is derived from the structure
of graphical elements they are attached to. More precisely, an overlay depends on another
parent overlay if that parent overlay is assigned to an graphical element which is contained
in the parent hierarchy of the overlay’s assigned element. The parent hierarchy is the
list of the elements when iterating over all parents from a starting element to the root
element. Another sort of dependency would be the nodes that are attached to an edge
using an anchor, and the anchors itself. So the edge’s position and visibility depends
on nodes and their anchors. As a consequence, also edge overlays depend on the node’s
assigned overlays, if they exist.

The dependency relation is important for determining the visibility of overlays to avoid
visual clutter, showing dependent layout differences and filtering overlays. Cascading
differences, where the addition of one element with multiple nested added elements, are
such a source of visual clutter: One overlay is created for the element alongside with
another set of overlays for the child elements that very likely overlap the previous overlay.
It can assumed that users perceive such additions as a single addition, which has also been
implemented as a filter in EMF Compare. Additionally, showing only the parent overlay
would avoid visual clutter of overlapping overlays. The dependency relation between
overlays can help identify such cases and hide or remove such overlays if necessary. It is
also used by the filter implementation of overlay types.

Layout difference details are also shown when the user moves the cursor over the overlay:
Location differences are shown with a small arrow that points in the direction that
the element has moved. Dimension property changes are shown by glyphs on the
corresponding side of the overlay. These glyphs indicate a growth, decrease, fixation or
derivation of a dimension property. Fixation is the change from a derived value to a
fixed value, derivation is the change from a fixed value to a derived value. Moving the
cursor over these glyphs shows a dashed outline of the element’s old dimensions at the
previous position. This outline may be drawn outside of the viewable area, and the user
might have to scroll to view to make the outline visible. To guide the user in the correct
direction, a dashed line is drawn from a reference point between the outline and the
overlay. A drawback of this method is that if scrolling cannot reveal the outline and the
overlay at once, it is also not possible to view the complete layout difference information
at once. On the other hand, this method avoids visual clutter and follows the principle
of details on demand of the visual information seeking mantra [Shn96]. Edge routing
differences have no specific indicator, but the previously outline is shown when the cursor
moves over the overlay.

42

3.2. Unified Difference View

Event

name: string
actorName: string

Actor

id: string
name: string

*

1..*

Unified Model

EventActorName:Overlay

type = Modi cation (Move)
visible = true

EventActorRelation:Overlay

type = Deletion
visible = true

ActorMultiplicity:Overlay

type = Deletion
visible = false

EventMultiplicity:Overlay

type = Deletion
visible = false

Actor:Overlay

type = Deletion
visible = true

ActorId:Overlay

type = Deletion
visible = false

ActorName:Overlay

type = Modi cation (Move)
visible = true

depends (parent) depends (parent)depends (connected node)

depends (parent)depends (parent)

Overlay Dependencies

Figure 3.10: Illustration of an example of overlay dependencies.

To avoid confusion, also layout outlines of overlays that depend on that active overlay
need to be shown. This may be the case when the user moves the cursor over the glyph or
over a deletion overlay if absolute positions are used. The latter is necessary due to the
deletion inconsistency problem described in Section 3.2.2. Otherwise node containment
can be misinterpreted by the user, as the container node movement is not presented
to the user. Nodes that are contained by other nodes may appear as being moved out
of another node into the contained node, although the contained node has also been
moved with it. The issue was observed after the evaluation and the implementation of
the prototype presented in Section 4. As a result, this solution is not implemented in the
prototype. However, the issue was not observed during the evaluation and the compared
tools did not handle that issue. So it did not affect the results of the evaluation. Moreover,
it would also make sense the define model specific dependency relations that are also
relevant in this case. This might be of interest for future work as the parent/child/edge
relationships are only the most obvious relationships to use for general graphical models.

Users are also able to filter overlays based on the information they represent, including
atomic operations, layout differences and comment information. Overlays for the atomic
operations addition and change are simply hidden on demand, whereas the graphical
element is not hidden. Overlays that represent deletions are hidden alongside with the
assigned graphical element, all children of the graphical element, and all depending
overlays. So filtering only deletions also affects the display of the unified model, switching
from showing the unified model to showing the comparison scope’s new model with other
overlays. This allows the user to switch between those versions, removing elements that
may cause layout problems. As a consequence, overlays are also hidden if they depend on
deletion overlays which are not visible. Filters also only hide overlays if they represent
no other difference type that is not filtered, as otherwise filtering a single overlay type
might result in hiding overlay types which are not filtered. The only exception to that

43

3. Mervin: A Graphical Model and Diagram Review Tool

Possible Interpretation

Original

Element A

Element B

Element C

Element A

Element B

Element C

Unified Model without

depending Layout Outlines

Element A

Element B

Element C

Unified Model with

depending Layout Outlines

Element A

Element B

Element C

Figure 3.11: Illustration of ambiguous layout outlines.

rule are comments applied to deletions. Otherwise the deleted elements from the old
version of the graphical model cannot be completely hidden when comments are applied
to deletions. Changing the overlay in the way that the filtered overlay information
representation is not rendered on the overlay is also an option which is left over to the
actual implementation. But it has to be noted that this may lead to the impression that
deleted parts with comments are part of the new version if deletion overlays are filtered.

3.2.2 Deletion Inconsistency Problem

As stated before, adding deleted elements to a graphical model without layout adjustment
may cause problems. These are described in this section in more detail with respect to the
previously defined structure of graphical elements. Obviously, how layout information has
to be interpreted has an impact on which problems may occur. The most simple problems
occur when each node and edge uses absolute positions and dimensions with fixed values.
Graphical elements may overlap and hide other graphical elements and the user might
miss them. Another problem is that the visual containment relationship between deleted

44

3.2. Unified Difference View

Element A

Element B

Element C

Element D

Element E

Element F

Element G

Element H

Element I

Old Version New Version

Element A

Element B

Element D

Element E

Element F

Element H

Element I

Element J

Unified Version

Element A

Element B

Element C

Element D

Element E

Element F

Element H

Element I

Element G

Element J

Relative/Derived Position Fixed Dimension Derived Dimension

Different Route

Derived Dimension Overlap

Incorrect Containment

Derived Length

Derived Position Overlap

Different Dimension

Figure 3.12: Illustration of problematic cases without layout adjustment.

nodes and their parent might get lost if the parent element is moved or resized. In the
worst case, users are not aware of this fact and might misinterpret the containment
relationship. Even if the user is aware of the problem, the containment relationship
remains unclear for deleted elements. On the other hand, this particular problem is
mostly solved by the layout difference outline mechanism described in Section 3.2.1. The
containment relationship problem also occurs in some cases if only relative positions and
derived dimensions are used. For example, if a dimension is derived from a value that
causes the node to visually outgrow of its container. Again, also overlaps may occur
depending on the reference point and the values to derive the properties from. Relative
or derived values also introduce a new problem: The positions and dimensions of the
elements differ from their actual values although they have not been changed. Such a
difference may also affect one or more derived values, which cause a visual change of an
element that does not necessarily need to be changed. Depending on the edge routing
approach also the edge routing may change and might be left in an invalid state. Users
might take more time to identify the equal elements and are not able to see and judge the
layout of the actual diagrams. This is also dangerous in diagrams and graphical models
where the layout is used to encode semantic information.

On the other hand, layout adjustment is not an easy task. It requires knowledge about
the impact of layout changes on the semantics of a diagram or a graphical model. Such
models and diagrams may define layout constrains that must be met in order to be valid.
This is especially the case if layout properties like position and dimensions are used
to encode information in the model. For example, Unified Modeling Language (UML)
sequence diagrams require a different layout adjustment algorithm as simple graph based
models like class diagrams. Apart from that, readability is also an aspect that must be
considered when calculating a new layout. This includes moving overlapping elements,

45

3. Mervin: A Graphical Model and Diagram Review Tool

rerouting of edges and their related elements and anchor points.

If the layout is defined by the user, it is obviously also valid to check the readability
of one version of a diagram or a graphical model during graphical model review. But
this is not possible when adding deleted elements as the actual layout is not shown to
the reviewer. The user cannot be sure if the layout is the same as in one version, even
if no layout adjustment was necessary. So validation of the readability or validation of
the layout is another issue that cannot be solved in this case - with or without layout
adjustment.

One alternative to solve those problems is to allow the user to interact with the diagram to
switch between different versions. This allows the user show a specific version on demand
and use his short term memory for comparison. Filtering and hiding deleted elements in
the unified view is therefore proposed as a solution for this problem. Another alternative
would be not to add deletions to the view, but mark the areas of deleted elements with
semi-transparent markers and show the other version in a movable, overlapping frame.
However, this “window to the past” approach has been discarded as the connection
between identical, but moved elements is not maintained. Further research may provide
solutions for this problem but the presented approach uses filtering instead.

3.2.3 Off-Screen Indicators

In general, diagrams and graphical models exist in varying size, so it cannot be assumed
that their sizes are fixed or limited, except for technical restrictions. Screen or view space
is always limited, and it is obviously even more limited if multiple views share this space.
So the view is only able to show a certain area at once and elements outside this area
are hidden to the user. This also means that the user must be able to navigate through
the graphical elements. For example, scrollbars are a common user interface element for
two dimensional representations, that allow to pan the current representation.

Also changed elements are hidden from the user due to the limited visible area, although
they might be of interest for the user. Interaction is required to view all changed elements
and the user has to memorize where changed elements are located. This is might be
cumbersome and the user might miss changed elements. Therefore indicators are shown
for off screen elements to guide and help the user memorize changed elements out of the
current view. These off-screen indicators are based on the city lights approach [ZMG+03]
with additional change information and quick navigation to hidden elements. They are
shown as small colored symbols surrounded with a colored circle and a small arrow. Each
indicator represents an overlay that is currently not shown on the screen. The symbol
and the color indicates the atomic difference type represented by the overlay. If the
overlay represents no atomic difference but a layout difference, the symbol and color for
layout differences is used. If an overlay represents only a comment, also another symbol
and color is shown for the comment overlay. A single click moves the visible area so that
the associated overlay is focused and visible in the view. Projection of the centers of
the overlays on the borders of the view or screen is used to determine the location of

46

3.2. Unified Difference View

Indicator Positioning

Visible Area

Center

Indicator
shadow

Graphical Model/Diagram

Indicator
shadow

Indicator
shadow

Indicator
shadow

A

4

Visible Area

Glyph & Color:

Atomic Difference

View Border

Single Off-Screen Indicator

Merged Off-Screen Indicator

Direction to

hidden elements

Element to focus

on click

Colors & Circles: Contained

Atomic Differences

Number of

Represented Overlays

Invisible Area

Off-Screen Indicators

Figure 3.13: Illustration of off-screen indicators.

the indicators. Radial projection has been used in the final implementation in favor of
orthographic projection to distribute the indicators more evenly at the borders.

The location is determined in three basic steps: First, a line is constructed that passes
the center of the view in the coordinate system of the graphical representation with
the center of the hidden overlay. Second, intersect the line with the bounds of the
view, which is described by four line segments in the coordinate system of the graphical
representation. This results in at least two points and at most in four points, if the line
intersects one or two corners. Two points are identical and can be treated as one point if
a corner is intersected. Third, take the first point as location with the smallest distance

47

3. Mervin: A Graphical Model and Diagram Review Tool

to the overlay center. As a consequence, indicators move along adjacent edges while
panning through the model, making navigation more complex than with orthographic
projection [ZMG+03]. To mitigate the problem, each indicator also includes an small
arrow that points into the direction of the center of the overlay.

Obviously, all points on a line segment starting from the center to a point at infinity are
mapped to the same location. But indicators are not points and cover space. Therefore, a
single indicator covers a whole area, and each overlay in that area will have an indicator
on the same location. The area is called the shadow of the indicator in this thesis. So
indicators might overlap due to the projection, which also hides information from the
user.

Overlapping indicators are merged to a single special indicator that tries to provide some
information of the hidden overlays. The number of overlays that the indicator represents
replaces the difference type symbol to give the user an impression how many elements
are hidden in the shadow of the indicator. Additionally, the circle and the arrow is
striped in the color of the difference types of the represented hidden overlays. Early
prototypes showed that the stripes might get hard to distinguish when the number of
stripes increases. As a result, small circles representing each included difference type
are shown on the opposite side of the arrow. Multiple overlays also imply that no single
center exists and pointing the arrow to only one hidden overlay might be misleading.
So the direction of the arrow is determined by using the centroid of the centers of all
represented overlays instead. Also the navigation needs to be adapted, but in this case
the nearest overlay will be focused. The centroid is not used due to the fact that it might
be far away from any included overlay. So in some cases the nearest overlay might be
out of the visible area when focusing the centroid, which is against the idea of quickly
navigating to overlays.

3.3 Property Differences View

The content of every model can be either displayed as list or as a tree in case of
hierarchical data. Also properties of the element can be shown as part of the hierarchical
data. Models created with EMF for example are stored in a hierarchical manner, the so
called containment tree, and contain structural features which can be shown as properties.
This tree or list can be used to show differences in a classical linked side by side comparison,
similar to how it is implemented in EMF Compare. Two tree views, where each represents
a different version, are shown next to each other and linked with graphical annotations.
The property difference view contains such a side by side comparison to assist the reviewer
and show differences on properties that are not present in the graphical representation.
It usually contains very detailed information of the model and should not contain all
differences in the whole model. Only elements related to the current selection in the
other views are shown for this reason, following the details on demand principle of the
visual information seeking mantra [Shn96]. Related elements are the selected element
itself and the context of the element, which depends on the actual model.

48

3.3. Property Differences View

Figure 3.14: Screenshot of the property difference view in Mervin.

The view is not restricted to a single comparison and provides the comparisons in a
tree, where the root elements are the comparisons to display. This includes the selected
comparison scope and the comparisons of the base version with the changed versions. All
related elements within a comparison are shown as children. For elements, the properties
and the children of the hierarchy are shown as children. Depending on the model, this
might results in very broad and deep tree structures. It is expected that users are not
always interested in all those items, so each item of the tree is collapsible and collapsed
on startup. Expanding and folding elements is synchronized in both tree views, meaning
that corresponding items will always have the same state. Added or deleted elements
do not have a correspondence in the other tree and are therefore not linked in that way.
Some side by side difference views in the presented review tools link the scrollbars of the
two sides which can also be done here, but has not been done in the prototype presented
in Section 4.

Changed elements are annotated using color and colored lines that indicate the item
or position on the other side. The color depends on the difference type. In the case
of modified elements, lines simply connect the items that represent modified elements.
In the case of added or deleted elements, lines connect the insertion or deletion points
with the items that represent the elements. Child elements of added or deleted elements
are also connected to the same insertion or deletion points as their parent, if the child
element has also been added or deleted. Folding items also hides the annotations which
may leaves the impression on the user that there are no differences in the child elements.
Therefore each parent element also shows the number of differences per difference type in
its whole child tree. Those numbers are colored based on the difference type. Insertion
and deletion points are drawn as a thick line which is indented based on the tree level.
Equals elements are not colored and no connections are drawn between their items as
it is expected that users are more interested in differences. However, a connection is
drawn when the user moves the cursor over an item that represents equal elements. This

49

3. Mervin: A Graphical Model and Diagram Review Tool

is especially important in the case if no scroll synchronization is done and the user has
therefore less visual cues which elements are equal.

3.4 Comment View
All review tools support to annotate elements of a review by other users and this view is
dedicated to such annotations. As the name suggests, the main user annotation in the
presented solution is a comment. The simplest comment is a text assigned to a specific
version and that comment has been submitted by a person, the comment author. A
comment may be a reply to a single comment and may have multiple replies. Parts
of the text can be linked to one or more model elements in the version, allowing the
comment author to relate the text to model elements. These text links are drawn bold
and underlined and the user is able show the linked elements on demand. This is done
using highlighting in the other views, either temporarily when moving the cursor over
the link text or permanently when clicking on the link text. How this highlighting affects
the other views is described in more detail in Section 3.7.

Comments are shown in columns that represent the versions that the comments are
assigned to. Which columns are shown depends on the selected comparison scope. Versions
that are not part of the scope are not shown in detail in this view to save space and
allow the display of both columns at once. Nevertheless, the number of comments for
each version is shown at the top of the view to make the user aware of comments in
other versions. A single comment is rendered slightly smaller than the actual width of
the column and aligned either left or right. Comments from the current user are aligned
to another side than comments from other users, to allow quick distinction of own and
other comments.

While reviewing elements, it might be of use for the reviewer which elements have been
commented on in the other version and if the comment has been addressed in the other
version. Also, some comments may contain issues that are related and the reviewer need
to be aware of them when reviewing. To support that, comments are also grouped, and
each group may contain comments of both versions. This way, possible related comments
are shown closer to each other, reducing the complexity for the user when tracking related
issues. It also shows the history of comments to certain elements in two versions.

The decision how to group comments may depend on the aspects of the actual models,
and can be refined by future research. But a general grouping approach can be defined
based on the text link targets, as comments targeting the same elements are very likely
related. So comments are in the same group if they link at least one same target element.
If a comment has replies, all its replies also reside in the same group. All comments
that do not link any element are assigned to a single group. As a result, groups contain
directly and indirectly related comments, which may include comments which are not of
interest to the user. This might be resolved with further information about the model
semantics and is therefore of interest for future research. The general grouping approach
can be implemented with a two pass algorithm presented in algorithm 3.1.

50

3.4. Comment View

Figure 3.15: Screenshot of the comment view in Mervin.

51

3. Mervin: A Graphical Model and Diagram Review Tool

Model ElementsComments

Element

Element

Element

Element

Element

Element

Reply

Comment

G
ro

u
p
 4

Reply

Comment

G
ro

u
p
 3

Reply

Comment

G
ro

u
p
 2

G
ro

u
p
 1

Comment

Comment

Comment

Reply

Reply

Comment

Reply

Figure 3.16: Illustration of the general comment grouping approach.

3.5 Version History View
The unified difference view allows to keep track of changes between two versions, but
does not provide an easy way to track differences across multiple versions. For example,
a specific difference might be the reason why a particular version has been rejected.
If such a difference is removed in the next version and reintroduced in a subsequent
version, it might be of interest to the reviewer that this change was already present
in a previous version. Users can use the comparison scope and track this change by
changing the comparison scope, but this is cumbersome and take time due to possible
long computation time. Also, all of the other views follow the paradigm of highlighting
differences embedded in the model and do not provide a list of all differences. The version
history view tries to cover these issues by providing a quick overview of how similar each

52

3.5. Version History View

Algorithm 3.1: General comment grouping algorithm
Data: a set of all comments
Result: a set of all groups
// first pass: create initial group set

1 foreach comment in comment set do first pass: create initial group set
2 foreach group in group set do
3 if comment is part of group then
4 add comment to group;
5 break;
6 end
7 end
8 create group;
9 add comment to group;

10 add group to group set;
11 end

// second pass: merge groups
12 repeat
13 foreach group in group set do
14 foreach comment in group do
15 foreach other group in group set do
16 if other group is the same as current group then break;
17 if comment is part of other group then
18 merge groups;
19 break;
20 end
21 end
22 end
23 end
24 until no groups have been merged;

version is in terms of differences and provides a list of all differences.

It contains a combination of a tree view with columns where each item of the tree is
collapsible. The first column contains the description of the element represented by the
item. This column is followed by a column for each version, containing the similarity
metric value for the given element of the item. A similarity value of zero means that
this element is not similar to another element in this version, and a value of one means
that it is equal to a another element in this version. Values between zero and one give a
hint that the element is similar to some extend to another element in the version. The
background of the detailed values is colored from dark to bright based on the similarity
value to help the user quickly identify high and low similarity values.

The main elements shown in the tree are differences which can be grouped in containers.

53

3. Mervin: A Graphical Model and Diagram Review Tool

Figure 3.17: Screenshot of the version history view in the prototype with a loaded GMF
model.

54

3.6. Review Explorer View

The label text of these difference items are colored based on the difference type to help the
user categorize differences without reading the label text. Similarity values of containers
are computed based on their mean non zero child similarity values. Additionally, the
child item count is added to the name of the container to give the user a hint how
many elements reside in the container. Each difference item also has the corresponding
most similar difference item as a child, to give the user feedback which item in another
version is similar. How elements are grouped depends on the model structure and the
structure that the user is used to. For example, differences of all properties of a UML
class element may be grouped by the class. If the model resembles the structure presented
in Section 3.2, differences in the child node structure of a parent node can grouped by
their parent node. An example grouping method for GMF based models is presented in
Chapter 4.

As mentioned at the beginning of this section, this view contains all differences, which
also includes differences not present in the versions selected in the current comparison
scope. This results in duplicated items for differences which stay the same across all
versions, one item for each version. These duplicates can be safely removed from the
view, preferably only if the grouping method did not assign them to different containers.
It is also recommended to give the user a way to filter the differences to a certain version.
For example, the prototype implementation supports filtering differences based on the
selected old or new version of the comparison scope.

3.6 Review Explorer View
As mentioned in Section 3.3, models can be shown as a list or as a tree. This representation
usually provides a more detailed view on the underlying structure of the model. Also,
some tools, like Papyrus or EMF Compare, provide such trees to display models or
provide an outline of the model. The idea of the review explorer is to reuse this known
structure and annotate it to ease the navigation through the model versions and their
differences. This includes users which are used to read this structure as well as users
which are not used to read such a structure but use it to locate differences and elements
or correlate them with elements of the model.

Therefore, the structure of a model is annotated with difference information of the
following set of comparisons: The first comparison is the one that has been selected in
the comparison scope. If both versions of the scope are the same, the version structure is
shown without differences. The other comparisons are the base version compared to each
new version. This allows the user to look up differences compared to the base version
without switching the scope. Other comparisons are also possible but have not been
used as more space is needed and to avoid misconceptions with the currently selected
comparison scope.

Deleted elements are also present at the relative position where they have been removed
in the tree. Annotations of differences in the structure are done by coloring affected
elements of differences and listing all differences of an particular element in the structure.

55

3. Mervin: A Graphical Model and Diagram Review Tool

The color is applied to the label of the element’s item and depends on the difference type.
Layout differences are not shown using colors as only their presence can be shown this
way and the user has to switch to a view with a graphical representation to properly
see the difference in the graphical model. A simple textual description of the layout
difference would be an option, but such a description already implicitly exists in the form
of atomic differences if layout differences are derived from atomic differences.

Other non-atomic differences that are not part of the structure, or are not possible to be
shown as annotations to a certain element, are added to a special difference container
item. This item contains all differences as child items that are assigned to the parent
item’s element. So it provides a way to also show the detailed difference information that
has been provided for the parent item’s element. Such information may include special
derived differences which might not be presentable in one of the other views or using
annotations.

Additional columns in the tree view show statistical information about the atomic
differences. The first two columns contain stacked bar charts presenting the distributions
of each atomic difference type contained in the given item. Users are able to resize these
columns to their needs, which allows them to make even small numbers of difference
types visible. However, some distributions may contain a very small number of a specific
difference type compared to a large number of other difference types. So they are rendered
in such small bars that are hardly noticeable, or in bars that cannot be rendered at
all. This is might leave the impression to the user that no such difference type exists
at all and leads to misconceptions. Hence, two strategies are proposed to reduce this
problem. The first one is to show the same distribution bar chart in the second column
relative to the total maximum number of contained differences in a tree item. As a result,
each bar has more screen space and smaller bars also get more space. Obviously, this
won’t completely solve the problem. So the second approach is to enhance the stacked
bar charts with binary indicators for contained difference types. These are small dots
or boxes next to the bar charts that show the presence of a particular difference type.
Moving the cursor over the bars reveals the actual number of differences on demand,
following the visual information seeking mantra [Shn96]. Also the initial arrangement of
the columns follows this mantra. Both of previously columns aim at giving the user an
overview about the distribution and the presence of differences in the contained items,
where the first has a broader scope than the other. They are also expected to be the
most important statistical columns.

All remaining columns show more details as the number of contained differences, the
number of contained references to changed elements and other model specific metrics
and information. Numeric values of a known range are shown in cells whose background
color is interpolated depending on the relative position in the range. Which metrics are
useful for a particular model depends on the model and might be part of future research,
so it is not covered in the scope of this thesis. However, it is recommended to follow
the same arrangement strategy and use background coloring for numeric values within a
known range. Moreover, sorting elements based on numeric metric values may also be

56

3.6. Review Explorer View

Figure 3.18: Screenshot of the review explorer view in the prototype with a loaded GMF
model.

57

3. Mervin: A Graphical Model and Diagram Review Tool

Distribution Bar Problem Strategies

Rescale
Distribution Bar

Difference Type
Existance Indicators

Total Number of
Differences

Number of
contained Differences

Difference Distribution Bars

Figure 3.19: Illustration of the difference distribution bar charts in the review explorer
view.

enabled for them, like it has been done in the prototype presented in Section 4.

Until now, models and their contained elements have been in the main focus. But those
models are also stored and structured in artifacts, for example in multiple files in the file
system. Also other artifacts that are provided as a supplement for the information in the
model may be part of different versions. Difference visualizations for such non-model
artifacts are not part of this thesis, but might be incorporated as a separate linked view
that is shown on demand by the user. These artifacts can be shown in the review explorer
as it is meant to be the only view that contains also other elements than models. Hence
it also is the entrance point for opening incorporated difference views for non-model
artifacts.

Depending on the demands of the reviewer and the model, the mentioned structure and
artifacts might be of relevance or not. The presented prototype of this solution follows a
model centric view, which shows each changed model as a single item in the tree view,
despite the fact that they might be distributed among multiple artifacts. However, an
additional column shows the artifact that contains the model element of an particular
item in the tree, if possible. These models are grouped by artificial items that allow
the user distinguish models of different types. For example, the implemented prototype
provides two groups: the involved models and the involved diagrams group, which are
based on the special structure of GMF and Papyrus models. The other changed artifacts
are shown within their structure in another group that is named patches.

This has been done with the assumption that the user reviews the model and its elements,
not how the model is distributed among artifacts. However, this can be accomplished by
simply restructuring the items of the tree view: Each items resembles the artifact with
their original structure and model elements are children of the artifacts that they are
contained in. All other columns may also be used with this structure, only the maximum

58

3.7. View Coordination And Highlighting

Figure 3.20: Screenshot of highlights in Mervin.

number of total differences might be different.

3.7 View Coordination And Highlighting

All presented views are coordinated and linked with each other using two approaches:
The first approach is that they view different aspects of the same review. They use shared
data like the comparison scope and the current selection to filter their contents based on
the user input, like in the property difference view. This type of coordination has already
been presented in the previous sections for the particular views. But another important
linking technique is proposed in this solution, which is user defined element highlighting.
Most of the views show different aspects of the same elements, which possibly makes it
hard for the user to identify the same or related elements in other views. Highlighting is
meant to help the user to quickly navigate to these elements and show them in a different
view, if possible. It is assumed that the review explorer view, the version history view,
and the unified difference view are the views where the user has to often switch between
them and that the comments view is often used to trigger highlights. Hence, highlighting
is expected to be mandatory for these views and has been implemented for this views in
the prototype.

Highlighting can be temporary or permanent, with the option to clear the highlighted
element on demand. How elements are highlighted in a view depends on the view,
but the highlighting has been done with the following consideration: A highlighting
approach should draw the attention to certain elements, but should should not hide other,
potentially important elements completely. Therefore, two different types of highlighting

59

3. Mervin: A Graphical Model and Diagram Review Tool

are proposed: Tree based views use bold text for items that represent elements that are
highlighted or contain elements that are highlighted. This approach cannot be applied
to the unified difference view as for the same reasons why overlays have been used for
annotating changed graphical elements. As a result, a semi-transparent gray layer is
drawn on top of the contents in the unified difference view except for areas that contain
highlighted elements. These elements might not be visible if the view is in tab mode, so
the tab that contains the element is highlighted instead.

Element highlight requests are triggered by the user by selection, cursor movement or
context menu. The former two trigger the highlight of the currently selected or pointed
element and can result in permanent or temporary highlights. A selection might also
contain multiple elements if the view supports it. All elements of the selection are
highlighted in this case. The context menu usually triggers permanent highlight of
derived elements of the current selection. Which elements can be derived depends on
the actual model and might be subject to future research. For example, the prototype
implementation presented in Section 4 allows the highlight of referenced elements in
other models. Previous highlights are cleared and replaced with the new ones if the user
triggers a new highlight request for other elements.

Users are able to quickly navigate through all permanently highlighted elements using the
tool bar in the tree based views. It provides two buttons that allow to quickly focus the
next or previous highlighted item in the tree, relative to the currently selected element.
Quick navigation is not supported in the unified difference view as no natural order of
highlighted elements exists. An option would be to use the typical reading direction
in text documents, but this does not necessarily be the case for all different types of
diagrams and graphical models. Another option is to define the direction based in the
model semantics, but this depends on the actual model and is therefore subject to future
work.

3.8 Required Input Data

Based on the previously defined views, the proposed solution requires a specific input
data set and other information about the models and diagrams. The input data set
presented below is described in relation to the review artifacts presented in Section 2.2.

Version, diagram, model data The integral part of the proposed solution are dia-
grams and graphical models in the corresponding versions. This includes the version
that contains all original base artifacts that have been changed, as well as all versions of
the changed artifacts. These artifacts within a version may contain one, more or parts
of models, graphical models and diagrams, that together form a set of changed models,
graphical models and diagrams. Other artifacts may also be present and might be shown
in the proposed solution, but require additional visualization techniques that are out of
the scope of this thesis.

60

3.8. Required Input Data

Comparison information To display differences and allow interaction of the displayed
differences, the comparison information is needed. This may be provided by an algorithm
that provides the information on the fly or as a precomputed set of differences. Difference
information of all possible combinations of comparisons are needed in the latter case.
Atomic differences such as additions, deletions and optionally modifications must be
contained in these comparisons. Besides that, also matching information of equal elements
must be provided.

Diagram and model information The proposed solution draws the graphical models
or diagrams and annotates them. So it requires information on how to draw them, or
a framework that draws them and provides the layout information for a particular
element. Such a framework needs to allow drawing the overlays on top of the graphical
representation. Another option would be to provide already rendered versions of the
graphical representation and information on how to locate and extract graphical elements
on demand.

Review data Also data about the review must be provided. This includes comments
containing links to model elements as well as the current and other user data. It is also
necessary to provide information on how the version is represented.

61

CHAPTER 4
Implementation

A prototype has been implemented to prove the feasibility of the previously described
solution. It is called Mervin and published under the terms of the Eclipse Public
Licence (EPL) [Ecl17b] on GitHub. The complete code is available at https://github.
com/theArchonius/mervin. Although its matured state, it is considered as an
experimental application which is not actively maintained and not meant to be used in
production environments. Also, some of the described features could not be implemented
completely in some cases due to problems with the used frameworks. These cases are
described in more details in the subsequent sections. Mervin is based on various plugins of
the Eclipse Platform. The most important ones are EMF, Graphical Editing Framework
(GEF), GMF, EMF Compare, and Papyrus.

Papyrus is a set of plugins that allows to create UML Models based on GMF. GMF
is a framework that allows to define and create graphical models based on GEF and
EMF. GEF is another framework that allows to define and create editors based on
graphical elements. EMF is the base framework for models used by various eclipse based
applications. EMF Compare is a framework that is able to compare EMF based models
with some extensions that also allow to compare Papyrus models.

Apart from that, Mervin also needs review data from a review tool. Gerrit [Goo17b]
is a popular review tool and used by most eclipse projects for that purpose, so it has
been chosen to be supported with Mervin. Not all features and steps of the whole review
process of Gerrit are currently supported. Only the parts that have been described in
the previously presented solution is covered. Therefore, Mervin uses and manipulates
the review data provided from Gerrit but does not trigger Gerrit actions for a particular
change. So version comparison and comments are supported, but the process of accepting
and merging a change is not supported and has to be done with Gerrit.

The repository contains the needed Eclipse plugins based on Maven and the necessary
eclipse target platform. It is possible to build the plugins using Maven, but the exported

63

https://github.com/theArchonius/mervin
https://github.com/theArchonius/mervin

4. Implementation

product from maven does not work at the time of this writing. However, it is possible
to start the product from the product editor within eclipse when the provided target
platform is correctly configured. Note that the target platform is based on dependencies
not under the control of the author of this thesis and therefore their availability cannot
be guaranteed. If the builds fails for that reason, contact the author of this thesis who
will try to resolve the problems if possible.

During the development of Mervin several issues raised with GMF. Some of them could be
resolved with workarounds, but some could not be solved without fixing some bugs in GMF.
They have been fixed in a fork of the offical GMF repository as only slow development
has been observed on the official repository during development of Mervin. The fork is
available at https://github.com/theArchonius/gmf-runtime and the applied
changes can be found in the branches gmf-runtime-fixes-latest-release and gmf-runtime-
fixes. Builds based on the release branch can be obtained from https://bintray.
com/thearchonius/gmf-runtime-fork/gmf-runtime. As the prototype itself,
these builds are considered as experimental and not meant to be used in a production
environment.

The property differences view and the review explorer view described in Section 3.3 and
Section 3.6 use tree views with entries derived from the differences reported by EMF
Compare. No specialized or complex logic related to differences or review data has been
implemented for that purpose, except for the atomic difference mapping described in
Section 4.5. Also no major challenges arose during their implementation, so the detailed
implementation for these views are not described in this chapter. Interested readers are
therefore encouraged to take a look at the source code provided in the Git repository
mentioned above. The same applies to the comment view, except for storing and loading
of comments as well as how the comment model looks like. These topics are discussed in
detail in Section 4.4 and in Section 4.3.

4.1 Papyrus and GMF Overview

As mentioned before, Papyrus is based on GMF, which is itself based on GEF. GEF
provides user interface elements that can be used to create graphical editors based on
the commonly used Model View Controller (MVC) pattern. This is done by extending
base controllers, so called EditParts, that provide the logic to update a set of view
components and the model according to the developers needs. Each graphical editor
may have multiple controllers which are part of a tree. A controller in that tree is
created and assigned to a single model element, and specifies which model elements are
derived from the assigned model element to create child controllers for them. Child
controllers are created by a separate provider which takes the child model element as an
argument. So the controller creation is based on the model and changes to the model
may cause the creation or destruction of new and existing controllers. Changes to the
models are done using commands to support transactions and undo or redo of actions.
User interface editing tools may request these commands from controllers and their edit

64

https://github.com/theArchonius/gmf-runtime
https://bintray.com/thearchonius/gmf-runtime-fork/gmf-runtime
https://bintray.com/thearchonius/gmf-runtime-fork/gmf-runtime

4.1. Papyrus and GMF Overview

EditPart
Model Element

View Components
EditPolicies

Command

Tool

execute

change

create
Command

send
Request

create/update

subscribe

create
Child EditParts

notify

Model Controller View

view events

Figure 4.1: Simplified GEF architecture overview

policies before execution. However, editing is not allowed during model review, so editing
support has been disabled for the unified view in Mervin. View components are created
by the controllers and usually also reflect the hierarchy of the controllers, except the view
components that are assigned to special layers. Such a layer is a simple view component
in the tree that acts as a container and is itself contained in another container that stacks
the layers. Each view component specifies a layout manager that defines how child view
components are arranged. However, the order in which child components are drawn is
defined by the view component itself.

GMF extends GEF by extending controllers and the command infrastructure of GEF
for EMF models. But the framework does not provide the model to controller mapping
and controller creation mechanisms, as they have to be defined for a certain EMF model.
However, GMF does not use the EMF model directly as input model. It uses the so
called notation model, which contains references to the actual EMF model, the so called
semantic model. This separation does not necessarily mean that they are also stored in
separate resources. The notation model contains the description of the graphical elements
and the properties that are not stored in the semantic model, or cannot be derived from
the semantic model. It has to be noted the controllers may choose to ignore the values
defined in both models.

A view is the main model element in the notation model and usually references exactly
one model element in the semantic model. However, not every model element in the
semantic model has to be assigned to a single view. In fact, it may be referenced by any
number of views or even by not a single view in the notation model. Views may also
contain child views.

Three different types of views exist: Nodes, edges and diagrams. Nodes may have a

65

4. Implementation

ViewModelElement

Node

LayoutConstraint

Edge Diagram

AnchorBendpoints

1 *
0..1

*

target

*

1

source

*

1

1..*

0..1

targetAnchor

0..1

sourceAnchor

0..1

0..1

*

Figure 4.2: Simplified GMF notation model

layout constraint assigned which describes data that is used to layout the node. GMF
provides a set of layout constraints but any implementation that uses GMF may choose
to add other layout constraints. Moreover, the interpretation and use of these constraints
depends on the actual controller implementation. Edges always have exactly a source
and target view, where each have an assigned anchor. Bendpoints are stored to describe
the route for an edge. Again, the actual routing behavior is defined by the controller
and is not stored in the notation model. Diagrams are usually the root element of every
notation model and should contain references to all edges within the diagram. The model
does not constrain the use of edges as child views in a node, but GMF and GEF do
not support this case without a manual adaption of the provided controllers. A special
connection layer is used for edges by default, which is maintained by the controller of the
diagram.

Papyrus provides the actual implementations of GMF classes for Papyrus UML models.
It uses most of the GMF infrastructure but also adds customized implementations of
controllers and view components. The notation model has not been modified in the
presented structure, except that more than one diagram may be stored in the same
notation model file and each references a part of the Papyrus’s semantic model. Papyrus
models are usually stored within three different file types: the di file, the notation model
files, and the semantic model files. The new di file contains internal layout information
of the user’s papyrus editor, like open diagrams.

4.2 EMF Compare Overview

The semantic as well as the notation models of Papyrus are EMF models. Mervin uses
therefore EMF Compare [Ecl17c, Ecl17d] to compare EMF models contained in change
versions. More specifically, Mervin loads the models of change versions in so called

66

4.2. EMF Compare Overview

DefaultComparisonScope

EMFCompare (Comparator)

compare(scope : IComparisonScope) : Comparison

Comparison

Match

getAllDi�erences() : Iterable<Di�>
getAllSubmatches() : Iterable<Match>

Di�

getKind() : Di�erenceKind
getSource() : Di�erenceSource

Di�erenceKind

ADD
DELETE
CHANGE
MOVE

Di�erenceSource

LEFT
RIGHT

AttributeChange

getValue() : Object

ReferenceChange

Resource

ResourceSet

Noti�er Predicate (Filter)

EStructuralFeature

EAttributeEReference

EObject (ModelElement)

EClass

1

*

left right

1

*

1

*

left

1

0..1

right

1

0..1

1

*

1

*

requiredBy

0..1

*

*

1

*

1

value

*

1

1..*

1

*

Figure 4.3: Excerpt of the architecture of EMF Compare and its dependencies used by
Mervin.

resource sets that will be compared. This is done by passing a comparison scope to a
comparator which returns a comparison model. Additionally, resource filters are applied
to the comparison scope to restrict the comparison to a particular model type when
necessary. EMF Compare supports two way and three way comparisons, but Mervin uses
currently only two way comparisons. A comparison model is created after comparing two
models with EMF Compare, which provides various informations about the differences of
the given models. Mervin mainly makes only use of two types of artifacts in that model:
The matches and the diffs.

A match represents two elements that EMF Compare considers to be the same model
elements. Each is contained in a different version of a model, although the elements might
have changed between versions. They are called the left and the right model elements.

67

4. Implementation

It is also possible that an element has no match in the other model version. A match
is also created in this case, but without a reference to a model element in the other
version. A match may also contain matches for contained child elements, contained in
so called structural features. So the matches of a comparison are a forest of trees that
show matching information between two model versions within the comparison scope.
These matches are created using a matcher . Each match lists the differences of its child
features in a diff element for each difference.

A diff element may represent different subclasses of differences and provide additional
informations for the types they represent. Mervin makes only use of the diff subclasses
AttributeChange and ReferenceChange, which provide difference information for references
and attributes in a model. Every diff also has a common set of attributes and the most
important ones are the difference kind and the source. A difference kind encodes the
difference as an atomic operation that have been applied to the old version of an element
to transform it to the new version. The source defines which version is the old version as
EMF Compare uses left and right to denote the versions. Another important aspect is
the dependency information stored in each diff element. A diff element is dependent on
another diff element if it cannot be applied to the old version without applying the other
element. Mervin uses this information to determine elements to include in the unified
difference view and to organize diff elements in the review history view.

EMF Compare also supports merging and conflict detection. Therefore, it provides
additional information and elements in the comparison model that are necessary for
these operations. While this is the case, none of these features are required to implement
the proposed visualization and have not been used by Mervin except for the elements
mentioned above.

4.3 Internal Review Model

Mervin uses an internal review model that is based on the findings in Section 2.2. It is
shown as a diagram in figure 4.4. Note that it uses different names for several model
elements as it was developed for use with Gerrit. The ModelReview element represents a
change, and a version of the change is represented by a PatchSet. There are two main
elements in the model: the ModelReview element and the DifferenceOverlay.

A ModelReview element stores all information of the loaded change as well as the cached
comparison of the currently selected comparison scope and the active overlay filters.
Besides that, another important property is held by the ModelReview element: the unified
model map. This map contains the mapping of GMF views in the original notation
models to the copies that are used in the unified difference view. A single view in one of
the original models may have multiple copies, and a copy may only be copied from one
view in one of the original models. This map is used in combination with the unified
difference view and therefore more details can be found in Section 4.7.

As mentioned before, PatchSets represent versions in a change and contains references to

68

4.3. Internal Review Model

M
o
d
e
lR

e
v
ie

w

u
n
i �

e
d
M

o
d
e
lM

a
p
 :

 U
n

i �

e
d
M

o
d
e
lM

a
p

re
p
o
s
it

o
ry

U
R

I
:

s
tr

in
g

s
h
o
w

A
d
d
it

io
n
s
 :

 b
o
o
le

a
n

s
h
o
w

M
o
d
i �

c
a
ti

o
n
s
 :

 b
o
o
le

a
n

s
h
o
w

D
e
le

ti
o
n
s
 :

 b
o
o
le

a
n

s
h
o
w

L
a
y
o
u
tC

h
a
n

g
e
s
 :

 b
o
o
le

a
n

s
h
o
w

C
o
m

m
e
n
ts

 :
 b

o
o
le

a
n

s
e
le

c
te

d
M

o
d
e
lC

o
m

p
a
ri

s
o
n
 :

 C
o
m

p
a
ri

s
o
n

s
e
le

c
te

d
D

ia
g
ra

m
C

o
m

p
a
ri

s
o
n

 :
 C

o
m

p
a
ri

s
o
n

P
a
tc

h
S
e
t

id
 :

 s
tr

in
g

m
o
d
e
lC

o
m

p
a
ri

s
o
n
 :

 C
o
m

p
a
ri

s
o
n

d
ia

g
ra

m
C

o
m

p
a
ri

s
o
n
 :

 C
o
m

p
a
ri

s
o
n

a
ll
N

e
w

In
v
o
lv

e
d
D

ia
g
ra

m
s
 :

 D
ia

g
ra

m
 [

*
]

a
ll
O

ld
In

v
o
lv

e
d
D

ia
g
ra

m
s
 :

 D
ia

g
ra

m
 [

*
]

/o
b
je

c
tC

h
a
n
g
e
C

o
u
n
t

:
M

a
p

/o
b
je

c
tC

h
a
n
g
e
R

e
fC

o
u
n
t

:
M

a
p

/m
a
x
O

b
je

c
tC

h
a
n

g
e
C

o
u
n

t
:

in
t

/m
a
x
O

b
je

c
tC

h
a
n

g
e
R

e
fC

o
u
n
t

:
in

t

P
a
tc

h

n
e
w

P
a
th

 :
 s

tr
in

g
o
ld

P
a
th

 :
 s

tr
in

g
n
e
w

C
o
n

te
n
t

:
b
y
te

 [
*
]

o
ld

C
o
n
te

n
t

:
b
y
te

 [
*
]

c
h
a
n

g
e
Ty

p
e
 :

 P
a
tc

h
C

h
a
n
g
e
Ty

p
e

M
o
d
e
lP

a
tc

hD
ia

g
ra

m
P
a
tc

h

«
E
n
u
m
e
ra
ti
o
n
»

P
a
tc

h
C

h
a
n

g
e
Ty

p
e

A
D

D
C

O
P
Y

D
E
L
E
T
E

M
O

D
IF

Y
R

E
N

A
M

E

M
o
d
e
lR

e
s
o
u
rc

e

ro
o
tP

a
c
k
a
g
e
s
 :

 E
P
a
c
k
a
g
e
 [

*
]

o
b
je

c
ts

 :
 E

O
b
je

c
t

[*
]

D
ia

g
ra

m
R

e
s
o
u
rc

e

g
e
tD

ia
g
ra

m
s
()

:
D

ia
g
ra

m
 [

*
]

C
o
m

m
e
n
t

id
 :

 s
tr

in
g

c
re

a
ti

o
n
T
im

e
 :

 l
o
n
g

te
x
t:

 s
tr

in
g

p
a
tc

h
S
e
tR

e
fI

d
 :

 s
tr

in
g

re
s
o
lv

e
P
a
tc

h
S
e
t(

 r
e
v
ie

w
 :

 M
o
d
e
lR

e
v
ie

w
)

 :
 v

o
id

C
o
m

m
e
n
tL

in
k

ta
rg

e
ts

 :
 E

O
b
je

c
t

[*
]

s
ta

rt
 :

 i
n
t

le
n
g
th

 :
 i
n
t

U
s
e
r

n
a
m

e
 :

 s
tr

in
g

D
i �

e
re
n
c
e
O
v
e
rl
a
y

li
n
k
e
d
V

ie
w

 :
 V

ie
w

c
o
m

m
e
n
te

d
 :

 b
o
o
le

a
n

N
o
d
e
D

i �

e
re

n
c
e
O

v
e
rl

a
y

E
d
g
e
D

i �

e
re

n
c
e
O

v
e
rl

a
y

D
i �

e
re
n
c
e

ra
w

D
i �

s
 :

 D
i �

 [
*
]

L
a
y
o
u
tD
i �

e
re
n
c
e

M
o
d
e
lD
i �

e
re
n
c
e

S
iz

e
D

i 	

e
re

n
c
e

w
id

th
C

h
a
n
g
e
 :

 D
im

e
n
s
io

n
C

h
a
n
g
e

h
e
ig

h
tC

h
a
n
g
e
 :

 D
im

e
n
s
io

n
C

h
a
n

g
e

o
ri

g
in

a
lD

im
e
n
s
io

n
 :

 D
im

e
n
s
io

n

B
e
n
d
p
o
in

ts
D

i

e
re

n
c
e

L
o
c
a
ti

o
n
D

i �

e
re

n
c
e

m
o
v
e
D

ir
e
c
ti

o
n
 :

 V
e
c
to

r2
D

o
ri

g
in

a
lL

o
c
a
ti

o
n
 :

 V
e
c
to

r2
D

«
E
n
u
m
e
ra
ti
o
n
»

D
im

e
n
s
io

n
C

h
a
n
g
e

S
M

A
L
L
E
R

B
IG

G
E
R

S
E
T

U
N

S
E
T

U
N

K
N

O
W

N

S
ta

te
D

i �

e
re

n
c
e

ty
p
e
 :

 S
ta

te
D

i

e
re

n
c
e
Ty

p
e

«
E
n
u
m
e
ra
ti
o
n
»

S
ta

te
D

i �

e
re

n
c
e
Ty

p
e

A
D

D
E
D

D
E
L
E
T
E
D

M
O

D
IF

IE
D

U
N

K
N

O
W

N

0
..

1

*

le
ft

P
a
tc

h
S
e
t

0
..

1

0
..

1

ri
g
h
tP

a
tc

h
S
e
t

0
..

1

0
..

1

c
u
rr

e
n
tR

e
v
ie

w
e
r

*

0
..

1

1

*

0
..

1
*

*
0

..
1

n
e
w

In
v
o
lv

e
d
D

ia
g
ra

m
s

1

*

o
ld

In
v
o
lv

e
d
D

ia
g
ra

m
s

1

*

n
e
w

In
v
o
lv

e
d
M

o
d
e
ls

1

*

o
ld

In
v
o
lv

e
d
M

o
d
e
ls

1

*

1

0
..

1

1

0
..

1

0
..

1

*

0
..

1

*

a
u
th

o
r

1

1

d
e
p
e
n
d
e
n
c
ie

s

* *

1

*

Fi
gu

re
4.
4:

M
er
vi
n
re
vi
ew

m
od

el
.

69

4. Implementation

derived statistical data, patches and their referenced model resources. A Patch represents
a changed file and stores the information provided by the VCS. Such a patch can be
a model patch containing the changed semantic model versions or a diagram patch
containing the changed notation model versions. If none of this applies, a patch simply
represents an unknown file type. ModelResources and DiagramResources represent the
particular model or diagram version affected by a patch. As such a patch cannot exist
without an old or new version, at least one resource of them must be specified. The
resource also contains the loaded model elements, the so called EObjects.

These model elements can be referenced by links in comments, where each link is assigned
to a sequence of characters in a comment. A comment is always assigned to at least one
PatchSet and is always written by an author. The patch set reference property is meant
to store the id of the referenced patch set when storing the comments, as the patch set
element is not persisted. Comments also may have one or more replies to them, such
that a user can directly address issues mentioned in a comment. A ModelReview element
also contains a reference to all comments that are referenced by its containing patch sets.
It also contains comments that could not be assigned to a patch set while loading the
comment. This might happen if, for whatever reason, a patch set is not loaded and the
stored patch set id references this missing patch set.

Difference overlays represent the overlays that may be drawn in the unified difference
view. They have no relation to the model review for several reasons: First, they depend
on the currently selected comparison and therefore there should be an relation between
the comparison and the overlays. Second, the only option to solve that would be to extend
the comparison class by EMF Compare, as it is defined in EMF Compare. Although this
would be possible, additional customization of the EMF Compare match engines and
their registry would be needed to actually use this extended comparison. But this option
has been dropped to focus on the development of the proposed solution as the relation
was not needed during development. Two different overlay types exist, one for nodes and
one for edges. They exist mainly to distinguish the creation of the appropriate controllers
in GMF, but do not provide more information than the type of the overlay. Also, edge
difference overlays only support differences related to edges, which are currently only
instances of the class BendpointDifference.

An overlay shows one or more Differences which describe the various differences described
in Section 3.1. Each difference element may be derived from one or more diff elements
from EMF Compare and the references to those diffs are also stored in the difference.
They are stored for further reference as only those values are derived that are actually
needed for the proposed overlays in the unified difference view. Differences are further
divided in layout differences and semantic model differences. Layout differences contain a
more detailed description for the particular layout difference type based on the low level
diffs from EMF Compare. The only exception is the BendpointDifference, as a detailed
description of the changes to an edge could not be extracted alone from GMF notation
models. Further details about this issue is described in Section 4.6. StateDifferences
describe differences on the semantic model expressed in atomic operations on the old

70

4.4. Gerrit Integration

semantic model. This difference type is also the only type used for semantic model
differences.

Most of the review model is loaded when loading the data from Gerrit and a few parts like
comments and the current comparison are set and changed during the review. Comments
and their authors are persisted, all other model elements are derived when loading a
change. A more detailed overview of the loading process is given in the next section.

4.4 Gerrit Integration

Gerrit uses Git extensively to store review data and manage the review process. A version
of a change is represented by a commit, a so called patch set, which is based on a base
commit in the main development branch. Each commit message contains a unique change
id which is used to identify version commits for a given change. By default, contributors
amend the version commit if they have to change it, which results in a new commit which
is also based on the same base commit. Comments, as well as other actions are handled
by the web interface or the public API of the Gerrit server. Each version commit is stored
in the remote Git repository with a special Git reference that points at the commit. This
reference contains also the internal numeric change id, so it is always possible to find
all references for given change. Additionally, Git references can be transferred between
repositories like every branch in Git, so it is possible to access the version commit data
completely using only Git commands.

These properties of Gerrit have been used by Mervin to load the change data from Gerrit.
The only exception are Gerrit comment data, which are not modified by Mervin. Mervin
comments are stored apart from normal Gerrit comments due to the fact that they
contain also links to model elements which are not supported by the Gerrit web interface.
All remaining actions can be done using the web interface or the API of the server.

A user has to clone the remote Git repository from Gerrit to load a change for the
repository. This does not necessarily include the Git references that contain the change
data. Mervin uses the remote repository to fetch these references on demand when loading
the change. Algorithm 4.1 gives an overview of the process that initializes the review
model defined in Section 4.3 based on the change data. First the low level information of
changed files is loaded into patches which are stored in patch sets that represent a version
in the change. The type of the patch model is determined from the file type of the file
represented by this patch. Binary content data for the old and the new version of the file
as well as other common patch metadata are assigned afterwards. More details about
the patch loading process are shown in algorithm 4.2. Patches that contain model data
are then loaded using EMF using so called resource sets. EMF supports lazy loading
and distribution of model data across multiple files and uses therefore these resource
sets to find and load references. Each version is loaded with its own resource set, but
they use a single resource set cache to avoid duplicated loading of resources. This cache
is also needed later to resolve references to model elements in the comments, as they

71

4. Implementation

reference elements in multiple versions. The cache contains all resource sets that have
been created during the loading of the review model.

Once all patches and model data are loaded, two comparisons are done using EMF
Compare and stored in the review model. One that compares the notation model and
one that compares the semantic model. This is done by comparing the resource sets
of the old and the new version with a filter that distinguishes between the two model
resource types. After loading all patch sets, all patch sets are sorted by their internal
Gerrit id to allow faster lookup of the patch sets. This id is a number starting at one in
each change and is incremented by one for each new version. All comments are loaded in
the last step.

Algorithm 4.1: Overview of the review (change) model loading process.
Data: internal change id, Git repository
Result: the loaded review model instance

1 fetch all Git references of the change;
2 create review model and set metadata;
3 initialize model resource set cache;
4 foreach Git reference in Git repository references do
5 if is reference to change version commit then
6 create patch set model and set metadata;
7 load patches;
8 extract model resources with model resource sets cache;
9 update model resource set cache with new resources;

// update cached comparisons
10 create & cache semantic model comparison with base commit;
11 create & cache notation model comparison with base commit;
12 end
13 end
14 sort patch sets;
15 load comments with resource cache;

As mentioned before, model data loading is handled mainly by EMF with cached resource
sets. However, this was not the only adaption that had to be done. References in the
model files used to load model elements are stored with Uniform Resource Identifiers
(URIs) that contain the file path, but do not contain the version that they are contained
in. This is perfectly fine for loading a checked out version in a Git repository, but leads
to ambiguity when loading models without checking them out each time a model element
needs to loaded. Although the latter is possible, it is very cumbersome and the local Git
repository’s working directory may not be clean, as it may be altered by the user before
the checkout. Another problem is that the resource set caching gets complicated as the
URI alone cannot be used to decide if a resource of a particular version has been cached
or not. Therefore, two adaptations have been done: First, a URI converter is installed for

72

4.4. Gerrit Integration

Algorithm 4.2: Overview of the patch loading process.
Data: patch set, patch set Git reference
Result: the patch set with loaded patches

1 extract list of changed files between version commit and base commit foreach
changed file in the list do

2 if is semantic model file then
3 create semantic model patch model and set metadata;
4 else if is notation model file then
5 create notation model patch model and set metadata;
6 else
7 create patch model and set metadata;
8 end
9 set change type of patch;

10 set old & new path of patch;
11 load and apply new & old binary data;
12 add patch to patch set;
13 end
14 return the patch set;

each resource set that contains a commit hash referencing the commit that contains the
version. This information is used to create a custom Git URI that contains the commit
hash and the URI from the model file. EMF calls this converter when loading resources,
so every URI is enriched with the version information. Second, a custom URI handler is
added to the list of the default URI handlers. EMF uses these handler when it actually
loads model elements for a resource. This custom handler contains a reference to the
local repository and supports loading the enriched URIs from the local repository.

With these modifications, each model file is loaded by creating a resource with the
corresponding custom Git URI. Once this is done, also the involved models and diagrams
are extracted and added to the patch set model. A more detailed view on the process is
given in algorithm 4.3.

Comments are part of the review model and as the review model is also an EMF model,
also EMF is used to store and load the comments. However, not the whole review model
is persisted as it is mainly derived from the change data. Therefore, comments are stored
with the referenced users and weak references to patch sets. These weak references are
simple strings that contain the corresponding patch set id. They are replaced with the
actual reference during loading and are created while storing comments. Comments with
a reference to a patch set that does not exist are ignored, although this case should never
happen in practice. No code review tool allowed deletion of versions, and comments
cannot be assigned to patch sets that do not exist.

Comments are stored and loaded from a custom Git reference, namely refs/mervin/-
comments/changeid, where changeid is replaced with the internal Gerrit id of the

73

4. Implementation

Algorithm 4.3: Overview of the model resource extraction process.
Data: patch set, patch set Git reference, cached model resource sets
Result: the resource sets for model and diagram patches

1 create resource set with cache lookup for old patches;
2 apply file to Git URI converter to old patches resource set;
3 apply Git URI handler to URI converter;
4 create resource set with cache lookup for new patches;
5 apply Git URI handler to URI converter;
6 apply file to Git URI converter to new patches resource set;
7 foreach patch in the patch set do
8 if is semantic or notation model patch then
9 create custom Git URI for new version;

10 if patch has not been deleted then
11 create resource in new patches resource set with new version Git URI;
12 load new version of patch in resource;
13 update patch set model list;
14 end
15 create custom Git URI for old version;
16 if patch has not been added then
17 create resource in old patches resource set with old version Git URI;
18 load old version patch in resource;
19 update patch set model list;
20 end
21 end
22 end
23 return old & new patches resource set;

Change. Due to the fact that not all elements of the internal Mervin model are stored in
the comment resource, all comment elements are copied with their references and then
stored or assigned to the review model. Again, the custom URI handler and converter
are used to load the resources for the different versions. Also the resource set cache is
used again, and serves the purpose of resolving the model element references of already
loaded resources. This way no element is loaded twice from the same resource although
they are in different resource sets. The process of loading the comments is shown in
algorithm 4.4 and the process of storing them is shown in algorithm 4.5.

4.5 EMF Compare Difference Mapping

As mentioned before, low level differences detected by EMF Compare have been used to
derive layout and model differences in the review model. No further mechanisms have
been implemented to compute differences that cannot be derived form the notation model

74

4.5. EMF Compare Difference Mapping

Algorithm 4.4: Overview of the comment loading process.
Data: review model, Git repository, cached model resource sets
Result: the review model

1 if comment ref for the review exists then
2 create resource set with cache lookup;
3 apply file to Git URI converter resource set;
4 apply Git URI handler to URI converter;
5 create resource with fixed comment URI;
6 load the comment resource;
7 copy comments & users in review model;
8 resolve patch set reference for all comments;
9 end

10 return the review model;

Algorithm 4.5: Overview of the comment data extraction process while saving
comments.
Data: review model, comment resource
Result: comment resource

1 create list of elements to copy;
2 add all comments to the list;
3 add all comment authors to the list;
4 add all patch sets to the list;
5 copy all elements and maintain references between copies;
6 foreach comment in copied list do

// patch sets are not stored in the comment resource,
therefore replace it with an numeric id

7 set numeric patch set id as reference;
8 remove patch set reference;
9 end

10 add copied comments in resource;
11 add copied users in resource;
12 return the comment resource;

75

4. Implementation

and from the semantic model. Such mechanisms require in depth knowledge about the
implementation of all controllers in Papyrus which is out of the scope of this thesis. This
section gives more insight in how atomic differences from EMF Compare are translated
into difference model elements used by Mervin.

The most simple mapping has been used for atomic changes on the semantic model as
they are mapped directly from the corresponding diff element. Two options exist to
determine the diff element to use: First, the diff element for the containing reference
of the element in the semantic model can be used. However, a changed element in the
semantic model does not necessarily mean that also a corresponding view element in
the notation model exists. As a consequence, a difference is created for an element that
is not shown in a graphical representation of the model. Hence also no overlay can be
shown and this difference can only be shown in one of the other views which also show
non-graphical model elements. Difference information of the EMF Compare diff elements
can be transformed on the fly and used in the latter case, which is also how Mervin
handles them in the other views.

The second option is to use the diff of the containing reference of the view element
in the notation model that represents an element in the semantic model. Mervin uses
this option to determine the diff element for semantic model changes which are visible
in the graphical representation. This is a valid option as other differences cannot be
linked to graphical elements in the diagram using only the notation model. Further
information about the mapping is needed in order to fix this problem. As a consequence,
such differences are not supported by Mervin, but future implementations may provide a
mechanism to provide the missing mapping information.

Apart from that, EMF Compare’s DifferenceKinds can be simply mapped the Mervin’s
StateDifferenceTypes. ADD and DELETE are mapped to ADDED and DELETED.
MOVE and CHANGE are mapped both to MODIFIED, as Mervin does not distinguish
between those two types.

Layout constraints and edge routes are harder to map, due to the fact that they cannot
be obtained without further knowledge on the actual implementation of the controllers
and the layout managers. The issues are explained in more detail in Section 4.6. As a
consequence, only detailed layout differences are created for node elements which are
placed using rectangular layout constraints and XYLayout. Differences of the location
are used to determine the direction of the move in a normalized vector. Width and
height differences are mapped according to the change of their values. An increase is
mapped to BIGGER, a decrease is mapped to SMALLER. If the former value was below
zero, and therefore dynamic, it is mapped to SET. In the other case it is mapped to
UNSET. Fortunately, most of the nodes are placed in that way in Papyrus models. Other
layout constraint differences are currently ignored but may be also considered in future
implementations. Bend point differences do not contain additional information and will
be created if differences are detected on the bend point reference of the edge.

76

4.6. Obtaining Layout Information

4.6 Obtaining Layout Information
GMF stores layout constraints for nodes in the notation model. These constraints are
passed to the controller which defines how they are translated to layout constraints
that are used to compute the actual layout of the graphical element. Again, additional
information from the implementation is necessary to interpret these correctly. Fortunately,
most graphical elements in GMF are placed using a so called XYLayout that uses a
layout description based on rectangles. Such a constraint represents the location relative
to the upper left point of the containing view and a width and a height. Hence, Mervin
is only able to visualize relative positions which are translated to absolute positions at
runtime based on the merged containing node. In theory, this results in an incorrect
position if a node is moved between two different containers and the move is detected by
the difference detection algorithm. However, this behavior has been accepted for Mervin
as GMF usually destroys the view and creates a new one when moving elements between
containers, which was not detected as a move during the development.

Values below zero for the width and the height are interpreted as the width or height that
is necessary to contain all child view elements. So the width and the height can be set to
a fixed value or may be dynamically determined on runtime. Again, such dynamic values
cannot be determined without further knowledge about the actual size of the children.
The width and height of the figure in the unified view will be used to show the outline
of the old version in this case. Other layout information is not interpreted by Mervin,
but all layout constraints are kept and used during the merging process in the unified
difference view.

Edges are routed using bend points and anchors which are stored in the notation model.
Like layout constraints for nodes, these bend points and anchors are passed to the
controller and then transformed to routing information that is used to obtain the actual
route. Although mostly only one or two routing mechanisms are used, several other
problems prohibited a meaningful interpretation of the bend points in the unified view.
Due to the fact that edges are often used to connect nodes in a diagram, their positioning
is also tied to the position and size of their connected nodes. As mentioned before, such
nodes are relatively or dynamically positioned. This is no problem for determining the
layout of the edge in the new version of the model. But determining the layout of the old
version is problematic if the layout of the connected nodes have been changed. Although
it is possible to determine the old layout of some of the connected nodes as described
before, some problems exist with this approach: First, an edge may connect a node whose
layout could be determined with a node whose layout cannot be determined. Second,
bend points and anchor positions are also often based on dynamic values or relative
values. Reusing them without the exact old layout may result in completely different
edges, and should not be presented to the user if possible. These problems leave just a
small subset of edges whose old route can be accurately displayed. So the decision was
made not view the old edge routes, as the reasons stated before are not aware to the
user. Therefore the selective display of the old routes of edges might confuse more than
it supports the user.

77

4. Implementation

In summary, dynamic and relative values are the main problems that need to be addressed
before layout information can be completely obtained for GMF models. One solution
would be to load the old version separately and perform the layout computation for
it. Another solution would be to provide an API for graphical models developers who
may provide layout resolvers for graphical elements. These resolvers may then be
used by the visualization implementation to obtain the exact location and size for all
graphical elements. However, the first one has not been implemented as it requires major
adaptations to the used frameworks. Note that in both solutions, global properties like
screen size and font size may also affect the final layout of the graphical models, which
also may change during runtime. The second solution has not been implemented as this
would require the specification of layout resolvers for all supported UML elements of
Papyrus, which would go beyond the scope of this thesis. Mervin provides therefore only
partial support for layout difference visualization as described in this and the previous
sections.

4.7 Unified View Implementation

Mervin creates the unified graphical model every time the comparison scope changes
and the comparison has been applied to the review model. This is primarily done by
copying notation model elements in the unified model. GMF is used by the unified view
to create the graphical model to display, as this allows to use the same controllers as
Papyrus. Some adaptations have been made to make this work as GMF does not provide
a way to include other model elements out of the box and Papyrus also added support
for custom styles.

The model review element of the presented internal model in Section 4.3 is the root
semantic model element for the view. Papyrus diagrams are shown as tabs in the unified
view and so each diagram in the new version of the Papyrus model is a child of the
root element. However, no copies of these diagram views are used to represent them, as
additional features, like the overlays and the off-screen indicators, must be supported by
the controller and the view component that draws the diagram. Moreover, the Papyrus
controllers of these diagram views create additional layers that are not needed and would
interfere with the layers needed by Mervin’s view components. So a new Mervin diagram
view is created as a child of the root view for each diagram in the new version of the
Papyrus model. All remaining child views of the new Papyrus model are copied and
assigned as child views to corresponding Mervin diagrams. A model hint is also added to
each view such that GMF is able to resolve the same controllers and view components as
Papyrus. This also applies to view copies of the old Papyrus model which is described
later in this section. Also note that copying in this section means that the element as
well as its contained elements are copied.

Note that diagrams are not part of this view if they have been deleted in the new version
of the model. This is the intended behavior as otherwise two cases would be shown in the
same manner, which makes the visualization ambiguous. In the first case, the diagram

78

4.7. Unified View Implementation

Uni�ed Notation Model

Old Notation Model New Notation Model

:Diagram

:Node

:Node

:Node

:Node :Node:Node :Node :Node:Node

:Diagram

:Node

:Diagram

:Node:Node

:Diagram

:Node

:Diagram

:Node :Node

:ModelReview

:NodeDi�erenceOverlay :NodeDi�erenceOverlay:NodeDi�erenceOverlay

element of

element ofelement of
copy of

copy of copy of copy of

element of element ofelement of

Figure 4.5: Simplified object diagram of an example unified notation model in Mervin
and its corresponding Papyrus notation models.

itself might have been deleted and therefore also all of its contents. In the second case,
only the content is deleted, but the diagram itself remains. As a result, the first case
is handled by showing no diagram in the unified view, and the second case is handled
by showing the diagram with its old content with deletion overlays. Other views, like
the review explorer and the property difference view can be used to show the deleted
diagram in the first case.

Algorithm 4.6 and algorithm 4.7 give an overview of how the unified notation model
creation process is implemented. Mervin always clears all views except the root model
from the unified notation model before creation of the unified model to simplify the
process at the cost of performance. However, further research may provide an approach
to reuse notation model elements to speed up the process.

So far only the new version of the Papyrus model is incorporated in the unified notation
model. As the unified model also contains elements of the old version of the Papyrus
model, deleted views also need to be added. This is done with the help of a so called
unified model map. Its main purpose is to link the original notation model elements to
their copies and vice versa. One might think that only one copy per notation model
element exists in the unified model, but there is a problem during the unification process
that is resolved in such a way that this assumption is not true any more.

For example, there might be an element A that has a reference to a single element B,
and the notation model does not allow to add a second element C to this reference. So
the reference of element A is a mono-reference. In the case that element B is deleted and
replaced by element C in the new version, the mono-reference becomes an multi-reference

79

4. Implementation

Algorithm 4.6: Update process of the unified notation model
Data: rootDiagramView (root notation model element), modelReview (root

semantic model element)
Result: unified notation model

1 clear unified model map;
2 clear unified view model in root diagram;
3 diagrams = empty list;
4 if new version is the base version then
5 diagrams = diagrams of base version;
6 else
7 diagrams = diagrams of new patch set;
8 end
9 foreach diagram in diagrams do

10 mervinDiagram = create mervin diagram for diagram;
11 add mervinDiagram to rootDiagramView;
12 createUnifiedDiagram(mervinDiagram, diagram, modelReview);
13 end
14 return rootDiagramView;

in the unified model. So a reference constraint of the model has changed. This is exactly
the case when the source or the target of edges are changed to a different node. GMF and
the Papyrus controllers are most certainly not designed to handle such edges correctly,
and changing the meta model of the notation model during runtime is also not possible.
There have been only two options to address this problem: The first is to create a unified
notation meta model based on the notation meta model, where each mono-reference is
replaced by a multi-reference. As a consequence, also each controller of papyrus has to
be adapted to handle these changes to the meta model. The other option is to copy an
element if such a constraint violation is found. Mervin introduces therefore so called
pseudo copies for simplicity reasons. It also creates such pseudo copies only for references
of a deleted element that is copied into the unified diagram. This was done as this
problem was a only a corner case and this approach was sufficient to create a unified
Papyrus model. A holistic approach would be to create these copies for all reference
constraint violations and handle the case of circular references. As a result, each element
in the unified model map may have one or more copies assigned, where only one of the
copies for an element is not a pseudo copy.

Doing so raises the question how to display such pseudo copies. In the case of views
which are placed using the common XYLayout, no problem exists. They would be drawn
exactly the same way above or below the other copies. Therefore, users are not aware
that a second copy is drawn, as Papyrus uses no semitransparent view components to
draw elements. It has to be noticed that these pseudo copies also occur when an edge is
rerouted from a deleted node to a new or existing node. Other layouts require additional

80

4.7. Unified View Implementation

work: The corresponding view components have to be moved to an additional layer
which places them at the same position as the non-pseudo copy. Again, this would have
required to replace all controllers provided by Papyrus. As mentioned before, this would
have required huge additional work that would be out of the scope of this thesis. So
Mervin takes a different approach: It creates a deletion overlay for pseudo copies as they
represent the old reference. This introduces ambiguous display of pseudo copies for view
components with layouts that result in exact overlaps, but users are able to use deletion
overlay filters to identify these pseudo copies. Another feasible solution would be to
create a new overlay type for these elements, but this has been discarded for simplicity
reasons.

Algorithm 4.7: Unified model creation for a specific Papyrus diagram
Data: mervinDiagram (unified notation model), diagram (original notation

model), modelReview (root semantic model element)
Result: unified notation model for the given diagram

1 root elements = collect all edges and visible children of diagram;
2 root elements copies = copy root elements and update references between copies;
3 update unified model map based on the copies, including child copies;
// merge deleted elements

4 diagramMatch = get match for diagram in current modelReview comparison scope;
5 view copy map = create new map;
6 foreach difference in all differences (including child matches) in diagramMatch do
7 if not already copied then
8 copy and add deleted view in view copy map;
9 end

10 end
11 update references in copied views;

// apply unified model
12 add copies to mervinDiagram;
13 add overlays to mervinDiagram;
14 return rootDiagramView;

With the unified model map, two additional steps have to be done to create the unified
model: First, the deleted old notation model elements must be copied, as well as all
pseudo copies. Second, these copies must be incorporated in the copied notation model
of the new version which includes updating references of the old element copies to the
new element copies where applicable. In GMF, every diagram has root views and the
root views of both diagram versions can be easily combined into a single set of unified
root views. Mervin assumes that the order of the elements is not relevant, which is
true for Papyrus diagrams. If this is not true, additional information is needed for this
merging process. This merging can be done right after the view has been copied, as
the container of the copies is always known before copying the view. Conversely, other
references cannot be updated during the copying process, as the corresponding copies do

81

4. Implementation

not necessarily exist at this time. They are updated in a second step, after all copies for
the unified models have been created. These copies are stored in the unified model map,
as well as in a copy map that is maintained by a copier , an utility provided by EMF to
copy model elements while maintaining the references among the copies in the map.

Mervin iterates over all entries in the copy map of the deletions and pseudo copies to
update all remaining references of the old element copies to the new element copies.
This is described in more detail in algorithms 4.8, 4.9, 4.10. First the non-containment
references are replaced by the new element copies in the unified model. The unified
model map is used to find the correct copies in this step. As mentioned before, multiple
copies may exist for a single original element. In a multi-valued ordered reference all
copies of a value replace that original value and all subsequent values are moved back
in the list of referenced values. If the value is not a known original value in the unified
model map the matched value in the current comparison scope is used, as new elements
might be part of the unified model. Otherwise, no replacement is done to keep references
between copied elements, which also includes pseudo copies. Afterwards, the containment
reference of each element is updated. Unifying means that the old element copies must be
inserted into the corresponding containers in the unified model, instead of just replacing
values in references. Mervin does that by placing them right after the first unchanged
previous sibling, but does not maintain the order of deleted elements. This is a bug of the
prototype, and a corrected algorithm that uses the merged structure of EMF Compare is
shown in algorithm 4.10.

Algorithm 4.8: Update references of copies created while merging deleted views
Data: copy map
Result: updated references of merged deleted views

1 foreach entry in copy map do
2 foreach non containment reference of copy class do
3 update reference;
4 end
5 update containment reference;
6 end

As mentioned before, only the deleted view elements of the old model are copied and
merged into the unified model. However, this copying process is more complex as it
seems at first glance. One problem is for example that differences depend on each other
and must be applied before applying the difference during merging. The container is an
example for such a dependency. A child element cannot be merged without also merging
its container if it is not part of the model. Although the container is guaranteed to be
copied when using the presented algorithms and the implemented comparison scope, it
has been decided to design this method also for the case a single view element must
be copied without using the other algorithms. Therefore, all required view differences
reported by EMF Compare will be copied using the same technique before copying the

82

4.7. Unified View Implementation

Algorithm 4.9: Update reference of a copy created while merging deleted views
Data: reference, original, copy, unified model map, diagram comparison
Result: updated references of merged deleted views

1 if is multi-value reference then
2 foreach original value in reference of original do
3 if unified model map contains original value then
4 replace original value with copies of original value in copy reference;
5 else

// fallback: use copies of matched value, otherwise
keep value as is

6 if copies for matched new original value exist then
7 replace original value with copies of matched new original value in

copy reference;
8 end
9 end

10 end
11 else
12 value = value of reference in copy;
13 if copy value is not a copy then
14 if value has copies then
15 if value has multiple copies then

// should never happen due to pseudo copies
16 return ILLEGAL STATE ERROR;
17 end
18 replace value with value copy;
19 else

// fallback: use copies of matched value
20 if matched new value has copies then
21 if matched new value has multiple copies then

// should never happen due to pseudo copies
22 return ILLEGAL STATE ERROR;
23 end
24 replace value with value copy;
25 end
26 end
27 end
28 end

83

4. Implementation

Algorithm 4.10: Update container of a copy created while merging deleted views
Data: original element, copy element, unified model map
Result: updated container reference of copy element

1 if container of copy already set then
2 return;
3 end
4 new container = matched new container of original element;
5 if matched new container has multiple copies then

// should never happen due to pseudo copies
6 return ILLEGAL STATE ERROR;
7 end
8 if containment reference is mono-valued then
9 apply copy element to new container copy;

10 else
11 get child matches of original container match;
12 find previous match whose element copy is present in new container copy;
13 if such a match exists then
14 add copy element after the element copy in the new container copy;
15 else
16 add copy element at the beginning in the new container copy;
17 end
18 end

element, if this has not been done before. It also allows to check if the container is present
in the resulting copied model, and skip copying a view element that cannot be assigned
to a container in the unified model. Once the copy has been made, the unified model
map is updated with the copy.

Pseudo copies are created before the view copy is made. Each reference in the element
is checked whether its opposite reference is mono-valued to check if a pseudo copy is
necessary. If that is true, and the container of the element that holds the opposite
reference exists, then a pseudo copy is created and the unified model map is updated
accordingly.

The resulting unified model is then applied to the corresponding Mervin diagram view,
as well as the overlays for this diagram are created and applied. Mervin iterates through
the whole unified view tree and adds overlays if necessary. An overlay is added in various
cases: if a state difference or layout difference is found as described in Section 4.5, if a
comment is assigned to that view, or if it is a pseudo copy. This operation is done using
the original views which are retrieved using the unified model map.

Comments may be assigned to elements of the new or old models that are shown in
the diagram, whether it be an element from the notation model or an element from
the semantic model. Therefore, comment references are checked in both versions for

84

4.7. Unified View Implementation

Algorithm 4.11: Copying deleted views
Data: view element difference, copy map, root elements copies
Result: updated copy map

1 foreach required difference in view element difference do
2 if not already copied then
3 copy and add deleted view in copied map;
4 end
5 end
6 if container copy of view element to copy exists then
7 copy view and add to copy map;
8 copy non-unifiable references;
9 if container is a diagram then

10 add copy to root element copies;
11 end
12 end
13 update unified model map;
14 return copy map;

Algorithm 4.12: Copy non-unifiable references (pseudo copies) of copies created
while merging deleted views
Data: element, root elements copies

1 foreach reference in element do
2 if referenced element references this element and containing reference is

mono-valued then
3 if container copy of referenced element to copy exists then
4 copy referenced element and add to copy map;
5 mark as pseudo copy in unified model map;
6 if container is a diagram then
7 add copy to root element copies;
8 end
9 end

10 end
11 end

85

4. Implementation

that particular view and its referenced semantic model element. Both view versions are
obtained from the corresponding match from the comparison. As multiple views may
reference the same semantic element, only the topmost view in the parent hierarchy that
references that element is considered in this check. The same logic is also applied to the
state differences to avoid visual clutter as described in Section 3.2. As mentioned before,
a deletion overlay is also created for pseudo copies. The overlay that has been created
for the closest view in the parent hierarchy is assigned as a dependency for each overlay
that is created. Hence, an overlay is independent if no overlay exists for a view in the
parent hierarchy.

An index of views to overlays is also maintained during creation of the overlays as it is
needed to increase the performance lookup in the final step: Mervin updates the overlay
dependencies between edge overlays and their views connected node’s overlays, if they
exist, by iterating over the created node overlays. The index is used to collect the overlays
of the connected edges and set the node overlay as dependency of the edge overlays. This
dependency relation is used when determining the visibility of overlays and their linked
views when filtering a certain difference type. For example when hiding a deleted node
with a deleted edge or when hiding a moved child view inside a deleted node. The first
case can also be implemented using the node and edge relations, but it has been decided
to incorporate this into the overlay model as other models may require other dependency
relations that are more complex to detect.

Some additional view components have been developed in Mervin that allow the vi-
sualization on top of the Papyrus models and were not supported by GMF, GEF or
Papyrus. The most obvious one is the workbench component which is the component
used by the controller assigned to the model review instance. It contains one or more
diagram containers which can be shown in tabs or in resizable windows. The workbench
manages the switching between those two different view modes as well as the window
functions. Each diagram container mimics the root component used by Papyrus with
several additions. Two layers are put above all other layers, one for the overlays and
one for the off-screen indicators. Every overlay is placed using a layout algorithm that
is defined by the controller of the overlays, as node and edge overlays must be handled
differently, although they share the same parent component.

Another adaption implemented in Mervin was a more sophisticated handling of edge
containment references. GMF places all edges within the same global layer, which also
implies that they are drawn above all other elements. This causes problems with scrolled
view components as edges are not correctly clipped. GMF and GEF handle these issues
by hiding edges if one of its endpoints are not visible. But this also causes hiding of
edges although they are partially visible. The problem often occurred in window mode
and for long edges, so the decision was made to improve this issue. Mervin does that by
assigning the edges to the first edge layer in the parent view component hierarchy that is
also in the parent hierarchy of the attached view nodes. Some scrolled view components,
like the diagram views in Mervin, already provide such a layer, and the normal clipping
behavior of these view components can be used to draw edges correctly. However, this

86

4.8. Difference History

only works for edges that are not assigned to view components within different scrolled
view components, as they are drawn within the clipping region of another parent scrolled
view component. On the other side, such cases did not occur with Papyrus models in the
evaluation and during development.

Off-screen indicators use a radial projection algorithm to place the indicators at the
borders of the diagram container. An indicator merger is notified permanently of layout
changes and manages the display of the indicators. It creates a single merged indicator
and hides the merged indicator if indicators overlap. But it is also responsible for
disassembling merged indicators and make single indicators visible again if they do not
overlap any more.

The workbench is also contained in a focus viewport which is used by the root controller of
the unified difference view. This viewport provides the support for highlighting arbitrary
components which are linked to views via controllers. It does that by drawing the diagram
multiple times. First, it draws the whole diagram and adds a semitransparent viewport
filling gray rectangle in the unified difference view. Afterwards, the diagram is drawn
again for each focused component, but rendering is restricted to the a slightly larger
area than the bounds of the focused figure. This way all other parts than the focused
components appear grayed out, whereas the focused figures are rendered like before. Note
that the diagram must be drawn with an opaque background in each draw call so that
this approach works correctly. Which component is highlighted is the decision of the
highlight listener of the unified difference view, which is further explained in Section 4.9.

Filtering overlays is implemented with respect to the visibility of overlays which the
overlay depends on and which also affect the visibility of the component. If an overlay is
not visible, also the dependent overlay is filtered from the view, regardless of the visibility
state of the dependent overlay defined by the filters. Also overlays are only filtered from
the view if all represented overlay information types are filtered, with the exception of
deletion overlays with comments as described in Section 3.2.1.

4.8 Difference History
The implementation of the history of differences in the version history view was another
challenge when implementing Mervin. EMF Compare provides a way to compute
differences between two versions with or without a base version, but does not provide a
way to track differences across multiple versions, and how they evolve. Determining the
same difference or a similar difference in two comparisons is essential to visualize the
evolution of a difference. This is exactly what the proposed visualization in Section 3.5
visualizes. Differences between the base version and the other versions, that occur in one
or more versions should be shown in relation to similar differences when comparing the
base version with another version. In fact there is a set of differences for each version,
computed when comparing the base version and this version. Each of these differences in
one set is linked together with all differences in the other sets via a similarity relationship.
This relationship is expressed with a value between 0 and 1, where 0 means not similar,

87

4. Implementation

Base <> Version 3Base <> Version 1 Base <> Version 2

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Similarities

Diff1

Diff4

Diff5

Diff6

Diff7

Diff8

Diff9

Diff10

Diff2

Diff3

Figure 4.6: Example of similarity relations between differences. Similarity relationships
are shown with colored edges, where the color indicates the similarity between the two
differences.

and 1 means equal. As each difference in one set has a similarity relationship to every
other difference in the other sets, a high number of relationships exist.

Evolution of differences is interpreted as a one to one relationship in this view, as the
same difference cannot occur multiple times in the comparison of the base version with
another version. There might be similar differences or no similar difference, but there
is at most only one equal difference. So the most similar difference in the other set
is considered as the most likely evolution of a difference. If more than one difference
have the same similarity to another difference, one of them is chosen arbitrarily. As a
consequence, the number of relationships vastly decreases as only one relationship exists

88

4.8. Difference History

for each difference set and difference in a set. This is exactly what Mervin computes and
uses to display the differences in this view.

Another important step is to compute the similarity. The first idea that has been
implemented in Mervin was to re-use the EMF Compare matching mechanism and then
use the distance used by EMF Compare. This is possible as differences in EMF Compare
are elements of the comparison model which can be compared as every other model
with EMF Compare. However, this yielded false matches as the internal model element
ids used by the comparison framework where different between differences and EMF
Compare had to use the edition distance instead. Apart from the changed elements,
differences have only a few properties which might differ, which might be the reason for
this behavior. It also seemed that the changed element had less influence on the distance
as expected, although it is obviously very important when computing the similarity of
differences.

So a specialized similarity metric has been used for Mervin. All differences of interest for
Mervin store a value, the feature that has changed, as well as a difference type and the
difference kind. The value is the element or value that has been changed on a particular
feature of the changed element. Hence, the similarity metric is based on the weighted
sum of the similarity of the difference value sv, the similarity of the difference class type
st and the similarity of the difference kind sk. Equation 4.1 shows the metric as it is
used by Mervin.

s = st ∗ 0.25 + sk ∗ 0.25 + sv ∗ 0.5 (4.1)

The weights are chosen arbitrarily, with the assumption that if the values of the differences
differ a lot, the difference itself is also more likely to be not equal, and this should reflect
in a smaller similarity value. Each similarity is a value in the interval [0, 1] whereas the
type similarity and the kind similarity are either 1 or 0, depending if they are equal or
not. The value similarity is a little bit more complex and shown in equation 4.2.

sv = max(s′
v, s′′

v) ∗ 0.9 + sf ∗ 0.1 (4.2)

It is the weighted sum of the similarity of the maximum of two similarities s′
v and s′′

v of the
value, as well as the feature similarity sf . Again, the weights have been chosen arbitrarily,
with the assumption that the value similarity is more important. As mentioned before,
multiple similarity values are considered in this equation. Mervin uses the edition distance
provided by EMF Compare, which requires a comparison to look up other matches. In
this case, the value might be contained in at least three different versions, one or two
base versions, the version of the first difference and the version of the second difference.
As a result four comparisons are possible to be used by in that case, the versions with
their corresponding base versions, the base versions, or the versions itself. Mervin uses
the comparison of the base versions and the comparisons of the versions itself, as the
evolution between the two versions is of interest. Further research may check if the

89

4. Implementation

other comparisons improve the results in this case. The edition distance is mapped
onto the interval [0, 1] before proceeding with the computation. The maximum has been
chosen as the value might be only contained in one of the base versions or in one of the
versions, for example if the value has been deleted or added. In the case of numeric
values, the absolute difference between the two values is mapped to the interval [1, 0].
Other non-model values are simply checked for equality and 1 or 0 is used whether this
check succeeded or not. The containing match has been explicitly excluded from the
similarity, as differences that have been moved to other elements should be detectable as
well.

Feature similarity is computed for mono-valued features simply by checking if the features
are equal or not, which results in the similarity of 1 or 0. Multi-valued features are
handled differently. Not only the feature itself can be different, also the position in
the feature may be different. So the similarity is the absolute difference between the
two positions, mapped from the interval [0, MAXINTEGER] to [1, 0]. So the lower
the difference between those indices, the higher the feature similarity for multi-valued
features.

Now the question arises which differences to list in this view. Obviously, only the
differences of one set can be listed, or all differences in all sets can be listed. However,
this might result in a huge set of differences and some of the differences might be shown
multiple times, as mentioned in Section 3.5. For example, a difference that occurs in n
sets with a similarity of 1 is shown n times in this list. Moreover, these duplicates do not
show up differently in the visualization, so it makes no sense to present them more than
once to the user. So Mervin hides the duplicates by default, but provides a way to show
them on demand. It should be noticed that this optimization might interfere with the
grouping mechanism if at least one of the difference are assigned to a different group.
Mervin provides currently no detection for that case.

Mervin groups differences by three different aspects. First they are diverted in differences
detected in semantic models and in differences detected in notation models. EMF assigns
model elements to packages and these packages are the next grouping criteria. The last
criteria is the match that contains the difference. Therefore, equal differences might
be contained in different groups, if the difference has been moved from one element to
another between sets.

4.9 Highlight Contexts

Highlighting is another important aspect of the presented solution and the user interaction
is described in Section 3.7. It was also mentioned that there are model specific options
which elements are highlighted. But the process of highlighting in Mervin must be
discussed before these options can be discussed for Papyrus models.

The process of highlighting is initiated by the user by specifying a set of elements to
highlight, which are based on a selection in a view. These elements are passed to the

90

4.9. Highlight Contexts

Type Unified Differences Review Explorer Version History
Notation
Element

Graphical Element Parent Entries Parent Entries
Tab/Window/Tray Title Match Entry Match Entry

Semantic
Element

Graphical Elements Parent Entries Parent Entries
Tab/Window/Tray Title Match Entry Match Entry

Diff Diff Value (recursive) Parent Entries Parent Entries
Diff Entry Diff Entry

Table 4.1: Element types highlighted in each view based on the selected set of highlighted
elements. Recursive means that the stated elements are evaluated for highlighting.
Objects of types that are not mentioned are ignored.

highlight service which notifies any subscribers that listens for changes to the highlighted
elements. It also stores the currently highlighted elements for any new subscribers. Each
subscriber may react to the new set of highlighted elements and highlight parts that are
associated with the highlighted element. A subscriber is a view in Mervin, but other
elements may also subscribe to the highlight service.

It is important to note that the selection of the elements is done in a different context
as the actual highlight. So, an element type might be selected for highlighting that is
never displayed in the highlighting view. For example, a semantic model element is per
definition not present in the version history view or in the unified difference view. But
their linked differences or notation model element are present in the view. On the other
side, the user might want to explicitly highlight only the corresponding notation model
element for a selected semantic model element. The latter must be done in the context of
the view that triggers the highlight, the former is the decision of the view that highlights
the element.

Initial testing during development showed that being more restrictive while highlighting
associated elements in a view is a better strategy than highlighting all associated elements.
It enables fine grained highlights, while the user may trigger highlights for the associated
elements from other views. While this is the case, highlighting no associated elements
might result in no highlights at all, which should be avoided. Additionally, some elements
cannot be selected in other views or are special elements only known to the view, which
should be highlighted. A tab that contains an highlighted element in the unified difference
view is an example for that case. An overview of which types of selected highlighted
elements trigger which highlights in which view are shown in table 4.1. It has to be noted
that notation model elements are always resolved with consideration of the unified model
map in the unified difference view, as copied notation model elements might be selected
for highlighting.

Selecting elements to highlight in Mervin views is done either by selecting a single element
in the view, or by triggering a set of derived elements from the current selection. The
former might include the reduction of the selected element to a set of commonly known
types across the views. Table 4.2 shows an overview of the reduced types. Context menus

91

4. Implementation

View Selected Type Passed Element

Unified Difference View Graphical Element
Notation Element (copy)
Notation Element
Semantic Element

Version History View

Match New Element
Old Element

Diff With Similarity Diff
Entry Version Values
Named Entry All Subentry Selections (recursive)
Object Entry All Matches Selections (recursive)
Other Element Same Element

Review Explorer View Match New Element
New Element

Other Element Same Element

Table 4.2: Elements passed to the highlight service from each view. Recursive means
that the stated elements are reduced for selection.

trigger the other case, which are not shown if they cannot be done for the currently
selected element. Mervin supports the following selection actions: Selecting the values
of differences, the notation model views that reference a semantic model element, the
semantic model element referenced by a notation model view and the differences that
reference a model element. Again, copied notation model elements need to be considered
in the unified difference view. The original elements as well as the copied notation model
elements are passed to the selection service. Selections from the comment view are
straightforward, as comments can only be linked to notation model or semantic model
elements.

92

CHAPTER 5
Evaluation

Visualization of graphical models and diagrams in the context of model review is a
complex topic and the preceding chapters described the main problems in detail. The
previously presented prototype implemented the proposed solution and a case study
been made to evaluate the proposed solution. The case study has been created based on
the methodology presented by Lee [Lee89]. To the best of our knowing, no specific tool
exists that supports a similar review process for diagrams and graphical models as the
code review tools presented in Section 2.1. However, it is possible to use a combination
of tools, a tool set, to do a similar review with the same models and review data that
the prototype supports. Such a tool set is currently also the only option to do a review
with diagrams and graphical models. The tool set contains of components that interact
with the review data, view the diagrams and graphical models, and compare them. The
prototype Mervin is based on Gerrit for the review data, so Gerrit, EGit and Mylyn
have been used extract the code review data from the review repository in the tool set.
Mervin supports Papyrus UML models which can be shown by the Papyrus editor and
compared using EMF Compare. Therefore Papyrus and EMF Compare is used in the
other tool set. Most of these tools are integrated within an application based on the
Eclipse Platform, such that the participants of the case study did not have to switch
between multiple applications. As a result, two rivaling theories have been defined:

Theory 1: The combination of EMF Compare, Papyrus, Mylyn and Gerrit support
users better in the review process than Mervin.

Theory 2: Mervin supports users better in the review process than the combination of
EMF Compare, Papyrus, Mylyn and Gerrit.

Of course, both theories can only be evaluated for a given audience in a case study, which
is described in Section 5.2. Tool support is defined in this evaluation by the following
factors, all in the context of graphical model review: Identification of issues, verification

93

5. Evaluation

of reported issues, identification of differences, tracking of differences across multiple
versions, identification of linked elements within a change, navigation through linked
elements within a change, and tracking of issue discussions across multiple versions.

Identification of issues in a particular version is obviously a key part of the reviewing
process and is dependent on the experience of the reviewer. The verification of reported
issues is related to the identification of issues, but more complex. In this case reviewers
need to understand the reported issue and validate it. If the issue is justified in the
opinion of the reviewer, it can be validated in the context of the another version to check
if it also occurs in that version.

In order to do that, reviewers have to be able to identify differences between versions as
issues obviously arise only if elements are changed. Some sort of tracking of the differences
is also needed as issues might get resolved by adding or eliminating differences. Issues and
elements are not necessarily part of every version in a change, so reviewers have to keep
in mind linked or related elements within a change. Supporting the navigation through
those elements might be of use while understanding the artifacts and the elements they
contain. Issues are not always justified and need to be discussed. Reviewer need to be
aware of these discussions even if the issues are resolved in other versions, at least to
verify that all valid aspects of the issues have been resolved.

A number of predictions have been defined for this evaluation based on the previously
defined factors. They are based on the assumption that one tool set outperforms the
other with respect to one of the factors. If the majority of these predictions is true for
a given tool set, the corresponding theory will be seen as confirmed for the evaluated
audience. Every prediction is evaluated with a prepared change and a typical review task
that the participant has to do during the case study. The completion time for subtasks is
not measured, as the participants should solve the tasks with the tool sets on their own,
without exact instructions on how to proceed and in their own pace. A feedback session
is also part of the setup and will be also considered when evaluating all predictions. A
detailed explanation of the evaluation setup is given in Section 5.1.

Prediction 1: If users miss less issues with one tool set, this tool set is considered as
supporting the user in finding issues better than the other. For a given change with issues,
the number of missed issues gives an measurable number which can be easily obtained.
Moreover, issues are categorized which may provide more detailed information which
types of issues have been found and which have not been found. Due to the fact that a
prepared change might contain issues that have not been foreseen, also unexpected issues
arise during the evaluation which might be justified or not. These issues are noted and
count to the total number of issues at the end of the case study. So the missed issues
contain of the number of missed expected issues and the number of missed unexpected
issues.

Prediction 2: If users are able to verify reported issues easier with one tool set than
the other, the former tool set is considered as supporting the verifiability of issues better

94

than the other tool set. This prediction is verified directly by preparing a change with
identified justified or unjustified issues in one version and the user acts as contributor.
Participants of the study have to interpret and evaluate the comments if the reported
issues are justified or not. The number of correct answers can be measured and compared.
However, the decision if an issue is justified is not always clear and participants might
understand the issue, regardless of the expected answer. So participants are also asked to
explain the issue and their decision to give further insight if the answer does not match
the expected answer. The issue is considered to be verifiable with the tool set if the
explanation shows that the participant did not misunderstood the issue. Another indirect
assessment of this prediction is observation. Either while participants evaluate whether
an issue is justified or not, or while participants review a prepared change with multiple
versions and reported issues. The missed issue count in the latter case also gives a hint
that issues could not be verified.

Prediction 3: If users are able to identify differences easier with one tool set than
the other the former tool set is considered as supporting the difference identification
better than the other tool set. Participants are observed during the review of a change to
verify this prediction, and by evaluation of the explanations of the participants on issue
detection and verification tasks.

Prediction 4: If users are able to track differences easier with one tool set than the
other, the former tool set is considered as supporting the tracking of differences across
all patch sets better than the other tool set. Again, the behavior of the participants
is observed during all tasks to verify this prediction. As mentioned earlier, issues are
categorized, and one issue category is the recurring issue. These are issues that have
been reported in one version, resolved in the subsequent version and recur with the same
differences in the version after. The number of missed recurring issues can be used to
measure and compare tool sets with respect to this prediction.

Prediction 5: If users are able to identify the linked elements of change elements
easier with one tool set than the other, the former tool set is considered as supporting
Identification of linked elements better than the other tool set. As most of the predictions,
observation of the participants is also needed here to validate this prediction. Additionally,
the answers and explanations of the participants are also used to evaluate and show
shortcomings in the tool set with respect to identify linked elements.

Prediction 6: If users are able to navigate through linked change elements easier with
one tool set than the other, the former tool set is considered as supporting navigation of
linked elements better than the other tool set. Navigation is a done by the participant
and can only be observed while the participant solves the given tasks. So observation
during the tasks is done to verify this prediction.

95

5. Evaluation

Prediction 7: If users are able to track discussions about issues across versions easier
with one tool set than the other, the former tool set is considered as supporting tracking of
discussions about issues better than the other tool set. Without restricting the participant
to a particular workflow, arguments abouts identified issues are evaluated and participants
are observed during the tasks to verify this prediction. Moreover, the number of missed
reported issues is also used to verify this prediction. Additionally, a single question about
a discussion detail is asked after the review task to verify if the participant was aware of
the discussion.

5.1 Evaluation Setup
As a result of the theories mentioned in the previous section, the case study was done
with two different tool sets: The developed prototype of the proposed solution called
Mervin and the combination of EMF Compare, Papyrus, Mylyn, Gerrit, and EGit, called
the old tool set. These tool sets were used by participants to solve a main task in typical
review scenarios. A scenario description with the requirements in written form was given
to the participants before each task. Each participant was given a short time before
the tool sets have been used to read and ask questions about the task. Participants are
also allowed to ask questions about the tools and UML notation during the task, but
questions regarding the semantics of elements of the change or about issues and comments
are not answered. Besides answering those questions, the interviewer also observes how
the participants interact with the tool set. The prepared changes are made out of a
single Papyrus UML model with four different diagrams. Which of these diagrams had
differences depends on the task, but always more than one diagram is affected by the
scenario description. So it is in the participants duty to decide which diagram needs to
be reviewed.

In the first scenario, the participants were asked to review the last, not reviewed version
of a change. They have to decide if they would accept the version, identify issues, and
argument why these issues are valid. A change in this scenario contains multiple versions
with prepared issues, that evolve across the versions. It contains four expected issues,
each in one of these issue categories: recurring issues, unreported missing requirements,
obvious unacceptable errors, and reported unresolved issues. Furthermore, a fifth category
contains all unexpected issues reported by all participants. Recurring issues are issues
that have been reported, resolved and recur in the version to review. Unreported missing
requirements are requirements that have been explicitly mentioned in the task description,
but have not been implemented in the model. Obvious unacceptable errors are issues
that are easy to spot when reading the model in its graphical form, like a missing control
flow between two actions in an activity diagram. Although this issue category can be
seen as a missing requirement issue, an own category has been created for these type of
errors as it is expected that such errors are harder to see in non-graphical representations
of graphical models. The last expected issue category contains issues that have been
reported in previous versions and have not been resolved in the version to review. After
the participant finished this scenario, a quick question about a comment to an issue in a

96

5.1. Evaluation Setup

previous version was made in order to take a spot example if they missed the comment
or not.

Afterwards, participants switched to the role of an contributor who has to interpret the
result of a reviewed version in a different change. Such a change contained only one
version with comments about two issues: One is expected to the justified, the other is
expected to be unjustified with a given reason. Participants also had to identify which
issues have been reported by the reviewer and had to decide which of them are justified or
not. More importantly, they also had to explain why they think that an issue is justified
or not.

These two scenarios have been evaluated two times for each participant, each time with
a different tool set and different prepared change. The prepared changes could be used
with each tool set and have been chosen in a way that each change was used the same
number of times with each tool set during the whole case study. However, no change
has been reused with the same participant for a given scenario, as they were already
aware of issues in these changes. Possible varying difficulty levels of prepared changes
cannot be ruled out due to the size of the models and the traceability of the scenario
description. So this switching of the input data was necessary to avoid side effects on
the results. During the review, two changes for each scenario have been prepared for
two case examples, and each change in the case example used the same base version:
Models used by a warehouse to describe their workflows, and models used by an event
management agency for managing their workflows in their software.

Switching tool sets and changes requires that the participants get some time to accom-
modate to the changed situation. Therefore, tool sets and case examples were only
switched once, and the users have been introduced to the tool sets right before starting
the scenarios. Moreover, they also got a couple of minutes to make themselves familiar
with the base model version of the case example. In order to verify that they were able
to use the tools and extract basic information about the change, participants have also
been asked some spot questions about some properties of the change before the scenarios
started.

Before the scenarios have been started, each participant was introduced to the review
process and the concepts of model review if necessary. Also some questions regarding the
background knowledge about code review and modeling tools were asked. A feedback
session was done after all scenarios have been completed. In this session subjective
impressions of the participants have been noted and they have been able to give their
own opinion about the tool sets and the features they liked or disliked.

The main audience of participants for this case study are persons who are familiar to
UML, are familiar to how code or model reviews work, and optionally are familiar to
Model-driven engineering. To avoid effects of prior knowledge, participants should have
not much experience with versioning of Papyrus models.

97

5. Evaluation

Bit
buc

ket

Cru
cib

le
Ge

rrit
Git

Hu
b
Git

lab

Diff
ere

ntia
l

Pat
chw

ork

Rev
iew

Bo
ard

Rh
ode

Co
de

Rie
tve

ld

Un
der

sta
nd

Up
sou

rce
0

2

4

1 1 1

4

2

0 0 0 0 0 0 0

#
pa

rt
ic
ip
an

ts

Figure 5.1: Histogram of code review tool used by the participants prior to this evaluation.

5.2 Evaluation Results

Eight participants took part of the case study and therefore the scenarios in the two case
examples have been executed four times with each tool set. Most of the participants
already used a code review tool, whereas two participants never used a code review tool
before. The code review component of GitHub has been used by half of all participants
and was therefore the mostly used code review tool among the them. Prior knowledge
was evaluated on a self-assessment scale from one to ten, where one means no experience
and ten means a lot of experience in the given field. All participants had at least some
knowledge Model-driven engineering, in contrast to experience with Papyrus, where just
one user had some experience. An additional question revealed that this participant had
no knowledge about the internal structure and versioning of Papyrus models, so it is not
expected that this will interfere with the precondition defined in Section 5.1. However, all
participants reported enough experience with UML such that they were able to interpret
the prepared models without additional instructions.

In the first scenario, participants had to review a version of a prepared change, and the
most obvious metric is the missed issue error rate. These are compared between the
results of the two case examples to rule out side effects due to varying difficulty levels.
As a result, it can be observed that the error rate of missed issues decreased by 11, 11%
in the event management example, whereas it decreased by 25, 0% in the warehouse case
example. It has to be noted that more than the half of the existing issues have been
missed in the event management case example regardless of the tool set. In the case of
the warehouse example, also more than the half of the existing issues have not been found
with the old tool set. In contrast, the proposed solution was able to reduce this error for
the warehouse example. So in general it can be said that the error rate of missed issues is
reduced when participants used Mervin, although the improvement keeps within limits.

98

5.2. Evaluation Results

1 2 3 4 5 6 7 8 9 10
0

1

2

3

0

2

1

0

1

3

1

0 0 0

experience level, 1 = not familiar, 10 = professional

#
pa

rt
ic
ip
an

ts

MDE Self-assessment Histogram

1 2 3 4 5 6 7 8 9 10
0

1

2

3

0 0 0

1 1

3

2

1

0 0

experience level, 1 = not familiar, 10 = professional

#
pa

rt
ic
ip
an

ts

UML Self-assessment Histogram

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8 7

0 0
1

0 0 0 0 0 0

experience level, 1 = not familiar, 10 = professional

#
pa

rt
ic
ip
an

ts

Papyrus Self-assessment Histogram

Figure 5.2: Histogram of the self-assessment of the participants prior knowledge with
Model-driven engineering, UML and Papyrus, where one stand for not familiar and ten
stands for professional.

99

5. Evaluation

A closer look at the error rate by issue category reveals that the missed issue error
rates decrease in the recurring issue category in both case examples when using Mervin.
Again, also in this case the error rate is far less in the warehouse case example than
in the other case example: No recurring issue has been missed by participants in the
warehouse case example using Mervin, while half the participants using Mervin with the
event management example missed the recurring issues. No difference can be seen in the
error rates for the unreported missing requirement and the obvious unacceptable issue
categories. The last expected issue category yields contradictory results when comparing
the two case examples. While it increased by 50% when using Mervin in the event
management example, it decreased when using Mervin in the warehouse example.

Another interesting point is that the participants reported five unexpected issues for the
first case example and only one for the warehouse case example. Although this was the
case, participants where not able to find those unexpected issues with the old tool set in
the event management case example. On the other hand, no difference could observed in
the error rate for the unexpected issues in the warehouse example. But this might be
due to the low number of unexpected issues and might be of interest for further research.

No difference can be reported in the number of incorrectly reported issues: Two partici-
pants reported incorrect issues in the event management case example, but both used
different tool sets. In the warehouse example, no such issues have been found with both
tools. The spot example on the issue comment revealed that two participants missed
the comment in the warehouse case with the old tool set, whereas this was not observed
in the other case example. Although this is only observed in one example, it should be
noted that Mervin had a positive impact in this case.

The measurable results from the second scenario show no impacts of the used tool set on
the contributor tasks. All issues have been correctly identified and understood, regardless
of the tool set. The only difference were that the participants gave different reasons why
the issues are justified or not. Nonetheless, all given reasons were valid.

More differences between both tool sets have been observed on the user behavior. Three
participants had problems reading the differences from the comparison view of the old
tool set in certain cases. Two reported them directly to the interviewer during the both
scenarios. Another one searched for an reported issue in the differences of a completely
different and unrelated diagram in the contributor scenario. However, this participant
noticed his mistake after some time searching for the issue, and was able to give the
correct answer after some time. Only one participant used only the comparison view
of EMF Compare to view the differences. All other participants also used the Papyrus
editor to view a particular version of the UML diagrams, often in combination with the
Mylyn view that showed the comments. But sometimes the Papyrus editor was also used
in combination with the comparison view, although it supported the display of graphical
elements of the diagrams, when selecting the proper elements in the notation model.
This might also be impacted by the fact that the graphical display of the compare view
did not render the diagrams properly in some cases. Most of these display bugs could
be solved with the two clicks or reloading the compare view, and the interviewers made

100

5.2. Evaluation Results

Overall Recurring
Issue

Unreported
Missing Re-
quirement

Obviously
Unac-

ceptable

Reported
Issue

Other
0%

50%

100%

72.22% 75%

50%

0%

25%

100%

61.11%
50% 50%

0%

75% 75%

%
Er

ro
r

Event Management
Missed Issue Error Rates

Old Tool Set Mervin

Overall Recurring
Issue

Unreported
Missing Re-
quirement

Obviously
Unac-

ceptable

Reported
Issue

Other
0%

50%

100%

60%

75%

25%

50%

75% 75%

35%

0%

25%

50%

25%

75%

%
Er

ro
r

Warehouse
Missed Issue Error Rates

Old Tool Set Mervin

Figure 5.3: Missed issue error rates.

101

5. Evaluation

the participants aware of the workaround if a display bug occurred. One participant
also ignored the comparison view completely and used only the Papyrus editor for the
scenarios. The Papyrus editor does not display differences, and so this participant also
explained to the interviewer that one diagram has not been changed although it has been
changed.

The general workflow during the review scenario with the old tool set was mostly
similar across all participants, except for the one participant who used only the Papyrus
editor: First the task description has been read, then the comparisons are read for some
versions with their comments. The Papyrus editor has been used sometimes between the
comparisons, as well as the task description to check the requirements. Not all versions
have been viewed by all participants, one skipped one version, two participants ignored
all versions except the version to to review and the base version. It should be noted
that the comments to all versions have been read at once by all participants. Another
interesting note is that no participant switched back to a comparison that has been
viewed before. Instead, a comparison has been often read completely by stepping through
each difference before switching to the next. A few of the participants only stepped
through the differences of the notation model. Layout differences have been quickly
identified and stepped over by two participants.

In contrast, participants switched more often between various comparisons of versions
while they used Mervin. They mostly did not step through the differences, but switched
between the diagrams to read the differences of particular versions. No participant
reported confusion, although they used and switched between multiple views while
reading the differences between versions. As expected, the most used views were the
unified difference view and the comment view. Participants usually read the differences
of a version before they read the comments in the comment view. The temporary and
permanent highlight-feature of the comment links have been used by all participants and
they sometimes also switched back to the unified view and read the related elements.
Layout difference overlays have been hidden by half of the participants and the option to
display the deleted elements has not been used very frequently. The window mode switch
has not been used by any participant. Another view that has been used frequently was
the review explorer, although it was remarkable less frequently used than the unified
view and comment view. It has been mainly used by the participants to identify changed
diagrams. Those participants who wanted to step through the differences like they did
in the old tool set, used the review explorer instead. Although Mervin provided also a
list of all differences in the version history view, this view was not used for this purpose.
Additionally, the version history view was only rarely used, and most participants were
not able to make use of it for both scenarios. Similarly, the property difference view
was also barely used. This might be due to the fact that it contained very fine grained
details of the models that are not of use for users without expert experience with Papyrus
models. In fact, some participants even minimized those two views to get more screen
space for the other views.

The second scenario contained only the base version and the changed version with a

102

5.2. Evaluation Results

Preferred
Tool

Clarity of
Differences

Comprehen-
sibility of
Differences

Clarity
of Issues

Comprehen-
sibility
of Issues

0%

50%

100% 12.5%

87.5% 87.5%
100% 100% 75%

12.5% 12.5% 12.5%

%
A
ns
w
er
s

Subjective Impressions of the Participants

Old Tool Set Mervin Both

Figure 5.4: Subjective impressions of the participants regarding which tool set provides
better support with respect to a particular subject.

different task, and the participants also used both tool sets slightly differently to solve it.
Five users relied only on the Papyrus editor in combination with the Mylyn editor for
the second scenario and the old tool set, ignoring the actual differences between the base
version and the other version. One user also used the Mylyn view with the comments
on a second screen, to avoid switching between views. The interviewer also had the
subjective impression that it always took some time before the participants identified the
elements in the diagrams that have been mentioned in the reported issues.

In contrast, the participants always used the comparison of the base and the first version
while using Mervin in this scenario. All participants also used the highlight-feature of
comment links and were able to quickly navigate to the linked elements. More than the
half of the participants used this feature on all links in the comments.

The subjective impressions by the users give a clear indication that most of the participants
preferred Mervin over the old tool set. Each participant has been asked which tool set
provides better support with respect to a particular subject, and the exact results are
shown in figure 5.4. The subjects have been the clarity and the comprehensibility of
issues and changes between versions. Clarity describes how easy it was for the participant
to find and identify issues and differences. Whereas comprehensibility describes which
tool set provides the better support to identify why differences and issues exist and how
they are related to other elements.

Besides that, the participants also gave feedback about Mervin with respect to the old
tool set. With the exception of one participant, all participants reported that the linking
feature of comments to elements in combination with the highlight-feature was the most
liked feature. Also six participants reported that the unified difference view was much

103

5. Evaluation

more intuitive and easier to read compared to the comparison view of the old tool set.
Half of the participants noted that the presentation of the differences was clearer than in
the old tool set. Two participants said that Mervin provided less information overload and
therefore easier identification of differences. Moreover, two of them liked the difference
overview of the model provided by the review explorer, which is not present in the old
tool set. A few also mentioned the always present presentation of comments in the side
by side arrangement and the different alignment of comments based on the author. The
difference overlays, overlay filtering, off-screen indicators and the predefined comparisons
in the review explorer have also been mentioned.

Some features have not been used and this also reflects in the feedback of the disliked
features of Mervin: The version history view and the property difference view have been
reported as unnecessary by two participants. Moreover, one participant noted that the
version history was too complicated and hard to understand. Also the interaction of the
version selection was not optimal according to two participants: The new and old version
where two separate input fields, and changing one of them caused a recalculation of the
unified difference view. So switching both sides to completely different version causes two
total recalculations of the unified difference views which disturbed the workflow. Two
user interface bugs have also been reported by one person: Every recalculation caused a
different order of the diagram tabs in the unified difference view, and empty comment
groups have not been removed from the comment view when switching versions. Another
one noted that is was not clear that the comment column order reflect the selected
comparison scope and that the highlight of tabs was hard to see. One also disliked the
overlays and suggested to color the elements instead.

More than the half of the participants, five in fact, requested that also comments out
of the comparison scope should be shown in the comment view. Three of them also
requested that a chronological view of the comments would also improve the comment
view. Comments are currently only sorted by their creation time within a group. Another
requested feature was to quickly navigate from a selected element to a linked comment,
which was not supported in the prototype, but can be implemented with the highlight-
feature. Stepping through comments has also been requested by two persons. Another
one suggested to support marking of comments as resolved as well as collapsing comment
replies or comment groups to save space. Also more user interaction suggestions have
been reported by various participants: For example, the review explorer should also be
able to open a diagram in the unified difference view with a double click. Moreover, the
highlight-feature should be adapted to quickly focus the corresponding element in another
view, especially in the unified difference view. The possibility to zoom the diagram was
also requested, as well as the support to quickly shift the comparison scope back or forth.
This shift was proposed only for comparison scopes were each version is the predecessor
or successor of the other, as this operation must be defined for other configurations. It
should also be noted that some participants said that, according to their opinion, versions
within a change are understood as iterative improvement, instead of different versions
based on one base version. This coincides with the request to shift the comparison scope,

104

5.2. Evaluation Results

so it might be of interest for further research to provide a different comparison scope
selection method which combines both operations.

Based on the previously presented results and observations, the predictions and the
theories defined at the beginning of this chapter can be evaluated. Prediction one is
evaluated using the missed issue count and is therefore true for Mervin, but not for the
old tool set. The second scenario showed no measurable difference between both tool
sets. But observations showed that a few of the participants had initial problems to
relate elements, comments and issues. That also reflects in the subjective impressions,
where almost all participants preferred the presentation of Mervin with respect to the
comprehensibility of differences and issues. As a result, the second prediction is also true
for Mervin and false for the old tool set.

The subjective impressions of the participants on the clarity of differences also gives a
strong argument for Mervin for prediction three. Also observations showed that three
participants had problems while reading the differences. Moreover, the frequent use of
the Papyrus editor also gives a hint that the comparison view of the old tool set does not
provide all information for the participants to understand the context of the difference.
Prediction three is therefore true for Mervin and not for the old tool set.

Participants missed less recurring issues with Mervin than with the old tool set. As a
result, prediction four is clearly true for Mervin, but not for the old tool set. Prediction
five is true for Mervin based on the subjective impressions reported by the users and
on the observations made by the interviewer. Linked elements are usually part of the
description of issues and the participants provided a clear feedback on this aspect: Mervin
provides a better clarity of issues and a better comprehensibility of issues compared
to the old tool set. Also, the interviewer observed that participants took some time
when searching for elements mentioned in a comment when using the old tool set. This
may be due to the fact that the participants had no explicit list of linked elements and
had to decide on their own if an element is mentioned in the comment. On the other
side, Mervin’s comment links, the comment overlay and the temporary highlight-feature
was extensively used by the participants to quickly identify if an element is linked to a
comment and which are the linked elements of an comment. This also coincides with the
fact that this feature was the most liked feature of Mervin. Prediction six is also true
based on these observations and for similar reasons. Again, Mervin’s comment links in
combination with the highlight-feature was used by all participants to quickly navigate
between the views. On the other hand, the old tool set did not provide an explicit way to
quickly navigate to linked elements in the other views. So participants switched between
different views, and tried to find the corresponding elements on their own.

No particular behavior of the participants could be observed for one of the tool sets
that allows to verify prediction seven. The only observation was that two participants
missed comments about issues with the old tool set in one case example. Apart from
that, the number of missed reported issues are contradictory across both case examples.
Therefore this prediction cannot be clearly evaluated to be true of one of the two tool
sets. However, all other predictions are true for Mervin, so theory two has been verified

105

5. Evaluation

for the evaluated audience. As a result, a strong indication is given that the proposed
visualization solution improves the visualization of graphical models and diagrams in
model reviews.

5.3 Summary
In summary, a positive impact of the proposed visualizations has been observed in the
presented evaluation. The theory that Mervin supports the review process better than
the other tool set has been verified by seven predictions where the majority was true for
Mervin, but not for the other tool set. So most of the proposed visualization techniques
can be considered as an improvement to the current state of the art.

However, it also shows that there is room for improvement, and some parts need to
reworked. Especially the high error rates found in the evaluation results give a strong
indication that the current support for graphical model review in Mervin and the other
tool set requires more improvement. Two of the views of the proposed solution where not
frequently used, so they might need to be reworked. Especially the version history view
needs to be improved or be replaced with a more intuitive visualization, as it requires the
most complex data set, the difference matching information across all versions. The view
coordination using highlights can be clearly seen as a success, as it was the feature with
the most positive feedback from the case study participants. It was mostly used for linked
elements in comments and for navigation between views. Participants also proposed
some improvements on some of the views. One of the most requested improvements
regarded the comment view, which should show all comments, rather than showing only
the comments that are part of the current comparison scope.

106

CHAPTER 6
Conclusion

As presented in this thesis, visualization of evolving graphical models and diagrams in
the context of model review is a complex and a non-trivial task. It has been shown
that typical code review visualizations exists but are not easily adaptable for graphical
model review. Moreover, existing model comparison tools exist, but lack of explicit
model review support. A set of various visualization techniques have been proposed and
combined to a single proposed solution that aims at improving the support for graphical
model review. This solution has been implemented in a prototype application which is
called Mervin, and is freely available under an open source license. It supports graphical
model review of Papyrus UML diagrams with Gerrit. Implementation details of the
prototype have been discussed to give an example on how to apply the proposed solution
on existing frameworks and graphical models. Also implementation problems have been
discussed, and in the case of GMF some problems could not be solved without additional
information or in-depth knowledge of the graphical model’s implementation. Afterwards,
this prototype has been evaluated with a case study of eight participants, where their
performance and subjective impressions have been used to confirm one of two rivaling
theories. The positive impact of the proposed visualizations has been confirmed in this
case study. In particular, the unified view and the view coordination with highlights
received the most positive feedback from the case study participants. The following
sections give prospects on future research and a summary of the findings.

6.1 Future Work

As mentioned in Section 3, understanding the reason of the change is a topic that is
neither addressed by the proposed solution nor by other code review tools. This might
be due to the fact that all tools store only the changes and only a textual description
can be given by the contributors. However, future research may suggest other forms of

107

6. Conclusion

descriptions of the reason or may provide methods to deduce reasons from the description
and the differences in the change.

Another aspect that might be of interest of future research is whether the usage of only
explicit layout information has an impact on how the proposed solution is understood
by users. The prototype implementation is currently based on Papyrus diagrams which
relies mostly on implicit layout information for the unified graphical model as well as
for visualizing the previous layout. Doing so raised problems and restricted the amount
of layout information that could be extracted as described in Section 4.6. Developing
another prototype based on explicit layout was out of the scope of this thesis and so it is
unknown if this has a positive or negative impact on the results presented in Section 5.2.
The same is also true for implementations that are more specialized for certain graphical
models an therefore have more predictable information about the layout and the layout
algorithms used to render the graphical model.

As mentioned in Section 3.6, other metrics can be shown in the review explorer. A wide
variety of metrics are possible, and it is not clear which of them may be of use during
graphical model review. Viewing all of them would obviously require too much space
and therefore only a small subset of metrics must be defined. It may also be true that
various different metrics are only of use for certain models. Specifying such a set of useful
metrics for this view in combination with different models might be an interesting topic
for future research.

The unified difference view also posed some open questions that might be of interest
of future work and most of them are caused by the merging of both model versions.
The most obvious one is the layout adjustment, especially whether a particular layout
adjustment outperforms the no explicit layout adjustment method proposed in this thesis.
This adjustment must allow judgment of the real layout, as this is also a valid reason to
reject a model or a diagram if the layout is defined by the user. Another aspect that
might be of interest for future work is how to handle the deletion inconsistency problem
mentioned in Section 3.2.2.

As mentioned in Section 3.2.1, showing layout outlines require also the visualization
of related elements. However, besides relations defined in the presented structure of
graphical elements, also other relations of the model may be of interest in this case. This
depends on the used model and should be the scope of future work for specific models.

The comment view is proposed with a simple grouping algorithm that is based on the
connected components of graph spanned by comment links. This works well if no further
information about the model is known, but for specific models more detailed grouping
algorithms can be defined. Moreover, this simple grouping mechanism might also group
comments which are not semantically related to each other. Future research may answer
the question if this is the case and if it can be improved for general or specific models.

View coordination provides a method to highlight derived elements from the current
selection. Which elements are of use for the user depends obviously on the used model,
as it has been done in the prototype implementation for Papyrus models. So future

108

6.2. Summary

research may answer the question which elements are of use for other models. Another
open question is how to order highlighted elements in the unified difference view, to allow
stepping through all highlighted elements. As mentioned before, the reading direction or
semantic based navigation would be an quick guess, but it remains to be proven if this is
true.

The evaluation results showed that users using the proposed solution were able to find
more unexpected issues in one case example than with the old tool set. This might be
a side effect of the case example or an indication that the proposed solution supported
the detection of additional issues. To prove that, further investigation with other case
examples and bigger case studies with more participants are needed.

Also the participant feedback suggests that the comparison scope selection might be
reworked. Most of them navigated through the versions from the first to the last version
in a sequential manner. This can be implemented as a comparison scope shift back and
forth. Future work may prove if this would be an improvement for users than the manual
section of the versions that has been implemented in the prototype.

The last suggestion would be to research whether the notation model and semantic
model separation of Papyrus models should be shown by default to average users or
if it makes sense to hide it until requested by the user. During the evaluation, most
participants seemed to be overwhelmed by the differences in both models, which where
in fact duplicated, as each UML element also had a view element in the notation model.
Moreover, the relationship between the UML element and view element was not visualized
in the used version of the EMF Compare view, and only the selection of a notation
difference showed the graphical presentation of the difference. However, this was only a
subjective impression by the interviewer.

6.2 Summary

Multiple linked views with different visualization techniques have been proposed to solve
the initially defined problems of visualizing differences during graphical model review.
This proposed solution requires a complex set of input data. As multiple versions are
present in a change, comparison data of all versions is needed. At least the comparison
data needed by the review explorer must be precomputed and stored during the whole
review, other comparisons can be computed on the fly when needed. Moreover, the
version history requires the matching information of elements with differences across all
versions during the whole review. Modeling frameworks must provide a way to draw on
top of graphical models and extract the layout information of elements, as well as the
possibility to reference elements within them. Review frameworks must provide a way to
store comments with links to model elements. The developed prototype Mervin showed
that it is possible to obtain this complex input data set and use existing modeling and
review frameworks to implement the proposed visualization solution.

Using a unified difference view instead of a side by side view resulted in positive feedback

109

6. Conclusion

by the participants in the case study. No explicit layout adjustment is proposed to avoid
misunderstandings by the user and to also allow reviewing of the layout of a graphical
model. But this comes at the cost of the problem on how to deal with overlapping
elements caused by deleted elements. Filtering and interaction was used in this solution,
but future research may provide better solution for this problem. Interactive overlays
have been used in favor of simple coloring of elements to avoid conflicts with semantic
coloring in the model syntax. Layout differences have been segregated from atomic
differences, as they might be of interest in some cases and for some not. Moreover, these
differences can be visualized on demand directly in the unified difference view.

The positive impact of the proposed solution have been discussed in Section 5.2 and
Section 5.3, so most of the proposed visualization techniques can be considered as an
improvement to the current state of the art. Although this is the case, the high error
rates found in the evaluation results give a strong indication that the current support for
graphical model review might need more improvement. The results also show that some
views of the proposed solution might need to be reworked. Feedback of the participants
shows that the view coordination using highlights was a clear improvement to the current
state of the art. It also shows that one of the most requested improvements was to show
all comments in the comment view, regardless of the current comparison scope.

To sum up, the proposed solution is considered as improving the support to understanding
the change for graphical model reviews. This was the main goal defined at the beginning
of Section 3. Also all challenges mentioned in Section 1.1 have been met, so the proposed
solution is considered as a success.

110

CHAPTER 7
Appendix

7.1 Case Examples

The subsequent sections give the provide the information that was given to the participants
during the evaluation described in Section 5. A general information about the scenario
is given first, followed by the descriptions of the individual tasks. The initial task
descriptions are the problems that had to be solved by the change that is under review.

7.1.1 Event Management Background

You work for an event management company that organizes one-time events. Such events
may span multiple days on one or more different event areas. Each event area is part
of an event location and may provide a fixed number of seats. An event is organized in
several categories, where each category may include other categories.

Customers buy tickets for a specific event and if seat reservation is required, also for
specific seat. The ticket is not bound to the person that bought the ticket, so it is fine
that one person buys multiple tickets for the same event.

The price of a ticket for an event is based on different price categories which also may
differ from event to event. Not all of them require the reservation of seats and therefore
seats are not necessarily assigned to price categories.

7.1.2 Event Management Models

The repository contains some Papyrus UML Models stored in the files EventManage-
ment.di, EventManagement.notation and one or more .uml-files. The .di file contains
data needed by the Papyrus editor and usually its content can be ignored. The .uml
files contain the raw UML model, except diagram information like style, layout data etc.

111

7. Appendix

Such information is stored in the diagram model which is located in the .notation file.
During the interview, the following main UML Models can be found in the repository:

Class Diagram a class diagram that describes the data stored in our event management
system.

Order Tickets An activity diagram that describes the process of ordering a ticket
through the ticketing system after the user has selected an event.

Update Event Process An activity diagram that describes the process of updating
the properties of an event with the event management system. This activity can be
triggered manually or by an external event that requires someone to start actions
of this activity. However, in both cases a user has to interact with the forms of this
activity.

Event States A state diagram that contains the state(s) a event may have in the event
management system.

A change may introduce new models or depend on another base version that may contain
additional models.

7.1.3 Event Management Task “Event Cancellation”

Internal Gerrit Id: 26
Gerrit Change Id: I9575856e4d58a8bd4be66cb087400db9c5dc1133
Role: Reviewer

Initial Task Description Sometimes events get canceled due to unforeseen reasons.
Such events have been simply deleted from the database until now. However, we also
want to keep track of such events, so adapt the model accordingly. At least the date of
cancellation and the reason for the cancellation must be stored.

7.1.4 Event Management Task “Event Subscription”

Internal Gerrit Id: 29
Gerrit Change Id: Ic368415b562368d9de807a2c36ecf1f7c43d8866
Role: Contributor

Initial Task Description We got the feedback that our customers want to be subscribe
to some of the events and get notified of changes to the event. For now, adapt the model
that customers may subscribe to an event when ordering tickets. Also include the
notification of the subscribers in all diagrams if necessary.

112

7.1. Case Examples

7.1.5 Warehouse Background

You work for a company that manages a single warehouse which stores various products
for customers. The products are delivered and stored on pallets which contain always
only one type of a product. All of these pallets are stored on huge shelves inside the
warehouse. Each of these shelves are divided into sections to facilitate the discovery of
stored pallets.

Customers send the pallets through forwarders to store them for a specific amount of time
until they are delivered back to the customer. This is done by trucks as the warehouse
has no access to a railroad.

The company is legally bound to store the name, address and telephone number of each
owner of a pallet stored in their warehouse. More detailed information can be found in
the UML models in the repository.

7.1.6 Warehouse Models

The repository contains some Papyrus UML Models stored in the files Warehouse.di,
Warehouse.notation and one or more .uml-files. The .di file contains data needed by the
Papyrus editor and usually its content can be ignored. The .uml files contain the raw
UML model, except diagram information like style, layout data etc. Such information is
stored in the diagram model which is located in the .notation file. During the interview,
the following main UML Models can be found in the repository:

Class Diagram a class diagram that describes the data stored in our warehouse system.

Pallet Unloading An activity diagram that describes the process of unloading pallet
from a truck. This process is not limited to our warehouse system and also includes
actions performed by any involved person.

Pallet Loading An activity diagram that describes the process of loading pallets for
a specific delivery. This process is not limited to our warehouse system and also
includes actions performed by any involved person.

Pallet States A state diagram that contains the state(s) a pallet may have in the
warehouse system.

A change may introduce new models or depend on another base version that may contain
additional models.

7.1.7 Warehouse Task “Damaged Pallets”

Internal Gerrit Id: 27
Gerrit Change Id: Ifa7e8593040e2fdbe45c3e8f3a2ed9d0cf31357b

113

7. Appendix

Role: Reviewer

Sometimes, pallets get damaged by accidents in the warehouse, during the delivery, while
loading, or while unloading. This has not been incorporated in the current model, so
adapt the model accordingly. A pallet is considered as damaged if at least one product
unit is damaged. It is also important to inform the owner of a pallet once a damaged
pallet has been found.

7.1.8 Warehouse Task “Notifications”

Internal Gerrit Id: 30
Gerrit Change Id: I1cb04748660708f8dacd257c7f73c7c8663f06e6
Role: Contributor

Some of our customers requested that their contractors and customer get status noti-
fications of their pallets. Adapt the model with the following notification system: A
customer specifies a number of contacts for pallets which can be informed by SMS or
Email. Each subscriber is notified once the pallets have been loaded or unloaded.

114

List of Figures

2.1 Screenshot: Gerrit Change Overview Page 10
2.2 Screenshot: Gerrit Difference Visualization 10
2.3 Common Review Process . 22

3.1 Coordinated Views . 32
3.2 Screenshot: Coordinated Views in Mervin 32
3.3 Screenshot: Unified Difference View in Mervin 35
3.4 Outline of the Graphical Element Structure 36
3.5 Graphical Element Structure Example . 37
3.6 Graphical Element Structure Example Object Diagram 38
3.7 Illustration: Tab/Window Mode . 39
3.8 Screenshots: Overlays . 40
3.9 Illustration: Overlay Details . 41
3.10 Illustration: Overlay Dependency . 43
3.11 Illustration: Ambiguous Layout Outline 44
3.12 Illustration: Unification Problems without Layout Adjustment 45
3.13 Illustration: Off-Screen Indicators . 47
3.14 Screenshot: Property Difference View in Mervin 49
3.15 Screenshot: Comment View in Mervin . 51
3.16 Illustration: Comment Grouping . 52
3.17 Screenshot: Version History View in Mervin 54
3.18 Screenshot: Review Explorer View in Mervin 57
3.19 Illustration: Difference Distribution Bars 58
3.20 Screenshot: Highlighting in Mervin . 59

4.1 Simplified GEF architecture overview . 65
4.2 Simplified GMF notation model . 66
4.3 EMF Compare Architecture Excerpt . 67
4.4 Mervin Review Model . 69
4.5 Unified Notation Model Example . 79
4.6 Illustration: Difference Similarity Example 88

5.1 Evaluation: Known Code Review Tools 98
5.2 Evaluation: Self-assessment Histograms 99

115

5.3 Evaluation: Missed Issue Error Rates . 101
5.4 Evaluation: Participant Impressions . 103

116

List of Tables

2.1 The version numbers of the analyzed code review tools 8

4.1 View Element Highlight Mapping . 91
4.2 Highlight Element Selection Mapping . 92

117

List of Algorithms

3.1 General comment grouping algorithm 53

4.1 Overview of the review (change) model loading process. 72

4.2 Overview of the patch loading process. 73

4.3 Overview of the model resource extraction process. 74

4.4 Overview of the comment loading process. 75

4.5 Overview of the comment data extraction process while saving comments. 75

4.6 Update process of the unified notation model 80

4.7 Unified model creation for a specific Papyrus diagram 81

4.8 Update references of copies created while merging deleted views 82

4.9 Update reference of a copy created while merging deleted views 83

4.10 Update container of a copy created while merging deleted views 84

4.11 Copying deleted views . 85

4.12 Copy non-unifiable references (pseudo copies) 85

119

Index

Annotation, 21, 28, 29, 48, 50, 55, 61
Color, 39, 49, 55
Difference, 55
Granularity, 21
Overlay, 39
Validity, 21, 29

Approval vote, 21
Artifact, 1, 58

Annotation, 28, 29
Base, 21, 60
Changed, 60
Difference type, 23
Evolution, 29, 30
Merger, 22
Structure, 58

AttributeChange, 68
Author, 21
Automated tests, 8

Bar charts, 56
Bitbucket, 16

Case study, 93
Change

Metrics, 28
Outcome, 33
Reason, 31, 33
Set, 23

Code review tool, 7, 50
Embedded, 8
Standalone, 8

Command, 64
Comment, 21, 28, 40, 46, 50, 61

Grouping, 50

History, 50
Link, 50, 61, 84
Loading, 72
Persistence, 71, 73
Git Ref, 73

Related, 50
Replies, 50
View, 33

Comparison, 49, 55, 61, 67
Reference side, 33
Resource filter, 67
Scope, 31, 33, 37, 49, 55, 78

Component
Focus viewport, 87
Workbench, 86
Containers, 86

Conflicting differences, 26
Coordinated views, 31
Copier, 82
Copy map, 82
Crucible, 12

Decision maker, 22
Deletion point, 49
Diagram, 24, 39, 60

Readability, 46
Diff, 67, 68, 70

Dependency, 68
Difference, 48, 53, 61

Atomic operation, 34, 40, 46, 56, 61,
68, 76

Addition, 34, 61
Change, 34
Deletion, 34, 61

121

Deletions, 55
Modification, 61

Cascading, 42
Computation
Framework, 35

Derived, 56
Evolution, 88
Image, 11, 26
Kind, 68
Layout, 34, 35, 40, 46, 56
Derivation, 34
Description, 56
Dimension, 34
Edge routing, 34
Glyphs, 42
Location, 34
Outline, 42, 43

Model mapping, 76
Modification, 34
Similarity, 53, 87, 89
Feature, 89
Kind, 89
Type, 89
Value, 89

Type, 23, 40, 49, 56
Differential, 18
Domain model, 2

Eclipse Modeling Framework, xi
Edit Policy, 65
Edition distance, 89
EditPart, 64
Evaluation

Case study
Audience, 97
Introduction, 97
Warm-up phase, 97

Error
Contributor task, 100
Incorrectly reported issue, 100
Missed issue, 98
Obvious unacceptable issue, 100
Recurring issue, 100
Reviewer task, 98

Unexpected issue, 100
Unreported missing requirement,
100

Feedback, 103
Improvements, 106
Issue
Expected, 94, 96
Justified, 95
Missed, 94
Obvious unacceptable, 96
Recurring, 95, 96
Reported unresolved, 96
Unexpected, 94, 96
Unjustified, 95
Unreported missing requirement,
96

Mervin, 96
Models, 97
Old tool set, 96
Participant workflow
Mervin, 102
Old tool set, 102

Prediction
Results, 105

Predictions, 94
Scenario, 96
Contributor, 97
Reviewer, 96

Self-assessment, 98
Subjective impressions, 103
User behavior, 100

File Evolution, 30
Future work

Comment grouping, 108
Comparison scope selection, 109
Deletion inconsistency problem, 108
Derived model elements for highlight-

ing, 108
Further case studies, 109
Impact of explicit layout information,

108
Layout adjustment, 108
Metrics, 108

122

Navigation of highlighted graphical
elements, 109

Reason of the change, 107
Related model elements, 108
Semantic model and notation model

separation, 109

Gerrit, 1, 9
GitHub, 4, 15, 16, 98
GitLab, 17
GMF fork, 64
Graphical element, 35, 61

Anchor point, 35, 36, 77
Dimension, 36
Derived, 36, 45, 77

Edge, 35, 36, 45, 77
Node, 35
Containment, 43, 44
Nesting, 35

Position, 36
Absolute, 36
Relative, 36, 45, 77

Structure, 35
Graphical Model

Aspect, 39
Graphical representation, 35, 48, 61
Graphical syntax, 2, 24, 35

Highlighting, 50, 59, 90
Associated elements, 91
Clearing, 59
Considerations, 59
Derived, 60
Graphical elements, 60
Label, 60
Navigation, 60
Permanent, 59
Request, 60
Selection, 90, 91
Service, 91, 92
Temporary, 59

Input data set, 60
Insertion point, 49

Kallithea, 20

Layer, 65, 78, 86
Connection, 66

Layout
Adjustment, 37, 44, 45
Constraint, 2, 45, 66, 77
Mapping, 76

Information, 34
Conversion, 34
Explicit, 34
Implicit, 34
Semantic, 45

Manager, 65
Lazy loading, 71

Match, 61, 67
Matcher, 68
Matching, 89
Merge, 63

Conflict, 26, 68
Request, 23
State, 26

Mervin repository, 63
Metamodel, 24
Model, 24, 48, 50

Element, 61
Contained differences, 49
Context, 48, 49

Hint, 78
Metric, 56
Structure, 48, 55
Types, 58

Modeling language, 2
Move direction

Mapping, 76

Navigation, 46, 59
Highlighting, 60

Notation model
Anchor, 66
Bendpoint, 66
Diagram, 65, 66
Edge, 65

123

Node, 65
View, 65

Off-screen indicator
Location, 47
Merged, 48
Merger, 87
Projection, 47
Shadow, 48

Orthographic projection, 47
Overlay, 39, 61

Color, 40
Creation, 84
Dependency, 42, 86
Model, 43

Encoding, 40
Filter, 42, 43, 46, 87
Interaction, 42
Semi-transparency, 42
Visibility, 42

Papyrus, xi
Patch, 58

Loading, 71
Metadata, 71
Set
Loading, 72
Reference, 73

Type, 71
Patchwork, 13
Property difference view, 33, 64
Pseudo copy, 80–82

Creation, 84
Overlay, 86

Pull request, 23

Radial projection, 47
ReferenceChange, 68
Rejection vote, 21
Remote repository, 71
Resource set cache, 71, 74
Review

Challenges, 23
Data, 61, 63

Explorer view, 33, 55, 64
Model, 68, 71, 78
Comment, 70
DiagramResource, 70
Difference, 70
DifferenceOverlay, 68, 70
EObject, 70
LayoutDifference, 70
ModelResource, 70
ModelReview, 68
Patch, 70
PatchSet, 68
StateDifference, 70

Process, 1, 7, 21, 29, 50
Request, 31
Requester, 21
Roles, 8, 21, 22

ReviewBoard, 11, 28
Reviewer, 21, 50
RhodeCode, 19
Rietveld, 9

Selection, 48
Side by side view, 23, 26, 27, 49
StateDifferenceType, 76
Structural Feature, 68

Task, 21
Textual syntax, 2
Tool set, 7, 93
Tool support factors, 93

Identification of differences, 94
Identification of issues, 94
Identification of linked elements, 94
Navigation through linked elements,

94
Tracking of differences, 94
Tracking of issue discussions, 94
Verification of reported issues, 94

Understand, 14
Unified diff format, 9
Unified difference view, 33, 35, 77

Tab mode, 39

124

Window mode, 39
Unified model, 78, 79

Creation, 81
Unified view, 23
Upsource, 13
URI

Converter, 72
Handler, 73

Version, 23, 31, 34, 48–50, 52, 55, 60
Base, 55
History view, 33, 52, 87, 91
Container, 53, 90
Filter, 55

Left, 31
New, 31, 37, 55
Old, 31, 37
Right, 31

View
Component, 65
Coordination, 59
Layout, 33
Parent hierarchy, 86
Scalability, 33

Visualization
Difference type
Distribution, 56

Annotations, 2, 50
Comparative, 25
Difference type
Indicators, 56

Non-model artifacts, 58
Review history, 3, 52, 87
Scalability, 2
Side by side, 25, 27, 48
Unified, 25, 27, 28

Watcher, 22
Window to the past, 46

XYLayout, 77, 80

125

Glossary

Android Open Source Project The developers of the well known Android Operating
system released the Android Stack as an open source project, which is named the
Android Open Source Project [Pro17]. 1

Change A change is the main entity that is under review in a review process. It contains
multiple sets of changed artifacts that are applied to a set of existing artifacts to
solve a certain task. More information can be found in Section 2.2. 10, 21, 68,
71–74, 109, 119, 129

Code Review A process used in software development to find and prevent bugs by
approval of an proposed source code change through additional persons or automated
process. xi, xiii, 1, 2, 4, 7–9, 11–14, 17–19, 25, 26, 33, 34, 107, 117

Eclipse Eclipse is mostly known for the Eclipse IDE, but is actually an open source
community that keeps the development of various projects running [Ecl17a]. 1, 4,
63

Eclipse Modeling Framework A framework that supports the creation and develop-
ment of models with java [Gro17]. xi, xiii, 4, 26, 131

Eclipse Platform A set of frameworks that form the base infrastructure for eclipse rich
client software. 63, 93, 128, 129

Eclipse Public Licence An open source license provided by the eclipse foundation
which can be found at https://www.eclipse.org/legal/epl-v10.html.
63, 131

EGit EGit provides Git support for the Eclipse IDE. More information can be found at
http://www.eclipse.org/egit/. 93, 96

EMF Compare A framework that provides support for comparing EMFmodels [Ecl17c].
26, 34, 35, 42, 48, 55, 63, 64, 66–68, 70, 72, 74, 76, 82, 87, 89, 93, 96, 100, 109

Gerrit A code review tool based on Git [Goo17b]. For more information see Section 2.1.1.
1, 9–11, 63, 68, 71–73, 93, 96, 107

127

https://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/egit/

Git A decentralized version control system. See https://git-scm.com/ for more
details. 64, 71–73, 127, 129

Graphical Editing Framework An eclipse framework that provides facilities to create
and develop graphical editors using the Eclipse Platform [Nys17]. 63, 131

Graphical Model Models described by a graphical syntax. 4, 24–26, 30, 33, 35–37,
44–46, 56, 60, 78, 93, 96, 106–108, 128

Graphical Model Review The process of reviewing diagrams or models with a graph-
ical syntax. 7, 8, 23, 25, 31, 34, 46, 106–110

Graphical Modeling Framework An eclipse framework that extends GEF with EMF
to create and develop graphical editors for graphical models [Ecl17e]. 24, 131

LibreOffice An open source application suite for office applications [Fou17]. 1

Maven A build tool that is used to build the prototype described in this thesis. More
information can be found at https://maven.apache.org/. 63

Mental Map Each person creates an abstract structure of layouts in their minds when
they view graphs. This abstract structure is called the Mental map [DG02, ELMS91,
MELS95]. 2, 28

Mervin Mervin is the name of the prototype that has been developed to evaluate the
proposed solution in this thesis. For more information see Section 4. 5, 31, 32, 35,
40, 49, 51, 59, 63–69, 71, 74, 76–82, 84, 86, 87, 89–93, 100, 102–107, 109

Model Evolution The evolution of changed models in Model versioning [BKL+12]. 4

Model Review The process of reviewing models with any syntax. 107

Model Versioning Model Versioning is the extension of the idea of the well known
source code or text based versioning approach on models [BKL+12]. 4, 128

Model-Driven Engineering Model-Driven Engineering is a paradigm that uses models
as the main artifacts in development to generate executables [BKL+12]. 2, 4, 24,
97–99

Mylyn Mylyn is a framework for eclipse that provides support for managing development
tasks including code reviews. More information can be found at http://www.
eclipse.org/mylyn/. 93, 96, 100, 103

Notation Model The notation model is a model defined by GMF that is used to
separate the graphical description of model elements from the semantic model. It
describes the graphical elements with their properties that are not contained in
the semantic model or cannot be derived from thesemantic model. 24, 65, 66, 74,
76–81, 84, 91, 92, 119, 129

128

https://git-scm.com/
https://maven.apache.org/
http://www.eclipse.org/mylyn/
http://www.eclipse.org/mylyn/

Off-screen Indicator Indicators attached to the sides of a view to show elements not
presented in the current screen or view area. 46, 47, 78, 86, 87

Papyrus A modeling environment for various standardized modeling languages including
UML, based on the Eclipse Platform. xi, xiii, 4, 26, 27, 35, 55, 58, 63, 64, 66, 76,
78–81, 86, 87, 90, 93, 96–100, 102, 103, 105, 107–109, 119

Review History Changes contain various versions of changed artifacts that are created
at different times. These artifacts form a history of changed artifacts, which is
called the Review History in this thesis. 1

Screen Space The amount of space that can be used to show the elements on one or
more combined display devices. 33

Semantic Model The actual EMF model that is referenced by the notation model in
GMF. 24, 65, 66, 76, 84, 91, 92, 128

Unified Model Map A map that links the copied elements in the original notation
model with their copies in the unified notation model. It also stores the pseudo
copies, the elements that needed to be copied during unification due to constraints
of the notation model. 68, 79–82, 84, 91

Version Control System A software that allows developers to create, store and relate
different versions of artifacts. Git is an example for such a system. 8, 131

Visual Information Seeking Mantra This mantra has been defined by Ben Shneider-
man and contains visual design guidelines important for information visualization
applications [Shn96]. It reads as follows: Overview first, zoom and filter, then
details-on-demand [Shn96]. 2, 42, 48, 56

129

Acronyms

API Application Programming Interface. 13, 26, 71, 78

CVD color vision deficiency. 23

EMF Eclipse Modeling Framework. 26, 48, 63, 65, 66, 71–73, 82, 90, 127–129, Glossary:
Eclipse Modeling Framework

EPL Eclipse Public Licence. 63, Glossary: Eclipse Public Licence

GEF Graphical Editing Framework. 63–66, 86, 128, Glossary: Graphical Editing
Framework

GMF Graphical Modeling Framework. 24, 26, 54, 55, 57, 58, 63–66, 68, 70, 77, 78, 80,
81, 86, 107, 128, 129, Glossary: Graphical Modeling Framework

IDE Integrated Development Environment. 8

MVC Model View Controller. 64

REST Representational State Transfer. 13

UML Unified Modeling Language. xi, xiii, 45, 63, 66, 78, 93, 96–100, 107, 109, 129

URI Uniform Resource Identifier. 72–74

VCS Version Control System. 8, 11–13, 15, 16, 18, 19, 70, Glossary: version control
system

131

Bibliography

[Atl17a] Atlassian. Bitbucket | the git solution for professional teams. https://
bitbucket.org/product, 2017. Accessed: 2017-05-17.

[Atl17b] Atlassian. Crucible - code review tool for SVN, git, perforce and more.
https://www.atlassian.com/software/crucible/overview, 2017.
Accessed: 2017-03-29.

[BB13] Alberto Bacchelli and Christian Bird. Expectations, Outcomes, and Challenges
of Modern Code Review. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 712–721, Piscataway, NJ, USA, 2013.
IEEE Press.

[BE94] Marla J. Baker and Stephen G. Eick. Visualizing software systems. In Proceed-
ings - International Conference on Software Engineering, pages 59–67. Publ by
IEEE, 1994.

[BE96] T. Ball and S. G. Eick. Software visualization in the large. Computer, 29(4):33–
43, 1996.

[Bea17] Beanbag, Inc. Take the pain out of code review | review board. https:
//www.reviewboard.org/, 2017. Accessed: 2017-03-29.

[BKL+12] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland,
and Manuel Wimmer. An introduction to model versioning. In Formal Methods
for Model-Driven Engineering, pages 336–398. Springer, 2012.

[BR07] E. Baudrier and A. Riffaud. A Method for Image Local-Difference Visualization.
In Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International
Conference on, volume 2, pages 949–953. IEEE, 2007.

[Bé05] Jean Bézivin. On the unification power of models. Software & Systems Modeling,
4(2):171–188, May 2005.

[CAT07] Fanny Chevalier, David Auber, and Alexandru Telea. Structural Analysis
and Visualization of C++ Code Evolution Using Syntax Trees. In Ninth
International Workshop on Principles of Software Evolution: In Conjunction

133

https://bitbucket.org/product
https://bitbucket.org/product
https://www.atlassian.com/software/crucible/overview
https://www.reviewboard.org/
https://www.reviewboard.org/

with the 6th ESEC/FSE Joint Meeting, IWPSE ’07, pages 90–97, New York,
NY, USA, 2007. ACM.

[CKN+03] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin
Wampler. A System for Graph-based Visualization of the Evolution of Software.
In Proceedings of the 2003 ACM Symposium on Software Visualization, SoftVis
’03, pages 77–ff, New York, NY, USA, 2003. ACM.

[DC03] Gareth Daniel and Min Chen. Video Visualization. In Proceedings of the 14th
IEEE Visualization 2003 (VIS’03), VIS ’03, pages 54–, Washington, DC, USA,
2003. IEEE Computer Society.

[DG02] Stephan Diehl and Carsten Görg. Graphs, they are changing. In Graph drawing,
pages 23–31. Springer, 2002.

[Ecl17a] Eclipse Foundation, Inc. Eclipse. https://eclipse.org/home/index.
php, 2017. Accessed: 2017-03-29.

[Ecl17b] Eclipse Foundation, Inc. Eclipse Public License - Version 1.0. https://www.
eclipse.org/org/documents/epl-v10.html, 2017. Accessed: 2017-
04-18.

[Ecl17c] Eclipse Foundation, Inc. EMF compare - compare and merge your EMF
models. https://www.eclipse.org/emf/compare/, 2017. Accessed:
2017-03-29.

[Ecl17d] Eclipse Foundation, Inc. EMF compare - developer guide. https:
//www.eclipse.org/emf/compare/documentation/latest/
developer/developer-guide.html, 2017. Accessed: 2017-03-29.

[Ecl17e] Eclipse Foundation, Inc. GMF. https://www.eclipse.org/modeling/
gmp/, 2017. Accessed: 2017-03-29.

[Ecl17f] Eclipse Foundation, Inc. Papyrus. https://eclipse.org/papyrus/,
2017. Accessed: 2017-04-18.

[ELMS91] Peter Eades, Wei Lai, Kazuo Misue, and Kozo Sugiyama. Preserving the
mental map of a diagram. International Institute for Advanced Study of Social
Information Science, Fujitsu Limited, 1991.

[FG04] Michael Fischer and Harald Gall. Visualizing feature evolution of large-scale
software based on problem and modification report data. 2004.

[Fou17] The Document Foundation. Home | LibreOffice - free office suite - fun project
- fantastic people. https://www.libreoffice.org/, 2017. Accessed:
2017-03-29.

134

https://eclipse.org/home/index.php
https://eclipse.org/home/index.php
https://www.eclipse.org/org/documents/epl-v10.html
https://www.eclipse.org/org/documents/epl-v10.html
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html
https://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html
https://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html
https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/modeling/gmp/
https://eclipse.org/papyrus/
https://www.libreoffice.org/

[Fre17] Free Software Foundation, Inc. Diffutils manual - diff output formats.
https://www.gnu.org/software/diffutils/manual/diffutils.
html#Output-Formats, 2017. Accessed: 2017-05-17.

[GAW+11] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D. Hansen,
and Jonathan C. Roberts. Visual comparison for information visualization.
Information Visualization, 10(4):289–309, October 2011.

[Git17a] GitHub, Inc. GitHub - Build software better, together. https://github.
com, 2017. Accessed: 2017-05-17.

[Git17b] GitLab B.V. Code, test, and deploy together with gitlab open source git repo
management software. https://about.gitlab.com/, 2017. Accessed:
2017-05-17.

[GK10] Martin Graham and Jessie Kennedy. A Survey of Multiple Tree Visualisation.
Information Visualization, 9(4):235–252, 2010.

[Goo17a] Google Inc. Gerrit code review - gerrit installations in the
wild. https://gerrit.googlesource.com/homepage/+/md-pages/
docs/ShowCases.md, 2017. Accessed: 2017-03-29.

[Goo17b] Google Inc. Gerrit code review - index.md. https://www.
gerritcodereview.com/, 2017. Accessed: 2017-03-29.

[Gro17] Richard Gronback. Eclipse modeling project. https://eclipse.org/
modeling/emf/, 2017. Accessed: 2017-03-29.

[GS03] Jack Greenfield and Keith Short. Software factories: assembling applications
with patterns, models, frameworks and tools. pages 16–27. ACM, October
2003.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28(1):75–105, 2004.

[Jet17] JetBrains s.r.o. Upsource: Polyglot code review tool. https://www.
jetbrains.com/upsource/, 2017. Accessed: 2017-05-13.

[JH06] Luke Jefferson and Richard Harvey. Accommodating Color Blind Computer
Users. In Proceedings of the 8th International ACM SIGACCESS Conference
on Computers and Accessibility, Assets ’06, pages 40–47, New York, NY, USA,
2006. ACM.

[Ker17] Jeremy Kerr. Patchwork. http://jk.ozlabs.org/projects/
patchwork/, 2017. Accessed: 2017-05-10.

[Lan01] Michele Lanza. The evolution matrix: recovering software evolution using
software visualization techniques. pages 37–42. ACM, September 2001.

135

https://www.gnu.org/software/diffutils/manual/diffutils.html#Output-Formats
https://www.gnu.org/software/diffutils/manual/diffutils.html#Output-Formats
https://github.com
https://github.com
https://about.gitlab.com/
https://gerrit.googlesource.com/homepage/+/md-pages/docs/ShowCases.md
https://gerrit.googlesource.com/homepage/+/md-pages/docs/ShowCases.md
https://www.gerritcodereview.com/
https://www.gerritcodereview.com/
https://eclipse.org/modeling/emf/
https://eclipse.org/modeling/emf/
https://www.jetbrains.com/upsource/
https://www.jetbrains.com/upsource/
http://jk.ozlabs.org/projects/patchwork/
http://jk.ozlabs.org/projects/patchwork/

[Lee89] Allen S. Lee. A Scientific Methodology for MIS Case Studies. MIS Quarterly,
13:33–50, 1989.

[LGJ] Yuehua Lin, Jeff Gray, and Frédéric Jouault. DSMDiff: a differentiation tool
for domain-specific models. 16(4):349–361.

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment
and the mental map. Journal of visual languages and computing, 6(2):183–210,
1995.

[MGH] Akhil Mehra, John Grundy, and John Hosking. A generic approach to support-
ing diagram differencing and merging for collaborative design. In Proceedings
of the 20th IEEE/ACM International Conference on Automated Software En-
gineering, ASE ’05, pages 204–213. ACM.

[NS00] Chris North and Ben Shneiderman. Snap-together visualization: can users
construct and operate coordinated visualizations? International Journal of
Human-Computer Studies, 53(5):715–739, November 2000.

[Nys17] Alexander Nyssen. GEF. https://eclipse.org/gef/, 2017. Accessed:
2017-03-29.

[OWKa] Dirk Ohst, Michael Welle, and Udo Kelter. Difference tools for analysis and
design documents. In International Conference on Software Maintenance, 2003.
ICSM 2003. Proceedings, pages 13–22. IEEE.

[OWKb] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between versions of
UML diagrams. In Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-11, pages 227–236. ACM.

[Pha17] Phacility, Inc. Phacility - products - differential. https://www.phacility.
com/phabricator/differential/, 2017. Accessed: 2017-05-17.

[Pro17] Android Open Source Project. Android open source project. https://
source.android.com/, 2017. Accessed: 2017-03-29.

[Rho17] RhodeCode, Inc. Enterprise code management for hg, Git, SVN. https:
//rhodecode.com/, 2017. Accessed: 2017-03-29.

[Sch06] D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter, 39(2):25–31, February 2006.

[Sci17] Scientific Toolworks, Inc. Code review tool. https://scitools.com/
code-review/, 2017. Accessed: 2017-05-9.

[Sel03] B. Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–
25, September 2003.

136

https://eclipse.org/gef/
https://www.phacility.com/phabricator/differential/
https://www.phacility.com/phabricator/differential/
https://source.android.com/
https://source.android.com/
https://rhodecode.com/
https://rhodecode.com/
https://scitools.com/code-review/
https://scitools.com/code-review/

[SFvH] A. Schipper, H. Fuhrmann, and R. von Hanxleden. Visual comparison of
graphical models. In 2009 14th IEEE International Conference on Engineering
of Complex Computer Systems, pages 335–340. IEEE.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336–343. IEEE, 1996.

[Sim10] M. P. Simunovic. Colour vision deficiency. Eye, 24(5):747–755, May 2010.

[Sof17] Software Freedom Conservancy. Kallithea. https://kallithea-scm.
org/, 2017. Accessed: 2017-05-17.

[SR04] E. Suvanaphen and J. C. Roberts. Textual difference visualization of multiple
search results utilizing detail in context. In Proceedings Theory and Practice
of Computer Graphics, 2004., pages 2–8, June 2004.

[Stö] Harald Störrle. Making sense of UML class model changes by textual difference
presentation. In Proceedings of the 6th International Workshop on Models and
Evolution, ME ’12, pages 3–8. ACM.

[TA08] Alexandru Telea and David Auber. Code Flows: Visualizing Structural Evolu-
tion of Source Code. Computer Graphics Forum, 27(3):831–838, 2008.

[vdBPV] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. Generic tool for
visualization of model differences. In Proceedings of the 1st International
Workshop on Model Comparison in Practice, IWMCP ’10, pages 66–75. ACM.

[vR17] Guido van Rossum. Code review, hosted on google app engine. https://
github.com/rietveld-codereview/rietveld, 2017. Accessed: 2017-
05-9.

[VTvW05] Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan: visualization of
code evolution. pages 47–56. ACM, May 2005.

[Wen] Sven Wenzel. Scalable visualization of model differences. In Proceedings of
the 2008 International Workshop on Comparison and Versioning of Software
Models, CVSM ’08, pages 41–46. ACM.

[ZMG+03] Polle T. Zellweger, Jock D. Mackinlay, Lance Good, Mark Stefik, and Patrick
Baudisch. City lights: Contextual views in minimal space. In CHI ’03 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’03, pages 838–839.
ACM, 2003.

137

https://kallithea-scm.org/
https://kallithea-scm.org/
https://github.com/rietveld-codereview/rietveld
https://github.com/rietveld-codereview/rietveld

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Thesis
	Methodological Approach
	Structure of this Thesis

	State of the Art
	Existing Code Review Tools
	Review Process & Artifacts
	Graphical Models and Diagrams
	Existing Difference Visualization Techniques
	Element Annotation Visualization Techniques
	Review History Visualization Techniques

	Mervin: A Graphical Model and Diagram Review Tool
	Difference Types
	Unified Difference View
	Property Differences View
	Comment View
	Version History View
	Review Explorer View
	View Coordination And Highlighting
	Required Input Data

	Implementation
	Papyrus and GMF Overview
	EMF Compare Overview
	Internal Review Model
	Gerrit Integration
	EMF Compare Difference Mapping
	Obtaining Layout Information
	Unified View Implementation
	Difference History
	Highlight Contexts

	Evaluation
	Evaluation Setup
	Evaluation Results
	Summary

	Conclusion
	Future Work
	Summary

	Appendix
	Case Examples

	List of Figures
	List of Tables
	List of Algorithms
	Index
	Glossary
	Acronyms
	Bibliography

